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Abstract 
Neurological disorders affect 1 in 6 individuals worldwide, yet their complex aetiology cannot be 

determined by classic Mendelian genetics alone and is thought to be the result of multifaceted epigenetic 

regulation in utero. Utilising the premise of the ‘Advanced Foetal Programming Hypothesis’,our research 

aim was to uncover the mechanism behind intrauterine gestational hypoxia as seen in obstetric 

complications in the aetiology of neurological disease progression. We explore microRNAs, small non-

coding RNA molecules (19-22 nt), as potential biological factors released from the perturbed placental 

barrier as signalling molecules which can elicit altered foetal programming. 

In order to replicate the effects of  gestational hypoxia in utero, we exposed an, in vitro trophoblastic cell 

line (BeWo), ex vivo (human) and ex vivo (rodent) placental barrier model to hypoxic conditions and 

examined the release of miRNAs into conditioned media. Qualitative and quantitative analysis of the 

miRNAs was performed using a small RNA Agilent bioanalyser followed by NanoString technology. 

Bioinformatics to determine predicted target genes of differentially expressed miRNAs was implemented 

using mirPath v3.0 platform across the experimental parameters to determine if there was enrichment in 

relative neurological pathways. 

We observed differential miRNA expression profiles in the conditioned media obtained across the 

placental models exposed to oxidative stress. Our model of gestational hypoxia resulted in increased 

expression of neurodevelopmental-associated-miRNAs; miR-132, miR-34a, miR-520, miR-124 and miR-

149 to be released from the placental barrier towards the foetal circulation. Furthermore, the direct 

application of an antioxidant drug-loaded nanoparticle treatment (MQ-NP) to the placental barrier was 

found to partially reverse the expression of differentially expressed miRNAs under conditions of 

gestational hypoxia which were found to be enriched in two neurological pathways, axon guidance and 

TGF-β signalling. 

With a view to bridge the gap in knowledge surrounding the mechanisms behind oxidative stress and the 

prevalence of neurological disorders, our findings provide a platform for exploring the potential role for 

oxidative-stress induced miRNAs to act as signalling molecules released from the perturbed placenta into 

foetal circulation where they can elicit post-transcriptional regulation upon neuropathological pathways. 
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 Chapter 1.  General Introduction  

1.1 Scope of the research project  

Paradoxically, one of the most vulnerable and dangerous times of our existence, which paves our future health 

and wellbeing, is one that we will never be able to recall.  

Foetal development is highly dependent upon the maternal intrauterine environment. It was once thought that 

genetics alone provided the blueprints for defining an individual’s chemical, physical, and emotional 

attributes, however the discovery of epigenetics and the role of environmental factors on the genomic 

landscape has redefined our understanding. It is now understood that the in-utero environment influences 

foetal development and can have health consequences lasting into adulthood. However, the underlying 

mechanism for how a perturbation to the intrauterine environment translates to altered foetal development 

remains elusive. It has been proposed that the placenta, which acts as the interface between maternal and 

foetal circulation, may play an important role. This research project will explore this hypothesis.  

Previous studies in our lab have used different models to examine how exposures to the placental barrier, 

without any direct exposure to the foetus, can affect developing foetal cells. The findings indicate that 

biological factors are secreted from the placenta in response to certain placental exposures, and these 

factors can elicit specific responses in foetal cells. The research suggests that the placenta plays a key role 

in mediating the response of foetal cells to changes in the intrauterine environment.  

Low oxygen tension at critical stages of gestation has previously been associated with a myriad of diseases 

for offspring, including cardiovascular disease and neurodevelopmental disorders. This research project 

will examine how altered maternal oxygen at specific gestational timepoints may influence foetal 

development, and the role the placenta plays in this process. The project will assess whether microRNAs, 

known post-transcriptional regulators, act as signalling molecules released from the placenta in response to 

changes in oxygen tension, and whether they have any specific impacts upon foetal cells. Furthermore, we 

aim to explore whether the application of a mitochondrial antioxidant drug, Mitoquinone Mesylate 

(MQNP), can act as a therapeutic drug to reverse the changes seen in the expression of miRNA profiles 

from the placenta under conditions of gestational hypoxia.  
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1.2  Foetal Programming  
Foetal programming is the process whereby, during the vulnerable stages of embryonic development; 

typically during the first trimester when there is the highest degree of cellular division, the foetus is 

exposed to intrauterine environmental insults which elicit an irreversible response both structurally and 

functionally in foetal cells, tissues and organ systems, changing the developmental trajectory of the 

foetus.1 The severity of the foetal response to the exposure depends upon the duration and timing of the 

insult. The changes in the functionality and metabolic activity of the developing foetal cells can have 

longterm, adverse influences, which can persist into adulthood.2,3  

Recent studies have inferred the concept of the ‘Two-Hit’ hypothesis model, which proposes that a genetic 

predisposition to a particular defect can only account for a proportion of the overall probability of the 

development of that specific pathology. This implies the presence of a second determinant in the causation 

of the disease state, such as an environmental insult in utero. The ‘Two-Hit’ model aims to explain how 

chronic diseases are not witnessed at birth but are adopted during later stages of development into 

adulthood, as seen in neurodevelopmental disorders 4. The Two-Hit hypothesis model makes an 

associative link between genetic and environmental factors in the development and progression of disease 

states.  It has been theorised that these environmental exposures relate to the intrauterine conditions during 

early development in-utero; as theorised by Dr David Barker (1990) the proponent of ‘The Foetal Origins 

of Adult Disease hypothesis’(FOAD), where the term ‘Foetal Programming’ is derived.5,6   

Barker and colleagues examined the rate of ischemic heart disease across the UK and discovered there were 

socioeconomic differences in mortality rates associated with heart disease.1,2This gave rise to the notion 

that prenatal conditions during critical stages of gestation influenced the development of cardiovascular 

diseases in later life, and the size at birth could be utilised as a proxy for aberrant prenatal conditions.2,3 It 

has been since found that there is a strong correlation between size at birth and increased risk of offspring 

developing chronic diseases postnatally including cardiovascular diseases, adult diabetes mellitus and 

neurological disorders.4    

Recent studies have examined the correlation between prenatal conditions and the onset of neurological 

disorders due to their growing worldwide prevalence rates.  There has been particular interest in assessing 

prenatal epigenetic modifications to the hypothalamic-pituitary-adrenal (HPA) axis, altering glucocorticoid-

mediated stress responses, with potential ramifications for the development of neuropsychiatric outcomes in 

adulthood upon exposure to postnatal conditions.5 A classic example of prenatal environment impacting 

foetal outcomes was seen in the “Dutch Hunger Winter” study conducted by Susser et al. which studied an 

extreme famine that occurred during post-Nazi rule period in the Netherlands. Pregnant women were 

severely malnourished with reduced folate intake, which was found to cause an increased risk of neural tube 

defects in the offspring born during this period. There was a significant elevation in the number of 

individuals born in this era with neuropsychiatric disorders such as schizophrenia.6,7  
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Barker’s paradigm of ‘foetal programming’ has revolutionised our understanding of the manifestation of prevalent 

pathologies, by establishing both the genetic predisposition of the conceptus and its intrauterine environment as 

being the prime determinants in the aetiology of diseases in adulthood.8 FOAD states that exogenous exposures 

do not alter the genome of the offspring; however, they may render changes in gene expression which has lasting 

implications on metabolic functions.9  

During gestation, the intrauterine environment may be exposed to several detrimental factors which can 

lead to perturbations to the functioning of the placental interface between the mother and foetus.  Such 

factors which have been explored include; xenobiotic compounds10,11, radiation12 and alterations in oxygen 

tension.13,14  It has been inferred that abnormal stimulus/ insult exposed to the intrauterine environment at a 

critical stage in gestation can infringe upon the well-orchestrated cascade of placental development 

processes and lead to irreversible perturbations.  Under such conditions, the plasticity of the placenta 

permits adaptation to the maternal in utero conditions via alterations in; vascularisation, the proliferation of 

the trophoblast cells, transporter expression and epigenetic regulation of gene expression. 15 It is proposed 

that the complications an ‘insult’ induces upon the placenta may have repercussions upon foetal 

programming. Although the genome of the foetus is not directly affected by the placental ‘insult’, there is 

the potential for the causative agents to epigenetically alter foetal gene expression.16,17 Perturbations within 

the intrauterine environment at critical phases of foetal development, exemplified by teratogenesis, will 

have adverse implications on critical metabolic and homeostatic programming of distinct cells of the 

conceptus which may be translated to the onset of prevalent pathologic conditions manifesting in 

adulthood 15,16(Figure 1-1).  
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Figure 0-1 Schematic representation of Barker's 'Foetal Origin of Adult Disease'(FOAD) model 

Illustrating the translational repercussions of the influence an initial ‘first hit’ to the intrauterine environment can alter 

placental function and in turn cause the foetus to adapt to an aberrant environment via epigenetic changes. challenges in 

utero enhance the risk of the offspring developing long-lasting repercussions in adulthood. a ‘second hit’ postnatally is 

potent enough to trigger the onset of pathological symptoms. 

 Image adapted from Seckl & Holmes (2007)  

 

Figure 0-2 Schematic diagram of the Hypoxia-Inducible Factor pathwayFigure 0-3 Schematic representation of 

Barker's 'Foetal Origin of Adult Disease'(FOAD) model 

Illustrating the translational repercussions of the influence an initial ‘first hit’ to the intrauterine environment can alter 

placental function and in turn cause the foetus to adapt to an aberrant environment via epigenetic changes. challenges in 

utero enhance the risk of the offspring developing long-lasting repercussions in adulthood. a ‘second hit’ postnatally is 

potent enough to trigger the onset of pathological symptoms. 

 Image adapted from Seckl & Holmes (2007)  



   ~Chapter 1~  

                                                                 

5  

  

1.3 The aetiology of neurodevelopmental disorders  
Neurodevelopmental disorders (NDD) affect 1 in 6 individuals worldwide (WHO 2007) and manifest 

themselves through impairments of brain functioning, affecting; behavioural processes, cognitive ability, 

memory and emotion, on a broader scale impacting the individual on a social and academic level. 18 NDDs 

cover a broad range of conditions which can be sub-categorised depending on the route and means in 

which they manifest themselves and clinical manifestation to the individual.19 However, a common 

denominator which links these pathologies together is their origin within the brain during the early stages 

of development. Some NDD aetiologies are well understood with strong Mendellian links including; Down 

syndrome diseases which has an incidence rate of 1 in 700 cases and is associated with trisomy of 

chromosome 21; Rett syndrome which has an incidence rate of 1 in 10,000 cases and is related to 

mutations in methyl CpG binding protein 2 (MECP2) impairing infants growth and compromising speech 

and motor function and Fragile X syndrome, the most common monogenic NDD caused by aberrant 

fragile X mental retardation 1 (FMR1) gene which is seen in 1 in 4000 infants resulting in impaired 

cognitive function.20,21  

However, other NDDs are not as definitive and lie within a spectrum including; schizophrenia, Attention 

Deficit Hyperactive Disorder (ADHD), Major-depressive disorder(MDD), bipolar disorder and autism 

spectrum disorder (ASD).22,23 These disorders are complex disorders which are not easily defined by 

genetic susceptibility alone but are believed to be the outcome of an interplay between both a genetic 

predisposition and environmental insults during early stages of gestation as suggested by the ‘Two-hit’ 

hypothesis model 24,25(Figure 1-2). The two-hit hypothesis model infers that a prenatal genetic or 

environmental "first hit" disrupts foetal brain development and primes the nervous system for a potential 

second hit that may occur in later life which results in the onset of a disease state. The first hit is thought to 

occur during early embryonic development and is likely to disrupt a vital mechanism in cell-signalling 

pathways within the developing central nervous system (CNS), which will have long-lasting 

implications.25  



   ~Chapter 1~  

                                                                 

6  

  

  

Figure 1-2 A schematic representing the timeline of critical periods and windows of the susceptibility of foetal 

brain development from conception to adolescence  

 The area highlighted (red-dashed lines) indicates the critical window of susceptibility (4-12 weeks post-conception), in which 

perturbation to the intrauterine environment may render the foetus susceptible to impaired development in neurogenesis. Image 

adapted from Knuesel et al. 2014 & Marin 2016.  

It is widely accepted that neurodevelopmental disorders originate during early stages of development. 

26Like other complex diseases such as cancer, schizophrenia have been associated with the Two-Hit 

hypothesis model. Neurodevelopmental disorders, such as schizophrenia comply with the Two-Hit 

hypothesis model  due this characteristic  traits of this disorder which include: high prevalence across the 

population which infers that there likely multiple causes/ factors which disrupt vital biological 

mechanisms; linkage  to multiple genetic risk factors with a weak-moderate genetic loci link;  low 

concordance rate which suggests that it is not strictly attributed to genetics alone; and  it has links to 

environmental factors such as maternal nutritional deficiencies, demographic factors and seasonal 

variations.25 The current literature highlights what complex disease schizophrenia is and as such proposes 

that, like other complex diseases, a model for schizophrenia, must integrate both genetic and 

environmental factors as contributors to the onset of the disease state26,27 The multiple casual correlations 

witnessed across schizophrenia populations suggest that the disease state cannot be solely attributed to a 

single genetic or biological mechanism, but is likely to be the result of multiple genes which can be 

affected by different environmental cues, altering cell signalling pathways.  
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Schizophrenia is a common neuropsychiatric disorder which is highly prevalent, affecting 1 in 100 individuals 

and is not discriminative of race or socioeconomic factors. Symptoms of schizophrenia develop during early 

adolescence with an increased gender-bias towards males in early diagnosis.28 Research has derived that there 

is, a high relative, heritability rate between 0.6-0.8, which has been supported in monozygotic twin studies 

which have shown that genetics play a vital role in an increased incidence rate of schizophrenia in comparison 

to environmental determinants.29 Despite the strong heritable association, no single gene variant has been 

associated with the onset of schizophrenia. 30 The high prevalence of schizophrenia worldwide and its genetic 

association suggest that there may be a large number of genes implicated in this disorder which each have an 

accumulative effect as well as the interplay of rare copy number variants (CNV) in schizophrenic loci.31 

Candidate environmental risk factors which have thus far been linked with schizophrenia include;  prenatal 

complications, hypoxia, maternal infection, smoking and maternal diabetes.32  

Obstetric complications, including perinatal hypoxia and foetal growth restriction (FGR) during critical 

points of gestation, have been established as an increased risk factor for the development of schizophrenia 

with an odds ratio of 2.0.33  Studies conducted by Cannon et al. have explored the association between 

foetal hypoxia and the genetic predisposition to schizophrenia by analysing brain morphology and 

abnormalities from a cohort in Finland and discovered a reduction in grey-matter volumes in cortical 

regions of the brain including the hippocampus.34 Furthermore, cohort studies assessing the same-sex twins 

discordant for schizophrenia revealed that in cases where there was low birth weight, there was a 

significant association for the development for schizophrenia in later life.35  

ASD is a multifactorial neurodevelopmental condition with a growing prevalence rate worldwide with 6 

cases within every 1000 children.36 Clinical symptoms include; impaired communication and reciprocal 

social interaction, as well as repetitive patterns of behaviours. Epidemiological twin studies have revealed 

that 92% of monozygotic pairs were concordant for autism, suggesting that autism is primarily under 

genetic control37. However, more recent twin studies have placed focus on environmental factors which are 

believed to account for 55% of individuals developing autism.38,39 The first clinical symptoms of autism 

arise within the first three years of development inferring that early environmental exposure, both pre- and 

postnatally are involved in the aetiology.40 The main environmental factors currently linked with autism 

include; maternal infection41, maternal gestational diabetes 42 and xenobiotic pesticide exposures.43  

The clinicopathological traits of neurological disorders are vast and often indistinguishable from one another. 

However, advancements in bioinformatics have allowed for data integration to assess diseasespecific targets 

and their involvement in complex networks involved in pathological settings. Nextgeneration sequencing 

(NGS) from large cohort studies has provided extensive data which can correlate genetic datasets with 

neurobiology to find characteristic genetic signatures amongst neurological disorders.   

Aberrant expression of a single gene can influence biological and molecular pathways. Thus diverse neurological 

phenotypes may be linked to several shared molecular pathways. The ability to assess shared dysregulated molecular 

pathways across neurological disorders can enhance our understanding of the underlying mechanism of neuropathological 

settings.  
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Current methods have assessed the association of clinically related neurological pathologies to assess for 

an association in gene overlap and pathway integration as a means to examine conventional treatments. A 

prime example is an association found between MDD and glioblastoma. Studies have revealed that 

depression is the first clinical manifestation of gliomas.44 Via the use of transcriptomic data, significantly 

enriched biological pathways shared between the two pathologies were combined and revealed that; 

GABAergic synapse, Glutamatergic synapse, cholinergic synapse, cAMP signalling and retrograde 

endocannabinoid signalling were shared pathways in both settings.45  

A recent study by Sagar et al. (2017) assessed using convergent gene network bioinformatics (Cytoscape)  

revealed shared enriched pathways in neurological disorders including; Alzheimer’s disease, Parkinson’s 

disease and multiple sclerosis. They discovered 15 common genes within the network of neurological 

disorders with the shared enrichment of the pathways including; Protein serine/threonine kinase activity, 

immune response-activating signal transduction, toll-like receptor signalling, activation of immune 

response signalling and NF-kappaB, transcription factor activity.46   

Furthermore, the analysis performed by Ciryam et al. (2016) performed a meta-analysis on 1,600 genes 

obtained from the human CNS of Alzheimer’s patients to identify a transcriptional signature of the 

pathology. The results obtained found a set of down-regulated genes which altered the proteome which in 

turn enriched a set of pathways including; oxidative phosphorylation, nicotine addiction, GABAergic 

synapse (GABA), and pathogenic Escherichia coli infection (PEcI). 47  

1.4 Insults of oxidative stress during gestation  

 Oxidative stress  

Oxidative stress can be defined as a perturbation in the finely-tuned balance between the production of free 

radical reactive oxygen species (ROS) and endogenously derived antioxidants.48 Reactive oxygen species 

(ROS) are free oxygen radicals generated as a result of mitochondrial oxidative metabolism and are 

heightened in response to cellular exposure to xenobiotics, cytokines, and infectious agents.49,50ROS 

species range in their capacity to elicit a damaging effect with the most common including; superoxide 

anion, hydroxyl groups and hydrogen peroxide (H2O2), that are the least reactive species, whereas the 

nitrogenous free radicals including nitric oxide and peroxynitrite (ONOO−) are powerful oxidising agents 

and have the ability to damage an array of biological molecules.50    

Oxygen is essential for sustaining life but is often referred to as the ‘Janus gas’; having both advantageous 

and deleterious implications upon the cells in which it is having a direct effect. The reactive nature of 

oxygen makes it a liable target, binding in a non-specific nature to; proteins, lipids and/or DNA, rendering 

adverse effects.51 To counterbalance the effects of ROS upon cellular components, the body produces 

endogenous antioxidants including; superoxide dismutase, catalase and glutathione peroxidase.52 The 

concept of pro-oxidants and antioxidants being in a constant state of balance suggests that oxidative stress is 

dependent upon the severity of the disturbance to this finely tuned equilibrium.53  
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Under homeostatic concentrations, ROS are required in physiological processes within the cell, acting as 

important secondary intracellular signalling molecules.54 However, increased levels of ROS which surpass 

the endogenous antioxidant threshold can elicit pathological effects. Endogenous production of ROS 

predominately results from the cytosol, plasma membrane and within the mitochondria.55 Mitochondrial 

ROS (mtROS) ROS acts as critical signalling molecules to initiate signalling pathways involved in an 

array of cellular processes, including; proliferation via MAP kinases, PI3 kinase56; mitochondrial oxidative 

stress via dysregulation of NADH dehydrogenase, cytochrome c oxidase, and ATP synthase 55,  and 

ATMregulated DNA damage response57. The severity of the pathological consequences of ROS is thus 

dependent upon the following variables; the site of ROS production, the diffusion gradient, the 

biomolecules it encounters, and the level of perturbation to the equilibrium. 54  

Recent studies have emphasised the involvement of oxidative stress upon aberrant development of critical 

systems during early foetal development, with the prime focus being on  cardiovascular13 and 

neurodegenerative pathologies. 54  

  

 Intrauterine Hypoxia  
Hypoxia is defined as an insufficient level of oxygen being able to perfuse vital tissues within the body.58 

When tissue is poorly perfused with the required level of oxygen needed to function, then this region of the 

body is deemed ‘hypoxic’. It is well established that low levels of oxygen can have a detrimental and 

pathophysiological cellular effect, and are associated with oncological conditions, cardiovascular 

infarctions and stroke as well as a myriad of other pathologies.59   

It is not surprising that hypoxic conditions have a detrimental effect on the placental function when a mother 

is exposed to gestational hypoxia. Hypoxic stress can compromise placental function resulting in; impaired 

uterine invasion, compromised villous formation, a reduction in the placental vasculature and incomplete 

spiral arterial remodelling.58,60,61 Such compromises to the placental structural development have been 

shown to result in pregnancy complications, with the most pronounced being; pre- 

eclampsia(PE), Intrauterine growth restriction(IUGR), hypertension and small for gestational age (SGA).62  

Hypoxia during pregnancy is a highly complex condition due to a plethora of potential factors attributing to 

the conditions obtained from maternal, placental and foetal domains. Due to the diverse causes for the 

prevalence of hypoxic conditions during pregnancy, Kingdom & Kaufmann (1999) classified the 

conditions into three subclasses.63  

  

1. Pre-placental hypoxia (both the mother and the foetus are deemed hypoxic)  

This case occurs when the mother is living at high altitudes or has been diagnosed with cyanotic heart 

disease.   
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2. Uteroplacental hypoxia (maternal oxygenation is within the normal range but the uteroplacental circulation is 

compromised).   

Occurs when there is an insufficient supply of oxygen reaching the foetus due to pre-eclampsia and 

impaired spiral artery remodelling.   

3. Post-placental hypoxia (the developing foetus is hypoxic)  

Arises in cases where there are extreme perturbations, including ruptures and foetal cardiac complication.   

Our research will assess prenatal exposures of hypoxia and therefore will focus on recapitulating the first two 

sub-categories of gestational hypoxia.  

Pre-placental hypoxia is the outcome of exposure to hypoxic environmental conditions or due to a 

preexisting maternal pulmonary or cardiovascular pathology. A prime example of preplacental hypoxia is 

where mothers live at high altitudes (>2500m above sea level). Approximately 140 million people live in 

high altitude environments.64 Research has shown that pregnancies which arise at higher elevations result 

in a reduced maternal arterial pO2 which compromises placental development compared to control 

groups.64 Hypoxic conditions are also associated with an increased level of ROS , which in turn activates 

Hypoxia-Inducible Factors (HIF), which act as vasoconstrictors negatively impacting the perfusion rate 

through the uterine arteries at higher altitudes. 65Hypoxic conditions lead to an increased haematocrit 

count making the blood more viscous, resulting in decreased umbilical arterial blood flow velocity. A 

reduced level of perfusion is associated with lower birth weights.66 Epidemiological studies have revealed 

that pregnant women living at high altitudes had offspring which were at increased risk of developing 

IUGR and low birth weights.67  

Other factors which are associated with preplacental hypoxia include pre-existing maternal diseases. 

Preexisting congenital heart diseases including heart arrhythmias, pulmonary oedema and cyanotic 

syndrome in the mother have also been shown to increase the risk of IUGR and placental abnormalities. 68 

The most severe foetal outcomes arise when there are irreparable obstructions to the left side of the heart 

(aortic stenosis), Marfan syndrome and pulmonary hypertension which are causative factors in the onset in 

2025% of IUGR cases.69 Congenital heart disease (CHD) results in abnormal cardiac output, which in turn 

alters placental development and spiral arterial remodelling, posing an increased risk for IUGR and 

premature births.70 Mothers suffering from cyanotic CHD are believed to have only a 40-45% live birth 

rate, decreasing significantly to only 10% if there is a drop in oxygen saturation below 85%71. Other 

pathologies such as brain haemorrhages and neonatal fatality are possible outcomes in offspring born to  

CHD mothers.72,73  

Adverse maternal metabolic syndromes pose an increased risk of in utero hypoxic conditions. Both 

maternal obesity and gestational diabetes mellitus (GDM) have been linked with changes in the structure 

and function of the placental vasculature.74 A study conducted by Li et al. utilised a murine in vivo model 

and discovered that maternal high-fat diets resulted in increased inflammatory factors which are related to 

increased oxidative stress and hypoxia in the placental labyrinth, indicated by elevated HIF1α and VEGF 

expression.75 Maternal asthma is associated with cases of chronic hypoxia and is prevalent within 4-7% of 
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pregnancies with increased incidents rates seen in IUGR, perinatal mortality and neonatal hypoxia.76 

Maternal asthma exacerbated foetal hypoxia and respiratory alkalosis, which constricts blood flow 

through the placenta. A reduction in oxygen availability to the foetus causes impaired foetal development 

and preterm birth.77  

Maternal lifestyle choices further impede the oxygen availability to the placental and foetal circulation. A 

prime example is maternal smoking, which causes elevated levels of carbon monoxide, which induces, 

tissue hypoxia via the reduction in nucleated red blood cells.78 Studies have revealed that expectant 

women who smoke throughout pregnancy have an increased risk of offspring suffering from 

hypoxicischaemic encephalopathy, cerebral palsy and seizures.79 Rodent studies conducted by Streja et al. 

(2013) have supported these findings and discovered heightened apoptotic markers specifically seen 

within the rodent cortex and increased levels of both inflammatory and mitophagy markers.79   

 Oxidative stress and neurodevelopmental outcomes in offspring  

Aberrant oxygen levels to the placental barrier during critical stages of gestation result in pregnancy complications, 

including IUGR and PE which have been linked with the development of neurological  

conditions in later life.80,81  

IUGR is a multifactorial disorder which occurs in 5-7% of births worldwide making it the leading cause of 

perinatal morbidity and mortality, with six times increased incidence rates in underdeveloped countries, 

affecting up to 30 million individuals.82 83,84 IUGR is associated with perinatal asphyxia and hypothermia 

and can result in long term health complications to the developing foetus including cardiovascular 

impairments, neurodevelopmental and cognitive deficiency, growth retardation and diabetes mellitus type  

2.85,86  

In comparison, maternal factors include; maternal autoimmune diseases, cardiovascular pathologies which can 

result in alterations in uteroplacental blood flow and reduced oxygen reaching the developing foetus, maternal 

diabetes, hypertension, xenobiotic teratogenic exposures, maternal age and socioeconomic factors (smoking 

and dietary choices).87 Overall the most prevalent associated cause of IUGR has been seen in mothers who are 

predisposed to chronic hypertension and/or suffering from PE (around 30-40% of IUGR cases). In addition, 

maternal diabetes mellitus is another common factor seen in 10-20% of cases of  

IUGR.88  

It has been well established in both human and animal studies that individuals with IUGR are at higher risk 

of developing neurodevelopment complications and cognitive impairments throughout their lifetime.81,89 

Early exposures to chronic hypoxia affect both brain morphology and function in neonates; however, 

neuropathological outcomes are diverse depending upon the timing and severity of the exposure. Perinates 

diagnosed with IUGR tend to have a smaller head circumference with reduced hippocampus, cerebellum 

and cortical grey matter volumes.89 90 This feature is an indicator of poor neuropathological outcomes, with 

post-mortem studies revealing that in IUGR foetuses, there is a reduction in the total number of neurons 
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present. Whole-brain connectome studies have further shown neurobehavioral compromise in IUGR 

affected brains, with a reduced local, and global network efficiency between neurons, reduction in 

myelination and impaired cortico-basal ganglia in the prefrontal and limbic neurons. IUGR can result in 

altered neural architecture in the frontal lobes, which are critical domains for the development of complex 

cognitive function and attention-related behaviours. Furthermore, the hippocampus, associated with 

learning and memory,  is highly susceptible to the effects of a lack of oxygenation.83 Animal models have 

shown that exposure to chronic hypoxia leads to a reduction in cell number and size and reduction in brain 

weight and a decrease in axon myelination.91These findings have been further supported in human studies 

which have revealed a reduction in the cerebral grey cortical matter and hippocampal volumes.89.  

 Modelling hypoxic settings  
There is a growing body of research assessing the implications of oxidative stress to the placenta to 

understand the aetiology of obstetric complications and how we can treat them. In vitro models of the 

placenta (section 1.8.1) can be used to model the implications of hypoxic settings using one of two 

methods; either induction via an exogenous substance or using a hypoxic chamber. An example of a 

commonly used exogenous substance is Cobalt (II) Chloride hexahydrate (CoCl2 • 6H2O, MW=237.9). 

The application of this chemical induces and stabilises HIF-1/3α. Cobalt chloride is highly soluble in water 

and therefore can be applied to the cell culture medium. Hydrogen peroxide is an alternative to cobalt 

chloride in inducing hypoxic settings and experiments using H2O2 (10 to 500 µM) on JEG-3 cells resulted 

in changes in proliferation, hCG secretion and apoptosis, which are indicative of the changes induced 

under a hypoxic setting (2% O2).92  

A myriad of experiments have utilised this method on cell lines in order to examine the effects hypoxic 

stress setting has on the pathophysiology of the placenta.93,94 However, limitations include; the extensive 

toxicological tests are required to calculate the correct dosage and an in-depth knowledge surrounding how 

the exposure will interact and regulate other genes which could affect the phenotype and function of the 

cells it is applied to.95  

The hypoxic incubator is an alternative method,  which has been widely used in both in vitro96,97 and in 

vivo98,99 models of the placental barrier. Hypoxic incubators have gas mixing systems incorporated into 

their builds which permits continuous culture and manipulation of cells under constant, controlled hypoxic 

conditions.95 The essential advantage of using a hypoxic chamber is that it does not require any additional 

use of drugs to the cells or placental explants which could interfere with cell behaviour, morphology and 

physiology, independent of the change in oxygen tension.   
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1.5 The role of the placenta during foetal programming  

 

Figure 1-3 A schematic diagram of the blastocyst  

Illustration of the blastocyst post-conception day 6 when the outer layer of cells (the trophectoderm) have differentiated . It is 

comprised of both an outer layer of mononucleated syncytiotrophoblast cells which fuse to form syncytium surrounding the inner-cell 

mass (ICM) and an internal layer of multipotent undifferentiated cytotrophoblast cells.  

  

The placenta is a multifaceted, transient discoid organ which originates approximately five days post 

fertilisation. 100 During the development of the conceptus, between (day 4-5 p.c.) at the morula and the 

blastocyst stage when there is only a cluster of cells, the trophoblast lineage is the first to differentiate. The 

primary trophoblast cells are mononucleate and form a single layer surrounding the inner cell mass (ICM).  

The trophoblast lineage later develops into the placenta, and foetal membranes while the ICM will give 

rise to the embryo and the extraembryonic mesoderm which forms both the placenta mesenchyme and the 

umbilical cord. At day 6-7p.c. the blastocyst is released from the zona pellucida where it attaches to the 

uterine epithelium via interactions between the polarised trophoblast cells which encapsulate the ICM and 

the uterine epithelium. Differentiation of the mononucleate cells forms invasive multinucleate 

syncytiotrophoblast cells which further penetrate the epithelium and decidual stroma forming a complete 

syncytium surrounding the conceptus.101,102   

The undifferentiated mononucleate trophoblasts are termed cytotrophoblasts, which lie beneath the 

syncytiotrophoblast layer and do not contact the maternal tissue (Figure 1-3). Cytotrophoblasts are highly 

proliferative, non-differentiated stem cells which consistently fuse to replenish the syncytial layer. At day 

eight fluid-filled spaces coalesce to form lacunae amongst the syncytiotrophoblast layer, with the remaining 

syncytial cells being term trabeculae. Post-conception day 12, the cytotrophoblasts penetrate the 

syncytiotrophoblast trabeculae to form chorionic villi projections into the lacunae (intervillous space). The 

lacunae are filled with maternal blood, and baths the surrounding villi which act as the barrier between the 

maternal and foetal blood.103 The villi prevent direct mixing of the maternal and foetal circulation structurally 
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via a bi-layer structure comprised of; syncytiotrophoblast, cytotrophoblast and connective tissue Exchange 

between the mother and foetus occurs via active and passive diffusion.   

Thus, the structure of the placenta can be divided into a maternal and foetal domain, with the chorionic 

plate facing towards the foetal domain and the basal plate towards the mother 104 (Figure 1-4). The 

maternal component of the placenta is composed of the decidua basalis, derived from the maternal uterine 

wall.  The decidua septa extend into the placenta and divide into segmented regions known as cotyledons. 

Each of the individual cotyledons are composed of a villous tree and an intervillous space. The decidua 

contains both uterine arteries and veins, where the transfer of maternal blood into and out of the 

intervillous spaces arises.  

Conversely, the foetal component of the placental interface is comprised of the chorionic plate which 

contains ramified foetal blood vessels. The foetal blood vessels can give rise to highly branched villous 

structures of the chorion frondosum, which extend out into the intervillous space where the villi terminate 

and are bathed in the maternal blood.105  

The human placenta develops into a haemochorial system as there is an intimate exchange between the 

developing foetus and the mother as the embryonic villi are bathed in the maternal blood.106 Exchange of 

the two blood circulations occurs across a diffusion gradient within the intervillous space where maternal 

blood is acquired via the uterine arteries and carried away by the uterine veins. A branch of the umbilical 

artery protrudes into each of the villi which terminates in a capillary plexus from which a tributary drains 

the blood of the umbilical vein. 107,108 Three main constituents determine the efficiency of the placenta as a 

mediator for exchange; the surface area available for exchange, the thickness of the barrier and the 

arrangement of vascular architecture; the smaller and thinner the placenta the more efficient and effective 

it is109(Figure 1-4).  
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Figure 1-4-A Schematic Cross-section of the human placenta  

A schematic illustration depicting a cross-section through a fully developed haemochorial term placenta, illustrating the apical and 

basolateral domains of the placenta which are partitioned by the chorionic villi interface. Image sourced by Moore et al. (2007).  

The placenta is the interface between the mother and the developing foetus acting as a protective barrier 

against exogenous stimulants from the maternal environment. The chorionic villi are an indispensable 

structural component of the placenta which act as the interface between both the maternal and foetal 

derived components of the placenta, where there is an exchange between the maternal and foetal 

circulation.110 The chorionic villous interface is formed from trophoblasts cells derived from the 

trophectoderm. There are two lineages of villous trophoblasts; cytotrophoblast and syncytiotrophoblast111 

(Figure 1-5). The former is characterised as proliferative, non-invasive, progenitor cells situated in the 

basement membrane; while the latter are differentiated epithelial cells which are non-proliferative with 

invasive properties. Cytotrophoblast cells are the fundamental building blocks which, throughout gestation, 

progressively differentiate from a mononucleated state into a multinucleated syncytium of 

syncytiotrophoblast during villous formation.107  

The syncytium is a highly polarised epithelial unit with a dense population of microvilli to amplify the 

surface area to permit the insertion of a crucial reporter and transporter proteins for maternal-foetal 

exchange.112 The base of each microvillus has a clathrin-coated pit which forms vesicles which are coated 

to permit for clathrin-mediated transportation of macromolecules across the syncytium to the underlying 

basal membrane. 100 The syncytium is a continuous sheath which acts as a biophysical barrier with no 

intercellular junctions between the syncytiotrophoblast, which is believed to optimise the flow of oxygen 

to the developing foetus.112 It also drives the directionality of exchange in the vertical axis from the apical 

domain to the basal domain. The syncytium is involved in critical placental regulatory processes including 
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the synthesis and secretion of steroid and peptide hormones, production of xenobiotic defence mechanisms 

and the control of oxygen exchange and consumption across the feto-placental unit. 100  

An additional subset of differentiated trophoblast cells is the subgroup of cytotrophoblast that. are fated to 

become invasive extravillious cytotrophoblast cells (EVT). The implementation of the invasive properties 

of these cells determines the cut-off point between the first and second trimester of gestation. During the 

first trimester the maternal spiral arteries are plugged by invasive trophoblast cells to prevent maternal 

blood flow into the intervillous space; thus, keeping the intrauterine environment in a constant state of 

hypoxia, which is physiologically favourable during early stages of development. Cytotrophoblast invasion 

is a process which arises during villous formation and is necessary during placental vascular remodelling at 

the point of implantation.113 The angiogenic properties of this cell type can be utilised to invade the 

maternal circulatory system, specifically the myometrial spiral arteries, in order to initiate supply of 

nutrients and gas exchange directly via the maternal and foetal blood supply.107 Cytotrophoblasts invasion 

results in the degradation of the endothelial lining and vessel elasticity. Consequently, there is a loss of 

elasticity and an increase in the luminal diameter of the spiral arteries which leads to the spiral arteries 

having low resistance vascular channels which produce ideal conditions to enhance the efficiency of blood 

flow circulating the placenta. 107,113As pregnancy progresses, the trophoblast bilayer diminishes as the 

cytotrophoblast differentiates into the syncytiotrophoblast. Thus, the initial trophectoderm bilayer of the 

chorionic villi is gradual, throughout gestation, transformed into a monolayer structure to facilitate greater 

exchange between the mother and foetus to allow for exponential foetal growth.114,115  
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Figure 1-5 Schematic diagram of the cross section of the chorionic villi during the first trimester of gestation  

A schematic representation of the arterio-capillary-venous system. The feto-maternal interface is derived of two discrete layers of 

trophoblast cells; cytotrophoblast & syncytiotrophoblast within the primary chorionic villi structure. This is the interface between the 

maternal and foetal circulation. The highlighted region shows the cross sections of a 10 weeks-old term chorionic villi showing the 

villous mesenchyme with the fetal capillaries and Hofbauer cells. Image adapted from (Moore et al.(2016).  

.  

1.6 The functional role of the placental barrier  
The placenta’s leading functional role is to provide protection, nutrition and the resources to facilitate the 

developing foetus by acting as an interface between both the foetal and maternal physiological 

environments116. It acts as a critical biophysical, selective barrier monitoring transportation and exchange 

of substances and xenobiotic factors between the mother and the developing foetus.  

 Oxidative stress  
The placenta is primarily responsible for providing gaseous and nutrient exchange between the mother and 

the foetus, however before the formation of the primary villi, the conceptus relies upon histotrophic 

nutrition.117 During the first trimester, when critical organogenesis is taking place, the intrauterine 

environment is at low oxygen levels in order to reduce the risk of ROS production, which could be 

deleterious to foetal development.118,119   

However, as gestation progresses, the nutritional demands of the foetus are elevated, and therefore, the 

placenta has to physiologically adapt to accommodate extensive changes in vascularisation within the 

placental structure (Figure 1-6). Increased vascularisation results in an influx of oxygen reaching the 

conceptus, which can pose a threat of elevated ROS levels.    
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Figure 1-6 Schematic representation of spiral arterial remodelling at the beginning of the second trimester of 

gestation  

At the end of the first trimester the tertiary villi comprised of invasive cytotrophoblast cells invade the uterine decidua and are 

termed EVT. These form a temporary trophoblast plug which prevents maternal blood entering the intervillous space, rendering the 

placenta under a state of hypoxia. At post-conception day 70 the EVT invade the maternal spiral arteries and remodel the arterial 

structures having a vasodilatory effect, allowing maternal blood to flow fill up the intervillous space. This causes an elevation in 

oxygen tension as the tertiary villi are bathed in maternal blood where gaseous and nutrient exchange can arise. Failure of the EVT 

to remodel the spiral arteries causes pathological hypoxic conditions and results in obstetric complications. Image adapted from 

Karumanchi et al. (2005).  

  

In the first trimester of pregnancy (weeks. 1-10) the foetus develops in a hypoxic intrauterine environment 

(pO2≤20 mmHg, ~5% O2) before the blood flow between the mother and the conceptus in the intervillous 

space is established (8 weeks of gestation). At the end of the first trimester, trophoblastic invasion into the 

decidua initiates the uterine spiral arteries to dilate so that the villi are bathed in the maternal blood within the 

intervillous space, increasing the oxygen tension to 50mmHg.120,121 However, this physiological process of 

spiral arterial remodelling causes a state of hypoxia-reperfusion, which is recapitulated as an ischemia-

reperfusion insult to the barrier.15,120 A sudden influx of oxygenated blood to the intervillous generates ROS in 

high abundance within the villous endothelium. The placenta is adapted to deal with an influx in ROS by 
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increasing the concentration of antioxidant enzymes such as; catalase, superoxide dismutase (SOD) and 

glutathione peroxidase within placental tissue. Concurrently under low levels of oxygen, there are increased 

concentrations of heat shock protein 72 (HSP72) and nitrotyrosine, which are markers for oxidative stress in the 

placental endothelial of the syncytiotrophoblast.15,119,120   

Pregnancy itself induces oxidative stress to the barrier by increasing placental mitochondrial activity upon 

an influx of oxygenation from the maternal blood situated in the intervillous space. Heightened levels of 

mitochondrial activity lead to the production of ROS, predominately in the form of a superoxide anion. 

Superoxide anions are generated by NADPH oxidase, Flavin enzymes and enzymes which are intrinsic to 

the mitochondrial electron transport chain. ROS generation has pronounced effects upon placental 

function; causing alterations in trophoblast proliferation, differentiation and angiogenesis.54,120  

Oxidative stress during the first trimester causes deterioration in syncytiotrophoblast cells, resulting in 

depletion of microvilli and mitochondria.122 Cytotrophoblasts are protected from oxidative stress as they 

contain endogenous levels of antioxidants in comparison to the syncytiotrophoblast cells, which are 

negligible in comparison. Increase in antioxidative capacity induced by ROS leads to maladaptation of the 

mitochondrial ultrastructure and damage of the syncytiotrophoblast which can result in severe obstetric 

complications and even miscarriage.122  

Inadequate EVT invasion of the spiral arteries can result in the placenta being in a state of chronic oxidative 

stress (Figure 1-6). An imbalance of oxidant/antioxidant activity arises when the syncytiotrophoblast cells 

are unable to increase their antioxidant capacity at the same rate at which the oxygen tension increases 

during the second trimester. Whereas, oxidative stress, caused by intermittent maternal blood flow in the 

intervillous space, is associated with hypoxia-reperfusion damage. Hypoxiareperfusion injury is mediated 

through generation of ROS via different pathways including; through mitochondrial electron transfer, the 

activity of an NADPH oxidase and xanthine dehydrogenase/oxidase. Xanthine oxidase is enhanced under 

conditions of hypoxia and acts to transfer electrons to molecular oxygen to form superoxide radicals.123 

Reoxygenation after a hypoxic insult results in an increased production of ROS in the villous endothelial 

cells and syncytiotrophoblast cells. Cycles of hypoxiareperfusion have been related to irreversible cellular 

damage.123,124  

Current findings have reported that obstetric complications such as PE and IUGR induce oxidative stress 

upon the placental barrier and are associated with alterations in placental vascularisation and increased 

levels of apoptosis in the trophoblast cells. 120  

 Detection of Oxidative stress to the barrier  

Monitoring the intrauterine oxygen tension is essential to ensure the appropriate progression of growth at this 

critical stage of development. Although it is physiologically apt to have near anoxia levels during the first 

trimester of gestation for placental implantation and invasion, these low oxygen tensions are still ascribed to 

a state of hypoxia. Cells can detect and respond to low oxygen tensions using a host of adaptive strategies 

and modifications to gene expression to cope with sub-optimal growth conditions.   
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Hypoxia-Inducible Factors (HIF) are prime mediators for detecting and eliciting a response to alterations in 

oxygen tensions in a cellular environment.121 They are highly conserved oxygen-dependent transcription 

factors that are activated during periods of low oxygen tensions. HIF regulates genes involved in cell 

proliferation, angiogenesis and glucose metabolism125(Figure 1-7). A hypoxic setting is associated with 

pluripotency and the prevention of cell differentiation. However, paradoxically it promotes the formation 

of capillary and vascular networks essential for embryonic development. HIFs are vital in the regulation of 

oxygen tension during crucial stages of early development; a failure of HIFs to detect and act upon a 

hypoxic setting can lead to serious detrimental defects in embryonic development and in extreme cases 

even perinatal death.121  

HIFs are found in a hetero-dimeric conformation, consisting of an alpha and a beta subunit; usually as 

HIF1α and an aryl hydrocarbon receptor nuclear translocator (Arnt). Arnt is constitutively expressed, 

whilst HIF1α is ubiquitously expressed within mammalian cells, but its expression is dependent upon 

cellular oxygen concentrations. HIF transcription factors mediate their effects by dimerisation of the two 

subunits and their binding specifically to the Hypoxia Response Elements (HREs) on DNA, regulating 

over 200 genes.126 Currently, the primary focus of research has discovered the functional importance of  

HIF1α in homeostatic induction of transcription of essential genes including; vascular endothelial growth 

factors and erythropoietin.127 In contrast to this, HIF2α and HIF3α have been associated with specialised 

cellular regulatory roles such as; pH regulation, proteolysis and glucose metabolism121 (Figure 1-7).  

HIF1α is under the regulation of mitochondrial ROS128, mediated via extracellular signal-regulated kinase 

(ERK) and PI3K/AKT signalling pathways. Paradoxically, it has been determined that HIF1α and its 

downstream hypoxic responsive genes act as pathophysiological regulators, regulating mitochondrial 

function.129 In a hypoxic setting, there is a low abundance of oxygen at complex IV (Cytochrome C 

Oxidase), the terminal enzyme in the mitochondrial respiratory chain, which results in an accumulation of 

electrons which leak out of the membrane to form superoxides.54,130 Furthermore, recent studies have 

shown that miRNAs mediate the response of HIF transcriptional factors to differing levels of oxygen 

tensions.131,132 ROS has also been found to be bidirectionally altered by miRNAs as seen in the onset of 

pathological conditions.133  

Mitochondria are the primary sites for physiological ROS generation, releasing high-energy electrons from 

complexes I and III of the electron transport chain.134 The electrons reduce molecular oxygen to 

superoxide which is then scavenged by the mitochondrial antioxidant manganese SOD. Mitochondrial 

function can be compromised when the balance of ROS generation overrides the efficiency of 

mitochondrial antioxidants. Severe, prolonged exposure of oxidative stress to the mitochondria can result 

in damage to mitochondrial DNA and lipid membrane structures.   Mitochondria play a diverse role in 

cellular functions including apoptosis, amino acid transport, calcium homeostasis and steroid synthesis.   

Environmental factors including hypoxia, malnutrition and ageing have been attributed to perturbations to mitochondrial 

activity, which in turn has been associated with pregnancy complications.   
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 Immunological & Xenobiotic threats  
An additional function of the placenta is to provide immune tolerance acting to protect the foetus against 

harmful, noxious exogenous toxins in the mother’s circulation. The placenta is highly specialised to adapt 

to a foreign immunological environment by accepting a foetal allograft without rejecting it as a vascular 

parasite. The placenta achieves tolerance to the developing foetus via partial immune suppression through 

Figure 0-4 Schematic diagram of the Hypoxia-Inducible Factor pathway 

Under Normoxia conditions HIF1α levels are regulated by the ubiquitin-proteasomal system after hydroxylation of the proline residues on 

HIF1α by propyl hydroxylase. For propyl hydroxylase to function it requires an oxygen molecule as a co-substrate. The hydroxylation 

process emits a destruction signal that is recognised by the Von Hippel–Lindau (VHL )protein located within the E3 ligase complex, and 

initiates proteolysis of HIF1α. Whereas, under aberrant oxygen tensions the hydroxylation process is inhibited as the oxygen concentration 

is the limiting factor and prevents the propyl hydroxylase from carrying out hydroxylation of the HIF1α molecule. Instead there is an 

increasing accumulation of intracellular HIF1α which dimerises with ARNT (HIF1β) permitting translocation into the nucleus where it can 

directly interact with DNA molecules and bind to the Hypoxia Response Element (HRE) located in the promoter region of an array of 

hypoxia responsive genes121,130,675Image adapted from Ratcliffe, Koivunen & Myllyharju.(2016)  

 

 

Figure 0-5 Schematic representation of the three different feto-maternal interfacesFigure 0-6 Schematic diagram of the 

Hypoxia-Inducible Factor pathway 

Under Normoxia conditions HIF1α levels are regulated by the ubiquitin-proteasomal system after hydroxylation of the proline residues on 

HIF1α by propyl hydroxylase. For propyl hydroxylase to function it requires an oxygen molecule as a co-substrate. The hydroxylation 

process emits a destruction signal that is recognised by the Von Hippel–Lindau (VHL )protein located within the E3 ligase complex, and 

initiates proteolysis of HIF1α. Whereas, under aberrant oxygen tensions the hydroxylation process is inhibited as the oxygen concentration 

is the limiting factor and prevents the propyl hydroxylase from carrying out hydroxylation of the HIF1α molecule. Instead there is an 

increasing accumulation of intracellular HIF1α which dimerises with ARNT (HIF1β) permitting translocation into the nucleus where it can 

directly interact with DNA molecules and bind to the Hypoxia Response Element (HRE) located in the promoter region of an array of 

hypoxia responsive genes121,130,675Image adapted from Ratcliffe, Koivunen & Myllyharju.(2016)  
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priming of maternal regulatory T-cells after implantation. T-cells promote tolerance by secreting 

Interleukin-10 and Transforming growth factor-beta (TGF-β), creating an immunosuppressive 

environment.135 These molecules are present in all nucleated cells and confirm the cellular identity of ‘self’ 

against ‘non-self’. The presence of specific HLA is tightly regulated at the feto-maternal interface to 

prevent rejection of the allograft.136  

Furthermore, the placenta continuously secretes antimicrobial agents, such as ROS, reactive nitrogen 

species (RNS) and β-defensins.137Most importantly, the placenta is surrounded by a pool of, mainly innate, 

immune cells. Nearly half of the cells present in the decidua around the EVT comprise of maternal 

immune cells; of this, 70% are NK cells, 20% macrophages, and 10% T cells.138 Surrounding the 

syncytiotrophoblast, the full range of immune cells are present in the maternal blood, including B cells, 

dendritic cells and granulocytes.139  

 Morphology of the barrier  
The thickness of the placenta barrier is an essential factor when considering its capacity to protect the 

developing foetus from noxious substances. The permeability of the barrier governs the bidirectional 

transfer of substances. A study by Bhabra et al. (2009) demonstrated that during the first trimester,when 

the barrier is bi-layered, an exposure of harmful toxins (cobalt-chromium nanoparticles) within maternal 

circulation were internalised in the outer syncytiotrophoblast layer and did not directly pass through the 

bilayered structure, but was still able to elicit a DNA damaging response to exposed foetal cells.140,141 

These studies have since been replicated  with the discovery that the bi-layer barrier elicits a response to 

maternal stimulants by signalling through the placental barrier, exerting an indirect effect upon foetal cells 

as shown in; fibroblast141, neuronal142 and embryonic stem cells.143 These studies have strengthened the 

theory that the developing conceptus is most vulnerable to teratogens and oxidative stress during the first 

trimester of pregnancy when the placenta is bi-layered.144  

  

1.7 The placenta as a signalling organ  
The plasticity of the placenta enables it to physiologically responds to changes in the maternal environment 

to meet the demands of the developing foetus by permitting a cross-talk between the mother and the 

foetus.145 The placenta permits communication between the two domains to protect the developing foetus 

against harmful exogenous exposures which may be detrimental to foetal development; however, the 

mechanism remains largely unknown.4   

Although the placental barrier acts to protect against harmful stimulants and xenobiotic exposures to the 

developing foetus, the placenta is not an impenetrable barrier as once thought.146The first few weeks of 

gestation, during the blastogenesis period, is a critical period of organogenesis, rendering the conceptus at 

its most vulnerable due to the pluripotential state of the blastocyst. DNA damage to the conceptus could 

cause alterations in cell proliferation and differentiation pathways resulting in morphological and 
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physiological abnormalities. A teratogen is classified as “an environmental factor that can produce a 

permanent abnormality in structure or function, restriction of growth, or death of the embryo or foetus”.147 

Research, has studied a range of teratogenic exposures during gestation upon foetal development and have 

found that it is associated with a plethora of pathophysiological conditions ranging from; structural defects, 

impaired CNS development to foetal death.147  

The discovery of thalidomide-induced birth defects in between (1957-1961)  was the first example of how 

the placental barrier is penetrable to xenobiotic substances in the maternal circulation being able to cross 

the placental barrier and enter into the foetal blood-stream and elicit an effect.146 Thalidomide was initially 

prescribed as a treatment for morning sickness in expectant mothers; however, it was found to have 

teratogenic effects on the foetus in up to 20% of cases upon exposure within the first 28 days of 

gestation.148 Thalidomide exposure has been associated with a host of effects on foetal development 

including; limb defects, facial haemogliomas, oesophageal atresia, facial palsy and cardiac defects, to 

name a few.147,148 Thalidomide is to date the greatest man‐made medical disaster affecting over 10,000 

children worldwide who were born with a host of debilitating malformations.149 This tragedy became the 

driving force for in-depth toxicity studies to be conducted to examine the mechanism behind the toxicity of 

thalidomide and other drugs prescribed to expectant mothers to determine whether they were able to 

transverse the placental barrier and exert teratogenic effects. studies have shown that the teratogenicity of 

Thalidomide is correlated with its angiogenic properties.150  

Since the thalidomide disaster there has been a growing number of studies which have discovered a 

plethora of harmful xenobiotics which are able to cross the placental barrier and exert an effect upon foetal 

development including; maternal infection (syphilis, toxoplasmosis), toxic metal exposure(lead, 

cobaltchromium), maternal thermoregulation( hyperthermia), industrial toxins (Touluene), maternal 

thryroidism , environmental pollutants, nicotine, ethanol , statins and warfarin were all found to cross the 

barrier, and are thoroughly reviewed by Gilbert-Barness (2010).147 It is believed that up to 1 in 250 

neonates are born with congenital  structural abnormalities which are the result of teratogen exposure 

during prenatal development; however, this statistic is far greater when taking into consideration congenital 

functional abnormalities from nongenetic causes.147  

Different teratogens elicit a different effect upon the developing foetus depending upon; the physical and 

chemical nature of the teratogen, the dose and duration of exposure, the timing of the insult, the route of 

action and genetic susceptibility148(Figure 1-8).   
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Figure 1-8 Schematic to represent the different stages of gestation when the foetus is rendered the most 

vulnerable to teratogenic stimuli  

Highlighted region illustrates the first trimester of gestation where the developing conceptus is most susceptible to the effects 

of teratogenic exposures to the central nervous system, cardiovascular system and limbic system. Image adapted from: 

www.columbia.edu/itc/hs/medical/humandev/2004/Chpt23-Teratogens.pdf  

  

Research in the field of early developmental processes during gestation are challenging to examine due to 

the ethical implications of studying this critical time in an in vivo setting and the lack of control over 

timings of exposures. Our research group have produced a body of work over the past decade which has 

focused on the capacity of indirect exposure to the placental barrier on foetal development to determine the 

role the placenta plays in medicating foetal development in response to environmental exposures.   

Novel experiments conducted by Bhabra et al. (2009) discovered that an indirect Cobalt  

Chromium(CoCr)nanoparticle exposure via the placental barrier upon exposed fibroblast cells was able to 

elevate DNA damage.140 The investigations found that this was not the result of direct exposure but instead 

arose by the release of signalling molecules (cytokines) from the placental barrier upon CoCr exposure 

inducing DNA damage to the exposed fibroblast cells.140,141 Since then a study by Jones et al. (2015) and 

Hawkins et al. (2018) have further validated these findings, reporting that an indirect exposure of CoCr via 

the placental barrier can induce apoptosis and autophagy to exposed human embryonic cells and neuronal 

cells, respectively.142,151,152Curtis et al. (2014) assessed the impact of altered oxygen tensions on the 

placental barrier and found that indirect exposure was signalled via the placenta towards foetal neuronal 

cells.152,153The findings  implied that in response to an insult of gestational hypoxia the placenta released 

an increased level of mtROS and [Ca(2+)], which resulted in a reduction of dendritic length and synaptic 

activity in dissociated embryonic neurons.152 The work-to-date infers that indirect exposure via the 
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placental barrier plays an important role in mediating a response in foetal cells to maternal exposures, 

rather than just the consequence of the exposure itself.   

The mechanism behind this biophysical signalling phenomenon remains to be determined, however recent 

studies have suggested that the mechanism is multifactorial and highly complex. A recent review by 

Yahyapour et al. have proposed several potential exogenous contributors are associated in propagating the 

bystander signalling effect including; inflammatory cytokines (TNFa, IL-6), protein kinases(PKB, PKC, 

MAPKs),exosomes & miRNA.154 MicroRNAs are a strong candidate for playing a pivotal role in 

propagating the DNA damaging signal 155 as miRNA levels are potentially related to the changes in ROS 

expression seen in the irradiated cells.156   

  

1.8 Modelling the placenta  

 The In vitro model   
In vitro models are imperative in providing initial insight into the endocrine function of the placental 

barrier and trans-placental transfer studies. They are often favoured in comparison to more elaborate 

models, due to their ease of barrier formation and scale and time frame in which the barrier models can be 

produced. In addition, they provide a useful mimic of the syncytiotrophoblast layer, providing a 

ratelimiting barrier for exchange of compounds between the maternal and foetal circulation.157 Selecting a 

suitable model system to use when designing a trans-placental study is very important. Ideally, cell lines 

should be selected on their ability to represent as accurately as possible the in vivo characteristics of 

trophoblastic cells. Studies have determined that the most appropriate trophoblast cell lines to use are ones 

derived from the human placenta that express the following features: cytokeratin-2 positive, HLA –ve 

(villous properties) and/or CD9+ve (extravillous properties). 158Trophoblast cell lines have known origins 

from in vivo choriocarcinomas and produce hormones known to originate from trophoblast cells, including 

hCG and progesterone.158  

There are three known Choriocarcinoma cells which are utilised in modelling the feto-maternal interface; 

JEG, JAR and BeWo  and have been well-reviewed and comparatively assessed.159 The BeWo human 

choriocarcinoma cells are the most established cell line used for placental transfer studies, derived from 

spontaneous malignant gestational choriocarcinoma of the foetal placenta. Human choriocarcinoma cell 

lines share both morphological and biochemical enzymatic properties of placental invasive trophoblastic 

cells and secrete the same hormones (hCG, progesterone, placental lactogen).  Furthermore, they exhibit 

the same cytokine expression patterns that include Interferon-α (IFNα) and Interleukin factors (IL4), (IL6) 

and (IL8) that is seen in the in vivo model.10,160  

In addition to sharing similar biochemical features of the in vivo placental barrier, BeWo cell lines also have 

the capacity to replicate conformations that are representative of the feto-maternal barrier during the 

different phases of gestation by forming confluent polarised mono/bi/multi-layered barriers on permeable 
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supports. The BeWo cells are primarily cytotrophoblast cells and do not synctialise spontaneously as in vivo 

but can be induced by the addition of forskolin treatment. 10 This provides additional flexibility in the 

model as the cell lines can be cultured to be representative of either early phases of gestation or later in 

gestation when the placental barrier is synctialised.161  

To provide an accurate representation of the human placenta, the model requires the contribution of both 

cytotrophoblast and syncytiotrophoblast cells. A technique developed by Bharbar et al., (2009) using 

BeWo barriers to form multi-layered barriers was shown to produce confluent barriers which were 

interconnected by connexin 43 gap junctions. Connexin 43 gap junctions are essential for the translocation 

of signalling molecules through the placenta and are seen between syncytiotrophoblast cells and 

cytotrophoblast cells in vivo, and provides a more accurate representation of transportation through the 

placenta.140,162 Studies by Li et al. (2013) have revealed that transportation studies of compounds across 

the b30 BeWo barrier correlated with a comparative study with ex vivo models measuring the transfer 

indices.163  

  

 The ex vivo model  
Alternative ex vivo techniques have been utilised to model the placental barrier, a technique adapted from 

Aplin et al. (2009). The ex vivo model involves the dissection of first-trimester chorionic villi explants 

obtained from placentae obtained from consented voluntary termination of pregnancies. The advantage of 

using this model is the maintenance of intact microarchitecture of the placenta, including paracrine 

signalling and cell-cell interactions that would be seen in vivo. 61,164 Furthermore, it permits the 

contribution of meschemymal and endothelial cells in a metabolic or cellular signalling process to be 

considered. Placental explants are able to represent the secretions of the placenta in vivo including human 

chorionic gonadotropin and human placental lactogen.165    

However, the limitation of this model is that it is a non-polarised asymmetric system. This means that in 

transplacental studies investigations to explore the direction in which signalling molecules are being 

secreted cannot be identified. Furthermore, there is limited longevity of 11 days in which placental 

explants can be maintained within cultured conditions before degradation. 166 Moreover, it requires the 

attainment of an abundance of viable tissue samples to fulfil the criteria of the experiment. In addition, due 

to the ethics with the acquirement of this tissue, there is no knowledge with regards to the age of the 

placenta and the medical history of the patient from which it was obtained, thus leading to more 

considerable variability amongst samples and diminished data integrity. The time frame for fresh placental 

tissue collection and transportation to the laboratory is another limiting factor which must be taken into 

consideration.167  
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 The in vivo model  
In vivo model of the placental barrier uses animals to explore potential risks of maternal exposures during 

foetal development. Ethics denies the use of human in vivo studies; however, we can employ the use of 

animals to perform toxicological investigations, despite this also leading to complex ethical issues. The 

benefits of an in vivo model permit a realistic interpretation of representing the human condition unlike in 

vitro models168 Many aspects of pregnancy can be explored using in vitro models including; placental 

transport, placentation and trophoblast development. Furthermore, ex vivo model using the dual perfusion 

of the human placenta allows for assessment of the uteroplacental haemodynamic and drug transportation 

and has been successful in exploring pathological conditions of the placenta, including pre-eclampsia. 

However, there are limitations regarding limited tissue availability, technical constraints and the risk of 

damage to the tissue microstructure in the set-up.  There is a need for in vivo models as there are currently 

no in vitro models which can accurately represent the uteroplacental circulation and determine the 

pharmacokinetics and toxicology upon the foetus. This is particularly relevant in drug development which 

requires the testing to go through rigorous animal screening before it can be applied to humans.   

The placenta is the most interspecies-diverse organ, which makes it challenging to recapitulate human 

physiology.169 Humans have haemochorial placentation, whereas other species differ profoundly in their 

placentation structure.170 Thus, the most valid animal model for placental transfer studies are higher 

primates, guinea pigs, rabbits or rodent and murine models since these share a haemochorial placentation 

alike171 This means that as humans, trophoblast cells are in direct contact with the maternal blood supply, 

giving a more representative model of the feto-maternal interface which is vital in transport and exchange 

studies172(Figure 1-9).  



   ~Chapter 1~  

                                                                 

28  

  

  

 

 

 

 

  

 

 

 

 

 

Figure 0-7 Schematic representation of the three different feto-maternal interfaces 

 Illustration of the different structural morphology and cellular components which comprise of the placental barrier across 

species; epitheliochorial (pig, cow, horse), endotheliochorial (dog and cat) and haemochorial (humans and rodents). The 

highlighted region depicts haemochorial placentation, where the maternal blood comes in direct contact with the fetal 

chorion. The fetal chorion is the outermost fetal membrane formed of the extraembryonic mesoderm and two layers of 

trophoblast cells (Trophectoderm). In epitheliochorial and endotheliochorial placentation the maternal blood does not make 

direct contact with the fetal chorion. In endotheliochorial placentation the chorionic villi are in contact with the endothelium 

of maternal blood vessels. In epitheliochorial placentation the chorionic villi grow into the apertures of the uterine glands. 

Image adapted from Montiel, Kaune & Maliqueo. (2013) 676 

 

 

Supplementary Figure 15 Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess 

enriched KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and 

downregulated under conditions of hypoxia-reperfusion across the three models of the placental barrierFigure 

0-8 Schematic representation of the three different feto-maternal interfaces 

 Illustration of the different structural morphology and cellular components which comprise of the placental barrier across 

species; epitheliochorial (pig, cow, horse), endotheliochorial (dog and cat) and haemochorial (humans and rodents). The 

highlighted region depicts haemochorial placentation, where the maternal blood comes in direct contact with the fetal 

chorion. The fetal chorion is the outermost fetal membrane formed of the extraembryonic mesoderm and two layers of 

trophoblast cells (Trophectoderm). In epitheliochorial and endotheliochorial placentation the maternal blood does not make 

direct contact with the fetal chorion. In endotheliochorial placentation the chorionic villi are in contact with the endothelium 

of maternal blood vessels. In epitheliochorial placentation the chorionic villi grow into the apertures of the uterine glands. 

Image adapted from Montiel, Kaune & Maliqueo. (2013) 676 
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1.9 MicroRNAs-potential signalling molecules?  

 Post-transcriptional regulators  
MicroRNAs are classified within the subset of small non-coding RNA molecules; miRNA, siRNA, piRNA, 

snoRNA and long non-coding RNA. This class of single-stranded RNA molecules are distinguished from 

other small non-coding RNA subsets by size differentiation, being between 19-22 nucleotides (nt). 

MiRNAs explain up to 98% of non-coding genes in the human genome which does not code for proteins, 

controlling up to a third of the genes within the human genome.173,174 It has been critically accepted that 

miRNAs are essential components in  epigenetic gene regulation, and as a fundamental principle this is a 

conserved feature throughout evolutionary history; conserved across all eukaryotic organisms.175,176   

MicroRNAs act as important negative post-transcriptional regulators of gene expression.177 Non-coding 

RNA form small duplexes complementary to specifically targeted genes; suppressing the expression of a 

protein, encoded by the genes, they mediate the inhibition of translation or the degradation of a messenger 

RNA sequence.173This principle has revolutionised the central dogma of molecular biology which states 

that RNA is an obligate intermediate in the flow of information from DNA into protein products.178The 

specificity and complementarity between the miRNA species and its target mRNA species are centred on 

the 5’ region of the single-stranded RNA structure which is also referred to as the ‘seed’ region (Figure 1-

10). The seed region is approximately 6-8 nucleotides in length and is the prime determinant for permitting 

specificity in the interaction between miRNA and its target mRNA at the 3’UTR domain.179 Depending 

upon the degree of complementarity between a miRNA and its associative mRNA counterpart, either 

translational repression or target degradation will arise, resulting in gene silencing. The conservation of the 

5’ region throughout eukaryotic evolution has conserved critical cellular processes across eukaryotes and 

signifies its relevance in gene regulation. 173,180  

  

Figure 1-10 Schematic representation of a miRNA molecule  

The seed region (shown in red and green) is in the 5’ UTR region and is between 2-8 nt in length. This structure is the binding region 

where complementary target mRNA targets are bound to the seed region of the miRNA. A bulge region must be present in the central 

region of the miRNA-mRNA duplex as it precludes the Argonaute (AGO)-mediated endonucleolytic cleavage of mRNA. At the 3’ 

site there needs to be complementarity to stabilise the interaction. Image obtained from Filipowicz et al. (2008).179  

  

In addition, there is emerging evidence that miRNAs act as signalling molecules, permitting intercellular 

communication between donor and recipient cells. Recent findings have shown that the miRNAs which are 

secreted from a donor cell are able to ‘crosstalk’ with the target recipient cell via altering the recipient’s 
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gene expression. 174,181 Current literature suggests that miRNAs are secreted and transported within the 

circulatory system either; encapsulated in membrane-bound vesicles (exosomes)182 or as free-circulating 

miRNAs bound to Argonaute proteins (AGO2) which protect them from RNase degradation in the 

circulatory system.183 The literature suggests an important functional role of miRNAs serving as 

intercellular signalling molecules which have the capacity to act as both biomarkers for neurological 

pathologies as well as playing an active role in initiating the onset and progression of neurological 

pathogenesis via post-transcriptional modifications in target recipient cells.184   
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 Biogenesis of MicroRNAs  
The biogenesis of miRNA is a canonical process, whereby the initial steps occur in the nucleus of the cell and 

then later progresses into the cytoplasm where the pre-miRNA transcript is transformed to its mature, active 

form. Process reviewed by Wang et al. (2007) (Figure 1-11).  

 
  

Figure 1-11-Schematic of miRNA biogenesis  

A schematic representation of the biogenesis of miRNA, depicting both the canonical and non-canonical pathways. The canonical 

pathway miRNA can be derived intronically from dsrna precursor RNA, located in the introns, the non-coding regions of the 

genome. They have also been shown to be transcribed intergenically within the gene coding regions alongside a host gene. Finally, 

they have polycistronically derived in clusteral groups located on one precursor RNA strand. MicroRNA from any of the three 

genomic loci are then processed by rnase Polymerase II which forms a primary miRNA transcript which has the characteristic 

stem-loop conformation. The pri-miRNA is then recognised by the micro-processing complex which consists of Drosha and Di-

George Critical Region 8, located in the cell nucleus.  After interaction with the micro-processing complex the long ds-RNA pri-

miRNA is cleaved by the splicesome activity of the micro-processor to form a shorter dsrna hairpin structure known as the 

precursor miRNA (pre-miRNA). An alternative derivation of miRNA is through the non-canonical pathway whereby miRNAs are 

endogenously transcribed as short hairpin RNA structures or by direct splicing from introns which are then refolded into the 

customary hairpin structures.  The non-canonical pathway results directly in the production of pre-miRNA, where the precursor is 

transported out of the nucleus into the surrounding cytosol via the incorporation of an Exportin -5 protein with RNA –GTP 

dependent activity. In the cytosol there is further processing of the pre-miRNA by transcription-response RNA-binding protein 

(TRBP) and Dicer; an endoribonuclease complex belonging to the rnase III family, which primarily cleaves long dsrna precursor 

miRNA into small dsrna molecules known as mature double-stranded miRNA, approximately 20-25 nucleotides in length.  

