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ABSTRACT

Broadly, this thesis treats the statistical properties of dynamical systems in two di�erent contexts.
That is, we characterise asymptotic behaviour, independence, and randomness in two distinct settings.

First we consider two models for di�usion of gasses: the random Lorentz gas and the random wind-
tree model. Understanding how typical particles di�use outwards is one of the central aims of the �eld.
In both these contexts our main results state that (in a particular scaling limit), when considered over
long times, the typical particle trajectory converges in distribution to a Brownian motion. We use
novel coupling methods to approximate these trajectories by Markovian walks and thus prove these
invariance principles.

For the second half, we consider a general discrete hyperbolic subgroup. Therefore these groups may
be 'thin'. Then we consider the orbit of a point in hyperbolic half-space by this group. The main results
concern characterising the limiting local statistics of these orbits in a number of di�erent contexts. We
extend methods from homogeneous dynamics to the thin group setting and use Patterson-Sullivan
theory and equidistribution of expanding horospheres to characterise the limiting behaviour of these
group orbits. This work has applications to sphere packings, Diophantine approximation, continued
fractions, and more.
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Chapter 1

General Introduction and Plan

The study of dynamical systems is an attempt to understand the behaviour of a physical or mathemat-

ical system as it evolves over time. Given this general de�nition, dynamical systems is a topic which

permeates many areas of mathematics. As such, there are many examples of dynamical systems ranging

from models for physical systems to fundamental mathematical objects. In the real world, dynamical

systems have been used to study: solar systems, the weather, crystal growth, �nancial markets, tra�c

etc. While from a mathematical point of view some examples and applications of dynamical systems

include: dynamics on the space of in�nite sequences (symbolic coding), modelling the motion of gas

particles, solutions to Diophantine equations, billiard tables, etc. In general, dynamicists are in search

of general properties of the system, such as asymptotic behaviour and invariance.

It would be ambitious to try and pin down the �rst example of a modern dynamical systems

approach appearing in mathematics, but many authors identify Poincaré as an early pioneer, who (in

1890 [Poi90]) discussed the problem later known as the Poincaré recurrence theorem (however later

proved by Carathéodory [Car19]). This attribution owes to the fact that Poincaré was concerned with

the asymptotic properties of a wide-class of systems. Following this, Von Neumann continued the

study of dynamical systems from a functional analysis point of view. However, since many of the most

powerful theorems in ergodic theory are measure theoretic, the modern treatment of dynamical systems

was truly started by Kolmogorov (c. 1958) who introduced probabilistic methods into the subject. The

probabilistic point of view has motivated a plethora of recent work by many great mathematicians.

While the problems addressed are wide-ranging, the philosophy is often similar: namely dynamicists

seek to use measure theory to characterise di�erent behaviour (i.e symmetry, invariance, or asymptotic

properties) of a dynamical system. See [KH95] for an excellent introduction to dynamical systems and

its development.

One example of a dynamical system is a billiard table, where one considers the motion of a point

particle in a compact region �ying according to Newtonian dynamics, and colliding elastically with the

walls of the table (see Figure 1.1). While the rules governing the dynamics of the particle are easy

to compute, the behaviour exhibited by these simple systems can vary dramatically, and is not fully

understood to this day. From the point of view of physicists, similar systems have been used to study

the dynamics of clouds of particle systems, dating back to the work of Boltzmann in the 1870s.

Another fascinating topic in modern mathematics is the study of tilings of the plane or of the disk

(see Figure 1.1). It is perhaps surprising that tilings (a stationary object) can be thought of in terms of

the evolution of a dynamical system. However, dynamical systems can be used to characterise properties

of given tilings, the space of all tilings, and the motion of particles in periodic environments. This point

of view has led to a number of surprising breakthroughs in a variety of settings, ranging from geometric

objects introduced by the Greeks (e.g Apollonian circle packings) to questions about the approximation

7



Figure 1.1: Here we show two examples of dynamical systems. On the left is the motion

of two particles in a 'Bunimovich stadium' - an example of a billiard table. On

the right is the print `Circle Limit IV' (or Heaven and Hell) by M.C Escher. The

image shows a hexagonal tiling of the disk using hyperbolic geometry. Indeed Escher

benefited greatly from discussions with mathematician Donald Coxeter in constructing

these hyperbolic tilings.1

of irrationals by rational numbers (Diophantine approximation) raised by mathematicians in the 19th

Century.

Now, if we want to consider the statistical properties of dynamical systems, there are at least two

ways to do this. One option is to generate an orbit deterministically, for example the centres of the

hexagonal tiles in Figure 1.1. Then to ask how a typical observer would see this orbit. For example,

place an observer at a random position in the image on the right hand side of Figure 1.1 and ask what

distance is the observer from the centre of the nearest tile. Thus the randomness is in the observation.

Alternatively, one could introduce some randomness in the initial set-up of the dynamical system and

measure properties of the orbit. For example, in Figure 1.1 one could consider randomly chosen initial

conditions for the particle in the Bunimovich stadium and how quickly such trajectories diverge. The

goal for dynamicists is then to understand what can be said about typical (with respect to either of

these sources of randomness - or both) statistics. In the remainder of this introduction (prior to starting

Part 1) we will present a brief and informal introduction to the two topics which we study in each of

the subsequent parts.

1.1 Non-Equilibrium Statistical Mechanics

The �rst half of the thesis concerns non-equilibrium statistical mechanics. Generally speaking, sta-

tistical mechanics is the study of large ensembles of particles, starting with rules governing how the

particles interact. Indeed in 1900 David Hilbert presented a list of 23 problems [Hil02] which were un-

solved at the time and which he felt were central to mathematics. Hilbert's 6th problem concerns the

axiomisation of the laws of physics. Speci�cally, it states (in part) the need to develop �mathematically

the limiting processes [...] which lead from the atomistic view to the laws of motion of continua�. In

other words, Hilbert was concerned with how microscopic laws, governing interaction between particles

can result in the laws which we observe around us (the organisation of clouds, the �ow of liquids and

heat, nucleation of stars, �ows of tra�c, etc.) - i.e macroscopic behaviour.

1Regarding Circle Limit IV: All M.C. Escher works c© 2019 The M.C. Escher Company - the Netherlands. All rights

reserved. Used by permission. www.mcescher.com - The author is very grateful to the M.C Escher Company for this

permission.
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While Hilbert gave a very elegant phrasing of a very general and open-ended problem, he was not

the �rst person to study it. In the 19th Century, Ludwig Boltzmann studied an intermediate problem of

this nature. Speci�cally, Boltzmann asked: given the rules for inter-particle interactions and an initial

ensemble, what can be said about the evolution of the ensemble? In other words how does the particle

density evolve? We call this the mesoscopic regime, and Boltzmann was interested in how we move

from the microscopic to the mesoscopic; as oppose to Hilbert who asked how to go from microscopic

straight to macroscopic. Moving from mesoscopic to macroscopic presents a problem in itself, but

generally speaking this is better understood than the transition from microscopic to mesoscopic.

Given the rules for inter-particle interaction, there are two fundamental questions commonly asked.

Firstly, given a cloud (or density) of these particles, is there a partial di�erential equation describing

the evolution of such a cloud? Boltzmann gave a heuristic argument that, in a particular scaling limit

(the low density limit), for a particular particle system, the particle density evolves according to, what

became known as the Boltzmann equation. Proving this relation rigourously has been the topic of a

great deal of research in the 20th and 21st centuries. The second question asks: consider the trajectory

of a single particle inside of such an ensemble for a very long time, if we scale this appropriately does the

trajectory 'look like' a Brownian motion? In other words, on large time scales and suitably 'zoomed-

out' do these trajectories look random? In a sense, both of these questions are asking whether one

can approximate the individual particle trajectories by random, independent, Markovian trajectories.

In the �rst instance we ask if the bulk can be well-modelled by a gas of independent molecules. The

second asks if the typical trajectory converges to a Brownian motion (a purely probabilistic object)

when viewed on long time scales.

In this thesis we are primarily concerned with non-interacting particle systems, in particular two

models:

• The random Lorentz gas: Given an array of �xed, in�nite-mass, spherical obstacles of a given

radius, randomly arranged in R3, consider the trajectory of a point particle which begins at

the origin and travels in straight lines until it collides with an obstacle, whereupon it re�ects

elastically o� of the sphere. Then the particle continues �ying in straight lines until the next

collision (see the left side of Figure 1.2).

• The random wind-tree: Here we also consider a random array of obstacles. However in

this case the obstacles are hard cubes. Then, as for the random Lorentz gas, we consider the

trajectory of a point particle with a given initial velocity travelling through this array in straight

lines re�ecting o� of the cubes (see the right side of Figure 1.2).

The Lorentz gas was originally proposed [Lor05] as a model to study the motion of electrons through

metals. The model may seem simplistic at �rst, but it is very fundamental and of great importance.

In particular, the dream for mathematicians is to model particle systems by independent probabilistic

objects with no memory. If that were the case, then Hilbert's 6th problem would essentially be solved,

as the macroscopic laws governing a �uid of independent particles with no memory are well-understood.

The random Lorentz gas is compose of independent point particles which have memory � in that as the

particle explores its environment, it might return to a certain position and recollide with a previously

encountered scatterer. Therefore the goal is to control these memory e�ects and say that the Lorentz

gas behaves similarly enough to the purely random gas. As such, the Lorentz gas presents one of the

most tractable examples of a complex particle system which exhibits physically relevant phenomena

(e.g di�usion). Similarly, the wind-tree model was introduced by Paul and Tatiana Ehrenfest [EE59] as

a model for di�usion. The challenge with the wind-tree process is that since the obstacles are square,

there is less randomness introduced at every collision, hence understanding the role played by memory

e�ects presents additional challenges.

9



Random Lorentz Gas Random Wind-Tree

Figure 1.2: On the left we show a typical trajectory of the random Lorentz gas while on

the right we show a typical trajectory of the random wind-tree model. Note that in

either case the obstacles do not move throughout the trajectory. The key difference

in the dynamics is that in the wind-tree model the velocities are restricted to

a finite set (in 2 dimensions there are only 4 possible velocities), while in the

Lorentz gas model the velocities can be anything in the unit sphere.

In both contexts, the �rst question we asked: �are clouds of Lorentz gas/wind-tree particles governed

by a (linear) Boltzmann equation in the low-density limit?� has been positively answered (see [Gal70,

Spo78, BBS83]) in some generality. However the second question �convergence to a Brownian motion

in the di�usive limit� is one of the main open questions in the �eld. In Part I of the thesis, we will

address this open problem and prove an intermediate result towards this second question for the random

Lorentz gas and the wind-tree model.

1.2 Orbits of Thin Groups

Since the late 19th Century and the work of Poincaré, Klein, and other pioneers of the �eld, mathemati-

cians have studied the orbits of discrete hyperbolic groups (discrete groups acting on the hyperbolic

half-plane). This research has had numerous consequences - in particular when the groups concerned

are lattices. However until recently there has less research concerning the counter-part to lattices:

in�nite co-volume discrete (or thin) subgroups (see Chapter 5). This disparity owes more to the lack of

tools for handling thin groups rather than to any disparity in the applications or relevance. Recently

some of the tools classically used to study lattices have been generalised to the thin group setting. As

a consequence, the topic has become the focus of a great deal of modern mathematical research.

From the arithmetic side, the development of strong and super-strong approximation (See Chapter

5, Section 5.3.1) has allowed mathematicians to extend sieving theory to thin groups and prove local

global principles. Without entering into the de�nitions and details, this development has opened thin

groups up to arithmetic techniques. From the geometric point of view, Patterson-Sullivan theory gave

rise to the development of measure theory and ergodic theory in the thin (hyperbolic) subgroups setting

(Chapter 5, Section 5.5). This second step means that the techniques from homogeneous dynamics can

now be applied to the in�nite volume setting. Therefore, at around the same time as thin groups have

become increasingly relevant to modern mathematics because of their number theoretic applications,

the ergodic tools for studying their group orbits have been developed. These advances in the theory of

thin groups have recently been successfully applied to Apollonian circle packings, Pythagorean triples,

continued fractions, group theory, etc.
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Since thin groups have taken a more central role in mathematics, it makes sense to study the

statistics of these groups. In particular we ask, what can be said about the distribution of distances

between points in the orbit of a thin group? In general the study of local statistics of point sets has

numerous applications to quantum systems, random matrices, the Riemann hypothesis etc.. Moreover

understanding the local statistics of group orbits is akin to understanding the �ne-scale behaviour of

the group. The goal for Part II is to characterise the �ne-scale statistics of general discrete (possibly

thin) hyperbolic subgroups.

An Explicit Example: For the sake of concreteness we will present one example of such a thin

group which is relevant to our research, and to a long-studied problem: the Apollonian circle packing

(or Apollonian gasket) - named after Apollonius of Perga (c. 200 B.C) who (among other things)

was interested in the tangencies of 'kissing circles'. Given three mutually tangent circles, it is always

possible to draw two more circles which are tangent to all three circles (in Figure 1.3, on the left hand

side we show three mutually tangent circles, and in dotted line the two circles tangent to all three).

In the 1640s Descartes studied this relationship, indeed Descartes even wrote to Princess Elizabeth

of Bohemia on the subject. Descartes found that given the radii of three mutually tangent circles there

is a formula for the radius of the the fourth circle which is mutually tangent to all three - thus relating

the problem to a problem in Diophantine equations. That is, if we consider circles with empty interior

to have positive radius, and circles with empty exterior to have negative radius (therefore in Figure 1.3

in the middle, only the outer-most circle has negative radius):

Theorem 1.2.1 (Descartes�Princess Elizabeth). Given three mutually tangent circles with radii r1, r2, r3 >

0 and assume the fourth mutually tangent circle has radius r4 > 0. Then

2

(
1

r2
1

+
1

r2
2

+
1

r2
3

+
1

r2
4

)
=

(
1

r1
+

1

r2
+

1

r3
+

1

r4

)2

. (1.2.1)

Subsequently, in the 1930s Nobel prize winning chemist, Frederick Soddy considered the problem

(and even eulogised it in a poem in Nature [Sod36]). He was the �rst to consider packings where one

continued to inscribe circles into the diagram (see Figure 1.3). That is, start from a large circle and

two smaller circles all mutually tangent (i.e starting with the left hand image in Figure 1.3), then add

the two mutually tangent circles to the diagram. Then select three mutually tangent circles from the

packing and add to the diagram the circle tangent to all three until all of the 'holes' in the picture have

been �lled. This generates an Apollonian packing (as in the middle image of Figure 1.3).

These packings have been extensively studied and we will return to them later. For this introduction

we simply note that the Apollonian gasket can be viewed as the orbit of an initial con�guration by

a (thin) group (called the Apollonian group). Speci�cally, consider 4 mutually tangent circles (see

the right hand side of Figure 1.3), this will be our initial con�guration. Given three circles in this

con�guration we call the circle which passes through the tangency points of this triple the dual circle

(associated to the triple). Therefore there are 4 dual circles to the initial con�guration. Given a dual

circle we can consider the inversion through that circle - that is, a natural mapping from the outside

to the interior of the circle (and vice versa) (see Figure 1.3). Therefore, given an initial con�guration

there are 4 inversion maps. These four maps generate a (thin) group. Moreover, the action of this

group on the initial con�guration produces the entire Apollonian gasket.

To conclude, given an initial con�guration there is a group which generates the Apollonian gasket.

Hence studying the statistical properties of the gasket is akin to studying the statistical properties of

an orbit of the group. Moreover, using Theorem 1.2.1, studying the statistical properties of solutions

to equation (1.2.1) is also akin to studying this group orbit. This is just one example of an interesting

thin group-orbit of which there are many. We return to this topic in Part II. For a more detailed
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d

a

b

Figure 1.3: On the left hand side, we show three mutually tangent circles, along

with the two circles tangent to all three. In the middle we show a diagram of

an Apollonian circle packing. Beginning with the image on the left hand side we

construct the packing by repeatedly filling in the holes with circles mutually

tangent with 3 of the existing circles. On the right hand side we show an initial

configuration of 4 mutually tangent circles. In dashed lines we show (segments

of) the dual circles to all 4 triples of circles in the initial configuration. The

circle labelled a is the image of the circle labelled b under inversion by the dual

circle labelled d.

exposition of Apollonian packings and their history see [Pol15].

1.3 Plan and Organisation

This thesis is based on 2 rather independent research projects. Each comprising 2 papers. To reduce

the confusion we treat each of these research projects independently in two parts. Each chapter will

be more-or-less self-contained. Therefore there is some repetition.

Part I: presents my work with Bálint Tóth on non-interacting particle systems [LT18, LT19].

• Chapter 2 is a formal introduction to the Lorentz gas and wind-tree processes, as well as some

historic background concerning similar research. Then, in Section 2.5 I present some preliminary

theorems and de�nitions.

• Chapter 3 (joint with Bálint Tóth) concerns the random Lorentz gas, in this chapter we show

that an invariance principle holds for the random Lorentz gas in an intermediate scaling regime.

That is, under appropriate scaling we show that a typical random Lorentz gas particle converges

to a Brownian motion. This does not fully solve the problem stated in this introduction as we

need to work in a regime intermediate between the kinetic regime and the di�usive one. Thus

this represents partial progress towards resolution of this central problem.

• Chapter 4 (joint with Bálint Tóth) concerns the random wind-tree process. We show that the

random wind-tree process also satis�es an invariance principle in the same intermediate scaling

regime as Chapter 3. In particular it is interesting to note that while the wind-tree model has

less of a defocusing mechanism built into the dynamics, the same type of limiting behaviour is

observed in both the wind-tree and Lorentz models. We emphasise that the methodology in this

chapter is very similar to that of Chapter 3. Indeed the central ideas of the proof are present in

Chapter 3 however there are a number of complications in the application due to the change in

dynamics.

Part II: contains work from 2 papers written by myself [Lut18, Lut19] concerning the local statistics

of the orbits of thin groups.

12



• Chapter 5 is a background/introductory chapter which introduces hyperbolic geometry, and dy-

namics therein; thin groups; and the measure theory and some of the important theorems in that

context.

• Chapter 6 presents my work [Lut18] characterising the local statistics of directions in group orbits.

That is, given the orbit of a point under the action of a thin group, and an observer placed in

space, how do the directions of the points of the orbit distribute when viewed from the position

of the observer.

• Chapter 7 presents my work [Lut19] characterising the local statistics of generalised Farey se-

quences. That is, what can be said about the local statistics of the orbit of the point at in�nity

by a thin group. This gives rise to some surprising applications to continued fractions and Dio-

phantine approximation.

1.3.1 Authorship

To avoid cluttering the exposition below, we explain here how the various sections were written and

which sections are taken from previously disseminated papers.

• Chapter 2: This chapter expands on the historical background given in [LT18] and [LT19], some

of the explanations are given verbatim and some are given by myself here. In addition there are

some classical de�nitions and theorems presented here.

• Chapter 3: This chapter is an expanded and modi�ed version of [LT18], the paper was originally

written by Bálint Tóth and myself.

• Chapter 4: This chapter is an expanded and modi�ed version of [LT19], the paper was originally

written by Bálint Tóth and myself.

• Chapter 5: This background/introductory chapter was written for this thesis - with the exception

of Chapter 5, Section 5.4 - 5.6 which are taken almost verbatim from [Lut18]

• Chapter 6: presents my work in [Lut18] and is taken almost verbatim, with some modi�cation

where appropriate.

• Chapter 7: presents my work in [Lut19] and is taken almost verbatim, with some modi�cation

where appropriate.

The original research for this thesis can be found in Chapters 3, 4, 6, and 7, while Chapters 2 and

5 are background.
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Part I

Kinetic Theory and Di�usion in

Lorentz Gas Models
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Chapter 2

Kinetic Theory of Gases and

Motivation

Statistical mechanics is the study of how small-scale laws governing particle interactions can determine

global behaviour of a larger body built up from these particles. In order to understand how a gas

of particles behaves mathematically, one requires several pieces of information. Firstly one requires a

rule for how particles �y through space when unimpeded (this could be free �ight in straight lines or,

for charged particles in a magnetic �eld � in circles). Then one requires rules about how the particles

interact with each other (e.g non-interacting particles, colliding spheres, Coulomb interactions...) and

the environment. Lastly one requires an initial state. Rather than prescribe one particular initial state it

is more common to give the initial state as a probability distribution on the phase space. Alternatively,

one can view such a distribution as a particle cloud. For more information on the general picture and

approach used we suggest the excellent and detailed monograph [Spo91].

As we discussed in Chapter 1, the central aim of mathematical statistical mechanics is to begin with

particle dynamics and derive solutions to equations describing the continuous �uid. The �rst step in

doing this is to ask what happens if the particles are independent and �y with no memory. Under this

assumption it is simple to derive the linear Boltzmann equation to describe the particle density; and,

with the di�usive scaling, to derive the heat equation. The challenge is then to use these independent

dynamics to approximate the true dynamics of the model with which we are concerned (or to explain

how these heuristics do not approximate the true dynamics).

2.1 Boltzmann and Heat Equations

2.1.1 Boltzmann's Heuristic

In 1872 Boltzmann [Bol72] used a heuristic argument to derive the non-linear Boltzmann equation

for interacting particle systems. Later, Lorentz [Lor05] used the same argument to derive the linear

Boltzmann equations for the non-interacting particle systems that he was studying. As our research

will focus on Lorentz gas it is more informative to see Lorentz's application of Boltzmann's heuristic

argument.

Consider a single particle, moving classically with Hamiltonian and equations of motion
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H(x, v) :=
1

2
v2 + U(x)

ẋ(t) = ∂vH = v, v̇ = −∂xH = −∇U(x).

(2.1.1)

For example, if U ≡ 0 then

x(t) = x0 + v0t. (2.1.2)

Now let ft(x, v) describe the phase-space density of a cloud of independent particles. Therefore

#{particles with (x, v) ∈ A at time t } =

∫
A

ft(x, v)dxdv. (2.1.3)

Applying the chain rule to (2.1.1) then gives

(∂t + v · ∇x) ft = ∇U(x) · ∇vft(x, v), (2.1.4)

the Liouville equation. Note that if v̇ = 0 then the Liouville equation becomes the free transport

equation

(∂t + v · ∇x) ft = 0, (2.1.5)

with solution ft(x, v) = f0(x− vt, v).

Now, de�ne a random process on Sd−1
1 with jump rate

σ(v, u) : Sd−1
1 × Sd−1

1 → R+. (2.1.6)

That is, we consider a process on Sd−1
1 which jumps from velocity v to u with rate (in the probabilistic

sense) σ(v, u). If we let ft(v) be the density of this jump process with velocity v then we have the

following density evolution

∂tft(v) =

∫
σ(v, u) [ft(u)− ft(v)] du. (2.1.7)

Putting the jump process and the free-evolution processes together: if we consider an array of inde-

pendent particles which move according to free transport in between velocity jumps given by the jump

rate σ, then the density of a cloud of these particles is given by the linear Boltzmann equation

(∂t + v · ∇x) ft(x, v) =

∫
σ(v, u) [ft(x, u)− ft(x, v)] du. (2.1.8)

In this thesis we are primarily concerned with the linear Boltzmann equation. However, again

starting from Newtonian dynamics, Boltzmann gave a heuristic argument ([Bol72]) that, when the

particles described interact, then under suitable independence assumptions, the density should satisfy
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the non-linear Boltzmann equation:

∂tft + v · ∇xft = αQ(ft, ft) (2.1.9)

where α is the inverse of the mean free �ight length, and Q is the quadratic bi-linear operator:

Q(ft, ft) :=

∫
Sd−1×Rd

[f ′f ′1 − ff1] ((v − v1) · ω)dv1dω, (2.1.10)

where ω is the de�ection angle and

f ′ = ft(x, v
′), f ′1 = ft(x, v

′
1), f1 = ft(x, v1),

f = ft(x, v),

with

v′ = v + ω · (v1 − v)ω, v′1 = v1 − ω · (v1 − v)ω.

The non-linear Boltzmann equation can be understood in the same way as the linear Boltzmann

equation. The left hand side of (2.1.9) is a free transport term. The right hand side can be separated

into a gain and loss term which account for the particles adopting velocity v and those losing velocity

v. The di�erence is that now the particles are inter-dependent.

2.1.2 Heat Equation

Let vi be i.i.d R-valued random variables with E (vi) = 0 and E
(
v2
i

)
= σ2 (if the random variables are

d-dimensional, then the variance is described by a co-variance matrix). Let

Sn :=

n∑
i=1

vi, E
(
S2
n

)
= nσ2. (2.1.11)

For T > 0 a �xed macroscopic time let

n := bTε−1c,

(where b·c denotes the largest integer less than the argument) then, by the classical central limit

theorem

Xε
T := ε1/2

n∑
i=1

vi → XT (2.1.12)

as ε→ 0, where XT is a Gaussian random variable with variance Tσ2 (the convergence is in distribu-

tion). Thus the distribution of XT has density
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fT (X) :=
1√

2πTσ2
exp

(
− X2

2σ2T

)
. (2.1.13)

From here it is easy to see that fT satis�es the heat equation with di�usion coe�cient σ2:

∂T fT (X) = σ2∂2
XfT (X). (2.1.14)

Therefore the heuristic argument is that beginning from independent random variables, and applying

the di�usive scaling, we arrive at a solution to the heat equation. The hope is then, by applying the

same scaling to our particle systems, to achieve the same convergence to a solution of the heat equation.

Hence the goal is to prove a central limit theorem for the path segments for the true process describing

our particles. In fact, one can go further than the central limit theorem and prove the invariance

principle (convergence to a Brownian motion).

For an excellent reference for the derivation of the linear Boltzmann and heat equations, and how

this intuition has motivated some beautiful work in the quantum setting we recommend the lecture

notes [Erd12].

2.1.3 Boltzmann-Grad Limit and the Invariance Principle

There are two central problems when considering certain particle systems, each concerning a di�erent

scaling regime.

First we can ask whether, in the di�usive limit, the law for the trajectory of a particle converges

to that of a Brownian motion (invariance principle): i.e consider the position of a typical particle

trajectory given by t 7→ X(t) ∈ Rd. The di�usive limit is given by

t 7→ X(Tt)√
T

, T →∞. (2.1.15)

More generally, one scales the particle position X(t) by the expected distance from the origin -
√
T

(in this instance). A fundamental question is then, in the limit T → ∞, does the process t 7→ X(Tt)√
T

converge to a Wiener process (invariance principle)? For example, this implies a central limit theorem

for the random variable X(T )√
T
.

The second scaling limit we consider is the so-called Boltzmann-Grad limit. If the interaction length

is of order r, and the particles (or in some instances obstacles) have density %, then the Boltzmann-Grad

limit is:

r → 0 , %→∞, r−(d−1)%→ C. (2.1.16)

In this limit the mean �ight time between collisions is of constant order. Moreover, in this limit

one expects that collisions become (in some sense) uncorrelated (this is because the mean free path

length is much longer than the inter-particle distance). Hence, this should be the regime in which the

particle density satis�es the Boltzmann equation. This intuition was put forth by H. Grad and later,

Lanford [Lan75] (for the simplest interacting particle systems) and Gallavotti, Spohn and Boldrighini-

Bunimovich-Sinai [Gal70, Spo78, BBS83] (for some non-interacting particle systems) showed that in

this limit, if one begins with an initial distribution of particles f0 : Rd → R, then the distribution at

time t, ft is an exact solution to the (non-linear or linear respectively) Boltzmann equation.
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2.2 The Lorentz Gas

In 1905, to model the motion of electrons through metals, Hendrik Lorentz proposed the following

model [Lor05] - now called the Lorentz gas. Given an array of spherical scatterers arranged throughout

space consider the motion of a point particle travelling in straight lines and re�ecting symmetrically

o� of the scatterers. This model has been and continues to be a central topic in statistical mechanics

owing to the fact that the model is mathematically tractable while still exhibiting complex phenomena.

More formally, let P be a point process on Rd (d ≥ 2). Let Bdr denote the d-dimensional ball of

radius r. Then consider the array of 'scatterers' - P + Bdr . We think of these balls as in�nite mass,

radius r obstacles. A Lorentz gas particle is a point particle moving in straight lines in the compliment

(P + Bdr )c and colliding re�ectively o� the boundary ∂(P + Bdr ). We denote the position of such a

Lorentz gas particle at time t - Xr(t). There are typically two contexts in which this gas is studied:

where the obstacles are centred on the points of a lattice, or where the obstacles are centred on a

random point process (see Figure 2.1).

With regards the two questions described in the previous section, the Lorentz gas raises many open

problems. In the di�usive limit, it is thought that the random Lorentz gas satis�es an invariance

principle; while in the periodic setting it has been shown that the scaling in (2.1.15) is sometimes too

slow and one requires additional factor of
√

log T .

Random Lorentz Gas Periodic Lorentz Gas

Figure 2.1: A typical example of a periodic and a random Lorentz gas trajectory.

Lorentz, in his original paper conjectured (using Boltzmann's heuristic argument) that (for a general

class of scatterer con�gurations) if ft,r : T 1(Rd) → [0, 1] (where T 1(Rd) represents the unit tangent

bundle of Rd) describes the particle density at a given point in the phase space. Then limr→0 ft,r

satis�es a linear Boltzmann equation in the Boltzmann-Grad limit (2.1.16). Namely, if we consider the

macroscopic coordinates

(q(t), v(t)) 7→ (Q(t), V (t)) = (rd−1q(r−(d−1)t), v(r−(d−1)t)) (2.2.1)

and if we denote ft = limr→0 ft,r then ft is an exact solution to

(∂t + V · ∂Q)ft(Q,V ) =

∫
Rd

[ft(Q,V
′)− ft(Q,V )]σ(V, V ′)dV ′, (2.2.2)

where σ(V, V ′) denotes the di�erential cross-section of a scatterer.

We next present some of the historical results towards these heuristics. As this topic has a long

history we do not hope for completeness and point the interested reader to the following surveys

[Det14, Mar14, Spo88a] and the monograph [Spo91].
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2.2.1 Periodic Lorentz Gas - Di�usive Limit

The periodic Lorentz gas lends itself to analysis using tools from hyperbolic dynamics, and thus more

has been rigorously proved in this context. Indeed, the periodic Lorentz gas is an example of a dispersing

billiard table (for a detailed text on dispersive billiards see the monograph [CM06]). That is, because

of the periodic structure, one can equivalently consider the motion of a particle on a torus with disjoint

spherical holes (see Figure 2.2).

Figure 2.2: We show how the periodic Lorentz gas is equivalent to a dispersing billiard

table (left). In both diagrams the same trajectory is pictured however on the left

we consider motion on the torus and on the right we consider motion in a periodic

array.

Thus, working in d = 2 for simplicity, we consider the torus T with n balls removed, {Di}ni=1. A

point particle which has just hit one of these balls moves with velocity away from the surface (i.e if the

point on the boundary is given by the vector x ∈ S1
1 in the unit sphere and velocity is given by v ∈ S1

1

then x · v > 0). Therefore, the space

M :=
⋃
i

(∂Di × (−π/2, π/2)) , (2.2.3)

parameterises the set of collision points and exit velocities. Given a particle beginning at a point on

the boundary
⋃
iDi and a velocity outwards, we consider the path drawn by this particle as it moves

along straight lines colliding with the obstacles. This generates a set of points in M which describe

the position and outgoing velocity of each collision. We call the map which sends one of these points

to the next in the sequence the Billiard map:

T : M →M . (2.2.4)

Given a point in a connected component of M we write the point (x, ϕ) ∈ S1
1 × (−π/2, π/2). The

Liouville measure on the space, namely dµ = |cosϕ| drdϕ has been shown (see [CM06]) to be ergodic

with respect to the map T .

In 1980 Bunimovich and Sinai [BS80] showed that some dispersive billiards admit a Markov par-

tition. That is, the phase space M can be decomposed into stable and unstable curves and singular

points corresponding to grazing collisions - collisions tangent to the obstacles. In a subsequent paper

Bunimovich and Sinai [BS81] showed that this Markov partition can be used to estimate the decay of

velocity correlations, which allowed them to prove an invariance principle (see Theorem 2.5.2 for an

example of an invariance principle) for 2-dimensional periodic Lorentz gas particles with �nite horizon
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(i.e where the length of any straight line, not intersecting a scatterer is bounded from above). In higher

dimensions this result was extended in [Che94] by Chernov under an (as yet) unproved assumption on

the singularities of the billiard �ow.

If the periodic array has in�nite horizon (therefore there exist trajectories with unbounded straight

�ight segments), as a result of these in�nite channels, the free �ight distribution of a particle �ying in a

uniformly sampled random direction has a heavy tail which results in a slower di�usion. Bleher [Ble92]

suggested a super-di�usive scaling of t 7→ X(t)√
T log T

. Subsequently, Szász and Varjú [SV07] showed that

indeed a central limit theorem holds for this super-di�usive scaling in 2 dimensions. The 3 dimensional

case remains open. Chernov and Dolgopyat [DC09] showed that this theorem has a continuous time

analogue which implies an invariance principle (they also investigate the e�ect of an external �eld on

the in�nite horizon case therein).

2.2.2 Periodic Lorentz Gas - BG Limit

The periodic Lorentz gas in the Boltzmann-Grad limit can be understood in terms of the machinery

of homogeneous dynamics. In so doing, the limiting behaviour of Lorentz gas trajectories can be

understood in terms of equidistribution of expanding horospheres - see for example [Mar14, Section 6]

for a summary of this connection.

Without entering too deeply into the history (which is summarised in [Gol06, Mar14]) we note that

in a 2006 ICM address Golse [Gol06] discussed how (2.2.2) fails for general periodic con�gurations.

However, in [CG10] (with an assumption valid only in 2 dimensions) and in [MS11] (in general di-

mensions) it was proved that, in the Boltzmann-Grad limit (2.1.16) for a �xed time interval [0, T ] the

Lorentz gas converges weakly to a non-Markovian �ight process which admits a full description in terms

of a Markov chain. In particular the limiting stochastic process is a 'memory 2 Markov chain'. Marklof

and Strömbergsson [MS11, Section 6] then showed that this stochastic process, when considered on an

extended phase space satis�es a Boltzmann-like equation ([MS11, Theorem 6.4]).

Subsequently Marklof and Tóth [MT16] showed that, with a super-di�usive scaling of
√
T log T ,

this limiting stochastic process satis�es an invariance principle (note that this result is not immediately

implied by Donsker's invariance principle). An interesting open question analogous to the problem we

study in Chapter 3 is to interpolate between this result and the aforementioned result of Chernov and

Dolgopyat (discussed in section 2.2.1). That is, Marklof and Tóth show that if one �rst takes the

Botlzmann-Grad limit then the super-di�usive limit one gets an invariance principle. While Chernov

and Dolgopyat show that simply in the super-di�usive limit, the invariance principle holds. Thus one

can ask what would happen in the intermediate regime where T is taken to go to ∞ as r → 0?

2.2.3 Random Lorentz Gas - BG Limit

While the random Lorentz gas is of great importance, there have been fewer rigourous results proved

than for the periodic case. The �rst seminal papers on the subject came when Gallavotti ([Gal69,

Gal70]) showed that in the Boltzmann-Grad limit, for Poisson con�gurations, the Lorentz gas converges

weakly to an exact solution of the linear Boltzmann equation (i.e a solution to (2.2.2)). To prove this

result Gallavotti used classical methods, integrating over the space of trajectories and con�gurations.

Spohn [Spo78] extended this result using far less-classical methods. Spohn used the BBGKY hierarchy

(repeated application of Duhammel's formula) to estimate the decay of correlations for Lorentz gas

trajectories. This allowed Spohn to show that the Lorentz gas process converges to a Markovian

�ight process on a �xed time window. For Poisson con�gurations and hard-spheres this result is

implied by Gallavotti's work, however Spohn extended this to more general scattering potentials and

con�gurations. While these PDE methods are very powerful and have been applied to numerous other
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settings (such as interacting particle systems [Spo91]), our main result in Chapter 3 will be to show

that versatile probabilistic methods can be used to extend this result to a much longer time-scale.

Boldrighini-Bunimovich-Sinai [BBS83] followed Gallavotti and Spohn's results by showing that the

convergence holds for typical realisations of the Poisson process (i.e quenched). Their argument, while

returning to a probabilistic approach, is very technical and makes use of Bernstein-type estimates. In

particular, in the quenched setting one needs to control the correlations between di�erent trajectories

all exploring the same physical space, making this a signi�cantly more di�cult problem.

2.2.4 Random Lorentz Gas - Weak Coupling Limit

Having discussed the Boltzmann-Grad and di�usive limits, there is one more limit we discuss in this

introduction � the weak coupling limit. This limit is particularly relevant to our research since (before

our result) it is the only regime in which the random Lorentz gas has been shown to converge to

Brownian motion. The weak coupling limit is a physically di�erent procedure and does not make sense

for hard-spheres. Therefore we will repeat the usual set-up with the usual notation of the weak-coupling

literature.

Let ε→ 0 be a scaling parameter and place in�nite mass �xed scatterers on the points of a Poisson

point process of density % = ε−d in Rd. However now we assume that the scattering potential, U
is spherically symmetric, smooth, and supported in a ball of radius ε (rather than the hard-spheres

considered earlier). So far the scaling corresponds to a linear spatial scaling by a factor ε. Therefore,

with this scaling alone, the mean free path length would be ε−1, we thus de�ne the natural time-scale

of the problem to be

Tkin := ε−1. (2.2.5)

In the weak coupling limit, rather than further scale down the radius of support, the strength of the

potential is scaled. To that end, Newton's equations of motion for the kinetically scaled particle are

Ẋε(t) = V ε(t), V̇ ε(t) = −∇Uε(Xε(t))

in the potential �eld

Uε(x) =
∑
q∈ω

ε1/2U(ε−1(x− q)),

where ω is the realisation of the Poisson point process of intensity % = ε−d. In words, we apply a

spatial scaling so that in one unit of time (Tkin) there are ε−1 collisions, however we also scale down

the strength of the potential by a factor ε1/2. Therefore there are signi�cantly more velocity kicks than

in the original model, however these kicks are much smaller.

From the work of Kesten and Papanicolaou [KP80] it follows that

V ε(t)⇒ V(t), Xε(t)⇒ X (t) :=

∫ t

0

V(s)ds, (2.2.6)

where the limiting velocity process V(t) is a homogeneous di�usion (i.e. Brownian motion) on the

surface of Sd−1
1 and the weak convergence is meant in the space of continuous trajectories endowed

with uniform topology on compact time intervals, (see [Bil68] or the survey [Spo88b]). Taking a

second, di�usive limit, T−1/2X (Tt)→W (t), the displacement process converges to Brownian motion,

as T →∞.
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The simultaneous kinetic and di�usive limit in this context was done by Komorowski and Ryzhik

in [KR06] where it is proved that in dimension d ≥ 3, up to time scales

T = T (ε) = ε−κ, κ ∈ (0, κ0), κ0 > 0, (2.2.7)

the di�usive limit

T−1/2Xε(Tt)⇒W (t) (2.2.8)

holds. In (2.2.7) κ0 is small (possibly very small) and positive. Comparing these results with those

for the random Lorentz gas, Kesten and Papanicolaou proved a result analogous to that of Gallavotti,

Spohn, and Boldrighini-Bunimovich-Sinai - that is they prove convergence for time scales of the order

Tkin. While Komorowski and Ryzhik go beyond the kinetic time scale. To our knowledge this was the

�rst case for which the di�usive limit was rigourously established beyond the kinetic time scale in a

context which includes the random Lorentz gas. The results in [KP80] and [KR06] are formulated in the

more general context of spatially ergodic random potential �elds with regularity conditions assumed.

This covers weak coupling of the random Lorentz gas as a particular case.

The quantum Lorentz gas

The quantum versions of the weak coupling and low density limits for the random Lorentz gas were

considered in Erd®s-Yau [EY00], respectively, Eng-Erd®s [EE05], where the long time evolution of a

quantum particle interacting with a random potential is studied. They show that the phase-space

density of the quantum evolution converges weakly to the linear Boltzmann (or Langevin) equation,

with di�usive, respectively, hopping scattering kernels. These results are the quantum analogues of the

classical (i.e. non-quantum) kinetic limits of [KP80] (for weak coupling), respectively, [Gal69, Gal70,

Gal99, Spo78, Spo88b] (for low density).

In the weak coupling setup the simultaneous kinetic and di�usive scaling limit, formally analogous

to [KR06] was done by Erd®s-Salmhofer-Yau [ESY08, ESY07] where it is proved that under a scaling

limit similar to (2.2.7) and (2.2.8) the time evolution of the spatial density of the quantum particle,

weakly coupled with the �xed scatterers, converges to the solution of the heat equation. In this case

the numerical value of the upper bound on the scaling exponent κ is speci�ed in d = 3 as κ0 = 1/370

(see [ESY08, Theorem 2.2]).

For a comprehensive survey of the kinetic and kinetic-di�usive limits in the quantum case see

[Erd12].

2.3 The Wind-Tree Model

In 1912 Paul and Tatiana Ehrenfest [EE59] wrote a monograph exploring the history and some of the

complications faced in the world of statistical mechanics. In an appendix to Section 5 of [EE59] they

considered a simple model of a di�usive gas. Namely, given a d-dimensional cube parallel with the

axes of side length r, Qr and a Poisson point process P on Rd one considers the motion of a point

particle in the compliment (P + Qr)c which collides elastically with the sides of the cubes. In their

monograph, Paul and Tatiana Ehrenfest used this wind-tree model to explain the return to equilibrium

of the velocity distribution of a gas, as assumed by Boltzmann and Maxwell.

Subsequently, the wind-tree model has been the focused of a great deal of research. In particular

the individual collisions of the wind-tree model are 'less defocusing' than the spherical Lorentz gas

discussed in the previous section however the geometry of these collisions is simpler. As such it is
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interesting to ask how these particles di�use. As with the spherical Lorentz gas, the wind-tree model is

studied in both the random and periodic setting. This thesis is concerned with the random wind-tree

model as presented by the Ehrenfests, however it is informative to compare some of the results in the

periodic case as well.

2D Periodic Wind-Tree Model: In the periodic setting, one studies the wind-tree model as

described above, with P replaced by the hypercubic lattice Z2. Moreover, rather than squares one

can study the problem with rectangles parallel with the axes. This gives mathematicians two more

parameters to play with. While the random model was the one introduced by the Ehrenfests, this

periodic model is more extensively studied. This owes to the fact that the periodic wind-tree model

(or Ehrenfest model) is an example of a parabolic dynamical system.

In particular the billiard �ow (as discussed in Section 2.2.1) is parabolic - i.e close orbits diverge

polynomially in time). Thus the standard approach is to use the so-called Katok-Zemliakov construction

(see [Tab95]) to replace the billiard �ow by linear �ow on translation surfaces.

There have not yet been any theorems concerning the di�usive limit or an invariance principle

for the periodic wind-tree process. However there have been a number of interesting and contrasting

results concerned with the speed of di�usion and exceptional trajectories. Hardy and Weber [HW80]

showed that some speci�c directions di�use at a rate of log T log log T . While Delecroix-Hubert-Lelièvre

[DHL14] showed that typical (with respect to angle) trajectories satisfy the superdi�usive polynomial

di�usion rate T 2/3. Additionally Delecroix [Del13] showed that for any rectangular scatterer, there is

a set of diverging trajectories with positive Hausdor� measure. While Hubert-Lelièvre-Troubetzkoy

[HLT11] and then Avila and Hubert [AH17] showed that the billiard �ow is recurrent for almost every

direction. Finally Fr¡czek and Ulcigrai [FU14] proved that generically the billiard �ow is not ergodic.

Random wind-tree model: The random wind-tree process is less well-studied. Gallavotti [Gal69]

included the random wind-tree model when deriving the linear Boltzmann equation for the Lorentz gas

model. But the subsequent work of Spohn and Boldrighini-Bunimovich-Sinai [Spo78, BBS83] on the

Lorentz gas was restricted to spherical scatterers. That said, the model is of particular interest to those

studying di�usion in gases. In particular, as evidenced by comparing the periodic wind-tree with the

periodic Lorentz models, these square scatterers are less defocusing (i.e nearby parallel trajectories can

stay together for longer in this model). As a consequence it is not evident that the random wind-tree

and Lorentz processes would exhibit the same di�usive behaviour.

While the random wind-tree process with Poisson distributed scatterers was only previously treated

by Gallavotti, there have been other e�orts to understand the random setting. In a recent paper

[MST18], Málaga Sabogal and Troubetzkoy consider a set of wind-tree con�gurations endowed with

the Hausdor� topology. They show that in this topologically random setting, the wind-tree �ow has

in�nite ergodic index in almost every direction. In particular, in that setting they are able to prove

rigorously the Ansatz which motivated the Ehrenfests to propose this model. Namely by applying

ergodic theorems they showed that the velocities of a cloud of initially parallel particles will decorrelate.

As discussed in [MST18] Málaga Sabogal and Troubetzkoy have previously considered other random

settings. However their results do not apply to the Poisson setting.

2.4 Interacting Particle Systems

The original work in this thesis concerns non-interacting particle systems. For completeness we give

a short description of some of the work done in the interacting particle setting. As described in the

introduction the central open problem in statistical mechanics is Hilbert's 6th problem to develop

�mathematically the limiting processes [...] which lead from the atomistic view to the laws of motion

of continua�. In the hard-sphere context the problem can be rephrased as follows: consider an in�nite
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array of hard-spheres of �xed radius governed by Newtonian hard-sphere dynamics, can one, starting

with the �ne-scale Newtonian dynamics, derive large scale equations for the bulk (i.e the heat equation

or Navier-Stokes equation)?

The heat and Navier-Stokes equations describe large scale �ows in �uids, however deriving solu-

tions to these equations from particle dynamics is a major open question. In the 1870s Boltzmann

proposed the non-linear Boltzmann equation as an intermediary. That is, by looking at the particle

density (mesoscopic scale) he proposed an intermediate scale to interpolate between the microscopic

dynamics (hard-sphere interactions) and the macroscopic evolution (PDEs). Moving from the Boltz-

mann equation to �uid mechanics has been the focus of a great deal of research, going back to 1912

with the work of Hilbert [Hil12]. Utilising the methods developed by Hilbert and Chapman-Enskog

(see [CC60]), Bardos-Golse-Levermore [BGL91, BGL93], in 1991 suggested a program for deriving the

Navier-Stokes equation from (DiPerna-Lions) solutions to the Boltzmann equation. In the di�usive

limit, Golse-Saint-Raymond achieved the result in 2004 ([GSR04, GSR09]). In words, this meant that

one could move from solutions to the mesoscopic non-linear Boltzmann equation to the macroscopic

heat or Navier-Stokes equations.

Lanford [Lan75] showed that, in the Boltzmann-Grad limit the hard-sphere model obeys a non-linear

Boltzmann equation. Lanford proved his theorem by considering the marginals of the probability dis-

tribution describing the particle ensemble. Then he used the BBGKY hierarchy (i.e repeated iteration

of the Duhamel formula) to prove a sort of independence result from which the validity of the Boltz-

mann equation follows. The problem is that Lanford's solutions are valid for a time-scale which goes

to 0 in the di�usive scale, therefore one cannot use the work of Golse-Saint-Raymond to derive the

macroscopic equations.

Recently in two instances ([BGSR16, BGSR16]), Lanford's method has been extended to longer

times. For example in [BGSR16] the authors derive the linear heat equation from small-scale dynamics.

The main result is to extend Lanford's result to in�nite times (i.e macroscopic times). This gives a

derivation of the (non-linear) Boltzmann equation for in�nite times which the authors then show

corresponds to solutions to the heat equation in the di�usive limit. As with our result for the Lorentz

and wind-tree processes, the authors use probabilistic methods to classify the problematic events (here

the problematic events correspond to recollisions between so-called collision trees) and show that these

events occur with low probability. Therefore on their time scales these problematic trajectories do not

cause a problem and a sort of independence result is achieved.

Again this problem has many variants and there are numerous results we have omitted, but to avoid

over-extension we leave the discussion at these state-of-the-art results. We refer the interested reader

to [Gal19] as a starting point.

2.5 Preliminaries

In this section we collect some of the preliminary facts and de�nitions needed in the subsequent chapters.

All of these facts are classical and can be found elsewhere.

Probability moving particle is trapped:

Returning to the random Lorentz gas (and equivalently the random wind-tree model). In de�ning

the models we assumed that the origin is not covered by a scatterer. Formally we say that if the origin

is covered by a scatterer then the moving particle is stationary at the origin. More importantly, an

invariance principle would not hold if the moving particle is trapped in a compact domain. Hence the

following lemma, which is a consequence of several classical results from percolation theory [Gri99,

Section 1.6] and a scaling argument, is needed before we proceed:

25



Lemma 2.5.1.

P (the moving particle is not trapped in a compact domain) = ϑd(%r
d), (2.5.1)

where ϑd : R+ → [0, 1] is a percolation probability which is (i) monotone non-increasing; (ii) continuous

except for one possible jump at a positive and �nite critical value uc = uc(d) ∈ (0,∞); (iii) vanishing

for u ∈ (uc,∞) and positive for u ∈ (0, uc); (iv) limu→0 ϑd(u) = 1.

In the Boltzmann-Grad limit considered here (see (2.1.16) above) we will have %rd → 0. Therefore

u < uc for r su�ciently small.

Proof. First of all, the property of the particle being trapped in a compact region is clearly invariant

under spatial dilation. From here it follows that the function on the right hand side of (2.5.1) can only

depend on %rd.

Since, in a Poisson point process, the points are independently placed in Rd, it immediately follows

that ϑd is monotone non-increasing. That is, we can keep % �xed and increase r, and clearly the

probability of the particle being trapped is a non-increasing function of the obstacle radius.

The proof now follows from classical results about site percolation. We restrict to 2 dimensions for

simplicity. Divide R2 into squares of side length r
2 . The probability in (2.5.1) is bounded above by

the probability that there exists a path of neighbouring squares from the origin to ∞, none of which

contain a point of P. The probability a square is empty is p = e−ρr
2

. Therefore in the language of

percolation, the probability in (2.5.1) is bounded above by the probability that the origin is connected

to in�nity in a site percolation on Z2 with probability p. A lower bound can also be similarly achieved.

From here (ii)-(iv) follow from rather classical results. The existence and boundedness of the critical

value are given in [Gri99, Theorem 1.10]. The fact that percolation probability is continuous above the

critical value is given in [Gri99, Theorem 8.8], and the fact that below the critical value the percolation

probability vanishes follows from [Gri99, Theorem 6.1]. Finally, the limiting behaviour below the

critical value is trivial and positivity follows from the de�nition of the critical value.

Annealed vs quenched convergence:

As mentioned in Section 2.2.3, when taking the limit as T → ∞ (i.e the di�usive limit) there are

two forms of convergence with which we are concerned:

(Q) Quenched limit : For almost all (i.e. typical) realisations of the underlying Poisson point process,

with averaging over the random initial velocity of the particle.

(AQ) Averaged-quenched (a.k.a. annealed) limit : Averaging over the random initial velocity of the

particle and the random placements of the scatterers.

Note that understanding the quenched limit is necessarily harder than the annealed limit as in the

quenched limit one is averaging over a smaller state space. It is expected for the random Lorentz gas

and wind-tree models that in the quenched setting, an invariance principle holds and the variance of

the limiting Wiener process is deterministic (does not depend on the realisation of the Poisson process).

As discussed in Section 2.2.3, there has been very little progress towards the resolution of either the

annealed or the quenched problems. In this thesis we will be working in the annealed setting.

Wiener Process:

A one dimensional Wiener process on R (see for more information [Dur96]) (or standard Brownian

motion) is a real valued stochastic process t 7→W (t) satisfying:
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(a) Independent Increments: If t1 < t2 < · · · < tk then W (t1),W (t2)−W (t1), . . . ,W (tk)−W (tk−1)

are independent.

(b) Gaussian Increments: If s, t ≥ 0 and A is a measurable set then

P (B(s+ t)−B(s) ∈ A) =

∫
A

(2πt)−1/2 exp(−x2/2t)dx. (2.5.2)

That is, the increments are normally distributed with mean 0 and variance t.

(c) Continuity: W (t) is almost surely continuous.

We say a Wiener process has variance σ if the variance of the normal distribution in (b) is σt (i.e this

corresponds to t 7→ √σW (t)).

A Wiener process on Rd is a process t 7→ W (t) such that the projections onto each coordinate are

independent one-dimensional Brownian motions. The variance is then given by a diagonal matrix with

the variance of each coordinate along the diagonal.

Donsker's invariance principle:

Let X1, X2, . . . be i.i.d, mean 0 and variance 1 random variables. Let Sn = X1 + X2 + · · · + Xn.

Let

Wn(t) =
Sbntc√
n
, t ∈ [0, 1] (2.5.3)

where b·c denote the nearest integer below the argument.

Theorem 2.5.2 (Donsker's invariance principle (see [Dur96, Section 7.6])). In the limit as n → ∞,

Wn converges in distribution to a one dimensional Wiener process with variance 1.

In words, if one considers a random walk with i.i.d steps of mean 0 and variance 1 for very long

times and zooms out with the appropriate scaling, then the resulting process is a standard Brownian

motion.

Random Walk Estimate:

In what follows we will require a standard random walk estimate. However as we have not seen this

written down elsewhere we give the proof here:

Let {vi}i∈N ⊂ Sd−1
1 be i.i.d random velocities and ξi ∼ EXP (1) be an i.i.d sequence of �ight times.

We consider the random walk

Yn :=

n∑
i=1

ξivi (2.5.4)

and de�ne the occupation measures for a set A ⊂ Rd

G(A) := E (|{1 ≤ k <∞ : Yk ∈ A}|) (2.5.5)

g(A) := P (Y1 ∈ A) (2.5.6)

Proposition 2.5.3. Let d ≥ 3, then

G(dx) ≤ Cg(dx) +K(dx) (2.5.7)
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where K(dx) := C min{|x|2−d , 1}dx for some C <∞.

Proof. Since the individual steps of the walk are i.i.d, if we de�ne fk(x) to be the density of the

distribution of Yk, the goal is to bound the sum

∞∑
i=1

fk(x). (2.5.8)

Consider the characteristic function

ψ(p) := E
(
eip·Y1

)
= E

(
ei(p·v1)ξ1

)
(2.5.9)

then, by independence of the di�erent steps and taking an inverse Fourier transform (see [Dur96,

Section 2.3] for details of characteristic functions).

∞∑
k=1

fk(x) =

∫
Rd
e−2πix·p

( ∞∑
k=1

ψ(p)k

)
dp. (2.5.10)

By Taylor expanding (2.5.9) and using E
(
ξk1
)

= k!,

ψ(p) = E

(
1

1 + (p · v1)2

)
. (2.5.11)

Thus we aim to bound

∞∑
k=1

fk(x) =

∞∑
k=1

∫
Rd
e−2πix·pE

(
1

1 + (p · v1)2

)k
dp. (2.5.12)

For |x| → 0, the only contribution to the integral is for |p| → ∞. Hence for |x| → 0 (2.5.12) is

dominated by the term k = 1, hence

G(dx) ≤ g(dx), as |x| → 0. (2.5.13)

Otherwise, using the exponential distribution of the �ght times

∞∑
k=1

fk(x) =

d∑
k=1

fk(x) +

∞∑
k=d+1

fk(x) ≤ ce−Cx +

∞∑
k=d+1

fk(x) (2.5.14)

for some c <∞, and C > 0 as |x| → ∞. Now note, by (2.5.11)

∞∑
k=d+1

ψ(p) =
ψ(p)d+1

1− ψ(p)
≤ C

|p|2
, as |p| → ∞. (2.5.15)
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Thus

∞∑
k=1

fk(x) ≤ ce−Cx + C

∫
Rd
e−2πix·p |p|−2

dp (2.5.16)

as |x| → ∞. Finally since |x| → ∞ we have that |p| ≤ |x|−1
, hence

∞∑
k=1

fk(x) ≤ ce−Cx + C |x|−(d−2)
, as |x| → ∞. (2.5.17)

Thus the proposition follows from (2.5.13) and (2.5.17).
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Chapter 3

Random Lorentz Gas

� Joint with Bálint Tóth �

3.1 Introduction

We consider the Lorentz gas with randomly placed spherical hard core scatterers in Rd. That is, place
spherical balls of radius r and in�nite mass centred on the points of a Poisson point process of intensity %

in Rd, where rd% is su�ciently small so that with positive probability there is free passage out to in�nity,

and de�ne t 7→ Xr,%(t) ∈ Rd to be the trajectory of a point particle starting with randomly oriented

unit velocity, performing free �ight in the complement of the scatterers and scattering elastically on

them. As discussed in Chapter 2, a major problem in mathematical statistical physics is to understand

the di�usive scaling limit of the particle trajectory

t 7→ Xr,%(Tt)√
T

, as T →∞. (3.1.1)

Indeed, the Holy Grail of this �eld of research would be to prove the invariance principle for the

sequence of processes in (3.1.1) in either the quenched or annealed setting (see Chapter 2, Section

2.2.3).

