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ABSTRACT

In recent years a significant effort has been devoted to the study of more energy efficient aircraft
that will meet the environmental goals set out in initiatives such as Vision 2020 and Flight Path
2050. Some of these studies have considered the implementation of new aircraft concepts that can
provide enhanced performance in terms of overall aircraft efficiency and noise. One such concept
is the truss-braced wing aircraft, which has been shown to provide an overall benefit to aircraft
mass and fuel-burn by virtue of its high-aspect ratio wing and efficient structural design. However
aeroelastic phenomena such as flutter and gust loads place a limit on the practical efficiency
savings that can be achieved by adopting a braced-wing design, therefore any mechanism by
which these negative aeroelastic effects can be mitigated will be a key enabler for the success
of this concept. This thesis investigates the possibility of achieving gust loads alleviation and
flutter suppression in a truss-braced wing via passive vibration control. A full-scale aircraft
model based on the NASA/Boeing SUGAR concept aircraft is used to run a series of studies
where a vibration suppression device is included in the truss structure and the device properties
are optimised in order to suppress flutter and minimise gust loads. Different device layouts
are considered including devices that can be frequency-tuned to target specific modes of the
structure. The results for the SUGAR-inspired model demonstrate that improvements in flutter
speed between 1 - 6% and reductions in gust loads of approximately 4% are achievable with an
almost negligible mass penalty from the device. It is also noted that further benefits could be
realised if the design of the device was included as part of a wider structural optimisation. Finally,
the methods used in this thesis can be used to model a generic vibration absorber attached to
any generic finite element model, fundamentally enhancing the scope for vibration suppression
devices to be considered in the design and optimisation of large and complex systems.
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INTRODUCTION

"Air pollution is, or ought to be, a big issue..."

— UK Government White Paper, 2005

1.1 Research Motivation and Themes

The global aviation community is under increasing pressure to reduce the environmental impact

of air travel. In 2010, the International Air Transport Association (IATA) established a series of

environmental goals for aviation1. These included:

• An average improvement in fuel efficiency of 1.5% per year from 2009 to 2020.

• A cap on net aviation CO2 emissions from 2020 (carbon-neutral growth)

• A reduction in net aviation CO2 emissions of 50% by 2050, relative to 2005 levels.

Various other international authorities have defined similar environmental goals, including

the International Civil Aviation Authority2 (ICAO), the European Union3 and NASA4. Several

studies are investigating engineering solutions to achieve these goals, including NASA’s Subsonic

Ultra Green Aircraft Research (SUGAR) project5 and the Clean Sky initiative6.

The IATA goals are principally concerned with reducing the carbon-footprint of commercial

aviation. This can be achieved by making aircraft more efficient, however, in order to make

sure the aircraft is commercially viable any improvement in efficiency must not come at the

expense of compromising safety or damaging the airline’s business model. For example, the

aircraft must meet the demanding requirements on turnaround time, route time and affordability

that modern, low-cost airlines rely on to make a profit. These considerations make the design of

the next-generation commercial aircraft a challenging task which is forcing manufacturers to

consider radical concepts such as hybrid-electric propulsion7, new aircraft configurations8 and

formation flying9.
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CHAPTER 1. INTRODUCTION

Concerning aircraft efficiency, the main contributing factors can be deduced by considering

the Brequet Range Equation10,

R = V
g

(
L/D
SFC

)
ln

(
1+ Wf

Wp +W0

)
(1.1)

where R is the aircraft range, V is the aircraft forward velocity, g is the acceleration due to

gravity, SFC is the Specific-Fuel-Consumption of the engine, (L/D) is the lift to drag ratio and

Wf ,Wp,W0 are the weights of the fuel, payload and airframe respectively. Note that this equation

only applies for the case where the fuel-burn, velocity and aerodynamic performance are constant

with respect to time, i.e. during the cruise phase of the mission. Examining the Brequet Range

Equation it is clear that for a fixed cruise speed the range is dependent on three factors:

• Specific-Fuel-Consumption (SFC) - This is typically a function of cycle and propulsive

efficiency, which, for a jet engine, is driven by the core temperature of the combustion

chamber and the by-pass ratio.

• Lift-to-drag ratio - Dependent on the aircraft geometry.

• Aircraft empty weight - Mostly driven by the aircraft mission profile and overall design

but is strongly affected by the material performance, specifically the density.

• Fuel weight - Closely linked to the SFC of the engine as well as the route length.

• Payload Weight - Dictated by the route analysis and business case of the various airlines

and as such is fixed very early on in the design process.

A wide range of technological improvements have been implemented over the past 50 years

targeting these areas, including but not limited to: higher by-pass-ratio engines, more aerody-

namically efficient designs and high-performance materials such as composites. Figure 1.1 shows

that whilst these innovations have led to a steady improvement in overall efficiency the latest

generation of aircraft have seen smaller incremental improvements in performance than their

predecessors. During this time development costs and unit prices have increased11,12 and airlines

are beginning to see a smaller and smaller benefit from ordering newer aircraft models, preferring

instead to extend the life of their existing fleet. Therefore, the next-generation of aircraft will

need to provide significant performance benefits over current models which may not be possible

with the traditional ‘tube-and-wing’ configuration4.

Regarding aerodynamic efficiency, the dominant metric of interest is the aircraft lift-to-drag

ratio (L/D), which must be maximised to obtain the best possible performance. As the aircraft

must generate enough lift to sustain level flight during cruise the only option to improve (L/D) is

to minimise the drag force, which can be broken down into three main components13:

• Parasitic Drag - Resulting from shear and pressure forces acting on any exposed surface.

• Induced Drag - Additional shear and pressure forces due to changes in the flow-field

around the aircraft from lift forces.

• Wave Drag - Associated with the pressure drop across shock waves.

Figure ?? shows the drag breakdown for a typical commercial airliner operating in the transonic

region14,15. Noting that the exact composition of the drag force is dependent on a number of

2
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FIGURE 1.1. Variation in aircraft energy intensity over time11.

factors, it is clear that the parasitic and induced drag terms are dominant whilst the wave-drag

contributes only a small fraction to the total drag1. Moreover, the drag force varies as a function

of aircraft speed. For example, Figure ?? shows that at low speeds the induced drag constitutes

the majority of the drag force and the parasitic drag is minimal, however, as the speed increases

there is a quadratic decrease/increase in the induced-/profile-drag respectively and the point

where the two lines intersect is the point of minimum drag and the corresponding speed is the

minimum drag speed (VMD)2. According to Torenbeek 16, p. 158 an aircraft will typically fly

10-20% faster than VMD to maintain stability and avoid buffet as well as improve the block time,

hence the so-called "best utilisation speed" in Fig. ??.

Reducing lift-induced drag is important as it enables cruise efficiency to be maximised and

limits drag during the take-off and landing phases. The later allows a greater maximum take-

off/landing weight to be achieved which provides an increase in performance greater than the

cruise benefits alone15. According to Prandtl-Glauert theory13,17, which is valid for describing

the aerodynamics of finite unswept wings in steady incompressible non-viscous flow, lift-induced

1For commercial aircraft the cruise Mach number is typically chosen such that it is less than the Drag-Divergence
Mach number, thereby minimising wave drag. For aircraft operating further in the transonic region or at supersonic
speeds the contribution from wave drag is significantly higher.

2This approach is consistent with the one presented in Torenbeek 16 where wave drag is neglected because the
complex flow behaviour at transonic speeds cannot be accurately described by analytical formulae.
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FIGURE 1.2. Drag components for a typical transonic commercial aircraft14,15.

drag is a quadratic function of lift and can be expressed as

CD i =
C2

L
e0πAR

(1.2)

where, CD i is the lift-induced drag coefficient, CL is the lift coefficient, AR is the wing aspect ratio

and e0 is the Oswald Efficiency Factor; a factor that defines how close the lift distribution is to the

theoretical elliptical lift distribution. For a fixed CL, such as during cruise, there are two options

for reducing the induced drag - increasing the aspect ratio or increasing e0. In recent years, a

significant effort has been made to reduce lift-induced drag by using ‘winglets’ - devices which

carefully manage the formation and strength of wingtip vortices in order to improve the Oswald

Efficiency Factor. Several commercial aircraft utilise winglets as they allow for a reduction in

drag with only a small increase in the total wingspan, something that is highly beneficial for

airlines as ground-handling costs at airports are linked to the overall size of the aircraft. Indeed,

numerous studies have shown that for a fixed span a winglet provides a reduction in total drag of

approximately 5% with minimal increases in root bending moment, although, it remains unclear

whether a winglet is categorically better than an equivalent span extension18–21.

As well as using winglets to control lift-induced drag, there has been a trend in recent aircraft

to increase the aspect ratio in order to restrict the influence of wingtip vortices to the outer-portion

of the wing and reduce induced drag. For example, Fig. 1.3 shows a steady increase in aspect ratio

in recent decades, specifically for twin-engine, wide-body aircraft, such as the A350 and B787,

which have begun operating on longer routes with significantly higher ETOPS3 ratings. Whilst

a higher aspect ratio can improve performance during flight, when operating on the ground

(i.e. at airports) the wingspan is limited by the ICAO gate codes22, thereby placing a physical

limit on the overall dimensions of the aircraft when it is at the gate. To counter this, a new idea

3ETOPS refers to Extended Operations, which is the amount of time an aircraft is rated to fly at the one-engine
inoperative cruise speed over water or remote lands.
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has emerged that involves incorporating a ‘fold’ into the structure of the wing. This concept is

currently being investigated for the new B777X23 where it would allow the full wingspan to be

achieved during flight and then for ground operations a section of the wing will fold up in order to

meet the requirements on airport gate size. Seperately, Airbus are investigating the possibility of

using a semi-aeroelastic folding wingtip to provide loads alleviation during turbulence encounters

and have produced several papers and patents concerning this application24–26, as well as a

scale-model flight demonstrator named AlbatrossOne27.

The possibility of a wingspan that can exceed the normal gate size has led many researchers

to investigate high aspect ratio wing (HARW) designs as a means of reducing lift-induced drag.

Notable examples of HARW concept aircraft include the Double Bubble D828, Airbus Concept

Plane29 and NASA/Boeing SUGAR Volt30, images of which are shown in Figure 1.4. The aspect

ratio of these concept aircraft is in range of 17-25, whereas a typical commercial aircraft has an

aspect ratio of less than 10. Such designs represent a departure from the typical ‘tube-and-wing’
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(a) NASA/Boeing SUGAR Volt31

(b) Double Bubble D832

(c) Airbus Concept Plane29

FIGURE 1.4. High aspect ratio concept aircraft.

configuration and as such none of these concepts have progressed beyond the initial design stage,

although they are the subject of intense and on-going research .

Whilst high-aspect ratio wings provide an aerodynamic benefit there is a considerable penalty

for the wing structural weight. The increased span leads to a larger moment arm, causing

increased bending loads along the wing which then require additional structure in order to

prevent the components from exceeding their failure stresses/strains, hence the increase in

weight. Various methods have been proposed to mitigate for this, including: aeroelastic tailoring

using composite materials33–36, active loads alleviation using aerodynamic control surfaces37–40

and morphing wings41,42. Another possible solution is to use an external bracing structure to

support the wing, thus providing additional stiffness and reducing internal loads. This external

structure can be comprised of any number of ‘strut’ elements which are collectively described as

the ‘truss’, as in Figure 1.5, hence the name for this concept is the Truss-Braced Wing (TBW).

The concept of a truss-braced wing aircraft was first popularised during the Second World

War but quickly lost out to the traditional monoplane ‘tube-and-wing’ configuration which became

dominant during the jet era and beyond. However in recent years there has been renewed interest

in this concept, thanks in part to the SUGAR project which has identified the TBW as one of the

concepts that can achieve the N+3 emissions goals set out in Collier et al. 4 and more recently

it has been announced as one of Boeing’s concept aircraft43. The addition of the truss leads to

6
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Jury-Struts
Wing

Strut

FIGURE 1.5. Schematic of a truss-braced wing.

a structurally efficient design with reduced weight and lower induced drag from the increased

aspect ratio, however, the truss structure generates interference drag that must be traded as part

of a comprehensive multidisciplinary optimisation study44–46. Despite this, it has been shown

that the TBW concept can provide improvements in maximum take-off weight and fuel burn

over a traditional cantilevered-wing design if the interface between the truss structure and the

wing is properly designed. Recently, Malik et al.47 identified that aeroelastic phenomena such

as flutter are the main constraints which drive the overall design of the TBW aircraft, thereby

placing a limit on the practical efficiency savings that can be achieved when considering a braced

wing design. Furthermore, initial sizing studies conducted as part of the SUGAR project5 have

shown that gust loads are responsible for sizing many of the structural components in the wing

box30. Hence, a primary requirement for the success of the TBW concept is to reduce the effect of

these aeroelastic phenomena, thus enabling further reductions in wing weight which leads to a

more efficient design.

In this thesis an alternative approach to aeroelastic control in a truss-braced wing is presented,

which is to use a two-terminal vibration suppression device embedded within the truss structure

to passively provide gust loads alleviation and flutter suppression. Such an approach is not

feasible in a cantilever wing as a location does not exist where the relative motion of the wing

structure can be exploited by a two terminal device, however the addition of the truss-structure

means there are now several candidate locations where a device could be placed. For example,

if a hinge connection between the strut and the wing is employed then the rotation of the strut

about that joint could be utilised or the jury-strut may experience significant relative motion

due to the combined bending of the wing and the primary strut. This application of a vibration

absorber to control aeroelastic effects in truss-braced wings is highly novel and has not, to the

best of the author’s knowledge, been investigated previously. As such, there are several questions

that this thesis will attempt to answer:

7



CHAPTER 1. INTRODUCTION

1. Can a vibration suppression device reduce structural loads during a turbulence encounter?

2. Can a vibration suppression device provide flutter suppression?

3. Assuming a vibration suppression device yields performance improvements, are the mass

and geometry of the device feasible within the context of an aerospace application?

4. How can a vibration suppression device be integrated within a complex structure and then

designed and optimised in a computationally efficient manner?

1.2 Novel Contribution

The following novel aspects are presented in this thesis:

• Passive flutter suppression in a truss-braced wing using vibration suppression devices.

• Passive gust loads alleviation in a truss-braced wing using vibration suppression devices.

• Consideration of the practical design of a vibration suppression device that can provide

realistic levels of aeroelastic control within the context of a full-scale commercial truss-

braced wing aircraft.

• Methods for modelling and optimising a generic vibration suppression device attached to a

generic finite element model using mechanical network design techniques.

1.3 Publications

The following conference papers have been presented during the course of this PhD:

1. Christopher P. Szczyglowski, Christopher P. Howcroft, Simon A. Neild, Branislav Titurus,

Jason Z. Jiang, Jonathan. E. Cooper and Etienne Coetzee, "Strut-Braced Wing Modelling

with a Reduced Order Beam Model.", Proceedings of the Royal Aeronautical Engineering

Society 5th Aircraft Structural Design Conference, 2016.

2. Christopher P. Szczyglowski, Simon A. Neild, Branislav Titurus, Jason Z. Jiang, and

Etienne Coetzee, "Passive Gust Loads Alleviation in a Truss-Braced Wing Using Integrated

Dampers", Proceedings of the 17th International Forum on Aeroelasticity and Structural

Dynamics, International Forum on Aeroelasticity and Structural Dynamics, 2017.

3. Christopher P. Szczyglowski, Simon A. Neild, Branislav Titurus, Jason Z. Jiang, and

Etienne Coetzee, "Passive gust load alleviation in a truss-braced wing using an inerter-

based device", Proceedings of the AIAA/ASCE/AHS/ASC Structures, Structural Dynamics,

and Materials Conference, American Institute of Aeronautics and Astronautics, 2018. DOI:

10.2514/6.2018-1958

Furthermore, the following journal papers have been published:

1. Christopher P. Szczyglowski, Simon A. Neild, Branislav Titurus, Jason Z. Jiang, and Etienne

Coetzee, "Passive Gust Loads Alleviation in a Truss-Braced Wing Using an Inerter-Based

Device", Journal of Aircraft (2019), accessed September 01 2019. DOI: 10.2514/1.C035452
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1.4. THESIS OUTLINE

1.4 Thesis Outline

This thesis consists of seven chapters and five appendices which are organised as follows:

• Chapter 1 provides an introduction to the general research themes and outlines the novelty.

• Chapter 2 is a comprehensive review of the research literature which highlights some

important gaps in the field of truss-braced wing design, some of which are addressed here.

• Chapter 3 introduces the full-span BUG-T aeroelastic finite element model which is derived

from the NASA/Boeing SUGAR 765-095 Rev. D model. The fundamental dynamic and aeroe-

lastic behaviour is characterised and three potential locations for the vibration absorber

are identified. These insights are used in Chapters 4 and 5 to inform the optimisation of

vibration suppression devices for flutter suppression and gust load alleviation.

• Chapter 4 investigates the potential of a vibration suppression device to alleviate flutter in

truss-braced wings. The techniques for modelling and optimising a vibration absorber in

Nastran are discussed and the three candidate device layouts are introduced. A combined

MATLAB-Nastran optimisation scheme is used to optimise the device parameters in order

to maximise the flutter speed of the BUG-T model.

• Chapter 5 evaluates the potential for vibration suppression devices to provide gust loads

alleviation in a truss-braced wing. Here, a half-wing version of the BUG-T is used and the

response to a family of discrete 1-cosine gusts is evaluated. Next, a device optimisation

framework is introduced where the optimisation is formulated as a frequency response

problem with the device parameters optimised to target specific structural modes in the

primary system. Finally, this framework is used to evaluate both single and multiple

absorber configurations for gust loads alleviation.

• Chapter 6 presents the preliminary design of a vibration suppression device that can

provide the required linear force coefficient values identified by the flutter suppression and

gust load alleviation studies. The objective of this chapter is to understand whether the

device properties are realisable within the context of a truss-braced wing aircraft.

• Chapter 7 is the final chapter and provides a summary of the technical work presented in

this thesis as well as recommendations for future work.

• Appendix A provides the reference data for the SUGAR 765-095 Rev. D aircraft model.

• Appendix B details the NeoCASS model which provides the BUG-T mass distribution.

• Appendix C provides an overview of the BUG-T model and discusses the parametric aircraft

model generator O2MeGA which was used to generate the BUG-T model.

• Appendix D provides additional results related to the analysis in Chapter 3.

• Appendix E discusses three different methods for modelling vibration absorbers in the

Nastran finite element software and details the pros and cons of the different approaches.
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BACKGROUND THEORY AND LITERATURE REVIEW

This chapter provides an overview of the research literature that is pertinent to the studies

presented in this thesis. Three main topic areas are discussed: In Section 2.1 a brief

overview of the field of aeroelasticity is provided, including the basic equations of motion,

the various phenomena associated with aerolastic interactions and a discussion on some of the

methods used to simulate these systems. In Section 2.2, a comprehensive review of the truss-

braced wing literature is provided, with specific emphasis placed on the the rich history of the

truss-braced wing aircraft, including its origins during the pioneering days of powered flight.

Finally, in Section 2.3 the concept of vibration suppression is introduced, with consideration

given to the fundamental physical principles, the preliminary design of vibration suppression

devices and their application to engineering structures. Through this review it is shown that the

use of vibration suppression devices in truss-braced wings has not been covered in the existing

literature, which only serves to highlight the novelty of the work presented in this thesis.

2.1 Aeroelasticity

Classical aeroelasticity is the study of the interaction between aerodynamic, elastic and iner-

tial forces, shown pictorially by Collar’s Aeroelastic Triangle in Figure 2.1. Collar’s Triangle

demonstrates that a variety of interactions are possible between the three forces, for instance the

interaction between aerodynamic and inertial forces is related to the discipline of Stability and

Control whilst the interplay between inertia and elastic forces is the domain of Vibrations. In

general, aeroelasticity is divided into two parts: static aeroelasticity and dynamic aeroelasticity -

the former is concerned with non-oscillatory aerodynamic forces acting on a flexible structure

whereas the latter is the interaction of all three forces and includes unsteady aerodynamic terms.

In his review paper, Friedmann 48 argues that the Collar’s Triangle can be expanded into an

11
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Elastic
Forces

Aerodynamic
Forces

Inertial Forces

Vibration
Ground Manoeurve

Loads

Stability and Control
Dynamic Flight

Manoeuvre Loads

Static Aeroelasticity
Equilibrium/Steady
Manoeuvre Loads

Dynamic Aeroelasticity
Gust and Turbulence Loads

FIGURE 2.1. Collar’s Aeroelastic Triangle and associated loads, from Wright and
Cooper 49
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A
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I Inertial
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FIGURE 2.2. The Aero-Servo-Thermal-Elastic Hexahedron, taken from Friedmann 48

aero-servo-thermo-elastic hexahedron which is "more representative of modern aeroelasticity".

In this expanded model, shown in Fig. 2.2, the effects of control systems and thermal loads are

accounted for - the former being concerned with the discipline of aeroservoelasticity and the latter

being of interest during hypersonic flight. As this thesis focuses on the effects of aeroelasticity in

fixed-wing aircraft the classical model will be used and any further reference to aeroelasticity

should be thought of in the scope of Collar’s Triangle and not the aero-servo-thermo-elastic

hexahedron.
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2.1.1 Aeroelasticity in Fixed-Wing Aircraft Design

There are several practical consequences of including aeroelasticity in the design of fixed-wing

aircraft. Firstly, the aerodynamic forces acting on the wing - and other exposed surfaces - cause

the structure to deflect, and as the local aerodynamic forces are dependent on the local angle-

of-attack this deflection causes a change in the the aerodynamic forces. During the modelling

process this interaction can be iterated until an equilibrium position is reached where the external

aerodynamic and inertial loads are equal to the internal reaction loads from the elasticity of the

structure, resulting in a deflected shape known as the static aeroelastic shape or 1g jig-shape. As

the drag force acting on the aircraft is a function of its shape it is important that static aeroelastic

effects are accounted for otherwise a significant drag penalty will be incurred, which will have

a detrimental effect on performance. Furthermore, it is possible for the aerodynamic loads to

exceed the internal reaction loads resulting in the catastrophic failure of the airframe. This

phenomena is a type of static instability known as divergence and is strongly dependent on the

stiffness of structure. Another stiffness-related static-aeroelastic phenomenon is control reversal

which occurs when the aerodynamic moment due to wing twist exceeds the nose-down pitching

moment of the control surface (typically an aileron) causing the opposite response to the one the

pilot has demanded.

Regarding dynamic aeroelasticity, the main concerns are due to flutter - an instability caused

by interactions between unsteady aerodynamic forces and the flexible modes of the structure

- and increased airframe loads due to turbulence encounters. The latter can be explained by

considering atmospheric turbulence as unsteady air (‘gusts’) which have velocity components

in all three directions. Any component of the gust velocity which is normal to the aircraft’s

flight path will cause an induced angle-of-attack and hence a change in the aerodynamic and

internal loads. For cases of severe turbulence these perturbations in the gust velocity can cause

an increase in loads that would otherwise exceed the limit loads of the structure if they were not

included in the design process. For aircraft operating the in transonic region the effects of shock

buffet1 must also be accounted for, both in the definition of the flight envelope and the design of

aerofoil cross-sections. All of the considerations listed in the previous paragraphs are well-known

to aerospace engineers and are the subject of several textbooks49–52 and review papers48,53–56.

Clearly the effects of aeroelasticity must be accounted for during the design process. Histori-

cally, this has been achieved by increasing the stiffness of the structure such that the frequencies

of the flexible structural modes are outside of the range of excitation frequencies typically as-

sociated with unsteady aerodynamics, or similarly by adding mass to the structure in order to

decouple the structural modes from the aerodynamic forcing. Such an approach inevitably leads

to an increase in structural mass, hence the term ‘flutter penalty’ used to describe any increase

in weight due to aeroelastic effects. Another means of alleviating negative aeroealstic effects is

1Shock buffet refers to high frequency instabilities causes by flow separations, shock wave oscillations and wake
interference from forward structures.
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to use a technique known as active loads control, where active control methods are employed to

actuate control surfaces in such a way that unsteady aerodynamic loads are minimised37. Whilst

this approach has been widely adopted by the aerospace communitity active control methods are

complex and notoriously difficult to certify57–60. In recent years researchers have investigated

ways to take advantage of aeroelasticity in order to provide a benefit to the overall aircraft design.

Potential avenues of approach include curvilinear structural elements61, composite tailoring33,62

and morphing structures41,63.

Concerning composite tailoring and curvilinear structures, the objective is to introduce

localised bend-twist coupling in order to influence the global behaviour of the wing. Specifically,

bend-twist coupling that induces ‘wash-out’ - where the wing twists nose-down as it bends up

- which provides passive loads relief via reduction in the local angle-of-attack62. In the case of

composite tailoring, this is achieved by varying the direction of the fibres in the various structural

components33,62. Regarding morphing structures, the underlying concept is to adjust the profile

of the lifting surfaces in order to maximise the performance of the structure. This could be with

the aim of reducing parasitic drag or modifying the aerodynamic forces in order to reduce the

response of the aircraft during turbulence encounter. Notable research examples of morhping

structures include: the Variable Camber Continuous Trailing Edge Flap (VCCTEF)39,40, the

Variable Geometry Raked Wing Tip64, folding wing-tips24,26, and the FishBAC trailing edge65,66.

Such approaches are considered highly novel within the industry and are yet to advance beyond

the research stage.

To properly account for aeroelastic effects as well as make them beneficial to aircraft perfor-

mance aeroelasticity must be inherent in the aircraft design process, see Fig. 2.3. The classical

approach to aeroelastic design is use low-fidelity aeroelastic models during the conceptual design

phase in order to generate global mass and stiffness data for the aircraft. This data is typically

corrected using historical data based on aircraft-family type, which often has only a loose cor-

relation to the physical attributes of the aircraft. As the design progresses, medium and high

fidelity modelling becomes more common, however, due to limitations surrounding computational

time (and cost) these models still require corrections using data from wind tunnel and flight

tests. If a problem is identified during testing then a redesign is incredibly costly and can delay

an aircraft programme by months if not years. A more favourable approach is to incorporate

higher fidelity tools early in the design process using a concept known as the virtual aircraft67.

Here the objective is to offload much of the physical testing to an earlier stage in the design,

allowing issues to be identified much earlier and reducing the potential for costly redesigns. Such

an approach is further necessitated by the recent interest in unconventional aircraft types for

which no historical data exists, making it even more important that at the conceptual design

stage the aircraft is evaluated using physics-based models. To this end, several researchers have

developed multidisciplinary optimisation (MDO) tools which allow for the analysis and parametic

design of fully-flexible aircraft; notable contributions include: the CPACS schema68, NeoCASS69,

14
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FIGURE 2.3. Model fidelity as a function of design maturity - past and future trends67.

GeoMACH70 and PyGFEM71. These tools encompass different levels of fidelity and each one is

aimed at improving the understanding of aeroelasticity during the initial design stage as well as

increasing modelling fidelity at all stages of the design process, as shown qualitatively in Fig. 2.3.

2.1.2 An Overview of Aeroelastic Modelling in Fixed-Wing Aircraft

At its core an aeroelastic model requires three things:

• A Structural Model - A representation of the structure that is capable of capturing

elastic deformations and dynamic effects as well as the inertial properties of the model.

Different levels of fidelity are available depending on the maturity of the design. For

instance, 1D representations of the structure are commonly used early in the design process

to rapidly estimate the global stiffness and mass requirements of the aircraft, whereas

high-fidelity models utilising 2D plate or 3D solid elements2 are used later on to accurately

model failure mechanisms and certify that the aircraft is safe to fly72; the use of such large-

scale, high-fidelity tools is commonly referred to as Computational Structural Dynamics

(CSD).

• An Aerodynamic Model - A representation of the aerodynamic loads acting on the

structure that is capable of capturing unsteady aerodynamic effects. As with the structural

2Here the term element refers to a discrete connection between nodes in a model, which is the fundamental basis
of a finite element (FE) representation of the structure. In structural modelling the FE approach is most common but
it is by no means the only method for representing the structure.
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model various levels of fidelity are available, from simple analytical 2D formulations (e.g.

strip theory) to complex 3D numerical models that utilise computational fluid dynamics

(CFD)73.

• Aero-Structural Coupling - A means for the aerodynamic loads to be applied to the

structure and for structural deformations to be translated to the aerodynamic states which

in turn generate new aerodynamic loads. Basic models utilise a fixed reference point for the

application of aerodynamic forces and moments, such as the aerofoil quarter-chord, however

it is more typical to use mathematical splines to generate a matrix relating the structural

states (deflections, twists, global geometry) to the aerodynamic states (angle-of-attack,

downwash velocity, outer-mold-line). The coupling of CSD and CFD methods is referred to

as Computational Aeroelasticity (CAE).

Bearing these three core components in mind, the basic equation of motion (EoM) governing

aeroelastic systems is given in Wright and Cooper 49 as

Aq̈+ (
ρ f U∞B+D

)
q̇+ (

ρ f U2
∞C+E

)
q = 0 (2.1)

where A, B, C, D and E are approximations of the structural inertia, aerodynamic damping,

aerodynamic stiffness, structural damping and structural stiffness matrices respectively. ρ f is

the density of the fluid, U∞ is the aircraft forward velocity and q are the generalised coordinates.

The exact composition of the structural and aerodynamic matrices is dependent on the underlying

physics that is used to formulate the equations of motion and as such the complexity of the

system can vary significantly. For example, Eqn. 2.1 assumes that the aerodynamic terms can be

accounted for as additional velocity-dependent stiffness and damping terms, however alternative

formulations are available which consider the aerodynamic forces as additional inertia terms74.

In the rest of this section a brief overview of different methods for formulating aeroelastic models

is provided, including the industry-standard tool NASTRAN which is used for the work in this

thesis.

Aeroelastic modelling and simulation has a rich history. During the early years of aeroelastic

research various different models were proposed to analyse aeroelastic pheonomena75 with

common approaches including: using a 2D aerofoil section with pitch and plunge3 degrees-

of-freedom (DOF), modelling the aircraft as a collection of rigid bodies connected by discrete

springs or using a variational approach to model a flexible wing as a linear superposition

of shape functions representing the bend and twist DOFs, as in Wright and Cooper 49 and

Cassel 76 . Concerning unsteady aerodynamics, the seminal work by Wagner77 and Theodorson78

established much of the theory for unsteady aerodynamics of 2D aerofoils experiencing harmonic

oscillations4, as well as introducing the concept of aerodynamic lag - where the build up of

aerodynamic forces will lag behind any motion applied to the structure. Theodorson’s work

3Sometimes refered to as the "heave-pitch" model or the "binary-flutter" model.
4Note that the assumption of harmonic motion only holds true at the flutter boundary. This is a serious deficiency

of Theodorson’s theory as pointed out by Leishman and Nguyen 79 .
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described the frequency dependent nature of the aerodynamic forces and related this to a reduced

frequency, k = ωc/2U∞, where ω is the circular frequency of the aerofoil motion and c is the

aerofoil chord. This dimensionless parameter indicates whether the aerofoil will extract energy

from the fluid and hence whether flutter will occur.

As the community’s understanding of the physical principles of aeroelasticity grew the com-

plexity of the models increased, leading to the development of matrix methods to efficiently handle

the larger EoM80. This early work would lay the foundations for the wide-scale adoption of finite

element analysis (FEA) as the basis for most medium-to-high fidelity aeroelastic modelling81.

One of the most widely adopted codes was developed by NASA during the 1960s to allow the

modelling of complex aerospace flight vehicles which could not be accurately represented using

existing methods. This code, NASTRAN (NASA Structural Analysis), has since become ubiquitous

across a number of engineering disciplines and is considered to be industry-standard in aerospace

engineering. However, despite this accolade, the aeroelastic capabilities of NASTRAN are in fact

quite limited. For example, the subsonic aerodynamic formulation available in NASTRAN is

the Doublet-Lattice Method (DLM)82. This formulation is based on linear potential flow theory,

meaning that the aerodynamic forces are only valid for inviscid, irrotational, incompressible

and attached flow, subject to small angles-of-attack or side-slip13. Therefore, DLM cannot give

accurate predictions of aerodynamic forces at transonic speeds (which most commercial aircraft

operate at), estimate drag associated with viscous and compressible effects or model shock buffet.

Despite these limitations it is generally understood by the industry that the DLM approach can

give a reasonable understanding of the general aeroelastic characteristics of an aircraft, as well

as provide predictions of the aircraft response during turbulence encounters. Furthermore, the

pressure distribution from the DLM can be ‘corrected’ using results from CFD analysis, allowing

an interaction between the aerodynamic and structures disciplines that was previously difficult

to realise. Indeed, the strength of NASTRAN lies in its ability to model the structural properties

of any generic model and to couple this to a broadly accurate (on an aircraft-level) representation

of the aerodynamics. This vehicle level approach to aeroelasticity is what makes NASTRAN so

useful for the analysis of aircraft structures, even if the fidelity of the aerodynamic model is

limited to what is typically expected at the preliminary design stage.

In the period between the 1960s and the late 1990s the trend was towards increasing the

fidelity of analysis models to provide improved estimates of the structural and aerodynamic

aspects of the aircraft. However as the models increased in size the computational cost of

dynamic aeroelastic analysis became prohibitive, leading to the investigation of dynamic reduction

techniques83,84. The aim of this process is to retain the key dynamic characteristics of the full-

model but using a reduced number of states, typically the normal modes of the structure. This

method is wide-spread and remains a common approach for many modern CAE tools. Other

important developments also took place in the fields of time domain aeroelastic modelling and

transonic flutter prediction48. With regards to the former, the introduction of the Rational
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Fraction Approximation (RFA) approach allowed the frequency-dependent unsteady terms of

the aerodynamic forces to be represented using rational polynomial functions, the coefficients of

which are determined in order to minimise the interpolation error for a fixed Mach number85–87. A

further benefit of the RFA approach is that it allows structural and aerodynamic nonlinearities to

be included in the aeroelastic simulation, whereas the frequency-dependent formulation requires

a linear structural and aerodynamic response. Another time-domain unsteady aerodynamic

theory was developed by Leishman and Nguyen for a 2D aerofoil79 which was later extended to a

2D ‘flapped-aerofoil’88. Leishman’s work was motivated by the demands of rotorcraft aeroelasticity

however the theory can be readily applied to fixed-wing aircraft. The availability of time-domain

aerodynamic formulations was a key enabler for the discipline of aeroservoelasticity, which is

the use of digital control systems coupled with aerodynamic control surfaces and state-feedback

to influence the aerodynamic forces acting on the structure37,60. During this time improved

CFD capabilities yielded predictions of transonic aerodynamics which led to the discovery of

the transonic flutter dip - a sharp reduction in flutter speed which occurs at transonic speeds.

The exact mechanism of this phenomena is not fully understood although it is suggested that

shock-wave oscillations may be the main cause, further details are provided by Isogai89,90. Most

importantly, this effect is not captured by linear methods, thus creating a requirement for

nonlinear formulations to be included in the aeroelastic analysis of aircraft operating in the

transonic region.

In modern aeroelasticity the rise of high-performance computing (HPC) means that the

state-of-the-art is at such a stage where 3D CFD analysis can be coupled to high-fidelity CSD

models to generate highly accurate results53,54,91,92. This level of fidelity is typically available

for the calculation of trim conditions for a fully-flexible aircraft93–95 (i.e. static aeroelasticity),

however, it has not yet reached maturity for dynamic aeroelasticity - the main barrier being the

simulation time required to capture the complex turbulent flow that is inherent to transient

aerodynamics. For this reason, many dynamic aeroelastic simulations continue to utilise dynamic

reduction techniques and approximated aerodynamic pressure distributions to model dynamic

aeroelastic cases94–98.

Another area that has received increased interest in recent years is the study of nonlinear

aeroelasticity48,55,56, which refers to nonlinearities arising from both the structural and aerody-

namic aspects of the model. In his review paper Friedmann 48 argues that there are three levels

of linear/nonlinear modelling in aeroelasticity:

1. Completely linear - Classical aeroelasticity, including NASTRAN5.

2. Linearized models - This involves obtaining an equilibrium solution, static or dynamic,

for the nonlinear response equation and then constructing perturbation equations about

this equilibrium using the linearized form of the dynamic equations.

5It is possible to incorporate nonlinear aerodynamic forces into a NASTRAN simulation using a process known as
Fluid-Structure-Interaction (FSI)91, however as this involves generating aerodynamic loads outside of the NASTRAN
environment the prior statement on NASTRAN aeroelastic capabilities remains valid.
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3. Fully nonlinear - All aspects of the system are modelled using nonlinear methods.

There are several sources of nonlinearity in aeroelastic systems, including: control surface

freeplay, aerodynamic nonlinearity - both from transonic aerodynamics and high angle-of-attack

flow (e.g. stall flutter) and geometric nonlinearity - nonlinearirty due to large-scale structural

deflections. A typical hallmark of a nonlinear system is the presence of a Limit Cycle Oscillation

(LCO) which is a bounded oscillation where energy is traded between the fluid and the structure.

It has been shown that LCOs in aircraft structures can occur due to the presence of both

structural and aerodynamic nonlinearities99, as well as internal resonances within the system55

and more recently LCOs were observed during wind-tunnel testing of the NASA SUGAR Volt

aircraft100. Concerning the modelling of nonlinear aeroelastic systems, as aerospace structures

are typically slender in nature there has been a concerted effort to develop rapid, yet accurate,

1D beam formulations that encompass the global stiffness and inertia properties of the aircraft

whilst capturing geometrically nonlinear deflections101–103. The nonlinear aerodynamics can

then by incorporated by developing reduced order models (ROM) of the sectional lift, drag and

moment coefficients based on CFD data, which are then incorporated into the low order structural

formulations. These techniques have been applied to a wide variety of aircraft types, including:

high altitude long-endurance (HALE)104, joined wings105, strut-braced wings106 and blended-

wing-body aircraft107. The full nonlinear modelling of dynamic aeroelasticity using high-fidelity

CSD-CFD models is still yet to be realised, however it remains the ‘holy-grail’ for much of the

aeroelastic community.

2.1.3 Summary of Aeroelasticity Literature

Below is a brief summary of the main points that have been identified from the papers reviewed

in this section:

• Aeroelasticity is a well-developed field with applications across various industries and a

broad range of modelling techniques.

• Research state-of-the-art is concerned with high-fidelity nonlinear aeroelastic modelling

however traditional aeroelastic tools such as NASTRAN are still used to model vehicle-level

aeroelastics of both conventional and unconventional aircraft.

• The principal problems arising from aeroelastic effects in fixed wing aircraft are increased

structural loads due to atmospheric turbulence, loss of control due to aileron reversal and

catastrophic failure due to flutter instability. These effects must be included at the early

stages of the design process in order to derive additional performance benefits as well as

properly understand their impact on the aircraft design.

• Numerous researchers are investigating methods to mitigate aeroelastic effects, notable

technologies include: active control via aerodynamic control surfaces37,57–60, composite

tailoring33,62 and morphing structures24,26,39,40,64–66.
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2.2 The Braced-Wing Aircraft

In this section a complete overview of the braced wing concept is provided in order to familiarise

the reader with the configuration and also highlight areas which have not been sufficiently

explored in the existing research. To avoid ambiguity the term "braced wing" encompasses both

strut-braced wing (SBW) and truss-braced wing aircraft, examples of which are shown in Fig. 2.4.

Before progressing it is necessary to clarify the vocabulary specific to braced-wings:

• Strut - A structural component which forms a connection between the fuselage and the

wing, sometimes referred to as a "lifting-strut". The main function of the strut is to limit

the deflection of the wing, which has the effect of reducing the loads inboard of the strut

attachment point.

• Jury-Strut - A structural component which connects a strut to the wing. The purpose of

a jury-strut is to reduce the effective buckling length of the strut.

• Truss Structure - A collection of strut and jury-strut elements.

• Strut-Braced Wing (SBW) - A wing that is supported by strut elements only.

• Truss-Braced Wing (TBW) - A wing that is supported by strut and jury-strut elements.

(a) Strut-Braced Wing (b) Truss-Braced Wing

FIGURE 2.4. An example of a strut-braced wing and truss-braced wing configuration

Jury-Struts

Strut

Pinned/Ball-Joints

Fully-fixed joint (with
representative aerodynamic fairing)

Wing

FIGURE 2.5. Components of a truss-braced wing
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On the connectivity between the truss-structure and the wing/fuselage components various

joint types have been proposed, including:

• Pinned - Allows rotation about a single axis. Moments in the two fixed axes are non-zero

at the joint location and these loads are transferred across the joint.

• Ball - Allows rotation about all three axes. All bending moments/torques have a zero-value

at the joint location and only forces are transferred across the joint.

• Fully-Fixed - No rotation is allowed and all moments/torques/forces are transferred

across the joint. A fully-fixed joint is usually accompanied by an aerodynamic fairing which

limits interference drag from the strut.

In terms of numerical modelling, accounting for different joint types is as simple as releasing

specific degrees of freedom in the model, however the physical design of the joints is more

complicated and has not been addressed in any detail in the literature. Figure. 2.5 provides a

colour-coded breakdown of a TBW with the various structural members and joint types annotated.

The braced-wing concept offers an attractive alternative to the cantilever wing design as

the addition of the truss structure creates a structurally efficient design which reduces the

spanwise bending moments and torques inboard of the strut108,109, as in Fig. 2.6. This enables

the inboard portion of the wing to be designed with a reduced thickness-to-chord ratio providing

a reduction in wing weight as well as lower wave and profile drag. Furthermore, the reduced

bending moment allows a larger wingspan to be achieved resulting in an increased aspect ratio

and a reduction in induced drag. Multidisciplinary optimisation studies44,45 have shown that

a truss-braced wing design has a lower sweep angle than a cantilever wing. This leads to a

reduction in spanwise crossflow110 thus promoting more laminar flow and hence lower friction

drag, however it should be noted that the interference drag from the truss-structure can have a

Braced Wing

Cantilever Wing
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FIGURE 2.6. Qualitative comparison of the spanwise bending moment distribution for
a braced and cantilevered wing
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detrimental effect on performance if it is not properly designed111,112. Even with the effects of the

truss interference drag taken into account, numerous studies have shown that the truss-braced

wing concept can provide an overall improvement in maximum take-off weight and fuel burn

compared to a traditional cantilever design44–46.

This section is ordered more-or-less chronologically, starting with the early adopters of the

TBW concept during the initial days of powered flight and ending with the substantial body of

work carried out as part of the NASA SUGAR project. As the braced wing aircraft has historically

received less attention than the cantilever configuration the quantity of published research on

it is limited. For this reason the papers reviewed here are discussed in more detail than other

sections in order to provide the reader with a complete understanding of the work that has been

completed to date. Furthermore, Section III of the review paper by Cavallaro and Demasi 113

is an excellent resource for understanding the braced-wing concept within the scope of other

joined-wing research.

2.2.1 Early Braced-Wing Aircraft

The braced-wing aircraft can be thought of as an simplified version of traditional bi- and tri-planes

from the early days of powered-flight. In these aircraft, wires or other supporting structures

were used to brace the wings in order to maintain structural integrity and ensure the upper

wing(s) remained attached, as in Figure 2.7(a). However, as aircraft structures became more

advanced and the community’s understanding of aerodynamics improved, the need for multi-wing

configurations diminished and the industry settled on the mono-plane concept with a conventional

tube-and-wing design. Despite the prevalence of the tube-and-wing configuration some early

aircraft designers continued to investigate braced-wings but for a mono-plane design. As the size

of the aircraft increased designers moved away from wire-bracing and instead utilised metallic

structures to provide support for the main wing, usually in a truss-like structure similar to

many bridges of the era, hence the name truss-braced wing. Several such aircraft were developed

during the Second World War, including: the Piper Pawnee, Consolidated PBY Catalina and

the Westland Lysander. Many of these were light-aircraft or flying-boats, with the braced-wing

favoured for its high-span which provided excellent short take-off and landing performance.

One of the early pioneers of the TBW concept was Maurice Hurel, who founded the Hurel-

Dubois aircraft company in 1947 and flew his first high aspect-ratio wing (HARW) demonstrator

aircraft in 1948. Hurel was one of the first designers to realise the benefits of a high-aspect

ratio design in reducing induced drag120 and he was quick to identify that a truss-structure

supporting the wing would enable larger wing spans to be achieved as a result of the loads

alleviation provided by the strut121. His demonstrator aircraft, the HD-10 (see Fig 2.7(b)), had a

32.5 aspect ratio wing supported by a strut and jury-strut truss-structure and was so successful

it led to the development of two medium range prototype aircraft designated the HD-31 and

HD-32, Fig. 2.7(c) and Fig. 2.7(d) respectively. These aircraft (and their successor the HD-34 - Fig.
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(a) 1916 - Bristol F.2 Fighter
(b) 1947 - HD-10114

(c) 1953 - HD-31114

(d) 1954 - HD-32114 (e) 1954 - HD-34114
(f) 1955 - Cessna 172115

(g) 1957 - HDM.105116

(h) 1963 - Shorts SC.7117
(i) 1968 - DHC-6 Twin Otter118

(j) 1974 - Shorts 330118
(k) 1981 - Shorts 360119

(l) 2018 - Boeing Transonic Truss-
Braced Wing concept43

FIGURE 2.7. Back-to-Basics? The evolution of the braced-wing concept
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2.7(e)) were of a conventional design apart from the braced wing which featured a flat stub-wing

section followed by a primary strut and two supporting jury-struts121,122. Dubois was aware of

the increased interference drag that resulted from the truss structure and he made a special

effort to design the struts to be as thin as possible, as well as incorporating pre-twist into the

struts to ensure minimum drag at cruise121. Managing the interference drag due to the truss is

still a major concern for modern TBW designs and is the subject of intense research .

The Hurel-Dubois company did not produce any further aircraft after the HD-34, although

a jet-powered successor to the HD-34, the HD-45, was proposed but never materialised. A

collaboration with the Miles Aircraft Company led to the construction of a HARW variant of

the Miles Aerovan designated HDM.105 (Fig. 2.7(g)), which combined the fuselage of the Miles

Aerovan with the wings from the HD-34123. The design of the HDM.105 was then incorporated

into the SC.7 Skvan (Fig. 2.7(h)) which was manufactured by the Short Brothers aircraft company

based in Belfast. Two variants of this aircraft, the Short 330 and Short 360, were in service from

1947-1992 and 1981-1991 respectively and operated as regional airliners124. Perhaps the most

famous SBW aircraft is the Cessna 172, an early version of which is shown in Fig. 2.7(f). This

light aircraft has many similarities with the early HD-10 design, however, the wing span and

aspect ratio are much smaller; this is perhaps due to concerns about the handling qualities of a

large and flexible wing . The reduced wingspan means the length of the supporting strut is much

shorter and therefore additional jury-struts are not required to prevent buckling in the primary

strut. Another well-known SBW aircraft is the de Havilland Canada DHC-6 Twin Otter (Fig.

2.7(i)), which is similar in design to the Cessna 172 but has a higher payload capacity.

Table 2.1 shows a summary of the performance metrics for recent and historic braced-

wing aircraft. In the interest of brevity, the Cessna 172 and DH6 Twin Otter are taken to be

representative of the numerous light-/utility-aircraft that have adopted the braced-wing design,

also, the HDM.105 has been neglected as it used the same wings as the HD-34. Examining the

data in Table 2.1 shows that, with the exception of the early HD- series, most braced-wing aircraft

have used a SBW design. This is a direct consequence of the smaller wingspan which results

in a reduced strut-length with a higher critical buckling load. As the primary purpose of the

TABLE 2.1. Key performance data for a selection of braced-wing aircraft.

HD-
10125

HD-
34122

Short
SC.7126

Short
330127

Short
360127

Cessna
172128 DHC-6129

Span [m] 12.0 45.3 19.8 22.8 22.8 11.0 19.8
Wing Area [m2] 4.43 100 35.12 42.2 42.2 16.2 39.0
Aspect Ratio [-] 32.5 20.5 11.1 12.3 12.3 7.5 10.1
Cruise Speed [km/h] 250 280 317 352 400 226 297
Range [km] 1000 2200 1117 1695 1178 1289 1427
Service Ceiling [m] 5000 8000 6858 6400 6096 4100 7620
Cruise Mach [-] 0.22 0.25 0.28 0.30 0.34 0.19 0.27
SBW or TBW? TBW TBW SBW SBW SBW SBW SBW
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jury-struts is to manage buckling in the primary strut there is no need to provide additional

bracing at the expense of all-up mass. Also, more recent braced-wing aircraft have had much

lower aspect ratios than the HD- variants, indicating that the full potential of the braced-wing

design is still to be realised. Furthermore, the data in Table 2.1 shows without exception all

previous braced-wing aircraft have been low-speed, low-to-mid range variants with propeller

propulsion systems. This would likely explain why this concept has not seen application in

the traditional single- and multi-isle markets, which involve longer routes flown at transonic

speeds. It would certainly have been possible for a braced-wing aircraft to have been designed

for this mission profile, however, it is likely that the concept was ruled out at an early stage

due to uncertainties regarding the interference drag from the truss and structural complexity of

integrating the truss-structure with the wing and fuselage.

2.2.2 Braced-Wing Design Studies

Despite the fact that the braced-wing concept was not widely adopted during the jet-era there

was still continued interest from the research community. Several design studies took place

during the second half of the 20th century that investigated whether a braced-wing could offer

performance benefits over the traditional cantilever design.

The first of these studies was conducted by Werner Pfenninger while he was working at

Northrop during the 1950s130. Pfenninger’s research was primarily aimed at the design of a fully-

laminar flow aircraft, nonetheless, he recognised that supporting the wing with a truss-structure

would enable his designs to achieve a higher aspect ratio, which would have the dual benefit of

extending the laminar region along the aerofoil and also reducing drag131. Figure 2.8 shows one

of his concepts for a fully-laminar flow aircraft with a truss-braced wing.