Argonaute proteins bound to the mature miRNA works to unwind the miRNA duplex and to facilitate the incorporation of the 

miRNA guide strand into the AGO-containing RNA-induced silencing complex (RISC). Image taken from Ameres & Zamore 

(2013).  
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The RISC loading complex is assembled from different components which include Dicer, AGO proteins, 

TAR RNA Binding Protein (TRBP) and Protein Kinase RNA-activated (PACT). The miRNA duplex is 

released by Dicer after cleavage, and the stable end has a higher affinity towards the TRBP domain, and 

the least stable end interacts with AGO proteins. In most miRNAs, there are mismatches in the central 

region, and some of the AGO proteins lack an end nucleolytic enzymatic activity that removes the 

passenger strand from the miRNA duplexes. Hence, RNA helicase activity is used as an alternative means 

to mediate the removal of passenger strand.185,186  

The final stage in the maturation process concerns the heterogeneity of the two ends of the mature miRNA.  

The 3’end sequences have higher variability in contrast to the 5’ end. The sequence variations at the 5’ end 

is hypothesised to be the result of imprecise RNase II processing. Such changes have a marked effect on 

the functionality of the specific miRNA as it leads to shifts in the seed region, altering the target specificity 

of the miRNA.  In comparison, the 3’ terminus is commonly affected by nucleotide additions of uracil and 

adenine nucleotides. Removal of 1-2 nucleotides at each terminus is also plausible via exonucleolytic 

activities176. RISC facilitates the interaction of the mature miRNA strand with complementary binding 

sites on targeted mRNA transcripts in the 3’UTR. Once bound this works like any other RNAi mechanism 

for controlling gene expression. Depending on the strength of complementary binding, those that have 

partial pairing undergo translational repression, and target cleavage, whilst those with perfect base pairing 

undergo target degradation.186  

 Secretory Mechanisms  
MiRNAs are transported within the circulatory system via different secretory mechanisms dependent on the 

type of miRNA and their functionality. It is essential that extracellular miRNAs remain stable within the 

circulation and protected from degradation via RNases by either being bound to RNA-binding proteins or 

encapsulated within extracellular vesicles. RNA-binding proteins that have been associated with 

extracellular miRNAs are AGO2187and high-density lipoproteins (HDL) proteins.188 MicroRNAs have also 

been detected in exosomes 189, microvesicles 190 and apoptotic bodies.191  

 RNA-Binding Proteins  

Research has shown that the most prominent mode of transportation of miRNAs is via association with 

RNA-binding proteins including AGO2, a protein which regulates the (RISC) complex and binds to 

miRNAs to target mRNA, resulting in cleavage of the mRNA. 192 Although AGO2 has been detected within 

extravesical bodies; it has been found that freely circulating extracellular miRNAs are bound to 

AGO2.193Studies have shown that in synaptosomes a proportion of miRNAs that were released from the 

presynaptic nerve terminal were associated with AGO2. 194  MiRNAs that are bound to AGO2 have been 

found to be transported into recipient target cells; however, the mechanism behind how this uptake is 

facilitated remains elusive. To date, only neuropilin 1 (NRP1), a cell surface protein, has been identified as 

a mediator of microRNA uptake into the cell. NRP1 has a high affinity to miRNAs and has been found to 

translocate from the cell membrane into the cytoplasm loaded with miRNA cargo.195  
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In addition, HDL proteins within human plasma were found to be associated with miRNAs and were taken 

up by recipient cells where miRNAs could exert a functional effect. 194 It has been suggested that miRNAs 

may gain stability when complexed with High-Density Lipoproteins (HDLs) and AGO proteins during the 

RISC assembly during mature miRNA biogenesis. An investigation conducted by Vickers et al. (2011) 

discovered that circulating miRNAs are stable in plasma when bound to HDL, which transport endogenous 

miRNAs across the plasma membrane to recipient target cells.188Furthermore, it has been determined that 

the vast majority of blood serum miRNAs (90-95%) are found in a state where they are freely circulating 

the blood plasma not bound to any form of membrane-bound vesicle. This means that they are more prone 

to RNase degradation, but conversely may be more rapid and efficient in their uptake into the target 

cell.174A further investigation by Vickers et al. analysed patients suffering with hypercholesterolemia and 

those of healthy patients and found that patients who suffered from this disease had a marked alteration in 

gene expression in their hepatocytes, and approximately 60% of the genes which were down-regulated 

were putative targets of miR-150.188This outcome supports the idea that miRNA transported by HDL can 

alter gene expression in distant target genes (Figure 1-12).  

 Extracellular Vesicles  

 Exosomes  

An alternative mode of miRNA transportation is via extracellular vesicles, exosomes and microvesicles, 

which have been found to mediate cell-cell communication and interaction between miRNAs and their 

target mRNAs.194The lipid-bound bodies provide stability for the miRNAs' in extracellular environments 

enriched in RNases. After RISC complex is disassembled in the cytoplasm, a proportion of the mature 

miRNA produced is packaged up into vesicles which are formed via the fusion with the plasma membrane 

(exocytosis).181 The most characterised are exosomes which are lipid  bi-layered membranes which lie 

within the size range of 30-100nm.196 Exosomes are secreted from an array of cell types, including neuronal 

dendritic cells , T cells , platelets and tumours, inferring the potential for them to have a diverse 

physiological role. Furthermore, exosomes have been isolated in a host of physiological biofluids, including 

plasma, cerebrospinal fluid, breast milk, urine and saliva.197 The abundance of exosomes found throughout 

the body has revealed the essential role exosomes play as mediators of cell-cell communication under 

physiological and pathological conditions, including oncogenesis, immune-defective disease, cardiovascular 

and neurodegenerative disease.196  Despite miRNAs being targets for nuclease degradation via RNases 

within the circulatory system, when incorporated within a lipid-bilayer or bound to an RNA protein, they 

were found to be relatively stable and robust against RNase degradation.198 Therefore making them ideal 

biomarkers for physiological or pathological conditions. There are two predominant classes of miRNA 

biomarkers: those that are secreted passively due to tissue stress, injury, or necrosis, and those which are 

actively secreted during disease progression. Both proteomic and nucleic acid profiling of exosomes across 

a range of cell types and physiological fluids indicates that exosome cargo is highly variable depending on 

the cell type of origin, and the physiological state from which the exosome is derived. Thus suggesting, that 
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packaging of exosome cargo is influenced by factors such as external stimuli and developmental or 

functional state of the neuronal network. 199  

Studies have explored the contents of exosomes and have determined that exosome cargos consist of mRNA 

and small non-coding RNA molecules, miRNAs. Analysis of isolated miRNAs from exosomes suggests that 

they are edited when compared to their genomic sequences and are mapped to mature mRNA targets which 

suggest they have functional roles. When assessing the relative proportion of miRNAs within the total small 

RNA population within exosomes, the outcomes have been highly variable, which is likely the outcome of 

cell type and the physiological conditions the exosomes were derived from. However, overall the proportion 

of miRNAs in exosomes is comparatively lower than the levels found within the cell itself.200  

Exosomal vesicles are formed from multivesicular bodies (MVB) by inward budding of the cell 

membrane, using the endosomal sorting complex required for transport (ESCRT) machinery201An 

alternative route for exosome formation is via a ceramide pathway which forms intraluminal vesicles from 

sphingomyelin by neutral sphingomyelinase 2 (nSMase2).  The intraluminal vesicles collate to form 

MVBs which fuse with the plasma membrane in order to expel the exosome cargo into the extracellular 

space.181 Exosomes secretion from their cells of origin is thought to be triggered by an increase in 

intracellular calcium levels.202,203 As calcium is critical in neuronal signalling, it has been explored 

whether there is an association between exosome secretion and calcium-dependent neuronal signalling and 

its involvement in the nervous system. Induction and inhibition of neuronal activity has shown to increase 

the release of exosomes containing miRNAs. Calcium-dependent exosome release from oligodendrocytes 

was induced by activation of glutamatergic and serotonergic receptors.204Furthermore, Rab proteins, a 

subgroup of small G-proteins, which are predominately involved in membrane trafficking and vesicle 

formation, have been identified as positive regulators of exosome release from neuronal cells.205    

There is limited knowledge on the regulation of exosome uptake into recipient cells. One hypothesis is via 

the interaction between tetraspanin complexes on the outer membrane of exosomes and specific integrin 

chains on target cells.206 An alternative mode of uptake has been proposed via gap junction protein 

Connexin 43, which is present on both cellular and exosomal membrane surfaces, permitting access of 

exosomes into and out of the cell.207 Studies have revealed that there are multiple mechanisms in which  

specific cell types can uptake exosomes, for example in neurons, clathrin-mediated endocytosis is utilised 

for reuptake of glutamate into the synapses and also is used for the uptake of exosomes into 

synaptosomes.208Whereas in glioblastoma cell lines, exosome uptake is carried out using lipid raftmediated 

endocytosis. Lipid rafts are plasma membrane microdomains fomed of cholesterol and sphingolipids which 

compartmentalise molecules located at the cell surface.209 Alterntaively, endocytosisexosome uptake is 

facilitated by filopodia, protrusions from the cell surface, which are able to grab and draw exosomes into 

the cell where they are incorporated into endosomes and transferred to the endoplasmic reticulum where 

the exosome cargo is released. An alternative route is via macropinocytosis, where exosomes are taken up 

via invagination of the plasma membrane, as seen in microglial cells and cancer cells alike. 211Phagocytic 

cells are able to internalise exosomes and then taken up by the target cell via phagocytosis It remains to be 
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determined whether exosomes secreted by donor cells are selectively or non-selectively incorporated into 

recipient cells and is a niche scientific area which requires further investigation.  

Exosomes can be isolated using ultracentrifugation techniques or via a sucrose gradient centrifugation 

method. Alternatively, exosomes can be detected via unique exosomal markers which include, tetraspanins 

CD9, CD63 and CD81, heat-shock proteins, ALG 2-interacting protein X (ALIX) and Tumor susceptibility 

gene 101 (TSG101), components of the ESCRT machinery. 212However, there are contentions on the use 

of these proteins as exosomal markers as some have been also detected on non-exosomal vesicles which 

makes the specificity of these exosome markers redundant.   

 Microvesicles   

Microvesicles are less established extracellular vesicles which lie within the size range (50-1000nm). 

Microvesicles are produced via pinocytosis, in which protrusions from the cell membrane are detached and 

are free to translocate around the extracellular space 213 Microvesicles have been found to be secreted from 

a variety of cell types including vascular cells, platelets, and inflammatory cells. Microvesicles undergo less 

selective cargo loading process in comparison to exosomes as their protein content is highly related to the 

originating cell due to the nature of their formation. However, microvesicles do transport functional protein, 

mRNA, and miRNA cargo, to neighbouring cells where they have been shown to elicit function response on 

recipient cell. 214 Both exosomes and microvesicles have the capacity to translocate from the donor cell into 

a recipient cell with great ease and carry out cell-to-cell communication and activate signalling 

pathways.188,194,215  

 Apoptotic Bodies  

An additional mechanism for miRNA translocation is via apoptotic bodies, which are most commonly 

utilised to remove toxins and unnecessary cells which may be detrimental to survival. Apoptotic bodies are  

membranous lipid bilayers derived from the plasma membrane and the cytoplasmic contents of the donor 

cell it originated from and lies within the size range of 500-2000nm.191  Similar to microvesicles, apoptotic 

bodies contain phosphatidylserine on their surface which signals to phagocytic cells to engulf these bodies, 

bodies are released during programmed cell death, by direct outward budding of the plasma 

membrane.181This has led to the theory that apoptotic bodies which are carriers of miRNAs may result in a  

‘post-apoptotic’ effect, whereby, in addition to the apoptosis the apoptotic cells could also affect other living 

cells by transferring miRNAs via the bodies to permit cell signalling cascades.   

 MiRNA Sorting  

The observation that relative levels of microRNAs in extracellular vesicles differ from levels in the cell of 

origin, with some microRNAs being preferentially released, implies that microRNAs are selectively 

packaged into exosomes and secreted. Currently, there is limited knowledge on the mechanism which 

permits miRNA to be selectively exported to recipient targets. However, certain proteins have been 

associated with regulating whether miRNA remain as intracellular signal components or whether they are 

packaged into exosomes for extracellular signalling.   
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AGO2 has been shown to play an instrumental part in determining the exportation of miRNAs via 

extracellular vesicles. Deletion of AGO2 across different cell types reduced extravesicle-mediated release 

of exported microRNAs. Furthermore, repression of AGO2 phosphorylation  promoted AGO2 localisation 

to the MVB and increased its association with exosomes, thus inferring that AGO2 modifications can 

determine whether miRNAs are localised within the cell or exported via exosomes.216 Additionally, 

knockdown studies of ALIX, an ESCRT family protein, have revealed a potential role of ALIX in 

regulating AGO2 incorporation into extracellular vesicles. A reduction in ALIX resulted in a reduction of 

AGO2 and miRNA encapsulation into extracellular vesicles.217Alternatively, specific sequence motifs, 

known as EXOmotifs, GGAG and CCCU, are thought to play a role in the selective packaging of miRNAs 

into exosomes.218 Posttranscriptional modifications of miRNAs has been explored as another mechanism to 

determine which miRNAs get sorted into being exported extracellularly and which remain localised within 

the cell, revealing that 3’end-uridylated miRNAs were enriched in exosomes while 3’endadenylation were 

more prevalent amongst intracellular microRNAs.219 Experimentally models to assess how 

posttranscriptional modifications result in differential distribution of the microRNAs have yet to be 

determined.  
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Figure 1-12-MicroRNA secretory pathways  

A schematic representation of the potential methods for extracellular transportation methods of miRNAs within a cell. (1.) Represents 

the maturation process of pre-miRNA as it is exported out of the nucleus via Exportin-5 and cleaved by Dicer to produce an active 

miRNA duplex strand where the guide strand is associated with RISC and permits the silencing of a specific mRNA target. The 

passenger strand is degraded and removed from the cell.  (2.) In the cytoplasm miRNA is incorporated into small vesicles called 

exosomes which originate from endosomes and are released when the multivesicular bodies fuse with the plasma membrane and via 

the process of exocytosis they are expelled from the cell. (3.) Pre-miRNA which is released into the cytoplasm is incorporated into 

micro vesicles via the process of pinocytosis of the plasma membrane. (4.) Mature miRNA is released into the cytoplasm and 

circulates in a micro vesicles, membrane free method, however, to gain stability they are found bound to HDLs or to RNA binding 

proteins such as Ago. They are then removed from the cell via a secretory pathway which is unknown. This may be passively as dead 

apoptotic cells, or it may be actively achieved via protein channels. Generally, it has been identified that pre-miRNAs are associated 

in transportation via exosomes and microvesicles, whereas mature miRNA utilises HDL and Ago proteins, however the exact 

proportions found in the cell have not been fully validated. This figure was sourced from; Creemers et al. (2012)   
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1.10  Role of MicroRNAs in the placenta  
Our current understanding indicates that there are ubiquitous miRNA species within the human genome, 

with predominant expression in the placenta in comparison to other somatic cell lines .220 Some miRNAs 

are expressed temporally in a tissue-specific manner during different stages of gestation and placental 

development. There are three established miRNA clusters explicitly located within the placenta; the 

miR371-373 cluster, predominately expressed in embryonic stem cells are involved in the tight regulation 

of cell cycle, proliferation and apoptosis; Chromosome 14 clusters located at 14q32 and is maternally 

inherited, encoding 56 miRNAs which are associated with neurogenesis and RNA metabolism and finally 

the Chromosome 19 miRNA cluster (C19MC) which is paternally inhibited  comprising of 46 species of 

miRNAs. 221,222 C19MC is mainly related to having a functional role of the placenta and in early 

embryonic development, which is of specific interest to this research. 223,224 Transcription of C19MC 

miRNAs are activated by applying DNA methylation inhibitors, which implies that this region is under 

DNA methylation-dependent epigenetic control.220The clustered region is believed to be extracted from a 

long non-coding RNA which is transcribed by an RNA polymerase II located in a CpG-rich region. Studies 

have shown that miRNAs are expressed in exosomes released from primary human trophoblast cells which 

can be detected in the serum of pregnant women. This suggests the potential for foetal-maternal signalling 

molecules which permits maternal adaptation to pregnancy. The C19MC cluster is highly involved in the 

biological functioning of the placenta due to its imprinted regulation and its detection in the maternal blood 

circulation.220  

 Furthermore, it has been critically accepted and well documented that miRNAs are endogenously 

synthesised within the placental trophectoderm and have differential expression during set gestational 

phases, which further elucidates that miRNAs are developmentally regulated with stage-specific functions 

during pregnancy. Pivotal proteins such as, Drosha, Dicer, AGO2 and Exportin-5, all of which are utilised 

in the canonical biogenesis of miRNA have been identified in the villous trophoblast cells themselves, 

which suggests that miRNAs are endogenously produced. 225,226 It is believed that miRNA expression 

within the placenta is regulated by environmental factors (external stimuli), signalling pathways and 

epigenetic modifications.    

Moreover, aberrant expression of miRNAs in the placenta has been shown to alter the regulation of 

trophoblast cell proliferation, apoptosis, angiogenesis, migration and invasive capacity. Abnormal 

expression of placenta-specific miRNAs has been associated with compromised pregnancies such as 

(IUGR) and (PE) as well as defective placentation, indicating their role in the pathological states. 227,228  

   Regulation of Placental MicroRNAs  
High-throughput techniques, such as RT-PCR, have identified differential expression patterns in miRNA 

profiles under different physiological conditions of the placenta.227 Studies have shown that hypoxia plays 

a prime role in altering the expression of placental miRNAs. A plausible explanation for this is that oxygen 

tension is an essential factor in determining placental development.  Both microarray techniques and 
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validation via RT-PCR have confirmed that in primary cultures of trophoblast choriocarcinoma cells under 

the influence of hypoxia, miR-93,203,224 are upregulated whilst miR-424 was shown to be downregulated. 

Studies conducted by Doridot et al.(2013) examined the impact of hypoxia at 2% on JEG-3 cells, a proxy 

to choriocarcinoma cells,  induces the expression of pri-miR-34a which alters the induction of P53 mRNA. 

229 In addition, it has been established that miR-210 plays a functional role in being a sensor for hypoxia, as 

it is in the introns of a hypoxia-inducible gene. Consequently, miR-210 levels are upregulated in different 

tissues response to lowered oxygen levels and influence the onset of hypoxia associated diseases such as 

cancers and Pre-eclampsia the mechanism that permits hypoxic conditions to alter miRNAs expression 

levels is believed to be related to hypoxia-responsive transcription factors which target hypoxia-responsive 

elements (HRE) located on target gene promoters. A model example of a hypoxia-responsive transcription 

factor is HIF-1α which directly targets the HRE region explicitly located in the promoter region of miR-

210.226 HIF1α is a hallmark which is associated with the development of obstetric complications such as 

preeclampsia. HIF1α acts as the master regulator of the hypoxia-responsive network, eliciting a response 

mediated via mRNAs and miRNAs to execute a range of cellular functions in response to a hypoxic 

challenge. HIF1α induces the expression of known hypoxamiRs (miR-210) and (miR-20a), which 

negatively regulate HIF1α 230. However other miRNAs are dysregulated under conditions of hypoxia which 

include miR-155, miR-138, miR-26, miR-22, miR-34a, miR-214, miR-199a, miR-696, miR-484, and miR-

210231232   

Alternatively, regulation is not only under the control of transcription factors binding to the promoter regions 

of certain species of miRNA, but also by epigenetic regulation via DNA methylation. Current evidence 

infers that expression patterns of placental miRNAs are correlated with the methylation status of distal CpG 

regions, located approximately 17.6 Kb upstream of the C19MC cluster. The enriched CpG region is 

hypomethylated in the placenta, which implies that methylation is a crucial component in placenta-specific 

expression of C19MC miRNAs.  One can also infer that demethylation is required in the activation of 

C19MC in cancerous cells by enhancing their expression.226,233  

In addition, it has been shown that environmental factors influence the regulation of miRNAs, specifically in 

the placenta. An example of which is, Bisphenol A, a synthetic carbon-based chemical compound which is 

used in the production of medical devices and the coating of metal products which require polycarbonate 

plastics and epoxy resins. It is believed that the presence of this toxin enhances the expression of miRNAs 

in trophoblast cell lines, an example of which is nicotine which caused differential expression levels of miR-

16, miR-21 and miR-146a in mothers who inhaled nicotine during pregnancy compared to vehicle 

groups.234  

1.11 MicroRNAs in Neurodevelopmental disorders  
The aetiology of complex neurodevelopmental pathologies is believed to be due to a complex combination 

of genetic mutations, environmental and epigenetic factors. Therefore, research into understanding the 

onset of neurodevelopment has shifted away from looking at just genes which make up 1-2% of the 

genome and instead has placed emphasis on post-transcriptional regulation via ncRNA molecules.235 
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Perturbations in the intrauterine environment have been shown to result in the changes in neurogenesis, cell 

migration and neuronal connectivity in offspring.236 It has been well-reviewed within the literature the 

relevant role miRNAs play in both physiological and pathological processes of neurodevelopment235,237–239 

and their active involvement in mediating neurogenesis within the foetal brain. 240 Thus miRNAs are 

promising candidates for investigating their involvement as signalling molecules released from the placenta 

to regulate neurodevelopmental processes within the developing conceptus.   

MicroRNAs are promising candidates for playing an integral role in the aetiology of neurodevelopment 

disorders for several different reasons. Firstly around half of the miRNAs are exclusively expressed within 

the brain suggesting their involvement in the complex regulation of neurogenesis.241 Secondly,  miRNAs 

offer unique regulatory properties  as they can be transported outside of the nucleus and bind to target 

mRNAs intracellularly and exert effects locally.242This attribute is particularly crucial at synapses where 

specific proteins need to be expressed in order to allow for synaptic plasticity. Furthermore, because one 

miRNA has the potential to bind to multiple target mRNAs and different miRNAs are able to bind to the 

same mRNA at the same time which causes a modulatory effect, hence making gene expression via 

miRNAs a dynamic and combinatorial process with synergistic properties.243,244  

A wealth of animal studies has been conducted which have shown the importance of miRNAs in regulating 

brain development. Holistic studies have explored the effect of the knockdown of regulatory factors in 

miRNA biogenesis and have found to cause deleterious implications upon neurogenesis. Ago2-deficient 

mice models have shown to have defects in neural tube closure.245One of the first studies which revealed 

the association was demonstrated in a DICER knockout model in the zebrafish. The outcome of a loss of 

DICER produced mutants which had reduced ventricle size and a lack of a midbrain-hindbrain 

boundary.246A similar study which was carried out on a rodent model where there was Dicer deletion to 

the excitatory forebrain neurons resulted in an enlargement of the lateral ventricles.  Enlarged lateral 

ventricles have been associated with decreased dendritic branching, abnormally long dendritic spines and a 

loss of axonal pathfinding.247,248  

MicroRNAs are essential mediators in a host of different neurological processes including axonal growth and 

guidance249,250, spine formation251,252, dendritic branching253 glial and neuronal differentiation254 and 

synaptivity255(Figure 1-13).  
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Figure 1-13 Schematic to illustrate microRNA function in different aspects of neurocircuitry development  

The image represents the downregulation (red arrow) and upregulation (green arrow) of specific miRNAs involved within the 

neuronal circuitry development and their associated repression of target genes. Figure adapted from Rajman & Schratt (2017).  

  

Prime examples of miRNAs which regulate a multitude of neurological functions include miR-132 and miR-

124. A study by Hancock et al. (2014)  assessed dorsal root ganglion and found that axonal extension was 

impaired by a loss of Dicer and knockdown of miR-132, whereas overexpression increased axonal growth 

via the interaction of Ras GTPase activator Rasa1.256Furthermore, miR-132 has been found to play an 

essential role in regulating synaptic plasticity and is required for dendritic spine formation within the 

hippocampus by targeting p250GAP. 257  

Whereas miRNA-124 is highly conserved within the brain and has been found to play an essential role in the 

promotion of neurogenesis and neuronal differentiation by targeting cAMP response element-binding 

protein (CREB) and Rho-associated coiled-coil-containing protein kinase 1 (ROCK-1). It also plays an 

essential role in synaptic connectivity and cognition via the repression of early growth response gene 1 

(EGR1).238,258  

As miRNAs are fine tuners regulating neurological pathways, perturbations to the synthesis of these 

miRNAs result in neuropathological states (Table 1). As previously discussed, microRNAs are able to be 

excreted from cells and act as intracellular signalling molecules being detected in the majority of bodily 

fluids. Therefore, circulating microRNA profiles have been found to be useful biomarkers in diseased 

states. In prevalent neurodegenerative diseases, miRNAs detected within the cerebral spinal fluid have 

been identified as stable biomarkers for Alzheimer’s, Parkinson’s and Huntington’s disease. An in-depth 

review by Wang et al .(2014) assessed microRNAs differentially expressed under neurodevelopmental 

disorders.259  
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Table 1 Overview of aberrant miRNA expressions within neuropathological conditions (Table adapted from Wang 

et al. (2014))  

Neuropathology  Regulation  MicroRNAs  

Cerebral ischemia  Upregulated  let-7a, miR-15b, -19, -21, -26b, -96, -98, -141, -145, -146, 146a,  

181b/d, -182 -183, -200a/b/c, -203, -206, -290, -335, -340-5p, -352, - 

374, -379*, -429, -681  

Downregulated  let-7d*, miR-27a, -29c, -30c-2*, -92b, -132, -137, -199a, -218, -292- 

5p, -322*, -328, -345-5p, -466c, -468, -494, -497, -873  

Stroke  Upregulated  let-7e/f, miR-1, -21, -23a (female), -25*, -26a, -34a, -125b, -145, 

181, -181a, -513a-5p, -550, -602, -665, -891a, -923, -933, -939, - 

1184, -1246, -1261, -1275, -1285, -1290  

Downregulated  miR-15b, -23a (male), -25*, -34b, -124a, -126, -142-3p, -186, -210, - 

223, -483-5p, -498, -768-5p, -519e, -1259  

Alzheimer's  

Disease  

Upregulated  miR-146a, -197, -320, -423, -511  

Downregulated  let-7i, -9, -15a, -19b, -22, 26b, 29a/b-1, -30a-5p, -93, -98, -101,  

106b, -107, -181c, -210, -363  

Parkinson's  

Disease  

Upregulated  miR-1, -22*.  

Downregulated  miR-7, -15b, -16-2*, -19b, -26a/a2*, -28-5p, -29, -30a/b/c, -34b/c,  

29b/c, -101-1 -107, -126, -126*, -133b, -147, -151-3p, -151-5p, - 

153, -199a-3p, -199a-5p, -218-2, -301a, -335, -345, -374a/b  

Huntington's  

Disease  

Upregulated  -  

Downregulated  miR-9/9*, -22, -29c, -124a, -128, -138, -132, -218, -222, -344, -674*  

Epilepsy  Upregulated  miR-21, -23a, -27a, -31, -33, -34a, -124, -132 -134, 146a, -152, - 

203, -210, -211  

Downregulated  miR-19a, -135b, -136, -138*, -144, -153, -190, -221, -222, 296*, - 

301a, -325-5p, -380, -542-3p, -542-5p, -543  

Traumatic injury  Upregulated  miR-20a, -21, -23a, -153, -200a/b, -381, -429, -486, -499, -873  

Downregulated  miR- -19a/b, -31, -135a/b, -136, -144, -148-5p, -222, -296*, -341, - 

342-5p, -540, -598-5p, -708  
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Despite being useful biomarkers released from perturbed tissues, extracellular miRNAs are able to be released 

from donor cells and actively elicit a functional response upon recipient cells within the nervous system. 

However, there is contention over the physiological relevance of miRNAs as signalling molecules.  

Stoichiometric analysis performed by Chevillet et al. (2014) revealed less than one microRNA per exosome260, whilst a 

comparative investigation found high copy numbers of specific miR-124a in exosomes which were believed significant 

enough to exert an effect on target glutamate transporter (GLT1) mRNA in astroglia cells.261Furthermore, exosomes 

containing miR-193a  from mature neuronal cell lines were able to induce proliferation and differentiation of neuronal 

properties onto undifferentiated cell cultures.262   

Exosomes within the nervous system have been shown to elicit intercellular communication between 

diverse neuronal cell types. Astrocytic cells which secreted exosomes carry heat shock proteins which 

exert neuroprotective effects by reducing toxicity provoked by misfolded proteins constructs prevalent in 

neurodegenerative diseases.263 Recent research has revealed that oligodendrocytes released exosomes upon 

glutamate stimulation and were internalised by neurons where they elicited a neuroprotective effect against 

conditions mimicking cerebral ischemia.264A review by Kalaini et al. (2014), explored the differential 

contents found within exosomes across different cerebral cells and found that they play an important role in 

maintaining the integrity of the nervous system via the release myelin, stress-protecting proteins  and 

regulatory components  promote protein to perturbed sites.184  

  

1.12 MicroRNAs involved with DNA Damage Response  
As previously discussed, perturbations to the intrauterine environment during critical points of gestation can 

have teratogenic and genotoxic consequences for the developing foetus (section 1.7).  

The interplay between RNAi mechanisms and the DNA damage response (DDR) is well established and has 

been reviewed in depth by Chowdhury et al. (2013).265 There are different mechanisms in which miRNAs 

are able to regulate and activate the DDR. ATM kinase is the master regulator of DDR, with approximately 

25% of miRNAs induced by DNA damage are dependent upon ATM for upregulation.266Research by Lui et 

al. discovered that specifically the 61 ATM-dependent phosphorylation of KH-type splicing regulatory 

protein (KSRP). KSRP phosphorylation by ATM enhances interaction between KSRP and terminal loops of 

pri-miRNAs which enhances the recruitment of pri-miRNAs for processing by Drosha and Dicer. 267  

An additional mechanism of ATM-mediated miRNA regulation of DDR is via the downstream target P53.  

p53 facilitates the processing of a subset of pri-miRNA into pre-miRNA through the association of DDX5, 

a component of the DROSHA-DGCR8 complex, and independently of transcriptional processing.268P53 

regulates the expression of miR-34 family through the interaction with the DDX5 RNA helicase.269This 

family of miRNAs are known to play a role in post-transcriptional regulation of the G1/S and S phases  of 

the cell cycle upon a DNA damage stimulus.270  

The ATM-dependent phosphorylation of a splice variant of the p53-homolog, ΔNp63α, is another mechanism 

which causes changes in miRNA expression by upregulating DICER which promotes miRNA maturation 

and through transcriptional regulation. Research has revealed that in squamous cell carcinoma (SCC) 
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exposed to cisplatin there is aberrant miRNA expression of miR-519a, miR-374a and miR-181 which 

mediate mRNA expression of targets involved in the apoptotic pathway (PARP1, CASP3, ATM & BCL2).271  

Furthermore, research by Wan et al. have shown that ataxia-telangiectasia mutated (ATM)-activated AKT 

kinase is also able to control pre-miRNA nuclear exportation as a result of DNA damage through the 

phosphorylation of the nucleopore, Nup153. Phosphorylation of Nup153 increases the interaction of 

Exportin 5, which is essential for the transportation of pre-miRNA from the nucleus into the cytoplasm 

where it is further processed by DICER.272 These findings suggest that DNA damaging stimulus are 

essential in altering miRNA expression levels and in their transportation intracellularly.   

Breast cancer susceptibility gene (BRCA1) is associated with the regulation of miRNA biogenesis and is 

another essential protein in the DDR pathway, which upon a DNA damaging stimulus activates ATM. 

However, unlike ATM, BRAC1 directly binds to the specific pri-miRNA and DROSHA and DEAD-box 

helicases (DDX), by its DNA-binding domain which allows for stem-loop recognition. 268 Mitogenactivated 

protein kinases (MAPK) are also activated in response to DNA damage via the phosphorylation of MAPK 

ERK which in turn phosphorylates TAR RNA binding protein (TRBP), stabilising the TRBPDICER 

complex and endorsing pre-miRNA processing.273  

Not only do the proteins involved in the DDR response regulate miRNA expression, but miRNAs 

themselves are able to influence the expression and modulate the response of DDR. Key DNA repair 

proteins including ATM, BRAC1 and MRE11a-RAD50-NBN (MRN) complex are directly inhibited by 

miRNAs (Figure 14-). An example of which is miRNA-421, which inhibits ATM expression by targeting 

the 3’UTR region of the ATM transcript. Ectopic expression of miR-421 in cells found an increased 

sensitivity to irradiation and reduced ATM expression which leads to aberrant cell cycle checkpoints.274 

BRAC1 is necessary for homologous recombination and is targeted by miR-182. Studies have revealed 

that by diminishing levels of miR-182, there is an increase in BRAC1 protein which endorses protection 

from irradiation exposure.275,276A host of miRNAs are able to downregulate p53 expression, including; 

125b, miR-504, miR-33, miR-380–5p, miR-1285, miR-30d and miR-25. 268  

A recent study by Espinosa-Diez C et al. revealed the association between a genotoxic stress-induced 

miR494 and the inhibition of DNA repair pathways via the MRE11a-RAD50-NBN (MRN) complex. Using 

gain or loss of functional analysis techniques, they observed that miR-494 enhanced levels of DNA damage 

and endothelial senescence via aberrant telomerase activity and p21 activation. Disruption of the MRN 

complex decreases vascular endothelial growth factor (VEGF) signalling and disturbs angiogenic 

processes.277  
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Figure 14-Schematic diagram illustrating the role of miRNAs in regulation of DNA Damage Response (DDR)  

 Illustration of the complex nature of the Double-Stranded Break (DSB) DDR on cellular functions including DNA repair, Cell 

cycle and apoptosis. The DDR pathways are summarised into protein mediators of the DDR signal, transducers and the effectors. 

The DDR pathway reveals that the protein mediators including (MRE11/RAD50/NBS1, H2AX ,DC1, BRAC1, 53BP1, RNF8, 

RFN168) are transduced by Ataxia Telangiesctasia Mutated (ATM) and Ataxia Telangiesctasia and Rad 3 related (ATR). ATM 

permits cell cycle delay after DNA damage after DSB. ATM is predominately mediated by  
MRE11/RAD50/NBS1, also known as the MRN complex. The MRN complex undergoes post-transcriptional modifications which 

allows for the transduction of the DNA damaging signal downstream. Once ATM has been activated it works alongside the effector 

kinase Checkpoint 2 (CHK2) and P53 which regulate cell cycle arrest. Whereas, ATR is sensitive to single-stranded breaks (SSBs). 

ATR senses DNA damage and this results in cell cycle arrest via critical cell cycle checkpoints. Variables including the timings and 

severity of the DNA damage results in either processes including DNA repair processes being activated, cell cycle arrest or 

apoptosis. Throughout the DDR response microRNAs play a role in the regulation of the DNA damage response through 

modulating core proteins cross the different pathways (as seen highlighted in red). This diagram has been adapted from Hu & Gatti 

(2011).  
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1.13 Therapeutic methods to treat the placenta  
  

   Treating the placental barrier  
In the third trimester of gestation, the placenta becomes the largest endocrine organ within women, secreting 

hormones into both the maternal and fetal circulation. These hormones are central to controlling maternal 

adaptation to pregnancy in response to environmental challenges. Thus, any perturbations to the placental 

barrier will subsequently result in adverse placental function and ultimately is the causation of obstetric 

complications.  

As previously discussed, oxidative stress is attributed to the most prevalent obstetric complications, PE and 

IUGR. Traditional methods to treat patients afflicted by obstetric complications would be to induce preterm 

labour in order to prevent both maternal and foetal complications. Complications affiliated with oxidative 

stress to the placenta are progressive, and there are currently no successful medical interventions to prevent 

progression. Despite preterm labour being a better option for the health of the mother, this can be at the 

detriment to foetal health. Pre-term delivery has been shown to increase the incidence rates of perinatal 

morbidity and mortality. However, by delaying delivery and allowing the pregnancy to progress results in 

maternal endothelial dysfunction and poor perfusion to major maternal organs including, the brain, liver, 

kidneys, placenta and the foetus itself. Maternal risks of pre-eclampsia include; eclamptic seizures, cerebral 

haemorrhage, haemolysis, low platelets (HELLP) syndrome, and maternal death.278 The foetus is also at a 

higher risk of intrauterine growth restriction due to perturbed vascularisation and uteroplacental 

insufficiency.279A meta-data analysis  revealed that elective deliveries after 34 weeks of gestation 

significantly reduced the incidence of maternal complications such as placental abruption and HELLP 

syndrome.280  

Alternative methods invove using antioxidant therapy to treat obstetric complications associated with 

oxidative stress. Treatment to the mother using antioxidants has shown varying levels of success which 

may be attributed to: the type of antioxidant which has been chosen, the duration and timings the treatment 

has been given and dosage.281 Since mitochondria are the primary source of antioxidants, and there has 

been growing interest in mitochondrial targeting of antioxidants by compounds such as the 

mitochondriatargeted antioxidant drug, MitoQ, where coenzyme Q10 is linked to a lipophilic cation to 

allow adsorption through the inner mitochondrial membrane.282  

It is considered a novel idea that we are able to provide therapeutic interventions to treat the placenta itself, 

as opposed to managing the outcomes of obstetric complications which involves either delaying or 

inducing labour. However, the current treatments available have high associated-risk factors attached to 

them to both the expectant mother and the neonate. When assessing the wellbeing of the developing 

neonate, it is essential that any treatment is able to directly target the placenta and not transverse the 

placental barrier where it can have adverse implications to foetal development, especially when the 

pharmacokinetics and potential risk the treatment may have upon the foetus is unknown. It is likely that 
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effective therapies could be designed to target and prevent syncytiotrophoblast transport within the 

placenta, reducing the likelihood of the drug transversing the placenta and impeding upon foetal 

development.  

There are limited studies which have explored the therapeutic methods for treating the placenta due to 

ethical considerations of trialling any therapeutic during gestation given the vulnerability of the pregnant 

women and the increased risk of a treatment having adverse consequences in both the mother and the 

developing foetus. Past experiences, such as the Thalidomide disaster of the 1950s-1960s, where expectant 

mothers were given Thalidomide as a treatment for hyperemesis, resulted in severe teratogenic side effects 

in the offspring.283Such lessons of the past have made it highly apparent that the more rigorous preclinical 

testing is required to safely model and test the effects of novel therapeutics to be used to treat obstetric 

complications. A prime area which is being explored is the development of a standard model approach for 

preclinically testing therapeutics in pregnant women, using the combination of animal models, human 

placental tissue, in vitro and mathematical in silico modelling. Each model comes with their own merits 

and limitations; however, combined could be a useful method to examine the efficacy of a novel drug. It is 

essential that the appropriate tests are performed to ensure that the drugs do not induce adverse effects on 

placental function and that placental drug transfer studies are carried out. Another consideration is the 

pharmacokinetics is essential when developing any form of drug and even more so for the application in 

pregnant women due to the ever-changing physiology throughout the progression of gestation.284  

It is paramount that drug delivery strategies are developed to target the placenta precisely without transversing 

the placenta and being transferred to the developing foetus. One strategy for preventing foetal drug exposure 

is to use nanoparticles as drug carriers which target the placenta specifically. Nanomedicine works by 

selectively delivering drugs to the intended site for action. Nanoparticles can be exploited as a placenta-

targeted therapy, reducing the risk of side effects in the mother and foetus.285  

  

   Nanoparticle Therapeutics  
Nanoparticles (NP) are organic or inorganic in nature and lie within a size range between 1-100nm. Since their 

discovery, there has been rapid development in nanotechnologies, with NPs being widely used in 

nanomedicine as drug-delivery systems and in regenerative medicine.286   

The advantages to using nanoparticles for therapy include improved targeted delivery, increased 

bioavailability, controlled release. Targeting ligands such as antibodies, peptides or small molecules can 

be conjugated or absorbed onto the surface of a nanoparticle to promote the accumulation of the particles 

in specific regions or tissues that are facilitated by binding of the targeting ligands to a particular 

rreceptor.287  

However, there is limited knowledge surrounding the implications of nanoparticles exposure on foetal 

development. Further investigations are required to gain insight into the potential toxicity of nanoparticles 
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in the maternal circulation and the effects they may elicit if they penetrate the protective placental barrier. 

Current reviews have shown that the ability of nanoparticles to transverse the placental barrier, is 

dependent upon the size and the surface coating of the specific nanoparticle; however, the molecular 

mechanisms behind this phenomenon remain elusive.286   

  

   Use of nanoparticle therapeutics during gestation  
The placenta functions as a protective barrier during gestation; however, it is not an impenetrable barrier 

(section 1.7). The placenta allows molecules 1000g/mol to be transversed through the placental barrier and 

target the foetus. This has caused detrimental effects upon the conceptus and means that medications 

which need to be administered during gestation such as anti-epileptics are limited. 288 The use of 

nanoparticles in medicine provides a novel method to administer drugs during gestation to the mother and 

the placenta without the concern of it transversing the barrier and impacting the conceptus. Nanoparticles 

can be physically and chemically manipulated to alter their size and surface properties, acting as vector 

systems for drug transportation to the site of action.289  

Analysing the effects of nanoparticles in pregnancy is in its infancy; however, studies have highlighted the 

potentially deleterious effects of nanoparticles on the conceptus, especially in the case of maternal 

exposures to metal nanoparticles.  In vitro studies have elucidated that metal nanoparticle exposures to the 

BeWo barrier model of the placenta elicit DNA damaging effects upon exposed fibroblast cells.140 

Furthermore, exposure of cobalt and chromium NPs to BeWo cell barriers elicits DNA damage to foetal 

neurons and astrocytes via the release of IL-6 and interference with autophagic flux. These findings were 

further supported in an in vivo murine model, with mice presenting with DNA damage to the foetal 

hippocampus, with impaired autophagic flux and release of interleukin 6, resulting in perturbed 

differentiation of human neural progenitor cells and DNA damage in the derived neurons and 

astrocytes.142  

   Antioxidants therapy   
Antioxidants are molecules that neutralise free radicals, by accepting or donating electron(s) to stabilise the 

unpaired nature of the radical.290Antioxidant treatment in clinical obstetric complications caused by 

oxidative stress to the placental barrier has been well-reviewed by Salles et al. (2012). 291A potential 

method to treat the barrier is to use supplements of endogenous antioxidants. Trials have explored the use 

of vitamin C and vitamin E supplementation ( 1000 mg vitamin C; 4UI Vitamin E, respectively); however 

these have not been successful  in vivo trials.292,293 A meta-analysis of seven trails using the same 

intervention, consisting of approximately 6,000 women in total, showed no beneficial use of vitamin 

supplementation in treating pre-eclampsia; however it did allude to a higher incidence of those with the 

treatment of vitamin C and E to have increased gestational hypertension.294These findings contradict the in 

vitro models for oxidative stress to the placental barrier which found that supplements of these vitamins 
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had a positive outcome on the signal transduction pathways.295–297Potential reasons for the failure of these 

supplements in vivo could be due to the inability of the vitamins to access the target trophoblast cells 

within the natural microarchitecture of the villi and at the correct concentration needed to reverse the 

effects of oxidative stress, as some will be depleted in the transportation in the feto-maternal circulation. In 

addition, in vivo trails the drug can only be administered once the subject is pregnant, which may already 

be too late to provide the supplement as the pathways from an oxidative stress response may already be in 

action.54,298  

Allopurinol is an antioxidant which protects against oxidative stress by inhibiting the activity of xanthine 

oxidase, depleting the production of superoxide radicals. Animal studies in the rodent, pig and sheep 

model have shown that allopurinol protects against long-term hypoxic-ischemic brain injury when 

administered prior to and insult of hypoxia; inhibits xanthine oxidase, reduces oxidative stress and returns 

umbilical blood flow back to basal levels, respectively.299Furthermore, in human studies, allopurinol is 

believed to protect the foetal brain against hypoxic insults, by reduced markers of oxidative stress and 

preserving the cerebral blood volume.300   

Melatonin acts as a scavenger of destructive hydroxyl free radicals, as well as also stimulating antioxidant 

enzymes GSH-reductase, superoxide dismutase and catalase. Melatonin is an endogenous antioxidant and 

poses no adverse effects upon the developing foetus. Furthermore, it readily crosses both the placenta and 

the blood-brain barrier. Melatonin systemically induces umbilical vasodilation by stimulating nitric oxide 

synthase, which is an ideal treatment for obstetric complications where there is comprised spiral artery 

remodelling.  However, conflicting findings in animal models suggest that supplements of exogenous 

melatonin during pregnancy may act as a trophic factor on foetal adrenal gland having deleterious effects 

of Adrenocorticotropic hormone (ACTH)-induced cortisol production, which had previously not been 

accounted for.299    

Thioctic acid is a known cofactor in mitochondrial dehydrogenase complexes and is classified as the  

‘ultimate’ antioxidant; scavenging hydroxyl radical), chelates transition metals, and stimulate endogenous 

antioxidants. Treatment of thioctic acid to the rodent model of ischemia significantly reduced mortality 

associated with ischemia-reperfusion.301Furthermore, it has potential benefits for the treatment of diabetes 

by increasing insulin sensitivity and glucose uptake. However, there are confounding results of the benefits 

of thioctic acid, as a study by Sheldon et al. (2008) discovered that there was increased mortality from the 

administration of high doses of thioctic acid in their rodent model.302 Thus, further studies are required to 

identify the correct dosage and timing of administration of thioctic acid treatment, upon exposure of 

hypoxia-reperfusion.   

Overall there is a growing body of data which supports that an imbalance of antioxidants and reactive oxygen 

species within the early developing brain can attribute to irreversible long term consequences to childhood 

brain development.14 An in-depth review by Salles et al.(2012) has shown that both human and animal 

clinical trials using the administration of antioxidants have been able to effectively reduce fetal and/or 

neonatal brain injury after exposure of a hypoxic insult.291However, antioxidant therapies are still within 
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their infancy, and further research is required to detect safe and efficient therapies which can be delivered 

with reduced harm to both the mother and foetus.  

One of the greatest challenges is determining the timing an antioxidant treatment should be administered, 

which is dependent upon there being an effective method in place to identify foetuses which are at high-

risk of oxidative stress. Different antioxidant substances have varying levels of protective benefits which 

are dependent upon the timing of administration in relation to the time of the hypoxic insult and the 

oxidative pathway response. The efficacy of some compounds can have a therapeutic effect prior to a 

hypoxic insult, whereas others are dependent on the timing and the pathway in which the drug is 

administered.   

An additional consideration is that the administration of drugs into the maternal system can elicit and 

mediate a multitude of different physiological pathways separate to their antioxidant role. This highlights 

the importance of understanding both the pharmacokinetics of a drug before administering it and in-depth, 

rigorous clinical assessments being carried out to assess potential adverse consequences a drug application 

may have to both the mother and to the foetus. This is of particular importance to the foetus as 

developmental programming is influenced by antenatal changes in endocrine and/or cardiovascular 

function, which can have long term implications on foetal development. A prime example of this is seen in 

the administration of melatonin  which has vasoactive,neuroprotective properties, but in turn, can influence 

cardiovascular development.303  Furthermore, there is limited knowledge regarding the consequences of 

providing antioxidant therapies to patients who have been misdiagnosed with oxidative stress during 

pregnancy and the adverse implications this may have as a result of an imbalance of antioxidants to 

prooxidants within the maternal circulation during critical stages of gestation.281  

   MitoQ   
It is known that oxidative stress can result in impaired mitochondrial function and result in the progression 

of pathological states and is associated with neurological disorders. Mitoquinone mesylate (MitoQ) is an 

antioxidant which is designed to accumulate in the mitochondria of cells to protect against oxidative 

damage. MitoQ was designed by Michael P. Murphy and Robin A. J. Smith. to detoxify related reactive 

species within mitochondria. MitoQ is covalently bound to ubiquinone, the endogenous antioxidant in 

Coenzyme Q10. Ubiquinone is an integral component in the mitochondrial electron transport chain 

attached to a triphenylphosphonium (TPP+) cation, which makes it permeable to lipid bilayers and can 

accumulate a hundred-fold within the inner membrane of the mitochondria. The ubiquinone moiety is 

delivered to the inner mitochondrial membrane, penetrating through the inner membrane where it gets 

reduced to the active antioxidant ubiquinol by the respiratory complex 2. Ubiquinol is able to reduce lipid 

peroxidation in the inner membrane by donating a hydrogen atom from its hydroxyl groups to a lipid 

peroxyl radical. 304,305After detoxifying ROS the ubiquinol moiety is regenerated by the respiratory 

chain.305  
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MitoQ is an ideal antioxidant to use to treat the placenta as it can target neuronal cells and concentrates 

hundred-fold within the mitochondrial membrane to elicit antioxidant effects. MitoQ has been used in in 

vivo studies to act as a therapeutic treatment in perinatal pathological conditions triggered by oxidative 

stress and has been well-tolerated in Phase I and II of clinical trials.306,307A study by McManus et al.  

(2001) found that in a transgenic murine model for Alzheimer’s, and administration over a period of 5 

months of MitoQ was able to show signs of reduced spatial memory, caspase activation and 

astrogliosis.304. In addition, it has been used to treat the adverse cardiac dysfunction outcome of IUGR in 

the rodent model. Here, pregnant dams were intravenously injected with MitoQ at GD 15 before a hypoxic 

insult. The research found that  prenatal treatment of MitoQ was able to rescue the effects of oxidative 

stress to the rodent placentae and improve vasorelaxation in female offspring which were exposed to a 

prenatal hypoxic insult.308  Studies conducted by Aljundidy et al. (2017) and Phillips et al. (2017) 

administered a single dose of 0.5 μM MitoQ to pregnant dams via intravenous tail-vein injection, found 

that the MitoQ accumulated most prevalently within the placenta labyrinth. The MitoQ-loaded 

nanoparticles were more commonly found within cytotrophoblast cells which faced the maternal 

circulation and were less prevalent in syncytiotrophoblast cells, which face the foetal domain. The study 

revealed an absence of MitoQ within the foetal brain or within the foetal liver, suggesting that the 

antioxidant-loaded nanoparticles were unable to transverse the placental barrier.  However, MitoQ was 

detected in the maternal liver, primarily in Kupffer cells and hepatocytes.153 A confounding study, revealed 

that pregnant dams administered with approximately 0.044 mg MitoQ/g per day within their drinking 

water over the course of 14 days (6-20 Gestational days) detected low levels of MitoQ within foetal livers. 

Thus suggesting that depending on the method of administration, dosage and duration of administration of 

MitoQ, there is the potential for the drug to transverse the placental barrier.282These findings suggest the 

potential of delivering novel antioxidant therapeutics that target solely the placenta and depending on the 

choice of administration and dosage of the antioxidant drug are unable to transverse the protective 

barrier.153  
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1.14 Aims & Objectives of the Research Project  
MicroRNAs play an integral role in the epigenetics of foetal programming acting as essential signalling molecules 

which can be released form the feto-maternal interface, upon an intrauterine insult of gestational hypoxia, and 

enter the developing foetal bloodstream, where they can exert an effect upon the neurological development of the 

foetus during the early, critical stages of gestation.  

  

  

  

   Research Objectives  
The outline of this research will be as follows.  

Chapter 3 will aim to investigate whether under an intrauterine insult of gestational hypoxia we can 

validate that miRNAs are secreted towards the foetal circulation using representative models of the 

placental barrier models and obtain information on whether treatment of (MQ-NP) to the placental barrier 

can alter miRNA secretions from the placental barrier.  

Chapter 4 will assess the potential genotoxic pathological role of secreted miRNAs upon the functional and 

morphological properties of exposed target cells (Fibroblast cells, dissociated neurons) seen in 

neuropathological settings. Furthermore, we will explore the mechanisms involved in placental miRNA 

secretion by analysing the form miRNAs are present in the conditioned media (membrane-bound 

(exosomes/microvesicles), RNA-binding proteins (AGO or HDL) (Chapter 3 & 4).  

Chapter 5 will aim to characterise the miRNAs secreted across the models of the placental barrier under 

conditions of gestational hypoxia and to explore their predicted target genes to gain an insight into their 

potential functional role in neurological processes. Furthermore, we will address the potential use of 

applying drug-loaded nanoparticles (MitoQ) to the barrier as a therapeutic mechanism to diminish the 

effects of oxidative stress on the placental barrier.  
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Figure 1.15. Schematic illustration incorporating the FOAD model and the two-hit hypothesis model in the 

development of neurological disorders  

  
The schematic diagram represents the multifactorial nature of the aetiology of neurological disorders. Illustrating the 

combined effect of a prenatal genetic predisposition in conjunctions with adverse maternal exposure to environmental factors 

including infection, malnutrition, inflammation and lack of oxygen during early critical stages of pregnancy, resulting in an 

enhanced risk of oxidative stress to the placental barrier during gestation. An initial environmental in utero exposure is 

classified as the ‘First hit’ which alters cell-signalling pathways, rendering the developing foetus vulnerable to a second 

exposure, with pathological consequences as a result of cell-signalling priming which arises as an outcome of the “first-hit”. 

Enhanced levels of oxidative stress have been associated with a heightened risk of the offspring having impaired neural 

development which may result in modifications to brain structure and function in the developing foetus, as seen in changes 

in cell number, gene expression, vascularisation and hormonal levels. We propose that oxidative stress to the maternal 

barrier will result in dysregulation of miRNAs, posttranscriptional regulators of gene expression, secreted from the placental 

barrier towards the foetal circulation. Changes in miRNA play an integral role in cell signalling processes and thus will alter 

gene expression within the brain. This renders the brain susceptible and vulnerable to a secondary hit in post-natal life. A 

secondary exposure to oxidative stress may lead to the clinical manifestation of neurological disorders including 

schizophrenia, Bi-polar disorder and autism.   
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Chapter 2.  Materials & Methods  
2.1 Cell culture medium   

 BeWo Culture Medium  
Dulbecco’s Modified Eagle’s Medium Nutrient Mixture/F-12 Ham (D6421)-500mL   

Foetal Bovine Serum (Thermo Fisher Scientific 10270-106)-50mL (10%)  

L-Glutamine 2mM (Sigma-Aldrich G7513) -5mL (1%)  

 Primary BJ Fibroblast Culture Medium  
Mammalian Essential Medium Eagle (Sigma-Aldrich M2279)-500mL   

Foetal Bovine Serum (Thermo Fisher Scientific 10270-106)-50mL (10%)  

Hepes Buffer 0.02 -10mL (2%)  

Antibiotic antimitotic solution (containing 1000 units of Penicillin, 10mg/mL Streptomycin and 25ug/mL  

Amphotericin B) (Sigma Aldrich) -5mL (1%)  

L-Glutamine 2mM (Sigma-Aldrich G7513) -5mL (1%)  

Sodium Pyruvate 100ug/mL-5mL (1%)  

 Trophoblast media for First Trimester placental explants  

Dulbecco’s Modified Eagle’s Medium (DMEM) (Thermo Fisher Scientific 42430-025)-21mL (44%)  

F-12 Nut Mix (Ham) (Sigma-Aldrich N4888)-21mL (44%)  

Foetal Bovine Serum (Thermo Fisher Scientific 10270-106)-5mL (10%)  

Gentamicin 100u/mL (Thermo Fisher Scientific)-500ul (1%)  

L-Glutamine 2mM (Sigma-Aldrich G7513)- 300uL (0.6%)  

Penicillin-Streptomycin 250uM (Thermo Fisher Scientific 15140-122)-200uL (0.4%)  

 Neurobasal Plating Media  
Neurobasal Media (Thermo Fisher Scientific 21103-049)-42mL (86%)  

Horse Serum (Thermo Fisher Scientific 16050-122) -5mL (10%)  

L-Glutamine 2mM (Sigma-Aldrich G7513)-500uL (1%)  

Penicillin-Streptomycin 250uM (Thermo Fisher Scientific 15140-122)-500uL (1%)  

  

 Neurobasal Feeding Media  
Neurobasal Media (Thermo Fisher Scientific 21103-049)-42mL (86%)  
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Horse Serum (Thermo Fisher Scientific 16050-122) -5mL (10%)  

B-27 Supplement X50 stock (Gibco Cat. # 17504)-1mL (2%)  

L-Glutamine 2mM (Sigma-Aldrich G7513)-500uL (1%)  

Penicillin-Streptomycin 250uM (Thermo Fisher Scientific 15140-122)-500uL (1%)  

  

2.2 Cell Culture   

 Cell Culturing Conditions  
Cell cultures were maintained in humidified incubators which were kept at constant conditions of 37oC and 

5% CO2 Cell cultures were cultured in class II safety cabinets under sterile aseptic conditions through 

regular cleaning using 70% ethanol and pharmacidal spray.  

 Resuscitation of cryopreserved cells  
Cell lines were resuscitated from the working bank of cell lines preserved in liquid nitrogen. The 

individual cryovials were removed from liquid nitrogen and quickly transferred to the water bath set at 

370C to warm the cell suspension which had been preserved in Dimethyl sulfoxide (DMSO). It was 

essential to ensure that the transferring period was carried out as quickly as possible to reduce the toxic 

effect DMSO has upon the thawing cell suspension. Once the cells had thawed out the cell suspension was 

transferred into a 15mL falcon tube (Elkay Laboratory Products) and diluted with 10mL cell culture 

media. The falcon tube containing the diluted cell suspension was then centrifuged at 1200rpm for 5 mins 

to allow for the separation of the cell pellet from the DMSO supernatant. The supernatant containing 

DMSO was then discarded, and the remaining cell pellet was re-suspended in 1mL cell culture medium. 

The cells were then seeded into tissue culture vessels and transferred into a humidified incubator set at 

37oC, 5% CO2 overnight to allow for the cells to adhere to the tissue culture plastic of the culturing vessel. 

The cell culture medium was aspirated after a period of 24hours and replaced with fresh cell culture 

medium in order to remove all residual traces of DMSO, which would lead to adverse cell proliferation 

and any unattached cells.   

 Cell concentration calculations using Trypan blue exclusion 

assay  

Cell counts were frequently performed on the cell lines before use in order to assess cell viability. Trypan  

Blue is a dye which is classified as a ‘Vital dye’ which means that it can be used to examine live cells. The 

dye is used to determine the number of live cells in a solution using a dye exclusion method.   
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A 20µL of the cell suspension was collected and diluted in a 1:1 ratio with Trypan Blue dye solution 

(ThermoFisher 15250-061) was used to make a dilution factor of 1. The combined solution was mixed 

thoroughly before being transferred to the counting chamber of a Neubrauer haemocytometer.    

The haemocytometer was set up by placing a dampened coverslip over the two gridded sections of the 

haemocytometer and pressure applied to ensure that the presence of the Newton refraction circles could be 

viewed. 10uL of cell suspension was mixed with 10uL of Trypan Blue dye solution to form a dilution 

factor of 1. 10ul of the solution was then applied to both chambers of the haemocytometer to ensure 

saturation of the gridded regions. Using the inverted phase microscope, the cells were observed and 

counted using a 10X objective. The number of viable cells, which had no presence of blue staining within 

their cytoplasm, were counted in 5 squares (4 corner squares and the single central square). The average 

number of cells in one square could then be calculated to enable the calculation of the concentration of 

cells in 1mL of the original cell suspension to be calculated the percentage of those cells as well which are 

classified as being viable cells.   

Equation 1 Cell Count  

Cells per mL= (Average cell count / Number of squares counted) * DF *104  

2.3 Modelling maternal stress  
The project aims to explore the potential for miRNA secretion across the placental barrier upon an insult to 

the maternal, apical domain of the placental interface. Preliminary investigations conducted by colleagues 

in the laboratory coincides with the current literature which has emphasised the potential 

neurodegenerative and oncogenic capacity of hypoxia-reperfusion to the developing foetus (Curtis et 

al.,2012). As a model for hypoxia-reperfusion, a standardised and established model which has previously 

been used in published literature was replicated (Sood et al. 2011; Curtis et al.,2014). Different stages of 

hypoxia-reperfusion were assessed as an insult to the maternal apical domain of the barrier model; 2% 

hypoxia, 2-12% hypoxia-reperfusion (mimic of pre-eclampsia), 2-21% (full hypoxia-reperfusion) and 21%  

(atmospheric levels) as a control.     

 Modelling the in vitro feto-maternal barrier  

 Maintaining the BeWo Trophoblastic cell line culture  

The BeWo b30 subclone cell line was provided as a gift to the laboratory from Dr.M. Saunders of The  

University of Bristol, Bristol, United Kingdom. The BeWo cells are cultured in T-75 tissue culture flasks  

(Corning) and were grown in Dulbecco’s Modified Eagle Medium (DMEM) Nutrient Mixture-F12-Ham 

with phenol red (Sigma-Aldrich) cultured under physiological conditions of 37°C and 5% CO2. BeWo 

cells were grown until they reached 80% confluence levels and then were passaged at a ratio of 1:20, and 

this occurred approximately every seven days. The cells were passaged by removing the culture media and 

replacing with 5mL of aliquoted 0.25% Trypsin-EDTA solution (Sigma- Aldrich) and placed at 37°C for 5 
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mins. After which, the dissociated cells were washed with 10mL cell culture media to dilute the effects of 

the Trypsin solution. The cell suspension was then placed into a 15mL falcon tube. The falcon tube 

containing the diluted cell suspension was centrifuged at 1200rpm for 5 mins at RT to allow for the 

separation of the cell pellet from the Trypsin solution. The remaining pellet containing the cells was 

resuspended in fresh BeWo cell culture media (10mL) and then a proportion of the resuspended cells was 

transferred into a new T-75 cell culture flask (Corning). After 50 passages the BeWo cells were disposed 

of and new cells thawed out from a working bank stored in liquid nitrogen.   

  

 Preparation and development of BeWo Trophoblastic bilayer barriers  

The b30 BeWo cell line was cultured in corning T-75 tissue culture flasks. This cell line was harvested 

using 5mL of 0.25% Trypsin-EDTA (Sigma Aldrich) and incubated at 37°C, 21% O2 for 5 mins to ensure 

cells were fully detached from the tissue culture plastic base. After a 5-minute incubation period, the 

Trypsin-EDTA solution was diluted using a stripette to apply the addition of 10mL warmed BeWo cell 

culture media. The diluted cell suspension was collected into a 10mL falcon centrifuge tube (Elkay 

laboratory products) and centrifuged at room temperature (21°C) for 5 mins at 1200rpm. The supernatant 

was aspirated into Virkon waste, and the cell pellet was re-suspended in 5mL of warmed BeWo culture 

media. The concentration of cells within the single-cell suspension was calculated using an accredited 

Neubrauer haemocytometer, taking 20µL of the cell suspension and diluting it in a 1:1 ratio with Trypan 

Blue dye. The solution was then applied to the chamber, and via capillary action, the solution was drawn 

in to fill the chamber. The 16x16 corner grid on the haemocytometer allowed for a cell count to be 

conducted under an inverted phase-contrast light microscope (Zeiss Axiovert 25) using a 10X objective. 

The cell count equated to the number of cells 1x104 in 1mL of the cell suspension. The cell suspension 

was then seeded at a density of 1.12 × 105 BeWo cells onto polythene porous (0.4µM) membrane inserts in 

a 12- well tissue culture plate (Transwell permeable supports, Corning). BeWo cell culture medium was 

then applied to the cell suspension to make up a final volume of 500uL in the upper region of the transwell 

insert. Below the transwell insert, 1.5mL of BeWo cultured media was applied below the insert into the 

chamber region of the well. The cell culture plates were incubated at (37°C, 5% CO2, 21% O2) for seven 

days to allow for the barrier to produce confluent multi-layered barriers, typically 2 to 3 cells in thickness. 

Previous studies have demonstrated using Electron Microscopy at day seven after seeding the cells that 

they are wholly confluent and non-porous being predominately bilayered (Sood et al.,2012). During this 

incubation period, media changes were conducted at days 2, 5 and 6 to ensure that the cells were 

consistently supplied with the nutrients required for optimal growth. Media changes were performed using 

plastic pasteurs to discard ‘aged’ BeWo cultured medium (Figure 2-1).                              
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Figure 2-1 Schematic of the in vitro model of the placental barrier  

A schematic representation of the in vitro BeWo bilayered human placental barrier model. The transwell plate contains a hanging porous polythene support in which the proliferative b30 

clone BeWo cells are cultured in the apical domain of the chamber. The apical domain is representative of the maternal side of the placental barrier whilst the basolateral domain of the 

transwell insert represents the foetal domain of the feto-maternal interface. The ‘conditioned media’ obtained from the basolateral domain represents the secretions from the bi-layered BeWo 

choriocarcinoma cells facing the developing foetus.  The in vitro model of the feto-maternal interface was exposed to various different oxygen tensions; (21% O2 control conditions, 2% O2 

chronic hypoxia, 2-8% O2 ,2-12% O2 &2-21% O2 hypoxia-reoxygenation). BeWo cells were grown for a period of seven days at either 21% O2 or 2% O2 in order to form a fully confluent 

bilayered barrier being feed on days 2,5 &6. On the eighth day the media below the barrier was replenished with the media which was required for further downstream experimentation and 

analysis. The BeWo cells were then exposed for a period of 24hours to varying oxygen tensions. The media in the basolateral domain was then collected after a 24-hour exposure and snap 

frozen at -80oC.  
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 Isolation and exposure of ex vivo First Trimester villous explants  

First Trimester (1-10 weeks) human placental explants were obtained from voluntary termination of 

pregnancy with ethical approval and patient consent by the NHS Health Research Authority at Southmead 

Hospital, NHS (Bristol, UK). The placental tissue was transferred to the laboratory in warmed, sterile 1X 

PBS under atmospheric conditions and dissected into 5x5 mm explants to expose the chorionic villi. The 

placental villous explants were then placed into 12 well plates bathed in 1.5mL of Trophoblast media 

respectively. The villous explants were kept for 12hrs in the incubator (37°C, 5% CO2, 21% O2) to 

acclimatise to the new oxygen conditions. The following day the trophoblast media was removed from 

each well using a plastic 1mL Pasteur to ensure that the explant itself was not agitated and to ensure that 

the fragmented regions of the explants were not removed with the trophoblast media, as it was essential to 

try and retain the mass of the explants throughout the experiment. The explants were then replenished with 

1.5mL of either Neurobasal or Fibroblast culture media depending upon the bystander cells which the 

media was to be exposed to or in trophoblast media for further downstream analysis. The explants were 

then conditioned to varying oxygen conditions using the Ruskin Sci-tive hypoxic chamber (Baker Ruskin, 

USA) under the following oxygen conditions; 21%,2%, for 48 hours or transfer from 2% (24 hours) to 

either 12% or 21% for an additional 24 hours (Hung et al., 2004). After the exposure time-lapse, the 

conditioned media was then collected from each respective well and stored at -80°C conditions for further 

use (Figure 2-2).   

The nature of the model means that explants are cut-off from their active haemoglobin reserves in culture 

and therefore the explants are only viable for a maximum of 2-5 days and must be processed and utilised 

as quickly as possible. Furthermore, there is a low level of oxygen diffusion in cell culture media which 

means that while cells are placed into varying oxygen conditions, the rate at which the culture media 

acclimatises to these oxygen tensions is delayed meaning that the exposure times are not accurate 

representations of the period of time these explants have been conditioned.  To attempt to minimise these 

areas of contention, explants were utilised for a maximum of two days to limit the variable of tissue 

fatigue. Furthermore, the culture media was placed into the respective oxygen tensions with the lids of the 

falcon tubes containing the culture media unscrewed for a minimum of 30 mins before being applied to the 

tissue explants to allow for the culture media to acclimatise to the new oxygen tension.  

 

Figure 2-2 Visual representation of villous first trimester placental explants  

Placental explants from first trimester human placenta (~ 5mmx5mm). The chorionic villi are located in the apical domain 

of the developing placenta and is formed of two trophoblast cells; cytotrophoblast and syncytiotrophoblast cells. Image 

sourced from Luo et al. (2012)677.  
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 In vivo rodent model of Maternal Stress  
An in vivo model was used to assess whether and exposure of maternal hypoxia and/or treatment with an 

antioxidant drug within a physiologically relevant setting would have a similar effect upon the secretions 

from the placental barrier compared to both the in vitro and ex vivo model. The set-up of this model (as 

discussed below) allows for a controlled way to assess the maternal exposure within a living 

organism(rodent), whereas, in the ex vivo model, which used human placentae explants, there is high level 

of variation in placental oxygen tensions due to the processing of the placental tissue. However, similar to 

the ex vivo model, at the end of the exposure, the placentae are removed from the rodent dams and placed 

into their new exposure conditions for a remaining 24 hours. Thus it could be argued that this model is not 

solely in vivo model but has elements which would deem it to be classified as ex vivo. In order to 

distinguish between these two experimental models throughout the remainder of the thesis, we have 

chosen to term this model as the in vivo model.  