Our main result (see Theorem 3.1.2 in Subsection 3.1.2) proves the invariance principle in the

annealed setting if we take the Boltzmann-Grad and di�usive limits simultaneously. Thus while the

di�usive limit (3.1.1) with �xed r and % remains open, this is the �rst result proving convergence for

in�nite times in the setting of randomly placed scatterers, and hence it is a signi�cant step towards

the full resolution of the problem in the annealed setting.

3.1.1 The Boltzmann-Grad Limit

The Boltzmann-Grad limit (as introduced in Chapter 2, Section 2.1) is the following low (relative)

density limit of the scatterer con�guration:

r → 0, %→∞, %rd−1 → vd−1, (3.1.2)

where vd−1 is the area of the (d− 1)-dimensional unit disc. In this limit the expected free path length

between two successive collisions will be 1. Other choices of lim %rd−1 ∈ (0,∞) are equally legitimate

and would change the limit only by a time (or space) scaling factor.

It is not di�cult to see that in the averaged-quenched setting and under the Boltzmann-Grad limit

(3.1.2) the distribution of the �rst free �ight length starting at any deterministic time, converges to
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an EXP (1) and the jump in velocity after the free �ight happens in a Markovian way with transition

kernel

P
(
vout ∈ dv′

∣∣ vin = v
)

= σ(v, v′)dv′, (3.1.3)

where dv′ is the surface element on Sd−1
1 and σ : Sd−1

1 ×Sd−1
1 → R+ is the normalised di�erential cross

section of a spherical hard core scatterer, computable as

σ(v, v′) =
1

4vd−1
|v − v′|3−d . (3.1.4)

Note that in 3-dimensions the transition probability (3.1.3) of velocity jumps is uniform. That is, the

outgoing velocity vout is uniformly distributed on S2
1 , independently of the incoming velocity vin.

It is intuitively compelling (but far from easy to prove) that under the Boltzmann-Grad limit (3.1.2){
t 7→ Xr,%(t)

}
⇒
{
t 7→ Y (t)

}
, (3.1.5)

where the symbol ⇒ stands for weak convergence (of probability measures) on the space of continuous

trajectories in Rd, see [Bil68]. The process t 7→ Y (t) on the right hand side is the Markovian random

�ight process consisting of independent free �ights of EXP (1)-distributed length, with Markovian

velocity changes according to the scattering transition kernel (3.1.3). A formal construction of the

process t 7→ Y (t) is given in Section 3.2.1. The limit (3.1.5), valid in any compact time interval

t ∈ [0, T ], T <∞, is rigourously established in the averaged-quenched setting in [Gal69, Gal70, Gal99,

Spo78, Spo88b], and in the quenched setting in [BBS83]. In [Spo78] more general point processes of

the scatterer positions, with su�ciently strong mixing properties are considered.

The limiting Markovian �ight process t 7→ Y (t) is a continuous time random walk. Therefore, by

taking a second, di�usive limit after the Boltzmann-Grad limit (3.1.5), Donsker's theorem (see [Bil68])

yields indeed the invariance principle,{
t 7→ T−1/2Y (Tt)

}
⇒
{
t 7→W (t)

}
, (3.1.6)

as T → ∞, where t 7→ W (t) is the isotropic Wiener process in Rd of non-degenerate variance. The

variance of the limiting Wiener process W can be explicitly computed but its concrete value has no

importance.

The natural question arises whether one could somehow interpolate between the double limit of

taking �rst the Boltzmann-Grad limit (3.1.5) and then the di�usive limit (3.1.6) and the plain di�usive

limit for the Lorentz process, (3.1.1). Our main result, Theorem 3.1.2 formulated in Section 3.1.2 gives

a positive partial answer in dimension 3. Since our results are proved in three-dimensions from now on

we formulate all statements in d = 3 rather than in a general dimension.

3.1.2 Main Result

In the rest of the chapter we assume % = %(r) = πr−2 and drop the superscript % from the notation of

the Lorentz process.

Our results (Theorems 3.1.1 and 3.1.2 formulated below) refer to a coupling � joint realisation on the

same probability space � of the Markovian random �ight process t 7→ Y (t), and the quenched-averaged

(annealed) Lorentz process t 7→ Xr(t). The coupling is informally described later in this section and

constructed with full formal rigour in Section 3.2.2.

The �rst theorem states that in our coupling, up to time T � r−1, the Markovian �ight and Lorentz
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exploration processes stay together.

Theorem 3.1.1. Let T = T (r) be such that limr→0 T (r) =∞ and limr→0 rT (r) = 0. Then

lim
r→0

P (inf{t : Xr(t) 6= Y (t)} ≤ T ) = 0. (3.1.7)

Although, this result is subsumed by our main result, it shows the strength of the coupling method

employed in this chapter. In particular, with some elementary arguments it provides a much stronger

result than [Gal69, Gal70, Gal99, Spo78] discussed in Chapter 2, Subsection 2.2.3. On the other hand

the proof of this "naïve" result sheds some light on the structure of proof of the more sophisticated

Theorem 3.1.2, which is our main result.

Theorem 3.1.2. Let T = T (r) be such that limr→0 T (r) = ∞ and limr→0 r
2 |log r|2 T (r) = 0. Then,

for any δ > 0,

lim
r→0

P

(
sup

0≤t≤T
|Xr(t)− Y (t)| > δ

√
T

)
= 0, (3.1.8)

and hence {
t 7→ T−1/2Xr(Tt)

}
⇒
{
t 7→W (t)

}
, (3.1.9)

as r → 0, in the averaged-quenched sense. On the right hand side of (3.1.9) W is a standard Wiener

process of variance 1 in R3.

Indeed, the invariance principle (3.1.9) readily follows from the invariance principle for the Marko-

vian �ight process, (3.1.6), and the closeness of the two processes quanti�ed in (3.1.8). So, it remains

to prove (3.1.8). This will be the content of Sections 3.4-3.7.

The point of Theorem 3.1.2 is that the Boltzmann-Grad limit of scatterer con�guration (3.1.2) and

the di�usive scaling of the trajectory are done simultaneously, and not consecutively. The memory

e�ects due to recollisions and shading are controlled up to the time scale T = T (r) = o(r−2 |log r|−2
).

Remarks on dimension:

1. Our proof is not valid in 2-dimensions for two di�erent reasons:

(a) Probabilistic estimates at the core of the proof are valid only in the transient dimensions of

random walk, d ≥ 3.

(b) A subtle geometric argument which will show up in Sections 3.6.4-3.6.6 below, is valid only

in d ≥ 3, as well. This is unrelated to the recurrence/transience dichotomy and it is crucial

in controlling the short range recollision and shading events in the Boltzmann-Grad limit

(3.1.2).

2. The fact that in d = 3 the di�erential cross section of hard spherical scatterers is uniform on S2
1

(see (3.1.3), (3.1.4)) facilitates our arguments, since, in this case, the successive velocities of the

random �ight process Y (t) form an i.i.d. sequence. However, this is not of crucial importance.

The same proofs could also be carried out for other di�erential cross sections, at the expense of

more extensive arguments. We are not going to these generalisations here. Therefore the proofs

presented in this chapter are valid exactly in d = 3.

Remark on time scales: Recall from Chapter 2, Section 2.2.4, that, in the weak coupling limit,

similar results to Theorem 3.1.2 have been proved. In order to compare our time scale with the
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existing results on weak coupling di�usive limits ([KR06, ESY08, ESY07]), we de�ne the kinetic time

scale for our problem:

Tkin := %1/d = r−(d−1)/d. (3.1.10)

The previous results [Gal69, Gal70, Gal99, Spo78, BBS83, KP80, EY00, EE05], (discussed in Chapter

2, Section 2.2.3 and 2.2.4) when viewed as the scaling limit for a microscopic trajectory, hold on space-

time scales of order Tkin. Thus, this time scale is the reference to which the time scale for the di�usive

limit should be compared. In terms of this microscopic time our di�usive limit holds for time scales

up to

Tdiff = TkinT (3.1.11)

with

T = o
(
T

2d/(d−1)
kin (log Tkin)−2

)
= o

(
T 3

kin(log Tkin)−2
)
. (3.1.12)

The similar-in-spirit, 'in�nite time', weak coupling results [KR06] and [ESY08, ESY07] should be

compared to (3.1.12) (however we stress that our result is not in the weak coupling limit since the

interactions with scatterers are not scaled).

The proof of Theorems 3.1.1 and 3.1.2 will be based on a coupling (that is: a joint realisation

on the same probability space) of the Markovian �ight process t 7→ Y (t) and the averaged-quenched

realisation of the Lorentz process t 7→ Xr(t), such that the maximum distance of their positions up

to time T be small order of
√
T . The Lorentz process t 7→ Xr(t) is realised as an exploration of the

environment of scatterers. That is, as time goes on, more and more information is revealed about the

position of the scatterers. As long as Xr(t) traverses yet unexplored territories, it behaves just like

the Markovian �ight process Y (t), discovering new, yet-unseen scatterers with rate 1 and scattering on

them. However, unlike the Markovian �ight process it has long memory, the discovered scatterers are

placed forever and if the process Xr(t) returns to these positions, recollisions occur. Likewise, the area

swept in the past by the Lorentz exploration process Xr(t) � that is: a tube of radius r around its past

trajectory � is recorded as a domain where new collisions can not occur. For a formal de�nition of the

coupling see Section 3.2.2. Let their velocity processes be U(t) := Ẏ (t) and V r(t) := Ẋr(t). These are

almost surely piecewise constant jump processes. The coupling is realized in such a way, that

A) At the very beginning the two velocities coincide, V r(0) = U(0).

B) Occasionally, with typical frequency of order r mismatches of the two velocity processes occur.

These mismatches are caused by two possible e�ects:

◦ Recollisions of the Lorentz exploration process with a scatterer placed in the past. This

causes a collision event when V r(t) changes while U(t) does not.

◦ Scatterings of the Markovian �ight process Y (t) in a moment when the Lorentz exploration

process is in the explored tube, where it can not encounter a not-yet-seen new scatterer.

In these moments the process U(t) has a jump discontinuity, while the process V r(t) stays

unchanged. We will call these events shadowed scatterings of the Markovian �ight process.

C) However, shortly after the mismatch events described in item B) above, a new jointly realised

scattering event of the two processes occurs, recoupling the two velocity processes to identical

values. These recouplings occur typically at an EXP (1)-distributed time after the mismatches.
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V r(t) V r(t)

U(t)
U(t)

Figure 3.1: The above image shows a recollision (left) and a shadowing event (right).

Note that after each event U and V r are no longer coupled. However at the next

scattering, if possible, the velocities are recoupled. On the right hand side the

virtual scatterer drawn in dotted line is shadowed. That is: it is physically not

present in the mechanical trajectory.

Summarising: The coupled velocity processes t 7→ (U(t), V r(t)) are realised in such a way that they

assume the same values except for typical time intervals of length of order 1, separated by typical

intervals of lengths of order r−1. Other, more complicated mismatches of the two processes occur only

at time scales of order r−2 |log r|−2
. If all these are controlled (this will be the content of the proof)

then the following hold:

Up to T = T (r) = o(r−1), with high probability there is no mismatch whatsoever between U(t) and

V r(t). That is,

lim
r→0

P (inf{t : V r(t) 6= U(t)} < T ) = lim
r→0

P (inf{t : Xr(t) 6= Y (t)} < T ) = 0. (3.1.13)

In particular, the invariance principle (3.1.9) also follows, with T = T (r) = o(r−1), rather than

T = T (r) = o(r−2 |log r|−2
). As a by-product of this argument a new and handier proof of the theorem

(3.1.5) of [Gal69, Gal70, Gal99, Spo78, Spo88b] also drops out.

Going up to T = T (r) = o(r−2 |log r|−2
) needs more argument. The ideas described in the outline A),

B), C) above lead to the following chain of bounds:

max
0≤t≤1

∣∣∣∣Xr(Tt)√
T
− Y (Tt)√

T

∣∣∣∣ =
1√
T

max
0≤t≤1

∣∣∣∣∣
∫ Tt

0

(V r(s)− U(s)) ds

∣∣∣∣∣
≤ 1√

T

∫ T

0

|V r(s)− U(s)| ds � 1√
T
Tr =

√
Tr.

In the � step we use the arguments B) and C). Finally, choosing in the end T = T (r) = o(r−2) we obtain

a tightly close coupling of the di�usively scaled processes t 7→ Xr(Tt)/
√
T and t 7→ Y (Tt)/

√
T , (3.1.8),

and hence the invariance principle (3.1.9), for this longer time scale. This hand-waving argument

should, however, be taken with a grain of salt: it does not show the logarithmic factor, which arises in

the �ne-tuning.

3.1.3 Structure of the Chapter

The rest of the chapter is devoted to the rigourous statement and proof of the arguments described in

A), B), C) above. The overall structure is as follows:

� Section 3.2: We construct the Markovian �ight and Lorentz exploration processes and thus lay

out the coupling argument which is essential moving forward. Moreover, we will also introduce
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an auxiliary process, Z, a short-sighted or forgetful version of X which somehow interpolates

between the processes Y and X.

� Section 3.3: We prove Theorem 3.1.1. We go through the proof of this statement as it is both

informative for the dynamics, and the proof of Theorem 3.1.2 in its full strength will follow similar

lines, however with substantial di�erences.

Sections 3.4-3.7 are fully devoted to the proof of Theorem 3.1.2, as follows:

� Section 3.4: We break up the process Z into independent legs of exponentially tight lengths.

From here we state two propositions which are central to the proof. They state that

(i) with high probability the process X does not di�er from Z in each leg;

(ii) with high probability, the di�erent legs of the process Z do not interact (up to times of our

time scales).

� Section 3.5: We prove the proposition concerning interactions between legs.

� Section 3.6: We prove the proposition concerning coincidence, with high probability, of the

processes X and Z within a single leg. This section is longer than the others, due to the subtle

geometric arguments and estimates needed in this proof.

� Section 3.7: We �nish o� the proof of Theorem 3.1.2.

3.2 Construction

3.2.1 Ingredients and the Markovian Flight Process

Let ξj ∈ R+ and uj ∈ R3, j = −2,−1, 0, 1, 2, . . . , be completely independent random variables (de�ned

on an unspeci�ed probability space (Ω,F ,P)) with distributions:

ξj ∼ EXP (1), uj ∼ UNI(S2), (3.2.1)

and let

yj := ξjuj ∈ R3. (3.2.2)

For later use we also introduce the sequence of indicators

εj := 1{ξj < 1}, (3.2.3)

and the corresponding conditional exponential distributions EXP (1|1) := distrib(ξ | ε = 1), respec-

tively, EXP (1|0) = distrib(ξ | ε = 0), with distribution densities

(e− 1)−1e1−x
1{0 ≤ x < 1}, respectively, e1−x

1{1 ≤ x <∞}.

We will also use the notation ε := (εj)j≥0 and call the sequence ε the signature of the i.i.d. EXP (1)-

sequence (ξj)j≥0.

The variables ξj and uj will be, respectively, the consecutive �ight length/�ight times and �ight

velocities of the Markovian �ight process t 7→ Y (t) ∈ R3 de�ned below.
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Denote, for n ∈ Z+, t ∈ R+,

τn :=

n∑
j=1

ξj , νt := max{n : τn ≤ t}, {t} := t− τνt . (3.2.4)

That is: τn denotes the consecutive scattering times of the �ight process, νt is the number of scattering

events of the �ight process Y occurring in the time interval (0, t], and {t} is the length of the last free

�ight before time t.

Finally let

Yn :=

n∑
j=1

ξjuj =

n∑
j=1

yj , Y (t) := Yνt + {t}uνt+1.

We shall refer to the process t 7→ Y (t) as the Markovian �ight process. This will be our fundamental

probabilistic object. All variables and processes will be de�ned in terms of this process, and adapted

to the natural continuous time �ltration (Ft)t≥0 of the �ight process:

Ft := σ(u0, (Y (s))0≤s≤t).

Note that the processes n 7→ Yn, t 7→ Y (t) and their respective natural �ltrations (Fn)n≥0, (Ft)t≥0,

do not depend on the parameter r.

We also de�ne, for later use, the virtual scatterers of the �ight process t 7→ Y (t). For n ≥ 0, let

Y ′k := Yk + r
uk − uk+1

|un − uk+1|
= Yk + r

Ẏ (τ−k )− Ẏ (τ+
k )∣∣∣Ẏ (τ−k )− Ẏ (τ+
k )
∣∣∣ , k ≥ 0,

SYn := {Y ′k ∈ R3 : 0 ≤ k ≤ n}, n ≥ 0.

Here and throughout the chapter we use the notation f(t±) := limε↓0 f(t± ε).
The points Y ′n ∈ R3 are the centres of virtual spherical scatterers of radius r which would have caused

the nth scattering event of the �ight process. They do not have any in�uence on the further trajectory

of the �ight process Y , but will play role in the forthcoming couplings.

3.2.2 The Lorentz Exploration Process

Let r > 0, and % = %(r) = πr−2. We de�ne the Lorentz exploration process t → X(t) = Xr(t) ∈ R3,

coupled with the �ight process t 7→ Y (t), adapted to the �ltration (Ft)t≥0. The process t 7→ X(t) and

all upcoming random variables related to it do depend on the choice of the parameter r (and %), but

from now on we will suppress explicit notation of dependence upon these parameters.

The construction goes inductively, on the successive time intervals [τn−1, τn), n = 1, 2, . . . . Start

with Step 1: and then iterate inde�nitely Step 2: and Step 3: below.

Step 1: Start with

X(0) = X0 = 0, V (0+) = u1, X ′0 := r
u0 − u1

|u0 − u1|
SX0 = {X ′0}.

Note that the trajectory of the exploration process X begins with a collision at time t = 0. This

is not exactly as described previously but is of no consequence and aids the later exposition.

Go to Step 2:.
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Step 2: This step starts with given X(τn−1) = Xn−1 ∈ R3, V (τ+
n−1) ∈ S2

1 and SXn−1 = {X ′k : 0 ≤ k ≤
n− 1} ⊂ R3 ∪ {F}, where

◦ F is a �ctitious point at in�nity, with infx∈R3 |x−F| = ∞, introduced for bookkeeping

reasons;

◦ |Xn−1 −X ′k| ∈ (r,∞] for 0 ≤ k < n− 1, and
∣∣Xn−1 −X ′n−1

∣∣ ∈ {r,∞}.
The trajectory t 7→ X(t), t ∈ [τn−1, τn), is de�ned as free motion with elastic collisions on �xed

spherical scatterers of radius r centred at the points in SXn−1. At the end of this time interval the

position and velocity of the Lorentz exploration process are X(τn) =: Xn, respectively, V (τ−n ).

Go to Step 3:.

Step 3: Let

X ′′n := Xn + r
V (τ−n )− un+1∣∣V (τ−n )− un+1

∣∣ , dn := min
0≤s<τn

|X(s)−X ′′n | .

Note that dn ≤ r.

◦ If dn < r then let X ′n := F, and V (τ+
n ) = V (τ−n ).

◦ If dn = r then let X ′n := X ′′n ,and V (τ+
n ) = un+1.

Set SXn = SXn−1 ∪ {X ′n}.
Go back to Step 2:.

The process t 7→ X(t) is indeed adapted to the �ltration (Ft)0≤t<∞ and indeed has the averaged-

quenched distribution of the Lorentz process. This follows from the fact that the scatterers of the

Lorentz process are centred on a Poisson point process and thus when sweeping not-yet-seen areas no

information from the past interferes.

Our notation is fully consistent with the one used for the Markovian process Y : Xn := X(τn) and

X ′k :=


Xk + r

Ẋ(τ−k )− Ẋ(τ+
k )∣∣∣Ẋ(τ−k )− Ẋ(τ+
k )
∣∣∣ if Ẋ(τ−k ) 6= Ẋ(τ+

k ),

F if Ẋ(τ−k ) = Ẋ(τ+
k ),

k ≥ 0,

SXn := {X ′k ∈ R3 : 0 ≤ k ≤ n}, n ≥ 0.

3.2.3 Mechanical Consistency and Compatibility of Piece-wise Linear Tra-

jectories in R3

The key notion in the exploration construction of section 3.2.2 was mechanical r-consistency, and r-

compatibility of �nite segments of piece-wise linear trajectories in R3, which we formalise now for later

reference.

Let

n ∈ N, τ0 ∈ R, Z0 ∈ R3, v0, . . . , vn+1 ∈ S2 t1, . . . , tn ∈ R+,

be given and de�ne for j = 0, . . . , n,

τj := τ0 +

j∑
k=1

tk, Zj := Z0 +

j∑
k=1

tkvk, Z ′j :=


Zj + r

vj − vj+1

|vj − vj+1|
if vj 6= vj+1,

F if vj = vj+1,
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and for t ∈ [τj , τj+1], j = 0, . . . , n,

Z(t) := Zj + (t− τj)vj+1.

We call the piece-wise linear trajectory
(
Z(t) : τ−0 < t < τ+

n

)
mechanically r-consistent or r-

inconsistent, if

min
τ0≤t≤τn

min
0≤j≤n

∣∣Z(t)− Z ′j
∣∣ = r, respectively, min

τ0≤t≤τn
min

0≤j≤n

∣∣Z(t)− Z ′j
∣∣ < r (3.2.5)

Note, that by formal de�nition the minimum distance on the left hand side can not be strictly larger

than r.

Given two �nite pieces of mechanically r-consistent trajectories
(
Za(t) : τ−a,0 < t < τ+

a,na

)
and(

Zb(t) : τ−b,0 < t < τ+
b,nb

)
, de�ned over non-overlapping time intervals: [τa,0, τa,na ] ∩ [τb,0, τb,nb ] = ∅,

with τa,na ≤ τb,0, we will call them mechanically r-compatible or r-incompatible if

min{ min
τa,0≤t≤τa,na

min
0<j≤nb

∣∣Za(t)− Z ′b,j
∣∣ , min
τb,0≤t≤τb,nb

min
0≤j<na

∣∣Zb(t)− Z ′a,j∣∣} ≥ r,
min{ min

τa,0≤t≤τa,na
min

0<j≤nb

∣∣Za(t)− Z ′b,j
∣∣ , min
τb,0≤t≤τb,nb

min
0≤j<na

∣∣Zb(t)− Z ′a,j∣∣} < r,
(3.2.6)

respectively.

Given a mechanically r-consistent trajectory, any non-overlapping parts of it are pairwise mechan-

ically r-compatible, and given a �nite number of non-overlapping mechanically r-consistent pieces of

trajectories which are also pair-wise mechanically r-compatible their concatenation (in the most natural

way) is mechanically r-consistent.

3.2.4 An Auxiliary Process

It will be convenient to introduce a third, auxiliary process t 7→ Z(t) ∈ R3, and consider the joint

realisation of all three processes t 7→ (Y (t), X(t), Z(t)) on the same probability space. This construction

will not be needed until Section 3.4.

The process t 7→ Z(t) will be a forgetful (or short-sighted) version of the true physical process

t 7→ X(t) in the sense that in its construction, only memory e�ects by the last seen scatterers are taken

into account. That is: only direct recollisions with the last seen scatterer and shadowings by the last

straight �ight segment are incorporated, disregarding more complex memory e�ects. It will be shown

that

(a) up to times T = T (r) = o(r−2 |log r|−2
) the trajectories of the forgetful process Z(t) and the true

physical process X(t) coincide, and

(b) the forgetful process Z(t) and the Markovian process Y (t) stay su�ciently close together with

probability tending to 1 (as r → 0). Thus, the invariance principle (3.1.6) can be transferred to the

true physical process X(t), thus yielding the invariance principle (3.1.9).

De�ne the following indicator variables:

η̂j = η̂(yj−2, yj−1, yj) := 1

{
|yj−1| < 1 and min

0≤t≤ξj−2

∣∣∣∣yj−1 + r
uj−1 − uj
|uj−1 − uj |

+ tuj−2

∣∣∣∣ < r

}
,

η̃j = η̃(yj−2, yj−1, yj) := 1

{
|yj−1| < 1 and min

0≤t≤ξj

∣∣∣∣yj−1 + r
uj−1 − uj−2

|uj−1 − uj−2|
+ tuj

∣∣∣∣ < r

}
,

ηj := max{η̂j , η̃j}.

(3.2.7)
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Before constructing the auxiliary process t 7→ Z(t) we prove the following

Lemma 3.2.1. There exists a constant C < ∞ such that for any sequence of signatures ε = (εj)j≥1

the following bounds hold

E
(
ηj
∣∣ ε) ≤ Cr, (3.2.8)

E
(
ηjηk

∣∣ ε) ≤
Cr2 |log r| if |j − k| = 1,

Cr2 if |j − k| > 1.
(3.2.9)

Proof of Lemma 3.2.1. De�ne the following auxiliary, and simpler, indicators:

η̂′j := 1

{
∠(−uj−1, uj−2) <

2r

ξj−1

}
, η̃′j := 1

{
∠(−uj−1, uj) <

2r

ξj−1

}
.

Here, and in the rest of the chapter we use the notation

∠ : S2
1 × S2

1 → [0, π], ∠(u, v) := arccos(u · v).

Then, clearly,

η̃j ≤ η̃′j , η̂j ≤ η̂′j .

It is straightforward that the indicators
(
η̂′j : 1 ≤ j <∞

)
, and likewise, the indicators(

η̃′j : 1 ≤ j <∞
)
, are independent among themselves and one-dependent across the two sequences.

This holds even if conditioned on the sequence of signatures ε.

Therefore, the following simple computations prove Lemma 3.2.1

E
(
η̂′j
∣∣ ε) ≤ ∫ ∞

0

e−yP

(
∠(−uj−1, uj−2) <

2r

y

)
dy

≤ Cr2

∫ ∞
0

e−y min{y−2, r−2}dy ≤ Cr

E
(
η̃′j
∣∣ ε) ≤ Cr2

∫ ∞
0

e−y min{y−2, r−2}dy ≤ Cr,

E
(
η̂′j+1η̃

′
j

∣∣ ε) ≤ Cr2

∫ ∞
0

∫ ∞
0

e−ye−z min{y−2, z−2, r−2}dydz ≤ Cr2 |log r| .

We omit the elementary computational details.

Lemma 3.2.1 assures that, as r → 0, with probability tending to 1, up to time of order T = T (r) =

o(r−2 |log r|−1
) it will not occur that two neighbouring or next-neighbouring η-s happen to take the

value 1 which would obscure the following construction.

The process t 7→ Z(t) is constructed on the successive intervals [τj−1, τj), j = 1, 2, . . . , as follows:

◦ (No interference with the past.)

If ηj = 0 then for τj−1 ≤ t ≤ τj , Z(t) = Z(τj−1) + {t}uj .

◦ (Direct shadowing.)

If η̂j = 1, then for τj−1 ≤ t ≤ τj , Z(t) = Z(τj−1) + {t}uj−1.

◦ (Direct recollision with the last seen scatterer.)

If η̂j = 0 and η̃j = 1 then, in the time interval τj−1 ≤ t ≤ τj the trajectory t 7→ Z(t) is de�ned as

that of a mechanical particle starting with initial position Z(τj−1), initial velocity Ż(τ+
j−1) = uj
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and colliding elastically with two in�nite-mass spherical scatterers of radius r centred at the

points

Z(τj−1) + r
uj−1 − uj
|uj−1 − uj |

, respectively Z(τj−2)− r uj−1 − uj−2

|uj−1 − uj−2|
.

Consistently with the notations adopted for the processes Y (t) and X(t), we denote Zk := Z(τk)

for k ≥ 0.

Y (t)

Z(t) X(t)

(a)

(a)

(b)

(b)

Figure 3.2: The above image shows a section of trajectory during which X, Y , and Z
would all three differ. On the left we see Y and Z remain together until point

(b), where a direct recollision is respected by Z. Note that Z ignores the mismatch

at (a) as it is indirect. On the right, the process X is coupled to Y on the

left. Note that X respects the indirect recollision at point (a) and the direct

recollision at (b).

3.3 No Mismatches up to T = o(r−1): Proof of Theorem 3.1.1

In this section we prove that the Markovian �ight trajectory Y (t), up to time scales of order T =

T (r) = o(r−1), is mechanically r-consistent with probability 1−o(1), and therefore the coupling bound

of Theorem 3.1.1 holds. On the way we establish various bounds to be used in later sections. This

section uses only classical probabilistic tools. Moreover, presenting the proof in full will prepare the

ideas (and notation) for Section 3.5 where a similar argument is exploited in a more complex form.

3.3.1 Interferences

Let t → Y (t) and t → Y ∗(t) be two independent Markovian �ight processes. Think about Y (t) as

running forward and Y ∗(t) as running backwards in time. (Note, that the Markovian �ight process has

invariant law under time reversal.) De�ne the following events

Ŵj := {min{
∣∣Y (t)− Y ′j

∣∣ : 0 < t < τj−1} < r},
W̃j := {min{|Y ′k − Y (t)| : 0 ≤ k < j − 1, τj−1 < t < τj} < r},
Ŵ ∗j := {min{|Y ∗(t)− Y ′1 | : 0 < t < τj−1} < r},
W̃ ∗′j := {min{|Y ∗′k − Y (t)| : 0 < k ≤ j − 1, 0 < t < τ1} < r},
Ŵ ∗∞ := {min{|Y ∗(t)− Y ′1 | : 0 < t <∞} < r},
W̃ ∗∞ := {min{|Y ∗′k − Y (t)| : 0 < k <∞, 0 < t < τ1} < r},

In words Ŵj is the event that the virtual collision at Yj is shadowed by the past path. While W̃j is the

event that in the time interval (τj−1, τj) there is a virtual recollision with a past scatterer.
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It is obvious that

P
(
Ŵj

)
= P

(
Ŵ ∗j
)
≤ P

(
Ŵ ∗j+1

)
≤ P

(
Ŵ ∗∞

)
,

P
(
W̃j

)
= P

(
W̃ ∗j
)
≤ P

(
W̃ ∗j+1

)
≤ P

(
W̃ ∗∞

)
.

(3.3.1)

On the other hand, by union bound and independence

P
(
Ŵ ∗∞

)
≤
∑
z∈Z3

P ({1 < k <∞ : Y ∗k ∈ Bzr,2r} 6= ∅)P ({0 < t ≤ ξ : Y (t) ∈ Bzr,2r} 6= ∅)

≤
∑
z∈Z3

(2r)−1E (|{1 < k <∞ : Y ∗k ∈ Bzr,2r}|)E (|{0 < t ≤ ξ : Y (t) ∈ Bzr,3r}|)

P
(
W̃ ∗∞

)
≤
∑
z∈Z3

P ({0 < t <∞ : Y ∗(t) ∈ Bzr,2r} 6= ∅)P (Y1 ∈ Bzr,2r)

≤
∑
z∈Z3

(2r)−1E (|{0 < t <∞ : Y ∗(t) ∈ Bzr,3r}|)P (Y1 ∈ Bzr,2r)

(3.3.2)

3.3.2 Occupation Measures (Green's Functions)

De�ne the following occupation measures (Green's functions): for A ⊂ R3

g(A) := P (Y1 ∈ A)

h(A) := E (|{0 < t ≤ ξ1 : Y (t) ∈ A}|)
G(A) := E (|{1 ≤ k <∞ : Yk ∈ A}|)
H(A) := E (|{0 < t <∞ : Y (t) ∈ A}|) .

Since the di�erent steps of the Y -process are independent, we can express G and H as covolutions:

G(A) = g(A) +

∫
R3

g(A− x)G(dx)

H(A) = h(A) +

∫
R3

h(A− x)G(dx).

(3.3.3)

3.3.3 Bounds

Lemma 3.3.1. The following identities and upper bounds hold:

h(dx) = g(dx) ≤ L(dx) (3.3.4)

H(dx) = G(dx) ≤ K(dx) + L(dx) (3.3.5)

where

K(dx) := C min{1, |x|−1}dx, L(dx) := Ce−c|x| |x|−2
dx, (3.3.6)

with appropriately chosen C <∞ and c > 0.

Proof of Lemma 3.3.1. The identity h = g is a direct consequence of the �ight length ξ being EXP (1)-

distributed. In polar coordinates with r on the radial direction and ϕ the solid angle
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g(dx) = e−rdrdϕ

= |x|−2
e−|x|dx,

where to go from the �rst line to the second we convert from polar to Cartesian coordinates. From

here the the upper bound (3.3.4) follows.

(3.3.5) then follows from (3.3.3) and the standard Green's function estimate for a random walk with

step distribution g outlined in Chapter 2, Section 2.5.

For later use we introduce the conditional versions � conditioned on the sequence ε (see (3.2.3)) �

of the bounds (3.3.4), (3.3.5). In this order we de�ne the conditional versions of the Green's functions,

given ε ∈ {0, 1}, respectively ε ∈ {0, 1}N:

gε(A) := P
(
Y1 ∈ A

∣∣ ε)
hε(A) := E

(
|{0 < t ≤ ξ1 : Y (t) ∈ A}|

∣∣ ε)
Gε(A) := E

(
|{1 ≤ k <∞ : Yk ∈ A}|

∣∣ ε)
Hε(A) := E

(
|{0 < t <∞ : Y (t) ∈ A}|

∣∣ ε) ,
and state the conditional version of Lemma 3.3.1:

Lemma 3.3.2. The following upper bounds hold uniformly in ε ∈ {0, 1}N:

gε(dx) ≤ L(dx), hε(dx) ≤ L(dx), (3.3.7)

Gε(dx) ≤ K(dx) + L(dx), Hε(dx) ≤ K(dx) + L(dx), (3.3.8)

with K(x) and L(x) as in (3.3.6), with appropriately chosen constants C <∞ and c > 0.

Proof of Lemma 3.3.2. Noting that

gε(dx) ≤ C |x|−2
e−|x|dx, hε(dx) ≤ C |x|−2

e−|x|dx,

the proof of Lemma 3.3.2 follows very much the same lines as the proof of Lemma 3.3.1. We omit the

details.

3.3.4 Computation

According to (3.3.1), (3.3.2), for every j = 1, 2, . . .

P
(
Ŵj

)
≤ P

(
Ŵ ∗∞

)
≤ (2r)−1

∑
z∈Z3

G(Bzr,2r)h(Bzr,3r),

P
(
W̃j

)
≤ P

(
W̃ ∗∞

)
≤ (2r)−1

∑
z∈Z3

H(Bzr,3r)g(Bzr,2r).

Moreover, straightforward computations yield

Lemma 3.3.3. In dimension d = 3 the following bounds hold, with some C <∞∑
z∈Z3

K(Bzr,3r)L(Bzr,2r) ≤ Cr3,
∑
z∈Z3

L(Bzr,3r)L(Bzr,2r) ≤ Cr2 (3.3.9)
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Proof of Lemma 3.3.3. The bounds (3.3.9) readily follow from explicit computations. First note

K(Bzr,3r) ≤ Cr3, (3.3.10)

L(Bzr,3r) ≤ δz,0Cr + (1− δz,0)Cre−cr|z| |z|−2
(3.3.11)

Using (3.3.10) and (3.3.11) we can bound∑
z∈Z3

K(Bzr,3r)L(Bzr,2r) ≤ C2r4 + C2r6
∑

06=z∈Z3

e−cr|z|(r |z|)−2

≤ C2r4 + C ′r3

∫
R3

e−c|y| |y|−2
dy

≤ C ′′r3,

where to go from the �rst line to the second we approximate the sum by a Riemann integral. This

then gives the left hand bound in (3.3.9).

Now, using (3.3.11)∑
z∈Z3

L(Bzr,3r)L(Bzr,2r) ≤ C2r2 + C2r6
∑

06=z∈Z3

e−2cr|z|(r |z|)−4

≤ C2r2 + C2r2
∑

06=z∈Z3

|z|−4

≤ C ′′′r2.

Note that, in dimension 3, the sum in the second line converges.

We conclude this section with the following consequence of the above arguments and computations.

Corollary 3.3.4. There exists a constant C <∞ such that for any j ≥ 1:

P
(
W̃j

)
≤ Cr, P

(
Ŵj

)
≤ Cr. (3.3.12)

3.3.5 No Mismatching � Up to T ∼ o(r−1)

De�ne the stopping time

σ := min{j > 0 : max{1
Ŵj
,1
W̃j
} = 1},

and note that by construction

inf{t > 0 : X(t) 6= Y (t)} ≥ τσ−1. (3.3.13)

Lemma 3.3.5. Let T = T (r) be such that limr→0 T (r) =∞ and limr→0 rT (r) = 0. Then

lim
r→0

P (τσ−1 < T ) = 0. (3.3.14)

Proof of Lemma 3.3.5.

P (τσ−1 < T ) ≤ P (σ ≤ 2T ) + P

2T−1∑
j=1

ξj < T

 ≤ CrT + Ce−cT , (3.3.15)
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where C < ∞ and c > 0. The �rst term in the middle expression of (3.3.15) is bounded by union

bound and (3.3.12) of Corollary 3.3.4. In bounding the second term we use a large deviation upper

bound for the sum of independent EXP (1)-distributed ξj-s.

Finally, (3.3.14) readily follows from (3.3.15).

(3.1.7) now follows directly from (3.3.13) and (3.3.14). Thus, this concludes the proof of Theorem

3.1.1.

3.4 Beyond the Naïve Coupling

The forthcoming sections rely on the joint realization (coupling) of the three processes t 7→
(
Y (t), X(t), Z(t)

)
as described in Section 3.2. In particular, recall the construction of the process t 7→ Z(t) from Subection

3.2.4.

3.4.1 Breaking Z into Legs

Let Γ0 := 0, Θ0 = 0 and for n ≥ 1

Γn := min{j ≥ Γn−1 + 2 : min{ξj−1, ξj , ξj+1, ξj+2} > 1}, γn := Γn − Γn−1,

Θn := τΓn , θn := Θn −Θn−1,
(3.4.1)

and denote

ξn,j := ξΓn−1+j , un,j := uΓn−1+j , yn,j := yΓn−1+j , 1 ≤ j ≤ γn,
Yn(t) := Y (Θn−1 + t)− Y (Θn−1), 0 ≤ t ≤ θn,
Zn(t) := Z(Θn−1 + t)− Z(Θn−1), 0 ≤ t ≤ θn.

Then, it follows that the packs of random variables

$n := (γn; (ξn,j , un,j) : 1 ≤ j ≤ γn) , n ≥ 0, (3.4.2)

are fully independent (for n ≥ 0), and also identically distributed for n ≥ 1. (The zeroth pack is

de�cient if min{ξ0, ξ1} < 1.) Moreover the legs of the Markovian �ight process

(θn;Yn(t) : 0 ≤ t ≤ θn) , n ≥ 0,

are fully independent, and identically distributed for n ≥ 1.

A key observation is that due to the rules of construction of the process t 7→ Z(t) exposed in Section

3.2.4, the legs

(θn;Zn(t) : 0 ≤ t ≤ θn) , n ≥ 0, (3.4.3)

of the auxiliary process t 7→ Z(t) are also independently constructed from the packs (3.4.2), following

the rules in Section 3.2.4. Note, that the restrictions |yj−1| < 1 in (3.2.7) were imposed exactly in order

to ensure this independence of the legs (3.4.3). Therefore we will now construct the auxiliary process

t 7→ Z(t) and its time reversal t 7→ Z∗(t) from an in�nite sequence of independent packs (3.4.2). In

order to reduce unnecessary complications of notation from now on we assume min{ξ0, ξ1} > 1.
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Remark: In order to break up the auxiliary process t 7→ Z(t) into independent legs the choice of

simpler stopping times

Γ′n := min{j ≥ Γn−1 + 1 : min{ξj , ξj+1} > 1},

would work. However, we need the slightly more complicated stoppings Γn, given in (3.4.1), for some

other reasons which will become clear towards the end of Section 3.4.2 and in the statement and proof

of Lemma 3.5.1.

3.4.2 One Leg

Let ξj , uj , j ≥ 1, be fully independent random variables with the distributions (3.2.1), conditioned to

min{ξ1, ξ2} > 1.

and yj as in (3.2.2). Let

γ := min{j ≥ 2 : min{ξj−1, ξj , ξj+1, ξj+2} > 1} ∈ {2} ∪ {5, 6, . . . }. (3.4.4)

Note that γ can not assume the values {1, 3, 4}. Call

$ := (γ; (ξj , uj) : 1 ≤ j ≤ γ) (3.4.5)

a pack, and keep the notation τj :=
∑j
k=1 ξk, and θ := τγ .

The forward leg

(θ;Z(t) : 0 ≤ t ≤ θ)

is constructed from the pack $ according to the rules given in Section 3.2.4. We will also denote

Zj := Z(τj), 0 ≤ j ≤ γ; Z := Zγ = Z(θ).

These are the discrete steps, respectively, the terminal position of the leg.

It is easy to see that the distributions of γ and θ are exponentially tight: there exist constants

C <∞ and c > 0 such that for any s ∈ [0,∞)

P (γ > s) ≤ Ce−cs, P (θ > s) ≤ Ce−cs. (3.4.6)

The left inequality is a consequence of Markov's inequality and moment generating functions (sometimes

called Cherno�'s inequality), while the second follows from the �rst and a large deviation principle for

exponential random variables.

The backwards leg

(θ;Z∗(t) : 0 ≤ t ≤ θ)

is constructed from the pack $ as

Z∗(t,$) := Z(θ − t,$∗)− Z($∗),
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where the backwards pack

$∗ := (γ; (ξγ−j ,−uγ−j) : 0 ≤ j ≤ γ)

is the time reversal of the pack$. Note that the forward and backward packs, $ and$∗, are identically

distributed but the forward and backward processes
(
t 7→ Z(t) : 0 ≤ t ≤ θ

)
and

(
t 7→ Z∗(t) : 0 ≤ t ≤ θ

)
are not. The backwards process t 7→ Z∗(t) could also be de�ned in stepwise terms, similar (but not

identical) to those in Section 3.2.4, but we will not rely on these step-wise rules and therefore omit

their explicit formulation.

Consistent with the previous notation, we denote

Z∗j := Z∗(τj), 0 ≤ j ≤ γ; Z
∗

:= Z∗γ = Z∗(θ) = −Z.

Note, that due to the construction rules of the forward and backward legs, their beginning, middle and

ending parts

(τ1;Z(t) : 0 ≤ t ≤ τ1) ,

(τγ−1 − τ1;Z(τ1 + t)− Z(τ1) : 0 ≤ t ≤ τγ−1 − τ1) ,

(τγ − τγ−1;Z(τγ−1 + t)− Z(τγ−1) : 0 ≤ t ≤ τγ − τγ−1) ,

(3.4.7)

are independent, and likewise for the backwards process Z∗,

(τ1;Z∗(t) : 0 ≤ t ≤ τ1) ,

(τγ−1 − τ1;Z∗(τ1 + t)− Z∗(τ1) : 0 ≤ t ≤ τγ−1 − τ1) ,

(τγ − τγ−1;Z∗(τγ−1 + t)− Z∗(τγ−1) : 0 ≤ t ≤ τγ − τγ−1) .

(3.4.8)

This fact will be of crucial importance in the proof of Proposition 3.4.2, Section 3.5.2 below. This is

the reason (alluded to in the remark at the end of Section 3.4.1) we chose the somewhat complicated

stopping time as de�ned in (3.4.4).

3.4.3 Multi-Leg Concatenation

Let $n = (γn; (ξn,j , un,j) : 1 ≤ j ≤ γn), n ≥ 1, be a sequence of i.i.d packs (3.4.5), and denote θn,

(Zn(t) : 0 ≤ t ≤ θn), (Zn,j : 1 ≤ j ≤ γn), (Z∗n(t) : 0 ≤ t ≤ θn), (Z∗n,j : 1 ≤ j ≤ γn), Zn, Z
∗
n the various

objects de�ned in Section 3.4.2, speci�ed for the n-th independent leg.

In order to construct the concatenated forward and backward processes t 7→ Z(t), t 7→ Z∗(t),

0 ≤ t <∞, we �rst de�ne for n ∈ Z+, respectively t ∈ R+

Γn :=

n∑
k=1

γk, νn := max{m : Γm ≤ n}, {n} := n− Γνn ,

Θn :=

n∑
k=1

θk, νt := max{m : Θm < t}, {t} := t−Θνt .

The concatenated (multi-leg) forward and backward Z-processes are

Ξn :=

n∑
k=1

Zk, Zn := Ξνn + Zνn+1,{n}, Z(t) := Ξνt + Zνt+1({t}),

Ξ∗n :=

n∑
k=1

Z
∗
k, Z∗n := Ξ∗νn + Z∗νn+1,{n}, Z∗(t) := Ξ∗νt + Z∗νt+1({t}),

(3.4.9)
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Note that Ξn and Ξ∗n are random walks with independent steps; t 7→ Z(t), 0 ≤ t < ∞, is exactly the

Z-process constructed in Section 3.2.4, with Zn = Z(τn), 0 ≤ n <∞. Similarly, t 7→ Z∗(t), 0 ≤ t <∞,

is the time reversal of the Z-process and Z∗n = Z∗(τn), 0 ≤ n <∞.

Theorem 3.1.2 will follow from Propositions 3.4.1 and 3.4.2 of the next two sections.

3.4.4 Mismatches Within One Leg

Given a pack $ = (γ; (ξj , uj) : 1 ≤ j ≤ γ) (3.4.5), and arbitrary incoming and outgoing velocities

u0, uγ+1 ∈ S2 let
(
(Y (t),X (t), Z(t)) : 0− < t < θ+

)
, be the triplet of Markovian �ight process, Lorentz

exploration process and auxiliary Z-process jointly constructed with these data, as described in Sections

3.2.1, 3.2.2, respectively, 3.2.4. By 0− < t < θ+ we mean that the incoming velocities at 0− are given

as Ẏ (0−) = Ẋ (0−) = Ż(0−) = u0 and the outgoing velocities at θ+ are Ẏ (θ+) = Ż(θ+) = uγ+1,

while Ẋ (θ+) is determined by the construction from Section 3.2.2. That is, Ẋ (θ+) = uγ+1 if this last

scattering is not shadowed by the trajectory
(
X (t) : 0 ≤ t ≤ θ

)
and Ẋ (θ+) = Ẋ (θ−) if it is shadowed.

Proposition 3.4.1. There exists a constant C <∞ such that for any u0, uγ+1 ∈ S2

P
(
X (t) 6≡ Z(t) : 0− < t < θ+

)
≤ Cr2 |log r|2 . (3.4.10)

The proof of this Proposition relies on controlling the geometry of mismatchings, and is postponed

until Section 3.6.

3.4.5 Inter-Leg Mismatches

Let t → Z(t) be a forward Z-process built up as concatenation of legs, as described in Section 3.4.3

and de�ne the following events

Ŵj :=
{

min{|Z(t)− Z ′k| : 0 < t < Θj−1, Γj−1 < k ≤ Γj} < r
}
,

W̃j :=
{

min{|Z ′k − Z(t)| : 0 ≤ k < Γj−1, Θj−1 < t < Θj} < r
}
.

(3.4.11)

In words Ŵj is the event that a collision occuring in the j-th leg is shadowed by the past path. While

W̃j is the event that within the j-th leg the Z-trajectory bumps into a scatterer placed in an earlier

leg. That is, W̃j ∪ Ŵj is precisely the event that the concatenated �rst j − 1 legs and the j-th leg are

mechanically r-incompatible (see Section 3.2.3).

The following proposition indicates that on our time scales there are no �inter-leg mismatches�:

Proposition 3.4.2. There exists a constant C <∞ such that for all j ≥ 1

P
(
W̃j

)
≤ Cr2, P

(
Ŵj

)
≤ Cr2. (3.4.12)

The proof of Proposition 3.4.2 is the content of Section 3.5.

3.5 Proof of Proposition 3.4.2

This section is purely probabilistic and is similar to Section 3.3. The notation used is also similar.

However, similar is not identical. The various Green's functions used here, although denoted g, h,G,H,

as in Section 3.3, are similar in their role but not the same. The estimates that will follow are also

di�erent.
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3.5.1 Occupation Measures (Green's Functions)

Let now t 7→ Z∗(t), 0 ≤ t <∞, be a backward Z∗-process and t 7→ Z(t), 0 ≤ t ≤ θ, a forward one-leg

Z-process, assumed independent. In analogy with the events Ŵj and W̃j de�ned in (3.4.11) we de�ne

Ŵ ∗j :=
{

min{|Z∗(t)− Z ′k| : 0 < t < Θj−1, 0 < k ≤ γ} < r
}
,

W̃ ∗j :=
{

min{|Z∗′k − Z(t)| : 0 < k ≤ Γj−1, 0 < t < θ} < r
}
,

Ŵ ∗∞ :=
{

min{|Z∗(t)− Z ′k| : 0 < t <∞, 0 < k ≤ γ} < r
}
,

W̃ ∗∞ :=
{

min{|Z∗′k − Z(t)| : 0 < k <∞, 0 < t < θ} < r
}
.

It follows from the de�nition that

P
(
Ŵj

)
= P

(
Ŵ ∗j
)
≤ P

(
Ŵ ∗j+1

)
≤ P

(
Ŵ ∗∞

)
,

P
(
W̃j

)
= P

(
W̃ ∗j
)
≤ P

(
W̃ ∗j+1

)
≤ P

(
W̃ ∗∞

)
.

(3.5.1)

On the other hand, by the union bound and independence we have

P
(
Ŵ ∗∞

)
≤
∑
z∈Z3

P ({0 < t <∞ : Z∗(t) ∈ Bzr,2r} 6= ∅)P ({1 ≤ k ≤ γ : Zk ∈ Bzr,2r} 6= ∅)

≤
∑
z∈Z3

(2r)−1E (|{0 < t <∞ : Z∗(t) ∈ Bzr,3r}|)E (|{1 ≤ k ≤ γ : Zk ∈ Bzr,2r}|)

P
(
W̃ ∗∞

)
≤
∑
z∈Z3

P ({1 < k <∞ : Z∗k ∈ Bzr,2r} 6= ∅)P ({0 < t ≤ θ : Z(t) ∈ Bzr,2r} 6= ∅)

≤
∑
z∈Z3

(2r)−1E (|{1 < k <∞ : Z∗k ∈ Bzr,2r}|)E (|{0 < t ≤ θ : Z(t) ∈ Bzr,3r}|)

(3.5.2)

Therefore, in view of (3.5.1) we have to control the mean occupation time measures appearing on the

right hand side of (3.5.2).

De�ne the following mean occupation measures (Green's functions): for A ⊂ R3 let

g(A) := E (|{1 ≤ k ≤ γ : Zk ∈ A}|) ,
g∗(A) := E (|{1 ≤ k ≤ γ : Z∗k ∈ A}|) ,
h(A) := E (|{0 < t ≤ θ : Z(t) ∈ A}|) ,
h∗(A) := E (|{0 < t ≤ θ : Z∗(t) ∈ A}|) ,
R∗(A) := E (|{1 ≤ n <∞ : Ξ∗n ∈ A}|) ,
G∗(A) := E (|{1 ≤ k <∞ : Z∗k ∈ A}|) ,
H∗(A) := E (|{0 < t <∞ : Z∗(t) ∈ A}|) .

Since the di�erent legs are independent, we can express G∗ and H∗ as convolutions

G∗(A) = g∗(A) +

∫
R3

g∗(A− x)R∗(dx),

H∗(A) = h∗(A) +

∫
R3

h∗(A− x)R∗(dx).

(3.5.3)

48



3.5.2 Bounds

Lemma 3.5.1. The following upper bounds hold:

max{g(dx), g∗(dx)} ≤M(dx), max{h(dx), h∗(dx)} ≤ L(dx), (3.5.4)

R∗(dx) ≤ K(dx), (3.5.5)

G∗(dx) ≤ K(dx), H∗(dx) ≤ K(dx) + L(dx), (3.5.6)

where

K(dx) := C min{1, |x|−1}dx, L(dx) := Ce−c|x| |x|−2
dx, M(dx) := Ce−c|x|dx,

with appropriately chosen C <∞ and c > 0.

Proof of Lemma 3.5.1. The proof of the bounds (3.5.4) hinges on the decompositions (3.4.7) and (3.4.8)

of the forward and backward legs into independent parts.

Let

g1(A) := P (Z1 ∈ A) = P (Z∗1 ∈ A) = C

∫
A

1(|x| > 1)e−|x|dx,

h1(A) := E (|{t ≤ τ1 : Z(t) ∈ A}|) = E (|{t ≤ τ1 : Z∗(t) ∈ A}|) = C ′
∫
A

|x|−2
e−max{1,|x|}dx,

(3.5.7)

and

g2(A) := E (|{1 ≤ k ≤ γ : Zk − Z1 ∈ A}|) ,
g∗2(A) := E (|{1 ≤ k ≤ γ : Z∗k − Z∗1 ∈ A}|) ,
h2(A) := E (|{0 < t ≤ θ − τ1 : Z(τ1 + t)− Z1 ∈ A}|) ,
h∗2(A) := E (|{0 < t ≤ θ − τ1 : Z∗(τ1 + t)− Z∗1 ∈ A}|) .

Due to the exponential tail of the distribution of γ and θ, (3.4.6), there are constants C <∞ and c > 0

such that for any s <∞

max{g2({x : |x| > s}), g∗2({x : |x| > s})} ≤ Ce−cs,
max{h2({x : |x| > s}), h∗2({x : |x| > s})} ≤ Ce−cs,

(3.5.8)

and furthermore,

g2(R3) = g∗2(R3) = E (γ) <∞,
h2(R3) = h∗2(R3) = E (θ − τ1) <∞.

(3.5.9)
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From the independent decompositions (3.4.8) and (3.4.7) it follows that

g(A) =

∫
R3

g2(A− x)g1(dx), g∗(A) =

∫
R3

g∗2(A− x)g1(dx),

h(A) =

∫
R3

h2(A− x)g1(dx) + h1(A), h∗(A) =

∫
R3

h∗2(A− x)g1(dx) + h1(A).

(3.5.10)

The bounds (3.5.4) readily follow from the explicit expressions (3.5.7), the convolutions (3.5.10) and

the bounds (3.5.8) and (3.5.9).

The bound (3.5.5) is a straightforward Green's function bound for the the random walk Ξ∗n de�ned

in (3.4.9), by noting that the distribution of the i.i.d. steps Z
∗
k of this random walk has bounded density

and exponential tail decay (this follows the same lines as the bounds on the random walk distribution

proved in Chapter 2, Section 2.5).

Finally, the bounds (3.5.6) follow from the convolutions (3.5.3) and the bounds (3.5.4), (3.5.5).

Remark: On the di�erence between Lemmas 3.3.1 and 3.5.1. Note the di�erence between the upper

bounds for g in (3.3.4), respectively, (3.5.4), and on G in (3.3.5), respectively, (3.5.6). These are

important and are due to the fact that the length of the �rst step in a Z- or Z∗-leg is distributed as

(ξ | ξ > 1) ∼ EXP (1|0) rather than ξ ∼ EXP (1).

3.5.3 Computation

According to (3.5.2)

P
(
W̃j

)
≤ P

(
W̃ ∗∞

)
≤ (2r)−1

∑
z∈Z3

H∗(Bzr,3r)g(Bzr,2r),

P
(
Ŵj

)
≤ P

(
Ŵ ∗∞

)
≤ (2r)−1

∑
z∈Z3

G∗(Bzr,2r)hr(Bzr,3r).
(3.5.11)

Lemma 3.5.2. In dimension d = 3 the following bounds hold, with some C <∞∑
z∈Z3

K(Bzr,3r)M(Bzr,2r) ≤ Cr3,
∑
z∈Z3

M(Bzr,3r)L(Bzr,2r) ≤ Cr3. (3.5.12)

Proof of Lemma 3.5.2. The bounds (3.5.12) (similarly to the bounds (3.3.9)) readily follow from explicit

computations which we omit.

Proof of Proposition 3.4.2. Proposition 3.4.2 now follows by inserting the bounds (3.5.12) and one of

the bounds in (3.3.9) into equations (3.5.11).