In the 1960s Boeing conducted a study comparing the initial design of a large-span military

FIGURE 2.8. Pfenninger’s vision for a truss-braced wing aircraft131
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transport aircraft in a cantilever and SBW configuration132. It was found that the strut-braced

wing configuration could "offer the potential of lower gross weight, lower empty weight and reduced

fuel consumption"132, however, this was assuming that further improvements in the aerodynamic

design of the strut-joint regions could be made. A follow up study in 1978 by Jobe et al. 133 found

that the SBW should not be ruled out based on the result of a conceptual design study. In their

report, they highlight the usefulness of the SBW in avoiding a wing-tip ground strike during a

taxi-bump load case as well as the reduction in loads at locations inboard of the strut. However,

in this study the strut was attached to the wing load reference axis and so there is no reduction

in the wing torque due to the strut reaction force. Such an effect is possible if the strut-wing

attachment point is moved towards the leading edge, a benefit that later studies would go on to

highlight134.

Turriziani et al. 135 studied the fuel efficiency of a business jet with an aspect ratio 25 SBW

compared to a conventional cantilevered wing. It was found that a SBW could offer fuel savings

of up to 20% and that for the same wing planform the strut-braced wing reduced the total wing

weight. Some drawbacks were also highlighted, including uncertainties about the manufacturing

cost of the SBW and a concern that the strut-braced variant would be less productive as a result

of flying at a lower cruise Mach number. Smith et al. 136 considered the application of the SBW

concept to a high-altitude research aircraft. They showed that the SBW configuration had a

31% increase in range compared to the cantilever baseline aircraft and that this was a direct

consequence of a reduction in wing weight due to the loads alleviation provided by the strut.

Moreover, both of these studies mention the benefit of designing the struts to produce lift, thereby

increasing the total L/D ratio. Although, the aerodynamic loads were calculated using simple

methods and so it is likely that the effectiveness of using lifting struts has been overstated.

Finally, Park137 evaluated the possibility of block fuel saving for the preliminary design of a

short-haul strut-braced wing aircraft. It was found that although the SBW did offer a reduction

in wing weight and induced drag the overall block fuel savings were not significant due to the

increased parasitic drag from the strut. The increase in strut drag was a result of sizing the strut

for buckling considerations, therefore it is possible that if the strut chord length could be reduced

by alleviating the buckling then further benefits could be possible. Park also noted that strut

flutter should factor into the design considerations, something which had not been identified

before.

Through all of these studies it was gradually understood that a braced-wing design could

offer many benefits over a cantilever configuration. The increased wing-span leads to a higher

aspect ratio design which provides a reduction in lift-induced drag and the loads alleviation

from the truss enables the inboard wing section to be designed with a reduced wing profile and

chord length, which in turn leads to a reduction in parasitic and wave drag. Although various

individual benefits were emphasised none of these preliminary studies had considered a truly

multidisciplinary approach to their designs, nor had flutter or gust loads been considered.
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2.2.3 Virginia Tech Multidisciplinary Optimisation Studies

The initial design studies that took place throughout the second half of the 20th century indicated

the need for a multidisciplinary approach to the design of a strut- or truss-braced wing. With

this in mind NASA commissioned Virginia Tech University to undertake a major study with the

aim of applying MDO techniques to the design of a SBW aircraft138. The core focus of the project

was to investigate mutli-disciplinary design and optimisation139, structural optimisation140

and aeroelastic stability141 of strut-braced wings, as well as the numerical prediction of strut

interference drag142. The study used a mission profile with a range of 7500nm at Mach 0.85

with 325 passengers in a three-class configuration to size both the strut-braced wing aircraft

and the baseline cantilever design140. NASA Langley’s Flight Optimization System (FLOPS)143

was used to size the overall aircraft and determine performance metrics. Additionally, a Boeing

777-200IGW was used for overall performance comparisons. The SBW configuration included a

single supporting strut for each wing and two engine configurations were considered: tip-mounted

and under-wing. This study was the first to use a MDO approach for the design of a SBW aircraft

and the use of Computational Fluid Dynamics (CFD) tools to analysis the interference drag from

the strut represented a major milestone in the research of braced-wing aircraft. For this reason,

a brief summary of each thesis is provided along with some key deductions.

The MDO focussed on the wing only, with the fuselage and tail geometry fixed for each

design. The objective function was the aircraft take-off gross weight (TOGW), however, the TOGW

optimised SBW was then re-optimised for minimum total cost, maximum seat-miles per gallon

and maximum L/D, with the results showing little variation in the optimised values of the

design variables for the different cost function. Whilst the MDO framework was comprehensive

in its scope, the individual modules relied upon relatively simple analytical models and design

rules which were loosely physics-based. Also, aeroelastic constraints were not included in the

optimisation problem but calculations carried out offline verified that the optimum solution

was free from flutter. Overall, the MDO study determined that the optimum configuration for

all cost functions considered was a strut-braced wing with under-wing engines, which largely

corroborated the findings of earlier studies130,132,133,135–137.

The structural optimisation considered three load cases: a 2,5g and -1g trim case and a 2g taxi

bump load case, no gust load cases were considered. Naghshineh-Pour used a double-plate model

to calculate the bending weight of the wing whilst structural loads were determined using linear,

Euler-Bernoulli beam theory and the aerodynamic loading used a piecewise representation of

the loads generated by the MDO process. The structural components were sized using the fully-

stressed design criterion. The structural optimisation predominantly focussed on the wing/truss

structure and relied on FLOPS to determine the parameters for the rest of the aircraft. It was

found that the optimised SBW aircraft had a 9.2% saving in TOGW and a 15.4% reduction in fuel

weight compared to the fully optimised cantilever wing140.

The drag investigation carried out by Tétrault used the FUN2D & FUN3D144,145 flow solvers
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to model the aerodynamics of a strut connected to a wing under Reynolds-Averaged-Navier-Stokes

(RANS) and Euler flow conditions. All calculations were carried out at Mach 0.85, meaning this

study was the first of its kind to consider the transonic aerodynamics of a SBW. It was found

that the strut interference drag is strongly dependent on the intersection angle of the strut with

the wing and reaches a minimum when the strut is perpendicular to the wing, which led to

the suggestion that a vertical offset between the strut and the wing should be included in the

design. Also, minimising the thickness-to-chord ratio of the strut provided an overall benefit to

interference drag, however this would have to be traded with the need to prevent buckling in the

strut.

Concerning the aeroelastic stability of SBW, Sulaeman141 devised a method for calculating

the flutter speed which accounted for the effects of the strut reaction force. This involved using

the pre-stressed modeshapes to generate an updated stiffness matrix which is then used in the

solution of the complex eigenvalue problem. It was found that the flutter speed was reduced

when the effects of the strut reaction force were accounted for, however, the exact difference is

dependent on a number of factors regarding the location of the strut-wing attachment point.

Several parametric studies were also carried out which indicated that the optimum spanwise

location for the strut was between 60% - 80% of the span and that the addition of a vertical

offset led to a reduction in the flutter speed. However, it is important to note that the wing-truss

structure was not redesigned for each new parameter therefore the trends observed in these

studies should be treated qualitatively instead of quantitatively.

Early on in the project it was identified that the critical design case for the primary strut is

global buckling. In an effort to avoid increasing the strut thickness (as in the study by Park137)

the team at Virginia Tech proposed a telescopic strut mechanism, shown in Figure 2.9139,140. This

device would allow the strut to be inactive during compression and only generate a reaction force

after the strut had moved through some ‘slack-distance’. Whilst there are many practical issues

FIGURE 2.9. Virginia Tech ‘telescoping sleeve’ strut mechanism140
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associated with this concept, such as the effects of free-play, impact loading and other forms of

nonlinearity, it represents a possible solution to the problem of strut buckling. It is interesting to

note that no further details are offered on this strut device and so it is highly likely that it did

not move past the conceptual stage. Nonetheless this is the first mention of a loads alleviation

device being used in a SBW and therefore it is important to highlight this concept within the

context of applying vibration absorbers to a braced-wing design.

In summary, the NASA/Virginia Tech study established some of the key design challenges

facing the braced-wing concept, including strut buckling, aeroelastic stability and reliable predic-

tion of strut-wing interference drag. Whilst it was one of the first MDO studies of a SBW it still

had a few drawbacks:

1. The studies only considered a single-strut configuration which led to an overemphasis on

the problem of strut-buckling. In more recent MDO studies it is generally accepted that

it is simpler to add additional truss-members (jury-struts) to prevent the primary strut

buckling, rather than increase the strut dimensions or design a novel solution.

2. Many of the MDO modules relied on simplified analytical models. For instance, the struc-

tural model used a piecewise loads assumption and linear beam theory and the strut

axial force was included as a design variable, as opposed to being calculated by solution

of the structural equations. A more refined analysis in each of the disciplines (structures,

aerodynamics, aeroelasticity) would represent a significant improvement.

3. Aeroelastic constraints were not considered at all during the MDO process. More recent

studies47,109 have shown the flutter speed to be highly sensitive to the truss properties

which implies any MDO process must incorporate aeroelastic considerations.

2.2.4 The Subsonic Ultra Green Aircraft Research Project

The Subsonic Ultra Green Aircraft Research project (SUGAR) is a collaboration between NASA,

Boeing and several American universities, including Virginia Tech and Georgia Tech, it be-

gan in 2005 and continues to this day. The principal aim is to explore novel aircraft concepts

and develop innovative technologies that will improve aircraft performance and reduce noise

emissions in-line with the goals set out by the global aviation community. A significant body of

research has been conducted including: route analysis, trade studies, high fidelity simulations

and wind tunnel experiments, the details of which are contained within several NASA technical

reports4,5,28,30,146–149.

Using the results of the Boeing Commercial Market Outlook150, the SUGAR team investigated

aircraft concepts that could target the single-aisle, short/medium range market with a minimum

cruise speed of Mach 0.7. A reference aircraft, ‘N’, was defined which is loosely based on a

B737NG, and the next-generation concepts had a potential entry into service of 2030-2035, hence

the name for this group of concepts is SUGAR N+3. An overview of the main phases of the project

is provided below:
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1. Phase I - This phase focussed on: initial market and route analysis, definition of the

initial concepts, trade-off studies, initial sizing and aerodynamic design and technology

ranking. Three novel N+3 concepts were identified at the end of this phase:

• SUGAR High - A high-span, braced wing aircraft with conventional turbofan engines.

• SUGAR Volt - A high-span, braced wing aircraft with a hybrid gas turbine-battery

electric propulsion system.

• SUGAR Ray - A hybrid-wing body6 aircraft.

Most notably, all three N+3 concepts have large L/D ratios in an attempt to reduce induced

drag during cruise. Also, a wing-fold mechanism was proposed for the SUGAR High and

SUGAR Volt concepts to allow the aircraft to fit within the airport gate limits. Further

details can be found in Bradley and Droney 5 and Greitzer et al. 28 .

2. Phase II - The second phase involved a more detailed investigation into several aspects

of the N+3 concepts from Phase I.

• Volume I - An exploration of the TBW concept including: MDO of the TBW concept

using Virginia Tech’s framework, detailed sizing and aerodynamic design of the

final concept and wind-tunnel testing incorporating flutter suppression and gust

load alleviation technologies. Several important lessons were identified, including

the prevalence of gust loads in the critical loads envelope and the importance of

using pre-stressed modeshapes in the calculation of the flutter speed, as proposed by

Sulaeman141. This SUGAR study represents the most comprehensive investigation so

far into a modern TBW aircraft and provides the basis for much of the work in this

thesis. Further details can be found in Bradley et al. 30 .

• Volume II - An investigation of the hybrid-electric power system including noise

analysis, preliminary design of the power system and sizing of the gas turbine engine.

Further details can be found in Bradley and Droney 147 .

• Volume III - A detailed discussion of the aeroelastic testing and novel techniques

used to simulate the flutter behaviour of the TBW model. The aeroelastic testing was

a significant undertaking and revealed many interesting behaviours, including the

presence of LCOs due to both structural and aerodynamic nonlinearities100 as well as

evidence that the tension/compression of the strut strongly influences the aeroelastic

behaviour. Flutter suppression was achieved through the use of control laws which

also provided some gust load alleviation, although the controllers were not designed

for this purpose. Further details can be found in Bradley et al. 148 .

3. Phase III - The third phase of the SUGAR project is currently ongoing and as such

there is not a significant amount of detail available. A recent technical report by Kapania

et al. 149 presents a MDO and cruise Mach number study where a comparison is made

between a SBW and TBW aircraft optimised for Mach 0.7 and Mach 0.8. It is found that

6Commonly referred to as a blended wing body.
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at Mach 0.7 the SBW is the more efficient aircraft, whereas at Mach 0.8 the TBW is more

efficient. This observation is attributed to flutter, which for a SBW at Mach 0.8 restricts

the wingspan leading to an increase in induced drag, however, at Mach 0.7 a single strut

can provide sufficient stiffness to alleviate flutter as well as manage loads. This is slightly

in contradiction to the findings presented in Bradley et al. 30 , however as the MDO code

has been updated since the earlier studies it is likely that the most recent results are more

accurate. Also, it is noted that for longer range mission profiles the TBW is always superior

to a SBW. Details are also provided of a transonic flutter prediction method that uses a

ROM based on RANS simulations to correct the lift and moment coefficients for transonic

behaviour98. It is shown that this method provides good correlation with the observed

experimental behaviour from the SUGAR wind tunnel tests, however, it should be noted

that the transonic flutter method was not implemented into the MDO routine although this

is identified as future work.

Clearly the SUGAR project is a significant research undertaking and represents the current

state-of-the-art in terms of next generation aircraft research. It is testament to the significant

potential of the truss-braced wing concept that almost all N+3 concepts use a TBW to achieve

optimum performance.

2.2.5 Post-2010 MDO Studies

Several researchers have continued to investigate the multidisciplinary design and optimisation

of TBW and SBW aircraft. With the advent of high-powered computing researchers have been

able to include higher-fidelity analyses in the initial MDO process, which has led to an increased

focus on the validity of some of the performance claims made by previous researchers. Many

research groups now have their own MDO processes, including groups at Virginia Tech, Stanford,

ONERA, Georgia Tech, Delft and Michigan, and an overview of their recent work is provided in

this section.

Virginia Tech have continued to build on their optimisation expertise, thanks in part to their

involvement in the SUGAR project. The MDO framework that is used in their TBW studies is

detailed in Gur et al. 151 and is an upgrade on the initial work carried out by Gern et al. 138 . The

upgrade included the implementation of a finite element solver to determine the loads in the

truss structure and also a global buckling check for all of the parts of the wing structure that

are subject to compressive loads. The truss members are modelled as simple rod elements and

the wing uses symmetric beam elements (CBAR). The torque box is a simple rectangular design

and can only model symmetric sections. The optimisation framework includes aerodynamics,

propulsion and weights modules. The aerodynamics module accounts for various elements of the

drag build-up, including friction, interference and form drag. Most of the calculations are based

on empirical methods such as the Korn equation, or in the case of the strut interference drag,

use response surfaces in order to save time during the optimisation. As with the earlier work,
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aeroelastic constraints are not present in the optimisation procedure and gust load cases are

modelled using the Pratt method for gusts. Further details can be found in Gur et al. 151 . Bhatia

et al. 109 used the MDO process described in Gur et al. 151 to conduct a parametric study on the

structural and aeroelastic characteristics of TBWs. Several wing configurations are considered,

including a SBW and TBWs with one, two and three jury struts. In the report only linear flutter

analysis is used and the geometric stiffening effect due to the strut reaction force is included. The

authors present several important observations, including that a difference in sweep angles for

the primary strut and the wing can have a favourable effect on the flutter speed. On the whole

it is shown that the flutter performance of the TBW configurations is significantly better than

the SBW configurations. The SBW concept has also been applied to a medium-range transonic

aircraft with a mission profile similar to the Boeing 737-800NG in Meadows et al. 45 , whereas

previous optimisation studies by Virginia Tech had focussed on a ‘777-200ER-like’ aircraft with a

longer mission profile. Meadows et al.45 found that the SBW and TBW configurations provided

a similar benefit in terms of reduced TOGW and fuel burn, however there was little difference

between the optimised SBW and TBW designs. For both the SBW and TBW the configurations

with under-wing engines slightly outperformed the fuselage-mounted engines. It is also noted in

this paper that most of the previous studies that use the Virginia Tech MDO framework tend

towards designs that incorporate lifting struts. It is suggested that this mechanism acts as a

form of load alleviation and helps to drive the decrease in sized wing weight.

As an extension to this work Mallik et al. 47 considered the effect of including flutter con-

straints in the MDO process for both a medium and long range mission profile. The flutter

analysis used the method presented by Sulaeman 141 and considers only linear flutter analysis

in the MDO process, although nonlinear flutter analysis was conducted ‘offline’ to verify the

results of the MDO study. It was found for the medium-range case adding the flutter constraint

meant that the TBW did not offer a reduction in TOGW compared to the cantilever configuration,

however, it still offered a 6% reduction in fuel consumption. For the long-range mission the

TBW design offered significant benefits in term of both TOGW and fuel-burn over the optimised

cantilever configuration. The flutter constraint was found to be the determining factor in most

of the TBW designs however it was not active for the cantilever design. The nonlinear flutter

analysis returned a flutter velocity that was 4.5% lower than the linear analysis, however, the

linear pre-stressed flutter analysis was deemed acceptable for the MDO process as actual flutter

mechanism was unchanged by the nonlinear effects. Recently Wells152 presented an MDO study

which uses the Virginia Tech framework to examine four aircraft configurations: a low wing

cantilever, a high wing cantilever, a strut-braced wing and a single jury TBW. Only gross wing

parameters were included in the optimisation and no technology factors were assumed. Wells

found that for the current technology level the cantilever configurations had the lowest TOGW

followed by the SBW and then the TBW. This result is in stark contrast to previous findings,

although this is perhaps not surprising given the top-level approach that was adopted. As with
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the Boeing study133, it is apparent that the benefits of the TBW only become evident when a

more sophisticated analysis is considered.

In addition to the ongoing MDO work at Virginia Tech there are several other research groups

taking a similar approach. The ALBATROSS project at ONERA46 is aimed at evaluating the

benefits of the SBW concept with respect to a reduction in TOGW and also the potential to enable

natural laminar flow. The project is utilising high fidelity CFD and detailed structural design as

well as MDO to conduct parametric studies of the SBW concept. It is interesting to note that so far

the ALBATROSS project has only considered a SBW despite its known tendency to be subject to

strut buckling. In their report46 a curved strut is proposed in order to induce ‘controlled-buckling’

which will help alleviate some of the strut loads and therefore reduce the weight penalties

associated with the buckling constraint. Variyar et al. 153 from Stanford University presents a

multi-fidelity optimisation framework for a SBW that uses finite element-based structural sizing

coupled with vortex-lattice and CFD aerodynamics to perform design and optimisation studies.

Their optimisation of a SBW did not include buckling or aeroelastic constraints however this is

identified as future work. In comparison to the work carried out by the MDO group at Virginia

Tech this study uses much higher-fidelity tools however it does not encompass all of the aircraft

disciplines so its application is not truly multidisciplinary. Recently Rajpal and De Breuker 154

presented a paper where the Delft University MDO tool PROTEUS was used to optimise the

wing mass of a fixed-planform strut-braced wing using composite materials and including fatigue

effects. In this study over 5300 aeroelastic loads cases where considered, including dynamic gust

encounters across a number of flight points. This is considerably more than in the SUGAR project

and revealed that the wing structure is sized by both static and dynamic loads, reinforcing the

need to consider dynamic gust loads at the conceptual design stage.

An important point to note is that in all of the MDO studies to date no effort has been made

to consider the design of the joint between the truss-structure and the wing/fuselage. This is

understandable as many of the MDO studies have utilised low-fidelity beam models where this

level of detail is not necessary to facilitate modelling a joint. However, given the sensitivity of the

flutter speed to the precise stiffness and mass distribution of the model it is important to account

for any additional structural mass resulting from the presence of a joint. Where high-fidelity

models have been used, such as in the work by Michigan University (see Section 2.2.6), an elegant

blend region is created between the truss and the wing volumes which is then populated by

stringer and skin panels during the meshing stage. However, this approach is more akin to a

fully-fixed joint, whereas the use of pinned-pinned joints has been shown to be more advantageous

in MDO studies30.
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2.2.6 Aerodynamic Analysis

The presence of the truss-structure makes accurately modelling the flow field an extremely

difficult task and one that is ill-suited towards rapid, approximate techniques such as strip-

theory or panel methods. Most of the MDO studies outlined in the previous sections have used

the vortex-lattice method with additional corrections to include the effects of the different drag

components acting on the wing155. Whilst this approach is acceptable for an MDO study the

aerodynamic loads acting on the wing have been shown to be vastly different156. Over the years

various attempts have been made to determine the optimum level of aerodynamic modelling for a

TBW. Seber et al. 157 detailed an upgrade to the aerodynamics module used by the Virginia Tech

MDO group which enables a more accurate prediction of the transition point by incorporating

CFD data via a response surface. This upgrade allowed for a better estimate of the friction

drag acting on the SBW and led to a reduction in TOGW and fuel weight. Duggirala et al. 112

conducted a study to analyse the interference drag due to strut-strut interaction. The aim was to

improve upon the previous work by Tetrault142 which stated that the interference drag reaches

a minimum when the strut intersects at 90°. This had led to the adoption of the engineering

rule: "if the angle of the strut is less than 45°add a vertical offset"142. This approach was well

established and widely implemented in several SBW designs, however, Duggirala et al. 112 found

that there is an unexpected drag rise when the strut intersects the wing at 90°. Updated response

surfaces were generated as part of this study and have since been used in further MDO studies.

A study of the transonic aerodynamics of a SBW by Ko et al. 158 revealed that under certain

conditions the area enclosed by the strut, strut-offset and wing can act as a nozzle and lead

to increased drag. It was shown that careful design of the strut upper surface and wing lower

surface can lessen the strength of the shocks and even eliminate them. It is also noted that

this analysis used inviscid flow solvers and that including viscous effects is likely to reduce the

nozzle effect. Finally, Ting et al. 156 proposed a method of aerodynamic analysis for a TBW that

used a vortex-lattice superposition approach. They found that using the vortex-lattice method

without applying superposition led to an underestimating of both the CL −CD and CL −α slopes,

however improvements could be made if a superposition approach was adopted. Ting observed

good agreement between the VLM-superposition results and CFD results and suggests that

the superposition approach could still be used in the conceptual analysis as it is based on the

vortex-lattice method.

Recently, the optimisation techniques developed at Michigan Univesity159 have been applied

to the aerodynamic shape optimisation of TBW and SBW160–162. Here, the shape optimization

solved a lift-constrained drag minimization problem using a RANS (Reynolds-Averaged-Navier-

Stokes) CFD solver for the aerodynamic calculations. It was found that a drag reduction of 28%

and final a lift-to-drag ratio of 25.3 is achievable compared to the baseline SUGAR 765-095-

TS configuration, however in this study aerolastic effects were neglected, this is a significant

drawback as aeroelasticity would have a considerable impact on the 1g jig-shape and resulting
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aerodynamic drag. Work has also been ongoing at NASA to investigate the aero-structural

modelling of a TBW travelling at transonic speeds. Xiong et al. 163 studied wing-strut interference

effects using the FUN3D flow solver and found that the presence of a strut leads to a suction

peak on the lower wing surface which influences the aerodynamic forces and moments and the

location of the aerodynamic centre. A parametric study of Mach and Reynolds number was also

carried out and it was found these interference effects are more pronounced as the Mach number

increases with the Reynolds number having less effect. This work led to the development of

aerodynamic correction factors which were then used in the work by Nguyen et al. 164 . Here, an

aero-structural model was developed which includes the corrections for transonic and viscous

flow, as well as geometric nonlinearities resulting from the strut tension force. A dynamic finite

element model was also generated using a beam-reduction technique to reduce the 3D NASTRAN

GFEM to a 1D VSPAERO model which was used for flutter calculations. A jig-twist optimization

was conducted in order to generate a model that matched wind tunnel data from the recent TBW

aeroelastic wind tunnel testing148 with excellent agreement found between the VSPAERO model

and the experimental data.

2.2.7 Conceptual Design and Sizing

The increased level of interest shown in TBW aircraft by the SUGAR project has inspired

other research groups to begin investigating this concept. Groups at research centres such as

DLR165 (Germany) and ONERA46 (France) have developed tools for investigating the conceptual

design of braced-wing aircraft, their aim being to assess whether the braced-wing is in fact

favourable compared to the classic cantilever design. Many of these tools have focussed on using

physics-based methods to generate accurate estimates for the strucutral weight of the braced

wing, in contrast to a non-physics-based method which would rely on regression analysis based

on historical data166. Chiozzotto 165 developed a wing weight estimation method that uses a

low-order structural representation, VLM aerodynamics and analytical models of the wing load-

carrying structure. A mass-optimization was carried out and it was found that the SBW has a

18% lower wing weight than a cantilever for the same planform, however this does not account

for the fact that a fuel-burn optimized cantilever wing would likely have a different planform

than a SBW30. A similar study is carried out by Locatelli et al. 61 but using a slightly different

formulations for the structure, aerodynamics and loads-carrying structure. In both studies the

tools are benchmarked against historical wing-weight data and good correlation is found, which

is then used as justification for these tools to be utilised for the design of braced-wing aircraft.

2.2.8 Nonlinear Aeroelastic Analysis and Flutter Suppression

The reduced structural weight of the braced-wing concept inevitably leads to a more flexible wing

due to the reduced thickness of the structural components. The flexibility of the wing gives rise to

nonlinear phenomena such as LCOs100 and the transonic flutter dip98. Recently, several papers
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have been published dedicated to the nonlinear aeroelastic analysis of truss-braced wings, their

aim being to model these effects and assess their impact on the overall aircraft design. The early

work by Sulaeman 141 identified that the truss-structure generates additional in-plane loads

in the wing structure which affects the flutter behaviour of SBW and TBW. The precise cause

of this is modified natural frequencies due to the effects of pre-load and geometric stiffness in

the structural stiffness matrix resulting from in-plane loads. Sulaeman’s investigations showed

that including these effects leads to a reduction in the flutter speed of anywhere between 0-

10% depending on the strut spanwise location. This technique has since been incorporated into

the aeroelastic analysis conducted during the SUGAR project. It was found that this method,

combined with corrected pressure data from offline CFD analysis, could provide an accurate

estimation of the flutter speed and was validated as part of the SUGAR aeroelastic wind tunnel

test campaign148,167. Details of the NASTRAN implementation of this method are provided in

Zhao et al. 168 .

Su 106 presents an alternative approach to modelling a SBW using a nonlinear aeroelastic

formulation. Here, Su adopts a strain-based, geometrically nonlinear beam model coupled with a

2D finite-state aerodynamic model to runs a series of parameter studies of the flutter behaviour

speed. His paper is aimed at tool-development and as such he tests a number of strut config-

urations and aircraft boundary conditions in order to demonstrate the benefits of the adopted

modelling technique. He argues that such tools should be incorporated into a MDO tool for

braced-wing aircraft, however such a tool is yet to materialise. Recently Mallik et al. 98 developed

a technique for rapidly estimating transonic flutter speeds in high-aspect ratio aircraft. Here, the

unsteady aerodynamics are based on indicial functions, as in Leishman and Nguyen 79 , which are

extended for the 3D case using a 2D-strip representation of a high aspect-ratio wing to generate

a ROM of the lift, drag and moment coefficients along the span using RANS CFD data. His

methodology is benchmarked against the SUGAR wind tunnel data for Mach numbers in the

range 0.7 - 0.86 where a qualitative match was found - most importantly this method captured

the transonic flutter-dip which is missing from NASTRAN DLM analysis.

What is clear from all of these studies is that flutter is dominant in the design of braced-wing

aircraft and must be mitigated for if further performance benefits are to be realised. Regarding

flutter suppression in TBW, Butt et al. 169 investigated a method for alleviating flutter by using a

ballast mass of between 2% and 8% of the wing mass placed at 98% of the wing span. It was found

that the flutter speed was relatively insensitive to the addition of a ballast mass, with the flutter

speed being extended by only 1% for the largest mass. Active control has been trialled during the

SUGAR aeroelastic wing tunnel tests where it was found to extend the flutter boundary by up to

8%, although the exact amount of flutter suppression was dependent on the angle-of-attack. In

these same tests the flutter controller was tested for gust load alleviation where it provided a

25% decrease in the magnitude of the wing tip acceleration for frequencies between 9.6-10Hz167.

In similar tests on a conventional aircraft configuration, Marchetti et al. 170 were able to extend
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the flutter point by up to 6% using a control law for the port and starboard ailerons. It is

important to note that to-date neither of these methods have been included in the optimisation

of a braced-wing aircraft, therefore their benefits to the aircraft design in terms of weight

cannot be quantified. Regarding gust load alleviation via active control, potential reductions

in wing root bending moment of up to 70% have been demonstrated for conventional aircraft

configurations171–173 although the precise benefit of an active control scheme is dependent on the

model behaviour and the controller design. For example, bending moment reductions between

7-40% were demonstrated for a LQG controller with a variety of design parameters174,175, and

for the case where the control surface effectiveness is taken into account the performance of the

GLA system can be significantly reduced176.

2.2.9 Summary of Braced Wing Literature

Below is a brief summary of the main points that have been identified from the papers reviewed

in this section:

• The braced-wing aircraft is not a new concept, however existing examples of braced-wing

aircraft are all subsonic and propeller-driven. Hence why the main focus in the literature is

the design of a jet-powered braced-wing aircraft that can compete with a cantilever design

when flying at transonic speeds.

• The general state of MDO analysis for TBW aircraft is well advanced with several research

groups dedicated to this task. Numerous MDO studies have shown that a TBW can provide

a benefit in terms of aircraft mass and fuel-burn over the traditional cantilever design.

• Aeroelastic phenomena such as gust loading and flutter have been identified as critical

design drivers in SBW and TBW, thus placing a limit on any practical efficiency savings

that can be realised by adopting a braced-wing design.

• Accurate flutter prediction for a TBW operating at transonic speeds requires a model

capable of accounting for both structural and aerodynamic nonlinearities. Structural non-

linearities can be readily accounted for using a modified stiffness matrix based on pre-load

and large-deflection analyses, however nonlinear aerodynamics requires correction factors

derived from RANS CFD analysis which incurs a significant offline time penalty.

• Flutter suppression of the SUGAR TBW via active loads control was achieved during

wind-tunnel testing, where it was also found to provide some gust loads alleviation. Flutter

suppression in a SBW using ballast masses has also been investigated but this was not

very effective. Neither technology has been included in the optimisation of the aircraft

structure and so the benefits of these technologies in terms of mass and fuel-burn cannot

be quantified.
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2.3 Vibration Suppression Devices

Vibration suppression devices have been used for decades to control systems which experience

high levels of vibration, including but not limited to: vehicle suspension systems177, earthquake-

resistent structures178, suspension bridges179–181 and power transmission lines182,183. Particu-

larly high-profile examples of vibration suppression devices in engineering structures include

the tuned mass damper in the Tapei 101 tower184 and the fluid viscous dampers retrofitted to

the London Millennium Footbridge181. These devices can take a wide variety of forms, from the

classical mass-spring-damper formulation178 to magnetorheological185–188 and other fluid-based

devices189–191, and can involve passive191,192, semi-active193,194 or active controls195–197. A com-

prehensive review of existing vibration suppression technologies is beyond the scope of this thesis

and instead the reader is directed to a number of review articles177,178,185–189,193,195,197.

The rest of this section is structured as follows: first a brief overview of the theory of vibration

suppression is given in order to familiarise the reader with the basic physical principles. Next a

description of mechanical network design and network synthesis is provided, with a specific focus

on the use of inerter-based devices. Finally, some examples of vibration suppression devices in

aerospace structures are detailed and examples relating to truss-braced wings are highlighted.

2.3.1 Principles of Vibration Suppression

Vibration suppression devices are common in many structures which undergo large motions

or are subject to vibrations which are detrimental to the overall performance or health of the

structure. The principal function of these devices is to remove energy from a structure, or parts

of a structure, at a set of frequencies that are critical to the safe functioning of the system, i.e.

resonant frequencies. In general, there are two mechanisms for achieving this:

1. Transfer energy away from the system - Energy can be removed from the system by

converting kinetic energy into thermal energy which is then dissipated. This is typically

achieved by introducing friction forces between mechanical components, deforming an

elastomeric material, or, in the case of a fluid-based device, compression via a piston and

generating turbulent flow by channelling fluid through an orifice.

2. Transfer energy within the system - Another option is to transfer kinetic energy away

from the parts of the structure where vibrations need to be minimised. This can be achieved

by modifying the properties of the primary system in order to tailor the modal response,

such as by adding mass or changing the stiffness of a particular component. Alternatively,

the primary system can be augmented by a secondary system which is precisely tuned

to vibrate at a set of pre-defined frequencies, thus transferring kinetic energy from the

primary to the secondary system. The first approach can be described as frequency tuning198

whereas the second is the classic dynamic vibration absorber199, also referred to as the

Tuned Vibration Absorber (TVA).
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x1

P(t)= P0sin(ωt)

FIGURE 2.10. Single degree-of-freedom mass-spring-damper system.

The fundamental theory of vibration absorbers is described in some detail in Den Hartog 200

and so only a brief overview is provided in this work to help familiarise the reader with the

basic concepts. First, consider the classical single degree-of-freedom (DOF) system shown in

Fig. 2.10. For a system comprising of a lumped mass connected to a fixed point by a spring

and dashpot-damper7 with linear stiffness and damping coefficient respectively the equation of

motion is

mẍ1 + cẋ1 +kx1 = P(t) (2.2)

where m is the mass, c is the damping coefficient, k is the spring stiffness, P is some applied

force, x is the translational displacement of the mass and t is time. Table 2.2 shows the four

principal cases for the 1DOF system and their respective solutions8 and Fig. 2.11 shows some

qualitative results for this system. Examining Figure 2.11(a) shows that for Case 1 the system will

vibrate without decay at its undamped natural frequency, ωn =p
k/m . Clearly, this is not realistic

as damping is present in all physical systems, hence the inclusion of a damper which causes the

system to decay (Case 2). Here, the rate of decay is a function of the damping ratio, ζ, which is

defined as the ratio between the damping coefficient and the critical damping value (ζ= c/2mωn),

and the period of the decay is related to the damped natural frequency ωd =ωn
√

1−ζ2 .

Concerning harmonic forced vibrations of the 1DOF system at a discrete frequency, Fig.

2.11(b) shows that when damping is excluded (Case 3) there exists a forcing frequency where the

response of the system tends sharply to infinity - denoted mathematically as the denominator

term 1− (ω/ωn)2 tending to zero which occurs when the forcing frequency is equal to the natural

frequency of the system (ω=ωn). Clearly an infinite response is undesirable and so efforts must

be made to avoid these frequencies or manage the response of system such that resonance does

not occur. Introducing a damper (Case 4) shows that as the damping ratio is increased the

magnitude of the resonant peak decreases until it is almost completely minimised, whilst the

phase angle, shown in Fig. 2.11(c), has a shallower slope as it transitions through the resonant

point, φ=π/2, and a nonzero value at nonresonant frequencies. Most importantly, the addition of

7A dashpot damper is one where the damping force is proportional to the relative velocity across the element.
Other types of damping, such as friction, are possible but will not be considered here.

8Note - C1 and C2 are constants that define the initial conditions of the system.

39



CHAPTER 2. BACKGROUND THEORY AND LITERATURE REVIEW

a damper means the response must be finite for a nonzero damping ratio, thus demonstrating

the first mechanism of vibration suppression: transfer energy away from the system.

TABLE 2.2. Analytical solutions for the single degree-of-freedom system200.

Case Description Condition Solution

1 Undamped-Unforced P(t)= 0, c = 0 x = C1sin(ωnt)+C2cos(ωnt)
2 Damped-Unforced P(t)= 0, c 6= 0 x = C1es1 t +C2es2 t, where s1,2 =−ζωn ± jωd

3 Undamped-Forced P(t) 6= 0, c = 0 x = C1sin(ωnt)+C2cos(ωnt)+ x0sin(ωt) ,

where P = P0sin(ωt) , x0 = P0/k
1−(ω/ωn)2

4 Damped-Forced P(t) 6= 0, c 6= 0 x = e−ζωn t [C1sin(ωd t)+C2cos(ωd t)]+ x0sin
(
ωt−φ)

,

where P = P0sin(ωt) , x0 = P0/k√
(1−ω2/ω2

n)2+(2ζω/ωn)2
,

tan
(
φ

)= 2ζω/ωn
1−ω2/ω2

n

Time

R
es

po
ns

e

ζ> 1
ζ= 1
ζ< 1
ζ= 0

(a) Time domain response
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FIGURE 2.11. Example response of the 1DOF system for the undamped (ζ= 0), under-
damped (ζ < 1), critically-damped (ζ = 1) and over-damped (ζ > 1) cases. System
parameters: m = 10kg, ωn = 6πrads-1, ζ= [0,0.1,1,2], P0 = 5N, C1 = 1, C2 = -2.
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FIGURE 2.12. Dynamic vibration absorber attached to a single degree-of-freedom
mass-spring system - the addition of a damper element connecting the primary
and secondary mass creates a Tuned Mass Damper.
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Concerning the second mechanism of vibration suppression, in 1909 Frahm proposed a

method for controlling vibrations called a dynamic vibration absorber199, shown in Fig. 2.12. The

principle of this invention is to augment the 1DOF system, henceforth referred to as the primary

system, with a secondary system, known as the absorber, which would eliminate vibrations in the

primary system when the excitation frequency matches the resonant frequency of the absorber.

What follows is an abridged version of the derivation available in Den Hartog 200 which the

reader is directed to if they wish to know more. The equations of motion of the new 2DOF system

are

mẍ1 + ca (ẋ1 − ẋa)+kx1 +ka (x1 − xa)= P0sin(ωt)

ma ẍa + ca (ẋa − ẋ1)+ka (xa − x1)= 0
(2.3)

where the symbols m, c, k, P and x have their previous meaning and subscript a denotes

properties belonging to the dynamic absorber. In order to demonstrate the second mechanism of

vibration suppression we consider the case where the absorber damping coefficient is set to zero

(ca = 0). Assuming a solution of the form xi = aisin(ωt) and using the dimensionless form of the

EoM as defined in Den Hartog 200, p. 88 yields

x1

xst
= 1−ω2/ω2

a(
1−ω2/ω2

a
)(

1+ka/k−ω2/Ω2
n
)−ka/k

sin(ωt)

x2

xst
= 1(

1−ω2/ω2
a
)(

1+ka/k−ω2/Ω2
n
)−ka/k

sin(ωt)
(2.4)

where xst is the static deflection of the primary system (xst = P0/k), ωa is the natural frequency

of the absorber
(
ω2

a = ka/ma
)

and Ωn is the natural frequency of the primary system
(
Ω2

n = k/m
)
.

The solution for the primary system (x1) shows that the amplitude will equal zero when the

numerator 1−ω2/ω2
a is equal to zero, which occurs when the natural frequency of the absorber

is the same as the forcing frequency. This occurs because the absorber spring generates a force

which is equal and opposite to the force applied to the primary system, as shown by the absorber

having motion x2 =−P0/kasin(ωt) when ω=ωa. Note, this result is achieved without the addition

of any damping elements, therefore clearly demonstrating the second mechanism of vibration

suppression: transfer energy within the system.

Whilst it is advantageous to know that a system can be augmented with a vibration absorber

in order to reduce vibrations at resonance conditions, for this knowledge to be of practical use

the parameters of the absorber must be better understood; specifically we are interested in the

values of absorber stiffness and mass which give optimum performance in the primary system.

For this study we consider the case where the absorber natural frequency is equal to the natural

frequency of the primary system, (ωa =Ωn), and we introduce the concept of the absorber mass

ratio (µ) - which is the mass of the absorber expressed as a fraction of the primary system mass,
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(
µ= ma/m

)
. For this case Eqn. 2.4 simplifies to

x1

xst
= 1−ω2/ω2

a(
1−ω2/ω2

a
)(

1+µ−ω2/ω2
a
)−µsin(ωt)

x2

xst
= 1(

1−ω2/ω2
a
)(

1+µ−ω2/ω2
a
)−µsin(ωt)

(2.5)

The resonant frequencies of the 2DOF system can be found by setting the denominator equal to

zero yielding a quadratic equation in ω2/ω2
a which has roots

ω2
r /ω2

a = 1+ µ

2
±

√
µ

(
1+ µ

4

)
(2.6)

where ωr are the resonant frequencies of the 2DOF system. Figure 2.13(a) shows an example

frequency-amplitude relationship for the case where the 1DOF system is augmented by a dynamic

vibration absorber. The two resonant peaks are shown and it is clear that the absorber causes

the primary system to experience negligible motion at the previous resonant frequency with the

absorber mass containing most of the kinetic energy. Figure 2.13(b) is the graphical representation

of Eqn. 2.6 showing the variation in the 2DOF resonant frequencies as a function of absorber

mass ratio. Clearly the 2DOF resonant peaks diverge away from the original resonant frequency

as the absorber mass ratio increases, this could be viewed as beneficial as it provides a wider

frequency-band around the original resonant frequency which is useful if the optimum operating

frequency of the system is near the 1DOF resonant point, such as in helicoter rotors201,202.

The disadvantage of the TVA is that the system now contains two resonant peaks with infinite

magnitude where before there only existed one - so the issue of resonance has not been solved,

merely shifted to a different part of the frequency spectrum.
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(a) Undamped 2DOF amplitude response
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FIGURE 2.13. Example response for a 1DOF system augmented with a dynamic vibra-
tion absorber. System parameters: m = 10kg, ωn =ωa = 6πrads-1, µ= 0.3, P0 = 5N.
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To mitigate this, Den Hartog 200 suggested the addition of a damper element to the TVA,

as in Fig. 2.12, thus combining the two mechanisms of vibration suppression. This new device

is termed the Tuned Mass Damper (TMD) and its use is widespread throughout a variety of

engineering disciplines178. The derivation of the EoM of this system are slightly more involved

and so for brevity the reader is directed to Den Hartog 200, p. 93 for the full derivation and

resulting solutions. Using Hartog’s approach it can be shown that the motion of the primary

system is dependent on only four parameters: the absorber damping ratio ζa = ca/2mΩn, the ratio

between the natural frequency of the absorber and the natural frequency of the primary system

f = ωa/Ωn, the absorber mass ratio µ and the forcing frequency as a fraction of the primary

system natural frequency g =ω/Ωn.

Figure 2.14 shows that for small values of ζa the amplitude of the resonant peaks decreases

as the work done by the damper replaces kinetic energy, however as the damping ratio increases

the two peaks coalesce and the amplitude increases again. This is because the relative motion

between the two masses decreases as the damping coefficient increases leading to a reduction

in work done by the damper. In the limiting case, i.e. as the damping ratio tends to infinity, the

damper element will approximate a rigid joint and the 2DOF system will acts as a single DOF

with total mass (m+ma). Hartog hypothesised that there must exist some "optimum damping"
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1DOF - f = 1, ζ= 0
2DOF - ζa = 0

FIGURE 2.14. Example response for a 2DOF system augmented with a tuned mass
damper. System parameters: ζa = [0.1,0.3], f = 1, µ= 0.05.
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where the work done by the damper is maximised and the motion of the primary system is

minimised. To obtain this, we note the existence of two fixed-points, P and Q, which for a given

value of f all amplitude curves pass through irrespective of damping ratio. Hence the optimum

absorber mass ratio will be the one that minimises the amplitude of the points P and Q and the

optimum damping ratio will define a curve that is tangential to the higher of the fixed points, as

in Fig. 2.14. Deriving this relationship analytically yields200

f = 1
1+µ , ζ2

a = 3µ

8
(
1+µ)3 (2.7)

which are the optimum absorber parameters for minimising the displacement of the primary sys-

tem. These closed-form equations are known as tuning rules and provide a convenient analytical

means by which the absorber parameters can be estimated. This remarkably simple approach

reveals a very important consideration in the design of a vibration absorber, which is that the

optimum absorber frequency does not necessarily equal the resonant frequency of the primary

system - although they are close. This is purely due to the definition of optimality that drives

the absorber design. For instance, minimising the motion of the primary system does not always

represent the most favourable (i.e. optimimum) operating conditions, in which case optimum

absorber parameters can be derived using a similar approach but for a different measure of

optimality - examples of which can be found in Warburton 203 and Krenk 204 . Furthermore, tuning

rules have also been proposed for absorbers attached to flexible structures205 and for devices

which utilise a mechanical element known as an inerter206,207.

Finally, it must be noted that there are a number of disadvantages to the TVA and TMD

vibration suppression devices. Firstly, they require mass to be added to the system which in

general engineering applications is viewed as a negative. Secondly, a passive TVA or TMD can

only be tuned to a specific frequency of interest, which is not useful for structures that have

multiple resonant frequencies that must be targeted. Limitations such as these are reasons

why vibration suppression devices have been developed that can target multiple frequencies

simultaneously, either through active control or the use of more complicated devices which

comprise of multiple elements connected together to form a mechanical network.

2.3.2 Mechanical Network Design

Designing vibration absorbers using mechanical networks is an emerging research area which

caught increasing attention in recent years. Here, a vibration suppression device is idealised as

an abstract interconnection of mechanical elements arranged in a similar fashion to an electrical

circuit diagram, which has a transfer function Y representing the force-velocity relationship

between the terminals of the device9. Figure 2.15 shows an example mechanical network with

various parts labelled for clarity. This representation is deliberate as a well known analogy exists

9Using the terminology from Smith 208 , a one port element (such as a spring, damper or inerter) has two terminals
which are "a pair of nodes in a mechanical system to which an equal and opposite force is applied and can experience a
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T1 T2

Y = F/∆v

F F

v1 v2

b1
c1 k1

k2 k3

k4

FIGURE 2.15. Example mechanical network209.

between electrical and mechanical networks which has been exploited for many years in order to

develop and analyse mechanical networks comprising of mass, spring and damper elements184,210.

In this analogy mechanical force is equivalent to electrical current and a mechanical spring

and damper are equivalent to an electrical inductor and resistor respectively. However, the

mass element causes this analogy to breakdown as it by definition has one of its terminals

grounded, that is, it can only generate a force according to the acceleration of its centre of gravity

(Finertial =−mẍ), which is incompatible with the electrical capacitor which has no requirement

for one of its terminals to be grounded 10. In 2002 Smith 208 introduced a mechanical element

known as an inerter which has the property that the force generated across the two terminals is

proportional to the relative acceleration across the terminals. This relationship is demonstrated

by the equation

Finerter = b
d (v2 −v1)

dt
(2.8)

where Finerter is the force generated by the inerter, b is a quantity termed inertance which is

measured in units of kg, d/dt represents differentiation with respect to time and (v2,v1) are the

velocities at the inerter terminals. The formal introduction of the inerter element completed the

analogy between electrical and mechanical systems and fundamentally enhanced the design

methodologies and types of devices available to the mechanical network designer. Figure 2.16

shows the full analogy between electrical and mechanical elements.

The discipline of mechanical network design is concerned with establishing the network

configuration11 which provides optimimum performance. A review of the literature shows there

relative velocity".
10Here, the term "grounded" does not imply a physical connection to the ground but instead refers to the mathe-

matical equivalent of a physically grounded capacitor.
11Here a "configuration" refers to the layout of the elements and their parameter values.
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Mechanical Electrical
F F

v1 v2
dF
dt = k (v2 −v1)

Y (s)= k
s

Spring

i i

v1 v2
di
dt = 1

L (v2 −v1)

Y (s)= 1
Ls

Inductor

F F

v1 v2

F = b d(v2−v1)
dt

Y (s)= bs

Inerter

i i

v1 v2

i = C d(v2−v1)
dt

Y (s)= Cs

Capacitor

F F

v1 v2

F = c (v2 −v1)

Y (s)= c

Damper

i i

v1 v2

i = 1
R (v2 −v1)

Y (s)= 1
R

Resistor

FIGURE 2.16. Circuit symbols for mechanical-electrical network equivalence with
associated equations and admittance functions Y (s), taken from Smith 208 .

are three possible approaches to the design of the network: structure-based, immittance-based

and structure-immittance209.

• Structure-based - The structure-based approach is the simplest of the three. In this

method the layout of the device is initially defined then the parameter values for each

element are selected based on certain performance criteria. This allows the complexity of

the device (i.e. how the elements are connected) and the parameter values to be tightly

controlled, however, the selected layouts are usually sub-optimum compared to those that

can be realised by the other two methods.

• Immittance-based - The immittance-based approach is concerned with finding the opti-

mum device transfer function before the corresponding network layout and element values

are determined using network synthesis theory12. This is very much the opposite of the

structure-based approach where the device layout and the related transfer function are

predetermined but can lead to complicated layouts. The immittance-based approach allows

a full range of device layouts with a fixed number of each component type to be explored

although it is not possible to place constraints on the parameter values. This can lead to

the generation of devices which have an excessive number of elements or parameter values

12Network synthesis is a specific method for designing a network, its principle being to determine the components
required to realise a given rational function that represents the network transfer function211,212. It was first proposed
as a means of determining the layouts of electrical networks however, due to the complete mechanical-electrical
analogy, the network synthesis algorithms can readily be used for the design of mechanical networks213,214.
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that are not realistic or preferable.

• Structure-Immittance - The third method, the structure-immittance approach209, al-

lows for the advantages of both of the previous methods without limiting the device to a

specific layout or transfer function type.

Network synthesis algorithms have been applied to the design of mechanical networks for a

number of applications, including the automotive215,216, locomotive217–219 and civil engineering

industries220–224. Furthermore, inerter-based devices have been proposed to suppress shimmy225

and improve touch down performance226 in aircraft landing gear.

On its own, the use of the inerter element in mechanical network design is purely theoretical

and cannot have any practical use unless these devices can be synthesized in real-life. To that

effect, several physical models of the inerter have been proposed which use a variety of mecha-

nisms to generate inertance, including: mechanical flywheels208,227, fluid-based devices228–230

and electromagnetic devices231. What has been revealed in all of these physical models is that it is

possible for the inertance b to be significantly higher than the mass of the device. This effect has

been termed the apparent mass effect and is one of the main attractions of incorporating inerters

in the design of vibration suppression devices. The apparent mass effect can be achieved in a

number of ways, for instance, in his original work Smith208 utilised a flywheel driven by a rack,

pinion and gears to generate the inertance force, with the magnitude of b controlled by the ratio

between the radius of the rack pinion, gear wheel and flywheel pinion. Indeed, Smith noted that

even with modest gearing ratios the inertance can be a factor of 81 times the mass of the flywheel

and designs with inertance-to-mass ratios of up to 300 are mentioned in the same paper208. Such

a system has been in use in Formula One racing cars since 2005 under the name "J-Damper"232

and more recently the use of a continuously variable transmission and gear-ratio system has been

proposed to achieve a variable-inertance inerter device227. Considering a fluid-based inerter228,

the inertance can be generated by forcing fluid through a helical path that is constructed around

the outside of the piston, with the magnitude of b determined by the length and cross-sectional

area of the path. Regarding the electromagnetic inerter, Gonzalez-Buelga et al. 231 adopted a

sub-structuring approach to design an electromagnetic transducer that had the characteristics of

a tuned-inerter damper but was constructed from off-the-shelf electrical components. Such an

approach offers many exciting opportunities for the design of new vibration suppression devices

as electromagnetic devices are much lighter than their mechanical equivalent and can target

multiple frequencies or achieve real-time tuning231.