The RNA extractions of the rodent placentae from the in vivo model was performed primarily by Dr 

Hannah Scott and Dr Thomas Phillips within our research group.  

 A rodent model of maternal stress  

All in vivo work was carried out in accordance with the rodent UK Animals Scientific Procedures Act 

(1986). All measures were taken to ensure that procedures were performed to minimise the suffering to the 

animals sacrificed and the number of animals required for experimentation.   

Three-month-old female Sprague-Dawley rats were maintained on ad libitum standard rat chow and tap 

water in a 12:12-hr light-dark cycle and were acclimatised before breeding. Day 0 of gestation was 

determined by the presence of sperm in a vaginal smear. At gestational day (GD) 15 of pregnancy, the rats 

were injected intravenously (tail vein) with saline (vehicle control) or 125 μM (MQ-NP) and exposed until 

GD21 to either 21% or 11% oxygen in an A-Chamber (BioSpherix, USA).   

 Obtaining rodent placental explants and conditioned media  

At GD 21 rodent placentae were obtained once the dam was under anaesthetics and an incision had been 

made across the maternal abdomen to expose the multiple amniotic sacs of the pregnant dam. The uterus 

of the dam was removed using some sterile scalpel and forceps and placed into a petri dish (Corning) 

containing 1X PBS. The rodent foetuses were removed from their amniotic sacs and placed into a new 

petri dish containing 1X PBS in order to bath and wash the foetuses and the attached disc-shaped placenta 

to remove as much blood as possible. The litter size across the four dams for each experimental parameter 

varied, with there being an average of 15 pups per dam. Four placental samples were used to obtain 

conditioned media. Two separate 12 well culture plates (Corning) were prepared with 1.5mL of 

trophoblast media per well, and the placentas were transferred into individual wells. Any free wells which 

were not occupied with a placenta were filled with 1.5mL 1X PBS in order to avoid evaporation to 

surrounding wells. The placental explants were maintained in trophoblast media at 37oC, 5% CO2 at either;  
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21% or 2% oxygen tension for 24 hours. After 24 hours, the trophoblast media was removed, using a 5mL 

Pasteur pipette and replenished with 1.5mL neurobasal media. The oxygen conditions were either 

maintained or altered depending on the type of insult the explants were exposed. After 48 hours, the  

‘conditioned media’ surrounding the placental explants was obtained and placed into 2mL collection tubes 

and stored in -80oC conditions (Figure 2-3).  

In accordance with the ex vivo model, the secretions from the placental barrier towards the maternal or 

foetal domain were unable to be distinguished. This model uses the whole placentae of the rodent due to 

the limited size of the placentae. In order to further dissect the placenta to isolate the chorionic villi would 

have resulted in high levels of shear-stress to the delicate tissue, resulting in tissue fragmentation and 

disruption of the microarchitecture. This in itself would have acted as a stressor to the tissue and skewed 

our findings when examining the placental secretions. When assessing the secretions from both the ex vivo 

and in vivo model, we had to look holistically at the secretions to both the maternal and foetal domain as 

we were unable to determine, within the conditioned media, the direction in which the secretions would 

have been released.   
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Figure 2-3 A schematic representation of the in vivo rodent placental explant model  

Explants of the rodent placenta were obtained from in vivo maternal conditions of either normoxia (21% O2) or hypoxia (11% O2) and cultured in 1.5mL trophoblast media in a 12 well cell 

culture plate. The ex vivo model of the feto-maternal interface was exposed to various different oxygen tensions; (21% O2 control conditions, 2% O2 chronic hypoxia) with or without the 

application of MQ-NP, and maintained in trophoblast media for a period of 24 hours in order for them to acclimatise to the new oxygen tensions. After 24 hours the culture media was 

replenished with the media which was required for further downstream experimentation and analysis. The explants were then exposed for a period of 24 hours to varying oxygen tensions. The 

culture media in which the explants were bathed were collected and snap frozen at -80oC.  
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RS= in vivo hypoxia (11%) + ex vivo 21% saline 

RM= in vivo hypoxia (11%) + ex vivo 21% +MQ 

NS=in vivo normoxia (21%) + ex vivo saline  

NM=in vivo normoxia (21%) + ex vivo +MQ 

HS= in vivo hypoxia (11%) + ex vivo 2% +saline 

HM= In vivo hypoxia (11%) + ex vivo 2% +MQ  

1.5mL Conditioned 

media  
1.5mL Conditioned media (Trophoblast 

media/Neurobasal Media)  

GD20 rodent foetal ‘disc’ 
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2.4 Assessing the vitality of the placental barrier  

Apoptotic Assay-Muse Assay  

The Muse™ Count & Viability Reagent (Merck Millipore) provides a more accurate means to count 

viable cells and those that have undergone apoptosis. The principle behind this method is that both viable 

and non-viable cells are differentially stained depending upon their permeability of the two distinct DNA 

binding dyes in the reagent. One of the DNA binding dyes stains for cells which have impaired membrane 

integrity which permits the dye to penetrate the cell and stain the nucleus of cells which are undergoing or 

have undergone apoptosis. The number of cells which are stained with this dye provides the outcome of 

the viability parameter, while the second dye stains nucleated cells with a permanent membrane. The two 

dyes permit the distinction between cells with a nucleus and the entities in the samples which are 

nonnucleated debris. The Muse™ System can count the number of nucleated events and combines the 

cellular size to distinguish between cellular debris and free suspended nuclei to calculate an overall total 

cell count.   

The data provided from the use of these two dyes allows for the following parameters to be generated;  

• viable cell count (cells/mL)  

• total cell count (cells/mL)  

• % viability   

 Obtaining cell suspension  
B30 BeWo cells were grown on 12-well transmembrane plates for seven days in order for them to form 

confluent bi-layered barriers. On the seventh day, the cells were exposed to their relative treatments for 24 

hours. After the exposure period, the supernatant (500µL) from the apical domain of the placental barrier 

was discarded and aspirated away. The cells were then treated with 250µL of 0.25% EDTA trypsin for 5 

mins at 37oC. After incubation with Trypsin, the cells were then neutralised by the application of 250uL of 

BeWo culture media. The cell suspension was then harvested by thoroughly pipetting up and down the 

supernatant in the apical domain until the cells had been displaced from the base of the wells and 

suspended in the supernatant. The cell suspension was then collected into a 1.5mL microcentrifuge tube 

and placed into a microcentrifuge to be spun at 1200 rpm for 5 mins at RT. The supernatant was then 

aspirated away to leaving pelleted cells at the base of the microcentrifuge tubes. The cell pellets were 

suspended in 500µL warmed BeWo culture media.   
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 Figure 2-4 Schematic representation for MUSE assay procedure to measure cell viability  

A schematic to represent the procedure from start to finish (A-C) for analysing the cell viability of the cells obtained from the in vitro BeWo bi-layered barrier model of the first trimester 

placenta. Section A represents the process of obtaining cell suspension mixed with Count & Viability Reagent (Merck Millipore) and leaving the samples to incubate for a period of five 

mins at RT. The diagram illustrates that within the homogenous solution there will be a combination of viable cells and stained cells which get stained by the two dyes present in the Count 

& Viability Reagent as well as cellular debris which does not get stained. Section B represents the loading of the prepared cell samples into the Muse® Cell Analyser and the adjustment of 

the gating for both cell viability and cell size parameters. Section C exemplifies the data output of both reported statistics and of the optional dot plots the Muse® system offers as an 

output. The image had been adapted from the image obtained from the Manufactures Muse™ Count & Viability Kit User’s Guide (Merck Millipore).  

  

  Staining cell suspensio n    

A   

B   

C   
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In accordance to the manufacturer’s protocol, as the initial cell concentration is unknown for each sample 

due to the variability in the uptake of adhered cells in the cell suspension, it is advised to perform a 1:20 

dilution of cell suspension with the Count & Viability Reagent solution (Merck Millipore). Therefore 

20uL of sample cell suspension: 180uL Count & Viability Reagent solution was placed into a 3mL 

Eppendorf and mixed thoroughly together by pipetting up and down several times until there was a 

homogenous solution formed. A 1:20 dilution factor should achieve a final concentration of <5 x 105 

cells/mL, which is in the range for accurate cell counting of the Muse® Cell Analyser (Figure 2-4).  

 Gating Muse® Cell Analyser  
A systems check was performed before running the assay, including calibration of the system in 

accordance with the manufacturer’s protocol. Once the system had been calibrated successfully and had 

passed its system check, the assay could be performed. The count and viability assay were selected, and 

the cell suspension for counting could be loaded to set instrument settings for counting.  

The Eppendorf containing the sample mixed with the cell counting reagent was loaded into the Muse® 

Cell Analyser. The system then instructs for the settings for both the Viability and the Cell Size Index 

plots to be adjusted. The Cell Size Index plot allows for a population of nucleated cells in the correct range 

of the cells being analysed to be selected against a population of debris or the incorrect cell type being 

selected and counted. The Viability Index is also adjusted to distinguish between a population of cells 

which were viable and those that were non-viable. Once the gating set-up was completed, the sample ID 

was entered, and the number of ‘Events to Acquire’ (The number of measurements obtained from the 

sample per run) was set at 1000 events. The dilution factor of 1:20 was entered, and the original volume of 

0.5mL was entered. Once all required information regarding the sample was updated into the system, the 

sample itself was resuspended by pipetting the sample up and down several times using a pipette and 

reloaded for analysis (Figure 2-5).   
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Figure 2-5 Schematic to illustrate the adjusted settings of the MUSE cell analyser  

An example of the adjusted settings of the Muse® Cell Analyser. The plot represents where the individual cells counted (red 

dots) lie between the two measured variables: Viability and Cell size. Both of these parameters were able to be adjusted in 

accordance to the sample-type being loaded for analysis. The red horizontal line was associated with setting the gate for cell 

size, whilst the vertical red line set the gate for viability. The grey shaded region indicates the threshold between nucleated 

cells and non-nucleated cellular debris dependent on cell size. The green shaded region indicates the region of ‘viable’ 

nucleated cells. The diagram shows two clear populations of ‘viable’ cells which lie within the correct cell size range and 

have a high viability rating, whilst the other distinct cell populations, within the correct size range, had a low viability rating 

and were classified as ‘non-viable’. The image had been adapted from the image obtained from the Manufactures Muse™ 

Count & Viability Kit User’s Guide (Merck Millipore).  
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2.5 Exposures to the placental barrier  
  

 Y-PGA Nanoparticle loaded with MitoQ   

 Nanoparticle synthesis  

The nanoparticles utilised as a non-carrier for loading MitoQ drug were prepared and synthesised by Dr  

Koki Azuma and colleagues at the University of Osaka, Japan. The nanoparticles were transported to the 

University of Bristol, where they were loaded with MitoQ for experimental use with the assistance of Dr 

Thomas Phillips.  

The nanoparticles were designed as an amphiphilic copolymer comprising of both poly (y-glutamic acid) 

and L-phenylalanine ethylester (ᵞ-PGA-Phe). The nanoparticles were synthesised using a precipitation and 

dialysis method by using a 50% Phe grafting degree. 10mg/mL of ᵞ-PGA-Phe was dissolved in 1mL 

DMSO with the addition of an equal volume of 0.15M NaCl solution and dialysed against with distilled 

water as the solvent.  The copolymer nanoparticle solution was freeze-dried and resuspended in 10mg/mL  

PBS. The Nanoparticle solution was then measured using dynamic light scattering (Zetasizer nanoZS, 

Malvern Instruments, UK) as 180nm diameters, 0.12 polydispersity and -20mV Zeta potential.   

 Antioxidant Loading   

The y-PGA-Phe nanoparticles (10mg/mL) were mixed with mitochondria-targeted antioxidant (MitoQ) 

(2mg/mL) at equal volumes in 0.2M NaCl. After thorough mixing, the solution containing the combination 

of y-PGA-Phe nanoparticles and MitoQ were incubated at 40C for 12 hours.   

Control blank nanoparticles were synthesised by mixing 10mg/mL y-PGA-Phe nanoparticles were mixed 

with an equal volume of 0.2M NaCl and incubating at 40C for 12 hours. The nanoparticles were then 

purified using centrifugation at 13,000rpm for 30 mins. The supernatant was then discarded, and then the 

pellet was re-suspended in PBS. The PBS suspension was then re-centrifuged at 13,000rpm for 30 mins. 

The supernatant was removed, and the pellet washed in PBS and re-suspended in PBS ready for measuring 

the concentration of successfully loaded MitoQ.  

 Measuring MitoQ Loading  

The concentration of MitoQ which had been successfully loaded into the ᵞ-PGA-Phe nanoparticles 

(MQNP) was measured using the Geneflow P330 nano-photometer. The blank ᵞ-PGA NPs were measured 

against RNase free double distilled water, while MQ-NPs were compared and measured against the blank 

ᵞ-PGA NPs.  The samples were measured at 280nm wavelength and an extinct coefficient of 1.48 l/g2cm. 

Both the MQ-NPs and the blank ᵞ-PGA NPs, ten reads were taken for each sample to obtain an average 

level. The samples were then diluted in PBS to gain the desired molecular weight of MitoQ 678.81(g/mol).  
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 Exposure to the placental barrier  

Drug-loaded nanoparticles were applied to the in vitro model at an exposure of 0.5µM (MQ-NP) at day 6 

when a confluent bi-layer was formed to the apical domain of the placental barrier before the barrier was 

exposed to hypoxia-reperfusion conditions for a 24-hr period. In the ex vivo model 0.5µM (MQ-NP) was 

applied at day two into the conditioned media surrounding the explant before exposing explants to 

conditions of hypoxia-reperfusion for 24 hours. In the in vivo model, 125µM (MQ-NP) was intravenously 

injected into the tail vein of mothers at GD15 before being placed into hypoxic conditions, while controls 

were given a saline injection.  

 DNA damaging agent exposures  

 Pesticides  

To mimic a common household agricultural pesticide which is a known DNA damaging agent, a 

pyrethroids standard mixture (PYR) and piperonyl butoxide (PBO) (both Sigma-Aldrich) were used in 

combination. These chemicals were diluted in PBS to 1 mg/mL, and further dilutions were done in BeWo 

cell culture medium. Working concentrations ranged from 100ng/mL to 100µg/mL. The BeWo barrier was 

exposed by adding 0.5mL of the diluted chemicals onto the in vitro barriers for 24 hours.  

  

 Benzoquinone+ Hydroquinone  

A known carcinogenic exposure of Benzoquinone + Hydroquinone was produced using1,4-Benzoquinone 

powder (Sigma-Aldrich) diluted in a 9:1 PBS: ethanol solution to get a stock concentration of 30mM. The 

mixture was left on a roller for several hours to ensure the benzoquinone was fully dissolved. 

Hydroquinone crystals (Sigma-Aldrich) were diluted in PBS to get a stock concentration of 30mM. All 

further dilution of benzoquinone and hydroquinone were made up in BeWo cell culture medium. The 

BeWo barrier was exposed to 30µM of the working concentrations by adding 0.5mL of the diluted 

chemicals onto the barriers for 24 hours.  

  

 Hypoxia/Hypoxia-reperfusion  

For exposure involving hypoxia or hypoxia-reperfusion, BeWo barriers were placed into a hypoxic 

workstation (Ruskin Technology, Bridgend, UK). Oxygen concentration can be set with decimal accuracy.  

The hypoxic chamber was set at 37°C, 5% CO₂ and oxygen tensions were set at either 2%, 12% or 21% 

O₂. In experiment parameters are defined as follows; ‘’2%’’, ‘’12%’’ and ‘’21%’’ refer to the BeWo 

barrier being exposed at this oxygen concentration for 24 hours before media collection. The conditions  

‘’2-12%’’ and 2-21%’’ refer to the BeWo barrier being cultured at 2% oxygen for 6-day culture length and 

then increasing the oxygen flow to 12% or 21%, respectively, for another 24 hours before media 

collections. Those classified as ‘’2%’’ represent chronic hypoxia exposure.   
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2.6 Assessing the effect of an exposure on the placental barrier  

 Western Blotting  

 Protein Extraction from Cells  

Cells were washed twice with ice-cold PBS and harvested in 200uL lysis buffer (Cell Signalling  

Technology). Lysates were frozen at -80°C until further use. Frozen lysates were sonicated (Bioruptor, 

Diagenode) using five cycles of 30 seconds on/ 30 seconds off at the highest setting. Lysates were then 

centrifuged at 15000 rpm for 5 mins at 21°C. A protein assay (Bio-Rad) was performed using a 96 well 

plate by comparing 1 ul of each protein lysate (in triplicate) to BSA protein standards (in duplicate, 

ranging from 6.25 to 800 ug/mL) and pure distilled water. Each protein well was prepared by adding 30uL 

of 1:50 (Reagent S: Reagent A) solution to the 1uL of protein.  

Further, 100 uL of Reagent B was added to each well (all reagents are Bio-Rad Protein Assay Reagents). 

The plate was read using a plate reader at wavelengths 595 nm and 750 nm. A standard curve was created 

using the protein standards to calculate the amount of protein per uL in the lysates.   

To prepare protein for loading, 50 uL of sodium dodecyl sulphate (SDS) containing buffer was combined 

with the appropriate amount of protein lysate and topped up with lysate buffer to create a final volume of 

250 uL. To facilitate full denaturing of proteins, samples were put in a 100°C heat block for 5 mins.   

  

 Running western blots  

Resolving gels were prepared as follows (National Diagnostics), with final acrylamide concentration 

depending on the size of the protein investigated.   

Table 2. Preparation guide for resolving and stacking gels. Values in (mL) unless stated otherwise  

Resolving gel  15%  12.5%  10%  7.5%  Stacking gel  
4.5%  

30% acrylamide  8.7  77.3  5.8  4.4  0.6  
Resolving Buffer  
1.5M Tris pH8.8  

0.4%SDS  

4.4  4.4  4.4  4.4  0  

Stack Buffer 0.5M  
Tris pH6.8 0.4%  

SDS  

0  0  0  0  1.0  

ddH2O  4.4  5.8  7.3  8.7  2.2  
add just before 

pouring:  
      

Ammonium 

persulphate  
0.5g/mL(SigmaAldrich)  

110uL  110uL  110uL  110uL  29uL  

TEMED  3.6uL  3.6uL  3.6uL  3.6uL  0.9uL  
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Resolving gel was poured between two upright glass plates and left at room temperature to set. The 

stacking gel was poured on top, and gel combes were pushed into place. Once the stacking gel was set, 

combs were removed, and gels were transferred to an electrophoresis tank (Mini-PROTEAN® Tetra 

Vertical Electrophoresis Cell, Bio-Rad) filled with running buffer (containing 14.4 g Glycine, 3 g Tris, 1 g 

SDS per 1 L of dH2O).  

Protein (25uL) was loaded into the wells using long thin western pipette tips. 5 uL of marker protein 

(Kaleidoscope Precision Plus Protein Standards, Bio-Rad) was added to an empty well. The protein 

loading sequence was recorded. The tank was connected to the power pack and set at a voltage of 140V 

for the initial 20 mins before a voltage of 200V for the remaining time (approximately 60 mins, depending 

on the size of the protein). The gel tank was dismantled, and the stack gels were removed from the 

resolving gels.   

 Transferring the protein  

To transfer proteins from the resolving gel to immobilon transfer membranes (Merck Millipore), blotting 

sandwiches were assembled as such:  

- The black side of the holder  

- Sponge  

- Three pieces of pre-soaked filter paper  

- Resolving gel  

- Immobilon, activated in methanol for 1 minute  

- Three pieces of pre-soaked filter paper  

- Sponge  

- The white side of the holder  

  

The holder was clipped together and put in a transfer tank, filled with transfer buffer (containing 14.4 g 

Glycine, 3 g Tris, 200 mL methanol, topped up with distilled water to 1 L total volume). An ice pack was 

put at the back of the tank. The tank was connected to the power pack and run at 100V for 1 hour.   

 Primary antibody incubation  

Milk blocking buffer and Tween buffer were prepared as follows:  

Milk buffer:   

10 mL 10 mM Tris/HCL pH 7.4 (Bio-Rad)  

8.6 g  150 mM NaCl (Sigma-Aldrich)  

40 g   milk powder 99% fat-free  

1 L  distilled water  
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Tween buffer:  

10 mL 10 mM Tris/HCL pH 7.4 (Bio-Rad)  

8.76 g 150 mM NaCl (Sigma-Aldrich)  

2 g   0.2% Tween (Sigma-Aldrich)  

1 L  distilled water  

  

The transfer tank apparatus was dismantled, and the immobilon gels were washed in milk buffer for 5 

mins. The immobilon sheets were individually placed between plastic sheeting that was sealed at 3 out of 

4 sides. 3 mL of primary antibody diluted in tween buffer with 0.5% milk buffer (v/v) was added to the 

immobilon sachets before the final edge was sealed. Primary antibody incubation occurred overnight at 

4°C on a rotator.   

  

 Secondary antibody incubation  

Blots were washed three times for 10 mins in Tween buffer on a rocker. Secondary antibody labelling 

occurred similar to primary antibody labelling. Incubation occurred for 1 hour at room temperature on a 

rotator. The secondary antibodies are tagged with horseradish peroxidase (HRP) and chosen to react with 

the species that the primary antibody was raised in. Details of antibodies and concentrations can be found 

in (Table 3).  

Table 3. Properties of primary and secondary antibodies used for western blotting  

 
Antibody  Species  application  dilution  company  cat number  

HIF1α   Mouse  WB  1:1000  BD  610958  
Ca-9  Rabbit  WB  1: 5000  Novus Biologicals  NB100-417   

β-actin  Mouse  WB  1:1000  Sigma  A5316  
C-PARP  Rabbit  WB  1:5000  Abcam  ab4830  

HIF2a  Rabbit  WB  1:1000  Cell Signalling  7096  
Protein marker  n/a  WB  25 uL  Bio-Rad  161-0375  
Anti-Rabbit  Goat  WB  1:1000  Abcam  ab97051  
Anti- Mouse  Goat  WB  1:1000  Abcam  ab6789  

  

  

 Developing the blots  

Blots were washed three times for 10 mins in Tween buffer on a rocker. The immobilon filter is placed in a 

polythene bag. Equal parts of luminol solutions A and B (Insight Biotechnology KPL) are combined, and 

4 mL is added to the bag and repeatedly spread across the blots using the edge of a ruler for 90 seconds. 

Luminol is removed, and the bag is sealed. Blots are developed in a dark room by placing the blots onto a 

film (Thermo Fischer) in a closed cassette. Developing time varied between 5 s and 10 min depending on 
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the strength of the signal. Films were developed in an X-ray film developer (SRX 101A Film Processors, 

Konica Minolta) and scanned into digital files. Photoshop software (Adobe) was used to create figures.   

  

2.7 Assessing the conditioned media from the placental barrier  

 MicroRNA removal strategies from conditioned media  

 RNaseA treatment   

In accordance with the literature, 4.5U/mL of RNaseA was applied to the conditioned media and incubated 

in (37°C; 21% O2; 5% CO2) conditions for 1 hour Xu et al. (2013). The application of RNase works by 

cleaving single-stranded RNA at the 3’ phosphate of a pyrimidine nucleotide, permitting it to target mature 

miRNA and other small non-coding RNA molecules.   

 Ultracentrifugation treatment   

Ultracentrifugation was carried using a high-speed Beckman L7-65centrifuge. Conditioned media was 

pipetted into 12mL round-bottom centrifuge tubes (Thermo Scientific) and spun at 30,000rpm for 2 hours 

at 4°C as stated in accordance with the work conducted by Kumar et al. (2014) and Théry et al. (2006). 

After ultracentrifugation, a pellet was formed at the base of the round-bottomed centrifuge tube. The 

supernatant was collected leaving approximately 500µL at the bottom of the centrifuge tube to ensure that 

the pellet (which is not visible to the naked eye) was not disturbed or taken up into the collected 

conditioned media. The centrifuge tube containing the pellet was discarded into Virkon. The remaining 

conditioned media was stored at -80°C for future use.   

  

 Detection and quantification of miRNA constructs   
The method adopted to obtain this information was via the use of the small RNA assay kit (Agilent 

Technology) in conjugation with the Agilent 2100 Bioanalyser; a robust, conventional method used to 

provide both accurate and precise miRNA measurements in serum/plasma samples. The Agilent 2100 

Bioanalyser as a method for miRNA detection provides many advantages in comparison to alternative 

traditional techniques such as agarose electrophoresis, as it is capable of integrating and automating 

sample handling, separation and analysis all in one. Furthermore, it is capable of detecting low molecular 

weight (LMW) RNA samples which would otherwise not be visualised on an agarose gel. Data is collated 

in realtime and the digital output provides efficient and spontaneous data output. Moreover, a valuable tool 

of the 2100 Agilent Bioanalyser is the ability to accurately determine the concentration of the sample 

while performing sample purity and integrity 309,310.  

    

Using a column-based technique, total RNA was acquired from the conditioned serum samples using the 

recommended Qiagen miRNeasy kit (Qiagen) in accordance with the manufacturer’s protocol. After 
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extraction of the total RNA from the conditioned media, samples were then transported on dry ice over to 

the Biological Sciences Building of the University of Bristol for miRNA analysis where total RNA 

concentrations were measured using Nanodrop Lite Spectrophotometer (Thermo Scientific) to ensure that 

the sample concentrations were above 10ng/µL volume to permit for further analysis to be conducted 

using the Agilent Small RNA kit. If samples complied, then samples were processed using the Agilent 

Small RNA kit (Agilent Technology) to resolve small nucleic acids in the size range between 6nt-150nt to 

detect miRNA concentrations using the Agilent 2100 Bioanalyser (Agilent Technology), performed by Ms 

Jane Coghill and Dr, Christy Waterfall at the Bristol Genomic Faculty, University of Bristol, UK.   

The Agilent 2100 Bioanalyzer is a microfluidics-based platform used for sizing, quantification and quality 

control of RNA. A nano RNA Agilent microchip, which can hold up to 12 samples, was selected for these 

experiments. Before loading samples onto the microchip, a reagent gel (Sieving polymer) and fluorescent 

dye were vortexed for 10 seconds. After which, one gel aliquot was mixed with 1µL of fluorescent dye 

and centrifuged at 12000rpm for 10 mins. The electrodes were washed with RNaseZap to remove any 

RNA contaminants which would interfere with the findings. The microchannels are then filled with 9µL of 

the sieving polymer and fluorescent dye to create an electrical current. Next, 5µL of the marker was loaded 

into all sample wells and the ladder well. Then 1µL of each of the conditioned media samples were loaded 

into the 12 of the Agilent microchip, and 1µL of the ladder was placed into the ladder well. The microchip 

was vortexed within its holder for 1 min before the microchip could be run and data exported to the 

Agilent 2100 Bioanalyser software. Each chip contains an interconnected set of microfluidic channels 

which are used for the electrophoretic separation of the nucleic acid fragments by size. The fragments 

move through the microchannels with smaller fragments migrating at a faster rate compared to the larger 

fragments (Mass: charge ratio). Fluorescent dye molecules intercalate into the RNA strands where their 

fluorescence is detected and translated into electropherograms. The entire running time for RNA 

bioanlyser analysis takes approximately 20 mins in total. The migration time for each fragment is 

measured against the standards in order for the size of the RNA to be determined. This method was able to 

detect small nucleic acids in size range between 6nt-150nt and within this range detect miRNA (21-25nt) 

concentrations. Furthermore, the ribosomal ratio is determined to indicate the integrity of each RNA 

sample, which takes into consideration both the 28s rRNA and 18s rRNA peak ratios. In all samples, a 

high ribosomal ratio of above 2 was indicative that the RNA samples had not degraded significantly and 

were of ideal quality for assessment (Figure 2.6).  
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Figure 2-6 Electropherogram obtained from Agilent 2100 small ncRNA Bioanalyser  

Electropherogram representing the peaks of small nucleic acids (6-150nt). The area under the peaks is 

representative of the concentration of nucleic acids within the specific size range.   

  

 Quantification & characterisation of miRNA constructs   

Total RNA was extracted from 200 μl conditioned media using the miRNeasy Mini Kit (Qiagen,  

Germany). Small RNA and microRNA levels were measured using the Small RNA Kit on the 2100  

Bioanalyzer (Agilent Technologies) at the University of Bristol Genomics Facility. Levels of individual 

microRNAs were analysed using the nCounter Rat v1 miRNA Expression Assay or the nCounter Human 

v2 miRNA Expression Assay (NanoString Technologies, USA), which detects 423 or 800 different 

species-specific microRNAs, respectively. Briefly, 3 μl of each undiluted sample was hybridised with 

barcoded probes and immobilised on an nCounter Cartridge. Barcode signals were counted using the 

nCounter Digital Analyzer. This work was carried out with the assistance and support of Dr Hannah Scott.  

NanoString Differential Expression analysis software (NanoStriDE) was used to detect significantly 

differentially secreted microRNA molecules. NanoString technology generates discrete sequence counts as 

a measurement of microRNA expression; thus a discrete distribution such as the Poisson or the negative 

binomial is appropriate for assessing significant differences between samples.311 Both Differential 

expression of RNA-Seq data(DESeq)312, the default tool within NanoStriDE, and Empirical Analysis of 

Digital Gene Expression Data in R (edgeR)313 were used to identify significant microRNAs, as recent 

evaluations have shown that edgeR may provide higher sensitivity than DESeq, though it is unclear 

whether edgeR yields fewer or more false-positives,314 To mitigate possible false-positives, microRNAs 

were classed as significantly differentially secreted microRNAs if p < 0.05 for both DESeq and edgeR, if 

count ≥ 10 for at least one of the compared conditions and if there was an up or down-regulation of at least 

25%. NanoString microRNA data may include variation from sources unrelated to treatment groups, such 
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as; processing via centrifugation, enrichment, and RNA purification steps (personal communication, 

NanoString Technologies, August 2015). To mitigate this unwanted variation, Remove Unwanted 

Variation from RNA-Seq Data (RUVSeq) was also used to adjust microRNA counts.315No differential 

expression is expected between replicates within a treatment group and few differentially secreted 

microRNA between treatment groups, so the relative log-expression (RLE) should be consistent across all 

samples. In addition, the most significant component of variation in the data should reflect differentially 

secreted microRNAs between treatment groups. Principal components analysis (PCA) shows the degree to 

which we can discriminate between treatment groups using the top principal components before and after 

adjustment. These RUVSeq-adjusted counts were used in conjunction with the edgeR generalised linear 

model. The normalisation of NanoString data was performed by Dr Mark Rogers from the Department of 

Mathematics Engineering, University of Bristol, UK.  

  

 Assessing the nature of the miRNA constructs in conditioned 

media  

 Nanoparticle Tracking Analysis (NTA)  

Total Exosome Isolation Reagent (Thermo Fisher Scientific) was applied in accordance with the 

manufacturer’s instructions to isolate and purify extracellular vesicles from conditioned media obtained 

from the in vitro BeWo barrier. In a 1mL volume of conditioned media, 0.5mL of Total Exosome Isolation 

Reagent was applied to extract extracellular exosomes (2:1 ratio). The conditioned media with the addition 

of the Total Exosome Isolation Reagent was then vortexed to ensure the two solutions were mixed to 

become a homogenous solution and then incubated overnight (12hrs) at 4oC. After an overnight incubation 

period, the samples were then centrifuged (30,000rpm, 1hr, 4oC). The supernatant was disposed of and the 

remaining pellet, containing the extracellular vesicles, was re-suspended in 100uL PBS. Samples were 

measured using the NanoSight NS500 NTA instrument (Malvern Instruments, UK). Before the analysis of 

samples was performed the NTA instrument was calibrated using reference silica and polystyrene 

nanospheres. After calibration, readings were performed using ten consecutive 30-second recordings for 

each sample and then processed using the NTA 2.3 software (NanoSight Ltd.).  Measurements of the 

exosome concentrations were assessed against a control baseline reading obtained from unconditioned 

culture media.   

  Exosome purification   

Isolation and purification of exosomes from cell culture media obtained from the basolateral domain of the 

in vitro placental barrier model were performed using Total Exosome Isolation in accordance with the 

manufacturer’s guidelines (from cell culture media) (Invitrogen, Life Technologies, Thermo Fisher 

Scientific).   
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The BeWo cells were cultured in DMEM which was made up with exosome-depleted FBS since FBS is 

enriched with exosomes and would contaminate the cell-derived exosomes.  Exosome-depleted FBS was 

obtained by performing 12-hour ultracentrifugation of FBS at 30,000rpm, 4oC. The pellet containing 

exosomes was discarded, while the supernatant was collected and filtered (0.1Um, Millipore). The FBS 

was then used at a 10% concentration to make up the BeWo cell culture media (Section 2.1.1).   

The BeWo cell was grown on transmembrane inserts in a 12 well cell culture plate for seven days before 

media in the basolateral domain of the placental barrier, representative of the foetal domain, were 

harvested and placed into sterile 1.5mL Eppendorf tubes (Figure 2-1). The harvested media was 

centrifuged at 2000xg for 5mins to remove cell debris and the supernatant was placed into new 1.5mL 

Eppendorf tubes. A total volume of 1mL of supernatant was obtained, and a total volume of 500ul of the 

Total Exosome Isolation reagent was added to the supernatant and vortexed to ensure a homogenous 

solution was produced.  The samples were then incubated for 12 hours at 4oC. After incubation, the 

samples were then centrifuged at 10,000xg for a period of 60mins at 4oC. The supernatant was aspirated 

away, and the pellet containing the exosomes remained at the base of the Eppendorf tube. Since the pellet 

is invisible to the naked eye, a small volume of supernatant remained at the base of the Eppendorf to 

ensure that the pellet was not also aspirated away with the supernatant. The pellet was then resuspended in 

100uL of 1XPBS. For long-term storage, the resuspended pellet was stored at -80oC conditions.  

  

2.8 Assessing the implication of conditioned media exposed to 

foetal cells  

 Maintenance of Primary Human Fibroblast bystander cell line  
Primary BJ fibroblast cells were obtained commercially from LGC Promochem, Teddington, UK. The cell 

line was established from foreskin obtained from neonates that exhibited a normal diploid karyotype at 

populations doubling below 61. The cells were not used past 12 population doublings in order to avoid 

age-induced senescence phenotypes and the development of karyotypic abnormalities that can 

significantly alter the characteristics and behaviour of the cell lines.   

The cells were maintained in sterile, ventilated non-coated tissue T-75 culture flasks (Corning) as 

monolayer cultures, maintained in humidified 370C incubators with 5% CO2. The cell culture medium was 

discarded and replaced with fresh culture media every 2-3 days, depending on the rate of cell proliferation. 

The cells were passaged at a ratio of 1: 5 upon reaching 80% confluence using a warmed 0.25% 

Trypsin/0.02% EDTA solution (Sigma- Aldrich) for a period of 2mins at 370C. The fibroblast cell culture 

medium was removed from the T-75 flask (Corning), and the cells washed once in warmed sterile PBS. 

5mL of warmed 0.25% trypsin. EDTA solution (Sigma Aldrich) was applied to the flask and placed into 

the humidified incubator (37oC) for 2 mins. The dissociated cell suspension was then diluted with 10mL of 

fresh cell culture medium. The cell culture suspension was then collected and transferred into a 15mL 
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falcon tube (Elkay Laboratory Products) and centrifuged at 1200rpm for 5 mins. The supernatant was 

aspirated and discarded, and the cell pellet was re-suspended in 10mL of fresh cell culture medium. The 

concentration of the cells in the cell suspension was obtained using the Trypan blue exclusion assay to 

assess the cell viability and to obtain the correct seeding density. BJ Fibroblast cells were seeded at a 

density of 5 x 104 into each of 24 wells of an experimental culture plate (Corning), in a total volume of 

0.75 mL of complete fibroblast culture medium for a period of 24 hours at 37°C, 5% CO2 to allow for cell 

adherence to the tissue culture plastic.   

 Exposure of Primary Human Fibroblast bystander cell line  
After seeding of the fibroblast cells into 24 well plates and being left for 24 hours to proliferate and settle, 

the bystander cells were then exposed to conditioned media collected from different exposures to the 

different placental barrier models. Fibroblast culture media was removed from each well using a 1mL 

Pasteur pipette, and 0.75mL of the conditioned media was used to replenish the fibroblast cells and to act 

as exposure for 24 hours, where they were maintained at 37°C, 21% O2, 5% CO2 (Figure 2-7).  
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Figure 2-7 Schematic representation of the procedure for the Alkaline Comet Assay to detect DNA damage in bystander cells  

A schematic representation of an exposure of ‘conditioned’ media obtained from different models of the feto-maternal interface to the secondary ‘bystander’ neonatal BJ fibroblast cell 

cultures. Fibroblast cells were seeded at 5 x 104 cells/well in a 24 well cell culture plate (Corning) and cultured in Fibroblast media for a period of 24 hours to allow the cells to proliferate 

and adhere. After 24 hours fibroblast media was discarded and replaced with ‘conditioned’ media for an additional 24 hours before the fibroblast cells were harvested.  
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 Analysis of cytotoxic damage to bystander cells-The Alkaline 

Comet Assay  

The alkaline comet assay (single gel electrophoresis assay) procedure has been adapted from the work 

conducted by Singh et al., (1988). The alkaline comet assay protocol can be divided into three phases.   

 Preparation of the microscope slides with agarose embedded cells  

Superfrost 20mm x 50mm microscope slides (Thermo Scientific) were manually scratched around the 

perimeter of the slide using a diamond-tipped pen to enhance the adherence of the first layer of agarose gel 

to the surface of the slide. After ensuring that a deep enough groove was etched around the perimeter of 

the slides, the slides were then washed in 100% ethanol to remove glass fragments from the scratching and 

any surface debris and contaminants. Three separate agarose gels were prepared for each of the three 

separate layers which make up the alkaline comet assay slide (Table 4)   

Table 4 Method for producing three types of agarose gels required for the Alkaline Comet Assay  

  Type of Agarose Gel  Mass of Agarose Gel (g)  The volume of  

Phosphate Buffer Saline  

Solution (mL)  

1st Agarose Gel 

layer  

(1%) Normal Melting  

Point  

0.4  40  

2nd Agarose Gel 

layer  

(0.5%) Normal  

Melting Point  

0.2  40  

3rd Agarose Gel 

layer  

(0.8%) Low Melting  

Point  

0.32  40  

   

  

In order to apply the first layer of agarose gel to the scratched microscope slide, it was first heated to form 

molten 1% Normal Melting Point (NMP) Agarose and using a plastic Pasteur was applied to the 

microscope slide and left to air dry overnight until the agarose had formed a solidified, smooth layer 

across the microscope slide. Once thoroughly dried the second, 0.5% NMP agarose gel was applied to the 

surface of the slide. Using a pipette, 200uL of molten 0.5% NMP agarose was pipetted down the side of 

the slide and to ensure equal distribution across the slide a 22x50mm glass coverslip was used to spread 

the gel across the surface. The gel was then left to dry for approximately 15 mins at room temperature to 

ensure the gel had solidified. After which, the coverslip was removed, leaving the solid agarose in a 

smooth, consistent layer.  After the cell harvesting phase, the pelleted cells which were stored at 4°C were 

suspended in 50uL of the warmed (37°C) 0.8% Low Melting Point agarose gel (LMP) (Sigma Aldrich).  

The cell suspension was pipetted down the centre of the slide, and a 22x50mm glass coverslip was gently 

laid on top of the cell suspension to allow the cells to spread out across the surface of the microscope slide 

evenly. This layer was left for approximately 15 mins to allow time for the gel to set before the coverslip 
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was removed. After the cell embedded agarose layer had the final layer of warmed (37°C) 200µL 0.8%, 

LMP agarose could be applied. The LMP agarose was pipetted centrally onto the microscope slide and 

using a 22x50mm glass coverslip; the agarose was spread evenly across the surface to ensure that the cell 

suspension embedded layer was completely submerged. The coverslip was left for approximately 15 mins 

to set before being removed (Figure 2-8) 



 

 

~Chapter 2~   

 

Figure 2-8 Schematic illustration of the preparation for performing the Alkaline Comet Assay  

A schematic representation of an exposure of ‘conditioned’ media obtained from different models of the feto-maternal interface to the secondary ‘bystander’ neonatal BJ fibroblast cell 

cultures. Fibroblast cells were seeded at 5 x104 cells/well in a 24 well cell culture plate (Corning) and cultured in fibroblast media for a period of 24 hours to allow the cells to proliferate and 

adhere. After 24 hours fibroblast media was discarded and replaced with ‘conditioned’ media for an additional 24 hours before the fibroblast cells were harvested in suspension. Superfrost 

20mm x 50mm microscope slides (Thermo Scientific) were manually scratched around the perimeter of the slide using a diamond tipped pen to enhance the adherence of agarose layers to 

the slide. Three layers comprised of varying concentrations of agarose were applied to the scratched microscope slides using 2mL Pasteur Pipette and left to dry before the next layer was 

applied. Within the final 0.8% Low melting point agarose layer the harvested ‘conditioned’ fibroblast cells were resuspended and embedded, and a glass coverslip was applied to evenly 

spread the cell suspension across the microscope slide.   
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 Cell harvesting procedure   

BJ human fibroblast cells were harvested after exposure for 24 hours to conditioned media obtained from 

placental barrier models to different DNA damaging insults and miRNA removal treatment strategies. 

Using 1mL plastic Pasteur the media was removed and discarded into Virkon from each well and 

replenished with five drops of 0.25% Trypsin-EDTA solution and incubated at (37°C; 5% CO2, 21% O2) 

for 2 mins. After which, 2mL of fibroblast culture media was added to each well to dilute the effects of the 

trypsin. Using a plastic Pasteur across the surface of the cells, the cell suspension was vigorously pipetted 

up and down to agitate the cells and to ensure their detachment from the plastic base of the wells. The cell 

suspension was then transferred into a 15mL falcon tube (Elkay laboratory products) making sure that all 

of the cell suspension was collected to warrant maximal cell retention. The cell suspension was 

centrifuged at 1200rpm at 4°C for 5 mins. The remainder of the supernatant and the pellet itself was 

retained in the falcon tube and placed into a refrigerator at 4°C to slow down any cellular activity while the 

microscope slides were being prepared.   

  Cell lysis procedure   

In order to remove cellular proteins and lyse the agarose embedded cell suspension, a lysis solution (2.5 M  

NaCl, 100 mM Na EDTA, 10 mM Tris, NaOH to pH 10.0, and 1% Triton X-100) was poured into Coplin 

jars and the microscope slides, containing the cell suspension, were submerged into lysis solution and 

stored in 4°C conditions for 24 hours.   

The final lysis solution was prepared in glass Coplin jars with each Coplin jar being designed to retain 

eight microscope slides. Using a stripette 36.6mL of cell lysis solution was placed into an individual 

Coplin jar. Using a 10mL stripette, 4mL of DMSO (Sigma Aldrich) was added to the initial lysis solution 

plus the addition of 400µL of Triton-X-100, however due to the viscous consistency of Triton-X-100 

(Sigma Aldrich) it was essential to ensure that the ends of the pipette tips were snipped to widen the 

diameter of the tip to permit the correct volume of the substance to be taken up. Once all the solutions 

were added to the Coplin jars, a plastic Pasteur was used to vigorously pipette up and down to ensure that 

the lysis solution was well mixed. The Coplin jars were then stored at 4°C until the microscope slides were 

required for the electrophoresis procedure.  

 Electrophoresis  

The electrophoresis buffer solution was made up in a 1L conical flask from three ingredients: distilled 

water, NaOH and EDTA. Using a 1L measuring cylinder 965mL of cold distilled water was poured into a 

2L glass conical flask. A 25mL stripette was used to measure out 30mL Sodium hydroxide (NaOH) taken 

from a stock solution made from 40g of NaOH dissolved in 100mL of distilled water.  Using a 10mL 

stripette 5mL EDTA taken from a stock solution, made from 3.73g of EDTA dissolved in 50mL of 

distilled water, was added to the 2L conical flask. The electrophoresis buffer solution had a basicity level 
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of pH13, which was measured using a calibrated pH meter. The electrophoresis buffer and the 

electrophoresis tank were kept in the cold room at a constant 4°C. The remainder of the procedure took 

place in the cold room to ensure that all equipment and reagents were kept at a constant 4°C.  

In dark conditions, the final lysis solution from the Coplin jars containing the microscope slides was 

poured away and replaced with the electrophoresis buffer solution. The Coplin jars were then stored in the 

cold room in dark conditions for 25 mins. After 25 mins, the microscope slides submerged in the 

electrophoresis buffer solution were removed and placed into the electrophoresis tank in the same 

alignment to ensure that DNA fragments would migrate to the cathode electrode. The electrophoresis 

buffer solution was poured into the two terminal troughs until all slides were covered. The electrophoresis 

tank was then set at 30V at 300mA for 30 mins. After 30 mins, the slides were removed from the tank and 

placed onto a tray. A solution of 10µg/mL ethidium bromide was made up by taking 20µL of stock 

ethidium bromide (stored at 4°C) and adding 980µL of cold distilled water to an Eppendorf tube. As 

ethidium bromide is light-sensitive, the Eppendorf tube was wrapped in tin foil. From the working solution 

50µL of the ethidium bromide solution was pipetted in a straight line down the centre of the microscope 

slide and a 22x50mm glass coverslip was placed on top. The tray containing the microscope slides was 

then covered in tin foil and stored in a lightproof box containing distilled water at 4 °C. All steps after lysis 

were carried out under yellow light in the cold room to prevent any induction of additional DNA damage. 

 Detecting and measuring levels of DNA damage to bystander cells  

The slides were examined at 400X magnification using a fluorescence microscope (Olympus BX-50, UK) 

with an excitation filter of 515–560nm and barrier filter of 590 nm. They were scored using the automated 

image analysis software (COMET III, from Perceptive Instruments, Suffolk, UK). The DNA damage was 

evaluated by using the parameter of the tail moment, which is defined as the product of the comet length 

and the DNA intensity in the tail of the comet (Figure 2-9).  

 

Figure 2-9 Visual image of a Comet assay  

The Alkaline Comet assay to assess the level of DNA damage to single cells. The level of damage is quantified using the 

comet tail length value. (Image sourced from; http://www.cellbiolabs.com).  

  

(Comet Tail Moment= Tail Length x %DNA intensity)/100)  
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2.9 Statistical Analysis  
Statistical analysis was performed following SPSS guidelines (https://statistics.laerd.com/) and in 

accordance to reviewed statistical approaches advised for biomedical sciences 316. Statistical analysis was 

performed using IBM SPSS statistics 21 software. Data were first assessed using the Shapiro-Wilk and 

Levene’s Test for examining the normality and homogeneity of variance, respectively. For normally 

distributed data, a Student’s t-tests were applied for comparing the mean differences between two 

experimental parameters. One-way analysis of variance (ANOVA) was used for normally distributed data 

where three or more experimental groups means were compared.  If significance was observed (p<0.05), a 

post hoc Bonferroni test was used to compare each treatment groups to one another in all possible 

combinations. If two or more independent variables were being assessed against three or more dependent 

variables, a two-way ANOVA test was performed. If significance was observed (p <0.05), a post hoc 

Bonferroni test was used to compare each treatment groups to one another in all possible combinations.  

If the data did not comply to the assumption of homogeneity of variance, Student’s t-tests and one-way 

ANOVA were performed with Welch correction, and a post hoc Games-Howell test was performed if a 

level of significance was observed (p<0.05). In normally distributed datasets, the graphs display the means 

with error bars representative of the standard deviation (SD).  

In some cases, where the data were not normally distributed and were unable to be corrected by log 

transformation, a non-parametric test was performed. When comparing two experimental parameters, a 

Mann-Whitney U test was performed displaying medians with error bars displaying IQR. When three or 

more experimental parameters were compared a Kruskal-Wallis test was performed displaying the 

medians and IQR error bars. If significance was observed (p<0.05) a post hoc Dunn’s test was used to 

compare each treatment group against one another in all possible combinations.  

Graphs were created using GraphPad Prism 6 and Microsoft Excel 2013. Significance was measured 

against control unless otherwise stated (*p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001).  
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Chapter 3.  Establishing the presence of 

miRNA secretions from the placental 

barrier upon an exposure of gestational 

hypoxia  

  

Introduction   
The growing prevalence rates of individuals suffering from neurological disorders, is both an emergent 

health and socioeconomic issue. In the EU alone, 83 million individuals are subject to neuropsychiatric 

disorders, making it the third leading cause of disability-adjusted life years (DALYS) in Europe (WHO. 

2016). It has been revealed 3% of the population are diagnosed with severe neuropsychiatric disorders 

including; schizophrenia, bi-polar disorder and autism.317 Neuropsychological disorders are attributed to 

diseases that originate from impaired cerebral function which greatly impairs an individual's cognitive 

function and behaviour 318.Approximately half of all mental health disorders are believed to start before 

the age of 14 which has led to a significant increase in investment in ‘Early intervention psychosis’ by 

1,274% since 2002 (WHO 2016).   

Current research aims to gain a comprehensive understanding of the aetiology of these prevalent 

neurological disorders, to discover a therapeutic treatment to alleviate the emerging number of individuals 

affected. Previous studies have revealed that an individual’s genetic predisposition to specific risk- 

associated alleles are inept as predictive biomarkers for disease-onset alone, and propose that the 

amalgamation of genetics, epigenetic and environmental factors are responsible for the aetiology of such 

pathologies 319,320(section 1.3).  

The Barker hypothesis model addresses the functional interplay between genes and environmental 

determinants in the development and progression of disease states. 321 The theory proposes that not only is 

the genetic blueprint of an individual essential for determining risk-factors for disease, but equally 

environmental factors play a key role in determining foetal programming. Barker’s paradigm of ‘foetal 

programming’ has revolutionised our understanding in the manifestation of prevalent pathologies, by 

establishing both the genetic predisposition of the conceptus, and its intrauterine environment, as being the 

prime determinants in the aetiology of diseases in adulthood. 16 Barker’s theory is based on the premise 

that during critical, vulnerable stages of embryonic development; typically during the first trimester when 

there is the highest degree of cellular division, the foetus is most susceptible to intrauterine environmental 
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exposures 322 which can elicit a response both structurally and functionally in cells, tissues and organ 

systems.4,323 The level of severity the exposure has upon the developing foetus depends upon the duration 

and timing of the insult. Aberrant functional and metabolic activity of developing cells can have long-

term, adverse influences, which can persist into adulthood. 323   

Research has explored the implications of environmental insults during gestation upon foetal programming 

including; oxidative stress14,122,324–326, maternal stress327,328, maternal infection329,330 and xenobiotic 

exposures.10,11,331 There is a growing wealth of research which utilises the theory proposed by Maynard et 

al. (2001), which postulates that neurological disorders which are seen in later stages of development in 

adulthood, may be the result of a trigger which occurred at the earliest stages of an individual’s 

development in utero. 322,332Although the etiopathogenetic nature of neuropsychiatric disorders in 

uncertain, in the field of neurology there is a shared interest in the role oxidative stress plays in the onset 

of such pathologies.   

Oxidative stress has been proposed as a potential candidate for the onset of several neurological disease 

states due to the brain’s known vulnerability to oxygen.333 The oxygen paradox states that although oxygen 

is invaluable for life in aerobic species, if there is an influx of oxygen which surpasses the oxygen-demand 

threshold, then this can alter redox homeostasis.124The oxygen balance is finely tuned, keeping oxygen and 

it’s free-radical by-products in equilibrium. However, if there are perturbations to this equilibrium then 

this can have detrimental effects at a molecular and cellular level, as ROS are known to play an integral 

role in cell signalling processes, mitosis and immune responses. The unstable, reactive nature of free-

radicals makes them potentially harmful to crucial cellular proteins, nucleic acids and lipids, thus giving 

them the potential to cause cell bilayer lesions, necrosis and DNA damage. 334  Oxidative stress arises 

when there is an imbalance in the redox equilibrium, with an overproduction of free-radicals or due to a 

deficiency in the body’s natural antioxidant defence mechanisms.124,334  

Furthermore, the human brain is particularly sensitive to the effects of oxidative stress due to its high 

oxygen demands which makes it highly susceptible to the production of free-radical by-products 335. High 

levels of free-radicals within the brain are unable to be eradicated completely due to a limited range of 

antioxidant defences localised in the brain334 Moreover, the brain is constructed with a lipid-rich 

constitution that is prone to being utilised as substrates for oxidation, which further elevates free-radical 

production. In addition, the brain is enriched with iron and copper substrates that have redox-catalytic 

properties making the brain an even greater target for free-radical formation. 336 The brain is highly 

susceptible to secondary effects via the inflammatory response and oxidative cellular injury (necrosis) via 

neurotoxic glutamate release. 334Recent publications by Curtis et al. (2014) have shown that a maternal 

exposure of gestational hypoxia during the first trimester of pregnancy can have long-lasting, permanent 

implications upon the development and morphology of neurons and astrocytes in both in vitro and primary 

cell culture models. 152  

Despite a growing wealth of publications which supports the theory that intrauterine stress to the 

developing foetus, in the form of a hypoxic insult, plays a key role in malformations during foetal 
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development, the mechanism behind the translational implications remains elusive. An array of 

postulations regarding the mechanism have been suggested, with one such mechanism reviewing the 

importance of a genetic and epigenetic link between foetal development and the onset of pathology in 

adulthood. 337Coinciding with this theory, in the past two decades, the discovery of microRNAs; small 

RNA structures which are involved in post-transcriptional regulation, are believed to play an intrinsic role 

in the field of epigenetics, through the tight transcriptional regulation of target mRNA species.338 Current 

literature has associated the involvement of miRNAs as key regulators of cellular processes such as 

differentiation of stem cells, oncogenesis, cell fate, apoptosis, proliferation and angiogenesis. Thus, 

malfunctioning or aberrant expression of miRNAs in a cell can have severe consequences on the 

regulatory and homeostatic mechanisms at a cellular level and have been associated with the onset of 

pathologies including cancer, neurological and endocrine diseases. 238,248,339  

The Foetal Origins of Adult Disease (FOAD) proposes that there is crosstalk between the maternal 

environment and the intrauterine foetal environment during critical stages of early development. The 

placenta, once thought to be a passive inert organ, is an active interface between these two domains and 

can adapt in response to adverse maternal stimuli in order to protect the developing foetus. 340–342 The 

responsive nature of the transient placenta permits adaptation to the maternal in utero conditions via 

alterations in vascularisation, proliferation of trophoblast cells, transporter expression and epigenetic 

regulation of gene expression. 15Perturbations to the maternal environment during critical stages of 

development may induce unfavourable changes to placental function which will inevitably have 

translatable repercussions upon foetal programming. 340 An exposure to the mother may result in adverse 

implications upon critical metabolic and homeostatic programming of distinct cells of the conceptus. 

Aberrant modifications at early stages of development can result in atypical development of the offspring 

which manifests itself in adulthood. 15,16  

In the past decade, there has been a wealth of research assessing the presence of circulating RNAs under 

both physiological and pathological conditions. MicroRNAs are  useful biomarkers for disease-states as 

they are relatively stable within the circulation; found either, free-circulating bound to AGO or HDLs or 

shuttled between cells within exosomes.343 MicroRNAs measured within maternal serum are useful 

biomarkers in the detection and diagnosis of pregnancy complications such as pre-eclampsia, IUGR and 

gestational diabetes. 344,345 A recent review by Bounds et al. examined the current literature on miRNA 

regulation in the onset of pre-eclampia.346 Supplementary Table 1 provides an overview of these miRNAs 

attributed to pre-eclampsia cases. Particular emphasis has been given to the role of two key miRNAs, 

miR210 and miR-155, as they have been shown be consistently dysregulated in pre-eclamptic pregnancies. 

A current review by Skalis et al. further identified that miRNAs associated with pre-eclamptic cases were 

found to  target signalling pathway-related genes which are fundamental to placentation including; 

immune system, angiogenesis and trophoblast proliferation and invasion.347 Both pre-eclampsia and IUGR 

overlap in their aetiology and clinical manifestation which makes it difficult to determine specific miRNA 

which are associated with IUGR alone. However, a study by Hromadnikova et al. determined a list of 
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miRNAs which were specifically downregulated in the maternal blood of IUGR cases; miR-17-5p, miR-

146a-5p, miR-221-3p, and miR-574-3p. 348 Furthermore, studies have also shown that miRNAs 

differentially expressed under conditions of hypoxia within trophoblast cells(miR-27a, miR-30d, miR-141, 

miR-200c, miR-424, miR-205 and miR-451, miR-491, miR-517a, miR-518b, miR-518e, and miR-524) 

were overexpressed in IUGR pregnancies. 349Moreover, an in depth review by Guarino et al. assessed 

known miRNA biomarkers for gestational diabetes mellitus and found discordant datasets as a result of 

varied experimental protocols and different types of samples being analysed (serum versus 

plasma)350Supplementary Table 2 provides an overview of miRNAs whose expression was dysregulated in 

cases of gestational diabetes mellitus, collated across different studies.351  

Extracellular miRNAs can also be taken up by various target cells to exert their physiological function, 

thus miRNAs could play an additional regulatory role to influence foetal development, as well as acting as  

biomarkers for disease.200,352 A recent study by Chen et al 2017, discovered that miRNAs released from 

exosomes modulate amyloid precursor proteins (APP) and tau proteins. The miRNAs released by 

exosomes interacted with Toll-like receptors (TLR) initiating inflammation, associated in the onset of  

Alzheimer’s disease.352 These studies concentrated on the miRNA content within the maternal plasma 

focusing on their release from the placenta into the maternal domain. Yet, there is a lack of research which 

has been conducted to address how the miRNAs released towards the foetal domain may influence foetal 

development. The aim of this chapter will be to determine whether miRNAs can be secreted from the 

placental barrier towards the foetal domain and elicit an effect.  

3.1 Hypothesis  
We hypothesise that the maternal interface under a stressor of intrauterine hypoxia will alter the 

functionality of the placenta and cause a release of signalling molecules in the form of small non-coding 

RNA molecules (microRNAs) to the foetal domain to safeguard the developing foetus from alterations in 

oxygen tensions. We predict that these miRNAs will be secreted from the placenta towards the foetal 

domain via membrane-bound vesicles (exosomes) to protect the miRNAs from degradation via RNases.   

3.2 Aims & Objectives  
In the face of a body of research which has determined the association between an exposure of low levels 

of oxygen and oxidative stress during gestation with the development of pathological states in offspring, 

there is still a lack of knowledge surrounding the potential mechanism for the onset of disease. 

Furthermore, there is a growing body of work that has highlighted the role microRNAs play, acting as 

important biomarkers in the maternal circulation under pathological settings during gestation.  The 

experiments conducted in this chapter were devised to address, as a proof of principle, the hypothesis that 

microRNAs may act as signalling molecules between the mother and the developing foetus during the 

onset of exposure of oxidative stress. There is currently a gap in our knowledge addressing whether 

microRNAs are released upon exposure from the placenta and enter the foetal circulation to target foetal 

genes during susceptible periods of development. Hence, the experiments in this chapter explore whether 
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miRNAs are indeed released from the placental barrier into the foetal domain and to address a potential 

mechanism as to how this may occur.   

3.3 Experimental set-up  
Three comparable models of the feto-maternal interface were used to examine the implications of exposure 

of gestational hypoxia on the secretions of both small non-coding RNA and miRNAs released from the 

barrier into the foetal domain. An in vitro model consisting of BeWo choriocarcinoma cells were cultured 

to produce a bilayered placental barrier, which is a method which has been optimised previously.140 An 

alternative model using primary placental tissue was utilised to provide a more representative model of the 

placental barrier; ex vivo model using first-trimester human explants containing the chorionic villi tissue 

and in vivo rodent, placental explants were cultured and exposed to different levels of gestational hypoxia 

(section 2.3). The placental barriers were exposed to a set of oxygen tensions which were selected to 

mimic clinical settings for obstetric complications including pre-eclampsia and IUGR.  

Across all models, 21% O2 was classified as normoxia and was used as the control. Despite this oxygen 

tension representing atmospheric levels, there is contention over whether atmospheric levels can be 

classified as a control parameter for the ex vivo and in vivo model since it is well established that during 

the first trimester the placenta develops at low oxygen tensions. For the in vitro model an insult of chronic 

hypoxia was characterised by the barrier being cultured for seven days at 2% O2. An additional parameter 

of hypoxia-reperfusion, representative of pre-eclamptic cases, was distinguished with the BeWo cells 

being cultured for six days at 2% O2 and then exposed to a 12% O2 for 24 hours. The same oxygen tensions 

were utilised in the ex vivo human placental explants. In the in vivo model, different oxygen tensions were 

adopted to mimic a hypoxic and hypoxia-reperfusion insult (Figure 2-3).  

The potential therapeutic effects of PGA nanoparticles loaded with an antioxidant drug, MitoQ (0.5µM) 

was also assessed in the in vitro and ex vivo model, while 125µM of this drug was used in the in vivo 

rodent model.  

After 24-hour exposure to a change in oxygen tension with/without MitoQ, conditioned media was 

collected to assess the secretions released from the models of the placental barrier to examine the potential 

alterations in miRNA and small non-coding RNAs.   

 Assessment of secretions in conditioned media  
Once a working model for exposure was established, assessment to determine whether microRNAs were 

released from the placental barrier upon an exposure of hypoxia was investigated and compared across all 

three models of the placental barrier. The conditioned media containing the secretions from the placental 

barrier were collected, and the small RNA was concentrated using a miRNeasy kit. The samples were then 

analysed using the Agilent Small RNA Bioanalyser to measure the overall concentration of small 

noncoding RNA molecules, in the size range between 6nt-150nt, and miRNA (21-25nt) concentrations 

within the culture media (section 2.7.2)  
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Both the small ncRNA and miRNA concentrations obtained from the conditioned media from the first 

trimester explants were normalised to their associated control explant since each biological replicate was 

acquired from different placenta from different volunteers at different timepoints. Hence, the samples were 

susceptible to large variability amongst readings due to gestational age and health of the placenta.   

 Viability/apoptotic assay after exposure of gestational hypoxia  
A viability assessment of the in vitro model of the barrier was performed to assess whether the secretions 

into the conditioned media were actively released from the placental barrier in response to an insult of 

gestational hypoxia or whether it was the result of passive release within apoptotic bodies.   

It was critical to discern whether alterations in cell viability were the product of the exposures to varying 

oxygen tensions and treatments or due to the cells being overly confluent by the end of the experimental 

period (7 days). A preliminary optimisation study was performed to examine a range of seeding densities 

based on and around the seeding density (1.12 × 105 cells/well). This seeding density was established 

previously in the laboratory in initial studies culturing confluent bi-layered barriers of the b30 BeWo cell 

line on transmembrane inserts in 12 well cell culture plates.141  

The cells were seeded in 12-well cell culture plates for seven days being fed with BeWo cell culture media 

every 2nd, 5th and 6th day. Cells were harvested using methods described in Section 2.3.1.2.  

The trypsinised cells were diluted with BeWo cell culture media. A 1000uL pipette tip was used to harvest 

the cells by pipetting vigorously up and down to allow the cells to detach and enter the cell suspension. 

The cell suspension was collected and transferred into a 1.5mL Microcentrifuge tube and centrifuged at 

1200rpm for 5 mins at RT to pellet the cells. The supernatant was discarded, and the pellet was 

resuspended in 500uL of BeWo culture media.   

To simplify the experiment, the cells were grown in conditions of normoxia (21% O2), with the additional 

parameter of an antioxidant drug-loaded nanoparticle exposure (MitoQ) (0.5µM). It was important to test 

if the nanoparticle-loaded drug would influence how the cells bound to the membrane and how easily it 

was for them to detach from the membrane and whether this had implications on the cell viability.   

 Assessing the nature of the secreted miRNAs  
A NanoSight tracking assay was used to explore the concentration of exosomes(30-100nm) and 

microvesicles (50-1000nm) within the conditioned media secreted from the in vitro placental barrier to 

determine if there was a correlation of the concentration of miRNAs secreted from the placental barrier 

with an increased concentration of exosomes (section 2.7.4.1).  NanoSight instruments have a limited 

dynamic range for particle concentration measurements between 106-109 particles/mL (E6  

Particles/mL). The in vitro model was used as it provides a polarised model in which there is a distinction 

between the maternal and foetal domain, whereas the ex vivo and in vivo model was unable to determine 

the directionality of the secretions within the conditioned media (Figure 3-1).   
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Figure 0-1  Schematic representation of exosome isolation technique from conditioned media 

The BeWo cell were grown on transmembrane inserts in a 12 well cell culture plate for a period of 7 days before media in the basolateral domain of the placental barrier, 

representative of the foetal domain, was harvested and placed into sterile 1.5mL eppendorf tubes. The harvested media was centrifuged at 2000xg for 5mins to remove 

cell debris and the supernatant was placed into new 1.5mL eppendorf tubes. A total volume of 1mL of supernatant was obtained and a total volume of 500µl of the Total 

Exosome Isolation reagent (Life Technologies) was added to the supernatant and vortexed to ensure a homogenous solution was produced.  The samples were then 

incubated for a period of 12 hours at 4oC. After incubation, the samples were then centrifuged at 10,000xg for a period of 60mins at 4oC. The supernatant was aspirated 

away and the pellet containing the exosomes remained at the base of the eppendorf tube. Since the pellet is invisible to the naked eye, a small volume of supernatant 

remained at the base of the eppendorf to ensure that the pellet was not also aspirated away with the supernatant. The pellet was then resuspended in 100µL of 1XPBS. 

For long-term storage, the resuspended pellet was stored at -80oC conditions. 
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Figure 3-2 Overview of NanoSight data obtained from the in vitro model from conditioned media treated with 

Exosome Isolation Reagent  

Overview of data obtained from the conditioned media obtained below the in vitro model after treatment with Exosome 

Isolation Reagent (Life Technologies) resuspended in 100uL PBS.  Analysis of the mean concentration of extracellular 

vesicles (exosomes) in the size range of 30-100nm, indicative of exosomes (E6 particle/mL) from 10 reads across a sample 

from each experimental parameter. Results obtained from Nanoparticle Tracking Analysis- NanoSite NS500 in the 

collaboration with the University of Oxford. (A). Unconditioned media ‘exosome-free’ culture media (B). 21% conditioned 

media, (C) 2% conditioned media, (D). 2-12% conditioned media.  
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 Assessing markers of hypoxia   
Western Blot was performed to identify markers of hypoxia and hypoxia-induced-signalling molecules 

elicited by b30 BeWo cell lines in response to changes in oxygen tension.  

The b30 BeWo cell lines were grown between passages 28-35 in T75 Culture flasks (Corning) for seven 

days. On the seventh day, the cells were exposed to experimental treatments for a period of 24 hours. The 

treatment groups were as follows:  

1. 21% (Normoxia)  

2. 21%+PGA nanoparticles loaded with MitoQ (Normoxia + antioxidant drug bound to PGA 

nanoparticles (0.5µM))  

3. 2% (Chronic Hypoxia)  

4. 2% + PGA nanoparticles loaded with MitoQ (Hypoxia + antioxidant drug bound to PGA 

nanoparticles (0.5µM))  

5. 2-12% (Hypoxia-Reperfusion)  

6. 2-12%+ PGA nanoparticles loaded with MitoQ (Hypoxia+ antioxidant drug bound to PGA 

nanoparticles (0.5µM))  

After an exposure of 24-hours the cells were harvested, and cell lysates obtained for performing western 

blots (section 2.6.1)  

The proteins of interest in this experiment included: 

• Hypoxia-Inducible Factor (HIF1α)- a transcription factor that is upregulated under conditions of 

low levels of oxygen. This protein has a short half-life and is present during acute periods of 

hypoxia.   

• Hypoxia-Inducible Factor (HIF2α)- a transcription factor that is upregulated under conditions of 

low levels of oxygen. This protein is found to be prevalent in long term chronic hypoxia, and has a 

longer half-life compared with HIF1α.  

• Carbonic Anhydrase 9 (CA9)- A downstream target of HIF1α, which is present under conditions 

of hypoxia.   