3.6 Proof of Proposition 3.4.1

Given a pack $ = (γ; (ξj , uj) : 1 ≤ j ≤ γ) (3.4.5), and arbitrary u0, uγ+1 ∈ S2
1 , let

(
(Y (t),X (t), Z(t)) :

0 ≤ t ≤ θ
)
be the triplet of Markovian �ight process, Lorentz exploration process and auxiliary Z-

process jointly constructed with these data. We will prove the following bounds, stated in increasing
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order of di�culty/complexity.

P

{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {
γ∑
j=1

ηj > 1}

 ≤ Cr2 |log r| , (3.6.1)

P

{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {
γ∑
j=1

ηj = 0}

 ≤ Cr2 |log r| , (3.6.2)

P

{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {
γ∑
j=1

ηj = 1}

 ≤ Cr2 |log r|2 . (3.6.3)

Note that by construction η1 = η2 = η3 = ηγ = 0, so the sums on the left hand side go actually from

4 to γ − 1 . We stated and prove these bounds in their increasing order of complexity: (3.6.1) (proved

in Section 3.6.1) and (3.6.2) (proved in Section 3.6.2) are of purely probabilistic nature while (3.6.3)

(proved in Sections 3.6.3-3.6.7) also relies on the the �ner geometric understanding of the mismatch

events η̂j = 1 and η̃j = 1.

3.6.1 Proof of (3.6.1)

This follows directly from Lemma 3.2.1. Indeed, given γ and ε = (εj)1≤j≤γ , due to (3.2.9),

P

 γ∑
j=1

ηj > 1
∣∣ ε
 ≤ γmax

j
P
(
ηj = ηj+1 = 1

∣∣ ε)+
γ2

2
max

j,k:|j−k|>1
P
(
ηj = ηk = 1

∣∣ ε)
≤ Cγr2 |log r|+ Cγ2r2,

and hence, due to the exponential tail bound (3.4.6) we get

P

γ−1∑
j=4

ηj > 1

 = E

P

γ−1∑
j=4

ηj > 1
∣∣ ε
 ≤ Cr2 |log r| .

which concludes the proof of (3.6.1).

3.6.2 Proof of (3.6.2)

First note that by construction of the processes
(
(X (t), Z(t)) : 0− < t < θ+

)
the following identities

hold:

{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {
γ∑
j=1

ηj = 0} = {X (t) 6≡ Y (t) : 0− ≤ t ≤ θ+} ∩ {
γ∑
j=1

ηj = 0}

{X (t) 6≡ Y (t) : 0− ≤ t ≤ θ+} =
⋃

0<j<γ

{
min
τj≤t≤θ

∣∣Y ′j−1 − Y (t)
∣∣ < r

}
∪
{

min
0≤t≤τj

∣∣Y ′j+1 − Y (t)
∣∣ < r

}

And, hence
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{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {
γ∑
j=1

ηj = 0} (3.6.4)

=
⋃

0<j<γ

({
min

τj≤t≤τj+1

∣∣Y ′j−1 − Y (t)
∣∣ < r

}
∪
{

min
τj−1≤t≤τj

∣∣Y ′j+1 − Y (t)
∣∣ < r

})
∩ {ξj > 1}

∪
⋃

0<j<γ

({
min

τj+1≤t≤θ

∣∣Y ′j−1 − Y (t)
∣∣ < r

}
∪
{

min
0≤t≤τj−1

∣∣Y ′j+1 − Y (t)
∣∣ < r

})

⊂
⋃

0<j<γ

({
min

τj≤t≤τj+1

|Yj−1 − Y (t)| < 2r

}
∪
{

min
τj−1≤t≤τj

|Yj+1 − Y (t)| < 2r

})
∩ {ξj > 1}

∪
⋃

0<j<γ

({
min

τj+1≤t≤θ
|Yj−1 − Y (t)| < 2r

}
∪
{

min
0≤t≤τj−1

|Yj+1 − Y (t)| < 2r

})

By simple geometric inspection we see{
min

τj≤t≤τj+1

|Yj−1 − Y (t)| < 2r

}
∩ {ξj > 1} ⊂ {∠(−uj−1, uj) < 4r} ,{

min
τj−1≤t≤τj

|Yj+1 − Y (t)| < 2r

}
∩ {ξj > 1} ⊂ {∠(−uj+1, uj) < 4r} .

And therefore,

max
ε

P

({
min

τj≤t≤τj+1

|Yj−1 − Y (t)| < 2r

}
∩ {ξj > 1}

∣∣ ε) ≤ Cr2

max
ε

P

({
min

τj−1≤t≤τj
|Yj+1 − Y (t)| < 2r

}
∩ {ξj > 1}

∣∣ ε) ≤ Cr2.

(3.6.5)

On the other hand, from the conditional Green's function computations of section 3.3, in particular

from Lemma 3.3.2, we get

max
ε

P

(
min

τj+1≤t≤θ
|Yj−1 − Y (t)| < 2r

∣∣ ε) ≤ sup
ε

P

(
min

τ2≤t<∞
|Y (t)| < 2r

∣∣ ε) ≤ Cr2 |log r| ,

max
ε

P

(
min

0≤t≤τj−1

|Yj+1 − Y (t)| < 2r
∣∣ ε) ≤ sup

ε
P

(
min

τ2≤t<∞
|Y (t)| < 2r

∣∣ ε) ≤ Cr2 |log r| .
(3.6.6)

Putting (3.6.4), (3.6.5) and (3.6.6) together yields

P

{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {
γ−1∑
j=4

ηj = 0}
∣∣ ε
 ≤ Cγr2 |log r| ,

and hence, taking expectation over ε, we get (3.6.2).

3.6.3 Proof of (3.6.3) � Preparations

Let γ ∈ {2} ∪ {5, 6, . . . }, and ε = (εj)1≤j≤γ ∈ {0, 1}γ compatible with the de�nition of a pack,

and 3 < k < γ be �xed. Given a pack $ with signature ε we de�ne yet another auxiliary process(
Z(k)(t) : 0− < t < θ+

)
as follows:

◦ On 0− < t ≤ τk−1, Z
(k)(t) = Y (t).

◦ On τk−1 < t ≤ τk, Z(k)(t) is constructed according to the rules of the Z-process, given in Section

3.2.4.
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◦ On τk < t < θ+, Z(k)(t) = Z(k)(τk) + Y (t)− Y (τk).

Note that on the event {ηj = δj,k : 1 ≤ j ≤ γ} we have Z(k)(t) ≡ Z(t), 0− < t < θ+.

We will show that

max
ε,k

P
(
{X (t) 6≡ Z(k)(t) : 0− ≤ t ≤ θ+} ∩ {ηj = δj,k : 1 ≤ j ≤ γ}

∣∣ ε)
≤ max

ε,k
P
(
{X (t) 6≡ Z(k)(t) : 0− ≤ t ≤ θ+} ∩ {ηk = 1}

∣∣ ε)
≤ Cγ2r2 |log r|2 ,

(3.6.7)

and hence

max
ε

P

(
{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {

γ∑
k=1

ηk = 1}
∣∣ ε)

≤ γmax
ε,k

P
(
{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {ηj = δj,k : 1 ≤ j ≤ γ}

∣∣ ε)
≤ Cγ3r2 |log r|2 .

Then, taking expectation over ε we get (3.6.3).

In order to prove (3.6.7) �rst write

P
(
{X (t) 6≡ Z(k)(t) : 0− ≤ t ≤ θ+} ∩ {ηj = δj,k : 1 ≤ j ≤ γ}

∣∣ ε)
≤ P

(
{X (t) 6≡ Z(k)(t) : 0− ≤ t ≤ θ+} ∩ {ηk = 1}

∣∣ ε)
= P

(
{X (t) 6≡ Z(k)(t) : 0− ≤ t ≤ θ+} ∩ {η̂k = 1}

∣∣ ε)+

P
(
{X (t) 6≡ Z(k)(t) : 0− ≤ t ≤ θ+} ∩ {η̃k = 1} ∩ {η̂k = 0}

∣∣ ε) ,
and note that the three parts(

Z(k)(t) : 0− < t < τk−3

)
=
(
Y (t) : 0− < t < τk−3

)
,(

Z(k)(τk−3 + t)− Z(k)(τk−3) : 0 ≤ t ≤ τk − τk−3

)
,(

Z(k)(τk) + t)− Z(k)(τk) : 0 ≤ t < θ+ − τk
)

=
(
Y (τk) + t)− Y (τk) : 0 ≤ t < θ+ − τk

)
,

(3.6.8)

are independent � even if the events {η̂k = 1}, respectively, {η̃k = 1} ∩ {η̂k = 0} are speci�ed.
From the construction of the processes

(
(X (t), Z(k)(t)) : 0− < t < θ+

)
it follows that if

(
Z(k)(t) :

0− < t < θ+
)
is mechanically r-consistent then

(
X (t) ≡ Z(k)(t) : 0− < t < θ+

)
.

Denote by A
(k)
a,a, 1 ≤ a ≤ 3, the event that the a-th part of the decomposition (3.6.8) is mechanically

r-inconsistent, and by Aa,b = Ab,a, 1 ≤ a, b ≤ 3, a 6= b, the event that the a-th and b-th parts of the

decomposition (3.6.8) are mechanically r-incompatible � in the sense of the de�nitions (3.2.5) and

(3.2.6) in Section 3.2.3. In order to prove (3.6.7) we will have to prove appropriate upper bounds on

the conditional probabilities

P
(
{η̂k = 1} ∩A(k)

a,b

∣∣ ε) ,
P
(
{η̃k = 1} ∩ {η̂k = 0} ∩A(k)

a,b

∣∣ ε) , a, b = 1, 2, 3. (3.6.9)

These are altogether 12 bounds. However, some of them are formally very similar.

A
(k)
1,1, A

(k)
3,3 and A

(k)
1,3 do not involve the middle part and therefore do not rely on the geometric

arguments of the forthcoming Sections 3.6.4-3.6.6. Applying directly (3.2.8), (3.3.7), (3.3.9) and similar
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procedures as in Section 3.3.4, without any new e�ort we get

P
(
{η̂k = 1} ∩A(k)

a,b

∣∣ ε) ≤ Cγ2r2,

P
(
{η̃k = 1} ∩ {η̂k = 0} ∩A(k)

a,b

∣∣ ε) ≤ Cγ2r2,
a, b = 1, 3. (3.6.10)

We omit the repetition of these details.

The remaining six bounds rely on the geometric arguments of Sections 3.6.4-3.6.6 and, therefore,

are postponed to Section 3.6.7

3.6.4 Geometric Estimates

We analyse the middle segment of the process Z(k), presented in (3.6.8), restricted to the events

{η̂k = 1}, respectively, {η̃k = 1} ∩ {η̂k = 0}. Since everything done in this analysis is invariant under

time and space translations and also under rigid rotations of R3 it will be notationally convenient

to place the origin of space-time at (τk−2, Z(τk−2)) and choose uk−2 = e = (1, 0, 0), a �xed element

of S2
1 . So, the ingredient random variables are (ξ−, u, ξ, v, ξ+), fully independent and distributed as

ξ− ∼ EXP (1|εk−2), ξ ∼ EXP (1|εk−1) = EXP (1|1), ξ+ ∼ EXP (1|εk), u, v ∼ UNI(S2
1).

It will be enlightening to group the ingredient variables as (ξ−, (u, ξ, v), ξ+), and accordingly write

the sample space of this reduced context as R+×D×R+, where D := S2
1×R+×S2

1 , with the probability

measure EXP (1|εk−2)× µ× EXP (1|εk) where, on D,

µ = UNI(S2
1)× EXP (1|1)× UNI(S2

1). (3.6.11)

For r < 1, let σ̂r, σ̃r : D→ R+ ∪ {∞} be

σ̂r(u, ξ, v) := inf{t :

∣∣∣∣ξu+ r
u− v
|u− v| + te

∣∣∣∣ < r},

σ̃r(u, ξ, v) := inf{t :

∣∣∣∣ξu+ r
u− e
|u− e| + tv

∣∣∣∣ < r},

(with the usual convention inf ∅ =∞), and

Âr := {(u, ξ, v) ∈ D : σ̂r <∞}, Ãr := {(u, ξ, v) ∈ D : σ̃r <∞}.

We de�ne the process
(
Ẑr(t) : −∞ < t < ∞

)
and

(
Z̃r(t) : −∞ < t < ∞

)
in terms of (u, ξ, v) ∈ Âr,

respectively, (u, ξ, v) ∈ Âr as follows. Strictly speaking, these are de�cient processes, since µ(Âr) < 1,

and µ(Ãr) < 1.

◦ On −∞ < t ≤ 0, Ẑr(t) = Z̃r(t) = te.

◦ On 0 ≤ t ≤ ξ, Ẑr(t) = Z̃r(t) = tu,

◦ On ξ ≤ t <∞,

◦◦ Ẑr(t) = Ẑr(ξ) + (t− ξ)u,
◦◦ Z̃r(t) is the trajectory of a mechanical particle, with initial position Z̃r(ξ) and initial velocity

˙̃
Zr(ξ

+) = v, bouncing elastically between two in�nite-mass spherical scatterers centred at

r e−u
|e−u| , respectively, ξu + r u−v

|u−v| , and, eventually, �ying inde�nitely with constant terminal

velocity.

See Figure 3.3 for a reference to some of the labelling.
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The trapping time β̂r, β̃r ∈ R+ and escape (terminal) velocity ŵr, w̃r ∈ S2
1 of the process Ẑr(t),

respectively, Z̃r(t), are

β̂r := 0, ŵr := u,

β̃r := sup{s <∞ :
˙̃
Zr(ξ + s+) 6= ˙̃

Zr(ξ + s−)}, w̃r :=
˙̃
Zr(ξ + β̃+

r ).
(3.6.12)

Note that β̃r ≥ σ̃r.
The relation of the middle segment of (3.6.8) to Ẑr and Z̃r is the following:(

{η̂k = 1},
(
Z(k)(τk−2 + t)− Z(k)(τk−2) : −ξk−2 ≤ t ≤ ξk−1 + ξk

))
∼(

{ξ− > σ̂r},
(
Ẑr(t) : −ξ− ≤ t ≤ ξ + ξ+

))
,

(
{η̂k = 0} ∩ {η̃k = 1},

(
Z(k)(τk−2 + t)− Z(k)(τk−2) : −ξk−2 ≤ t ≤ ξk−1 + ξk

))
∼(

{ξ− ≤ σ̂r} ∩ {ξ+ > σ̃r},
(
Z̃r(t) : −ξ− ≤ t ≤ ξ + ξ+

))
,

(3.6.13)

where ∼ stands for equality in distribution (in essence all we have done so far is isolate the middle

segment and relabel). So, in order to prove (3.6.7) we have to prove some subtle estimates for the

processes Z̃r amd Z̃r. The main estimates are collected in Proposition 3.6.1 below.

Proposition 3.6.1. There exists a constant C < ∞, such that for all r < 1 and s ∈ (0,∞), the

following bounds hold:

µ
(

(u, h, v) ∈ Âr : ∠(−e, ŵr) < s
)
≤ Crmin{s, 1}, (3.6.14)

µ
(

(u, h, v) ∈ Ãr : ∠(−e, w̃r) < s
)
≤ Crmin{s(|log s| ∨ 1), 1} (3.6.15)

µ
(

(u, h, v) ∈ Ãr : r−1β̃r > s
)
≤ Crmin{s−1(|log s| ∨ 1), 1}. (3.6.16)

Remarks: The bound (3.6.14) is sharp in the sense that a lower bound of the same order can be

proved. In contrast, we think that the upper bound in (3.6.15) is not quite sharp. However, it is

su�cient for our purposes so we do not strive for a better estimate.

The following consequence of Proposition 3.6.1 will be used to prove (3.6.3).

Corollary 3.6.2. There exists a constant C <∞ such that the following bounds hold:

P

(
{η̂k = 1} ∩ { min

τk−2≤t≤τk

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣ < s}

∣∣ ε) ≤ Crs(|log s| ∨ 1), (3.6.17)

P

(
{η̂k = 1} ∩ { min

τk−3≤t≤τk−1

∣∣∣Z(k)(t)− Z(k)(τk)
∣∣∣ < s}

∣∣ ε) ≤ Crs(|log s| ∨ 1), (3.6.18)

P

(
{η̂k = 0} ∩ {η̃k = 1} ∩ { min

τk−2≤t≤τk

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣ < s}

∣∣ ε) (3.6.19)

≤ Crmax{s |log s|2 , r |log r|2}

P

(
{η̂k = 0} ∩ {η̃k = 1} ∩ { min

τk−3≤t≤τk−1+β̃

∣∣∣Z(k)(t)− Z(k)(τk)
∣∣∣ < s}

∣∣ ε) (3.6.20)

≤ Crmax{s |log s|2 , r |log r|2}

Proposition 3.6.1 and its Corollary 3.6.2 are proved in Sections 3.6.5, respectively, 3.6.6.
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3.6.5 Geometric Estimates Ctd: Proof of Proposition 3.6.1

Preparations

Beside the probability measure µ (see (3.6.11)) we will also need the �at Lebesgue measure on D,

λ = UNI(S2
1)× LEB(R+)× UNI(S2

1),

so that

dµ(u, h, v) =
e1−h

e− 1
1{0 ≤ h < 1}dλ(u, h, v).

For r > 0 we de�ne the dilation map Dr : D→ D as

Dr(u, h, v) = (u, rh, v),

and note that

Âr = DrÂ1 Ãr = DrÃ1.

In the forthcoming steps all events in Âr and Ãr will be mapped by the inverse dilation D−1
r = Dr−1

into Â1, respectively, Ã1. Therefore, in order to simplify notation we will use Â := Â1 and Ã := Ã1.

The dilation Dr transforms the measures µ as follows. Given an event E ⊂ D,

µ(DrE) =

∫
DrE

e1−h

e− 1
1{0 ≤ h ≤ 1}dλ(u, h, v) = r

∫
E

e1−rh

e− 1
1{0 ≤ h ≤ r−1}dλ(u, h, v), (3.6.21)

and hence, for any event E ⊂ D and any h̄ <∞

e1−rh̄

e− 1
rλ(E ∩ {h ≤ h̄}) ≤ µ(DrE) ≤ e

e− 1
rλ(E). (3.6.22)

The following simple observation is of paramount importance in the forthcoming arguments:

Proposition 3.6.3. In dimension 3 (and more)

λ(Â) = λ(Ã) <∞. (3.6.23)

Proof of Proposition 3.6.3. Note that, by some simple geometric inspection,

Â ⊂ Â′ := {(u, h, v) ∈ D : ∠(−e, u) ≤ 2h−1},
Ã ⊂ Ã′ := {(u, h, v) ∈ D : ∠(−u, v) ≤ 2h−1}.

Since, in dimension 3,

∣∣{(u, v) ∈ S2 × S2 : ∠(−e, u) < 2h−1}
∣∣ =∣∣{(u, v) ∈ S2 × S2 : ∠(−u, v) < 2h−1}
∣∣ ≤ C min{h−2, 1},

the claim follows by integrating over h ∈ R+.

Remark: In 2-dimension, the corresponding sets Â, Ã have in�nite Lebesgue measure and, therefore,

a similar proof would fail.
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Due to (3.6.23) in 3-dimensions the following conditional probability measures make sense

λÂ(·) = λ(·
∣∣Â) :=

λ(· ∩ Â)

λ(Â)
, λÃ(·) = λ(·

∣∣Ã) :=
λ(· ∩ Ã)

λ(Ã)
,

and, moreover, due to (3.6.22) and (3.6.23), for any event E ∈ D

lim
r→0

µ(DrE | Âr) = λÂ(E), lim
r→0

µ(DrE | Ãr) = λÃ(E),

In a technical sense, we will only use the upper bound in (3.6.22), and (3.6.23).

In view of the upper bound in (3.6.22), in order to prove (3.6.14), (3.6.15) and (3.6.16) we need, in

turn,

λ
(

(u, h, v) ∈ Â : ∠(−e, ŵ) ≤ s
)
≤ C min{s, 1}, (3.6.24)

λ
(

(u, h, v) ∈ Ã : ∠(−e, w̃) ≤ s
)
≤ C min{s(|log s| ∨ 1), 1}, (3.6.25)

λ
(

(u, h, v) ∈ Ã : β̃ > s
)
≤ C min{s−1(|log s| ∨ 1), 1}. (3.6.26)

Here, and in the rest of this section, we use the simpli�ed notation ŵ := ŵ1, w̃ := w̃1, β̃ := β̃1.

Proof of (3.6.24)

Proof. This is straightforward. Recall (3.6.12): ŵ(u, h, v) = u. For easing notation let

ϑ := ∠(−e, u)

and note that for any t ∈ R+ ∣∣{u ∈ S2
1 : 0 ≤ ϑ ≤ t}

∣∣ ≤ C min{t2, 1},

with some explicit C <∞.

Then,

λ
(

(u, h, v) ∈ Â : ∠(−e, ŵ)) ≤ s
)
≤ λ

(
(u, h, v) ∈ Â′ : ϑ ≤ s

)
≤ λ

(
(u, h, v) ∈ D : ϑ ≤ min{s, 2h−1}

)
= λ

(
(u, h, v) ∈ D : {h ≤ 2s−1} ∩ {ϑ ≤ s}

)
+ λ

(
(u, h, v) ∈ D : {h ≥ 2s−1} ∩ {ϑ ≤ 2h−1}

)
≤ Cs.

Proof of (3.6.25) and (3.6.26)

Figure 3 aides in understanding this subsection.

Let a and b be the vectors in R3 pointing from the origin to the centre of the spherical scatterers

of radius 1, on which the �rst, respectively, the second collisions occur:

a =
e− u
|e− u| , b = hu+

u− v
|u− v| ,
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Figure 3.3: Above we show a 3 dimensional example of the geometric labelling used in

this section. The Z trajectory enters with velocity e from beneath the relevant

plane (the dotted line represents motion below the plane). After which the particle

remains above the plane.

and n the unit vector orthogonal to the plane determined by a and b, pointing so, that e · n > 0:

n :=
a× b

|a| |b| sin(∠(a, b))
,

with

a× b = (h+
1

|u− v| )
1

|e− u| e× u−
1

|e− u| |u− v| e× v +
1

|e− u| |u− v| u× v, (3.6.27)

|a| = 1, h− 1 ≤ |b| ≤ h+ 1, 0 ≤ sin(∠(a, b)) ≤ 1. (3.6.28)

Assume there are altogether ν ≥ 3 collisions (which occur alternatively, on the �rst and second

scatterer) before escape. Let w0 = e and wj , 1 ≤ j ≤ ν, the outgoing velocity after the j-th scattering.

So, w1 = u,w2 = v, . . . , wν = w̃.

The proof of (3.6.25) and (3.6.26) relies on the following observations:

(a) The n-projection of the velocity of the moving particle does not decrease. More precisely, for

1 ≤ j ≤ ν, 0 ≤ wj−1 ·n ≤ wj ·n. This is due to the choice of the plane determined by the centres

of the two scatterers and the �rst impact point.

(b) Since e · n > 0 and wj · n > 0, for all 1 ≤ j ≤ ν we have ∠(−e, wj) > π
2 − ∠(n,wj).

(c) The trapping time β̃ is certainly not longer than the time the moving particle spends in the slab

{x ∈ R3 : 0 ≤ x · n ≤ 1}. In particular, it follows that

β̃ ≤ h+ |v · n|−1 ≤ |u · n|−1
= |e · n|−1

. (3.6.29)

Proof of (3.6.25). Without loss of generality we may assume s ≤ π
2 .

From the arguments (a) and (b) above it follows, in particular, that

∠(−e, w̃) = ∠(−e, wν) ≥ π

2
− ∠(n,wν) ≥ π

2
− ∠(n,w2) =

π

2
− ∠(n, v),
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and hence

λ
(

(u, h, v) ∈ Ã : ∠(−e, w̃) < s
)
≤ λ

(
(u, h, v) ∈ Ã′ : |n · w| < 2s

)
. (3.6.30)

Note that due to (3.6.27) and (3.6.28)

|v · n| ≥ 1

2
|v · (e× u)| ,

and thus

λ
(

(u, h, v) ∈ Ã′ : |v · n| < 2s
)
≤ λ

(
(u, h, v) ∈ Ã′ : |e · (u× v)| < 4s

)
. (3.6.31)

Next, if u and v are i.i.d. UNI(S2
1)-distributed then

w :=
u× v
|u× v| , and ϑ := |u× v| = sin(∠(u, v))

are independent and distributed as

w ∼ UNI(S2
1), ϑ ∼ 1{0≤t≤1}(1− t2)−1/2tdt.

Therefore,

λ
(

(u, h, v) ∈ Ã′ : |e · (u× v)| < 4s
)

=

∫ ∞
0

dh

∫
S2

dw

∫ min{2/h,1}

0

(1− t2)−1/2tdt1{|e · w| ≤ 4s

t
}

=

∫ ∞
0

dh

∫ min{2/h,1}

0

(1− t2)−1/2dtmin{4s, t}

≤ C min{s |log s| ∨ 1), 1}. (3.6.32)

The last step follows from explicit computations which we omit.

Finally, (3.6.30), (3.6.31) and (3.6.32) yield (3.6.25).

Proof of (3.6.26). We proceed with the �rst (sharper) bound in (3.6.29) (the second (weaker) bound

would yield only upper bound of order s−1/2 on the right hand side of (3.6.25)):

λ
(

(u, h, v) ∈ Ã : β̃ > s
)
≤ λ

(
(u, h, v) ∈ Ã′ : h >

s

2

)
+ λ

(
(u, h, v) ∈ Ã′ : |v · n| < 2

s

)
. (3.6.33)

Bounding the �rst term on the right hand side of (3.6.33) is straightforward:

λ
(

(u, h, v) ∈ Ã′ : h >
s

2

)
=

∫ ∞
s/2

∣∣{(u, v) ∈ S2
1 × S2

1 : ∠(−u, v) < 2h−1}
∣∣ dh

≤ C
∫ ∞
s/2

min{h−2, 1}dh ≤ C min{s−1, 1}. (3.6.34)

Concerning the second term on the right hand side of (3.6.33), this has exactly been done in the proof

of (3.6.25) above, ending in (3.6.32) � with the rôle of s and s−1 swapped.

(3.6.33), (3.6.34) and (3.6.32) yield (3.6.16).

3.6.6 Geometric Estimates Ctd: Proof of Corollary 3.6.2

We start with the following straightforward geometric fact.
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Lemma 3.6.4. Let e, w ∈ S2
1 and x ∈ R3. Then∣∣∣∣{t′ > 0 : min

t≥0
|x+ t′w + te| < s}

∣∣∣∣ =

∣∣∣∣{t′ > 0 : min
t≥0
|x+ tw + t′e| < s}

∣∣∣∣ ≤ 4s

∠(−e, w)
. (3.6.35)

Proof of Lemma 3.6.4. This is elementary 3-dimensional geometry. We omit the details.

Proof of (3.6.17) and (3.6.18). On {η̂k = 1}

min
τk−2≤t≤τk

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣ ≥ min

t≥0
|tuk−1 + ξk−2uk−2|

min
τk−3≤t≤τk−1

∣∣∣Z(k)(t)− Z(k)(τk)
∣∣∣ ≥ min{min

t≥0
|ξk−1uk−1 + tuk−2 + ξkuk−1| , ξk}.

(3.6.36)

The bounds in (3.6.17) and (3.6.18) follow from applying (3.6.35) and (3.6.14), bearing in mind that

the distribution density of ξk−2 and ξk is bounded. Since these are very similar we will only prove

(3.6.17) here.

P

(
{η̂k = 1} ∩ { min

τk−2≤t≤τk

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣ < s}

)
≤ P

(
{η̂k = 1} ∩ {min

t≥0
|tuk−1 + ξk−2uk−2| < s}

)
=

∫
Âr

P

(
ξ− ∈ {t′ : min

t≥0
|tu+ t′e| < s}

)
dµ(u, h, v)

≤ C
∫
Âr

min{ s

∠(−e, u)
, 1}dµ(u, h, v)

≤ Crs(|log s| ∨ 1).

In the �rst step we used (3.6.36). The second step follows from the representation (3.6.13). The third

step relies on (3.6.35) and on uniform boundedness of the distribution density of ξ− (which is either

EXP (1|1) or EXP (1|0), depending on the value of εk−2). Finally, the last calculation is based on

(3.6.14).

Proof of (3.6.19).

min
τk−2≤t≤τk

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣ (3.6.37)

= min

{
min

τk−2≤t≤τk−1+β̃

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣ , min
τk−1+β̃≤t≤τk

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣} .

Here, and in the rest of this proof, β̃ and w̃ denote the trapping time and escape direction of the

recollision sequence:

β̃ := max{s ≤ ξk : Ż(k)(τk−1 + s−) 6= Ż(k)(τk−1 + s+)} w̃ := Ż(k)(τk−1 + β̃+).

To bound the �rst expression on the right hand side of (3.6.37) we �rst observe that by the triangle

inequality

min
τk−2≤t≤τk−1+β̃

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣ ≥ ξk−2 − ξk−1 − 4r. (3.6.38)
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Applying the representation and bounds developed in sections 3.6.4, 3.6.5,

P

(
{η̂k = 0} ∩ {η̃k = 1} ∩ { min

τk−2≤t≤τk−1+β̃

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣ < s}

)
≤ P ({η̂k = 0} ∩ {η̃k = 1} ∩ {ξk−2 ≤ ξk−1 + 4r + s})

=

∫
Ãr

P (ξ− < h+ 4r + s) dµ(u, h, v)

≤ C
∫
Ãr

(min{h, 1}+ 4r + s)dµ(u, h, v)

≤ Cr2 + Crs+ Cr2 |log r| . (3.6.39)

In the �rst step we used (3.6.38). The second step follows from the representation (3.6.13). The third

step relies on on uniform boundedness of the distribution density of ξ− (which is either EXP (1|1) or

EXP (1|0), depending on the value of εk−2). Finally, the last step follows from explicit calculation,

using (3.6.22).

To bound the second term on the right hands side of (3.6.37) we proceed as in the proof of (3.6.17)

above. First note that

min
τk−1+β̃≤t≤τk

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣ ≥ min

0≤t

∣∣∣(Z(k)(τk−2)− Z(k)(τk−1 + β̃)) + tw̃ + ξk−2uk−2

∣∣∣ . (3.6.40)

Using in turn (3.6.40), (3.6.13), (3.6.35) and uniform boundedness of the distribution density of ξ−
(which is either EXP (1|1) or EXP (1|0), depending on the value of εk−2), and �nally (3.6.15), we

obtain:

P

(
{η̂k = 0} ∩ {η̃k = 1} ∩ min

τk−1+β̃≤t≤τk

∣∣∣Z(k)(t)− Z(k)(τk−3)
∣∣∣ < s

)

≤ P

(
{η̂k = 0} ∩ {η̃k = 1} ∩ {min

0≤t

∣∣∣(Z(k)(τk−2)− Z(k)(τk−1 + β̃)) + tw̃ + ξk−2uk−2

∣∣∣ < s}
)

=

∫
Ãr

P

(
ξ− ∈ {t′ : min

0≤t

∣∣∣Z̃r(β̃r) + tw̃r + t′e
∣∣∣ < s}

)
dµ(u, h, v)

≤ C
∫
Ãr

min{ s

∠(−e, w̃r)
, 1}dµ(u, h, v)

≤ Crs(|log s|2 ∨ 1). (3.6.41)

From (3.6.37), (3.6.39) and (3.6.41) we obtain (3.6.19).

Proof of (3.6.20). We proceed very similarly as in the proof of (3.6.19).

min
τk−3≤t≤τk−1+β̃

∣∣∣Z(k)(t)− Z(k)(τk)
∣∣∣ (3.6.42)

≥ min

{
min

τk−2≤t≤τk−1+β̃

∣∣∣Z(k)(t)− Z(k)(τk)
∣∣∣ , min
τk−3≤t≤τk−2

∣∣∣Z(k)(t)− Z(k)(τk)
∣∣∣} .

To bound the �rst expression on the right hand side of (3.6.42) we �rst observe that by the triangle

inequality

min
τk−2≤t≤τk−1+β̃

∣∣∣Z(k)(t)− Z(k)(τk)
∣∣∣ ≥ ξk − 2β̃ − 4r (3.6.43)

Using in turn (3.6.43), (3.6.13), (3.6.16) and explicit computation based on uniform boundedness of
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the distribution density of ξ+ (which is either EXP (1|1) or EXP (1|0), depending on the value of εk)

we write

P

(
{η̂k = 0} ∩ {η̃k = 1} ∩ { min

τk−2≤t≤τk−1+β̃

∣∣∣Z(k)(t)− Z(k)(τk)

∣∣∣ < s}
)

≤ P ({η̂k = 0} ∩ {η̃k = 1} ∩ {ξk < 8r + 2s}) + P
(
{η̂k = 0} ∩ {η̃k = 1} ∩ {ξk < 4β̃}

)
= P (ξ+ < 8r + 2s)µ(Ãr) + E

(
µ((u, h, v) ∈ Ãr : ξ+ ≤ 4β̃r)

)
≤ Cr(r + s) + CrE

(
min{

(
ξ+
2r

)−1(∣∣∣∣log
ξ+
2r

∣∣∣∣ ∨ 1

)
, 1}
)

≤ Cr2 + Crs+ Cr2 |log r|2 . (3.6.44)

The second term on the right hand side of (3.6.42) is bounded in a very similar way as the analogous

second term on the right hand side of (3.6.37), see (3.6.40)-(3.6.41). Without repeating these details

we state that

P

(
{η̂k = 0} ∩ {η̃k = 1} ∩ min

τk−2≤t≤τk−1

∣∣∣Z(k)(t)− Z(k)(τk)
∣∣∣ < s

)
≤ Crs |log s|2 . (3.6.45)

Eventually, from (3.6.42), (3.6.44) and (3.6.45) we obtain (3.6.20).

3.6.7 Proof of (3.6.3) � Concluded

Recall the events A
(k)
a,b , a, b ∈ {1, 2, 3} from the end of section 3.6.3.

The bounds (3.6.17), (3.6.18), respectively, (3.6.19), (3.6.20), with s = r, directly imply

P
(
{η̂k = 1} ∩A(k)

2,2

∣∣ ε) ≤ Cγr2 |log r| ,

P
(
{η̃k = 1} ∩ {η̂k = 0} ∩A(k)

2,2

∣∣ ε) ≤ Cγr2 |log r|2 .
(3.6.46)

It remains to prove

P
(
{η̂k = 1} ∩A(k)

b,2

∣∣ ε) ≤ Cγr2 |log r| ,

P
(
{η̃k = 1} ∩ {η̂k = 0} ∩A(k)

b,2

∣∣ ε) ≤ Cγr2 |log r|2 ,
b = 1, 3. (3.6.47)

Since the cases b = 1 and b = 3 are formally identical we will go through the steps of proof with b = 3

only. In order to do this we �rst de�ne the necessary occupation time measures (Green's functions).

For A ⊂ R3, de�ne the following occupation time measures for the last part of (3.6.8)

G(k)
ε (A) :=E

(
#{1 ≤ j ≤ γ − k : Y (τj) ∈ A}

∣∣ εk+j : 1 ≤ j ≤ γ − k
)

=E
(

#{k + 1 ≤ j ≤ γ : Z(k)(τj)− Z(k)(τk) ∈ A}
∣∣ ε ∩ {η̂k = 1}

)
=E

(
#{k + 1 ≤ j ≤ γ : Z(k)(τj)− Z(k)(τk) ∈ A}

∣∣ ε ∩ {η̃k = 1} ∩ {η̂k = 0}
)
,

H(k)
ε (A) :=E

(
|{0 ≤ t ≤ τγ−k : Y (t) ∈ A}|

∣∣ εk+j : 1 ≤ j ≤ γ − k
)

=E
(∣∣∣{τk ≤ t ≤ θ : Z(k)(t)− Z(k)(τk) ∈ A}

∣∣∣ ∣∣ ε ∩ {η̂k = 1}
)

=E
(∣∣∣{τk ≤ t ≤ θ : Z(k)(t)− Z(k)(τk) ∈ A}

∣∣∣ ∣∣ ε ∩ {η̃k = 1} ∩ {η̂k = 0}
)
.
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Similarly, de�ne the following occupation time measures for the middle part of (3.6.8)

Ĝ(k)
ε (A) := E

(
#{1 ≤ j ≤ 3 : Z(k)(τk−j)− Z(k)(τk) ∈ A} · η̂k

∣∣ ε)
Ĥ(k)
ε (A) := E

(∣∣∣{τk−3 ≤ t ≤ τk : Z(k)(t)− Z(k)(τk) ∈ A}
∣∣∣ · η̂k ∣∣ ε)

G̃(k)
ε (A) := E

(
#{1 ≤ j ≤ 3 : Z(k)(τk−j)− Z(k)(τk) ∈ A} · η̃k · (1− η̂k)

∣∣ ε)
H̃(k)
ε (A) := E

(∣∣∣{τk−3 ≤ t ≤ τk : Z(k)(t)− Z(k)(τk) ∈ A}
∣∣∣ · η̃k · (1− η̂k)

∣∣ ε) .
Using the independence of the middle and last parts in the decomposition (3.6.8), similarly as (3.3.2)

or (3.5.2), following bounds are obtained

P
(
{η̂k = 1} ∩A(k)

3,2

∣∣ ε) ≤ Cr−1

∫
R3

G(k)
ε (Bx,2r)Ĥ

(k)
ε (dx) + Cr−1

∫
R3

H(k)
ε (Bx,3r)Ĝ

(k)
ε (dx)

P
(
{η̃k = 1} ∩ {η̂k = 0} ∩A(k)

3,2

∣∣ ε) ≤
≤ Cr−1

∫
R3

G(k)
ε (Bx,2r)H̃

(k)
ε (dx) + Cr−1

∫
R3

H(k)
ε (Bx,3r)G̃

(k)
ε (dx).

(3.6.48)

Due to (3.3.8) of Lemma 3.3.2 by direct computations the following upper bounds hold

G(k)
ε (Bx,2r) ≤ CF (|x|), H(k)

ε (Bx,3r) ≤ CF (|x|), (3.6.49)

where C <∞ is an appropriately chosen constant and F : R+ → R,

F (u) := r1{0 ≤ u < r}+
r3

u2
1{r ≤ u < 1}+

r3

u
1{1 ≤ u <∞}.

On the other hand, from (3.6.17), (3.6.18), (3.6.19), (3.6.20) of Corollary 3.6.2 follows that

Ĝ(k)
ε (B0,s) ≤ Crs(|log s| ∨ 1), Ĥ(k)

ε (B0,s) ≤ Crs(|log s| ∨ 1),

G̃(k)
ε (B0,s) ≤ Crmax{s |log s|2 , r |log r|2} H̃(k)

ε (B0,s) ≤ Crmax{s |log s|2 , r |log r|2}.
(3.6.50)

Finally, we also have the global bounds

Ĝ(k)
ε (R3) = 3E

(
η̂k
∣∣ ε) ≤ Cr, Ĥ(k)

ε (R3) = E

η̂k · k∑
j=k−2

ξj
∣∣ ε
 ≤ Cr,

G̃(k)
ε (R3) = 3E

(
η̃k · (1− η̂k)

∣∣ ε) ≤ Cr, H̃(k)
ε (R3) = E

η̃k · (1− η̂k) ·
k∑

j=k−2

ξj
∣∣ ε
 ≤ Cr.

(3.6.51)

We will prove the upper bound (3.6.47) for the �rst term on the right hand side of the �rst line in

(3.6.48). The other four terms are done in very similar way.

First we split the integral as∫
R3

G(k)
ε (Bx,2r)Ĥ

(k)
ε (dx) =

∫
|x|<1

G(k)
ε (Bx,2r)Ĥ

(k)
ε (dx) +

∫
|x|≥1

G(k)
ε (Bx,2r)Ĥ

(k)
ε (dx) (3.6.52)

and note that due to (3.6.49) and (3.6.51) the second term on the right hand side is bounded as∫
|x|≥1

G(k)
ε (Bx,2r)Ĥ

(k)
ε (dx) ≤ Cr4. (3.6.53)
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To bound the �rst term on the right hand side of (3.6.52) we proceed as follows∫
|x|<1

G(k)
ε (Bx,2r)Ĥ

(k)
ε (dx) ≤ C

∫ 1

0

F (u)dĤ(k)
ε (B0,u)

= Cr3Ĥ(k)
ε (B0,1)− C

∫ 1

0

Ĥ(k)
ε (B0,u)F ′(u)du

≤ Cr4 + Cr4

∫ 1

r

u−2 |log u| du

≤ Cr4 + Cr3 |log r| . (3.6.54)

In the �rst step we have used (3.6.49). The second step is an integration by parts. In the third step

we use (3.6.50), (3.6.51) and the explicit form of the function F . The last step is explicit integration.

Finally, (3.6.52), (3.6.53), (3.6.54) and identical comoputations for the second term on the right

hand side of the �rst line in (3.6.48) yield the �rst inequality in (3.6.47). The second line of (3.6.47)

for b = 3 is proved in an identical way, which we omit to repeat. The cases b = 1 is done in a formally

identical way.

Finally, (3.6.3) follows from (3.6.10), (3.6.46) and (3.6.47).

3.7 Proof of Theorem 3.1.2 � Concluded

As in section 3.4.3 let $n = (γn; (ξn,j , un,j) : 1 ≤ j ≤ γn), n ≥ 1, be a sequence of i.i.d packs. Denote

θn, ((Yn(t), Zn(t)) : 0 ≤ t ≤ θn) the pair of Y and (forward) Z-processes constructed from them and

Y (t) =

νt∑
k=1

Y (θn) + Yνt+1({t}), Z(t) =

νt∑
k=1

Z(θn) + Zνt+1({t}).

Beside these two we now de�ne yet another auxiliary process t 7→ X (t) as follows:

(Xn(t) : 0 ≤ t ≤ θn) is the Lorentz exploration process constructed with data from

(Yn(t) : 0 ≤ t ≤ θn) and incoming velocity

un,0 =

u0 if n = 1,

Ẋn−1(θ−n−1) if n > 1.

Finally, from these legs concatenate

X (t) =

νt∑
k=1

X (θn) + Xνt+1({t}).

Note that the auxiliary process (X (t) : 0 ≤ t <∞) is not identical with the Lorentz exploration process

(X(t) : 0 ≤ t <∞), constructed with data from (Y (t) : 0 ≤ t ≤ ∞) and initial incoming velocity u0,

since the former one does not takes into account memory e�ects caused by earlier legs. However, based

on Propositions 3.4.1 and 3.4.2, we will prove that until time T = T (r) = o(r−2 |log r|−2
) the processes

t 7→ X(t), t 7→ X (t), and t 7→ Z(t) coincide with high probability.

For this, we de�ne the (discrete) stopping times

ρ := min{n : Xn(t) 6≡ Zn(t), 0 ≤ t ≤ θn}
σ := min{n : max{1

W̃n
,1
Ŵn

> 0} = 1},
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and note that by construction

inf{t : Z(t) 6= X(t)} ≥ Θmin{ρ,σ}−1.

Lemma 3.7.1. Let T = T (r) such that limr→∞ T (r) =∞ and limr→∞ r2 |log r|T (r) = 0. Then

lim
r→0

P
(
Θmin{ρ,σ}−1 < T

)
= 0. (3.7.1)

Lemma 3.7.2. Let T = T (r) such that limr→∞ T (r) = ∞ and limr→∞ r2T (r) = 0. Then for any

δ > 0

lim
r→0

P

(
max

0≤t≤T
|Y (t)− Z(t)| > δ

√
T

)
= 0. (3.7.2)

Remark: Actually, (3.7.2) holds under the much weaker condition limr→∞ r log log T = 0. This can

be achieved by applying the law of iterated logarithm rather than a weak law of large numbers type

of argument to bound max0≤t≤T |Y (t)− Z(t)| in the proof of Lemma 3.7.2, below. However, since the

condition of Lemma 3.7.1 can not be much relaxed, in the end we would not gain much with the extra

e�ort.

Proof of Lemma 3.7.1.

P
(
Θmin{ρ,σ}−1 < T

)
≤ P

(
ρ ≤ 2E (θ)

−1
T
)

+ P
(
σ ≤ 2E (θ)

−1
T
)

+ P

2E(θ)−1T∑
j=1

θj < T


≤ Cr2 |log r|T + Cr2T + Ce−cT , (3.7.3)

where C <∞ and c > 0. The �rst term on the right hand side of (3.7.3) is bounded by union bound

and (3.4.10) from Proposition 3.4.1. Likewise, the second term is bounded by union bound and (3.4.12)

of Propositions 3.4.2. In bounding the third term we use a large deviation upper bound for the sum of

independent θj-s.

Finally, (3.7.1) readily follows from (3.7.3).

Proof of Lemma 3.7.2. Note �rst that

max
0≤t≤T

|Y (t)− Z(t)| ≤
νT+1∑
j=1

ηjξj ,

with νT and ηj de�ned in (3.2.4), respectively, (3.2.7). Hence,

P

(
max

0≤t≤T
|Y (t)− Z(t)| > δ

√
T

)
≤ P

 2T∑
j=1

ηjξj > δ
√
T

+ P (νT > 2T )

≤ Cδ−1
√
Tr + e−cT , (3.7.4)

with C < ∞ and c > 0. The �rst term on the right hand side of (3.7.4) is bounded by Markov's

inequality and the straightforward bound

E (ηjξj) ≤ Cr.

The bound on the second term follows from a straightforward large deviation estimate on νT ∼ POI(T ).

Finally, (3.7.2) readily follows from (3.7.4).
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(3.1.8) is direct consequence of Lemmas 3.7.1 and 3.7.2 and this concludes the proof of Theorem

3.1.2.
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Chapter 4

Random Wind-Tree

� Joint with Bálint Tóth �

4.1 Introduction

In this chapter we return to the random wind-tree model discussed in Chapter 2 Section 2.3. That is,

we consider the motion of a point particle through an array of randomly placed, identically oriented

cubes in R3 [EE59]. In the previous chapter we showed that the random Lorentz gas satis�es an

invariance principle in a scaling limit intermediate between the kinetic and di�usive scalings. In this

chapter we will show that the wind-tree process satis�es a similar invariance principle in the same

intermediate regime. The proof follows the same strategy, and the central ideas are present in the

previous chapter (for completeness we will repeat some of the details). However there are two key

di�erences: in the Lorentz gas, after collision with a randomly placed scatterer (in 3 dimensions)

the velocity is redistributed independently of the initial velocity while for the wind-tree process the

velocities form a genuine Markov chain. On the other hand as the collisions are simpler in the wind-tree

setting the necessary geometric estimates follow with less e�ort.

Formally let P be a Poisson point process of intensity % > 0 in R3. Our results hold for general

dimension d ≥ 3, however to reduce notation we restrict to d = 3. In dimension d = 2 because of the

recurrence of the random walk the proof does not directly apply. Let Qr be a cube of side length r

oriented parallel with the axes and let P + Qr be an array of obstacles/scatterers. We consider the

trajectory of a point particle Xr,%(t) starting at the origin (Xr,%(0) = 0) with a �xed initial velocity

of unit length. The particle then �ies in straight lines, re�ecting elastically o� of the obstacles. In this

setting the origin is in (P +Qr)c with probability tending to 1, hence such a trajectory is well-de�ned

(see Chapter 2 Lemma 2.5.1).

A fundamental open problem for both the random wind-tree model and the random Lorentz gas is

to prove an invariance principle in the di�usive limit. That is, in the limit

Xr,%(Tt)√
T

, T →∞, (4.1.1)

does the scaled process converge weakly to a Wiener process? In this chapter we show that the wind-

tree process satis�es an invariance principle in the limit (4.1.1) if we simultaneously take the low-density

limit in a particular scaling limit.

4.1.1 Scaling and Main Result

Fix a probability vector p = (p1, p2, p3) with pi > 0 for all i, and let |p| =
√
p2

1 + p2
2 + p2

3. The

state-space of velocities for the wind-tree process is then
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Ω :=

{
v ∈ S2

1 : |vi| =
pi
|p|

}
(4.1.2)

Fix the initial velocity Ẋr,%(0+) ∈ Ω. We study the process t 7→ Xr,%(t) on [0, T ] in the joint Boltzmann-

Grad and di�usive scaling limit (as in the previous chapter):

r → 0 , r2%→ |p|−1
, T (r)→∞

t 7→ X(tT )√
T

,
(4.1.3)

note that |p|−1
is the cross-sectional area of the cube as viewed by the particle, and we have dropped

the dependence on r and % in the notation (thus Xr,%(t) = X(t)). With that, the main result of this

chapter is the following invariance principle:

Theorem 4.1.1. Consider the intermediate scaling limit (4.1.3) such that limr→0 T (r)r2 = 0 then

{
t 7→ T−1/2X(tT )

}
=⇒ {t 7→W (t)} (4.1.4)

as r → 0 in the averaged-quenched sense (with the initial velocity chosen from a �nite set). Where

W (t) is a Wiener process with covariance matrix M = diag(v2
1 , v

2
2 , v

2
3) in R3.

The proof follows from a joint construction of t 7→ X(t) and a second Markovian process which we

introduce in Section 4.2.2. In Section 4.2.4 we state and outline the proof of the main technical theorem

of the chapter (Theorem 4.2.2). Theorem 4.1.1 is then a straightforward corollary of that theorem.

Remark. For the Lorentz gas we proved the same theorem with the asymptotic constraint

limr→0 T (r)r2 |log r|2 = 0 (see Chapter 3 Theorem 3.1.2). The reasons for this logarithmic correction

are those collisions for which the angle between incoming and outgoing velocities is small. In the wind-

tree model the velocity of the point particle is restricted to a �xed discrete set, hence the log factor

can be removed.

4.2 Coupling Construction

4.2.1 State-Space and Notation

Returning now to the random wind-tree model, for the rest of the chapter we assume the initial velocity

is �xed to be v0 ∈ Ω. This will aid in the exposition but can be assumed without loss of generality,

since the time taken to reach this velocity is exponentially bounded.

At each collision one component of the velocity changes sign. Let ϑi : R3 → R3 be such that

ϑi(v)j = (−1)δi,jvj for j = 1, 2, 3. During a collision the probability P (v 7→ ϑi(v)) = pi. For any v ∈ Ω

let Ωv denote the set of accessible velocities after one collision starting from v, namely

Ωv = {w ∈ Ω : w = ϑi(v) for some 1 ≤ i ≤ 3}. (4.2.1)

Let mv denote the measure on Ωv which selects ϑi(v) with probability pi. Moreover, for v ∈ Ω and

w ∈ Ωv let B(v, w) be the face of the cube Qr such that a particle travelling with velocity v colliding

with that face would adopt the velocity w. Formally, for v ∈ Ω and w = ϑk(v)

B(v, w) =

{
b ∈ ∂Qr : bk = − vk

|vk|
r

}
. (4.2.2)
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4.2.2 Markovian Flight Process

Let {un}∞n=0 be a realisation of the following Markov chain on Ω: u1 = v0 and then for all i ≥ 1, ui+1

are independently selected from Ωui according to the measure mui . For later use let u0 ∈ Ωv0
. Let

{ξn}∞n=1 ∼ EXP (1) (4.2.3)

be i.i.d exponentially distributed �ight times and let

Yn :=

n∑
i=1

yi , yn := ξnun (4.2.4)

denote the discrete Markovian Flight Process. To de�ne the continuous process, for t ∈ R let

τn :=

n∑
i=1

ξi , νt := max{n : τn ≤ t} , {t} := t− τνt , (4.2.5)

that is τn are the scattering times, νt is the label of the most recent scattering, and {t} is the time

since the previous scattering, at time t. Now de�ne

Y (t) := Yνt + uνt+1{t} (4.2.6)

to be the (continuous) Markovian Flight Process. Note that the processes t 7→ Y (t) and {Yn}∞n=1 do

not depend on r.

For later use we introduce the following virtual scatterers:

Y ′k := Yk + βk , βk ∼ UNI(−B(uk, uk+1)) , k ≥ 0 (4.2.7)

SYn := {Y ′k ∈ R3, 0 ≤ k ≤ n} , n ≥ 0.

In words Y ′k is the position of a scatterer if it had caused the kth collision (of course Y is independent

of any scatterers, thus the term virtual). Note also that we assume there is a virtual collision at time

0, this has no e�ect on the de�nition of the model however will ease the notation. One di�erence with

the random Lorentz gas is that the position of a scatterer associated to a velocity jump is not uniquely

determined. Therefore we select from among the possible virtual scatterers uniformly.

For later use we introduce the sequence of indicators εj = 1{ξj < 1} and the corresponding

distributions EXP (1|1) := distrib(ξ|ε = 1) and similarly EXP (1|0) = distrib(ξ|ε = 0). We refer to

ε := (εj)j≥0 as the signature of the sequence (ξj)j≥0.

4.2.3 Joint Construction

Our goal for this section is to construct the physical wind-tree and Markovian processes on the same

probability space. We construct the wind-tree process as an exploration process: in that the process

explores its environment as time moves forward. For convenience for what follows we will also construct

a third auxiliary process, {t 7→ Z(t)}, coupled to the X and Y processes. The auxiliary process, which

we call either the forgetful or myopic process, is only used in Sections 4.4 - 4.6. Hence some readers

may wish to ignore it until later. Indeed if we only wanted to prove Theorem 4.1.1 for times of order

o(r−1) (we do this in Section 4.3) then this myopic process does not play a role and can be ignored.

The construction will proceed inductively on certain (as yet unspeci�ed) time intervals. To simplify

the explanation, �rst we will explain how the processes X and Z are constructed on a given time

interval, given certain random data. Then, we will explain how the random data is generated to enable
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the coupling to {t 7→ Y (t)} and we will explain on which time intervals these processes are de�ned.

Throughout the construction we label the velocity of Ẋ(t) =: V (t), Ẏ (t) =: U(t) and Ż(t) = W (t).

Building X on [τ̂n−1, τ̂n)

We label the intervals of construction of X by [τ̂n−1, τ̂n). In Subsection 4.2.3 we will make precise what

these τ̂ are.

To construct X on an interval [τ̂n−1, τ̂n), given a position X(τ̂n−1) = Xn−1 ∈ R3, a velocity

V (τ̂+
n−1) ∈ Ω and SXn−1 ⊂ Rn−1 ∪ {F} a �nite set of points (where F is a �ctitious point at in�nity

with infx∈R3 |x−F| =∞ which will aid in the exposition) perform the following steps:

Step 1: Mechanical �ight on SXn−1 in [τ̂n−1, τ̂n): The trajectory t 7→ X(t) on t ∈ [τ̂n−1, τ̂n) is de�ned

to be free motion, with initial position Xn−1 and velocity V (τ̂+
n−1), and with re�ective collisions

on Qr + SXn−1.

Step 2: Attempt Fresh Collision: Suppose, we are given a velocity ŵn+1 ∈ ΩV (τ̂−n ) and an impact

parameter β̂n ∈ −B(V (τ̂−n ), ŵn+1). Set

X ′′ := X(τ̂n) + β̂n (4.2.8)

Now

• If ∃0 < s ≤ τ̂n−1 : X(s) ∈ X ′′ +Qr then let X ′n := F, and V (τ̂+
n ) = V (τ̂−n ).

• If not, then X ′n := X ′′, and V (τ̂+
n ) = ŵn+1.

Now set SXn = SXn−1 ∪ {X ′n}.

We say: on the interval [τ̂n−1, τ̂n) the process {t 7→ X(t)} attempts a fresh collision at τ̂n with data

(ŵn+1, β̂n).

We will make precise the distributions of ŵn+1 and β̂n in the construction below. Note that if, given

a ŵn+1 and a β̂n, we build X on the interval [τ̂n−1, τ̂n) then, after the construction we have su�cient

information to build X on the interval [τ̂n, τ̂n+1) (provided we are given another pair ŵn+2, β̂n+1).

Building Z on [τ̃n−1, τ̃n)

We call the process {t 7→ Z(t)} forgetful in that the process only respects direct mismatches (see Figure

4.1 for a diagram). That is, recollisions with the immediately preceding scatterer, or shadowed events

where the scattering is shadowed by the immediately preceding path segment.

Suppose that we are given a time interval [τ̃n−1, τ̃n). Assume further, we are given a position

Z(τ̃n−1) = Zn−1, velocity W (τ̃+
n−1) ∈ Ω, and a pair SZn−1 = {Z ′n−1, Z

′
n−2} ⊂ R3 ∪ {F}.