2.3.3 Vibration Suppression in Aerospace Applications

Concerning the use of vibration suppression devices in aerospace structures, for decades they have

been used as shock absorbers in aircraft landing gear233, to suppress flutter in fixed-wing aircraft

control surfaces13 and to ensure lead-lag stability of helicopter rotor blades192,194 - more recently

13See Section 5.1.4.3 of CS-25234 for a discussion of the certification requirements of these systems.
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embedded devices have also been proposed for the same application235–237. In general, vibration

suppression research in the rotorcraft industry is more advanced than for fixed-wing aircraft given

the need to limit coupling between the blades, hub and fuselage as much as possible. Konstanzer

et al. 238 details a wide variety of devices have been proposed for this application, including mass-

spring systems and electromagnetic piezoelectric actuators. Some of these systems are in use on

commercially available rotorcraft, such as the EC225238and EC130T2239. The use of vibration

absorbers in wind-turbine blades has also been investigated240,241 and there are several patents

related to the use of spring/damper devices to alleviate wing-pylon instability242–244 and wing-

stores instability245, as well as a novel wing-to-fuselage joint with active suspension246, however,

in contrast to the rotorcraft industry, none of these patented technologies have progressed

beyond the conceptual research stage. Tuned mass dampers and other vibration suppression

devices have also been investigated as a means of controlling excessive vibrations in multi-stage

launch vehicles191,247 and for improving landing performance in reusable rocket systems248.

Furthermore, inerter-based devices have been proposed to suppress shimmy225 and improve

touch down performance226 in aircraft landing gear. Inerter-based devices are particularly useful

in aerospace applications as the apparent mass effect means the inertance b can be much larger

than the actual mass of the device; an obvious benefit considering the industry’s fixation on

aircraft weight and efficiency.

An early study by Karpel 249 discussed the possibility of using traditional mass/spring/damper

vibration absorbers to passively alleviate flutter in aircraft wings, however this approach has

not been widely adopted outside of the research community, perhaps due to the lack of guidance

regarding the design of passive flutter suppression technologies in the certification documents.

Recently, Verstraelen et al. conducted a numerical250 and experimental251 study of a passive

vibration absorber attached to an aircraft wing for the purpose of flutter suppression. Their

results show that the optimum absorber can provide a 36% improvement in flutter speed and

reduce LCO amplitude, however when the absorber is detuned the flutter speed is decreased,

resulting in a significantly worse performance than the original unmodified system. This work

uses the classical 2DOF binary flutter model as the basis for their numerical investigations, with

much of the focus on predicting the nonlinear characteristics via a process known as numerical

continuation. In this respect, there is no conflict with the work presented in this thesis as here

the focus is on designing an absorber that is compatible with a full-scale aircraft model and

developing a method that can be integrated into the aircraft design process.

Research into exploiting such devices on braced wings is limited to a single application - a

telescopic strut design that was proposed by Haftka et al.139,140 as part of an early MDO study at

Virginia Tech. The concept was barely investigated and no consideration was given to whether

additional mechanical elements such as dampers or inerters could be used to improve the dynamic

characteristics of the aircraft, possibly because the purpose of the telescoping mechanism was to

prevent buckling in the primary strut which was considered to be a static aeroelastic problem,
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not a dynamic one. Finally, a recent patent by Boeing titled Active Strut Apparatus for use with

Aircraft and Related Methods252 details a method for controlling wing deformation by adjusting

the tension force and effective length of a pair of struts joining the fuselage to the wing. Whilst

this proposal is highly novel, it does not contain any mention of vibration suppression devices

and is more akin to a morphing wing technology.

2.3.4 Summary of Vibration Suppression Literature

Below is a brief summary of the main points that have been identified from the papers reviewed

in this section:

• Vibration suppression is a well-established discipline and its use throughout engineering

systems is extensive.

• Vibration suppression devices are available in a number of configurations and include both

passive, semi-active and active devices.

• Vibration suppression is routinely used in aerospace applications, such as landing gear,

rotor blades and vibration isolation in helicopters, however this technology has not been

widely applied to aircraft wings.

• The early work by Karpel 249 and more recently by Verstraelen et al. 250 considered the

possibility of using tuned-mass dampers to provide flutter suppression, however their work

was limited to a simple 2DOF model and did not consider the physical design of the device

or how it would be integrated into the airframe.

• The concept of using vibration suppression devices to provide flutter suppression and gust

load alleviation in a braced-wing aircraft has not been previously investigated, therefore

this thesis represents the first study of its kind.

2.4 Chapter Summary

This chapter has provided a comprehensive overview of the research literature that is pertinent to

the novel research presented in this thesis. Three broad topic areas were considered: aeroelasticity,

braced-wing aircraft and vibration suppression, with individual summaries of the literature

provided for each of these areas.

This literature review has highlighted that there is a substantial body of work related to

the design and modelling of truss-braced wing aircraft and that several research groups are

investigating this concept. It is well understood within the research community that a braced

wing can offer a reduction in aircraft mass and fuel-burn compared to an equivalent cantilever

wing aircraft, however aeroelastic effects such as flutter and gust loads have been identified as

limiting factors. Therefore any technology that can limit these effects will be a key enabler for the

success of the braced-wing concept. Apart from two preliminary studies using a heave-pitch flutter

model, the use of vibration suppression devices to achieve aeroelastic control in a fixed-wing
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aircraft has not been widely researched. Furthermore, this technology has not been previously

applied to the braced wing concept before and so the work presented in this thesis represents a

novel contribution.

In addition to the findings highlighted in the previous sections the following research oppor-

tunities have been identified:

• Flutter Suppression in TBW - Flutter suppression has been investigated for SBW and

TBW however its effects have not been included in the design and optimisation of the

aircraft. It is possible that an improved design can be achieved by including these effects in

an optimisation routine.

• Gust Load Alleviation in TBW - Gust loads have been identified as being critical to

the loads envelope that sizes the structural components in a TBW. If the the magnitude

of gust/turbulence loads can be limited, either by active control methods or some novel

approach, then it is possible that a lower structural mass could be achieved.

• Nonlinear Aeroelastic Modelling of TBW - Several research groups have investigated

modelling techniques which capture the various nonlinear aeroelastic effects inherent to

transonic truss-braced wing aircraft. So far none of these techniques have been applied

within a MDO environment however this has been identified as future-work by a number

of key researchers in the field.

• Truss Joint Modelling - The physical design of the mechanism joining the truss-structure

to the wing and/or fuselage has not been addressed in the literature. Including the design

of this joint into an optimisation procedure would lead to an improved understanding of the

loads transferred between the truss-structure and the wing, which would impact the mass

and stiffness of the model as well as the aeroelastic response. Furthermore, it is possible

that the the joint might prove to be a limiting factor in the design of a commercially viable

braced-wing aircraft, if this is the case then it is vital that the research community dedicate

time and resources to tackling this potential problem.

In the following chapters an aeroelastic model of a truss-braced wing aircraft will be introduced

and its fundamental dynamic and aeroelastic characteristics will be discussed. This model is

used to perform two studies, one where vibration suppression devices are optimised to provide

flutter suppression and another where devices are optimised for gust loads alleviation. In the

final chapter the optimised device properties are used to inform the design of a physical vibration

suppression device using simple design formulae.
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REFERENCE MODEL AND CHARACTERISTIC BEHAVIOUR

This chapter introduces the Nastran finite element model used for all analysis in this

thesis and discusses the main dynamic and aeroelastic features of the model. A number

of simulations are conducted in order to understand the characteristic behaviour of the

model and identify any adverse phenomena which could be alleviated by including a vibration

suppression device in the structure. Studies performed include: eigenanalysis, frequency response

analysis, static and dynamic aeroelastic simulations and flutter analysis. The observations from

these studies are used to determine potential locations in the model geometry where a vibration

suppression device could be included. Therefore this chapter provides the context and motivation

for the novel work carried out in Chapters 4 and 5. This chapter is formatted as follows: In

Section 3.1 the BUG-T finite element model is discussed and key features and assumptions

behind the model development are described. In Section 3.2 the flexible modes and corresponding

modeshapes of the structure are calculated using the commercial finite element software Nastran.

These modes are classified using the energy distribution between the various components and

degrees of freedom in the model. This information is used to identify locations in the truss

structure where a significant amount of relative motion is experienced, making them viable

candidates for a vibration suppression device. In Section 3.3, the aeroelastic response of the

BUG-T model is calculated for steady-state trim manoeuvres and flutter. The flutter mechanism

is identified and related to the flexible modes identified in Section 3.2 and comments are made

regarding the ability of a vibration suppression device to affect the identified flutter modes.
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3.1 BUG-T Finite Element Model

Before any investigation into the use of vibration suppression in a truss-braced wing context can

begin it is necessary to establish the reference model and its fundamental dynamic and aeroelastic

characteristics. However, unlike for the cantilever aircraft configuration, there exists no formal

equivalent of the NASA Common Research Model253 for a braced-wing aircraft. Therefore, to

enable the work of this thesis a suitable reference model must be developed that is broadly

representative of a truss-braced wing aircraft designed for a commercial mission.

The NASA/Boeing SUGAR project represents the largest publically available data set on truss-

braced wing aircraft, so it is appropriate to use the SUGAR High 765-095-Rev. D model presented

in Bradley et al. 30 as a starting point. This model was developed following a comprehensive

multidisciplinary optimisation study where the the wing planform and truss topology1 were

optimised to minimise the aircraft fuel-burn and direct operating costs for a mission of 3500nm.

However, given the commercial nature of the research carried out during the SUGAR project,

the raw modelling data is not available meaning that it is not possible to recreate the exact

model that was used in the SUGAR TBW studies. Instead, a substantial effort has been made to

generate a model that closely matches the overall geometry, mass and stiffness of the SUGAR

High 765-095-Rev. D model with engineering judgement and aircraft design textbooks16,254

used to fill in any gaps in the reference data. This model is termed the Bristol Ultra Green -

Truss-Braced (BUG-T) and its development is detailed in Appendix B and C. A Nastran finite

element model (FEM) of the BUG-T has been generated using the bespoke parametric aircraft

modelling software described in Appendix C. As discussed in Chapter 2, Nastran has been chosen

given its prominence in the aerospace industry, especially in terms of defining the certification

standards for commercial aircraft.

Figure 3.1 shows the structural and aerodynamic components of the BUG-T aeroelastic

‘beam-stick’ finite element model derived from the SUGAR High 765-095-Rev. D. A brief overview

of the model is provided to familiarise the reader with some of the modelling aspects however a

full description can be found in Appendix C.

• Model assembly - The aircraft is divided into several sub-assemblies which are connected

by stiff spring elements, with the major sub-assembly components detailed in Table 3.1.

Breaking down the structure in a logical manner makes it easier to understand how

different components interact as well as making model management significantly easier.

• Structure - The structure of each component is modelled using nodes connected by flexible

beam elements with the element density determined from a mesh convergence study which

sought convergence for natural frequencies up to 50Hz. For those components which

represent lifting-surfaces, additional nodes are defined along the leading and trailing edge

which are connected to the beam nodes using rigid bar elements. These nodes provide the

1Here, "truss topology" refers to the number of strut and jury-strut elements used to construct the truss-structure
as well as the type of joints which connect the truss elements to the wing and fuselage.
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(a) Structural model (b) Aerodynamic model

FIGURE 3.1. BUG-T aeroelastic finite element model

basis for the aero-structural spline and the use of rigid elements implies there is no warping

of the beam cross-section due to applied aerodynamic loads. This is a typical level of fidelity

adopted for static and dynamic aeroelastic analysis at the conceptual design stage and

similar models have been used in several studies26,69,255–257.

• Aerodynamic modelling - Aerodynamic elements are generated for each aeroelastic

component in the assembly and in keeping with the modelling approach adopted during the

SUGAR aeroleasitc analysis30 the jury-strut is modelled as a structural component only

with no aerodynamic elements. Each aerodynamic panel has an aspect ratio of one and the

chordwise panel length is set to 0.1m to capture reduced aerodynamic frequencies up to

50Hz82. An aerodynamic control surface is defined on the port and starboard horizontal

stabilizer to allow the aircraft lift force and pitching moment to be balanced during a

steady-state manoeuvre. Downwash corrections due to twist or camber are not included in

the model.

• Truss connectivity - The connectivity of the truss structure is idealised as a pinned-joint

at the root and tip of every truss element (i.e. the port and starboard strut and jury-struts).

TABLE 3.1. BUG-T component sub-assembly

Name Code Type
Structural (S) or Beam Length
Aeroelastic (AE) [m]

Starboard Wing SW Lifting Surface AE 0.8
Port Wing PW Lifting Surface AE 0.8
Starboard Strut SS Lifting Surface AE 0.5
Port Strut PS Lifting Surface AE 0.5
Starboard Jury-Strut SJ Lifting Surface S 0.15
Port Jury-Strut PJ Lifting Surface S 0.15
Vertical Stabilizer VTP Lifting Surface S 1.2
Starboard Horizontal Stabilizer SHTP Lifting Surface AE 1.2
Port Horizontal Stabilizer PHTP Lifting Surface AE 1.2
Fuselage F Bluff-Body S 2
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This means the local beam out-of-plane bending moment will have zero value at the root

and tip of each truss element, however all other forces and moments are transferred across

the joint. See Appendix C for a discussion of the local beam coordinate system for the

various components in the model.

• Component stiffness - The stiffness properties for the wing, strut and jury-strut are

derived from the data provided in Bradley et al. 30 , however there is no stiffness infor-

mation for the fuselage and empennage components. Instead, the beam stiffness of these

components has been set to a high value in order to provide ‘quasi-stiff ’ behaviour. This

assumes that the fuselage and tail dynamics will not impact the wing dynamics, which

is not necessarily the case but this approach is consistent with the modelling carried out

during the SUGAR aeroelastic analysis and so is considered acceptable for this thesis.

• Mass distribution - A detailed mass breakdown is provided for the wing and truss

components in the SUGAR reports, however this information includes contributions from

the fuel which means that it is not possible to analyse mass cases which have different

fuel-fractions. As with the beam stiffness there is no detailed mass data for the fuselage

and empennage components and so the data in Bradley et al. 30 is used to estimate the

gross mass properties. Further details are provided in Appendix A.

For all analysis in this thesis the structural and aerodynamic properties of the BUG-T model are

fixed, with the main focus on how the aeroelastic behaviour changes as the vibration suppression

device properties vary. These device properties augment the structural mass, damping and

stiffness matrices depending on the layout of the various of mechanical elements in the device(s).

As the truss topology is fixed this approach places a restriction on the potential locations where

a vibration suppression device can be incorporated into the structure. However, given that the

SUGAR reference model was the result of a comprehensive optimisation process, the assumption

is made that it would be unacceptable to adjust the planform and/or truss topology to obtain a

more favourable device performance if it meant an increase in fuel burn. Instead the device is

considered as an augmentation to the existing structure in order to limit any adverse dynamic

behaviour. Any change to the planform to improve the device performance would need to be

considered within the scope of a holistic optimisation process similar to the study carried out

during the SUGAR project. As this is the first investigation into the use of vibration suppression

to control aeroelastic phenomena in truss-braced wings this approach is deemed acceptable.

3.2 BUG-T Dynamic Characteristics

When considering the design of a vibration suppression device the first step is to understand the

operating environment and identify the frequencies where unfavourable vibrations take place.

Typically, catastrophic failure of a structure can occur when a structure is excited at its so-called

‘resonant frequency’ resulting in the maximum transfer of energy to the structural modes. It
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follows that a key step in designing a vibration suppression device is calculating these modes as

it is likely that a device will need to influence one (or several) of them to limit the response during

resonance conditions. To that end, this section provides an overview of the baseline dynamic

behaviour of the BUG-T model and a description of the modelling techniques and assumptions

used to solve the structural equations of motion. The purpose of this section is to understand

the fundamental dynamic behaviour of the BUG-T model in order to identify locations within

the existing model geometry where a vibration suppression device could be placed in order to

influence the system dynamics.

3.2.1 Fundamental Theory of a Linear Dynamic Mechanical System

Considering only the structural parts of the model, the equations of motion can be expressed

using the classical second-order, ordinary differential equation for a linear dynamic mechanical

system

Mẍs +Cẋs +K xs = P(t), (3.1)

where M, C and K are the mass, damping and stiffness matrices, P is some generalized force, t

is time and xs are the structural degrees of freedom (DOF) of the model, which for Nastran are

the physical displacements of each node in three orthogonal directions in both translational and

rotational senses. Removing damping and forcing terms and assuming a harmonic solution of the

form xsi =φisin (ωi t) allows Eqn. 3.1 to be reduced to

(
K −ω2

i M
)
φi = 0, (3.2)

where ωi is the circular natural frequency of the ith mode and φi is the corresponding eigenvector.

The non-trivial solution to Eqn. 3.2 can be found by solving the equation det
(
K −ω2

i M
) = 0

which yields the natural frequencies and corresponding eigenvectors of the system. Note that

for a dynamic mechanical system the eigenvectors are commonly referred to as vibration modes,

modeshapes and/or normal modes - all three are used interchangeably throughout this thesis.

Furthermore, for a linear system, such as the one considered in this thesis, the displacement of

the physical coordinates can be recovered as the sum of the normal modes

xs =
Nmodes∑

i=1
φiξi, (3.3)

where i is the mode number, ξi is coordinate of the ith mode2 and Nmodes is the number of modes

included in the summation - for the case where Nmodes is equal to the total number of degrees of

freedom
(
Ndof

)
the system response is recovered exactly. For models containing a large number

of DOFs the normal modes are typically used to map the structural matrices onto a reduced set in

order to limit the computational cost of carrying out the analysis. The number of modes is usually

2Sometimes referred to as the modal participation factor.
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chosen such that key dynamic characteristics of the model are captured for all frequencies of

interest, meaning that the solution recovered from the modal coordinates and modeshapes is

only an approximation of the exact solution of Eqn. 3.1. This is commonly referred to as modal

truncation and is fundamental to the dynamic aeroelastic analysis conducted by Nastran and so

a brief description of this process and its implications is necessary.

Firstly, to transform Eqn. 3.1 from the physical to the modal domain a solution of the form

xs(t)=Φξ(ω)e jωt is assumed3 and each term is pre-multiplied by ΦT , where Φ is the modeshape

matrix4.

−ω2ΦT MΦξ(ω)+ jωΦTCΦξ(ω)+ΦT KΦξ(ω)= P(ω) (3.4)

The pre and post-multiplication of the system matrices by ΦT and Φ has the effect of reducing the

problem size from Ndof ×Ndof to Nmodes ×Nmodes. Clearly, if Nmodes < Ndof then the solution

of the equations of motion becomes less computationally expensive. Furthermore, the following

terms can be introduced to simplify the equations of motion in the modal domain

Mhh =ΦT MΦ, Chh =ΦTCΦ, Khh =ΦT KΦ, Phh =ΦT P, (3.5)

where, using the Nastran notation, Mhh, Chh and Khh are the modal mass, damping and stiffness

matrices respectively and Phh is the modal load vector. Finally, if the system matrices M, C

and K are real and symmetric and the normal modes represent an orthogonal set of vectors,

i.e. φi ×φ j = 0 for i 6= j, then the matrices Mhh and Khh will be diagonal. Here, the diagonal

terms of Mhh and Khh are referred to as the modal or generalised mass and stiffness terms,

denoted as mi and ki respectively. Furthermore, for a given mode the circular frequency can

be expressed as ω2
i = ki/mi. Also, for the special cases of stiffness and/or mass proportional

damping the diagonal terms of the damping matrix (ci) are related to the modal damping ratios

(ζi) via ci = 2miωiζi. Therefore if orthogonal eigenvectors are used and the damping matrix is

stiffness/mass proportional then Eqn. 3.4 becomes uncoupled and the solution for each frequency

can be calculated using the modal load, mass, damping and stiffness terms.

−ω2miξi(ω)+ jωciξi(ω)+kiξi(ω)= pi(ω), =⇒ ξi(ω)= pi(ω)
−miω2 + jbiω+ki

, (3.6)

Decoupling the equations of motion by transforming the system into the modal domain greatly

reduces the complexity and computational cost of any analysis, however, in general the damping

matrix is non-symmetric and so an uncoupled system cannot be obtained. In this case the modal

coordinates can be found using the so-called direct method by collecting ξ terms and inverting

the resulting system

ξ= [−ω2Mhh + jωChh +Khh
]−1

Phh(ω), =⇒ ξ= HhhPhh(ω), (3.7)

3This assumption implies that the response of a system excited at a ωi will contain only that single frequency and
no others.

4 j is defined as the imaginary number
p−1 in order to avoid any ambiguity when i is used as the mode number.
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where Hhh is termed the modal frequency response function (FRF) matrix, which has an equiva-

lent in the physical domain H which is similarly constructed from the physical system matrices

M, C and K and yields the physical displacements xs when multiplied by the load vector P(ω).

xs =
[−ω2M+ jωC+K

]−1
P(ω), =⇒ xs = HP(ω), (3.8)

This discussion on coupled vs. uncoupled EoM is relevant because when vibration suppression

devices containing viscous damping elements are augmented to the BUG-T model in Chapters 4

and 5 the damping matrix becomes non-symmetric and so the direct solution method must used

to obtain the forced frequency response of the system.

3.2.2 Normal Modes Analysis

As the truss-braced wing aircraft is a novel and unusual configuration its modal properties are

not as straightforward as a typical cantilever wing. It is also important to classify the dynamics

of the model to understand how vibration suppression can be used to influence any adverse

dynamic behaviour. Therefore, this section presents a study of the so-called ’normal modes’ of

the BUG-T model - which are the eigenvalues and corresponding eigenvectors resulting from

the solution of the eigenvalue problem posed by Eqn 3.2. A method for classifying these modes is

presented which uses the Modal Assurance Criterion (MAC) coupled with the modal strain and

kinetic energy distributions as detailed in Towner and Band 258 to determine which parts of the

BUG-T model sub-assembly are active across the different modes. This is relevant for vibration

suppression considerations as if a certain mode is identified as having a strong participation

during aeroelastic flutter or turbulence encounters then an understanding of that mode will help

guide the placement of a vibration suppression device.

Concerning the calculation of the normal modes of the BUG-T model, the standard Lanczos

method259 is employed to determine the first 50 structural modes including the 6 rigid body

modes of the model. Each calculated mode is mass-normalised, i.e. each mode has a modal mass

of unity, which is the standard approach for a normal modes analysis in Nastran. Figure 3.2

shows the modeshapes of the mass-normalised, air-off normal modes for a selection of the flexible

modes of the BUG-T model and additional modeshape plots are provided in Appendix D. These

modes are termed the ‘air-off ’ modes to distinguish them from the flutter modeshapes shown in

Section 3.3.3. The modes are numbered in order of increasing natural frequency, meaning that

the first flexible mode (i.e. non-rigid body mode) of the structure is numbered as mode seven and

not mode one. Note, there is no ‘engine-mode’ as the engine is included in the model as a lumped

mass and there is no structural representation of the pylon. Upon inspection of Fig. 3.2, one thing

that is immediately obvious is the appearance of modes which are localised to specific parts of

the model. For example, mode 21 in Fig. 3.2(c) is clearly a symmetric out-of-plane bending mode

for the port and starboard strut elements.
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(a) Mode 7 - 1.498Hz (b) Mode 10 - 3.027Hz

(c) Mode 11 - 3.068Hz (d) Mode 21 - 10.496Hz

FIGURE 3.2. Linear, mass-normalised, air-off modeshapes for the BUG-T model. The translation terms of each modeshape
are scaled by a factor of 100 to emphasise the shape whilst the beam twist is visualised by forming a plane between the
leading and trailing edge nodes of each lifting surface - the shading of the plane represents the magnitude of the beam
twist. Finally, the grid point kinetic energy and element strain energy for each sub-assembly component is presented as
a fraction of the total strain and kinetic energy for each mode.
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Generally a mode is not so easily identified by visual inspection of the modeshape, therefore,

to aid in the classification of the normal modes the Grid Point Kinetic Energy (GPKE) and

Element Strain Energy (ESE) distribution are output for each mode. These terms are defined in

the Nastran dynamics user guide259 as

ESE = 1/2 xT
e Kexe, GPKE =ΦT

massMΦmass, (3.9)

where xe are the DOFs connected to any flexible elements, Ke is the element stiffness matrix and

Φmass denotes the matrix of mass normalised modeshapes. Note that the 1/2 term is dropped from

the GPKE equation as Nastran normalises the GPKE such that the total kinetic energy in the

model is equal to one259. Also, the GPKE terms have been transformed into the global coordinate

system5 (XG ,YG , ZG) from the local component coordinate systems during the post-processing

stage as this allows the energy terms across different components to be evaluated in a like-for-like

manner. Furthermore, the energy distributions have been grouped according to the component

sub-assemblies in Table 3.1 and then normalised with respect to the total strain and kinetic

energy in the model. These normalised terms are referred to as ESE and GPKE and are shown

as inset bar charts in Fig. 3.2. Finally, as the fuselage and empennage components are modelled

as quasi-stiff beams they contain less than 0.001% of the total model strain and kinetic energy

and so have been neglected from the energy distribution charts.

Using this additional information it is straightforward to quantitatively assess which compo-

nent and degree of freedom is most active in each normal mode. For example, mode 7 (Fig. 3.2())

is the first wing out-of-plane bending mode, mode 10 (Fig. 3.2(a) is the first wing twist mode

and mode 21 is the first strut out-of-plane bending mode. That being said, not all modes exhibit

component-localised behaviour - for example mode 11 is mostly dominated by energy terms in

the wings although it is spread across the different DOFs and a further 20% of the strain energy

is contained in the strut elements. Such modes are termed global models and are more difficult

to classify as the energy is spread throughout the structural components and degrees of freedom.

Figures 3.3(a) and 3.3(b) show the ESE and GPKE quantities for the first 50 normal modes.

Examining the normalised strain energy distribution in Fig. 3.3(a) the presence of the six rigid

body modes is immediately obvious as the strain energy for these modes is numerically zero - this

is a strong indicator that the FEM and resulting structural matrices are well-posed. From both

energy distributions it is clear that the majority of the model energy is concentrated in the wing

components during the low frequency modes and as the natural frequency increases there are

modes which are strut dominant with increased strain energy in the jury-strut as well. Although

one point to note regarding the GPKE distribution is that it is biased towards components that

have a much larger mass, for example the wing vs. the jury-strut. Whilst this may appear to be an

obvious observation it has important implications when classifying the modeshapes. For instance,

the GPKE distribution in Fig. 3.3(b) implies that the jury-strut components barely participate in

5The global coordinate system considered here is the same as the MSC Nastran basic coordinate system.
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(a) Element strain energy per component

(b) Grid point kinetic energy per component

FIGURE 3.3. Element strain energy (a) and grid point kinetic energy distribution (b)
by sub-assembly component for the first 50 normal modes of the BUG-T model.

60



3.2. BUG-T DYNAMIC CHARACTERISTICS

(a) MAC (b) MACESE

(c) MACGPKE (d) MAC

FIGURE 3.4. Modal Assurance Criterion for the BUG-T model normal modes using
the conventional MAC (a), the Element Strain Energy (b), the Grid Point Kinetic
Energy (c) and the average of all three measures (d).

the first 50 modes, whereas the ESE distribution in Fig. 3.3(a) shows that these components are

much more active. Finally, there is a tendency for the mode energy terms to be grouped together

in sets of two, this is due to the appearance of symmetrical and asymmetrical modes which is

symptomatic of the model symmetry about the XG ZG plane.

The final discussion on the BUG-T normal modes is focussed on the measure of similarity

between each modeshape. There exists a well-known scalar quantity called the Modal Assurance

61



CHAPTER 3. REFERENCE MODEL AND CHARACTERISTIC BEHAVIOUR

Criterion260 (MAC) which is used to assess the degree of similarity between two modeshapes,

defined as

MAC =
∣∣φT

r φt
∣∣2(

φT
r φr

)(
φT

t φt
) , ∀r, t ∈ [1, Nmodes] (3.10)

Mathematically speaking, this measure corresponds to the magnitude of the cosine of the angle

between the two modeshape vectors φr and φt squared, therefore, the value of the MAC is

bounded by 0 and 1, where a value of 1 means the two vectors are the same (i.e. ∀r = t) and

a value of 0 means the two vectors are geometrically orthogonal. When constructing the MAC

matrix for a set of numerically generated modeshapes it is expected that each modeshape will

be mass orthogonal with respect to the rest of the generated set. Figure 3.4(a) shows the MAC

matrix for the first 50 normal modes of the BUG-T model. Here, the orthogonality between the

different normal modes is clearly demonstrated by the dominant diagonal terms and the lack

of coupling on the off-diagonals. There is a small amount of coupling towards the higher mode

numbers but this is attributed to the model symmetry as discussed in Gockel 259 . In this instance,

using the MAC as the only measure of similarity between the modes implies that the modeshapes

are distinct. Whilst this may be true in a mathematical sense, it is clear by visual inspection that

certain aspects are shared across the different modes. To help quantify this, a similar measure to

the MAC can be constructed using the ESE and GPKE distributions as described in Towner and

Band 258 . These terms are denoted as MACESE and MACGPKE and their corresponding matrices

are shown in Fig. 3.4(b) and Fig. 3.4(c) respectively. These new terms show that there is a higher

degree of similarity between the different modes than previously indicated by using the MAC

alone. The MACESE matrix especially shows a significant degree of coupling, although this may

be because Nastran groups together the element strains from all six DOFs into a single metric,

unlike the GPKE which is split amongst all six DOFs. In both the ESE and GPKE MAC matrices

the symmetric-asymmetric mode pairs are clearly identified by sets of 2x2 entries centred around

the matrix diagonal. Following the methodology of Towner and Band 258 these three metrics can

be combined into a scalar quantity with a value between 0 and 1 by taking the average of the

MAC, MACESE and MACGPKE terms. This combined quantity is referred to as MAC and is

shown in Fig. 3.4(d) 6. The main observation here is that BUG-T normal modes show some degree

of similarity when additional metrics such as the element strain energy and grid point kinetic

energy are taken into account. Therefore, if a vibration suppression device can be designed to

influence a single mode then there is a possibility it will also affect other modes which share

similar characteristics with the targeted mode.

As the truss-topology of the BUG-T model is fixed the potential device locations are con-

strained to existing connections within the wing-truss structure. These locations are shown in Fig.

3.5 and are termed Locations A, B and C - which correspond to a rotational device at the strut

root joint, a translational device which spans the jury-strut and a further rotational device at the

6Note that this method of classifying modeshapes is not particular to truss-braced wings and can be used for any
generic finite element model which can be divided into a logical breakdown of components258
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LocationWA

LocationWC

LocationWB

Location Label DeviceWType
A Strut-Root Rotational
B Jury-Strut Translational
C Strut-Tip Rotational

PinnedWJoints
FlexibleWBeams

Wing

Strut

Jury-Strut

FIGURE 3.5. Proposed vibration suppression device locations. Devices will be placed at
these locations in both the starboard and port components.

strut tip joint7. Note that rotation about the hinge connections at the root and tip of the jury-strut

is not considered as the primary load path for the jury-strut is tension/compression for which a

translational device is best suited. In order for a two-terminal vibration suppression device to

target a particular structural mode it must experience some relative motion across the device

terminals at the frequencies of interest. To determine how ’active’ these devices will be at the

various normal modes frequencies the relative modal displacements at the three device locations

have been extracted and are presented in Fig. 3.6 for the first 50 modes up to 30Hz. These results

show that all three candidate locations experience very little relative motion at frequencies less

than 5Hz. This is slightly concerning from an aeroelastic control point of view as these modes tend

to be critical for determining the dynamic aeroelastic response of the aircraft, such as for flutter

or during turbulence encounters. The modal relative displacement is more significant in the

10-15Hz and 25-30Hz regions of the frequency domain, which corresponds to a series of localised

modes in the truss-structure. For modes in these regions the strut experiences significant rotation

about its root and tip due to the pinned connection between the truss elements and the wing and

fuselage, also, the jury strut experiences some extension/compression motion due to the combined

bending of the strut and the wing - hence the higher modal relative displacement. These results

could indicate that a passive vibration absorbed placed at one or all of these locations would be

more effective at targeting the localised (high-frequency) truss modes instead of the fundamental

modes which are more relevant for dynamic aeroelasticity52. This implies that the layout and

parameter values of the vibration suppression devices will need to be carefully tailored in order

to target the low frequency modes and provide a more favourable dynamic aeroelastic response.

This section has demonstrated a method for quantitatively classifying the normal modes of

the BUG-T model using three metrics: the visualised modeshapes, the distribution of strain and

kinetic energy and a modified Modal Assurance Criterion which accounts for the orthogonal-

ity between the eigenvectors, the kinetic energy vectors and the strain energy vectors. Three

candidate device locations have been identified based on the existing connection points in the

7Even though Fig. 3.5 shows device locations for a half-wing devices will be placed at these locations in both the
port and starboard strut and jury-strut components
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FIGURE 3.6. Relative modal displacement at the proposed vibration suppression device
locations. The left and right y-axis show the relative velocity for the rotational and
translational devices respectively.

BUG-T truss-structure. Examining the relative modal displacements at these locations revealed

that the low-frequency modes do not exhibit much relative modal displacement at the proposed

device locations, however, for modes in the range 10-15Hz and 20-25Hz there is an increase

in relative modal displacement which is attributed to localised modes in the truss-structure.

It is hypothesised that if the structure is excited at these natural frequencies, such as during

aeroelastic flutter or turbulence encounters, then a vibration suppression device placed at the

joint locations of the strut or across the ends of the jury-strut could be used to influence the

dynamics of the wing. Although it is likely that the device properties will need to be tailored to

target the fundamental modes which are most critical for aeroelastics52.

3.2.3 Forced Frequency Response

In this section the candidate device locations will be evaluated by examining the amount of

relative velocity experienced across the two DOFs that will act as the device terminals. To achieve

this a frequency response analysis will be conducted where the structure is excited by a harmonic

load applied at the wing tips and the velocities at three device locations will be extracted and

presented as a function of forcing frequency. This will allow device effectiveness to be assessed

at the normal mode frequencies identified in Section 3.2.2. The relative velocity is used because

within the field of mechanical network design the device admittance functions are commonly

formulated in terms of the velocity at the two terminals of the device208.
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First, the physical FRF matrix H is formulated using the M, C, K matrices and frequencies in

the range 0 : dF : Fmax, where dF = 0.01Hz and Fmax = 30Hz. The structure is excited by a unit

harmonic load at the wing tip leading edge of the port and starboard wings as this will activate

most of the structural bending modes within the frequency range of interest. Furthermore, 3%

structural damping is applied at all excitation frequencies in accordance with the guidance in the

certification documents234. Next, the physical displacements are calculated at each frequency

using Eqn. 3.8. With the displacements calculated at each forcing frequency the velocities can

be recovered using ẋ = jωx, which holds true as long as the applied force and assumed solution

are harmonic, i.e. x = x0e jωt when P = P0e jωt. Each device location has two velocity terms per

frequency corresponding to the two terminals of the vibration suppression devices. In the case of a

rotational device these are the dependent and independent nodes of the pinned-joints at Location

A and C and for the translational device at Location B the root and tip node of the jury-strut are

used. For each location the relative velocity can be calculated as ∆ẋ = ẋ1 − ẋ2, where subscript

1 and 2 denote the node at the terminal of the device. The frequency response function of the

magnitude of the relative velocity at each device location (|∆ẋ|) is shown in Fig. 3.7, with inset

plots of modeshapes where the device locations experience large magnitudes of relative velocity.

The first point to note is that in general the velocities at Locations A and C are larger than at

Location B which could imply that a rotational device will be more effective than a translational

FIGURE 3.7. Unit frequency response function of the relative velocity at the proposed
device locations with 3% structural damping. The left and right y-axis show the
relative velocity for the rotational and translational devices respectively and inset
axes show the modeshapes at frequencies where one or more of the device locations
experience a large relative velocity.
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device. However there is not one location which consistantly experiences a larger magnitude

across all excitation frequencies, so it could be that one device location is better suited to targeting

a particular mode, which introduces the possibility of using multiple devices to target the response

of several modes. Next, it is clear that the magnitude of all three locations reaches a maximum

in the 10-15Hz range. This corresponds to the group of strut/jury-strut dominated modes that

are present between modes 20-30 in Fig. 3.3(a), suggesting that a device located at any of the

three locations will be able to influence this group of modes. Either side of the 10-15Hz range the

magnitude of ∆ẋ is substantially less, especially for the translation device at Location B which

has almost zero value for modes in the range 0-5Hz8. In contrast, the rotational devices have a

much larger magnitude in this frequency range, with Location A generally having a higher value

of |∆ẋ| because of the lower beam stiffness in the inboard section of the strut9. These results

confirm the observations made for the normal modes in Fig. 3.6.

Finally, it is important to acknowledge that the proper characterisation of the frequency

response of a model requires a more detailed study than has been presented here. For example a

distributed harmonic load could have been applied which is more representative of the aerody-

namic loads experienced during flight, or the contribution of different components of loads applied

at different points in the model could have been assessed to determine which load conditions

will induce relative motion at the proposed device locations. However the purpose of this section

was to identify trends in the amount of relative motion at each proposed device location in order

to gain a preliminary understanding of the model dynamics, and so for this reason a simple

frequency response analysis was preferred over a more comprehensive study.

3.2.4 Key Observations from the BUG-T Dynamic Analysis

This section has provided an overview of the normal modes of the BUG-T FEM and has used

this information to determine three locations where a vibration suppression device could be

incorporated into the structure. Next, a frequency response study was conducted to determine

the magnitude of the relative velocity at these three locations as a function of frequency, with this

information used to hypothesize about the effectiveness of a given device location at influencing

certain structural modes. Based on these two studies the following conclusions have been made:

• Localised Modes - The BUG-T model is broken down into a sub-assembly of components

with different stiffness and mass distributions which leads to the presence of localised

modes within the structure. This is further exaggerated by the pinned-joint connectivity

between the truss elements and the wing/fuselage components which promotes a series

of out-of-plane bending modes in the 10-15Hz range. Given the large amount of relative

motion that occurs during these ‘truss modes’ it is hypothesized that a vibration suppression

8It is especially important that a device is active at these low frequencies as structural modes in this range tend
to have a larger participation during flutter and turbulence encounters52.

9Plots the the beam stiffness distributions are provided in Appendix A.
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device located at the strut joints or across the jury-strut could be used to influence the

dynamics of the wing and truss components.

• Device Locations - Three potential device locations are identified: a rotational device at

the strut root joint (Location A in Fig. 3.5), a translational device which spans the jury-strut

(Location B in Fig. 3.5) and a rotational device at the strut tip joint (Location C in Fig. 3.5).

The viability of these locations is heavily dependent on the use of pinned-joints to connect

the truss elements to the wing and fuselage. However, numerous trade studies have shown

that pinned-joints provide an overall benefit in terms of aircraft weight30,44–46 and so it is

fair to proceed with the assumption that pinned-joints will be used.

• Device Effectiveness - The frequency response study in Section 3.2.3 showed that for

all three device locations the relative velocity reaches a maximum in the 10-15Hz range,

which corresponds to the localised truss modes identified in Section 3.2.2. It was noted

that low-frequency modes are more critical during aeroelastic phenomena52, therefore it is

hypothesized that rotational devices at the strut pinned-joints will be more effective than a

translational device across the jury-strut based on the larger relative velocities at these

locations in the 0-5Hz range.

3.3 BUG-T Aeroelastic Analysis

During the aircraft design process, a considerable effort is made to simulate all potential operating

conditions in order to establish the critical loads envelope, that is, the maximum and minimum

loads that every component can experience across all possible operating conditions. Such a

process often involves evaluating tens of thousands of flight points, load factors and mass cases

in order to determine the critical loads which size the airframe. Often, these loads are attributed

to both static and dynamic aeroelastic load cases across multiple altitudes and aircraft velocities.

Furthermore, it is also necessary to certify that the stability of the airframe is not compromised

at any point during the mission. Here, stability can relate to static stability such as local or

global buckling as well as dynamic instability resulting from aeroelastic flutter. In the case of a

truss-braced wing, work conducted during the SUGAR project30 and more recently by Rajpal and

De Breuker 154 identified that gust loads are critical to sizing many of the airframe components.

Also, a multidisciplinary optimisation study conducted by Mallik et al. 47 identified that satisfying

the flutter constraint leads to a 7.5% increase in the mission fuel burn compared to the case

where the flutter constraint was relaxed. These results highlight the importance of investigating

methods which can provide gust loads alleviation and suppress aeroelastic flutter in order to

enable more efficient aircraft designs.

This section is formatted as follows: First, Section 3.3.1 provides a brief overview of the

theory and limitations of the aeroelastic formulation used by Nastran. In Section 3.3.2 the static

aeroelastic response of the BUG-T model is evaluated using the load cases from the SUGAR TBW

67



CHAPTER 3. REFERENCE MODEL AND CHARACTERISTIC BEHAVIOUR

sizing study. Using these results the critical loads envelope is generated for the wing, strut and

jury-strut components and comparisons are made against the data from the SUGAR reports30

to test the validity of the BUG-T model. Finally, in Section 3.3.3 the flutter behaviour of the

BUG-T is determined and this is related to the observations from the dynamic analysis in Section

3.2.

3.3.1 Aeroelasticity in Nastran

As the aeroelastic methods in Nastran are considered industry-standard a full derivation of the

equations of motion is not necessary, instead this section will discuss the underlying assumptions

that govern the Doublet Lattice Method and their relevance to the work presented in this thesis.

A brief overview of the working principles of DLM is also given to provide context for the static

and dynamic equations of motion presented in the remainder of this chapter.

The DLM theory used by Nastran is an extension to the classical Vortex Lattice Method

(VLM) for unsteady flow conditions and is described in detail by Albano and Rodden 261 . DLM

is based on linearised velocity potential theory, meaning that the following assumptions are

inherent to the formulation13:

• Inviscid flow - The fluid viscosity is equal to zero. Therefore there is no development of

a boundary layer on any of the external surfaces and aerodynamic forces are a function

of pressure only, i.e. the shear force at the surface boundary is zero and there is no

parastic/form drag. For this condition to be true the Reynolds number of the flow would

have to be infinite, however it is typical for flow conditions with high Reynolds numbers to

be modelled using inviscid formulations.

• Irrotational flow - The fluid particles do not have angular velocity and can be described

by translational components only. Irrotational flow implies that the flow cannot become

turbulent and is laminar at all points, i.e. the streamlines of the flow remain parallel.

Turbulent flow typically occurs as a result of boundary layer growth or at high angle of

attack, so assuming that the flow is inviscid and the aircraft restricts itself to low angles of

attack this assumption is valid.

• Small perturbations - The linearised potential theory is based on the concept of velocity

perturbations. These perturbations must be small with respect to the freestream velocity in

order to linearise the flow equations, which requires that the aerodynamic body is slender

and operating at small angles of attack. In Nastran’s DLM this is facilitated by using thin

aerofoil theory to model the lifting surface as a collection of flat panel elements with their

chord orientated parallel to the freestream. Thin aerofoil theory implies that the velocity

induced by these panels acts normal to the panel plane.

• Incompressible flow - The fluid density and mass flow rate remains constant meaning

that shock waves cannot form and there is no wave drag, although compressible effects

can still be accounted for using corrections such as the Prandtl-Glauert transformation13.
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Strictly speaking such an assumption is only broadly correct at Mach numbers less than 0.3,

however, the SUGAR project assumed a cruise Mach of 0.7 with a maximum operating Mach

of 0.82. This implies that compressible effects are likely to be important to the aerodynamic

performance of the aircraft, however as this thesis focusses on the dynamic aspects of the

model and does not consider any aerodynamic performance this assumption is valid within

the scope of this research.

• Uniform flow - The freestream must be uniform or varying harmonically. This restricts

Nastran to the evaluation of steady flow conditions or flow that is varying harmonically,

such as during a 1-cosine gust or at the point of flutter49.

In addition to these aerodynamic considerations, Nastran’s aeroelastic solution sequences assume

that the structural response to the applied aerodynamic loading is linear. Meaning that typical

nonlinear aeroelastic effects such as ‘tip-shortening’262 and other large rotation effects are

neglected. Also, the coordinate systems and structural mass, damping and stiffness matrices

are considered fixed for the duration of the analysis. It is possible to include these effects using

a fluid-structure-interaction approach168,262 however this is considered outside of the scope of

this thesis. Taking these assumptions together it may seem like Nastran is quite limited in

its scope. However as mentioned in Chapter 2, the strength of Nastran is its ability to handle

aircraft-level aeroelastics using aerodynamic theories that are broadly accurate, making it ideal

for trade studies at the preliminary design stage or conceptual research. What follows is a brief

discussion of the subsonic aerodynamic modelling in Nastran and how the aerodynamic loads are

transferred to the structure.

In Nastran each aerodynamic surface is represented by a collection of trapezoidal panels, as

in Fig. 3.8. Each panel is parallel to the freestream and contains a line of acceleration potential

U∞
Line of doublet elements

Panel control points

ci

FIGURE 3.8. Example panel geometry for the Nastran doublet lattice method.
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doublets on the quarter chord line of the panel, with uniform but unknown strength. The central

problem of the doublet lattice method is to determine the strength of every doublet element such

that the normal velocity at each panel control point is zero and the Kutta condition is enforced 10.

It can be shown261 that once the doublet strengths are determined the aerodynamic pressure

acting on each panel can be recovered from the panel downwash velocity, which itself is a function

of the panel geometry and the influence of all doublet elements on an individual panel. Next, the

aerodynamic pressure distribution can be converted to a force on each panel by multiplying the

pressure by the panel area, yielding a force which is normal to the panel plane11. In Nastran, this

process is generalised by forming a matrix of Aerodynamic Influence Coefficients (AICs) which

can be expressed as

Qkk = Ski A−1
ii

(
D1

ik + jkD2
ik

)
(3.11)

where subscripts kk and i denote the aerodynamic set and ith aerodynamic panel respectively.

Qkk is the overall AIC matrix, Ski is the integration matrix and A ii is the AIC matrix of each

panel which is a function of Mach number and reduced frequency k only. D1
ik and D2

ik are the

real and imaginary parts of the substantial differentiation matrix which relates the deflections of

the aerodynamic DOFs to the downwash on each panel via

wi =
(
D1

ik + jkD2
ik

)
xk +wg

i (3.12)

where wi is the downwash velocity on each panel, xk are the displacements of the aerodynamic

degrees of freedom12, and wg
i is a ‘static’ downwash term which includes contributions from

some distribution of initial incidence on each panel, such as from angle of attack or aerofoil cam-

ber/twist82. The aerodynamic DOFs are related to the structural DOFs by the use of mathematical

splines

xk =Gksxs (3.13)

where Gks is the spline matrix and xs are the deflections of the structural DOFs. It is important

to note that the spline matrix only maps structural deflections which contribute to the deflection

of xk in the direction normal to the panel plane, and any additional incidence due to the twisting

of the structure is transferred to the aerodynamic set via additional downwash terms. This

is a result of the small perturbation assumption which requires the aerodynamic body to be

represented by a series of potential elements located on the aerofoil zero-camber line.

10The Kutta condition requires that the circulation distribution yields a stagnation point at the trailing edge of
each spanwise set of panels.

11As the panel is parallel to the freestream and DLM only considers normal velocities there is no drag force
calculated by Nastran.

12The aerodynamic degrees of freedom are defined as the deflections of the quarter chord point of each panel in the
direction normal to the panel plane.
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3.3.2 Static Aeroelastic Response

In this section the static aeroelastic response of the BUG-T model will be quantified using the

mass configurations and aeroelastic load cases from the SUGAR TBW design study30. The purpose

of this study is to understand the magnitude of loads that the structure will experience during a

typical steady-state manouevre and determine which load cases form the critical loads envelope.

This is important in the context of vibration suppression as any vibration absorbers included in

the structure will need to be designed to withstand these static loads during normal operation.

In Nastran calculating the static aeroelastic response requires certain degrees of freedom to be

‘released’ so that the external forces and moments due to aerodynamic and inertial loads can be

balanced by the reaction loads from the structural flexibility and additional aerodynamic loads

from control surfaces. Here, an additional set of DOFs (xe) are introduced which comprise the

released degrees of freedom and any additional aerodynamic degrees of freedom 13. Hence, the

static aeroelastic equation of motion for a flexible aircraft is defined as82

(K − qQss) xs +Mẍs = qQsexe +Ps (3.14)

where Qss is the AIC matrix which provides aerodynamic forces at the structural DOFs due

to structural deformations, q is the dynamic pressure, Qse is the AIC matrix which provides

aerodynamic forces at the structural DOFs due to change in xe and Ps is a vector of additional

applied loads. Note that the complex (oscillatory) terms of Eqn. 3.12 are neglected during static

aeroelasitc analysis. This equation is solved directly using the process described in Rodden and

Johnson 82 to find the values of xe which satisfy the aircraft trim. In this work, the aircraft is

trimmed by balancing vertical acceleration and pitching moments using the angle of attack and

elevator.