• Cleaved poly ADP-ribose polymerase (c-PARP) is a biomarker for cells which are undergoing 

programmed cell death (apoptosis).   
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Table 5. Primary & Secondary antibodies for western blotting  

Antibody  Species  Species  dilution  company  cat number  

Protein Ladder Marker  Protein 

marker  
n/a  25 uL  Bio-Rad  161-0375  

Loading Control  β-actin  Mouse  1:1000  Sigma  A5316  

 

HIF1α  Mouse  1:1000  BD  610958  

HIF2α  Rabbit  1:1000  Cell 

Signalling  
7096  

Ca-9  Rabbit  1:5000  Cell 

Signalling  
5649  

c-PARP  Rabbit  1:5000  Sigma  17453  

 

Anti- 

Rabbit  

Goat  1:1000  Abcam  ab97051  

Anti-  

Mouse  

Goat  1:1000  Abcam  Ab6789  
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3.5 Results  

 Detection of miRNAs in the conditioned media obtained from 

the feto-maternal interface  

In accordance with the hypothesis and the current literature, we propose that under a state of chronic hypoxia 

(2% O2) and/or hypoxia reperfusion (2-12% O2) there will be a change in the concentration of small ncRNAs, 

specifically miRNAs, released from the placental barrier (section 1.10.1). We predict that if miRNAs are 

acting as signalling molecules, there will be an increase in miRNAs released to signal to the surrounding cells 

and tissue in response to cells being under a state of stress. To explore this hypothesis, experiments were 

designed using the three different models of the feto-maternal interface to examine the implications of a 

change in oxygen tensions to mimic gestational hypoxia during early stages of pregnancy and to assess 

whether this had implications on the release of small ncRNA and more specifically miRNAs from the barrier 

in response to an insult of hypoxia and hypoxia-reperfusion. Conditioned media was obtained from the barrier 

models (section 3.3), and measurements of both the small ncRNA (6-150nt) and miRNA(21-25nt) content 

were obtained using the Agilent Small RNA bioanalyzer (section 2.7.2). 

   In vitro model findings  

A.  B.   

 

Figure 3-3 Small Bioanlyser results obtained from the in vitro BeWo model of the feto-maternal interface 

(A) represents the mean concentration (pg/ul) of small ncRNA molecules present in the conditioned media obtained below 

the BeWo bi-layered barrier and ex vivo first trimester placental explants upon a 24-hour exposure to; hypoxia (2% O2) & 

hypoxia-reperfusion (2-12% O2) in biological replicates (n=3) ±SD. A One-Way ANOVA statistical test was performed, 

and a Bonferroni post hoc test was used to perform multiple comparison tests across the different treatment parameters to 

identify levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001). The data was examined using the Shapiro-Wilk and 

Levene’s Test for examining the normality and homogeneity of variance, respectively. (B) Represents the mean 

concentration (pg/ul) of miRNA molecules present in the conditioned media obtained below the BeWo placental barrier 

upon a 24-hour exposure to; hypoxia (2% O2), & hypoxia-reperfusion (2-12% O2) in biological replicates (n=3) ±SD. A 

One-Way ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple comparison 

tests across the different treatment parameters to identify levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001).   
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Figure 3-3A revealed that there was a significant difference in the concentration of small ncRNAs released 

from the BeWo placental barrier in response to different oxygen tension exposures; One-Way ANOVA 

test (F (2,6) =13.9, p=0.0056). A Bonferroni post hoc test revealed a reduced (-0.5-fold change) between 

the concentration of small ncRNAs released under conditions of normoxia compared to chronic hypoxia 

conditions (p=0.006) (Supplementary Table 3). Furthermore, there was a significant difference between 

the concentration of small ncRNAs secreted under conditions of hypoxia-reperfusion in comparison to the 

control vehicle by 0.3-fold (p=0.042). There was no significant difference between the two different 

oxygen tensions examined,  (2% O2) and (2-12% O2), mimics of chronic hypoxia exposure and hypoxia-

reperfusion, respectively (p=0.392), and only a small increase in the concentration of small ncRNAs 

released from the barrier under conditions of hypoxia-reperfusion compared to chronic hypoxia by (+0.3 

fold), which was found to not be statistically significant.   

 

  

A similar significant trend to the small ncRNA was reflected in the concentration of miRNA molecules 

released into the foetal domain of the placental barrier in the in vitro model, one-way ANOVA (F (2,6) 

=19.1, p=0.0025) (Figure 3-3B). There was a significant decrease in the concentration of miRNAs released 

from the in vitro model by -0.5-fold under conditions of chronic hypoxia (2% O2) compared to the control 

vehicle (p=0.003). In addition, there was also a significant decrease by -0.38-fold in the concentration of 

miRNA molecules secreted from the placental barrier in response to an insult of hypoxia-reperfusion 

compared to the control (p=0.014). No significant difference was identified between the two different 

oxygen tensions examined, (2% O2) and (2-12% O2), mimics of chronic hypoxia exposure and hypoxia 

reperfusion, respectively (p=0.473), however, there was a small increase in the concentration of miRNAs 

released from the barrier under conditions of hypoxia-reperfusion compared to chronic hypoxia by (+0.2 

fold).  The results obtained from the small RNA Bioanalyser imply that changes in oxygen concentrations 

to the in vitro model of the feto-maternal interface is sufficient to cause alterations in the concentration of 

both small ncRNAs and miRNAs released from the barrier and secreted into the foetal domain.   
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Figure 3-4 Small RNA Bioanlyser results representing the proportion of miRNA from the in vitro BeWo 

model of the feto-maternal interface  

Representation of the median proportion (%) of miRNAs represented in the small ncRNA concentration present in the 

conditioned media obtained below the BeWo bi-layered barrier upon a 24-hour exposure to; hypoxia (2% O2) & hypoxia-

reperfusion (2-12% O2) in biological replicates (n=3) ±SD. A one-way ANOVA statistical test was performed, and a 

Bonferroni post hoc test was used to perform multiple comparison tests across the different treatment parameters.  

  

The results in (Figure 3-4) reveal that after performing One-Way ANOVA  statistical analysis, there was no 

significant difference across the treatment parameters in the proportion of miRNAs represented within the 

total level of small ncRNA molecules released from the BeWo in vitro model; One-Way ANOVA  (F (2,6) 

=0.7, p=0.554).   
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 Ex vivo Model of the placental barrier  

  

 A. B.  

 

Figure 3-5 Small RNA Bioanlyser results obtained from the ex vivo model of the feto-maternal interface  

Represents the relative mean concentration (pg/µl) of small ncRNA molecules present in the conditioned media obtained 

within the conditioned media of the first trimester explants upon a 24 hour exposure to; hypoxia(2% O2) and hypoxia 

reperfusion (2-12% O2) in biological replicates (n=3) ±SD. (B) Represents the relative mean concentration (pg/µl) of 

miRNA molecules present in the conditioned media obtained within the conditioned media of the first trimester explants 

upon a 24-hour exposure to; hypoxia (2% O2) & hypoxia-reperfusion (2-12% O2) in biological replicates (n=3) ±SD.   

N.B. Concentration of small ncRNA and miRNAs for each biological replicate was normalised against its respective control 

(21%) explant to minimise a confounding variable associated with the tissue being obtained from different biological 

samples.  

The raw readings from the small RNA bioanalyzer for both small ncRNA and miRNA were normalised to 

their associated control placental explants at 21% O2 to eliminate significant discrepancies, attributed to 

variability amongst human tissue samples that may confound measurements in the concentration of 

molecules secreted in response to gestational hypoxia, and to provide a ‘control’ in which treatment 

groups could be measured against (Supplementary Table 4). Figure 3-5A/B revealed that there were no 

significant differences across treatment groups in both small ncRNA molecules and miRNAs readings.  
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Figure 3-6 Small RNA Bioanlyser results representing the relative proportion of miRNA obtained from the ex 

vivo first trimester placental explants to model the feto-maternal interface  

Representation of relative proportion of miRNAs represented in the small ncRNA concentration present in the conditioned 

media acquired from the ex vivo first trimester placental explants upon a 24 hour exposure to; hypoxia (2% O2) & hypoxia 

reperfusion (2-12% O2) in biological replicates (n=3) ±SD.   

Figure 3-6. displays the results obtained after the data from the small RNA Bioanalyser had been 

normalised to show the proportion of miRNAs represented within the total small ncRNA concentration 

released from the first trimester placental explants after exposure to gestational hypoxia. The collated data 

suggests consistency across the treatment parameters in the proportion of miRNAs represented in the total 

of small ncRNA molecules secreted under the varying exposures. The findings reveal that the highest 

proportion of miRNAs are found in the treatment group where the explants had been exposed to hypoxia 

reperfusion (2-12% O2) with an increased miRNA ratio (+0.3) compared to the control. Whereas, an 

exposure of chronic hypoxia (2% O2) resulted in a modest increase in the proportion of miRNAs (+0.02) in 

comparison to the control vehicle.  
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 In vivo model of the placental barrier  

  
 A. B. 

  

 

Figure 3-7 Small RNA Bioanlyser results obtained from the in vivo rodent model of the feto-maternal interface  

(A) Represents the mean concentration (pg/µl) of small ncRNA molecules present in the conditioned media obtained upon 

an exposure to; hypoxia (11% O2) & hypoxia-reperfusion (11-21% O2) in biological replicates (n=3) ±SD. A one-way 

ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple comparison tests across 

the different treatment parameters to identify levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001). The data was 

examined using the Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity of variance, respectively. 

(B) Represents the mean concentration (pg/µl) of miRNA molecules present in the conditioned media obtained upon an 

exposure to; hypoxia (11% O2), & hypoxia-reperfusion (11-21% O2) in biological replicates (n=3) ±SD. A one-way 

ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple comparison tests across 

the different treatment parameters to identify levels of significance. The data was examined using the Shapiro-Wilk and 

Levene’s Test for examining the normality and homogeneity of variance, respectively. Results obtained in collaboration 

with Dr Hannah Scott & Dr Thomas Philips.  

There was no significant difference in the concentration of small ncRNAs released from the in vivo 

placental explants in response to different oxygen tension exposures, one-way ANOVA test (F (2,6) =1.7, 

p=0.263) (Figure 3-7A). A Bonferroni post hoc test indicated no significant difference across any treatment 

groups after multiple comparisons (P>0.05). The data obtained suggest an increase in the concentration of 

small ncRNA molecules under conditions of chronic hypoxia (38679.7pg/uL +/- 17029.5pg /ul) in 

comparison to normoxia conditions by a +0.7-fold increase.  The highest concentration of small ncRNA 

molecules released from the feto-maternal interface was present when the mother had been exposed to 

conditions of hypoxia-reperfusion (H-R) (47171.1pg/uL +/- 21855.1pg/uL), which was an increase of +1.0-

fold in comparison to the control normoxia group.   
The results obtained for the small ncRNA were reflected in the output for the concentration of miRNA 

molecules released from the in vivo model, one-way ANOVA (F (2,6) =1.5, p=0.302) (Figure 3-7B). A 

Bonferroni post hoc test analysed multiple comparisons and found no significant difference across any of 
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the treatment groups (p>0.05). In relation to the concentration of small ncRNA molecules, the highest 

concentration of miRNAs was present under conditions of hypoxia-reperfusion (35,533.1pg/uL +/- 

16,232.2pg/uL). This is an increase of (+1.0-fold) in comparison to the normoxia control. In addition, there 

was also a relative increase in the concentration of miRNAs released from the feto-maternal interface under 

conditions of chronic hypoxia (28515.9pg/uL +/- 14377.1pg/uL) in comparison to the control vehicle 

(+0.6-fold).   

Furthermore, when comparing the two different exposures of compromised oxygen conditions in pregnant 

rodents during critical stages of gestation, chronic hypoxia and hypoxia-reperfusion, there was a slight 

increase (0.2 fold) in the concentration of miRNA molecules released from the placenta in conditions of 

hypoxia-reperfusion (Supplementary Table 5).  

  

 

 

Figure 3-8 Small RNA Bioanlyser results representing the proportion of miRNA from the in vivo rodent model 

of the feto-maternal interface  

Representation of the mean proportion (%) of miRNAs represented in the small ncRNA concentration present in the 

conditioned media upon an exposure to; hypoxia (11% O2) & hypoxia-reperfusion (11-21% O2) in biological replicates 

(n=3) ±SD. A one-way ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple 

comparison tests across the different treatment parameters to identify levels of significance the data was examined using the 

Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity of variance, respectively. Results obtained in 

collaboration with Dr. H. Scott and Dr. T. Phillips.  

  

The results in (Figure 3-8) reveal the mean proportion of miRNAs present in the total small ncRNA 

concentration released into the conditioned media from isolated placentas obtained from the in vivo model. 

There was no significant difference across the treatment parameters in the proportion of miRNAs 

represented in the total of small ncRNA molecules released from the in vivo model; One-way ANOVA (F 

(2,6) =0.6, p=0.597). The highest proportion of miRNAs were found in the control vehicle (21% O2) with  
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76.4% +/- 4.9% of the small ncRNA content being represented by miRNAs, whereas under conditions of 

chronic hypoxia there was the lowest representation of 72.3% +/- 6.4% of the small ncRNA being 

represented by miRNAs (Supplementary Table 5).The most significant difference in the proportion of 

miRNAs was in conditions of normoxia compared to hypoxia (4.0%) while the smallest variation between 

the proportion of miRNAs was in conditions of normoxia and hypoxia-reperfusion (75.3% +/-2.1%) with a 

difference of (1.0%). Overall the results infer uniformity across the treatment groups and the proportion of 

miRNAs present in the total small ncRNA content.  
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 Are the miRNAs in total small ncRNA released from the barrier 

actively or passively?  

To address this question the in vitro model was utilised to provide an accurate interpretation of the 

direction in which the miRNAs were being released from the apical domain of the placental barrier into the 

basolateral domain, representative of the direction of the developing foetus (Figure 2-1). The in vitro model 

was favoured over the other models of the placental barrier as it eliminates the possibility of heterogenicity 

across samples tested since the model is derived from the same homogenous cell line.  

 In order to assess the health and viability of the cells after experimental exposures in the placental barrier, 

the MUSE assay was used (See section 2.4.1). The MUSE assay was able to determine the proportion of 

cells which had undergone apoptosis in comparison to those which remained viable after an exposure. The 

data obtained provides an understanding of not only the health of the cells but is indictive of whether 

miRNAs released from the placental barrier into the foetal domain were actively secreted, as part of a cell 

signalling response, or whether there was passively secreted from cells which had undergone apoptosis.   

  

  

 

  

Figure 3-9 Cell viability assay across different oxygen tensions in the in vitro BeWo barrier model  

Results obtained from the in vitro model of the first trimester placenta using b30 BeWo cell lines cultured for a period of 7 

days under different experimental conditions. The MUSE assay was used to determine the percentage cell viability of the 

bi-layered placental barriers after a 24-hour exposure to different oxygen tensions; 21% (Normoxia), 2% (Chronic 

Hypoxia) & 2-12% (Hypoxia-reperfusion). Statistical analysis was performed using a one-way ANOVA test to examine if 

there was significant difference between the mean values across each treatment parameter, experiment replicates (n>3) ± 

SD. The data was examined using the Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity of 

variance, respectively.  

  

Overall there was no significant difference detected between the viability of the BeWo cells and the oxygen 

tensions to which the cells were exposed during culture, One-Way ANOVA (F (2,31) =3.4, p=0.048) 
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(Figure 3-9). However, a Bonferroni post hoc test revealed that when multiple comparisons were made 

between the treatment groups, the level of difference between groups was not significant. The most 

considerable difference in cell viability was seen between the control group (79.5% +/- 9.2%) and the 

treatment group whereby the cells had been exposed to chronic hypoxia (2% O2) (69.2%, +/-14.3%). There 

was a decrease in viability of 10.4% (a -0.1-fold decrease), but This was not statistically significant in 

accordance with the one-way ANOVA statistical test (p=0.053).   

When comparing the control group (21% O2) with the treatment group, whereby cells had been exposed to 

conditions of hypoxia-reperfusion (2-12% O2) (78.3% +/- 4.8%), there was a difference in cell viability of 

1.2% which equated to a fold change of (-0.02-fold). This was not significantly different (p=1.0) in 

accordance with the One-Way ANOVA statistical analysis.   

Furthermore, analysis between the two treatment groups revealed an increase in cell viability with cells 

exposed to hypoxia-reperfusion in comparison to those cultured under conditions of chronic hypoxia by 

(+9.1%) which equates to an increase of (+0.1 fold), however this was also not statistically significant 

(p=0.3)(Figure 3-9). The results infer no significant difference between the level of cell death occurring 

within the in vitro barrier when the BeWo cell lines are exposed to different oxygen tensions. This 

experimental findings indicate that hypoxic insults to the placental barrier did not result in increased cell 

death, therefore changes to miRNA secretions seen in the in vitro model (Figure 3-3) are not attributed to 

changes in cell viability. Moreover, the results suggest that changes in miRNA secretions under hypoxic 

settings are not released passively via apoptotic bodies.   

  

 Are the small ncRNA and miRNA molecules released via active  

secretion bound in exosomes?  
In order to address whether microRNAs released from the placental barrier are actively released via 

encapsulation within exosomes and/or microvesicles, a NanoSight tracking assay was performed (section 

3.3.3). NanoSight technology measures the concentration of exosomes (30-100nm) and microvesicles (50-

1000nm) within the conditioned media obtained from the in vitro placental barrier.  
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 Exosome Fraction   

  

 

Figure 3-10 Summary of the total accumulative concentration of particles within the exosome size range (30-

100nm) across the treatment parameters  

Analysis of the total concentration of particles within the exosome size range (E6 particles/mL) across treatment parameters 

after the exclusion of the unconditioned media control. Readings were obtained from the conditioned media collected below 

the in vitro model after treatment with Exosome Isolation Reagent (Life Technologies) resuspended in 100µL PBS.   

Readings for each sample (n=1) were performed 10 times to produce an average measurement using Nanoparticle Tracking 

Analysis- NanoSight NS500 in the collaboration with the Professor Ian Sargent’s groups at the University of Oxford.  

  

Figure 3-10 shows that under conditions of normoxia (21% O2), the average total concentration of particles 

presents within the conditioned media within the exosome fraction was 8.6 E6 particles/mL. However, 

under conditions of chronic hypoxia, there was precisely half the concentration of exosome particles within 

the conditioned media in comparison to the control, suggesting that there is a decrease in the level of 

miRNAs which are actively secreted within exosomes vesicles when the placental barrier is under  

‘stressed’ conditions of chronic hypoxia. When the in vitro barrier was exposed to an insult of hypoxia 

reperfusion, the concentration of exosome particles within the conditioned media increased by 1.6-fold. 

This suggests that exposure of hypoxia-reperfusion yields the highest total concentration of exosomes and 

potentially miRNAs being actively trafficked across the placental barrier into the foetal domain while 

exposure of chronic hypoxia to the placental barrier produces the lowest concentration of particles within 

the exosome size-range being secreted into the foetal domain (Supplementary Table 6A). 
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Figure 3-11 Overview of data obtained from the conditioned media obtained below the in vitro model after treatment with Exosome Isolation Reagent  

Overview of data obtained from the conditioned media obtained below the in vitro model after treatment with Exosome Isolation Reagent (Life Technologies) resuspended in 100µL PBS.  

Measurement of the mean concentration of extracellular vesicles (exosomes) in the size range of 30-100nm and microvesicles (50-1000nm) against the control blank sample (unconditioned 

media) (E6 particle/mL) from 10 reads across a sample from each experimental parameter. Results obtained from Nanoparticle Tracking Analysis- NanoSight NS500 in the collaboration 

with Professor Ian Sargent, University of Oxford, UK.   
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The NanoSight data revealed that the unconditioned media contained exosomes with a peak at 100nm 

particle size range. This level was referred to as the control background level ‘blank’ reading from which 

readings across the experimental parameters were analysed against. Figure 3-11 revealed that across the 

experimental parameters there was an increased concentration of particles within the size range of 30-

100nm with both the normoxia conditions and hypoxia reperfusion showing an increased concentration of 

exosome particles in the conditioned media, peaking at 100nm. However, under conditions of hypoxia 

reperfusion, there is a marked increase in the concentration of particles at the peak size range of 100nm at 

(2.3 E6 particles/mL) compared to normoxia conditions which had a peak concentration of 1.6 E6 

particles/mL. Conversely, exposure of chronic hypoxia to the in vitro model of the placental barrier 

resulted in a peak concentration (1.7 E6 particles/mL) of exosome classified particles in the size range of 

95nm. NanoSight analysis revealed that the highest concentration of exosomes was found in the 

conditioned media obtained from the cells exposed to conditions of hypoxia-reperfusion. The highest 

peaks in particle size were seen throughout each treatment parameter within the size range outside of the 

exosome size range (30-100) (Figure 3-11). The results imply that within each of the treatment conditions, 

there is a higher proportion of particles within the microvesicle domain (50-1000nm). Therefore, 

additional analysis was performed to assess the concentration of particles within this size range suspended 

within the conditioned media.    
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Figure 3-12 Overview of microvesicle concentrations within the conditioned media obtained below the in vitro 

model after treatment with Exosome Isolation Reagent  

Overview of data obtained from the conditioned media obtained below the in vitro model after treatment with Exosome 

Isolation Reagent (Life Technologies) resuspended in 100µL PBS.  Analysis of the mean concentration of extracellular 

vesicles (microvesicles) in the size range of 50-1000nm, indicative of exosomes (E6 particle/mL) from 10 reads across a 

sample from each experimental parameter. Results obtained from Nanoparticle Tracking Analysis- NanoSite NS500 in the 

collaboration with the Professor Ian Sargent at the University of Oxford. (A). Unconditioned culture media (B). 21% 

conditioned media, (C) 2% conditioned media, (D). 2-12% conditioned media.  

Analysis of the data obtained from the nanoparticle tracking analysis in the microvesicles size range 

revealed a similar trend as seen in the analysis of the exosome fraction, with the highest concentration 

being present under treatment conditions of hypoxia-reperfusion and the lowest concentration was seen in 

the treatment of chronic hypoxia(Figure 3-12). Consequently, under conditions of normoxia and hypoxia 

reperfusion, the peak concentration of microvesicles lie within the size range of 126 nm (1.9 E6 

particles/mL) and 116 nm (2.6 E6 particles/mL), respectively. Whereas under conditions of chronic 

hypoxia the peak size range is at 95nm (1.7 E6 particles/mL), within the upper region of the overlap 
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between microvesicles and exosome size-ranges (Figure 3-12).Unconditioned culture media was used as a 

control parameter in which other treatment parameters were compared against as a baseline reading, in 

order to determine how treatment altered exosome levels within the conditioned culture media. It is 

important to note that unconditioned media naturally contains exosomes from foetal bovine serum which 

is a constituent within the culture media used for culturing BeWo trophoblast cell (Figure 3-13).   

            

 

Figure 3-13 Overview of the concentration of microvesicles within the conditioned media obtained below the 

in vitro placental barrier after treatment with Exosome Isolation Reagent  

Overview of data obtained from the conditioned media obtained below the in vitro model of the placental barrier after 

treatment with Exosome Isolation Reagent (Life Technologies) resuspended in 100µL PBS.  Measurement of the mean 

concentration of extracellular vesicles (Microvesicles) in the size range of 50-1000nm against the control unconditioned 

media (E6 particle/mL) from 10 reads across a sample from each experimental parameter. Results obtained from 

Nanoparticle Tracking Analysis- NanoSite NS500 in the collaboration with the Professor Ian Sargent at the University of 

Oxford.   

  

  

The results analysing microvesicle sized particles within the conditioned media revealed that under 

conditions of chronic hypoxia there is a peak concentration of microvesicles which lies within the same 

overlapping size domain as the exosome fraction at 94 nm with an average concentration of 0.3 E6 

particles/mL. In comparison under conditions of both normoxia and hypoxia-reperfusion, the peak 

concentration of particles in the microvesicle size domain lies within the size range of 128 nm (0.6 E6 

particles/mL) and 122 nm (1.2E6 particles/mL), respectively (Figure 3-13).   
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Analysis of the concentration of microvesicles (50-1000nm) within the conditioned media obtained in the 

basolateral domain of the in vitro model was assessed by eliminating the average ‘blank’ control readings 

across the size ranges for every ten readings per sample and forming an average across the ten reads 

(Supplementary Table 6B). This allowed us to quantify the total average concentration of microvesicles 

across each of the treatment parameters. The data obtained show a similar trend as seen in the exosome 

fraction whereby the lowest concentration of microvesicles secreted from the barrier was seen under 

conditions of chronic hypoxia (-8.1 E6 particles/uL The results imply that when the cells within the 

placental barrier are placed under chronic stress, the active secretion of microvesicles from the placental 

barrier is halted. However, when the in vitro barrier was exposed to an insult of hypoxia-reperfusion, there 

was a significant increase (+7.8-fold) in the concentration of microvesicles released from the placental 

barrier compared to the control conditions. These results mimic the trend observed with the exosome 

fraction, whereby the highest concentration of microvesicles released from the barrier was seen under 

conditions of hypoxia-reperfusion - suggesting that an insult of hypoxia-reperfusion may generate the 

placental barrier to have a greater response in actively transporting miRNAs to the foetal domain to either 

elicit a stress response or for pathological implications compared to conditions of chronic hypoxia.  
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 Analysis of RNA concentration within exosome fractions obtained from the in 

vitro model  

To determine if the exosomes secreted from the placental barrier into the conditioned media contain 

miRNAs; small RNA Bioanalyser analysis was conducted upon isolated exosome pellets obtained from 

conditioned media from the basolateral domain of the in vitro model (See section 3.4.3). From the data, an 

assessment can be made to infer whether there are higher concentrations of free-circulating miRNAs 

within the conditioned media or whether there is a higher concentration of miRNAs encapsulated within 

the exosome-bound form.  

Table 6 Summary of the concentration of Small non-coding mRNAs and MicroRNAs in exosome fractions of 

conditioned media obtained from the in vitro model of the placental barrier compared to conditioned media 

without exosome isolation treatment.  

    

 Average small  
ncRNA (pg/uL)  

small ncRNA 

STDEV  
Average 

miRNA (pg/uL)  
miRNA 

STDEV  
Average 

Proportion  
Proportion  

STDEV  

21%(Control)  208  25.9  122.1  16.4  58.7  1.5  

21%+Exo  99.2  86.4  32.9  30.2  27.7  9.7  

2% (Chronic 

Hypoxia)  

104.5  23.6  

  

58.3  8.8  

  

56.7  8.1  

  

2%+Exo*  11.8   1.8   16.0   

2-12%(Hypoxia 

reperfusion)  

139.4  23.8  75.5  12.9  54.0  2.6  

2-12%+Exo  63.4  57.6  22.8  29.3  45.1  36.4  

N.B. “+Exo” refers to the conditioned media which has undergone treatment with Total Exosome Isolation  

Reagent (Life Technologies) to isolate the exosome pellet)  

*Only able to attain n=1 for this parameter due to errors on the readings for the small RNA Bioanalyser was unable to 

provide clear readings for the replicate samples.   
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Figure 3-14 revealed that there is a trend between small ncRNA and miRNA levels being lower within 

exosome fractions compared to total medium samples. Statistical analysis revealed a significant difference 

in the concentration of small ncRNA present in the conditioned media under normoxia conditions in 

comparison to those under conditions of hypoxia-reperfusion (t (3.088) =4.5, p=0.0194). However, no 

significant differences were detected between the concentration in the exosome fraction and its equivalent 

conditioned media. However, statistical analysis could not be performed on the chronic hypoxia exosome 

subset, and significant differences could not be ascertained.   

Statistical analysis revealed that there was a significant difference in the concentration of miRNAs 

encapsulated in the exosome-bound form present in the conditioned media under normoxia conditions in 

comparison to those present in the exosome-bound form under conditions of hypoxia-reperfusion (t 

(3.088) =4.5, p=0.0194). However, no significant differences were detected between the concentration in 

the exosome fraction and its equivalent conditioned media. Statistical analysis could not be performed on 

the chronic hypoxia exosome subset; therefore, significant differences could not be ascertained.   
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Figure 0-2 Small RNA Bioanlyser results representing small ncRNA concentration & miRNA concentration 

from the in vitro BeWo model of the feto-maternal interface 

Representation of the mean concentration of small ncRNA (A) and mean miRNA concentration (B) present in the 

conditioned media obtained within the basolateral domain of the BeWo bi-layered barrier upon a 24-hour exposure to; 

hypoxia (2% O2) & hypoxia-reperfusion (2-12% O2) in biological replicates (n=3) ±SD. An additional parameter was 

explored to analyse the effect of a polymer-based precipitation technique, Total Exosome Isolation Reagent (Life 

Technologies) to purify and isolate exosomes denoted (Exo) in biological replicates* (n=3) ± SD. Statistical analysis was 

performed using an Independent t-test with Welch correction. Asterisks denote significance at (*p < 0.05, **p < 0.01, ***p 

< 0.001). The data was examined using the Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity 

of variance, respectively. 

*(2%+Exo) parameter n=1 due to technical fault in the Agilent bioanalyzer readings. Hence, no statistical analysis was 

performed on this parameter.  

 

 

 

Figure 0-3 Small RNA Bioanlyser results representing small ncRNA concentration & miRNA concentration 

from the in vitro BeWo model of the feto-maternal interface 

Representation of the mean concentration of small ncRNA (A) and mean miRNA concentration (B) present in the 

conditioned media obtained within the basolateral domain of the BeWo bi-layered barrier upon a 24-hour exposure to; 

hypoxia (2% O2) & hypoxia-reperfusion (2-12% O2) in biological replicates (n=3) ±SD. An additional parameter was 

explored to analyse the effect of a polymer-based precipitation technique, Total Exosome Isolation Reagent (Life 

Technologies) to purify and isolate exosomes denoted (Exo) in biological replicates* (n=3) ± SD. Statistical analysis was 

performed using an Independent t-test with Welch correction. Asterisks denote significance at (*p < 0.05, **p < 0.01, ***p 

< 0.001). The data was examined using the Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity 

of variance, respectively. 

*(2%+Exo) parameter n=1 due to technical fault in the Agilent bioanalyzer readings. Hence, no statistical analysis was 

performed on this parameter.  
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Similar levels of significance were seen between the conditioned media groups themselves, as with the 

small ncRNA concentrations. The most considerable difference was seen between the control vehicle and 

the cells grown under conditions of chronic hypoxia (t (3.996) =0.4185, p=0.6971).  In addition, a 

significant difference was observed between the control vehicle and with the treatment group whereby the 

cells had been exposed to conditions of hypoxia-reperfusion (t (3.787) =3.9, p=0.0201).  

 

    

  

Figure 3-15 assessed the proportion of miRNA in comparison to the total small ncRNA found in both the 

conditioned media and those encapsulated within exosome form. Statistical analysis revealed a significant 

difference between the proportion of miRNAs within the exosomes compared to the proportion found 

within the 21% conditioned media alone (t (2.099) =5.461, p=0.0287).   
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Figure 0-4 Small RNA Bioanlyser results representing the proportion of miRNA in small ncRNA (%) from the 

in vitro BeWo model of the feto-maternal interface 

Represents the mean proportion of miRNA out of the total small ncRNA present in the conditioned media obtained from 

the basolateral domain of the BeWo bi-layered barrier upon a 24-hour exposure to; hypoxia (2% O2) & hypoxia-

reperfusion (2-12% O2) in biological replicates (n=3) ±SD. An additional parameter was explored to analyse the 

proportion of miRNA found in the exosome fraction of the conditioned media by treating the media using a polymer-based 

precipitation technique, Total Exosome Isolation Reagent (Life Technologies) in order to purify and isolate exosomes in 

biological replicates* (n=3) ±SD. Statistical analysis was performed using an Independent t-test with Welch correction. 

Asterisks denote significance at (*p < 0.05, **p < 0.01, ***p < 0.001). The data was examined using the Shapiro-Wilk and 

Levene’s Test for examining the normality and homogeneity of variance, respectively. 

*(2%+Exo) parameter n=1 due to technical fault in the Agilent bioanalyzer readings. Hence, no statistical analysis was 

performed on this parameter.  

 

 

Figure 0-5 Small RNA Bioanlyser results representing small ncRNA concentration & miRNA concentration 

from the in vitro BeWo model of the feto-maternal interfaceFigure 0-6 Small RNA Bioanlyser results 

representing the proportion of miRNA in small ncRNA (%) from the in vitro BeWo model of the feto-maternal 

interface 

Represents the mean proportion of miRNA out of the total small ncRNA present in the conditioned media obtained from 

the basolateral domain of the BeWo bi-layered barrier upon a 24-hour exposure to; hypoxia (2% O2) & hypoxia-

reperfusion (2-12% O2) in biological replicates (n=3) ±SD. An additional parameter was explored to analyse the 

proportion of miRNA found in the exosome fraction of the conditioned media by treating the media using a polymer-based 

precipitation technique, Total Exosome Isolation Reagent (Life Technologies) in order to purify and isolate exosomes in 

biological replicates* (n=3) ±SD. Statistical analysis was performed using an Independent t-test with Welch correction. 

Asterisks denote significance at (*p < 0.05, **p < 0.01, ***p < 0.001). The data was examined using the Shapiro-Wilk and 

Levene’s Test for examining the normality and homogeneity of variance, respectively. 

*(2%+Exo) parameter n=1 due to technical fault in the Agilent bioanalyzer readings. Hence, no statistical analysis was 

performed on this parameter.  
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 Are the changes seen in the secretion of small ncRNA/miRNA 

the result of a hypoxia-induced effect upon the barrier?   

To investigate the response of in vitro barriers to hypoxic culture conditions, levels of hypoxia-inducible 

factor 1-alpha (HIF-1α) and (HIF-2α) were assessed to ensure that our model was inducing a hypoxic 

insult to the barrier model. Furthermore, we examined the impact of the antioxidant PGA nanoparticles 

loaded with MitoQ (0.5µM) upon HIF to examine whether the drug was able to rescue the effect of 

hypoxia-induced upon the cells by downregulating HIF pathways by assessing  CA9, a downstream target 

of HIF-1α. Cleaved-PARP was also examined to assess whether the exposure was causing apoptosis to the 

BeWo cells and therefore determine whether the increased level of miRNAs observed under hypoxia 

reperfused conditions were the result of the active release or passively via apoptotic bodies.   

  

   

 

 

Figure 3-16 Western Blot analysis of HIF-1α (92 kDa), HIF-2α (118 kDa), c-PARP (24 kDa), CA9 55 kDa) 

and loading control β-actin (42 kDa)  

Supernatants obtained from the b30 subclone of BeWo choriocarcinoma cell line across different treatment parameters with 

or without the application of PGA nanoparticles loaded with MitoQ (MQ) antioxidant drug (0.5µM and under different 

oxygen tensions; Normoxia (21% O₂), chronic hypoxia (2% O₂) and hypoxia-reperfusion (2-12% O₂).  
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The results obtained from the Western blot (Figure 3-16) revealed that the highest concentration of HIF1α 

was present in both the 2% chronic hypoxic conditions and under the conditions treated with an 

antioxidant (MitoQ) drug for 24 hours after an exposure of 2% chronic hypoxia. In comparison, HIF2α 

was present under conditions of a 2% chronic hypoxic exposure and was not present under conditions of 

hypoxia-reperfusion. There was a slight increase in the relative concentration of HIF2α under conditions 

of 2% chronic hypoxia with the antioxidant drug. The concentration of c-PARP was persistent across all 

treatment groups and was slightly decreased by the antioxidant drug which implies that it may be able to 

influence the caspase pathway to initiate apoptosis. The lowest level of c-PARP was seen under conditions 

of hypoxia-reperfusion. There was a high, consistent concentration of this protein present throughout all 

conditions. Unexpectedly the highest relative prevalence was seen under conditions of normoxia (21% O2) 

with and without the antioxidant treatment drug. CA9 was also persistent at high levels across all 

parameters, which suggests that MitoQ does not interact with the downstream targets of HIF.  
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 Does ROS induce small ncRNA/ miRNA release from the 

placental barrier?  

To determine whether the in vitro BeWo barrier is responding to the ROS signalling as a result of exposure 

to varying oxygen tensions, an additional parameter was examined using an antioxidant drug loaded into 

PGA nanoparticles which target the mitochondria solely and reduces levels of ROS. It is unknown how the 

presence of the drug will influence cell viability or whether it may have adverse implications on barrier 

integrity. An initial experiment was performed to assess whether the treatment drug altered cell viability.   

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3-17 Cell viability assay across different oxygen tensions in the in vitro BeWo barrier model  

Results obtained from the in vitro model of the first trimester placenta using b30 BeWo cell lines cultured for a period of 7 

days under different experimental conditions. The MUSE assay was used to determine the percentage cell viability of the 

bilayered placental barriers after a 24-hour exposure to different oxygen tensions; 21% (Normoxia), 2% (Chronic Hypoxia) 

& 2-12% (Hypoxia-reperfusion). Statistical analysis was performed using a One-Way ANOVA test to examine if there was 

significant difference between the mean values across each treatment parameter, experiment replicates (n>3) ± SD. The data 

was examined using the Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity of variance, 

respectively.  

 
The Muse assay determined that the application of the PGA nanoparticle loaded with MitoQ (0.5µM) had 

no significant effect upon the viability of the BeWo cells within the in vitro model of the placental barrier 

under different oxygen tensions (p>0.05) (Figure 3-17).  
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 Assessment of the application of an antioxidant drug loaded nanoparticle upon the secretions of small 

ncRNAs and microRNAs released from the placental barrier  
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Figure 3-18 Small RNA Bioanalyser results obtained from the in vitro BeWo & ex vivo placental explants of the 

fetomaternal interface with the application of potential therapeutic drug  

The first column ‘Small ncRNA’  represents the mean concentration (pg/ul) of small ncRNA molecules present in the conditioned 

media obtained below the BeWo bi-layered barrier and within the first trimester placental explants conditioned media upon a 24-hour 

exposure to; hypoxia-reperfusion (2-12% O2) & hypoxia-reperfusion with the application of an antioxidant drug-loaded nanoparticle 

exposure (MitoQ) (0.5µM) in biological replicates (n=3) ±SD. The second column ‘miRNAs’ represents the mean concentration 

(pg/ul) of miRNA molecules present in the conditioned media obtained upon a 24-hour exposure to; hypoxia-reperfusion (2-12% O2) 

& hypoxia-reperfusion with the application of an antioxidant drug-loaded nanoparticle exposure (MitoQ) (0.5µM) in biological 

replicates (n=3) ±SD. The final column ‘Proportion of miRNA: sncRNA) represents the median proportion (%) of miRNAs 

represented in the small ncRNA concentration present in the conditioned media obtained upon a 24-hour exposure to; hypoxia 

reperfusion (2-12% O2), & hypoxia-reperfusion with the application of an antioxidant drug-loaded nanoparticle exposure (MitoQ) 

(0.5µM) in biological replicates (n=3) ±IQR. The data was examined using the Shapiro-Wilk and Levene’s Test for examining the 

normality and homogeneity of variance, respectively. An Independent Student’s t-test was used to perform statistical analysis upon 

the concentration of small ncRNA molecules and miRNA to identify levels of significance between the two parameters. Graphs 

denoted with an asterisks [*] implies that Welch correction was performed on the t-tests to correct for homogeneity of variance. In 

the in vitro model statistical analysis examining the proportion of miRNA within the small ncRNA concentration was performed 

using a Mann-U Whitney statistical tests to identify levels of significance between the two parameters.  

  

Statistical analysis revealed no significant differences between small ncRNA concentrations released from the 

in vitro barrier in response to the antioxidant drug bound in a PGA nanoparticle before an exposure of hypoxia-

reperfusion (2-12%+(MQ-NP) (30.3pguL +/- 10.4pg/uL)  compared to the concentration released from its 

associated control parameter (2-12% O2) (73.6pg/uL +/- 37.3pg/uL), (t(4)=1.9, p=0.125) (Figure  

3-18), despite there being a -0.6 fold change between the control and the treatment parameters 

(Supplementary Table 7). Similarly in the ex vivo model, there were no significant differences between small 

ncRNA concentrations released from the barrier in response to the antioxidant drug bound in a PGA 

nanoparticle before exposure of hypoxia-reperfusion (t(2.068)=0.1, p=0.957) (Figure 3-18).   

 

Furthermore, the proportion of miRNAs represented in the total small ncRNA was greater in the treatment 

conditions (2-12%+MQ-NP, Median =43%) compared to the control group (2-12%, Median=39%) in the in vitro 

model, however the difference between the proportions was not significantly different (U=0.0, p=0.1)(Figure 3-

18). Likewise, there was no significant difference seen in the proportion of miRNAs in the small ncRNA contents 

between the control vehicle (2-12% O2) (1.3 +/-0.5) and the explants exposed to the antioxidant drug treatment 

(2-12%+MQ-NP) (1.40 +/- 0.47), (t(2.175) =-0.2, p=0.838) (Supplementary Table 7).  
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 In vivo Placental barrier findings  

  

 (A)  (B)  

   

 
  

Figure 3-19 Small RNA Bioanlyser results obtained from the in vivo rodent model of the feto-maternal interface 

with the application of potential therapeutic drug  

(A) Represents the mean concentration (pg/ul) of small ncRNA molecules present in the conditioned media obtained upon an 

exposure to; normoxia-saline, Normoxia +MQ, Hypoxia Saline, Hypoxia +MQ, hypoxia-reperfusion saline, Hypoxia 

reperfusion +MQ in biological replicates (n=3) ±SD. An Independent Student’s t-test with Welch correction was used to 

perform statistical analysis to identify levels of significance between the two groups. (B) Represents the mean concentration 

(pg/ul) of miRNA molecules present in the conditioned media obtained upon an exposure to; normoxia-saline, Normoxia  
+MQ, Hypoxia Saline, Hypoxia +MQ, hypoxia-reperfusion saline, Hypoxia-reperfusion +MQ in biological replicates (n=3)  
±SD. An Independent Student’s t-test with Welch correction was used to perform statistical analysis to identify levels of 

significance between the two groups. The data was examined using the Shapiro-Wilk and Levene’s test for examining the 

normality and homogeneity of variance, respectively.  

   

Supplementary Table 8 summarises the mean concentration of small ncRNA molecules released into the 

conditioned media obtained from the in vivo rodent model across treatment groups which were exposed to 

varying oxygen tension, with an additional variable of whether the mother was given a saline injection or 

an injection of the antioxidant loaded-nanoparticle treatment (125µM) at GD14.   

There were no significant differences between the concentration of small ncRNA molecules released from 

the placenta under control conditions of normoxia-saline compared to the normoxia+ (MQ-NP) treatment 

group (t (2.58) =1.6, p=0.216). A similar result was seen for both comparisons between hypoxia saline 

group with its associated hypoxia+(MQ-NP) treatment group (t (2.085) =1.4, p=0.297) and with hypoxia 

reperfusion control and associated treatment group, (t (2.059) =2.0, p=0.183) (Figure 3-19).  
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There were no statistically significant differences between the normoxia+ (MQ-NP) group when compared to 

hypoxia + (MQ-NP) group (t (2.477) =-2.0, p=0.157), or between the normoxia + (MQ-NP) group with the 

mothers exposed to hypoxia-reperfusion + (MQ-NP) conditions (t (2.541) =-1.3, p=0.288). In addition, when 

comparing the hypoxia+ (MQ-NP) treatment group with the hypoxia-reperfusion + (MQ-NP) treatment 

group no significant difference was seen in the concentration of small ncRNAs released from the barrier  

  

  

  

  

  

  

  

  

 

 

     

Figure 3-20 Small RNA Bioanlyser results representing the proportion of miRNA obtained from the in vivo 

Rodent model of the feto-maternal interface  

Represents the mean proportion (%) of miRNAs represented in the small ncRNA concentration present in the conditioned 

media obtained upon an exposure to; normoxia-saline, Normoxia +MQ, Hypoxia Saline, Hypoxia +MQ, hypoxia reperfusion 

saline, Hypoxia-reperfusion +MQ in biological replicates (n=3) ±SD.  Statistical analysis was performed using an Independent 

t-test to identify levels of significance between the two parameters. The data was examined using the Shapiro-Wilk and 

Levene’s test for examining the normality and homogeneity of variance, respectively.  

  

An independent t-test revealed no significant differences between the proportion of miRNAs present across 

the treatment groups with or without the application of an antioxidant-loaded into PGA nanoparticles 

across treatment parameters (P>0.05) (Figure 3-20).   
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3.6 Discussion  
In accordance with the current literature, miRNAs act as post-transcriptional ‘fine-tuners’ of cell 

homeostasis.239Aberrant expression of miRNAs is associated with pathophysiological states induced by 

exogenous stimuli. 226,353,354 By sampling circulating miRNAs within the serum,  a growing body of 

research has distinguished microRNAs as being ideal biomarkers for obstetric complications including 

preeclampsia, ectopic pregnancies, gestational diabetes and IUGR. 345,355,356 Furthermore, studies have 

shown that miRNAs are sensitive to oxygen tensions, and an insult of oxidative stress can modulate miRNA 

expression within the villous trophoblast cells, resulting in physiological and functional changes to the 

placenta. 221,357 MicroRNAs are known to act as essential mediators in response to cellular stress associated 

with a change in the natural cellular homeostatic balance. In response to stressed conditions, the cell 

modulates the number of miRNAs and activity of miRNA-complexes to regulate downstream gene 

expression. When there is an impairment in these processes, it can lead to the onset of chronic disease 

states.358 Upon exogenous stimuli, miRNAs act as intercellular communicators, mediating a response to 

recipient cells by targeting mRNAs in target cells to elicit a change in gene expression.174,183,359  

This chapter aimed to evaluate whether miRNAs were overexpressed in a diseased state (mimicked by 

changes in oxygen tensions) as seen in obstetric complications. We aimed to explore whether these 

miRNAs were secreted into the foetal circulation to influence post-transcriptional gene regulation upon 

susceptible foetal tissue. We further aimed to assess whether treatment of the placental barrier with a 

therapeutic antioxidant drug could influence miRNA expression and secretion from the placenta.  

  

 Detection of small ncRNAs & miRNAs in the conditioned media 

obtained from the feto-maternal interface   

Altering oxygen levels to the placental barrier can cause perturbations to the balance of miRNAs required 

for maintaining homeostasis and can lead to the onset of pathological conditions. The repression of 

specific small ncRNAs and miRNAs from being released from the placental barrier: genes which under  

‘normal’ homeostatic conditions are switched off, may be overexpressed and stimulated and may result in a 

pathological state. 357 The literature does not state that there is a general upregulation or downregulation in 

the overall concentration of miRNAs under a stressed environment but instead that there is  

‘dysregulation’ of miRNAs. It has been shown that different environmental exposures affect specific 

miRNAs differently by either upregulating specific ones and downregulating others. 360Therefore, insults 

to the placenta may not necessarily lead to an overall increase or decrease in the concentration of miRNAs 

secreted, but will have a specific effect upon miRNAs associated with that particular environmental 

exposure.361Studies have explored the miRNA signature under conditions of oxidative stress and have 

found that critical miRNAs are induced under conditions of hypoxia, deemed ‘HypoamiRs’, and are 

involved in mediating the hypoxic response in cells, these include miR-26, -107, and -210.362  
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Initial experiments examined whether miRNAs were released from the three models of the placental barrier 

after exposure of gestational hypoxia. An exposure of 2% O2 (chronic hypoxia) was utilised to mimic 

conditions which relate to pregnancy complications associated with low oxygen levels such as women 

living at high-altitudes, smokers or women with diabetes-mellitus. These environmental factors have been 

associated with an increased risk in women who suffer from insufficient placental implantation, IUGR and 

pre-eclampsia.335,363 Exposures of chronic hypoxia during the early stages of gestation are related to 

metabolic disturbances, cognitive dysfunction and even teratogenicity.364  

An additional insult of hypoxia-reperfusion was used to mimic the onset of placental pathology, as 

research indicates that hypoxia-reperfusion injury caused by intermittent placental perfusion (because of 

impaired trophoblast invasion of the endometrial arteries) is a potential mechanism of increasing levels of 

ROS within the placenta. ROS is associated as an essential signalling factor for physiological pathways 

(trophoblast proliferation and invasion and placental autophagy), however aberrant over-expression can 

render the placenta vulnerable to the onset of pathological obstetric conditions ( Pre-eclampsia, 

miscarriage and IUGR). 65,325,365   

 In vitro model findings  

The findings obtained from the small RNA Bioanalyser negate the initial hypothesis that under conditions of 

stressed conditions caused by alterations in oxygen tensions there would be an increase in the level of small 

ncRNA and miRNAs released from the BeWo barrier (Figure 3-3). Additional analysis was performed to 

assess the proportion of miRNAs within the small ncRNA fraction. The data found that there was 

consistency across the treatment groups in the proportion of miRNAs within the small ncRNA fraction, 

implying that alterations in the oxygen concentrations did not influence the concentration of miRNAs 

within the total small ncRNA population. This infers that the significant changes seen between the control 

conditions with the treatment groups are due to changes in the overall quantity of both small ncRNA and 

miRNAs being released from the barrier (Figure 3-4).   

The findings imply that miRNAs are unlikely to be solely responsible for acting as important signalling 

molecules between the placenta and the developing foetus. The concentration of miRNAs represented in 

the small ncRNA population was found to be reduced under conditions of both chronic hypoxia and 

conditions of hypoxia-reperfusion, suggesting that other subspecies of small ncRNA, including Piwi RNA, 

snoRNA and tRNA, may play a role in signalling the stress response to surrounding cells. 366Alternatively, 

the insult of hypoxia may have caused an imbalance in the miRNAs released under homeostasis and 

therefore only the miRNAs which target genes involved with mechanisms to respond to low levels of 

oxygen were released, while others were withheld and not synthesised under low oxygen conditions to 

preserve limited reserves of ATP. It is well established that hypoxic stress can induce changes in the post-

transcriptional regulatory network which allows the cells to adapt to perturbations in the intracellular 

environment by altering the transcription and maturation of hypoxamiRs by influencing the activity of 

proteins involved in regulating post-transcriptional events. 367  
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 Ex vivo model findings  

The results obtained from conducting small RNA Bioanalyser analysis on the conditioned media revealed 

differences in the trend seen in the in vitro model. In the ex vivo model, the highest concentration of small 

ncRNA molecules was found under conditions of normoxia, as seen in the in vitro model (  

Supplementary Table 4). Whereas the lowest concentration was seen under conditions of hypoxia-reperfusion, 

which differs from the in vitro model that revealed an exposure of chronic hypoxia yielded the lowest levels of 

small ncRNA molecules.  A reverse trend in the concentrations was found in the miRNA concentration whereby 

the highest concentration of miRNAs was seen under conditions of hypoxia-reperfusion, as initially 

hypothesised. Whereas the lowest concentration of miRNAs secreted into the conditioned media was found 

when the placental explants were placed under conditions of chronic hypoxia (Figure 3-5), which correlates to 

the findings in the in vitro model (Figure 3-3). Analysis of the proportion of miRNAs compared to the overall 

small ncRNA levels further revealed an inverse trend to the in vitro model, with conditions of 

hypoxiareperfusion yielding the highest proportion of miRNAs secreted, while conditions of normoxia presented 

the lowest proportion of miRNA being secreted from the placental explants (Figure 3-6).   

As previously discussed in section 1.8.2, the model of the placental barrier using first-trimester explants 

was associated with a large discrepancy across repeat measures due to high variability attributed to the 

collection and processing, as well as the nature of the tissue samples. Therefore, it is not unusual to see 

little correlation between the findings obtained from the in vitro model with the ex vivo samples. The lactate 

dehydrogenase (LDH) assay is a method utilised by Sato et al. to examine the viability of tissue samples 

from both human and murine placental samples and is a technique which found to be valuable in examining 

the viability of samples across repeats and species. 368 Studies have also examined the optimal conditions 

for culturing human placental explants and found an initial degeneration of the syncytiotrophoblast layer 

within the explants because of the culture process; however, Brew et al. (2016) discovered that the 

syncytiotrophoblast was able to re-establish after five days of culture. They also discovered that ‘standard’ 

culture conditions were detrimental to the regeneration process, unusually high concentrations of oxygen 

(20% O2). An association was found between the viability of the syncytiotrophoblast cells and the quantity 

of RNA data. 369 These findings suggest that a possible reason for such fluctuations in the small RNA 

Bioanalyser readings from the placental explants are the result of the explants not being at optimal 

conditions which were suggested to be at 8% O2 in term placentas and lower in first term placentae. Thus, 

suboptimal conditions would not accommodate regeneration of the syncytiotrophoblast layer and hence 

imply the quantity and quality of the RNA obtained from the samples.369  

 In vivo model findings  

The results from the in vivo model found an inverse trend in both the concentration of small ncRNA 

molecules and in the concentration of miRNA molecules (Figure 3-7) compared to the in vitro model of the 

first trimester placental barrier (Figure 3-3). The results obtained in the placental conditioned media from 
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the GD21 rodents revealed that the highest concentration of small ncRNA and miRNA molecules was 

found under conditions of hypoxia-reperfusion while the lowest concentrations were in the control 

normoxia conditions (Figure 3-7). Conversely, this trend was not seen when analysing the proportion of 

miRNAs within the total small ncRNA population, which revealed that the highest proportion of miRNAs 

was present under conditions of normoxia, similar to the results obtained in the in vitro model, with the 

lowest proportion of miRNAs being present under conditions of chronic hypoxia (Figure 3-8).   

The results obtained from the rodent conditioned media revealed significantly higher concentrations of both 

small ncRNA molecules and miRNA molecules compared to both the in vitro and ex vivo model. The 

reason for this discrepancy across the models is associated with the size and composition of the explants 

utilised. In the rodent model due to the size of the placentae, it is not feasible to further dissect the placenta 

into small explants, and therefore the entire disc-placenta was used to obtain conditioned media, whilst in 

the human ex vivo model smaller sections of the chorionic villi were collected, which compromised the 

microarchitecture of the explant in comparison to the rodent placenta. Hence, it was expected that since we 

would be examining the concentration of miRNA and small ncRNA molecules released from the entire 

placental structure in the rodent, that there would be a higher concentration secreted. Furthermore, there is 

a greater likelihood that the dissection process itself for the explants of the chorionic villi would have a 

detrimental effect on the viability of the villi. There was a higher risk that sections of the villi may undergo 

apoptosis and no longer secrete miRNAs and small ncRNAs actively, unlike the rodent placentas which 

remain intact with their microarchitecture maintained.   

 Comparison across the models of the placental barrier  

When comparing the results from the small RNA Bioanalyser for each of the three models of the placental 

barrier, it is apparent that there is no consistency or trend in the concentrations of small ncRNAs or 

miRNAs released for the barrier models across the treatment parameters (Table 7).   

Table 7 Overall Cross analysis of results obtained from the three models of the placental barrier  

Represents a colorimetric interpretation for the comparison of the different parameters investigated across the three models 

of the placental barrier (in vitro, ex vivo & in vivo) after the results had been normalised to their representative control 

conditions (21% O2) (Scale: Red=Lowest level, Amber= Medium level, Green=Highest level)  

    in vitro   ex vivo   in vivo  

   
small  
RNA  

miRNA  Proportion 

of miRNA  
small  
RNA  

miRNA  Proportion of 

miRNA  
small  
RNA  

miRNA  Proportion of 

miRNA  

21%                    

2%                    

2-12%                    

  

Plausible explanations for why there are such variations seen across the different models of the placental 

barrier have been discussed (section 1.8.1). In addition, it should be noted that the data obtained from the 

small RNA Bioanalyser resulted in large discrepancies across repeat measures resulting in large SD error 

bars, which removed any significance across the treatment groups (see section 3.6.1.5). Due to the large 
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discrepancies in the datasets, we are unable to conclude as to whether there is a decrease or an increase in 

the concentration of small ncRNA molecules and miRNAs being released from the placental barrier under 

conditions of gestational hypoxia. The in vitro model implies a reverse trend to the in vivo model. 

Therefore, it will be essential to carry forth these two models for further investigations to decipher what is 

occurring under conditions of representative obstetric complications in utero.   

 Considerations & Limitations  

Bioanalyser readings are highly sensitive to human error, including overloading of samples, inaccurate 

ladder dilution and poor pipetting technique, resulting in skewed and inconsistent results. Furthermore, the 

samples were run on the small RNA microchip; however, due to the low concentrations of RNA present in 

the samples isolated from the exosome fragments, the results are more likely to be variable due to the 

reduced sensitivity in a microchip compared to a Pico chip. Therefore, future experiments should be 

performed using a Pico chip array to provide more sensitive readings when there are lower concentrations 

of RNA present in the samples. Nano Quant and Qubit are alternative methods used to detect the 

concentration of RNA in samples and could provide increased reliability to support the findings. 370  

  

 Examining whether there is active or passive secretion of small 

ncRNA & miRNA molecules across the barrier   

The in vitro model of the placental barrier was used to examine the viability of the cells across treatment 

parameters to measure the level of cell viability and apoptosis occurring as a result of changes in oxygen 

tension. The in vitro model was utilised to recapitulate a polarised barrier with distinctive maternal and 

foetal domains to determine the directionality of secretions from the placenta towards the foetus.  

For many cell lines including the BeWo choriocarcinoma cells lines, it is paramount that they are cultured 

close to one another in order for cross-talk with surrounding cells via the exchange of chemical signals 

forming a confluent barrier.371An insult of oxidative stress to the placenta can mediate programmed cell 

death, as determined by the presence of PARP cleavage within the conditioned media.372 It is important to 

note that cells undergoing the early stages of apoptosis will be present in the adherent cell populations:  

these are termed ‘postmitotic’ cells and are no longer classified as functional cells.371   

The results from conducting cell viability assays revealed a similar trend in percentage cell viability across 

the treatment groups; normoxia, chronic hypoxia and hypoxia-reperfusion, with no significant differences 

(Figure 3-9). These results are representative of previous studies conducted by Depoix et al. which 

revealed that in the in vitro model of cytotrophoblast cells there was no difference in the level of apoptosis 

which occurred in the conditions of normoxia compared to conditions of hypoxia (2.5% O2).373  

Although there was no level of a significant difference, there was a trend across repeats which suggested a 

decrease in cell viability when comparing the treatment group of chronic hypoxia (2% O2) and 

hypoxiareperfusion (2-12% O2) with the control vehicle (Figure 3-9). There was a greater decline in cell 
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viability when cells were cultured under chronic hypoxia for seven days compared to cells cultured under 

hypoxia reperfusion, which suggests that exposure of reperfusion (12% O2) for 24 hours rescued the 

viability of the cells. A potential reason for this could be due to increased levels of mitochondrial ROS 

(mtROS) which are generated in response to an insult of hypoxia-reperfusion. Increased levels of mtROS 

causes autophagy to be activated in an attempt to rescue the cell by triggering the cell to engulf vital 

intracellular molecules required for survival while ATP and external elements are limited as a result of 

reduced oxygen availability. 374 The recusing effect of the cell undergoing autophagy triggered by mtROS 

is a potential reason why the results show that the barrier has a slightly higher level of cell viability under 

levels of hypoxia-reperfusion in comparison to chronic hypoxia.   

An additional parameter which was explored was the effect of an antioxidant drug on cell viability across 

the different oxygen tensions. Under normoxic conditions, with the antioxidant drug, there was a slight 

increase in the level of cell viability, which implied that the presence of an external mitochondrial-targeted 

antioxidant drug in addition to the cells endogenous antioxidants may have an additive effect in shifting 

the natural balance of the redox homeostasis in favour of reducing ROS accumulation which occurs as a 

consequence of exponential cell growth and proliferation (Figure 3-9). However, when applied to cells 

cultured under conditions of hypoxia there was a decrease in cell viability, suggesting that the presence of 

the antioxidant drug may not offer treatment in reversing a hypoxic insult to the cells. This was particularly 

clear under conditions of chronic hypoxia and negated what was previously anticipated, however it may 

suggest that these alterations are not solely the result of hypoxia having implications on mitochondrial 

function but may be the consequence of other modes of cell damage which are not reversed by the 

antioxidant treatment drug which has been designed to target the mitochondria (section 1.13.5). These 

results relate to the findings obtained from performing Western blots which showed that there was an 

increased level of HIF1α under conditions of chronic hypoxia and in conditions of chronic hypoxia with 

the addition of an antioxidant drug (Figure 3-16). Therefore, implying that the antioxidant drug which 

targets the mitochondria was not involved in inhibiting the HIF pathway and reducing the implications of 

hypoxia.   

 Are small ncRNA molecules and miRNAs released from the barrier 

actively released via exosomes?   

Initial investigations were performed on media obtained from the in vitro model of the placental barrier and 

treated with an Exosome Isolation reagent to purify and isolate the exosome fraction from the total 

conditioned media. This separated the subclasses of miRNAs; those which are free-circulating miRNAs 

with those which are found in an encapsulated membrane-bound form. Our findings imply that there was 

an increase in the concentration of particles which are classified within the size range of being exosomes 

under conditions of hypoxia-reperfusion when normalised against the ‘blank’ control readings. However, 

under conditions of chronic hypoxia, there was a decrease in the concentration of exosomes within the 

conditioned media (Figure 3-10).   
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These findings are consistent with the literature which supports the theory that there is an increase in 

exosome secretion from the cytotrophoblast cells of the placenta, in response to stress, resulting in the 

onset of obstetric pathologies.375,376 The contention as to whether stress-induced exosome secretions have 

pathological or physiological roles has been reported in recent studies. Research by Troung et al. (2017), 

discovered that extravillious trophoblast cells (EVT) during early stages of gestation were able to release a 

significantly higher concentration of exosome particles containing miRNAs under conditions of hypoxia 

(1% O2) compared to the in vivo control condition of 8% O2. The miRNAs encapsulated within the 

exosomes were associated with pathological conditions, including pre-eclampsia and spontaneous preterm 

delivery. Their findings support the theory that aberrant exosomal signalling from EVT is an aetiological 

factor for obstetric complications.377 While Salomon et al. (2013) suggested that the release of 

cytotrophoblast derived exosomes under hypoxic settings acted as an adaptive response promoting 

endothelial cell migration and vascular tube formation to enhance spiral tube formation to permit increased 

levels of oxygen to the hypoxic regions. 378 Research by Eldh et al. (2010) examined exosomes released 

from murine mast cells exposed to oxidative stress and found differential expression in their miRNA 

content. They found that the exosomes protected recipient cells by attenuated loss of cell viability.379  

The isolation method used to purify exosomes relies on non-specific precipitation, and therefore, the 

resulting pellet is expected to contain other vesicles apart from exosomes. Therefore microvesicles 

(501000nm) were analysed as these are also able to shuttle miRNAs eliciting intercellular communication. 

Our results found that hypoxia-reperfusion conditions yielded the highest concentration of microvesicles, 

and the lowest concentration was observed in normoxia conditions (Figure 3-10).  

Assessment in the quantity of both small ncRNA molecules and miRNAs within the exosome fraction 

revealed conflicting trends compared to NanoSight analysis. The small RNA Bioanalyser indicated a 

higher concentration of both small ncRNA and miRNAs under conditions of normoxia within the exosome 

fraction in comparison to the treatment groups when the placental barrier was exposed to conditions of 

hypoxia and hypoxia-reperfusion (Figure 3-18). However, as previously discussed, there are limiting 

factors regarding the measurements obtained from the small RNA Bioanalyser, which leads to variability 

amongst repeat measures removing the accuracy in the detection for significance amongst treatment 

groups. Hence, validation of these findings must be conducted.  

Conversely, the lowest concentration of both small ncRNA and miRNAs were seen within the chronic 

hypoxia treatment group, which reflects previous findings when performing NanoSight which showed that 

there was a reduced concentration of exosomes present under conditions of chronic hypoxia compared to 

the control group. Therefore, with a lower concentration of exosomes, there is also a lower quantity of 

RNA signalling molecules present (Figure 3-14). Assessing the proportion of miRNAs within the small 

ncRNA concentration implies that there is a lower proportion of miRNAs across the experimental 

parameters present within exosomes compared to when analysing all the conditioned media. The findings 

infer that not only do miRNAs get sorted and packaged into exosome membranes for transportation but 

also other species of small ncRNA are also transported via this mechanism. 380The exception is with 
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regards to the treatment group of hypoxia-reperfusion which shares a similar proportion of miRNAs with 

its equivalent control condition (~50%).  The outcome for the assessment of the RNA content within the 

exosome vesicles suggests that control conditions yield the highest concentration of RNA molecules found 

in exosome form, however under conditions of hypoxia reperfusion there is a higher proportion of 

miRNAs in exosome bound form, whilst under normoxia conditions there is a higher proportion of other 

small ncRNA species present. The increased concentration of both small ncRNA and miRNA molecules 

under conditions which evoke ROS production, suggests that when the feto-maternal interface is exposed 

to conditions of hypoxia-reperfusion, it triggers ‘stressed’ cells to respond by sorting RNA molecules 

which can help adapt or protect recipient cells from the insult, giving them resilience.   

 Considerations & Limitations  

It is difficult to draw reliable conclusions regarding whether the miRNAs and small ncRNA released from 

the placental barrier under conditions of gestational hypoxia are released actively via exosomes or not, due 

to conflicting findings. To obtain a more reliable interpretation would require repeat measures to be 

conducted and to also assess the exosomes concentrations across the ex vivo and in vivo models to assess 

whether similar trends are seen across the experimental treatment groups.   

A fundamental limitation previously discussed is with regards to the significant discrepancies in variability 

surrounding measurements obtained from the small RNA Bioanalyser. This is seen when assessing the 

concentration of RNA molecules present within the exosome fraction where there are considerable error 

bars, which removes effects the interpretation of the findings by removing any level of significance 

witnessed between treatment groups.   

Furthermore, there are technical limitations associated with the process of isolating and purifying exosomes 

from conditioned media. Currently, there is not yet a standardised method for obtaining and isolating 

exosomes: there has been ongoing research into determining a standard, efficient and reliable 

method.381The approach utilised in this chapter used a Total Exosome Isolation Reagent (Life 

Technologies) due to its affordability, efficiency and recommendations of representing an accurate 

interpretation of the concentration of exosomes in conditioned media. 382,383However, there is deliberation 

as to whether the Total Exosome Isolation reagent (Life Technologies) can capture exosomes solely 

without also capturing protein aggregates, debris and other particles within different size ranges  

(microvesicles and apoptotic bodies) which would contaminate the findings. 384Therefore, it is unlikely that 

the method used to obtain the exosome fragments was highly reliable or accurate in providing purified 

exosomes in which to analyse the small RNA and miRNA contents. Our results illustrated this when 

assessing the concentration of microvesicles across the treatment groups. Conditions of hypoxia reperfusion 

yielded the highest concentration of microvesicles, inferring that larger vesicles contaminated the exosome 

precipitation method. Hence, we are unable to conclude whether the quantity of small ncRNA and miRNA 

molecules detected by the Bioanalyser were solely present in an exosome-bound form or whether they were 

also present in microvesicles. Furthermore, we are unable to distinguish whether the transfer and secretion 

of the RNA molecules are actively and passively secreted since the presence of exosomes supports that 
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active secretion may be occurring385, whereas the occurrence of microvesicles implies both passive and 

active section is occurring but through different machinery than exosomes.  

Therefore, the results provide an initial indication of the general trends in the concentration and proportion 

of miRNAs encapsulated in exosomes vesicles; however these experiments should be repeated using 

alternative means to isolate and purify exosome fractions to see whether the same trend is observed. Future 

investigations when performing repeats should consider using alternative methods for validating the 

exosome concentration. Methods which have been previously cited within the literature include aggregation 

of exosomes via lectins386, differential ultracentrifugation, sequential filtrations, immunoaffinity capture-

based technique and exochip isolation.387  

  

 Are the cells responding to an insult of gestational hypoxia or  

ROS?  
Initial investigations assessed whether the changes in the concentrations of both small ncRNAs and miRNAs 

under the different exposures were a consequence of the b30 BeWo cells in the in vitro model of the feto-

maternal interface responding to hypoxic signalling or whether they were responding to secondary ROS 

signalling.   

As previously reviewed (section1.6.1.1) HIF1α is a crucial marker for hypoxia, it was therefore presumed that 

we would be able to identify the presence of HIF1α within the cell lysates which had been exposed to levels 

of gestational hypoxia. Figure 3-16 revealed that cells cultured under conditions of 2% oxygen  

(chronic hypoxia) had the highest concentration of HIF1α protein present within the cell lysates compared to 

the control vehicle of 21% oxygen. As anticipated the concentration of HIF1α was slightly decreased under 

conditions of hypoxia-reperfusion in comparison to chronic hypoxia. This was to be expected as HIF1α is 

known to be rapidly degraded by proline hydroxylation under conditions of reoxygenation 388.  

However, CA9, a downstream target of HIF1α, was found in abundance across all the treatment groups at a 

consistent level. The findings negate initial predictions since when blotting for HIF1α, the results inferred 

that HIF1α was only present only under conditions of 2% and 2%+(MQ-NP). Therefore, it would be 

expected that only under these same conditions would a downstream target of HIF1α be present. A 

potential explanation for this finding is that HIF1α has already been activated following the exposure but 

has degraded during sample collection and processing and hence the signal of HIF1α has been lost and is 

undetectable in some of the samples. Another consideration is that for downstream targets, only the slight 

presence of its target protein is required in order to activate it to its full potential; therefore even a slight 

background presence of HIF1α would be sufficient to trigger the activation of CA9. The BeWo cell line is 

a choriocarcinoma cell line and is therefore adapted to thrive and proliferate under conditions of anoxia 

and hence will respond differently to exposures of oxidative stress, in comparison to cells which would 

otherwise be hindered by reduced oxygen tensions.389  
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In addition, we examined the alternative isoform of HIF (HIF2α), which has been associated with chronic 

exposure of anoxia conditions390(Figure 3-16). It was anticipated that high relative concentrations would 

be present under conditions of chronic hypoxia (2% O2); however, a low abundance of the protein was 

observed in the cell lysates. A potential explanation for the low abundance of HIF2α is with regards to the 

chromatin status within different tissue types. Studies have inferred that different tissue types are more 

prone than others to activating HIF2α under chronic exposures of hypoxia391.  