Step 1: Mechanical �ight on SZn−1 in [τ̃n−1, τ̃n): The trajectory t 7→ Z(t) on t ∈ [τ̃n−1, τ̃n) is de�ned to

be free motion starting at position Z(τ̃n−1) and with velocity W (τ̃+
n−1) with re�ective collisions

on Qr + SZn−1.

Step 2: Attempt Fresh Collision: Suppose that we are given a velocity w̃n+1 ∈ ΩW (τ̃−n ) and an impact

parameter β̃n ∈ −B(W (τ̃−n ), w̃n+1). Set

Z ′′ := Z(τ̃n) + β̃n (4.2.9)

Now
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Direct Indirect

Recollision

Shadowed
Collision

Figure 4.1: In the above diagram we show examples of direct and indirect, recollisions

and shadowed events. In each case the path of the Markovian process is in dotted

line while the wind-tree process is in solid line. Additionally, virtual scatterers

are in dotted line while actual scatterers for the X process are in solid line.

• If there exists an s ∈ (τ̃n−2, τ̃n−1] : Z(s) ∈ Z ′′+Qr then let Z ′n := F, and W (τ̃+
n ) = W (τ̃−n ).

• If not, then Z ′n := Z ′′, and Z(τ̃+
n ) = w̃n+1.

Now set SZn = {Z ′n, Z ′n−1}.

Similarly we say that on the interval [τ̃n−1, τ̃n) the process {t 7→ Z(t)} attempts a fresh collision at

τ̃n with data (w̃n+1, β̃n).

Parity

Consider just the processes {t 7→ Y (t)} and {t 7→ X(t)}, the idea behind the coupling is the following:

◦ X(0) = Y (0) and the velocities are initially parallel.

◦ X and Y then run parallel until one of two possible mismatches occurs:

◦◦ A recollision, which corresponds to a collision with a previously placed scatterer during Step

1: of Subsection 4.2.3.

◦◦ A shadowed collision, which corresponds to X ′n = F in Step 2: of Subsection 4.2.3.

◦ After a mismatch the two velocity processes proceed independently.

◦ When the two velocities happen to coincide we recouple the two processes and they run parallel

until the next mismatch.

However there is a problem with this setup as we have described it. Note that there are two parity

classes: (v, (ϑi(ϑj(v)))i 6=j) and (−v, (ϑi(v))i=1,2,3). The Markov process (un)n∈N alternates between

these two classes. The problem is that if there is a parity mismatch between V (t) and U(t) at a given

time, then as long as the two processes experience fresh collisions at the same times, only another

mismatch can restore the parity. This is too long to wait. Therefore we need to alter the sequence of

collision times to restore parity. For this we will make use of Lemma 4.2.1. For future use, we de�ne

the equivalence relation u
p∼ v if u and v are in the same parity class.

Lemma 4.2.1. Let (τj)j≥1 be the points of a Poisson point process of intensity 1 on R+. Form a new

sequence as follows: sample ξ′ ∼ EXP (1), independently of the sequence (τj)j≥1. Let the new sequence

(τ ′j)j≥1 be as follows:
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• If ξ′ < τ1 then τ ′1 = ξ′, and τ ′j = τj−1 for j ≥ 2.(That is: insert ξ′ < τ1 as the �rst point and

leave the rest as they are.)

• If ξ′ > τ1 then τ ′j = τj+1 for j ≥ 1. (That is: delete the �rst point τ1 and leave the rest as they

are.)

Proof. Consider the distribution of τ ′1

P (τ ′1 > t) = P (ξ > t, ξ < τ1) + P (τ2 > t, ξ > τ1)

= e−tP
(
τ1 > ξ

∣∣ ξ > t
)

+ P (ξ > τ1)P
(
τ2 > t

∣∣ ξ > τ1
)

where we have used the de�nition of conditional probability and the fact that ξ is exponentially distri-

bution. Now note that P
(
τ2 > t

∣∣ ξ > τ1
)

= P
(
ξ > t

∣∣ ξ > τ1
)
since τ2 and ξ are both exponentially

distributed conditioned to be larger that τ1. Therefore

P (τ ′1 > t) = e−tP
(
τ1 > ξ

∣∣ ξ > t
)

+ P (ξ > τ1)P
(
ξ > t

∣∣ ξ > τ1
)

= e−tP
(
τ1 > ξ

∣∣ ξ > t
)

+ e−tP
(
ξ > τ1

∣∣ ξ > t
)

= e−tP
(
τ1 > ξ

∣∣ ξ > t
)

+ e−t(1−P
(
τ1 > ξ

∣∣ ξ > t
)
)

= e−t.

Turning now to the distribution τ ′2 − τ ′1 (all the other increments are clearly i.i.d exponentially

distributed)

P (τ ′2 − τ ′1 > t) = P (τ1 − ξ > t, τ1 > ξ) + P (τ3 − τ2 > t, τ1 < ξ)

= e−tP (τ1 > ξ) + e−tP (τ1 < ξ) = e−t.

Finally, we look at the joint distribution

P (τ ′1 > t, τ ′2 − τ ′1 > s) = P (ξ > t, τ1 − ξ > s) + P (ξ > τ1, τ2 > t, τ3 − τ2 > s) .

By construction τ3 − τ2 is exponentially distributed and independent of τ1, τ2, ξ, thus

P (τ ′1 > t, τ ′2 − τ ′1 > s) = P (ξ > t, τ1 − ξ > s) + P (ξ > τ1, τ2 > t) e−s

= P
(
ξ > t, τ1 − ξ > s

∣∣ ξ < τ1
)
P (ξ < τ1) + P (ξ > τ1, τ2 > t) e−s.

Conditioned on ξ < τ1, τ1 − ξ is exponentially distributed independently of ξ. Thus

P (τ ′1 > t, τ ′2 − τ ′1 > s) = e−sP
(
ξ > t

∣∣ ξ < τ1
)
P (ξ < τ1) + P (ξ > τ1, τ2 > t) e−s

= e−sP (ξ > t, ξ < τ1) + P (ξ > τ1, τ2 > t) e−s

= e−sP (τ ′1 > t)

= e−se−t.
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Joint Coupling

Assume {t 7→ Y (t)} is constructed as in Subsection 4.2.2. We will construct the X and Z processes

inductively on the intervals [τ2n, τ2n+2) as follows: First set

X(0) = X0 = 0 , V (0+) = u1 , X ′0 = β̂0 = β0 , SX0 = {X ′0}
Z(0) = Z0 = 0 , W (0+) = u1 , W ′0 = β̃0 = β0 , SZ0 = {Z ′0, Z ′−1}

(4.2.10)

where Z ′−1 = F. Let n ∈ N and sample an exponential time ζn ∼ EXP (1) independent of the entire

history up to this point. In which case there are 7 possible situations arranged and labelled in the

following table:

Parity at time τ+
2n ζn ≤ ξ2n+1 ζn > ξ2n+1

U
p∼ V p∼W A

U 6 p∼ V p∼W B C

U
p∼ V 6 p∼W D E

U
p∼W 6 p∼ V F G

For completeness of the construction we de�ne all of these cases, however on our time scales we will

(w.h.p) only see situations A, B, and C.

On the interval [τ2n, τ2n+2) the X and Z processes attempt fresh collisions at the following times:

Situation X Z

A τ2n+1, τ2n+2 τ2n+1, τ2n+2

B τ2n + ζn, τ2n+1, τ2n+2 τ2n + ζn, τ2n+1, τ2n+2

C τ2n+2 τ2n+2

D τ2n+1, τ2n+2 τ2n + ζn, τ2n+1, τ2n+2

E τ2n+1, τ2n+2 τ2n+2

F τ2n + ζn, τ2n+1, τ2n+2 τ2n+1, τ2n+2

G τ2n+2 τ2n+1, τ2n+2

In what follows the following coupling rule will dictate the random variables β̂n, ŵn, β̃n, w̃n used

in the attempted fresh collisions.

For the Z-process: If the Z-process is to attempt a fresh collision at time ta, sample w̃ from ΩW (t−a )

according to the measure mW (t−a ) and sample β̃ from −B(W (t−a ), w̃) both independent of the past. We

now attempt to couple W with U at ta:

• Couple W to U : If W (t−a ) = U(t−a ) and ta = τn for some n, attempt a fresh collision at Z(ta)

using data (βn, un+1).

• W is independent of U : Otherwise attempt a fresh collision at Z(ta) using data (β̃, w̃).

For the X-process: If the X-process is to attempt a fresh collision at time ta, sample ŵ from ΩV (t−a )

according to the measure mV (t−a ) and sample β̂ from −B(V (t−a ), ŵ) both independent of the past. We

now couple V to either U and/or W if possible:

• Couple V to U : If V (t−a ) = U(t−a ) and ta = τn for some n attempt a fresh collision at X(ta)

using (βn, un+1).
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• Couple V to W : If V (t−a ) = W (t−a ) and the Z process also attempts a fresh collision independent

of U at time ta, attempt a fresh collision at X(ta) using (β̃, w̃).

• V is independent of U and W : Otherwise attempt a fresh collision at X(ta) using (β̂, ŵ).

After this construction we have generated two processes. For the wind-tree exploration process {t 7→
X(t)}, the attempted fresh collision times are {τ̂n}n∈N, by Lemma 4.2.1 these form a (temporal) Poisson

point process on R+; the scatterers are placed at positions {X ′n} ⊂ R3∪{F}; and the impact parameters

are {β̂n}n∈N. Moreover, the attempted velocities after collisions are {ŵn}n∈N, these velocities are

attempted since, in Step 2: the attempted collision may be rejected (i.e X ′n = F). Because of the

Poisson distribution of the scatterers in R3 this process is distributed like the original wind-tree model

as described in the introduction.

For the process {t 7→ Z(t)}, the attempted fresh collision times are {τ̃n}n∈N, which by Lemma 4.2.1

form a (temporal) Poisson point process on R+; the scatterers are placed at positions {Z ′n} ⊂ R3∪{F};
and the impact parameters are {β̃n}n∈N. The attempted velocities for the Z-process are {w̃n}n∈N.

4.2.4 Main Technical Result and Method Proof

The main result we prove is the following

Theorem 4.2.2. Let T = T (r) be such that limr→0 T (r) = ∞ and limr→0 r
2T (r) = 0. Then for any

δ > 0

lim
r→0

P

(
sup

0≤t≤T
|X(t)− Y (t)| > δ

√
T

)
= 0. (4.2.11)

From here Theorem 4.1.1 follows as a consequence of the classical Donsker's invariance principle

(Chapter 2 Theorem 2.5.2): that is, the process t 7→ Y (t) is a true Markov process, hence Donsker's

original invariance principle does not apply directly, however in what follows we will show how to

separate Y into i.i.d mean 0 pieces with �nite second moment. Thus Donsker's principle will imply

that t 7→ Y (tT )√
T

converges to a Wiener process in the di�usive scaling. Therefore the process t 7→ X(t)

does as well. We omit the details of this �nal step and the rest of the chapter is devoted to proving

Theorem 4.2.2.

The strategy of proof is the same as in Chapter 3. We begin with the joint realization of the Marko-

vian �ight process and the wind-tree exploration process described above. During the two mismatch

events (recollisions and shadowed scatterings) the two velocity processes diverge. In either case the two

processes are decoupled until recoupling is possible. At which point the two processes are recoupled

and proceed parallel to each other until the next mismatch.

The proof then follows two steps. In Section 4.3 we show that such mismatches occur only on time

scales of order r−1. Hence until such times both process are (w.h.p) in the the same position and

Theorem 4.2.2 follows immediately for T = o(r−1). Note that this intermediate result is a statement

about the Markovian �ight process. During the rest of the chapter we show that on time scales of order

o(r−2) only (geometrically) simple mismatches occur. During such mismatches the separation between

X and Y is of order O(1). Hence on the time scales of Theorem 4.2.2 there are o(Tr) mismatches.

During each mismatch the two processes separate by a distance of order O(1), hence up to T = o(r−2),
|X(T (r))−Y (T (r))|√

T
→ 0, thus proving (4.2.11). Sections 4.4-4.6 are devoted to formalizing this argument.

The reason for introducing the forgetful process {t 7→ Z(t)} is that the forgetful process will satisfy
additional independence properties exploited in the proof. Thus during the second stage of the prove,

we will in fact show that the forgetful and Markovian processes do not diverge too much. Then we

show that with high probability the wind-tree and forgetful processes are in fact the same on these

time scales (i.e we show that with probability tending to 1 as r → 0, the direct mismatches de�ning

the Z-process are the only ones seen by the X-process).
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Remark on dimension: As with the Lorentz gas, because of the recurrence of the random walk the

same proof does not yield the result in 2 dimensions. For the Lorentz gas the geometry of mismatches

imposed another reason that the proof cannot be extended to 2 dimensions. However for the wind-

tree model the mismatches have a far simpler geometry and thus this obstruction is not present in 2

dimensions.

4.2.5 r-consistency and r-compatibility

The proof will hinge on two de�nitions which we present now for a general process (i.e this could be a

segment of any of the above mentioned processes). Let

n ∈ N, τ0 ∈ R, Z0 ∈ R3, U0, . . . , Un+1 ∈ Ω t1, . . . , tn ∈ R+,

be given, such that either Ui+1 ∈ ΩUi or Ui+1 = Ui for all 0 ≤ i ≤ n. Moreover �x a set of vectors

βj ∈ B(Uj , Uj+1) (if Uj = Uj+1 we set βj = F) and de�ne for j = 0, . . . , n,

τj := τ0 +

j∑
k=1

tk, Zj := Z0 +

j∑
k=1

tkUk, Z ′j := Zj + βj

and for t ∈ [τj , τj+1], j = 0, . . . , n,

Z(t) := Zj + (t− τj)Uj+1.

We call the piece-wise linear trajectory
(
Z(t) : τ−0 < t < τ+

n

)
mechanically r-consistent if

6 ∃ t ∈ [τ0, τn], j ∈ {0, . . . , n} : Z(t)−Z ′j ∈ Qor (4.2.12)

(Qor denotes the interior) and r-inconsistent if (4.2.12) fails.
Given two �nite pieces of mechanically r-consistent trajectories

(
Za(t) : τ−a,0 < t < τ+

a,na

)
and(

Zb(t) : τ−b,0 < t < τ+
b,nb

)
, de�ned over non-overlapping time intervals: [τa,0, τa,na ]∩ [τb,0, τb,nb ] = ∅ with

τa,na ≤ τb,0, we will call them mechanically r-compatible if

6 ∃ t ∈ [τa,0, τa,na ], j ∈ {0, . . . nb} : Za(t)−Z ′b,j ∈ Qor,
and 6 ∃ t ∈ [τb,0, τb,nb ], j ∈ {0, . . . na} : Zb(t)−Z ′a,j ∈ Qor

(4.2.13)

mechanical trajectories are r-incompatible if (4.2.13) fails. Note that these de�nitions, while similar,

are not the same as those in Chapter 3 Section 3.2.3.

4.3 No Mismatches Till T = o(r−1)

4.3.1 Excursions

Unlike in the 3-dimensional Lorentz gas case the directions of path segments of the Markovian �ight

process are not independent. To decompose the process t 7→ Y (t) into i.i.d segments we introduce

excursions. Let

γ := min{i > 1 : ui+1 = v0} (4.3.1)

and de�ne a pack to be a collection
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$ := (γ; {ui}γi=1, {βi}γi=1, {ξi}γi=1) ,

uγ ∈ Ωv0
, and for all i > 1, ui 6= v0 and ui−1 ∈ Ωui . Given a pack we consider the process t 7→ Y (t)

associated to it via the rules set forth in Section 4.2.2 - call the process built from such a pack, an

excursion.

4.3.2 Concatenation

For n = 1, 2, 3, . . . consider in�nitely many independent packs:

$n = (γn, {un,i}γni=1, {βn,i}γni=1, {ξn,i}γni=1) .

For each pack de�ne the associated �ight process t 7→ Yn(t) together with the discrete process {Yn,i}γni=0.

Denote

θn :=

γn∑
i=1

ξn,i, Yn := Yn,γn .

De�ne the following variables

Γ0 = 0, Γn = Γn−1 + γn, for n ≥ 1

νn := max{m : Γn ≤ n}, {n} := n− Γνn .

Likewise

Θ0 = 0, Θn = Θn−1 + θn, for n ≥ 1

νt := max{m : Θn ≤ t}, {t} := t−Θνt .

Now de�ne the following three processes: the end-point process with Ξ0 = 0

Ξn :=

n∑
k=1

Yk,

the concatenated discrete Markovian �ight process with Y0 = 0

Yn := Ξνn + Yνn+1,{n},

and the continuous concatenated Markovian �ight process with Y (0) = 0

Y (t) := Ξνt + Yνt+1({t}).

The advantage of this decomposition is that the di�erent excursions making up the process Y are i.i.d

steps with exponentially decaying tails.

4.3.3 Occupation Measures

De�ne the following occupation measures for a set A ⊂ R3
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G(A) := E (|{1 ≤ k <∞ : Yk ∈ A}|) , H(A) := E (|{0 < t <∞ : Y (t) ∈ A}|) ,
g(A) := E (|{1 ≤ k ≤ γ1 : Yk ∈ A}|) , h(A) := E (|{0 < t < Θ1 : Y (t) ∈ A}|) ,
R(A) := E (|{1 ≤ k <∞ : Ξk ∈ A}|) .

Lemma 4.3.1. The following upper bounds hold for any measurable set A ⊂ R3

R(A) ≤ K(A) + Lv0(A), (4.3.2)

g(A) ≤M(A) + Lv0
(A), h(A) ≤M(A) + Lv0

(A), (4.3.3)

G(A) ≤ K(A) + Lv0
(A), H(A) ≤ K(A) + Lv0

(A), (4.3.4)

where

K(dx) := C min{1, |x|−1}dx , M(dx) := Ce−c|x|dx

Lv0
(A) := C

∫ ∞
0

1{tv0 ∈ A}e−ctdt

This Lemma is slightly di�erent from the Lorentz gas case as Lv0
takes into account the discrete

state-space of velocities. However the end result (Proposition 4.3.3) remains the same.

Proof. To bound g(A) let

g1(A) := P (Y1 ∈ A) = C

∫ ∞
0

1{tv0 ∈ A}e−tdt.

We have �xed the initial velocity to be u1 = v0, therefore the points {Yk − Y1}γ1

k=1 are independent of

the initial step Y1. Therefore write

g2(A) := E (|{1 ≤ k ≤ γ1 : Yk − Y1 ∈ A}|) ,

and note that

g(A) =

∫
R3

g2(A− x)g1(dx). (4.3.5)

Similarly we can write

h1(A) := E (|{t ≤ τ1 : Y (t) ∈ A}|) = C

∫ ∞
0

1{tv0 ∈ A}e−max{1,t}dt,

h2(A) := E (|{τ1 ≤ t ≤ Θ1 : Y (t)− Y1 ∈ A}|)

h(A) =

∫
R3

h2(A− x)g1(dx) + h1(A). (4.3.6)

Now the bounds (4.3.3) follow by inserting the bounds:

g2({x : |x| > s}) ≤ Ce−cs, h2 ({x : |x| > s}) ≤ Ce−cs

g2(R3) = E (γ1) <∞, h2(R3) = E (Θ1 − τ1) <∞
(4.3.7)
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into (4.3.5) and (4.3.6). That is,

g(A) ≤
∫
Ac
g2({y : |y| > |x|})dx+ C

∫
A

g1(dx) ≤M(A) + Lv0(A) (4.3.8)

and likewise for h(A).

Now, to achieve (4.3.2) note that since γ1 > 1

P (Ξ1 ∈ A) ≤ E (|{2 ≤ k ≤ γ1 : Yk ∈ A}|) ≤ g(A) (4.3.9)

Hence the density of distribution of Ξ1 is bounded by the density of g. Moreover, because P (θ1 > s) ≤
Ce−cs for some C < ∞ and c > 0, we know that the density of distribution of Ξ1 has exponentially

decaying tails. Therefore Ξ is a random walk, with i.i.d steps, and step distribution bounded by g with

exponentially decaying tails. Hence a standard random walk argument implies (4.3.2).

(4.3.4) then follows by writing (using the fact that the di�erent excursions are i.i.d)

G(A) = g(A) +

∫
R3

g(A− x)R(dx), H(A) = h(A) +

∫
R3

h(A− x)R(dx)

and inserting (4.3.2) and (4.3.3).

4.3.4 Inter-Excursion Mismatches

Let t → Y ∗(t) denote a Markovian �ight process with associated virtual scatterers Y ∗′ ∈ SY ∗ and

initial velocity u∗1 ∈ −Ωv0
. Let t→ Y (t) be a second Markovian �ight process with associated virtual

scatterers SY , and initial velocity v0.

We think of Y ∗ as the process run backwards in time. De�ne the events

Ŵj :=
{
{Y (t)− Y ′k : 0 < t < Θj−1, Γj−1 < k ≤ Γj} ∩ Qr 6= ∅

}
,

W̃j :=
{
{Y ′k − Y (t) : 0 ≤ k < Γj−1, Θj−1 < t < Θj} ∩ Qr 6= ∅

}
,

Ŵ ∗j :=
{
{Y ∗(t)− Y ′k : 0 < t < Θj−1, 0 < k ≤ γ} ∩ Qr 6= ∅

}
,

W̃ ∗j :=
{
{Y ∗′k − Y (t) : 0 < k ≤ Γj−1, 0 < t < θ} ∩ Qr 6= ∅

}
,

Ŵ ∗∞ :=
{
{Y ∗(t)− Y ′k : 0 < t <∞, 0 < k ≤ γ} ∩ Qr 6= ∅

}
,

W̃ ∗∞ :=
{
{Y ∗′k − Y (t) : 0 < k <∞, 0 < t < θ} ∩ Qr 6= ∅

}
.

In words Ŵj is the event that during the (j−1)th excursion, a collision of Y is (virtually) shadowed by

a previous excursion. And W̃j is the event that during the (j − 1)th excursion the process (virtually)

recollides with a scatterer from an earlier excursion.

It readily follows that

P
(
Ŵj

)
= P

(
Ŵ ∗j
)
≤ P

(
Ŵ ∗j+1

)
≤ P

(
Ŵ ∗∞

)
,

P
(
W̃j

)
= P

(
W̃ ∗j
)
≤ P

(
W̃ ∗j+1

)
≤ P

(
W̃ ∗∞

)
.

(4.3.10)

By the union bound
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P
(
Ŵ ∗∞

)
≤
∑
z∈Z3

P ({1 < k <∞ : Y ∗k ∈ Bzr,2r} 6= ∅)P ({0 < t ≤ θ : Y (t) ∈ Bzr,2r} 6= ∅)

≤
∑
z∈Z3

(2r)−1E (|{1 < k <∞ : Y ∗k ∈ Bzr,2r}|) ·E (|{0 < t ≤ θ : Y (t) ∈ Bzr,3r}|)

P
(
W̃ ∗∞

)
≤
∑
z∈Z3

P ({0 < t <∞ : Y ∗(t) ∈ Bzr,2r} 6= ∅)P ({1 ≤ j ≤ γ : Yj ∈ Bzr,2r} 6= ∅)

≤
∑
z∈Z3

(2r)−1E (|{0 < t <∞ : Y ∗(t) ∈ Bzr,3r}|) ·E (|{1 ≤ j ≤ γ : Yj ∈ Bzr,2r}|)

(4.3.11)

4.3.5 Computations

(4.3.11) implies that

P
(
W̃ ∗∞

)
≤ (2r)−1

∑
z∈Z3

H∗(Bzr,3r)g(Bzr,2r)

P
(
Ŵ ∗∞

)
≤ (2r)−1

∑
z∈Z3

G∗(Bzr,3r)h(Bzr,2r).
(4.3.12)

where G∗ is de�ned like G, except that in this instance the initial velocity is chosen from −Ωv0
rather

than �xed to be v0.

Lemma 4.3.2. The following bounds hold for some C <∞ and any v ∈ Ω

∑
z∈Z3

K(Bzr,3r)M(Bzr,2r) ≤ Cr3,
∑
z∈Z3

Lv(Bzr,3r)M(Bzr,2r) ≤ Cr3

∑
z∈Z3

K(Bzr,3r)Lv(Bzr,2r) ≤ Cr3,
∑
z∈Z3

Lv(Bzr,3r)Lw(Bzr,2r) ≤ Cr2.

for v 6= w ∈ Ω

Proof. The following bounds follow immediately from the de�nitions of K,M, and Lv

K(Bzr,3r) ≤ Cr3,

M(Bzr,3r) ≤ Cr3e−cr|z|,

Lv(Bzr,3r) ≤ Cr3δ0,z + Cr1{∃t > 0 : vt ∩Bzr,3r}(1− δ0,z)e−cr|z|.
(4.3.13)

From here ∑
z∈Z3

K(Bzr,3r)M(Bzr,2r) ≤ Cr6
∑
z∈Z3

e−cr|z|

≤ Cr3

∫
R3

e−c|z|dz ≤ Cr3

where we use a Riemann integral to go from the �rst line to the second. Likewise
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∑
z∈Z3

K(Bzr,3r)Lv(Bzr,2r) ≤ Cr6 + Cr4
∑

z∈(Z3)∗

1{∃t > 0 : vt ∩Bzr,3r}e−cr|z|

≤ Cr6 + C ′r4
∞∑
z=1

e−cr|vz|

≤ Cr6 + Cr3

∫ ∞
0

e−c|vt|dt ≤ Cr3

(4.3.14)

where from the �rst line to the second we approximate the points zr ∈ rZ3 close to the line vt by the

points rvz for z ∈ Z.
Similarly

∑
z∈Z3

Lv(Bzr,3r)M(Bzr,2r) ≤ Cr6 + Cr4
∑

z∈(Z3)∗

1{∃t > 0 : vt ∩Bzr,3r}e−2cr|z|

the bound then follows as it did in (4.3.14).

Finally,

∑
z∈Z3

Lv(Bzr,3r)Lw(Bzr,2r) ≤ Cr2
∑

z∈(Z3)∗

1{∃t > 0 : vt ∩Bzr,3r}1{∃t > 0 : wt ∩Bzr,3r}e−2cr|z|

≤ Cr2e−cr ≤ Cr2,

since v 6= w only �nitely many z ∈ Z contribute to the sum, from which the second line follows.

Note that Lemma 4.3.1 is stated for G and H and not G∗ and H∗. However similar bounds hold for

the backwards excursions. Thus (omitting these details), we use Lemma 4.3.1 to insert Lemma 4.3.2

into (4.3.12) to get:

Proposition 4.3.3. There exists a constant C > 0 such that for all j ≥ 1

P
(
Ŵj

)
≤ Cr, P

(
W̃j

)
≤ Cr. (4.3.15)

4.3.6 Mismatches within one Excursion

De�ne the following indicator functions

η̂j = η̂(yj−2, yj−1, yj) := 1

{
min

0≤t≤ξj−2

(tuj−2 + yj−1 + βj−1) ∈ Qr
}

η̃j = η̃(yj−2, yj−1, yj) := 1

{
min

0≤t≤ξj
(yj−1 + tuj − βj−2) ∈ Qr

}
ηj := max{η̃j , η̂j}

(4.3.16)

In words, η̂j is the event that the (j − 1)-labelled collision is shadowed by the immediately preceding

path (i.e a direct shadowing event). And η̃j is the event that during the jth path segment there is a

recollision with the immediately preceding obstacle (i.e a direct recollision) - see the left hand side of

Figure 4.1.
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Lemma 4.3.4. For any i, j < γ with i 6= j there exists a C <∞ such that

E (ηj) ≤ Cr (4.3.17)

E (ηjηi) ≤ Cr2 (4.3.18)

(4.3.18) is not needed to prove the result for T = o(r−1) however will be used to prove Theorem 4.2.2.

Proof of Lemma 4.3.4. Suppose uj−2 = U . Then throughout the two subsequent collisions we know

for some i = 1, 2, 3 - (uj−1)i = (uj)i = Ui (i.e one coordinate of the velocity remains unchanged). Thus

to (directly) recollide with Y ′j−2 +Qr we require ξj−1 < Cr which implies (4.3.17). The same is true

for shadowing events, that is η̂j = 1 implies ξj−1 > Cr for some constant.

(4.3.18) follows for the same reason. Suppose i 6= j, then for ηjηi = 1, requires max{ξj−1, ξi−1} < Cr

for some constant. As these are independent exponentials (4.3.18) is immediate.

Lemma 4.3.4 controls the probability of a direct mismatch. However we also need to control indirect

mismatches. To that end de�ne

η̂oj := 1

{
min

0≤t≤τj−3

(
Y (t)− Y ′j−1

)
∈ Qr

}
η̃oj := 1

{
min

τj−1≤t≤τj

(
min

0≤k≤j−3
(Y (t)− Y ′k)

)
∈ Qr

}
ηoj := max{η̃oj , η̂oj}.

(4.3.19)

In words η̂oj is the indicator that an indirect (virtual) shadowing event occurs and η̃oj is the event an

indirect (virtual) recollision occurs. That is a mismatch which involves more than the immediately

preceding obstacle or path.

Lemma 4.3.5. For any 3 < j ≤ γ there exists a constant C > 0 such that

E
(
ηoj
)
≤ Cγ2r2 (4.3.20)

Proof of Lemma 4.3.5. Under time reversal Markovian �ight processes remain Markovian �ight process

while recollisions become shadowed events. Hence recollisions and shadowing events happen with the

same probability and thus we may restrict to proving the statement for recollisions.

By the union bound

E
(
η̃oj
)
≤
∑
k≤j−3

P

({
min

τj−1≤t≤τj
(Y (t)− Y ′k) ∈ Qr

})
. (4.3.21)

Write Ak = {minτj−1≤t≤τj (Y (t)− Y ′k) ∈ Qr} - the event there is a indirect recollision after k− 1 fresh

collisions. To have an indirect recollision, requires at least three distinct velocities along the path, thus

P (Ak) = P (Ak ∩ {∃i ∈ [k + 1, j − 2] : ui 6= uj , uj−1}) .

Moreover at each collision exactly one of the velocity coordinates changes sign. Hence we know uj

and uj−1 di�er by a sign change in one coordinate therefore the event in the right hand side of (4.3.6)

implies there is a third velocity which is linearly independent of uj and uj−1. Therefore

(4.3.6) = P (Ak ∩ {∃i ∈ [k + 1, j − 2] : ui, uj , uj−1 lin. ind.})
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Moreover note that if we �x i

Ak = { min
0≤t≤ξj

(ξiui + ξj−1uj−1 + tuj − si) ∈ Qr}

where

si =

j−2∑
l=k+1
l 6=i

ulξl.

Let Bi denote the event ui, uj−1, uj are linearly independent. In this case

P (Ak) ≤
j−2∑
i=k+1

P (Bi ∩ Ak)

≤
j−2∑
i=k+1

E

(
P

(
Bi ∩ { min

0≤t≤ξj
(ξiui + ξj−1uj−1 + tuj − si) ∈ Qr}

∣∣ si)) .
Lemma 4.3.6 (below) implies that the probability inside the expectation is bounded by Cr2. As

j − 2− k ≤ γ this implies

P (Ak) ≤ Cγr2.

Inserting this into (4.3.21) then implies (4.3.20).

Lemma 4.3.6. Suppose U1, U2, U3 ∈ Ω are linearly independent and ξ1, ξ2, ξ3 ∼ EXP (1) are i.i.d

exponentials. Then there exists a constant C <∞ such that for any s ∈ R3

P

(
min

0≤t≤ξ3
(U1ξ1 + U2ξ2 + U3t− s) ∈ Qr

)
≤ Cr2. (4.3.22)

Proof. We can assume

U1 = (ν1, ν2, ν3) , U2 = (−ν1, ν2, ν3) , U3 = (−ν1,−ν2, ν3)

in which case for any t ≤ ξ3

U1ξ1 + U2ξ2 + U3t = ((ξ1 − ξ2 − t)ν1, (ξ1 + ξ2 − t)ν2, (ξ1 + ξ2 + t)ν3). (4.3.23)

Therefore the event on the left hand side of (4.3.22) is the event that there exists a t ≤ ξ3 satisfying

the system of inequalities

s1 −
r

2
≤ (ξ1 − ξ2 − t)ν1 ≤ s1 −

r

2

s2 −
r

2
≤ (ξ1 + ξ2 − t)ν2 ≤ s2 −

r

2

s3 −
r

2
≤ (ξ1 + ξ2 + t)ν3 ≤ s3 −

r

2
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solving these equations, we �nd that regardless of t there exist c1, c2, C1, C2 such that

ξ1 ∈ [c1 − C1r, c1 + C1r], ξ2 ∈ [c2 − C2r, c2 + C2r]

since ξ1 and ξ2 are i.i.d exponentials (4.3.22) follows immediately.

4.4 Beyond the Naïve Coupling

In the following sections we extend the results of Section 4.3 to times on the order o(r−2). In order to

reduce the amount of notation we will use the same notation for the analogous objects and will give

the rede�nitions explicitly. Recall the de�nition of the process {t 7→ Z(t)} given in Subsection 4.2.3.

We will split the process {t 7→ Z(t)} into legs (similar to the excursions of the previous section).

4.4.1 Legs

Similar to Subsection 4.3.1 we split t 7→ Z(t) into legs. However to ensure that the di�erent legs are

independent we impose the restriction that each leg begins and ends with two path segments of length

greater than 1. Let ξ̃n = τ̃n − τ̃n−1 for all n ≥ 1. Let

γ := min{i > 1 : ξ̃i−1, ξ̃i, ξ̃i+1, ξ̃i+1 > 1 , w̃i+1 = w̃1 = v0}. (4.4.1)

Note that the condition on ξ̃i implies that γ ∈ {2} ∪ {5, . . . }. If we de�ne θ :=
∑γ
i=1 ξ̃i then

P (γ > s) ≤ Ce−cs, P (θ > s) ≤ Ce−cs. (4.4.2)

The de�nition of a pack is then similar to Subsection 4.3.1: a pack is a collection

$ :=
(
γ; {ξ̃i}γi=1, {β̃i}γi=1, {w̃i}γi=1

)
,

Given a pack we consider the process t 7→ Z(t) associated to it via the rules set forth in Subsection

4.2.3 and call such a segment a leg. Note that, in order to have a direct mismatch at step n requires

that ξ̃n−1 < Cr for some constant C <∞. Hence the beginning and end of a leg are Markovian steps.

Furthermore given a pack $ a backwards leg is de�ned to be

(θ;Z∗(t); 0 ≤ t ≤ θ)

where

Z∗(t) = Z(θ − t,$∗)− Z($∗)

(we use the notation Z(t,$) to denote the forward forgetful process built from the pack $) where

$∗ := (γ; {ξ̃γ−j}γ−1
j=0 , {β̃γ−j}γ−1

j=0 , {w̃γ−j}γ−1
j=0 )

As before denote

Z∗j := Z∗(τ̃j), 0 ≤ j ≤ γ, Z∗ = Z∗γ .

Note the processes t 7→ Z(t) and t 7→ Z∗(t) do not have the same distribution.
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4.4.2 Concatenation

Let $n =
(
γn; {ξ̃n,j}γnj=1{β̃n,j}γnj=1, {w̃n,j}γnj=1

)
, n ≥ 1, be a sequence of i.i.d packs and consider the

associated forwards legs (Zn(t) : 0 ≤ t ≤ θn), (Zn,j : 1 ≤ j ≤ γn) and backwards legs (Z∗n(t) : 0 ≤ t ≤
θn), (Z∗n,j : 1 ≤ j ≤ γn).

To construct the concatenated forward and backward processes t 7→ Z(t), t 7→ Z∗(t), 0 ≤ t < ∞,

de�ne for n ∈ Z+ and t ∈ R+

Γn :=

n∑
k=1

γk, νn := max{m : Γm ≤ n}, {n} := n− Γνn ,

Θn :=

n∑
k=1

θk, νt := max{m : Θm < t}, {t} := t−Θνt .

(4.4.3)

The concatenated (multi-leg) forward and backward Z-processes are

Ξn :=

n∑
k=1

Zk, Zn := Ξνn + Zνn+1,{n}, Z(t) := Ξνt + Zνt+1({t}),

Ξ∗n :=

n∑
k=1

Z
∗
k, Z∗n := Ξ∗νn + Z∗νn+1,{n}, Z∗(t) := Ξ∗νt + Z∗νt+1({t}).

(4.4.4)

4.4.3 Mismatches in a Leg

Let $ = (γ; {ξ̃j}γj=1, {β̃j}γj=1, {w̃j}γj=1) be a pack. Let u ∈ Ωv0 a velocity and β0 ∈ B(u, v0) an impact

parameter.

Let t 7→X (t) be the wind-tree process coupled to the pack $. That is, given the processes t 7→ Y (t)

and t 7→ Z(t) follow the rules in Subsection 4.2.3 until time τγ .

Consider the jointly realized triple ((Y (t),X (t), Z(t)) : 0− < t < θ+) - a Markovian �ight process,

a wind-tree exploration process and a forgetful process all coupled to $. The time interval 0− < t < θ+

indicates that the velocity immediately prior to the position at 0 is u, there is a collision with a scatterer

at β0, and at θ+ the velocity of Y and Z is w.

Proposition 4.4.1. There exists a C <∞ such that for all w ∈ Ω and u ∈ Ωw and β0 ∈ B(u,w)

P
(
X (t) 6≡ Z(t) : 0− < t < θ+

)
≤ r2. (4.4.5)

This proposition will be proved in Section 4.6.

4.4.4 Inter-Leg Mismatches

Consider a forgetful process t 7→ Z(t) built from legs. De�ne the following events

Ŵj :=
{
{Z(t)− Z ′k : 0 < t < Θj−1, Γj−1 < k ≤ Γj} ∩ Qr 6= ∅

}
,

W̃j :=
{
{Z ′k − Z(t) : 0 ≤ k < Γj−1, Θj−1 < t < Θj} ∩ Qr 6= ∅

}
,

(4.4.6)

i.e Ŵj is the event a collision during the jth leg is (virtually) shadowed by a path segment in a previous

leg. W̃j is the event that during the jth leg the process (virtually) collides with an obstacle placed

during a previous leg.

Proposition 4.4.2. There exists a C <∞ such that for all j ≥ 1,
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P
(
W̃j

)
≤ Cr2, P

(
Ŵj

)
≤ Cr2. (4.4.7)

The proof of this proposition is the content of Section 4.5.

4.5 Proof of Proposition 4.4.2

The proof of Proposition 4.4.2 follows the similar lines to that of Proposition 4.3.3. However as we

have rede�ned legs we shall go through the full proof. In this section we rede�ne the Green's functions

g, h,G, and H.

4.5.1 Occupation Measures

Let t 7→ Z(t) be a forward forgetful process with initial velocity v0 and t 7→ Z∗(t) a backward process

with initial velocity in Ω−w̃1
(distributed according to m−v0). De�ne the events

Ŵ ∗j :=
{
{Z∗(t)− Z ′k : 0 < t < Θj−1, 0 < k ≤ γ} ∩ Qr 6= ∅

}
,

W̃ ∗j :=
{
{Z∗′k − Z(t) : 0 < k ≤ Γj−1, 0 < t < θ} ∩ Qr 6= ∅

}
,

Ŵ ∗∞ :=
{
{Z∗(t)− Z ′k : 0 < t <∞, 0 < k ≤ γ} ∩ Qr 6= ∅

}
,

W̃ ∗∞ :=
{
{Z∗′k − Z(t) : 0 < k <∞, 0 < t < θ} ∩ Qr 6= ∅

}
.

The same calculation as (4.3.10), (4.3.11), and (4.3.12) implies

P
(
W̃j

)
≤ P

(
W̃ ∗∞

)
≤ (2r)−1

∑
z∈Z3

H∗(Bzr,3r)g(Bzr,2r),

P
(
Ŵj

)
≤ P

(
Ŵ ∗∞

)
≤ (2r)−1

∑
z∈Z3

G∗(Bzr,3r)h(Bzr,2r),
(4.5.1)

where the right hand side is in terms of the following Green's functions: for A ⊂ R3

g(A) := E (|{1 ≤ k ≤ γ : Zk ∈ A}|) , g∗(A) := E (|{1 ≤ k ≤ γ : Z∗k ∈ A}|) ,
h(A) := E (|{0 < t ≤ θ : Z(t) ∈ A}|) , h∗(A) := E (|{0 < t ≤ θ : Z∗(t) ∈ A}|) ,
R∗(A) := E (|{1 ≤ n <∞ : Ξ∗n ∈ A}|) ,
G∗(A) := E (|{1 ≤ k <∞ : Z∗k ∈ A}|) , H∗(A) := E (|{0 < t <∞ : Z∗(t) ∈ A}|) .

Note that

G∗(A) = g∗(A) +

∫
R3

g∗(A− x)R∗(dx),

H∗(A) = h∗(A) +

∫
R3

h∗(A− x)R∗(dx).

(4.5.2)

4.5.2 Bounds

Lemma 4.5.1. The following bounds hold for any Borel set A ⊂ R3
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g(A) ≤M(A) + L̃v0(A), g∗(A) ≤M(A) + L̃⊥v0
(A), (4.5.3)

h(A) ≤M(A) + Lv0
(A), h∗(A) ≤M(A) + L⊥v0

(A), (4.5.4)

R∗(A) ≤ K(A) + L̃⊥v0
(A), (4.5.5)

G∗(A) ≤ K(A) + L̃⊥v0
(A), H∗(A) ≤ K(A) + L⊥v0

(A), (4.5.6)

where K, Lv0
, and M are as de�ned in Lemma 4.3.1 and

L⊥v0
(A) := C

∑
w∈Ω−v0

∫ ∞
0

1{tw ∩A}e−ctdt,

L̃v0
(A) := C

∫ ∞
1

1{tv0 ∩A}e−ctdt, L̃⊥v0
(A) := C

∑
w∈Ω−v0

∫ ∞
1

1{tw ∩A}e−ctdt.

Proof. The proof of this Lemma follows the same lines as the proof of Lemma 4.3.1 however the legs

in this section are conditioned to have the �rst step longer than 1. (4.5.5) follows from the fact that

the steps of Ξ∗n are i.i.d with exponentially decaying tails and the density of each step is bounded by

g∗(dx).

To bound g(A) write:

g(A) =

∫
R3

g2(A− x)g1(dx),

g1(A) := P (Z1 ∈ A) = C

∫ ∞
1

1{tv0 ∈ A}e−tdt,

g2(A) := E (|{1 ≤ k ≤ γ1 : Zk − Z1 ∈ A}|) .

This follows since Zk − Z1 is independent of Z1 for every k ≥ 2. (4.5.3) then follows in the same way

as did (4.3.3) in Lemma 4.3.1 from the bounds

g2({x : |x| > s}) ≤ Ce−cs, g2(R3) = E (γ) <∞.

For g∗(A) write

g∗(A) = E (|{1 ≤ k ≤ γ1 : Z∗k ∈ A}|)
≤

∑
w∈Ω−v0

E
(
|{1 ≤ k ≤ γ1 : Z∗k ∈ A}|

∣∣ w̃∗1 = w
)

=:
∑

w∈Ω−v0

g∗w(A),

where w̃∗1 := Ż∗(0+). As for g(A) we now split

g∗w(A) =

∫
R3

g∗2,w(A− x)g∗1,w(dx)

g∗1,w(A) := P
(
Z∗1 ∈ A

∣∣ w̃∗1 = w
)

g∗2,w(A) := E
(
|{1 ≤ k ≤ γ1 : Zk − Z1 ∈ A}|

∣∣ w̃∗1 = w
)
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Our bound for g∗(A) now follows the same lines as for g(A). h∗(A) is very similar.

The bounds on G∗ and H∗ follow by inserting the bounds for g∗, h∗, R∗ into (4.5.2).

4.5.3 Computations

Lemma 4.5.2. The following bounds hold for some C <∞ and r small enough

∑
z∈Z3

L̃⊥v0
(Bzr,3r)Lv0

(Bzr,2r) = 0,
∑
z∈Z3

L⊥v0
(Bzr,3r)L̃v0

(Bzr,2r) = 0,

∑
z∈Z3

K(Bzr,3r)L̃v0(Bzr,2r) ≤ Cr3,
∑
z∈Z3

L̃⊥v0
(Bzr,3r)M(Bzr,2r) ≤ Cr3,

∑
z∈Z3

L⊥v0
(Bzr,3r)M(Bzr,2r) ≤ Cr3.

Proof. These bounds follow by observing

L̃v0
(Bzr,3r) ≤ C1{∃t ≥ 1 : Bzr,3r ∩ v0t}re−cr|z|,

L̃⊥v0
(Bzr,3r) ≤ C

∑
w∈Ω−v0

1{∃t ≥ 1 : Bzr,3r ∩ wt}re−cr|z|,

L⊥v0
(Bzr,3r) ≤ Cδ0,zr3 + C

∑
w∈Ω−v0

1{∃t ≥ 3r : Bzr,3r ∩ wt}re−cr|z|,

(4.5.7)

and (4.3.13). With that the �rst two bounds are trivial. The third bound follows from:

∑
z∈Z3

K(Bzr,3r)L̃v0(Bzr,2r) ≤ Cr6 + Cr4
∑

w∈Ω−v0

∑
z∈ (Z3)∗

1{∃t ≥ 3r : Bzr,3r ∩ wt}e−cr|z|

≤ Cr6 + Cr4
∑

w∈Ω−v0

∑
z∈Z∗

e−cr|vz| ≤ Cr3,

where in the last line we approximate the sum by an integral in the same way as we did in (4.3.14).

Note that by (4.5.7)

∑
z∈Z3

L̃⊥v0
(Bzr,3r)M(Bzr,2r) ≤

∑
z∈Z3

L⊥v0
(Bzr,3r)M(Bzr,2r).

Moreover by (4.3.13) and (4.5.7)

∑
z∈Z3

L⊥v0
(Bzr,3r)M(Bzr,2r) ≤ Cr6 + Cr4

∑
w∈Ω−v0

1{∃t ≥ 3r : Bzr,3r ∩ wt}e−2cr|z| ≤ Cr3.

Proposition 4.4.2. The proof of Proposition 4.4.2 follows by inserting the bounds in Lemma 4.5.1 into

(4.5.1) and then applying Lemma 4.5.2.
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4.6 Proof of Proposition 4.4.1

In the setting of Section 4.4.3 the proof of Proposition 4.4.1 will follow from considering the following

indicator functions

η̃j := 1

{
min

τ̃j−1<t<τ̃j

(
Z(t)− Z ′j−2

)
∈ Qr

}
η̂j := 1

{
min

τ̃j−3<t<τ̃j−2

(
Z(t)− Z(τ̃j−1)− β̃j−1

)
∈ Qr

}
ηj := max{η̃j , η̂j}

(4.6.1)

In particular, ηj is the probability of a mismatch for the Z-process in immediately before the jth leg.

It is important to note, the simple geometric fact (which follows simply from the fact that the collision

angles are bounded) that η∗j = 1 implies ξ̃j−1 < Cr for some constant C <∞. This fact will make the

geometric estimates vastly easier than for the Lorentz gas, where the equivalent statement is false.

The following statements will provide the proof of Proposition 4.4.1

P

{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {
γ∑
j=1

ηj > 1}

 ≤ Cr2, (4.6.2)

P

{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {
γ∑
j=1

= 0}

 ≤ Cr2, (4.6.3)

P

{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {
γ∑
j=1

= 1}

 ≤ Cr2. (4.6.4)

4.6.1 Proof of (4.6.2)

The simple geometric fact stated in the previous section implies

P

 γ∑
j=1

ηj > 1

 ≤ γ2

2
max

1≤j<k≤γ
P (ηjηk = 1) ≤ Cγ2r2.

(4.6.2) now follows from the exponential tail bounds (4.4.2).

4.6.2 Proof of (4.6.3)

On
{∑γ

j=1 ηj = 0
}
, the process {t 7→ Z(t)} is distributed like a Markovian �ight process. Hence the

event in (4.6.3) can be written

{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩


γ∑
j=1

ηj = 0

 = {∃ 3 ≤ j ≤ γ : ηoj = 1} ∩ {
γ∑
j=1

ηj = 0}

where ηoj is the indicator of an indirect mismatch, as de�ned in (4.3.19). Therefore using Lemma 4.3.5
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P

{X (t) 6≡ Z(t) : 0− ≤ t ≤ θ+} ∩ {
γ∑
j=1

ηj = 1}

 ≤ P
(
{∃ 3 ≤ j ≤ γ : ηoj = 1}

)
≤ γ max

3≤j≤γ
P
(
ηoj = 1

)
≤ Cγ3r2.

Thus (4.6.3) again follows from the exponential tail bounds (4.4.2).

4.6.3 Proof of (4.6.4)

Given a γ ∈ {2} ∪ {5, . . . }, a signature ε (recall the de�nition of a signature given at the end of

Subsection 4.2.2) compatible with the de�nition of a pack, and a �xed label 3 < k < γ. Let V1, V2 ∈ Ω

and let $ be a pack with signature ε and w̃k−2 = V1 and w̃k+1 = V2 (we assume V1 and V2 are

compatible with this de�nition).

• On 0− < t ≤ τ̃k−1 - Z(k)(t) = Y (t), conditioned such that w̃k−2 = V1.

• On τ̃k−1 < t ≤ τ̃k - Z(k)(t) is constructed like the Z-process, conditioned such that the �nal

velocity is w̃k ∈ ΩV2

• On τ̃k < t < τ̃γ - Z(k)(t) = Y (t) a Markovian �ight process starting at Z(k)(τ̃k), conditioned such

that w̃k+1 = V2.

On {ηj = δj,k : 1 ≤ j ≤ γ} - Z(k) is distributed like Z. The reason for conditioning on V1 and V2 is to

ensure the following three parts are independent:

(Z(k)(t) : 0− < t ≤ τ̃k−3) = (Y (t) : 0− < t ≤ τ̃k−3),

(Z(k)(τ̃k−3 + t)− Z(k)(τ̃k−3) : 0 ≤ t ≤ τ̃k − τ̃k−3),

(Z(k)(τ̃k + t)− Z(τ̃k) : 0 ≤ t < θ+ − τ̃k).

(4.6.5)

Let A
(k)
a,a, 1 ≤ a ≤ 3 be the event that the a-th part of the trajectory is r-inconsistent. For

1 ≤ a < b ≤ 3 we denote A
(k)
a,b the event that the a and b-th parts are r-incompatible. Therefore to

prove (4.6.4) we will bound

max
ε,k,V1,V2

P
(
{η̂k = 1} ∩A(k)

a,b

∣∣ ε, V1, V2

)
,

max
ε,k,V1,V2

P
(
{η̃k = 1} ∩ {η̂k = 0} ∩A(k)

a,b

∣∣ ε, V1, V2

)
,

a, b = 1, 2, 3. (4.6.6)

4.6.4 Bounds

First notice that A
(k)
1,1, A

(k)
3,3 and A

(k)
1,3 involve only Markovian segments hence the following estimates

follow readily from Lemmas 4.3.1, 4.3.2, 4.3.4, and 4.3.5:

max
ε,k,V1,V2

P
(
{η̂k = 1} ∩A(k)

a,b

∣∣ ε, V1, V2

)
≤ Cγ3r2,

max
ε,k,V1,V2

P
(
{η̃k = 1} ∩ {η̂k = 0} ∩A(k)

a,b

∣∣ ε, V1, V2

)
≤ Cγ3r2,

a, b = 1, 3. (4.6.7)
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Therefore there remain 6 bounds.

Note that during middle segment in (4.6.5) the velocity of Z(k)(t) is restricted to only three possible

velocities. Thus one component of the velocity remains unchanged throughout this segment. Therefore

the middle segment can only be r-inconsistent if two of the path segments are shorter than Cr for some

constant C <∞. Thus

P
(
{η̂k = 1} ∩A(k)

2,2

∣∣ ε, V1, V2

)
≤ Cr2,

P
(
{η̃k = 1} ∩ {η̂k = 0} ∩A(k)

2,2

∣∣ ε, V1, V2

)
≤ Cr2.

(4.6.8)

It remains to prove

P
(
{η̂k = 1} ∩A(k)

b,2

∣∣ ε, V1, V2

)
≤ Cγr2,

P
(
{η̃k = 1} ∩ {η̂k = 0} ∩A(k)

b,2

∣∣ ε, V1, V2

)
≤ Cγr2,

b = 1, 3. (4.6.9)

We will only prove (4.6.9) for b = 3 as the proof for b = 1 is the same. Given a set A ⊂ R3 de�ne the

following occupation measures for the third part of (4.6.5)

G(k)
ε (A) :=E

(
#{1 ≤ j ≤ γ − k : Z(k)(τ̃j+k)− Z(k)(τ̃k) ∈ A}

∣∣ εk+j : 1 ≤ j ≤ γ − k, V2

)
,

E
(

#{1 ≤ j ≤ γ − k : Ỹ (τ̃j) ∈ A}
∣∣ εk+j : 1 ≤ j ≤ γ − k, V2

)
,

H(k)
ε (A) :=E

(∣∣∣{τj ≤ θ : Z(k)(t)− Z(k)(τ̃k) ∈ A}
∣∣∣ ∣∣ εk+j : 1 ≤ j ≤ γ − k, V2

)
,

E
(∣∣∣{0 ≤ t ≤ τγ−k : Ỹ (t) ∈ A}

∣∣∣ ∣∣ εk+j : 1 ≤ j ≤ γ − k, V2

)
,

where t 7→ Ỹ (t) is a Markovian �ight process with initial velocity in ΩV2
. Similarly

Ĝ(k)
ε (A) := E

(
#{1 ≤ j ≤ 3 : Z(k)(τ̃k−j)− Z(k)(τ̃k) ∈ A} · η̂k

∣∣ ε, V1, V2

)
,

Ĥ(k)
ε (A) := E

(∣∣∣{τ̃k−3 ≤ t ≤ τ̃k : Z(k)(t)− Z(k)(τ̃k) ∈ A}
∣∣∣ · η̂k ∣∣ ε, V1, V2

)
,

G̃(k)
ε (A) := E

(
#{1 ≤ j ≤ 3 : Z(k)(τ̃k−j)− Z(k)(τ̃k) ∈ A} · η̃k · (1− η̂k)

∣∣ ε, V1, V2

)
,

H̃(k)
ε (A) := E

(∣∣∣{τ̃k−3 ≤ t ≤ τ̃k : Z(k)(t)− Z(k)(τ̃k) ∈ A}
∣∣∣ · η̃k · (1− η̂k)

∣∣ ε, V1, V2

)
.

As the middle and last parts in (4.6.5) are independent the following bounds apply

P
(
{η̂k = 1} ∩A(k)

3,2

∣∣ ε, V1, V2

)
≤ Cr−1

(∫
R3

G(k)
ε (Bx,2r)Ĥ

(k)
ε (dx) +

∫
R3

H(k)
ε (Bx,3r)Ĝ

(k)
ε (dx)

)
,

P
(
{η̃k = 1} ∩ {η̂k = 0} ∩A(k)

3,2

∣∣ ε, V1, V2

)
≤

≤ Cr−1

(∫
R3

G(k)
ε (Bx,2r)H̃

(k)
ε (dx) +

∫
R3

H(k)
ε (Bx,3r)G̃

(k)
ε (dx)

)
.

(4.6.10)

By (4.3.4) there exists a constant C <∞ such that
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G(k)
ε (Bx,2r) ≤ CF (x), H(k)

ε (Bx,2r) ≤ CF (x) (4.6.11)

where F : R3 → R+

F (x) = r{|x| ≤ r}+
r3

|x|2
{r < |x| ≤ 1}+

r3

|x| {|x| > 1}+ re−c|x|1{∃t > 0 : Bx,2r ∩ tV2}{|x| > r}.

For simplicity we will only treat the �rst term on the right hand side in the second line of (4.6.10) (this

is the most di�cult), the other terms can be dealt with similarly.

Since during the middle section of (4.6.5) one component of the velocity does not change sign we

can conclude

Ĝ(k)
ε (B0,s), G̃

(k)
ε (B0,s) ≤ Crs, Ĥ(k)

ε (B0,s), H̃
(k)
ε (B0,s) ≤ Crs, (4.6.12)

and

Ĝ(k)
ε (R3), G̃(k)

ε (R3) ≤ Cr, Ĥ(k)
ε (R3), H̃(k)

ε (R3) ≤ Cr. (4.6.13)

First note that by (4.6.12)

∫
|x|>r

re−c|x|1{∃t > 0 : Bx,2r ∩ tV2}H̃(k)
ε (dx) ≤ Cr2

∫
|x|>r

e−c|x|1{∃t > 0 : Bx,2r ∩ tV2}dx

≤ Cr4

∫
t>r

e−c|tV2|dt ≤ Cr4

and

∫
|x|>1

r3

|x|H̃
(k)
ε (Bx,2r) ≤ Cr4.