3.3.2.1 Static Aeroelastic Loads Envelope

In this section the static aeroelastic response of the BUG-T model is calculated using the load

cases from the SUGAR sizing study30. The load cases used in this section are given in Table

3.2 and are a subset of the 17 load cases and two mass configurations that were used for the

preliminary sizing study in Bradley et al. 30 . The full 17 load cases could not be considered as

the wing mass data that was used to develop the BUG-T model includes contributions from the

fuel mass. Meaning it is not possible to evaluate mass cases with different levels of fuel loading

as the structural mass and fuel mass are defined as a single lumped mass - further details are

provided in Appendix A. With this in mind the load cases used in this section assume an all-up

mass (AUM) of 68038kg, which is the same as the Maximum Take-off Weight (MTOW) of the

SUGAR 765-095 Rev. D. Table 3.2 defines each load case as a combination of altitude, Mach

number, aircraft velocity and vertical load factor, with the title of each load case taken from

13These additional aerodynamic degrees of freedom are typically associated with control surfaces.
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TABLE 3.2. BUG-T static aeroelastic load cases for an AUM of MTOW, taken from
Bradley et al. 30 Table 2.9. The values of U∞ are found by interpolating the flight
envelope data in Appendix A.

No. U∞ M Z nz Title
[−] [m/s] [−] [ft] [g]

1 206.8 0.7 36,000 2.5 2.5g manoeuvre at cruise, M 0.7 (MTOW)
2 206.8 0.7 36,000 -1 -1g manoeuvre at cruise, M 0.7 (MTOW)
3 159.6 0.2 0 2.75 Pratt Gust at sea level, M 0.2 (MTOW)
4 159.6 0.4 0 2.84 Pratt Gust at sea level, M 0.4 (MTOW)
5 185.6 0.5 10,000 2.68 Pratt Gust at 10K ft, M 0.5 (MTOW)
6 218.5 0.6 20,000 2.57 Pratt Gust at 20K ft, M 0.6 (MTOW)
7 212.1 0.7 30,000 2.23 Pratt Gust at 30K ft, M 0.7 (MTOW)
8 202.7 0.7 40,000 1.85 Pratt Gust at 40K ft, M 0.7 (MTOW)

Bradley et al. 30 . For each load case the resulting loads envelope and structural deflections are

compared against the SUGAR results study30 in order to check the validity of the BUG-T model.

For load cases three to eight, the vertical load factor is calculated using the quasi-static Pratt

Gust formulation263. This is an approximate method which allows an equivalent static vertical

load factor to be derived for a given altitude and aircraft mass based on the response of a rigid

aircraft to a 1-cosine gust. Using the method detailed in Pratt 263 the equivalent static load factor

is defined as 1+∆nzg . Where ∆nzg is the incremental gust load factor, defined as

∆nzg =
KgCLα

ρSre f U∞Ure f

2× AUW
(3.15)

where Kg is the gust load alleviation factor that accounts for the aircraft motion and the build-up

of unsteady aerodynamic forces due to aerodynamic lag49,52, CLα
is the rigid aircraft lift-curve

slope, ρ is the air density, Sre f is the reference wing area, U∞ is the aircraft forward velocity and

Ure f is the gust vertical velocity, which itself is a function of altitude234. Reference quantities for

the BUG-T model are provided in Table 3.3. Precise data for CLα
is usually not available at the

preliminary design stage so it is often estimated as 2π. In Pratt 263 the value of Kg is a function

of the mass ratio
(
µg

)
, which is approximated by the curve

Kg =
0.88µg(
5.3+µg

) (3.16)

where µg is defined as

µg = 2× AUW
CLα

ρcSre f g
(3.17)

with c denoting the mean geometric chord (wing area / wing span) and g is the acceleration due

to gravity. Values for U∞ and AUW are taken from Table 3.2 and the variation of Ure f with

respect to altitude is defined in Section 25.341 of CS-25234. Finally, for this study the value of

CLα
is assumed to be equal to the aircraft vertical force stability derivative (with respect to angle
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TABLE 3.3. Reference aerodynamic properties for the BUG-T model.

Property Symbol Value Units

Wing area Sre f 147.228 m2

Wing span bre f 51.798 m
Reference chord cre f 3.276 m
Mean geometric chord c 2.844 m

of attack) ignoring elastic effects, CZrigid . This quantity is part of the standard output for the

Nastran static aeroelastic solution and is calculated at the 1g flight condition for each Pratt gust

in Table 3.2.

Figure 3.9 shows the loads envelope for a selection of beam loads and components whilst the

full loads envelopes comprising all six beam loads for the wing, strut and jury-strut components

are given in Appendix D. The loads envelope is calculated by taking the maximum and minimum

values of the beam loads across each component and the plots in Fig. 3.9 are colour-coded to

denote which load case has the maximum/minimum load at that point. Note that where two

different beam elements are attached to the same finite element node the average value of the two

sets of beam loads has been used, which is consistent with the presentation in Bradley et al. 30 .

For example, the wing axial force distribution in Fig. 3.9(b) should show an instantaneous jump

in force at the strut attachment point due to the additional loads transferred from the strut to

the wing. However as the average load is used the variation in loads at the attachment point is

gradual instead of a step change. Furthermore, the x-axis for each plot is normalised beam axis

of the component (ηr), which is the straight line distance along the line of nodes which the finite

element beams are attached to. This allows consistent comparison of components which have

different orientations with respect to the global coordinate system.

Concerning the loads envelopes, the wing spanwise bending moment envelope in Fig. 3.9(a)

shows that the loads reach a maximum at the wing strut attachment point and then reduce

towards the wing-fuselage joint - which is the typical behaviour for a braced-wing aircraft108,109.

The wing axial force envelope in Fig. 3.9(b) shows good qualitative agreement with the SUGAR

data with the exception of the behaviour inboard of the root position. This is due to the constraints

applied to the BUG-T FEM to model the wing-fuselage connection which are not necessarily

the same as the SUGAR model. Regarding the strut spanwise bending moment in Fig. 3.9(c),

the main observation is that the load is equal to zero at the root and tip and that there is no

step change in bending moment at the jury-strut attachment point. Both these points are a

direct consequence of the pinned connections used to connect the truss elements to the wing and

fuselage. The critical sizing cases for the three loads envelopes are the two sea level static-gust

cases and the -1g and 2.5g manoeuvre cases. This is precisely what was found in the SUGAR

study and gives confidence that the BUG-T model is a reasonable approximation of the SUGAR

model. These load cases have the highest values of dynamic pressure out of the cases in Table 3.2
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FIGURE 3.9. Static aeroelastic loads envelope for the wing spanwise bending moment
(a), wing axial force (b) and strut spanwise bending moment (c).
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which is why they drive the critical loads envelope.

Figure 3.10 shows the static aeroelastic deformed shape of the starboard wing and truss

components for all eight load cases and Table 3.4 provides the wing tip deflections for the

BUG-T model compared against the SUGAR data in absolute values and as a percentage of

the semi-span. The 2.5g and -1g deflections show reasonable agreement with the SUGAR data,

however there is a significant error in the results for the Pratt gust cases. This is because during

the SUGAR analysis the Pratt gust loads for wing sections outboard of the strut attachment point

were scaled using a linear scale factor that varied from 1 at the wing-strut attachment point, to

1+δ at the wing tip. As the value of δ is not provided in the SUGAR reports it has not been applied

in this study which is the reason for the large discrepancy in the deflection results. Regarding

the magnitude of the wing tip deflection, a rough design rule in the aeroelastic community is that

nonlinear effects start to become important when the wing tip deflection reaches ±10% of the

semi-span255. Therefore from the results in Table 3.4 it is likely that the BUG-T and SUGAR

models will begin to exhibit nonlinear aeroelastic effects, which is consistent with observations

from the SUGAR wind tunnel tests148. A thorough study of nonlinear aeroelastic effects on the
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FIGURE 3.10. Static aeroelastic deflections for the starboard wing, strut and jury-strut
components for each of the load cases in Table 3.2.
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TABLE 3.4. Comparison of static aeroelastic wing tip deflection for the BUG-T and
SUGAR models.

Load case Tip deflection (BUG-T) Tip Deflection (SUGAR) Difference
[-] [m] / [% span] [m] / [% span] [%]

1 2.23 / 8.62 2.14 / 8.25 4.21
2 -0.91 / -3.50 -0.86 / -3.32 5.81
3 2.27 / 8.77 2.78 / 10.73 -18.35
4 2.29 / 8.86 3.26 / 12.60 -30.75
5 2.20 / 8.49 2.99 / 11.53 -26.42
6 2.11 / 8.13 2.68 / 10.34 -21.27
7 1.96 / 7..56 2.42 / 9.33 -19.01
8 1.74 / 6.72 2.07 / 7.99 -15.94

critical sizing loads of a braced wing configuration has not been conducted within the research

community although it has started to be addressed by some research groups100,106, including a

preliminary study by this author264.

3.3.2.2 Critical Loads Envelope Sensitivity Study

The study in the previous section showed that quasi-static gusts form a major component of the

critical loads envelopes. However, examining Eqns. 3.15 and 3.17 it is clear that the Pratt gust

load factor is heavily dependent on the aircraft lift-curve slope which is commonly estimated as

2π. To test this assumption, this section presents a study where the value of CLα
is varied using

four simple approximations and the corresponding effect on the gust load factor and resulting

critical loads envelope is discussed. The four different values of CLα
considered are:

• Case 1 - The theoretical lift-curve slope as predicted by thin aerofoil theory - 2π.

• Case 2 - The theoretical lift-curve slope with the Prandtl-Glauert correction - 2π/
p

1−M2 .

• Case 3 - The derivative of the aircraft vertical force with respect to AoA for a rigid wing -

CZrigid . Calculated using Nastran for the 1g condition of each Pratt gust load case.

• Case 4 - The derivative of the aircraft vertical force with respect to AoA with elastic effects

- CZ f lexible . Calculated using Nastran for the 1g condition of each Pratt gust load case.

Note that CZ f lexible is calculated by Nastran in a similar way as CZrigid but includes the effects of

structural deformations on the stability derivative. Of these four methods the one which assumes

a rigid aircraft response (i.e. Case 3 CZrigid ) will be used as the reference case as this is consistent

with the original derivation of the Pratt gust load factor263.

Figure 3.11 shows the value of ∆nzg calculated for load cases three to eight using the four

different values of CLα
. At low Mach numbers (load case 3 & 4) the largest difference in load factor

is 0.09, which is 3.5% of the
(
CZrigid

)
value, however, as the Mach number increases (increasing

load case number) the maximum difference grows to 0.36, or 16% of the reference value. This is

because the assumption that CLα
= 2π becomes increasingly incorrect as Mach number increases.
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FIGURE 3.11. Pratt gust load factor for different values of CLα
.

Discounting this result leads to a the maximum error at load case eight of 7.3%. In general, the

Prandtl-Glauert corrected CLα
overestimates the load factor, except at low Mach numbers where(

CZrigid

)
gives a slightly larger value. Furthermore the load factor predicted by the flexible aircraft

is consistently lower both the rigid and Prandtl-Glauert values. The impact of the different values

of ∆nzgust on the critical loads envelope is assessed using the following process:

1. The loads envelope is calculated for all six beam loads in the wing, strut and jury-strut

components for each value of CLα
. The loads envelope for each case is denoted Pi, where i

is the case number.

2. Each loads envelope is normalised with respect to the reference case CLα
= (

CZrigid

)
and the

change in loads is calculated. The normalisation for each case is P i = Pi/P3 where i = 1,2,4.

The normalised difference between the loads envelope and the reference loads envelope is

given as
(
∆P i = P i −1

)
3. The data from the different beam loads and components is then combined into a single

vector and the MATLAB programme histfit is used to calculate the distribution of the

change in loads assuming a normal distribution.

The resulting normal distribution plots are shown in Fig. 3.12. By examining these distributions

it is clear that the case where CLα
= CZ f lexible shows the least variance which is expected as the

load factors for these two cases in Fig. 3.11 provide the most consistent match, however, the
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maximum change in loads is still ±8%. The remaining two cases show a maximum difference

of between -12% and 10% which is alarming considering these loads are being used to size

the wing at the preliminary design stage. These distributions have been generated assuming

a normal distribution, which is not necessarily the case, however a more thorough discussion

on uncertainty modelling in the design process is beyond the scope of this thesis. Instead, this

study has demonstrated the scale of differences in critical beam loads that can be introduced by

uncertainty in the aircraft CLα
value, which should be factored into the evaluation of a critical

loads envelope which uses quasi-static gust loads. This discussion is relevant as any vibration

suppression devices that are included in the truss structure must designed to withstand both

static and dynamic loads, therefore it is necessary for these loads to be accurately estimated

in order for the device to be correctly designed and its mass accurately accounted for. This is

especially important at the preliminary design stage as a situation could arise where a vibration

suppression scheme was rejected as a result of over-estimating the required design loads leading

to a device with an unacceptable mass penalty. Further discussions on the practical design of a

vibration suppression device are provided Chapter 6.
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FIGURE 3.12. Approximate normal distribution of change in critical beam loads with
respect to the case where CLα

= CZrigid for quasi-static gust load cases 3 - 8.
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3.3.3 Flutter Response

Aeroelastic flutter has been identified as one of the main limiting factors in the design of a

truss-braced wing aircraft47,98,149,265,266, therefore, to understand how a vibration suppression

device can be used to influence flutter this study will determine the complex flutter modeshapes

and critical flutter speed of the BUG-T model. These flutter modeshapes will be linked to the

normal modes discussed in Section 3.2.2 and this information will be used in Chapter 4 to inform

the optimisation of a device that can suppress aeroelastic flutter.

In this work the Nastran PK flutter method82 is used to calculate the aeroelastic stability

of the model. In the PK method the unsteady aerodynamic terms are introduced as additional

frequency-dependent stiffness and damping terms, as in the ‘British’ flutter method, in contrast

to the K method which considers the aerodynamic terms as additional inertia terms74. Both

methods yield the same flutter speed, however as noted in Hassig 267 the two methods can

identify different flutter branches that have substantially different pre-flutter behaviour. As the

PK method is favoured within the industry267 it will be used for all flutter analysis in this thesis.

The Nastran PK method is a slight variation of the original PK method proposed by Hassig 267

and has a flutter equation of the form[
−Mhh p2 +

(
Bhh −

ρcre f U∞Q I
hh

4k

)
p+

(
Khh −

ρU2∞QR
hh

2

)]
ξ= 0, (3.18)

where Mhh, Chh and Khh are the modal mass, damping and stiffness matrices as defined in Eqn.

3.5, ξ are the modal coordinates, p is the complex eigenvalue, Q I
hh is the aerodynamic damping

matrix and QR
hh is the aerodynamic stiffness matrix. Note that Q I

hh and QR
hh are calculated at

a set of user-defined Mach numbers m and reduced frequencies k at the start of the analysis

and an interpolation is performed14 for each new value of k which is used during the solution of

Eqn. 3.18. In Nastran the complex eigenvalue has the form p =ωγ+ jω, where ω is the circular

frequency and γ is the transient rate of decay - equal to g/2 where g is the fictitious structural

damping term from the K flutter method. The objective of the flutter analysis is to find the

complex eigenvalue p which simultaneously satisfies Eqn. 3.18 and the necessary condition

k =ωcre f /2U∞. The solution is conducted iteratively for each mode in ξ by varying the value k

using the process described in Rodden and Johnson 82 and Hassig 267 for a given value of ρ and

U∞. The flutter velocity (VF ) is then identified as the lowest speed where a complex eigenvalue

becomes purely imaginary, i.e. γ= g = 0 - note the flutter velocity is not an output of the solution

of Eqn. 3.18 and must be calculated during post-processing. It is worth noting that use of a

decay rate in the complex eigenvalue assumes that the amplitude of the oscillations is changing

with respect to time, however, this directly contradicts the assumption inherent to Theodorson’s

unsteady aerodynamic theory which is that the motion of the aerofoil is harmonic with constant

14In this work both linear and spline interpolation schemes were traded using the interpolation algorithms within
Nastran. It was found that the flutter behaviour of the BUG-T model was consistent regardless of interpolation
scheme so the linear interpolation scheme was favoured for its lower computational cost.
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TABLE 3.5. Flight point data for BUG-T flutter analysis. A range of velocities between
0.8VC and 1.15VD are used with a velocity increment dV . For each velocity a linear
variation in Mach number is assumed between MC and MMO and the density is
calculated using the International Standard Atmosphere269.

Property Symbol Value Remarks

Altitude Z 36,000ft SUGAR cruise altitude
Operating Speed VO 206.83m/s From flight envelope in Appendix A
Dive Speed VD 241.96m/s From flight envelope in Appendix A
Velocity Increment dV 1m/s Chosen to limit mode tracking issues
Operating Mach MO 0.7 See Table A.3
Max. Operating Mach MMO 0.82 See Table A.3
Density Ratio σ 0.3048 Calculated using formulas in Gracey 269

amplitude. In this regard the behaviour predicted by the PK method is only strictly true at

the point of flutter and at all other values it is only an approximation of the true damping and

frequency of the system. The rationale used by Hassig 267 is that the amplitude of the oscillations

is varying slowly with time therefore aerodynamics based on constant amplitude oscillations are

a fair approximation.

According to CS-25 an aircraft must demonstrate freedom from flutter at speeds up to 15%

above the dive speed (VD) at all flight points of interest. However, in this study only the cruise

altitude is considered so as to limit the computational burden and preserve the focus on vibration

suppression as opposed to a detailed aircraft design process. Using the flight envelope data in

Appendix A a series of flight points have been generated at the SUGAR cruise altitude of 36000ft

which are summarised in in Table 3.5. Using these flight points the flutter equation was solved

for 1584 combinations of Mach number, density and velocity using the BUG-T normal modes

up to 50Hz with fully-fixed boundary conditions. Applying full-fixed boundary conditions means

additional aerodynamic forces from the rigid body modes are not accounted for in the solution,

however this approach is standard for a linear flutter analysis268 so is acceptable for the work

in this thesis. The aerodynamic reduced frequencies and Mach number used to define the AIC

matrices for flutter are shown in Table 3.6. Here, the Mach numbers are the same as the flutter

flight points and the reduced frequency values are defined to satisfy a maximum value of 3.11 for

an aircraft velocity of 165m/s at an excitation frequency of 50Hz. Results using the M/k pairs in

Table 3.6 were checked against a refined distribution which used reduced frequency values with

increments of 0.01 up to 3.5 and good agreement was found for the flutter modeshapes and the

V-g/V-k plots, therefore all subsequent flutter analysis uses the M/k values in Table 3.6.

The results of the flutter sweep were grouped by Mach number and the structural damping

term g was extracted for every branch in the solution. Any branch which had a positive value

of g at any point was deemed an unstable branch and the complete velocity-damping (V-g) and

velocity-reduced frequency (V-k) data was retained for plotting. Two branches were identified
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TABLE 3.6. Reduced frequencies and Mach numbers for calculating the AIC matrices
during the Nastran PK flutter analysis.

Parameter Symbol Value

Mach number M 0.7 : 0.0375 : 0.82

Reduced frequency k
0.001, 0.02, 0.04, 0.06, 0.08, 0.1, 0.12,
0.2, 0.5, 1.0, 1.5, 2.0, 2.5, 3, 3.5

as having unstable components across a range of Mach numbers, branches seven and ten. For

both branches the flutter velocity was determined for each Mach number by performing a linear

interpolation of the V-g flutter data either side of g = 0, note as the velocity increment was set to

1m/s any error introduced by the interpolation should be small. Figure 3.13 shows the variation

of flutter speed vs. Mach for these two unstable branches. It should be noted that this variation

does not match expected trends. As discussed by Jonsson et al. 268 , the flutter velocity should

have a slight dip as the Mach number increases before increasing sharply as the Mach number

approaches unity. This is known as the transonic flutter dip and whilst it is not accurately

captured by DLM aerodynamic theory is should still be present. The reason for this discrepancy

is unclear and requires further investigation. However, as the focus of this section is simply to

identify a baseline flutter behaviour it is acceptable to proceed with these results so long as

flutter analysis in the next Chapter uses the same flight point data and reduced frequency/Mach

pairs, thus allowing a fair comparison to be made.

Figure 3.13 shows that the critical Mach number is 0.726, with a critical flutter velocity

of 212m/s for branch seven and a corresponding flutter velocity of 228m/s for branch ten. As

branch seven has the lowest flutter velocity it is the critical flutter branch however both branches

are evaluated in this section to understand their underlying characteristics. V-g and V-k plots

of these two branches at Mach = 0.726 are shown in Fig. 3.14. Here, both modes exhibit soft

flutter at speeds below the required stability margin of 1.15VD , although this is not surprising

given that the BUG-T model is an approximation of the SUGAR 765-095 Rev. D and does not

include additional modelling details such as downwash corrections due to aerofoil twist and

camber or pressure corrections from CFD analysis. Again, as the focus is on identifying the

BUG-T flutter mechanism it is acceptable to proceed with the current results. The two complex

aeroelastic flutter modes are shown in Figs. 3.15 and 3.16 with an inset panel showing a summary

of the strain energy across the different component sub-assemblies. A breakdown of the modal

coordinates15 for each normal mode that contributes to the complex mode is also provided in Figs

3.15 and 3.16. Values for the first 25 modes are shown as the contribution from higher modes (26

- 50) was found to be negligible. Note that as only the flexible modes were included in the analysis

the mode numbers in Figs. 3.15 and 3.16 have been adjusted during post-processing to match the

normal mode numbers from Section 3.2.2. By correlating the real translational displacements

15Also referred to as the "modal participation factor" in the Nastran aeroelastic user guide82.
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FIGURE 3.13. Variation in critical flutter speed as a function of Mach number.
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FIGURE 3.14. V-k (a) and V-g (b) plots for Mach = 0.726.

of the flutter modeshapes with the modal coordinates, branch seven can be identified as a

global wing bending mode and branch ten as a global bend-twist mode. Examining the modal

coordinates shows that branch seven has a strong contribution from normal mode numbers seven

and eleven, which are the first wing out-of-plane bending and global bending modes shown in

Fig. 3.2. Furthermore normal modes eleven and thirteen have a large component of in-plane

bending which is not properly accounted for by Nastran’s DLM aerodynamic theory, implying

that these flutter modes may differ substantially if tested in a wind tunnel or flight test. Branch

ten is dominated by twist motion and its modal coordinates are more evenly spread than for

branch seven. The flutter modes of the BUG-T model do not match the SUGAR results presented

in Bradley et al. 30 , which is unsurprising as the SUGAR flutter analysis was conducted using

the full 3D model and not a simplified 1D beam model. Also, the Nastran AIC matrices were

augmented by additional pressure information from CFD analysis. Given the somewhat simpler

approach adopted in this thesis it is acceptable to proceed with the identified flutter mechanism.
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(a) Real translational terms of complex flutter modeshape. The translational displacements have been
multiplied by a scale factor of 100 and the shading of the plane represents the magnitude of the beam twist.
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FIGURE 3.15. Flutter modeshape and complex modal coordinates for branch seven -
Mach 0.726, U∞ = 212m/s, k = 0.1361
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(a) Real translational terms of complex flutter modeshape. The translational displacements have been
multiplied by a scale factor of 100 and the shading of the plane represents the magnitude of the beam twist.
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(b) Modal coordinates - Real.
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FIGURE 3.16. Flutter modeshape and complex modal coordinates for branch 10 - Mach
0.726, U∞ = 228m/s, k = 0.1345
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Regarding the locations of vibration suppression devices, the modeshapes of both unstable

branches show some rotation at the proposed device locations as well as a small amount of

compression across the jury-strut due to the combined bending of the wing and strut. Which

could imply that a vibration suppression device at one of the three locations could have a positive

influence on these unstable flutter modes if the correct device parameters can be determined.

This observation is based on visual inspection of Figs. 3.15(a) and 3.16(a) which only show the

real translation terms of the flutter modeshape and do not provide a complete picture of the

flutter mechanism. Examining the modal participation factors shows that branch ten has a large

participation from normal mode fourteen which was specifically identified in Section 3.2.3 as

having a large amount of rotation at location A, therefore it is likely that a device at one of

the candidate locations will be able to influence branch ten. However, branch seven is mostly

comprised of mode seven, eleven and thirteen, which are the first wing spanwise bending mode,

global wing bending mode and an in-plane bending mode respectively. These modes do not exhibit

significant relative motion at any of the device locations so it is likely that branch seven will be

less-sensitive to the effects of a device.

Figure 3.17 shows the relative modal displacement at the three device locations for the

flutter modeshapes in Fig. 3.15(a) and 3.16(a). These quantities have been calculated in a similar

manner as for Fig. 3.6, however as the flutter modeshape is complex the magnitude of the complex

FIGURE 3.17. Relative modal displacement at the proposed vibration suppression
device locations for fltuter branches 7 and 10. The left and right y-axis show the
relative velocity for the rotational and translational devices respectively. The quan-
tities shown are calculated as the magnitude of the complex modal displacement.
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displacements has been used as opposed to just the real or imaginary parts. These results shows

that the translational device at location B has a fairly consistent response for both unstable

branches, indicating that a device at this location may be effective in suppressing flutter if the

appropriate parameter values are chosen. For the rotational devices at locations A and C, it

is clear that Location A has a greater relative motion for both flutter branches, which could

mean that a device at the strut-root as opposed to the strut-tip is more favourable . As with the

forced-frequency response results in Fig. 3.7, it is likely that this increased motion at the strut

root is attributed to the lower stiffness value in the region inboard of the jury-strut. The use

of vibration suppression devices to influence the flutter behaviour of the BUG-T model will be

investigated in the next chapter.

3.3.4 Key Observations from the BUG-T Aeroelastic Analysis

Studies have been presented which determine the static aeroelastic and flutter response of the

BUG-T model and the following observations have been made:

• Static Aeroelastic Response - The static aeroelastic response of the BUG-T model

showed good agreement with the results from the SUGAR sizing process. Some discrepan-

cies were identified but these were associated with differences in the modelling processes

as opposed to an error in the model. Also, the magnitude of the tip displacements calculated

during the static aeroelastic analysis indicated that nonlinear aeroelastic effects should be

accounted for during the aeroelastic analysis of truss-braced wings.

• Static Aeroelastic Loads Envelope - The loads envelope was generated using the load

cases from the SUGAR sizing study. It was found that the dominant load cases where the

2.5g and -1g manoeuvre load cases at cruise altitude and the Mach 0.2 and 0.4 Pratt gusts

at sea level, which matches observations made during the SUGAR sizing process.

• Pratt Gust Loads Sensitivity - A sensitivity analysis of the effect of the CLα
value on

the load factors and resulting loads envelopes of the Pratt gust load cases was carried

out. The aircraft rigid body vertical force coefficient was used as the baseline and it was

identified that a difference in loads of up to 12% is possible when assuming a value of

2π, falling to 8% when flexibility is accounted for in the aircraft vertical force coefficient.

As parts of the critical loads envelope are formed by Pratt gust loads it is important to

understand the limitations of the quasi-static assumption on the equivalent static loads.

Furthermore, as a vibration suppression device will need to withstand both static and

dynamic design loads it is important that these loads are accurately estimated at the

preliminary design stage.

• Flutter Modes - A sweep of Mach number and velocity has been carried out at the SUGAR

cruise altitude of 36,000ft in order to identify the flutter mechanism of the BUG-T model.

Two flutter modes have been identified, a global wing bending mode at 212m/s and a global

bend-twist mode at 228m/s for a Mach 0.726. Decomposing the complex flutter modes
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into the normal modes revealed that they are mostly dominated by flexible modes in the

frequency range 0-5Hz, with some rotation about the strut joint locations due to strut

bending. Based on the modal participation factors it was hypothesized that branch ten will

be more sensitive to the effects of a vibration suppression device due to its large component

from normal mode fourteen, whereas, branch seven is dominated by low frequency bending

modes which do not have significant relative motion at any of the proposed device locations.

3.4 Chapter Summary

This chapter has introduced the BUG-T aeroelastic finite element model which is based on the

SUGAR 765-095 Rev. D model from Bradley et al. 30 and provided an overview of the key dynamic

and aeroelastic behaviours that will be discussed in this thesis.

The dynamic analysis in Section 3.2 included a study of the normal modes of the structure

where different techniques were used to classify the structural modes. This process identified

several localised truss modes from which three possible locations for a vibration absorber were

identified - a rotational device at the strut-fuselage joint, a translational device at across the jury-

strut and a further rotational device at the strut-wing joint. Next, a frequency response analysis

was performed where the relative velocity at each potential device location was calculated based

on a unit harmonic load applied at the wing tip. It was found that the relative velocity for

each device location reaches a maximum in the 10-15Hz range, which corresponds to a series

of localised truss bending modes. At low frequencies the rotational devices experienced more

relative motion, with the strut root joint showing the largest amount owing to the increased

flexibility of the strut root region. As the low frequency modes tend to be more important during

aeroelastic interactions, it was hypothesised that the rotational devices will be more effective

than the translational device at alleviating aeroelastic effects. Finally, as the device locations

favoured different frequencies, it is possible that multiple devices could be used to target the

structural response across different frequency ranges.

In Section 3.3 the static aeroelastic response of the BUG-T model was calculated using the

aeroelastic load cases from Bradley et al. 30 and the results were compared against the data from

the SUGAR TBW sizing study. Good agreement was found for the manoeuvre load cases, however

the Pratt gust load cases showed differences of up to 30% in the calculated tip displacement.

This was attributed to the fact that the SUGAR sizing process applied additional scaling factors

to the Pratt gust loads in order to emulate dynamic gust loads, however these scaling factors

where not applied during the analysis presented in Section 3.3.2. The magnitude of the tip

displacements approached 10% of the semi-span, which implies that nonlinear aeroelastic effects

due to large displacements are likely to be important in the aeroelastic analysis of braced-wing

aircraft. The sensitivity of the calculated quasi-static load factor and resulting loads envelope to

the aircraft CLα
value was investigated. It was found that differences in loads of up to 12% and
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10% are possible when using the compressibility corrected and uncorrected thin-aerofoil value of

2π respectively, falling to 8% when the Nastran calculated value was used. As parts of the critical

loads envelope are formed by Pratt gust loads it is important to understand the limitations of

the quasi-static assumption on the equivalent static loads, especially at the preliminary design

stage where accurate predictions of the airframe loads would be required to perform trade studies

on the potential benefit of novel concepts, such as aeroelastic control via vibration suppression

devices.

The flutter mechanism of the BUG-T model was calculated in Section 3.3.3 by performing

a sweep of Mach number and velocity at the SUGAR cruise altitude of 36,000ft. Two flutter

modes were identified, a global wing bending mode at 212m/s and a bend-twist mode at 228m/s

for a critical Mach of 0.726. Decomposing the complex flutter modes into the the normal modes

revealed that they are mostly dominated by flexible modes in the frequency range 0-5Hz, with

some rotation about the strut joint locations due to strut bending. Based on the observations in

Section 3.2 it is likely that a rotational device at the strut root or tip joint location will be able to

influence the response of these flutter modes.

In the next chapter the methods and observations made in this chapter will be used to

implement an optimisation approach where vibration suppression devices are included in the

model and their properties are optimised to improve the flutter speed of the BUG-T model. The

devices will be placed at the three candidate locations shown in Fig. 3.5 and different layouts will

be investigated, including layouts that can be frequency tuned to match the flexible modes of the

structure.
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4
PASSIVE FLUTTER SUPPRESSION USING VIBRATION ABSORBERS

This chapter investigates the potential for passive vibration absorbers to provide flutter

suppression in truss-braced wings. Devices are placed at the candidate locations identified

in the previous chapter and three different device concepts are considered, including

devices that can be frequency-tuned to a flexible mode in the primary system. A MATLAB-

based optimisation scheme is adopted which uses Nastran to calculate the flutter response and

associated sensitivities in order to determine device parameters that increase the flutter speed.

Using this method it is shown that improvements in flutter speed between 1 - 6% are possible

for a range of device layouts and locations, although the effectiveness of the device is heavily

dependent on the flutter mechanism. In general a viscous damper at the strut-root joint has the

most effect on the flutter speed, however it is noted that a tunable device can provide comparable

performance to the viscous damper for the same viscous damping coefficient.

This chapter is formatted as follows: In Section 4.1 the different methods for modelling a

generic vibration suppression device are discussed and the candidate device layouts and their

associated admittance functions are introduced. In Section 4.2 a parameter study is presented

where the stiffness, damping coefficient and inertance at each device location is varied to simulate

the effect of a linear spring, damper or inerter at one of the device locations. In Section 4.3 a

combined MATLAB-Nastran optimisation scheme is introduced and the force coefficients of three

absorber layouts are optimised in order to increase the flutter speed. Cases with both single and

multiple devices are considered to determine the range of performance improvements available.
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4.1 Device Modelling and Candidate Layouts

This section outlines two methods for modelling a generic vibration absorber attached to any

primary system, with additional detail provided for the Nastran-specific method adopted in

this work1. Also, the candidate device layouts for flutter suppression are introduced and their

characteristics are discussed with reference to the ability of some of the layouts to be frequency-

tuned to match a resonant frequency in the primary system. It is noted that the modelling

methods and device layouts discussed in this section are not specific to aerospace and could be

applied to any mechanical system.

4.1.1 Modelling a Generic Mechanical Network

In the field of mechanical network design a generic vibration suppression device can be repre-

sented as a collection of mass, spring, damper and inerter elements which are joined in series

of parallel in a similar fashion to an electrical network diagram208. As discussed in Chapter 2,

the purpose of mechanical network design is to determine the optimum layout of a collection of

mechanical elements, and their corresponding force coefficient values, such that the vibration

suppression device limits some adverse dynamic behaviour in the primary system to which it is

attached. Two approaches for modelling the device are prevalent in the literature:

• Discrete mechanical elements - Any generic device can be catered for by connecting

the individual mechanical elements to the necessary degrees of freedom. If required by the

device layout the state-vector can be agumented by additional degrees of freedom to account

for any ‘internal’ device DOFs, see Figs. 4.1(b) and 4.1(c). Using this approach means the

mechanical elements generate additional terms in the system matrices, as in Eqn. 4.1.

• Admittance function - The transfer function relating the device force at each terminal

to the relative velocity acting across the device can be constructed for a generic layout of

mechanical elements using the process introduced by Firestone 210 . In keeping with the

mechanical-electrical analogy discussed in Chapter 2, this transfer function is referred

to as the device admittance function208 and is typically expressed in the Laplace domain

as Y (s)= F/v. Examples of the magnitude of this quantity as a function of frequency are

shown in Fig. 4.2 for the three device layouts in Fig. 4.1. When modelled in this way the

vibration suppression device enters the equations of motion as state-dependent forcing

terms on the right-hand side.

The method of device modelling is dependent on the chosen method of device optimisation, i.e

immittance vs. structure-based. For example, if the immittance-based209 approach is adopted then

the device must be represented by its transfer function. This is because the individual mechanical

elements are not available until after the optimised admittance functions are converted to

viable device layouts using network synthesis algorithms211,212. Whereas if the structure-based

1A more detailed discussion on modelling vibration absorbers in Nastran is available in Appendix E
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approach is chosen then either of the modelling methods can be used, however for large and

complex networks the derivation of the device transfer function can become unwieldy and it may

be preferable to model the device using individual elements.

In this work the approach is taken to model the device using discrete mechanical elements.

This is because the ability to model, and more importantly optimise, individual spring, damper

and inerter elements is readily available within Nastran270. Despite this capability, the technique

of modelling a generic vibration suppression device using a commercial FE tool such as Nastran

has not been exploited by the mechanical network community. In effect, the device can be thought

of as a sub-structure within the larger model assembly with, for the case where one device is

used, the existing structural mass, damping and stiffness matrices, Ms, Cs and Ks respectively,

augmented as206

M =
[

Ms +mdwwT −mdw

−mdwT md

]
,C =

[
Cs + cdwwT −cdw

−cdwT cd

]
,K =

[
Ks +kdwwT −kdw

−kdwT kd

]
(4.1)

where subscript s and d denote the terms belonging to the structure and the device respectively

and the term w is a column vector of zeros and ones describing the connectivity between the

device and the host structure. Note that multiple devices can be catered for by using Equation

4.1 iteratively. For the case where the elements are connected in series, new DOFs are introduced

to the system via internal device-DOFs. In this instance the displacement-vector is expanded to

include the new device DOF, xT = [xs, xd]T where x contains the independent DOFs of the system

which for Nastran are the displacement of the nodes in the local coordinate system. The internal

DOF introduces a new mode into the system which can be be tuned to match the frequency of one

of the flexible modes of the host structure.

In terms of Nastran-specific implementations of a generic mechanical network, the Nastran

equivalents of the spring, damper and inerter are the CELAS, CDAMP and CMASS elements respec-

tively. Using this approach it is possible to model any generic mechanical network by joining

together these elements and include this network in a FE model of arbitrary size, fundamentally

enhancing the potential for mechanical network design methods to be applied to large and

complex models. It is also possible to model the network admittance function within Nastran

using the TF element. An example of this approach was demonstrated in the context of gust loads

alleviation in a TBW by this author271, however it should be noted that there are some caveats

when this approach is adopted in Nastran, further details can be found in Appendix E.

4.1.2 Candidate Device Layouts for Flutter Suppression

As this thesis represents a preliminary study into the use of vibration suppression devices in

TBWs it is favourable to adopt the structure-based approach for the design of the device. This

will allow the complexity of the device to be tightly controlled and also enables key aspects of the

device topology to be investigated. Regarding the device layout, the main areas of interest are:
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1. Damping vs. frequency-tuning - A linear viscous damper is usually the first vibration

suppression concept that is considered, however, as mentioned in Chapter 2 this represents

only one possible mechanism for removing energy from the primary system. To take

advantage of the vibration absorber effect198,199 it is necessary to consider layouts which

have internal ‘device-DOFs’ which can be frequency-tuned to one of the natural frequencies

of the primary system. Hence a key outcome of this chapter is whether a tunable device

can offer superior performance over the pure damping case.

2. Physical device model vs. conceptual - Without a proper understanding of how the

devices proposed by mechanical network design algorithms are physically realised it is not

possible to understand their impact on the aircraft response or ascertain how they will be

included in the design process. Therefore, as well as considering a variety of conceptual

device layouts, physical models based on examples from the literature191,208,228 will be

investigated. This will allow the viability of the proposed devices to be determined via the

use of simple design rules to estimate the required physical parameters which will yield

the optimised force coefficients. The results of this study are presented in Chapter 6.

Bearing these points in mind, the following conceptual devices are considered in this thesis:

• Damper - A linear, viscous damper is considered to be the simplest vibration suppression

device and will provide a suitable baseline for evaluating other device configurations.

However, it should be noted that the ideal viscous damper does not exist and that real-life

dampers often have additional stiffness and inertia terms depending on the mechanism by

which the damping force is achieved. Further details are provided in Chapter 6.

• Tuned-Inerter-Damper (TID) - The TID220 is analogous to the classical Tuned-Mass-

Damper (TMD) with the exception that the mass element is replaced by an inerter. The

presence of an intermediate device-DOF means the TID can be frequency-tuned to match a

resonant frequency in the primary structure. In recent years this layout has been widely

investigated within the civil engineering community and it is included in this study to allow

frequency tuning effects to be investigated.

• Tuned-Inerter-Damper-Damper (TID-D) - Similar to the TID but with a damper in

parallel. The rational behind choosing the TID-D device is that the TID component will

target a particular mode, whilst the parallel damper adds damping to other modes.

The layouts and associated admittance functions for these three candidate devices are provided

in Fig. 4.1. The process of deriving the device admittances is well documented throughout the

mechanical network literature and so only a brief overview is provided here. First, the admittance

of each individual element is defined as shown in Fig. 2.16. Next, the admittances of each branch

in the network are found by combining the elements that are in series or parallel following the

process discussed in Firestone 210 . Finally the admittance of each branch can be combined to

create the overall admittance function of the device. For a specific derivation of the admittance of

the TID element the reader is directed to the paper by Lazar et al. 220 .
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FIGURE 4.1. Candidate device layouts and associated admittance functions for the
damper (a), Tuned-Inerter-Damper (TID) (b) and the Tuned-Inerter-Damper-
Damper (TID-D) (c).

Figure 4.2 shows the admittances for the three candidate device layouts as a function of

frequency. In contrast to the damper which has a constant value across all frequencies, the TID

and TID-D devices can target a particular frequency by selecting the inertance and stiffness

values appropriately. The exact tuning condition of the device is dependent on the background

effects of the host structure206, however for a TID device in isolation the formula ω2 = k/b will

yield the pole of the admittance function. The advantages of a TID device over the conventional

ω2
TID = kTID /bTID

Frequency

∣∣F
v

∣∣
YTID−D
YTID
YDamper

FIGURE 4.2. Log-scale magnitude of device admittances as a function of frequency
for the case where bTID = 1000kg, cTID = 2500N/ms−1, kTID = 35,531N/m and
c = 10,000N/ms−1.
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TMD are twofold: Firstly, the use of the inerter element allows a force to be imparted at both

terminals of the device, something that is particularly useful for the TBW configuration as it

allows for the possibility of a device that can influence multiple parts of the structure. Secondly,

due to internal gearing within the inerter it can provide an inertance which is far greater than

the mass of the device, this has obvious benefits in an aerospace application as the weight of the

aircraft should be kept to a minimum.

4.2 Parameter Study of BUG-T Flutter Response

Before proceeding with the optimisation of the vibration suppression device layouts detailed in

Section 4.3 it is sensible to conduct a simple parameter study to understand the variation in

flutter behaviour resulting from the addition of a device. Here the effect of separately increasing

the stiffness, damping or inertance at the three candidate device locations on the critical flutter

speed is investigated - note, this is analogous to placing a single spring, damper or inerter at one

of the three candidate locations and increasing the force coefficient value. Table 4.1 shows the

upper and lower bounds of the parameters for the mechanical elements considered in this study.

Here the inertance value is expressed as a fraction of the primary system mass which for this

study is 3781kg, i.e. the half-wing mass of the SUGAR 765-095 Rev. D model2. The half-wing

mass is used for the primary system mass as devices are placed in both the port and starboard

strut/jury-strut components of the full BUG-T model. Note that as an inerter is used the actual

mass of the device will be far less than 10% of the wing mass. For instance, a typical value of

the inertance-to-mass ratio is around 40-80, see for example the commercially available device

tested in Gonzalez-Buelga et al.223, although devices have been produced with ratios as high

as 300208. The TID or TID-D devices are not considered in this parameter study as previous

research indicated that the tuning of a vibration absorber is heavily dependent on background

flexibility effects206, which would likely have necessitated a very fine distribution of stiffness and

inertance values to capture the correct tuning. The output of the parameter study is the flutter

velocity of the two unstable branches identified in Chapter 3 for each parameter value3. This

2See Appendix A for further details on the mass properties of the SUGAR 765-095 Rev. D model.
3In the post-processing step the first 30 flutter branches were checked for instability but only the two flutter

modes identified in the previous chapter displayed any unstable characteristics.

TABLE 4.1. Parameter values for the spring, damper and inerter elements used in the
BUG-T flutter study.

Parameter Symbol Lower Value Upper Value Translational Rotational
Units Units

Spring Stiffness k 10 1 × 1011 N/m N/rad
Damping Coefficient c 1 1 × 108 N/ms-1 N/rads-1

Inertance-to-Mass Ratio µ 1% 25% - -
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LocationWA

LocationWC

LocationWB

Location Label DeviceWType
A Strut-Root Rotational
B Jury-Strut Translational
C Strut-Tip Rotational

PinnedWJoints
FlexibleWBeams

Wing

Strut

Jury-Strut

FIGURE 4.3. Location of vibration suppression devices used for flutter suppression and
gust load alleviation. Devices will be placed at these locations in both the starboard
and port components.

velocity is found by selecting the critical flutter branches and then interpolating the structural

damping terms either side of the stability boundary to find the velocity where the damping

has a zero value. The flight points from the flutter study in Chapter 3 are used with a velocity

increment of 1m/s to minimise mode-switching272 and a Mach number of 0.726 is used as this

was determined to be the critical Mach number for the BUG-T model.

Figure 4.4 shows the change in flutter speed as a function of spring stiffness, damping

coefficient and inertance at the three candidate locations identified in Chapter 3, shown here in

Fig. 4.3. Results are shown for unstable branches seven and ten to test whether the effectiveness

of a device is dependent on the flutter mechanism, although seven is the critical branch. The first

observation is that varying the stiffness, damping and inertance at locations B and C has an

almost negligible effect on the flutter velocity. Specifically, for branch seven there is a maximum

change of 0.24%, 0.23% and 0.4% for the spring, damper and inerter cases respectively, whereas

for branch ten there is a small decrease in flutter velocity of approximately 0.3%. Also, for both

locations the flutter speed decreases as the parameter value is increased. The scale of these

changes imply that a device at location B or C will have little impact on the flutter behaviour of the

BUG-T model. The results for location A are much more promising. Considering both rotational

spring and damper devices there is a clear increase in flutter velocity of approximately 3.5%

for branch seven and 7.5% for branch ten. For the pure damper case there is a clear maximum

at a viscous damping coefficient value of approximately 2×106 whilst the pure stiffness case

reaches a plateau for spring constants greater than 1×108. Interestingly the scale of change

in flutter speed is the same regardless of whether the joint stiffness or damping is increased,

which implies that they are modifying the flutter mechanism in the same way. In fact, the effect

of increasing the stiffness or damping at the joint is analogous to locking up the joint, as shown

by the dashed line in Figs. 4.4(a) to 4.4(d), labelled as "Fixed at A". Here, it is clear that for

large values of stiffness and damping the flutter behaviour tends towards the case of a fully-fixed

joint at location A, which occurs for damping values greater than 105 and spring stiffness values

greater than 108. This is viewed as unfavourable as the SUGAR MDO study identified pinned
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FIGURE 4.4. Change in flutter velocity for unstable branches seven and ten as a
function of joint stiffness, damping and inertance. The original flutter velocity of
branches seven and ten are 212m/s and 228m/s respectively.
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joints as providing a lower wing structural mass so it would be advantageous to preserve the

pinned behaviour. That being said, a pure pinned connection is overly optimistic as in a real

design there will be additional forces acting on the joint, such as friction. Therefore, if the pinned

behaviour is considered as the upper bound of realisable flutter benefits then a damping value

between 103 - 105 or a spring stiffness between 105 - 107 will yield an improvement of 1 - 6% in

the flutter speed depending on the flutter mechanism. Finally, introducing an inerter at location

A had a negative effect on the flutter speed for both branches and for all mass ratios considered,

however, the mechanism for this is unclear and requires further investigation.

The effectiveness of location A can be explained by considering the participation factors of

the normal modes that describe the complex flutter modes. As shown in Figs. 3.15 and 3.16

in Section 3.3.3, the modal coordinates for these complex flutter modes are attributed to low

frequency modes in the range 0-5Hz. Following the frequency response analysis in Section 3.2.3,

it was shown in Fig. 3.7 that location A has a consistently higher relative velocity at these low

frequencies than locations B or C, therefore the results demonstrated in this parameter study

are a direct result of the amount of relative displacement/velocity/acceleration at the flutter

frequencies for the unstable branches. Regarding location A, changes in the stiffness, damping

and inertance have a greater impact on the flutter behaviour of branch ten than branch seven

and again this can be explained by the participation factors of the normal modes. For example,

branch ten has a large participation from normal mode fourteen which was specifically identified

in Section 3.2.3 as having a large amount of rotation at location A, whereas branch seven is

mostly comprised of normal modes seven, eleven and thirteen. Here, mode seven is the first wing

spanwise bending mode, mode eleven is a global wing bending mode and mode thirteen is an

in-plane bending mode. Each of these modes do not exhibit significant relative motion at any of

the device locations so it is not surprising that the branch seven is less-sensitive to the effects of

a device. In summary, there are three main conclusions from this parameter study:

• Flutter modes that exhibit more relative motion at the device locations will be more

susceptible to the influence of the device. This may appear to be obvious however it is

important to recognise that the correct type of device could have a positive effect on the

flutter speed. Of the three device locations considered location A has the most influence on

the flutter behaviour which matches the predictions from Chapter 3.

• Increasing the stiffness or damping at location A yields similar improvements in the

flutter speed - approximately 4% for branch seven and 7.5% for branch 10. This level of

improvement is quite significant in the context of the overall design of the TBW aircraft.

For example, Mallik et al. 47 demonstrated that a 15% increase in the flutter speed equated

to a 5% decrease in fuel burn. Therefore it follows that if the critical flutter mode of a

TBW exhibited large relative motion at one of the joint locations then a device could

be designed to influence that flutter mode and likely improve the mission performance.

However, additional factors such as the mass of the device and the effect of increased loads
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at the device attachment points would need to be considered in the design.

• When rotational devices located at pinned joints are considered it is possible for the device

to lock the joint and approximate the behaviour of a fully-fixed joint. This places an upper

bound on the benefits that can be realised by incorporating a device at one of the joint

locations. For this model an upper limit on the viscous damping coefficient of 1×105 is

identified to preserve the pinned joint behaviour.

4.3 Optimising for Flutter Suppression

This section presents an optimisation study of the candidate device layouts presented in Section

4.1.2. The objective of this study is to identify whether an improvement in the flutter speed is

possible by including one or more of these devices in the structure. The design variables are the

force coefficient values of the various mechanical elements in each layout and the optimisation

is conducted using a gradient-based algorithm available within MATLAB. The Nastran design

sensitivity and optimisation solution sequence, Solution 200, is used in this chapter to perform

the flutter analysis and compute the sensitivity of the flutter damping values with respect to the

device properties. It is shown that improvements in flutter speed between 1 - 6% are possible

depending on the device layout and location, however it is noted that this is highly dependent of

the flutter mechanism and the amount of relative motion available at the device locations.

4.3.1 Optimisation Statement

Structural optimisation methods which consider aeroelastic flutter have been commonplace in

the aerospace industry since the early 1980s273, with ASTROS274 and Nastran Solution 200270

being examples of programmes that are widely accepted throughout the industry. In a standard

aircraft optimisation process flutter is typically regarded as a constraint268, although some

authors have considered the flutter speed as the objective function - see for example the paper by

Guo et al. 275 . As this chapter is investigating the potential of vibration suppression devices to

provide flutter suppression it is sensible to pose the optimisation problem in such a way that the

objective function leads to the flutter speed being increased. However the exact calculation of

the flutter speed can require substantial resources274 so it is advantageous to select an objective

function that does not require additional post-processing and can use the output from a standard

Nastran flutter analysis. Here this is achieved by minimising the maximum value of the artificial

structural damping term (gmax) needed to ensure that the damping values across the modes are

less than the required damping value for all excitations considered4. This can be expressed as

the following optimisation statement

min(g(x)max) subject to
(
g(x)− greq

)≤ 0, (4.2)

4Using the Nastran convention a negative value of g is considered stable and a positive value is unstable.
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(a) Example flutter response showing the flutter speed VF and the maximum
structural damping value gmax.
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(b) Sketch of an optimised flutter response by minimising the value of gmax.