 Does the application of a mitochondrial-targeted antioxidant  

effect influence small ncRNA/miRNA secretions?  
  

We further explored the implication of applying an antioxidant drug which specifically targets the 

mitochondria to the cells for a period of 24 hours to examine whether the antioxidant drug was able to 

inhibit the onset of HIF transcription factor and its downstream targets which are involved in a wide array 

of processes ranging from angiogenesis, apoptosis, proliferation, stemness and metastasis. 392 It is well 

established within the literature that hypoxic conditions are associated with the onset of ROS production. 

393 As previously reviewed (section 1.4.1), the mitochondria are a prime location for ROS production, 

which originates from complexes I, II and III. Complex III is a transmembrane protein complex which can 

generate oxygen radicals into both the matrix and the inter-membrane space whereby ROS can be 

transported into the cytoplasm where it exerts its effect upon cell signalling pathways and can induce HIF 

pathways. It has shown that cells cultured under conditions of hypoxia undergo conformational changes in 

complex III which enhances the interaction between oxygen molecules in the electron transport chain with 

ubisemiquinone, this interaction results in the production of ROS molecules.134 Furthermore, within the 

inner membrane of the mitochondria complex II undergoes a conversion from succinate dehydrogenase to 

fumarate reductase under hypoxic conditions which also promotes ROS generation. 394  

 In accordance to the current literature surrounding the interconnected relationship between ROS and 

hypoxia, we initially hypothesised that the level of HIF1α would be reduced in the presence of an 

antioxidant drug by targeting the mitochondria and reducing the generation of ROS signalling molecules. 

The reduction of ROS, would, in turn, diminish the signalling for activating the HIF pathway, which is 

switched on under hypoxic conditions. However, the results obtained revealed that under a chronic 

exposure of hypoxia, the presence of the activated transcription factor, HIF1α, remained consistent with 

the addition of an antioxidant across the three replicates. The results negate the initial postulation and 

suggest that the MitoQ antioxidant drug may be working on inhibiting ROS production, however not the 

select species which alter the signalling of the HIF pathways (Figure 3-16).  

We initially examined whether the in vitro model was responding to a hypoxic insult or the secondary 

implication of ROS signalling by performing Western blot on cell lysates obtained from the in vitro model 

after an exposure to either a hypoxic insult in the presence of the antioxidant drug or an insult of hypoxia 
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reperfusion with the application of the antioxidant drug. The results showed that the cells did not respond 

to hypoxia only but may also be responding to the generation of ROS. When analysing the protein 

concentration of HIF1α, there is a substantial difference between hypoxia-reperfusion (2-12%) and 

(212%+MQ-NP). The antioxidant drug appears to be affecting the way the cells responded to hypoxia/ROS 

(Figure 3-16).   

Additional analysis was performed to examine whether the application of the antioxidant drug administered 

to the placenta was able to influence the mechanism which contributed to the alterations in the level of 

secretions of both small ncRNA molecules and miRNAs. We analysed across the three models of the 

placental barrier the implication of the antioxidant drug when applied to the placental barrier under 

conditions of hypoxia-reperfusion since the antioxidant drug was designed to target ROS molecules which 

are known to be generated under conditions of hypoxia-reperfusion. 365 We had predicted that the 

antioxidant drug would alter the concentration of both small ncRNAs and microRNAs released from the 

placental barrier since current literature implies a role for miRNAs in regulating redox reactions within the 

mitochondria.395 Mitochondria contain proteins which are mainly encoded by the nuclear genome and may 

serve as a potential site for miRNA-mediated post-transcriptional regulation, altering mitochondrial 

function396. A prime example is hypoxamiRs miR-210, which is induced under conditions of hypoxia due 

to alterations in the mitochondrial membrane potential under conditions where hypoxia HIF1α is activated, 

which in turn upregulates miR-210 and ROS generation. During periods of reperfusion, there is an influx 

of ROS which is regulated by miRNAs under conditions of oxidative stress396. Prime examples of which 

include specific miRNAs known to regulate NOX family of NADPH oxidases, which are associated with 

proapoptotic activity and ROS production, include miR-25, a direct target of NOX4 397and miR-34a, a 

direct target of NOX2 396.  

 In vitro model findings  

The in vitro model revealed that the application of the antioxidant drug caused a reduction in the 

concentration of small ncRNA molecules and miRNA molecules. Results suggest that the drug affects the 

mechanism which causes the release of the molecules from the placenta upon exposure of hypoxia 

reperfusion.  A reverse trend is seen in how the drug influences the proportion of miRNAs which are 

secreted from the barrier within the total small ncRNA. There is an increased proportion of miRNAs 

within the total small ncRNAs, under conditions of hypoxia-reperfusion with the application of the 

antioxidant treatment drug (Figure 3-18).  

 Ex vivo model findings  

The ex vivo model revealed that the application of the antioxidant drug caused a reduction in the 

concentration of small ncRNA molecules released from the first trimester placental explants. However, the 

administration of the therapeutic drug to the explants under conditions of hypoxia-reperfusion caused an 

increase in the concentration of miRNAs, which is the reverse trend observed in the in vitro model (Figure 

3-18). Analysis of the proportion of miRNAs within the total small ncRNA concentration showed that 
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compared to the control vehicle, there was an increased proportion of miRNAs (Figure 3-19). The findings 

suggest that the antioxidant drug can increase the concentration of miRNAs secreted from the explants by 

altering the level of ROS generated under conditions of hypoxia-reperfusion. Potentially allowing the cells 

to recover from the stress of reperfusion and permit the cells to secrete the basal level of miRNAs which 

would be released under physiological conditions.  

 In vivo model findings  

Figure 3-19 revealed that within the in vivo model there was a consistent reduction in the concentration of 

both small ncRNA molecules and miRNAs secreted from the rodent placental barrier in response to 

conditions of normoxia, hypoxia and hypoxia-reperfusion, which is consistent with the trend seen in the in 

vitro model of the placental barrier(Figure 3-18). The results infer that the antioxidant drug can influence 

either the biogenesis pathway of small ncRNA/miRNAs or the sorting and secretory pathway of the 

molecules via altering the level of mitochondrial ROS 398,399Of interest the proportion of miRNA 

molecules within the total small ncRNA content was found to be slightly higher in comparison to the 

conditioned placental media obtained from the rodent mothers which were treated with the treatment drug 

compared to the saline injection(Figure 3-20). The results suggest that despite the drug lowering the 

concentration of both small ncRNA and miRNAs, it has a pyrethrin effect upon other small ncRNAs in 

comparison to the subclass of miRNAs. These findings coincide with the trend seen across both the in vitro 

and ex vivo model, which supports that the antioxidant drug appears to work consistently across the models 

exerting similar effects.  

 Overview   

Overall when addressing the implications for the administration of the antioxidant drug to the models of 

the placental barrier, the results infer that the concentration at which the dosage has been applied (0.5µM) 

for both the in vitro and ex vivo model and 125µM for the in vivo model is appropriate to exert an effect 

upon the secretions of both small ncRNAs and microRNAs from the interface. Furthermore, the results 

have revealed that both the in vitro and the in vivo model of the placental barrier have shown similar trends 

in the effects of the drug on the concentration of both small ncRNAs and miRNAs released from the 

barrier. This provides confidence in the findings obtained from the in vitro model as being able to 

represent to a similar degree what may be occurring physiologically in vivo. The results imply that the 

application of the antioxidant drug can reduce both the concentration of small ncRNA and miRNA 

molecules released from the placental barrier, however the overall proportion of miRNAs within the total 

concentration of small ncRNA molecules is increased suggesting that the drug exerts a greater effect upon 

other species of small ncRNA molecules compared to miRNA molecules.  
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Chapter 4.  Determining the potential 

role of MicroRNAs released from the 

Feto-maternal interface  

4.1 Introduction  
The early stages of gestation mark a highly sensitive period for the developing conceptus to exogenous 

stimuli, which can result in long-lasting genotoxic and teratogenic effects.400–402Exposures of genotoxic 

insults during critical stages (weeks 3-8 of gestation) can lead to aberrant development. During the first 

trimester, the foetus is undergoing rapid cell division forming critical organ systems including the CNS, 

cardiovascular and renal systems. A teratogenic exposure during this period of organogenesis can result in 

severe structural and functional anomalies including; cognitive impairment, neonatal hypoglycaemia, 

impaired vasculature and lung immaturity.403The outcome of a genotoxic stimulus to the developing foetus 

is dependent upon a host of factors but primarily is dependent upon; the timing, the duration, the type of 

exposure, the dose, and the route of teratogenicity. Teratogenic exposures to the foetus have been widely 

reviewed as initial insults which render the conceptus at a heightened risk for developing neurological 

impairment404, oncological diseases325 and cardiovascular abnormalities.405–407  

It is well established within the literature that the interface between the mother and foetus the placenta 

plays a pivotal role in foetal programming. 1,321 Previous research conducted within our research group has 

shown that DNA damaging agents including; nanoparticles, altered oxygen and xenobiotic exposures, 

which cause oxidative stress to the trophoblast barrier,  resulted in the release of factors from the 

trophoblast barrier that induced indirect DNA damage to both embryonic stem cell143,408 and fibroblast 

cells 141,152,409.Research conducted by Jones et al.(2015), revealed that a connexin-43 dependent cytokine,  

TNFα, was able to act as an essential signalling  molecule, eliciting a DNA damaging effect on exposed 

bystander embryonic stem cells via the in vitro model of the placental barrier, thus providing a proof-

ofprincipal that bystander signalling was able to occur across the placental barrier after a DNA damaging 

exposure to the maternal side of the placenta.143  

Oxidative stress and aberrant mitochondrial activity is a known genotoxic agent which has been widely 

attributed to the onset in neuropsychiatric disorders including schizophrenia410 and autism.411,412 A range 

of neurodevelopmental disorders including; Huntington's disease, Alzheimer's disease, Parkinson's disease, 

Down syndrome and amyotrophic lateral sclerosis, have been associated with increased oxidative stress 

which renders impairment to the base excision repair pathway responsible for repairing DNA damage.413. 

It is established within the literature that DNA damage is a determinant in the aetiology of neurological 

pathology414. However, as discussed previously (section 1.3), many neurological disease aetiologies begin 
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from early prenatal in utero exposures which render the conceptus highly vulnerable and susceptible in 

later life to being affected by a secondary exposure which triggers the onset of the pathologic state.25 With 

this in mind, research has focused on exposures of known genotoxic agents to the placental barrier to 

examine whether a DNA damaging effect can be elicited upon the developing foetus and alter foetal 

programming.   

An insult by a DNA damaging agent triggers an intercellular DNA damage response (DDR). The DDR 

pathway determines the cells fate to either repair DNA damage or to instruct the cell to undergo 

programmed cell death, apoptosis.415 Post-translational modifications are vital players in regulating the 

activity of critical proteins complexes within the DDR pathway 415,416MicroRNAs are endogenous 

posttranscriptional regulators which can mediate protein expression in response to DNA damage.415,417 

MicroRNAs are vital for genomic stability and regulate the cellular response to DNA damage via 

activation of cell cycle checkpoints, transducing the DNA damaging signal, eliciting DNA repair and 

inducing apoptosis.272,417,418 However, the mechanism of the interaction between both miRNA pathways 

and the DDR induction in response to genotoxic stimuli remains to be determined (section 1.12).  

Exposures of different DNA damaging stimulants at varying degrees of expsoures has been found to elicit 

differential miRNA expression within cells, suggesting that miRNAs regulate the DNA damage response 

by a mechanism based on both the nature and intensity of  the stimulant.419 Several DNA damage related 

miRNAs and their targets have been identified, however many remain to be identified.  Table 8 provides a 

list of known miRNAs associated in the DDR as discussed in an in-depth review by  

Wan et al. (2011) 416  
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Table 8 List of genes involved in the DNA Damage Response (DDR) and their associated microRNAs  

(Table adapted from Wan et al. (2011)416  

DNA Target  Functional Role 

Genes  

Associated miRNAs  

ATM  Mediator/transducer  miR-421  

H2AX  Mediator, DNA repair  miR-24  

RAD52  DNA repair  miR-210, miR-373  

RAD23B  DNA repair  miR-373  

MSH2  DNA mismatch repair  miR-21  

BRCA1  DNA repair  miR-182  

p53  Cell cycle checkpoint,  miR-504, miR-125b  

p63  Transcription factor  miR-92, miR-302  

E2F  Transcription factor  miR-17-92, miR-20a, miR-34a  

p21  Cell cycle  miR-17, miR-20a/b, miR-106a/b, miR-93, miR-215, 

miR192  

CDK2  Cell cycle  miR-124a, miR-885-5p  

CDK6  Cell cycle  miR-124a, miR-29, miR-449a/b  

Cdc25A  Cell cycle checkpoint  miR-21, miR-449a/b  

Cdc42  Cell cycle checkpoint  miR-29  

Cyclin E  Cell cycle  miR-15a, miR-16  

Cyclin D  Cell cycle  miR-15a, miR-16  

Cyclin G1  Cell cycle  miR-122  

Wee1  Cell cycle checkpoint  miR-195  

p27  Cell cycle  miR-221/222, miR-181  

p57  Cell cycle  miR-221/222  

Wip1  Cell cycle checkpoint  miR-16  

Bcl-2  Apoptosis  miR-15a, miR-16-1  

  

In the previous chapter, we explored whether miRNAs were secreted into conditioned media released upon 

an insult of gestational hypoxia and hypoxia-reperfusion. Our findings revealed that in both the in vitro 

and ex vivo model, there was not a significant change in the concentration of miRNAs secreted from the 

placental barrier. However, the in vivo model did reveal increased expression of miRNAs within the 

conditioned media upon hypoxia-reperfusion. Initial findings also found that in the in vitro model, there 

was an increase in the concentration of exosomes released from the placental barrier in response to an 

exposure of hypoxia-reperfusion. Curtis et al. (2014) infer that exposure to hypoxia and hypoxia 

reperfusion elicits a DNA damaging response via the placental barrier upon embryonic neuronal cells152. In 

accordance with the literature, we aimed to explore whether the miRNAs secreted from the placental 

barrier are a potential mechanism for signalling DNA damage to foetal cells.  
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To our knowledge, there is limited research into assessing whether miRNAs secreted into the foetal 

domain upon a genotoxic insult is a mediator for cytotoxic effects on exposed foetal cells. In order to 

assess whether miRNAs act as the signalling molecules that elicit DNA damage via the placenta, the in 

vitro placental barrier was exposed to known genotoxic agents. The conditioned media was then treated 

with miRNA depletion techniques and exposed to foetal cells to see whether the signal for DNA damage 

was lost or gained in response to miRNA removal.   

 Genotoxic stimuli   

 Hypoxia/Hypoxia-reperfusion  

Chronic exposure of oxidative stress has been associated with evoking detrimental implications at a 

cellular level;  DNA damage, aberrant  DNA repair, alterations in epigenetic regulation, enhanced 

apoptosis and impairment to signal transduction pathways involved in cellular homeostasis.420 An insult of 

hypoxia or hypoxia-reperfusion generates increased ROS (hydroxyl radicals and hydrogen peroxide) levels 

within the mitochondria of the exposed cells. Low levels of oxygen increase ROS via the transfer of 

electrons from ubisemiquinone to molecular oxygen at the complex III of the electron transport chain at 

the Q10 site. 421.Under physiological conditions, the by-products of oxidative stress are neutralised by 

endogenously produced antioxidants.422 Under pathological states, there is an imbalance between ROS and 

endogenous antioxidant levels; with an increased generation of ROS outweighing the production of 

endogenous antioxidants (SOD, catalase, and glutathione peroxidase) causing cells to be in a state of 

oxidative stress.   

Oxidative stress is detrimental to cell survival by interfering with signal transduction pathways resulting in 

DNA single and double-stranded lesions (DSB), DNA base modifications and apurinic lesions. 423,424 

Following exposure of hypoxia-reperfusion, the level of intracellular ROS increases, which mediates acute 

cellular injury. Reperfusion elevates the level of hypoxanthine to be produced as a by-product of ATP 

metabolism. The enzyme xanthine oxidase is triggered converting molecular oxygen into reactive 

superoxide and hydroxyl radicals.425 The accumulation of reactive radicals initiate redox-signalling 

cascades and ultimately results in further DNA damage to components of the cell membrane.365 The 

increased level of ROS after an insult of hypoxia-reperfusion is related to DNA breakages, alterations in 

cell cycle and ultimately apoptosis. 426 HIF1α induces p53 transcription during periods of hypoxia, which 

is enhanced after cells are exposed to hypoxia-reperfusion. Checkpoint Kinases (1 &2) are serine/threonine 

kinases involved in arresting cell cycle after DNA damage has occurred: they act upstream of p53. DNA 

damage activates p53, but the alterations in checkpoint signalling are believed to help maintain the 

integrity of the genome and prevent replication of damaged DNA426(Figure 4-1). Kumareswaran et al. 

revealed that hypoxic exposure to human fibroblast cells resulted in genetic instability. Markers of DNA 

damage, phosphorylated histone (γ-H2AX) and p53 binding protein 1 (53BP1), were enhanced within the 

internuclear foci under hypoxic settings with heightened levels of DSB. The findings revealed that hypoxic 

settings impair DNA DSB repair mechanisms mediating genomic instability385.    

https://en.wikipedia.org/wiki/Hypoxanthine
https://en.wikipedia.org/wiki/Hypoxanthine
https://en.wikipedia.org/wiki/Adenosine_triphosphate
https://en.wikipedia.org/wiki/Adenosine_triphosphate
https://en.wikipedia.org/wiki/Adenosine_triphosphate
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Figure 4-1. Schematic representation of pathways triggered upon different exposures of hypoxia/hypoxia-reperfusion and the effect upon cell cycle, cellular genomic 

stability and sensitivity  

Those highlighted in red represent the route of exposure which have been assessed in this chapter. In accordance to the literature an exposure of hypoxia-reperfusion would increase 

genomic instability and promote DNA damage via ROS generation. Chronic hypoxia exposure occurs over hours and days and results in decreased translation and altered protein 

transcription. A consequence of chronic hypoxia can either bypass Ataxia telangiectasia mutated (ATM) and ATM and RAD3-related (ATR) which are types of phosphatidylinositol 

3kinase (PI 3-kinase) responsible for maintaining genomic stability in adverse DNA damaging stimuli. Once activated, ATM and ATR phosphorylate DNA repair/checkpoint targets 

which include p53, CHK2, NBS1 and BRCA1. If there is a bypass in ATM and ATR then the cell signalling cascade for DNA repair will not be activated and there will be decreased 

DNA repair. This may result in the cell effected by DNA damage to have increased sensitivity to hypoxia-reoxygenation (HR) agents. Alternatively the damaged cell may go on to 

proliferate with residual DNA damage with potential chromosomal aberrations. An exposure of Hypoxia-reoxygenation also results in a damaged cell proliferating after bypassing the 

ATM and ATR checkpoints resulting in increased genomic instability. An acute exposure of hypoxia activates the Hypoxia-Inducible Factor (HIF1α) which in turn activates ATM, ATR 

and Checkpoint 2 (CHK2). If reoxygenation incurs then here is increased level of Reactive Oxygen Species (ROS) and the reversible G2 checkpoint in the cell cycle is activated which 

results in increased genomic instability. Alternatively if there is no further reoxygenation then HIF1α will activate Vascular endothelial growth factor (VEGF) and Lysyl Oxidase (LOX) 

which results in increased metastasis, spreading from the primary site of damage to secondary sites. This image was adapted from; http://dxline.info/diseases/hypoxia.   
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 Pesticides  

Pesticides are a growing concern to global health with great controversy as to whether the benefits of 

yielding high crop turnover for the growing population outweighs the potential health implications 

associated with exposure to high doses of pesticides in the agricultural environment. One of the most 

common pesticidal formulas includes the combination of pyrethroids with the synergist piperonyl butoxide 

(PBO)427  

Pyrethroids are synthetic chemical insecticides that have a modified chemical structure to mimic the 

naturally occurring pyrethrin which is produced by pyrethrum flowers. Pyrethroids gained attention as a 

popular alternative to using dichlorodiphenyltrichloroethane (DDT) and organophosphates due to lower 

risk of mammalian toxicity and quick biodegradable rates.428 Pyrethroids are still classified as being highly 

toxic and are less biodegradable compared to the naturally occurring pyrethrin.  

Pyrethroids act as excitotoxins within axons that cause voltage gated inhibition, resulting in neurotoxic 

death in insects. Pyrethroids work in combination with a synergist analogue, such as piperonyl butoxide. 

Piperonyl butoxides act by prohibiting metabolic attack of the pyrethroid, permitting the insecticide to 

reach its biochemical target, preventing the insect from detoxifying the neurotoxic effect of the 

pyrethroid.429 Piperonyl butoxide inhibits mitochondrial CYP450 enzymes, which are critical in 

metabolising catalytic reactions to degrade toxic xenobiotics from the body, thus causing an accumulation 

of the toxin to harmful levels.430  

The combination of pyrethroids with their synergist piperonyl butoxide has been classified as safe by 

government standards with no substantial evidence of being toxic to humans. However, Piperonyl 

butoxide has been classified as a group C Carcinogen ‘A possible Human carcinogen’ in accordance with 

the Environmental Protection Agency (EPA).431 Studies evaluating the long-term implications of using  

pesticides have found controversial findings which imply potential health implications and toxicity to non-

target organisms, the environment and individuals in the occupational field.432  

Studies examining the effects of exposure of pyrethroids to workers in the insecticide producing sector 

yielded contentious findings which suggest the association between exposure of the pesticidal formula and 

endocrine disruption in humans as well as impairment to liver function. 433 Additionally, Pyrethroids have 

further been associated with having immunotoxic effects by weakening the human immune system, 

altering the production of cytokines in T-lymphocyte cultures. 401  

Adverse health effects of conventional pesticides have been the centre of considerable controversy over 

recent decades with extensive research being reviewed in order to determine how this may have a crucial 

role in detrimental foetal outcomes with long-lasting implications into adulthood. 434 Many animal and 

epidemiological cohort studies have highlighted the potential detrimental implications of conventional 

pesticides on the development of neurological outcomes.  Reviews have shown that across studies there 
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are trends with children who have been exposed prenatally to organophosphate pesticides (OP) both 

having impairments in cognitive, psychomotor and behavioural development, having compromised short-

term memory and diminished mental development. 435 Research conducted by Furlong et al. analysed the 

levels of prenatal pyrethroid metabolites in the mothers' urine and found a negative association with 

behavioural outcomes in offspring; shown to have a higher risk of developing depression, difficulty in 

emotional control and behavioural regulation. 436  

 Benzoquinone & Hydroquinone  

Benzene pollution is prevalent in many industrial regions as it is derived from a plethora of sources as a 

by-product of manufacturing and production including; pharmaceutical industries, emissions from the 

polystyrene industry, additives in textiles and dyes and insolvent paint production. Benzene is also a 

natural component of crude oil and is produced in vast quantities from petroleum and is used in the 

synthesis of aromatic hydrocarbons. The most significant source of benzene metabolites is via fossil fuel 

combustion through exhaust emissions into the atmosphere and inhaled by citizens (WHO, 2000). 

Cigarette smoking is also a leading contributor to high indoor benzene pollution levels.437 The main route 

of human exposure can arise occupationally or environmentally via inhalation. However, benzene 

exposure can also be by dermal contact or oral intake through diet.  Approximately 99% of benzene 

exposure is through inhalation alone.  

Benzene is metabolised in the liver and the bone marrow by CYP4502E1 oxidation pathways that produce 

free radicals in the form of ROS and quinone metabolites in the form of phenol, hydroquinone, 

benzoquinone and 1,2,4-benzetriol. It is the by-products of this oxidation process which gives benzene its 

cytotoxic nature. The combination of benzene metabolites and the production of ROS can result in lipid 

peroxidation that has adverse implications for the cells integral membrane structure and composition and 

can result in cell death. Both exposures of benzene and its metabolites, specifically 1,2,4-benzetriol and 

hydroquinone, result in high levels of DNA damage as a result of the augmentation of ROS disrupting cell 

signalling pathways 438(Figure 4-2).  

It has been established in the literature that exposure of benzene metabolites elicits DNA damaging effects 

upon exposed cells via oxidative stress and through the induction of apoptosis. 439 Studies have examined 

the implication of direct exposure of benzene metabolites, which are responsible for causing DNA damage 

in vitro studies to human lymphocytes,440 foetal liver cells 441 and HL60 cells. 442 These findings have been 

supported by in vivo murine models where pregnant dams were injected either with 200mg/kg or 

400mg/kg during GD (7-15). The findings showed a significant increase in micronucleated cells and 

recombination events in foetal hematopoietic tissue443. Prenatal exposure to benzene has been associated 

with adverse pregnancy outcomes including low birth weights,444 preterm births, and neural crest 

malformations445and reduced head circumference.446 Rodent studies have determined that chronic benzene 

exposure can be a risk factor for Alzheimer’s disease by causing inhibition of the acetylcholinesterase in 

the brain. Lo Pumo et al. found an association in rodent neonates of benzene exposure with cognitive 

dysfunction concerning animal behaviour and motor reflexes.447  
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Benzene exposures have also been one of the first xenobiotic pollutants examined to see how it alters 

epigenetics.  Novel research conducted by Bollati et al. examined the effects of a low-dose insult of 

benzene on the human epigenome. They reported a decrease in genome-wide methylation of long 

interspersed nuclear element-1 (LINE-1) and AluI repetitive elements, gene-specific hypermethylation in 

p15 and hypomethylation in Melanoma-associated antigen 1 (MAGE-1).448   
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Figure 4-2 A schematic to represent the metabolism of Benzene and its metabolites  

Representation of the mechanism in which Benzene elicits a toxic effect both on a molecular and cellular level, resulting in 

both carcinogenic and systematic toxicity within the human body via a ROS induced pathways. Benzene can undergo  
oxidative metabolism via  Cytochrome P450 2E1  (CYP2E1) which is involved in the  metabolism of xenobiotics in the body,  
which results in the production of the by-product Reactive Oxygen Species (ROS). In turn, oxidative metabolism of benzene  
results in molecular alterations including oxidative DNA damage and cellular signalling pathway responses. Ultimately   
resulting in toxic implication.  Image adapted from D’Andrea & Reddy (2018).    
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4.2 Aims & Hypotheses   
We hypothesise that removing miRNAs from the conditioned media obtained from the in vitro model of 

the placental barrier will alter the level of DNA damage on secondary by-stander fibroblast cells, a mimic 

of neonatal cells. In order to assess the role of miRNAs in signalling DNA damage to bystander cells, two 

distinctive methods were utilised to deplete miRNAs within the conditioned media secreted from the 

perturbed placental barrier upon a DNA damaging agent; those within exosome bound form using 

ultracentrifugation and those which are found free-circulating within plasma medium, using RNaseA 

treatment. The level of DNA damage was assessed using the Alkaline Comet assay to measure single 

stranded, and double-stranded DNA breaks within individual bystander cells.  

4.3 Experimental Design  
Indirect exposure of primary fibroblast cells to known DNA damaging stimulants across a bi-layered 

BeWo barrier was achieved, as described in section 2.8. The in vitro model of the placental barrier permits 

for directional interpretation of release of miRNAs from the placental barrier upon an insult into the 

basolateral domain of the model which represents the foetal-facing side of the placenta. It is essential to 

assess this directionality of secretions and distinguish between the maternal and foetal domain to assess 

whether secretions from the barrier are able to directly enter the foetal circulation. In brief, a confluent 

bilayer of BeWo cells was suspended in the well of a 12-well tissue culture plate. The BeWo barrier in the 

apical, maternal domain was exposed to DNA damaging agents including pesticides, benzoquinone and 

hydroquinone and a hypoxic insult. After 24hrs conditioned fibroblast cell culture medium was collected 

from below the barrier and stored at -80oC.  In order to assess whether DNA damage was achieved, a 

control vehicle of unconditioned culture media was assessed against conditioned media obtained from the 

basolateral chamber of the in vitro model (section 2.3.1).   

A method of eliminating the miRNAs from the conditioned media before being exposed to the fibroblast 

cells was adopted to assess the implications of indirect exposure to the fibroblast cells upon a DNA 

damaging insult to assess whether microRNAs may act as DNA signalling molecules via the placenta. 

Two methods were used in the investigation to target both free-circulating miRNAs and those that are 

encapsulated in microvesicles. In order to remove free-circulating miRNAs, the conditioned media was 

incubated for 1 hour with RNaseA (4.5U/mL) before being exposed to the fibroblast cells for 24 hours 

(section 2.7.1.1). Alternatively, in order to remove miRNAs which are encapsulated within the exosome 

bound form, treatment of the conditioned media with ultracentrifugation (30,000rpm) for 2 hours was used 

(section 2.7.1.2). Once spun, the pellet containing the exosomes was removed, and the remaining 

supernatant was used as conditioned media to expose onto the fibroblast cells for 24 hours. An additional 

parameter assessed the combination of the two techniques for removal of miRNAs from the conditioned 

media, in order to target both free-circulating microRNAs and those in encapsulated within exosomes.   

To assess DNA damage in the barrier, primary BJ fibroblast cells were analysed using the alkaline comet 

assay after 24 hours of indirect exposure to the conditioned media (section 2.8.3). This assay measures single 



  ~Chapter 4~  

                         

143  

  

and double-strand breaks and alkaline labile sites in individual cells. For each parameter explored, three 

experimental repeats were performed, and from each repeat, 300 individual cells were assessed for their level 

of damage using Comet Assay IVTM   software. The Tail Moment values for each repeat were recorded, and 

the mean Tail Moment values were graphed. Statistical analysis was performed using IBM SPSS statistics 

21 software in accordance with statistical approaches advised by Yan et al. (2017) for biomedical sciences 

316. Moreover, discussions with a statistician helped to decide the best statistical approaches to carry out with 

the Alkaline Comet Assay dataset.   

The Alkaline Comet data was first assessed using the Shapiro-Wilk and Levene’s Test for examining the 

normality and homogeneity of variance, respectively. For normally distributed data, a Student’s t-tests were 

applied for comparing the mean differences between two experimental parameters, with the mean values 

plotted with standard error. One-way analysis of variance (ANOVA) was used for normally distributed data 

where three or more experimental groups means were compared.  If significance was observed (p<0.05), a 

post hoc Bonferroni test was used to compare each treatment groups to one another in all possible 

combinations. If two or more independent variables were being assessed against three or more dependent 

variables, a two-way ANOVA test was performed. If significance was observed (p <0.05), a post hoc 

Bonferroni test was used to compare each treatment groups to one another in all possible combinations.  

Due to the nature of the Alkaline Comet Assay, the datasets were highly variable within treatment groups, 

and therefore the majority of the outputs were deemed not normally distributed and were unable to be 

corrected for by log-transformation, therefore a non-parametric test was required. When comparing two 

experimental parameters, a Mann-Whitney U test was performed displaying medians with error bars 

displaying IQR. The IQR was plotted to show the spread of the dataset and describes the middle 50% of 

values when ordered from lowest to highest and is not affected by outliers within the data. When three or 

more experimental parameters were compared, a Kruskal-Wallis test was performed displaying the 

medians and IQR error bars. If significance was observed (p<0.05) a post hoc Dunn’s test was used to 

compare each treatment group against one another in all possible combinations.  

Graphs were created using GraphPad Prism 6 and Microsoft Excel 2013. Significance was measured 

against control unless otherwise stated (*p < 0.05, **p < 0.01, ***p < 0.001, ****p<0.0001).  
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Figure 0-1 Schematic representation of the experimental procedure for assessing the potential role miRNAs may play 

in the DNA damage response 

The in vitro b30 BeWo placental barrier model was cultured for seven days to produce a confluent bilayer barrier and then exposed 

to a known DNA damaging agent for a period of 24 hours. The conditioned media obtained from the basal domain below the barriers 

was obtained. The conditioned media was then treated into different miRNA depletion techniques. 

17. Untreated 

18. RNaseA treated (4.5U/mL,4oC,1hr incubation) 

19. Ultracentrifugation (30,000rpm, 2hrs, 4oC) 

20. RNaseA + Ultracentrifugation-conditioned media was first ultracentrifuged (30,000rpm, 2hrs, 4oC) and then treated with 

(4.5U/mL,4oC,1hr incubation).  

The treated conditioned media was then exposed to primary BJ fibroblast cells representative of foetal cells for an additional 24 

hours. The cells were then harvested, and the Alkaline Comet assay was performed to assess for the single-stranded breaks (SSB) 

and double-stranded DNA breaks (DSB) by obtaining the Comet Tail Moment as a measure for the severity of DNA damage. 
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4.4 Results   

 Determining Positive control for the Alkaline comet assay   

To govern whether miRNAs were involved in causing DNA damage, we first had to ensure that we were 

able to induce DNA damage in the form of either single or double-stranded breaks within the exposed 

fibroblast cells.   

We used known DNA damaging agents which had been previously shown in both the literature and within 

our research group as being positive DNA damaging agents152,153.  

  

 

Figure 4-4 Alkaline Comet assay analysis of preliminary investigation of an indirect exposure of known DNA 

damaging stimulant to the in vitro model of the placental barrier  

Alkaline Comet assay analysis measuring the Mean tail Moment (A.U) as a representative measurement for the level of 

DNA damage to the exposed primary fibroblast cells after an indirect exposures of DNA damaging agents in comparison to 

their respective controls; Pyrethroids+Piperonyl Butoxide (1.3ug/ul), BQ+HQ (30µM) and hypoxia-reperfusion (2-21% O2) 

to the in vitro BeWo barrier for a period of 24hrs. Statistical analysis was performed using a Mann-Whitney U test for 

independence The median Tail Moment(A.U) is depicted (±IQR). Differences between treatment groups, indicated with an 

asterisk (*), were significant for p < 0.05.  (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). (n=3) in technical 

replicates. 

  

Results obtained from the Alkaline comet assay to assess for DNA damage revealed that there was a 

statistical decrease in the level of DNA damage with an insult of pyrethroids and piperonyl butoxide 

(1.3ug/µL) (median Tail Moment=0.8 A.U, IQR=0.2-2.2) in comparison to unconditioned media control 

(median Tail moment =1.2 A.U, IQR=0.4-2.8), revealing that the pesticide combination was not a DNA 

damaging stimulant agent to the in vitro barrier  (U=351,736, P<0.0001). Conversely, an insult of 

carcinogenic benzoquinone- hydroquinone (30µM) revealed a statistically significant increase in the level 
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of DNA damage (median Tail Moment =0.5 A.U, IQR=0.1-1.3) in comparison the control unconditioned 

media (median Tail moment =0.3 A.U, IQR=0.04-1.1), (U=350,071, P<0.0001). An insult of hypoxia 

reperfusion (2-21% O2) also elicited a DNA damaging effect to the exposed fibroblast cells (median Tail 

Moment=0.8 A.U, IQR=0.2-2.5) in comparison to the respective control (21% O2) (median Tail 

Moment=0.4 A.U, IQR=0.1-1.5), (U=327,106 P<0.0001)(Figure 4-4). Due to the large spread of the data as 

depicted by the IQR, there is high variability within the datasets for each of the treatment groups. Despite 

statistical analysis stating that there is a high level of significance difference seen between the treatment 

groups, I do not value the validity of the statistical assessment due to the rage spread of the data.  

 Exploring the potential role of miRNAs in the DNA damaging 

signal?  

In order to assess the potential role miRNAs play in the DNA damaging signal across the placental barrier, 

two methods were used to remove miRNAs from the conditioned media before being exposed to primary 

fibroblast cells. However it was first necessary to see to what degree the miRNA eliminating treatments had 

upon the negative control ‘unconditioned fibroblast media’, in order to take this into consideration when 

analysing the effects on the DNA damage level caused by conditioned media treated with these two miRNA 

eliminating methods.   
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Figure 4-5 Alkaline Comet assay analysis of miRNA elimination strategies to the unconditioned media  

Alkaline Comet assay analysis measuring the Mean tail Moment (A.U) as a representative measurement for the level of  
DNA damage to the exposed primary fibroblast cells after an indirect exposure of unconditioned fibroblast media ‘negative 

control’ to the in vitro BeWo barrier for a period of 24hrs. The unconditioned media was treated using an array of miRNA 

removal techniques to analyse the potential for miRNA as a DNA damaging signalling molecule. RNaseA treatment involved 

the application of 4.5U/mL of RNaseA to unconditioned media for a period of 1 hour, 4oC incubation. Ultracentrifugation 

treatment involved spinning the conditioned media at 30,000rpm for a period of 2 hrs. Statistical analysis was performed 

using Kruskal-Wallis analysis with Dunn’s post hoc testing for multiple comparisons. Analysis revealed that the treatment 

parameters elicited a significant difference upon the level of DNA damage to the exposed fibroblast cells ((2) =107.1, 

P>0.0001), The median Tail Moment (A. U) is depicted with error bars representing(±IQR). Differences between treatment 

groups, indicated with an asterisk (*), were significant for p < 0.05.  (*P<0.05, **P<0.01,  
***P<0.001, ****P<0.0001). The data was examined using the Shapiro-Wilk and Levene’s Test for examining the normality 

and homogeneity of variance, respectively.  

  

Figure 4-5 revealed that incubation of 1 hr with RNaseA (4.5U/mL) treatment caused a significant reduction 

in the level of DNA damage (median Tail moment=0.3 A.U, IQR=0.02-1.0) in comparison with the 

unconditioned media (median Tail Moment=0.3 A.U. IQR=0.1-1.2) (P<0.0001). The findings infer that 

miRNAs may play a role in the DNA damage pathway as the removal of the miRNAs using RNaseA was 

able to significantly reduce DNA damage. Similarly, ultracentrifugation also reduced the level of DNA 

damage (median Tail Moment=0.2 A.U, IQR=0.01-0.7) and significantly reduced the level of DNA damage 

of the exposed fibroblast cells (P<0.0001). These two methods show that within unconditioned media the 

two miRNA depletion strategies cause significant reduction in the level of DNA damage and must be taken 

into consideration when analysing the effect the treatment methods have upon the level of DNA damage 

when applied to conditioned media.   
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  Pesticide Exposure  
In this experiment, a standard pyrethroids mixture consisting of was used in combination with PBO. This 

combination of cyfluthrin, α-cypermethrin and flumethrin were applied to BeWo barriers for 24 hrs at a 

concentration of 1.3mg/mL of each component in equal measure. For the potential carcinogens in this 

mixture, α-cypermethrin and PBO, this equates to approximately 3mM. This concentration range was based 

on safety studies, bioavailability data and previous laboratory experiments.   

  

 

   

  

Figure 4-6 Alkaline Comet assay analysis of an indirect exposure of common pesticide combination to the in 

vitro model of the placental barrier  

A Schematic to represent Alkaline comet assay results of fibroblasts exposed to BeWo CM from CM from a common 

pesticide combination consisting of a pyrethroids mixture (PYR) and synergist piperonyl butoxide (PBO) added at a 1:1 ratio. 

Conditioned media was obtained from the in vitro BeWo barrier model. The conditioned media was treated using an array of 

miRNA removal techniques to analyse the potential for miRNA as a DNA damaging signalling molecule. RNaseA treatment 

involved the application of 4.5U/mL of RNaseA to conditioned media for a period of 1 hour, 4oC incubation. 

Ultracentrifugation treatment involved spinning the conditioned media at 30,000rpm for a period of 2 hrs. Statistical analysis 

was performed using a Kruskal-Wallis analysis with Dunn’s post hoc testing for multiple comparisons. Analysis revealed that 

the treatment parameters elicited a significant difference upon the level of DNA damage to the exposed fibroblast cells (2 (4) 

=120.3, P>0.0001), The median Tail Moment (A.U) is depicted (±IQR). Differences between treatment groups, indicated 

with an asterisk (*), were significant for p < 0.05.  (*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001). (n=3) in technical 

replicates.  

An exposure of 1.3ug/mL of  a known harmful pesticide combination of pyrethroids and synergist PBO (1:1 

ratio) to the in vitro BeWo barrier revealed that there was no significant difference seen in the DNA damage 

to the by-stander fibroblast cells between the unconditioned media (median Tail moment=0.9 A.U.  

IQR=0.2-2.2) which had no exposure of pyrethroids and synergist PBO and the positive control where the  

BeWo placental barrier had received a 24 hr exposure of pyrethroids and synergist PBO  

(1.3ug/mL)(median Tail Moment=0.8 A.U. IQR=0.2-2.3) (P>0.999). The findings contradict the expected 

outcome that exposure of 1.3ug/mL would have a cytotoxic effect upon the fibroblast cells (Figure 4-6).   
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Despite there not being an initial DNA damaging effect, miRNA depletion strategies did elicit a significant 

change in the level of DNA damage. RNaseA treatment elicited an increased level of DNA damage 

observed in the bystander cells (median Tail moment=1.2 A.U. IQR=0.3-3.2), compared to its respective 

control (P<0.0001). Conditioned media obtained from an exposure of the pesticide agent to the BeWo 

barriers treated with ultracentrifugation resulted in a significant decrease in the level of DNA damage 

(median Tail Moment=0.5 A.U, IQR=0.1-1.6) in comparison to the positive control (p=0.0003). The 

combination of miRNA elimination methods was shown to have an intermediate effect upon the level of 

DNA damage between the two miRNA depletion strategies (median Tail moment=1.2 A.U., IQR=0.4-2.8) 

seen in the by-stander fibroblast cell lines in comparison to the positive control. When comparing the two 

miRNA eliminating methods utilised on the conditioned media with one another, treatment of RNase A 

significantly increased the level of DNA damage in contrast to the ultracentrifugation method that resulted 

in a significant reduction in the level of DNA damage (U=307119, p=0.000). The findings suggest that the 

miRNA removal strategies, epically RNaseA may elicit a DNA damaging under certain exposures, despite 

the conditioned media itself not having a damaging effect. This is a confounding factor which must be taken 

into consideration when evaluating the effectiveness of the miRNA removal strategies and whether they 

themselves negatively influence the level of DNA damage in exposed fibroblast cells.   
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 Carcinogenic exposure of Benzoquinone & Hydroquinone metabolites  
Hydroquinone (HQ) and benzoquinone (BQ) are reactive metabolites that can form DNA adducts and are 

thought to be largely responsible for the benzene-induced toxicity. A single concentration of 30µM BQ, 

combined with 30µM HQ, was added to a BeWo barrier for 24 hours. The experiment assessed three sets of 

technical replicates obtained from measuring 300 individual cells scored per parameter in each experiment. 

This gave a total of 900 cells scored per parameter.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-7 Alkaline Comet assay analysis of an indirect exposure of BQ+HQ to the in vitro model of the 

placental barrier    

Overview of the Alkaline Comet assay analysis measuring the Mean tail Moment (A.U) as a representative measurement for 

the level of DNA damage to the exposed primary fibroblast cells after an indirect exposure of xenobiotic Benzoquinone  
Hydroquinone (BQ+HQ) (30µM) insult to the in vitro BeWo barrier for a period of 24hrs. The conditioned media was 

treated using an array of miRNA removal techniques to analyse the potential for miRNA as a DNA damaging signalling 

molecule. RNaseA treatment involved the application of 4.5U/mL of RNaseA to conditioned media for a period of 1 hour, 

4oC incubation. Ultracentrifugation treatment involved spinning the conditioned media at 30,000rpm for a period of 2 hrs. 

Statistical analysis was performed using One  -Way ANOVA with Welch correction, post hoc testing for multiple 

comparisons was assessed using Games-Howell. Analysis revealed an overall statistical difference between treatment 

parameters and the level of DNA damage to the exposed fibroblast cells (F (5,47) =3.347, p=0.011). The mean Tail Moment 

(A.U) is depicted (± SD). (n=3) in biological replicates.  

  

The results which have assessed the level of DNA damage of the average of the repeat measures have 

revealed that there was overall no significant DNA damaging effect upon the fibroblast cells exposed to 

conditioned BQ+HQ (30µM) to the in vitro BeWo barrier (Figure 4-7).  
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 The Effect of Hypoxia-reperfusion exposure on primary fibroblast cells   
An exposure of hypoxia-reperfusion was assessed as a known DNA-damaging agent which has previously 

been supported within the literature (section 1.4.3) and within our research group 152,153. Oxidative stress 

results in perturbations to placental signalling and has been associated as a causative agent in neurological 

settings449.  

 

Figure 4-8 Alkaline Comet assay analysis of an indirect exposure of hypoxia-reperfusion to the in vitro placental 

barrier  

Alkaline Comet assay analysis of the Mean tail Moment (A.U) as a representative measurement for the level of DNA damage 

to the exposed primary fibroblast cells after an indirect exposure of hypoxia-reperfusion (2-21% O2) compared to control 

normoxia conditions (21% O2) to the in vitro BeWo barrier for a period of 24hrs. The conditioned media was treated using an 

array of miRNA removal techniques to analyse the potential for miRNA as a DNA damaging signalling molecule. RNaseA 

(R) treatment involved the application of 4.5U/mL of RNaseA to conditioned media for a period of 1 hour, 4oC incubation. 

Ultracentrifugation(UC) treatment involved spinning the conditioned media at 30,000rpm,2 hrs at 4oC. An additional 

parameter was assessed which looked at the combination of both RNaseA treatment and ultracentrifugation on the 

conditioned media (R+UC). Statistical analysis was performed using a Kruskal-Wallis analysis with Dunn’s post hoc testing 

for multiple comparisons. Analysis revealed that the treatment parameters elicited a significant difference upon the level of 

DNA damage to the exposed fibroblast cells (ꭓ(7) =90.88, P>0.0001). The mean Tail Moment (A.U) is depicted with errors 

bars representative of the (IQR). Differences between treatment groups, indicated with an asterisk (*), were significant for p < 

0.05.  (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001). (n=3) technical replicates.  

The results obtained from an exposure of hypoxia-reperfusion (2-21% O2) to the in vitro placental barrier 

elicited an indirect DNA damage response (median tail moment value= 0.8 A.U, IQR=0.2-2.5) in 

comparison to the control (21% O2) (median tail moment value=0.4 A.U, IQR=0.1-1.5) to fibroblast cells 

exposed to conditioned BeWo media, with a difference of +0.4 A.U (p<0.0001). RNaseA treatment of the 

conditioned media (2-21% O2 +RNaseA) (median Tail Moment=0.7 A.U, IQR=0.1-1.8) significantly 

reduced the median Tail moment value by -0.1 A.U in comparison to the respective control (p=0.031). 

Ultracentrifugation treatment (median Tail Moment=0.584 A.U, IQR=0.1-1.7) also caused a significant 

reduction in the level of DNA damage with a reduction in the mean Tail moment of -0.3 A.U. (p=0.003). 

The combined effect of both miRNA depletion strategies (median Tail Moment=0.6 A.U., IQR=0.1-1.6) 

resulted in a highly significant decrease in the mean Tail moment by -0.2A.U. (p=0.002) (Figure 4-8). 
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Conversely, when examining the effects of miRNA depletion strategies upon the control (21% O2), the 

techniques had a different effect upon the exposed fibroblast cells. There was no effect on the level of DNA 

damage upon treatment of unconditioned media using RNaseA treatment (Median Tail moment=0.5 A.U., 

IQR=0.1-1.7) or ultracentrifugation (median Tail Moment=0.4 A.U., IQR=0.1-1.6) (p>0.999, p>0.999), 

respectively. The combination of strategies resulted in a significant increase by +0.3 A.U. in the level of 

DNA damage (p<0.0001) (Figure 4-8).  

 Quantification of small ncRNA and microRNA within conditioned media  

 (A) 
  

(B) 

 

 

Figure 4-9 Overview of small RNA bioanlyser findings for the in vitro model of the placental barrier  

(A)Overview of data obtained from the 2100 Agilent small RNA Bioanalyser to quantifiably measure the level of small 

noncoding and microRNA in the conditioned media obtained from the baso-lateral domain of the in vitro BeWo barrier 

placental model after a 24-hour insult of hypoxia-reperfusion (2-21%) to the apical domain of the barrier. Conditioned media 

was treated with miRNA depletion strategies (R- 4.5U/mL RNaseA treatment; Ultracentrifugation, 30,000rpm, 2hrs, 4°C) 

(n=1).(B) Overview of data obtained from the 2100 Agilent small RNA Bioanalyser to quantifiably measure the proportion of 

miRNAs within the total concentration of small RNA(%) secreted in the conditioned media obtained from the baso-lateral 

domain of the in vitro BeWo barrier placental model after a 24 hour insult of hypoxia-reperfusion (2-21%) to the apical 

domain of the barrier. Conditioned media was treated with miRNA depletion strategies (R- 4.5U/mL RNaseA treatment; 

Ultracentrifugation, 30,000rpm, 2hrs, 4°C)  
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Figure 4-10 Overview of fold changes between treatment parameters between the concentration of total small 

RNA compared to miRNA concentrations  

(A). Results obtained 2100 Agilent small RNA Bioanalyser to quantifiably measure the level of small non-coding secreted in 

the conditioned media obtained from the baso-lateral domain of the in vitro BeWo barrier placental model after a 24 hour 

insult of hypoxia-reperfusion (2-21%) to the apical domain of the barrier. Conditioned media was treated with either RNaseA 

treatment (4.5U/mL, 1 hour at 4°C) (R) or Ultracentrifugation (30,000rpm, 2hrs, 4°C). (B) represents the results highlighted 

by the black box in (A)  looking at the comparison of the hypoxia-reperfusion media against the hypoxia reperfused media 

treated with RNaseA (2-12%)-(2-12%)+R, as well as the hypoxia-reperfusion media against the hypoxia reperfused media 

treated with ultracentrifugation (2-12%)-(2-12%)+Ultracentrifugation using a scale more appropriate for the lower fold 

changes seen in comparison to the control parameter. (n=1).  

  

  

The results obtained in (Figure 4-9A) revealed that an insult of hypoxia-reperfusion (2-21% O2) caused an 

increase (+437-Fold change) in the concentration of microRNAs in comparison to the control of 21% O2, 
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29.8pg/µL. to 13,065.1pg/µL, respectively. Treatment with the RNaseA miRNA depletion method caused a 

reduction in the miRNA concentration from 13,065.1pg/µL (respective control) to 5,857.1 pg/µL, which is 

a (-0.6-FC). Ultracentrifugation resulted in a reduction in the miRNA concentration from 13,065.1pg/µL 

(respective control) to 143.9pg/µL, which equates to a (-1.0 FC).  

These findings were mirrored in the total small RNA concentrations which found that there was an insult of 

hypoxia-reperfusion (2-21% O2) caused an increase (+192 FC) in the concentration of the total small RNA 

in comparison to the control of 21% O2, 99.8pg/µL -19,284 pg/µL, respectively. Treatment with the RNaseA 

miRNA depletion method reduced total small RNA concentrations from 19,284pg/µL (respective control) 

to 9260.3pg/µL, which is a (-0.5 FC) Ultracentrifugation reduced the miRNA concentration from 

13,065.1pg/µL (respective control) to 289.9pg/µL, which equates to a (-0.9) fold change (Figure 4-9A).   

Figure 4-9. represented the percentage of miRNA in the total small RNA concentration. Under control 

conditions of atmospheric oxygen tensions (21% O2), 30% of the total RNA is representative of 

microRNAs. Under conditions of hypoxia-reperfusion (2-21%) the proportion of miRNAs increases to 68% 

of the total small RNA concentration. MicroRNA depletion strategy using RNaseA slightly reduced the 

proportion of microRNAs in the total small RNA concentration with 63% of overall small RNA being 

microRNA. An alternative miRNA depletion strategy of using ultracentrifugation reduced the proportion of 

miRNAs in the total small RNA concentration to 50%. The findings imply that the ultracentrifugation to 

remove miRNAs within exosomes is the most effective strategy to deplete miRNAs from the conditioned 

model obtained from the in vitro model of the placental barrier, being capable of an extra 13% reduction in 

the proportion of microRNAs within the total small RNA contents compared to RNaseA treatment.  

Figure 4-10 revealed the fold changes between the comparison treatment parameter for both total small 

RNA concentrations and microRNAs. The results have shown that there is a higher fold change (+245-FC) 

seen in the miRNA concentration between the control conditions (21% O2) in comparison to the hypoxia 

reperfusion parameter (2-21% O2). Similarly, conditioned media treated with RNaseA had a greater 

reduction in miRNA fold change (-0.6) compared to the fold change between the treatment parameter and 

its respective control in total small RNA concentration (-0.5). This trend was further witnessed, but to a 

lesser extent, in the ultracentrifugation parameter, where miRNA fold change between the treatment 

parameter and its respective control was (-1.0) and was (-0.9) for the total small RNA concentration. The 

findings infer that ultracentrifugation is approximately 50% more effective that RNaseA treatment for 

miRNA depletion strategy by having the greatest reduction in both total small RNA concentration and 

miRNA concentration.  

  

  

  

  



  ~Chapter 4~  

                         

155  

  

4.5 Discussion  
This chapter aimed to assess the potential role of miRNAs as signalling factors, acting as the elusive 

bystander signal across the first-trimester placental barrier, to elicit a DNA damage response to exposed 

foetal cells. To achieve this, the in vitro BeWo barrier of the placental barrier model was exposed to a 

known, DNA damaging agents to induce a cytotoxic effect indirectly to exposed foetal cells.  

Within this chapter, experiments were carried out using the in vitro trophoblast model as it provides a 

polarised model of the barrier and ensures that we can obtain and assess the effects of secretions which are 

directed towards the foetal domain. Studies have shown considerable likeliness between BeWo cells and 

primary human trophoblast, with regards to their microarchitecture, secretions and receptor expression 

despite it being a choriocarcinoma cell line. 450 The ex vivo model was initially assessed, as it provides a 

more accurate cellular composition and microarchitecture and the in vivo placenta, however, due to high 

variability in the model as seen previously in Chapter 3, and due to it being an unpolarised,  asymmetrical 

model, we were unable to ascertain from which surface and/or cell type the DNA damaging signals were 

directed towards upon  an insult. Similarly, the in vivo model was unable to be used within these 

experiments, since the whole rodent placentae were used to obtain conditioned media which resulted in 

uncertainty of the directionality of the placental secretions. Thus we decided to focus on using the in vitro 

model in our assessment as it was essential to distinguish the directionality of secretions towards the foetal 

circulation to determine if miRNAs could play a role as essential signalling molecules across the placental 

barrier in response to a DNA damaging signal.  

  

 Eliciting an indirect DNA damage effect across the placental 

barrier  

In order to establish whether microRNAs could act as signalling molecules released from the placental 

barrier in response to a DNA damaging signal to the maternal side of the placental barrier, a range of known 

DNA damaging insults were exposed to the in vitro model of the placental barrier in order to determine a 

positive control. Three known DNA damaging agents which had previously been investigated within our 

research group were utilised, these included; pesticides409, Benzene metabolites409 and hypoxiareperfusion 

140,141,152.   

 Pesticides  

A combination of pyrethroids and a mixture of cyfluthrin, α-cypermethrin and flumethrin were applied in 

addition with PBO to the in vitro trophoblast barrier as a DNA damaging stimulus. This concoction is 

representative of conventional household pesticides and has been reported as containing components which 

are possible carcinogens (Class C). The literature has reported the potential deleterious implications of 

pesticide exposures on inducing DNA damage and being associated with the onset of cancers. In this 

investigation, a 1.3µg/mL exposure of the components in equal measures was exposed to the in vitro 
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trophoblast barrier. The two components, α-cypermethrin and PBO, are known carcinogens, and this 

concentration of exposure translates to a 30µM exposure. This range was used explicitly in accordance with 

toxicological and bioavailability studies to provide a representative exposure of commonly used pesticides 

to the general public.451  

Our findings revealed that exposure of PBO and pyrethrin did not induce a DNA damaging effect on the 

bystander fibroblast cells as initially hypothesised (Figure 4-4 & Figure 4-6). This contradicts previous 

studies performed by Dr Els Mansell in our research group, which showed a significant increase in DNA 

damage to the fibroblast cells when there was an indirect exposure of pesticides at the same concentration. 

409 However, it must be stated that there is controversy over whether pyrethroids at the levels used in our 

investigation have DNA damaging effects, with studies reporting contradictory findings. An in vitro study 

conducted by Zalata et al. (2014) observed significant levels of DNA damage to human sperm, resulting in 

impaired function and mobility once exposing the spermatozoa to 10µM cypermethrin. 452 While, genotoxic 

effects have been seen in isolated human peripheral lymphocytes and exposed to cypermethrin up in 

incremental concentrations up to 200µg/mL and found that there were no cytotoxic effects. 453Whilst other 

in vitro experiments have observed no significant levels of cytotoxic up to a 1000µM concentration on 

Chinese Hamster ovary cells in vitro. 454  

 In order to ascertain whether exposure of PBO and pyrethrin would be able to induce a positive DNA 

damaging effect upon foetal cells situated within the basolateral domain further investigations are required 

and examination at looking at different doses across ranges which have been suggested in the current 

literature. A potential reason for the discrepancies between the results obtained compared to the previous 

research conducted by Mansell et al. (2019) could be due to the health and passage number of the exposed 

fibroblast cells.   

  

 Benzoquinone and Hydroquinone   

An alternative DNA damaging carcinogenic agent was used as a positive control for the alkaline comet 

assay. Benzene can cross the placental barrier 455,456 and studies have shown that benzene exposure to 

pregnant women has been associated with perturbations to foetal development, associated with reduced 

birth weight444 and increased risk of childhood leukaemia.457   

Our preliminary investigation found that an indirect exposure of benzene metabolites(30µM) via the 

placental barrier to exposed fibroblast cells can elicit a DNA damaging effect (Figure 4-4). Our findings 

support the work conducted by Dr Els Mansell within our research group.409 These findings have also been 

supported in the current literature, which has examined the effects of in-utero exposure of benzene 

metabolites on the developing foetus at a molecular, cellular and physiological level. Research by Lau et al. 

examined the effect of an indirect in utero exposure of benzene upon the frequency of DNA DSBs in pKZ1 

transgenic mice at a dose range between 200-400 mg/kg benzene at GD 7-15. They observed that in utero 

exposures resulted in a higher frequency of micronuclei and DNA recombination events in hematopoietic 

tissue.443 However, it must be taken into consideration that benzene metabolites are able to cross the 
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placental barrier and are present at significantly higher concentrations within the umbilical cord blood and 

foetal organs compared to the maternal circulation, 458 the DNA damaging effect may not be the result of 

signalling from the placental barrier but as a result of the benzene metabolites directly entering the foetal 

circulation and eliciting an effect. Therefore, inferring that the DNA damaging effects are unlikely to be as 

a result of miRNAs acting as signalling molecules via the placental barrier but instead due to direct 

exposure of a DNA damaging agent onto the exposed fibroblast cells. Investigations performed within our 

research group carried out assessments to examine the integrity of the in vitro trophoblast barrier to 

determine whether benzene metabolites were able to leak through the barrier into the conditioned media. 

Using the fluorescent integrity of fluorescein isothiocyanate (FITC)-tagged dextran, a biologically inert 

hydrophilic polysaccharide, the results showed no evidence that exposure of benzoquinone and 

hydroquinone to the in vitro trophoblast barrier were present in the conditioned media in the basolateral 

domain, confirming the integrity of the in vitro trophoblast barrier. In addition, selective ion monitoring of 

benzene measured at 109.03Da further confirmed the absence of benzene metabolites within the 

conditioned media after exposure to the apical domain of the in vitro barrier 409.   

Conversely, repeat experiments of the initial finding revealed high variability across repeat measures, with 

conflicting findings when comparing the trends of DNA damage across treatment parameters (Figure 4-7). 

When addressing if there was an overall DNA damaging effect on the exposed primary BJ fibroblast cells, 

the result found that combining biological repeats indicated no significant damaging effect (p=0.563). 

Similar investigations have found conflicting findings with benzene and its metabolites exerting a DNA 

damaging effect. Research by Pellack-Walker & Blumer (1986) assessed the ability of DNA strand breaks 

in the mouse lymphoma cell line, L5178YS. They discovered that even at high concentration of 1.0mM, 

benzene did not elicit DNA damage with SSB DNA damage only being observed at concentrations as high 

as 6.0mM.459  

The result of the combined biological repeat measures which revealed that no significant DNA damaging 

effect was detected within the fibroblast cells which were indirectly exposed to benzoquinone and 

hydroquinone further support the integrity of the in vitro trophoblast barrier to a chemical DNA damaging 

agent. Thus inferring that results obtained were due to indirect exposure to the fibroblast cells rather than 

the consequence of direct exposure. In order to  confidently confirm that the results obtained from carrying 

out the alkaline comet assay were the result of an indirect exposure to the in vitro trophoblast barrier and 

not the outcome of a direct exposure, a control parameter is required to assess the level of DNA damage of 

a direct exposure of benzoquinone and hydroquinone applied directly onto fibroblast cells for 24 hours and 

compared against the indirect exposure to show the discrepancy in the level of DNA damage.  

 Hypoxia-reperfusion  

Hypoxia-reperfusion has been widely attributed to causing DNA damage in both in vitro and in vivo studies 

and is associated with obstetric complications including PE and IUGR.460 Our investigation revealed that an 

insult of hypoxia-reperfusion to the placental barrier elicited an indirect DNA damage effect to the exposed 

fibroblast cells via the placenta (Figure 4.4 & Figure 4-8). 141,152,153A study by Pires et al. (2010) has shown 

that chronic hypoxic exposures result in arrested replication461.Whereas, an insult of hypoxia-reperfusion to 
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cells which have been exposed to long periods of chronic hypoxia and then receive acute reoxygenation 

triggers reoxygenation-induced DNA damage and undergo p53-dependent apoptosis. 461It is believed that 

hypoxia reperfusion can increase the level of ROS to the placental barrier and induce secretions from the 

placenta, which signal to exposed fibroblast cells to elicit DNA damage. Fibroblast cells form intercellular 

gap junctions when they reach confluency, and bystander signalling is believed to be propagated via gap 

junctions, which could suggest that DNA damage may have only initially effected a single fibroblast cell, 

but then the damaging signal is transmitted to surrounding adjacent cells.151,462  

Hypoxia-reperfusion provided a positive control, and thus we could explore the initial aim of this 

investigation to see whether miRNAs may play a functional role in acting as signalling molecules for DNA 

damage to the developing foetus.   

 Is there evidence for the role of miRNAs in the DNA damaging 

signal?  

To assess whether miRNAs are involved in the DNA damage response we witnessed to foetal fibroblast 

cells beneath the in vitro model of the placental barrier, two discrete methods were utilised, RNaseA 

treatment to remove free-circulating miRNAs, and ultracentrifugation as a means to remove exosome-

bound miRNAs.   

 RNaseA treatment  

The literature reports the use of RNaseA as a method for the successful cleavage of free-circulating 

miRNAs 463,464. Our findings from this chapter correspond with the literature and imply that the application 

of RNaseA to conditioned media resulted in a reduced miRNA concentration compared to its control 

parameter (Figure 4.9). Overall treatment with RNaseA to conditioned media elicited a -0.5% fold change 

reduction in miRNAs in comparison to the control parameter (Figure 4.10). Therefore, it was considered 

that RNaseA could be utilised as a miRNA removal strategy. Nonetheless, since RNaseA treatment has the 

potential to disrupt other protein complexes465, it was essential that RNaseA treatment did not induce any 

deleterious effects to the exposed cells, making it a confounding variable. An assessment was made using 

the Alkaline Comet Assay to examine the level of DNA damage attributed to the application of RNaseA to 

unconditioned media and compared against its respective control parameter. The results revealed that the 

application of RNaseA reduced the level of DNA damage compared to the control parameter and therefore 

had a protective effect upon exposed cells (Figure 4.5). A similar trend was seen in the conditioned media 

treated with RNaseA obtained from the in vitro trophoblast barrier after an exposure of BQ+HQ (Figure 

4.7) hypoxia-reperfusion (2-21% O2) (Figure 4.8), however only the exposure with hypoxia-reperfusion was 

found to be significant.   

The results obtained from RNaseA treatment are supported by studies which have explored the implications 

of applying RNase in both an in vitro and in vivo setting. A study by Mironova et al. (2013), reported that 

RNaseA is capable of reducing primary tumour growth and inhibiting the development of metastases in 

murine models464. They determined that RNaseA bound with cytosolic ribonuclease inhibitor, prevented 
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cleavage of intracellular RNAs, and targeted circulating oncogenic miRNAs, reducing cytotoxic damage. 464 

Furthermore, a recent study has revealed that RNA-DNA hybrids are by-products of the homologous 

recombination-mediated DSB repair process, and RNase H enzyme is required for the completion of DNA 

repair mechanisms. Removal of RNase H resulted in stabilised RNA-DNA hybrids around DSB sites, and 

impaired DNA repair recruitment to the site with impaired recruitment of the ssDNA-binding to the 

Replication protein A (RPA) complex required for successful homologous recombination DNA repair 

mechanisms. 466 Whereas overexpression of RNaseH destabilised the hybrid complex resulting in activation 

and recruitment of RPA complex required for the DNA repair mechanisms.  

466   

Conversely, in comparison to the reduced levels of DNA damage detected in the fibroblast cells exposed to 

BQ+HQ and hypoxia-reperfusion conditioned media, an exposure of PBO and pyrethrin combination 

resulted in an increased level of DNA damage after conditioned media had undergone RNaseA treatment 

(Figure 4.6). This finding falsified initial investigations which revealed that the application of RNaseA to 

unconditioned media reduced in the level of DNA damage to exposed fibroblast cells (Figure 4.5). The 

results infer that the RNaseA may elicit a different response when applied in combination with this specific 

agent. The results infer that despite the exposure of PBO with pyrethrin did not elicit a DNA damage 

response, the application of RNaseA actually enhances the DNA damaging effect when applied in tandem 

with the PBO and pyrethrin. A potential reason for this may be that if there is an absence of a DNA 

damaging signal within the conditioned media, then the application of RNaseA removes miRNAs which are 

important for metabolic and homeostatic processes within the cell. Furthermore, some pancreatic 

ribonucleases such as RNaseA have been shown to have cytotoxic effect if there is a lowered binding 

affinity to ribonuclease inhibitors, found within the cell 467468. It could be postulated as there was no 

DNA damaging signal elicited by PBO and pyrethrin, then there was limited release of miRNAs into the 

conditioned media to be targeted by RNaseA. Therefore, an abundance of active RNaseA within the 

conditioned media exposed to the fibroblast cells may have saturated the ribonuclease inhibitor, biding with 

RNase, resulting in a high concentration of non-inhibited RNaseA being exposed to the fibroblast cells 

exerting cytotoxic effect469.   

  

 Ultracentrifugation   

A treatment of ultracentrifugation to the conditioned media was used as an alternative strategy to remove 

exosome-bound and microvesicle-bound miRNAs, as it has been found to provide the purest exosome 

preparations compared to other exosome-isolation strategies 196,470. The current literature surrounding the 

functionality of exosomes has been reviewed by He et al, exploring the capacity of exosomes to regulate 

recipient cells having either a beneficial or detrimental effect471. Whether an exosome has a physiological or 

pathological effect is dependent on a number of factors including the cell of origin and the state of the cell 

and the biomolecules encapsulated within the exosome. The findings from this chapter have implied that the 

removal of exosomes from media exposed to different DNA damaging insults elicited both beneficial and 

detrimental effects on the level of DNA damage in exposed fibroblast cells.  
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In order to assess whether using ultracentrifugation as a miRNA removal strategy would have confounding 

implications upon the health of the exposed fibroblast cells, an initial investigation was conducted to 

examine the effect of ultracentrifuged unconditioned media on exposed fibroblast cells compared to the 

respective control. The results revealed that ultracentrifugation to the unconditioned media resulted in a 

significant decrease in the level of DNA damage evoked on the exposed fibroblast cells compared to the 

negative control alone (Figure 4.5). The findings infer that exosomes and microvesicles may play a pivotal 

role as cargos shuttling a DNA damaging signal to recipient cells. The literature surrounding exosomes 

function, classifies exosomes as being important mediators of intercellular crosstalk, having both 

pathological and physiological traits. A review by Harischandra et al. (2017) examined the myriad of 

pathological settings in cancer biology and neurological disorders, in which exosomes are believed to 

mediate and communicate a damaging signal to recipient cells.472  

Our findings revealed a significant reduction in the level of DNA damage in fibroblast cells treated with 

conditioned media obtained from the in vitro trophoblast barrier after exposure to hypoxia-reperfusion 

(Figure 4-8). As previously discussed, DNA damage is mediated via the p53 pathway, a study by Yu et al. 