Finally let F̃ (u) = r{u ≤ r}+ r3

u2 {r < u ≤ 1}, then by applying integration by parts

∫
{|x|<1}

F̃ (|x|)H̃(k)
ε (dx) ≤ C

∫ 1

0

F̃ (u)dH̃(k)
ε (B0,u)

= Cr3H̃(k)
ε (B0,1)− C

∫ 1

0

H̃(k)
ε (B0,u)F̃ ′(u)du

≤ Cr4 + Cr4

∫ 1

r

u−2du

≤ Cr4 + Cr3.

(4.6.9) follows by inserting these bounds into (4.6.10).
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4.6.5 Proof of Theorem 4.2.2 - concluded

The proof of Theorem 4.2.2 now follows the same lines as Chapter 3 Section 3.7 repeated here for

completeness.

Let {t 7→ Y (t)} be a Markovian �ight process. Let {t 7→ Z(t)} be a coupled forgetful process.

We split {t 7→ Z(t)} into i.i.d legs (Zn(t) : 0 ≤ t ≤ θn), each associated to an i.i.d pack $n =(
γn; {ξ̃n,j}γj=1, {β̃n,j}γj=1, {w̃n,j}γj=1

)
. In addition, to each leg (Zn(t) : 0 ≤ t ≤ θn) we associate a

wind-tree process coupled to that leg (Xn(t) : 0 ≤ t ≤ θn). From these components we construct the

concatenated auxilliary process

X (t) =

νt∑
k=1

X (θn) + Xνt+1({t}). (4.6.14)

Note that t 7→ X (t) is not a physical process. Each leg is independent of the others. Finally let

t 7→ X(t) be the true wind-tree process, coupled to t 7→ Y (t) and t 7→ Z(t) as in Section 4.2.3.

We will use Propositions 4.4.1 and 4.4.2 to prove that until time T = T (r) = o(r−2) the processes

t 7→ X(t), t 7→ X (t), and t 7→ Z(t) coincide with high probability.

For this de�ne the (discrete) stopping times

ρ := min{n : Xn(t) 6≡ Zn(t), 0 ≤ t ≤ θn}
σ := min{n : max{1

W̃n
,1
Ŵn

> 0} = 1},

and note that by construction

inf{t : Z(t) 6= X(t)} ≥ Θmin{ρ,σ}−1.

Lemma 4.6.1. Let T = T (r) such that limr→∞ T (r) =∞ and limr→∞ r2T (r) = 0. Then

lim
r→0

P
(
Θmin{ρ,σ}−1 < T

)
= 0. (4.6.15)

Lemma 4.6.2. Let T = T (r) such that limr→∞ T (r) = ∞ and limr→∞ r2T (r) = 0. Then for any

δ > 0

lim
r→0

P

(
max

0≤t≤T
|Y (t)− Z(t)| > δ

√
T

)
= 0. (4.6.16)

Proof of Lemma 4.6.1.

P
(
Θmin{ρ,σ}−1 < T

)
≤ P

(
ρ ≤ 2E (θ)

−1
T
)

+ P
(
σ ≤ 2E (θ)

−1
T
)

+ P

2E(θ)−1T∑
j=1

θj < T


≤ Cr2T + Cr2T + Ce−cT , (4.6.17)

where C <∞ and c > 0. The �rst term on the right hand side of (4.6.17) is bounded by union bound

and (4.4.5) from Proposition 4.4.1. Likewise the second term is bounded by union bound Proposition

4.4.2. In bounding the third term we use a large deviation upper bound for the sum of independent

θj-s.

Finally (4.6.15) readily follows from (4.6.17).
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Proof of Lemma 4.6.2. Note �rst that

max
0≤t≤T

|Y (t)− Z(t)| ≤
νT+1∑
j=1

ηj

γν′
j∑

i=j

ξi

 ,

with νT and ηj de�ned in (4.2.5), respectively, (4.3.16) and ν′j is νj from (4.4.3) (the label of the leg

containing j). Hence,

P

(
max

0≤t≤T
|Y (t)− Z(t)| > δ

√
T

)
≤ P

 2T∑
j=1

ηj

γν′
j∑

i=j

ξi

 > δ
√
T

+ P (νT > 2T )

≤ Cδ−1
√
Tr + e−cT , (4.6.18)

with C < ∞ and c > 0. The �rst term on the right hand side of (4.6.18) is bounded by Markov's

inequality and the bound

E

ηj
γν′

j∑
i=j

ξi

 ≤ Cr.
To see this recall the exponential tail bound for γ (4.4.2). The bound on the second term follows from

a straightforward large deviation estimate on νT ∼ POI(T ).

Finally (4.6.16) readily follows from (4.6.18).

(4.2.11) is a direct consequence of Lemmas 4.6.1 and 4.6.2 and this concludes the proof of Theorem

4.2.2.
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Part II

Statistics of Hyperbolic Orbits
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Chapter 5

Hyperbolic Geometry

5.1 Hyperbolic Half-Plane

Herein we will give a broad overview of the background necessary to read Chapters 6 and 7. For

an excellent reference we suggest the book [EW10, Chapter 9] or [BM00]. We do not prove all the

statements in this section as most are classical and can be found in those and other texts.

5.1.1 Setup

De�nition 5.1.1. Let

H = {z = x+ iy : y > 0} (5.1.1)

denote the hyperbolic half-plane, with boundary ∂H ' R ∪ {∞} endowed with the hyperbolic metric

ds2 =
dx2 + dy2

y2
. (5.1.2)

This hyperbolic metric induces an interesting non-Euclidean geometry. The real line at height y = 0

is in�nitely far away from a point in the interior and distances are stretched as one moves towards this

line. With this metric a pair of parallel lines will now always get in�nitely close when approaching the

point at in�nity. Moreover horizontal parallel lines meet in both directions at in�nity while all other

pairs meet at in�nity in one direction but diverge as they approach the real line.

At every point z ∈ H we consider the tangent space at z, Tz = {z} ×C - the set of velocity vectors

associated to the point z. Then denote T (H) = H× C, the full tangent space and let T 1(H) = H× S1
1

denote the unit tangent space: all the points in H together with the unit length velocity vectors.

Recall that an isometry is a distance preserving map of a space. Let

G := SL(2,R) :=

{(
a b

c d

)
: a, b, c, d ∈ R , ad− bc = 1

}
(5.1.3)

denote the special linear group and let

PSL(2,R) = SL(2,R)/{±I} (5.1.4)

denote the projective special linear group (where I denotes the identity). Both these groups act on the

half-plane via Möbius transformations: for z ∈ H (the closure of H) and g =
(
a b
c d

)
∈ G

gz =
az + b

cz + d
. (5.1.5)
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Proposition 5.1.1. The group PSL(2,R) is the group of orientation-preserving isometries of H. More-

over the volume measure dµ := dxdy
y2 is G-invariant.

The tangent space can then be represented T 1(H) ' PSL(2,R). That is for any two points w, z ∈
T 1(H) there exists some g ∈ PSL(2,R) such that gw = z. In what follows we will sometimes write

g for a point in T 1(H) in that case we are referring to the point gXi where Xi is the vector pointing

towards ∞ based at i. Moreover for u ∈ T 1(H) write π(u) for the projection to H.

5.1.2 Lattices

De�nition 5.1.2. Given a discrete subgroup Γ < SL(2,R), a fundamental domain for the Γ-action on

H is a subset F ⊂ H such that
⋃
γ∈Γ γF = H and for γ1 6= γ2 ∈ Γ, µ(γ1F ∩ γ2F).

A discrete subgroup Γ < G is a lattice if µ(F) <∞ for any fundamental domain of the Γ-action.

−1
2

1
2

i

Figure 5.1: A fundamental domain (shaded

region) for PSL(2,Z). The left and right

sides are glued together and the arc is

glued to itself.

In words the subgroup Γ is the symmetry

group of a tiling of H, each fundamental domain

is a tile in one of these tilings. If the fundamen-

tal domains for this action have �nite hyperbolic

area then Γ is a lattice.

As an example PSL(2,Z) is a lattice in

PSL(2,R). One fundamental domain for this

group is

{z ∈ H : |z| > 1, −1

2
≤ <(z) ≤ 1

2
},

see Figure 5.1. Note that this fundamental

domain (and thus all fundamental domains for

PSL(2,Z)) is not compact as it includes a cusp

at in�nity. However due to the hyperbolic met-

ric this region does have �nite area and thus

PSL(2,Z) is a lattice (although not a co-compact

lattice).

5.1.3 Geodesics and Horospheres

Using the hyperbolic metric the geodesics in H
(i.e the shortest path between two points) are

given by half-circles with centre on the boundary ∂H, therefore to every point in T 1(H) we asso-

ciate a geodesic. For u ∈ T 1(H) we denote the forward geodesic endpoint u+ and the backwards

geodesic endpoint u−. In addition to its geodesic we can also associate to u, contracting and expanding

manifolds:

H±(u) = {v ∈ T 1(H) : v∓ = u∓} (5.1.6)

(H+ denotes the expanding manifold). We say that the contracting/expanding horospheres are the

subset of these manifolds that form a ball containing πu. These horospheres are then tangent to ∂H
at u± (u+ for the contracting and u− for the expanding). See Figure 5.2. As such we can think of

horospheres in H or T 1(H).

There are several subgroups which will be useful later on. Denote
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H

u
Xi

∞

u− u+

Figure 5.2: On the left, we show the point u ∈ T 1(H). The black half-circle represents

the geodesic. The blue circle with arrows pointing inwards is the contracting

horosphere and the red circle the expanding horosphere. On the right we repeat this

diagram for the point Xi ∈ T 1(H). The dotted lines represent geodesics and show that

the points on the stable/unstable horospheres share the forwards/backwards geodesic

endpoints.

• K = StabG(i), hence H ∼= G/K.

• A =
{
at =

(
et/2 0

0 e−t/2

)
: t > 0

}
, the geodesic �ow.

• N− :=

{
n−(x) =

(
1 x

0 1

)
: x ∈ R

}
, the contracting horosphere for at.

• N+ :=

{
n+(x) =

(
1 0

x 1

)
: x ∈ R

}
, the expanding horosphere for at.

We have identi�ed points in G with points in T 1(H) via the map g 7→ gXi, we can also identify points

in G/K with points in H via the map g 7→ gi. If we consider a point gXi then multiplying gatXi

corresponds to a point a distance t further along the geodesic. gn−(x)Xi is a point a distance x along

the contracting horosphere and gn+(x)Xi is a point on the expanding horosphere.

5.1.4 Classifying Isometries

There are three di�erent ways in which elements of G act on H. Namely given a matrix M 6= I the

group element can be classi�ed as follows:

• Elliptic: If Tr(M) < 2 then M corresponds to a rotation about a point, thus M has one �xed

point in H.

• Parabolic: If Tr(M) = 2 then M has one degenerate �xed point on ∂H. For example n−(x)

and n+(x) are parabolic for all x.

• Hyperbolic: If Tr(M) > 2 thenM has two �xed points on ∂H, one attracting and one repelling.

For example at is hyperbolic for all t.

To see examples of each of these classi�cations see Figure 5.3.

Note that parabolic elements correspond to a �nite area cusp (for example the region in Figure 5.1

has a parabolic element at ∞) while hyperbolic elements correspond to in�nite area funnels.
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Elliptic Parabolic Hyperbolic

Figure 5.3: Above we show the three types of isometry of the half-plane. The elliptic

element corresponds to a fixed rotation around a point in H. For the parabolic each

region inside the circle is taken to its right neighbour. Likewise a hyperbolic

element shifts each region in the third diagram to the right.

5.1.5 Poincaré Disk

De�nition 5.1.3. Let D = {z ∈ C : |z| < 1} be the unit disk with metric

ds2 =
4(dx2 + dy2)

(1− |z|2)2
. (5.1.7)

We call this model the Poincaré disk.

Closely related to the upper half plane the Poincaré disk is another model of hyperbolic geometry

(for excellent sources on the di�erent hyperbolic models see [BV86] or [BKS91]). For example it can

be shown that geodesics are again circular arcs perpendicular to the boundary.

Given a matrix M =
(
a b
c d

)
∈ mat(C) we de�ne the same Möbius map

Mz =
az + b

cz + d
.

These Möbius maps can be shown to be conformal (angle preserving)

Proposition 5.1.2. The set of automorphisms of the Poincaré disk, Aut(D) is SU(1, 1) where

SU(1, 1) =

{(
a b

c d

)
∈ GL(2,C) : d = a, b = c, |a|2 − |b|2 = 1

}
,

where a denotes the complex conjugate.

To connect the Poincaré disk to the upper half-plane we note that the Cayley map

C : z 7→ z − i
z + i

(5.1.8)

is a conformal automorphism of H→ D.

5.2 Homogeneous Dynamics

A Euclidean lattice in Rd is de�ned to be the Z-span of d linearly independent vectors in Rd. If one

connects neighbouring points in this span the result is a tiling of Rd and the volume of each of these
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polyhedra is the covolume of the lattice. We denote the space of covolume 1, Euclidean lattices in Rd,
Ld. With that de�nition in mind it is clear that

Ld ∼= SL(d,R)/ SL(d,Z). (5.2.1)

Therefore dynamics on the space of lattices is equivalent to dynamics on the homogeneous space

SL(d,R)/SL(d,Z) - sometimes called the modular group.

The connection between the modular group and the space of lattices has many far-reaching appli-

cations, in particular to number theory. While it would be near impossible to give a full account of

these applications a few of these connections are highlighted below.

5.2.1 Diophantine Approximation

One area to which homogeneous dynamics has been applied is Diophantine approximation. Diophan-

tine approximation concerns the question of how 'well' an irrational number can be approximated by

rationals. For example

Theorem 5.2.1 (Dirichlet's Theorem (see [Kle01, Theorem 3.1]). For all α ∈ R and all R > 1 there

exists p ∈ Z and q ∈ N such that q < R and ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

Rq
. (5.2.2)

In words this theorem states that for any irrational there are in�nitely many good approximants. Start-

ing from here the �eld of Diophantine approximation seeks to re�ne these approximation properties.

The approximation properties of irrationals can be linked to the properties of particular orbits in

PSL(2,R)/PSL(2,Z). In particular a number α is called badly approximable if Dirichlet's theorem is

the best possible bound. Formally if there exists a c > 0 such that for all p ∈ Z and q ∈ N,∣∣∣∣α− p

q

∣∣∣∣ > c

q2
. (5.2.3)

On the other hand a number α is singular if for all ε > 0 there exists an R0 > 0 such that for all

R > R0 the inequality ∣∣∣∣x− p

q

∣∣∣∣ ≤ ε

qR
(5.2.4)

has in�nitely many solutions with p ∈ Z and q ∈ N with q ≤ R. If we let Λx = n+(x)Z2 then the

following theorem due to Dani is central to Diophantine Approximation (it can also be stated in higher

dimensions):

Theorem 5.2.2 (Dani's Theorem [Dan95]). Let x ∈ R:

1. If {Λxat}t≥0 is bounded then x is badly approximable.

2. If {Λxat}t≥0 is divergent (eventually leaves every compact set forever) then x is singular.

In addition to this connection there have been many advances in Diophantine approximation thanks

to homogeneous dynamics. We list a few examples here and direct the interested reader to the surveys

[Kle01, Mar02]:

• Given a non-increasing function ψ : Z+ → R+ a number α is ψ-approximable if

∣∣∣∣α− p

q

∣∣∣∣ < ψ(q)

|q| (5.2.5)
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for in�nitely many q and some p. Khintchin's theorem states that if
∑
q ψ(q) diverges then al-

most every real α is ψ approximable. One proof (albeit not the only one and not the simplest)

of this statement uses exponential mixing of the geodesic �ow on the space of lattices. There

are numerous re�nements of this statement (see [Kle01]). There have been numerous re�ne-

ments of Khintchin's theorem: recently Koukoulopoulos and Maynard [KM19] (using number

theoretic methods) proved the celebrated Du�n-Schae�er conjecture which allows one to remove

the condition that ψ be non-increasing.

• Another problem to which homogeneous dynamics has been applied is Littlewood's conjecture

which states that given α, β ∈ R

lim inf
n→∞

‖nα‖‖nβ‖ = 0, (5.2.6)

where ‖α‖ = minn∈Z |α− n| is the distance to the nearest integer. While this conjecture remains

open Einsiedler, Katok, and Lindenstrauss [EKL06], by classifying the invariant and ergodic

measures on SL(k,R)/ SL(k,Z) (where k ≥ 3) for a particular group were able to show that the

set of exceptions to Littlewood's conjecture has 0 Hausdor� dimension.

5.2.2 Continued Fractions

As it will be useful in Chapter 7 we note that there is a fascinating relationship between �ows on

the modular surface and continued fraction expansions of real numbers. This relationship is described

formally in great detail in [Ser85].

0 1 21
2

2
3

1
3

r

l

ξ

Figure 5.4: We show the image of the ideal

triangle (0, 1,∞) (the shaded region) by

the modular group. Moreover we show the

first few terms in the cutting sequence

for ξ which will be rlll...

Let ξ ∈ [0, 1] with continued fraction expan-

sion

ξ = [0; a1, a2, . . . ]

=
1

a1 + 1
a2+ 1

a3+

...

.

Moreover de�ne the Gauss map

T :[0; a1, a2, . . . ] 7→ [0; a2, . . . ]

ξ 7→
{

1

ξ

}
,

(5.2.7)

where {·} denotes the fractional part of a

number. Given the modular group SL(2,Z) con-

sider the image of the ideal triangle connecting

0, 1 and ∞ ∈ ∂H. In Figure 5.4 we show some of

the orbit of this ideal triangle by SL(2,Z). The

resulting tessellation is called the Farey tessella-

tion. Note that the cusps of the Farey tessellation

are exactly the image of 0 by the modular group and generate the rationals Q.
Now consider a geodesic, γ connecting (−∞, 0) to ξ ∈ (0, 1). This geodesic will cut each domain in

the Farey tessellation as it passes through. In doing so it will separate one of the three cusps from the

other two. We construct a sequence as follows: move along γ towards ξ and record whether the cusp
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which is separated is on the left or the right with an l or an r. This gives a sequence rn1 ln2rn3 . . . .

The cutting sequence for a number ξ is shown in Figure 5.4.

If the cutting sequence ends then ξ ∈ Q (i.e ξ lies at the end of a cusp) and we have the relation

ξ = [0;n1, n2, . . . , nk, 1]

and if the cutting sequence is in�nite then we have the relation

ξ = [0;n1, n2, . . . ].

Since the cutting sequence is unique to the number ξ, as is the continued fraction expansion, there is

a one-to-one correspondence between cutting sequences and continued fraction expansions.

The Gauss map represents a shift operator on the continued fraction expansion of ξ. Therefore it

can be translated into a sort of shift on the cutting sequence. Formally, Series [Ser85] showed that the

Gauss map is equivalent to the return time map for the geodesic �ow to a particular cross-section of

T1(H).

Now if we consider the Haar measure on T 1(H) ∼= H× S1
1 parameterised by

dµ(u) =
dxdy

y2
dθ.

We can identify a point u ∈ T 1(H) by its geodesic end points u−, u+ and the arc length along the

geodesic, t. Then the measure µ can be reparamaeterised

dµ(u) =
du+du−

|u+ − u−|2
dt

If we project this measure onto ∂H × ∂H we are left with du+du−

|u+−u−|2 . Now integrate the left end point

of [0, 1] and we are left with du+

u+(1+u+) a measure on (1,∞). Therefore, after changing variables and

normalising we end up with the measure on [0, 1]:

1

log 2

dβ

1 + β
(5.2.8)

which is the Gauss measure, - i.e invariant and ergodic for the Gauss map. Therefore what this train

of reasoning tells us is that the Gauss measure is a projection of the Haar measure onto one of its

geodesic endpoints. Moreover, the fact that this measure is ergodic and invariant for the Gauss map

is a consequence of the fact that the Haar measure is invariant and ergodic for the geodesic �ow.

Thus there is a deep connection between dynamics on the modular surface and continued fractions

and the symbolic dynamics resulting from the Gauss map.

5.2.3 Local-Statistics of Point Processes

The last area to which homogeneous dynamics has applications which we discuss in this introduction

is the study of local statistics of point processes.

Since the time of Mark Kac [Kac59] a fundamental question in modern probability theory is how
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to characterise independence or 'randomness'? Indeed when considering point processes there are a

number of ways to characterise independence. Firstly, we can ask if the sequence is uniformly distributed

with respect to a given measure. That is, does the proportion of points in a small set converge to the

measure of that set, as would be the case for independently distributed points?

While this is a very interesting question, it is sometimes too coarse a measure of independence.

One of the next questions typically asked is: what can be said about local statistics? That is, what

does the presence of points tell one about the likelihood of �nding another point nearby? Concretely

one example of local statistics is the gap distribution which measures the distribution of the distances

between neighbouring points. Thus one can ask if the local statistics (e.g gap distribution) of a sequence

converge to those of an independently distributed sequence.

Homogeneous dynamics is well equipped to tackle many examples of these questions, in particular

when the points are generated using some sort of periodic procedure. One example which we study

in Chapter 6 is the local-statistics of hyperbolic groups. Roughly speaking, the idea is to place an

observer in hyperbolic space or it's boundary and consider the orbit of another point by a discrete

subgroup. Then we can generate a point set by considering the direction of the orbit points as viewed

by the observer ordered by the distance from the observer. This is a fundamental way to study the

orbit of a group. Moreover if the group can be connected to another object in mathematics then it may

be possible to move from the local statistics of the group orbit to those of the object. We will return

to the relevant literature in Chapters 6 and 7 but for now su�ce it to say that the problem has been

extensively studied for lattices [BPZ14, KK15, RS17, MV18], for some thin groups [Zha17, Zha19] and

even for surfaces of variable curvature [Pol17]. In Chapter 6 we will study this problem for a wide class

of (possibly thin) groups.

Another example of such a system which is still very relevant to modern mathematics (although

not so much this thesis) is the system {α√n mod 1}n∈N. Elkies and McMullen [EM04] showed using

homogeneous dynamics methods (i.e equidistirbution of expanding horospherical subgroups) that if

α2 ∈ Q then these points obey a particular explicit limiting distribution, as do their gaps. It is

conjectured that for α2 irrational that these points are Poisson distributed.

As a last aside, characterising the limiting local-statistics is an important and interesting question

which is asked in numerous contexts. For example the famous Berry-Tabor conjecture [BT77] states

that for typical Riemannian surfaces, if the dynamics on the surface are integrable (i.e not chaotic), this

implies that the eigenvalues of the Laplacian have Poisson distributed gaps (and it is conjectured that

if the dynamics are chaotic then the gap distribution (typically) will be related to a random matrix

ensemble).

5.3 Thin Groups

Thin groups have become a hot topic recently owing in part to two major developments which have

made them signi�cantly more accessible. For some detailed references we suggest the survey articles

[Kon16, KLLR19], or the conference proceedings [BO14]. For what follows we will need to introduce a

small amount of algebraic geometry.

De�nition 5.3.1. An algebraic variety, over a �eld k is the common 0-set of a �nite collection of

polynomials over k. That is,

X := {x ∈ kn : Fi(x) = 0,∀1 ≤ i ≤ n} (5.3.1)

where Fi ∈ k[x1, . . . xn]. An algebraic group is a group which is also an algebraic variety.
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For example SL(n, ·) de�ned over a �eld k together with matrix multiplication is an algebraic group

where the polynomial preserved is the determinant minus 1. Note that given two polynomials f1 and

f2 de�ned over the same �eld, if we denote the varieties associated to each by V(f1) and V(f2) note

that

V(f1) ∩ V(f2) = V({f1, f2})
V(f1) ∪ V(f2) = V(f1 · f2).

Therefore varieties induce a topology on kn, where varieties form the closed sets. We call this topology

the Zariski Topology. Therefore we say a subgroup is Zariski dense if it does not belong to the 0-set

of any additional polynomials.

Given an algebraic group de�ned over Q, G, we say that a subgroup of G(Z) is an arithmetic group

if it has �nite index and we say a subgroup G(Z) is a thin group if it has in�nite index. This part of

the thesis is concerned with in�nite volume hyperbolic subgroups, a subset of which are thin. However,

since thin groups have been the source of a great deal of modern mathematical research lately we

highlight this application here by giving a brief explanation as to why thin groups have been promoted

from the side-lines of mathematical research.

In essence there are two reasons for which thin groups have become a hot topic recently: super-

strong approximation and Patterson-Sullivan theory. We discuss Patterson-Sullivan theory in Section

5.5 as it will be crucial to our results and proofs. However to illustrate the importance of thin groups

we will also brie�y discuss some of the applications of strong and super-strong approximation.

5.3.1 Strong and Super-Strong Approximation

For a detailed exposition on super-strong approximation we recommend the notes by Emmanuel Breuil-

lard [Bre14]. Strong approximation proved independently by [Nor87] and [Wei84] is the following

theorem, for simplicity we state it for SL(n,Z), however the result holds for all simply connected,

semi-simple algebraic groups de�ned over Q.

Theorem 5.3.1. [Strong-approximation for SL(n,Z) [Bre14]] Let Γ ≤ SL(n,Z) be a Zariski dense

subgroup. Then Γp (the reduction of Γ modulo p) is equal Γp = SL(2,Z/pZ) for all p large enough.

In 2008 Bourgain and Gamburd [BG08] established super-strong approximation for thin subgroups

Γ < SL(2,Z). In words their statement is the following, given a generating set for Γ, we consider the

reduction of these generators mod p. Super strong approximation is the statement that these gener-

ators '�ll out' SL(2,Z/pZ) rapidly (speci�cally the family of Cayley graphs associated to SL(2,Z/pZ)

is an expander family). Strong approximation has also been generalised (see [SGV12]).

The power of Strong approximation is that rather than study the properties of a thin group, one can

instead consider �nitely many reductions modulo primes. Super strong approximation is a statement

about the spectral gap of the Cayley graphs which can be translated into a statement about the mixing

properties of a random walk on the graph. Without entering into the details, it will su�ce to say that

this statement has been tremendously powerful in allowing mathematicians to approach thin groups.

Two frequently cited applications of strong and super-strong approximation are the a�ne sieve and

local-global principles.

While sieving techniques have been around for many years, the a�ne sieve is a new variation

developed by Bourgain, Gamburd and Sarnak [BGS11] and Salehi Golse�dy and Sarnak [SGS13]. The

idea is the following, given a suitable thin group Γ, the orbit of a point Γv, and a suitable function

f . The a�ne sieve is the statement that there is a constant R such that there exist in�nitely many
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R-almost primes (i.e integers with fewer than R prime factors) in f evaluated on the group orbit. As

an example the a�ne sieve has been applied to Apollonian circle packings [Oh14] and Pythagorean

triples [KO12].

A local-global principle states that given a sequence of numbers, every integer outside of �nitely

many congruence conditions appears in the sequence. Strong approximation has important applications

for proving local-global principles. As one example we note that strong approximation played a role in

Bourgain and Kontorovich's proof that Zaremba's conjecture holds, outside possibly a set of density 0

[BK14]. The conjecture states the following: For A ∈ N let

CA :=

{
p

q
= [0; a1, . . . an] : (p, q) = 1 & ai < A for all 1 ≤ i ≤ n

}
(5.3.2)

Then let DA := {q : p/q ∈ CA}. Zaremba's conjecture states that all su�ciently large natural numbers

belong to DA for some A > 1. Bourgain and Kontorovich showed that a set of asymptotic density 1 in

the natural numbers appears in D50 (this result was subsequently improved to D5 by Huang [Hua15]).

5.4 Higher Dimensional Hyperbolic Space

In the next sections we will discuss Patterson-Sullivan theory, however in Chapter 6 we will require

this theory in higher dimensions. Therefore to avoid repetition we will present the setup now for the

higher dimensional case.

Let

Hn := {(x1, . . . , xn, y) : y > 0}

with the hyperbolic metric

ds2 =
dx2

1 + · · ·+ dx2
n + dy2

y2
.

As in the two dimensional setting we consider the unit tangent space T 1(Hn).

For convenience we introduce the notion of Cli�ord numbers. This notation will be useful in

describing the isometry group G using an extension of complex numbers and quaternions to higher

dimensions and will help with some of the calculations. What follows is a condensed introduction to

the concept. For a more in-depth introduction we suggest the paper by Waterman [Wat93].

De�ne the Cli�ord Algebra, Cm to be the real associative algebra generated by i1, ..., im such that

i2j = −1 and ijik = −ikij for all k 6= j. Thus for all a ∈ Cm

a =
∑
I

aII (5.4.1)

where I ranges over the products of the ij and aI ∈ R. Cm forms a 2m-dimensional vector space over

R, which we endow with the norm |a|2 =
∑

I a
2
I .

Consider the following three involutions on Cm

• a 7→ a′ - replaces all il with −il for all l

• a 7→ a∗ - replaces all I = iν1
, ..., iνl with iνl , ..., iν1
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• a 7→ a := a′∗

De�ne Cli�ord vectors to be vectors x = x0 +x1i1 + ...+xmim with the corresponding vector space

denoted Vm (which we identify with Rm in the natural way). We write ∆m for the Cli�ord group, i.e

the group generated by non-zero Cli�ord vectors.

Furthermore we de�ne several matrix groups

GL(2, Cm) :=


(

a b

c d

)
:

a,b, c,d ∈ ∆m ∪ {0}
ab∗, cd∗, c∗a,d∗b ∈ Vm
ad∗ − bc∗ ∈ R \ {0}

 ,

SL(2, Cm) :=

{(
a b

c d

)
∈ GL(2, Cm) : ad∗ − bc∗ = 1

}
,

SU(2, Cm) :=

{(
a b

−b′ a′

)
∈ SL(2, Cm)

}
.

(5.4.2)

We can then represent hyperbolic half-space by

Hn = {x + iy : x ∈ Vn−1, y ∈ R>0} (5.4.3)

with i := in−1 (and with the usual hyperbolic metric on Hn). Moreover the action of SL(2, Cm) on Hn

de�ned via Möbius transformations

z 7→
(

a b

c d

)
z = (az + b)(cz + d)−1 (5.4.4)

is isometric and orientation-preserving. Therefore

G ∼= PSL(2, Cn−1) = SL(2, Cn−1)/{±1} (5.4.5)

is isomorphic to the group of orientation-preserving isometries of Hn. The boundary of Hn can be

identi�ed

∂Hn := Vn−1 ∪ {∞}. (5.4.6)

Now, as was done for the two dimensional case, consider a point i ∈ Hn, a vector based at that

point Xi ∈ T 1(Hn) and the following relevant subgroups:

• The stabiliser of i is given by

K ∼= PSU(2, Cn−1) = SU(2, Cn−2)/{±1}. (5.4.7)

Hence we identify Hn ∼= G/K.

• M := StabG(Xi), hence T
1(Hn) ∼= G/M . Thus M =

{(
a 0
0 (a−1)∗

)
: |a| = 1

}
.

• A := {ar : r ∈ R} - one-parameter subgroup in the centraliser ofM such that r 7→ arX is the unit

speed geodesic �ow for any X ∈ T 1(Hn). For X pointed in the vertical direction this subgroup is

given by the matrices
(
er/2 0

0 e−r/2

)
. For other vectors A is conjugate to this group.

• N+ := {n+ ∈ G : limt→∞ a−tn+at = I} - the expanding horocycle subgroup, thus N+ is conju-

gate to upper triangular matrices.
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• N− := {n− ∈ G : limt→∞ atn−a−t = I} - contracting horocycle subgroup (conjugate to lower

triangular matrices).

Note that N+ and N− are de�ned for the left ar action. Alternatively, given g ∈ G one can de�ne

the right ar action by right multiplication g 7→ gar. Thus a point u = guXi ∈ T 1(Hn) is sent to guarXi.

In this case N+ and N− are contracting and expanding respectively (i.e their roles are reversed).

Notation: In Chapter 6 we will work with Hn for general n ≥ 2. Therefore, in that chapter, we

will use the bold-face notation for points in Hn and T 1(Hn) which we established here. In Chapter 7

we only work in H therefore, in keeping with standard practice, we will not use this bold-face notation.

5.5 Measure Theory of In�nite Volume Manifolds

The homogeneous dynamics described in Section 5.2 is restricted to the �nite co-volume setting (and

thus does not apply, for example, to thin groups). This is because the Haar measure, which is the

invariant measure under the action of SL(d,R) has in�nite volume in the in�nite co-volume setting.

As a result many of the ergodic properties exploited in 'classical' homogeneous dynamics do not apply.

Fortunately in the 1970s, the measure theory needed to construct nice ergodic measures for in�nite

covolume subgroups was formulated.

In preparation for what follows we introduce the notion of Hausdor� dimension (however we remain

brief as we will not need many details). For an extensive treatment of this subject we suggest Falconer's

book [Fal05]. Given a set X, let U = {Ui}i ∈ I be an open cover of X (i.e X ∈ ⋃i∈I Ui). For ε, δ > 0

we de�ne the ε-Hausdor� measure of X to be

Hδ
ε := inf

U

{∑
i∈I

diam(Ui)
δ

}

where the in�mum is taken over all open covers U such that for all i, the diameter diam(Ui) ≤ ε. Now
we de�ne the Hausdor� measure to be the limit Hδ(X) := limε↓0Hδ

ε (X). With that the Hausdor�

dimension is

dimH(X) := inf{δ > 0 : Hδ(X) = 0}. (5.5.1)

For our purposes it su�ces to know that the Hausdor� is a measure of how large a set is. It coincides

with the standard de�nition of integer dimension. But also gives a measure to the size of fractal sets.

5.5.1 Patterson-Sullivan Theory

We now give an introduction to measure theory on in�nite volume hyperbolic manifolds. For a more

in-depth introduction in 2 dimensions we recommend the opening sections of the book by Borthwick

[Bor07] or the book [BKS91]. To begin with, let Γ be a discrete subgroup of G = Isom+(Hn).

For u ∈ T 1(Hn) de�ne the geodesic endpoints in terms of the right at action for u = guXi

u± = lim
t→±∞

guatXi. (5.5.2)

Let δΓ denote the critical (or Poincaré) exponent of the subgroup Γ. That is, for arbitrary x,y ∈ Hn
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δΓ := inf

s > 0 :
∑
γ∈Γ

e−sd(γx,y) <∞

 . (5.5.3)

Let L(Γ) denote the limit set of Γ (i.e the set of accumulation points of the orbit of any point in Hn,
say i). For the Γ we are considering L(Γ) ⊂ ∂Hn. Moreover it is well-known ([Sul79]) that δΓ is the

Hausdor� dimension of L(Γ).

In this thesis rather than work with general discrete subgroups we will work with geometrically

�nite, Zariski dense, non-elementary subgroups (which includes a large class of relevant thin groups,

as well as lattices). A group Γ is non-elementary if the limit set L(Γ) contains more than 2 points

(and thus is uncountable - see [BKS91]). Consider the set of geodesics connecting any two points in

L(Γ) together, the convex core of Γ is the projection to Γ\Hn of the minimal convex set containing

all these geodesics. A group Γ is geometrically �nite if the unit neighbourhood of the convex core has

�nite Riemannian volume. As noted in [OS13] any group admitting a �nite sided polyhedron as its

fundamental domain is geometrically �nite.

For ξ ∈ ∂Hn and x,y ∈ Hn denote the Busemann function, β : ∂Hn ×Hn ×Hn → R

βξ(x,y) = lim
t→∞

d(x, ξt)− d(y, ξt) (5.5.4)

where ξt lie on any geodesic ray such that as limt→∞ ξt = ξ (the limiting value is independent of the

choice of ray). In words βξ(x,y) is the signed geodesic distance between two horospheres each based

at ξ containing x and y respectively.

With that, let {µx : x ∈ Hn} denote a family of measures on ∂Hn. We call such a family a Γ-

invariant conformal density of dimension δµ > 0 if: for each x ∈ Hn, µx is a �nite Borel measure such

that

γ∗µx(·) := µx(γ−1(·)) = µγx(·)
dµx

dµy
(ξ) = eδµβξ(y,x),

(5.5.5)

for all y ∈ Hn, ξ ∈ ∂Hn, and γ ∈ Γ.

Patterson in dimension 2 [Pat76] and Sullivan [Sul79] for general dimension, proved the existence

of a Γ-invariant conformal density of dimension δΓ, the critical exponent, supported on Λ(Γ) which

we will denote {νx : x ∈ Hn} - the Patterson-Sullivan density. In particular, for s > δΓ de�ne the

probability measures

µ(s)
x :=

∑
γ∈Γ

e−sd(i,γi)

−1∑
γ∈Γ

e−sd(x,γi)δγi

where δw is the point measure supported at w ∈ Hn. In which case we de�ne νx to be the weak star

limit as s→ δΓ from above. Moreover let the Lebesgue density, {mx : x ∈ Hn} denote the G-invariant
conformal density of dimension (n− 1), unique up to homothety.

From here we can de�ne several measures on T 1(Hn) which will be essential to what follows. For

u ∈ T 1(Hn), let π(u) be the projection to Hn, s := βu−(i, π(u)) and de�ne

• The Bowen-Margulis-Sullivan measure, given by

dmBMS(u) = eδΓβu+ (i,π(u))eδΓβu− (i,π(u))dνi(u
+)dνi(u

−)ds. (5.5.6)
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This measure is supported on {u ∈ T 1(Hn) : u+,u− ∈ Λ(Γ)} and is �nite on T 1(Γ\Hn) for

geometrically �nite Γ [Sul79].

• The Burger-Roblin measure

dmBR(u) = eδΓβu− (i,π(u))e(n−1)βu+ (i,π(u))dνi(u
−)dmi(u

+)ds. (5.5.7)

This measure is supported on {u ∈ T 1(Hn) : u− ∈ Λ(Γ)} and is, in general, not �nite on

T 1(Γ\Hn).

These are both measures on T 1(Hn) ∼= G/M . We extend them to measures on G. That is, let µ be

either mBR or mBMS de�ned on T 1(Hn), for φ ∈ Cc(G)∫
G

φ(g)dµ(g) =

∫
T 1(Hn)

∫
M

φ(um)dµHaarM (m)dµ(u) (5.5.8)

where µHaarM (m) is the normalised probability Haar measure on M . Thus we simply average out the

extra dependence. To avoid too much notation we denote the BR-measures on G and T 1(Hn) both by

mBR and likewise for the BMS-measure.

Furthermore, let H < G be an expanding horosperical subgroup for the right ar-action (i.e a

subgroup of N−). Let H := H/(M ∩H) be the projection to T 1(Hn). For a �xed g ∈ G, de�ne

dµPS
gH

(gh) := e
δΓβghX+

i
(i,ghi)

dνi(ghX
+
i ). (5.5.9)

In what follows in the next two chapters, it will be useful to consider the push-forward of these measures

via parameterisations. Given a horospherical subgroup H, H is isomorphic with a horosphere in

T 1(Hn). Hence there exists a group isomorphism

hor : Rn−1 → H (5.5.10)

such that the push-forward of the Haar measure is equal to the Lebesgue measure

dµHaar
H

(hor−1(x)) = dx. (5.5.11)

De�ne the measure on Rn−1

dωPS
Γ,g,H

(x) := dµPS
ΓgH

(g hor−1(x)). (5.5.12)

Lastly for what follows we would also like to de�ne spherical Patterson-Sullivan measures. That is,

a measure supported on the rotation group K/M . Since the Patterson-Sullivan measure is supported

on the limit set which lives on the boundary ∂Hn and since the boundary is isomorphic to Sn−1
1 (the

unit circle) this can be done. However the parameterisation is more delicate than for horospheres since

there is not a single natural parameterisation of the rotation group.

Let K = K/M and de�ne the spherical Patterson-Sullivan measure to be

dµPS
ΓgK

(gk) := eδΓβgkXi
(i,gke−1i)dνi(gkXi). (5.5.13)

For a �xed g ∈ G, the prefactor eδΓβgkXi+
(i,gke−1i)

is constant.

As mentioned, unlike for horospheres there is not a single natural way to parameterise spheres.

Therefore we add a Jacobian to ensure the parameterised Patterson-Sullivan measure is invariant for

di�erent parameterisations. Speci�cally we use the following polar coordinate change of variables.
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Lemma 5.5.1. For k ∈ K let u = k−10. Writing k =
(

a b
−b′ a′

)
we have the following change of

variables

du = |a|n−1dk. (5.5.14)

Proof. While this is classical we present a proof using conformal densities for completeness. First note

du = e
(n−1)β

n+(−u)X
−
i

(i,n+(−u)i)
dmi(n+(−u)Xi). (5.5.15)

Since u = −ba−1 we can write

(tk)−1 = −n(−u)

(
|a−1| 0

0 |a|

)(
a′+b′a−1b
|a|−1 0

0 −a
|a|

)(
1 0

−a−1b 1

)
(5.5.16)

where tk denotes the transpose. Note that the rightmost matrix is in N−, the second from the right is

in M and the third is in A. Therefore

n+(−u)X−i = tk−1X−i . (5.5.17)

Moreover

βn+(−u)X−i
(i, n+(−u)i) = ln |a|+ β(tk)−1X−i

(i, (tk)−1i) = ln |a|+ β(tk)−1X−i
(i, i) = ln |a|. (5.5.18)

Thus

du = |a|n−1dmi((
tk)−1Xi). (5.5.19)

The measure dmi((
tk)−1Xi) = d(tk)−1 = dk. Proving Lemma (5.5.14).

Now �x g ∈ G and a parameterisation x 7→ R(x) ∈ K with x ranging in a non-empty open set

U ⊂ Rn−1. Let x̃ = R(x)0 and
∣∣∂x̃
∂x

∣∣ the standard Jacobian on Rn−1. De�ne the parameterised spherical

Patterson-Sullivan measure for U to be

dωPS
Γ,g,K

(x) =

∣∣∣∣∂x̃∂x
∣∣∣∣−1

|a|n−1dµPS
ΓgK

(gR(x)). (5.5.20)

5.5.2 Some Properties

We mention here a few of the properties of the BMS and BR measures. There are numerous results

(e.g [Rob03] or [FS90]) therefore we will only present the theorems which are necessary in what follows.

With regards ergodictiy we have that

Theorem 5.5.2 ([Win15]). Let mBR and mBMS be as above, normalised to be a probability measures.

1. The Burger-Roblin measure is ergodic with respect to the �ow N+ (the expanding horosphere �ow).

2. The Bowen-Margulis-Sullivan measure is mixing on Γ\G with respect to the frame �ow {at}: for
any ψ1, ψ2 ∈ Cc(Γ\G)

lim
t→∞

∫
Γ\G

ψ1(gat)ψ2(g)dmBMS =
mBMS(ψ1)mBMS(ψ2)

|mBMS | . (5.5.21)
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We note that there are e�ective versions of the mixing theorem in various contexts which we will not

need.

The other property of these measure we will make use of is the following decomposition (due to

[OS13, Proposition 7.3]) which generalises the so-called Iwasawa decomposition [Iwa49] for the Burger-

Roblin measure:

Proposition 5.5.3 ([OS13, Proposition 7.3]). For any φ ∈ Cc(T 1(Hn))

mBR(φ) =

∫
k∈K

∫
r∈R

∫
n+∈N+

φ(karn+)e−δΓrdn+drdνi(kX
−
0 ). (5.5.22)

For a more in-depth account of properties of the BMS and BR measures see either [Moh13] or

[MO11].

5.6 Horospherical Equidistribution

Classically horospherical equidistribution is one of the powerhouse tools of homogeneous dynamics. To

the author's knowledge, the idea goes back to Margulis' thesis [Mar04]. More recently there have been

e�ective versions of this equidistribution result by Strömbergsson [Str04] and Sarnak [Sar81] which

have countless important implications. These theorems (and similar ones) have proved tremendously

useful, as a few examples we note that the main theorem of [Str04] plays a role in Venkatesh's proof

of an important step towards a conjecture in sparse equidsitribution [Ven10]. Moreover horospherical

equidsitribution theorems were used in [MS11] wherein Marklof and Strömbergsson studied the periodic

Lorentz gas in the Boltzmann-Grad limit (see Chapter 2 Section 2.2.2). Complimenting these results

for the equidistribution of expanding horospheres, Dani and Smillie [DS84] showed that for any �nite

volume hyperbolic surface, all horocyclic orbits are either periodic or equidistribute.

The above mentioned results are concerned with how horospheres equidistribute when acted on by

the geodesic �ow in �nite volume manifolds (e.g the modular surface). For our purposes we will make

use of the analogous results for in�nite volume manifolds. What follows are several equidistribution

results converging to the result we will need, starting from a theorem of Oh and Shah.

Our goal is to start with an equidistribution theorem of Oh and Shah [OS13, Theorem 3.6]. However

their theorem applies only to M -invariant functions whereas we need an equidistribution theorem for

functions on G. A similar equidistribution theorem for functions of G was proved by Mohammadi and

Oh [MO15, Theorem 5.3] - however they use spectral methods and hence assume a lower bound on the

critical exponent (thus giving them an exponential rate), which does not su�ce for our purposes.

Fortunately the exact proof of [OS13, Theorem 3.6] can be used to prove the necessary theorem

(without the exponential rate). LetH be an unstable horospherical subgroup for right multiplication by

at, therefore H < N−. Again, let Γ be a geometrically �nite, non-elementary, Zariski dense subgroup.

Theorem 5.6.1. For any g ∈ G, any Ψ ∈ Cc(Γ\G) and φ ∈ Cc(gH)

lim
t→∞

e(n−1−δΓ)t

∫
H

∫
H∩M

Ψ(Γghmat)φ(ghm)dµHaar
H

(h)dµHaarH∩M (m)

=
1

|mBMS |

∫
H×Γ\G

Ψ(α)φ(gh)dmBR(α)dµPSΓgH(gh). (5.6.1)

The proof of this theorem is omitted as it is identical to the proof of [OS13, Theorem 3.6] with one

exception: rather than use the mixing theorem of Rudolph, Roblin and Babillot on T 1(Γ\Hn), (which

appears as [OS13, Theorem 3.2]) use the mixing theorem for the BMS measure under the frame �ow
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on G proved by Winter - Theorem 5.5.2. Namely, write g ∈ G as g = um for u ∈ T 1(H) and m ∈ M .

From there, using Winter's mixing theorem and the fact that the frame �ow is in the centraliser of M ,

the same proof will give the above theorem.

Theorem 5.6.1 then leads to the following corollary:

Corollary 5.6.2. Under the assumptions of Theorem 5.6.1, let λ be a Borel probability measure on

Rn−1 with density λ′ ∈ Cc(Rn−1). Then for any g ∈ G

lim
t→∞

e(n−1−δΓ)t

∫
Rn−1

∫
M∩H

Ψ(Γg hor(x)mat)dλ(x)dµHaarH∩M (m)

=
1

|mBMS |

∫
Rn−1×Γ\G

λ′(x)Ψ(α)dmBR(α)dmBR(α)dωPS
Γ,g,H

(x). (5.6.2)

Proof. Inserting the de�nition of λ′ and then applying Theorem 5.6.1 with φ(·) = λ′ ◦ hor−1(g−1(·)M)

gives

lim
t→∞

e(n−1−δΓ)t

∫
Rn−1

∫
M∩H

Ψ(Γg hor(x)mat)dµ
Haar
H∩M (m)dλ(x)

= lim
t→∞

e(n−1−δΓ)t

∫
H

∫
H∩M

Ψ(Γghmat)λ
′(hor−1(g−1(ghm)M))dµHaarH∩M (m)dµHaar

H
(h)

=
1

|mBMS |

∫
H×Γ\G

Ψ(α)λ′(hor−1(h))dmBR(α)dµPS
ΓgH

(h)

Now inserting the parameterisation hor−1 : H → Rn−1 gives (5.6.2).

From here, the proof of [MS10, Theorem 5.3] allows us to extend to functions of Rd−1 × Γ\G and

to sequences of functions

Theorem 5.6.3. Let λ be as in Corollary 5.6.2. Let f : Rn−1×Γ\G→ R be compactly supported and

continuous. Let ft : Rn−1 × Γ\G→ R be a family of continuous functions all supported on a compact

set such that ft → f uniformly. Then for any g ∈ G

lim
t→∞

e(n−1−δΓ)t

∫
Rn−1×H∩M

ft(x,Γg hor(x)mat)dµ
Haar
H∩M (m)dλ(x)

=
1

|mBMS|

∫
Rn−1×Γ\G

λ′(x)f(x, α)dmBR(α)dωPS
ΓgH

(x) (5.6.3)

Proof. Let S ⊂ Γ\G := {α ∈ Γ\G : ∃t > 0,x ∈ Rn−1 s.t ft(x, α) 6= 0} (which is compact as the support

of the entire family ft is compact) and let ζ(α) be a smooth compactly supported bump function equal

to 1 on S. As ft converges to f uniformly and all functions are uniformly continuous, for all ε > 0

there exist δ = δ(ε) > 0 and t0 > 0 such that for all x0 ∈ Rn−1

f(x0, g)− δζ(g) ≤ f(x, g) ≤ f(x0, g) + δζ(g)

f(x0, g)− δζ(g) ≤ ft(x, g) ≤ f(x0, g) + δζ(g)
(5.6.4)

for all x ∈ x0 + [0, ε)n−1 and t > t0. We �x δ > 0 and let ε = ε(δ) to be adjusted later in the proof,

and decompose Rn−1 as follows
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∫
H∩M

∫
Rn−1

ft(x,Γg hor(x)mat)dλ(x)dµHaarH∩M (m)

=
∑

k∈Zn−1

∫
H∩M

∫
εk+[0,ε)n−1

ft(x,Γg hor(x)mat)dλ(x)dµHaarH∩M (m) (5.6.5)

≤
∑

k∈Zn−1

∫
H∩M

∫
εk+[0,ε)n−1

f(εk,Γg hor(x)mat) + δζ(Γg hor(x)mat)dλ(x)dµHaarH∩M (m)

For each k and Ek = εk + [0, ε)n−1 we can apply Corollary 5.6.2 to the r.h.s of (5.6.5), and then use

that the ζ has compact support to conclude:

lim
t→∞

e(n−1−δΓ)t

∫
H∩M

∫
Ek
ft(εk,Γg hor(x)mat)dλ(x)dµHaarH∩M (m)

≤ 1

|mBMS |

∫
Ek×Γ\G

λ′(x)(f(x, α) + δζ(α))dmBR(α)dωPS
Γ,g,H

(x)

=
1

|mBMS |

∫
Ek×Γ\G

λ′(x)f(x, α)dmBR(α)dωPS
Γ,g,H

(x) + Ckδ.

(5.6.6)

Since δ
∫
Rn−1×Γ\G λ

′(x)ζ(α)dmBR(α)dωPS
Γ,g,H

(x) < ∞ we know that
∑

k∈Zn−1 Ck < ∞. Putting this

all together we get, that there exists a C <∞ such that for any δ > 0,

lim sup
t→∞

e(n−1−δΓ)t

∫
Rn−1×H∩M

ft(x,Γg hor(x)mat)dµ
Haar
H∩M (m)dλ(x)

≤ 1

|mBMS|

∫
Rn−1×Γ\G

λ′(x)f(x, α)dmBR(α)dωPS
Γ,g,H

(x) + Cδ

+ δ lim sup
t→∞

e(n−1−δΓ)t

∫
H∩M

∫
Rn−1

ζ(Γg hor(x)mat)dλ(x)dµHaarH∩M (m).

(5.6.7)

Since ζ does not depend on t we may replace the lim sup on the right hand side by a lim. Then, since

ζ is bounded and compactly supported we may apply Corollary 5.6.2 to bound the last term

δ lim sup
t→∞

e(n−1−δΓ)t

∫
H∩M

∫
Rn−1

ζ(Γg hor(x)mat)dλ(x)dµHaarH∩M (m)

≤ δ

|mBMS |

∫
Rn−1×Γ\G

ζ(α)dmBR(α)dωPS
Γ,g,H

(x) ≤ C ′δ, (5.6.8)

for some C ′ <∞. Therefore there exists a C ′′ <∞ such that

lim sup
t→∞

e(n−1−δΓ)t

∫
Rn−1×H∩M

ft(x,Γg hor(x)mat)dµ
Haar
H∩M (m)dλ(x)

≤ 1

|mBMS|

∫
Rn−1×Γ\G

λ′(x)f(x, α)dmBR(α)dωPS
Γ,g,H

(x) + C ′′δ. (5.6.9)

A similar lower bound can be achieved for the lim inf from which the Theorem follows.

For a given t0 > 0, let {Et}t≥t0 be bounded subsets of Rn−1×Γ\G all with boundary of ωPS
Γ,g,H

×mBR-

measure 0, and de�ne
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lim (inf Et)o :=
⋃
t≥t0

⋂
s≥t
Es

o

(5.6.10)

lim sup Et :=
⋂
t≥t0

⋃
s≥t
Es (5.6.11)

lim sup Et :=
⋂
t≥t0

⋃
s≥t
Es (5.6.12)

In which case it is possible to prove a similar corollary to [MS10, Theorem 5.6] (with the exception

that, as the mBR is not �nite on Γ\G we require our sets to be uniformly bounded):

Corollary 5.6.4. Let λ be a Borel probability measure on Rn−1 as in Corollary 5.6.2. Then for any

bounded family of subsets Et ⊂ Rn−1 × Γ\G all with boundary of ωPS
Γ,g,H

× mBR-measure 0, for any

g ∈ Γ\G

lim inf
t→∞

e(n−1−δΓ)t

∫
Rn−1

∫
M∩H

χEt(x,Γg hor(x)mat)dλ(x)dµHaarM∩H(m)

≥ 1

|mBMS |

∫
Rn−1×Γ\G

λ′(x)χlim(inf Et)o(x, α)dmBR(α)dωPS
Γ,g,H

(x) (5.6.13)

lim sup
t→∞

e(n−1−δΓ)t

∫
Rn−1

∫
M∩H

χEt(x,Γg hor(x)mat)dλ(x)dµHaarM∩H(m)

≤ 1

|mBMS |

∫
Rn−1×Γ\G

λ′(x)χlim sup Et(x, α)dmBR(α)dωPS
Γ,g,H

(x) (5.6.14)

Moreover, if lim sup Et \ lim(inf Et)o has ωPS
Γ,g,H

×mBR-measure 0 then

lim
t→∞

e(n−1−δΓ)t

∫
Rn−1

∫
M∩H

χEt(x,Γg hor(x)mat)dλ(x)dµHaarM∩H(m)

=
1

|mBMS |

∫
Rn−1×Γ\G

λ′(x)χlim sup Et(x, α)dmBR(α)dωPS
Γ,g,H

(x) (5.6.15)

Proof. This Corollary follows from Theorem 5.6.3 in exactly the same way as [MS10, Theorem 5.6],

with one exception. Addressing only (5.6.14) (as the other results follow similarly). Let

Ẽt :=
⋃
s≥t
Es, (5.6.16)

thus Et ⊂ Ẽt ⊂ Ẽt1 for t ≥ t1. Hence

lim sup
t→∞

e(n−1−δΓ)t

∫
Rn−1

∫
M∩H

χEt(x,Γg hor(x)mat)dλ(x)dµHaarH∩M (m)

≤ lim sup
t1→∞

lim sup
t→∞

e(n−1−δΓ)t

∫
Rn−1

∫
M∩H

χẼt1
(x,Γg hor(x)mat)dλ(x)dµHaarH∩M (m). (5.6.17)

From here we apply Theorem 5.6.3 for a �xed f = ft = χEt1 by approximating compactly supported

characteristic functions with bounded, compactly supported, continuous functions. That is, consider
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∣∣∣∣lim sup
t→∞

e(n−1−δΓ)t

∫
H∩M

∫
Rn−1

χẼt1
(x,Γg hor(x)mat)dλdµ

Haar
M∩H

− 1

|mBMS |

∫
Rn−1×Γ\G

λ′(x)χẼt1
(x, α)dmBR(α)dωPS

Γ,g,H
(x)

∣∣∣∣∣ . (5.6.18)

Fix ε > 0 and let φ be a bounded, compactly supported function such that φ = χẼt1
outside of a

δ-neighborhood of the boundary of Ẽt1 . δ = δ(ε) > 0 will be �xed later in the proof. Write

(5.6.18) =

∣∣∣∣lim sup
t→∞

(
e(n−1−δΓ)t

∫
H∩M

∫
Rn−1

χẼt1
(x,Γg hor(x)mat)

+φ(x,Γg hor(x)mat)− φ(x,Γg hor(x)mat)) dλdµ
Haar
M∩H

− 1

|mBMS |

∫
Rn−1×Γ\G

λ′(x)χẼt1
(x, α)dmBR(α)dωPS

Γ,g,H
(x)

∣∣∣∣∣ .
(5.6.19)

Applying Theorem 5.6.3 to the second term in the second line then gives that (5.6.18) is less than or

equal

(5.6.18) ≤ lim sup
t→∞

e(n−1−δΓ)t

∫
H∩M

∫
Rn−1

∣∣∣χẼt1 (x,Γg hor(x)mat)− φ(x,Γg hor(x)mat)
∣∣∣ dλdµHaarM∩H(m)

+
1

|mBMS |

∫
Rn−1×Γ\G

λ′(x)
∣∣∣χẼt1 (x, α)− φ(x, α)

∣∣∣ dmBR(α)dωPS
Γ,g,H

(x). (5.6.20)

Now let φ̃ be a continuous, bounded, function supported on the δ-neighbourhood of Ẽt1 such that

φ̃ ≥
∣∣∣χẼt1 − φ∣∣∣ everywhere. Hence

(5.6.18) ≤ lim sup
t→∞

e(n−1−δΓ)t

∫
H∩M

∫
Rn−1

φ̃(x,Γg hor(x)mat)dλdµ
Haar
M∩H(m)

+
1

|mBMS |

∫
Rn−1×Γ\G

λ′(x)
∣∣∣χẼt1 (x, α)− φ(x, α)

∣∣∣ dmBR(α)dωPS
Γ,g,H

(x). (5.6.21)

Now we may apply Theorem 5.6.3 once again to φ̃ to conclude

(5.6.18) ≤ 1

|mBMS |

∫
Rn−1×Γ\G

λ′(x)
(
φ̃(x, α) +

∣∣∣χẼt1 (x, α)− φ(x, α)
∣∣∣) dmBR(α)dωPS

Γ,g,H
(x). (5.6.22)

Now note that by assumption the Patterson-Sullivan measure is �nite and the Burger-Roblin measure

is �nite on bounded subsets. Since both terms in the integrand are bounded and supported on the

δ-neighbourhood of Ẽt1 , we may choose δ small enough such that the right hand side of (5.6.22) is less

than ε. (5.6.14) then follows from (5.6.17) from which it follows that (5.6.20) is less than Cε for some

C <∞.