FIGURE 4.5. Example of the original (a) and optimised (b) flutter response. In this
example an increase in flutter speed ∆VF has been achieved by minimising the
maximum structural damping term (gmax). Once this point ceases to be critical the
optimiser will target the next critical point which in this example lies on branch
two.

where x are the design variables, which for this study are the force coefficients of the various

spring, damper and inerter elements in the chosen device layout, gmax is the maximum value of

the artificial structural damping response, g is a vector of artificial structural damping responses

for all flight points considered and greq is the required damping value - defined as 0.03 in the

certification documents234. As noted by Neill et al. 274 , an optimisation approach that considers

flutter in terms of the structural damping values is advantageous as it does not require the

flutter speed to be calculated and is also insensitive to mode switching. Furthermore, this method

can be extended to include an arbitrary number of flight points with different combinations of

Mach number, velocity and density. Meaning it is possible to evaluate the entire flight envelope

in a single optimisation and design a device that provides flutter suppression at the critical

flight points. A graphical explanation of this approach is provided in Fig. 4.5 and a description is

provided below:

1. At each iteration of the optimisation the damping value g is calculated for a set of discrete

aircraft velocities, Mach numbers and densities, yielding the standard V-g flutter response.

The damping values can joined to form the branches of each flutter mode, as in Fig. 4.5(a),
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however this is not necessary for the optimisation to proceed.

2. Next, a check is made on all the values of g returned by the flutter solution. If all of the

damping values are less than the required value greq then flutter does not occur within the

selected set of flight points and the optimisation is complete. However, if any g > greq then

the maximum value of the damping response gmax is set as the objective function.

3. Next the optimiser changes the design variables to try and minimise the response of the

maximum damping value, leading to a reduction in flutter speed by virtue of minimising

the structural damping of one of the branches. If a damping value belonging to a different

branch becomes the critical value then the optimiser will use this as the objective instead.

4. This process is repeated until one of the following conditions is met: all of the damping

values are less than the required value, the maximum change in all design variables is less

than some tolerance (1×10−6) or the maximum number of function evaluations (250) has

been reached.

Finally, it should be noted that the purpose of this type of optimisation is not actually to minimise

the damping values until some optimum is reached as this would represent an overly conservative

design. Instead, the optimisation provides a convenient method for choosing device parameters

that yield an increase in flutter speed. In this sense the resulting device and its inclusion in

the model represents an improved design as opposed to an optimum, therefore the optimisation

finds the maximum achievable improvement in flutter speed for a given set of design variable

bounds. The main benefit of this approach is that the optimisation provides a convenient means

of determining device properties that have a positive impact on the design without resorting to

complex tuning rules or implementing an exhaustive parameter study.

4.3.2 Implementing the Flutter Optimisation

There exists within Nastran a mutlti-disciplinary design and optimisation solution known as

solution sequence (SOL) 200270. This is a mutli-disciplinary tool that allows optimisation of a

set of model-based design variables subject to the response from a variety of analysis types such

as: statics, normal modes and frequency response as well as static aeroelastic and aeroelastic

stability (flutter). The main advantage of using SOL 200 is that it computes the gradients

of response quantities with respect to the model properties analytically, meaning that the

optimisation requires fewer function evaluations and consequently is much quicker than an

algorithm that uses finite differences to estimate the gradients/design sensitivities. This is an

important consideration when applying the principles of mechanical network design to complex

mechanical structures that can contain thousands or even millions of DOFs. However, the caveat

is that sensitivity information can only be calculated when the linear form of the structural and

aerodynamic formulations are used, meaning nonlinearites cannot be included in the model.

This could be seen as a drawback by researchers within the field of mechanical network design

as many of device models contain nonlinearities228,230, indeed even a simple damper element
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quickly becomes complex once the physical damping mechanism is considered189. The rational

adopted here is that at the initial design stage the precise nonlinear behaviour of the device

is less important than determining whether there is a benefit to including a device in the first

place. Therefore, it is acceptable to only consider linear force-displacement/velocity/acceleration

relationships for the various mechanical elements with the condition that the effect of device

nonlinearities on the force coefficients is understood and evaluated at the next stage of the design

process, as in Rittweger et al. 191 .

The optimisation process described in Section 4.3.1 requires the flutter structural damping

values to be considered as an objective in the design optimisation, however such an approach is

not possible within SOL 200 as the flutter damping terms can only be considered as contraints270.

Therefore, to bypass this problem an alternative optimisation algorithm must be used which

invokes Nastran externally and extracts the flutter response at each iteration of the optimisation

before constructing the relevant objective and constraint terms. Furthermore, to take advantage

of the analytical gradient capability of SOL 200 it is sensible to consider a gradient-based

optimisation algorithm provided that the design space is convex5 or can be traversed in such a

way that all possible local minima are found. To achieve this, the MATLAB optimisation function

fmincon is chosen along with the standard interior-point algorithm276, and multiple starting

points are used to test the global vs. local nature of the design space. An overview of this process

is provided in Fig. 4.6 which shows the transfer of data between the optimiser and Nastran and a

description of each of the block is provided below:

1. Initial conditions - The starting values of all the design variables in the optimisation

problem are referred to as the initial conditions and are termed x0. In this study the effect

of the initial conditions on the final solution is evaluated by starting the optimisation from

ten different initial conditions for each device layout.

2. Optimiser - The fmincon optimisation function using the standard interior-point

algorithm in MATLAB is used to conduct the optimisation. The design variables are

normalised in the numerical domain, meaning that each variable has an equal weighting

in the problem. This removes any bias towards properties that have large magnitudes, for

example the device spring constant O (8) vs. the inertance O (2). In this study the design

variables are normalised using x = (v−vlb) / (vub −vlb), where x are the numerical values

of the design variables (the values which the optimiser has access to), v are the physical

values of the design variables (the values which are passed to Nastran) and vub and vub

are the upper and lower bounds of the physical design variables as given in Table 4.2.

3. Obtain physical design variables - The design variables are transformed into the

physical domain by performing the inverse normalisation, v = x (vub −vlb)+ vlb, and the

necessary Nastran files are written using the current value of the physical design variables.

4. Calculate flutter response and sensitivities - The flutter response (g) and the sensi-

5A convex design space is one which has only one local minimum point which is also the global minimum.
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tivities of flutter structural damping terms with respect to the device parameters (∂g/∂v)

are calculated analytically by SOL 200. The flutter analysis uses an altitude of 36,000ft

which yields a density ratio of 0.298, as in Table 3.5. The Mach number is set to 0.726 as

this was determined to be the critical Mach number and a velocity increment of 10m/s is

used in order to limit the computational burden of the optimisation but still capture the key

behaviour of the flutter branches as explained in Neill et al. 274 . Once the flutter analysis is

complete the response data is extracted and passed back to the MATLAB environment.

5a. Convert cost function and gradient to numerical domain - The sensitivity infor-

mation provided by SOL 200 is calculated with respect to the physical design variables,

however the optimiser requires this information in the numerical domain. So to trans-

form these sensitivities back into the numerical domain the chain rule is used where

∂v/∂x = vub −vlb, although no such transformation is required for the cost function.

5b. Convert constraint function and gradients to numerical domain - The same as

block 5a but for the constraint sensitivities.

fmincon

Optimisation
(MATLAB)

2.

Start
1.

Numerical
to physical

v = f (x,vlb,vub)

3. SOL 200

Responses &
sensitivities
(Nastran)

4.

Physical to
numerical

J(x)= J(v)
∂J(x)/∂x = ∂J(v)/∂v×∂v/∂x

5a.

Physical to
numerical

C(x)= C(v)
∂C(x)/∂x = ∂C(v)/∂v×∂v/∂x

5b.

x0 x v

J(v),dJ(v)/dv

C(v),∂C(v)/∂v

J(x),∂J(x)/∂x

C(x),∂C(x)/∂x

FIGURE 4.6. Block diagram for the combined MATLAB-Nastran optimisation process
used to optimise the flutter response. The data flow for each branch is annotated
to emphasise the division between the numerical optimisation domain and the
physical analysis domain.
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TABLE 4.2. Design variable bounds for the single absorber flutter optimisation.

Parameter Lower Bound Upper Bound

Spring Stiffness 10 1 × 107

Viscous Damping Coefficient 1 1 × 105

Inertance-to-Mass Ratio 0.1% 10%

Once the optimisation has terminated an additional flutter analysis is performed using the device

parameters from the last iteration and a refined velocity increment of 1m/s, which provides an

improved estimate of the flutter velocity. With the exception of this final flutter analysis, the

optimisation scheme is generic and sufficiently modularised such that different optimisation

problems could be considered so long as they fall within the scope of Nastran SOL 200. For

instance, using this approach it would be possible to conduct a structural optimisation of the

airframe and incorporate the design of the device in a combined structural-device optimisation.

Or a different primary system could be considered (such as a car) and a suspension system could

be designed within the scope of a larger structural optimisation problem.

Regarding the initial conditions for the optimisation process, the upper and lower bounds for

the various mechanical elements are shown in Table 4.2. Note that as the inerter element did not

have much influence on the flutter behaviour during the initial parameter study it was decided

to limit the inertance-to-mass ratio to 10% of the primary system mass to force the optimiser

to consider devices with a lower mass. Ten different initial conditions at regular intervals of

between 10% and 100% of the bounds are used and any design variables which span more than

two orders of magnitude, such as the spring stiffness and damping coefficient, are mapped to an

exponential distribution to ensure good coverage of the design space.

4.3.3 Optimisation Results for a Single Vibration Absorber

In this section a single vibration absorber is incorporated into the structure and the optimisation

scheme detailed in Section 4.3.1 and 4.3.2 is used to obtain the force coefficients of the mechanical

elements which yield an increase in the flutter speed. The three device layouts are the damper,

TID and TID-D devices detailed in Section 4.1.2 and the device locations are the same as those

used in the parameter study. In total, three device layouts were tested at three different locations

for ten sets of initial conditions which resulted in 90 different optimisations. In all these cases

the optimiser terminated because the relative change in all design variables was less than

the tolerance value of 1×10−6. This means that flutter was not completely suppressed for all

velocities of interest but some change in flutter speed was achieved by the optimisation process.

The resulting V-g curves of unstable branches seven and ten are shown in Fig. 4.7 for a selection

of device configurations. Here, the change in flutter speed due to the addition of a vibration

absorber is clearly shown by a right shift of the V-g curve, as described in Fig. 4.5. A summary of

the maximum change in flutter speed is given in Fig. 4.8 for unstable branches seven and ten for
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(a) Branch 7

(b) Branch 10

FIGURE 4.7. Comparison of baseline and optimised V-g curves at Mach 0.726 for flutter
branch seven (a) and branch ten (b).
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all combinations of devices and locations and the corresponding parameter values are provided in

Table 4.3 - note that these results represent the best possible performance out of the ten different

starting positions.

From Fig. 4.8(a), the results for branch seven show that the damper and TID-D layouts achieve

the best performance resulting in an increase in flutter speed of approximately 3.5%, which agrees

well with the predictions from the parameter study presented in Section 4.2. Examining the

parameter values for the damper and TID-D at location A reveals that the parallel damper has

opted for the maximum permitted damping coefficient and the TID element of the TID-D has also

opted for a high internal damping value. The tuning frequency of the inerter and spring in the

TID-D is a low enough frequency to imply that the device has attempted to tune itself to one of the

normal modes of the structure, however the two closest normal modes are modes 15 and 16 which

do not feature heavily in the flutter mode. Interestingly, the TID device at Location A has achieved

a tuning frequency of 2.27Hz which is comparable with one of the low frequency modes that have

large participations in the flutter mode. Regardless of device layout the maximum change in

flutter speed for a device at location B or C is approximately 1.75%, which is better than any of

the results from the parameter study but falls short of the performance improvements possible for

a device at location A. Furthermore, for a given viscous damping coefficient the tunable devices

have marginally better performance than the pure damper case, which shows that there is some

benefit to incorporating tunable elements in the device design, although the TID damping values

at locations B and C are larger than for location A. Also the tuning frequencies of the device

at location B are much higher than location A or C, which could be an attempt to maximise

the relative motion across the device terminals as location B is not particularly active at low

frequencies. All tunable devices opted for large values of inertance which implies the device is

seeking the largest possible separation between the two modes generated by tuning the device,

as in Section 2.3. Finally, Fig. 4.8(b) shows the change in flutter speed for branch ten for the

parameter values in Table 4.3. As with branch seven the damper and TID-D devices show the

most favourable performance and the TID at location A shows only minor improvements in the

flutter speed. All other devices at locations B and C have yielded a slight decrease in the flutter

speed, however as branch ten is not the critical branch this is acceptable so long as it does not

lead to an overall reduction in flutter speed.

To understand how the vibration suppression devices affect the flutter mechanism the complex

flutter modeshape for branch seven has been extracted for the case where a damper is placed at

location A with viscous damping coefficient 1×105. The resulting change in modal coordinates is

shown in Figure 4.9. Here, the increase in flutter speed has manifested itself as small changes

in the modal coordinates that make-up the complex flutter modeshape with the largest changes

occurring for normal modes seven, nine and thirteen6. Each of these modes contain out-of-plane

bending motion in the wing and strut components that generates aerodynamic stiffness and

6See Appendix D for plots of the BUG-T normal modes.
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FIGURE 4.8. Maximum change in flutter speed for the single absorber optimisation.

damping, so it makes sense for the device to influence these modes in order to obtain a more

favourable flutter performance. A similar analysis cannot be performed for the TID and TID-D

devices as the intermediate DOF in these devices increases the number of modes in the system

meaning that a straightforward comparison cannot be made between the modified and unmodified

TABLE 4.3. Device parameter values for the single absorber optimisation.

Location Device ∆VF c cTID bTID kTID fTID µ

Loc. A
Damper 3.55% 1×105 - - - - -
TID 2.34% - 312.99 378.1 7.72×104 2.27Hz 0.1
TID-D 3.68% 1×105 3.30×104 378.1 8.50×105 7.55Hz 0.1

Loc. B
Damper 1.68% 2.41×104 - - - - -
TID 1.74% - 5.84×104 377.7 3.42×105 15.14Hz 0.1
TID-D 1.75% 5.28×104 6.02×104 299.8 5.19×106 20.93Hz 0.08

Loc. C
Damper 1.72% 2.21×104 - - - - -
TID 1.76% - 4.33×103 307.6 1.33×105 3.31Hz 0.08
TID-D 1.79% 3.86×104 5.24×104 378.1 1.23×106 9.08Hz 0.1
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FIGURE 4.9. Change in flutter modal coordinates when a damper is located at the
strut root joint with viscous damping coefficient 1×105.

modes. An alternative approach could be to perform a frequency response analysis and identify

the points in the frequency domain where new modes have been introduced. If it were found that

the device tunes to a mode that contributes to the out-of-plane bending or twist motion of the

lifting surfaces then that would be an indicator of how a tunable device influences the flutter

mechanism.

The flutter behaviour of a 2DOF aerofoil section with a TMD attached at various points along

the aerofoil chord was investigated by Karpel 249 and more recently by Verstraelen et al. 251 . In

both of these works it was identified that the TMD was highly sensitive to the tuning condition of

the absorber and that the flutter speed deteriorated when the absorber operated away from its

optimum tuning frequency. To understand whether a similar problem will be encountered with

the tunable devices considered in this section a sensitivity study has been run where the viscous

damping coefficient and inertance of the TID at location A are varied by ±50% and the change in

flutter speed is calculated. The TID stiffness is not included in the sensitivity study as varying the

inertance has the effect of detuning the TID as shown by ω2
TID = kTID /bTID . Figure 4.10 shows

the change in flutter velocity for two seperate sensitivity studies. Examining Fig. 4.10(a) it is clear

that the TID device at location A has not been correctly tuned to maximise the flutter velocity

as there is a clear peak in the flutter speed for branch seven and branch ten at approximately

-34% and -42% of the reference inertance value. This is textbook behaviour for the case where

a vibration absorber is detuned from the primary system response and matches the findings of

previous research249,251. Branch ten is more susceptible to the TID tuning, which makes sense

as this flutter mode has been shown to be more sensitive to all of the device parameters as a

consequence of the normal modes participating in the complex flutter modeshape. Furthermore,

Fig. 4.10(b) shows that there is negligible change in the flutter velocity as the TID damping
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FIGURE 4.10. Sensitivity of flutter speed to TID damping and tuning frequency for a
single TID at location A.

coefficient is varied. However, given that the fundamental theory of vibration absorbers states

that the tuning condition is a function of both absorber frequency and damping ratio, it is likely

that these results are a consequence of the datum TID parameters starting from an ‘untuned’

condition. These results demonstrate the importance of considering the robustness of tunable

devices such as the TID layout to changes in their parameter values and to off-design conditions.

Figure 4.11 shows the change in flutter speed for a damper at location A for each initial start

point. Here, there are two clear configurations that have been returned by the optimisation,

these are a damping coefficient of 9.1×103 and 1×105 yielding a change in flutter speed of
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FIGURE 4.11. Change in flutter speed and corresponding damping coefficient for a
single damper at location A with multiple start points.
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FIGURE 4.12. Change in flutter speed and corresponding device parameters for a
single TID-D device at location B with multiple start points.
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2.12% and 3.55% respectively. The fact that there are two different configurations is a strong

indication that the design space is non-convex and that multiple devices configurations could

exist which satisfy some notional increase in the flutter speed. This also suggests that a different

optimisation algorithm would be required to determine the device parameters that provide the

largest possible flutter speed, for example a stochastic method as opposed to a gradient-based

algorithm. Interestingly the TID at location A has a slightly better performance than the pure

damper with a damping coefficient of 9.1×103, suggesting that for certain damping values a

tunable device can offer better performance than the damper alone. Similar results were found

for the devices at locations B and C however in the interest of brevity only the results for a TID-D

device at location B are shown in Fig. 4.12. Here, every start point has converged on roughly

the same device performance but with vastly different parameter values. This is good from a

robustness point of view as it provides the designer with multiple options for achieving a given

improvement in flutter speed, however the mechanism by which a tunable device influences the

flutter mechanism needs to be better understood.

Finally, to check the results of the optimisation process are appropriate the design space has

been visualised for the case where a TID is placed at location A. Here, the objective function value

(gmax) and the change in flutter speed (∆VF ) have been calculated for an inertance-to-mass ratio of

0.1 (i.e. the optimised value), with TID frequencies between 0.25-10Hz and damping coefficients

between 50-500Nm/rads-1. A flutter analysis was conducted for each unique combination of

parameter values, yielding over 2000 separate analyses7. The results of this parameter study

are shown in Fig. 4.13, where the MATLAB triangulation algorithm trisurf has been used to

visualise the scattered dataset and a contour plot of the surface has been constructed using the

tricontour function from the MATLAB File Exchange277. Examining these results, it is clear

that the current optimisation process (shown by the red marker in Fig. 4.13) has failed to identify

the optimum absorber parameters. As mentioned at the start of this section, this is because the

optimisation process terminated prematurely due to the design variable step tolerance being

exceeded. Clearly if the optimiser is allowed to proceed beyond its current value an improved

device design is possible, as show by the peak in Fig. 4.13(b) which yields ∆VF = 5.36% for a TID

tuning frequency of 2.85Hz and a viscous damping coefficient of 50Nm/rads-1. This is a greater

improvement than that identified by the pure damper case, although at operating frequencies

away from the tuning condition the TID performance deteriorates rapidly and ends up being

worse than the pure damper case. These results show a similar trend to the sensitivity study

shown in Fig. 4.10, although the magnitude of the change in flutter speed is slightly different as

here the inertance is fixed at µ= 0.1 whereas in Fig. 4.10 the inertance was varied and the TID

spring stiffness was constant.

7Such a large number of runs was required in order to capture the tuning behaviour of the TID device
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(a) Cost function

(b) Change in flutter speed

FIGURE 4.13. Variation in maximum flutter damping ratio and flutter speed for a TID
at location A with a constant inertance of µ= 0.1.
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4.3.4 Optimisation Results for Multiple Vibration Absorbers

In the frequency response analysis in Chapter 3 it was identified that different device locations

exhibit maximum relative motion at different excitation frequencies. It was hypothesized that

this could be utilised by including multiple devices in the structure that target the structural

response across a range of frequencies. Therefore this section presents a study where a TID

device is included simultaneously at the three candidate device locations and the force coefficients

are optimised in order to extend the flutter speed. TID devices are chosen for this study to test

whether the tuning capabilities of this layout can be used to target the response of different

structural modes, also a TID device at location A showed promising results for the single device

optimisation. Finally, as many of the TID and TID-D layouts in the single device optimisation

had inertance-to-mass ratio values at the upper limit of 10% it was decided to extend the upper

bound to µ= 25% to investigate whether higher inertance values could yield improved results.

As before, 10 different initial conditions were used for the gradient-based optimisation process

described in Sections 4.3.1 and 4.3.2.

The ten optimisation runs yielded an increase in flutter speed between 1.7% and 4.1%, with

the results of the ∆VF = 4.1% case shown in Table 4.4. For this case there was also in increases

of 1.8% in the flutter speed of the non-critical branch. Examining the data in Table 4.4 shows

that all three TID devices have tuning frequencies around the 2Hz region. This indicates that

the devices have tuned to the low frequency structural modes which participate in the flutter

response, however this would need to be verified via a separate analysis. As with the single

device case, the TID has opted for large inertance-to-mass ratios, possibly to maximise the device

bandwidth as discussed in the previous section. The damping coefficients are also small compared

to the pure damper case, indicating that the tuning effects are providing most of the performance

improvement. Most important is that the performance of multiple TID devices is almost double

that of a single TID device but still only approaches the benefits of a single damper device.

However, given that the damping coefficient required to deliver more than 4% improvement in

flutter speed using a damper alone also locks the joint, a distributed tunable-device approach

could be a viable alternative to a single viscous damper. Although a trade-off would need to be

considered in terms of device and layout complexity, as from an cost/integration/maintenance

point of view it may be preferable to have a single device in the structure.

TABLE 4.4. Device parameter values when three TID devices are present at locations
A, B and C for ∆VF = 4.1%.

Location Device cTID bTID kTID fTID µ

Loc. A TID 6.23×103 745.0 1.95×105 2.57Hz 0.20
Loc. B TID 7.37×103 577.0 9.82×104 2.08Hz 0.15
Loc. C TID 6.24×103 647.0 8.08×104 1.78Hz 0.17
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4.4 Chapter Summary

This chapter has presented a methodology for optimising the flutter response of a truss-braced

wing aircraft using passive vibration absorbers embedded in the truss-structure. The optimisation

scheme used a MATLAB gradient-based optimiser which invokes Nastran Solution 200 to compute

the flutter response and sensitivities with respect to the device properties. It is noted that the

implementation of the optimisation is generic and could be used to optimise any mechanical

network attached to any primary system - with the caveat that only linear device parameters

are used and the analysis falls within the scope of Nastran Solution 200. This method has not

been exploited by the mechanical network community and so the work presented in this chapter

fundamentally enhances the potential for mechanical network design methods to be applied to

the design and optimisation of large and complex systems.

The results have demonstrated that a small amount of flutter suppression is available from

including vibration absorbers in the BUG-T model, with improvements in flutter speed between

1.7% and 5.36% depending on the chosen device layout and location, rising to 6.4% when the

non-critical flutter branch was considered. These results are similar to the levels of flutter

suppression provided by active control methods167,170 which is strong evidence that passive

vibration absorbers should be considered as a viable method for providing flutter suppression

in truss-braced wings. For the single device case the damper or TID-D layout at location A

offered the best performance and the TID device at location A also exhibited promising tuning

characteristics, however the tuning behaviour could not be achieved by the current optimisation

process. Devices at location B and C provided a small amount of flutter suppression and there was

little correlation between the parameter values and the expected tuning behaviour. It is suggested

that this could lead to a robust design for the device however the mechanism by which flutter

suppression is achieved at location B and C requires further investigation, especially for tunable

devices. For the case where multiple TID devices were included flutter speed improvements up to

4.1% were observed, however the inertance values required by the TID devices were between 15 -

20% of the SUGAR half wing mass which may not be practical for this application. However, the

damping coefficients for the TID elements were all O (3), which is less than the values required

by the pure damper layout, indicating that a tunable device can provide better performance

than the pure damper for the same viscous damping coefficient. It is recommended that a more

comprehensive flutter study should be run where multiple combinations of Mach number, aircraft

velocity and altitude are considered to better understand the robustness of the device parameters

to changes in their operating conditions.

Regarding the tuning of the TID and TID-D layouts, the poor tuning of these devices is

likely related to the fact that the flutter velocity is not considered directly by the optimisation

process and is only calculated during post-processing. Therefore, if the optimiser was instructed to

maximise the critical flutter velocity it is likely that an improved performance could be obtained

for all of the device layouts considered in this chapter. However, this is difficult to achieve in
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a standard Nastran flutter analysis as there is no built-in mode tracking capability, so the

calculation of the flutter velocity is not robust enough to handle changes in the design. One option

could be to incorporate an automatic mode-tracking algorithm, as in Hang et al. 272 , however this

would be a significant undertaking and is considered beyond the current scope.

This study considered three candidate device layouts in the flutter optimisation but in a

typical structure-based mechanical network study it is usual for ten or more candidate layouts

to be investigated. It is possible that a different layout could have achieved a better flutter

performance, however the focus of this was study was to demonstrate flutter suppression by

including a vibration absorber in the structure of a TBW. In this sense the study was a success

as it was shown that improvements in flutter speed between 1 - 6% are achievable, although

the effectiveness of vibration absorber is heavily dependent on the flutter mechanism as this

dictates the level of relative motion at the device locations. In the case of the BUG-T model

the flutter mechanism did not show much relative motion at the device locations, which is the

main reasons for the small improvements in flutter speed that have been obtained. To achieve

better performance from the use of vibration absorbers it is suggested that the design of the

device properties should be considered as part of a wider structural optimisation. This would

allow the structural properties of the airframe to be tailored to promote improved performance of

the device whilst simultaneously satisfying the necessary design constraints. Given the generic

implementation via Nastran such an approach is readily available provided that the device

properties are assumed to be linear and frequency invariant. If this is not the case then different

analysis methods and optimisation schemes must be considered.

Finally, both studies identified parameter values in the range k = 105 −106, c = 103 −105,

b = 102 −103 as having a beneficial impact on the flutter speed. These values will be used in

Chapter 6 to investigate the design of a physical device that can provide the required magnitude of

force coefficients whilst maintaining a geometry and mass that is conducive to being incorporated

into a truss-braced wing.
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5
PASSIVE GUST LOADS ALLEVIATION USING VIBRATION

ABSORBERS

This chapter investigates the potential for passive vibration absorbers to provide gust

loads alleviation (GLA) in truss-braced wings. The candidate device layouts and locations

introduced in the previous chapters are used to minimise the response during a discrete ‘1-

cosine’ gust encounter. The device parameters are optimised using a MATLAB-based optimisation

framework which modifies the frequency response of the model in order to tailor the device

properties to target specific structural modes. It is demonstrated that either a single damper

or a combination of inerter-based devices can be used to achieve a reduction in gust loads of

approximately 4% for spanwise locations inboard of the strut attachment point and that this

reduction is consistent across the full range of gust gradients. Furthermore, it is noted that the

inerter-based device has a significantly smaller damping coefficient than the case where just a

damper is used and that the device parameter values are viable within the scope of an aerospace

application. This chapter is organised as follows: In Section 5.1, the BUG-T half-wing model and

the equations of motion for discrete gust analysis in Nastran are introduced, then the baseline

response of the half-wing model is calculated for a family of 1-cosine gusts. In Section 5.2 a

software framework for optimising vibration absorbers for gust loads alleviation is introduced

and in Section 5.3 and 5.4 the three candidate vibration suppression devices are included in the

model and their affect on the gust loads envelope is observed for a range of parameter values and

device configurations. The work in this chapter is based on the following published work:

Christopher P. Szczyglowski, Simon A. Neild, Branislav Titurus, Jason Z. Jiang, and Etienne

Coetzee, "Passive Gust Loads Alleviation in a Truss-Braced Wing Using an Inerter-Based Device",

Journal of Aircraft (2019), accessed September 01 2019. DOI: 10.2514/1.C035452
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5.1 Gust Response of the BUG-T Half-Wing Model

In this section the baseline gust response of the BUG-T half-wing model is defined to provide

a suitable reference for the gust load optimisation studies in Sections 5.3 and 5.4. First a brief

overview of the BUG-T half-wing model is provided and the equations of motion used by Nastran

for the solution of discrete gust encounters are detailed. Next, the model response to a family of

1-cosine gusts is evaluated, with specific focus given to the structural modes which participate in

the gust response and gust gradients which form the gust loads envelope.

5.1.1 Overview of the BUG-T Half-Wing Model

The work presented in this chapter uses a half-wing version of the BUG-T model for all dynamic

and aeroelastic analysis. This model was a precursor to the full-span BUG-T model presented

in previous chapters and as such the two models have many common features. For example,

the wing planform and mass and stiffness distribution are the same as for the full-span model,

however the strut is assumed to have a constant chord length of 0.8m instead of the distinctive

‘bow-tie’ shape of the SUGAR 765-095 Rev. D. The beam axis is positioned at the midchord for

all flexible members and rigid bars are connected to the beam nodes to represent the planform

shape and provide the basis for the spline between the structural and aerodynamic DOFs. The

connection between the truss members and the wing are modelled as pinned-joints which transfer

both in-plane and torque moments across the joint. The wing and strut are joined to a reference

node which is fully-fixed for all subsequent analysis, meaning that the rigid body modes will

not participate in the gust response. This will have an effect on the participation of the flexible

modes, however, as this is a preliminary investigation this simple approach is deemed satisfactory.

Finally, an aerodynamic symmetry condition is enforced in the XG ZG plane to ensure the correct

downwash distribution for the DLM aerodynamic theory. The structural and aerodynamic model

is shown in Fig. 5.1 and additional details can be found in Appendix C.

(a) Structural Model

(b) Aerodynamic Model

FIGURE 5.1. Aeroelastic model of the BUG-T half-wing model.
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5.1.2 Modelling Discrete Gusts in Nastran

The gust loads calculated in Chapter 3 were based on a quasi-static load factor derived by

Pratt 263 using the assumption of a rigid aircraft response. This is a gross oversimplification

of the aircraft dynamics during a turbulence encounter, and is particulary inaccurate for a

TBW model given its well-documented nonlinear aeroelastic characteristics reslulting from the

increased flexibility of the structure100,106,264. In an attempt to improve upon the quasi-static

Pratt gust, the certification guidelines specify atmospheric turbulence as a time-varying function

with two common formulations - discrete gusts and continuous turbulence234. In this chapter only

discrete gust encounters are considered, however the concepts and modelling methods discussed

here could be readily applied to reduce loads from continuous turbulence.

In the standard Nastran process the gust loads represent an incremental load acting on the

structure and, by virtue of assuming a linear structural response, these additional loads can

be added to the 1g steady-state loads to generate the gust loads envelope. In this chapter the

beam loads will be prefixed by ∆ to denote the fact that they are incremental loads resulting from

a gust analysis, as opposed to the loads which comprise the full loads envelope. The simplest

approach for modelling a discrete gust is to idealise it as a one-dimensional 1-cosine waveform

with equation49,234

wg(t)= Uds

2

[
1− cos

(
πU∞t

H

)]
, (5.1)

where wg is the gust vertical velocity, H is the gust gradient (distance to reach the peak gust

velocity), U∞ is the aircraft forward velocity and Uds is the gust design velocity, defined as

Uds =Ure f Fg

(
H

106.17

) 1
6

, (5.2)

where Fg is the flight load alleviation factor and Ure f is the reference gust velocity, varied linearly

from 13.4m/s EAS at 15,000ft to 7.9m/s EAS at 50,000ft as specified in CS-25234. The value of Fg

is altitude and mass dependent and is calculated using the method in CS-25 for the MTOW and

MZFW in Appendix A. Note that for the purposes of the analysis all velocities must be converted

to units of true air speed from their definition in CS-25 which is in equivalent air speed (EAS).

The gust family used for the simulations in this chapter is shown in Fig. 5.2.

In Nastran the response of an aircraft to discrete gusts is termed dynamic aeroelasticity and

the solution sequence associated with this analysis is referred to as SOL 14682. In this analysis

the gust response is represented by the following equation of motion[
−Mhhω

2 + jChhω+ (1+ jg)Khh −
1
2
ρU2

∞Qhh(m,k)
]
ξ= Phh(ω), (5.3)

where Mhh, Chh and Khh are the modal mass, damping and stiffness matrices, g is the structural

damping term, Qhh is the AIC matrix in the modal domain which itself is a function of Mach

number m and reduced frequency k, ξ are the modal coordinates and Phh is the modal load

vector of aerodynamic loads. The modal loads vector is a function of dynamic pressure q, gust
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FIGURE 5.2. 1-cosine gust family at an altitude of 36,000ft, U∞ = 221.57m/s.

velocity wg, the AIC matrix Qhi which relates the downwash velocity on every panel to the modal

coordinates and the gust downwash matrix wi. This matrix is a function of both the excitation

frequency and the geometry of the aerodynamic panels

wi(ωp)= cos(γi)e− jωp(xi−x0)/U∞ , (5.4)

where subscript p and i represent the pth excitation frequency and the ith aerodynamic panel

respectively, ωp is the excitation frequency, γi is the dihedral angle of the panel, xi is the x-

coordinate of the panel quarter-chord and x0 is an offset distance used to delay the application of

the gust load. As the unsteady aerodynamic forces used by Nastran are frequency dependent the

solution of Eqn. 5.3 is formulated as a frequency response problem, with any time varying gust

loads transformed into the frequency domain using the Fourier transform. Once the frequency

response analysis is complete Nastran transforms any output quantities into the time-domain by

performing an inverse Fourier transform.

5.1.3 Baseline Gust Response of the BUG-T Half-Wing Model

Before a device optimisation study can take place it is necessary to determine the baseline gust

response of the aeroelastic model so that the effect of the vibration suppression device(s) can

be quantified. The simulation is carried out at a flight point of 36,000ft at Mach = 0.7530(U∞ =
221.57m/s) which yields a gust reference velocity and flight load alleviation factor of 10.12m/s EAS

and 0.98 respectively. Solution frequencies up to 30Hz are included and a frequency increment of

0.005Hz is used.
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To generate the loads envelope ten equally-spaced gust gradients are considered in the range

9m to 107m and for each gust response the maximum beam loads are calculated across all

time steps for every beam node along the wing, strut and jury-strut. Examples of this quantity

are shown in Fig. 5.3 for the three wing bending moments and axial force with colour-coded

markers indicating which gust gradients are driving the loads at the different spanwise locations.

Inspecting Fig. 5.3 it is clear that a number of gusts are responsible for generating the incremental

(a) Wing in-plane/chordwise bending moment (b) Wing out-of-plane/spanwise bending moment

(c) Wing torque (d) Wing axial force

FIGURE 5.3. Incremental gust loads envelope for the wing in-plane bending moment
(a), out-of-plane bending moment (b), torque (c) and axial force (d).
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gust loads envelope, implying that any device that seeks to minimise gust loads must be effective

across the entire gust spectrum. Also, in general there are two spanwise locations where the wing

beam loads reaches a maxima, these are the strut-attachment point and the wing-fuselage joint.

This suggests that a device that can reduce the loads at one or both of these points will provide a

net benefit to the wing gust response and may also minimise the wing weight via reduction of the

critical loads envelope. Therefore during the device optimisation the loads at these two locations

will be used to indicate the amount of loads alleviation that the devices are providing.

When the loads envelope is evaluated by extracting the maximum loads across all timesteps

there is no consideration given to the fact that different loads experience their maximum value at

different points in time, i.e. the loads are uncorrelated. It is important to consider the correlated

time histories of the loads as the resulting principal stresses can depend upon 2D or even

3D loads49,278. Figure 5.4 shows an example of a correlated loads plot for the wing spanwise

bending moment and torque loads at the wing-fuselage location and the strut-wing joint. Here

the complete time histories for the ten gust cases have been plotted and the extreme points

have been identified using the MATLAB convexHull algorithm279. These results show that the

torque and spanwise bending loads at these two positions are predominantly driven by gust

gradients H = 20m, 31m and 64m, again indicating that the optimised vibration suppression

device must be effective across multiple gust gradients. It is possible to extend this method to

form a six-dimensional convex hull which represents the time-correlated loads of all six beam

sectional loads. This has not been demonstrated here but is mentioned to highlight the scale (and

(a) Wing-fuselage joint (b) Wing-strut attachment point

FIGURE 5.4. Time correlated incremental gust loads for the spanwise bending moment
and the torque at the wing-fuselage joint (a) and wing-strut attachment point (b).
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complexity) of the challenge facing any technology that seeks to minimise gust loads. Finally, it is

important to note that these results represent the loads from ten discrete gusts at a single flight

point, whereas a typical loads cycle for a commercial aircraft will consider hundreds of thousands,

or even millions of load cases in order to determine the critical design loads49. Therefore, the

fact that short-to-medium gust gradients are prevalent in these results should not be taken as

indicative of the general gust loads requirements of a truss-braced wing aircraft.

One of the key requirements of the device optimisation process is to understand which modes

the device should influence in order to minimise the chosen cost function. Figure 5.5 shows the

maximum modal coordinate for the first seven structural modes as a function of gust gradient and

plots of the corresponding modeshapes can be found inset in Fig. 5.9. It demonstrates that the

dominant mode in the gust response is the fundamental one, which corresponds to an outboard

wing ‘flapping’ mode. The other modes follow, almost in mode order, with some fluctuation at the

lower and higher ends of the gust spectrum, although there is a clear gap between modes two

and three and the rest of the modes. Therefore any vibration suppression devices included in

the model must target these low frequency modes in order to minimise the gust response. The

dominance of the low frequency modes is due to the frequency and energy density of the gust

input signal. Here, the gust frequency content is evaluated by applying the Fourier transform to

the time-domain 1-cosine gust signal, i.e. ŵg (ω)=F
(
wg(t)

)
. This operation is performed using

the MATLAB fft algorithm and the corresponding signal bandwidth and energy density are

calculated for the gust profiles used in the discrete gust analysis. The signal bandwidth is defined

as the frequency where the amplitude equals 1/
p

2 of the corner frequency value and the signal

energy density is defined as
∣∣ŵg (ω)

∣∣2. Figure 5.6 shows the bandwidth and energy density for the

FIGURE 5.5. Maximum modal coordinate for the first seven modes as a function of
gust gradient.
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ten discrete gusts considered in this analysis and annotations detailing the natural frequencies of

the first eight modes are included to provide context for the magnitude of the bandwidth values.

Examining these results it is clear that the gust bandwidth drops sharply as the gust gradient

increases whilst the gust energy density increases in a logarithmic fashion. The effect of this is

that the low frequency modes receive a much higher input power than the high frequency modes,

meaning that these modes have a greater participation in the gust response. Also, Fig. 5.6 shows

that the maximum gust bandwidth within the CS-25 mandated limits is approximately 8.7Hz,

however, that is not to say that higher frequencies should not be accounted for when simulating

the gust response. The gust bandwidth simply gives an indication of which parts of the frequency

spectrum are most important during a gust encounter, thereby focusing the efforts of a vibration

suppression device.

In order to understand the magnitude of the of the relative motion across the device terminals

the displacement at each of the device terminals has been extracted for all time steps in the

solution1. Figure 5.7(a) shows an example of the relative displacement at location A for three

different gust gradients as a function of time and the maximum joint rotation/device stroke is

annotated with a dashed line for each gust gradient. For this location it is clear that the maximum

rotation/stroke is achieved at different times for the three gust gradients considered and also that

the number of device cycles varies. This implies that the performance of a vibration suppression

device will be inconsistent across different gust gradients and it may be necessary to pick a

specific gust as the design case in order to tailor the properties of the device. Fig. 5.7(b) shows the

1Such an approach was not possible in the previous chapter as the magnitude of the calculated flutter eigenvectors
had no physical relevance.

FIGURE 5.6. Gust bandwidth and energy density as a function of gust gradient.
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(a) Relative rotation at strut-root joint (Location A) for
H = 9, 56, 107m as a function of time (b) Maximum relative displacement at device locations

FIGURE 5.7. Relative displacement at the device locations as a function of gust gradi-
ent. Provided as an example time history (a) and the maximum value across all
gust gradients (b).

maximum relative displacement at all three locations for all gust gradients considered2. These

results show that the magnitude of the relative motion is not directly proportional to the gust

gradient, rather it depends on a combination of the gust bandwidth and energy density. Each

location has a similar trend where the relative motion reaches a maximum and then decreases

for the longer gust gradients. As with the flutter analysis in the previous chapter, this trend

is a consequence of the modes which participate in the solution and how much relative motion

each mode has at the various device locations. Therefore the results in Fig. 5.7(b) suggest that a

device at location A will be more effective for gust gradients up to 42m and that a device at either

location B or C will have more influence during the longer gusts. As noted previously, this opens

the possibility of using multiple devices to target the response of different gusts and such an

approach is demonstrated in Section 5.4. Finally, the rotational joints at locations A and C show

a maximum relative rotation of approximately 1.8°. This information will be used in next chapter

to guide the design of a physical vibration suppression device that can provide the required linear

force coefficients identified by the flutter suppression and gust load alleviation studies.

In summary, the incremental gust loads envelopes and correlated loads plots showed that

the maximum structural loads are attributed to a variety of gust gradients, meaning that the

vibration suppression devices must be designed to be effective across a range of gust gradients.

Also, the incremental spanwise bending moment envelope revealed two locations along the wing

2These quantities are the same as the dashed lines in Fig. 5.7(a) but now calculated for every device location and
gust gradient.
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where the loads reach a maximum; these are the wing-strut joint and the wing-fuselage joint.

The loads at these locations will be used to formulate a cost function for the device optimisation

and will provide a reference from which the GLA of the different device configurations can be

evaluated. Figure 5.5 has shown that the lower frequency modes are most active throughout the

gust spectrum and constitute the main components of the structural response. Also, from Fig. 5.6

it is clear that for the chosen flight point all one-minus cosine gusts have a bandwidth lower than

8.7Hz, therefore it is appropriate for the vibration suppression device to target the low frequency

modes in order to influence the gust response and reduce loads.

5.2 Optimising a Vibration Absorber for Gust Loads Alleviation

A typical strategy to reduce gust loads is to enable loads control via aerodynamic control sur-

faces37. This approach is commonplace across the aerospace industry and has been applied to the

SUGAR TBW aircraft during aeroelastic wind tunnel tests where it was observed to suppress

flutter and alleviate gust loads, although the controller was not expressly designed for gust load

alleviation148. Recently, Bartels et al.280 performed a study of GLA and flutter suppression in a

TBW aircraft using the the Variable Camber Continuous Trailing Edge Flap (VCCTEF) concept

coupled with a static output feedback controller. It was found that the controller was effective in

suppressing flutter and stabilizing the aircraft during a gust encounter, however only a single

gust gradient was considered during the controller design and the overall level of loads reduction

is not quantified. Whilst active control schemes have been shown to suppress flutter and provide

GLA, the certification of these systems and their integration into the design process does present

a number of challenges60, hence alternative (non-active) methods of loads alleviation have been

proposed such as folding wing tips26, aeroelastic tailoring33 and morphing structures41.

In this section an alternative approach to loads alleviation in a truss-braced wing is presented,

which is to use a two-terminal vibration absorber embedded within the truss structure to reduce

the gust response. Here, the same candidate device layouts and locations that were used to

provide flutter suppression in Chapter 4 will be trialled for gust loads alleviation. Note that all

discussions on modelling methods and device layouts from Chapter 4 apply equally to the work

in this chapter and no further explanation of the device modelling will be given here.

Figure 5.8 shows a flowchart of a software framework for optimising a vibration suppression

device which alleviates gust loads. As before the optimisation of the device is conducted using

Nastran SOL 200270, however, there are three main factors to consider when using SOL 200 to

optimise a vibration absorber to alleviate gust loads:

• Continuous and discrete gust analysis are types of dynamic aeroelasticity, therefore, the

optimisation of the aircraft response to turbulence encounters constitutes a dynamic

response optimisation. Problems of this type will typically have global design spaces281

and as SOL 200 uses a gradient-based optimiser it is not suitable for solving this class of
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problem, therefore additional measures will be required to ensure that the design space is

successfully traversed and a global optimum is found.

• The dynamic aeroelastic response solution, SOL 146, cannot be invoked within SOL 200,

hence it is not possible to directly optimise the device parameters to minimise the gust

response. Instead, an alternative cost function which is independent of the gust response

must be used. Although it is possible to optimise the gust response of an aircraft using

Fluid-Structure-Interaction methods92 such an approach is not always favourable given

the increased computational cost of dynamic aeroelastic analysis.

• SOL 200 can only cater for linear finite element models and linear analysis types, therefore,

nonlinearities in the structure, aerodynamics or device properties will not be considered.

In order to mitigate for these points, the optimisation framework uses a Multi-Start Optimisation

approach282 to sample the multi-modal design space before running a local gradient-based

optimisation at each sample point. The cost function is formulated in terms of a frequency

response problem with the device parameters optimised to reduce the influence of certain modes

of the structure that are identified as having a significant participation during the gust response.

This approach is particularly useful for two reasons: Firstly, the optimisation of the device is

decoupled from the gust response which removes the need to run a computationally expensive gust

analysis for each function evaluation. Secondly, the lower computational cost means the approach

can easily be applied to high-fidelity finite element models given the generic implementation via

NIcMultixStartcOptimisation

Samplecdesigncvariablesc

ChoosecnoIcofcsamplesc1ns4

GradientxBasedcOptimiser

Tunecdevice

SOLcN??

Selectcbestcconfiguration

Evaluatecdevicecperformance

End

3IcDiscretecGustcAnalysis

SOLcY46

DefinecflightcpointcAcgustcgradients
ChooseccostcfunctioncJ1x4

Choosecdeviceclocation1s4

Choosecdeviceclayout1s4

Choosectargetcmodec

IntermediatecDOF?

YIcSetxupcoptimisaton

Definecdesigncvariableclimits
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Start

A

B
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Evaluateccostcfunctions

FIGURE 5.8. Flow-chart of a process for optimising a generic vibration absorber for
gust load alleviation.
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Nastran. This is an important consideration as the device properties will be tightly coupled to

the mass and stiffness of the model which will vary significantly between a 3D and 1D model,

even when a model reduction technique is employed. Further details on each module of the

optimisation framework are provided in the following sections.

5.2.1 Setting up the optimisation

There are several stages involved in the set-up of the optimisation problem:

1. Cost function. The purpose of the device is to alleviate gust loads by reducing the par-

ticipation of modes that have a significant contribution to the gust response. This can be

achieved by adding damping to that mode or by tuning the device frequency to match the

modal frequency, therefore, the cost function must be able to observe changes in a desired

response quantity as a function of frequency, X (ω)= H(ω)F(ω) where,

H(ω)= [
K −ω2M+ jωC

]−1. (5.5)

and X is some output response from the system, F is a vector of applied forces, H is the

frequency response function (FRF) matrix, ω is the forcing frequency and the M, C, K

matrices include the terms from the device. As the device will target gust loads it is sensible

to evaluate the transfer function relating the beam loads and responses. More specifically,

the spanwise bending moment will be evaluated as it typically sizes the wing covers which

constitute a significant portion of the wing weight. An example of this quantity is shown

in Fig. 5.9 for the bending moment at the Wing-Fuselage (WF) and Wing-Strut (WS) joint

for the case where no devices are included in the model; the first eight flexible modes are

shown to highlight which mode contributes to the bending moment at these points in the

wing. Note, there is no ‘engine-mode’ as the engine is included in the model as a lumped

mass and there is no structural representation of the pylon. From Fig. 5.9 it is clear that

the fundamental mode dominates the bending moment at the WS joint as the first mode

corresponds to a ‘flapping’ motion of the outboard wing. However, the bending moment at

the WF location includes contributions from the first five modes, so any device configuration

that wishes to minimise loads at this point must be effective across multiple modes. Finally,

the cost function is defined as the area under the transfer function, which for a discrete

response and a suitably small frequency increment, is approximated by,

Ja(v)= δf ×
f2∑
f1

|HBM(v, f )| , (5.6)

where, v are the design variables, δf is the frequency increment, f is the frequency, f1

and f2 are the upper and lower limits of the frequency band and HBM is the FRF matrix

corresponding to the spanwise bending moment. This cost function has been chosen as it

allows multiple modes to be targeted by careful selection of the upper and lower frequency

limits which will be critical if there are multiple modes that the device must influence.
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FIGURE 5.9. Spanwise bending moment FRF due to a vertical harmonic force at the
wing tip with 3% modal damping. Plots of the translational terms of the first
eight normal modes are shown in inset panels and the the shading of the plane
represents the magnitude of the beam twist.

2. Design variables. As with the flutter response optimisation in the previous chapter, the

design variables in this study are the spring stiffness, viscous damping coefficient and

inerterance-to-mass-ratio for the various spring, damper and inerter elements in the chosen

device layout. The mass-ratio is defined as a fraction of the primary structure mass, which

for this study is the wing, including truss structure, with a total mass (Mwing) of 10467kg

accounting for all primary and secondary structural masses. An inertance-to-mass-ratio of

10% has been chosen, however, as an inerter element is used the actual mass of the device

will be far less than 10% of the wing mass. An upper limit of 1×105 is chosen for the viscous

damping coefficient in order to prevent the rotational joints from locking up and an upper

limit of 1×108 is defined for the spring stiffness as this covers device tuning frequencies up

to 50Hz when considering the maximum permitted inertance value 3. A summary of the

design variable upper and lower bounds is provided in Table 5.1.

3. Device location(s). As the truss topology is fixed the device position is constrained to the

three candidate locations identified in the previous chapters, these are the hinge joints at

the root and tip of the strut as well as a device in parallel with the jury-strut. The study in

3This spring stiffness was also identified in Chapter 4 as the upper limit in order to preserve the pinned-joint
behaviour.
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TABLE 5.1. Design variable upper and lower bounds for the gust load alleviation
optimisation study.