(2006) revealed that genes regulated by the activation of the p53 pathway upon a stress response encoded 

proteins which were secreted from stress-induced cells via exosomes.  The transmembrane protein tumour 

suppressor-activated pathway 6 (TSAP6) is a p53-regulated gene that promotes exosome production in cells 

upon a stress-response and is believed to communicate to recipient cells in the immune system in response 

to stress exposure.473 Studies have revealed that exosome secretion was induced by exposure of irradiation, 

resulting in miRNA release under the regulation of the TSAP6 protein. These exosomes released from 

irradiated cells mediated the radiation-induced bystander effect.474,475 Xu et al.demonstrated that miR-21, 

which plays a functional role in DDR is up-regulated and transferred from irradiated cells to non-irradiated 

recipient cells through exosomes to induce a DNA damage effect and inhibition of miR-21 was found to 

prevent this bystander effect.474   

Exosomes play a critical role in maintaining cellular homeostasis 476Inhibition of exosome secretions results 

in accumulation of nuclear DNA in the cytoplasm which provokes an innate immune response triggering 

ROS-dependent DNA damage and apoptosis. 477 Moreover, research by Takashashi et al. (2017) discovered 

that prevention of exosome secretion, in both an in vitro and in vivo model, resulting in the accumulation of 

nuclear DNA fragments within the cytoplasm, which in turn provoked a (ROS)dependent DNA damage 

response, in both senescent and non-senescent cells. Observations that exosomes contain chromosomal 

DNA fragments indicate that exosome secretion maintains cellular homeostasis by removing harmful 

cytoplasmic DNA from the cell.477 Therefore, exosomal removal from the conditioned media obtained from 

cells exposed to a DNA-damaging agent may prevent a DNA-damaging signal reaching exposed fibroblast 

cells and elicit a DNA-damaging signal.   

Our results are supported by studies which have shown that exosomes released from choriocarcinoma cells  

(AML) are able to impact on the phenotype of hematopoietic stem cells (HSPC) within the bone 

marrow.478,479 Research by Dutta et al. (2014) also demonstrated that exosomes isolated from breast cancer 

cell lines increased DNA damage in mammary epithelial cells via activation of ROS and autophagy.480 The 
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literature suggests that cargo shuttled via exosomes can mediate DNA damaging signals, that could be via 

cytokines,481,482 harmful cytoplasmic DNA477and/or miRNAs. 483 The literature supports our findings in 

which we see a reduction in DNA damage when conditioned media is treated with ultracentrifugation 

(Figure 4-8).   

Contrary to the results obtained from an exposure of hypoxia-reperfusion; treatment with ultracentrifugation 

was unable to significantly reduce the level of DNA damage in fibroblast cells exposed to conditioned 

media obtained from an exposure of PBO and pyrethrin (Figure 4.6). Moreover, our results found an 

enhanced level of DNA damage in fibroblast cells exposed to BQ+HQ conditioned media treated with 

ultracentrifugation (Figure 4.7). Despite the current literature inferring that exosomes work as important 

intercellular communicators and can shuttle harmful cytoplasmic DNA, as well as transfer DNA damaging 

signals from cells under stressed conditions 475,484; exosomes have also been shown to have a protective 

effect on bystander cells against DNA damaging stimuli. A study by Xiao et al. (2017) demonstrated the 

protective effect of exosomes by suppressing cell cycle arrest and apoptosis and inhibiting cell proliferation 

on SH-SY5Y nerve cells after being released from human umbilical endothelial cells (HUVECs) which had 

been exposed to ischemia/reperfusion injury. 485 An in vivo rodent study explored the cardioprotective 

functions of exosomes in models of cardiac ischemia-reperfusion. The exosomes elicited pro-survival 

signalling pathways in cardiomyocytes which relied upon Toll-like receptor 4 activating Heat shock protein 

27 (HSP27) that is associated with cardioprotection.486Recent research has also found that in vitro models 

of human umbilical cord mesenchymal stem cells (huMSCs) an exposure of cisplatin chemotherapy 

treatment can protect against ovarian granulosa cell (OGC) apoptosis.  The exosomes were able to reduce 

apoptosis and upregulated the expression of Bcl-2 and caspase-3 while inhibiting the expression of Bax, 

cleaved caspase-3 and cleaved PARP.387  

  

 Combination effect  

The combination of both miRNA strategies was found to cause a significant decrease in the level of DNA 

damage upon an insult of hypoxia-reperfusion to the in vitro trophoblast barrier. A potential reason for this 

finding could be due to the diverse functional roles of the miRNA species that are either free-circulating and 

thus targeted by RNaseA or membrane-bound within exosomes. It is well established within the literature 

that extrinsic perturbations alter the composition of the miRNA content within exosomes.487 The exosomal 

sorting machinery which dictates whether miRNAs will be sorted into exosomes and secreted from the cell 

or freely extracellularly circulated in biological fluids is dependent upon environmental cues. This 

postulation has been supported by the discovery that intracellular cytokine signalling pathways alter 

exosome profiles. 488  

A novel study explored differences in the functionality between miRNAs which are free-circulating and 

those which are exosome-bound. Tian et al. (2017) compared miRNAs in healthy blood samples, and those 

in lung cancer suffers and found that the majority of miRNAs were not differentially expressed in exosomes 

compared to free circulating. The main discrepancy was found in lung cancer patients where there was a 

significant upregulation of miR-181b-5p and miR-21-5p that were significantly higher in exosomes 
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compared with being freely circulated. This suggests that under physiological conditions there is not a 

disparity between the sorting of miRNAs, however under pathological settings, there is an increased 

concentration of oncomiR secreted via exosomes compared to those freely circulated.489  

A confounding variable which must be taken into consideration is the lack of control performed to assess 

the level of DNA damage caused by the combined effect of both miRNA removal strategies on 

unconditioned culture media. This was due to technical complications carrying out the electrophoresis 

stages of the Alkaline Comet assay on to obtain repeat measures. This is a confounding factor and in order 

to assess the implications of using both removal strategies on the conditioned media, we would need to 

compare the implications of the two removal strategies against the unconditioned media to see if the 

treatment itself provoked DNA damage to exposed fibroblast cells. Future work would need to be carried 

out to correct for this lack of control so that a more accurate assessment could be drawn from the 

implications of using both removal strategies.   

  

 Quantifying the effectiveness of miRNA depletion strategies  
The results suggest that upon an insult of hypoxia-reperfusion, there is an increase in the secretion of total 

small RNA into the foetal domain in comparison to the control vehicle (Figure 4-9A). Furthermore, the 

proportion of miRNA, which is contained within the total small ncRNA secreted from the placental barrier 

was increased in comparison to the proportion of miRNAs within the control vehicle (Figure 4-9B). This 

implies that miRNAs may play a vital role in the signalling of DNA damage to the exposed fibroblast cells, 

as we see that an insult of hypoxia- reperfusion leads to an increase in DNA damage (Figure 4-8). 

Furthermore, the results have shown that treatment with RNaseA to the conditioned media from an insult  

of hypoxia-reperfusion caused a reduction in DNA damage to exposed BJ fibroblast cells. This is supported 

by a reduction in the concentration of total small ncRNA found in the treated, conditioned media incubated 

with RNaseA, and the reduction in the proportion of miRNA content in comparison to the control vehicle 

(Figure 4-9B). Ultracentrifugation, an alternative means to deplete miRNA within the conditioned, was the 

most effective method by reducing concentrations of small ncRNA to near control atmospheric levels. 

Furthermore, the proportion of miRNAs within the small ncRNA concentration was found to be depleted, 

representing only 50% of the total small RNA contents. However, results from the alkaline comet assay 

found that although the levels of DNA damage were reduced from the treatment of the conditioned media 

with ultracentrifugation in comparison to its respective control, there was a slight increase in the level of 

DNA damage compared to the RNaseA treatment group. The results from the ultracentrifugation, therefore, 

imply that the DNA damaging signal may have been caused by another species of small ncRNAs (siRNA or 

piRNA).   

Figure 4-11 illustrates the combination of the preliminary findings from the small RNA Bioanalyser and the 

alkaline comet assay infer that a DNA damaging insult of hypoxia-reperfusion in which there is a 

heterogeneity as to the state to which miRNAs exist (free-circulating and exosome bound) elicit a DNA 
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damaging effect. However, treatment with RNaseA, reduced the overall concentration of small ncRNA with 

negligible effects upon the proportion of miRNA contents. This treatment theoretically only targets the free-

circulating miRNA, while miRNAs that are exosome-bound are protected from RNaseA. There is a 

reduction in the level of DNA damage with the treatment of RNaseA; however, it is not entirely removed 

compared to the basal level. This implies that free-circulating miRNAs eliminated by the treatment may be 

responsible for the DNA damage seen upon an insult of hypoxia-reperfusion. However, this treatment still 

initiates DNA damage, even though it is reduced, which implies that the DNA damage signal could be 

attributed to certain species of miRNAs within an exosome-bound form. Assessment of the 

ultracentrifugation revealed a reduction in the total small RNA concentration within the media making it an 

effective treatment. The proportion of miRNAs represents half of the total small RNA contents. The 

miRNAs remaining should theoretically only be free circulating as ultracentrifugation is a method to 

eliminate exosomes containing miRNAs. Ultracentrifuged-treated media induces a similar level of DNA 

damage to exposed fibroblast cells as the RNaseA treatment parameter does, despite there being reduced 

small ncRNA concentration and proportion of miRNAs. The level of DNA damage suggests that the free-

circulating miRNAs may be involved in the DNA-damaging signal. However, the reduced proportion of 

miRNAs in comparison to the RNaseA treatment and the similar level of DNA damage may imply that 

another subgroup of the small ncRNA species may be equally involved in passing on the bystander signal. 

The reduced level of damage found with ultracentrifugation in comparison to the respective control may 

suggest that the DNA damage signal are those miRNA species that are sorted into exosomes, for 

exportation (Figure 4-11).  
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Figure 4-11 Schematic representation of overall findings for the Alkaline Comet assay  

A schematic representation of the combined findings obtained from the small RNA bioanlyser with the Alkaline Comet assay 

for assessing the effects of hypoxia-reperfusion (2-21% O2) with miRNA depletion treatments (RNaseA) and 

(Ultracentrifugation) upon indirect DNA damage induced upon exposed BJ Fibroblast cells. MicroRNA state represents 

whether miRNAs are free-circulating attached to AGO or HDL proteins or whether they are encapsulated within exosome-

bound form. Theoretically RNaseA treatment will target free-circulating miRNA molecules. Whereas ultracentrifugation 

theoretically eliminates exosome-encapsulated miRNAs. The Alkaline comet assay assessed the level of DNA damage the 

conditioned media had upon primary fibroblast cells and the levels of damage is represented by the size of the arrow with the 

greatest level of damage seen under conditions of 2-21% O2 where there was mixed homogeny of miRNAs. Whereas 

treatment with both miRNA elimination reduced the level of DNA damage to the exposed fibroblast cells.  
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 Considerations & Limitations  
General consideration for this chapter is in the interpretation of the data with regards to assessing levels of 

significance amongst treatment groups. Due to the nature of the Alkaline Comet assay, the readings were 

rarely normally distributed and therefore, non-parametric statistical analysis was performed, which meant 

the median and IQR for each treatment group was plotted. The IQR assessed the spread of the data and 

revealed that there was great variability amongst readings within the treatment group (section 4.5.4.1). 

Therefore despite the median values being significantly different, the spread of the data makes it difficult to 

confidently put value in the findings, and ideally, the results require validation using an alternative method 

for measuring DNA damage.  

 Methodology for assessing DNA damage  

It is essential to consider that the alkaline comet assay is notoriously a  highly sensitive yet variable assay 

which is prone to be affected by discrepancies throughout this lab-intensive protocol, making it extremely 

difficult to obtain reproducible results across repeat assessments both in intra- and inter-laboratory 

studies.490 Our results showed that there was a high level of variability across repeat measures and even 

within experiments as determined by the spread of the data making it problematic to draw reproducible 

conclusions from the data. A consideration for future assessments should be whether to analyse individual 

repeats as a stand-alone experiment, rather than to combine repeats. The weakness in averaging the data 

across repeats is that there are too many variables which can result in significant error bars and 

discrepancies amongst the data when averaged across repeats, and we can also lose trends which may be 

detected from individual experiments. One method utilised by Zaniol et al. to minimise these variables 

involved establishing an internal ‘reference’ cell as a standard which has their DNA replaced with BrdU. 

Using a fluorescent anti-BrdU antibody comets derived from these cells are easily distinguished from the 

‘test’ cells present in the same gel. They were able to use the reference cells as internal standards which 

reduces the coefficient of variation across experimental measures. The use of reference cells provides 

greater robustness in the quality of replicate samples.491 Furthermore, alternative assessments of DNA 

damage could be performed in parallel to the Alkaline Comet assay to assess the validity of the findings. 

Terminal deoxynucleotidyl transferase dUTP nick- end labelling (TUNEL) assay is an alternative method 

which is well established in detecting apoptotic DNA fragmentation within individual cells. The principle of 

this assay involves the use of terminal deoxynucleotidyl transferase (TdT) enzyme,  which catalyses the 

attachment of deoxynucleotides. The enzyme is tagged with a fluorochrome to the 3'-hydroxyl termini of  

DNA double-strand breaks.492,493 An additional method is the assessment of the phosphorylation of the 

H2AX protein by staining and counting the ᵞH2AX foci to quantify double-stranded breaks within 

individual cells494.  

 Modelling the placental barrier for DNA damage assay  

Another consideration is the model used to establish DNA damage across the placental barrier. BeWo cells 

are carcinogenic in nature and therefore are likely to respond differently to changes in DNA damaging 

insults in comparison to primary trophoblast cells, this is a particularly important factor when assessing an 
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insult of hypoxia-reperfusion as despite both models expressing HIF-1α and HIF-1β-mediated GLUT1 

under hypoxia, GLUT3 expression was expressed in response to hypoxia within BeWo cells but not in 

primary trophoblast cells.93 This suggests that the models will vary in their response to DNA damaging 

agents and highlights the subtle but significant differences the choice of model has upon downstream 

signalling pathways for DNA damage.  

In order to recapitulate the in vivo setting, it would be preferential to have a model of the placental barrier 

using primary cells since we are applying this conditioned media to primary fibroblast cells. There is 

ongoing research which is specifically is working towards an advanced model of the placental barrier using 

primary human trophoblast cells with underlying connective tissue and endothelial vasculature, 

recapitulating the microarchitecture of the in vivo placental barrier and providing a polarised barrier system 

ideal for transplacental studies such as this investigation. 167 A future perspective would be to use this novel 

and enhanced model to assess DNA damage to primary foetal tissues compared to using the 

choriocarcinoma cell line in vitro model which has limitations in its ability to provide an accurate 

representation of the in vivo setting  

 The health and viability of exposed cells  

Other variables including the passage number of the primary fibroblasts used in this experiment in 

comparison to the work conducted by previous members of our research group would have differed and 

have affected the susceptibility of the fibroblasts being affected by a DNA damaging agent. 495 Both a 

pesticide exposure and an exposure of BQ and HQ revealed no significant damaging effect to the bystander 

cells as initially hypothesised. It would have been interesting to explore whether a direct exposure was able 

to elicit a damaging effect. If a direct exposure was unable to elicit a damaging effect, analysis of the health 

and viability of the primary cell line would have been required to examine whether the cell’s functionality 

and/or morphology had been affected by their passage number. However, in accordance to ATTC, BJ 

fibroblast cells can maintain a normal diploid karyotype at population doubling up to 61; furthermore they 

are telomerase negative and do not undergo senescence until a doubling population of 72 

(www.lgcstandards-atcc.org). As our passage numbers were below the limits set by ATCC we may 

conclude that this factor was not a confounding variable; however further characterisation and assessment 

of the vitality of the primary cell line should be addressed.  

With both pesticide exposure and exposure of BQ and HQ, there are controversial results within the 

literature that in terms of which dose/exposure is classified as being toxic. Therefore, dose-response, 

toxicokinetic data is required to confirm bioavailability and metabolism, mainly when combinations of 

metabolites are applied as an individual insult.  

 miRNA depletion strategies  

Initial studies were conducted to assess the efficiency of RNaseA on knockdown of miRNA and total small 

ncRNA levels and were found to reduce the levels of both Although this is a high reduction the proportion 

of miRNAs within the total small ncRNA was only reduced by 5% with RNaseA treatment. Changes seen 

http://www.lgcstandards-atcc.org).as/
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in DNA damage levels in response to RNaseA treatment may not be attributed to a reduction in miRNAs 

but instead the result of a reduction in other small ncRNA species.   

There are a range of miRNA interference methods which are actively used in examining a loss-of-function 

of specific miRNAs and miRNA-families including; miRNA sponges,496 anti-miRNA antisense inhibitor 

oligoribonucleotides (AMOs),497 anti-sense oligonucleotides.498 These methods have been well reviewed 

within the literature; however for our investigation, we aimed to look at a more holistic approach by 

knocking down all miRNAs within the conditioned media. An alternative, improved method would be 

knockdown of main regulatory proteins in miRNA biogenesis including Dicer/ Drosha within the BeWo 

cell lines to ensure that miRNA synthesis and secreted into the conditioned media was blocked. 499 However 

it has been shown that Dicer knockdown is essential for cell growth and proliferation, as shown by Hackl et 

al. (2014) in the Chinese Hamster ovary cell line,500 and is essential in mediating cell differentiation in 

embryonic stem cell lines. 501 To compensate for these limitations a novel CRISPR/cas9 system has been 

designed as a means to explore miRNA loss-of-function studies. CRISPR/cas9 constructs can be cloned 

with single-guide RNAs targeting biogenesis processing sites of selected microRNAs and have been found 

to be up to 96% effective.502  

Another factor which must be taken into consideration is that RNaseA was not inhibited once incubated 

with the conditioned media before being exposed to primary cells. Thus the RNases may have continued to 

have an active enzymatic effect upon the primary exposed cells which would have caused interference in 

the homeostasis of the cell cultures, this in itself is a variable which should be taken into consideration. 

Methods have suggested using oligomers of vinyl sulfonic acid (OVS) to inhibit the enzymatic activity, 

503however for the purpose of this experiment as the conditioned media needed to be applied to primary cell 

cultures; this would have had deleterious effects upon cultures and hindered the results. We performed a 

negative control experiment to assess the effect of RNaseA upon the foetal cells and found that RNaseA 

application decreased the level of DNA damage of the exposed cells.  

Furthermore, ultracentrifugation was used to remove exosome shuttling miRNAs within the conditioned 

media. However, ultracentrifugation can result in the degradation of biomolecules which reduces the purity 

of exosomes and is thought to be only 5-25% effective.504,505 Further downstream analysis is required to 

assess the exosome concentrations before and after treatment with ultracentrifugation to quantify its 

efficiency using scanning electron microscopy(SEM) and flow-cytometry to detect membrane-bound 

tetraspanin proteins on exosomes.506 
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Chapter 5.  Characterisation of miRNAs 

that cross the placental barrier  

5.1 Introduction  
Our current understanding of the complex and diverse aetiology and the clinicopathological characteristics 

surrounding neurological disorders is limited. The use of high-throughput genomic technologies has aided 

our understanding of the mechanistic behind the onset and progression of neuropathological states 46. In 

the past two decades, a growing body of work using next-generation sequencing (NGS) has evolved to 

explore the principle mechanisms underlying neurological disorders, with the aim to isolate common 

factors and molecular pathways involved to pertain candidate mechanisms for developing effective, 

targeted therapeutic treatments. Analysis of multiple genomic signatures for the disease is being assessed 

to decipher complex neuropathological phenotypes to examine if there are common dysregulated,  

convergent pathways507. Next-generation sequencing has been successful in determining the aetiology 

behind neurological disorders caused by Mendelian genetics alone; however, many diseases are classified 

as being multifactorial caused by the multifaceted interplay of exogenous determinants and epigenetics. 

Thus progress has been a lot slower in ascertaining the underlying triggers for the developing of complex 

diseases including; schizophrenia, Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral 

sclerosis. The application of whole-genome and exome sequencing has enhanced the depth of  sequencing 

using techniques including RNA-seq and ChIP-seq. Improved sequencing technology and computational 

approaches have provided a catalogue of candidate gene variants found to be dysregulated under 

neuropathological settings in the Genome-Wide Association Study (GWAS) dataset508 and have brought 

new insights and hopes for future therapeutic targets for complex diseases 509.  

Research has placed emphasis in the field of epigenetics, which focuses on the convergence of 

environmental stimulants and gene expression within physiological and pathological states. Epigenetics 

has been thought to be a candidate mechanism behind the complexity of multifaceted neuropathological 

disease510,511. Epigenetic signatures are caused by exogenous stimulant interacting with the genome 

modifying histone and DNA methylation status, which have the potential to be reversed with the correct 

therapeutic treatment511.   

As mRNAs are epigenetic regulators, they could play a key role in identifying and deciphering 

mechanisms underlying pathological settings512. Owing to the sheer number of miRNAs that have been 

discovered in the human alone (1,364 miRNAs) 513and as they interact with multiple target mRNAs, it is 

not plausible to explore all miRNA: mRNA interactions using solely biological approaches, computational 

techniques need to be employed to validate experimental data. Our current understanding of miRNAs 

highlights their essential role in a vast range of both physiological and pathological settings358.  
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A host of different techniques have been used in order to measure miRNA concentrations within tissue 

samples and within conditioned media. Methods which have been commonly used for analysing a limited 

number of miRNAs involve using qPCR techniques which require a DNA primer and cDNA synthesis 

using a poly-A stem-loop structure514. This method has been shown to be highly sensitive and ideal at 

providing a quantitative output, however it has its limitations which are provided in well-reviewed by 

Kuang et al. 515 as it is only suitable for investigating a small number of miRNAs and there are concerns 

regarding specificity issues as a result of the short template lengths of miRNAs 516.However, in order to 

provide a more holistic overview of miRNAs within samples microarrays are have been used as an 

alternative method. The benefits of using microarrays in comparison to qPCR is that it is able to assess a 

multitude of miRNAs; the method allows for parallel tracking of all known miRNAs 516. NanoString 

Technologies nCounter platform is a modern approach to assess miRNA levels offering a range of 

advantages, including high-sensitivity even with low-quality RNA samples, high reproducibility, technical 

robustness, and can be easily used in a range of clinical settings 517.   

Since the introduction of NGS, there has been an exponential growth in the number of novel miRNA 

sequences identified. In 2002, the field of bioinformatics was established as a means to provide data 

integration of NGS outputs by computationally assessing miRNA target predictions. Initially, this was 

achieved through using algorithms based on seed matching, thermodynamic stability and co-expression 

between a specific miRNA and a potential target mRNA518. These methods have evolved throughout the 

years as a result of technological advances, and target predictions are now identified from high-throughput 

sequencing of RNAs isolated by covalently crosslinking Argonaute immunoprecipitation to distinguish 

miRNA:mRNA interactions 519.  The algorithms are constantly being updated and verified with new 

information regarding miRNA regulation. Recent findings have discovered the role of polyadenylation of 

target genes which are involved in mediating miRNA interactions and will, therefore, be a feature which 

will be incorporated into the updated algorithms520. Furthermore, software is being developed to integrate 

platforms and their associated algorithms to improve the validity of target predictions, an example of this 

is mirPath 3.0 which integrates Targetscan, Tarbase and micro-T algorithms to make target 

predictions521,522.   

There is a wide array of miRNA tools which dissect target gene predictions and functional annotation, 

some of the most commonly used ones include; Targetscan, miRanda, PITA and mirPath523. For the 

purpose of our investigation a software tool was required which not only predicted targets of DE miRNAs 

but also calculated pathway enrichment. In accordance to the current literature which has reviewed such 

tools, despite Targetscan being the most commonly used, due to the high sensitivity and high rate of false 

negatives associated with Targetscan524, we choose to assess our DE miRNAs using DIANA mirPath v3.0,  

as it was highly rated for having a 92% linkage rate, which was the best out of the six top bioinformatic 

tools currently available 525. Furthermore, it allowed for the integration of multiple miRNA sets into 

pathway enrichment analysis which is a feature not offered by Targetscan and was required for our 

investigation.  
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 MirPath v3.0 performs enrichment analysis of multiple miRNA target genes comparing each of the targets 

to all KEGG pathways526.DIANA-microT-CDS is the latest version of  the algorithm  used in mirPath v3.0 

which  incorporates a machine-learning approach to identify the most likely targets via 

photoactivatableribonucleotide-enhanced cross-linking immunoprecipitation (PAR-CLIP) data. This 

algorithm expands the systems knowledge on the miRNA’s binding sites in both the 3’UTR and coding 

sequence. In target prediction the algorithm takes into consideration a range of features including; binding 

category weight, distance to the nearest seed end or to a binding site, the free energy of the duplex, and 

AU content527.  

Advancements in data integration have found associations of miRNAs involvement in human pathologies, 

and thus they can be utilised as novel biomarkers in biomedical research. Databases are being curated 

which combines experimentally supported associations between miRNAs and human diseases.  The 

miRNA SNP Disease Database (MSDD)provides information obtained from experimental platforms to 

assess single nucleotide polymorphisms within miRNAs which are functionally associated in gene 

dysregulation and disease progression528. Currently, the most comprehensive miRNA-disease associated 

database is miR2Disease which combines miR-target and miRNA expression data to form an association, 

assessing 299 human microRNAs and their association in 94 human diseases across 600 publications529. 

Alternative methods involve automated literature mining tools which capture and store within a database 

miRNA-disease association publications, an example of which is microRNAs in association with 

Disease(miRiaD)530.  

The results acquired from previous chapters have been able to make headway in addressing the hypothesis 

that miRNAs play a role in the response to an insult of gestational hypoxia. Three different models of the 

feto-maternal interface were used to explore this question. Both the in vitro model and in vivo model 

established a similar trend which suggested that under conditions of chronic hypoxia and hypoxia-

reperfusion which are conditions seen in obstetric complications, there was an increase in the 

concentration of miRNAs secreted from the placental barrier.  Previous findings also revealed that the 

miRNAs which are secreted under conditions of gestational hypoxia are unlikely to be involved in the 

DNA-damaging pathway. Alternatively, we propose that these miRNAs, in accordance with the literature, 

may have a more prevalent role in neurodevelopment. However, to determine whether the miRNAs 

released from the models of the placental barrier are involved in neurodevelopment we needed to classify 

the miRNA species in order to determine which miRNAs were either significantly upregulated or 

downregulated and their association in known pathways associated in neuropathological settings.   

  

5.2 Aims & Hypotheses   
We hypothesis that the miRNAs we have shown to be released from the feto-maternal interface have the 

potential to act as signalling molecules, binding to their target mRNAs to alter gene expression in the 

foetal brain in-utero.   
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The aim of this chapter is to examine the miRNAs which have been released from the feto-maternal 

interface following changes in oxygen tension. We aim to explore if miRNAs are either significantly 

upregulated or downregulated across the three models of the placental barrier, to see if there are key 

candidate miRNAs secreted from the placenta in response to changing oxygen tensions to the placental 

barrier. Characterising the miRNAs will be performed using nCounter NanoString platform and 

computational bioinformatic methods using mirPath technology to determine the KEGG pathways 

enriched by the differentially expressed miRNAs and their potential association in neuropathological 

settings.   

5.3 Experimental Design  
Three distinct models of the placental barrier (in vitro, ex vivo & in vivo) were used as a means to assess 

the effect of gestational hypoxia upon secretions from the placental barrier into the foetal domain (Section 

2.3). Three oxygen tensions were assessed in the in vitro and ex vivo model (21% O2-normoxia), (2% O2 

Chronic hypoxia) and (2-12% O2-hypoxia-reperfusion). An additional parameter was explored to examine 

the effect of the antioxidant MitoQ drug-loaded to γ-PGA nanoparticles (MQ-NP) on the placental barrier 

before an ‘exposure’ of hypoxia-reperfusion to determine whether the drug could influence the secretions 

from the placental barrier and revert changes seen in response to a known damaging insult. In the in vitro 

and ex vivo model, 0.5µM of MitoQ-NPs was applied to the barrier before a 24-hour exposure to hypoxia 

reperfusion. In both, the in vitro and ex vivo model treatment groups were performed in biological 

triplicates with an exception in the ex vivo model for treatment group with the application of MitoQ (n=1).  

Comparative analysis was performed between the treatment groups to assess differential expression (DE) 

of miRNAs upregulated and downregulated between a treatment group and its respective control. The 

comparative groups were as follows:  

1. Normoxia (21% O2) (respective control) compared to Chronic Hypoxia (2% O2) (treatment group).  

(21%-V-2%).  

2. Normoxia (21% O2) (respective control) compared to Hypoxia-reperfusion (2-12% O2) (treatment 

group). (21%-v-(2-12%))   

3. Hypoxia-reperfusion (2-12% O2) (respective control) compared to antioxidant treatment group 

prior to an exposure of hypoxia-reperfusion (2-12%+MQ) (treatment group). ((2-12%)-V-(212%) 

+MQ))   

In the in vivo rodent model the oxygen tensions had to be adapted to recapitulate the oxygen tensions 

associated with obstetric complications in a clinical in vivo setting (Section 2.3.3). In the in vivo 

rodent model 125µM of MitoQ was injected intravenously into the tail vein at GD15 before an 

exposure of either normoxia (21% O2) or hypoxia (11% O2). After a 6-day exposure the neonates were 

sacrificed, and the placentas were placed into an ex vivo set-up for a 24-hour exposure. The placentae 

were either placed into ex vivo atmospheric conditions (21% O2) or an ex vivo hypoxic setting (2% O2) 

(Table 9). In each treatment parameter there were n=4 biological replicates of placentae obtained from 
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different dams with the exception of the Normoxia+Saline (NS) treatment group (n = 3). This work 

was carried out in collaboration with Dr Thomas Phillips and Dr Hannah Scott.  

Table 9 Overview of the in vivo rodent model experimental model set-up with varying oxygen tension 

exposures (MQ)-MitoQ(125µM)  

   Oxygen tensions (%)       

Treatment Group  in vivo  Ex vivo  Application of MitoQ 

or Saline  

Sample Size  

Normoxia+Saline  

(NS)  

normoxia 

(21%)  

normoxia (21%)  Saline  3  

Normoxia +MitoQ (NM)  normoxia 

(21%)  

normoxia (21%)  MitoQ  4  

Chronic Hypoxia +Saline  

(HS)  

hypoxia (11%  hypoxia (2%)  Saline  4  

Chronic Hypoxia + MitoQ 

(HM)  

hypoxia (11%  hypoxia (2%)  MitoQ  4  

Hypoxia-reperfusion +Saline   

(RS)  

 hypoxia (11%)  reperfusion 

(21%)  

Saline  4  

Hypoxia-reperfusion +MitoQ  

(RM)  

 hypoxia (11%)  reperfusion 

(21%)  

MitoQ  4  

  

Comparative analysis was performed between the treatment groups to assess differential expression (DE) 

of miRNAs upregulated and downregulated between a treatment group and its respective control in the in 

vivo model. The comparative groups were as follows:  

1. (NS) (respective control)-dams exposed to atmospheric oxygen tensions at GD 15 and 

administered with a single saline intravenous injection. At GD 20 dams were sacrificed and 

placentae were obtained and placed into ex vivo atmospheric oxygen tensions (21% O2) for 24 

hours compared to HS (treatment group)- dams exposed to hypoxic conditions (11% O2) and 

administered a single intravenous saline injection at GD 15. At GD 20 placentae were obtained 

and placed into ex vivo hypoxic conditions (2% O2) for 24 hours (NS-HS).  

2. (NS) (respective control)-dams exposed to atmospheric oxygen tensions at GD 15 and 

administered with a single saline intravenous injection. At GD 20 dams were sacrificed and 

placentae were obtained and placed into ex vivo atmospheric oxygen tensions (21% O2) for 24 

hours compared to RS (treatment group)- dams exposed to hypoxic conditions (11% O2) and 

administered a single intravenous saline injection at GD 15. At GD 20 placentae were obtained 

and placed into ex vivo hypoxic-reperfusion conditions (21% O2) for 24 hours (NS-RS).  

3. (RS) (respective control)- dams exposed to hypoxic conditions (11% O2) and administered a 

single intravenous saline injection at GD 15. At GD 20 placentae were obtained and placed into ex 

vivo hypoxic-reperfusion conditions (21% O2) for 24 hours (NS-RS) compared to RM (treatment 

group)- dams exposed to hypoxic conditions (11% O2) and administered a single dose of MitoQ 

antioxidant drug (125µM) at GD 15. At GD 20 placentae were obtained and placed into ex vivo 

hypoxic-reperfusion conditions (21% O2) for 24 hours (RS-RM).  
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The conditioned media from the three placental models were processed and total RNA was extracted using 

the miRNeasy Mini Kit (Qiagen, Germany). Small RNA and mRNA levels were measured using the Small 

RNA Kit on the 2100 Bioanalyzer (Agilent Technologies) (section 2.7.2). Levels of individual 

microRNAs were assessed using the nCounter Rat v1 miRNA Expression Assay or the nCounter Human 

v2 miRNA Expression Assay (NanoString Technologies, USA), which detects 423 or 800 different 

species-specific microRNAs, respectively. Differential expression of miRNAs was determined by the 

Log2 fold change Log2FC) between treatment groups, and was determined using a combination of 

DESeq312 and EdgeR313, provide stringent statistical analysis as both use a model based on a negative 

binomial distribution. The combination of the two models revealed that there is limited overlap between 

the miRNA species which are significantly upregulated and downregulated across the different treatments 

(section 2.7.3).  

To explore the potential involvement of DE miRNAs in disease progression, miRNAs were entered into a 

manually curated miR2Disease database. The database is a resource for examining the association of 

aberrant miRNA expression in human diseases. The up-to-date version collates information gathered from 

over 600 publications forming over 1939 curated relationships between 299 human miRNAs and their 

association with 94 diseases529. The database provides information on each microRNA-disease 

relationship, with information on the expression pattern of the miRNA and the detection method as well as 

experimentally validated target genes.   

To further assess the functional properties of the differentially expressed miRNAs, DIANA-mirPath v3.0 

Tool was utilised. MirPath can assess the functional annotation of miRNAs using standard hypergeometric 

distributions, empirical distributions and incorporates meta-analysis statistics. The analysis utilised in 

silico predictions using DIANA-microT-CDS which uses microT algorithm by incorporating miRbase 

version 18 and Ensemble version 69521. A microT-CDS threshold score for predicted targets was set at a 

threshold of 0.8 (as recommended by the developers) and a p-value threshold for significance of p<0.05. 

Corrections for multiple testing was performed using False Discovery Rate (FDR) correction. The FDR is 

a statistical approach used in multiple hypothesis testing to correct for multiple comparisons and is defined 

as the expected proportion of incorrectly rejected null hypothesis, among all discoveries. 

We looked specifically at enriched pathway analysis using Kyoto Encyclopaedia of Genes and Genomes  

(KEGG) based on Fisher’s Exact Test. Under each analysis method A priori analysis was conducted by 

assessing the gene union of the differentially expressed miRNAs that calculates the combination of 

targeted genes by the selected sample list of microRNAs. The p-value predicts the probability that the 

specific pathway is significantly enriched with gene targets of at least one of the DE miRNAs. Enriched 

pathways were subdivided into areas of interest which included; the top 10 most significantly enriched 

pathways; ‘neuro-related’ which involved pathways and diseases associated with neurological function 

and pathological states; ‘stress-related’ associated with enriched pathways linked to cellular stress in 

response to hypoxia or hypoxia-reperfusion. ’miRNA-related’ associated with pathways involved in 

posttranscriptional regulation, or in processing and secretory networks which may be associated with 
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miRNA signalling molecules. ‘Cardio-related’ and ‘cancer-related’ associated with cardiovascular and 

oncological pathological settings.   

An additional assessment was made to examine the ‘effectiveness’ of the application of a mitochondrial 

targeted antioxidant drug (MitoQ) bound to PGA-nanoparticles in reverting the level of DE miRNAs 

released from the placental barrier under conditions of hypoxia-reperfusion. In order to determine whether 

MitoQ was able to revert the expression of miRNA secretions from the placental barrier, a comparison was 

made between the Log2FC between the miRNA species which were found to be significantly differentially 

expressed under hypoxia-reperfusion conditions (2-12% O2) in comparison to the control vehicle (21% O2)  

and compared  to the Log2FC changes seen in the miRNA species which were significantly differentially 

expressed in conditioned media obtained after an exposure of hypoxia-reperfusion (2-12% O2 +MQ)  after 

an application of an antioxidant drug-loaded nanoparticle treatment (0.5µM) in comparison to its 

respective control vehicle (2-12% O2). In order to mitigate false positives from the collated data, 

microRNAs were classed significant differentially secreted microRNAs if p < 0.05 for both DESeq and 

EdgeR and if there was an up or down regulation of at least 25% (0.25 Log2FC).   

Pathway enrichment analysis using MirPath v3.0 permitted extrapolation of the target genes associated 

with DE miRNAs whose expression had been reverted in response to MitoQ application. MirPath v3.0 

bioinformatic software established the DE miRNAs associated in shared enriched KEGG pathways found 

across all three models of the placental barrier and provided an output of predicted target genes.   

  

  

  

  

5.4 Results  

 Characterising miRNAs within conditioned media (NanoString 

findings)  

Quantification and characterisation of miRNA species was performed using nCounter miRNA expression 

software (NanoString) which provided discrete counts of individual miRNAs.  

Differentially expressed (DE) miRNAs across treatment groups were assessed to explore their potential 

involvement in neuropathological conditions using miR2Disease database. Output from the analysis can be 

found in Appendix 2.   
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 In vitro BeWo placental barrier  

  Chronic Hypoxia exposure  

  

 (A)  (B)  

Figure 5-1 nCounter analysis of DE miRNAs secreted from the in vitro placental barrier under conditions of chronic hypoxia  

(A) A Schematic to represent the mean discrete miRNA counts representative of miRNA species differentially expressed within conditioned media from two comparative experimental 

parameters; Normoxia (21% O2) and Chronic Hypoxia (2% O2). Conditioned media was obtained from the in vitro BeWo barrier model of the first trimester human placenta in biological 

replicates (n=3) ±SD. A Two-way ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple comparison tests across the different treatment 

parameters to identify levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001). Overall Statistical analysis using a Two-Way ANOVA on all three repeats for each DE miRNAs across 

both treatment groups found that there was a significant interaction between the miRNAs and the treatment group they derived from (F (10,44) =5.197, P<0.0001). The interaction accounts 

for 40.99% of the total variance. There was not a significant difference between the effect of the treatment group for each of the miRNAs; (F (1,44) =0.018, p=0.894 and accounted for <0.1% 

of the variance. The data was examined using the Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity of variance, respectively. (B) A schematic illustrating the 

Log 2Fold change of the expression of miRNA species which have been found to be differentially expressed under conditions of gestational hypoxia (2% O2) in comparison to the control 

vehicle obtained from the basal domain of the in vitro BeWo placental barrier model of the first trimester placenta  
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The nCounter analysis revealed that when a cross-comparison was made between the miRNAs which 

were significantly differentially expressed (either up-regulated or down-regulated) under chronic hypoxia 

conditions (2% O2) compared to its respective control (21% O2), there was a total of eleven miRNAs that 

were significantly differentially expressed. Out of the eleven miRNAs, six of these were significantly 

upregulated in comparison to the control vehicle, whilst five of them were significantly downregulated. 

Statistical analysis revealed that miR-378e had significantly decreased expression under conditions of 

chronic hypoxia (Mean Count difference=10, p=0.014) (Figure 5-1A). Figure 5-1B revealed the log fold 

changes between expression of the two experimental parameters for each of the DE miRNAs. 

MicroRNA4286 had the greatest reduction in expression under conditions of chronic hypoxia (-1.7 FC) 

whereas miR520e had the greatest increased expression under conditions of hypoxia (+1.2 FC) in 

comparison to the control vehicle. Mir2Disease analysis found strong associations within the literature 

with DE miRNAs under conditions of chronic hypoxia with neurological disease including; miR-520e has 

been linked with  

Alzheimer’s disease, miR-664-3p is associated with Parkinson’s disease and miR-484 with autism 

(Supplementary Table 15).  
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  Hypoxia-reperfusion exposure  

(A)                                                                                                                            (B)  

  

  

  

    

  

  

  

  

  

Figure 5-2 nCounter analysis of DE miRNAs secreted from the in vitro placental barrier under conditions of hypoxia-reperfusion  

(A) A Schematic to represent the mean discrete miRNA counts representative of miRNA species differentially expressed within conditioned media from two comparative experimental 

parameters; Normoxia (21% O2) and Hypoxia-reperfusion (2-12% O2). Conditioned media was obtained from the in vitro BeWo barrier model of the first trimester human placenta in 

biological replicates (n=3) ±SD. A Two-way ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple comparison tests across the different 

treatment parameters to identify levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****P<0.0001). Overall Statistical analysis using a Two-Way ANOVA on all three repeats for 

each DE miRNAs across both treatment groups found that there was a significant interaction between the miRNAs and the treatment group they derived from (F (23,96) =1.979, p=0.012). 

The interaction accounts for 18.91% of the total variance. There was a significant difference between the effect of the treatment group for each of the miRNAs; (F (1,96) =7.711, p=0.007) 

and accounted for 3.20% of the variance. The data was examined using the Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity of variance, respectively. (B) A 

schematic illustrating the Log 2-Fold change of the expression of miRNA species which have been found to be differentially expressed under conditions of hypoxia-reperfusion (2-12% 

O2) in comparison to the control vehicle obtained from the basal domain of the in vitro BeWo placental barrier model of the first trimester placenta  
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NanoString n-Counter analysis revealed the change in expression of individual miRNAs under conditions of 

hypoxia-reperfusion (2-12% O2) compared to its respective control (21% O2) (Figure 5-2A). A total of twenty-

four miRNAs were significantly differentially expressed: six of these were significantly upregulated in 

comparison to the control, whilst fourteen of them were significantly downregulated. Statistical analysis 

revealed that miR-378e had significantly decreased expression under conditions of hypoxia-reperfusion (Mean 

Count difference=-29, P<0.0001) and (Mean Count difference=107, P<0.0001). Figure 5-2B. revealed the log 

fold changes between the expression of the two treatments for each of the DE miRNAs. We observed that miR-

378e had the greatest reduction in expression upon an insult of hypoxia-reperfusion (-2.1 FC). Conversely 

miR-664-3p had the greatest increase in expression under an insult of hypoxia-reperfusion (+1.1 FC). 

Mir2Disease analysis found associations within the literature with the DE miRNAs expressed within conditions 

of hypoxia reperfusion with neurological disease including; miR-877-5p with Huntington’s disease, miR-124-

3p with  

Alzheimer’s disease and miR-625-5p with Amyotrophic lateral sclerosis (ALS) (Supplementary Table 16).  
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  Administration of the antioxidant drug  

  
(A)  (B)  

   

  

  

  

  

  

  

  

Figure 5-3 nCounter analysis of DE miRNAs secreted from the in vitro placental barrier with the application of MQ-NP  

(A) A Schematic to represent the mean discrete miRNA counts representative of miRNA species differentially expressed within conditioned media from two comparative experimental 

parameters; Hypoxia-reperfusion (2-12% O2) and hypoxia-reperfusion with the application of the antioxidant drug (2-12% +MQ). Conditioned media was obtained from the in vitro BeWo 

barrier model of the first trimester human placenta in biological replicates (n=3) ±SD. A Two-way ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform 

multiple comparison tests across the different treatment parameters to identify levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****P<0.0001). Overall Statistical analysis using a 

Two-Way ANOVA on all three repeats for each DE miRNAs across both treatment groups found that there was a significant interaction between the miRNAs and the treatment group they 

derived from (F (9,40) =10.820, P<0.0001). The interaction accounts for 34.56% of the total variance. There was a not a significant difference between the effect of the treatment group for 

each of the miRNAs; (F (1,40) =0.0729, p=0.789) and accounted for <0.1% of the variance. The data was examined using the Shapiro-Wilk and Levene’s Test for examining the normality 

and homogeneity of variance, respectively. (B) A schematic illustrating the Log 2-Fold change of the expression of miRNA species which have been found to be differentially expressed 

under conditions of hypoxia-reperfusion (2-12% O2) in comparison to the control vehicle obtained from the basal domain of the in vitro BeWo placental barrier model of the first trimester 

placenta.  



 

 

  

A BeWo placental barrier was treated with an antioxidant drug-loaded NP (0.5µM) before a 24-hr 

exposure of oxidative stress (2-12% O2). A total of ten miRNAs were significantly differentially 

expressed. Five of these were significantly upregulated in comparison to the expression levels in the 

control, whilst five of them were significantly down-regulated (Figure 5-3). Statistical analysis revealed 

that miR-885-3p and miR-198 were significantly reduced under conditions where (MQ-NP) had been 

applied before an episode of hypoxia-reperfusion (Mean Count difference=8, p=0.015) and (Mean Count 

difference=9, p=0.003), respectively. Conversely, miR-331-5p and miR-149-5p were significantly 

increased upon treatment with (MQ-NP) (Mean Count difference=-10, p=0.002) and (Mean Count 

difference=-10, p=0.0005), respectively. We observed that miR-885-3p had the greatest reduction in 

expression upon an insult of hypoxia-reperfusion (-1.6 FC). Conversely miR-1910 had the greatest 

increase in expression under an insult of hypoxia-reperfusion(+3.4FC) (Figure 5-3B).  Assessment in 

association of the DE miRNAs with neurological diseases found that many of the miRNAs had been 

cited within the literature to be related to known human neuropathological disorders. Examples 

include; miR-1287 which was found to be associated with astrocytoma; miR-1263 with Down 

syndrome; miR-125b was associated with epilepsy and ALS; miR-144-3p   in Alzheimer’s disease 

and miR-615-3p was associated with Multiple sclerosis (Supplementary Table 17).  
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Figure 5-4 A schematic to illustrate miRNA species which were significantly differentially expressed (Log2 

FC) under different treatment groups  

A schematic to illustrate a comparison of miRNA species which were significantly differentially expressed between three 

treatment groups: (1) Normoxia (21% O2 ) compared to Chronic hypoxia (2% O2 ) denoted (21%-V-2%) (2) Normoxia 

(21% O2 )  compared to hypoxia-reperfusion (2-12% O2 ) denoted as (21%-V-(2-12%) and (3) hypoxia-reperfusion (2-12%  
O2 ) compared to antioxidant drug-loaded NP (MQ) (0.5µM) treatment after an exposure of hypoxia reperfusion denoted as 

(2-12%)-V-(2-12%)+MQ in the in vitro BeWo barrier placental model. Those denoted in (green) signify miRNA species 

which are overexpressed in conditioned media in comparison to their representative control; whilst those in (red) denote 

miRNA species which were significantly downregulated in comparison to their representative control. The miRNA species 

which are in (black) represent those which are common differentially expressed miRNA species shared between two 

treatment groups.  

Supplementary Table 9 Overview of the nCounter NanoString analysis across treatment parameters in the 

in vitro model. MicroRNAs which were differentially upregulated (Green) and MicroRNAs differentially 

downregulated (Red). A cross-comparison was made between miRNAs which were differentially 

expressed under the different treatment groups (Section 5.3) to examine whether common miRNA species 

were found to be differentially expressed between treatment parameters. Figure 5-4 revealed that under  

  Overview of the  in vitro   model NanoString findings   
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chronic hypoxic conditions (21%-V- 2% O2 ) compared to those which were differentially expressed under 

hypoxia-reperfusion conditions (21%-2-12% O2 ), two miRNA species were found to be differentially 

expressed in both treatment groups (miR-877-5p and miR-664-3p) suggesting their involvement in 

response to altered oxygen tensions (Figure 5-4). Similarly when making a cross comparison between 

miRNAs which were differentially expressed in hypoxia-reperfusion conditions compared to those which 

were differentially expressed in conditions where the barrier had been treated with an antioxidant drug-

loaded NP ((2-12%)-V-(2-12% O2 + MQ )), two miRNA species also were found present in both treatment 

groups (miR-149-5p and miR-615-3p). There was disparity amongst the number of miRNA species 

significantly differentially expressed across the treatment groups, with over twice the number of miRNA 

species (24 miRNAs) in the hypoxia-reperfusion group (2-12% O2), compared to the chronic hypoxia 

group (11 miRNAs). The application of the antioxidant drug-loaded NP (0.5µM) appeared to reduce the 

number of differentially expressed miRNAs (10 miRNAs) by 42% in comparison to its respective control. 

The results obtained also found there was a disparity in the number of miRNAs which were 

downregulated under conditions of hypoxia-reperfusion in comparison to the other treatment parameters, 

with double the number of miRNAs being downregulated (18 miRNAs) compared to those which were 

upregulated (6 miRNAs). This disparity was not seen in the other parameters (Figure 5-4).   
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 Ex vivo human placental explants  

Chronic 

Hypoxia 

exposure  

Figure 5-5 nCounter analysis of DE miRNAs secreted from the ex vivo placental model under conditions of chronic hypoxia  

(A) A Schematic to represent the mean discrete miRNA counts representative of miRNA species differentially expressed within conditioned media from two comparative experimental 

parameters; chronic hypoxia (2% O2) in comparison to the control vehicle. Conditioned media was obtained from the ex vivo first trimester human explants in biological replicates (n=3) 

±SDA Two-way ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple comparison tests across the different treatment parameters to identify 

levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****P<0.0001). Overall Statistical analysis using a Two-Way ANOVA on all three repeats for each DE miRNAs across both 

treatment groups found that there was a significant interaction between the miRNAs and the treatment group they derived from (F (10,44) =4.484, p=0.0002). The interaction accounts for 

24% of the total variance. There was a significant difference between the effect of the treatment group for each of the miRNAs; (F (1,44) =6.78, p=0.0002) and accounted for 9% of the 

variance. The data was examined using the Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity of variance, respectively. (B) A schematic illustrating the Log 2-

Fold change of the expression of miRNA species which have been found to be differentially expressed under conditions of chronic hypoxia (2% O2) in comparison to the control vehicle 

obtained from the basal domain of the ex vivo first trimester human placental explants.  
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Figure 5-5A revealed the results obtained from the nCounter analysis which measured the discrete counts 

of individual miRNAs which were significantly differentially expressed under conditions of chronic 

hypoxia (2% O2) compared to its control (21% O2) in the ex vivo human first trimester explants. Eleven 

miRNAs were differentially expressed: five of these were significantly upregulated in comparison to the 

control, whilst six of them were significantly downregulated. Statistical analysis revealed that miR-

520c3p and miR-409-5p had significantly decreased expression of miRNAs under conditions of chronic 

hypoxia (Mean Count difference=-29, P<0.0001) and (Mean Count difference=-23, p=0.0033), 

respectively. Figure 5-5B displays the fold changes between the miRNA expressions for each DE 

miRNA. MicroRNA-604 had the greatest reduction in expression (-1.2 FC) whereas miR-4435 had the 

greatest increased expression (+1.2 FC) under conditions of chronic hypoxia. Assessment in association 

of the DE miRNAs with neurological diseases using miR2Disease found several miRNAs cited 

within the literature to be related to known human neuropathological disorders. Examples include; 

miR-4435 which was found to be associated with multiple sclerosis; miR-551b-3p with Alzheimer’s 

disease; miR-604 was associated in ALS and miR-409-5p was present in oligodendroglioma and 

Alzheimer’s disease (Supplementary Table 18).
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 Hypoxia-reperfusion exposure  

 

Figure 5-6 nCounter analysis of DE miRNAs secreted from the ex vivo placental model under conditions of hypoxia-reperfusion  

(A) A Schematic to represent the mean discrete miRNA counts representative of miRNA species differentially expressed within conditioned media from two comparative experimental 

parameters; Hypoxia-reperfusion (2-12% O2) and in comparison, to the control vehicle. Conditioned media was obtained from the ex vivo first trimester human explants in biological replicates 

(n=3) ±SD. A Two-way ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple comparison tests across the different treatment parameters to 

identify levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****P<0.0001). Overall Statistical analysis using a Two-Way ANOVA on all three repeats for each DE miRNAs across 

both treatment groups found that there was a significant interaction between the miRNAs and the treatment group they derived from (F (6,21) =3.175, p=0.022). The interaction accounts for 

28.25% of the total variance. There was no significant difference between the effect of the treatment group for each of the miRNAs; (F (1,21) =0.643, P>0.05) and accounted for only 0.95% 

of the variance. The data was examined using the Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity of variance, respectively. (B) A schematic illustrating the Log 

2Fold change of the expression of miRNA species which have been found to be differentially expressed under conditions of hypoxia-reperfusion (2-12% O2) in comparison to the control 

vehicle obtained from the basal domain of the ex vivo first trimester human placental explants.  

( A )   ( B )   
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Comparison between the miRNAs which were significantly differentially expressed (either over or under- 

expressed) under hypoxia-reperfusion (2-12% O2) compared to its respective control (21% O2) was 

examined. A total of seven miRNAs were differentially expressed, two of which were significantly 

upregulated in comparison to the control, whilst five of them were significantly down-regulated (Figure 

5-6A). Statistical analysis revealed that miR-516b-5p expression was significantly increased under 

conditions of hypoxia-reperfusion (Mean Count difference=78, p=0.004). Figure 5-6B displays the fold 

changes between the miRNA expressions for each DE miRNA. Micro-RNA-423-3p had the greatest 

reduction in expression (-1.4 FC) whereas miR-516b-3p had the greatest increased expression (+1.8 FC) 

under conditions of hypoxia-reperfusion. Assessment using miR2Disease found an association 

between DE miRNAs secreted from the placental explants in response to an insult of oxidative 

stress. Both miR-527 and miR-423-3p were found to be involved in neuropathological settings 

(Alzheimer’s disease and multiple sclerosis), respectively (Supplementary Table 19).  
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 Application of antioxidant   

  
(A)  (B)  

 

 

Figure 5-7 nCounter analysis of DE miRNAs secreted from the ex vivo placental model in response to MQ-NP  

(A) A Schematic to represent the mean discrete miRNA counts representative of miRNA species differentially expressed within conditioned media from two comparative experimental 

parameters; Hypoxia-reperfusion (2-12% O2) and hypoxia-reperfusion with the application of the antioxidant drug (2-12% +MQ). Conditioned media was obtained from the ex vivo model of 

the placental in biological replicates (2-12%(n=3) 2-12%+MQ(n=1)). (B) A schematic illustrating the Log 2-Fold change of the expression of miRNA species which have been found to be 

differentially expressed under conditions of hypoxia-reperfusion (2-12% O2) in comparison to the control vehicle obtained from the basal domain of the ex vivo first trimester human 

placental explants.  
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The ex vivo human first trimester explants were treated with an antioxidant drug-loaded NP (0.5µM) before 

a 24-hr exposure of oxidative stress (2-12% O2). A total of 14 miRNAs were differentially expressed, five 

of these were significantly upregulated in comparison to the control, whilst nine of them were significantly 

down-regulated (Figure 5-7A). No statistical analysis was performed due to low (n) numbers for the 

parameter with the administration of the antioxidant drug, however assessment of the raw counts infers that 

under conditions of hypoxia-reperfusion, miR-614 had the highest discrete counts (Mean Counts=31), 

whereas after treatment with MQ-NP, miR-221-3p had the highest counts (38 counts). Figure  

5-7B. represents the fold changes between the miRNA expressions for each DE miRNA. Micro-RNA 

526b-5p had the greatest reduction in expression (-2.2 FC) whereas miR-miR-371b-5p had the greatest 

increased expression (+1.8 FC)(Figure 5-7B).Treatment with the antioxidant drug was found to cause 

differential expression of miRNAs which have been found in the literature to be involved in  neurological 

disorders. Prime examples include; miR-125a-3p, miR-371b-5p, miR-409-3p which have all been 

associated in Parkinson’s disease and miR-4508 which is present in ALS (Supplementary Table 20).  
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Figure 5-8 A schematic to illustrate miRNA species which were significantly differentially expressed (Log2 

FC) under different treatment groups in the ex vivo model  

A schematic to illustrate a comparison of miRNA species which were significantly differentially expressed between three 

treatment groups: (1) Normoxia (21% O2 ) compared to Chronic hypoxia (2% O2 ) denoted (21%-V-2%) (2) Normoxia (21% 

O2 )  compared to hypoxia-reperfusion (2-12% O2 ) denoted as (21%-V-(2-12%) and (3) hypoxia-reperfusion (2-12%  
O2 ) compared to antioxidant drug-loaded NP (MQ) (0.5µM) treatment after an exposure of hypoxia reperfusion denoted as 

(2-12%)-V-(2-12%)+MQ in the ex vivo first trimester human placental explants, in comparison to their respective control 

vehicle. Those denoted in (green) signify miRNA species which are overexpressed in conditioned media in comparison to 

their representative control; whilst those in (red) denote miRNA species which were significantly downregulated in 

comparison to their representative control. The miRNA species which are in (black) represent those which are common 

differentially expressed miRNA species shared between two treatment groups.  N.B. Please note that samples obtained from 

(2-12%) +MQ was (n=1).  

  

Supplementary Table 10 assessed the DE miRNAs expressed in the ex vivo human placental explants 

revealed that there was no overlap in miRNA species across treatment groups (Figure 5-8).  Figure 5-8. 

reveals the disparity amongst the number of DE miRNAs across the treatment groups; an exposure of 

chronic hypoxia resulted in 11 DE miRNAs being differentially released from the placenta compared to its 

respective control group, of which 45% were upregulated whilst the remaining 55% were downregulated. 

An exposure of hypoxia-reperfusion (2-12% O2) reduced the number of DE miRNAs (7 DE miRNAs) 

secreted from the explants in comparison to the respective control with 29% being upregulated and the 

remaining 71% being downregulated. The antioxidant drug-loaded NP (0.5µM) prior to hypoxia-

reperfusion resulted in an increase in the secretion of DE miRNAs by two-fold in comparison to its 

  Overview of  ex vivo   model   

  

    

  

  

  

  

  

  

  

  

  

  



 

 

respective control group, with 36% being upregulated and the remaining 64% being downregulated. 

Overall there was a higher proportion of miRNAs that were down-regulated in comparison to the 

proportion which are upregulated; (chronic hypoxia=54.5%; hypoxia-reperfusion=71.4% and antioxidant 

treatment=64.3%) (Figure 5-8).  
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Figure 0-1 nCounter analysis of DE miRNAs released from the in vivo model of the placental barrier under conditions of chronic hypoxia 

A schematic illustrating the Log 2-Fold change of the expression of miRNA species which have been found to be differentially expressed under conditions of chronic hypoxia 

(2% O2) in comparison to the control vehicle obtained from the basal domain of the in vivo rodent placental explants. Results obtained in collaboration with Dr Thomas Phillips 

and Dr Hannah Scott. 

 

 

Figure 0-2 nCounter analysis of DE miRNAs released from the in vivo model of the placental barrier under conditions of chronic hypoxia 
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NanoString n-Counter analysis revealed the change in expression of individual miRNAs under conditions 

of chronic hypoxia (2% O2) compared to its respective control (21% O2) (Supplementary Figure 2). A 

total of 94 miRNAs were differentially expressed, 40 of which were significantly upregulated in 

comparison to the control, whilst 54 of them were significantly downregulated. Statistical analysis 

revealed that both miR-1224 and miR-322 were significantly over -expressed under conditions of chronic 

hypoxia (Mean Count difference=-108,549, P<0.0001) and (Mean Count difference=-41,957, P<0.0001), 

respectively. Figure 5-9. revealed the log fold changes between expression between the two experimental 

parameters for each of the DE miRNAs. Micro-RNA-122 was reduced the most (-1.7 FC) and miR-let-7e 

had the greatest increase in expression following an insult of chronic hypoxia (+2.3 FC).   
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 Hypoxia-reperfusion exposure  
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Figure 0-3 nCounter analysis of DE miRNAs secreted from the in vivo placental barrier under conditions of hypoxia-reperfusion 

 A schematic illustrating the Log 2-Fold change of the expression of miRNA species which have been found to be differentially expressed under conditions of hypoxia-reperfusion (11-

21% O2) in comparison to the control vehicle obtained from the basal domain of the in vivo rodent placental explants. Results obtained in collaboration with Dr Thomas Phillips and Dr 

Hannah Scott. 

 

 

 

Figure 0-4 nCounter analysis of DE miRNAs released from the in vivo model of the placental barrier under conditions of chronic hypoxiaFigure 0-5 nCounter analysis 
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NanoString n-Counter analysis revealed the change in expression of individual miRNAs under conditions 

of hypoxia-reperfusion (11-21% O2) compared to its respective control (21% O2) in the in vivo rodent 

model of the placental barrier (Supplementary Figure 3). A total of 29 miRNAs were significantly 

differentially expressed of which 13 were significantly upregulated in comparison to the control, whilst 

16 of them were significantly downregulated. Statistical analysis revealed that both miR-1224 

significantly over -expressed under conditions of hypoxia-reperfusion (Mean Count difference=-50,450, 

P<0.0001). Figure 5-10. revealed the log fold changes between expression between the two experimental 

parameters for each of the DE miRNAs. MicroRNA-200c was reduced the most whereas miR-148b-5p 

had the greatest increase in expression following an insult of hypoxia-reperfusion (+1.3 FC).  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  



  ~Chapter 5~   

                              

195  

  

 

Figure 5-11 nCounter analysis of DE miRNAs released from the in vivo placental barrier in response to the application of MQ-NP  

 A schematic illustrating the Log 2-Fold change of the expression of miRNA species which have been found to be differentially expressed under conditions of hypoxia-reperfusion 

(1121% O2) in comparison to the control vehicle obtained from the basal domain of the in vivo rodent placental explants. Results obtained in collaboration with Dr Thomas Phillips and 

Dr Hannah Scott.  
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The in vivo rodent placental explants were treated with an antioxidant drug-loaded NP (Mito-NP) (125µM) 

prior to 24-hr exposure of oxidative stress (11-21% O2). An assessment was made between the miRNAs 

which were significantly differentially expressed (either over or under- expressed) under hypoxia 

reperfusion in the presence of the antioxidant drug-loaded NP (11-21% O2) compared to its control (11-

21% O2). A total of 74 miRNAs were significantly differentially expressed: 43 of these were significantly 

upregulated in comparison to the expression levels in the control, whilst 31 of them were significantly 

downregulated (Supplementary Figure 4). Statistical analysis revealed that miR-22 was significantly 

overexpressed after MitoQ-NP treatment prior to hypoxia-reperfusion (Mean Count difference=-10,212, 

p=0.0172) (Supplementary Figure 4). Figure 5-11 represents the fold changes between the miRNA 

expression for each DE miRNA. MicroRNA-142-3p was reduced the most (-1.1FC) whereas mi-200c 

showed the greatest increase (+1.3 FC).  
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 Overview of in vivo model findings  

  

 

Figure 5-12 A schematic to illustrate miRNA species which were significantly differentially expressed (Log2 

FC) under different treatment groups in the in vivo placental model  

A schematic to illustrate total number of miRNA species which were significantly differentially expressed (Log2 FC) under 

different treatment groups; Chronic hypoxia (NS-HS), hypoxia-reperfusion(RS-RM) and the implications of treating the 

barrier with an antioxidant drug-loaded NP (MQ) (125µM) (RS-RM) obtained from the in vivo rodent placental explants, in 

comparison to their respective control vehicle. Venn Diagram produced using; Oliveros, J.C. (2007-2015) Venny. An 

interactive tool for comparing lists with Venn’s diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL). Results 

obtained in collaboration with Dr Thomas Phillips and Dr Hannah Scott.  

N.B. (NS-HS)-Dams conditioned under normoxia conditions (21% O2 ) with a saline injection compared to dams conditioned 

under hypoxic conditions (11% O2 )with a saline injection..  

(NS-RS)- Dams conditioned under normoxia conditions (21% O2 ) with a saline injection compared to dams conditioned under 

hypoxia-reperfusion conditions (11% -21% O2 )with a saline injection.  

(RS-RM)- Dams conditioned under hypoxia-reperfusion conditions (11-21% O2 ) with a saline injection compared to dams 

conditioned under hypoxia-reperfusion conditions (11% -21% O2)with a MQ-NP injection.  

Supplementary Table 11 revealed some overlap in miRNAs across the treatment parameters. Figure 5-12. 

Three miRNA species (2% of total DE miRNAs) were found to be DE across all treatments; miR-1193-3p, 

miR-122 and miR-200c. miR-1193-3p was significantly upregulated under conditions of chronic hypoxia 

and reperfusion and the antioxidant treatment significantly downregulated its expression. In comparison 

both miR-122 and miR-200c were both significantly downregulated under conditions of both chronic 

hypoxia and hypoxia-reperfusion, however treatment with the antioxidant drug was able to significantly 

upregulate both miRNAs. Furthermore six miRNAs (3.8% of total DE miRNAs) overlapped in the chronic 

hypoxia condition and hypoxia-reperfusion ( miR-1224, miR-743b, miR-330, miR-532-3p, miR-29b and 

miR-202) and eight miRNAs (5.1% of total DE miRNAs) which were both DE under conditions of 

hypoxia-reperfusion and antioxidant treatment; (miR-195, miR-143, miR-487b, miR-200a, miR-3563-5p, 

miR-340-5p, miR-203). The greatest overlap in DE miRNAs was between treatment groups; chronic 
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hypoxia and hypoxia-reperfusion +MQ-NP, with 12.7% of the total DE miRNAs being expressed under 

these conditions. Figure 5-12 reveals the disparity amongst the number of DE miRNAs across the treatment 

groups; analysis of miRNAs secreted from placental explants upon an exposure of chronic hypoxia resulted 

in 94 DE miRNAs being differentially released from the placenta, with 71.2% of the total DE miRNAs 

within this parameter being expressed solely under conditions of chronic hypoxia. However an exposure of 

hypoxia-reperfusion resulted in a reduced number of DE miRNAs (29 DE miRNAs) secreted from the 

explants, with only 41.3% of the total DE miRNAs within this parameter being solely expressed under 

conditions of hypoxia-reperfusion. The application of the antioxidant drug-loaded NP (125µM) to the 

placental explants before an episode of hypoxia-reperfusion resulted in an increase (+2.6-fold) in the 

secretion of DE miRNAs from the explants to 74 DE miRNAs of which 58.1% were solely expressed in 

response to the application of the antioxidant treatment.  

Furthermore within conditions of chronic hypoxia and hypoxia-refusion there was a similar proportion of DE 

miRNAs which were upregulated out of the total miRNAs secreted from the placental explants (42.5% and 

44.8%) respectively. Whereas, treatment with the antioxidant drug revealed an inverse trend, with a higher 

proportion of upregulated miRNAs in comparison to those which were downregulated (58.1%).  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

 

  



  ~Chapter 5~   

                              

199  

  

 Cross-analysis of the different models of the placental barrier  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-13 A schematic to illustrate the number of significantly differentially expressed miRNA (DE miRNAs) 

across the three treatment parameters  

 Analysis of the total DE miRNAs across the different models and treatment conditions of the placental barrier. (Normoxia 

Hypoxia =Chronic hypoxia), (Normoxia-Hypoxia-reperfusion =Hypoxia-reperfusion) and (Hypoxia-reperfusion-Hypoxia 

reperfusion +Treatment= MQ+NPs treatment group) compared to all three models of the placental barrier; in vitro, ex vivo 

and in vivo.  

  

We assessed the number of differentially expressed miRNAs across our three models of the placental 

barrier; BeWo trophoblast barrier (in vitro), human first trimester barriers (ex-vivo) and the rodent 

placentae (in vivo). The result obtained revealed great disparity in the number of DE miRNAs secreted 

upon an insult of gestational hypoxia into the conditioned media, across the different treatment parameters 

(Figure 5-13).  Under an insult of chronic hypoxia to the placental barrier there was a total of 11 DE 

miRNAs secreted into the conditioned media for both the in vitro and ex vivo model. Whereas, there is a 

significantly greater number of miRNAs (+8.5-fold) released from the in vivo rodent model (94 DE 

miRNAs).  This trend is seen under the experimental parameter whereby there is the administration of the 

antioxidant drug (MQ-NP) to the   placental barrier before an episode of hypoxia-reperfusion, with a 

similar number of DE miRNAs in both the in vitro and ex vivo model (10 DE miRNAs and 14 DE 

miRNAs), respectively. However, in the in vivo model there was a 7.7-fold increase in the number of DE 

miRNAs in comparison to the in vitro model and a 5.5-fold increase in comparison to the ex vivo model.  