The rest of the Theorem follows similarly.
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Chapter 6

Directions in Thin Orbits

6.1 Introduction

Patterson-Sullivan theory describes the asymptotic density of points near the boundary of hyperbolic

space. Hence a very natural question one can ask is 'what about higher order spatial statistics?' For

example what can one say about the gap (or nearest neighbour) distribution? Herein we will answer

these questions and give a full characterisation of the spatial statistics of such a point set as viewed from

a �xed observer in hyperbolic space or its boundary. These questions have been addressed previously

for lattices [BPZ14, KK15, RS17, MV18], and for certain thin groups [Zha17, Zha19]. However we will

treat a much more general class of subgroups in arbitrary dimension.

Our main results are in general dimension n ≥ 2. For the purpose of this introduction we restrict

our attention to dimension 2 and gap statistics. The main theorem in all dimensions will follow in

Section 6.2. Let G := PSL(2,R) ∼= Isom+(H2) and consider the left action on an element z ∈ H2 via

Möbius transformations. Let Γ < G be a Zariski dense, non-elementary, geometrically �nite subgroup

(see Chapter 5, Section 5.5.1) and consider the orbit of a point w ∈ H2, w = Γw.

For a given t ∈ R≥0 consider the radial projection to the boundary of all the points in w a distance

less than t from i. As we can identify ∂H2 ∼= S1
1 this generates a point set on S1

1 . Formally, let

ξ(z) ⊂ H2 be the geodesic connecting i to z and let ξs(z) ⊂ H2 be the point along said geodesic a

distance s from i in the direction of z. De�ne

Qt(w) :=
{

lim
s→∞

ξs(γw) : γ ∈ Γ/Γw, d(γw, i) < t
}
⊂ S1

1 , (6.1.1)

where d(·, ·) denotes the hyperbolic distance and Γw := StabΓ(w). Let Nt = #Qt(w) and label

the points in Qt(w) sequentially as {xi}Nti=1 ⊂ S1
1 . Asymptotically the points xi will be distributed

according to the Patterson-Sullivan density (see Chapter 5 Section 5.5). That is, a consequence of

[OS13, Theorem 1.2] is that for a subset F ⊂ S1
1

#Qt(w) ∩ F ∼ Cνi(F )eδΓt (6.1.2)

where νi is the conformal density of dimension δΓ (the critical exponent of Γ). (6.1.2) is a consequence

of Theorem 6.2.1 below.

Denote the jth scaled gap

sj := {xj+1 − xj}et, (6.1.3)

where {·} denotes the distance to the nearest integer and let S(t) denote all the scaled gaps coming
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from Qt. De�ne the cumulative gap distribution to be

Ft(L) :=
1

Nt
#{j ≤ Nt : sj ≥ L}. (6.1.4)

i

w

H

S1
1

Figure 6.1: On top we show a schematic diagram of the setting in 2 dimensions. The bold lines cut the
half-plane H into fundamental domains. Then we consider a point w ∈ H and the orbit w = Γw - the
black dots. The dotted lines represent the geodesics connecting the points of w to i. We consider the
intersection of the geodesics with the unit hyperbolic sphere centred at i (this is equivalent to projection
to the boundary ∂H). Giving a projected point set on S1

1 (illustrated below the upper half-plane). If
we include all points in w such that d(γw, i) < t then this point set corresponds to Qt(w).

Theorem 6.1.1. The limiting function F : [0,∞) → R de�ned F (L) := limt→∞ Ft(L) exists, is

monotone decreasing and continuous. Moreover if the fundamental domain for Γ is made of a �nite

number of non-intersecting half circles then there exists some L0 > 0 such that

F (L) = 1 (6.1.5)

for all L < L0.

Remark. The proof of this Theorem will come in Section 6.7. This theorem generalises a theorem

by Zhang [Zha17] in the case of certain Schottky groups to the general geometrically �nite case. In

fact, we will (in Subsection 6.7.3) express explicitly and prove convergence of the nearest neighbour

distribution in all dimensions.

Moreover the gap distribution satis�es the following formula

F (L) = Cw

∫ ∞
0

eδΓr
∫ π

0

∏
γ∈Γ/Γw

γ 6=Γw

(
1− χE(γ)(r, θ)

)
dνi(θ)dr, (6.1.6)

where Cw is an explicit constant, E(γ) is an explicit set depending on the choice of γ, and here and

throughout χA is the characteristic function of the set A. In the lattice case δΓ = 1 and νi(θ) = dθ. To

the best of the author's knowledge this formula was not known previously. The proof of this formula

is the content of Subsection 6.7.5 (where we will also take a derivative to arrive at the density). More

explicit formula than this for the gap distribution are known only in the Euclidean case due to Marklof
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and Strömbergsson [MS14] and in the hyperbolic lattice case for certain circle packing examples due

to Rudnick and Zhang [RZ17].

In this Chapter we will extend Theorem 6.1.1 to more general statistics and arbitrary dimension

n ≥ 2. Similar results are known only for more restricted contexts. Using number theoretic methods

Boca, Popa and Zaharescu [BPZ14] proved a theorem about the pair correlations of angles between

directions in the modular group. They posed a conjecture later proved by Kelmer and Kontorovich

[KK15] who proved a limiting distribution for the pair correlation of angles between directions in

more general hyperbolic lattices. More recently Risager and Södergren [RS17] extended these results to

arbitrary dimension in the lattice case, giving e�ective results with explicit rates.

Marklof and Vinogradov [MV18] then characterised the full limiting behaviour of such projected

point sets for hyperbolic lattices. Their result is a special case of Theorem 6.2.2, our main theorem,

restricted to the lattice case. Zhang then proved a limiting theorem for the gap distribution of directions

for certain Schottky groups [Zha17] (hence this was the �rst treatment of the in�nite volume case, in

2 dimensions). Following that, Zhang proved a limiting distribution for the directions of centres of

Apollonian circle packings [Zha19] (another non-lattice example, this time in 3 dimensions). As an

application of one of our main theorems (Theorem 6.3.2), in Subsection 6.2.2 we will discuss how our

methods apply to a general class of sphere packings. That is, any sphere packing (possibly overlapping)

invariant under the action of a suitable subgroup. Theorem 6.3.2 allows us to characterise the statistical

regularity of the centers of the spheres in such a packing.

The general strategy to prove the results in this Chapter is the same as that used in [MV18]. They

use an argument of Margulis' [Mar04] to prove equidistribution of large horospheres and spheres. Then

they use those equidistribution theorems to establish the limiting distribution. Our work will follow the

same plan but will instead use the equidistribution theorems stated in Chapter 5 Section 5.6. As the

limiting measure is no longer the invariant Haar measure there are a number of added complications.

Plan of the Chapter: In Section 6.2 we setup and state our main result in general dimensions.

Then we explain how our result applies to a general class of sphere packings.

In Sections 6.3 and 6.4 we prove a theorem analogous to the main theorem with the observer on

the boundary, ∂Hn, rather than the interior, Hn. Moreover we show how this limiting theorem can be

used to prove convergence of the moment generating function.

In Sections 6.5 and 6.6 we prove our main theorem, Theorem 6.2.2 for an observer in Hn.
In Section 6.7 we present several applications: we prove the convergence of higher moments in

both the boundary and interior cases, prove existence and express the limiting two-point correlation

function, prove existence and express the limiting nearest neighbour distribution. Then, in dimension

n = 2, we explain how to prove Theorem 6.1.1 for gap statistics as a consequence of Theorem 6.2.2

and arrive at the explicit formula described.

6.2 Statement of Main Result

Our main result is in general dimension n ≥ 2.

6.2.1 Main Theorem

Given two points w, z ∈ Hn de�ne the direction function, ϕz(w), to be the intersection of the geodesic

connecting z to w with the hyperbolic unit sphere centered at z (i.e Ke−1i+ z). Thus ϕ : Hn ×Hn →
Sn−1

1 .

Fix Γ < G a Zariski dense, non-elementary, geometrically �nite subgroup. Given the orbit w = Γw

and s < t ∈ R≥0 de�ne

117



Pz
t,s(w) := {ϕz(γw) : γ ∈ Γ/Γw, s < d(γw, z) < t}, (6.2.1)

Thus Pz
t,s(w) represents the set of directions of orbit points of w within an annulus (of inner radius s

and outer radius t) around the observer at z.

Without loss of generality we can use the left-invariance of the metric d to move w and set z to be

i (keeping Γ the same). Set

Pt,s(w) := P i
t,s(w). (6.2.2)

The �rst order statistics of this projected point set are characterised by a result of Oh and Shah [OS13]

Theorem 6.2.1. Let F ⊂ K ∼= Sn−1
1 with νi(∂F ) = 0. Then the following asymptotic formula holds

as t→∞

#(Pt,0(w) ∩ F ) ∼
|µPS

ΓK
|

δΓ|mBMS |νi(F )eδΓt. (6.2.3)

This theorem follows from [OS13, Theorem 7.16].

Turning now to our main object of study: the higher order spatial statistics. Let ω denote the solid

angle measure on Sn−1
1 normalised to be a probability measure. Hence, for a subset A ⊂ Sn−1

1 ,

ω(A) =
volSn−1

1
(A)

volSn−1
1

(Sn−1
1 )

. (6.2.4)

For σ > 0 let Dt,s(σ,v, gw) ⊂ Sn−1
1 be the (shrinking with t) open disk centred at v ∈ Sn−1

1 of volume

ω(Dt,s(σ,v, gw)) =
σ

#Pt,s(gw)
n−1
δΓ

, (6.2.5)

the scaling in the exponent is chosen in such a way that D scales like in the lattice-case (we will discuss

this scaling after the statement of Theorem 6.2.2). Let

Nt,s(σ,v, gw) := #(Pt,s(gw) ∩ Dt,s(σ,v, gw)). (6.2.6)

Finally de�ne the cuspidal cone:

Z0(s, σ) := {z ∈ Hn : Re(z) ∈ ϑ−1/δΓBσ, 1 ≤ Im(z) ≤ es}, (6.2.7)

where ϑ = |νi|
δΓ|mBMS | and Bσ is a ball (in Rn−1) of volume σ centred at the origin. With that, the main

theorem is:

Theorem 6.2.2. Let λ be a Borel probability measure on Sn−1
1 absolutely continuous with respect to

Lebesgue with continuous density. Then for every g ∈ G, r ∈ Z>0, s ∈ [0,∞] and σ ∈ (0,∞)

Es(r, σ; gw) := lim
t→∞

e(n−1−δΓ)tλ({v ∈ Sn−1
1 : Nt,s(σ,v; gw) = r}) (6.2.8)

exists and is given by:

Es(r, σ; gw) =
Cλ

|mBMS |m
BR({α ∈ Γ\G : #(α−1w ∩ Z0(s, σ)) = r}) (6.2.9)

where Cλ = Cλ(g,Γ) =
∫
K
λ′(k)dµPS

ΓgK
. Moreover the limit distribution Es(·, σ; gw) is continuous in

s ∈ (0,∞] and σ ∈ (0,∞) and satis�es:
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lim
σ→0

Es(r, σ,w) = 0 (6.2.10)

Remark. In Section 6.7 we will show several consequences of the above theorem. Namely we show how

to prove convergence of moments and prove existence and write explicitly the two-point correlation

and gap statistics.

Remark. The above theorem is not true in general for r = 0, unlike the case for lattices. When

considering lattices, Marklof and Vinogradov also have a theorem of the same form with r ≥ 0. The

reason for this discrepancy is that the scaling of the set Dt,s(σ,v, gw), (6.2.5) is the same scaling as one

would expect for lattices. Hence, when we consider orbit-point-free sets the scaling factor e(n−1−δΓ)t is

too large and causes the integral to blow up. In other words, there are two scales to this problem. For

the two dimensional problem this translates to the fact that most gaps between neighbouring directions

are of size e−t but there are very big gaps of size e−δΓt. This dichotomy was pointed out by Zhang

[Zha17].

6.2.2 Sphere Packings

In Section 6.3 we will replicate Theorem 6.2.2, with the observer moved to ∞ and rather than consider

a ball centred at the observer, we will consider an expanding horosphere based at the point ∞. This

will induce a similar point set to (6.2.1) which we will denote P∞
t,s (w). In which case Theorem 6.3.2

below, implies the analogous result as Theorem 6.2.2 for this point set. Using that, we can describe

the spatial regularity of general sphere packings. For a general discussion of such packings see [Oh14,

Section 7]. We include here a brief discussion of this application as a motivating example.

For n ≥ 3, by a sphere packing, we mean the union of a collection of (possibly intersecting) (n− 2)-

spheres. Let P be a sphere packing in Rn−1 invariant under the right action of a Zariski dense,

non-elementary, geometrically �nite subgroup. When n = 3 the canonical example of such a sphere

packing is the Apollonian circle packing, however many other examples exist. Another nice example

is considered in [Kon17], wherein Kontorovich considers so-called Soddy packings which generalise the

Apollonian case to dimension n = 4 (our discussion here holds for more general packings as well).

A natural problem is to understand the asymptotic characteristics of such a collection as one restricts

the set of spheres to those of radius larger than a certain cut o�. Asymptotic counting formula for these

packings are given in [Oh14, Theorem 7.5]. And, in the Apollonian case for n = 3, [Zha19] studied

the spatial statistics of the centres of these packings. In fact, a special case of Theorem 6.3.2 (below)

characterises the spatial statistics of these packings. To see this, we simply point out a well known

relationship.

Let P be a Γ-invariant sphere packing in Rn−1 ∼= ∂Hn. Now let P̃ be the collection of hemispheres

supported on P (i.e whose intersection with ∂Hn is P). In this case P̃ is also Γ invariant.

Let w ∈ Hn denote the apex of one of the spheres in P̃. Then w = Γw denotes the collection of

apices of the spheres in P̃. Hence, using the notation of Section 4, the set

P∞
t,s (w) := {Re(γw) : γ ∈ Γ∞\Γ/Γw, e−t ≤ Im(γw) < es−t}, (6.2.11)

is equivalent to

P∞
t,s (w) := {c(S) : S ∈ P, e−t ≤ r(S) < es−t}, (6.2.12)

where c(S) is the location of the centre of the sphere S ∈ P and r(S) is the radius of S. In particular

P∞
t,∞(w) denotes the centres of all of the spheres with radius larger than e−t. Hence Theorem 6.3.2
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describes the asymptotic spatial characteristics of this point set for any sphere packing (invariant under

the action of non-elementary, Zariski dense subgroups).

6.3 Observer at In�nity

Our goal is to consider observers inside hyperbolic half-space but it will be more convenient to �rst

consider an observer on the boundary (w.l.o.g at ∞) as this will allow us to use the horospherical

equidistribution theorem stated above directly. Consider the projection of Γw onto a horosphere

centered at ∞. Hence there are two situations, either ∞ is the location of a cusp in a fundamental

domain of Γ, or it is in a funnel. We will treat these two situations together.

Consider the cusp with rank 0 ≤ l ≤ n − 1 at ∞ (a rank 0 cusp is trivial and hence describes the

situation with no cusp). Γ contains the (possibly trivial) subgroup Γ∞. We may furthermore write

Γ∞ = {n+(m) : m ∈ L}, (6.3.1)

where L is a (possibly trivial) discrete subgroup of Rn−1 of rank l.

De�ne

P∞
t,s (w) := {Re(γw) mod L : γ ∈ Γ∞\Γ/Γw, e

−t ≤ Im(γw) < es−t}. (6.3.2)

P∞
t,s (w) can be identi�ed with a subset of the horospherical subgroup H by identifying H with Rn−1

via group isomorphism hor.

The �rst order statistics for a boundary observer are given by:

Theorem 6.3.1. In the present context. Let F ⊂ H be a Borel subset of the horospherical subgroup,

H, with µPS
H

(F ) <∞ and µPS
H

(∂F ) = 0. Then the following asymptotic formula holds as t→∞

#(P∞
t,∞(w) ∩ F ) ∼ ϑµPS

H
(F )eδΓt (6.3.3)

for ϑ de�ned below (6.2.7) depending only on Γ.

Remark. Asymptotic formulas for the number of lattice points in balls and sectors have been studied

previous, for example by Good [Goo83]. Bourgain-Kontorovich-Sarnak [BKS10] described the asymp-

totics of orbit points in growing balls when the critical exponent is less than 1/2 in dimension n = 2.

Oh and Shah [OS13] then extended these results to full generality, including the sector case. Theorem

6.3.1 concerns horospherical sectors which is also covered by Oh and Shah [OS13, Theorem 7.16].

Consider the following rescaled test sets in Tl × Rn−1−l (scaled to match the scaling in (6.2.5))

Bt,s(A,x) = Nt,s(w)−1/δΓA− x + L ⊂ Tl × Rn−1−l, (6.3.4)

where Nt,s(w) := #P∞
t,s (w) and A ⊂ Rn−1 is bounded. The base point x will be chosen with law λ.

Let

N∞
t,s (A,x;w) := #(P∞

t,s (w) ∩ Bt,s(A,x)). (6.3.5)

Let A1, ...,Am be bounded test sets with boundary of Lebesgue measure 0. Given a compactly

supported density λ′ on Tl × Rn−1−l write

Aλ =

∫
Tl×Rn−1−l

λ′(x)dωPS
Γ,H

(x) (6.3.6)
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(ωPS
Γ,H

:= ωPS
Γ,g,H

with g = Id the identity).

Theorem 6.3.2. Let λ be a compactly supported Borel probability measure on Tl ×Rn−1−l absolutely

continuous with respect to Lebesgue measure, with continuous density. Then for any r = (r1, ..., rm) ∈
Zm>0, s ∈ (0,∞] and A = A1 × ...×Am

Es(r,A;w) := lim
t→∞

e(n−1−δΓ)tλ({x ∈ Tl × Rn−1−l : N∞
t,s (Aj ,x;w) = rj ,∀j}) (6.3.7)

exists and is given by

Es(r,A;w) =
Aλ

|mBMS |m
BR({α ∈ Γ\G : #(α−1w ∩ Z(s,Aj)) = rj∀j}), (6.3.8)

with

Z(s,Aj) := {z ∈ Hn : Re z ∈ ϑ−1/δΓAj , 1 ≤ Im z < es}. (6.3.9)

Moreover, Es(r,A;w) is continuous in s and A.

Borrowing notation from [MV18], by continuous in the set A we mean that there exists a constant

C <∞ such that

|Es(r,A;w)− Es(r,B;w)| ≤ C volRm(n−1)(B \ A) (6.3.10)

for any two sets A ⊂ B ⊂ Rm(n−1) as in Theorem 6.3.2.

With the exception of the proof of Proposition 6.3.3 and some other details, the proof of Theorem

6.3.2 follows similar lines as proof of [MV18, Theorem 4].

For a set A ⊂ Hn with boundary of BR-measure 0 (i.e mBR(π−1(A)) = 0) and r ∈ Z>0 de�ne the

following sets

[A]≤r := {α ∈ Γ\G : 0 < #(A ∩ α−1w) ≤ r} (6.3.11)

[A]≥r := {α ∈ Γ\G : #(A ∩ α−1w) ≥ r} (6.3.12)

[A]=r := {α ∈ Γ\G : #(A ∩ α−1w) = r}. (6.3.13)

Finally let w = gwi, then

Proposition 6.3.3. Consider a measurable set with �nite volume and boundary of BR-measure 0,

B ⊂ Hn such that inf{t : n+a−ti ∈ g−1
w B} =: t0 > −∞ and A ⊂ B (also with boundary of BR-measure

0). In that case, with r ∈ N>0

mBR([A]≥1) ≤ Ct0
#Γw

volHn(A), (6.3.14)

|mBR([A]=r)−mBR([B]=r)| ≤
Ct0

#Γw
volHn(B \ A), (6.3.15)

and

0 ≤ mBR([A]≤r)−mBR([B]≤r) ≤
Ct0

#Γw
volHn(B \ A), (6.3.16)

with Ct0 <∞ depending on t0 and w.

Proof. The proof of this Lemma will follow from a Siegel type estimate. Consider
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∫
G

χA(α−1w)dmBR(α) (6.3.17)

Now write w = gwi. By making the change of variables α 7→ g−1
w αgw we can then consider the

Burger-Roblin measure associated to the group Γw := g−1
w Γgw. Thus∫

G

χA(α−1w)dmBR(α) =

∫
G

χA(gwα
−1i)dmBR

Γw (α). (6.3.18)

The decomposition of the Burger-Roblin measure from Chapter 5, Proposition 5.5.3 together with the

fact χA ∈ C(T 1(Hn) give

∫
G

χA(α−1w)dmBR(α) =

∫
KAN+

χg−1
w A((katn+)−1i)e−δΓtdµHaarN+

(n+)dtdνwi (kX−i ), (6.3.19)

νwi (kX−i ) is the conformal density of dimension δΓ = δΓw supported on Λ(Γw). Applying the inverse

inside the bracket and recalling that K is the stabiliser of i gives∫
G

χA(α−1w)dmBR(α) = |νwi |
∫
AN+

χg−1
w A(n−1

+ a−ti)e
−δΓtdµHaarN+

(n+)dt. (6.3.20)

As the integral on N+ is with respect to Haar measure we can change variables giving∫
G

χA(α−1w)dmBR(α) ≤ C̃t0
∫
AN+

χg−1
w A(n+a−ti)dµ

Haar
N+

(n+)dt, (6.3.21)

with C̃t0 = |νwi | e−δΓt0 . Now, changing variables gives

∫
G

χA(α−1w)dmBR(α) ≤ C̃t0
∫
Rn−1×R

χg−1
w A(a−tn+(etx)i)dxdt

≤ C̃t0
∫
Rn−1×R

e(n−1)tχg−1
w A(atn+(x)i)dxdt

≤ Ct0 volHn(g−1
w A) = Ct0 volHn(A),

(6.3.22)

with Ct0 = |νwi | e(n−1−δΓ)t0 .

The proof of Proposition 6.3.3 now follows from (6.3.22), Chebyshev's inequality and some simple

set manipulations (see [MV18, Lemma 5]) and is simply a consequence of the following

∫
Γ\G

#(A ∩ α−1w)dmBR(α) =

∫
Γ\G

∑
γ∈Γ/Γw

χA(α−1γw)dmBR(α) (6.3.23)

=
1

#Γw

∫
G

χA(α−1w)dmBR(α). (6.3.24)

Lemma 6.3.4. Under the hypothesis of Theorem 6.3.2, given an ε > 0 there exists a t0 ∈ R and

bounded sets A−j ,A+
j ⊂ Rn−1 with boundary of Lebesgue measure 0 such that

A−j ⊂ Aj ⊂ A+
j , (6.3.25)

volRn−1(A+
j \ A−j ) < ε (6.3.26)
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and for all t ≥ t0

#(atn+(x)w ∩ Z(s,A−j )) ≤ N∞
t,s (Aj ,x;w) ≤ #(atn+(x)w ∩ Z(s,A+

j )) (6.3.27)

Proof. Write

N∞
t,s (Aj ,x;w) = #(atn+(x)w ∩ Z(s, etϑ1/δΓNt,s(w)−1/δΓAj)) (6.3.28)

and note that etϑ1/δΓNt,s(w)−1/δΓ → 1 from which the lemma follows (see [MV18, Lemma 6] for more

details).

Furthermore the analogue of [MV18, Lemma 7] applies in this context as well.

Lemma 6.3.5. Under the hypothesis of Theorem 6.3.2, for all s ≥ 0 we have

lim sup
t→∞

e(n−1−δΓ)t
∣∣λ({x ∈ Tl × Rn−1−l : 0 < #(atn+(x)w ∩ Z(∞,Aj)) ≤ rj , ∀j})

− λ({x ∈ Tl × Rn−1−l : 0 < #(atn+(x)w ∩ Z(s,Aj)) ≤ rj∀j})
∣∣ ≤ Ce−δΓs/2(volRn−1 Ã)1/2, (6.3.29)

where Ã =
⋃
j Aj and C > 0 is some constant.

Proof. Suppose −∞ < a < b ≤ ∞ and A ⊂ Rn−1, de�ne

Z(a, b,A) := {z ∈ Hn : Re z ∈ ϑ−1/δΓA, ea ≤ Im z ≤ eb}. (6.3.30)

The left hand side of (6.3.29) without the lim sup is less than or equal to

e(n−1−δΓ)tλ({x ∈ Tl × Rn−1−l : #(atn+(x)w ∩ Z(s,∞, Ã)) ≥ 1}) (6.3.31)

and #(atn+(x)w ∩ Z(s,∞, Ã) = N∞
t−s,∞(ηt−set−sÃ,x;w), where ηt−s =

N
1/δΓ
t−s,∞

ϑ1/δΓet−s
→ 1 as t→∞

Chebyshev's inequality then implies

(6.3.31) ≤ e(n−1−δΓ)t

∫
Tl×Rn−1−l

N∞
t−s,∞(ηt−se

t−sÃ,x;w)dλ(x) (6.3.32)

Note further, by Theorem 6.3.1

lim
t→∞

e(n−1−δΓ)t

∫
Tl×Rn−1−l

N∞
t,s (A,x;w)d vol(x) = volRn−1 A. (6.3.33)

Hence, for any R ≥ c for some constant c > 0

e(n−1−δΓ)t

∫
Tl×Rn−1−l

N∞
t−s,∞(ηt−se

t−sÃ,x;w)dλ(x)

≤ Re(n−1−δΓ)t

∫
Tl×Rn−1−l

N∞
t−s,∞(ηt−se

t−sÃ,x;w)χsupp(λ)(x)d vol(x)

→ Re−(n−1)s volRn−1 Ã,
(6.3.34)

as t→∞. Choosing

R := C
e(n−1)s(volRn−1 Ã)−1/2

eδΓs/2
(6.3.35)
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proves the theorem (the constant C is there to ensure R > c).

Proof of Theorem 6.3.2. This proof is similar to [MV18, Proof of Theorem 4]. It su�ces to show that

for all r = (r1, ..., rm) ∈ Zm>0 and all sets A = A1 × ...×Am with Aj ⊂ Rn−1 bounded with boundary

of Lebesgue measure 0 the following limit holds as t→∞

e(n−1−δΓ)tλ({x ∈ Tl × Rn−1−l : 0 < N∞
t,s (Aj ,x;w) ≤ rj , ∀j})

→ Aλ
|mBMS |m

BR({α ∈ Γ\G : 0 < #(α−1w ∩ Z(s,Aj) ≤ rj , ∀j}). (6.3.36)

The left hand side is equal

e(n−1−δΓ)t

∫
Tl×Rn−1−l

χEt,s((atn+(x))−1)dλ(x) (6.3.37)

with

Et,s := {α ∈ Γ\G : 0 < #(α−1w ∩ Z(s, etϑ1/δΓNt,s(w)−1/δΓAj)) ≤ rj , ∀j}. (6.3.38)

Assume s <∞: Fix ε > 0. By Lemma 6.3.4 there exist sets A± with volRn−1(A+ \ A−) < ε. Such

that if we write

E±s := {α ∈ Γ\G : 0 < #(α−1w ∩ Z(s,A±j ) ≤ rj , ∀j}, (6.3.39)

then E+
s ⊂ Et,s ⊂ E−s for all t ≥ t0. Since Z(s, etϑ1/δΓNt,s(w)−1/δΓAj) is bounded, we know that Et,s

is compact as are E±s . Hence (because λ is compactly supported, and is absolutely continuous with

respect to Lebesgue measure) we can apply Chapter 5, Corollary 5.6.4. Giving

lim sup
t→∞

e(n−1−δΓ)t

∫
Tl×Rn−1−l

χEt,s(n+(−x)a−t)dλ(x) ≤ Aλ
|mBMS |m

BR(E−s ),

lim inf
t→∞

e(n−1−δΓ)t

∫
Tl×Rn−1−l

χEt,s(n+(−x)a−t)dλ(x) ≥ Aλ
|mBMS |m

BR((E+
s )o).

(6.3.40)

Finally Proposition 6.3.3, Lemma 6.3.4 and the fact Z(s,A±j ) is bounded for s <∞ imply that

lim
ε→0

mBR(E−s \ (E+
s )o) = 0 (6.3.41)

which proves Theorem 6.3.2 for s <∞.

Assume s =∞: The equidistribution theorems stated in Chapter 5, Section 5.6 hold only for com-

pactly supported functions χ. Hence an approximation argument is needed to get around this.

Consider

lim sup
t→∞

e(n−1−δΓ)t

∫
Tl×Rn−1−l

χEt,∞(n+(−x)a−t)dλ(x). (6.3.42)

Fix ε > 0, by Lemma 6.3.5, there exists an sε <∞ such that
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lim sup
t→∞

e(n−1−δΓ)t

∫
Tl×Rn−1−l

χEt,∞(n+(−x)a−t)dλ(x)

≤ lim sup
t→∞

e(n−1−δΓ)t

∫
Tl×Rn−1−l

χEt,sε (n+(−x)a−t)dλ(x) + ε. (6.3.43)

By Lemma 6.3.4 for any ρ = ρ(ε) > 0 there exist sets A±sε,ρ, with vol(A+
sε,ρ \ A−sε,ρ) ≤ ρ and associated

E±sε,ρ = {α ∈ Γ\G : 0 < #(α−1w ∩ Z(sε,A±sε,ρ)) < rj ∀j}, (6.3.44)

such that the right hand side of (6.3.43) is less than

(6.3.43) ≤ lim sup
t→∞

e(n−1−δΓ)t

∫
Tl×Rn−1−l

χE+
sε,ρ

(n+(−x)a−t)dλ(x) + ε. (6.3.45)

Therefore, applying Chapter 5, Corollary 5.6.4 to (6.3.45) we can bound

lim sup
t→∞

e(n−1−δΓ)t

∫
Tl×Rn−1−l

χEt,∞(n+(−x)a−t)dλ(x) ≤ Aλ
|mBMS |m

BR(E+
sε,ρ) + ε (6.3.46)

and similarly

lim inf
t→∞

e(n−1−δΓ)t

∫
Tl×Rn−1−l

χEt,∞(n+(−x)a−t)dλ(x) ≤ Aλ
|mBMS |m

BR((E−sε,ρ)o)− ε. (6.3.47)

Therefore it remains to use ρ = ρ(ε) to control

lim
ε→0

mBR(E+
sε,ρ \ (E−sε,ρ)o) (6.3.48)

by Proposition 6.3.3 we have

lim
ε→0

mBR(E+
sε,ρ \ (E−sε,ρ)o) ≤ lim

ε→0
csε,ρ vol(A+

sε,ρ \ (A−sε,ρ)o) (6.3.49)

where csε,ρ is the constant Ct0 de�ned below (6.3.22), here t0 depends on the set E+
sε,ρ.

t0 = inf(t̃ : 0 < #((n+a−t̃)
−1w ∩ Z(∞,A±sε,ρ)) < rj , ∀j) (6.3.50)

For �xed ε, Z(sε,A+
sε,ρ) is a cuspidal cone of �xed height. Therefore t0 is bounded below, independent

of ρ > 0. Thus there exists a constant C ′sε depending only on sε such that

lim
ε→0

mBR(E+
sε,ρ \ (E−sε,ρ)o) ≤ lim

ε→0
C ′sερ(ε) = 0 (6.3.51)

for ρ(ε) suitably chosen. Hence

lim
ε→0

mBR(E+
sε,ρ(ε)

) = lim
ε→0

mBR((E−sε,ρ(ε))
o) = mBR({α ∈ Γ\G : 0 < #(α−1w ∩ Z(∞,A)) ≤ rj , ∀j}),

(6.3.52)

proving the Theorem 6.3.2.
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6.4 Moment Generating Function for Cuspidal Observer

Continuing to follow the example set by [MV18], for test sets A1, ...,Am ⊂ Rn−1 with boundary of

Lesbesgue measure 0 and for complex τi ∈ C, de�ne the moment generating function

G∞t,s(τ1, ..., τm;A) :=

∫
Tl×Rn−1−l

1(N∞t,s(Aj ,x,w) 6= 0,∀j) exp

 m∑
j=1

τjN∞t,s(Aj ,x,w)

 dλ(x) (6.4.1)

and similarly for the limit distribution let

Gs(τ1, ..., τm;A) :=

∞∑
r1,...,rm=1

exp

 m∑
j=1

τjrj

Es(r,A,w). (6.4.2)

Where Es is de�ned as in Theorem 6.3.2 and r = (r1, ..., rm). Let Re+ τ := max(Re(τ), 0).

Theorem 6.4.1. Let λ be a Borel probability measure on Tl × Rn−1−l as in Theorem 6.3.2, and

{A}mj=1 ⊂ R(n−1) bounded with boundary of Lesbegue measure 0. Then there exists a constant c0 > 0

such that for Re+ τ1 + ...+ Re+ τm < c0, s ∈ (0,∞]

1. Gs(τ1, ..., τm;A) is analytic

2. limt→∞ e(n−1−δΓ)tG∞t,s(τ1, ..., τm;A) = Aλ
|mBMS |Gs(τ1, ..., τm;A).

Suppose −∞ < a < b ≤ ∞ and A ⊂ Rn−1. For b < ∞, Z(a, b,A) (see (6.3.30)) is bounded. Now

note that there exists a lattice Γ̃ such that Γ < Γ̃, hence

#(αw ∩ Z(a, b,A)) ≤ #(αΓ̃w ∩ Z(a, b,A))

≤ C volHn(αZ(a, b,A))
(6.4.3)

which, by the left invariance of the volume is uniformly bounded from above in α. Thus #(αw ∩
Z(a, b,A)) is bounded from above uniformly in α ∈ G. This implies that all moments converge.

Therefore we are concerned with the case b =∞.

For that, let

δ(αw) := min
γ1,γ2∈Γ
γ1 6∈γ2Γw

d(αγ1w, αγ2w). (6.4.4)

Note, because α is an isometry and because G acts properly discontinuously

δ(αw) = min
γ∈Γ/Γw

d(w, γw) = δ(w) > 0. (6.4.5)

In order to prove Theorem 6.4.1 we �rst require three lemmas.

Lemma 6.4.2. Fix a ∈ R and a bounded subset A ⊂ Rn−1. There exist positive constant ζ, η such

that for all α ∈ G, r ∈ N

[#(αw ∩ Z(a,∞,A)) ≥ r]⇒ [#(αw ∩ Z(ζr − η,∞,A)) ≥ 1] (6.4.6)

Lemma 6.4.2 is a statement about the de�nition of Z. As the de�nition of Z is the same as in

[MV18] we do not include the proof (see [MV18, Lemma 10]).
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Lemma 6.4.3. Fix a bounded subset A ⊂ Rn−1 and ζ, η as in Lemma 6.4.2. Then

∫
Γ\G

#(α−1w ∩ Z(ζr − η,∞,A))dmBR(α) ≤ e(η−ζr)ϑ(n−1)/δΓ volHn(A)

#Γw(n− 1)
(6.4.7)

Proof. This statement follows quite straightfowardly from Proposition 6.3.3 and speci�cally (6.3.22).

To see this note

∫
Γ\G

#(α−1w ∩ Z(ζr − η,∞,A))dmBR(α) =
1

#Γw

∫
G

χZ(ζr−η,∞,A)(α
−1w)dmBR(α) (6.4.8)

Now if we apply (6.3.22) and then insert the volume of Z(ζr − η,∞,A):∫
Γ\G

#(α−1w ∩ Z(ζr − η,∞,A))dmBR(α) ≤ e(−n+1−δΓ)(ζr−η)

#Γw
volHn(g−1

w Z(ζr − η,∞,A)) (6.4.9)

=
eδΓ(η−ζr)ϑ(n−1)/δΓ volHn(A)

#Γw(n− 1)
. (6.4.10)

Lemma 6.4.4. Fix a bounded subset A ⊂ Rn−1 and ζ, η as in Lemma 6.4.2. Let λ be a probability

measure on Tl × Rn−1−l as in Theorem 6.3.2. Then, there exists a constant C such that

sup
t≥0

e(n−1−δΓ)t

∫
Tl×Rn−1−l

#(atn+(x)w ∩ Z(ζr − η,∞,A))dλ(x) ≤ Ce−ζrδΓ . (6.4.11)

Proof. The proof is the same as the proof of [MV18, Lemma 12]. Firstly by taking C > 0 large we may

assume λ is the Lesbegue measure on the support of λ. Then

∫
Tl×Rn−1−l

#(atn+(x)w ∩ Z(ζr − η,∞,A))χsupp(λ)(x)dx

=

∫
Tl×Rn−1−l

#(n+(x)w ∩ Z(ζr − η − t,∞, e−tA))χsupp(λ)(x)dx

≤ C volRn−1(e−tA)#{γ ∈ Γ∞\Γ/Γw, Im(γw) ≥ e−t+ζr−η}.

(6.4.12)

By (6.3.3) there exists a constant such that

#{γ ∈ Γ∞\Γ/Γw, Im(γw) ≥ e−t+ζr−η} ≤ C ′max{1, e−δΓ(t−ζr)}, (6.4.13)

from which (6.4.11) follows.

Proof of Theorem 6.4.1. To begin with we once more note that for s <∞, N∞t,s(Aj ,x;w) is uniformly

bounded and thus Es(r,A;w) = 0 for |r| := maxj rj large enough. From here Theorem 6.4.1 follows

from Theorem 6.3.2. Thus we set s =∞ for the remainder of the proof.

Set Ã =
⋃
j Aj
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∑
|r|≥R

Es(r,A;w) ≤
∞∑

r′=R

Es(r
′, Ã;w)

≤ Aλ
|mBMS |m

BR({α ∈ Γ\G : #(α−1w ∩ Z(0,∞, Ã) ≥ R})

≤ Aλ
|mBMS |m

BR({α ∈ Γ\G : #(α−1w ∩ Z(ζR− η,∞, Ã) ≥ 1})

(6.4.14)

where we have used Lemma 6.4.2. Now by Chebyshev's inequality,

∑
|r|≥R

Es(r,A;w) ≤ Aλ
|mBMS |

∫
Γ\G

#(α−1w ∩ Z(ζR− η,∞, Ã))dmBR(α). (6.4.15)

We can then use Lemma 6.4.3 to say

∑
|r|≥R

Es(r,A;w) ≤ C1e
−δΓζR (6.4.16)

from which analyticity follows.

Theorem 6.3.2 implies

lim
t→∞

e(n−1−δΓ)t

∫
Tl×Rn−1−l

m∏
j=1

1(0 < N∞t,s(Aj ,x;w) < R) exp(τjN∞t,s(Aj ,x;w))dλ(x)

=
Aλ

|mBMS |
R−1∑

r1,...,rm=1

exp

 m∑
j=1

τjrj

Es(r,A;w). (6.4.17)

Therefore it remains to show

lim
R→∞

lim sup
t→∞

e(n−1−δΓ)t

∣∣∣∣∣∣
∫
Tl×Rn−1−l

m∏
j=1

1(max
j
N∞t,s(Aj ,x;w) ≥ R, min

j
N∞t,s(Aj ,x;w) > 0)·

exp(τjN∞t,s(Aj ,x;w))dλ(x)
∣∣ = 0. (6.4.18)

Note that

e(n−1−δΓ)t

∣∣∣∣∣∣
∫
Tl×Rn−1−l

m∏
j=1

1(max
j
N∞t,s(Aj ,x;w) ≥ R) exp(τjN∞t,s(Aj ,x;w))dλ(x)

∣∣∣∣∣∣
≤ e(n−1−δΓ)t

∫
Tl×Rn−1−l

1(N∞t,s(A,x;w) ≥ R) exp(τ̃N∞t,s(Ã,x;w))dλ(x), (6.4.19)

where Ã =
⋃
j Aj and τ̃ =

∑
j Re+ τj . From there, performing the same decomposition as [MV18,

proof of Theorem 8] we get that the right hand side of (6.4.19) is less than or equal

(6.4.19) ≤ e(n−1−δΓ)t
∞∑
r=R

eτ̃r
∫
Tl×Rn−1−l

1(N∞t,s(Ã,x;w) ≥ r)dλ(x). (6.4.20)
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Now using Lemma 6.4.2 and Lemma 6.4.4 we can bound (6.4.20) (uniformly in t ≥ 0) by

(6.4.20) ≤
∞∑
r=R

Ceτ̃re−δΓζr. (6.4.21)

Thus, for τ̃ < δΓζ

lim
R→∞

∞∑
r=R

eτ̃re(n−1−δΓ)t

∫
Tl×Rn−1−l

1(N∞t,s(Ã,x;w) ≥ r)dλ(x) = 0 (6.4.22)

uniformly in t. Taking c0 = δΓζ proves Theorem 6.4.1.

6.5 Spherical Averages

We now present a theorem analogous to Chapter 5, Theorem 5.6.3 however we will replace the horo-

spherical average with a spherical average. This will allow us to move the observer to the interior and

replace the shrinking horospherical subset with a shrinking subset of the sphere centred on the observer.

Fix g ∈ G and recall the de�nition of the spherical Patterson-Sullivan measure, µPS
ΓgK

� Chapter 5,

(5.5.13). Moreover, given a subset U ⊂ Rn−1 and parameterisation R : x → K from U , as in Chapter

5, Section 5.5, recall the de�nition of ωPS
Γ,g,K

.

Theorem 6.5.1. Let U be a nonempty open subset and let R : U → K such that the map U 3 x 7→
0R−1(x) ∈ ∂Hn has nonsingular di�erential at almost all x ∈ U . Let λ be a compactly supported

Borel probability measure on U with continuous density. Then for any compactly supported, right

M -invariant, continuous f : U × Γ\G → R, and any family of right M -invariant, continuous ft :

U × Γ\G→ R all supported on a single compact set, with ft → f as t→∞ uniformly, for any g ∈ G

lim
t→∞

e(n−1−δΓ)t

∫
U
ft(x,ΓgR(x)at)dλ(x) =

1

|mBMS |

∫
U×Γ\G

λ′(x)f(x, α)dmBR(α)dωPS
Γ,g,K

(x). (6.5.1)

Proof. The proof is similar to [MS10, Corollary 5.4] but requires some signi�cant additions since we are

no longer working with the Haar measure, but rather fractal measures and the invariance properties

are not so nice.

Let x0 be a point where the map x 7→ R−1(x)0 has non-singular di�erential. We �rst show that

(6.5.1) holds for any Borel subset of an open set U0 ⊂ U containing x0. As R(x) ∈ K we can write

R(x) =

(
a(x) b(x)

−b′(x) a′(x)

)
(6.5.2)

where a(x),b(x) ∈ ∆n−2.

Case 1: Assume a(x0) 6= 0. In that case we write

R(x) =

(
a(x) b(x)

−b′(x) a′(x)

)

=

(
1 0

−b′(x)a(x)−1 1

)(
a(x) b(x)

0 b′(x)a(x)−1b(x) + a′(x)

)

=

(
1 0

x̃ 1

)(
a(x) b(x)

0 −x̃b(x) + a′(x)

)
,
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with x̃ := −b′(x)a−1(x) = R(x)−10. Note further that

R(x)at =

(
1 0

x̃ 1

)
at

(
a(x) e−tb(x)

0 −x̃b(x) + a′(x)

)
(6.5.3)

= n−(x̃)at

(
a(x) e−tb(x)

0 −x̃b(x) + a′(x)

)
. (6.5.4)

As the map x 7→ x0 has nonsingular di�erential at x0 there exists an open set V 3 x0 such that V ⊂ U
and x 7→ x0 is a di�eomorphism on V. We call the image under this map Ṽ (and adopt this notation

for all subsets of V).
Let U0 be an open neighbourhood of x0 such that U0 ⊂ V. For any Borel subset B ⊂ U0 we have

B̃ ⊂ Ũ0 ⊂ Ṽ. (6.5.5)

Assume λ(B) > 0 and let λ̃ be the push-forward measure on Rn−1 of 1
λ(B)λ |B by the map x 7→ x̃.

Note λ̃ has compact support and continuous density.

Let u be a continuous function with χŨ0
≤ u ≤ χṼ . With that let f̃t, f̃ : Rn−1 × Γ\G → R be the

continuous and compactly support functions

f̃t(x̃, α) = u(x̃)ft

(
x, α

(
a e−tb

0 −x̃b + a′

))
, x̃ ∈ Ṽ

f̃(x̃, α) = u(x̃)f

(
x, α

(
a 0

0 −x̃b + a′

))
, x̃ ∈ Ṽ

f̃t(x̃, α) = f̃(x̃, α) = 0, x̃ 6∈ Ṽ.

(6.5.6)

With that, we can apply Chapter 5, Theorem 5.6.3 to f̃t,

lim
t→∞

e(n−1−δΓ)t

∫
Rn−1

u(x̃)ft(x,ΓgR(x)at)dλ(x) = lim
t→∞

e(n−1−δΓ)t

∫
Rn−1

f̃t(x̃,Γgn−(x̃)at)dλ̃(x̃)

=
1

|mBMS |

∫
Rn−1×Γ\G

λ̃′(x̃)f̃(x̃, α)dmBR(α)dωPS
Γ,g,H

(x̃).(6.5.7)

To complete the proof we have the following claim.

Claim:

∫
Rn−1×Γ\G

λ̃′(x̃)f̃(x̃, α)dmBR(α)dωPS
Γ,g,H

(x̃) =

∫
U×Γ\G

u(x̃)λ′(x)f(x, α)dmBR(α)dωPS
Γ,g,K

(x) (6.5.8)

Accepting the claim for the moment, we have proved the Theorem 6.5.1 for a Borel subset B ⊂ U0.

The full Theorem 6.5.1 follows in this case by a covering argument which is the same as the one

presented in [MS10, Corollary 5.4].

Case 2: If a(x0) = 0, then we can write

R(x) =

(
a b

−b′ a′

)
=

(
0 1

−1 0

)(
b′ −a′
a b

)
=:

(
0 1

−1 0

)
R0(x) (6.5.9)
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where b(x0) 6= 0. Thus we can replace g in (6.5.7) with g

(
0 1

−1 0

)
. From here the proof follows

the same lines as Case 1.

Proof of Claim:

Step 1:

Expanding the left hand side of (6.5.8)

∫
Rn−1×Γ\G

λ̃′(x̃)f̃(x̃, α)dmBR(α)dωPS
Γ,g,H

(x̃)

=

∫
Rn−1×Γ\G

λ̃′(x̃)u(x̃)f(x, α
(
a 0
0 −x̃b+a′

)
)dmBR(α)dωPS

Γ,g,H
(x̃). (6.5.10)

We may write
(
a 0
0 −x̃b+a′

)
=
(
|a(x)| 0

0 |a(x)|−1

)
M(x) where M(x) ∈ M . Since f is right M -invariant,

M(x) can be ignored. Now note that the Burger-Roblin measure is 'quasi-invariant' for the geodesic

�ow (see [Moh13, (2)]) thus

∫
Rn−1×Γ\G

λ̃′(x̃)f̃(x̃, α)dmBR(α)dωPS
Γ,g,H

(x̃)

=

∫
Rn−1×Γ\G

|a(x)|(n−1−δΓ)λ̃′(x̃)u(x̃)f(x, α)dmBR(α)dωPS
Γ,g,H

(x̃). (6.5.11)

Step 2:

First we note that since R(x) ∈ K, aa + bb = 1 and thus

R(x) = n−(x̃)

(
a(x) b(x)

0 a∗(x)−1

)

Which we can further decompose

R(x) = n−(x̃)n+(b(x)a∗(x))

(
|a(x)| 0

0 |a(x)|−1

)(
a(x)
|a(x)| 0

0 a∗(x)−1

|a(x)|−1

)
,

= n−(x̃)A(x),

(6.5.12)

where we have de�ned A(x) := n+(b(x)a∗(x))
(
|a(x)| 0

0 |a(x)|−1

)( a(x)
|a(x)| 0

0
a∗(x)−1

|a(x)|−1

)
. Note that the last

matrix is in M . As we are working on K this last matrix can be ignored.

Now observe that by using (6.5.12)

gR(x)X+
i = lim

t→∞
gR(x)atXi

= gn−(x̃)X+
i .

Therefore using the de�nition of ωPS
Γ,g,H

(5.5.12) we can write
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dωPS
Γ,g,H

(x̃) = dµPS
ΓgH

(gn−(x̃))

= e
δΓβgn(x̃)X

+
i

(i,gn−(x̃)i)
dνi(gn−(x̃)X+

i )

= e
δΓβgR(x)X

+
i

(i,gR(x)A(x)−1i)
dνi(gR(x)X+

i ).

(6.5.13)

Note that the Busemann function is both M and N+ invariant (via right multiplication). Hence

βgR(x)X+
i

(i, gR(x)A(x)−1i) = βgR(x)X+
i

(
i, gR(x)

(
|a|−1 0

0 |a|

)
i

)
= ln |a|+ βgR(x)X+

i
(i, gR(x)i) (6.5.14)

Therefore

dωPS
Γ,g,H

(x̃) = |a(x)|δΓeδΓβgR(x)X
+
i

(i,gR(x)i)
dνi(gR(x)X+

i ) (6.5.15)

Step 3:

Inserting λ̃′(x̃) =
∣∣∂x̃
∂x

∣∣−1
λ′(x) into (6.5.11) gives

∫
Rn−1×Γ\G

λ̃′(x̃)f̃(x̃, α)dmBR(α)dωPS
Γ,g,H

(x̃)

=

∫
Rn−1×Γ\G

|a(x)|(n−1−δΓ)

∣∣∣∣∂x̃∂x
∣∣∣∣−1

λ′(x)u(x̃)f(x, α)dmBR(α)dωPS
Γ,g,H

(x̃). (6.5.16)

Now if we insert (6.5.15) into (6.5.16) we obtain

∫
Rn−1×Γ\G

λ̃′(x̃)f̃(x̃, α)dmBR(α)dωPS
Γ,g,H

(x̃)

=

∫
Rn−1×Γ\G

λ′(x)u(x̃)f(x, α)dmBR(α)

(∣∣∣∣∂x̃∂x
∣∣∣∣−1

|a(x)|n−1e
δΓβgR(x)X

+
i

(i,gR(x)i)
dνi(gR(x)X+

i )

)
.

(6.5.17)

Note that the �nal measure in the brackets is exactly the de�nition of dωPS
Γ,g,K

(x), (5.5.20). Proving

the claim.

We can extend Theorem 6.5.1 to sequences of characteristic functions in much the same way as for

Chapter 5, Corollary 5.6.4

Corollary 6.5.2. Under the assumptions of Theorem 6.5.1, for any g ∈ Γ\G and any bounded family

of subsets Et ⊂ U × Γ\G with boundary of ωPS
Γ,g,K

×mBR-measure 0
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lim inf
t→∞

e(n−1−δΓ)t

∫
U
χEt(x,ΓgR(x)at)dλ(x) ≥

1

|mBMS |

∫
U×Γ\G

λ′(x)χlim(inf Et)o(x, α)dmBR(α)dωPS
Γ,g,K

(x) (6.5.18)

and

lim sup
t→∞

e(n−1−δΓ)t

∫
U
χEt(x,ΓgR(x)at)dλ(x) ≤

1

|mBMS |

∫
U×Γ\G

λ′(x)χlim sup Et(x, α)dmBR(α)dωPS
Γ,g,K

(x) (6.5.19)

If furthermore λ×mBR gives zero measure to lim sup Et\ lim(inf Et)o

lim
t→∞

e(n−1−δΓ)t

∫
U
χEt(x,ΓgR(x)at)dλ(x) =

1

|mBMS |

∫
U×Γ\G

λ′(x)χlim sup Et(x, α)dmBR(α)dωPS
Γ,g,K

(x) (6.5.20)

6.6 Projection Statistics for Observers in Hn

De�ne the coordinate chart of a neighbourhood of the south pole of Sn−1
1 in Hn given by the map

x 7→ E(x)−1(e−1i) (6.6.1)

where

E(x) =

(
exp

(
0 x

−x′ 0

))
(6.6.2)

Note that by [MV18, (6.3)] the map x 7→ x̃ = E(x)−10 has a nonsingular di�erential for all |x| < π/2

hence we can apply Corollary 6.5.2.

De�ne the shrinking test set

Bt,s(A, 0) := {E(x)−1(e−1i) : x ∈ ρt,sA} (6.6.3)

where A ⊂ Rn−1 is a set wih �xed boundary of Lesbegue measure 0 and ρt,s > 0 is chosen such that

ω(Bt,s(A, 0)) =
volRn−1 A

(#Pt,s(gw))
n−1
δΓ

, (6.6.4)

thus, for large t, ρt,s ∼ ϑ−1/δΓe−t. Now we replace the random translations which we considered for

the cuspidal observer with random rotations on the sphere. Recall the map from Theorem 6.5.1 for an

open U ⊂ Rn−1, x 7→ R(x) and let

Bt,s(A,x) := R(x)−1(Bt,s(A, 0)). (6.6.5)

From which we de�ne the random variable
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Nt,s(A,x, gw) := #(Pt,s(gw) ∩ Bt,s(A,x)). (6.6.6)

Finally, let

Cλ,U :=

∫
U
λ′(x)dωPS

Γ,g,K
(x) (6.6.7)

With that we can describe the joint distribution for several test sets: A1, ...,Am:

Theorem 6.6.1. Let U ⊂ Rn−1 be a nonempty open subset and let R : U → K be a map as in Theorem

6.5.1. Let λ be a compactly supported Borel probability measure on U , absolutely continuous with respect

to Lebesgue and with continuous density. Then for every g ∈ G, s ∈ [0,∞], r = (r1, ...rm) ∈ Zm>0 and

A = A1 × ...×Am with Aj ⊂ Rn−1 bounded of Lesbegue measure 0:

lim
t→∞

e(n−1−δΓ)tλ({x ∈ U : Nt,s(Aj ,x; gw) = rj∀j}) = Es(r,A; gw) (6.6.8)

where Es(r,A; gw) is as in Theorem 6.3.2 with Aλ replaced by Cλ,U .