Design Variable Lower Bound Upper Bound Translational Units Rotational Units

Spring Stiffness 1 1×108 N/m Nm/rad
Damping Coefficient 1 1×105 N/ms−1 Nm/rads−1

Mass Ratio 1×10−4 0.1 − −

Sections 5.3 and 5.4 will consider both a single device or a combination of devices at any of

these three locations.

4. Device layout(s). To maintain consistency the three candidate layouts introduced in the

previous chapter will be used here for the purposes of gust loads alleviation. These layouts

are: a viscous damper, the Tuned-Inerter-Damper and the Tuned-Inerter-Damper-Damper.

5.2.2 Multi-Start Optimisation

The multi-start method involves sampling the design space at an appropriate number of intervals

so as to ensure the many local-minima are captured. Next, a gradient-based optimiser, in this

case the Modified Method of Feasible Directions algorithm belonging to Nastran’s MSCADS suite

of optimisers within SOL 200, is used to search the local design space for an optimal solution

at every sample point. Once all samples have been evaluated the minimum cost function and

its associated design variables are selected from the individual optimisation results. Whilst

this approach allows global design spaces to be traversed it is important to note that it does

not guarantee a global optimum. Also, the robustness of the solution is heavily dependent on

the initial sampling of the design space283. In this study the Latin Hypercube Sampling (LHS)

algorithm lhsdesign is used to randomly sample each design variable. A parameter study was

carried out to determine the number of samples (nS) and a value of 100 was chosen as this was

found to give consistent results. As some of the design variables have allowable values that span

several orders of magnitude the sample points from lhsdesign are mapped to an exponential

distribution to ensure the design space is sufficiently covered. Next, the optimisation process

is called ns times with each run using a new sample point as the initial conditions, however,

before SOL 200 is executed a check is made on the device layout. If a TID or TID-D layout has

been selected and a tuning mode specified then the initial device stiffness is adjusted using the

approximate tuning rule

k =µ×Mwing ×ω2
i , (5.7)

where ωi is the natural frequency of the primary system mode that the device will target. This

step is not necessary for the optimisation to proceed but it does yield slightly better performance

as the device will start the optimisation in the correct region of the frequency domain. Once the

optimisation loop has finished the best design associated with the minimum cost function value
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across all sample points is extracted and the necessary bulk data entries are passed into the gust

analysis module.

5.2.3 Discrete Gust Analysis

The discrete gust analysis described in Section 5.1.2 is used to calculate the gust response for

the best device configuration identified by the multi-start optimisation procedure. Note that only

one gust analysis is performed compared to nS frequency response optimisations. This yields a

significant benefit in terms of computational cost as an aeroelastic analysis is more expensive

than a (structural) frequency response analysis as the calculation of the AIC matrices incurs a

significant overhead.

5.3 Passive Gust Loads Alleviation Using a Single Device

The purpose of this section is to determine which device layout is most appropriate for reducing

gust loads when only a single device is considered. This is achieved by running two optimisation

studies: the first considers a single damper placed at one of the candidate locations and the

second extends this study to all three device layouts. This allows the performance of the TID and

TID-D layouts to be benchmarked against the GLA benefits of a pure damper.

5.3.1 Gust Load Alleviation Using a Single Damper

Employing a single damper, the viscous damping coefficient of the device is optimised in order

to reduce the area under the wing-root bending moment transfer function, Ja(v), at the wing-

fuselage joint location. The wing-fuselage location is chosen as it captures the response of multiple

modes, as opposed to the wing-strut FRF which is mostly the fundamental mode. Figure 5.10a

shows the baseline and optimised transfer function for the three different damper locations as

well as the change in FRF amplitude at the original natural frequencies. Figures. 5.10b and 5.10c

show the percentage change in the actual gust-induced maximum spanwise bending moment

as a function of gust gradient for the wing-fuselage joint and wing-strut attachment points

respectively. Note that as the difference is presented with respect to the baseline aeroelastic

model a negative value indicates that the device has a beneficial effect, whereas a positive value

is detrimental. Table 5.2 shows a summary of the device performance and damping coefficients

for each of the three locations.

The results show that placing a damper at Location A achieves the lowest cost function value.

In terms of the frequency domain performance, the damper has successfully reduced the FRF

response amplitude around modes two and three as well as a reduction around mode one. This

has translated into a consistent reduction in spanwise bending moment at the wing-fuselage joint

across all gust gradients considered with a maximum change of 3.84% for the 42m gust, however,

this is at the expense of a very large viscous damping coefficient. Interestingly, the small amount
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A

B C

FIGURE 5.10. Gust loads alleviation results for the case with a damper at locations A,
B or C.

TABLE 5.2. Cost function values and device parameters for the case with a damper at
locations A, B or C.

Location Layout c ∆Ja(v) min(∆BMWF ) mean (∆BMWF )

A Damper 100,000 -5.39% -3.84% -2.67%
B Damper 17,253 -0.22% 1.20% 1.94%
C Damper 45,385 -0.80% -0.65% -0.45%

of additional damping that has been provided by the damper around mode one has a negligible

effect on the loads at the wing-strut joint, despite mode one having the largest contribution to

the loads at this wing position.

The damper at location B has had a negligible effect on the amplitude of the first three modes

and has increased the spanwise bending moment at both monitoring points for all gust gradients

considered. It is hypothesized that this is because the force generated by the damper acts in the

same plane as the lift force acting on the wing, which leads to an increase in sectional shear force

in the region around the jury-strut and a subsequent increase in spanwise bending moment at

nodes away from the jury-strut attachment point. For this reason, a device in parallel with a

vertically-orientated jury-strut may be inappropriate for reducing the wing bending moment.

Conversely, the damper at location C has provided additional damping to the fundamental mode

but has had very little effect elsewhere and has only had a minor effect on the bending moment

values at the monitoring points. For the wing-fuselage joint there is a net reduction in bending
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FIGURE 5.11. Relative velocity across device terminals for each candidate location in
response to a unit harmonic load applied in the positive z-direction at the wing-tip.

moment, although it is modest - the maximum reduction is 0.65%. There is a net increase in

bending moment at the wing-strut joint but it does not exceed 0.2%, which may be acceptable

once static aeroelastic load cases are considered. This suggests that modes two and three are

driving the value of the wing-fuselage bending moment and that targeting these modes will lead

to a much larger reduction in loads.

As with the full-span BUG-T model, the tendency for a device at a particular location to

influence the response of certain modes is suggested by considering the relative velocity across

the device terminals as a function of frequency. Examining Fig. 5.11, it is clear that location A is

best suited to targeting the response of the first three modes due to the increased relative angular

velocity at low frequencies, whereas location B is more appropriate for the higher frequency modes

as these are dominated by truss bending and twist modes. Interestingly, location C experiences

significant relative velocity for the fundamental mode. This is a direct consequence of the pinned

connection between the primary strut and the wing which allows the outboard section of the wing

to ‘flap’ freely about this joint and generate large bending moments at the joint location.

When considering the design of a vibration suppression device it is necessary to understand

the magnitude of the force that is transmitted into the primary system from the device as this

will influence the design of the vibration suppression device4. Here, the damper force has been

extracted for the case where a damper is positioned at the strut root joint (location A) with

a viscous damping coefficient of 1×105 Nm/rads-1. Figure 5.12 shows the time history of the

damper force for the ten gust gradients considered with a marker placed at the location where

the damper force reaches a maximum and these values are provided in Table 5.3. Clearly the

4See Chapter 6 for further details of the preliminary design of a vibration absorber for aeroelastic control.
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FIGURE 5.12. Time history of damper force for a damper at location A with viscous
damping coefficient 1×105 Nm/rads-1.

TABLE 5.3. Maximum magnitude of the damper force as a function of gust gradient for
the case where a damper is positioned at the strut-root joint with viscous damping
coefficient 1×105 Nm/rads-1.

Gust Gradient m
9 20 31 42 53

64 75 86 97 107

Max. Damper Force N
10,008 19,636 25,184 25,433 21.206
16.861 11,958 9493 8579 7743

amount of force generated by the damper (or any device) will be a function of the relative motion

across the terminals, therefore a comprehensive study of the flight envelope must be conducted

to determine the range of loads that the device must provide.

In summary, this study has shown that a damper positioned at location A using the highest

permitted viscous damping coefficient can achieve a maximum reduction of 3.84% in spanwise

bending moment at the wing-fuselage joint. Furthermore, the favourable influence of the damper

is due to the increased modal damping of the first three structural modes, indicating that for a

device to successfully reduce gust loads it must target each of these modes. For the other damper

locations, location B results in a net increase in spanwise bending moment whilst a damper at

location C provides only a minor benefit via increased damping for the fundamental mode. In

all instances there was a negligible change in loads at the wing-strut joint with the change in

bending moment restricted to ±0.5%. All dampers required a large viscous damping coefficient

to have an effect on the gust response but without considering the design of the damper it is

not possible to say whether these values are realistic or not. Finally, given the poor gust load
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alleviation results as well as the reduced relative velocity across the device terminals for the first

three modes, location B will not be considered in further studies.

5.3.2 Gust Load Alleviation Using a Single TID or TID-D

In this section the TID and TID-D layouts are compared for the case where a single device is used

in either location A or location C and the results in this section are benchmarked against the

damper performance from Section 5.3.1. Note, as the study in the previous section has shown

that reducing the response of the first three modes is important for alleviating gust loads the

cut-off frequency f2 is set to 5Hz to prevent the device targeting the higher frequency modes that

are less critical to the gust response.

A preliminary study was conducted to determine the effect of initially tuning each device to

one of the structural modes before running the optimisation. It was found that for a TID device

at location A setting the initial tuning mode, mdev, to the third structural mode yielded the best

possible GLA for both the TID and TID-D devices, whilst at location C the best GLA was obtained

when the device was tuned to the fundamental mode; although in both cases the performance was

inferior to the pure damper case at the respective locations. The case with a TID-D at location A

was found to be insensitive to the initial device tuning frequency as the optimiser converged to

the same optimum solution regardless of initial conditions, furthermore the performance of the

TID-D was superior to the pure damper. A selection of these results are shown in Fig. 5.13 and

their respective performance metrics and device parameters are given in Table 5.4.

Considering the devices at location A, the TID has successfully reduced the FRF amplitude

for modes two and three with a small increase in the response of mode one. This has translated

into a reduction of almost 4% in BMWF for the shorter gust lengths but during longer gusts the

benefits are lessened as these gusts are dominated by the response of the fundamental mode. This

is a clear consequence of the TID targeting mode three which resulted in an increased response

of mode one. The TID-D is able to mitigate against this by providing damping to those modes

which are not targeted by the TID, yielding a more consistent reduction in loads across all gust

gradients which serves to highlight the importance of using a cost function and device layout

that can target multiple structural modes. For location C, the optimiser has tuned the TID to

match the frequency of the fundamental mode, clearly demonstrated by the ‘split-peak’, enabling

the device to significantly reduce the amplitude of mode one, although modes two and three are

unaffected. The TID-D device has had a less pronounced effect on the fundamental mode and

the split peak is no longer present due to the increased damping from the parallel damper. In

terms of GLA, the TID-D has achieved a better reduction in gust loads despite having a lower

cost function value, which is clear evidence that the mapping between the optimised FRF and

the gust response is not direct. Furthermore, the GLA performance of both devices at location

C is inferior to the devices at location A because the response of modes two and three are not

influenced by a device at location C due to the reduced relative velocity at these locations/modes.
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A

B C

FIGURE 5.13. Gust loads alleviation results for a selection of single device configura-
tions.

TABLE 5.4. Cost function and device parameters for the configurations in Fig. 5.13.

Loc. Layout c µ cTID kTID mdev/ fTID ∆Ja(v) mean (∆BMWF )

A Damper 100,000 - - - -/- -5.39% -2.67%
A TID - 0.10 1425 3.46×105 3/2.87 -2.13% -1.87%
A TID-D 100,000 0.10 1 2.09×105 3/2.23 -6.03% -3.01%
C TID - 0.075 84.20 1.40×105 1/2.10 -2.63% -0.24%
C TID-D 17178 0.081 1005.2 1.61×105 1/2.17 -1.97% -0.37%

For all device locations and layouts there is a negligible effect on the spanwise bending

moment at the wing-strut joint. This may be because the gust input power to this mode is simply

too great for the device to have a significant impact on the participation of this mode without

generating an extremely large force in order to influence the outboard motion of the wing. Even

so, as the change in loads is ±0.5% this is an acceptable outcome. There is a significant variation

in the optimum device parameter values for the different device layouts. When the TID is used

the damping coefficient is much lower than the pure damper case, which shows the benefit of

implementing a tunable device over the pure damper case, however the TID-D device has the

opposite configuration. That is, the parallel damper element has a very large damping coefficient

whilst the damper within the TID is effectively zero as it is at the lower bound of the design

variable. In this case the addition of the TID yields only a small reduction in gust loads, although,
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it does improve the performance during the longer, low-frequency, gusts which is achieved by the

TID element targeting the response of mode one. In terms of inertance values both the TID and

TID-D have opted for the maximum possible mass ratio. This is consistent with the fundamental

theory of vibration absorbers which states that a higher mass ratio increases the separation

between the split-peak frequencies and provides a broader bandwidth for the device which then

manifests itself as a reduction in the overall area under the FRF curve.

In summary, the studies presented in this section have shown that it is possible to achieve a

maximum reduction in wing-fuselage bending moment of 3.9% using a single device configuration.

The best performance was achieved by the TID-D layout but in general either a damper, TID or

TID-D device can provide a reasonable reduction in gust loads when it is positioned at location A.

For device location C, a small reduction in loads of the order of 1% is achievable and location B

was found to be unsuitable due to the reduced relative velocity across the jury-strut terminals for

the lower frequency modes.

5.4 Gust Loads Alleviation Using Two Devices

In the previous section it was shown that it is possible to reduce gust loads by using a device to

target specific structural modes, however, as the tunable device layouts considered in this paper

only have one internal degree-of-freedom it is not possible to target more than one mode with

a single device. To mitigate this, a two-device configuration will be investigated which allows

two devices to simultaneously target different structural modes. Based on the relative velocity

FRF in Fig. 5.11, a pair of devices located at the strut-root joint and at the strut-tip joint should

be sufficiently active during the first three modes. Also, the results in the previous section have

shown that a tunable device is the best option for influencing a specific mode, therefore, a pair

of TID-D devices will be placed at location A and location C, tuned to modes three and one

respectively. As with the previous study f2 is set to 5Hz to minimise the response of the first

three modes.

Figure 5.14 shows the gust loads alleviation results for the two device configuration and Table

5.5 details the parameter values and the performance metrics. Examining Fig. 5.14b, it is clear

that the two device configuration has achieved a greater reduction in spanwise bending moment

at the wing-fuselage joint, with a maximum change in bending moment of -4.19% and an average

change of -3.37%. While still relatively small, both metrics are better than any of the single

device configurations considered in Section 5.3.2. Also, despite the increased damping at mode

one there is still a negligible change in the loads at the wing-strut joint which is consistent with

the results from Section 5.3. Also shown in light grey on Fig. 5.14 is the undamped FRF for the

two device configuration, i.e. using the parameter values in Table 5.5 but with all damping terms

set to zero. This highlights the two new modes that have been introduced by the tunable devices

and provides a clear indication of the classical split-peak behaviour of the vibration absorbers.
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A

B C

FIGURE 5.14. Gust loads alleviation results for the two device configuration.

TABLE 5.5. Cost function and device parameters for the two device configuration

Loc. Layout c µ cTID kTID mdev/ fTID ∆Ja(v) mean (∆BMWF )

A TID-D 100,000 0.10 1 3.38×105 3/2.83
-7.98% -3.37%

C TID-D 68.60 0.08 1,230 1.64×105 1/2.19

The TID-D at location A has tuned to the fundamental mode whilst the TID-D at location C has

targeted mode three, both of which are understandable when considering the increased relative

velocity at the respective device locations. Furthermore, this result clearly demonstrates the

ability of a combined FE/optimisation approach to tune an inerter-based device attached to a

complex host structure without the need to adopt tuning rules, such as those proposed by Krenk

and Høgsberg 206 , allowing for the possibility of more complex device layouts to be investigated

which could yield greater GLA benefits. Concerning the parameter values, the TID-D at location

A has opted for the maximum damping coefficient value for the parallel damper whilst the TID

element of the TID-D has tuned itself to mode three with a minimum damping coefficient. The

TID-D at location C has an almost negligible damping coefficient for the parallel damper which

implies that the vibration absorber effect is more beneficial than the modal damping. The TID

element has a moderate value of damping coefficient and has tuned itself to the first structural

mode. These results were largely expected given the increased relative velocity at the respective

device locations, as shown in Fig. 5.11.

Finally, Fig. 5.15 shows a comparison between the baseline wing incremental gust loads
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envelope and the case where the structure is augmented with a TID-D at locations A and C. All

six beam loads are presented to show that even though the optimisation process only considered

the spanwise bending moment at the wing-fuselage joint, as the targeted modes are global

quantities, the device configuration has successfully reduced the loads across the span of the wing.

Specifically, for all six beam loads there is a reduction of approximately 4% for spanwise stations

inboard of the strut-attachment point. Clearly, if gust loads are critical for the components in the

wing then a 4% reduction in loads will translate to a reduction in the wing weight, this indicates

the scale of performance benefits that might be realised from passive devices installed on a high

aspect-ratio braced wing.

Designing a device that could fulfill multiple functions would help mitigate for the fact that

the device is a fixed mass that would need to be carried for the duration of the mission. For

example, another potential application of the device is alleviating wing flutter. Analysis carried

out by the NASA/Boeing SUGAR project indicated that wing flutter was a combination of wing

and strut bending, implying that a passive vibration suppression device could be used to alleviate

flutter so long as the flutter modeshapes have translation or rotational components at the device

locations, as discussed in Chapter 4. Furthermore, the loads reduction provided by the device

could be translated into an improvement in fatigue life by using an analytical fatigue model such

as the one proposed by Rajpal and De Breuker 154 . However, as the purpose of this study is to

introduce the concept of using vibration suppression devices to provide gust loads alleviation,

any benefit in terms of fatigue life extension is considered beyond the current scope.
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(a) Wing in-plane/chordwise bending moment (b) Wing out-of-plane/spanwise bending moment (c) Wing torque

(d) Wing in-plane shear force (e) Wing out-of-plane shear force (f) Wing axial force

FIGURE 5.15. Incremental gust loads envelope for the wing beam loads, comparing the baselin response, the pure damper
and the two device configuration.
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5.5 Chapter Summary

This chapter has presented a novel method for gust loads alleviation in a truss-braced wing based

on using vibration suppression devices to target the specific modes of the structure in order to

reduce their participation in the gust response. Three candidate locations were considered, the

two hinge locations at the root and tip of the primary strut and the jury-strut, and three device

layouts have been tested, a pure damper, the Tuned-Inerter-Damper and the Tuned-Inerter-

Damper-Damper. The gradient-based optimiser within Nastran Solution 200 was used to optimise

the device parameters and a multi-start optimisation approach was used to traverse the global

design space and find a suitably global solution.

The results indicated that the frequency-response optimisation approach introduced in this

chapter allows a vibration suppression device that is capable of providing moderate loads relief

across the gust spectrum to be designed. Furthermore, for the half-wing model considered it

was found that the strut-root joint was the best location for a device regardless of the device

layout, whilst the strut-tip joint provided only minor loads relief and a device located parallel to

the jury-strut was unsuitable for gust loads alleviation. Considering the device layout, for the

case where a single device was considered a damper at the strut-root joint achieved a maximum

reduction of 3.8% in spanwise bending moment at the wing-fuselage joint, however this was

at the expense of a very large viscous damping coefficient. In contrast, the use of an inerter-

based device enabled similar reductions in incremental gust loads with only a fraction of the

viscous damping coefficient. When two inerter-based devices were considered there was a slight

increase in gust load alleviation with a maximum reduction of 4.2% in spanwise bending at the

wing-fuselage joint and similar reductions inboard of the strut-wing joint for the other five beam

loads. Furthermore, the results have shown that for both the single and multiple device cases

the optimised inerter-based devices have large mass ratios, although this could be mitigated by

designing the device to have a large inertance-to-mass ratio to limit the device mass.

The use of a frequency-response optimisation was necessitated by the inability of Nastran

Solution 200 to provide gradient information for a gust analysis. Whilst a frequency response

optimisation favours computational efficiency it has been shown that this approach does not

always lead to an improved gust response, therefore it would be preferable to formulate the

cost function in terms of the gust loads. Such an approach is possible using FSI or adopting

a low-order aeroelastic modelling technique, such as the nonlinear formulations described in

Chapter 2 - this is identified as future work.

Based on the results in this chapter, the level of GLA provided by a passive vibration absorber

scheme is significantly less than that which can be achieved by an active control scheme171–176.

However, as the device optimisation was conducted ’by-proxy’ it is possible that greater per-

formance could be obtained if the gust loads were considered directly as the optimisation cost

function. Something that could be readily achieved with any one of the reduced-order aeroelastic

models that are prevalent throughout the research literature104–107.
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In the next chapter the damper force and device inputs identified in Section 5.1.3 will be

used to inform the design of a device that can achieve the magnitude of linear force coefficients

identified by the flutter suppression and gust load alleviation studies. The findings of this study

will allow the concept of using vibration suppression devices for aeroelastic control to be evaluated

in terms of the device mass, as well as determine whether the required dimensions are feasible

in the context of a truss-braced wing aircraft.
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6
PRELIMINARY DESIGN OF A VIBRATION SUPPRESSION DEVICE

FOR AEROELASTIC CONTROL

This chapter is concerned with the preliminary design of a vibration suppression device

that can provide the required linear force coefficient values identified by the flutter

suppression and gust load alleviation studies from Chapters 4 and 5. The objective of

this chapter is to understand whether the magnitudes of the identified stiffness, damping and

inertance are realisable within the context of a truss-braced wing aircraft, therefore the focus is

on using approximate design formulae and not the detailed analysis of the device characteristics.

Only fluid-based devices are considered given their prevalence in the literature and the fact

that they are already widely applied in the aerospace industry, for example in landing gear233

and rotor stability applications192. Before proceeding it is important to note that this section

relies heavily on reference material from three papers191,228,229. Therefore this chapter does

not represent novel work, although it does provide context for the previous device optimisation

studies so it is still important and relevant to this thesis.

This chapter is formatted as follows: In Section 6.1 some practical considerations for designing

a physical vibration absorber are discussed including issues regarding the certification of these

devices for use in a commercial aircraft. In Section 6.2 the required geometry and available

stroke for the vibration suppression device is considered with a view to incorporating the device

within the profile of the primary strut of the BUG-T model. In Section 6.3 a fluid-based hydraulic

damper based on the work by Rittweger et al. 191 is used to determine the range of equivalent

viscous damping coefficients that are realisable by a device that fits inside the strut profile. In

Section 6.4 a fluid-inerter is introduced and various parameter studies are run to determine the

range of device inertance values that can be achieved. Estimates of the device mass are made in

Section 6.3 for the hydraulic damper and 6.4 for the fluid-inerter.
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6.1 Practical Absorber Design

As a vibration suppression device is a novel and unusual design feature in a fixed wing aircraft

there are likely to be many technical challenges to the certification of this technology, however,

because of this novelty, the requirements are not explicitly defined in any of the existing certifica-

tion documents. Discussion on the use of "Passive Flutter Dampers" is provided in Section 5.1.4.3

of CS-25234, although such devices are concerned with suppressing control surface flutter and

not providing gust loads alleviation - however these requirements can still be used as guidelines.

For example, the probability of device failure would need to be assessed, especially for the case

where multiple devices are included, and a fail-safe design methodology would need to be adopted,

similar to the certification of the Boeing 747-8 flutter suppression technology284. Here, the

strength and stability of the airframe must be guaranteed even for conditions where the device

had failed. Furthermore, the capabilities of the passive system would have to be demonstrated

in wind tunnel tests and associated analysis models validated. Inspiration could also be taken

from the rotorcraft industry where blade lead-lag dampers have been designed and certified

for a number of helicopters192 and anti-vibration control systems have been installed on the

EuroCopter EC225238 and EC130T2239. A summary of some of the other key considerations are

detailed below:

• Operating Frequency - The frequencies at which the device reach peak efficiency must

be identified before beginning the detailed design of the device. In this study the flutter

frequencies are used to estimate the desired operating frequency of the device and a

sensitivity study is also conducted for a fixed device design to determine the effect of

frequency on the equivalent viscous damping coefficient.

• Available Stroke - The required stroke1 must be defined as this drives the geometry of

the device and defines the available fluid volume.

• Geometry - The available space and the attachment locations must be specified so that

the device can be designed such that it meets all geometrical constraints. This is especially

important in the context of a TBW as the device must fit within the internal volume of the

aircraft otherwise additional drag penalties will be incurred.

• Device Mass - Depending on the application the device mass may be one of the main

design constraints. In an aerospace context it is critical that the device mass is minimised

whilst still providing the correct response as unnecessary mass leads to a decrease in

mission performance.

• Attachment Loads - As the device is transmitting a force into the structure the local

loads in the vicinity of the attachment points will be larger than those predicted from

an analysis which does not consider the effects of the device, such as a static aeroelastic

design case. Therefore additional factors may have to be defined in the design of structures

which include these devices so that the required stiffness and mass properties are not

1The device stroke is the distance the piston head travels in half a cycle.
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underestimated.

• External Loads - The device must be designed to withstand externally applied loads

which are transmitted to the device from the primary system. In the case of a TBW these will

be loads resulting from static and dynamic conditions such as: steady-state manoeuvres,

gust and turbulence encounters and landing. Pressurisation loads will also need to be

considered to ensure the pressure vessel does not fail as the atmospheric pressure varies

across the mission flight profile.

As noted in Chapter 2, the use of vibration absorbers is widespread throughout several industries

and there is a wealth of knowledge related to the design and characterisation of these devices. In

this work particular attention is paid to the work by Rittweger et al. 191 , Swift et al. 228 and Liu

et al. 229 : Rittweger et al. 191 provides an excellent reference for the design of passive damping

devices in an aerospace context and his equations on a hydraulic damping concept are used in

Section 6.3 to design a translational damping device. Swift et al. 228 and Liu et al. 229 detail

the design and modelling of a fluid inerter device and their methods are used in Section 6.4 to

estimate the range of available inertance values. Note a key assumption in the following sections

is that the design rules presented in these papers can be applied freely without considering the

complex flow behaviour that is inherent to a fluid-based device. This is a gross simplification

however as the focus is on simply understanding the range of parameter values that can be

realised this approach is acceptable.

Finally, as a fluid-based device is being investigated the term pressure vessel will be used

interchangeably with device and/or damper to describe the compartment which houses the fluid

and other associated components such as the piston rod and piston head. An example is shown in

Fig. 6.3 with the various parts annotated for clarity.

6.2 Geometric Constraints and Estimating Device Stroke

Before proceeding with the preliminary design of the vibration absorber it is necessary to

understand the available space for housing the device and also what magnitude of stroke is

available as the device input. Furthermore, as location A is the strut root pinned joint the relative

motion is in fact a rotation, therefore the translational stroke must be generated via a lever arm

which is based on the available geometry. Vibration absorbers that respond to relative rotations

are also available, such as the motorcycle steering compensator detailed in Jiang et al. 216 or the

shock absorber patented by Peo and Lautz 285 , however it was decided to focus on translational

devices given the larger volume of research available on this topic.

Regarding geometric constraints, Fig. 6.1 shows how the moment arm, maximum thickness

and pressure vessel diameter are related. Here, the assumption is made that the device lies

within the profile of the strut, which represents a conservative estimate of the available geometry

for housing a vibration suppression device in a truss-braced wing aircraft. Other integration
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∆θ,∆ω r

Line of action
of device force

Hinge line

φpv

tmax/2

FIGURE 6.1. Diagram showing line of action of the device force with respect to a
rotational joint and the associated lever arm.

concepts could be considered, for example as location A is collocated with the strut-fuselage joint

it is possible that the device could be included in the belly fairing of the fuselage. This would

offer substantially more space however the geometry requirements of the device would need to be

traded against the design of the landing gear, which for high-wing aircraft is typically situated in

the fuselage belly-fairing. In this chapter the device integration scheme in Fig. 6.1 will be used,

the rationale being that if a device can be designed that fits into this space and provides the

necessary linear force coefficients then it is highly likely that a device located in the belly-fairing

would also be appropriate. Furthermore, as the device is confined to the strut profile the following

discussions are also applicable for a device at location B or C. To calculate the available geometry

for the pressure-vessel diameter a NACA 0018 aerofoil is used with a chord length of 521mm

yielding a maximum possible section thickness (tmax) of 93.76mm2. Assuming that the hinge lies

along the centreline of the section this leaves a maximum height of 45mm for the lever arm r and

the pressure vessel diameter φpv, meaning the following relationship must hold φpv +2r ≤ tmax.

As with the device location, the line of action of the device force does not necessarily have to be

above the hinge line but as this represents a conservative estimate it is appropriate to proceed.

Estimating the device stroke is not straightforward as the flutter modeshapes are relative

quantities and the gust analysis in Chapter 5 showed that the relative motion at the device

locations is a function of gust gradient. Instead a parameter study will be performed to determine

the range of device strokes that can achieve the required viscous damping coefficient using values

between 1 - 10° for the relative rotation about the hinge3 (∆θ). Once the lever arm has been

chosen the translational device stroke can be calculated from X0 = r∆θ. Figure 6.2 shows the

relationship between the pressure vessel diameter and the normalised lever arm r = 2r/tmax.

Here normalised lever arm values between 5% and 25% of the section thickness have been trialled

and the corresponding pressure vessel diameter has been calculated. Figure 6.2(a) shows that

2This is the same profile and strut geoemtry as the SUGAR High 765-095 Rev. D.
3These values are of similar magnitude to the gust analysis results shown in Chapter 5.
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(a) Pressure vessel diameter as a function of lever arm
(b) Device stroke as a function of level arm and assumed
joint rotation

FIGURE 6.2. Pressure vessel diameter and available device stroke as a function of
lever arm and joint rotation.

for the strut dimensions considered the pressure vessel diameter is between 22mm and 40mm

depending on the chosen lever arm value. Next, the relative rotation is included in the trade

study and the translational device stroke is calculated for all values of ∆θ and r. As shown in Fig.

6.2(b) translational device strokes between 0.2mm and 1.8mm are available based on the section

geometry and candidate hinge rotation. These values are in line with the design data presented

by Rittweger et al. 191 and Panda et al. 192 so it is likely that a viable device can be obtained

despite the seemingly small value of device stroke. However, it should be noted that for such

small values of device stroke the effects of freeplay and/or friction in the pressure vessel seals

and piston rod/cylinder will have a significant effect on the device performance230. Therefore, one

option could be to increase the device stroke via additional leverage or gearing mechanisms189,

however this would require a more detailed design which is beyond the current scope. In the

following sections the identified values of device stroke will be used to calculate approximate

dimensions for three different device concepts in order to determine whether the damping and

inertia values identified by the optimisation process are feasible.
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6.3 Hydraulic Damper Concept

In this section the hydraulic damper concept is introduced and a series of parameters studies are

performed to understand the range of viscous damping coefficients and spring stiffness values

that are obtainable for the pressure vessel geometries described in Section 6.2. This section is

split into three parts: In Section 6.3.1 the equivalent viscous damping coefficient is estimated

using the method described in Rittweger et al. 191 . In Section 6.3.2 the equivalent spring stiffness

resulting from the fluid compressibility is calculated for a range of pressure vessel geometries.

Finally, in Section 6.3.3 a component breakdown of the hydraulic damper is used to estimate the

mass of the damping device.

6.3.1 Equivalent Viscous Damping Coefficient

Figure 6.3 shows a diagram of a simple hydraulic damper as described by Rittweger et al. 191 .

The damping force for this concept is generated via losses from turbulent flow which occur when

the fluid is forced through an orifice in the piston head. In this model it is assumed that the

only mechanism for fluid to be transferred between the two chambers is via this orifice, however

in a real-life viscous damper there will be some leakage around the sides of the piston head

as discussed in Liu et al. 229 . Using this model the equation for the damper force is given in

Milwitzky and Cook 286 as

FD = A3
netρ f

2α2 A2
o

Ẋ2, (6.1)

where FD is the damper force, Anet is the net area of the piston head
(
π

(
φ2 −φ2

r
)
/4

)
, ρ f is the

fluid density, α is a loss factor which has a value between 0.6 and 0.64191, Ao is the area of the

φ

φo

φr

φpv

ρ f

Lpv

FD , Ẋ , Ẋ0

Piston head

Piston rod

Pressure Vessel

FIGURE 6.3. Diagram of a simple hydraulic damper showing the principal dimensions,
derived from Rittweger et al. 191 .
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orifice
(
πφ2

o/4
)

and Ẋ is the velocity of the piston head. In Rittweger et al. 191 the coefficient terms

of Ẋ2 are grouped together to form the so-called hydraulic damping coefficient

chydraulic =
A3

netρ f

2α2 A2
o

, (6.2)

Note, the symbols φ, φr, φo are the same as those used in Fig. 6.3 and refer to the diameter

of the piston head, the diameter of the piston rod and the diameter of the orifice respectively.

Examining Eqn. 6.2 it is obvious that a larger hydraulic damping coefficient can be achieved by

maximising the ratio of the net piston area to the orifice area, which in physical terms corresponds

to generating a higher flow velocity through the orifice which leads to increased losses from the

turbulent flow. Clearly the damping force is nonlinear with respect to the piston velocity and

so the coefficient terms cannot be used directly as the linear viscous damping coefficient. In

such cases it is common to derive an equivalent viscous damping coefficient (cequiv) based on

the energy dissipated in a single cycle. Here, the energy dissipated in a single cycle WD of an

equivalent viscous damper with damping force FD = cequiv Ẋ is given by the integral

WD =
∫

FD dx =⇒ WD =
∫

cequiv Ẋ2dt, (6.3)

where the substitution dx = Ẋ dt has been used to transform the integral into the time domain.

Furthermore, assuming cyclic loading the substitution X = X0sin(ωt) can be made which yields

an expression for piston velocity Ẋ = X0ωcos(ωt) allowing the integral to be evaluated with the

cycle frequency as the upper limit

WD = cequivω
2X2

0

∫ 2π/ω

0
cos2 (ωt)dt, (6.4)

where X0 is the stroke and ω is the cycle frequency. Finally, using the trigonometric identity

cos(2ωt)= cos2 (ωt)−sin2 (ωt) the cos2 (ωt) term can be simplified to 1+cos(2ωt) /2 allowing the

work done by an equivalent viscous damper to be defined as

WD =ωX2
0 cequivπ, (6.5)

A similar process can be used to derive the work done by the hydraulic damper, however in the

interest of brevity this term is given by Rittweger et al. 191 as

WD = 8
3

chydraulicω
2X3

0 . (6.6)

Assuming that the amount of work done by the hydraulic damper and the equivalent viscous

damper is equal, it is possible to define the equivalent viscous damping coefficient in terms of the

hydraulic damping coefficient

cequiv = 8
3π

ωX0chydraulic =⇒ cequiv =ωX0
8

3π
A3

netρ f

2α2 A2
o

. (6.7)
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This equation indicates that the equivalent viscous damping coefficient is a function of the

damper geometry, the choice of fluid, the device stroke and the excitation frequency, implying

that the desired damping coefficient value could be achieved in a number of ways. For example

the device stroke, operating frequency or fluid density could be adjusted to achieve a linear

variation in cequiv, or the ratio of the piston head and orifice areas could be tailored to promote

the desired flow behaviour through the orifice. Using Eqn. 6.7 it is possible to determine the

range of available viscous damping coefficients for the hydraulic damper concept by considering a

range of device strokes, frequencies and geometry combinations. Figure 6.4 shows the minimum

and maximum values of equivalent viscous damping coefficient that are achievable when the

following parameter study is performed: First, values of excitation frequency in the range 0Hz

to 10Hz and device stroke in the range 0.1mm to 1.8mm are used to cover the frequency and

(a) Minimum viscous damping coefficient - N/ms-1 (b) Maximum viscous damping coefficient - N/ms-1

FIGURE 6.4. Range of viscous damping coefficients for the hydraulic damper concept
using the damper properties in Table 6.1.

TABLE 6.1. Parameter values for the hydraulic damper study

Parameter Symbol Equation Value Units

Excitation frequency f ω/2π 0 - 10 Hz
Device stroke X0 - 0.1 - 1.8 mm
Pressure vessel diameter φpv - 22 - 40 mm
Normalised orifice diameter φo φo/φ 0.01 - 0.1 -
Normalised rod diameter φr φr/φ 0.2191 -
Loss factor α - 0.6191 -
Fluid density ρ f - 1000191 kgm-3

Normalised piston diameter φ φ/φpv 0.8191 -
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(a) Equivalent viscous damping coefficient - N/ms-1 (b) Orifice diameter - mm

FIGURE 6.5. Equivalent viscous damping coefficient and orifice diameter for a range of
piston and normalised orifice diameters using X0 = 0.2mm f = 2.8Hz. Remaining
geometrical properties are given in Table 6.1.

stroke values of interest. Next, for each combination of device stroke and excitation frequency the

equivalent viscous damping coefficient is calculated for a range of piston and orifice diameters

using the values in Table 6.1 - Note, a factor of 0.8 is used for the normalised piston diameter

to account for the thickness of the pressure vessel and values for the loss factor and the oil

density are taken from Rittweger et al. 191 . Finally, the maximum and minimum values of cequiv

are retained for each value of X0 and ω. These results show that equivalent viscous damping

coefficients up to 1×108 are possible, which gives confidence that the viscous damping coefficient

values considered within the optimisation process are viable in the context of a truss-braced

wing.

A further parameter study is performed to understand the effect of orifice diameter on the

viscous damping coefficient. Here, a conservative estimate of 0.2mm for the device stroke is used

and the excitation frequency is defined as 2.8Hz based on a flutter reduced frequency of 0.135

and a velocity of 212m/s. Next, the equivalent viscous damping coefficient is calculated for a

range of piston and orifice diameters using the values in Table 6.1. Figure 6.5 shows that for this

set of parameters values of cequiv up to 1×106 are achievable. Furthermore, for a target viscous

damping coefficient in the range 104 - 105 a normalised orifice diameter of between 1% and 2.5%

of the piston head should be used, which corresponds to an orifice diameter of approximately

0.2mm to 0.6mm based on the contour plot in Fig. 6.5(b).
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T1 T2

k f luid cequiv

FIGURE 6.6. Network diagram for a damper including fluid compressibility effects.

6.3.2 Spring Stiffness Resulting from Fluid Compressibility

So far the discussion of the damper properties has focussed on calculating an equivalent viscous

damping coefficient based on the key parameters of the device. However, it is well known that

in this type of damper idealisation additional effects are present that are attributed to the

compressibility and mass of the fluid. These effects can be idealised as additional spring and

mass/inerter elements connected in series or parallel with the damper, and examples of such

networks are provided in throughout the literature191,228,229. In the simplest of cases these

additional effects are ignored however it is common to include a spring in series with the

equivalent viscous damper in order to model the compressibility of the fluid, as in Fig. 6.6. The

series spring has the effect of limiting the effectiveness of the damper by reducing the relative

motion across the nodes of the damper, as shown in Rittweger et al. 191 . Therefore it is desirable

to have the highest possible stiffness for the series spring in order to maximise the work done by

the viscous damper. It is likely that there will be numerous design drivers which determine the

length of the pressure vessel however, in lieu of more detailed information, Rittweger et al. 191

provides the following analytical expression for the effective stiffness of the fluid

k f luid = Ee f f Anet

Lpv
(6.8)

where Lpv is the length of the pressure vessel and Ee f f is the effective modulus of the fluid

and the pressure vessel, which itself is a function of the pressure vessel geometry, the modulus

FIGURE 6.7. Fluid stiffness for varying pressure vessel length and diameter - N/m.

150



6.3. HYDRAULIC DAMPER CONCEPT

of the fluid and the modulus of the pressure vessel material. Based on this equation it would

be possible to use a fluid-spring as the spring element of the TID or TID-D layouts by simply

removing the orifice in the piston head, although, it should be noted that there will still be a small

amount of damping due to leakage of fluid around the piston head229. In this study, Ee f f is set

to 2280N/mm2 using the value from Rittweger et al. 191 and a parameter sweep is performed of

Anet and Lpv to gain an appreciation for the magnitude of the series spring stiffness. The results

of this study are shown in Fig. 6.7 for vessel lengths between 10mm and 100mm and values of

Anet corresponding to the data in Table 6.1. Here spring stiffness values in the range 5.3×106

and 1.8×108 have been achieved, again providing evidence that the stiffness values considered

in the optimisation process are appropriate for this application.

6.3.3 Estimating Damper Mass

Given that much of the design of aircraft structure is driven by mass considerations it is prudent

to estimate the mass of the damper in order to understand the potential mass penalty that could

arise from using these devices. Unfortunately detailed analytical estimates of the mass of a

fluid-based shock absorber are not readily available given the commercially-sensitive nature

of this technology. This makes the analytical estimation of the mass of a vibration suppression

device a difficult task as very little reference material is available. To bypass this issue the device

is divided into its subcomponents and the mass is calculated from the geometry of the component

and the material/fluid density. Therefore, considering mass contributions from the fluid, pressure

vessel casing and the piston rod, the mass of the damper can be defined as

Mdamper =
π

4

{
Lpv

[(
φ2

pv −φ2
)
ρpv +φ2

rρpv +
(
φ2 −φ2

r
)
ρ f

]
+2φ2

pvtpvρpv

}
, (6.9)

where the first term inside the brackets defines the contribution from pressure vessel casing4,

the second term is the mass of the piston rod and the third term is the mass of the fluid. The

term 2ρpvφ
2
pvtpv accounts for the mass of the two end-plates that seal the pressure vessel,

with the thickness of the plate (tpv) assumed to be equal to the pressure vessel thickness, i.e.

tpv =
(
φpv −φ

)
/2. In a typical civil engineering application the thickness of the pressure vessel

will be driven by the hoop stress resulting from the pressure differential across the internal and

external diameters. In an aircraft landing gear shock absorber, an example of a similar technology

application, fluid pressures up to 5000psi (345bar) are typical288. Using this as a reference point

for the damper fluid pressure and assuming the largest possible pressure vessel diameter of

40mm and a yield strength of 350MPa yields a wall thickness of 1.3mm at ultimate loading5,

which is in-line with the 0.8 knock-down factor assumed by Rittweger et al. 191 . As the calculated

thickness to resist hoop stress is quite low it is unlikely this will be the critical design case for
4A steel alloy with density ρpv = 8050kgm-3 has been chosen as a first estimate for the pressure vessel material

based on the comments in Bickell 287 .
5Assuming a safety factor of 1.5 the pressure vessel thickness to prevent failure at ultimate loading is given by

tpv = P f φ/3σy, where P f is the fluid pressure and σy is the yield stress of the pressure vessel material.

151



CHAPTER 6. PRELIMINARY DESIGN OF A VIBRATION SUPPRESSION DEVICE FOR
AEROELASTIC CONTROL

the pressure vessel casing, instead external attachment loads are likely to drive the sizing of the

device components. For example, the maximum damper force from the gust analysis in Chapter 5

can be used to estimate the buckling length of the piston rod. Using a critical buckling load of

25,433N and a rod diameter of 6.4mm yields a buckling column length of 40mm6. A piston rod

length of 40mm may not be sufficient for transmitting the device force into primary structure,

however these dimensions are a consequence of requiring the device to fit inside the cross-section

of the strut. Therefore it is likely that more appropriate device dimensions could be obtained if the

a different device integration scheme was considered. This simple example clearly demonstrates

the need to consider all aspects of the device design when trading the use of vibration absorbers

for aeroelastic control.

Figure 6.8 shows the variation in the damper mass as a function of the pressure vessel length

and diameter, with the remaining parameters defined in Table 6.1. Here masses in the range

0.05kg to 0.5kg have been demonstrated however due to the simplicity of the calculations involved

this is clearly overly optimistic. A better estimate could be gained by including components such

as seals, fittings and the piston head, as well as calculating the pressure vessel thickness based

on the required stress and fatigue performance. It is likely that once these considerations are

included the device mass will be of the order of tens of kilograms, therefore the addition of a

damper to provide aeroelastic control is unlikely to have a significant mass penalty in the context

of aerospace wing structures.

6Assuming a Youngs modulus for steel of 200GPa and fully fixed boundary conditions for the Euler buckling
formula gives, L =

√
π2EI/4Pcr . These dimensions are for a device with an outer pressure vessel diameter of 40mm

and a rod diameter which is 20% of the piston diameter, as in Rittweger et al. 191 .

FIGURE 6.8. Damper mass as a function of pressure vessel length and diameter for
the geometry data in Table 6.1.
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6.4 Fluid Inerter Concept

In addition to using a fluid-based device to generate damping forces it is also possible to use the

mass of the fluid to generate additional inertia effects. In this section, the conceptual fluid inerter

proposed by Swift et al. 228 and more recently investigated by Liu et al. 229 will be assessed to

understand the scale of inertance values that can be realised by using a fluid-based device. In this

concept the inertance is generated by forcing the fluid around a helical channel that surrounds

the pressure vessel, as shown in Fig. 6.9. In addition to generating inertance, the movement of

the fluid along the helical channel also leads to energy losses (i.e. damping) as a result of pressure

drops and turbulent flow at the inlet and outlet of the channel228. These additional terms enter

the network layout as a parallel inerter and damper attached in series to the viscous damper

network from Section 6.3, yielding the network shown in Fig. 6.10. As discussed by Swift, the

advantage of a fluid inerter over the conventional mechanical inerter is the relative simplicity of

the design as well as improved durability due to the reduction in the number of moving parts.

Furthermore, the amount of damping and inertance can be tailored by varying the diameters

of the various orifices and channels in the device, presenting the possibility of a semi-active or

active device whose properties can be tailored to the desired operating conditions. Further details

are provided in Liu et al. 229 . The inerter described in this section can be thought of as the pure

inerter element in the TID and TID-D layouts, except with additional components resulting from

the damping and stiffness effects of the fluid.

In rest of this section the inertance from the helical channel is estimated using the geometry

of the hydraulic damper presented in Section 6.3. Damping contributions from the helical channel

are not addressed but could be readily incorporated using the methods described by Swift et al. 228

and Liu et al. 229 . The inertance value for the fluid in the helical channel is given as228

bhc = ρ f lhc
A2

net

Ahc
, (6.10)

where bhc is the inertance from the helical channel, lhc is the length of the helical channel and

FD , Ẋ , Ẋ0

Helical channel

φhc

FIGURE 6.9. Diagram of a conceptual fluid inerter device, derived from Swift et al. 228 .
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T1 T2

k f luid cequiv

chc

bhc

FIGURE 6.10. Network diagram of the fluid inerter, taken from Swift et al. 228 . Terms
related to the helical channel are denoted by the subscript hc.

Ahc is the cross-sectional area of the helical channel. Assuming that both the pressure vessel and

the helical channel have circular cross-sections this equation has the form

bhc = ρ f lhc
πφ4

net

4φ2
hc

, (6.11)

where φhc is the diameter of the helical channel which can be calculated for known values of

Anet and Anet/Ahc. Using the geometry data in Table 6.1 the potential values of inertance are

determined by sweeping through values of lhc and Anet/Ahc. In this study two configurations

are considered for the helical channel. In the first configuration the channel is assumed to be

wrapped around the exterior of the pressure vessel as shown in Fig. 6.9. This means that the

length of the helical channel is coupled with the length of the pressure vessel and the diameter

of the channel, as shown in Equation 6.13. In the second configuration the helical channel is

located externally to the pressure vessel and the available length is not linked to the pressure

vessel geometry, as in Liu et al. 229 . To enable the first configuration to be considered a geometric

expression for the helical channel length must be developed in order to link the dimensions of

the pressure vessel to the length of the channel. Assuming the channel forms a perfect helix the

length of the fluid path is given by

lhc = N
√

h2 + c2 , (6.12)

where N is the number of revolutions, h is the rise of the helix per revolution and c is the

circumference of the helix, c =πφpath. For the configuration where the helix wraps around the

exterior of the pressure vessel the diameter of the helix is simply the sum of the pressure vessel

and channel diameters, i.e. φpath = φpv +φhc. Also, assuming the channel tubing is perfectly

aligned with no gaps and ignoring the thickness of the tubing, the rise of the helix is given by the

diameter of helical path. Finally, the number of revolutions can be determined from the number

of channel diameters that will fit along one side of the pressure vessel, i.e. N = Lpv/φhc. Therefore

the helical channel length in terms of the pressure vessel dimensions and channel diameter is

given by,

lhc =
Lpv

φhc

√
φ2

hc +π2
(
φpv +φhc

)2 . (6.13)
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Using this equation the variation in the length of the helical path can be found by performing

a two level parameter study. At the first level the pressure vessel length (Lpv) and area ratio

(Anet/Ahc) are defined, then the corresponding helix length and fluid inertance are calculated

using the geometry in Table 6.1. The maximum values of lhc and bhc obtained from this study

are presented in Fig. 6.11. Figure 6.11(a) shows that path lengths up to 13 times the vessel

length can obtained and the magnitude of the path length (i.e. in thousands of mm) matches the

results presented by Swift et al. 228 . Regarding the fluid inertance, Fig. 6.11 shows that values

up to 500kg are obtainable however this is only for the most extreme case of Lpv = 500mm and

Anet/Ahc = 1%. This makes physical sense as a longer vessel allows for more revolutions of the

helix and hence a longer channel length, also, a higher area ratio yields a larger flow velocity

in the channel which provides a higher inertance. However, it should be recognised that these

values represent a theoretical maximum and for this size of device inertance values in the range

of 100kg are more typical228. Relating these results to the data used in the optimisation process,

an inertance of 100kg is roughly equivalent to a mass ratio of 2.64%7 which is certainly not

the same magnitude as the mass ratios used in the optimisation process. This highlights the

importance of relating the bounds of the design variables to the physical properties of the device

in order to ensure that only feasible devices configurations are considered.

If a larger inertance value is desired then one option could be to increase the length or

diameter of the pressure vessel, however this would impact the performance of the damper by

reducing the equivalent fluid stiffness. An alternative is for the helical channel to be placed

7Calculated using the half-wing mass of the SUGAR 765-095-Rev. D of 3781kg.