This trend is lost in the experimental parameter of hypoxia-reperfusion whereby there is a similar number 

of DE miRNAs seen in both the in vitro and in vivo model (24 DE miRNAs and 29 DE miRNAs), 

respectively.  Whereas there is a significantly reduced number of DE miRNAs in the ex vivo model by a 
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3.4-fold reduction in contrast to the in vitro model and a -4.1-fold reduction in comparison to the in vivo 

model. Assessment in the disparity in the number of DE miRNAs secreted from the three models of the 

placental barrier across treatment groups revealed that there was no overlap in the DE miRNAs expressed 

across the three placental models under conditions of chronic hypoxia, hypoxia-reperfusion or with the 

treatment of (MQ-NP) to the placental barrier before an insult of hypoxia-reperfusion (Supplementary 

Figure 23).  
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 Predicted target and functional role of DE miRNA  

 In vitro model results  

  

 

  

Bioinformatic analysis using mirPath v 3.0 revealed significant enrichment of 21 KEGG pathways from the 

input of the 11 DE miRNAs obtained from the in vitro model under conditions of chronic hypoxia. The 

most highly enriched pathways are primarily involved with cancer; chronic Myeloid Leukaemia 

(p<0.0001) and pancreatic cancer (p<0.0001). A more general implication of the DE miRNAs was their 

functional link with transcriptional mis- regulation in cancer (p<0.0001). There was also an enrichment of 

stress-related signalling pathways including p53 (p<0.0001), MAPK (p=0.0002) and HIF-1 (p=0.009) 

2 1 % - V - 2 - 12 %   

(2 % - 12 % ) - V - (2 - 12 %) +MQ   

Figure 0-6 Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess enriched KEGG 

biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated  the in 

vitro model of the placental barrier across different treatment parameters 

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed 

(DE) microRNAs released from the in vitro  placental barrier under the following treatment parameters: (1) Chronic 

hypoxia (21%-V-2%); (2) Hypoxia-reperfusion (21%-V-2-12%) and (3) Treatment with antioxidant drug loaded 

nanoparticles (MitoQ)(0.5µM) upon an exposure of hypoxia -reperfusion (2-12%-V-2-12%+MQ). p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method to determine significance for enriched pathways. 

Venn Diagram produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn’s 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL) 

N.B(miR-198) was excluded from this analysis in (2%-12%)-V-(2-12%)+MQ treatment group due to limited annotation in 

the MirPath v 3.0 software 

 

 

Figure 0-7 Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess enriched KEGG 

biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated  the ex 

vivo  model of the placental barrier across different treatment parametersFigure 0-8 Schematic to illustrate the 

cross comparison of mirPath v3.0 analysis to assess enriched KEGG biological pathways associated with 

differentially expressed (DE) miRNAs both up-and downregulated  the in vitro model of the placental barrier 

across different treatment parameters 

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed 

(DE) microRNAs released from the in vitro  placental barrier under the following treatment parameters: (1) Chronic 

hypoxia (21%-V-2%); (2) Hypoxia-reperfusion (21%-V-2-12%) and (3) Treatment with antioxidant drug loaded 

nanoparticles (MitoQ)(0.5µM) upon an exposure of hypoxia -reperfusion (2-12%-V-2-12%+MQ). p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method to determine significance for enriched pathways. 

Venn Diagram produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn’s 
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under conditions of chronic hypoxia, suggesting that the BeWo cells were responding to a reduction in 

oxygen tension. An enrichment of eight neurological-related pathways were found including; hippo 

signalling pathway (p=0.0001), axon guidance (p=0.004) and long-term potentiation (p=0.014) that are 

involved in neuropathological settings (Supplementary Figure 5).  

Under conditions of hypoxia-reperfusion, 24 DE miRNAs were inputted into pathway enrichment analysis 

with an output of 32 KEGG enriched pathways. The most significantly enriched pathways were those 

associated with neurological settings, including; long term depression (p<0.0001), hippo-signalling 

(p=0.0001) and axon guidance (p=0.0009). Five other neurological pathways were enriched including; 

glutamatergic synapse (p=0.007), dopaminergic synapse (p=0.043) and retrograde endocannabinoid 

signalling (p=0.037). Predicted genes of significant miRNAs were enriched in four stress-related pathways 

which confers the in vitro BeWo cells are responding to altered oxygen tensions (Supplementary Figure 6).  

The treatment parameter which assessed treatment to the in vitro barrier with (MQ-NP) (0.5µM) prior to an 

insult of hypoxia-reperfusion revealed significant enrichment of 16 KEGG pathways obtained from the 10 

DE miRNAs which were differentially expressed. Oncological pathways were in the top ten most 

significant; proteoglycans in cancer (p<0.001), glioma (P<0.001) and chronic myeloid leukemic(p=0.008). 

Other enriched pathways included the neutorphin (p=0.048) and mTOR signalling (p=0.048) pathways 

(Supplementary Figure 7). However, it is important to note that one of the DE miRNA (miR-198) was 

excluded from this analysis due to a lack of annotation in the MirPath v 3.0 software. Therefore the 

enriched pathways are representative of only 91% of the total DE miRNAs in this treatment parameter.   

Figure 5-14 illustrated the overlap within the enriched pathways associated with neurological and 

oncogenic processes across the treatment groups within the in vitro model. The greatest overlap in 

enriched pathways was seen between the chronic hypoxia parameter and hypoxia-reperfusion treatment 

group (26.3% shared pathways). Both insults of hypoxic stress to the BeWo trophoblast cells had caused 

the secretion of miRNAs which were enriched in common neurological pathways including; Hippo 

signalling, Axon guidance and neurotrophic signalling. Furthermore, common pathway enrichment was 

seen in stress-related pathways, MAPK signalling, and in developmental and apoptotic pathways (TGF-β 

signalling) (Figure 5-14).   

When comparing pathway enrichment between the treatment group whereby the BeWo trophoblast cells were 

administered with a mitochondrial-targeted antioxidant drug prior to an exposure of hypoxia reperfusion in 

comparison to its respective control parameter (21%-V-2-12%), there was a 12.3% shared proportion of 

enriched pathways. These pathways included, neurodegenerative related pathways (ErbB signalling), 

regulation of cell metabolism, growth, proliferation and survival (mTor signalling) and the regulation of 

cellular-uptake via endocytosis (Figure 5-14).  

Across all three treatment parameters there were five shared KEGG pathways (8.8%). These pathways were 

predominately involved in oncogenic processes including; Ras signalling, chronic myeloid leukaemia and 

proteoglycans in cancer. However, both ErbB signalling, a pathway attributed to neurodegeneration and 
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neurotrophin signalling were found to be common pathways seen across all treatment parameters (Figure 5-

14).  

  

  

  

  

MirPath v 3.0 performed on the 11 DE miRNAs which were significantly expressed in ex vivo placental 

explants exposed to conditions of chronic hypoxia revealed enrichment in 29 biological pathways. The 

most highly enriched pathways were associated with prion disease (p<0.0001), the pluripotency of stem 

cells (p<0.0001) and transforming growth factor-beta TGF-β signalling (p<0.0001). Approximately 25% of 

  

 

Ex   

 

vivo   

 

model findings   

 

Figure 0-9 Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess enriched KEGG 

biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated  the ex 

vivo  model of the placental barrier across different treatment parameters 

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed 

(DE) microRNAs released from the ex vivo placental barrier under the following treatment parameters: (1) Chronic 

hypoxia (21%-V-2%); (2) Hypoxia-reperfusion (21%-V-2-12%) and (3) Treatment with antioxidant drug loaded 

nanoparticles (MitoQ)(0.5µM) upon an exposure of hypoxia -reperfusion (2-12%-V-2-12%+MQ). p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method to determine significance for enriched pathways. 

Venn Diagram produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn’s 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL) 

N.B. (miR-614, miR-608, miR-944 and miR-639) within (2-12%)-V-(2-12%)+MQ treatment parameter were unable to be 

annotated by MirPath v 3.0 and therefore were excluded from the enriched pathway analysis.  

 

 

Figure 0-10 Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess enriched KEGG 

biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated  the ex 

vivo  model of the placental barrier across different treatment parameters 

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed 

(DE) microRNAs released from the ex vivo placental barrier under the following treatment parameters: (1) Chronic 

hypoxia (21%-V-2%); (2) Hypoxia-reperfusion (21%-V-2-12%) and (3) Treatment with antioxidant drug loaded 

nanoparticles (MitoQ)(0.5µM) upon an exposure of hypoxia -reperfusion (2-12%-V-2-12%+MQ). p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method to determine significance for enriched pathways. 

Venn Diagram produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn’s 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL) 
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the overall enriched pathways were associated with neurological pathways and 14 were linked with those 

associated in stress-related pathways (Supplementary Figure 8).  

MirPath v 3.0 performed on the 7 DE miRNAs significantly expressed in the ex vivo placental explants 

exposed to conditions of hypoxia-reperfusion revealed an enrichment in 32 biological pathways. Within 

the topmost highly enriched pathways were; hippo-signalling pathway(p<0.0001), TGF-β signalling 

(p<0.0001), pluripotency of stem cells (p<0.0001) and ErbB signalling (p<0.0001) (Supplementary Figure  

9).  

Treatment with (MQ-NP) (0.5µM) prior to an insult of hypoxia-reperfusion resulted in enrichment in 18 

biological pathways. MirPath v 3.0 analysis found the most enriched pathways were the hippo-signalling 

pathway(P<0.001), TGF-β signalling (p=0.002), pluripotency of stem cells (p=0.002) and transcriptional 

mis-regulation in cancer (P<0.001). Neurological pathways were further enriched including long term 

depression(p=0.003), dopaminergic synapse(p=0.033) and glutamatergic synapse (p=0.043) (Supplementary 

Figure 10). Four miRNAs (miR-614, miR-608, miR-944 and miR-639) out of the total 14 DE miRNAs 

within this treatment parameter were unable to be annotated by MirPath v 3.0 and therefore were excluded 

from the enriched pathway analysis. Therefore the enriched pathways are representative of only 71% of the 

total DE miRNAs in this treatment parameter.  

 

Figure 5-15 illustrated the overlap within the enriched pathways associated with neurological and oncogenic 

processes across the treatment groups within the ex vivo model. When comparing overlap in enriched 

pathways seen between the chronic hypoxia parameter and hypoxia-reperfusion treatment group, there were 

a total of 15 shared enriched pathways (26.3% shared pathways). Both insults of hypoxic stress to the first 

trimester placental explants had caused the secretion of miRNAs which were enriched in stress-related 

pathways (MAPK signalling), apoptotic pathways (sphingolipid signalling) and endocytosis (Figure 5-15).   

When comparing pathway enrichment between the treatment group where the human placental explants were 

administered with a mitochondrial-targeted antioxidant drug prior to an exposure of hypoxia reperfusion in 

comparison to its respective control parameter (21%-V-2-12%), there was a total of 36.2% shared enriched 

pathways. With six pathways being specifically shared between the two treatment groups which were 

involved in neurological settings; axon guidance and long-term depression, protein catabolism, and in 

oncogenic settings; prostate cancer and colorectal cancer (Figure 5-15).  

Across all three treatment parameters there were 11 shared enriched KEGG pathways (23.4%). These 

pathways were predominately involved in oncogenic processes; pathways attributed to neurological 

processes including; Hippo-signalling and glutamatergic signalling; and in cell growth, differentiation and 

development (Wnt-signalling and TGF-β signalling) (Figure 5-15).  
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 In vivo rodent model findings  

  

  

 

 

MirPath v 3.0 was performed on the 94 DE miRNAs which were significantly expressed in the in vivo 

placental explants exposed to chronic hypoxia conditions, however due to a limitation in the breadth of 

MirPath v 3.0 annotation for rodent miRNAs, a proportion of DE miRNAs were unable to be incorporated 

in the pathway analysis. Within this treatment parameter 13 miRNAs (rno-miR-208, rno-miR-19a, rno-miR-

132, rno-miR-365, rno-miR-199c-5p, rno-miR-505, rno-miR-3565-5p, rno-miR-3560, rno-miR-3567, rno-

miR-184, rno-miR-3597-5p, rno-miR-358 and rno-miR-22) were unable to be annotated, therefore MirPath 

v 3.0 pathway analysis output is representative of only 86% of the total DE miRNAs. An enrichment in 37 

biological pathways was observed. The topmost highly enriched pathways included; synaptic vesicle 

(p<0.0001), MAPK signalling(p<0.0001), microRNAs in cancer (p<0.0001) and Wnt signalling (p<0.001) 

(Supplementary Figure 11).  

Figure 0-11 Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess enriched KEGG 

biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated  the in 

vivo model of the placental barrier across different treatment parameters 

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed 

(DE) microRNAs released from the in vivo placental barrier under the following treatment parameters: (1) (NS-HS)-Dams 

conditioned under normoxia conditions (21% O2 ) with a saline injection compared to dams conditioned under hypoxic 

conditions (11% O2 )with a saline injection..(2) (NS-RS)- Dams conditioned under normoxia conditions (21% O2 ) with a 

saline injection compared to dams conditioned under hypoxia-reperfusion conditions (11% -21% O2 )with a saline 

injection. (3)(RS-RM)- Dams conditioned under hypoxia-reperfusion conditions (11-21% O2 ) with a saline injection 

compared to dams conditioned under hypoxia-reperfusion conditions (11% -21% O2) with a MQ-NP injection. Results 

obtained in collaboration with Dr Thomas Phillips and Dr Hannah Scott. 

Venn Diagram produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn’s 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL) 

 

 

Figure 0-12 Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess enriched KEGG 

biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated  the in 

vitro model of the placental barrier across different treatment parametersFigure 0-13 Schematic to illustrate the 

cross comparison of mirPath v3.0 analysis to assess enriched KEGG biological pathways associated with 

differentially expressed (DE) miRNAs both up-and downregulated  the in vivo model of the placental barrier 

across different treatment parameters 

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed 

(DE) microRNAs released from the in vivo placental barrier under the following treatment parameters: (1) (NS-HS)-Dams 

conditioned under normoxia conditions (21% O2 ) with a saline injection compared to dams conditioned under hypoxic 

conditions (11% O2 )with a saline injection..(2) (NS-RS)- Dams conditioned under normoxia conditions (21% O2 ) with a 

saline injection compared to dams conditioned under hypoxia-reperfusion conditions (11% -21% O2 )with a saline 

injection. (3)(RS-RM)- Dams conditioned under hypoxia-reperfusion conditions (11-21% O2 ) with a saline injection 

compared to dams conditioned under hypoxia-reperfusion conditions (11% -21% O2) with a MQ-NP injection. Results 

obtained in collaboration with Dr Thomas Phillips and Dr Hannah Scott. 

Venn Diagram produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn’s 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL) 
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Bioinformatics performed on the 29 DE miRNAs which were significantly expressed in the in vivo rodent placental 

explants exposed to hypoxia reperfusion revealed an enrichment in 10 biological pathways. Due to the limitations 

of MirPath v 3.0 annotations for rodent miRNA species six miRNAs were unable to be annotated and were 

excluded from the pathway analysis (rno-miR-195, rno-miR-145, rno-miR-495, rno-miR-3565, rno-miR-203 and 

rno-miR-122).  Therefore the results from the pathway analysis are representative of only 79% of the total DE 

miRNAs within this treatment group. The most highly enriched pathways were mucin type O-Glycan biosynthesis 

(p<0.0001), ECM-receptor interaction(p<0.0001), microRNAs in cancer (p<0.0001), and MAPK signalling 

(p<0.0001) (Supplementary Figure 12).   

Bioinformatics was further performed on the 74 DE miRNAs which were significantly expressed upon treatment 

with (MQ-NP) (125µM) prior to an insult of hypoxia-reperfusion, with the most highly enriched pathways being 

MAPK signalling (p<0.001), gap junction (p<0.0001), TGF-β signalling (p<0.0001) and microRNAs in cancer 

(p<0.0001)(Supplementary Figure 13).  

Figure 5-16 illustrated shared enriched pathways across the treatment groups within the in vivo model. 

Comparative analysis found that there were four shared enriched pathways between treatment groups where 

there had been an exposure of chronic hypoxia and hypoxia-reperfusion in the in vivo model. These 

pathways were involved in endothelial function (TNF-signalling), extracellular matrix interaction pathway 

and in cell survival, growth and metabolism (P13K signalling) (Figure 5-16).  

However, when comparing the treatment group where dams were administered with an mitochondrial-

targeted antioxidant drug prior to an exposure of hypoxia-reperfusion in comparison to its respective 

control parameter, there was only one shared enriched pathway which was associated with renal cell 

carcinoma (Figure 5-16).  

Across all three treatment parameters there were a total of 11 shared enriched pathways (23.4% of all total 

pathways), which were predominately involved in oncogenic-related pathways including; miRNAs in 

cancer, transcriptional mis-regulation in cancer and proteoglycans in cancer. Furthermore, there were 

neurological-associated enriched pathways (axon guidance and synaptic vesicles) and stress-related 

pathways (MAPK signalling) (Figure 5-16).  

  

 Analysis of the effectiveness of (MQ-NP) treatment on the placental 

barrier model      

The aim of this analysis was to assess whether MitoQ could influence the biogenesis and secretion of 

miRNAs which are secreted from the placental barrier in response to hypoxia-reperfusion which is known 

to increase the levels of ROS. We aimed to explore whether MitoQ was able to reduce ROS expression, 

and in turn, influence the miRNAs expressed and released from the placental barrier. Bioinformatics was 
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performed to assess the potential functions of the miRNAs whose expression was reversed by the 

application of the antioxidant drug using mirPath v 3.0 analysis as previously discussed (section 5.4.2).  
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 vitro BeWo placental barrier findings  

 

Figure 5-17 Analysis of the change in expression of DE miRNAs within conditions of hypoxia-reperfusion in the in vitro model compared with expression after MQ-NP 

treatment  

(A)Schematic to illustrate the comparison between the Log2 Fold changes seen between the miRNA species which were found to be significantly differentially expressed under hypoxia 

reperfusion conditions (2-12% O2) in comparison to the control vehicle (21% O2) obtained from the in vitro BeWo placental barrier in comparison to the log2 Fold changes seen in the 

miRNA species which were significantly differentially expressed in conditioned media collected from the in vitro BeWo placental barrier exposed to hypoxia-reoxygenation (2-12% O2 

+MQ)  after an application of an antioxidant drug-loaded nanoparticle treatment (0.5µM) in comparison to its respective control vehicle (2-12% O2). In order to mitigate false-positives from 

the collated data, microRNAs were classed significant differentially secreted microRNAs if p < 0.05 for both DESeq and EdgeR and if there was an up or down regulation of at least 25% 

(0.25 log2 Fold Change). MiRNA species which are shown to be significant differentially secreted lie above or below the 25% cut-off range. Out of the 24-miRNA species classified as being 

significant differentially expressed 20 of which reveal that the application of an antioxidant drug-loaded NP to the in vitro placental model is able to reverse the changes in level of miRNA 

secretions from the barrier model under a 24-hr exposure of oxidative stress (2-12% O2). (B) Heatmap to represent the comparison in log2 fold changes between the differentially expressed 

miRNAs under an insult of hypoxia-reperfusion in the in vitro model of the placental barrier against the fold changes of the DE under conditions whereby 0.5µM of MitoQ was applied to the 

placenta before an insult of a change in oxygen tension (2-12%-(2-12%+MQ)).  The log fold changes (log2FC) are indicated on a colourific scale with red indicating a positive fold change, 

whereas green indicates a negative fold change.  

   

( A )   ( B )   
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The results obtained from the in vitro model of the placental barrier revealed that under conditions of 

hypoxia-reperfusion (2-12% O2) there were 24 DE miRNAs. Of these, 16 miRNAs were significantly 

downregulated whilst 8 were significantly upregulated (Figure 5-17A). MitoQ (0.5µM) treatment of the 

placental barrier prior to an insult of hypoxia-reperfusion caused 79.2% of the DE miRNAs to have an 

inverse expression value in comparison to its respective control, which conformed to the criteria of having 

a fold change above 0.25. Only one miRNA (miR-877-5p) failed to conform to an inverse expression 

which satisfied the fold change threshold, however a decreased expression of this miRNA under 

conditions where the placenta had been subjected to MitoQ was observed (Figure 5-17B).Supplementary 

Figure 17 revealed that miR-378e had the greatest difference in fold changes between the two parameters 

(-3.4 FC) and its expression was greatly increased  by the presence of MitoQ.   

MirPath analysis was performed on the eight miRNAs which were found to be significantly upregulated 

under conditions of hypoxia-reperfusion (miR-493-3p, miR-1287, miR-627, miR-200b, miR-124-3p, miR-

877-5p, miR-640 and miR-664-3p). MirPath analysis revealed 20 enriched pathways in the DE miRNAs 

influenced by (MQ-NP) treatment, with 40% being associated in neurological processes including; long 

term depression(p<0.0001), TGF-β signalling(p<0.001), axon guidance(p<0.001), glutamatergic 

synapse(p=0.007), hippo-signalling(p=0.009) and serotonin synapse(p=0.050) (Supplementary Figure 18 

& Supplementary Table 12).   
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 Ex vivo placental barrier findings  

 
Figure 5-18 Analysis of the change in expression of DE miRNAs within conditions of hypoxia-reperfusion in the ex vivo model compared with expression after MQ-NP 

treatment  

(A)Schematic to illustrate the comparison between the Log2 Fold changes seen between the miRNA species which were found to be significantly differentially expressed under hypoxia 

reperfusion conditions (2-12% O2) in comparison to the control vehicle (21% O2) obtained from ex vivo first trimester placental explants in comparison to the log2 Fold changes seen in the 

miRNA species which were significantly differentially expressed in conditioned media collected from ex vivo first trimester placental explants exposed to hypoxia-reoxygenation (2-12% O2 

+MQ)  after an application of an antioxidant drug-loaded nanoparticle treatment (0.5µM) in comparison to its respective control vehicle (2-12% O2). In order to mitigate false-positives from 

the collated data, microRNAs were classed significant differentially secreted microRNAs if p < 0.05 for both DESeq and EdgeR and if there was an up or down regulation of at least 25% 

(0.25 log2 Fold Change). MiRNA species which are shown to be significant differentially secreted lie above or below the 25% cut-off range. Out of the 24-miRNA species classified as being 

significant differentially expressed 20 of which reveal that the application of an antioxidant drug-loaded NP to the ex vivo first trimester placental model is able to reverse the changes in level 

of miRNA secretions from the barrier model under a 24-hr exposure of oxidative stress (2-12% O2). (B) Heatmap to represent the comparison in log2 fold changes between the differentially 

expressed miRNAs under an insult of hypoxia-reperfusion in the ex vivo first trimester placental explants against the fold changes of the DE under conditions whereby 0.5µM of MitoQ was 

applied to the placenta before an insult of a change in oxygen tension (2-12%-(2-12%+MQ)).  The log fold changes (log2FC) are indicated on a colourific scale with red indicating a positive 

fold change, whereas green indicates a negative fold change. N.B. samples obtained from (2-12%) +MQ was (n=1).  

( A )   ( B )   
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The results obtained from the ex vivo model of the placental barrier revealed that under conditions of 

hypoxia-reperfusion (2-12% O2) there were 7 DE miRNAs. Of these, 5 individual miRNAs were 

significantly downregulated, whilst 2 miRNAs were significantly upregulated (Figure 5-18A). The 

application of the MitoQ antioxidant (0.5µM) to the placental barrier before an insult of hypoxia 

reperfusion resulted in 85.7% of the DE miRNAs to have an inverse expression value in comparison to 

its respective control. Only one miRNA species (miR- hsa-miR-520d-5p+hsa-miR-518a-5p+hsa-miR-

527) shared an inverse expression, but it was not a significant change. Figure 5-18B. revealed that miR-

423-3p had the most considerable fold change between the two treatments (-2.8FC) and its expression 

was increased by MitoQ application. Out of the 6 miRNAs which were inversely expressed by MitoQ, 5 

miRNAs had increased expression in comparison to the control, whilst only miR-516b-5p had a 

significantly reduced expression (Supplementary Figure 19).  

The results obtained from mirPath v 3.0 analysis revealed the enriched pathways from predicted target 

genes of the two DE miRNAs (miR-520d and miR-516b-5p) which were upregulated under conditions of 

hypoxia-reperfusion in the ex vivo model of the placental barrier which were downregulated upon an 

administration of (MQ-NP)to the placental barrier before an insult of hypoxia-

reperfusion(Supplementary Figure 20). We observed 31 pathways enriched, with the majority being 

associated in oncological processes (Supplementary Table 13). Enrichment in neurological processes 

included; long-term potentiation(p=0.006), TGF-β signalling(p<0.0001) and axon guidance(p=0.021) 

(Supplementary Figure 20).  
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 In vivo rodent placental explants   

The aim of the investigation was to explore whether the application of an antioxidant drug could reverse the changes seen in the miRNA species which were 

differentially upregulated or downregulated upon an insult of hypoxia-reperfusion.   

 

  

( A )   ( B )   
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Figure 5-19 Analysis of the change in expression of DE miRNAs within conditions of hypoxia-reperfusion in the in vivo model compared with expression after MQ-NP 

treatment  

Schematic to illustrate the comparison between the Log2 Fold changes seen between the miRNA species which were found to be significantly differentially expressed under hypoxia 

reperfusion conditions (2-12% O2) in comparison to the control vehicle (21% O2) obtained from the in vivo rodent placental explant model of the first trimester placenta;  in comparison to 

the log2 Fold changes seen in the miRNA species which were significantly differentially expressed in conditioned media collected from an in vivo rodent model exposed to hypoxia 

reperfusion (11-21% O2 +MQ)  after an application of an antioxidant drug-loaded nanoparticle treatment (125µM) in comparison to its respective control vehicle (11-21% O2). In order to 

mitigate false-positives from the collated data, microRNAs were classed significant differentially secreted microRNAs if p < 0.05 for both DESeq and EdgeR and if there was an up or down 

regulation of at least 25% (0.25 log2 Fold Change). MiRNA species which are shown to be significant differentially secreted lie above or below the 25% cut-off range. Out of the 28 miRNA 

species classified as being significant differentially expressed 16 of which reveal that the application of an antioxidant drug-loaded NP is able to reverse the changes in level of miRNA 

secretions from the barrier model under a 24 hr exposure of oxidative stress (2-12% O2).(B) Heatmap to represent the comparison in fold changes between the differentially expressed  

miRNAs under an insult of hypoxia-reperfusion (NS-HR) in the in vivo rodent model of the placental barrier against the fold changes of the DE under conditions whereby 125µM of MitoQ 

was applied to the placenta before an insult of a change in oxygen tension (HR-HR+MQ).  The log fold changes (log2FC) are indicated on a colourific scale with red indicating a positive 

fold change, whereas green indicates a negative fold change. Results obtained in collaboration with Dr Thomas Phillips and Dr Hannah Scott.  
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The results obtained from the in vivo model of the placental barrier revealed that under conditions of 

hypoxia-reperfusion (11-21% O2) there were 28 DE miRNAs. Of these, 16 individual miRNAs were 

significantly downregulated, whilst 12 miRNAs were significantly upregulated (Figure 5-19). The 

application of the MitoQ antioxidant (125µM) to the placental barrier before an insult of hypoxia 

reperfusion caused 57.1% of the DE miRNAs to have an inverse expression value in comparison to the 

respective control (Figure 5-19). The results obtained revealed that miR-200c had the greatest difference 

in the log fold changes between the two parameters (-3.5 FC) and its expression was greatly increased by 

the presence of MitoQ. The 16 miRNAs which had inverse expression in the presence of MitoQ were all 

upregulated in response to treatment with MQ-NP (Supplementary Figure 21).   

The results obtained from mirPath v 3.0 analysis revealed the enriched pathways from predicted target 

genes of the 16 DE miRNAs which were downregulated under conditions of hypoxia-reperfusion in the in 

vivo model of the placental barrier which were downregulated upon an administration of (MQ-NP) to the 

placental barrier before an insult of hypoxia-reperfusion. We observed 14 pathways enriched under these 

conditions. Enriched pathways were associated in the stress-response (MAPK signalling), neurological 

processing (Axon guidance and synaptic vesicle cycle) and transcriptional mis-regulation in cancer 

(Supplementary Figure 22 & Supplementary Table 14).  
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 Cross-comparison across placental models  

 

Figure 5-20 Schematic to illustrate the cross-comparison of mirPath v3.0 analysis to assess enriched KEGG 

biological pathways associated with differentially expressed (DE) miRNAs which had reversed expression 

under conditions of MitoQ application under conditions of hypoxia-reperfusion in comparison to the respective 

control group  

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed 

(DE) microRNAs released from the in vitro, ex vivo and in vivo model of placental barrier which had reversed (log2FC) 

miRNA expression upon an exposure of hypoxia-reperfusion with treatment of antioxidant drug (MitoQ)in comparison to 

their respective control group of an exposure of hypoxia-reperfusion.   

Venn Diagrams produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL.)  

A cross-comparison analysis was performed to determine shared enriched KEGG pathways across the 

three models of the placental barrier, in response to MitoQ administration reverting the expression of DE 

miRNA’s secretion under conditions of hypoxia-reperfusion. The results obtained revealed that both the in 

vitro and ex vivo model shared five enriched pathways associated with reversed miRNA expression in 

response to the application of MitoQ. These pathways were associated in oncogenic-related pathways 

including FoxO signalling and proteoglycans in cancer, as well as arrhythmogenic right ventricular 

cardiomyopathy. Comparison between the in vitro model and the in vivo model only found two shared 

enriched pathways in renal cell choriocarcinoma and gap junctions. Whereas, the ex vivo model and the in 

vivo model shared three common enriched pathways, associated with the stress-response (MAPK 

signalling) and recognition, adhesion, and communication between cells (mucin type o-glycan 

biosynthesis). Across the three models of the placental barrier there were two shared enriched pathways 

(TGF-β signalling and axon guidance) (Figure 5-20). 
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 Cross-comparison of pathway enrichment  

Analysis of the KEGG pathways across the three models were assessed and two common pathways (TGF-β signalling and axon-guidance) were enriched for by 

DE miRNAs which had their expression reversed by the presence of MQ-NP (section 5.4.3.4). MirPath v3.0 bioinformatic software established the DE miRNAs 

associated in both pathways and provided a list of predicted target genes. Bioinformatic analysis was used to explore whether the DE miRNAs involved in the 

enriched pathways bound to common target genes.   

  In vitro DE miRNAs pathway enrichment   

 

  
Figure 0-14 Cross comparison of predicted target genes of DE miRNAs with inverse expression in response to MQ-NP in the in vitro model 

Schematic diagrams to assess the miRNAs which were significantly upregulated under conditions of hypoxia-reperfusion in the in vitro model of the placental barrier, but 

significantly downregulated when an administration of MQ-NP was applied to the placental barrier before an insult of oxidative stress. mirPath v3.0 was utilised to determine 

KEGG pathways which were enriched by the DE miRNAs. TGF-β-signalling and axon-guidance signalling pathways were found to be enriched across all three models of the 

placental barrier and were selected as candidate pathways to examine. In the in vitro model miR-627, miR-493-3p and miR-663-3p were associated with TGF-β-signalling and 

miR-493-3p, miR-664-3p, miR-627 and miR-1287 were associated in the axon guidance signalling pathway. The Venn diagrams represent the overlap in the predicted genes 

for each of these DE miRNAs in involved in the signalling pathway. Predicted genes which were targeted by more than one DE miRNAs were highlighted. Venn diagrams 

were produced using Venny diagram software; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL). 

N.B.  miR-206b were unable to be included in this analysis due to restriction in miRbase database. 
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The in vitro model shared three DE miRNAs (miR-664-3p, miR-627 and miR-493-3p) which had inverse 

expression upon an exposure of hypoxia-reperfusion in comparison to the expression upon administration 

of MQ-NP. MirPath v3.0 predicted that these miRNAs mediated the expression of 20 target genes 

involved in TGF-β signalling. Figure 5-21 revealed an overlap in six target genes between miR-664-3p 

and miR-627 (Rho Associated Coiled-Coil Containing Protein Kinase (ROCK1), Mothers against 

decapentaplegic homolog 2(SMAD2), Inhibin, beta A, (INHBA), Bone morphogenetic protein receptor 

type II(BMPR2), Ribosomal protein S6 kinase beta-1(RPS6KB1) and Activin A receptor, type IC 

(ACVR1C)). Whereas there was only one target gene which was shared between miR-627 and miR-493-

3p (Mothers against decapentaplegic homolog 3(SMAD3). Figure 5-21 assessed axon guidance signalling 

pathway and observed one target gene (p21 (RAC1) activated kinase 2 (PAK2) which was regulated by all 

four DE miRNAs associated with the axon signalling pathway. There was an overlap in target genes (Rho 

Associated Coiled-Coil Containing Protein Kinase (ROCK2), p21 (RAC1) activated kinase 7(PAK7),  

Neuroblastoma RAS (NRAS), Semaphorin 3A (SEMA3A)). Furthermore (Kirsten Rat Sarcoma virus 

(KRAS) was a shared target gene between miR-493-3p and miR-627.  
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Figure 5-22 Cross comparison of predicted target genes of DE miRNAs with inverse expression in response to MQ-NP in the ex vivo model  

Schematic Venn diagrams to assess the miRNAs which were significantly upregulated under conditions of hypoxia-reperfusion in the ex vivo model of the placental barrier, but 

significantly downregulated when an administration of MQ-NP was applied to the placental barrier before an insult of oxidative stress. mirPath v3.0 was utilised to determine KEGG 

pathways which were enriched by the DE miRNAs. TGF-β-signalling and axon-guidance signalling pathways were found to be enriched across all three models of the placental 

barrier and were selected as candidate pathways to examine. In the ex vivo model miR-520d-5p and miR-516b-5p were both associated with TGF-β-signalling and axon guidance 

signalling pathway. The Venn diagrams represent the overlap in the predicted genes for each of these DE miRNAs involved in the signalling pathway. Predicted genes which were 

targeted by more than one DE miRNAs were highlighted. Venn diagrams were produced using Venny diagram software; Oliveros, J.C. (2007-2015) Venny. An interactive tool for 

comparing lists with Venn's diagrams (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL).  

  Ex   vivo   DE  miRNA s pathway enrichment    
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In the ex vivo model, two DE miRNAs (miR-520d-5p and miR-516b-5p) had inverse expression upon an 

exposure of hypoxia-reperfusion in comparison to the expression upon administration of MQ-NP. MirPath 

v3.0 predicted that these miRNAs mediated the expression of 22 target genes in the TGF-β signalling 

pathway. Figure 5-22 revealed an overlap in one target gene Smad-Specific E3 Ubiquitin Protein Ligase 2 

(SMURF2). Whereas, 23 target genes were associated in the axon guidance signalling pathway, with two 

overlapping genes (Slit guidance ligand 2 (SLIT2) and Unc-5 Netrin Receptor C (UNC5C) (Figure 5-22).   
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  In vivo DE miRNAs pathway enrichment   

 

    Figure 0-17 Cross comparison of predicted target genes of DE miRNAs with inverse expression in response to MQ-NP in the in vivo model 

Schematic diagram to assess the miRNAs which were significantly upregulated under conditions of hypoxia-reperfusion in the in vivo model of the placental 

barrier, but significantly downregulated when an administration of MQ-NP was applied to the placental barrier before an insult of oxidative stress. mirPath v3.0 

was utilised to determine KEGG pathways which were enriched by the DE miRNAs. TGF-β-signalling pathways were found to be enriched across all three 

models of the placental barrier and was selected as candidate pathway to examine. In the in vivo model miR-340-5p, miR-410, miR-382, miR-200c, miR-200a 

and miR-376c were associated with TGF-β-signalling. The Venn diagrams represent the overlap in the predicted genes for each of these DE miRNAs involved 

in the signalling pathway. Predicted genes which were targeted by more than one DE miRNAs were highlighted. Venn diagrams were produced using Venny 

diagram software; Heberle, H.; Meirelles, G. V.; da Silva, F. R.; Telles, G. P.; Minghim, R. InteractiVenn: a web-based tool for the analysis of sets through 

Venn diagrams. BMC Bioinformatics 16:169 (2015).  

N.B. miR-195, miR-145, miR-495, miR-3563, miR-203 and miR-122 was excluded from analysis due to limitation in annotation in miRbase. 

 

 

Figure 0-18 Cross comparison of predicted target genes of DE miRNAs with inverse expression in response to MQ-NP in the in vitro 
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In the in vivo model, six DE miRNAs (miR-200c, miR-200a, miR-382, miR-340-5p, miR-410 and miR-

376c) had inverse expression upon an exposure of hypoxia-reperfusion in comparison to the expression 

upon administration of MQ-NP. MirPath v3.0 predicted that these miRNAs mediated the expression of 28 

target genes in the TGF-β signalling pathway. Figure 5-23 revealed an overlap in the DE miRNAs binding 

to specific target genes. miR-376c, miR-340-5p and miR-410 Shared Mothers Against Decapentaplegic 

homolog 4 (SMAD4) as a common target gene. Whilst miR-376c, miR-340-5p and miR-200c shared 

Inhibin β A, (INHBA) as a common target gene. BMPR2 was also a common target amongst the 

differentially expressed miRNAs (miR-200a, miR-340-5p and miR-410) (Figure 5-23).   
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Figure 5-24 Cross comparison of predicted target 

genes of DE miRNAs with inverse expression in 

response to MQ-NP in the in vivo model  

Schematic diagram to assess the miRNAs which were 

significantly downregulated under conditions of hypoxia-

reperfusion in the in vivo model of the placental barrier, 

but significantly downregulated when an administration 

of MQ-NP was applied to the placental barrier before an 

insult of oxidative stress. mirPath v3.0 was utilised to 

determine KEGG pathways which were enriched by the 

DE miRNAs. Axon-guidance signalling pathway were 

found to be enriched across all three models of the 

placental barrier and was selected as candidate pathway 

to examine. In the in vivo model miR-3405p, miR-410, 

miR-382, miR-200c, miR-200a, miR-125a-5p, miR-487b 

and miR-376c were associated with TGF-βsignalling. The 

heatmap represent the overlap in the predicted genes for 

each of these DE miRNAs involved in the signalling 

pathway. Red indicated that one of the genes was targeted 

by the associated DE miRNA, whereas green indicated 

that the specific gene was not a target of the correlating 

DE miRNA.  

N.B. miR-195, miR-145, miR-495, miR- 
3563, miR-203 and miR-122 was excluded from analysis 

due to limitation in annotation in miRbase.  

  

   

 

 

 

MirPath v3.0 predicted that the inversely expressed miRNAs in the in vivo model mediated the expression 

of 57 target genes in the axon-guidance signalling pathway. Figure 5-24 revealed an overlap in the DE 

miRNAs binding to specific target genes; miR-410, miR-340-5p and miR-200a, all shared common target 

genes (Ephrin type-A receptor 7(EPHA7), Neuropilin-1 (NRP1) and UNC5C. Furthermore, miR-200a, 

miR-200c, miR-329 and miR-340-5p all were found to regulate G Protein Subunit Alpha I1 (GNAI1) and 

Plexin C1 (PLXNC1). SEMA3A was found to be the most commonly targeted gene with four DE 

miRNAs (miR-410, miR-203, miR-340-5p and miR-200c) predicted to repress its expression.   
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5.5 Discussion   
The aim of this chapter was to first characterise and examine the potential functional roles of the DE 

miRNAs released from the placental barrier upon a hypoxic insult to the placental barrier. Secondly, to 

assess the potential therapeutic potential of the administration of a mitochondrial-targeted antioxidant drug 

(MQ-NP) to the placental barrier before exposure of oxidative stress.  

  Characterisation and expression of secreted miRNAs from the 

placental barrier in response to a hypoxic insult  

In accordance to our experimental design, we assessed whether miRNAs play a role as important 

signalling molecules released from the placental barrier by determining whether placentally-derived 

miRNAs were differentially expressed in response to insults of gestational hypoxia to the placental barrier. 

We examined the discrete counts of miRNAs across the three models of the placental barrier (in vitro, ex 

vivo and in vivo).  

NanoString platform was used to both quantify and qualify the expression of miRNAs secreted into the 

conditioned media from the placental barrier models. In the case of our research this is an ideal method to 

use for several reasons; firstly we wanted to look in its entirety the different species of miRNAs present 

across conditions without being limited or bias to a set of a few miRNAs, since it has not been, to our 

knowledge, assessed in past experiments whether miRNAs are secreted from the placenta towards the 

foetal domain. Secondly, it is able to detect low-concentrations of miRNAs, as it is a highly-sensitive 

platform which is required for this work since we as shown in our initial findings (Section 3.5.1), that 

some of our in vitro samples contained low levels of miRNA which would be at risk of being unidentified 

or masked. In addition, using technology which is highly reproducible is extremely important to enable us 

to extract as accurate of findings as possible from the material which we have, especially as the samples 

obtained from the in vivo work are extremely precious samples from both an ethical and economic 

standpoint.  

The in vitro model revealed a discrete response in the miRNA profile across the treatment parameters, with 

only four miRNAs being expressed in two shared treatment conditions. Both miR-877-5p and miR-664-3p 

were upregulated in both chronic hypoxic conditions and under conditions of hypoxia-reperfusion, 

suggesting their functional role being in relations to response to stressed conditions and oxygen sensing. 

Research by Luo et al. identified miR-877 as being involved in the progression of obstetric complications 

including PE, which mimics the experimental settings531. MicroRNA-877-5p has further been associated 

with the inhibition of hepatocellular carcinoma cell proliferation by targeting Forkhead Box Protein M1 

(FOXM1), a transcription factor that is essential in regulating the expression of cell cycle genes for DNA 

replication and in DNA break repairs involved in the DDR532. Furthermore, studies have revealed that 

miR-877-5p suppresses cell growth, invasion and migration via cyclin-dependent kinase 14 and is a 

biomarker for hepatocellular carcinoma533. In comparison, little is known on the functional role of 

miRNA-664-3p, apart from its association in virus replication of influenza A strains 534.  
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Similarly, two miRNAs were found to be differentially expressed in both conditions of hypoxia 

reperfusion and the (MQ-NP) treatment group; miR-149-5p and miR-615-3p, however with reversed 

expression values. Under conditions of hypoxia-reperfusion, the miRNAs were downregulated, whereas 

treatment with (MQ-NP) resulted in upregulation of their expression. MiR-149-5p acts as a tumour 

suppressor, inhibiting cell cycle processes and proliferation via zinc finger and BTB domain-containing 

protein 2 (ZBTB2),the master regulator of p53 signalling pathway 535–539. Furthermore, miR-149-5p was 

aberrantly expressed under clinical intra-uterine growth restriction and regulated angiogenesis and amino 

acid transport540. Studies have further elicited that the permeability of the blood-brain barrier (BBB) is 

affected by an insult of hypoxia-reperfusion. Sphingosine-1-phosphate receptor (S1PR2) is expressed 

within pericytes to rescue disruption to the BBB which is negatively regulated by miR-149-5p, which is 

decreased by hypoxia-reperfusion. Thus reduced miR-149-5p expression in cultured pericytes increases 

pericyte migration and increases the leakiness of the BBB, making it more susceptible to damaging signals 

to transverse the protective barrier541.  

Likewise, miR-615-3p is a tumour suppressor 542,543 which represses human telomerase reverse 

transcriptase(hTERT) expression, a highly conserved homeobox family of transcription factors which 

mediate embryogenesis and development. Aberrant expression of both HOXC5 and miR-615-3p 

expression is associated with the activation of hTERT in human cancers. MicroRNA-615-3p is also 

upregulated in patients with Huntington’s disease and acts as a neuroprotector, with its expression being 

inversely correlated to the age of death544.The in vitro findings revealed that there was no overlap in DE 

miRNAs between chronic hypoxia and treatment with (MQ-NP) prior to hypoxia-reperfusion. The results 

imply that the in vitro model can induce a specific response following exposure to different oxygen 

tensions.   

The ex vivo model revealed no overlap across treatment groups (Figure 5-8). However, it should be noted 

that there was not a complete set of biological triplicates within the ex vivo model and therefore, the results 

obtained should be considered as preliminary.  

Conversely, observations from the in vivo model revealed three miRNA species which overlapped across 

all treatment groups (miR-1193-3p, miR-122 and miR-200c). MicroRNA-1193-3p was upregulated under 

conditions of chronic hypoxia and hypoxia-reperfusion within the in vivo model of the placental barrier 

(Figure 5-12). Treatment with (MQ-NP) reversed the trend in expression and caused miR-1193-3p to be 

downregulated. There is little known about the functional role of miR-119-3p; however it has been found 

to play a role in the proliferation and invasion of T-cell leukaemia cells. In T-cell leukaemia miR-1193 

expression is reduced in comparison to normal T cells: it is believed that miR-1193 reduces proliferation 

and invasion. 545   

 MicroRNA-122 was downregulated under conditions of chronic hypoxia and hypoxia-reperfusion within 

the in vivo model of the placental barrier; however treatment with MitoQ-NPs upregulated miR-122 

expression in the conditioned media. miR-122 is an oncomiR and is related to gastric, liver and 

osteosarcoma cancers. Overexpression of miR-122 reduces cell proliferation via the upregulation of p27 
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and the induction of apoptosis via MYC546. Whereas in osteosarcoma cell lines, overexpression of miR-

122 inactivated PI3K/AKT, JAK/STAT, and notch pathways547. The central functional role of miR-122 is 

in liver homeostasis, regulating cholesterol, glucose and lipid metabolism. MicroRNA-112 expression is 

downregulated in hepatocellular carcinomas and in hepatitis B-positive patients suffering from metastatic 

cancer, making it  a reliable, sensitive biomarker for liver injury548,549. Conversely, a study by Lasabová et 

al. (2015) found overexpression of miR-122 in  pre-eclamptic placentas, which suggests that the apoptosis-

associated miRNA-122 is aberrantly expressed in obstetric complications.550,551  

MicroRNA-200c was downregulated under conditions of chronic hypoxia but conversely upregulated 

under conditions of hypoxia-reperfusion. This implies that miR-200c synthesis and release from the 

placenta is sensitive to the intrauterine oxygen-tensions. Treatment to the placental barrier with MitoQ 

NPs caused a decrease in the expression of miR-200c suggesting the potential that miR-200c may be 

released from the placenta in response to ROS generation by the insult of hypoxia-reperfusion and the 

administration of the antioxidant drug is able to rescue this effect and reduce the concentration of miR-

200c.   

MicroRNA-200c is also involved in breast tumorigenesis where it acts as an anti-oncogene and plays a role 

in regulating self-renewal in undifferentiated cells552. Downregulation of miR-200c has also been 

associated with foetal macrosomia (large birth weight) and PE 553,554, whilst upregulation of miR-200c has 

been found in IUGR555  

 Cross comparison of models  
The analysis was performed to explore whether the three individual models of the placental barrier were 

able to recapitulate the in vivo setting across the different experimental parameters. As previously 

discussed, (section 1.8) each model provides its own benefits and disadvantages when representing the 

transplacental transfer of secretions from the placental barrier into the foetal circulation upon an insult of 

gestational hypoxia. It was of interest to explore whether the three individual models were able to elicit 

similar trends of miRNA secretions from the placental barrier upon an insult of gestational hypoxia. We 

observed that there was no overlap in DE miRNAs across the three models of the placental barrier across 

the treatment groups (Supplementary Figure 23). The results suggest that each model of the placental 

barrier elicited a specific change in the miRNA profile secreted from the placental barrier into the 

conditioned media and that the models had a unique response and were unable to recapitulate one another. 

A further consideration when comparing the models was the fact despite the in vitro model being the most 

rudimental it was able to provide polarity to the barrier which was important for assessing the movement 

of miRNAs into the foetal domain. Whereas a limiting factor with the ex vivo and in vivo model was the 

lack of discrimination between secretions from the placenta into the foetal or maternal circulation. This 

means that we are unable to certify whether the miRNAs present within these samples would be secreted 

on the maternal or the foetal side of the placental interface. The findings imply that the discrepancies 

between the models have a significant effect upon how the placenta responds to an insult of gestational 

hypoxia and is something which must be taken into consideration for future research when assessing the 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Lasabov%C3%A1%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=26859593
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lasabov%C3%A1%20Z%5BAuthor%5D&cauthor=true&cauthor_uid=26859593
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response of the placenta to in utero exposures. Thus, we were unable to establish a ‘candidate’ miRNA 

species for further downstream investigation as initially anticipated. Similar trends when comparing in 

vitro models with in vivo models have been found in other studies examining the secretion of miRNAs 

from the placental barrier343,556,557. Chen et al. found that there was perturbation in the number of miRNAs 

significantly differentially expressed within the in vitro and in vivo models. Their findings implied that the 

cell line cultures were unable to represent what was being portrayed in the in vivo model. However, they 

highlight the relevance of culturing cells which overcomes limited sample sizes which is a common 

problem in vivo work including the ethics which may be associated. Furthermore, cell culture work 

permits manipulation of the cells under controlled conditions. Although cell culture work has its 

discrepancies and variations from the phenotypic traits of in vivo models, it still holds a place in answering 

fundamental biological and physiological questions.   

The results obtained from nCounter analysis revealed that across the three models of the placental barrier, 

there were discrepancies in the trend of miRNAs secreted from the placental barrier under different 

treatment parameters. In the in vitro model, an insult of chronic hypoxia to the BeWo barrier only elicited 

a small increase in the number of DE miRNAs secreted from the placenta into the foetal domain, whilst 

the highest number of miRNAs released from the barrier was under conditions of hypoxia-reperfusion 

.Treatment to the barrier with (MQ-NP)to the BeWo barrier before an episode of hypoxia-reperfusion was 

able to reduce the number of DE miRNAs released into the conditioned media to similar levels seen under 

conditions of chronic hypoxia. Thus inferring that the administration of the antioxidant drug was able to 

reverse the response of the placenta to an insult of hypoxia-reperfusion. However, this inverse trend was 

found in both the ex vivo and in vivo model of the placental barrier, whereby the highest number of DE 

miRNAs released from the placental barrier was under experimental parameters where there was an insult 

of chronic hypoxia and with the treatment of (MQ-NP)before an insult of hypoxia-reperfusion. Whereas, 

an insult of hypoxia-reperfusion was observed to have the lowest concentration of DE miRNAs secreted 

into the conditioned media. These findings further represent the discrepancies found between the different 

models of the placental barrier.  

  

  Analysis of potential functional roles of Differentially expressed 

(DE) miRNAs  

Current studies have assessed the differential expression of miRNAs within placentae connected with 

obstetric complications and congenital disorders in the developing foetus which are released into the 

maternal circulation.356,558,559However to our knowledge there are limited studies which have explored the 

secretion of miRNAs from the placenta into the foetal domain. The results obtained from nCounter 

analysis have shown DE miRNAs upregulated and downregulated under conditions which mimic obstetric 

complications. In order to examine the potential functional role of DE miRNAs, we adopted a 

methodology utilised by Mullany et al. 560KEGG pathway analysis was performed across all treatment 



  ~Chapter 5~   

                              

227  

  

parameters and across the three models of the placental barrier as a tool to determine enrichment of DE 

miRNAs in biological processes relating to mRNA transcription, processing, neurological and oncological 

processes and disease states. The focus of our investigation was in assessing pathways associated with 

neurological processes and pathology as well as assessing the stressed conditions of the placental barrier as 

a means to support the validity of our hypoxic model.  

 Within the scope of this experiment, we performed analysis which assessed the overall DE miRNAs under 

each condition as well as performing separate pathway analysis on both upregulated and downregulated 

DE miRNA separately across the treatment parameters. Despite separate analysis being performed looking 

at upregulated and downregulated DE miRNAs individually, we found that there were little discrepancies 

between the pathway enrichment output, and in order to simplify this complex, extensive dataset we chose 

to focus solely on the overall effect of all DE miRNAs within the conditioned media, to give a more 

holistic understanding of the enriched pathways under different treatment parameters. Therefore, the 

number of miRNAs included within the pathway enrichment analysis was the total DE miRNAs within 

that treatment parameter. However, as previously stated within section 5.4.2, not all miRNAs could be 

included in the analysis due to limited annotation of  the MirPath v 3.0 software, which is a confounding 

factor to the being able to gain an holistic understanding of how both the upregulation and downregulation 

of specific miRNAs interact to influence enrichment of biological pathways.   

Our findings revealed the inconsistency of enriched pathways across the three models of the placental 

barrier, which coincides with the results from nCounter analysis which found no overlap in miRNAs 

expressed in each of the treatment parameters across the thee models. We focused our attention on those 

pathways which were shared in the treatment parameters between the different models of the barrier, as 

this offers the most validated and translatable pathway which could be targeted for understanding the 

potential functional role of miRNAs secreted into the foetal circulation upon a hypoxic insult.   

  

 Pathways enriched in neurological settings  

Bioinformatic analysis revealed neurological pathways which were between treatment groups across the 

models of the placental barrier. Of interest was common neurological pathways  enriched across all models 

of the placental barrier upon an insult of chronic hypoxia, such as the hippo-signalling 

pathway(Supplementary Figure 5,Supplementary Figure 8 & Supplementary Figure 11). The hippo 

signalling pathway is highly conserved involving 30 different genes which interact to regulate organ 

development. Recent work by Sasaki et al., discovered the role of hippo-signalling during preimplantation 

stages of murine blastomeres, playing a vital role in the cell fate at the very early stages of gestation by 

determining which cells will become the inner cell mass (ICM) and the trophectoderm which develops into 

the placenta561. Furthermore, hippo-signalling plays a vital role in response to cellular stress signals 

incurred by oxidative stress or DNA damage acting as a negative regulator of cell growth.562,563 

Inactivation of yes-associated protein 1 (YAP), a terminal effector of hippo, suppresses Forkhead box 
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protein O1 (FoxO1) activity and decreases antioxidant catalase gene expression. Thus, Hippo signalling 

modulates the FoxO1-mediated antioxidant response. Under conditions of ischemia/reperfusion in 

cardiomyocytes Hippo is induced and antagonizes YAP-FoxO1 pathways resulting in activation of cell 

death by the downregulation of catalase562. The signalling cascade is essential in the maintenance of 

homeostasis at the cellular level and is able to detect imbalances which may have detrimental implications 

upon the development of tissues and organs. When there is a disruption to the signalling cascade, this can 

result in degenerative disorders to emerge as well as aberrant development to viral organs 563. The 

Hipposignalling pathway has been enriched in neurodegenerative pathogenesis, being associated with  

Alzheimer’s disease 564 and Amyotrophic lateral sclerosis (ALS)565 and is widely attributed to oncogenesis 

when there is aberrant expression 566.   

Transforming-growth factor-β (TGF-β) was enriched in all models of the placental barrier exposed to 

conditions of chronic hypoxia (Supplementary Figure 5, Supplementary Figure 8 & Supplementary Figure 

11), which has been found in the literature to be associated with neuronal maturation and differentiation567.  

TGF-β is involved in the pathogenesis of Alzheimer’s disease via the interaction of SMAD3 signalling, 

mediating the cytotoxic effect of microglia exposed to oxidative stress.568 A study by Tesseur et al. (2006) 

discovered that a reduction of TGF-β  signalling in a murine model resulted in accumulation of amyloid β  

and dendritic loss, which are clinical symptoms of Alzheimer’s disease.569Under conditions of oxidative 

stress, TGF-β induces cell cycle arrest and apoptosis, but conversely has prooncogenic characteristics by 

promoting cell proliferation, invasion and metastasis. Both ROS and TGF-β have a complex regulatory 

effect on one another, with ROS promoting the activation of TGF-β and potentially the onset of 

tumorigenesis. These findings correlate with the findings of enriched TGF-β signalling found under 

conditions of chronic hypoxia and hypoxia-reperfusion.570 However, in the presence of (MQ-NP) an 

antioxidant, this pathway was no longer enriched, suggesting a potential therapeutic effect.  

Axon guidance was another enriched pathway witnessed across all models of the placental barrier and 

within all treatment groups with the exception of the ex vivo chronic hypoxia model and in the in vitro 

model with the antioxidant drug application (Supplementary Figure 5, Supplementary Figure 8 & 

Supplementary Figure 11). Axon guidance is a common morphological trait seen in neurological disorders 

and is characterised by a change in neuronal connections ranging from, pre-synaptic changes to the 

eradication of entire axon lengths.571 Perturbations to axon guidance during critical stages of development 

can have long-term deleterious effects upon structural plasticity of synapses within the brain into 

adulthood572,573. In addition, the neurotrophin signalling pathway was enriched, which is a critical pathway 

required for the survival and development of both sensory and sympathetic neurons in the peripheral and 

central nervous system. A reduction in the level of neurotrophins during development causes a reduction in 

the number of mature neurons and depletes neuronal densities limiting the capacity of target innervation. 

Furthermore, neurotrophins are highly important in the regulation of cell fate decisions and are involved in 

axonal and dendrite growth.574   
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ErbB signalling pathways are a family of receptor tyrosine kinases involved with regulating key essential 

functions including cell proliferation, differentiation and cell survival. ErbB signalling was enriched within 

both the in vitro and ex vivo model of the placental barrier under conditions of hypoxia-reperfusion 

(Supplementary Figure 6 & Supplementary Figure 9). Studies by Chandross et al. (1999) assessed the 

interaction between neuregulin-1 and ErbB  to examine the effects on peripheral axons and myelinating 

Schwann cells and found that ErbB signalling is required for myelin formation and thus is associated with 

peripheral neuropathies 575. Furthermore, ErbB is associated with neurodegenerative diseases including  

Alzheimer’s disease and multiple sclerosis 576 and enrichment of ErbB targets genes which have been 

linked to increased risk in the development of schizophrenia and bipolar disorder 577. These findings imply 

that the DE miRNAs expressed in hypoxia-reperfusion for the in vitro and ex vivo model may play a role 

in binding to ErbB target genes and initiate neuropathogenesis. Furthermore, in the ex vivo model, the 

ErbB pathway is not enriched after treatment of (MQ-NP) to the placental barrier that implies that the 

treatment may act as a potential therapeutic treatment for elevating the enrichment of known pathways 

associated in the onset of neurodegenerative diseases. However, it should be noted that this trend was not 

seen in either the in vitro or in vivo model, whereby the ErbB pathway was found to be enriched.   

Similarly, glutamatergic synapse was a biological function found to be enriched upon an insult of hypoxia 

reperfusion to the in vitro and ex vivo model of the barrier (Supplementary Figure 6 & Supplementary 

Figure 9). Glutamate is an excitatory neurotransmitter in the brain and impaired levels in signalling results 

in complex neurological disorders, including schizophrenia and autism.578 Recent findings by Scott et al. 

(2018) examined bidirectional signalling via glutamate between neurons and astrocytes in foetal cortical 

cultures treated with conditioned media obtained from PE placentae. They discovered that astrocyte 

density was important in mediating excess extracellular glutamate levels upon exposure of oxidative stress. 

Inhibition of the glutamate receptor rescued neuronal dendritic length upon oxidative stress. 579 A review 

by Sharpley (2009) explored the growing evidence to support the association between aberrant 

gammaaminobutyric acid (GABA) and glutamate levels with the aetiology of depression.580,581 

Interestingly, we found that alongside the enrichment for glutamatergic synapses, we also had enrichment 

for long-term depression in conditions of hypoxia-reperfusion, which supports the literature and suggests 

that depression is the result of neuronal atrophy. Inhibition of glutamate release mediates the level of 

brain-derived neurotrophic factor(BDNF) which regulates synapse formation, required to rescue brains 

affected by a loss of synaptic function, which is seen in clinical settings of depression. 582   

Moreover, the prion pathogenesis pathway was enriched under conditions of hypoxia 

reperfusion(Supplementary Figure 6 & Supplementary Figure 9 & Supplementary Figure 12). Prion 

diseases are transmissible and often fatal neurodegenerative conditions caused by misfolding  and 

accumulation of a host-encoded cellular prion protein, PrPC .583Prion diseases are associated with a sudden 

reduction in antioxidant defence which results in the progression of neurodegenerative pathways.584 In 

vitro studies by Guentchev et al. (2000) demonstrated the ability of the prion protein to induce oxidative 

stress in cultured cells alongside peroxynitrite induced neuronal degeneration.585  
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 Enriched pathways in stress-response   

Our study found that mitogen-activated protein kinases (MAPKs) were enriched across models of the 

placental barrier conditioned to chronic hypoxia and hypoxia-reperfusion settings (Supplementary Figure 

5, Supplementary Figure 6,Supplementary Figure 8,Supplementary Figure 9,Supplementary Figure 11 & 

Supplementary Figure 12). MAPKs are important for the signal transduction from the cell membrane to 

the nucleus. The MAPK family  includes extracellular signal-regulated kinase (ERK), p38, and c-Jun 

NH2terminal kinase (JNK),  which are stress-induced in response to increased levels of ROS.586 Our 

findings correspond to the current literature, which has determined the role of p38 mitogen-activated 

protein kinase in obstetric complications. An insult of oxidative stress during pregnancy activates p-38 

MAPK and leads to premature senescence of foetal tissue and the onset of premature rupture of 

membranes resulting in premature labour.587 Furthermore, research by Malik et al. (2017) found that 

inhibition of ERK resulted in a reduction in epidermal growth factor (EGF)-mediated trophoblast invasion, 

which is clinically associated with PE. 588Activation of MAPK pathways regulates proliferation, 

differentiation and apoptosis and aberrant signalling has been related to complex neurodegenerative 

settings589. Overexpression of p38 or JNK signalling plays a role in neuronal apoptosis which is a clinical 

requirement for the onset of  Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS).590 

Conversely, upregulation of ERK signalling pathway is associated with tumorigenesis.589,591 Similarly, 

Wingless (Wnt) -signalling was enriched and is a signalling pathway associated with the pathogenesis of 

PE. Activation of the Wnt/βcatenin signalling pathway is critical for the differentiation of cytotrophoblast 

cells into invasive EVT to promote spiral artery remodelling, crucial for the healthy development of the 

placenta and the foetus. This process is controlled by the recruitment of β-catenin and the activation of 

Wnt-dependent T-cell factor 4. Thus, Wnt/β-catenin signalling is an essential pathway that promotes 

implantation, blastocyst activation and implantation.592 Hence, Wnt-signalling has been associated in PE 

pregnancies and has also been linked in recurrent abortions.593  

A common pathway enriched across the treatment groups was a tumour-suppressing p53-signalling 

pathway. This pathway is involved in the regulation of the cell cycle and cellular repair and is essential in 

mediating the DDR, arresting cell cycle at the G1/S stage to prevent replication of mutations.594 However, 

if the damage is irreparable, p53 activates the apoptotic pathway. Oxidative stress is a potent inducer of 

p53 and has been associated with regulating  cellular senescence595, Tumour Protein p53-Induced Nuclear 

Protein 1 (TP53INP1) is a tumour suppressor which mediates the p53 response to stress.596 Our study 

found that p53 was enriched under conditions of chronic hypoxia and hypoxia-reperfusion, a setting for 

oxidative stress, however it was not present after treatment with the antioxidant suggesting it may negate 

the antioxidant functions of p53-signalling in response to oxidative stress.597  

Furthermore, HIF-1 signalling pathway was enriched under conditions of chronic hypoxia in the in vitro 

model (Figure 5-12). The HIF1 signalling pathway is an important regulator of  homeostatic processes 

within cells and plays a role in neurogenesis, angiogenesis, erythropoiesis and glucose metabolism.127 



  ~Chapter 5~   

                              

231  

  

Furthermore, it is the master regulator of oxygen tension within cells and has been extensively attributed to 

obstetric complications 598 and in neuropathological settings.599 HIF-1α acts as a cardioprotective  

paracrine signalling molecule between cardiomyocytes and endothelial cells exposed to oxidative stress.600  

Conversely a study by Harrison et al. (2018) found that HIF-1α had similar paracrine signalling effects 

under conditions of oxidative stress, but altered proliferation rates in bystander cells, mimicking 

hypoxicsettings. 601The DE miRNAs under conditions of chronic hypoxia may activate the HIF-pathway 

which in turn acts as a paracrine mediator between the placenta and the developing foetus. In addition, the 

Mechanistic Target of Rapamycin (mTOR) signalling pathway has been enriched under conditions of 

chronic stress. mTOR is important in signalling cell proliferation and regulating cell cycle including 

processes which involve RNA stability and post-transcriptional regulation. The mTOR signalling pathway 

is stimulated by amino acids, however, is has been shown to be altered by stimuli which trigger the stress 

response, including hypoxia. Studies reveal that aberrant expression of the mTOR signalling pathway 

results in the progression of cellular commitment to apoptosis after severe DNA damage as a result of 

cellular response to stress conditions.602Furthermore it has been shown that impairment in the mTOR 

signalling processes has been linked with pathological conditions including neurodegenerative diseases, 

cancer and Type 2 diabetes. 603 A review by Sarkar & Rubinsztein (2008) assessed the significance of the 

mTOR signalling pathway in the regulation of autophagy. There is a known association between 

intracellular protein degradation pathways and the onset of neurodegenerative pathologies. Autophagy is 

vital in eliminating harmful protein aggregates which have been linked with neurodegenerative diseases 

such as Alzheimer’s, Huntington’s and Parkinson’s disease states. Inhibition of the mTOR pathway 

promotes autophagy and reduces the risk of neurodegeneration.604  

 The efficiency of the (MQ-NP) in rescuing pathological 

pathways   
Quantitative analysis using nCounter assay measured individual miRNAs within the conditioned media 

across the three placental models to explore the potential rescuing effect of MitoQ-NP upon an insult of 

hypoxia-reperfusion to the placenta. In both the in vitro and the ex vivo model of the placental barrier the 

administration of MitoQ-NP was found to inverse the expression of the majority of miRNA species which 

had been differentially expressed and released from the placenta barrier upon an insult of 

hypoxiareperfusion and partially within the in vivo model (Figure 5-17,Figure 5-18 & Figure 5-19).   