The proof of this theorem follows the same steps as Theorem 6.3.2 replacing the horospherical

averages with the spherical ones proved in the previous section and Lemma 6.3.4 replaced with the

following:

Lemma 6.6.2. Under the hypotheses of Theorem 6.6.1, given ε > 0 there exists a t0 <∞ and bounded

subsets A−j ⊂ A+
j ⊂ Rn−1 with boundary of measure 0, such that:

volRn−1(A+
j \ A−j ) < ε (6.6.9)

and for all t ≥ t0:

#(atR(x)atw ∩ Z(ε, s−,A−j )) ≤ Nt,s(Aj ,x; gw) ≤ #(atR(x)atw ∩ Z(−ε, s+ ε,A+
j )) (6.6.10)

with

s− =

s− ε (s <∞)

ε−1 (s =∞).
(6.6.11)

The proof of this Lemma is identical to that of [MV18, Lemma 16]. The one exception is the scaling

in the de�nition of ρt,s in (6.6.3). We therefore omit it.

Proof of Theorem 6.2.2. The proof is essentially an application of Theorem 6.6.1. Choose m = 1 and

A ⊂ Rn−1 to be a Euclidean ball of volume σ. Then set

Bt,s(A, 0) := {E(x)−1(e−1i) : x ∈ ρt,sA} = Dt,s(σ, e−1i, gw) (6.6.12)

De�ne the coordinate chart

U → Sn−1
1

x 7→ v = R(x)−1(e−1i)
(6.6.13)

for appropriate U and R(x). Consider
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Es(r, σ; gw) = lim
t→∞

e(n−1−δΓ)tλ({v ∈ Sn−1
1 : Nt,s(σ,v; gw) = r})

= lim
t→∞

e(n−1−δΓ)tλ({k ∈ K : Nt,s(σ, ke−1i; gw) = r})
(6.6.14)

Applying the parameterisation R : U → K (and thus restricting the measure λ so that the new density

is λ′χR(U)) and using Lemma 5.5.1

Es,U (r, σ; gw) = lim
t→∞

e(n−1−δΓ)t

∫
Rn−1

χU (x)λ′(R(x))χA(R(x))

∣∣∣∣∂x̃∂x
∣∣∣∣ |a(x)|−(n−1)dx (6.6.15)

Now applying Theorem 6.6.1 with λ̃′(x) = χU (x)λ′(R(x))
∣∣∂x̃
∂x

∣∣ |a(x)|−(n−1) implies

Es,U (r, σ; gw) = Cλ̃,UmBR({α ∈ G/Γ : #(α−1w ∩ Z0(s, σ)) = r}) (6.6.16)

With

Cλ̃,U =

∫
U
λ′(R(x))

∣∣∣∣∂x̃∂x
∣∣∣∣ |a(x)|−(n−1)dωPS

Γ,g,K
(x)

=

∫
K

χR(U)(k)λ′(k)dµPS
ΓgK

(k).

(6.6.17)

By choosing suitable U , partitioning Sn−1
1 we have thus proved Theorem 6.2.2. The continuity in s

and σ and (6.2.10) follow from (6.3.10).

6.6.1 Moment Generating Function

Much like in Section 6.4 the convergence result Theorem 6.5.1 gives rise to a convergence result for the

moment generating function for a non-cuspidal observer:

Gt,s(τ1, ..., τm;A) :=

∫
Sn−1

1(Nt,s(Aj ,v; gw) 6= 0;∀j) exp

 m∑
j=1

τjNt,s(Aj ,v; gw)

 dλ(v). (6.6.18)

Theorem 6.6.3. Let λ be a probability measure on Sn−1
1 absolutely continuous with respect to Lebesgue

and with continuous density. Then there exists a c0 > 0 such that for all Re+(τ1) + ...+ Re+(τm) < c0

and s ∈ (0,∞]:

lim
t→∞

e(n−1−δΓ)tGt,s(τ1, ..., τm;A) =
Cλ

|mBMS |Gs(τ1, ..., τm;A). (6.6.19)

The proof of Theorem 6.6.3 is very similar to the proof Theorem 6.4.1. The only di�erence is

that Lemma 6.4.2 and Lemma 6.4.4 are replaced with Lemma 6.6.4 and Lemma 6.6.5 respectively.

Recall the de�nition of the direction function ϕi(z) from the top of Section 6.2.1. For B ⊂ Sn−1
1 and

−∞ ≤ a < b <∞ de�ne the cone

C(a, b, B) := {z ∈ Hn \ {i}, ϕi(z) : a < d(i, z) ≤ b}. (6.6.20)
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Lemma 6.6.4. Fix a ∈ R and a bounded A ⊂ Rn−1. Then there exist positive constants ζ, η, t0 such

that for all g ∈ G, r ∈ N>0, t ≥ t0

[#(gw ∩ C(0, t,Bt,∞(A, 0))) ≥ r]⇒ [#(gw ∩ C(0, t− ζr + η,Bt,∞(A, 0))) ≥ 1] . (6.6.21)

As with Lemma 6.4.2, this theorem is stated identically to [MV18, Lemma 19], as the statement

concerns only the de�nition of the spherical cone C and this is the same in both papers we omit the

details.

Lemma 6.6.5. Fix a bounded set A ⊂ Rn−1 and ζ and η as in Lemma 6.6.4. Let λ be a Borel

probability measure on U as in Theorem 6.6.1. Then there exists a C such that for all r ≥ 0

sup
t>0

e(n−1−δΓ)t

∫
U

#(atR(x)gw ∩ C(0, t− ζr + η,Bt,∞(A, 0)))dλ(x) ≤ Ce−δΓζr. (6.6.22)

Proof. The proof of this lemma is identical to that of [MV18, Lemma 20] with the one exception that

we use (6.3.3) rather than the analogous asymptotics.

Replace Bt,∞(A, 0) with the ball Dt ⊂ Sn−1
1 contianing it of volume ω(Dt) = σ0e

−(n−1)t for all

t ≥ 0 and some σ0. We can bound this by

∫
U

#(atR(x)gw ∩ C(0, t− ζr + η,Bt,∞(A, 0)))dλ(x)

≤ C2

∫
K

#(atkgw ∩ C(0, t− ζr + η,Dt))dµHaarK (k). (6.6.23)

Using the de�nition of C(·, ·, ·),

C2

∫
K

#(atkgw ∩ C(0, t− ζr + η,Dt))dµHaarK (k) ≤ σ0e
−(n−1)t#{γ ∈ Γ/Γw, : d(gγw) ≤ et−ζr+η}.

(6.6.24)

By (6.3.3) we conclude that

∫
U

#(atR(x)gw ∩ C(0, t− ζr + η,Bt,∞(A, 0)))dλ(x) ≤ Cσ0e
−(n−1)t max(1, eδΓ(t−ζr)). (6.6.25)

Lemma 6.6.5 follows from here.

6.7 Applications to Moments, Two Point Correlation Function

and Gap Statistics

6.7.1 Convergence of Moments

Once again analogous to [MV18], we note that Theorem 6.4.1 and Theorem 6.6.3 each gives rise to a

corollary concerning the convergence of moments (we state them here as one):

For an observer on the boundary observer consider the mixed-moment:

136



M∞t,s(β1, ..., βm;A) :=

∫
Tn−1

m∏
j=1

(N∞t,s(Aj ,x;w))βjdλ(x) (6.7.1)

for all βj ∈ R≥0 with limit moment:

Ms(β1, ..., βm;A) :=

∣∣mBMS
∣∣

Aλ

∞∑
r1,...,rm=1

rβ1

1 ...rβmm Es(r,A;w). (6.7.2)

For a non-cuspidal observer we de�ne:

Mt,s(β1, ..., βm;A) :=

∫
Sn−1

1

m∏
j=1

(Nt,s(Aj ,x;w))βjdλ(x) (6.7.3)

for all βj ∈ R≥0 (the limit moment is the same). Hence the following corollary follows from Theorem

6.4.1 and Theorem 6.6.3.

Corollary 6.7.1. Let λ be a probability measure on Tn−1 absolutely continuous with respect to Lebesgue

and with bounded continuous density, and A = A1 × ...×Am with Aj ⊂ Rn−1 bounded with boundary

of Lebesgue measure zero. Then for all β1, ..., βm ∈ R≥0, s ∈ [0,∞]:

Ms(β1, ..., βm;A) <∞ (6.7.4)

lim
t→∞

e(n−1−δΓ)M∞t,s(β1, ..., βm;A) =
Aλ

|mBMS |Ms(β1, ..., βm;A). (6.7.5)

For an observer in Hn (6.7.5) is replaced with

lim
t→∞

e(n−1−δΓ)Mt,s(β1, ..., βm;A) =
Cλ

|mBMS |Ms(β1, ..., βm;A). (6.7.6)

With that, there is an explicit formula for each of these moments. For example, if we take β1 =

· · · = βm = 1, then

Ms(1, ..., 1;A) =

∣∣mBMS
∣∣

Aλ

∞∑
r1,...,rm

r1 . . . rmEs(r,A;w)

=

∫
G/Γ

∑
γ1,...,γm∈Γ/Γw

m∏
j=1

1(α−1γjw ∈ Z(s,Aj))dmBR(α).

(6.7.7)

6.7.2 Two-Point Correlation Function

We will work in the case of an observer on the boundary (thus w.l.o.g at ∞), note that this then applies

to the sphere packing case. The case of an observer in the interior can be treated similarly however

working on Sn−1
1 rather than Tn−1 makes the problem more complex. Furthermore we will work in

the special case of Tn−1 rather than Tl × Rn−1−l, however that case follows similarly. As we will use

it throughout recall that Br(x) ⊂ Tn−1 denotes the ball of size r around x.

Consider the points in P∞
t (w) and label them {xi}Nti=1 ⊂ Tn−1 where Nt = #P∞

t (w) ∼ c−1
0 eδΓt (in

the notation of Theorem 6.3.1 c−1
0 = ϑ|µPS

ΓgH
|). We consider �rst the two-point correlation function,

for f ∈ C0(Tn−1),

R2(f)(t) :=
c0
eδΓt

Nt∑
i,j=1,
i 6=j

f(et(xi − xj)). (6.7.8)
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As explained in [EBMV15, Appendix A], we can approximate f from above and below by a �nite linear

combination of functions of the form

f̃(z) =

p∑
k=1

γk

∫
x∈Tn−1

(
χR1,k

(z + x)χR2,k
(x)
)
dx (6.7.9)

where Ri,k are rectangular boxes. That is, in dimension 2 we can approximate the function by a Rie-

mann sum, in higher dimensions we approximate f by a linear combination of step functions supported

on boxes. In other words, for any ε, there exists a p < ∞, a set of boxes {Ri,k}pk=1, and bounded

constants {γuk }pk=1, {γlk}
p
k=1 such that

p∑
k=1

γlk

∫
x∈Tn−1

(
χR1,k

(z + x)χR2,k
(x
)
)dx ≤ f(z) ≤

p∑
k=1

γuk

∫
x∈Tn−1

(
χR1,k

(z + x)χR2,k
(x)
)
dx,

(6.7.10)

and

p∑
k=1

(γuk − γlk)

∫
x∈Tn−1

(
χR1,k

(z + x)χR2,k
(x)
)
dx ≤ ε. (6.7.11)

Hence we can approximate R2(f)(t) by functions of the form

c0e
(−δΓ)t

p∑
k=1

γk

∫
x∈Tn−1

 Nt∑
i,j=1,
i 6=j

χR1,k
(et(xi − xj) + x)χR2,k

(x)

 dx

= c0e
(n−1−δΓ)t

p∑
k=1

γk

∫
x∈Tn−1

 Nt∑
i,j=1,
i 6=j

χe−tR1,k
(xi + x)χe−tR2,k

(xj + x)

 dx (6.7.12)

= c0e
(n−1−δΓ)t

p∑
k=1

γk

∫
x∈Tn−1

(
N∞t,∞(R1,k,x;w)N∞t,∞(R2,k,x;w)−N∞t,∞(R1,k ∩R2,k,x;w)

)
dx.

Using Corollary 6.7.1 we know

lim
t→∞

c0e
(n−1−δΓ)t

p∑
k=1

γk

∫
x∈Tn−1

(
N∞t,∞(R1,k,x;w)N∞t,∞(R2,k,x;w)−N∞t,∞(R1,k ∩R2,k,x;w)

)
dx

=
Aλc0
|mBMS |

p∑
k=1

(γk(M∞(1, 1;R1,k ×R2,k)−M∞(1,R1,k ∩R2,k))) . (6.7.13)

If the sets A have �nite area, then for any β1, . . . βn, M∞(β1, . . . , βn,A) is �nite. Therefore for any

% > 0 there exist p, {Rk}pk=1, {γuk }
p
k=1, {γuk }

p
k=1 such that

p∑
k=1

(
(γuk − γlk)(M∞(1, 1;R1,k ×R2,k)−M∞(1,R1,k ∩R2,k))

)
≤ %. (6.7.14)

Hence the approximations from above and below converge in the limit t→∞ as well. Hence the limit

limt→∞R2(f)(t) exists. By an approximation argument if f is an indicator function limt→∞R2(f)(t)
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also exists. Thus

R2(ξ) := lim
t→∞

c0
eδΓt

Nt∑
i,j=1, i 6=j

1
(
xj ∈ Bξe−t(xi)

)
(6.7.15)

has a limit for every �xed ξ. Thus, as in [MV18] (for lattices), we have

R2(ξ) = lim
ε→0

c

εn−1
[M∞(1, 1;Bξ(0)× Bε(0))−M∞(1;Bε(0))] (6.7.16)

where we have again used Corollary 6.7.1 and set c = c0
Aλ

|mBMS | .

Moreover, using (6.7.7), we can write

M∞(1, 1;Bξ(0)× Bε(0))−M∞(1;Bε(0)) =
1

#Γw

∑
γ∈Γ/Γw

γ 6=Γw

Fγ,ε(ϑ
−1ξ) (6.7.17)

where

Fγ,ε(ϑ
−1ξ) :=

∫
G

1(α−1γw ∈ Z(∞,Bξ(0)))1(α−1w ∈ Z(∞,Bε(0)))dmBR(α), (6.7.18)

here Br(0) is the ball of radius r around 0 in ∂Hn.
Applying the same Iwasawa decomposition and change of coordinates as was done in the proof of

Proposition 6.3.3 gives

Fγ,ε(ϑ
−1ξ) =

∫
KAN+

1(gwα
−1g−1

w γw ∈ Z(∞,Bξ(0)))·

1(gwn+a−rki ∈ Z(∞,Bε(0)))e−δΓrdµHaarN+
drdνwi (kX−i ), (6.7.19)

recall νw is the conformal density associated to the subgroup Γw (see the proof of Proposition 6.3.3).

Note that gw ∈ G/K ∼= AN+ which we write as arwn+(xw). Hence

gwn+(x)a−rki = gwa−ri + e−rwx. (6.7.20)

Hence

Fγ,ε(ϑ
−1ξ) =

∫
KARn−1

1(gwa−rg
−1
w γw ∈ Z(∞,Bξ(0))− xe−rw)·

1(gwa−ri ∈ Z(∞,Bε(0))− xe−rw)e−δΓrdxdrdνwi (kX−i ), (6.7.21)

Hence in the limit as ε→ 0:

lim
ε→0

c

εn−1
Fγ,ε(ϑ

−1ξ) = c

∫
KA

1(arw−rkg
−1
w γw ∈ Z(∞,Bξ(0)))·

1(rw − r > 0)e(n−1)rw−δΓrdrdνwi (kX−i ), (6.7.22)

Simplifying then gives

lim
ε→0

c

εn−1
Fγ,ε(ϑ

−1ξ) = c

∫
KR>0

1(a−rkg
−1
w γw ∈ Z(∞,Bξ(0)))e(n−1−δΓ)rw−δΓrdrdνwi (kX−i ). (6.7.23)

139



Hence

R2(ξ) =
2c

#Γw

∑
γ∈Γ/Γw

γ 6=Γw

∫
KR>0

1(a−rkg
−1
w γw ∈ Z(∞,Bξ(0)))e(n−1−δΓ)rw−δΓrdrdνwi (kX−i ). (6.7.24)

Now, to evaluate whether R2 is continuous in ξ, take ξ > ξ′ and consider the di�erence

|R2(ξ)−R2(ξ′)| = 2c

#Γw

∑
γ∈Γ/Γw

γ 6=Γw

∫
KR>0

1(a−rkg
−1
w γw ∈ Z(∞,Bξ(0) \ Bξ′(0)))·

e(n−1−δΓ)rw−δΓrdrdνwi (kX−i ). (6.7.25)

Suppose we are working in dimension n = 2. In that case Z(∞,Bξ(0) \ Bξ′(0)) converges to 2 vertical

line segments. Hence in the limit as ξ′ → ξ for �xed r there are at most 4 rotations such that the point

hits these four line segments. However since the measure νi is non-atomic (see [Sul84]), the measure of

these four rotations must be 0 mass. Hence the di�erence in the left hand side of (6.7.25) converges to

0 and the two-point correlation function is continuous.

A similar argument implies, in general dimension n > 2, if δΓ > n−2 then the di�erence in (6.7.25)

also goes to 0 and the two-point correlation function is continuous. The argument is essentially the

same: the projection of the set Z(∞,Bξ(0) \ Bξ′(0)) to the boundary will be an (n− 2)-sphere. Hence

since the dimension of the limit set is larger than n − 2 and the conformal density νi is supported on

the limit set (and �nite), the above di�erence must go to 0.

However, if δΓ ≤ n− 2 the continuity of R2 will depend on the geometry of the limit set.

6.7.3 Nearest Neighbour Statistics

We will now use a similar method as for the two-point correlation function to write down an explicit

formula for the nearest neighbour statistics of the point set P∞
t (w). In Subsection 6.7.4 we will use a

trick which works only in 2 dimensions to say something more about the gap statistics (i.e about the

nearest neighbour to the right statistics) however here we continue to work in general dimension n.

De�ne the limiting cumulative nearest neighbour distribution to be

J (L) := lim
t→∞

Jt(L) := lim
t→∞

1

Nt

Nt∑
i=1

1(#(BLe−t(xi) ∩ P∞
t (w)) = 1), (6.7.26)

that is, we want to calculate the proportion of points xi such that a ball of radius Le−t contains no

other points of P∞
t (w).

To determine the limiting behaviour we will perform a similar trick as was used for the two-point

correlation function. Again, writing Nt ∼ c−1
0 eδΓt

lim
t→∞

Jt(L) = lim
t→∞

lim
ε→0

c0
etδΓεn−1

∫
x∈Tn−1

1(#(Bε(x) ∩ P∞
t (w)) = 1)1(#(BLe−t(x) ∩ P∞

t (w)) = 1)dx

= lim
t→∞

lim
ε→0

c0e
(n−1−δΓ)t

εn−1

∫
x∈Tn−1

1(#(Bεe−t(x) ∩ P∞
t (w)) = 1)1(#(BLe−t(x) ∩ P∞

t (w) = 1)dx.

(6.7.27)

Using the fact that our test set Be−tL(x) and Be−tε(x) have the same scaling as Bt,s (6.3.4) together
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with the asymptotic #P∞
t (w) ∼ c−1

0 eδΓt we can apply Theorem 6.3.2 to take the limit t→∞ (and as

above, using the linearity in ε to exchange the limits), giving

J (L) = lim
ε→0

c0
εn−1

E∞((1, 1),Bε(0)× BL(0);w), (6.7.28)

which is then equal

J (L) = lim
ε→0

ϑ

|mBMS |εn−1
mBR ({α ∈ Γ\G : #(α−1w ∩ Z(∞,Bε(0))) = 1, #(α−1w ∩ Z(∞,BL(0))) = 1}

)
= lim

ε→0

ϑ

|mBMS |εn−1

∫
G

1(α−1w ∈ Z(∞,Bε(0)))
∏

γ∈Γ/Γw
γ 6=Γw

(
1− 1(α−1γw ∈ Z(∞,BL(0)))

)
dmBR(α)

Hence, using the same trick as we used to prove (6.7.19) we can write this

J (L) =
ϑ

|mBMS |

∫
KR>0

∏
γ∈Γ/Γw

γ 6=Γw

(
1− 1(a−rkg

−1
w γw ∈ Z(∞,BL(0)))

)
e(n−1−δΓ)rweδΓrdrdνwi (kX−i ).

(6.7.29)

6.7.4 Gap Statistics

In this last section we prove, for the discrete subgroups considered here, the same result as is found in

[Zha17] for Schottky groups. That is, we prove Theorem 6.1.1 from the introduction. In the notation

of the introduction de�ne the gap distribution to be

Pt(s) :=
1

Nt

Nt∑
j=1

δ(s− sj) (6.7.30)

where δ denotes a Dirac mass at the origin.

Using the same argument we used above for the nearest neighbour distribution we can write

F (L) :=

∫ ∞
L

P (s)ds

= lim
t→∞

1

Nt

Nt∑
i=1

1(#([xi,xi + Let) ∩ P∞t (w)) = 1)

= lim
ε→0

c0
ε
E∞ ((1, 1), [0, ε)× [0, L);w)

=
ϑ

|mBMS |

∫
KR>0

∏
γ∈Γ/Γw

γ 6=Γw

(
1(a−rkg

−1
w γw 6∈ Z(∞, [0, L)))

)
e(1−δΓ)rweδΓrdrdνwi (kX−i )

(6.7.31)

A classical argument (explained in some detail in [Mar07]) shows that the gap distribution is the

derivative of the Es(r, σ,w) for r = 0. As we have not treated the case r = 0 let

E(L,w) :=

∞∑
r=1

Es(r, L;w). (6.7.32)

Thus the following lemma is a direct consequence of the argument in [Mar07], where we write Es(0, L;w) =

1− E(L,w)

Lemma 6.7.2. In the present setting, for any L > 0
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F (L) :=

∫ ∞
L

P (s)ds = − d

dL
E(L,w). (6.7.33)

With that we prove Theorem 6.1.1 restated here for convenience.

Theorem 6.1.1 . The limiting function F (L) exists, is monotone decreasing and continuous (including

at 0). Moreover if the fundamental domain of Γ is bounded by non-intersecting half-circles and the

boundary ∂H2 then there exists an L0 > 0 such that

F (L) = 1 (6.7.34)

for all L < L0 (i.e 1− F is supported away from the origin).

Proof. The calculation above Lemma 6.7.2 establishes the existence of F and the fact that it is monotone

decreasing follows from Lemma 6.7.2.

Moreover the argument for continuity follows from the comment at the end of Section 6.7.2 for the

two point correlation function. I.e for L > L′ we consider the di�erence

F (L′)− F (L) =
ϑ

|mBMS |

∫
KR>0

∏
γ∈Γ/Γw

γ 6=Γw

(
1(a−rkg

−1
w γw ∈ Z(∞, [L′, L)))

)
e(1−δΓ)rweδΓrdrdνwi (kX−i ).

(6.7.35)

Again, as L → L′ the indicator function inside the integral becomes the indicator function that the

point a−rkg−1
w γw lies on a line segment. Since the line segment is transversal to the rotation, for ar

�xed this can only happen for (at most) 2 rotations. Since νi is non-atomic this event has measure 0.

Suppose the fundamental domain for Γ is composed of non-intersecting half-circles. To prove that

the cumulative gap distribution is supported as described we use the argument in [Zha19]. Namely:

suppose x1(t) and x2(t) are neighbours at t and that each xi is associated to a point in H2, γiw.

For large t we can assume the associated γ1w and γ2w belong to adjacent half-circles. Because these

half-circles have �nite radius, the distance between x1(t) and x2(t) is of the order e−t. Which gives a

constant order with our scaling.

6.7.5 Explicit Calculations for the Gap Distribution

In (6.7.31) we used the Iwasawa decomposition and w = gwi. In fact, since i is K invariant, we had a

choice of gw ∈ G. Thus in the equation

F (L) =
ϑ

|mBMS |

∫
KR>0

∏
γ∈Γ/Γw

γ 6=Γw

1(a−rkg
−1
w γi 6∈ Z(∞, [0, L)))eδΓre(1−δΓ)rwdrdνwi (kX−i ). (6.7.36)

choose g−1
w such that, in polar coordinates g−1

w γi = κ(γ)(el(γ)i) where l(γ) = d(w, γw) and κ(γ) is a

rotation. In which case (6.7.36) becomes

F (L) =
ϑ

|mBMS |

∫
KR>0

∏
γ∈Γ/Γw

γ 6=Γw

1(a−rkκ(γ)(el(γ)i) 6∈ Z(∞, [0, L)))eδΓre(1−δΓ)rwdrdνwi (kX−i ). (6.7.37)
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Unfortunately we cannot remove the factor κ(γ), while the conformal density is invariant under the

action of Γ the terms in the product inside the integral are not independent. However, given the group

element, κ(γ) and l(γ) are explicit. We can now use a change of variables as in the appendix of [MV18]

with

k = k(θ) =

(
cos θ − sin θ

sin θ cos θ

)
. (6.7.38)

With that, and writing κ(γ) = k(θ(γ)), the constraint

D(γ) := {(r, θ) : a−rk(θ + θ(γ))(el(γ)i) ∈ Z(∞, [0, L))} (6.7.39)

is equal

E(γ) =

{
(r, θ) :

e−r

sinh l(γ) cos 2(θ + θ(γ))− cosh l(γ)
> 1,

0 ≤ e−r sinh l(γ) sin 2(θ + θ(γ))

cosh l(γ)− sinh l(γ) cos 2(θ + θ(γ))
< ϑ−1/δΓL

}
. (6.7.40)

In which case we have the following theorem

Theorem 6.7.3. For L > 0, the cumulative gap distribution can be written

F (L) =
ϑe(1−δΓ)rw

|mBMS |

∫ ∞
0

eδΓr
∫ π

0

∏
γ∈Γ/Γw

γ 6=Γw

(
1− χE(γ)(r, θ)

)
dνwi (θ)dr. (6.7.41)

Given γ one can compute E(γ) explicitly, however the conformal density νi is de�ned as the weak

limit of a sequence of measures. When Γ is a lattice, (6.7.41) can be written

F (L) =
ϑ

volH2(H2/Γ)

∫ ∞
0

er
∫ π

0

∏
γ∈Γ/Γw

γ 6=Γw

(
1− χE(γ)(r, θ)

)
dθdr. (6.7.42)

To our knowledge, even in the lattice case, this is the �rst general explicit formula for the gap

distribution. The gap distribution has been calculated explicitly for speci�c examples (notably [RZ17]

who study the problem in certain circle packings). (6.7.42) can be derived from [MV18], where the

authors perform a similar calculation for the pair correlation.

Finally one can ask about the derivative of the cumulative gap distribution. Given γ, L, and θ let

e−r(γ,L,θ) :=
ϑ−1/δΓL(cosh(l(γ))− sinh(l(γ))) cos(2(θ + θ(γ)))

sinh(l(γ)) sin(2(θ + θ(γ)))
, (6.7.43)

let rmin(L, θ) = minγ∈Γ/Γw,γ 6=Γw
r(γ, L, θ) and let γmax(L, θ) be the γ maximising that equation. In

this case, recall that P (L) = −F ′(L), then

P (L) =
ϑe(1−δΓ)rw

|mBMS |

∫ π

0

1(rmin(L, θ) < 0)e−δΓrmin(L,θ)
∏

γ∈Γ/Γw

γmax(L,θ)6=γ 6=Γw

(
1− χE(γ)(rmin(L, θ), θ)

)
dνwi (θ).

(6.7.44)

The conditions on θ are now equivalent to
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I(γ) =

{
θ ∈ [0, π) :

e−rmin(L,θ)

sinh(l(γ)) cos(θ + θ(γ))− cosh(l(γ))
< 1, rmin(L, θ) < 0

}
(6.7.45)

In which case

P (L) =
ϑe(1−δΓ)rw

|mBMS |

∫ π

0

e−δΓrmin(L,θ)
∏

γ∈Γ/Γw

γmax(L,θ)6=γ 6=Γw

χI(γ)(θ)dν
w
i (θ). (6.7.46)
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Chapter 7

Generalised Farey Sequences

7.1 Introduction

Consider the classical Farey sequence of height Q:

F̃Q :=

{
p

q
∈ [0, 1) : (p, q) ∈ Ẑ2, 0 < q < Q

}
, (7.1.1)

where Ẑ2 denotes the set of primitive vectors in Z2. Naturally this sequence is a fundamental object

in number theory dating back to 1802 with its introduction by Haros and subsequent work by Farey

and Cauchy. For example, this sequence has connections to the Riemann hypothesis (see for example

[LM17, Yos98]) and plays a fundamental role in Diophantine approximation.

In this chapter we generalise the Farey sequence. For concreteness, one example of such a generalised

Farey sequence is given by the following: throughout this chapter we use the standard continued fraction

notation

[a0; a1, . . . an] = a0 +
1

a1 + 1
a2+ ...

an

(7.1.2)

(see for example [Khi03]) then denote

Q4 := {[0; a1, . . . ak] : k ∈ N , ai ∈ 4Z6=0 ∀i} , (7.1.3)

that is, rationals whose continued fraction expansions involve only multiples (possibly negative) of 4.

The generalised Farey sequence in this context is

F̂Q = {p
q
∈ Q4 : 0 < q < Q, gcd(p, q) = 1}. (7.1.4)

Thus, p ∈ Z and q ∈ N. We return to this example in Section 7.1.1 where we give a geometric

interpretation of these sets. To see some of the points of Q4 see Figure 7.1 on page 146.

There is a geometric interpretation of the classical Farey sequence which will play an integral role

in this paper. Let G := PSL(2,R) and Λ := PSL(2,Z) < G. Consider the action of G on H via Möbius

transformations (see Chapter 5, Section 5.1.1). As Λ is a lattice, the Λ-action on H tessellates H into

disjoint fundamental domains. These fundamental domains are not compact as each one contains a

point on the boundary ∂H = R∪ {∞}, at the end of a cusp. The set of such cuspidal points is exactly

(Λ/Λ∞)∞ = Q (7.1.5)
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Figure 7.1: Above we show some of the points in Q4. The graph was generated as

follows: we generated all words of length 10 (with respect to the two generators

given in (7.1.7) applied to ∞). Then separated the interval [0, 1) into bins of size

10−5. The above is a bar chart showing the number of points in each bin. Note

that the sequence is supported on a fractal subset of the interval. This does not

show F̂Q (as the cut-off is with respect to word length), however will suffice for a

qualitative picture.

(we use Gx to denote the stabiliser of x in a group G). That is, the set of cuspidal points can be

written as the Λ-orbit of the point at∞ ∈ ∂H - this orbit corresponds to the rationals. Thus the Farey

sequence of height Q can be written

F̃Q =

{
p

q
∈ (Λ/Λ∞)∞ : (p, q) ∈ Ẑ2, 0 < q < Q

}
(7.1.6)

i.e the points in the Λ-orbit of the point at ∞ ∈ ∂H with denominator less than Q. The goal of this

chapter is to consider a generalisation of this setup, where we replace Λ by a general (possibly in�nite

covolume) discrete subgroup. For our example (7.1.4) the corresponding subgroup is the Hecke group

Γ̂ =

〈(
1 4

0 1

)
,

(
0 1

−1 0

)〉
. (7.1.7)

Most of our theorems hold for general subgroups. Hence, let Γ < PSL(2,R) be a general non-

elementary, �nitely generated subgroup in G with critical exponent δΓ (see Chapter 5, Section 5.5). In

our context 1/2 < δΓ ≤ 1. Furthermore assume Γ has a cusp at ∞ and let Γ∞ = (Γ/Γ∞)∞ ⊂ ∂H
denote the orbit of∞. Hence, Γ∞ is the set of the cusps located at points on the boundary, isomorphic

to ∞. Finally we assume that Γ∞ = 〈( 1 1
0 1 )〉. I.e that the fundamental domain is periodic with period

1 along the real line. Note that Γ̂ has period 4. A scaling could be applied to give it period 1 (in order

to preserve the continued fraction description - and since it serves only as an example - we refrain from

doing so).

Let

Z := {(p, q) ∈ (0, 1)Γ} ⊂ R2, (7.1.8)
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denote the analogue of primitive vectors and de�ne

FQ :=

{
p

q
∈ [0, 1) : (p, q) ∈ Z, 0 < q < Q

}
=

{
p

q
∈ Γ∞ : 0 ≤ p < q < Q

}
.

(7.1.9)

FQ is the primary object of study for this chapter, which we call a generalised Farey sequence (or gFs).

In Subsection 7.2.1 we show that asymptotically there exists a constant 0 < cΓ <∞ such that

|FQ| ∼ cΓQ2δΓ . (7.1.10)

The goal of the chapter is to establish the Theorems in Sections 7.3 - 7.8 which we describe brie�y

here. Section 7.2 presents some preliminary theorems which we make use of later. Subsequently the

main results of the chapter are:

• Counting primitive points: In Section 7.3 we show how the equidistribution result of Oh-Shah

[OS13] stated in Chapter 5 Section 5.6 can be used to prove a technical theorem about counting

primitive points in a sheared set (Theorem 7.3.3) and another technical theorem about counting

primitive points in a rotated set (Theorem 7.3.5). These theorems generalise the analogous result

for lattices in [MS10].

• Diophantine approximation by parabolics: We prove two theorems in metric Diophantine

approximation in Fuchsian groups. These are the analogues of the Erd®s-Sz¶sz-Turán and Kesten

problems in the in�nite volume setting. In the classical setting, these problems were solved using

homogeneous dynamics by Marklof in [Mar00, Theorem 4.4] and Athreya and Ghosh [AG18].

Moreover Xiong and Zaharescu [XZ06] and Boca [Boc08] solved the problem using number the-

oretic methods (by applying the BCZ map). Extending classical results in metric Diophantine

approximation to the setting of Fuchsian groups is not new and was done by Patterson [Pat76]

who proved Dirichlet and Khintchine type theorems for such parabolic points. More recently, for

example Beresnevich et. al. [BGSV18] studied the equivalent problems for Kleinian groups.

In the same section we show that Theorem 7.3.5 allows us to prove that there is a limiting

distribution for the direction of primitive points, Z, as viewed from the origin. This problem has

not been addressed in the Euclidean setting except for lattices ([MS10]).

• Equidistribution of gFs: Theorem 7.5.1 states that the gFs equidistributes over a horospher-

ical section. In a series of papers ([Mar10], [Mar13]), Marklof showed that the (classical) Farey

sequence, when embedded into a horosphere equidistributes on a particular section. This equidis-

tribution theorem was then used to show that the spatial statistics of the Farey sequence converge.

This was followed by work of Athreya and Cheung [AC14] who (in dimension d = 2) were able

to construct a Poincaré section for the horocycle �ow such that the return time map generates

Farey points. We restrict our attention to proving the equidistribution result in this more general

setting. Heersink [Hee19] generalised [Mar10] to certain congruence subgroups of Λ (still in the

�nite covolume setting). Furthermore, the method of [AC14] has been generalised to more general

subgroups such as Hecke triangle groups (e.g [Tah19]). However we will not discuss this approach

here.

• Convergence of local statistics: Theorem 7.6.1, as a consequence of Theorem 7.3.3 and

Theorem 7.5.1, states that two sorts of local statistics converge. A corollary of one of these is
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that the limiting gap distribution exists. This distribution in the classical setting was originally

calculated by Hall [Hal70] (and is known as the Hall distribution) and has been studied by many

people since. The Hall distribution was originally put into the context of ergodic theory in

[BCZ01].

• An explicit formula for the gap distribution: In Section 7.7 we restrict to the example

Γ̂. For this example we show that the limiting gap distribution can be explicitly written as an

integral over a compact region. While the integral involves a fractal measure this is the �rst time

such an explicit formula has been calculated in the in�nite volume setting. There is much interest

in �nding explicit formula for limiting gap distributions for projected lattice point sets and the

in�nite covolume analogue. The only instance (to our knowledge) of such explicit examples are

those covered in [RZ17]. In that paper Rudnick and Zhang used the relation between Farey points

and Ford circles to produce examples for which they could express the limiting gap distribution

explicitly (recovering, in one instance, the Hall distribution). In Section 7.1.1 we show that the

Farey sequence for Γ̂ can also be used to generate a (sparse) Ford Con�guration which leads to

our result.

• Ergodicity of a new Gauss-like measure: Continuing to work with the example Γ̂, we show

that a new fractal measure takes on the role of the Gauss measure (Theorem 7.8.2). That is,

this measure is ergodic for the Gauss map. As an application, using this ergodicity we show that

the Gauss-Kuzmin statistics converge to an explicit function. This section takes inspiration from

[Ser85] where Series showed how the Gauss measure can be viewed as a projection of the Haar

measure on a particular cross-section.

7.1.1 Ford Con�gurations for Γ̂

To give some further intuition for generalised Farey sequences, in this section we show that the gFs for

Γ̂ admits a simple geometric interpretation which we shall return to in Section 7.7. Returning to our

example F̂Q � (7.1.4), note that

Γ̂∞ = Q4. (7.1.11)

To see this, simply note that the two generators in (7.1.7) correspond to the maps f(x) = x + 4 and

g(x) = −1
x which generate these continued fractions.

Consider the action of Γ̂ on an initial con�guration of circles in the closure H:

K0 := (C0, C1, C2, C3)

C0 = R , C1 = R + i , C2 = C(i/2, 1/2) , C3 = C(i/2 + 4, 1/2)
(7.1.12)

where C(z, r) is a circle located at z ∈ H of radius r. We are interested in the resulting sparse Ford

con�guration, K := Γ̂K0, shown in Figure 7.2. Any group element in Γ̂ can be decomposed into a

composition of circle inversions through vertical lines at 0 and 4 and C(0, 1) and C(4, 1) (these are also

shown in Figure 7.2).

Let AT denote the set of tangencies with C0 in [0, 1] such that the circle tangent to C0 has diameter

larger than T−1. The way we have constructed the packing K, these tangencies are exactly the cuspidal
points of the group (i.e the tangencies are located on the orbit Γ̂∞). Moreover one can easily show

if a circle in this packing is tangent to C0 at p/q in reduced form then the diameter is given by 1/q2.

Hence AQ2 = F̂Q, i.e the set of tangencies of circles with diameter greater than Q2 is exactly the gFs
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C1

C0

C3C2

0
1
4 1 2 3 4

Figure 7.2: Diagram of a portion of K. The dotted lines represent the circle

inversions corresponding to the subgroup Γ̂. The white circles (including the x-axis
and horizontal line above) represent the initial configuration K0 = (C0, C1, C2, C3).
The filled-in circles represent some of the images.

of height Q.

Given an interval I ⊂ [0, 1], let AT,I = AT ∩ I. We label the elements of AT = {xjT,I}
#AT,I
j=1 such

that xjT,I < xj+1
T,I for all j. The gap distribution is then

F̂T,I(s) :=
#
{
i ∈ [1,#AT,I) : T (xj+1

T,I − xjT,I) ≤ s
}

T δΓ̂
(7.1.13)

for s > 0.

In Section 7.7 we show that the limiting gap distribution can be explicitly calculated as a sum of

integrals over compact regions involving a fractal measure presented below. This allows us to show

that all gaps have size bigger than s < 2 (not just in the limiting case), and to say something more

about the regularity of F and the growth of the derivative.

Remark. Of course di�erent subgroups generate di�erent sparse Ford con�gurations and have other

interesting relations to continued fractions (and hence Diophantine approximation). We only address

this (simplest) example here. That said, our methods generalise without additional e�ort to any Hecke

subgroup of the form Γc =
〈
( 0 c

0 1 ),
(

0 −1
1 0

)〉
for c ∈ R>2 (the corresponding continued fraction description

will involve c rather than 4 and this loses some elegance for non-integer c).

7.2 Preliminary Results

7.2.1 Proof of (7.1.10)

Proof of (7.1.10). A rational a
b belongs to FQ if and only if there exists a γ = ( a ∗b ∗ ) ∈ Γ/Γ∞ and

0 < a < b < Q. Using the standard Iwasawa decomposition one can write

γ =

(
cos θ − sin θ

sin θ cos θ

)(
y1/2 0

0 y−1/2

)
(7.2.1)

where a = cos θy1/2 and b = sin θy1/2. Therefore the problem is equivalent to counting

# {γ ∈ Γ/Γ∞ : (θ, y) ∈ Ω} , (7.2.2)

where Ω := {(θ, y) : 0 < y1/2 cos θ < y1/2 sin θ < Q}. Counting the asymptotic number of points in

such a sector is the content of [BKS10] (see Theorem 7.7.5 below).
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Below, to prove Proposition 7.7.6 we perform this calculation more carefully (and will calculate the

constant in that context, thus we leave the details till then).

7.2.2 Gauss-Type Decomposition

Let My :=
(
y−1

2 0
y1 y2

)
, for y ∈ R2. In what follows we will need the following decomposition of T 1(H).

For the remainder of the chapter, to simplify notation we let dµPS(x) := dµPSN−(n−(x)).

Proposition 7.2.1. For any φ ∈ Cc(T 1(H)) and any set A ⊂ R2

∫
N−{My:y∈A }

φ(hMy)dmBR(hMy) = 2

∫
R×A

φ(n−(x)My)y2δΓ−2
2 dy2dy1dµ

PS(x). (7.2.3)

Proof. The goal is to understand the forwards and backwards orbits of u = hMyXi. First we note that

u− = (hMyXi)
− = hX−i (7.2.4)

(this follows from the de�nition of the stable and unstable directions of the geodesic �ow). Hence we

can write:

s := βu−(i, π(u))

= βX−i
(h−1i,Myi).

(7.2.5)

Inserting the de�nition of the Busemann function and using its invariance properties then gives

s = lim
t→∞

d(h−1i, a−ti)− d(Myi, a−ti)

= lim
t→∞

d(i, a−ti)− d(Myi, a−ti) + d(h−1i, a−ti)− d(i, a−ti).
(7.2.6)

Now setting r0(h) = βhX−i
(i, hi) gives

s = lim
t→∞

t− d(
(
y−1

2 0
0 y2

)
i, a−ti) + r0(h)

= lim
t→∞

t− t+ 2 ln y2 + r0(h)

= 2 ln y2 + r0(h).

(7.2.7)

Thus

ds =
2dy2

y2
. (7.2.8)

Note also, by de�nition

eδΓr0(n−(x))dνi(n−(x)Xi) = dµPS(x). (7.2.9)

Now consider the measure

dλg(z) = e
β(hMyXi)

+ (i,hMyi)dmi((hMyXi)
+), (7.2.10)

with g = h
(
y−1

2 0
0 y2

)
and z = n+(y−1

2 y1). Using the G-invariance of m we can write dλg(z) as
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= e
β(gzXi)

+ (i,gzi)
dmi((gzXi)

+)

= e
β(gzXi)

+ (i,gzi)
dmg−1i((zXi)

+)
(7.2.11)

and then using the invariance properties of conformal densities (Chapter 5, (5.5.5)):

= e
(β(gzXi)

+ (i,gzi)+β(zXi)
+ (i,g−1i))

dmi((zXi)
+)

= e
β(zXi)

+ (i,zi)
dmi((zXi)

+).
(7.2.12)

Hence dλg = dλe and in particular λe is N
+-invariant. Hence it is the Haar measure on N+. Thus we

have (for y2 �xed)

dλg(z) = dz = y−1
2 dy1. (7.2.13)

Inserting (7.2.4), (7.2.7), (7.2.8), (7.2.9), and (7.2.13) into the de�nition of the BR-measure we get

7.2.3.

7.2.3 Global Measure Formula

The last theorem from the literature we require is the so-called global measure formula, stated in

[SV95, Theorem 2], which requires some set up. In actuality we only use the simpler Corollary 7.2.3.

As stated in [SV95], there exists a disjoint, Γ-invariant collection of horoballs H such that (CΓ \H )/Γ

is compact, where CΓ is the convex hull of L(Γ).

We let η ∈ L(Γ) be a parabolic limit point. De�ne ηt to be the unique point along the geodesic

connecting i to η whose hyperbolic distance from i is t. And de�ne

b(x) =

0 if x ∈ H \H

d(x, ∂Hη) if x ∈ Hη ∈H
, (7.2.14)

where Hη is the horoball at η.

Theorem 7.2.2 ([SV95, Theorem 2]). There exists a constant 0 < C <∞ such that for any η ∈ L(Γ)

- a parabolic cusp and for any t > 0,

C−1e−δΓteb(ηt)(1−δΓ) ≤ νi(B(η, e−t)) ≤ Ce−δΓteb(ηt)(1−δΓ) (7.2.15)

where B(η, e−t) ⊂ ∂H is the ball centered at η of radius e−t

Corollary 7.2.3. Assume η ∈ L(Γ) is a parabolic cusp, in a small ball around η we can approximate

the measure:

dνi(η + h) ≤ h2δΓ−2dh. (7.2.16)

This corollary follows by di�erentiating (7.2.15) with h = e−t and by noting b(ηt) ≤ t.

7.3 Horospherical Equidistribution

Consider an unstable horosphere for the geodesic �ow at, N+. We parameterise the projection by

n+ : T→ Γ∩N+\ΓN+. Recall, Chapter 5, Theorem 5.6.3, we state a simpli�ed restriction (which will

su�ce for this chapter) here to aid the reader:
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Theorem 7.3.1. Let λ be a Borel probability measure on T absolutely continuous with respect to

Lebesgue and with continuous density. Then for every f : T × Γ\G → R compactly supported and

continuous

lim
t→∞

e(1−δΓ)t

∫
T
f(x, n+(x)at)dλ(x) =

1

|mBMS |

∫
T×Γ\G

f(x, α)λ′(x)dµPSN+
(x)dmBR(α). (7.3.1)

Furthermore this theorem can be applied to characteristic functions as with Chapter 5, Corollary

5.6.4 (again, we present a restriction here which will su�ce).

Corollary 7.3.2. Let λ be a Borel probability measure on T absolutely continuous with respect to

Lebesgue and with continuous density. Let E ⊂ T×Γ\G be a compact set with boundary of (µPSN+
×mBR)-

measure 0. Then

lim
t→∞

e(1−δΓ)t

∫
T
χE(x, n+(x)at)dλ(x) =

1

|mBMS |

∫
T×Γ\G

χE(x, α)λ′(x)dµPSN+
(x)dmBR(α). (7.3.2)

7.3.1 Counting Primitive Points in Sheared Sets

As a straightforward consequence of Corollary 7.3.2 we have the following theorem, which (in Sections

7.4 and 7.6) we show has a number of important consequences.

Theorem 7.3.3. Let λ be a Borel probability measure on T absolutely continuous with respect to

Lebesgue and with continuous density. Let A ⊂ R2 be a compact set with boundary of Lebesgue measure

0. Then for every k ≥ 1:

lim
t→∞

e(1−δΓ)tλ ({x ∈ T : |Zn+(x)at ∩ A| = k}) =
Cλ

|mBMS |m
BR({α ∈ Γ\G : |Zα ∩ A| = k}), (7.3.3)

where Cλ = µPSN+
(λ′).

Theorem 7.3.3 is an in�nite covolume version of [MS10, Theorem 6.7]. The proof is a straightforward

consequence of Corollary 7.3.2 and the fact that if A is compact and has boundary of Lebesgue measure

0, then

{g ∈ Γ\G : Zg ∩ A = k} (7.3.4)

is compact and has boundary of volume 0, and the Burger-Roblin measure of a 0 volume set is 0.

Using [MO15, Theorem 6.10] in the same way we used [OS13, Theorem 3.6] to derive Theorem

7.3.1, we have

Theorem 7.3.4. Let A ⊂ R2 be a compact set with boundary of Lebesgue measure 0. Then for every

k ≥ 1:

lim
t→∞

µPSN+
({x ∈ T : |Zn+(x)at ∩ A| = k}) =

|µPSN+
|

|mBMS |m
BMS({α ∈ Γ\G : |Zα ∩ A| = k}). (7.3.5)

In words each of these two theorems is asking for the limiting probability that a randomly sheared

set contains k points. In one instance (Theorem 7.3.3) we randomly shear the set with measure λ and

in the other (Theorem 7.3.4) we use the measure µPSN+
.

152



7.3.2 Counting Primitive Points in Rotated Sets

Similarly to Section 7.3.1 one can ask about the probability of �nding k primitive points in a randomly

rotated set (as oppose to a randomly sheared one). In Chapter 6, Section 6.5 we show that similar

equidistribution results to Theorem 7.3.1 and Corollary 7.3.2 also hold when the horospherical subgroup

N+ is replaced with the rotational subgroup, K. In keeping with the notation of Chapter 6, Section

6.5 let x 7→ R(x) be the standard parameterisation of the rotation group:

R(x) =

(
cosx sinx

− sinx cosx

)
. (7.3.6)

Then the rotational Patterson-Sullivan measure (see (5.5.20) is

dµPSK (x) = eβx(i,R(x)(ei))dνi(x). (7.3.7)

Note µPSK is supported on L(Γ). Hence, the analogous theorem to Theorem 7.3.3 follows from Chapter

6, Corollary 6.5.2 (in the same way that Theorem 7.3.3 follows from Corollary 7.3.2):

Theorem 7.3.5. Let λ be a Borel probability measure on T absolutely continuous with respect to

Lebesgue and with continuous density. Let A ⊂ R2 be a compact subset with boundary of Lebesgue

measure 0. Then for every k ≥ 1

lim
t→∞

e(1−δΓ)tλ ({x ∈ T : |ZR(x)at ∩ A| = k}) =
Dλ

|mBMS |m
BR({α ∈ Γ\G : |Zα ∩ A| = k}) (7.3.8)

where Dλ = µPSK (λ′).

7.4 Consequences of Theorems 7.3.3 and 7.3.5

7.4.1 Diophantine Approximation in Fuchsian Groups

Theorem 7.3.3 can be used to prove several statements about the set of numbers which can be ap-

proximated by parabolic points in the limit set of the Fuchsian groups studied here. For example, as

discussed in [AG18], Erd®s-Sz¶sz-Turán (henceforth abbreviated EST) introduced the following prob-

lem in Diophantine approximation: what is the probability that a uniformly chosen point, x ∈ [0, 1],

satis�es ∣∣∣∣x− p

q

∣∣∣∣ ≤ A

q2
(7.4.1)

for pq ∈ Q with q ∈ [θQ,Q] for a �xed triple (A, θ,Q) ∈ R>0×(0, 1)×R>0? Hence if we let EST (A, θ,Q)

be the random variable: the number of solutions to (7.4.1), the EST problem is to prove the existence

of

lim
Q→∞

P(EST (A, θ,Q) > 0). (7.4.2)

The limiting distribution for this random variable is given in [AG18] in great generality. Our goal in

this section is to understand the same problem with the rationals replaced by Γ∞.

Given a triple (A, θ,Q) as above and a number x, de�ne (the analogue of the random variable

EST ), E(A, θ,Q) to be the number of solutions, (p, q) ∈ Z, to
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|p− qx| ≤ A

q
. (7.4.3)

Theorem 7.4.1. Given (A, θ) ∈ R>0× (0, 1). Let λ be a Borel probability measure on [0, 1), absolutely

continuous with respect to Lebesgue with continuous density. Then

lim
Q→∞

Q2(1−δΓ)λ({x ∈ [0, 1) : E(A, θ,Q) = k}) =
Cλ

|mBMS |m
BR({α ∈ Γ\G : |Zα ∩ CA,θ| = k}), (7.4.4)

where

CA,θ := {(x1, x2) ∈ R× R : |x1|x2 ≤ A : θ < x2 < 1}. (7.4.5)

Moreover,

lim
Q→∞

µPSN+
({x ∈ L(Γ) ∩ [0, 1) : E(A, θ,Q) = k}) =

1

|mBMS |m
BMS({α ∈ Γ\G : |Zα ∩ CA,θ| = k}).

(7.4.6)

Proof. Write the left-hand-side of (7.4.4) as (with Q = et/2)

lim
t→∞

e(1−δΓ)tλ
({
x ∈ [0, 1] : #

{
(p, q) ∈ Z : (p, q)

(
1 0
−x 1

)(Q 0

0 Q−1

)
∈ CA,θ

}
= k

})
= lim
t→∞

e(1−δΓ)tλ ({x ∈ [0, 1] : # (Zn+(−x)at ∩ CA,θ) = k}) . (7.4.7)

To which we apply Theorem 7.3.3 to get (7.4.4).

(7.4.6) follows in the same way except, in the last step, we apply Theorem 7.3.4 instead of Theorem

7.3.3.

Moreover, the same proof allows one to prove the Kesten problem in our context, stated as follows:

for A > 0 and Q �xed let K(A,Q) denote the number of solutions to

|αq − p| ≤ A

Q
, 1 ≤ q ≤ Q. (7.4.8)

In this case the following theorem holds:

Theorem 7.4.2. Given A > 0 Theorem 7.4.1 holds with E(A, θ,Q) replaced by K(A,Q) and CA,θ

replaced by

RA =
{

(x, y) ∈ R2 : |x| ≤ A, 0 ≤ y ≤ 1
}
. (7.4.9)

7.4.2 Directions of Primitive Points

Given a point in R2 (taken here to be the origin, however this is not necessary), one can ask how

the directions of primitive points Z distribute for an observer at that point, this is in some sense the

Euclidean version of the main theorem in Chapter 6. The corollary of Theorem 7.3.5 below answers

this question.

Let Dt(σ, v) ⊂ S1
1 be the interval in the unit sphere with centre v and length σe−t, and set
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Nt(σ, v;Z) := #
{
y ∈ Zt : ‖y‖−1y ∈ Dt(σ, v)

}
, (7.4.10)

where Zt = {z ∈ Z : ‖z‖ ≤ et}.

Corollary 7.4.3. Let λ be a probability measure on T, absolutely continuous with respect to Lebesgue

and with continuous density. For k ∈ N>0 we have

lim
t→∞

e(1−δΓ)tλ ({v ∈ T : Nt(σ, v;Z) = k}) =
Dλ

|mBMS |m
BR ({α ∈ Γ\G : |Zα ∩ Cσ| = k}) (7.4.11)

where, in polar coordinates

Cσ = {x = (r, θ) ∈ R2 : r < 1, |θ| < σπ}. (7.4.12)

This corollary follows directly from Theorem 7.3.5.

7.5 Equidistribution of gFs

7.5.1 Statement

In addition to Theorem 7.3.3 another important consequence of the equidistribution statements in

Section 7.3, is the following theorem, stating that the gFs equidistributes on a horospherical section.

This is a generalisation of [Mar10, Theorem 6], to the in�nite covolume setting.

Theorem 7.5.1. Let σ ∈ R and Q = e(t−σ)/2. Let f : T × Γ\G → R be bounded continuous and

supported on a set with �nite volume. Then

lim
t→∞

e−δΓt
∑
r∈FQ

f(r, n−(r)a−t) =
e(δΓ−1)σ

|mBMS |

∫
T×T

∫ ∞
σ

f̃(x, n−(w)a−r)e
δΓrdrdµPS(w)dµPSN+

(x) (7.5.1)

where f̃(x, α) := f(x, tα−1).

Remark. [Mar10] and [Mar13] treat Farey sequences in general dimension. However in the in�nite

covolume setting equidistribution results for SL(d,R) have not yet been proved (to our knowledge).

7.5.2 Proof

Proof of Theorem 7.5.1. The proof will follow the same lines as [Mar10, Proof of Theorem 6] with

several exceptions as we are not working with Haar measure. In particular, since the Patterson-Sullivan

measure does not satisfy the same invariance properties as the Haar measure, some care is needed when

approximating f by compactly supported functions (step 1), and we will make use of the Gauss type

decomposition of the Burger Roblin measure (Proposition 7.2.1).

Note �rst that by setting f(x, α) = f0(x, αa−σ) for f0 bounded and continuous we may assume that

σ = 0.

Step 1 First we show that we can reduce the theorem to f compactly supported via a standard

approximation argument. Assume for the sake of notation that f is x-invariant. Assume further the

theorem holds for compactly supported functions. Now consider a bounded, continuous function, f

supported on a �nite-volume set. Fix ε > 0 and consider (for some t) the di�erence
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∣∣∣∣∣∣e−δΓt
∑
r∈FQ

f(n−(r)a−t))−
1

|mBMS |

∫
T

∫ ∞
0

f̃(n−(w)a−r)e
δΓrdrdµPS(w)

∣∣∣∣∣∣ . (7.5.2)

Now decompose f = f1 + f2 such that f1 is supported on a compact set and f2 is supported on a set of

volume % > 0 (as supp(f) has �nite volume % can be chosen arbitrarily small) and both are bounded

and continuous. Hence the di�erence (7.5.2) is bounded above by

∣∣∣∣∣∣e−δΓt
∑
r∈FQ

f1(n−(r)a−t))−
1

|mBMS |

∫
T

∫ ∞
0

f̃1(n−(w)a−r)e
δΓrdrdµPS(w)

∣∣∣∣∣∣
+

∣∣∣∣∣∣e−δΓt
∑
r∈FQ

f2(n−(r)a−t))−
1

|mBMS |

∫
T

∫ ∞
0

f̃2(n−(w)a−r)e
δΓrdrdµPS(w)

∣∣∣∣∣∣ . (7.5.3)

Applying Theorem 7.5.1 for compact functions implies we can take t large enough that the �rst term

is less than ε/2.