(a) Length of the helical channel - mm (b) Maximum fluid inertance - kg

FIGURE 6.11. Variation in helical channel length and fluid inertance as a function of
pressure vessel length and channel area ratio. Caclulated for the case where the
helical channel length is coupled to the pressure vessel length.
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externally from pressure vessel and connected via additional tubing, as demonstrated by Liu

et al. 229 . This would decouple the helical channel length from the overall length of the pressure

vessel and allow longer channel lengths to be obtained. For example Liu demonstrated that helical

channel lengths up to 12m are possible, however this was in a laboratory setting and in a practical

application this would be subject to the available volume at the device location. To demonstrate

the range of available inertance values that can be realised by decoupling the channel length

and pressure vessel geometry an additional parameter study is performed. Here, the helical

channel length is varied between 0.01m and 10m and the inertance value is calculated for a range

of channel diameters corresponding to area ratios between 1% and 10% of the net piston area

Anet. Figure 6.12 shows the resulting inertance values for the cases where the pressure vessel

diameters are equal to 22mm and 40mm, which represent the maximum and minimum values for

a device at location A. These results show that a much larger range of inertance can be achieved

with a maximum of 700kg and a minimum of 0.11kg, corresponding to a channel with the longest

length/smallest diameter and the shortest length/largest diameter respectively. These values are

in line with the inertance considered during the optimisation process, however it must be noted

that these results represent theoretical values based on simple design formulae. Meaning that

the actual realisable values of inertance may vary significantly once a more detailed model is

adopted229.

Finally, as the fluid inerter considered in this section is a simple extension of the hydraulic

damper in Section 6.3 the mass of the inerter can be estimated using a similar approach but with

(a) Inertance values (kg) for φpv = 22mm (b) Inertance values (kg) for φpv = 40mm

FIGURE 6.12. Variation in inertance values as a function of helical channel dimensions
for the case where φpv = 22mm and φpv = 40mm.
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an extra term to account for the mass of the fluid in the helical channel (Mhc).

MFI = Mdamper +Mhc = Mdamper + lhc Ahcρ f , (6.14)

As before, this represents an optimistic estimate of the device mass and requires further

refinement to provide an accurate estimate. Figure 6.13(a) shows the variation in the mass of

the fluid inerter as a function of pressure vessel length and diameter and Fig. 6.13(b) shows the

variation in the mass of the fluid in the helical channel, note the range of pressure vessel lengths

has been increased compared to the damper to accommodate the required helical channel lengths.

As with the hydraulic damper concept, the estimated mass of the fluid inerter is small in the

context of aerospace structures, implying that the device mass will not be barrier for further

implementation of this concept. These results also show that the additional mass due to the fluid

in the helical channel is small and accounts for approximately 7% of the overall mass of the device.

Therefore for a given length and diameter the mass of the fluid inerter is roughly equivalent to

the mass of the hydraulic damper. For the case where the helical channel length is coupled with

the length of the device, achieving a large inertance value requires a longer pressure vessel and

hence a larger mass. This approach would also deteriorate the damping performance due to a

reduction in the equivalent fluid stiffness191 resulting from a longer vessel length. Therefore

it is clearly beneficial to decouple the length of the helical channel and the length of the device

by adopting the configuration presented by Liu et al. 229 . This would allow the device length to

be designed to maximise damping performance whilst the length of the helical path could be

tailored to provide the correct inertance.

(a) Mass of fluid inerter device - kg (b) Mass of fluid in helical channel - kg

FIGURE 6.13. Fluid inerter mass as a function of pressure vessel length and diameter
for the geometry data in Table 6.1.
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6.5 Initial Design of Candidate Vibration Absorbers for
Aeroelastic Control

In this section device layouts from the single absorber flutter optimisation are used to define a

set of target parameter values in terms of equivalent viscous damping coefficient, spring stiffness

and inertance - as in Table 6.2. Note that when designing these devices it is assumed that the

normalised rod diameter (φr), loss factor (α), fluid density (φ f ) and normalised piston diameter

(φ) have the values specified in Table 6.1, therefore the only parameters that need to be chosen are

the operating frequency ( f ), device stroke (X0), pressure vessel diameter (φpv) and the normalised

orifice diameter (φo), as well as the helical channel properties φhc and lhc.

6.5.1 Viscous Damper Design

This section will consider the design of a hydraulic damper that can achieve the viscous damping

coefficients for the pure damper and TID-D layouts in Table 6.2. The first step is to choose the

design operating frequency and device stroke as these are required to determine the equivalent

viscous damping coefficient.

• When designing a device for flutter suppression the device operating frequency can be

derived from the flutter frequency, which for the BUG-T model is 2.8Hz. For GLA the

operating frequency is not as obvious, although it could be based on the natural frequency

of the mode which the device is most likely to influence. For the purposes of this study the

the design operating frequency will be set to 2.8Hz.

• The device stroke will usually be determined by geometric constraints. For the case where

the device is located inside the cross-section of the strut the available device stroke is a

function of the pressure vessel diameter and the assumed rotation about the strut joint, as

shown by Fig. 6.2. In this example a conservative device stroke of 1mm is specified which

allows the pressure vessel diameter to be calculated by extrapolating the data in Fig. 6.2.

Here, a device stroke of 1mm is possible for values of r and ∆θ in the range 0.13-0.25 and

5-10° respectively. Assuming a conservative value of 6° for ∆θ yields a pressure vessel

diameter of 25mm.

Now that f , X0 and φpv have been calculated the only remaining parameter to be determined

is the normalised orifice diameter. Figures 6.14(a) and 6.14(b) shows the results of a sweep in

φpv and φo using the values in Table 6.1. The contour relating to a target viscous damping

TABLE 6.2. Target device parameters from the single absorber flutter optimisation.

Location Device ∆VF c cTID bTID kTID fTID µ

Loc. A
Damper 3.55% 1×105 - - - - -
TID 5.35% - 50.0 378.1 1.21×105 2.85Hz 0.1
TID-D 3.68% 1×105 3.30×104 378.1 8.50×105 7.55Hz 0.1
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coefficient of 1×105 is highlighted in red on Fig. 6.14(a), the next contour above this corresponds

to a viscous damping coefficient of 3.16×104 which is very close to the desired viscous damping

coefficient of the TID-D device in Table 6.2. Interpolating these two contours at φpv = 25mm

yields a normalised orifice diameter of 0.9% and 1.2%, corresponding to orifice diameter of

approximately 0.2mm for both cases. For completeness it is possible to determine the equivalent

spring stiffness of the fluid and the damper mass by choosing an appropriate value of Lpv. Using

values of pressure vessel length in the range 10-100mm yields a k f luid between 6.8×106 and

6.8×105 N/m and a damper mass between 30-175g. At this point is important to remember that

these design formulae are highly idealised and do not include additional considerations such as

attachments and additional material to resist external loading.

(a) Viscous damping coefficient - N/ms-1 (b) Orifice diameter - mm

(c) Equivalent spring stiffness of the fluid - N/m (d) Damper mass - kg

FIGURE 6.14. Physical parameters for a viscous damper with cequiv = 1×105.
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(a) Spring stiffness - N/m (b) Spring mass - kg

FIGURE 6.15. Physical parameters for the final TID and TID-D fluid springs.

6.5.2 Hydraulic Spring Design

This section will consider the design of a hydraulic spring that can achieve the spring stiffness

values for TID and TID-D layouts in Table 6.2. Fixing the effective modulus of the fluid at

2280N/mm2 (i.e. the value from Rittweger et al. 191) and conducting a simple trade in φpv
8 and

Lpv yields a set of possible spring stiffness values which are calculated using Eqn. 6.8. Figure

6.15 shows the results of this trade study for pressure vessel lengths between 50-1000mm and

diameters between 5-40mm, with the contours relating to the target k f luid values highlighted

in red. The first point to note is that in order to achieve the comparatively low spring stiffness

values (compared to the damper designs in Section 6.3.2) the pressure vessel aspect ratio must be

increased, i.e. the length increases and the diameter decreases. This is because the required value

of k f luid is between two and three orders of magnitude lower than the values from Section 6.3.2. In

order to keep the mass to a minimum the smallest possible diameters are chosen which satisfy the

required stiffness values, yielding a values of φpv = [5mm,6.2mm] and Lpv = [227mm,50mm] for

kTID and kTID−D respectively. Inserting these values into Eqn. 6.9 gives a mass of approximately

100g for each fluid spring.

6.5.3 Fluid Inerter Design

This section will consider the design of a fluid inerter that can achieve the inertance values for

TID and TID-D layouts in Table 6.2. Here the target inertance for both the TID and TID-D is

set to 378.1kg, which is equivalent to an inertance-to-mass ratio of 10%. of the BUG-T wing. As

8Only φpv needs to be traded as the rod diameter is fixed at 20% of the piston diameter and the piston diameter is
fixed at 80% of the pressure vessel diameter
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(a) Inertance - kg (b) Inerter mass - kg

FIGURE 6.16. Physical parameters for the final TID and TID-D fluid inerter.

shown by Eqn. 6.11, the inertance of the fluid inerter is governed by the length of the helical

channel, the net piston head diameter and the helical channel diameter. Assuming circular

cross-sections the inertance scales to the fourth power of φnet and is inversely proportional to φ2
hc,

meaning that the easiest way to generate a large inertance value is to have a large net diameter

and a small diameter helical channel. To obtain an estimate for the available inertance a trade

study is performed for the helical channel length and diameter with the pressure vessel diameter

set to the maximum value of 40mm and the pressure vessel length fixed at 100m. The results of

this parameter sweep are shown in Fig. 6.16 with the contour for the target value of inertance

highlighted in red. It is clear that only a small corner of the parameter space is able to yield

this high value of inertance, with valid path lengths between 5-10m and an area ratio between

1-2% yielding a mass for the fluid inerter between 580-700g. Furthermore, the large values of

lhc indicate that the helical channel must be decoupled from the length of the pressure vessel

as discussed in Section 6.4. In the interest of minimising the device mass the minimum viable

dimensions are chosen, which are lhc = 5000mm and Anet/Ahc = 1%.

6.5.4 Summary of Initial Device Design

This section presents a summary of the initial device design for a damper, TID and TID-D located

at the strut-root joint which can obtain the target parameter values from the single absorber

flutter optimisation in Chapter 4. Table 6.3 shows the final values of the physical parameters that

were traded in the previous sections in order to obtain the target parameter values from Table 6.2.

These results show that the target parameter values are easily achievable by devices which will

fit inside the cross-section of the strut and that there is a negligible mass penalty associated with
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TABLE 6.3. Final physical parameters for a damper, TID and TID-D device at the
strut-root joint for the target parameter values from the single absorber flutter
optimisation.

Device φpv φo Lpv Lhc Anet/Ahc Mass

Damper 25mm 0.9% 10-100mm - - 30-175g
Damper (TID-D) 25mm 1.2% 10-100mm - - 30-175g
Spring (TID) 5mm - 227mm - - 150g
Spring (TID-D) 6.2mm - 50mm - - 60g
Inerter (TID/TID-D) 40mm - 10-100mm 5000mm 1% 580g

TABLE 6.4. Summary of flutter suppression and GLA performance for a single device
at the strut-root joint.

Device ∆VF min(∆BMWF ) mean(∆BMWF )
Damper 3.55% -3.84% -2.67%
TID 5.35% -8.61% -3.16%
TID-D 3.68% -0.50% 1.07%

these devices. Once additional material is accounted for (i.e. to resist external loads) it is likely

that these devices will have a mass in the tens of kilograms, giving confidence that a passive

vibration suppression scheme can be used in a TBW with a negligible mass penalty.

Finally, the GLA performance of these devices have been evaluated in order to understand

how effective a device designed to suppress flutter can be at reducing gust loads. The gust analysis

described in Chapter 5 has been used to determine the gust response of the BUG-T model for the

three single device cases detailed in Table 6.2. The results in Fig. 6.17 and Table 6.4 show that for

the spanwise bending moment at the wing-fuselage location a small amount of GLA is available

from the TID and pure damper devices, although the TID-D device actually increases the loads

by an average of 1%. For the wing-strut loads all of the devices have an average increase in the

spanwise bending moment which matches the trends from Chapter 5. These results demonstrate

that a small amount of GLA is available for a device that is optimised to extend the flutter

boundary of a TBW aircraft, although the amount of GLA is far less than the 60-80% reductions

that have been reported in the literature for active control methods171–173. Even so, the flutter

suppression achievable by a passive vibration absorber is of a similar magnitude to active control

results167,170 therefore there is still a clear benefit to including this concept as part of a strategy

to alleviate aeroelastic effects in TBW aircraft.
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(a) Change in wing-fuselage (WF) loads (b) Change in wing-strut (WS) loads

FIGURE 6.17. GLA performance for a single device at the strut-root joint using the
device parameters from the single absorber flutter optimisation.

6.6 Chapter Summary

This chapter has presented a preliminary study into the design of a physical vibration suppression

device that can provide the level of stiffness, damping and inertance values that were identified as

being beneficial for flutter suppression and gust load alleviation. Estimates for the device stroke

and pressure vessel diameter were derived from the depth of the strut profile at location A and the

device frequency was calculated from the flutter reduced frequency. Two concepts were considered

for the design of the device: a hydraulic damper and a fluid-inerter. Using simple design rules

a series of parameter studies were performed for both concepts to understand the influence of

the device stroke, frequency and geometry on the range of equivalent stiffness, damping and

inertance values. Based on these studies the following observations were made:

• The device diameter can vary between 22 - 40mm for a lever arm that varies between

5% and 25% of the strut cross-section depth at location A. Investigation of alternative

device integration schemes that place the device inside the belly-fairing of the fuselage are

recommended as future work.

• Assuming a hinge rotation of between 1°- 10°, this moment arms corresponds to device

strokes in the range 0.2 - 1.8mm, which are of the same scale as examples in the litera-

ture191,228,229.

• The hydraulic damper can be represented as an equivalent viscous damper with a spring in

series. For a given fluid density, the equivalent viscous damping is dependent on the area

ratio between the piston head and the orifice - with a larger ratio yielding a larger viscous
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damping coefficient.

• The equivalent spring stiffness of the damper fluid is a function of the fluid and pressure

vessel modulus as well as the area of the piston head and the length of the pressure vessel.

For a given effective modulus the vessel length is the dominant parameter and it was noted

in Rittweger et al. 191 that a lower stiffness value reduces the effectiveness of the equivalent

viscous damper.

• For a hydraulic damper with an outer diameter between 22 - 40mm, equivalent viscous

damping coefficient and spring stiffness values up to 1×108 can be realised9, although the

exact value is dependent on the absorber frequency and stroke value.

• The mass of the damper was estimated as less than 1kg however this was calculated using

a highly simplified formula. Despite this and given the scale of the dimensions involved it

is highly unlikely the mass of the damper would exceed tens of kilograms, meaning there

would not be a significant mass penalty from including these concepts in a truss-braced

wing.

• For the fluid inerter device, inertance values up to 700kg (µ= 0.18) are available however

this represents the theoretical upper limit of what is possible when the most favourable

device properties are considered, i.e. maximum pressure diameter, minimum channel

diameter, longest channel length.

• Two concepts for the helical channel were traded, one where the channel length is coupled

with the pressure vessel length and one where it was independent of the pressure vessel

geometry. When the length of the helical channel was linked to the length of the pressure

vessel inertance values of approximately 100kg were realisable, although this was at the

expense of increasing the mass and reducing the damping effectiveness. When the channel

length was decoupled from the vessel length values of inertance up to 700kg were generated,

corresponding to a channel length of 10m. However although the amount of volume required

by the helical channel was not considered and so it is not certain whether there is enough

space at the device location to accomodate the volume of additional tubing required.

• The additional mass of the fluid in the helical channel accounted for approximately 7% of

the mass of the fluid inerter, indicating that there is only a small weight penalty associated

with adopting a fluid inerter concept over the hydraulic damper.

• Using these simplified design formulae it is possible to design a collection of fluid-based

springs, dampers and inerters that can yield the parameter values identified by the single

device flutter optimisation in Chapter 4 with a minimal mass penalty. Furthermore, these

devices are capable of providing a small amount of GLA as well as extend the flutter points

which means they are a viable options for reducing aeroelastic effects in TBW.

A key source of uncertainty in this process is the exact stroke and operating frequency of the

device. Given that the device stroke cannot be extracted from the flutter modeshapes the value of

9Based on a device stroke of 0.2mm and a frequency of 2.8Hz
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the stroke may have to be defined as a fixed parameter which is traded in the design of the device.

Or, the stroke could be identified from a different type of analysis, for example a ground vibration

test or a simulated frequency response analysis. The dependency on frequency is less problematic

as the spring, damper and inerter force coefficients could be defined using a look-up table which

is referred to during the analysis10. It is important that these stroke and operating frequency

are defined early on in the design as they can have a significant impact on the achievable device

performance. For example, Liu et al. 229 observed that stroke amplitudes between 5mm and 20mm

were required to obtain a good match between experimental results and theoretical predictions

for absorber frequencies between 0.2Hz and 20Hz, which was attributed to inaccuracies in the

modelling of the fluid stiffness and friction effects which are dominant at low frequencies.

Finally, if design equations can be constructed such that the equivalent spring stiffness,

viscous damping coefficient and inertance are functions of the device geometry it would be

possible to pose an optimisation problem where the design variables are the physical dimensions

of the device. This would allow geometry constraints to be directly integrated into the design of the

device and would also prevent infeasible force coefficients from being analysed. The generalisable

model of a fluid-inerter integrated damping (FID) device proposed by Liu et al. 229 provides

several useful equations which could be used to achieve this, however many of the parameters in

these devices have nonlinear terms which are not conducive to an optimisation within Nastran

Solution 200. Therefore it may be necessary to investigate alternative analysis and optimisation

methods which can include these nonlinear device terms in the optimisation.

10Such an approach is readily available within Nastran using the PELAST and PDAMPT bulk data entries, however
these cannot be included in a flutter analysis or design optimisation.
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7
CONCLUSIONS AND FUTURE WORK

This chapter presents a summary of the thesis and details the main conclusions along with

some recommendations for future work. As each of the preceding chapters has included

a comprehensive conclusion section only the main findings of the thesis are provided and

the reader is directed to the specific chapters if they require further detail.

7.1 Thesis Summary

This thesis has presented an investigation into the design and optimisation of vibration sup-

pression devices in a truss-braced wing aircraft in order to achieve passive flutter suppression

and gust loads alleviation. Two aeroelastic finite element models were used for the analysis, a

full-span aircraft model and a half-wing model - both were referred to as the BUG-T model and

were based on the NASA/Boeing SUGAR 765-095 Rev. D aircraft.

The preliminary dynamic analysis in Chapter 3 indicated that the truss pinned-joints expe-

rienced relative motion across a range of excitation frequencies, allowing for the possibility of

vibration absorbers to be included at these locations to influence any adverse dynamic behaviour.

Furthermore, at higher excitation frequencies the combined bending of the wing and strut compo-

nents induced some relative motion across the terminals of the jury-strut, implying that a device

parallel to the jury-strut could also be viable. The static aeroelastic response of the full-span

BUG-T was compared against the results from the SUGAR sizing study and good agreement

was found between the BUG-T and SUGAR data, with errors of approximately 5% in the tip

deflection for the 2.5g and -1g manoeuvre cases. Given the approximations required to replicate

the SUGAR model these results indicated that the BUG-T model is a suitable test model for

conducting further studies into aeroelastic control via passive vibration suppression.
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Chapter 4 investigated the use of vibration absorbers to provide flutter suppression in a

truss-braced wing using a combined MATLAB-Nastran optimisation scheme. A single flight

point was considered in the optimisation and it was shown that improvements in BUG-T flutter

velocity between 1 - 6% were achievable, however this was heavily dependent on the flutter

mechanism and device layout. Sensitivity analysis of the TID device layout indicated that the

flutter suppression provided by a tunable device layouts is sensitive to changes in the absorber

frequency, however small values of flutter suppression can still be achieved at sub-optimum

tuning conditions.

Chapter 5 presented an investigation into the use of vibration absorbers to provide gust loads

alleviation in a truss-braced wing. The optimisation was formulated as a frequency response

problem with the device parameters optimised to target specific structural modes in the primary

system in order to reduce their participation in the gust response. This approach decoupled the

device design from the computationally expensive gust analysis and allowed for the possibility of

vibration suppression devices to be optimised as part of a large-scale finite element model more

typical of detailed stress analysis. Vibration absorbers were included at the three candidate device

locations and it was found that the wing gust loads envelope could be reduced by approximately

4% at spanwise locations inboard of the strut attachment point and that these improvements

were achievable across a range of gust gradients. Configurations with multiple absorbers were

investigated and it was shown that different absorbers could be tuned to target the response

of different structural modes. This is an important consideration for gust loads alleviation as

different gust gradients will activate different structural modes as a result of the gust signal

bandwidth.

Chapter 6 presented a preliminary study into the design of a physical absorber which could

achieve the linear force coefficients identified by the flutter suppression and gust load alleviation

studies. Using simple design rules for a hydraulic damper and a fluid-inerter concept it was

found that a hydraulic damper device with a diameter in the range 22 - 40mm could provide the

required equivalent viscous damping coefficient and spring stiffness using a conservative device

stroke estimate of 0.2mm at the flutter frequency of 2.8Hz. Parameter studies of the fluid inerter

concept showed that inertance values up to 700kg are achievable for a helical channel length of

10m and that it is favourable to de-couple of the length of the helical channel from the length of

the pressure vessel in order to maximise the efficiency of the damper. Considering the mass of

the fluid, piston rod and pressure vessel casing the device mass was estimated as approximately

0.45 - 2.5kg; this is a highly optimistic estimate but given the scale of the dimensions considered

the device is unlikely to have a significant mass penalty.

In general, the following device parameter values were identified as providing beneficial

flutter suppression and gust loads alleviation: spring stiffness 105 −106 N/m or N/rad, viscous

damping coefficient 103 −105 N/ms-1 or N/rads-1, inertance 102 −103kg. Although the devices

were optimised separately for gust and flutter performance it was found that a damper, TID
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or TID-D device at the strut-root was capable of providing a small amount of GLA (1-6%) as

well as increasing the flutter speed by 1-5% whilst have a negligible mass penalty associated

with the device. These results are a strong indication that passive vibration absorbers should

be considered as part of a strategy for reducing the negative effects of aeroelastic phenomena in

truss-braced wings.

7.2 Conclusions

The following are the main conclusions of this thesis:

1. The effectiveness of a vibration suppression device in providing flutter suppression and

gust loads alleviation is dependent on the mass and stiffness properties of the primary

system. For the model considered in this thesis performance improvements in the region of

5% were identified, however the decision to include vibration absorbers in the design of a

truss-braced wing should be made on a case-by-case basis.

2. In general the strut root joint of the BUG-T model was found to be the most appropriate

location for a vibration suppression device, however this was a consequence of the lower

beam stiffness in this region yielding greater relative motion during flutter and at the

critical gust lengths. As the stiffness and mass properties are model dependent the other

two device locations cannot be ruled out on the basis of the BUG-T model results.

3. A linear viscous damper was found to provide the most consistent performance for both

flutter suppression and gust load alleviation, with a viscous damping coefficient of 1×105

providing an increase in flutter speed between 1-6%

4. For the same viscous damping coefficient a tunable device can provide comparable flutter

suppression, although the performance of the device is sensitive to the tuning frequency.

5. During the flutter analysis it was found that large values of viscous damping coefficient (>
1×105) and spring stiffness (> 1×108) could cause the pinned-joints to lock and approximate

the behaviour of a fully-fixed joint. These results demonstrate the need to consider vibration

absorbers within a wider design study that trades the joint type of a truss-braced wing.

6. The spring stiffness, viscous damping coefficient and inertance values identified by the

optimisation are achievable by a device that can fit within a typical strut cross-section.

7. Initial estimates for the geometry and mass of the vibration suppression device indicate

that including these concepts in an aircraft will not incur a significant mass penalty.

8. The optimisation of the device revealed that the design space is typically non-convex,

therefore global optimisation algorithms are required to determine the optimum device

parameters. The multi-start approach adopted in this thesis was found to be suitable for

traversing the multi-modal design space, however as the size of the optimisation problem

increases care must be taken to ensure that the simulation and optimisation processes are

robust and computationally efficient.
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9. The modelling and optimisation techniques adopted in this thesis are generic enough

that they could be applied to the design of any generic device layout attached to a finite

element model - with the condition that the device force coefficients are linear and frequency

invariant.

This thesis has demonstrated that improvements in the flutter speed between 1-6% and reductions

in gust loads of approximately 4% are achievable by a vibration suppression device that can

be readily incorporated into a truss-braced wing aircraft. These performance improvements

are significant as no effort has been made to promote the device performance within the BUG-

T model, such as by tailoring the mass or stiffness of the airframe to yield greater relative

motion at the device locations. Therefore it is likely that further benefits could be realised by

incorporating the design of the device within a holistic design process that considers all aspects

of the aircraft performance. The recommendation of this thesis is that further research activities

should take place which can advance the understanding of this technology and enable it to be

included in a viable aircraft design.

7.3 Future Work

Three streams of future work are identified:

1. Aircraft Performance - To fully-realise the benefit of including vibration suppression

devices in a truss-braced wing the design of these devices should be considered as part

of an aircraft-level multidisciplinary design optimisation. This would allow any potential

mass savings and reductions in fuel-burn to be quantified whilst simultaneously designing

the device(s) to alleviate aeroelastic effects. Such a study would also allow the airframe

properties to be optimised and the joint types to be traded as part of the design process.

2. Device Design - Analytical formulations should be developed for the design and analysis

of generic vibration suppression devices, with a specific focus on understanding the mass of

the device as well as the geometrical properties that yield the relevant force coefficients.

Where possible these expressions should be linearised to allow vibration suppression devices

to be easily included in a typical structural optimisation process. Consideration must also

be given to the external loads acting on the device as these are likely to dictate the required

thickness of the components and hence the device mass.

3. Modelling Fidelity - Nonlinear aeroelastic methods which use multi-body formulations

should be applied to the modelling of truss-braced wings in order to provide an accurate

estimate for the relative motion across the device terminals. Furthermore, time domain

gust and flutter analysis should be considered to allow the effect of nonlinearities in the

device properties to be evaluated. This would also enable the design and analysis of semi-

active and active vibration suppression devices which could be used to provide consistent

performance across a range of operating conditions.
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SUGAR 765-095-REV. D DESIGN DATA

The purpose of this appendix is to provide the design data that is used to conduct the

aeroelastic analysis presented in this thesis. In order to maintain equivalence with the

sizing and optimisation work carried out as part of the NASA/Boeing Subsonic Ultra

Green Aircraft Research (SUGAR) programme the design data is taken directly from the principal

truss-braced wing report titled "Subsonic Ultra Green Aircraft Research: Phase 2 - Volume 1 -

Truss Braced Wing Design Exploration"30 for the 765-095-Rev. D aircraft variant.

A.1 Data Extraction Using GRABIT

Much of the data presented in the SUGAR report is in graphical format making it difficult to

access the raw data and use this in an analysis. In order to enable the SUGAR design data to

be used the relevant data must be extracted from these graphs and saved in an appropriate

format. As much of the pre and post-processing for the analysis in this thesis is conducted using

MATLAB it makes sense to use the MATLAB File Exchange programme GRABIT289 to extract

the data. The workflow for GRABIT is as follows:

1. Import an image into the MATLAB environment.

2. Specify an origin location and the (x, y) axes system by selecting points in the image.

3. Select data points on a pixel-by-pixel basis until the desired dataset has been compiled.

As the data must be selected manually from an image the accuracy of the dataset is dependent on

the resolution of the image and the precision by which each data point is selected. The following

data sets have been extracted using GRABIT:

• Design Speeds234 - The variation of aircraft speed vs. altitude has been extracted for the

Design Dive Speed, Max Operating Speed and the Operational Speed.
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• Beam Stiffness - The beam stiffness data has been extracted for the wing, strut and

jury-strut for the in-plane, out-of-plane and torsional stiffness parameters.

• Beam Axis Location - The location of the beam shear centre in the wing is extracted

from the data in the SUGAR reports.

Whilst every effort has been made to ensure the data has been extracted accurately it is possible

that the extracted data will deviate from the design data used during the SUGAR study.

A.2 Principal Mass Characteristics

The mass of the aircraft under different loading conditions must be established in order to define

the correct mass cases during the structural optimisation process. Table A.1 shows a summary

of the principal mass characteristics for the aircraft and Table A.2 provides a breakdown of the

aircraft mass by component part. The MTOW1, MLW, MZFW and OEW are provided in Table

2.29 of Bradley et al. 30 and the design payload and the design fuel are found in Table 2.37 of the

same report. The calculations used for payload and fuel masses are provided below:

• Design Payload - In Bradley et al. 30 the design payload is calculated assuming that

each passenger has an average mass of 200lbs (including baggage), so for 154 passengers

the design payload is 30800lbs or 13970kg.

• Maximum Payload - The maximum payload is defined as the design payload with an

additional 15200lbs, yielding 20865kg.

• Usable/Design Fuel - The usable fuel is calculated as the mass required to reach MTOW

for an aircraft carrying the design payload, i.e. M fdesign =MTOW−OEW−Mpldesign

• Maximum Fuel - The maximum fuel is calculated as the fuel capacity multiplied by the

density of aviation fuel. The SUGAR 765-095-Rev. D fuel capacity is given in Table 2.29 of

Bradley et al. 30 as 5416USG, which equates to 20503m3, assuming a standard density of

aviation fuel of 804kg/m3 yields a maximum fuel mass of 16484kg.

1Also referred to as the Takeoff Gross Weight (TOGW).

TABLE A.1. SUGAR 765-095-Rev. D mass statement.

Parameter Symbol Value Units

Maximum Takeoff Weight MTOW 68038 kg
Maximum Landing Weight MLW 64092 kg
Maximum Zero Fuel Weight MZFW 60463 kg
Operating Empty Weight OEW 39598 kg
Maximum Payload Mplmax 20865 kg
Design Payload Mpldesign 13970 kg
Maximum Fuel M fmax 16484 kg
Usable/Design Fuel M fdesign 14469 kg

172



A.3. FLIGHT ENVELOPE

TABLE A.2. SUGAR 765-095-Rev. D group mass statement, taken from Bradley et al. 30 .

Mass Group
Mass
[kg]

Wing 7561.38
Tail 1433.35
Fuselage 7679.31
Wing Strut & MLG support installation 1669.22
Landing Gear 2304.25
Nacelle and Pylon 2190.85
Propulsion - Engine 3819.24
Propulsion - Fuel System 748.43
Flight Controls 1202.02
Power Systems - APU 458.13
Power Systems - Hydraulics 344.73
Power Systems - Electrical 1043.26
Instruments 349.27
Avionics & Autopilot 680.39
Furnishings & Equipment 4136.76
Air Conditioning 653.17
Anti-icing 54.43

Manufacturer’s Empty Weight (MEW) 36328.18
Operational Items 3270.40

Operational Empty Weight (OEW) 39598.58
Usable Fuel 14469.58
Design Payload 13970.63

Takeoff Gross Weight (TOGW) 68038.80

A.3 Flight Envelope

Proper definition of the flight envelope is crucial when designing the aerodynamic and structural

properties of the aircraft as these help define the aeroelastic load cases which will size the aircraft

components. The variation in aircraft design speeds vs. altitude are presented in Fig. A.3 and

Table A.5 in terms of true air speed for a range of altitudes. In addition to these design speeds

there are numerous other metrics which are used to characterise the flight envelope of a given

aircraft design. Many of these parameters are listed in Bradley et al. 30 however those specific

parameters required to define gust load cases (ZMO) and aeroelastic stability requirements

(MMO) are provided in Table A.3.

TABLE A.3. SUGAR 765-095-Rev. D flight envelope parameters.

Parameter Symbol Value Units

Cruise Altitude ZC 36,000 ft
Cruise Mach No. MC 0.70 -
Max. Operating Altitude ZMO 50,000 ft
Max. Operating Mach No. MMO 0.82 -

173



APPENDIX A. SUGAR 765-095-REV. D DESIGN DATA

FIGURE A.1. Flight envelope for the SUGAR 765-095-Rev.D aircraft, taken directly
from Bradley et al. 30 .

A.3.1 Design Speeds

Figure A.1 shows the SUGAR project design speeds234 as a function of altitude in units of

calibrated airspeed (CAS)2:

• Design Cruise Speed (VC) - The normal operating speed of the aircraft, used for perfor-

mance calculations and calculating cruise operating conditions.

• Maximum Operating Speed (VMO) - The maximum expected speed of the aircraft.

• Design Dive Speed (VD) - The highest speed planned during testing. Used for defining

the aeroelastic stability envelope, e.g. determining flutter and buffet margins.

These design speeds are used for all performance calculations, aerodynamic analysis and struc-

tural sizing studies conducted in Bradley et al. 30 and so it is appropriate to use the same data in

this thesis. The data in Fig. A.1 was manually extracted using the process described in Section

A.1 and is shown in Fig. A.2(a). However, the aeroelastic analysis requires the aircraft speed to

2Calibrated airspeed is the speed of the aircraft as given by the the airspeed indicator with a correction for static
pressure269.
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be defined in true airspeed (TAS) therefore the flight envelope data must be converted from CAS

to TAS using the equation provided in Gracey 269

VT AS =VCAS
f
f0

√
ρ0

ρ
(A.1)

where VT AS is the true air speed, VCAS is the calibrated airspeed, f is a compressibility factor, ρ

is the air density and the subscript 0 indicates a parameter calculated at sea level or using sea

level properties.

The compressibility factor f is a function of the impact pressure (qc), a term relating the

compression of the air as it enters the pitot-static tube to the total pressure outside the aircraft,

which for subsonic speeds is given by

qc = P0

[(
1+ γ−1

2γ
ρ0

P0
V 2

CAS

) γ

γ−1 −1

]
(A.2)

where P0 is the air pressure at sea level and γ is the adiabatic index for air. Once the impact

pressure is known the compressibility factor can be calculated using

f =
√

γ

γ−1
P
qc

[( qc

P
+1

) γ−1
γ −1

]
(A.3)

where P is the pressure at a given altitude - calculated using the International Standard Atmo-

sphere (ISA) model290,291. Once the compressibility factor has been calculated at the altitudes of

interest the CAS data can be converted to TAS using Eqn. A.1 and the data in Table A.4. The

resulting flight envelope data in TAS is shown in Figure A.2(b).

The final flight envelope data is presented for a uniform altitude distribution in Fig. A.3 and

tabulated in Table A.5. Altitudes in the range [0 : 500 : 50,000]ft are considered and a piecewise

linear interpolation is used to calculate the design speeds based on the data in Fig. A.2(b).

TABLE A.4. Conversion factors and ISA mean sea level conditions291.

Parameter Symbol Value Units

Feet-to-metres - 0.3048 m/ft
Knots-to-m/s - 0.5144 ms-1/kts

Adiabatic Index γ 1.4 -
Density ρ0 1.225 kg/m3

Pressure P0 101325 N/m2

Temperature T0 288.15 K
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(a) Flight envelope raw data from GRABIT. (b) Flight envelope data in TAS.

FIGURE A.2. Discrete Dataset for the SUGAR Flight Envelope in CAS and TAS

FIGURE A.3. Final flight envelope data at altitude intervals of 500ft.
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TABLE A.5. Final flight envelope data at altitude intervals of 500ft.

Altitude VC VMO VD Altitude VC VMO VD Altitude VC VMO VD
[ft] [m/s] [m/s] [m/s] [ft] [m/s] [m/s] [m/s] [ft] [m/s] [m/s] [m/s]

0 159.58 164.65 190.35 17000 207.76 214.66 246.51 34000 208.72 223.40 244.15
500 160.68 165.88 191.75 17500 209.63 216.42 248.34 34500 207.90 222.85 243.51

1000 161.88 167.08 193.06 18000 211.36 218.21 250.01 35000 207.60 222.59 243.00
1500 163.04 168.26 194.51 18500 213.12 220.03 251.80 35500 207.11 222.16 242.43
2000 164.44 169.54 195.89 19000 215.00 221.97 253.62 36000 206.83 221.23 241.96
2500 165.61 170.88 197.42 19500 216.83 223.76 255.37 36500 206.58 220.79 241.47
3000 166.68 172.08 198.90 20000 218.55 225.33 257.17 37000 206.24 220.15 240.78
3500 168.03 173.33 200.41 20500 220.51 227.05 258.35 37500 205.48 219.57 240.46
4000 169.27 174.75 201.96 21000 220.45 228.71 257.98 38000 205.05 219.17 239.52
4500 170.52 176.13 203.46 21500 220.02 230.32 257.44 38500 204.59 218.58 239.09
5000 171.82 177.49 205.01 22000 219.63 232.08 256.93 39000 203.82 218.11 238.41
5500 173.03 178.63 206.58 22500 219.28 233.69 256.47 39500 203.36 217.86 237.89
6000 174.34 180.19 208.10 23000 218.71 233.92 255.78 40000 202.73 217.61 237.36
6500 175.62 181.55 209.69 23500 218.34 233.61 255.35 40500 202.48 217.11 236.96
7000 177.09 182.94 211.37 24000 217.79 233.13 254.73 41000 202.08 216.54 236.35
7500 178.50 184.26 213.01 24500 217.51 232.76 254.12 41500 201.73 215.95 235.58
8000 179.87 185.78 214.69 25000 217.16 232.10 253.83 42000 201.32 215.36 235.16
8500 181.34 187.21 216.31 25500 216.51 231.91 253.30 42500 200.78 214.79 234.80
9000 182.73 188.64 217.99 26000 216.29 231.19 252.59 43000 200.44 214.33 234.17
9500 184.18 190.18 219.74 26500 215.72 230.92 252.39 43500 199.58 213.83 233.65
10000 185.57 191.63 221.42 27000 214.99 230.14 251.64 44000 199.15 213.16 232.99
10500 187.00 193.15 223.21 27500 214.62 229.84 251.18 44500 198.62 212.56 232.29
11000 188.52 194.73 224.94 28000 213.95 229.02 250.43 45000 198.02 212.09 231.88
11500 190.02 196.27 226.81 28500 213.55 228.66 249.97 45500 197.60 211.59 231.11
12000 191.60 197.87 228.64 29000 212.96 228.24 249.54 46000 197.21 210.90 230.57
12500 193.13 199.41 230.48 29500 212.65 227.45 249.19 46500 196.58 210.65 229.93
13000 194.64 201.01 232.32 30000 212.11 227.35 248.23 47000 196.32 210.06 229.47
13500 196.16 202.58 234.22 30500 211.70 226.57 247.87 47500 195.68 209.50 228.85
14000 197.80 204.37 236.16 31000 211.43 226.43 247.36 48000 195.25 208.70 228.33
14500 199.45 205.90 237.97 31500 211.22 225.77 246.41 48500 194.89 208.25 227.52
15000 201.09 207.64 239.66 32000 210.59 225.25 246.01 49000 194.09 207.58 227.02
15500 202.73 209.28 241.30 32500 209.80 224.82 245.47 49500 193.56 207.27 226.38
16000 204.36 211.12 243.03 33000 209.52 224.18 245.12 50000 192.88 206.71 225.92
16500 206.02 212.78 244.85 33500 209.23 223.77 244.75
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A.4 Aeroelastic Load Cases and Mass Configurations

This section provides an overview of the aeroelastic load cases and associated mass cases which

are used in the aeroelastic analysis throughout this thesis. Steady-state manoeuvres, landing

or dynamic gust cases are not considered however they should be included in a future study in

order to correctly size the airframe. Due to the low-fidelity of the structural modelling the mass

of the aircraft is considered in a gross sense only, with the payload and fuel masses for each load

case assigned to fuel tanks and cargo bays as described in Appendix C.

A.4.1 Load Cases

Table A.6 shows the aeroelastic load cases used to size the airframe during the initial multidisci-

plinary optimisation in Bradley et al. 30 . There are seventeen load cases in total, including four

manoeuvre cases, a ‘taxi-bump’ case and twelve gust cases. The gust cases use the Pratt gust

formulation263 to calculate a revised load factor based on a gust velocity which is a function of

altitude. The load cases in Table A.6 are consistent with initial SUGAR MDO study carried out by

Virginia Tech, however for the refined sizing analysis, which was conducted by Boeing, a different

set of load cases was used which is not available in Bradley et al. 30 . Therefore, it is appropriate

to proceed with the load cases defined in Table A.6 with the caveat that a more refined set of load

cases is required to correctly size the airframe.

TABLE A.6. SUGAR aeroelastic load cases, taken from Bradley et al. 30 Table 2.9.

No. M Z AUM nz Fuel Cargo
Title

[−] [−] [ft] [−] [g] [%] [−]

1 0.7 36,000 MTOW 2.5 100 Design 2.5g manoeuvre at cruise, M 0.7 (MTOW)
2 0.7 36,000 MZFW 2.5 50 Maximum 2.5g manoeuvre at cruise, M 0.7 (MZFW)
3 0.7 36,000 MTOW -1 100 Design -1g manoeuvre at cruise, M 0.7 (MTOW)
4 0.7 36,000 MZFW -1 50 Maximum -1g manoeuvre at cruise, M 0.7 (MZFW)
5 0 0 MTOW 2 100 Design 2g taxi bump, no aero (MTOW)
6 0.2 0 MTOW Gust 100 Design Pratt Gust at sea level, M 0.2 (MTOW)
7 0.2 0 MZFW Gust 0 Maximum Pratt Gust at sea level, M 0.2 (MZFW)
8 0.4 0 MTOW Gust 100 Design Pratt Gust at sea level, M 0.4 (MTOW)
9 0.4 0 MZFW Gust 0 Maximum Pratt Gust at sea level, M 0.4 (MZFW)
10 0.5 10,000 MTOW Gust 100 Design Pratt Gust at 10K ft, M 0.5 (MTOW)
11 0.5 10,000 MZFW Gust 0 Maximum Pratt Gust at 10K ft, M 0.5 (MZFW)
12 0.6 20,000 MTOW Gust 100 Design Pratt Gust at 20K ft, M 0.6 (MTOW)
13 0.6 20,000 MZFW Gust 0 Maximum Pratt Gust at 20K ft, M 0.6 (MZFW)
14 0.7 30,000 MTOW Gust 100 Design Pratt Gust at 30K ft, M 0.7 (MTOW)
15 0.7 30,000 MZFW Gust 0 Maximum Pratt Gust at 30K ft, M 0.7 (MZFW)
16 0.7 40,000 MTOW Gust 100 Design Pratt Gust at 40K ft, M 0.7 (MTOW)
17 0.7 40,000 MZFW Gust 0 Maximum Pratt Gust at 40K ft, M 0.7 (MZFW)
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A.4.2 Mass Cases

Table A.6 shows that there are several combinations of fuel and payload masses across the

different load cases with only two distinct All-Up Mass (AUM) configurations - MTOW and

MZFW. This means that regardless of the fuel or payload fraction the total mass of the aircraft

should equal the AUM that is defined for each load case. Upon examination it is clear that there

is a mismatch between the payload/fuel masses and the AUM for some of the load cases. For

example, in load cases 2 and 4 (LC2 & LC4) the payload mass should be at its maximum and

the fuel mass should be at 50% for an AUM of MZFW, however this cannot be true as the MZFW

is defined as the OEW plus the maximum payload mass. To mitigate for this the mass cases in

Table A.6 are modified to provide the correct AUM for each load case. Specifically, the fuel fraction

for LC2 & LC4 is set to 0% to make the AUM equal to MZFW and the 100% fuel fraction for

the remaining load cases is redefined as the design fuel value from Table A.1, not the maximum

possible fuel as defined by the fuel capacity. Table A.7 shows a summary of these mass cases and

Table A.8 shows a slightly modified version of the SUGAR load cases.

TABLE A.7. Modified mass cases.

No. Label Fuel Payload AUM

1 MC1 M fdesign Mpldesign MTOW
2 MC2 0 Mplmax MZFW

TABLE A.8. Aeroelastic load cases including the modified mass cases.

No. M Z Mass Case nz Title
[−] [−] [ft] [−] [g]

1 0.7 36,000 MC1 2.5 2.5g manoeuvre at cruise, M 0.7 (MTOW)
2 0.7 36,000 MC2 2.5 2.5g manoeuvre at cruise, M 0.7 (MZFW)
3 0.7 36,000 MC1 -1 -1g manoeuvre at cruise, M 0.7 (MTOW)
4 0.7 36,000 MC2 -1 -1g manoeuvre at cruise, M 0.7 (MZFW)
5 0 0 MC1 2 2g taxi bump, no aero (MTOW)
6 0.2 0 MC1 Gust Pratt Gust at sea level, M 0.2 (MTOW)
7 0.2 0 MC2 Gust Pratt Gust at sea level, M 0.2 (MZFW)
8 0.4 0 MC1 Gust Pratt Gust at sea level, M 0.4 (MTOW)
9 0.4 0 MC2 Gust Pratt Gust at sea level, M 0.4 (MZFW)
10 0.5 10,000 MC1 Gust Pratt Gust at 10K ft, M 0.5 (MTOW)
11 0.5 10,000 MC2 Gust Pratt Gust at 10K ft, M 0.5 (MZFW)
12 0.6 20,000 MC1 Gust Pratt Gust at 20K ft, M 0.6 (MTOW)
13 0.6 20,000 MC2 Gust Pratt Gust at 20K ft, M 0.6 (MZFW)
14 0.7 30,000 MC1 Gust Pratt Gust at 30K ft, M 0.7 (MTOW)
15 0.7 30,000 MC2 Gust Pratt Gust at 30K ft, M 0.7 (MZFW)
16 0.7 40,000 MC1 Gust Pratt Gust at 40K ft, M 0.7 (MTOW)
17 0.7 40,000 MC2 Gust Pratt Gust at 40K ft, M 0.7 (MZFW)
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A.5 Beam Stiffness Distribution

The stiffness distribution of the full-scale3 SUGAR aeroelastic model is given in Figs. 3.1, 3.2 and

3.3 of Bradley et al. 30 for the wing, strut and jury-strut respectively. As with the flight envelope

data, the beam stiffness data is extracted from the SUGAR report using the GRABIT MATLAB

programme. For each wing component (i.e wing/strut/jury-strut) the in-plane, out-of-plane and

torsional stiffness are provided, however data for the axial stiffness is not given anywhere in

the report. As has been noted by many studies, the axial stiffness has a large influence on the

aeroelastic response of a truss-braced wing because the truss elements generate significant axial

loads for wing locations inboard of the truss attachment points. Therefore, without accurate data

for the beam axial stiffness it is almost impossible to make any meaningful comparisons between

results for the SUGAR 756-095 Rev. D and any results obtained in this thesis. As a workaround,

the modelling assumption adopted by Su106 is used to estimate the axial stiffness for each wing

component. Here, the axial stiffness is assumed to be one order of magnitude greater than the

in-plane bending stiffness; which is an appropriate assumption given that the cross-sectional

area of a typical aerospace box-beam is usually larger than the geometric moments. The final

extracted stiffness data for the wing, strut and jury-strut is shown in Fig. A.4. Also, the beam

shear centre location has been extracted from the data in Figure 3.2 of Bradley et al. 30 using

GRABIT and the corresponding data is provided in Table A.9.

A.6 Wing Mass Distribution

A detailed mass distribution for the full-scale SUGAR aeroelastic model is provided in Table 3.2

and Table of the SUGAR aeroelastic test report148 for the wing and truss elements respectively.

The mass distribution includes additional masses that were added to the strut and jury-strut to

allow the finite element model (FEM) to meet the target scaled-mass of the wind tunnel model.

The wing mass distribution was generated from the full-scale detailed finite element model and is

split into 29 discrete masses which are derived from the load-carrying structure and the inboard

and outboard ailerons - a detailed breakdown is given in Table A.10. The strut and jury-strut

3The term "full-scale" refers to the sized SUGAR aircraft model and not the wind-tunnel model used during
aeroelastic tests.

TABLE A.9. SUGAR 765-095 Rev. D wing shear centre data. The value of xsc is the
distance from the leading edge as a fraction of the chord value at each spanwise η
position.

η
0.024 0.049 0.096 0.143 0.190 0.239 0.286 0.333 0.384 0.431 0.478
0.525 0.576 0.624 0.670 0.717 0.765 0.811 0.858 0.906 0.953 1

xsc
0.248 0.273 0.249 0.228 0.209 0.191 0.178 0.167 0.159 0.154 0.151
0.153 0.158 0.152 0.137 0.125 0.114 0.106 0.104 0.105 0.114 0.131
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FIGURE A.4. SUGAR 765-095-Rev. D beam stiffness distribution for the wing, strut
and jury-strut, taken from Bradley et al. 30 .
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components have a significantly less detailed mass distribution as even in the detailed SUGAR

FEM these components were modelled as beam elements, as opposed to the 2D shell elements in

the wing. For the strut, there are 33 point masses of 23.66kg distributed evenly along the length

of the strut, whereas for the jury-strut, there is a point mass of 2.27kg at the root and tip with

four additional masses of 0.68kg along the jury-strut. For both the strut and jury-strut masses

the inertia tensor is a null matrix.

TABLE A.10. SUGAR 765-095-Rev. D detailed wing mass, taken from Bradley et al. 148 .