We may assume that f2 is supported on the cusp at in�nity, i.e supp(f2) = {z ∈ H : =(z) > %−1}.
With that, using the bounded property of f , there exists a C <∞ such that

∣∣∣∣∣∣|FQ|−1
∑
r∈FQ

f2(n−(r)a−t)

∣∣∣∣∣∣ ≤ C#{r ∈ FQ : =(π1(n−(r)a−t)) > %−1}
|FQ|

(7.5.4)

where π1 denotes the projection to the fundamental domain above i extending to in�nity. This pro-

portion can be upper bounded by
C|F%Q|
|FQ| = C%2δΓ for some constant C <∞. Thus by choosing % large

enough the summation in the right hand term in (7.5.3) can be bounded by ε/4.

Lastly, consider the term

∣∣∣∣∫
T

∫ ∞
0

f̃2(n−(w)a−r)e
δΓrdrdµPS(w))

∣∣∣∣ <∞. (7.5.5)

As Γ has a cusp, δΓ > 1/2. Thus the Patterson-Sullivan measure of supp(f̃2) ∩ L(Γ) goes to 0 as

vol(supp(f̃2)) goes to 0. Hence we can choose % such that (7.5.2) is bounded by ε. Thus Theorem 7.5.1

for compactly supported f implies the theorem for f with �nite volume support.

Henceforth take f to be compactly supported.

Step 2 Note that because f is continuous and has compact support it is uniformly continuous. Hence

for every % > 0 there exists a ε > 0 such that for all (x, α), (x′α′) ∈ R×G

|x− x′| < ε d(α, α′) < ε (7.5.6)

imply |f(x, α)− f(x′, α′)| < %.

Step 3 For 0 ≤ θ < 1 and ε > 0 de�ne

FQ,θ :=

{
p

q
∈ [0, 1) : (p, q) ∈ Z, θQ < q < Q

}
FεQ :=

⋃
r∈FQ,θ+Z

{
x ∈ R : ‖x− r‖ < εe−t

}
.

The latter we can write as
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FεQ =
⋃
a∈Z
{x ∈ R : (a1, a2)n+(x)at ∈ Cε} ,

where

Cε := {(y1, y2) ∈ R2 : |y1| < εy2, θ < y2 ≤ 1}.

Our goal is to write the characteristic function for FεQ as a sum over simpler characteristic functions.

Thus, let

Hε :=
⋃
a∈Z
Hε(a), Hε(a) := {α ∈ G : (a1, a2)α ∈ Cε}.

By considering the bijection

ΓN−\Γ→ Z, ΓN−γ 7→ (0, 1)γ

we can write

Hε =
⋃

γ∈ΓN−\Γ
Hε((0, 1)γ)

=
⋃

γ∈ΓN−\Γ
γH1

ε ,
(7.5.7)

where

H1
ε := Hε((0, 1)) = H{My : y ∈ Cε}

with My :=

(
y−1

2 0

y1 y2

)
.

Step 4

Claim: Given C ⊂ G compact there exists an ε0 > 0 such that for all ε < ε0

γH1
ε ∩H1

ε ∩ ΓC = ∅, (7.5.8)

for all γ ∈ Γ/ΓN− 6= 1

Proof of Claim.(7.5.8) is equivalent to

Hε((p, q)) ∩H1
ε ∩ ΓC = ∅, ∀(p, q) 6= (0, 1) ∈ Z

Consider an α ∈ G such that (p, q)α ∈ Cε. We can write any such α as

α =

(
1 b

0 1

)(
y−1

2 0

y1 y2

)
for b ∈ R and y1 ∈ R.

Therefore if we assume for the sake of contradiction that (p, q)α ∈ Cε and (0, 1)α ∈ Cε we have the

following 4 inequalities
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|y−1
2 p+ (pb+ q)y1| < εy2(pb+ q) (7.5.9)

θ < y2(pb+ q) ≤ 1 (7.5.10)

|y1| < εy2 (7.5.11)

θ < y2 ≤ 1. (7.5.12)

Using (7.5.10) and (7.5.11) gives

|(pb+ q)y1| < ε

which, plugging into (7.5.9) gives

|y−1
2 p| < 2ε.

Hence

|p| < 2ε.

Thus p = 0. Therefore (0, q) = (0, 1)γ for some γ ∈ Γ. However since Γ∞ = 〈( 1 1
0 1 )〉, q = 1. Which is a

contradiction proving the statement.

Step 5 The claim implies that for C ⊂ G compact there is an ε0 > 0 such that for all ε < ε0 such that

Hε ∩ ΓC =
⋃

γ∈Γ/ΓN−

(γH1
ε ∩ ΓC) (7.5.13)

is a disjoint union. Thus let χε and χ
1
ε denote the characteristic functions of Hε and H1

ε respectively,

then

χε(α) =
∑

γ∈ΓN−\Γ
χ1
ε(γα)

for all α ∈ ΓC. Moreover all of the sets we consider have boundary of BR-measure 0. Set χ̃ε(α) :=

χε(
tα−1) and note that χε(n+(x)at) = χ̃ε(n−(−x)a−t) is the characteristic function for FεQ.

Therefore we write

∫
FεQ/Z

f(x, n−(x)a−t)dx =

∫
T
f(x, n−(x)a−t)χε(n+(−x)at)dx

=

∫
T
f̃(x, n+(−x)at)χε(n+(−x)at)dx,

(7.5.14)

to which we can apply Theorem 7.3.1 giving:

lim
t→∞

e(1−δΓ)t

∫
FεQ/Z

f(x, n−(x)a−t)dx =
1

|mBMS |

∫
Γ\G×T

f̃(x, α)χε(α)dmBR(α)dµPSN+
(x). (7.5.15)

Which we write as
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=
1

|mBMS |

∫
ΓN−\G×T

f̃(x, α)χ1
ε(α)dmBR(α)dµPSN+

(x),

=
1

|mBMS |

∫
ΓN−\N−{My:y∈Cε}×T

f̃(x, α)dmBR(α)dµPSN+
(x).

(7.5.16)

Step 6

Using Proposition 7.2.1 we write (7.5.16) as (noting that (0, 1)n− = (0, 1))

lim
t→∞

e(1−δΓ)t

∫
FεQ/Z

f(x, n−(x)a−t)dx =

2

|mBMS |

∫
T×{y∈Cε}×T

y2δΓ−2
2 f̃(x, n−(w)My)dy2dy1dµ

PS(w)dµPSN+
(x). (7.5.17)

Which we can write

=
2

|mBMS |

∫
T×T

∫ 1

θ

∫
Bεy2 (0)

y2δΓ−2
2 f̃(x, n−(w)My)dy2dy1dµ

PS(w)dµPSN+
(x). (7.5.18)

Next we write D(y2) :=

(
y−1

2 0

0 y2

)
and note

d(My, D(y2)) = d(n+(y−1
2 y1), Id) ≤ ε (7.5.19)

for y ∈ Cε (this is the same calculation as [Mar10, (3.42)]). Therefore, using uniform continuity

∣∣∣∣∣(7.5.16)− 2

|mBMS |

∫
T×T

∫ 1

θ

∫
B(εy2)

f̃(x, n−(w)D(y2))y2δΓ−2
2 dy2dy1dµ

PS(w)dµPSN+
(x)

∣∣∣∣∣
=

∣∣∣∣(7.5.16)− 4ε

|mBMS |

∫
T×T

∫ 1

θ

f̃(x, n−(w)D(y2))y2δΓ−1
2 dy2dµ

PS(w)dµPSN+
(x)

∣∣∣∣
≤ 4%ε|µPS |2
|mBMS |

∫ 1

θ

y2δΓ−1
2 dy2.

(7.5.20)

Evaluating this integral then gives that the right hand side of the inequality in (7.5.20) is equal to

2ε%|µPS |2
|mBMS |δΓ

(1− θ2δ). (7.5.21)

Finally reinserting the right hand side of (7.5.15) and applying the change of variables y2 = er/2, we

conclude that
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∣∣∣∣∣ lim
t→∞

e(1−δΓ)t

∫
FεQ/Z

f(x, n−(x)a−t)dx

− 2ε

|mBMS |

∫
T×T

∫ 2| ln θ|

0

f̃(x, n−(w)a−t)e
δΓrdrdµPS(w)dµPSN+

(x)

∣∣∣∣∣
<

2%ε|µPS |2
|mBMS |δΓ

(1− θ2δΓ). (7.5.22)

Step 7

To conclude consider

lim
t→∞

e−δΓt
∑

r∈FQ,θ
f(r, n−(r)a−t) (7.5.23)

taking the asymptotic formula (7.1.10) and using a volume estimate together with uniform continuity

we can write this as

= lim
ε→0

lim
t→∞

e(1−δΓ)t

2ε

∑
r∈Fθ,Q

∫
|x−r|<εe−t

f(x, n−(x)a−t)dx. (7.5.24)

Now using the disjoint union in (7.5.13) we can say

= lim
ε→0

lim
t→∞

e(1−δΓ)t

2ε

∫
FεQ\Z

f(x, n−(x)a−t)dx (7.5.25)

and using (7.5.22) we thus conclude after taking ε→ 0 (and therefore %→ 0) this is equal

=
1

|mBMS |

∫
T×T

∫ 2| ln θ|

0

f̃(x, n−(w)a−r)e
δΓrdrdµPS(w)dµPSN+

(x) (7.5.26)

Taking the limit as θ → 0 is then possible as

lim sup
t→∞

|FQ\FQθ|
eδΓt

= θcΓ. (7.5.27)

7.6 Local Statistics

Theorem 7.3.3 and Theorem 7.5.1 can also be used to study the local statistics of FQ when viewed as

a point process on [0, 1] (note once more we are assuming for notation, that Γ∞ is periodic on [0, 1]).

7.6.1 Statement

For Q = et/2. Let A ⊂ R be bounded interval and set At = A e−t. For a bounded D ⊂ T, de�ne

PQ(D,A , k) =
et vol({x ∈ D : |x+ At + Z ∩ FQ| = k})

µPSN+
(D)eδΓt

(7.6.1)

and
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P0,Q(D,A , k) =
|{r ∈ FQ ∩ D : |r + At + Z ∩ FQ| = k})

µPSN+
(D)eδΓt

(7.6.2)

Theorem 7.6.1. Given an interval A ⊂ R and D ⊂ T then for all k > 0

lim
Q→∞

PQ(k,D,A ) = P (k,A ) (7.6.3)

lim
Q→∞

P0,Q(D,A , k) = P0(k,A ) (7.6.4)

where P (k,A ) and P0(k,A ) are given explicitly.

Remark. In particular (7.6.4) implies that the limiting gap distribution exists everywhere.

Remark. Note that the above theorem is restricted to k > 0. The reason for this is that the scaling in

PQ and P0,Q is incorrect for the case k = 0. For geometrically �nite subgroups the boundary points

cluster close together in far apart cluster. This phenomenon was noticed by Zhang [Zha17] and again

in [Lut18] (see Chapter 6, remark below Theorem 6.2.2).

To give a qualitative example, we have graphed the gap distribution for Γ̂∞ in Figure 7.3.

200

0

150

100

50

4× 10−7 8× 10−7 12× 10−7 16× 10−7 20× 10−7 24× 10−7

Figure 7.3: Above we have shown the gaps in the point set Γ̂∞. The point set is

exactly the one shown in Figure 7.1 on page 146. We have cut off the image at 240
(thus the first three bars do not have the same height) and the bin size here is

4× 10−8. Hence the bars represent the number of gaps lying in a particular bin.

7.6.2 Proof

Proof of Theorem 7.6.1. Theorem 7.6.1 is a straightforward consequence of Theorem 7.3.3 and Theo-

rem 7.5.1. We begin by addressing (7.6.3), de�ne

C(A ) := {(x, y) ∈ R× (0, 1] : x ∈ A y} ⊂ R2 (7.6.5)

and note that
p

q
∈ x+ At , 0 < q ≤ Q (7.6.6)
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is equivalent to

⇐⇒ (p, q)n+(x)at ∈ C(A ). (7.6.7)

Therefore for a given x ∈ D

PQ(D,A , k) =
e(1−δΓ)t

µPSN+
(D)

vol({x ∈ D : |Zn+(x)at ∩ C(A )| = k}). (7.6.8)

Applying Theorem 7.3.3 then implies

P (k,A ) =
1

|mBMS |m
BR(Sk). (7.6.9)

where Sk = {α ∈ Γ\G : |Zα ∩ C(A )| = k}.
Turning now to (7.6.4). Write

P0(A , k) = lim
t→∞

|{r ∈ FQ ∩ D : |Zn+(r)at ∩ C(A )| = k}|
eδΓtµPSN+

(D)

= lim
t→∞

∑
r∈FQ χSk(r, n+(r)at)

µPSN+
(D)eδΓt

.

(7.6.10)

Applying Theorem 7.5.1 (after extending it to characteristic functions using the methodology of Chapter

6, Section 5.6) gives

P0(A , k) =
1

|mBMS |

∫
T×[0,∞)

χ̃Sk(n−(w)a−r)e
δΓrdrdµPS(w). (7.6.11)

Note that the quantity in (7.6.9) is �nite for k > 0. This follows from Chapter 6, Proposition 6.3.3.

However �niteness does not hold for k = 0, which is the reason for that restriction in the Theorem.

The integral on the right hand side of (7.6.11) is �nite whenever the Burger-Roblin measure is �nite.

Hence the same Chapter 6, Proposition 6.3.3 also implies �niteness of (7.6.11).

7.7 Explicit Gap Distribution for Γ̂

We now return to the example, Γ̂, discussed in Section 7.1. First note that Theorem 7.6.1 implies that,

in the limit T → ∞, the gap distribution in (7.1.13) exists for all s > 0. Our goal is to prove the

following theorem which gives a far more explicit formula for the limiting gap distribution:

Theorem 7.7.1. For s < s0 = 7, and I a closed interval in [0, 1], the limiting gap distribution can be

written

lim
T→∞

F̂T,I(s) =: F̂I(s) = F 1,2
I (s) + F 2,3

I (s) (7.7.1)

where F 1,2
I (s) and F 2,3

I (s) are explicit integrals (see (7.7.35)) over compact regions involving the

Patterson-Sullivan density νi (de�ned below (5.5.5)).

The proof follows the methodology of [RZ17], however there are signi�cant di�erences. In [RZ17]

Rudnick and Zhang looked at Ford con�gurations associated to lattices. Thus our analysis represents

one example of the in�nite covolume analogue of their chapter. The plan is to break up the gap

distribution into a sum, with each term coming from a pair of circles in the initial con�guration K0.

Then, using the following elementary lemma (proved in [RZ17]) we can express each term in this sum

as an integral over a compact area.
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Lemma 7.7.2 ([RZ17, Lemma 3.5]). Let M =
(
a b
c d

)
∈ SL(2,R).

(i) If c 6= 0 then under the Möbius transform M , a circle C(x+ yi, y) is mapped to

C

(
ax+ b

cx+ d
+

yi

(cx+ d)2
,

y

(cx+ d)2

)
(7.7.2)

if cx+ d 6= 0, and to the line =z = 1/2c2y if cx+ d = 0. When c = 0, the image circle is

C

(
ax+ b

d
,
y

d2

)
. (7.7.3)

(ii) If c 6= 0 then the line C = R + yi is mapped to

C

(
a

c
+

1

2c2y
i,

1

2c2y

)
, (7.7.4)

and to the line R + a2yi if c = 0.

7.7.1 Breaking the Gap Distribution Up

In [RZ17] a fundamental observation is that a pair of neighbouring tangencies at a given height T ,

are the image of a pair of circles in the initial con�guration by exactly one or two group elements in

Γ. That is not true here, however the following proposition states that this is the case in the interval

[0, s0).

Proposition 7.7.3. For any T and I, suppose C and C′ are the circles tangent to C0 at xjT,I and

xj+1
T,I . If T (xj+1

T,I − xjT,I) ≤ s for s < s0 then there exists a γ ∈ Γ such that C = γCl and C′ = γCm for

Cl 6= Cm ∈ K0 and neither equal C0. Moreover if C and C′ are not tangent then γ is unique and if they

are tangent then there exist exactly two such γ.

Remark. The reason we consider s < s0 in Theorem 7.7.1 is that Proposition 7.7.3 fails for larger s. In

words, for larger s some of the gaps considered are not the image of a pair in the initial con�guration.

To get around this, one could consider a larger initial con�guration (i.e consider K together with the

circles tangent at 1/4 and 4 − 1/4). This would allow Proposition 7.7.3 to hold for slightly larger s0.

Therefore as one considered larger and larger gaps, one would need to consider larger and larger initial

con�gurations and more and more terms in the decomposition below. In this chapter we will stick to

the case s0 = 7 as it will simplify the following proofs.

For ease of notation, we restrict our attention to circles tangent to C0 in [0, 2] (i.e beneath C2) and
adopt the following notation shown in Figure 7.4: �rst label C2 = C0 and

• The tangencies are labelled by their continued fraction expansions α
(i)
k1,...,ki

= [0; 4k1, . . . 4ki].

• The associated circles are labelled C(i)
k1,...,ki

.

• The diameter of each circle is similarly labelled h
(i)
k1,...,ki

.

Thus, each circle C(i)
k1,...,ki

is the child of the circle C(i−1)
k1,...,ki−1

(to which it is tangent) and the parent of

Z6=0 children - C(i+1)
k1,...,ki,ki+1

(to which it is also tangent).

De�ne a rectangle to be any collection of circles

R = (C(i)
k1,...,ki−1,ki

, C(i)
k1,...,ki−1,ki±1, C

(i−1)
k1,...,ki−1

, C0) , (ki 6= 0) (7.7.5)
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C(0) = C2

C(1)
1

C(1)
2

C(1)
3

C(3)
1,−1,1C(3)

1,−1,−1C(2)
1,−2C(2)

1,2C(3)
1,1,−1C(3)

1,1,1

C(2)
1,1

C(2)
1,−1

C(2)
2,−1C(2)

2.−1
C(2)
2,2

C(2)
2,1C(2)

3,−1
C(2)
3,1

Figure 7.4: The labelling used in this section. For clarity, we only show a portion of

the interval and a few circles in K. The red section is what we call the rectangle

(C(1)
1 , C(1)

2 , C(0), C0).

where ki± 1 6= 0 (see for example the rectangle in Figure 7.4). A rectangle is thus a pair of neighbours

in a generation, the shared parent, and the real line. Let R0 denote the rectangle (C0, C1, C2, C3) of the

initial con�guration. The following simple observation is the basis of the proof of Proposition 7.7.3.

Fact 7.7.1. For any rectangle R there exists a unique γ ∈ Γ̂

R = γR0. (7.7.6)

The con�guration K = ΓK0 where K0 is the initial con�guration. Since circle inversions send circles

to circles preserving tangencies there must be a γ ∈ Γ̂ sending R0 to R. Moreover the uniqueness

follows as we are working in PSL(2,Z).

Proof of Proposition 7.7.3. In this proof, given two circles with tangencies α1 and α2 and diameters h1

and h2 we refer to |α1 − α2| as the gap associated to them and to min{h1, h2}−1 |α1 − α2| as the scaled
gap associated to them. Note that if a scaled gap is larger than s0, then the gap will never contribute

to F̂T,I(s) for any T . Thus that gap can be ignored. Fact 7.7.1 implies that Proposition 7.7.3 follows

if we show that all scaled gaps associated to pairs of circles not in rectangles are larger than s0.

Step 1 The scaled gap associated to a pair of non-tangent circles in a rectangle has the form

min{h(i)
k1,...,ki

, h
(i)
k1,...,ki±1}−1

∣∣∣α(i)
k1,...,ki

− α(i)
k1,...,ki±1

∣∣∣ (7.7.7)

(again ki ± 1 6= 0).

Step 2 We now use some theory of continued fractions to show that (7.7.7) is bounded below by 4.

I.e the gap associated to non-tangent pairs in a rectangle is bounded below by 4. Given a tangency

α
(i)
k1,...,ki

= [0; a1, . . . ai], let

bn
dn

:= [0; a1, . . . , an] (7.7.8)

for n < i where bn and dn share no common factors. It is a classical exercise to show (see [Khi03]):
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bn = anbn−1 + bn−2, b−2 = 0, b−1 = 1 (7.7.9)

dn = andn−1 + dn−2, d−2 = 1, d−1 = 0 (7.7.10)

and

dnbn−1 − dn−1bn = (−1)n. (7.7.11)

Hence, if we let bi and di be respectively the numerator and denominator of α
(i)
k1,...,ki

and b′i and d
′
i, the

numerator and denominator of α
(i)
k1,...,ki±1, then:

min{h(i)
k1,...,ki

, h
(i)
k1,...,ki±1}−1

∣∣∣α(i)
k1,...,ki

− α(i)
k1,...,ki±1

∣∣∣
= max{d′i, di}2 |[1; a1, . . . ai]− [1; a1, . . . ai ± 4]|

= max{d′i, di}2
∣∣∣∣ aibi−1 + bi−2

aidi−1 + di−2
− (ai ± 4)bi−1 + bi−2

(ai ± 4)di−1 + di−2

∣∣∣∣
= max{d′i, di}2

4

did′i
≥ 4,

(7.7.12)

Step 3 Suppose C(i)
m1,...,mi = D1 and C(j)

n1,...,nj = D2 are adjacent at time T (i.e there is no circle of

height larger than T between D1 and D2) and do not belong to the same rectangle. For notation we

assume α
(i)
m1,...mi < α

(j)
n1,...nj .

◦ By construction there is a 'youngest' shared ancestor of D1 and D2, C(k)
m1,...,mk = B1

◦ At the k + 1-st generation D1 is the descendent of Cm1,...,mk+1
= B3 and D2 is the descendent of

C(k+1)
n1,...,nk+1 = B2 (see Figure 7.5) and (B1,B2,B3, C0) must form a rectangle (otherwise D1 and D2

are clearly not adjacent at any times).

◦ Lastly it is evident that D1 must be the right-most descendent of B3 of its generation. Thus

|ml| = 1 for all l > k + 1. Moreover D2 must be the left-most descendent of B2 in its generation.

Motivated by these three geometric facts we adopt the following notation (see Figure 7.5). In each

generation l, we label the left-most descendent of B2 by B2(l−k). Moreover we label the right-most

descendent of B3 by B2(l−k)+1. With that notation, all non-tangent adjacent pairs of circles at a given

time are of the form Bx, Bx+1 for some x.

Label the tangency associated to Bi, αi. Label the diameter of Bi, hi. We assume (w.l.o.g) h1 > h2 ≥
h3. Label the gap between Bi and Bi+1, gi = |αi − αi+1|.
We show that h−1

i+1gi (the scaled gap) is larger than 7 for all i > 2. This will prove the proposition as

all gaps associated to non-tangent pairs are of this form. We assume h3 = 1 (this is w.l.o.g by a simple

scaling argument).

Now we collect two facts:

◦ By (7.7.10) hn+2 ≤ hn
32

◦ By (7.7.9)(7.7.10)(7.7.11) gi+1 ≥ gi − h1/2
i+1h

1/2
i+2

First by (7.7.10) it is fairly easy to see that h2 < 9. Suppose 4 < h2 < 9, then by (7.7.12) we know

that h−1
3 g2 ≥ 8, thus
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B1

B2

B3
B4B5

B6

g4

g2
g3

h3

Figure 7.5: Above we show the relevant rectangle, circles and labelling for Step 3. We

are only concerned with the 'innermost circles' in the rectangle. The circles are

labelled in decreasing order of size.

h−1
3 g2 ≥ 8

h−1
4 g3 ≥

9

h2
(8− 1) > 7

h−1
5 g4 ≥

9

h3
(8− 1− 1

3
) = 60

(7.7.13)

and so forth (a messy recursive inequality shows that this quantity is bounded by 7). Now assume

h2 < 4. Hence, using the two facts listed above we may conclude:

h−1
3 g2 ≥ 4

h−1
4 g3 ≥

(
4− 2

3

)(
3

2

)2

> 7

h−1
5 g4 ≥

(
4− 2

3
− 2

9

)
32

h−1
6 g5 ≥

(
4− 2

3
− 2

9
− 2

81

)(
9

2

)2

(7.7.14)

and so forth. Hence the gap arising from circles which do not form the boundary of a rectangle is at

least 7.

This proves the proposition with s0 = 7 (this may not be sharp).

Now that we have established this proposition, the argument to prove Theorem 7.7.1 follows similar

lines to Rudnick and Zhang. Note that Proposition 7.7.3, implies we can write the gap distribution for

s < s0 as

F̂T,I(s) = F 1,2
T,I(s) + F 2,3

T,I(s) (7.7.15)

F i,jT,I(s) :=
#
{

(xlT,I , x
l+1
T,I) ∈ Γ(αi, αj)

∣∣∣T (xl+1
T,I − xlT,I) ≤ s

}
T δΓ̂

, (7.7.16)
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where αi are the tangencies associated to Ci in the initial con�guration (the contribution from the tan-

gent pair (1, 3) has already been counted from the (1, 2) pair because of the overcounting in Proposition

7.7.3 for gaps associated with tangent pairs).

7.7.2 Geometric Description of the Gap Distribution

Lemma 7.7.2 and the Proposition 7.7.4 play a crucial role in what follows. As these theorems are taken

from [RZ17] and are not speci�c to the subgroup considered, in what follows we will omit some of the

technical details which are the same.

We use Lemma 7.7.2 to provide conditions under which the image of Ci and Cj are adjacent at time

T . Indeed it follows from [RZ17, Proposition 4.6] that there exist two regions Ω1,2
T and Ω2,3

T such that,

for M =
(
a b
c d

)
, the image M(αi, αj) is an adjacent pair at time T if and only if (c, d) ∈ Ωi,jT (where

(i, j) = (1, 2) or (2, 3)).

We de�ne these two regions as subsets of the cd-plane {(c, d)|c ≥ 0}:

(a) We de�ne Ω1,2
T to be those {(c, d)|c ≥ 0} such that

c2 ≤ T

2
, d2 ≤ T

2
(7.7.17)

(4c+ |d|)2 >
T

2
(7.7.18)

(b) We de�ne Ω2,3
T to be those {(c, d)|c ≥ 0} such that

d2 ≤ T

2
, (4c+ d)2 ≤ T

2
. (7.7.19)

If d(4c+ d) < 0 then c2 >
T

2
. (7.7.20)

Note that Ωi,jT is in both cases a union of convex sets and

Ωi,jT =
√
TΩi,j1 (7.7.21)

Hence we have the following restatement of [RZ17, Proposition 4.6] restricted to our context

Proposition 7.7.4 ([RZ17, Proposition 4.6]). For γ =
(
aγ bγ
cγ dγ

)
∈ Γ:

(a) the circles γ(C1) and γ(C2) are neighbours in AT if and only if (cγ , dγ) ∈
√
TΩ1,2

1 .

(b) the circles γ(C2) and γ(C3) are neighbours in AT if and only if (cγ , dγ) ∈
√
TΩ2,3

1 .

The relative gap condition in (7.7.16) can now be written (again following [RZ17, (18) - (20)]):

(a) For i = 1 and j = 2

c |d| ≥ T

s
(7.7.22)

(b) For i = 2 and j = 3

|d(4c+ d)| ≥ 4T

s
(7.7.23)

Thus we come to the same conclusion as Rudnick and Zhang that

167



F i,jT,I(s) =
1

T δΓ̂
#
{
γ =

(
aγ bγ
cγ dγ

)
∈ Γ | γαi, γαj ∈ I, (cγ , dγ) ∈ Ωi,jT (s)

}
(7.7.24)

for (i, j) = (1, 2), (2, 3), where Ωi,jT (s) is de�ned to be those elements (c, d) ∈ Ωi,jT satisfying (7.7.22) for

(1, 2) and (7.7.23) for (2, 3).

Note that Ωi,jT (s) are unions of convex, compact sets, and

Ωi,jT (s) =
√
TΩi,j1 (s) (7.7.25)

7.7.3 Limiting Behaviour

To ease notation and remain consistent with [RZ17] we reparameterise the geodesic �ow

A :=

{(
y−

1
2 0

0 y
1
2

)
|y > 0

}
(7.7.26)

and set

AT :=

{(
y−

1
2 0

0 y
1
2

)
|0 < y < T

}
. (7.7.27)

Note that this is the backwards geodesic �ow. The following theorem of Bourgain, Kontorovich and

Sarnak concerns counting points in the orbits of general discrete subgroups (i.e as considered in Section

7.1), Γ, in bisectors.

Theorem 7.7.5 ([BKS10]). Consider bounded Borel subsets Ω1 ⊂ N− and Ω2 ⊂ K such that µPS(∂(Ω1(Xi)) =

νi(∂(Ω−1(X−i ))) = 0, then

lim
T→∞

#(Γ ∩ Ω1ATΩ2)

T δΓ
=

1

δΓ · |mBMS |µ
PS(Ω1(Xi))νi(Ω

−1
2 (X−i )). (7.7.28)

Now for a given γ ∈ Γ use the Iwasawa decomposition to write

γ = n−(x(γ))

(
y−1/2 0

0 y1/2

)(
cos θ − sin θ

sin θ cos θ

)
(7.7.29)

Theorem 7.7.5 then allows us to prove

Proposition 7.7.6. Let I be an interval, and let Ω ⊂ {(c, d) | c ≥ 0} be a bounded, convex, compact

subset with piecewise smooth boundary. Moreover suppose that in polar coordinates the region Ω is

bounded by two piecewise smooth curves r1(θ) ≤ r2(θ) for θ ∈ [θ1, θ2]. Then

#
{
γ =

( ∗ ∗
cγ dγ

)
∈ Γ∞\Γ

∣∣ x(γ) ∈ I, (cγ , dγ) ∈
√
TΩ
}

∼ T δΓ

δΓ |mBMS |µ
PS(I(Xi))

∫ θ2

θ1

(
r2δΓ
2 (θ)− r2δΓ

1 (θ)
)
dνi(θ) (7.7.30)

as T →∞, where dνi(θ) = dνi(k(θ)Xi) and we have written γ in N−AK coordinates as x(γ)a(γ)k(γ).

Proof. The proof is the same as [RZ17, Proof of Proposition 5.3], with the exception that we use

Theorem 7.7.5 rather than a more classical counting theorem (due to Good).

First note that using the Iwasawa decomposition of γ, we have dγ = y1/2 cos θ, cγ = y1/2 sin θ.

Therefore (y1/2, θ) give a polar coordinate decomposition of the plane. The rest of the argument

follows from a Riemann sum approximation which works equally well when working with νi.
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Split the interval I = [θ1, θ2] into separate equally spaced intervals {Ii}ni=1. Take θ+
1,i, and θ

−
1,i to

be the points in Ii where r1 is maximised (resp. minimised) and θ+
2,i, and θ

−
2,i to be the points at which

r2 is maximised (resp. minimised). Now de�ne

Ω−n =

n⋃
i=1

Ii × [r1(θ−1,i), r2(θ+
2,i)]

Ω+
n =

n⋃
i=1

Ii × [r1(θ+
1,i), r2(θ−2,i)].

(7.7.31)

Thus Ω−n ⊆ Ω ⊆ Ω+
n and

lim
n→∞

n∑
i=1

∫
Ii

(
r2δΓ
2 (θ+

2,i)− r2δΓ
1 (θ−1,i)

)
dνi(θ)

= lim
n→∞

n∑
i=1

∫
Ii

(
r2δΓ
2 (θ−2,i)− r2δΓ

1 (θ+
1,i)
)
dνi(θ)

=

∫ θ2

θ1

(
r2δΓ
2 (θ)− r2δΓ

1 (θ)
)
dνi(θ). (7.7.32)

For the truncated regions Ω+
n and Ω−n the proposition follows readily with the observation that in

(7.7.28), the fact that the conformal density is evaluated at Ω−1
2 simply means that the bounds of

integration would be [−θ2,−θ1]. However since our group is symmetric this is equal the integral over

[θ1, θ2]. From, since (7.7.30) satis�es �nite additivity, the proposition follows.

Summarising: provided s ≤ s0 = 7 the gap distribution at time T can be written

F̂T,I(s) = F 1,2
T,I(s) + F 2,3

T,I(s). (7.7.33)

Moreover we can take the limit as T →∞ and (7.7.16) becomes

F̂I(s) = F 1,2
I (s) + F 2,3

I (s) (7.7.34)

where, for (i, j) = (1, 2), (2, 3)

F i,jI (s) =
1

δΓ̂|mBMS |µ
PS(I(Xi))

∫ θi,j2 (s)

θi,j1 (s)

(
ri,j2 (θ, s)2δΓ̂ − ri,j1 (θ, s)2δΓ̂

)
dνi(θ), (7.7.35)

where ri,j2 (θ, s)
∣∣∣
θ∈[θi,j1 (s),θi,j2 (s)]

and ri,j1 (θ, s)
∣∣∣
θ∈[θi,j1 (s),θi,j2 (s)]

are the curves in polar coordinates forming

the boundary of Ωi,j(s).

For convenience de�ne the constant

κ :=
1

δΓ̂|mBMS |µ
PS(I(Xi)) (7.7.36)

7.7.4 Properties of the Limiting Gap Distribution

In order to extract some properties of the limiting gap distribution we �rst consider Ω1,2
1 de�ned by

(7.7.17), (7.7.18) and (7.7.22), however since s < s0 = 7, (7.7.18) can be ignored. Hence we have the

region (in (c, d)-coordinates):
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Ω1,2
1 (s) =

(
[0,

1√
2

]× [− 1√
2
,

1√
2

]

)
∩
{

(c, d) : c ≥ 1

s|d|

}
. (7.7.37)

This region is symmetric under re�ection across the y axis and since the conformal density in (7.7.35)

is invariant under this re�ection we can consider

Ω̃1,2
1 (s) =

(
[0,

1√
2

]× [0,
1√
2

]

)
∩
{

(c, d) : c ≥ 1

s|d|

}
(7.7.38)

instead, and the only di�erence will be a factor of 2.

Regarding Ω2,3
1 (s), from (7.7.19) we know that Ω2,3

1 is a subset of the triangle

− 1√
2
≤ d ≤ 1√

2
, 0 ≤ c < 1

4
√

2
− d (7.7.39)

Moreover (7.7.20) implies that when d < 0, if c > −d4 then c > 1√
2
, thus Ω2,3

1 = T1 ∪ T2 where

T1 :=

{
(c, d) : c, d ≥ 0 , c <

1

4
√

2
− d
}

(7.7.40)

T2 :=

{
(c, d) : c ≥ 0 , − 1√

2
≤ d ≤ 0 , c ≤ −d

4

}
. (7.7.41)

Now looking at the condition imposed by (7.7.23), it is straightforawd to see that, for s < 7, Ω2,3
1 (s)

does not intersect T2. Hence, for s < s0 < 7:

Ω2,3
1 (s) =

{
(c, d) ∈ T1 : c ≤ 1

sd
− d

4

}
. (7.7.42)

So far we have established that

F̂ (s) = κµ(Ω2,3
1 (s)) + 2κµ(Ω̃1,2

1 (s)) (7.7.43)

where, for a general set A =
{

(r cos θ, r sin θ) : r ∈ [rA1 (θ), rA2 (θ)], θ ∈ [θA1 , θ
A
2 ]
}
,

µ(A) :=

∫ θA2

θA1

(
rA2 (θ)2δΓ̂ − rA1 (θ)2δΓ̂

)
dνi(θ). (7.7.44)

Thus F̂ (s) is explicitly calculated in terms of the Patterson Sullivan density νi (5.5.5). Unfortunately

this measure is not itself explicit (in that it is de�ned as the weak limit of a sequence of measures).

However it does lend itself to simulations (which we will not do here) and analysis:

Proposition 7.7.7. F̂I(s) = 0 for all s < 2 for any I. Moreover, all gaps are larger than 2.

This is a form of level repulsion and follows from the de�nitions of Ω̃1,2
1 (s) and Ω2,3

1 (s) and (7.7.43).

Indeed Ω̃1,2
1 (s) is empty for s < 2 and Ω2,3

1 (s) is empty for s < 4.

νi is a fractal measure supported on the limit set. Hence, looking at (7.7.44), if neither θA1 nor θA2

is in L(Γ) (the support of νi). Then the derivative of F̂ will be easy to calculate:

Proposition 7.7.8. Suppose S ⊂ (2, s0) is a connected subset such that for all s ∈ S, θi,j1 (s) and

θi,j2 (s) 6∈ L(Γ) for (i, j) = (1, 2) or (2, 3), then

P (s) = F̂ ′(s) =
CS
sδΓ̂+1

, (7.7.45)

where 0 ≤ CS <∞ depends on the region S but not on s ∈ S and is explicit.
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Proof. Let s1 = inf {s ∈ S}, in which case, for s ∈ S we separate the integral in (7.7.43) and write

F̂ (s) = κ

∫ θ
2,3
2 (s)

θ
2,3
1 (s)

(
r2,3
2 (θ, s)2δ

Γ̂ − r2,3
2 (θ, s)2δ

Γ̂

)
dνi(θ) + 2κ

∫ θ
1,2
2 (s)

θ
1,2
1 (s)

(
r1,2
2 (θ, s)2δ

Γ̂ − r1,2
2 (θ, s)2δ

Γ̂

)
dνi(θ)

= κ

∫ θ
2,3
2 (s1)

θ
2,3
1 (s1)

(
r2,3
2 (θ)2δ

Γ̂ − r2,3
2 (θ, s)2δ

Γ̂

)
dνi(θ) + 2κ

∫ θ
1,2
2 (s1)

θ
1,2
1 (s1)

(
r1,2
2 (θ)2δ

Γ̂ − r1,2
2 (θ, s)2δ

Γ̂

)
dνi(θ)

+R(s,S)

where we have noted that (by (7.7.38) and (7.7.42)), r2 is independent of s . In fact, since on S,
θi,j1 (s) and θi,j2 (s) are outside L(Γ), R(s,S) is 0 (as the measure is supported away from the range of

integration). Hence, taking a derivative:

P (s) = −κ
∫ θ2,3

2 (s1)

θ2,3
1 (s1)

dr2,3
1 (θ, s)2δ

ds
dνi(θ)− 2κ

∫ θ1,2
2 (s1)

θ1,2
1 (s1)

dr1,2
1 (θ, s)2δ

ds
dνi(θ). (7.7.46)

Moreover, for s < s0 we have that

r1,2
1 (θ, s) =

1√
s

√
1

cos θ sin θ
, r2,3

1 (θ, s) =
1√
s

√
1(

sin θ cos θ + cos2 θ
4

) . (7.7.47)

Therefore, for s ∈ S

P (s) =
κ

sδΓ̂+1

∫ θ2,3
2 (s1)

θ2,3
1 (s1)

(
1(

sin θ cos θ + cos2 θ
4

))δΓ̂ dνi(θ) + 2

∫ θ1,2
2 (s1)

θ1,2
1 (s1)

(
1

cos θ sin θ

)δΓ̂
dνi(θ)

 .

(7.7.48)

The �nal analytic property we calculate for F̂ is the following Lipschitz condition:

Proposition 7.7.9. F̂ is Lipschitz in a neighbourhood of s whenever s ∈ [0, 4)∣∣∣F̂ (s)− F̂ (s+ x)
∣∣∣ ≤ Csx (7.7.49)

for some constant Cs <∞.

Proof. F̂ is 0 on [0, 2). Moreover Proposition 7.7.8 implies the F̂ is di�erentiable when both θ1,2
1 and

θ1,2
2 are outside L(Γ̂). Hence we only need to worry about when θ1,2

1 (s) or θ1,2
2 (s) is a parabolic �xed

point (since parabolic points are dense in the limit set).

For any 2 ≤ s < 4 such that θ1,2
1 (s) or θ1,2

2 (s) is a parabolic �xed point:

∣∣∣F̂ (s)− F̂ (s+ x)
∣∣∣ ≤ C ∣∣∣∣∣

∫ θ1,2
2 (s+x)

θ1,2
2 (s)

(
r1,2
2 (θ)2δΓ̂ − r1,2

1 (θ, s)2δΓ̂

)
dνi(θ)

+

∫ θ1,2
1 (s)

θ1,2
1 (s+x)

(
r1,2
2 (θ)2δΓ̂ − r1,2

1 (θ, s)2δΓ̂

)
dνi(θ)

∣∣∣∣∣ (7.7.50)

Plugging in the formula for r1,2
2 and r1,2

1 and using Corollary 7.2.3 gives that the �rst term on the right

hand side of (7.7.50) is less than
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≤ Cs

∣∣∣∣∣∣
∫ θ1,2

2 (s+x)

θ1,2
2 (s)

θ2δΓ̂−2

(1/
√

2

sin θ

)2δΓ̂

−
(

1

(s+ x) cos θ sin θ

)δΓ̂ dθ

∣∣∣∣∣∣ (7.7.51)

in the range with which we are concerned we can bound this integral (by adjusting the constant) by

≤ Cs
∫ θ1,2

2 (s+x)

θ1,2
2 (s)

θ2δΓ̂−2dθ. (7.7.52)

Evaluating the integral and performing the same analysis on the other term in (7.7.50) gives

∣∣∣F̂ (s)− F̂ (s+ x)
∣∣∣ ≤ Cs (θ1,2

2 (s+ x)2δΓ̂−1 − θ1,2
2 (s)2δΓ̂−1

)
+ Cs

(
θ1,2

1 (s)2δΓ̂−1 − θ1,2
1 (s+ x)2δΓ̂−1

)
.

(7.7.53)

Inserting the de�nition of θ1,2
2 and θ1,2

1 then gives

∣∣∣F̂ (s)− F̂ (s+ x)
∣∣∣ ≤ Cs (tan−1(s+ x)2δΓ̂−1 − tan−1(s)2δΓ̂−1

)
+Cs

(
cot−1(s)2δΓ̂−1 − cot−1(s+ x)2δΓ̂−1

)
.

(7.7.54)

From here, Taylor expanding gives

∣∣∣F̂ (s)− F̂ (s+ x)
∣∣∣ ≤ C ∣∣∣∣(π4 +

x

4

)2δΓ̂−1

−
(π

4

)2δΓ̂−1
∣∣∣∣+ C

∣∣∣∣(π4)2δΓ̂−1

−
(π

4
− x

4

)2δΓ̂−1
∣∣∣∣ . (7.7.55)

Here, expanding again gives us that F̂ is Lipschitz.

7.8 Gauss-Like Measure

As in the previous section this section is restricted to the example Γ̂. The goal for this section is to

derive and study the probability measure

m0(E) = C0

∫
E

∫ 2

−2

dµPS(x)

|xy − 1|2δΓ̂
dµPS(y). (7.8.1)

where E is a Borel set in L(Γ̂)∩ (−2, 2), and C0 is a normalising constant. In particular we show that

this measure is invariant and ergodic for the Gauss map. Then, as a corollary of this ergodicity, we are

able to show that the Gauss-Kuzmin statistics on Q4 converge to an explicit function.

Note that m0 is equivalent to the Patterson-Sullivan measure (and thus the Hausdor� measure for

the fractal) up to a bounded density. It should also be noted that the density in (7.8.1) is a normalised

eigenfunction for the transfer operator associated to the Gauss map. We shall avoid this transfer

operator approach here, however it is a promising avenue for later research.

7.8.1 Setup

In [Ser85] Series, for the modular group, shows that one can encode the endpoints of geodesics by a

'cutting sequence' which generates the continued fraction expansions of the endpoints. Moreover she

identi�es a cross-section of the unit tangent bundle such that the return map to this cross-section

corresponds to the (classical) Gauss map on the end point. As an application of this, she shows that

the Gauss measure is simply a projection of the Haar measure onto these end points. Thus, because
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the Haar measure is ergodic for the geodesic �ow, the Gauss measure is ergodic for the Gauss map.

The goal for this subsection is to construct the analogous measure in our context (for Γ̂). To do this we

will project the BMS measure in the same way and show that the resulting measure is ergodic for the

Gauss map (for Γ̂). In the end we will only be working with this measure, however for those interested,

in the Appendix, we show how to construct the analogous cutting sequences and cross-section in our

context (we omit the formal proofs concerning the commuting diagrams as we do not use them and

the details are the same as [Ser85]).

Throughout this section let (−2, 2)∗ = (−2, 2) \ {0}. Consider the restriction of Gauss map to the

limit set, L(Γ̂) = Q4 (where Q4 denotes the closure):

T :L(Γ̂)→ L(Γ̂)

[0; a1, a2, . . . ] 7→ [0; a2, . . . ]
(7.8.2)

and its inverse

T−1([0; a1, . . . , an−1]) =
⋃

k∈4Z∗
[0; k, a1, . . . , an−1]. (7.8.3)

The σ-algebra associated to this Gauss map is now the Borel σ-algebra on R intersected with L(Γ̂). The

goal is now to take the Bowen-Margulis-Sullivan measure and project it to a measure on (−2, 2). We

choose the BMS measure as it is invariant and ergodic under the geodesic �ow. Thus after projecting

we are left with a measure invariant and ergodic under the Gauss map. The following lemma gives a

parameterisation of the BMS measure used in Sullivan's work [Sul79].

Lemma 7.8.1. For u ∈ T 1(H) let z denote the Euclidean midpoint of the geodesic containing u and

t := βu−(z, u) (thus t is the arclength from z to u). Then

dmBMS(u) =
1

|u+ − u−|2δΓ
dµPS(u−)dµPS(u+)dt. (7.8.4)

Remark. Note this Lemma is not speci�c to the subgroup Γ̂ and holds for any Bowen-Margulis-Sullivan

measure associated to a subgroup considered in this paper.

Proof. First (recall s from the de�nition of mBMS - Chapter 5, (5.5.6)) note

s := βu−(i, u)

= βu−(i, z) + βu−(z, u)

= βu−(i, z) + t

= βu−(i, i+ u−) + βu−(i+ u−, z) + t (7.8.5)

Now using the de�nition of the Busemann function, we note that βu−(i + u−, z), is the hyperbolic

distance (along the vertical geodesic at u−) between the horoball of height 1 based at u− and the

horoball of height |u+ − u−|. Thus

s = t+ βu−(i, i+ u−) + ln
∣∣u+ − u−

∣∣ . (7.8.6)

Similarly

βu+(i, u) = −t+ βu+(i, i+ u+) + ln
∣∣u+ − u−

∣∣ . (7.8.7)
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Therefore, writing out the de�nition of the Burger Roblin measure and inserting (7.8.6) and (7.8.7):

mBMS(u) := eδΓseδΓβu+ (i,u)dνi(u
−)dνi(u

+)ds

=
1

|u+ − u−|2δΓ
(eδΓβu− (i,i+u−)dνi(u

−))(eδΓβu+ (i,i+u+))dνi(u
+))dt

=
1

|u+ − u−|2δΓ
dµPS(u−)dµPS(u+)dt

(7.8.8)

where in the last line we insert the de�nition of µPS .

To derive the Gauss-type measure (similarly to [Ser85] for the classical Gauss measure) we restrict

the BMS measure to the u− coordinate. Integrating over the u+ coordinate in (−2, 2) gives∫ 2

−2

dµPS(u+)

|u+ − u−|2δΓ̂
. (7.8.9)

Thus, for a set E ⊂ (−∞,−2) ∪ (∞, 2)∫
E

∫ 2

−2

dµPS(x)

|x− y|2δΓ̂
dµPS(y) (7.8.10)

is a measure. Changing coordinates and using that dµPS(1/y) = y−2δΓ̂dµPS(y) (this follows from

Chapter 5, (5.5.5) and a calculation using the Busemann function) gives, for any set E ⊂ (−2, 2)∗

m0(E) := C0

∫
E

∫ 2

−2

dµPS(x)

|xy − 1|2δΓ̂
dµPS(y), (7.8.11)

where C0 is a normalising constant. In the next section we show that this measure is T -invariant and

ergodic.

7.8.2 Invariance and Ergodicity

Theorem 7.8.2. On (−2, 2)∗, m0 is T -invariant and ergodic.

Proof. To prove invariance, let E ⊂ (−2, 2)∗ and consider the measure of its preimage

m0(T−1(E)) = C0

∫
T−1(E)

∫ 2

−2

dµPS(x)

|xy − 1|2δΓ̂
dµPS(y)

Plugging in the de�nition of T−1(E) and changing variables (dµPS(1/y) = y−2δΓ̂dµPS(y)) together

with the fact that the Patterson-Sullivan measure is invariant under translation by 4n gives

= C0

∑
n∈Z∗

∫
E+4n

(∫ 2

−2

dµPS(x)

|y − x|2δΓ̂

)
dµPS(y)

= C0

∫
E

∑
n∈Z∗

∫ 2

−2

(
dµPS(x)

|y − x− 4n|2δΓ̂

)
dµPS(y). (7.8.12)

If we now change the x variable to x+ 4n this gives

= C0

∫
E

∫
(−∞,−2)∪(2,∞)

dµPS(x)

|y − x|2δΓ̂
dµPS(y).
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Hence applying the change of variables x 7→ x−1 gives

= C0

∫
E

∫ 2

−2

dµPS(x)

|xy − 1|2δΓ̂
dµPS(y) = m0(E).

This new measure is ergodic for the Gauss map because the BMS is ergodic for the geodesic �ow.

However to see this directly note �rst that the density

ρ(y) =

∫ 2

−2

dµPS(x)

|xy − 1|2δΓ̂

is bounded on L(Γ̂). Given a1, . . . , an and writing pi
qi

= [0; a1, . . . , ai], de�ne the cylinder sets for
pn
qn
∈ Q4:

∆n :=

{
ψn(t) :=

4pn + pn−1t

4qn + qn−1t
: 0 ≤ t ≤ 1

}
. (7.8.13)

Note that the sets ∆n ∩ L(Γ̂) generate the Borel σ-algebra on L(Γ̂).

First we note that the measure µPS is 0 if and only if νi is 0, hence for what follows we can work

with νi instead of µPS . Hence note that for any n > 0, for s < t ∈ [0, 1], there exists a γ ∈ Γ̂ such that

µPS
(
T−n([

s

4
,
t

4
))

∣∣∣∣∆n

)
� νi

(
T−n([

s

4
,
t

4
))

∣∣∣∣∆n

)
=
νi(γ[ s4 ,

t
4 ))

νi(γ[0, 1
4 ))

=
νi([

s
4 ,

t
4 ))

νi([0,
1
4 ))

(7.8.14)

Therefore, as the density for m0 with respect to the PS measure is bounded above and below, for any

A ⊂ L(Γ̂) ∩ (−2, 2)∗ measurable

1

C
m0(A) ≤ m0(T−n(A)

∣∣∆n) ≤ Cm0(A). (7.8.15)

To conclude, assume A is T -invariant, then 1
Cm

0(A) ≤ m0(A|∆n). Ifm0(A) > 0, then 1
Cm

0(∆n) ≤
m0(∆n|A). Therefore, since the cylinders ∆n generate the Borel σ-algebra of measurable sets, we have

that

1

C
m0(B) ≤ m0(B|A)

for all B measurable. Setting B = Ac implies that m0(Ac) = 0 and m0(A) = 1. Hence m0 is ergodic.

7.8.3 Gauss-Kuzmin Statistics

Given a point x = [0; a1, a2, . . . ] ∈ R (ai ∈ N), Gauss considered the following problem (further studied

by Kuzmin in 1928): let P̃n,k(x) = #(k,n)
n where #(k, n) is the number of ai = k with i ≤ n. Does

there exist a limiting distribution for P̃n,k(x)? Using the ergodicity of the Gauss measure it is fairly

simple to show that for Lebesgue-almost every x

lim
n→∞

P̃n,k(x) =
1

ln(2)
ln

(
1 +

1

k(k + 2)

)
. (7.8.16)
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This distribution is now known as Gauss-Kuzmin statistics. For a detailed description of the original

problem and history see [Khi03, Section 15]. The problem has an analogue in our setting.

For [0; a1, a2, ...] = x ∈ Q4∩ (−2, 2) de�ne P̂n,k(x) = #(k,n)
n where #(k, n) is the number of ai equal

k for i ≤ n. For simplicity of notation we assume k > 0. In that case, writing

P̂n,k(x) =
1

n

n−1∑
s=0

χ( 1
k+4 ,

1
k ](T

sx) (7.8.17)

and applying the Birkho� ergodic theorem for m0 imply:

Theorem 7.8.3. For every positive integer k and µPS-almost every x = [0; a1, . . . ] ∈ Q4 ∩ (−2, 2)

P̂k(x) = lim
n→∞

P̂n,k(x) = m0

((
1

k + 4
,

1

k

])
. (7.8.18)

Once more, we note that, given a set A ⊂ L(Γ̂), it can be shown that m0(A) � µPS(A) � HδΓ̂(A)

where HδΓ̂ denotes the Hausdor� measure on L(Γ̂). Hence Theorem 7.8.3 gives a rather fundamental

property of the fractal L(Γ̂) in terms of the Hausdor� measure.

Appendix to Chapter 7- Cutting Sequences for Γ̂

Working with Γ̂ the goal of this section is to show that, given a geodesic with right end point in

(−2, 2)∩L(Γ̂) (and left end point in (−∞,−2)) there is a correspondence between the way this geodesic

cuts the boundaries of fundamental domains and the continued fraction expansion of the end point.

This section is analogous to the Bowen-Series coding for geodesics in PSL(2,R)/PSL(2,Z).

Let ξ ∈ (−2, 2)∩L(Γ̂) and let γ be any geodesic whose right endpoint is ξ and which intersects the

line x = −2. As this geodesic moves from left to right, it will cut (bisect) each fundamental domain.

Each fundamental domain has two funnels and a cusp. Thus the geodesic will separate one of the three

from the others. If the geodesic separates a cusp we write a c. If it separates a funnel we write an l or

an r depending on whether the funnel is to the left or right of the geodesic. See Figure 7.6.

It is easy to see that the �rst term in the sequence will always be r and the next term will be l/r

after that there will be a sequence of c's followed by the same l/r. Thus we end up with a sequence of

the form

ξ 7→ r, q0, c
α0 , q0, q1, c

α1 , q1, q2, c
α2 , q2 . . . (7.8.19)

(the sequence is �nite if the geodesic ends in a cusp) where qi = l, or r and αi ≥ 0. With that it is

fairly easy to see that

ξ = [0; (−1)η04(α0 + 1), (−1)η14(α1 + 1), . . . ] (7.8.20)

where

ηi =

0 if qi = l

1 if qi = r
. (7.8.21)

Thus there is a correspondence between such sequences and geodesics with end points in (−2, 2).

To understand how the Gauss map acts on a point, we need to identify a particular cross-section in

T 1(Γ\H). Consider the fundamental domain above i and the semi-circular arc centred at 0 of radius

1, which we call S - this arc forms part of the boundary of the fundamental domain. Given a geodesic
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r

r

r

r
r

r c
c

l

l
r

ξ1 ξ2 ξ3−1 1

Figure 7.6: In this diagram we show the cutting sequence for 3 different points

ξ1, ξ2, ξ3. For ξ2, first a funnel is cut off to the right of the geodesic, then again

a funnel is cut off to the right, then a cusp is cut off and then another cusp.

Thus the first 4 terms in the cutting sequence are r, r, c, c.

γ whose left end point is in (−∞,−2)∩L(Γ̂) and whose right endpoint is in (−2, 2)∩L(Γ̂) and a point

x ∈ γ ∩ S, we insert x into the cutting sequence of γ, at its position in the sequence of fundamental

domains, resulting in a sequence of the form for example:

r, l, cα0 , l, l, cα1 l, x, r, cα2 , ... (7.8.22)

We say a cutting sequence changes type at x if x lies between a qi and qi+1. Note that x must lie before

an l or an r

With that, the cross-section C ⊂ T 1(Γ\H) are those points, based at x ∈ S pointed along geodesics

whose cutting sequence changes type at x. In that case, the return map for the geodesic �ow to this

cross-section corresponds to the Gauss map acting on the end point. For a more formal discussion for

the modular group (however the same details apply here) see [Ser85].
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S

x

r

l

Figure 7.7: In this diagram we show a geodesic and a point x ∈ S ∩ γ such that the

cutting sequence for γ changes type at x. This is because the cutting sequence with

x inserted will read ..., r, x, l, ....
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