No. Description
Mass X Y Z Iroll Ipitch I yaw
[kg] [m] [m] [m] [kgm2] [kgm2] [kgm2]

1 Wing Structure 785.667 19.343 0.852 7.686 121.326 362.282 455.948
2 Wing Structure 660.112 19.581 2.106 7.592 87.035 290.502 361.802
3 Wing Structure 647.049 19.806 3.334 7.555 82.460 276.034 343.658
4 Wing Structure 649.090 20.048 4.554 7.523 83.119 275.280 343.101
5 Wing Structure 978.761 20.354 6.088 7.481 294.230 415.940 686.700
6 Wing Structure 940.251 20.710 7.943 7.430 261.112 390.766 629.879
7 Wing Structure 942.655 21.100 9.846 7.387 274.630 393.117 643.687
8 Wing Structure 900.607 21.492 11.704 7.344 253.494 378.971 608.320
9 Wing Structure 926.870 21.855 13.534 7.299 269.105 386.077 628.820
10 Wing Structure 657.981 22.071 15.136 7.252 91.840 233.880 307.165
11 Wing Structure 161.932 22.547 16.191 7.351 23.421 93.134 111.394
12 Wing Structure 606.498 22.768 17.834 7.289 65.550 155.056 204.296
13 Wing Structure 145.331 23.154 18.612 7.284 20.405 62.564 79.805
14 Wing Structure 117.979 23.364 19.841 7.244 16.097 45.943 59.818
15 Wing Structure 103.192 23.651 21.044 7.209 14.056 34.526 47.042
16 Wing Structure 84.912 23.970 22.186 7.175 8.359 24.252 31.612
17 Wing Structure 91.127 24.076 23.410 7.132 16.027 17.249 32.205
18 Wing Structure 54.204 24.359 24.562 7.101 4.042 7.987 11.524
19 Wing Structure 68.039 24.561 25.502 7.073 5.768 7.566 12.778

1 Trailing Edge Flap 31.434 20.683 1.946 7.736 2.923 3.710 6.162
2 Trailing Edge Flap 29.574 20.902 2.789 7.713 2.616 3.222 5.440
3 Trailing Edge Flap 29.302 21.053 3.601 7.695 2.513 3.166 5.293
4 Trailing Edge Flap 37.467 21.250 4.485 7.675 3.599 4.352 7.529

1 Aileron 22.725 23.886 18.356 7.324 1.412 1.059 2.372
2 Aileron 19.142 24.058 19.129 7.298 1.061 0.675 1.668
3 Aileron 17.781 24.177 19.902 7.276 0.920 0.600 1.170
4 Aileron 15.558 24.291 20.636 7.250 0.711 0.464 1.133
5 Aileron 17.826 24.434 21.446 7.221 1.265 0.457 1.685
6 Aileron 22.317 24.544 22.296 7.193 1.326 0.555 1.831
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BUG-T NEOCASS MODEL

The purpose of this appendix is to provide a detailed description of the SUGAR-inspired,

Bristol Ultra Green Truss-Braced Wing (BUG-T) model and discuss how the open-source

aircraft sizing software NeoCASS can be used to generate a model of this configuration.

To gain the most insight from this appendix the reader should be familiar with the contents of

the NASA/Boeing report titled "Subsonic Ultra Green Aircraft Research: Phase 2 - Volume 1 -

Truss Braced Wing Design Exploration"30.

This appendix is organised as follows: First, a brief overview of NeoCASS and the geometry

pre-processor AcBuilder is provided to familiarise the reader with the relevance of the software.

Next, the aircraft geometry and mass distribution is defined, with specific emphasis given to the

origin of the reference material used to generate the model. Finally, some of the limitations of the

AcBuilder software are discussed with regards to the modelling of truss-braced wing aircraft. The

output of this appendix is a NeoCASS geometry and mass-distribution file, as well as a Nastran

finite element model which is used to generate the final version of the BUG-T model in Appendix

C.

B.1 Model Definition Using NEOCASS

NeoCASS69 (Next generation Conceptual Aero-Structural Sizing Suite) is an open-source air-

craft sizing module which forms part of the CEASIOM292 (Conceptual Aircraft Design Tool)

software framework. CEASIOM was developed from 2007 - 2009 as part of the EU-funded

SIMSAC project67 and has a broad set of capabilities, including: flight control system design,

computational fluid dynamics and airframe sizing. However, in this work only the geometry

pre-processer, AcBuilder, is used to define the initial aircraft geometry and generate a finite

element representation of the structure, as shown in Figure B.1.
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FIGURE B.1. Final ’AcBuilder’ geometry for the BUG-T aircraft model.

The final revision of the 965-095 aircraft model, 965-095-Revision D, is used to define the

AcBuilder geometry as this variant is described in the most detail in the report. Much of the data

for generating the NeoCASS model is contained in the SUGAR reports but in some instances

engineering judgement has been used or dimensions have been estimated from the General

Arrangement (GA) drawing of the 965-095-Revision D model in Figure 2.152 of Bradley et al. 30 .

Also, the parameterisation scheme used in AcBuilder differs from the data presented in Bradley

et al. 30 and so for some quantities a conversion has taken place to define the NeoCASS geometry.

In the following sections the various aspects of the BUG-T NeoCASS model are described and

related to the data presented in the SUGAR report. Note, where tables and figures are referenced

without the prefix ‘B’ they refer to the data found in Bradley et al. 30 and not to tables and figures

in the main body of the thesis, also, for the sake of brevity 765-095-Revision D will be shortened

to 756-095-RD for the remainder of the appendix.

B.1.1 Converting SUGAR Data to NeoCASS Geometry

Examining the origin coordinates of the various aircraft components described in Table 2.30 and

the GA drawing in Figure 2.152 it is clear that there is a mismatch between the two datasets.

Primarily, the convention for describing the origin of a component is not explained in Bradley

et al. 30 and instead it is left to the reader to infer exactly what is meant by "origin", meaning it

is possible to define an aircraft that does not match the one shown in the GA.

It is important to establish the correct position of all the major components of the model as

this will have significant effect on any subsequent analysis. Therefore, before the geometry of

the BUG-T can be defined in AcBuilder it is necessary to convert between the parameterisation

scheme used in the SUGAR report and the AcBuilder programme. Corroborating the data in
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Table 2.30 with the GA in Figure 2.152 and the component drawings in Figures 2.155, 2.158

and 2.159 reveals that for lifting surfaces the component origin is closely related to position of

the Mean Aerodynamic Chord (MAC), therefore, to convert between the SUGAR convention and

NeoCASS convention one must perform the following operation,

x̄Neo =
xSUGAR − xMACLE

L f uselage
(B.1)

where x̄Neo is the normalised x-location of the leading edge of the root chord, xSUGAR is the

x-location of the MAC in the global coordinate system, xMACLE is the x-location of the MAC with

respect to the component leading edge and L f uselage is the length of the fuselage. Furthermore,

to obtain the z-location of each lifting surface the following conversion is necessary,

z̄Neo =
zSUGAR − z f uselage

h f uselage
(B.2)

where ¯zNeo is the normalised z-location of the leading edge of the root chord, zSUGAR is the z-

coordinate of the origin of the component, z f uselage is the z-coordinate of the origin of the fuselage

and h f uselage is the height of the fuselage. Note, the standard aircraft body axis coordinate system

is adopted by NeoCASS, which is the x-axis along the fuselage, the y-axis along the starboard

wing and the z-axis in the positive lift direction.

B.2 Aircraft Geometry

In AcBuilder an aircraft is assumed to be made from a collection of the following components:

• Fuselage (×1)

• Port/Starboard Wing (×1)

• Engine (×4)

• Port/Starboard Horizontal stabilizer (×1)

• Vertical stabilizer (×1)

• Port/Starboard Canards (×1)

• Ventral fin (×1)

• Port/Starboard Tail booms (×1)

This list allows a wide range of aircraft configurations to be realised, however, it is not exhaustive

and relies on certain core components, such as the fuselage, to be present in the model. Therefore

the chosen parameterisation places a limit on the aircraft geometries that can be considered

by NeoCASS, for instance, it is not possible to add a truss element to the aircraft meaning that

NeoCASS cannot simulate a braced-wing configuration1. Despite this the CEASIOM framework

has been successfully trialled in anumber of initial design studies292–295, evidence that it is a

useful tool to use at the initial design stage. In the following sections each component of the

1Note, an option does exist within NeoCASS to size a braced-wing design, however the mechanism by which this
is implemented is unknown and so this option is not used.
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aircraft geometry is described in turn and the various parameters are detailed - beginning with

the fuselage, then the lifting surfaces and concluding with the engine and landing gear.

B.2.1 Fuselage

The fuselage length is calculated from the GA drawing in Figure 2.152 and the dimensions of the

cross-section are taken from Figure 2.160. There is not sufficient detail in the SUGAR report to

reproduce the fuselage geometry to a high level of accuracy, therefore, the parameters controlling

the geometry of the nose and tail sections were tweaked until the fuselage "looked right". This

means that the subsequent geometry is not an accurate representation of the original 965-095-RD

model and any comparison between the aerodynamic aspects of the fuselage and the SUGAR

model will be invalid. As this thesis does not consider any high-fidelity aerodynamic analysis this

is considered to be an acceptable compromise.

B.2.2 Lifting Surfaces

The model has three sets of lifting surfaces, the wing, horizontal tail plane (HTP) and the vertical

tail plane (VTP). For each lifting surface the classical wing parameterisation scheme based

on the component’s area, span, taper, sweep, etc is used to define the planform shape and the

aerodynamic cross-section is defined by lofting between a series of cross-sections at each kink

point along the lifting surface reference line. For further details the reader is directed to the

documentation found on the NeoCASS website.

The wing geometry is derived from several sources. The gross wing properties such as the

span, dihedral angle and the Aspect Ratio (AR) are taken from Table 2.31 and the corner point

diagram in Figure 2.156 is used to derive the location of the spanwise kinks, leading edge sweep

angles and taper ratios of each wing segment. The location and size of the various control surfaces

are also derived from Figure 2.156 and the coordinates of the wing origin are derived from the

data in Table 2.30 using Equations B.1 and B.2. Also, the Angle-of-Attack (AoA) is estimated

from the GA in Figure 2.156 and a linear variation from root-to-tip has been assumed. A fairing

is included at the wing root but due to the lack of detail in the SUGAR reports the parameters

were estimated by comparing the NeoCASS model with the GA in Figure 2.152. In NeoCASS

the fairing is principally used to define the ’belly-tanks’ and so any discrepancy between the

765-095-RD and the NeoCASS models in terms of the fairing geometry will likely manifest itself

as a slight shift in the fuel centre-of-gravity which should have a negligible effect on the overall

sizing of the aircraft.

The VTP planform is taken from Figure 2.158 and Table 2.32 and the HTP is derived using

Figure 2.159 and Table 2.33. As with the wing, Equations B.1 and B.2 are used to derive the

origin of the HTP and VTP based on the data in Table 2.30 and the AoA is estimated from the GA

in Figure 2.156.
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TABLE B.1. Maximum deflection limits for the BUG-T control surfaces16,254.

Control Surface Symbol Max. Deflection
[°]

Aileron δa 20
Spoiler δs 60

Flap δ f 30
Rudder δr 30
Elevator δe 30

The aerofoil cross-sections for the lifting surfaces are not provided in the SUGAR reports

and so engineering judgement must be used to assign an appropriate aerofoil. Given that the

cruise Mach number is 0.7 it is likely that a supercritical aerofoil will be required for the wing,

therefore, the FOIL31 aerofoil is selected from NeoCASS’s pre-packaged library of aerofoils. The

HTP and VTP are assumed to have a NACA0012 profile.

B.2.3 Control Surfaces

The 765-095-RD model has a more-or-less conventional control surface layout. The leading edge

of the wing has a kreuger flap along the entirety of its span with breaks for the engine mount,

outboard kink and wing fold. In terms of trailing edge devices, the 765-095-RD has a series

of single-slotted flaps extending from the fuselage-joint to the wing fold as well as a high and

low-speed aileron and spoilers. A diagram of the wing control surface layout is shown in Figure

2.155 and the HTP and VTP control surfaces are shown in Figures 2.158 and 2.159 respectively.

Trim tabs are not defined for the aileron, elevator or rudder. Table B.1 defines the control surface

deflection limits based on the guidance found in Raymer 254 and Torenbeek 16 .

B.2.4 Engine

The gFan+ ducted fan (DF) is selected for this model as NeoCASS does not allow unducted

fan engine types. The data for the gFan+DF is found in Figure 2.164 and Table 2.34 and the

placement of the engines relative to the wing, as well as the fineness ratio of the nacelle, has been

estimated using the GA in Figure 2.156. It is important to note that the finite element model

generated by AcBuilder and used in NeoCASS only models the engine as a lumped mass. This

means no consideration is given to the design of the engine pylon and its interaction with the

wing and that there will no combined pylon-wing modes present in the structure.

B.2.5 Landing Gear

The landing gear track geometry is taken from Figure 2.163 and the origin of both the main and

auxiliary landing gear is estimated from the GA in Figure 2.156. It is especially important to get

the location of the MLG correct as this has a major effect on the take-off and landing performance
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of the aircraft. Furthermore, the attachment point for the strut is co-located with the MLG pylon

and the orientation and position of the strut will have a significant effect on the overall response

of the aircraft.

B.3 Mass Distribution

In this section the main components of the aircraft mass are defined, including the layout of the

fuel tanks and the overall dimensions the cabin and cargo hold. The output of this section is a

NeoCASS mass distribution file containing a breakdown of the principal masses, including the

coordinates of the centres of gravity.

B.3.1 Fuel Tank Definition

The SUGAR reports do not provide any information on the fuel tank locations and so they must

be estimated based on the maximum fuel volume defined in Table 2.29 and the available volume

of the wing. The Virginia Tech MDO code, which is the basis for the SUGAR TBW optimisation

studies in Bradley et al. 30 , uses Raymer’s method for estimating the cross-sectional area of a

wing fuel tank254,

S f uel = 0.85× c f uel × t (B.3)

where S f uel is the cross-sectional area of the fuel tank, c f uel is the chord length of the fuel tank

and t is the maximum thickness of the aerofoil cross-section. Values for these parameters can

be found in Table B.2 of this appendix. Also, note that the fuel tank is assumed to fill the space

between the front and rear spar, the locations of which are defined in Table B.2.

Next, the spanwise location of the fuel tanks must be defined so that the total wing fuel tank

volume can be calculated. Torenbreek recommends that the final metre of the wing should be

free from fuel16 p. 261 which gives an spanwise extent of 95.8% for the outboard fuel tank based

on the 51.798m span of the 765-095-RD. Finally, using the formula for a trapezoidal fuel tank

in Torenbreek16 p. 448 and the data in Tables B.2 and B.3 gives a total fuel volume for both

wings of 20.206m3. This is slightly less than the fuel capacity of the 765-095-RD which has a

fuel volume of 20.502m3. As the formula in Torenbreek are for preliminary design purposes only,

it was decided to restrict the amount of fuel in the wings to 20m3 and keep the remaining fuel

TABLE B.2. Parameters for calculating the fuel tank volume in the wing.

Spanwise Position c xFS xRS t/c c f uel t
[m] [m] [-] [-] [-] [m] [m]

0 3.276 0.150 0.650 0.120 1.638 0.393
1.270 3.276 0.150 0.650 0.120 1.638 0.393

14.933 2.904 0.150 0.692 0.120 1.452 0.349
25.899 1.146 0.150 0.750 0.120 0.573 0.138
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TABLE B.3. Dimensions and volume for each fuel tank in the wing.

Bay No. S f uel1 S f uel2 Length Volume
[-] [m2] [m2] [m] [m3]

1 0.547 0.547 1.27 0.736
2 0.547 0.430 14.93 7.052
3 0.430 0.067 9.966 2.316

Total 10.103

in the ‘belly’ tank in the wing fairing, this should mitigate for any inaccuracies in the design

formula and ensure that the wings have approximately the right volume for the required fuel

loading with some additional capacity in the fairing tanks.

B.3.2 Cabin and Cargo Hold

The cabin layout module in NeoCASS is primarily used for defining the volume of the cabin

and cargo hold so that a sensible estimate can be made of the payload CoG. Figure B.2 shows

the cabin layout and notional cargo hold for the SUGAR-inspired aircraft model where the

main cabin dimensions and passenger layout are taken from Table 2.29 and Figure 2.160 of

the SUGAR report. The baggage volume has been estimated using Torenbreek’s formula for a

‘volume-limited-payload’16 p. 79,

Mpayload = ρpayload ×Vpayload +mpassenger ×Npassenger (B.4)

where Mpayload is the maximum payload mass, ρpayload is the payload density, Vpayload is the

cargo volume, mpassenger is the mass per passenger and Npassenger is the number of passengers.

The data in Table 2.37 gives a design payload value of 30,800lb (13971kg) which, using the values

in Torenbreek for the payload density and passenger mass, gives a payload volume of 12.140m3

for the 154 passenger capacity of the 765-095-RD.

Passenger aircraft typically have a fore and aft cargo hold in order to balance the payload

mass and enable a faster turnaround, however, NeoCASS only allows for a single cargo hold to be

defined. As the principal purpose of the fore and aft cargo holds is to ensure that moment arm of

the payload CoG is minimised it was decided to position the single NeoCASS cargo hold close to

the wing origin to mimic the approximate CoG of a two-hold layout.

B.3.3 Component and System Mass

Table A.2 shows a copy of the ‘Group Weight Statement’ data in Table 2.37 of the SUGAR report.

This data is used as the starting point for defining the mass distribution of the BUG-T model.

Unfortunately, no information is provided about the location of the masses within the SUGAR 765-

095-Rev. D, and so it is not possible to generate a mass distribution using this data alone. Instead,

the Weights and Balance module of AcBuilder is used to compute the CG (Centre of Gravity)
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FIGURE B.2. Cabin and cargo hold layout for the BUG-T NeoCASS model.

locations for each mass in the aircraft, however as the mass breakdown used in AcBuilder differs

from the SUGAR 765-095-Rev. D it is not possible to map the data in Table A.2 directly to the

NeoCASS mass data. Therefore, the following assumptions have been made:

1. The "Tail" mass is divided equally between the HTP and the VTP.

2. The "Wing Strut & MLG support installation" mass is split equally between the wing and

the main landing gear (MLG).

3. The "Landing Gear" mass is split between the MLG and auxilliary landing gear (ALG)

using a 3:1 ratio.

4. The "Nacelle and Pylon" and "Propulsion - Engine" are combined to give the "Powerplant 1

with nacelle and pylon" mass.

5. The "Pilots" mass accounts for two pilots and five crew assuming the average person weighs

80kg.

6. The "Passengers" mass accounts for 154 passengers with an average mass of 80kg per

passenger.

7. The "Baggage & Cargo" mass is equal to the "Design Payload" minus the passenger mass.

8. The "Fuel - wing" and "Interior" mass are equal to the "Usable Fuel" and "Furnishings &

Equipment" mass groups respectively.

9. The "Total systems or miscellaneous" mass is a combination of the following mass groups:

• Propulsion - Fuel System

• Flight Controls

• Power Systems - APU

• Power Systems - Hydraulics

• Power Systems - Electrical

190



B.4. LIMITATIONS OF THE NEOCASS GEOMETRY PRE-PROCESSER ACBUILDER

• Instruments

• Avionics & Autopilot

• Air Conditioning

• Anti-Icing

• Operational Items less the weight of the crew (560kg)

Figure B.3 shows the location of the different mass groups and the centre of gravity at Maximum

Empty Weight (MEW) and Maximum Take-off Weight (MTOW) respectively and the data is

tabulated in Table B.4.

B.4 Limitations of the NeoCASS Geometry Pre-Processer
AcBuilder

The following items have been identified as limitations of the AcBuilder module:

• Incompatible with braced/joined-wings - The parameterisation scheme used by AcBuilder

does not allow a truss structure to be attached to an existing wing structure. This is seen

as a major limitation as far as this thesis is concerned because the interaction between the

truss and wing structure has a significant impact on the static and dynamic response of the

aircraft. Furthermore, this precludes the design and modelling of joined-wing configurations,

(a) Front view.

(b) Side view.

FIGURE B.3. Locations of component masses and CG location for MTOW and MEW
for the BUG-T NeoCASS model
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which have been the subject of many design studies in recent years113,296–299.

• Limited control surface layout - The control surface layout for the wing is restricted

to a single leading/trailing edge control surface and for the HTP and VTP components only

a single trailing edge flap is allowed. This prevents the user from modelling realistic control

surface layouts, such as the one shown in the SUGAR corner point diagram in Figure 2.156

• No engine-pylon modelling - The finite element model generated by AcBuilder for use

by NeoCASS only considers the engine mass and does not account for the pylon which

connects the engine to the wing. This has serious implications for the dynamics of the wing

as the transfer of energy between the engine and the wing is strongly dependent on the

properties of the engine pylon.

For these reasons the sizing and modelling capabilities within NeoCASS are not appropriate

for analysing a model derived from the SUGAR 765-095-Rev. D aircraft. Instead, an alternative

approach must be adopted which allows the modelling of truss-braced wings using a more

‘physics-based’ formulation.

TABLE B.4. BUG-T mass distribution for the NeoCASS model

Component
CG X CG Xrel CG Y CG Yrel CG Z CG Zrel Mass
[m] [m] [m] [m] [m] [m] [kg]

Wing 1 16.95 0.45 0.00 0.00 1.66 0.39 8395.99
Horizontal tail 39.11 1.03 0.00 0.00 5.88 1.39 716.68
Vertical tail 36.43 0.96 0.00 0.00 3.90 0.92 716.68
Fuselage 17.98 0.47 0.00 0.00 -0.42 -0.10 7679.31
Powerplant 1 with nacelle & pylon 13.31 0.32 5.43 0.21 0.17 0.04 6010.09
Landing gear 17.49 0.46 0.00 0.00 -1.18 -0.28 2562.79
Auxiliary landing gear 2.71 0.07 0.00 0.00 -1.18 -0.28 576.06
Total systems or miscellaneous 17.98 0.47 0.00 0.00 -0.42 -0.10 8244.22
Pilots (»MTOW) 2.40 0.06 0.00 0.00 -1.27 -0.30 560.00
Interior (»MTOW) 17.73 0.47 0.00 0.00 0.80 0.19 4136.76
Passengers (»MTOW) 19.00 0.50 0.00 0.00 -1.27 -0.30 12320.00
Baggage & cargo(»MTOW) 15.81 0.42 0.00 0.00 0.85 0.20 1650.63
Fuel - wing 17.71 0.47 0.00 0.00 1.53 0.36 14469.58

CoG at MEW wrt nose 17.06 0.45 0.00 0.00 0.87 0.21 36328.18
CoG at MTOW wrt nose 17.56 0.46 0.00 0.00 0.39 0.09 68038.80
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The purpose of this appendix is detail the final versions of the SUGAR Volt-inspired,

Bristol Ultra Green Truss-Braced Wing (BUG-T) model as well as introduce O2MeGA, an

object-based parametric aircraft model generator that was developed as part of this thesis.

The output of this appendix is a Nastran finite element model used for all analysis in this thesis.

This appendix is organised as follows: First, a brief overview of the BUG-T model variants

is provided, with reference to the previous work carried out during the Agile Wing Integration

project. Next, a brief overview of the O2MeGA software is given, with specific focus given

to its object-orientated code structure and generic aircraft parameterisation schemes. Lastly,

O2MeGA is used to generate the final geometry of the BUG-T model ready for the dynamic and

aeroelastic analysis carried out in Chapters 3, 4 and 5.

C.1 BUG-T Model Variants

The BUG-T model is a truss-braced wing (TBW) version of the Bristol Ultra Green (BUG)

model300, which itself is based on the wing geometry of the NASA/Boeing SUGAR High aircraft.

The BUG model was generated to act as a test structure for various nonlinear aeroelastic

simulations and 3D GFEM (Global Finite Element Model) optimisation studies that took place as

part of the Agile Wing Integration (AWI) project1 at the University of Bristol. Figure C.1 shows

the planform of the BUG model and the cross-section of the wing GFEM. The planform geometry

matches the planform of the SUGAR Volt aircraft however the stiffness and mass distribution

has been tailored to promote nonlinear behaviour during aeroelastic simulations. Furthermore,

the truss-structure is not included in the model as the focus of the AWI project was the simulation

1Agile Wing Integration webpage
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FIGURE C.1. BUG model planform and GFEM cross-section, taken directly from
Stodieck et al. 300

of fixed-wing aircraft with cantilever wings. For these reasons it is not desirable to use the BUG

model for the analysis carried out in this thesis and so an alternative model must be created. The

BUG-T model is a full-aircraft model based on the SUGAR Volt 765-095-Revision D aircraft from

Bradley et al. 30 . The truss-structure is included however and stiffness and mass distribution of

the wing and truss elements is defined using the SUGAR data presented in Appendix A.

C.2 Object-Orientated Model Generation for Aircraft (O2MeGA)

The unconventional configuration of the truss-braced concept means that many existing aircraft

parameterisation schemes and sizing tools are not appropriate for modelling these structures.

Indeed, a number of recent publications have focussed on developing "physics-based" sizing

methodologies in order to specifically address the problems posed by a braced wing configura-

tion61,151,165. In this thesis, the author has developed their own parameterisation and geometry

modelling tool, O2MeGA , which is loosely based on the CPACS2 data model68. This tool does

not seek to replace or even replicate the capabilities of CPACS, instead it draws inspiration

from the CPACS parameterisation scheme and applies this to the modelling a truss-braced wing

configuration. A brief explanation is provided for each aspect of the tool:

1. Object-Orientated - The codebase is written using the MATLAB implementation of a

class-based, object-orientated (OO) programming paradigm. This approach allows classes

to be defined with properties and methods specific to that class or subclass. In this instance,

adopting an OO approach means it is possible to very quickly define a model as an expand-

able collection of objects, with some user-specified hierarchy which allows co-dependencies

to be established between them. Such an approach is ideally suited to the design and

2Common Parametric Aircraft Configuration Schema
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modelling of unconventional aircraft as there is no limit to the number of objects that can

be added to the model. Further details are provided in Section C.2.1.

2. Model Generation - The aim of the tool is to enable the generation of unconventional

aircraft geometries and then convert these geometries into a model which is suitable for

analysis. Low-fidelity, beam-stick models are considered but given the availability of the

3D aircraft geometry there is no reason this could not be extended to include automatic

generation of global finite element models (GFEMs).

3. Aircraft - The codebase is specific to modelling fixed-wing aircraft geometries although

given the generic definition of the model geometry it would be possible to create geometries

of other slender structures, such as missiles or submarines, with little effort.

At this point it is worth mentioning that the concept behind O2MeGA is not novel and that there

are several other research groups which have defined their own tools for modelling unconventional

aircraft geometries, notable efforts include: GeoMACH70, PyGFEM71 and the CPACS schema68.

C.2.1 Object Hierarchy

The object design in O2MeGA relies on class inheritance to develop a minimum viable represen-

tation of the various elements required to build an aircraft model. Figure C.2 shows the basic

hierarchy of the objects and some of the principal properties.

The base-class is the Entity class which handles the basic parent/child relationship and some

background functionality such as naming the objects and managing the model hierachy. The

Entity object inherits much of its functionality from a separate package that was provided by a

Mathworks consultant as part of a wider modelling and simulation effort during the AWI project.

This package provides the functionality for a generic Model-View-Controller (MVC) software

architecture and has no specific methods for modelling aircraft; it simply handles the background

functions which enable the O2MeGA framework.

All geometry definitions are handled by the Component class or one of its-subclasses. These

classes handle the relative positioning of components with respect to their parent objects and also

the orientation of these components with respect to the global coordinate system. For example,

Fig. C.3 shows the starboard truss components of the BUG-T model, with the local coordinate

systems shown at the root and tip of each component. When the model is converted to a finite

element model these coordinate systems become the local beam coordinate system. Detailed mass

configurations can be defined using Point Mass or Volume objects (e.g. Compartment, Fuel Tank,

Cargo Hold, Cabin). Volume objects can be defined for any beam object which has a cross-section

associated with it. The 3D volume of these beams is generated by lofting between the various

cross-sections and this volume can then be subdivided into any number of compartments to

form cargo holds, fuel tanks or cabins. Each Volume class has a method which defines its mass

distribution, thus allowing mass configurations to be defined with very overhead from the user.

A generic aircraft model, such as the one shown in Fig. C.4, can be constructed by creating
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Entity
Abstract Object

Properties
Name
Parent
Child

Component
Point Object

Properties
3D position (×1)
Total mass/inertia
Centre of Gravity

Stick
Line Object

Properties
3D positions (×N)

Connector
Line Object

Properties
Root/tip joints

Beam
Line Object

Properties
Stiffness
- Shear centre
- Neutral Axis
Inertia (variable)
- Centre of Mass
Orientation(s)
Material(s)
Cross-Section(s)
Compartment(s)

Lifting Surface
Line Object

Properties
Chord (×Nc)
AoA (×Nα)
Dihedral (×Nγ)
Sweep (×NΛ)

Bluff Body
Line Object

Properties
Cant angle
Pitch angle

Point Mass
Point Object

Properties
Mass
Inertia tensor

Control Surface
Point Object

Properties
2D coordinates
Hinge line
Max deflection
Max deflection
rate

Beam Property
Property Object

Properties
Beam handle

Compartment
Volume Object

Properties
Geometry
Payload Fraction
Payload Density

Fuel Tank
Volume Object

Properties
Fuel Density

Cargo Hold
Volume Object

Properties
Cargo Density

Cabin
Volume Object

Properties
No. passengers
Seat layout
Seat dimensions
Passenger mass
Baggage mass

Orientation
Property Object

Properties
Rotation matrix
Euler angles
Rotation order
Quaternions
Vectors

Material
Property Object

Properties
Material type
Elastic moduli
Density
Poisson’s Ratio
Failure criteria

Cross-Section
Property Object

Properties
2D coordinates
Orientation
Cross-section
name

FIGURE C.2. O2MeGA class hierarchy and principal properties.
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FIGURE C.3. BUG-T truss structure and local coordinate systems.

a custom hierarchy of any of the objects in the O2MeGA package. There is no limit on the

number of components in the hierarchy and only a limited set of rules regarding the parent/child

relationship of the different objects3, allowing a wide-variety of aircraft geometries to be defined.

Once a valid geometry model has been generated it is possible to automatically create Nastran

finite element models which are suitable for aeroelastic analysis and design optimisation.

C.3 BUG-T Geometry Model

Figure C.4 shows the O2MeGA representation of the BUG-T geometry. This model has been

generated using the data from the SUGAR reports as discussed in Appendix A and B.In the

following sections additional information is provided for each major component in the model,

including the fuselage, wing, strut, jury-strut and empennage sub-assemblies.

C.3.1 Fuselage

The fuselage is modelled as a Beam object aligned with the global X-axis. The cross-section is

derived from the data in Figure 2.170 of Bradley et al. 30 and is modelled as an ellipse with major

and minor axis lengths of 4.23m and 3.78m respectively. The ellipse geoemtry has been tapered

3Examples of these rules include: "a Control Surface object can only be added to a Lifting Surface object" or
"a Volume object can only be added to a Beam object".
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FIGURE C.4. BUG-T aircraft geometry.

at the front and rear of the fuselage, however this is purely for cosmetic reasons and has no

influence on the generation of the finite element model and subsequent aeroelastic analysis. The

passenger configuration is modelled using the Cabin object which subclasses the Compartment

baseclass. The Cargo Hold object is used to model the two payload compartments which are

located beneath the cabin, the dimensions of which have been approximated using the data for a

typical Boeing 737 aircraft.

C.3.2 Wing

The port and starboard wing are modelled using a Lifting Surface object and the wing geometry

is based on the general arrangement (GA) drawing of the 765-095-Rev. D and is the same data

used to generate the NeoCASS wing geometry in Appendix B. The control surface configuration

is taken from the corner point diagram in Fig. 2.156 of Bradley et al. 30 . Table C.1 provides the

key geometry information for the port and starboard wing.

C.3.3 Strut

The port and starboard strut is modelled using a Lifting Surface object and the geometry

information is taken from the general arrangement (GA) drawing of the 765-095-Rev. D as well

as the corner point diagram in Fig. 2.157 of Bradley et al. 30 . Table C.2 provides the key geometry

information for the port and starboard strut.
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TABLE C.1. Geometry data for BUG-T wing.

Property Symbol Value Units

Origin RO (16.156, 0, 5.4131) [m]
Profile - NASA SC(2)-0712 [-]
Span s 25.899 [m]
Chord c 3.276, 3.276, 2.905, 1.146 [m]
Chord Spanwise Position ηc 0, 0.05, 0.577, 1 [-]
Dihedral γ -1.5, -1.5 [°]
Dihedral Spanwise Position ηγ 0, 1 [-]
Sweep (Leading Edge) ΛLE 0, 11.9, 16.74, 16.74 [°]
Sweep Spanwise Position ηΛ 0, 0.05, 0.577, 1 [-]
AoA α 0, 0 , -0.4, -1.4, -1.75, -2.1, -2.1, -2.3, -2.6, -5.5 [°]
AoA Spanwise Position ηα 0, 0.05, 0.15, 0.3 , 0.45 , 0.58, 0.7 , 0.8 , 0.9 , 1 [-]

TABLE C.2. Geometry data for BUG-T strut.

Property Symbol Value Units

Origin RO (17.491 , 3.277 , 5.413) [m]
Tip Position RT (16.6386, 14.781, 5.026) [m]
Profile - NACA 0018 [-]
Span s 11.504 [m]
Chord c 0.529, 1.197, 1.197, 0.552, 1.120, 1.120, 0.552 [m]
Chord Spanwise Position ηc 0 , 0.153, 0.306, 0.520, 0.680, 0.84 , 1 [-]

TABLE C.3. Geometry data for BUG-T jury-strut.

Property Symbol Value Units

Origin RO (17.652, 9.264, 3.772) [m]
Tip Position RT (17.834, 9.344, 5.169) [m]
Profile - NACA 0018 [-]
Span s 1.397 [m]
Chord c 0.291, 0.361 [m]
Chord Spanwise Position ηc 0 , 1 [-]

C.3.4 Jury-Strut

The port and starboard jury-strut is modelled using a Lifting Surface object and the geometry

information is taken from the general arrangement (GA) drawing of the 765-095-Rev. D. Table

C.3 provides the key geometry information for the port and starboard jury-strut.

C.3.5 Vertical Stabilizer

The vertical tail plane is modelled using a Lifting Surface object and the geometry information

is taken from the general arrangement (GA) drawing of the 765-095-Rev. D and the corner point

diagram in Fig. 2.158 of Bradley et al. 30 . Table C.4 provides the key geometry information for

the vertical stabilizer.
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TABLE C.4. Geometry data for BUG-T vertical stabilizer.

Property Symbol Value Units

Origin RO (34.175, 0, 5.411) [m]
Profile - NACA 0012 [-]
Span s 5.259 [m]
Chord c 5.259, 5.259 [m]
Chord Spanwise Position ηc 0 , 1 [-]
Dihedral γ -3, -3 [°]
Dihedral Spanwise Position ηγ 0 , 1 [-]
Sweep (Leading Edge) ΛLE 41, 41 [°]
Sweep Spanwise Position ηΛ 0 , 1 [-]

TABLE C.5. Geometry data for BUG-T horizontal stabilizer.

Property Symbol Value Units

Origin RO (38.354, 0, 10.144) [m]
Profile - NACA 0012 [-]
Span s 5.866 [m]
Chord c 3.476, 1.217 [m]
Chord Spanwise Position ηc 0 , 1 [-]
Sweep (Leading Edge) ΛLE 25.3, 25.3 [°]
Sweep Spanwise Position ηΛ 0 , 1 [-]

C.3.6 Horizontal Stabilizer

The port and starboard horizontal tail plane is modelled using a Lifting Surface object and the

geometry information is taken from the general arrangement (GA) drawing of the 765-095-Rev.

D and the corner point diagram in Fig. 2.159 of Bradley et al. 30 . Table C.5 provides the key

geometry information for the vertical stabilizer.

C.4 BUG-T Aeroelastic Finite Element Model

The BUG-T finite element model (FEM) is a ‘beam-stick’ representation of the SUGAR 765-095-

Rev. D aircraft suitable for use with the commercial finite element package Nastran. Nastran is

chosen given its widespread use throughout the aerospace industry and its industry-standard

capabilities in aircraft level aeroelastic analysis. A beam-stick representation is appropriate as

it is typical of aircraft models used for dynamic aeroelastic analysis, also, given the conceptual

nature of the research presented in this thesis it is preferable to keep the model as simple as

possible. The FEM was generated in three stages:

1. The NeoCASS AcBuilder program was used to generate a preliminary FEM that provided

the gross mass distribution and origin locations of the various aircraft components. This

process is described in Appendix B.

2. The O2MeGA tool was used to model the aircraft geometry using the data from Bradley
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et al. 30 . The component root nodes in the NeoCASS FEM were used to position the different

aircraft components and the mass distribution from Table B.4 was used to generate a series

of point mass objects which were associated with the relevant components.

3. The O2MeGA geometry was converted to a valid finite element model using an automated

object-specific meshing scheme contained within the O2MeGA tool. The the detailed mass

and stiffness data for the BUG-T model are provided in Appendix A. The beam element

density was determined following a mesh convergence study shown in Fig. C.5 and the

aerodynamic mesh was defined to capture reduced aerodynamic frequencies up to 50Hz.

The beam element lengths for the wing, strut and jury-strut components is given in Chapter

3.

Figure C.6 shows the Nastran finite element representation of the BUG-T model and Fig. C.7

shows the normalised and un-scaled mass distribution. Note that the differences in detail between

the wing/truss mass distribution and the mass data for the rest of the aircraft reflects the data

provided by Bradley et al. 30 .

(a) Change in natural frequency (b) Number of beam elements

FIGURE C.5. Mesh convergence study for the BUG-T model. Subfigure C.5(a) shows
the variation in natural frequency as a function of beam element length for all
normal modes up to 50Hz, with the right-hand y-axis showing the total number
of degrees of freedom in the model. Subfigure C.5(b) shows the number of beam
elements in the wing, strut and jury-strut components as a function of beam
element length.
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FIGURE C.6. Finite element representation of the BUG-T model.

(a) BUG-T unscaled mass distribution

(b) BUG-T scaled mass distribution

FIGURE C.7. BUG-T mass distribution.
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The purpose of this appendix is to provide additional results for the dynamic and aeroelastic

analysis of the BUG-T model detailed in Chapter 3. In the interest of brevity these results

were not shown in Chapter 3 however they are included here in order to provide a complete

description of the results obtained in the initial dynamic and aeroelastic analysis. This appendix

is organised in two sections: In Section D.1 the BUG-T normal modes and associated energy

contributions for flexible modes 1 - 24 are shown in Figs. D.1 - D.6. Then in Section D.2 the static

aeroelastic loads envelopes are shown for the wing, strut and jury-strut for all six beam loads.

D.1 BUG-T Normal Modes

The BUG-T normal modes were calculated using the standard Lanczos method259. Here, the

first 24 flexible modes are presented and each mode is mass-normalised, i.e. each mode has a

modal mass of unity, which is the standard approach for a normal modes analysis in Nastran.

The modes are numbered in order of increasing natural frequency, meaning that the first flexible

mode (i.e. non-rigid body mode) of the structure is numbered as mode seven and not mode one.
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FIGURE D.1. BUG-T flexible modeshapes 1 - 4
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(a) Mode 11 - 3.068Hz (b) Mode 12 - 3.458Hz

(c) Mode 13 - 3.842Hz (d) Mode 14 - 5.305Hz

FIGURE D.2. BUG-T flexible modeshapes 5 - 8
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FIGURE D.3. BUG-T flexible modeshapes 9 - 12
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(a) Mode 19 - 10.070Hz (b) Mode 20 - 10.380Hz

(c) Mode 21 - 10.496Hz (d) Mode 22 - 10.523Hz

FIGURE D.4. BUG-T flexible modeshapes 13 - 16
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FIGURE D.5. BUG-T flexible modeshapes 17 - 20
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(a) Mode 27 - 14.524Hz (b) Mode 28 - 14.909Hz

(c) Mode 29 - 15.988Hz (d) Mode 30 - 15.998Hz

FIGURE D.6. BUG-T flexible modeshapes 21 - 24
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D.2 BUG-T Static Aeroelastic Loads Envelope

In this section the static aeroelastic loads envelopes are presented for all six beam loads for the

wing, strut and jury-strut components. Note that each load cases was calculated for an aircraft

AUM of 68038kg (the MTOW of the SUGAR 765-095 Rev. D) and the aircraft angle of attack

and elevator control surface deflection were used to trim the vertical acceleration and pitching

moment. The loads envelopes are calculated by taking the maximum and minimum values of

the beam loads across each component and the plots are colour-coded to denote which load case

has the maximum/minimum load at that point. Note that where two different beam elements

are attached to the same finite element node the average value of the two sets of beam loads has

been used, which is consistent with the presentation in Bradley et al. 30 . For example, the wing

axial force distribution in Fig. D.8(a) should show an instantaneous jump in force at the strut

attachment point due to the additional loads transferred from the strut to the wing. However as

the average load is used the variation in loads at the attachment point is gradual instead of a

step change. Furthermore, the x-axis for each plot is normalised beam axis of the component (ηr),

which is the straight line distance along the line of nodes which the finite element beams are

attached to. This allows consistent comparison of components which have different orientations

with respect to the global coordinate system.
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FIGURE D.7. BUG-T wing bending moment envelope.
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FIGURE D.8. BUG-T wing force envelope.
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FIGURE D.9. BUG-T strut bending moment envelope.
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FIGURE D.10. BUG-T strut force envelope.
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FIGURE D.11. BUG-T jury-strut bending moment envelope.
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FIGURE D.12. BUG-T jury-strut force envelope.
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MODELLING A GENERIC VIBRATION SUPPRESSION DEVICE IN

NASTRAN

This appendix provides an overview of the various method available for modelling vibration

suppression devices in Nastran. This should serve as a useful resource for any researcher

interested in adopting the same simulation strategy that was used in this thesis. This appendix

is arranged in two parts: In Section E.1 the merits of using a commercial software package to

simulate a vibration suppression device are discussed and in Section E.2 the three methods for

modelling a generic vibration suppression device in Nastran are detailed and their pros and cons

are discussed.

E.1 Motivation for using Nastran

Prior to the work by this author there existed very little research concerning the simulation

of inerter-based devices using the Nastran software environment, or indeed any other commer-

cial finite element analysis package. Instead, previous researchers have chosen to derive the

equations of motion from first principles before running the appropriate analysis in the fre-

quency/time/Laplace domain to obtain the system response, with the simulation typically carried

out using the MatLab/Simulink software due to its prevalence amongst academic institutions.

Such an approach is advantageous because the formulation and solution of the system can be

tightly controlled, however difficulties arise as the complexity of problem increases. For example,

a vibration absorber may have to be applied to a different primary system but continue to use

the same algorithm for designing the device, such as switching from vehicle suspension design

to shimmy suppression in aircraft landing gear using a network synthesis algorithm. Using

the previous approach will require a bespoke set of EoM to be derived for the new problem and
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requires the researcher to develop a deep understanding of the new system before any analysis

can begin. However, utilising a commercial analysis tool such as Nastran means any overhead

from switching design task is associated with generating a new analysis model, which given the

prevalence of CAD tools with built-in meshing capabilities (e.g. CATIA, AUTODESK etc.) is not

always a huge undertaking. If the system of interest contains a large number of degrees of free-

dom then deriving the EoM becomes a lengthy process which can easily introduce errors. Using a

commercial simulation package helps reduce the likelihood of the these errors as the formulation

of the system matrices (mass/damping/stiffness) is done in a systematic fashion and relies only

on the correctness of the analysis model. A further advantage of using a commercial simulation

package is the vast catalogue of element types and analyses which are available. This enables

vibration suppression devices to be included in the analysis of a wide-variety of large and complex

engineering structures. Clearly, there will be applications which favour one approach over the

other, however, in general the commercial software approach favours large-scale problems typical

of industry-standard analysis models, whereas the first principles approach is better-suited to

simple models which are primarily used for research purposes.

E.2 Modelling Methods

There are three methods for modelling a generic vibration suppression device in Nastran:

1. Direct Matrix Input (DMI) - The DMI approach allows additional terms to be added

directly to the mass/damping/stiffness matrices. This approach allows the user complete

control over the device topology but the implementation can become complex when large

models are considered. This method is the most generic but also the most counter-intuitive

if the user is unfamiliar with the Nastran notation.

2. Scalar Elements - As described in Chapter 4, any generic vibration suppression device

can be modelled by joining together the necessary scalar elements (CELAS, CDAMP, CMASS) to

the required degrees of freedom. This is by far the simplest method as it is essentially the

same process as developing any finite element model.

3. Transfer Functions (TF) - Using the TF element a second order transfer function can be

defined which creates set of direct input matrices, M2PP, B2PP, K2PP. This method provides

a user-friendly method for generating direct input matrices, however these matrices are

restricted to the p-set instead of the g-set which are used in the DMI method (see below).

Modelling a device using the Nastran transfer function approach has a major flaw. When a

device is modelled by the TF element and has an intermediate DOF there will be no new natural

frequency in the system due to the new DOF introduced by the device. This is because the

stiffness and mass terms associated with the K2PP and M2PP matrices are not included in the

analysis set which is used for the eigenanalysis. All M2PP, B2PP and K2PP terms are included

after the eigenanalysis has been completed and before the requested analysis begins. Therefore,
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the effects of the device will be present in the chosen analysis1 but the device mode will not be

included. This is particularly concerning when designing a device for aeroelastic control as the

gust and flutter solution sequences both use the modal form of the system matrices. Therefore,

the TF approach is not recommended for any device which has an intermediate DOF.

E.2.1 Example Implementation of the Nastran Transfer Function

The Nastran TF element uses the following equation to define a generic second-order transfer

function between a single dependent DOF ud and an arbitrary number of independent DOFs ui

(B0 +B1 p+B2 p2)ud +∑
i

(A0i + A1i p+ A2i p
2)ui = 0, (E.1)

where p is the differential operator d/dt, and the A and B terms are coefficients which, together

with p, define the zeros and poles of the transfer function. This capability can also be used to

define more complex device layouts by considering the device as a series of transfer functions

chained together, an approach that is made necessary by the fact that the TF element is limited

to a second order function. Furthermore, the inputs to the device, such as relative displacement,

velocity and acceleration, are themselves defined as Extra Points (EPOINT) or Scalar Points

(SPOINT) using Equation E.1. Further information can be found in the Nastran Dynamic Analysis

User’s Guide259. To demonstrate the use of this element the transfer function for the inerter

and the Tuned-Inerter-Damper (TID) will be derived and related to the terms in Equation E.1.

Beginning with the inerter element, the force generated by a linear inerter at each terminal of

the device is given by

f1 = f2 = b(ẍ2 − ẍ1)= b× ë, (E.2)

where f i is the force at each terminal, b is the inertance, ẍi is the acceleration at each terminal

and e is the EPOINT representing the relative displacement between terminals. To implement

this relationship in Nastran the following steps must be taken:

1. Define an EPOINT.

2. Define the device input referencing the EPOINT as the dependent DOF.

3. Define the force at each terminal. Note, when defining a force or moment acting on a

dependent degree of freedom the B terms of the transfer function must be zero.

It is important to note that a transfer function is required to define the force at each terminal of

the device, that is to say, a device with only two terminals requires three transfer functions, one

for each terminal of the device and one for the EPOINT.2 Considering the TID, the force at the two

terminals of the device is

f1 = b( ÿ− ẍ1), (E.3)
1As long as the analysis is not a normal or complex modes analysis.
2It is possible to remove the EPOINT from the transfer function definition and instead use two independent

degrees of freedom for each TF element. However, defining the input to the device as an EPOINT allows the relative
displacements, velocities and accelerations to be requested as part of the results which is useful for understanding the
behaviour of the vibration suppression device.
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f2 = c(ẋ2 − ẏ)+k(x2 − y), (E.4)

The equation of motion for the intermediate y-DOF can be found by setting the two device forces

equal to one another. Converting to the Laplace domain yields

Y (p)= bp2X1(p)+ (cp+k)X2(p)
bp2 + cp+k

, (E.5)

here, upper case letters denote the Laplace response and p is the Laplace variable in keeping

with MSC.Nastran convention for the TF element. Remaining in the Laplace domain, the forces

at each terminal of the device are given as

F1(p)= bp2(Y (p)− X1(p)), (E.6)

F2(p)= (cp+k)(X2(p)−Y (p)), (E.7)

The implementation of the TID element in Nastran is slightly different due to the presence of the

intermediate DOF:

1. Define a SPOINT and two EPOINT.

2. Define the intermediate DOF as a SPOINT using Equation E.1.

3. Using the EPOINT to define the relative quantities for the forces at the device terminals.

4. Define the force at each terminal.

Table E.1 shows the transfer function coefficients for the inerter and tuned-inerter-damper as

well as the various input quantities. Note that e and s represent EPOINT and SPOINT respectively

and subscript 1 and 2 denote the terminals of the device.

TABLE E.1. Transfer function coefficients for the inerter, Tuned-Inerter-Damper and
the device input/output quantities.

Label Equation B0 B1 B2 ud A0 A1 A2 ui

Inerter

Relative quantity
between x1 and x2

e1 = x2 − x1
1 0 0 e1 1 0 0 x1

-1 0 0 x2
Force on terminal 1 f1 = bp2 × e1 0 0 0 f1 0 0 −b e1
Force on terminal 2 f2 = bp2 × e1 0 0 0 f2 0 0 −b e1

TID

Intermediate DOF s = bp2x1+(cp+k)x2
bp2+cp+k

k c b s 0 0 −b x1
−k −c 0 x2

Relative quantity
between s and x1

e1 = s− x1
1 0 0 e1 1 0 0 x1

-1 0 0 s
Relative quantity
between x2 and s e2 = x2 − s 1 0 0 e2 1 0 0 s

-1 0 0 x2
Force on terminal 1 f1 = bp2 × e1 0 0 0 f1 0 0 −b e1
Force on terminal 2 f2 = (cp+k)× e2 0 0 0 f2 −k −c 0 e2
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E.2.2 Limitations of Nastran

Below are a few key considerations when modelling a vibration absorber in Nastran:

• Sensitivity information for any terms related to the DMI and TF methods cannot be

generated when performing a SOL 200 analysis. Therefore, any device modelled using the

DMI or TF methods cannot be optimised using the optimisation methods in this thesis. This

is not a problem when the vibration suppression device is modelled using scalar elements.

• The TF and scalar element method can be used to model spring and damper elements with

nonlinear force-displacement/velocity relationships, although this is only possible in the

relevant solution sequences3.

• Frequency dependent force coefficients can be readily modelled by commercial finite element

software, however in the case of Nastran this is limited to frequency response analysis and

it not available for gust analysis, flutter or design optimisation.

• Many of the standard Nastran solution sequencies cannot handle large rotations and so

the relative motion across the device terminals is not accurately captured. Therefore it may

be necessary to use the nonlinear solution sequence (SOL 400) or integrate the analysis

with a multi-body simulation tool.

3See the Nastran Quick Reference Guide entries for TF, PELAST and PDAMPT.
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