The application of the antioxidant drug to the in vitro BeWo barrier caused partial reversion of miRNA 

species which were DE under conditions of oxidative stress (2-12% O2). Application of (MQ-NP) reduced 

the miRNAs associated with TGF-β signalling, axon guidance, glutamatergic synapses and serotonin 

pathways, suggesting that the drug was able to inhibit repression of target genes involved in these 

neurological processes. These pathways are of significance since aberrant  TGF-β signalling has been 

associated with Alzheimer’s disease-causing SMAD3 to be downregulated resulting in the cytotoxic 

activation of microglia associated with neurodegeneration.568 Furthermore both glutamatergic and 

serotonin have been widely attributed as a common pathogenic mechanism underlying 
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neurodevelopmental disorders including; autism, down-syndrome and Rett syndrome, which share similar 

clinicopathological traits of impaired cognitive function as a result of mutations in glutamate receptors 

(GluR) and impaired neuronal synaptivity.605–607This research has been further supported by the work 

conducted by Scott et al. (2018) which assessed the implications of exposing cortical cultures exposed to 

conditioned medium obtained from cultured pre-eclamptic placentae. Their findings discovered 

perturbations in dendritic processes, astrocyte densities and the concentration of glutamate and 

γaminobutyric acid receptors which were rescued by the application of MitoQ-NPs. They recorded altered 

miRNA secretions in the conditioned media from pre-eclamptic placentae which were partially rescued by 

MitoQ-NP treatment of the placental explants.579  

Similarly, in the ex-vivo model, both TGF-β signalling and axon-guidance were pathways found enriched 

in the microRNAs whose expression was reversed in response to the application of MQ-NP. An additional 

pathway of interest was long potentiation which is clinical symptom witnessed in neurodevelopmental 

cases caused by aberrant neurotransmission to the hippocampus608  

Furthermore, both TGF-β signalling and axon-guidance  pathways were enriched for in the in vivo model 

as well as synaptic vesicles releasing pathways which have been implicated in neurodegenerative diseases 

such as Alzheimer’s disease whereby interactome studies have found impaired synaptotagmin-1, altering 

calcium-sensing for synaptic vesicle release, causing a loss of neuronal circuitry and connectivity.609  

Bioinformatic assessment across all three models of the placental barrier deemed two common enriched 

neurological pathways (axon guidance and TGF-β signalling) (Figure 5-20). Both pathways are vital in 

neurogenesis, and aberrant expression of these pathways are intrinsically linked in neuropathological 

conditions, as previously discussed. In-depth analysis of the predicted target genes associated with the DE 

miRNAs involved in both signalling pathways across the placental models revealed overlap in candidate 

target genes. In the axon-guidance signalling pathway, Semaphorin 3A (SEMA3A) gene was a predicted 

target across all three models. SEMA3A plays an essential role in neurogenesis eliciting antagonistic 

functions as a chemo repulsive agent which works to inhibit axonal outgrowth or as a chemoattracted 

agent which stimulates the proliferation of apical dendrites. Heightened levels of the protein are associated 

with tumorigenesis and in neuropsychiatric disorders (schizophrenia)610 and neurodegenerative disorders 

(Alzheimer’s disease).611  

Whereas, in TGF-β signalling, two common predicted target genes were found in both the in vitro and in 

vivo model of the placental barrier Inhibin, beta A (INHBA) and Bone Morphogenetic Protein Receptor 

Type 2 (BMPR2).  INHBA is a potential biomarker for perinatal hypoxic-ischemic brain injury commonly 

found in the brain to regulate activin signalling  which is believed to act as a neurotrophic protective factor 

during neurogenesis and from injury.612 Basal levels are low in a healthy brain; however, upon injury, 

there is a response by upregulation of activin A as there is heightened neuronal activity in response to an 

insult. Increased Activin A mediates a downstream response via altering glutamatergic and GABAergic 

synapse expression. Mediating the expression of both synapses has the ability to offset death-inducing 

signals via N-methyl-D-aspartate receptors (NMDARs) which enhance hippocampal neurogenesis. When 
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Activin A levels are repressed, this results in the onset of neuropathological pathways being implemented 

and has been associated with; anxiety disorders, depression, and in both Parkinson’s and Alzheimer’s 

disease.613 Furthermore, INHBA is found to be over-expressed in glioblastomas.614   

BMPR2 is a receptor of the transforming growth factor-β (TGF-β) family and plays an important role 

during embryonic development via SMAD-protein-mediated signal transduction pathways.615,616 Recent 

studies by Dettman et al. (2018) have explored the effect of exposure of hypoxic-ischemia to the neonatal 

brain and found that overexpression of Noggin, an inhibitor of BMP, resulted in increased oligodendroglia 

and enhanced motor functions. Thus providing evidence that BMPs are able to negatively regulate 

oligodendroglial fate and neuronal cell differentiation and are contributors for causing myelin loss.617,618 

Reduction in myelin sheath production means a loss in efficient potentiation along axons. It is well 

established that impairment to oligodendrocytes and myelin are factors which are involved in the 

pathogenesis of neurodegenerative disease including Alzheimer’s disease and multiple sclerosis.619  

 Overall summation  
In summation, we found that MQ-NPs have the potential to alter the expression of microRNAs involved in 

neuropathological pathways, secreted from the placenta upon an insult of hypoxia-reperfusion, suggesting 

a potential therapeutic role in rescuing the effects of an insult to the placenta. Current research conducted 

by Phillips et al. (2017) revealed that an injection of MitoQ-NPs to the in vivo rodent model was able to 

target the placenta without transversing the barrier into the foetus, which makes it an ideal therapeutic 

treatment for obstetric complications.153 Furthermore, the findings revealed that exposure of conditioned 

media obtained from a hypoxic episode resulted in shortening of dendrite lengths, reduced GluN1 

receptors and an increase in astrocyte-to-neuron ratio within rodent cortical neuronal cultures, that could 

be ameliorated by treatment with MitoQ-NP, providing evidence of MQ-NPs effectiveness in rescuing 

damaging effects from a biological approach.153,579   

Despite the lack of overlap in differentially expressed miRNAs across the placental models, we found 

shared pathways associated with those miRNAs inversely expressed when MQ-NPs was administered to 

the placental barrier before exposure of hypoxia-reperfusion. Due to different morphological, 

physiological and culture-based variability in the models of the placental barrier (section 1.8) it is not 

surprising that there were no common DE miRNAs released in response to gestational hypoxia. However, 

as miRNAs have the potential to bind and target hundreds of genes, it was interesting to assess common 

predicted target genes and their associated pathways altered by differentially expressed miRNAs from 

each model of the barrier. We found common genes across the models; SEMA3A associated in altering 

axonal guidance and INHBA and BMPR2 involved in the TGF-β signalling cascade. These are potential 

candidate pathways and genes which can be taken forward in further investigations for expanding our 

knowledge on the mechanism of signalling via the placenta upon oxidative stress and the mechanism 

behind therapeutic treatments (Figure 5-25).  
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Figure 5-25 Schematic illustration of enriched pathways associated with miRNAs which were inversely 

expressed in response to the application of an antioxidant-loaded nanoparticle drug (MitoQ) to the placental 

barrier before exposure of hypoxia-reperfusion  

The schematic diagram provides a summation of our findings when exploring the potential effect an application of MitoQ 

has upon the secretion of miRNAs from the placental barrier under conditions of hypoxia-reperfusion. The schematic 

demonstrates that oxidative stress to the placental barrier in the form of exposure of hypoxia-reperfusion causes increased 

levels of mitochondrial ROS within the placental barrier. Enhanced levels of ROS have been attributed to the BBB becoming 

‘leaky’ and more susceptible to exosome uptake. Our findings have found that across the three models of the placental 

barrier, there was an inverse expression of differentially expressed miRNAs in response to the application of MitoQ. These 

miRNAs shared two common enriched pathways, Axon guidance and TGF-β signalling pathways. As miRNAs bind to 

multiple target genes, we looked for commonly shared target genes across the placental model which were regulated by the 

differentially expressed miRNAs and associated in Axon guidance and TGF-β signalling pathways. We found that  
Semaphorin 3A (SEMA3A) was a normal target gene associated with axon guidance and Inhibin, beta A (INHBA) and Bone 

Morphogenetic Protein Receptor Type 2 (BMPR2) were common target genes associated with TGF-β signalling pathways. 

Perturbations to these pathways have been attributed to neurological pathologies, making them and their associated target 

genes ideal candidates for future exploration to understand the potential MitoQ may have as a therapeutic drug to regulate 

placental secretions under conditions of hypoxia-reperfusion and the repercussions this may have downstream on the foetal 

brain.  

  

 Considerations & Limitations  

A key issue which must be considered is the complexity of analysing large miRNA datasets since one 

miRNA alone can target hundreds of genes and interact with multiple pathways. Therefore large datasets 

of miRNAs will have large combinatorial effects. Although a range of servers offers miRNA functional 

annotation analysis, there is a high risk of false-positive being derived from using in silico prediction 

platforms. Many target prediction algorithms involve the use of a standard one-sided Exact Fisher’s Test 

as a means to calculate enrichment; however these methods need to be reconsidered as it can result in 



  ~Chapter 5~   

                              

235  

  

unbiased statistics and instead empirical distributions should be considered.620 Furthermore, the traditional 

hypergeometric distribution method used to derive miRNA: gene interaction for large DE miRNA datasets 

often leads to large predicted target gene lists, ultimately reducing the strength of biological significance of 

the functional analysis accuracy since the genes which are repressed by multiple miRNA are lost.621  

The downstream mRNA targets associated with the differentially expressed miRNAs were initially 

analysed using TargetScanHuman v7.0; however we found that the output was so vast that it reached the 

threshold of predicted target genes the Gene Ontology bioinformatics software tools such as  DAVID 

622and PANTHER623 could process simultaneously for each treatment condition. Hence an alternative 

method was used which involved using mirPath v3.0 DIANA-micro T  which has been recognised as an 

efficient platform to give a balanced outcome of predicted enriched pathways and also includes a 

parameter to compare its predictions to those from other tools.523 In-depth cross-comparison analysis of 

different tools for distinguishing predicted targets of defined miRNAs have been well-reviewed by Riffo et 

al. (2016) and depending on the experimental design different tools comes with their own benefits and 

shortcomings. MirPath v3.0 offers the opportunity to look for predicted targets using Tarbase v6.0, which 

is a database curated from experimentally validated miRNA interactions, rather than purely in silico 

algorithmic predictions.522  

Furthermore, despite mirPath being considered one of the most efficient platforms to use, there are still 

restrictions within the database, and thus not all of the DE miRNAs were able to be annotated. This 

jeopardised and limited the overall accuracy of our findings and is something which must be taken into 

consideration when drawing conclusions. We also found that there is bias in pathway enrichment analysis 

which can be skewed towards cancer-associated pathways. This bias is attributed to the plethora of studies 

which have investigated the role of miRNAs involved in cancers, making them well annotated. However, 

there are other niche areas which have not been explored and are therefore not represented within the 

databases from which pathway enrichment is determined.   

Another consideration and area of controversy surround the methodology for assessing the biological 

functional pathways associated with DE miRNAs obtained from samples. A study by Hong et al. explored 

the discrepancies in pathway enrichment analysis when analysing all DE miRNAs in comparison to 

carrying out a separate analysis of up-and down-regulated miRNAs. Their findings suggest that miRNAs 

with functional links in pathways also tend to have correlated expression value which could cause an 

imbalance in the up-and downregulated genes in pathway analysis. This imbalance is believed to skew 

disease-associated pathways by reducing the statistical power when assessing all DE miRNAs together.624  

Future work is required to validate the miRNA: mRNA target interaction bioinformatic analysis by using a 

reporter luciferase assay on candidate miRNAs which were of significance. The reporter luciferase assay is 

able to determine whether there is direct interaction between  a candidate miRNA species and its 

associated target mRNA, by cloning the 3’UTR of the target gene downstream of the reporter luciferase 

protein, binding of miRNA to the target gene will repress the expression of the luciferase protein which 

can be quantitively measured.625 Furthermore, coexpression studies are required to validate that miRNA, 
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and its predicted target mRNA are coexpressed by miRNA repression the mRNA expression using qPCR 

TaqMan assays. Alternatively, assessment of the expression of the candidate miRNA and its modulating 

effect on protein levels can validate the functionality of miRNAs. This analysis can be performed by 

overexpressing the miRNA of interest to a cell type which is known to naturally express the protein of 

interest. The concentration of the protein after exposure of miRNAs is assessed using western blotting or 

an ELISA.  

  



  ~Chapter 6~  

                                                                  

237  

  

  

Chapter 6.  Final Discussion  
Perturbations to placental development seen in obstetric complications (PE and IUGR) have been 

established in influencing  foetal programming  and are associated with increased risk for neurological 

disorders in the offspring.626 However, the mechanism behind how adverse exposures to the placenta 

during critical stages of development can alter the placental function and lead to aberrant 

neurodevelopment remains elusive.627 Oxidative stress to the placenta has been strongly linked with PE 

and IUGR 120,628,629; we explored the potential involvement of placental oxidative stress in eliciting the 

release of molecules which could act as signalling factors that cause damage to foetal neurodevelopment. 

MicroRNAs were hypothesised to act as signalling factors released from the placental barrier upon an 

insult of gestational hypoxia, as they have been previously identified as being secreted from the placenta in 

exosome-bound form into the maternal circulation upon an insult of oxidative stress and are reliable 

biomarkers for obstetric complications.553  

However, there is limited information surrounding the potential for miRNAs to be secreted and to act in 

the foetal circulatory system. Current investigations have highlighted the potential for factors synthesised 

and released from the placenta towards the foetus such as serotonin, to directly target the foetal brain and 

mediate neurological processing.630 The literature has shown that exosomes containing miRNA are able to 

be transported in the foetal circulatory system 631and can cross the blood-brain barrier.632 Furthermore 

studies have shown that these cargos shuttling miRNAs are taken up and interact with microglia and 

oligodendrocytes exerting an effect on neurogenesis.200  

The overarching aim of this research was to explore the potential mechanistic role of miRNAs as essential 

signalling molecules across the placental barrier in response to gestational hypoxia, and their potential 

involvement in altering neurodevelopmental pathways within the developing foetus.  

6.1 A hypoxic insult to the in vivo model of the placental barrier 

increased miRNA secretions towards the foetal domain  

The initial aim of the research was to examine whether we could detect the presence of miRNA released 

from the placental barrier under conditions which mimic obstetric complications in utero. We postulated 

that an explore of gestational hypoxia would cause an increased concentration of miRNAs released from 

the placental barrier into the foetal circulation, in accordance to the current literature which has shown 

increased detection of placental-derived exosomal miRNAs in the maternal circulation in response to  

oxidative stress.633  
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However, our model of gestational hypoxia in both the in vitro and ex vivo model of the placental barrier 

disproved our initial assumptions. We found that there was not a significant increase in the concentration 

of total small ncRNA and/or miRNA released from the placental barrier in response to gestational hypoxia.  

However, our findings correspond to the data obtained by Phillips et al. (2017) which utilised the same 

experimental model but with varying oxygen tensions and  found that an exposure of chronic hypoxia (8% 

O2) and hypoxia-reperfusion (2-8%) was unable to elicit a significant change in the miRNA secretion 

from the placental barrier into the foetal domain.153 Conversely, the in vivo model showed an inverse trend 

to the in vitro and ex vivo model, which indicated the placental barrier was responding to gestational 

hypoxia and hypoxia-reperfusion. Overall, the findings were inconclusive due to the high level of 

variability intraexperimental between replicate samples and across repeats measures seen from the small 

RNA Bioanalyser. To reduce variability requires validation using increased sensitivity (Pico chip readers). 

Due to discrepancies in the trends witnessed within and between the different models of the placental 

barrier, no inferences could be made as to whether an insult of gestational hypoxia elicited an increase in 

secretions of miRNAs into the foetal circulation.   

6.2 miRNAs are likely to be actively secreted via exosomes 

from the placental barrier in response to a hypoxic insult  

An additional question which we aimed to address was whether the miRNAs released from the placental 

barrier were actively or passively secreted in response to gestational hypoxia.  We initially predicted that 

the placental barrier would actively be responding to the stressed environment and releasing miRNAs from 

the barrier into the foetal domain in order to signal to the developing conceptus.  Studies focusing on the in 

vitro model were utilised as the set-up with the BeWo barrier model permitted for bidirectionality and easy 

determination of the secretory miRNAs into the basolateral domain which was representative of the foetal 

circulation.  

We observed an increase in the concentration of particles within the exosome-size range under conditions 

of hypoxia-reperfusion compared to control conditions. Thus, supporting our initial hypothesis that the 

release of miRNAs was not purely the result of apoptotic shedding of the BeWo barrier in response to an 

insult of gestational hypoxia but instead was an active process involving sorting of the miRNAs into 

exosome vesicles and ATP-driven exocytosis of the shuttles. These findings have been supported in the 

literature by Miranda et al. (2018) whereby under the pathological state of IUGR, there was an increased 

release of ATP-driven exosomes shuttling of miRNAs into the foetal circulation.631Moreover, we 

examined whether our model of gestational hypoxia caused the BeWo cell line to respond by undergoing 

programmed cell death and thus passively shedding apoptotic bodies containing miRNAs. Our findings 

inferred that there was no significant difference in the level of cell viability across the treatment 

parameters in the in vitro model, therefore inferring that the secretions of miRNAs were the outcome of an 

active process in response to stimuli of oxidative stress.  However, there was overexpression of cleaved-
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PARP from the cell lysates obtained from the in vitro model across all treatment parameters, which 

contradicted the findings obtained from the MUSE assay. A potential reason for this may be the result of 

oxidative stress within our model triggering an autophagic response.634 The induction of autophagy can 

facilitate the apoptotic  pathway via the depletion of endogenous apoptotic inhibitors.635 Nonetheless, the  

overexpression under conditions of normoxia cannot be attributed to this phenomenon and thus repeat 

studies are required to validate the results.   

6.3 The application of a mitochondria-targeted antioxidant 

drug was able to reduce levels of miRNA secretions  

We further assessed the potential for a therapeutic antioxidant drug (MQ-NP) to be applied to the placental 

barrier before an insult of oxidative stress.  Overall when addressing the implications for the 

administration of the antioxidant drug to the models of the placental barrier, the results infer that the 

dosage of the drug was appropriate to exert an effect upon the secretions of both small ncRNAs and 

microRNAs from the interface. Furthermore, the results have revealed that both the in vitro and the in vivo 

model of the placental barrier have shown similar trends in the effects of the drug on the concentration of 

both small ncRNAs and miRNAs released from the barrier. This provides confidence in the findings 

obtained from the in vitro model as being able to recapitulate to a similar degree what may be occurring 

physiologically in utero. The results imply that the application of the antioxidant drug is able to reduce 

both the concentration of small ncRNA and miRNA molecules released from the placental barrier, 

however the overall proportion of miRNAs within the total concentration of small ncRNA molecules is 

increased suggesting that the drug exerts a more significant effect upon other species of small ncRNA 

molecules compared to miRNA molecules. These findings were supported by the research conducted by 

Scott et al.  

(2018) which observed altered microRNA secretion profiles in PE placentae, whereby the application of 

MitoQ-NP to placental explants was found to partially ameliorate seven DE miRNA profile in the 

conditioned media.579  

6.4 miRNAs may play a partial role in DNA damaging 

signalling across the placental barrier  

Our research group has successfully invested their expertise in the field of enhancing knowledge in the 

aetiology of prevalent congenital diseases in accordance to the FOAD theory, which proposes that 

exogenous determinants during critical stages of gestation play a critical role in the onset of disease states 

in the offspring. Previous research conducted by members of our research group has assessed a range of 

noxious stimuli to the placental barrier, the interface between the mother and developing foetus, to assess 

whether indirect exposures are able to elicit a signalling cascade which can affect foetal development. 
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Current research has revealed that cobalt-chromium nanoparticles141–143, benzoquinone and 

hydroquinone, pesticides, mimics of maternal infection (awaiting publication) and hypoxic 

insults152,153,167 were able to elicit a DNA damaging effect upon neonatal cells across models of the 

placental barrier. However, the mechanism behind the signalling from the placenta in response to a 

noxious insult to evoking a DNA damaging effect remains elusive. In accordance with the current 

literature, small ncRNAs have been found to play an integral role in activating DNA repair pathways by 

signalling DNA damage within the cell in response to DNA lesions. These have been termed double-

strand break (DSB)-induced RNAs (diRNAs).636,637MiRNAs have been shown to be differentially 

expressed in response to DNA damaging stimuli, with specific miRNAs being involved in features 

attributed to DNA damage including; altered DNA damage response pathways, cellular senescence, 

inflammation and mitochondrial dysfunction. 638,639 In relation to knowledge from the literature and the 

results obtained from Chapter 3, we hypothesised that miRNAs found to be secreted from the placental 

barrier upon exposure of a hypoxic insult may play an integral role as an underlying mechanism for the 

level of DNA damage witnessed via the placental barrier onto foetal cells upon an exogenous stimuli to 

the maternal environment.  

Initial proof of principle experiments was performed to assess whether overall elimination of miRNAs 

from the secretions of the placental barrier upon exogenous stimuli previously assessed, altered the 

DDR.415 MicroRNAs are released from cells active response to stimuli in two primary forms, either 

encapsulated within microvesicles or free-circulating bound to AGO protein or HDLs.  Two knockdown 

methods were adopted to holistically reduce miRNA levels; the application of RNaseA and 

ultracentrifugation.  

Our findings revealed that both an exposure of pesticides and benzoqunone+hydroquinone was unable to 

elicit a DNA damage response to exposed foetal bystander cells. However, exposure of 

hypoxiareperfusion elicited a DNA damage response, which mimics the clinical settings within obstetric 

complications. 372,423Treatment with RNaseA reduced the overall concentration of small ncRNA with 

negligible effects upon the proportion of miRNA contents and was found to partially rescue the level of 

DNA damage to foetal fibroblast cells. Assessment of the ultracentrifuged treatment to conditioned media 

revealed a significant reduction in the total small RNA concentration released from the placental barrier in 

response to an insult of gestational hypoxia, halving the total proportion of microRNAs within the 

conditioned media. Ultracentrifuged-treated media obtained from the basolateral domain of the placental 

barrier which represents the foetal circulation induced a similar level of DNA damage as the RNaseA 

treatment, despite there being differences in the overall proportion of miRNAs in the conditioned media.  

Overall there was contention within the results between the two strategies used to eliminate miRNAs from 

the conditioned media. The findings show a reduction in the proportion of miRNAs secreted from the 

placental barrier even though a DNA damage response in elicited in the exposed fibroblast cells. The 

results suggest limited involvement of miRNAs in the DDR via the placental barrier. Furthermore, the 

comparatively low levels of miRNAs released from the in vitro model upon an insult of gestational 
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hypoxia are limited to the widespread biological effects they can exert on the developing foetus and are 

instead, likely to be one component within the DNA damaging signalling cascade. Thus, our results infer a 

role for miRNAs in mediating the DNA damage response alongside other biological factors including 

cytokines (TGF-β and IL-6) 640and alternative subspecies of small ncRNA. 641,642  

The initial proof of principle studies requires further validation to increase the statistical power and 

reliability of these findings. Greater biological repeat measures may strengthen the trends seen and may 

eliminate inconclusive findings. In addition validation of the Alkaline comet assay is required to assess 

whether the results obtained are able to be recapitulated using other methods for assessing  DNA damage 

caused by oxidative stress, another method would be to repeat our experiments by performing an ELISA 

on 8-hydroxy-2' -deoxyguanosine (8-OHdG) on the conditioned media and the placental barrier itself.643  

Furthermore, the experimental design used to eliminate miRNAs from the conditioned media are 

comparatively rudimental. We were unable to confirm whether using these strategies successfully removed 

miRNAs to a level where they would no longer exert an effect upon the bystander fibroblast cells, as 

discussed in section 4.5.4. An alternative method could be employed to assess knockdown miRNA 

expression from the placenta by culturing Dicer deficient BeWo cell lines.644 However, as previously 

described, this possess numerous downstream implications which are beyond the scope of this work. 

Assessment of removal of miRNAs encapsulated within exosomes could have been improved and 

validated by immunocapture using tetraspanin markers CD8, CD63 and CD81 coupled with Dynabeads, in 

comparison to using ultracentrifugation which is a crude method which proved to be highly unreproducible 

across repeats. 645  

The conditioned media is likely to contain other factors and molecules which contribute to the DNA 

damage signal. In order to determine other constituents within the conditioned media, mass spectrometry 

could have been used to explore other candidates involved in eliciting the DNA damage signal. However, 

this went beyond the scope of this research project but is important to consider for future work.  

6.5 Different models of the placental barrier exposed to 

gestational hypoxia had unique miRNA signatures  

The findings from chapter 3 and from recent studies within our research group have shown in our model of 

gestational hypoxia that the placenta responds by differentially secreting microRNAs into the foetal 

circulation. 153Using nCounter NanoString platform we were able to identify individual miRNAs released 

from the placental barrier and to examine which ones were found to be differentially expressed under 

conditions of gestational hypoxia across the three models of the placental barrier. The overall number of 

miRNAs which were accounted for using NanoString mimicked the trend in the concentration of miRNAs 

measured using the small RNA Bioanalyser, with both the in vivo and ex vivo model sharing a similar 

concentration of miRNAs and the in vivo model having a far greater concentration of miRNAs secreted in 
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the conditioned media (Chapter 3). The consistency in this trend was able to partially validate the initial 

findings obtained from using the less sensitive small RNA Bioanalyser.   

Inconsistency was seen in the individual miRNAs secreted from the placental barrier across the different 

models, with no overlap in differentially expressed miRNAs. The results suggest that each model of the 

placental barrier elicited a specific change in the miRNA profile secreted from the placental barrier into 

the conditioned media and that the models had a unique response and were unable to recapitulate one 

another.   

6.6 Application of mitochondria-targeted antioxidant drug 

partially reversed miRNA expression   

The application of the antioxidant drug elicited inverse expression of miRNAs across the models of the 

placental barrier. Pathway enrichment analysis of the miRNAs which had inverse expression as a result of  

MitoQ application was found to be associated with two common pathways TGF-β signalling and axon 

guidance; both of which are clinically relevant in neuropathological settings. Thus are findings imply a 

potential therapeutic role of a single application of (MQ-NP) to the placental barrier in partially reversing 

miRNA signalling events upon an insult of oxidative stress.   

In order to validate these findings, RT-qPCR and miRNA microarray analysis are required, as both are 

sensitive methods for miRNA detection and are highly reproducible, yet unlike NanoString careful 

consideration is required to ensure the correct endogenous normalisation procedures are used. 646  

6.7 Summation  
Our research has only explored a small proportion of a far greater signalling network in response to a 

hypoxic insult to the placental barrier. The initial findings have elucidated the potential that miRNAs may 

be involved in signalling hypoxic injury via the placental barrier, but only within the in vivo model. We 

have also shown the miRNAs which are differentially expressed from the placental barrier are involved in 

neurological pathways and neurodevelopmental disorders. Furthermore, we have found that the application 

of a mitochondria-targeted drug to the placental barrier before a hypoxic insult was able to reverse the 

changes in miRNA secretion from the placental barrier. The miRNAs species, whose expression was 

mediated by the application of the antioxidant drug, were found to be involved in signalling pathways 

related to neurological processes (axon guidance). The initial findings suggesting that the drug may act 

therapeutically to help reduce ROS within the hypoxic placenta, and in turn mediate miRNA expression 

and secretion from the placenta.  

This research provides an indication that miRNAs may play a part in the signalling cascade across the 

placental barrier towards the developing foetus. Further research is needed to assess the entirety of the 

signalling cascade involved in the release of miRNAs from the perturbed placental barrier. By expanding 

the model to assess the level of miRNA concentrations within the maternal blood before and after a 
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hypoxic insult, against the differentially expressed miRNAs secreted from the placental barrier into the 

foetal domain and foetal blood, would allow for a translational analysis to determine whether miRNAs are 

involved in transferring an environmental exposure to the maternal side of the barrier across to mediate an 

effect to the foetal domain.   

Functional analysis on neuronal cultures both in an ex vivo and in vivo setting are required to assess 

whether candidate miRNAs released from the placental barrier towards the foetal domain are able to 

transverse the BBB and mediate changes to foetal neurodevelopment.   

6.8 Clinical relevance of the research  
In summation, although further independent validation is required for the differential release of 

microRNAs from the models of gestational hypoxia and further downstream analysis is required to 

validate the predicted targets and their functional mechanistic role within an in vivo setting, the current 

findings suggest the potential for gestational hypoxia to release of microRNAs towards the foetal 

circulation. Perturbations in secretions of miRNAs and other subspecies of small ncRNA molecules are 

thought to play a role in communicating oxidative stress to the developing foetus via the placenta, 

influencing foetal programming. Predicted targets of the differentially expressed miRNAs infer their 

involvement in repressing genes associated in neuropathological settings. Despite the anatomical 

disparities and the discrete miRNA profiles seen across the varying models of the placental barrier, there 

was a general trend seen in the effect of administering an antioxidant drug to the placental barrier (MQ-

NP). An application of an antioxidant drug before exposure of hypoxia-reperfusion was found to partially 

reversed the perturbations in miRNA release and thus implies (MQ-NP) being a potential therapeutic tool 

in treating the placenta against oxidative stressed conditions which are seen in compromised pregnancies  

Our initial findings have been translated into an in vivo setting with promising findings that the application 

of the therapeutic treatment of (MQ-NP) is able to reverse the effects of differentially expressed miRNAs, 

albeit to a lesser degree than what is witnessed in the in vitro model, however this may be comparative to 

the sheer quantity of miRNAs being secreted from the in vivo placental barrier in comparison to the in 

vitro barrier. Furthermore, our model of the hypoxic placenta within the in vivo model found  MQ-NP 

treatment did not transverse the placental barrier and was undetected in foetal tissue.153 Therefore inferring 

the use of this treatment to solely treat the placental without directly targeting the foetus.  

Our findings have been supported by in vivo studies within the literature which have shown MitoQ to elicit 

a positive protective effect to mitochondria within the placenta. Despite growing evidence for its 

effectiveness in animal studies, there is limited knowledge on the implications it will have in vivo human 

clinical trials to both the mother and the developing foetus (section 1.13.5). It still remains elusive whether 

the protective action of MitoQ is entirely the result of its antioxidants properties or whether it may be the 

result of long-term administration altering the whole organism gene expression and metabolism. An initial 

study assessed whether long-term administration of MitoQ in vivo affected the characteristic of MitoQ, as 

it is known that antioxidants can act as pro-oxidants under specific in vitro conditions.647 In this study, 
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they assessed whether when administering a high level of MitoQ orally to murine model up to 28 weeks 

had an effect on whole-organism physiology, metabolism, and gene expression. The results found that 

there were no known deleterious implications on long-term oral administration of MitoQ with no increase 

in oxidative damage to the mitochondria, inferring that mitochondria-targeted antioxidants can be safely 

administered long-term in vivo.647 A recent study by Zhang et al. (2018) highlighted a drug-delivery 

scheme using synthetic placental CSA-binding peptide (plCSA-BP) which binds explicitly drugs loaded to 

the placental-specific peptide to target solely the placenta285 This offers the potential for MitoQ bound to 

placental specific-targeted peptides to be given orally as a form of medication to pregnant women who are 

at high risk of obstetric complication caused by hypoxic insult to the placenta.  

The potential limitation when treating obstetric complications is to know when to provide the therapeutic 

treatment and the dosage to provide, as previously discussed in section 1.13.1. In our investigations, 

MitoQ was pre-emptively given before an insult of hypoxia-reperfusion; however, in a clinically setting 

this would not be possible. In order to ascertain whether an individual is at risk of developing obstetric 

complications from hypoxic insult would depend upon knowledge of the patients genetic history for 

gestational diabetes mellitus, the patients environmental setting and lifestyle choices (e.g. whether they 

live at high altitudes or as a smoker) and also from sampling maternal blood to look for known miRNA 

biomarkers for hypoxia and/or obstetric complications (PE and IUGR). However, often, a hypoxic insult 

will go undetected. Further assessments using MitoQ as a treatment for hypoxic exposures should assess 

whether providing a single dosage of MitoQ, as we did in our in vivo model, caused damage to foetal 

development when applied in the absence of a hypoxic insult. Therefore we can determine the risk MitoQ 

application to the placental barrier in the absence of injury to see if it elicits any detrimental side effects.  

Alternatively, investigations are required to address whether applying MQ-NP treatment after the exposure 

of hypoxia-reperfusion was able to still reverse changes seen in the secretion of miRNAs associated with 

neurological pathways. This analysis would shed light on whether the drug can be used as a curative 

therapeutic treatment rather than a preventative.   

6.9 Considerations & Limitations  
For a more in-depth assessment of the considerations and limitations of the experimental design and 

techniques used throughout this body of work, please refer to the individual chapter’s consideration and 

limitations section. This section will focus more broadly on overarching limitations to modelling the 

placental barrier.  

 In vitro model  
Cell lines have the advantage of having high proliferation rates, meaning that it is an efficient model for 

larger-scale experiments which require an increased number of placental barriers: this is unrealistic if 

relying on the donation of human placental tissue.648 Furthermore the cell lines have a longer life span 

which means that experimentations which exceed a few days are able to be explored without the risk of 
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trophoblast differentiation into syncytium and shifting into stages of apoptosis, as observed in primary 

tissue cultures. 648,649  

The disadvantages of using cell lines are that the BeWo cells are choriocarcinoma in origin which means 

that they are malignant in nature and immortal which differs from the nature of trophoblast cells. The 

carcinomic trait of the BeWo cell line means that they can evade the control of normal trophoblast 

invasion which occurs under low oxygen tensions. 648  

Our investigation focused on the implications of an insult during the early first trimester of gestation when 

the human placenta is bilayered with an outer layer of syncytiotrophoblast cells and an underlying layer of 

mononucleated, undifferentiated cytotrophoblast cells. The in vitro BeWo barrier is unable to recapitulate 

the in vivo model as it does not have a synctialised layer. Current research is being conducted to improve 

the in vitro model of the placental barrier to make it more representative of the first trimester placenta. One 

such method is to apply Forskolin to the apical layer of BeWo cells to initiate synctiatilsation of the 

cytotrophoblasts.650 More advanced vascularised models of the placental barrier have been modified by 

using connective tissue molecules including laminin and collagen IV alongside the application of 

connective tissues; human BJ fibroblast cells and human umbilical vein endothelial cells (HUVECs); to 

BeWo cells or primary human cytotrophoblast cells obtained from volunteered terminations, to provide a 

3D vascularised microenvironment. This advanced model of the placental barrier enables investigations of 

the interactions between trophoblast and endothelial networks upon insults to the placental barrier. 167  

  

 Ex vivo model  
Placental explant cultures have been used since the 1960’s to examine the feto-maternal interface, with 

initial studies examining oxygen consumption and amino acid transport via the placenta. The advantages 

of using villous explants as a model of the Feto-maternal interface is that it maintains the cellular 

architecture of tissue which is seen in vivo, which is something cell line models are unable to fulfil. The 

explants contain a multitude of cell types including; foetal mesenchyme stroma cells (fibroblasts, 

myofibroblasts and smooth muscle), endothelial cells, placental immune cells, blood cells and trophoblast 

cells.649 Due to the rate at which the placenta evolves and develops in order to sustain the demands of the 

developing foetus different culture conditions are required to mimic in utero conditions at different stages 

of gestation and must be taken into consideration when designing experiments.   

The dissection of the placental tissue can be deleterious to the viability of the samples due to the risk of 

shearing the tissue. The isolation of the explants from their native environment can interfere with the 

complex interactions with the surrounding decidual tissues, which would naturally occur in vivo.651 

Furthermore, we were not permitted to know patient information regarding maternal medical records or 

information on obstetric complications surrounding the pregnancy, which resulted in greater 

intervariability across repeats. Tissues with known genetic defects or pathologies were excluded from the 

study, yet exclusion of placental samples from pregnancies complicated with IUGR or pre-eclampsia was 
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impossible due to a lack of reliable biomarkers at early stages of gestation, as these pathologies are only 

determined at later stages (20 weeks).649 Therefore, with donated primary tissue, the purity and health of 

the samples are not guaranteed. 651 In addition, the age of the tissue varied between 8-12 weeks of 

gestation which was another factor to be considered since the microarchitecture of the placenta develops 

rapidly during these early stages of  development, undergoing transformation from being a bilayer barrier 

to a mono-barrier made up of a syncytium, which will have implications as to how the placenta signals to 

the developing foetus under different conditions. 649 It is important to note that explants derived from 

different stages of pregnancies, even in weeks, will be heterogeneous in nature, and this must be 

considered when comparing results. 651As the samples for each repeat was obtained from a different 

patient, and the results were normalised to eradicate variability amongst repeat readings. However, this 

meant that only relative readings could be ascertained for the ex vivo model which added complexity when 

comparing the readings for miRNA and small ncRNAs in relation to the other two models.  

Technical difficulties with obtaining and processing the tissue samples added additional variability: for 

example, the time at which the tissue was obtained from the patient and delivered to the laboratory to be 

processed varied substantially depending on the level of communication between the maternity ward and 

the laboratory. Samples were placed into bijou jars containing warmed PBS surrounded by heat packs to 

keep the tissues at physiological temperatures as much as possible: however, beyond a specific time period 

the temperature of the PBS would decrease significantly, and this could cause additional stress to the tissue 

sample. The longer the tissue was left before being processed compromised the tissue as it would start to 

undergo apoptosis. The time period from which the samples were obtained and delivered to the laboratory 

was often challenging to determine as it depended upon the number of patients being seen that day.   

In order to enhance the accuracy and reduce the viability between samples would be to use a dissecting 

microscope to obtain greater precision in sizing the explants and to take measurements of the explant’s 

weights. In addition, the health of the tissue could be assessed to examine the tissue viability during the 

time frame of experimentation using either a trypan blue exclusion assay or by using MTT  (3-

[4,5dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay to assess mitochondrial enzyme 

function.649  

 In vivo model  
Phylogenetically rodents are a sister group to primates belonging to the same superorder meaning that 

other than visibly there are significant differences between species we have a strong evolutionary 

relationship. 651 Studies performed on rodent models of the placenta have increased our knowledge 

surrounding placental morphology, genetics and the development of placental pathologies. 651 However 

there are distinctive dissimilarities between the anatomy of the two placentae during the early stages of 

gestation with the rodent placenta being tri-layered, in comparison to the human model which is only 

bilayered. There are advantages and disadvantages to using a rodent in vivo model of the placental barrier. 

The main differences lie in the morphological differences in the number of trophoblast layers at the 

fetomaternal interface and the depth of the extravillious cytotrophoblast invasion to remodel the spiral 
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arteries. These differences imply that this in vivo model may not be suitable for addressing questions 

involving the vascular remodelling and trophoblast invasion; nevertheless they are ideal for studying early 

molecular mechanisms due to the similarities in early first-trimester trophoblast development across the 

two species.651  

There is a growing wealth of research which has been well-reviewed by Rosenfield, (2015) which has 

demonstrated the placental response to oxidative stress has sexual dimorphic bias. Both human and 

rodent studies which have explored placental oxidative stress in response to adverse maternal 

environments appears to be pronounced in male placentae compared to female placentae. 652,653 Thus, 

exploring the sex-specific differences in the placental responses to exposure to a hypoxic insult in 

utero is essential to gleam a more holistic treatment plan for utilising MitoQ to clinically treat 

patients. This is a confounding variable which was not taking into consideration at the time the in vivo 

studies were carried out and is a limiting factor to the data output.   

Furthermore, the weight of the rodent placentae was not taken into consideration when comparing the 

concentration of miRNA secretions into the conditioned media. This is an additional confounding 

variable which needs to be taken into consideration when weighting the meaningfulness and accuracy 

of our findings. Ideally, the weight of the placentae including the sex of the offspring from which the 

placentae were obtained should be variables that were considered when collecting the data. Both the 

size of the placenta used, and the sex of the offspring would have caused variation in both the way the 

placenta responding to a hypoxic insult and to the size of the effect.   

  

 Modelling the hypoxic placenta  
An issue of contention which must be taken into consideration is the oxygen tensions which were used 

within the body of research. The signalling events which we have observed are in response to the placenta 

outside of its physiological conditions, despite efforts made to recapitulate the in vivo setting. Hence, our 

findings are only able to provide an insight into the potential signalling events which arise upon an insult 

of a hypoxic insult to the placental barrier but lack the entirety of the physiological and biological 

components. Placental development is highly dependent upon the temporal and spatial timings of oxygen 

tensions. Thus the effects of working with placental tissue outside of the in vivo setting magnify the 

discrepancies in the oxygen tensions. There is controversy within the literature on the most representative 

oxygen tension for culturing placental tissue to mimic an insult of gestational hypoxia.654 For our control 

groups we used atmospheric conditions in accordance to previous research conducted 152,153,373 whilst other 

studies propose that physiologically relevant normoxia levels lie between 5-12% pO2.
655,656 Another 

confounding factor in the model is ascertaining whether the insult of set oxygen tension is maintained 

throughout experimentation. In order to eliminate these confounding factors, atmospheric oxygen tensions 

were altered rather than the concentration of dissolved oxygen within the culture media which may be 
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considerably lower than the intended oxygen insult. In our investigation we assessed the effects of chronic 

exposure of hypoxia and the effect of hypoxia-reperfusion, without time and resource constraints it would 

be of interest to repeat the investigations using a greater range of oxygen tensions as suggested in the 

literature to assess whether there was a significant difference in the release of miRNAs from the placental 

barrier upon different oxygen tensions used.   

6.10  Future Directions  
Our findings suggested that miRNAs may play a contributing role in the signalling across the placental 

barrier upon an insult of oxidative stress. However, the actual concentrations of miRNAs secreted into the 

foetal domain were only significant within the in vivo model. Thus implying that other factors are likely to 

be at play in eliciting an effect upon foetal development in response to perturbations to the placental 

barrier. Broadening the scope of this research to assess other potential signalling molecules which may 

mediate the stress signal across the placenta using our models of the placental barrier would be of interest 

in gaining insight into the mechanism at large. In accordance with current research,  molecules which have 

been found to be secreted from the placental barrier and elicit an effect upon apoptotic pathways, and thus 

may be promising candidate signalling molecules include; inflammatory cytokines657,MAPK and Bcl-

2associated X (BAX).658 Furthermore, alternative epigenetic regulators including DNA methylation659and 

alternative splicing events  660 are highly implicated in regulating neurogenesis during critical stages of 

development, and there is a growing interest in the field with their involvement in neurodevelopmental 

aetiology.   

   Can miRNAs transverse the Blood-Brain Barrier and 

elicit a functional effect on the foetal brain   

Future directions of this project would be to examine whether the differential expression of miRNAs 

released from the placental barrier are great enough to elicit a biological effect upon foetal 

neurodevelopmental processes by crossing the BBB.  

As previously explored in Section (1.11), exosomes containing miRNAs cargos have been shown to 

transverse the placental barrier. A study conducted by our research group found that placentally-derived 

conditioned medium obtained from a model of gestational hypoxia had differentially expressed levels of 

miRNAs. When conditioned media was exposed onto cortical neuronal cultures, it  produced similar 

neuropathological characteristics to those seen in the foetal brains obtained from hypoxic 

pregnancies.153,579 It has been established that CNS cell types within the brain are able to secrete miRNAs 

to permit intercellular communication between the different cell types within the developing brain, where 

they actively exert a physiological or pathological effect.661 However, the potential for these miRNAs to 

be released from a distal cell-type and actively modulate foetal brain development under adverse 

conditions by entering the brain remains elusive.  
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In recent years, there has been growing effort to examine the implications exosomes and their contents 

have on the CNS. Studies have highlighted the significance of exosomes and their contribution to 

physiological brain development and in their involvement in neurodegenerative diseases, since they have 

been found to be released from a host of different cell types within the CNS including; neural stem cells, 

neurons, astrocytes, microglia, oligodendrocytes, Schwann cells and endothelial cells.661    

Although it is now well established that exosomes and their cargo can exert a functional effect to 

neighbouring recipient cells, more recent evidence has inferred the capacity of exosomes to transmit a 

biological signal to distant cell types via the peripheral circulatory system. Current scientific contributions 

have found evidence which infers that extracellular vesicles have the capacity to cross the BBB into the 

CNS. The precise mechanism for how extracellular vesicle transportation across the BBB occurs remains 

elusive. The BBB acts as a highly selective membrane between the peripheral circulatory system and the 

CNS comprised of macrovascular endothelial cells and tight junctions to prevent the transfer of harmful 

compounds within the circulating blood. The BBB permits the diffusion of small lipid-soluble molecules  

(<400 Da) and the selective active uptake of some compounds. Selective uptake is facilitated either 

transcellular via the macrovascular endothelial cells or paracellularly through the tight junctions.662  

The recent discovery that exosomes can cross the BBB, and that its contents remain active, have been 

fundamental in realising the full potential exosomes can have as potential biomarkers for disease and also 

as an effective therapeutic drug-delivery system. A study conducted by Pusic et al. (2016) found that 

exosomes isolated from various blood cells were able to elicit a protective effect upon neuronal slice 

cultures from astrogliosis after lipopolysaccharide exposure 663.  Furthermore, studies have found success 

in delivering exosomes via intravenous injection in mice to the brain. Conversely not only can exosomes 

cross from the peripheral circulatory system into the brain it has been found in a study conducted on rodent 

species, that a fluorescently tagged protein expressed specifically in the brain was detected in small 

extracellular vesicles in the peripheral blood, Thus alluding to the fact that there is bi-directional 

communication between the brain and peripheral system via exosomes.664  

The current research is still undecided on the precise mechanism of how extravesical bodies cross the 

BBB; however studies have shown that the BBB appears to be more susceptible to extravesical uptake 

under stressed states, compared to healthy control conditions. Research conducted by Chen et al., assessed 

exosomes transversing the BBB via endocytosis through macrovascular endothelial cells under stoke-like 

conditions compared to control conditions.343Their findings showed that exosomes were able to transverse 

the barrier under both physiological control conditions and under stress-like states.  The group further 

demonstrated that when applying an inhibitor for clathrin-dependent endocytosis, chlorpromazine, there 

was a reduction in exosome transportation across the BBB. Thus inferring that clathrin-dependent 

endocytosis may be a critical pathway for exosome uptake from the peripheral system into the brain.665 

Moreover, the presence of exosomes themselves has been thought to play a role in influencing the 

permeability of the BBB.666   
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 In order to examine the effect of miRNAs being released from the placental barrier upon insult and exert 

an effect upon target genes within the foetal brain will evolve a more sophisticated translational approach 

using an in vivo rodent study (Figure 6.1). It would be of interest to obtain maternal blood samples both 

before and after a hypoxic insult to examine whether there are differences in miRNA expressions in 

response to the insult. Similarly, foetal umbilical cord blood would be examined to assess the differential 

expression of miRNAs in comparison to the maternal blood and within the placenta itself. Collection of 

maternal blood, placental tissue and foetal blood provides a translational assessment for comparisons to be 

made in differentially expressed miRNAs. Cross-comparisons could be made across the different sample 

type to retrieve candidate miRNAs found to be differentially expressed in the maternal blood upon a 

hypoxic insult and within the placenta and foetal blood. Obtaining and processing foetal brains using high 

throughput RNA-seq analysis would permit analysis into the expression of target genes of the candidate 

miRNAs. Translational implications upon the repression of predicted target genes in the foetal brain could 

be followed up in animal behavioural studies which replicate neuropsychiatric disorders. Recent research 

by Kiryanova et al. (2017) has established a model of maternal stress with follow-up behavioural 

assessments predictive of depressive-like symptoms in a rodent model. 667 Adopting the methods used by 

Kiryanova et al. (2017) behavioural tests to assess the clinicopathological implications upon the offspring 

would include; spatial cognition, HPA-axis reactivity and aggression behaviour.667 In order to examine 

whether there is a direct association between DE miRNAs and the DE genes in the foetal brains exposed to 

gestational hypoxia, bioinformatic analysis using integrative platforms such as miRComb668, MAGIA669 or 

miRGator670 are able to integrate miRNA and mRNA expression data to determine the miRNA-mRNA 

targets which occur in a specific physiological or pathological environment.     

Validation of the associated predicted target genes linked to neurodevelopmental processes requires a 

biological approach in parallel with in silico prediction methods. Once candidate miRNAs have been 

selected by assessing which miRNAs were both upregulated or downregulated in the foetal blood and from 

release from the placental barrier, experiments can be performed to explore the effects these candidate 

miRNAs have on primary cell cultures of dissociated neuronal cultures, to infer their role in neurological 

settings. Using an overexpression technique by cloning specific miRNA plasmids we can overexpress 

candidate miRNAs into primary rodent neuronal cultures and examine the effects this has upon their 

development. Similarly, we can perform knockdown the expression of specific candidate miRNA species 

using locked nucleic acid (LNA) antisense oligonucleotides of a specific miRNA671 or miRNA sponges672 

and incorporating them into neuronal cultures. Using immunohistochemistry stains, we can examine the 

implications of both overexpression and knockdown methods upon the morphology of the neuronal 

cultures. The results will provide a proof of principle to determine whether the selected candidate 

microRNAs are involved in neurodevelopmental processes.  
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Figure 6-1 Outline of future in vivo studies  

  
Schematic representation of future investigations to assess translationally the implications of maternal oxidative stress upon 

foetal brain development and the potential mechanistic role miRNAs may play, via the assessment of miRNA levels in 

maternal blood, placentae and foetal umbilical cord blood. Collection of sacrificed foetal brains to be processed using RNA 

sequencing to assess for changes in genes targeted by candidate DE miRNAs.  

  

  

Due to ethical considerations, this model is unable to be replicated within a real human in vivo setting. 

However, we can further our knowledge into the implications of miRNA release from the human placenta 

using human samples obtained from the Avon Longitudinal Study of Parents and Children (ALSPAC) 

epidemiological cohort study to acquire both blood and placental samples from mothers who experienced 

obstetric complications during pregnancy. ALSPAC is a transgenerational observational study which 

considers a diverse array of genetic, epigenetic, biological, psychological, social and environmental 

exposures during pregnancy. The cohort consists of pregnant women living in the Bristol area between the 

years 1990–92, where a total of 14, 541 pregnancies were recruited. Information from the mother was 

obtained during pregnancy and at birth, whilst information was collected from the child at birth and then 

through intermittent follow-ups. The resource comprises a wide range of phenotypic, environmental and 

biological measures. 673 Specifically we are interested in examining the miRNA expression profiles 

obtained from samples where there have been obstetric complications associated with exposure to 

alterations in oxygen tensions during critical periods of gestation; such as pre-eclampsia and IUGR. The 

combination of having access to placental tissue and blood samples from both the mother and the foetus 

will provide the translational aspect which is required to divulge whether miRNAs could act as biomarkers 
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for the onset of these neuropathologies in later life as a result of a hypoxic intrauterine insult. Furthermore, 

the collaboration with the ALSPAC study would permit a comparison to be made between in vivo animal 

models against the human in vivo study. It would be of interest to evaluate both the similarities and 

differences seen between these two models with respect to the level of miRNAs secreted under each 

condition. The outcome would also provide a means to assess the validity of our in vitro and ex vivo 

models of the human placenta in comparison to actual human samples.   

In addition, the Genome-Wide Association Study (GWAS) dataset provides a growing body of data for 

patients with neurological disorders whose aetiology is associated with oxidative stress, including 

schizophrenia and autism. With known genes enriched in neuropathological settings in vivo would be 

beneficial in correlating the predicted target genes and to assess whether they are correlated with known 

genetic schizophrenic risk-associated loci and whether they are enriched in the foetal brain. Predicted 

target genes could be analysed for pathway enrichment of rare CNVs (>100kb, frequency < 1%) 

associated with schizophrenia.. 674    
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Appendix 1  
Chapter 3 Supplementary data   

Supplementary Table 1 MicroRNAs associated with Pre-eclampsia and their known pathways and gene 

targets. (Table adapted from original figure from Bounds et al, (2017))  

 Pre-eclampsia associated miRNAs  Known pathways/Gene targets  

miR-16, miR-29  Vascular endothelial growth factor (VEGF)-A  

miR-494  CDK6/CYCD1  

miR-17 miR-20a, miR-20b  Ephrin B2, B4  

miR-125b-1-3p  S1PR  

miR-155  CYR 6, VEGF-A  

miR-21  PTEN, positive regulator of VEGF-A and HIF-1a  

miR-210  EFNA3, HOXA9, HSD17  

miR-16, miR-29b  Inhibits trophoblast proliferation  

miR-34a  SERPINA3  

miR-210  KCMF-1  

miR-155  CYCD1  

miR-378a-5p, miR-376c, miR-21  Promotes trophoblast proliferation by nodal signaling 

pathway  

miR-17-92 cluster  Differentiation of primary trophoblasts  

miR-146a  Inflammatory pathway  

miR-155  IL-17A pathway  

miR-494  Macrophage proliferation by reducing PGE2 production  

miR-181a  TGFß pathway  

miR-152  HLA-G  

miR-210  STAT6/IL-4 pathway  

  

Supplementary Table 2 MicroRNAs whose expression was either upregulated or downregulated in 

Gestational Diabetes Mellitus cases(Table adapted from original figure from Guarino et al, (2018))  

Upregulated  Downregulated  

miR-16-5p, miR-17-5p, miR-19a-3p, miR-19b-3p, 

miR20a-5p  

miR-29a, miR-123, miR-222  

  

miR-155-5p, miR-21-3p, miR-210-3p, miR-155-5p, 

miR-146b-5p, miR-223-3p, miR-517-5p, miR-29a-3p    

miR-183-5p, miR-200b-3p, miR-125-5p, miR-1290, 

miR-330-3p  
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Supplementary Table 3 Small RNA Bioanalyser results obtained from the in vitro BeWo model of the 

fetomaternal interface. (Small ncRNA distinguished by a molecular size range between (6-150nt) and miRNA 

(21-25nt)  

  

  

 Average  

[Small 

ncRNA]  

(pg/uL)  

Small  

ncRNA  

STDEV  

Average 

[miRNA](pg/uL)  
microRNA  

STDEV  

Proportion 

of miRNA  

(%)  

Proportion  

STDEV  

21%  208  25.9  122.1  16.4  58.7  1.5  

2%  104.5  23.6  58.3  8.8  56.7  8.1  

  2-12%  139.4  23.8  75.5  12.9  54  2.6  

  

Supplementary Table 4 Summary of normalised Small RNA Bioanlyser results obtained from the ex vivo first 

trimester placental model of the feto-maternal interface  

  Normalised   

Average small   

RNA Value   

STDEV 

small   

RNA   

Normalised   

Average MiRNA  
Value   

STDEV 

miRNA   
Normalised Average 

Proportion of miRNA   
STDEV  

Proportion  

n   

21%   1   0   1   0   1   0   

2%   0.9   0.6   0.9   0.6   1.0   0.1   

2-12%   0.8   0.5   1.0   0.7   1.3   0.4   

  

Supplementary Table 5 Small RNA Bioanalyser results obtained from the in vivo model of the feto-maternal 

interface. (Small ncRNA distinguished by a molecular size range between (6-150 nt) and miRNA (21-25 nt).  

  

 Average  

[Small 

ncRNA]  

(pg/uL)  

Small  

ncRNA  

STDEV  

Average  

[miRNA]  

(pg/uL)  

microRNA  

STDEV  

Proportion of 

miRNA  

(%)  

Proportion  

STDEV  

Normoxia- 

Saline  

23402.2  2743.5  17940.4  3062.5  76.4  4.9  

Hypoxia-Saline  38679.7  17029.5  28515.9  14377.1  72.3  6.4  

H-R -Saline  47171.1  21855.1  35533.1  16232.1  75.3  2.1  
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Supplementary Table 6 (A) Summation of the 10 NanoSite readings for the Total Average Exosome  

Concentration (E6 particles/mL) across the different experimental parameters. (B) Summation of the 10 

NanoSite readings for the Total Average Microvesicles Concentration (E6 particles/mL) across the different 

experimental parameters.  

(A) Normoxia  Chronic  Hypoxia-reperfusion  

 (21%)  Hypoxia (2%  (2-12%)  

 

1  9.6  -22.0  6.7  

2  45.8  10.5  49.9  

3  -23.4  -6.3  -2.9  

4  -14.3  -6.0  50.4  

5  -18.6  43.1  21.9  

6  5.8  -2.9  -18.2  

7  11.8  9.2  15.1  

8  22.4  16.6  45.7  

9  21.5  -4.9  25.3  

10  25.0  5.4  28.0  

Total Average Exosomes Concentration (E6 

particles/mL)  

8.6  4.3  22.2  

  

  

  

(B) Normoxia  Chronic  Hypoxia- 

 (21%)  Hypoxia (2%)  reperfusion (2-12%)    

 

 1  6.9  -13.5  130.4  

2  42.0  63.4  59.2  

3  -28.7  -54.0  143.3  

4  73.3  -26.0  129.3  

5  12.8  33.7  93.9  

6  11.8  -41.2  119.8  

7  85.2  -20.8  137.7  

8  -44.6  13.4  127.0  

9  -26.5  -52.1  70.1  

10  

  

-8.5  15.8  78.4  

 Total Average  

Microvesicles  

Concentration  

(E6 

particles/mL)  

 12.4  -8.1  108.9  
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Supplementary Table 7 Small RNA Bioanalyser results obtained from the in vitro & ex vivo model of the 

fetomaternal interface with the application of potential therapeutic treatment  

  

  

  Average  

[Small 

ncRNA]  

(pg/uL)  

Small  

ncRNA  

STDEV  

Average  

[miRNA]  

(pg/uL)  

microRNA  Proportion of  

 STDEV  miRNA (%)  

STDEV  

Proportion  

In vitro  2-12%  73.6  37.3  36.3  15.9  36.3  4.6  

2-12%+MQ  30.3  10.4  13.7  4.1  44.3  3.2  

  Normalised  

Average 

small RNA  

Value  

STDEV  

small RNA  

Normalised  

Average  

MiRNA  

Value  

STDEV 

miRNA  
Normalised Average 

Proportion of miRNA  
STDEV  

Proportion  

Ex vivo  2-12%  0.8  0.5  1.0  0.7  1.3  0.4  

2-12%+MQ  0.8  0.1  1.1  0.5  1.4  0.5  

  

  

Supplementary Table 8 Small RNA Bioanalyser results obtained from the in vivo model of the feto-maternal 

interface with the application of potential treatment   

 Average [Small 

ncRNA] (pg/uL)  
Small  

ncRNA  

STDEV  

Average  

[miRNA]  

(pg/uL)  

microRNA  

STDEV  

Proportion of 

miRNA  

(%)  

Proportion  

STDEV  

Normoxia 

-Saline  

23402.2  2743.5  17940.4  3062.5  76.4  4.9   

Normoxia 

+ MQ-NP  

16205.8  7126.0  12457.1  5078.8  77.9  4.6  

Hypoxia- 

Saline  

38679.7  17029.5  28515.9  14377.1  72.3  6.4  

Hypoxia  24957.8  2478.0  18935.1  1730.7  75.9  0.6  

(H-R)- 

Saline  

47171.1  21855.1  35533.1  16232.2  75.3  2.1  

(H-R) +MQ-

NP  
22084.7  2646.4  16380.0  1485.3  74.4  4.8  
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Appendix 2  
Supplementary Data from Chapter 5 results  

Supplementary Table 9 Overview of the nCounter NanoString analysis across treatment parameters in the in 

vitro model. MicroRNAs which were differentially upregulated (Green) and MicroRNAs differentially 

downregulated (Red).  
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Supplementary Table 10 Overview of DE miRNAs released from the ex vivo model of the placental model 

across different treatment parameters. MicroRNAs which were differentially upregulated (Green) and miRNAs 

differentially downregulated (Red).  
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Supplementary Figure 1 nCounter analysis of DE miRNAs released from the in vivo model of the placental barrier under conditions of chronic hypoxia 

(A) A Schematic to represent the mean discrete miRNA counts representative of miRNA species differentially expressed within conditioned media from two comparative 

experimental parameters; chronic hypoxia (2% O2) in comparison to the control vehicle. Conditioned media was obtained from the in vivo rodent placental explants in biological 

replicates (n=4) ±SD. A Two-way ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple comparison tests across the different 

treatment parameters to identify levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****P<0.0001). Overall Statistical analysis using a Two-Way ANOVA on all three 

repeats for each DE miRNAs across both treatment groups found that there was a significant interaction between the miRNAs and the treatment group they derived from (F 

(93,564) =4.252, P<0.0001). The interaction accounts for 25.89% of the total variance. There was a significant difference between the effect of the treatment group for each of 

the miRNAs; (F (1,564) =12.920, p=0.0004) and accounted for 0.85% of the variance. The data was examined using the Shapiro-Wilk and Levene’s Test for examining the 

normality and homogeneity of variance, respectively.  

 

 

Figure 0-1 Cross comparison of predicted target genes of DE miRNAs with inverse expression in response to MQ-NP in the in vivo modelSupplementary 

Figure 2 nCounter analysis of DE miRNAs released from the in vivo model of the placental barrier under conditions of chronic hypoxia 
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Supplementary Figure 3. nCounter analysis of DE miRNAs secreted from the in vivo placental barrier under conditions of hypoxia-reperfusion  

A Schematic to represent the mean discrete miRNA counts representative of miRNA species differentially expressed within conditioned media from two comparative experimental parameters; 

hypoxia-reperfusion (11-21% O2) in comparison to the control vehicle. Conditioned media was obtained from the in vivo rodent placental explants in biological replicates (n=4) ±SD. A Two-way 

ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple comparison tests across the different treatment parameters to identify levels of significance (*p < 

0.05, **p < 0.01, ***p < 0.001, ****P<0.0001). Overall Statistical analysis using a Two-Way ANOVA on all three repeats for each DE miRNAs across both treatment groups found that there was 

a significant interaction between the miRNAs and the treatment group they derived from (F (28,174) =4.288, P<0.0001). The interaction accounts for 22.72% of the total variance. There was a 

significant difference between the effect of the treatment group for each of the miRNAs; (F (1,174) =5.709, p=0.018) and accounted for 1.08% of the variance. The data was examined using the 

Shapiro-Wilk and Levene’s Test for examining the normality and homogeneity of variance, respectively.    
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Supplementary Figure 5 nCounter analysis of DE miRNAs released from the in vivo placental barrier in response to the application of MQ-NP 

A Schematic to represent the mean discrete miRNA counts representative of miRNA species differentially expressed within conditioned media from two comparative experimental 

parameters; Hypoxia-reperfusion (11-21% O2) and in comparison, to the control vehicle. Conditioned media was obtained from the in vivo rodent placental explants in biological 

replicates (n=4) ±SD. A Two-way ANOVA statistical test was performed, and a Bonferroni post hoc test was used to perform multiple comparison tests across the different 

treatment parameters to identify levels of significance (*p < 0.05, **p < 0.01, ***p < 0.001, ****P<0.0001). Overall Statistical analysis using a Two-Way ANOVA on all three 

repeats for each DE miRNAs across both treatment groups found that there was not a significant interaction between the miRNAs and the treatment group they derived from (F 

(76,462) =0.4, P>0.999). The interaction accounts for 2.73% of the total variance. There was a significant difference between the effect of the treatment group for each of the 

miRNAs; (F (1,462) =8.1, p=0.005) and accounted for 0.73% of the variance. The data was examined using the Shapiro-Wilk and Levene’s Test for examining the normality and 

homogeneity of variance, respectively. 

 

Supplementary Figure 6 nCounter analysis of DE miRNAs released from the in vivo model of the placental barrier under conditions of chronic 

hypoxiaSupplementary Figure 7 nCounter analysis of DE miRNAs released from the in vivo placental barrier in response to the application of MQ-NP 

A Schematic to represent the mean discrete miRNA counts representative of miRNA species differentially expressed within conditioned media from two comparative experimental 

parameters; Hypoxia-reperfusion (11-21% O2) and in comparison, to the control vehicle. Conditioned media was obtained from the in vivo rodent placental explants in biological 
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Supplementary Figure 13 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with Differentially Expressed (DE) miRNAs both up-and 

downregulated upon an exposure of chronic hypoxia to the in vitro model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the in 

vitro placental barrier under hypoxic conditions compared with those released under normoxic conditions. The total 

number of DE miRNAs ‘miRNA Hits’ relates to the number of miRNAs associated with the relevant pathway. P-value  

representative of the probability that the specific pathway is significantly enriched with gene targets of a least one of the 

differentially expressed (DE) miRNAs, p-values have been corrected for multiple comparisons using Benjamini–

Hochberg method.‘Top 10 Significant’ refers to the most significantly enriched pathways; ‘Neuro’ refers to the pathways 

associated with neurological disease progression and neurological functions; ‘stress’ refers to pathways associated with 

changes to cellular homeostasis in response to an exposure; ‘miRNA’ refers to pathways associated with post-

transcriptional regulation, processing and secretory mechanisms of molecules; ‘Cardio’ refers to pathways associated 

with the cardiovascular system and pathogenesis; ‘Cancer’ refers to oncological pathways.  

 

 

Supplementary Figure 14 nCounter analysis of DE miRNAs released from the in vivo placental barrier in 

response to the application of MQ-NPSupplementary Figure 15 Schematic to illustrate the output from 

mirPath v3.0 analysis to assess enriched KEGG biological pathways associated with Differentially Expressed 

(DE) miRNAs both up-and downregulated upon an exposure of chronic hypoxia to the in vitro model of the 

placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the in 

vitro placental barrier under hypoxic conditions compared with those released under normoxic conditions. The total 
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Supplementary Figure 22 Schematic to illustrate the output from mirPath v 3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon an exposure of hypoxia-reperfusion to the in vitro model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the in 

vitro placental barrier under hypoxia-reperfusion conditions compared with those released under normoxic conditions. The 

total number of DE miRNAs ‘miRNA Hits’ relates to the number of miRNAs associated with the relevant pathway. P-

value  representative of the probability that the specific pathway is significantly enriched with gene targets of a least one of 

the differentially expressed (DE) miRNAs, p-values have been corrected for multiple comparisons using Benjamini–

Hochberg method ‘Top 10 Significant’ refers to the most significantly enriched pathways; ‘Neuro’ refers to the pathways 

associated with neurological disease progression and neurological functions; ‘stress’ refers to pathways associated with 

changes to cellular homeostasis in response to an exposure; ‘miRNA’ refers to pathways associated with post-

transcriptional regulation, processing and secretory mechanisms of molecules; ‘Cardio’ refers to pathways associated with 

the cardiovascular system and pathogenesis; ‘Cancer’ refers to oncological pathways. 

 

 

Supplementary Figure 23 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with Differentially Expressed (DE) miRNAs both up-and downregulated 

upon an exposure of chronic hypoxia to the in vitro model of the placental barrierSupplementary Figure 24 

Schematic to illustrate the output from mirPath v 3.0 analysis to assess enriched KEGG biological pathways 

associated with differentially expressed (DE) miRNAs both up-and downregulated upon an exposure of 

hypoxia-reperfusion to the in vitro model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the in 
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Supplementary Figure 31 Schematic to illustrate the output from mirPath v 3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon an exposure of hypoxia-reperfusion to the in vitro model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the in 

vitro placental barrier under hypoxia-reperfusion conditions compared with those released under normoxic conditions. The 

total number of DE miRNAs ‘miRNA Hits’ relates to the number of miRNAs associated with the relevant pathway. P-

value  representative of the probability that the specific pathway is significantly enriched with gene targets of a least one of 

the differentially expressed (DE) miRNAs, p-values have been corrected for multiple comparisons using Benjamini–

Hochberg method ‘Top 10 Significant’ refers to the most significantly enriched pathways; ‘Neuro’ refers to the pathways 

associated with neurological disease progression and neurological functions; ‘stress’ refers to pathways associated with 

changes to cellular homeostasis in response to an exposure; ‘miRNA’ refers to pathways associated with post-

transcriptional regulation, processing and secretory mechanisms of molecules; ‘Cardio’ refers to pathways associated with 

the cardiovascular system and pathogenesis; ‘Cancer’ refers to oncological pathways. 

 

 

Supplementary Figure 32 Schematic to illustrate the output from mirPath v 3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon an exposure of hypoxia-reperfusion to the in vitro model of the placental barrierSupplementary Figure 

33 Schematic to illustrate the output from mirPath v 3.0 analysis to assess enriched KEGG biological pathways 

associated with differentially expressed (DE) miRNAs both up-and downregulated upon an exposure of 

hypoxia-reperfusion to the in vitro model of the placental barrier 
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Supplementary Figure 40 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon an exposure of chronic hypoxia to the ex vivo model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the ex 

vivo placental barrier under hypoxic conditions compared with those released under normoxic conditions. The total number 

of DE miRNAs ‘miRNA Hits’ relates to the number of miRNAs associated with the relevant pathway. P-value 

representative of the probability that the specific pathway is significantly enriched with gene targets of a least one of the 

differentially expressed (DE) miRNAs, p-values have been corrected for multiple comparisons using Benjamini–Hochberg 

method. ‘Top 10 Significant’ refers to the most significantly enriched pathways; ‘Neuro’ refers to the pathways associated 

with neurological disease progression and neurological functions; ‘stress’ refers to pathways associated with changes to 

cellular homeostasis in response to an exposure; ‘miRNA’ refers to pathways associated with post-transcriptional 

regulation, processing and secretory mechanisms of molecules; ‘Cardio’ refers to pathways associated with the 

cardiovascular system and pathogenesis; ‘Cancer’ refers to oncological pathways. 

 

 

Supplementary Figure 41 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon an exposure of chronic hypoxia to the ex vivo model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the ex 

vivo placental barrier under hypoxic conditions compared with those released under normoxic conditions. The total number 

of DE miRNAs ‘miRNA Hits’ relates to the number of miRNAs associated with the relevant pathway. P-value 

representative of the probability that the specific pathway is significantly enriched with gene targets of a least one of the 

differentially expressed (DE) miRNAs, p-values have been corrected for multiple comparisons using Benjamini–Hochberg 

method. ‘Top 10 Significant’ refers to the most significantly enriched pathways; ‘Neuro’ refers to the pathways associated 



  ~Appendix 2 ~  

                                                               

  

312  

  

  

  

 

  

   

  

Supplementary Figure 44 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon an exposure of  hypoxia-reperfusion to the ex vivo model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the ex 

vivo placental barrier under hypoxia-reperfusion conditions compared with those released under normoxic conditions. The 

total number of DE miRNAs ‘miRNA Hits’ relates to the number of miRNAs associated with the relevant pathway. P-

value  representative of the probability that the specific pathway is significantly enriched with gene targets of a least one of 

the differentially expressed (DE) miRNAs, p-values have been corrected for multiple comparisons using Benjamini–

Hochberg method..‘Top 10 Significant’ refers to the most significantly enriched pathways; ‘Neuro’ refers to the pathways 

associated with neurological disease progression and neurological functions; ‘stress’ refers to pathways associated with 

changes to cellular homeostasis in response to an exposure; ‘miRNA’ refers to pathways associated with post-

transcriptional regulation, processing and secretory mechanisms of molecules; ‘Cardio’ refers to pathways associated with 

the cardiovascular system and pathogenesis; ‘Cancer’ refers to oncological pathways. 

 

 

Supplementary Figure 45 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon an exposure of chronic hypoxia to the ex vivo model of the placental barrierSupplementary Figure 46 

Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched KEGG biological pathways 

associated with differentially expressed (DE) miRNAs both up-and downregulated upon an exposure of  

hypoxia-reperfusion to the ex vivo model of the placental barrier 
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Supplementary Figure 52 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon the administration of  MQ-NP (0.5µM) to the ex vivo model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the ex 

vivo placental barrier under conditions of hypoxia-reperfusion with treatment of MQ-NP (0.5µM) compared with those 

released under conditions of hypoxia-reperfusion. The total number of DE miRNAs ‘miRNA Hits’ relates to the number of 

miRNAs associated with the relevant pathway. P-value  representative of the probability that the specific pathway is 

significantly enriched with gene targets of a least one of the differentially expressed (DE) miRNAs, , p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method. ‘Top 10 Significant’ refers to the most 

significantly enriched pathways; ‘Neuro’ refers to the pathways associated with neurological disease progression and 

neurological functions; ‘stress’ refers to pathways associated with changes to cellular homeostasis in response to an 

exposure; ‘miRNA’ refers to pathways associated with post-transcriptional regulation, processing and secretory 

mechanisms of molecules; ‘Cardio’ refers to pathways associated with the cardiovascular system and pathogenesis; 

‘Cancer’ refers to oncological pathways. 

NB. miR-614, miR-608, miR-944 and miR-639 were excluded from analysis due to limitation in annotation in miRbase. 

 

 

Supplementary Figure 53 Schematic to illustrate the output from mirPath v3.0 analysis to assess 

enriched KEGG biological pathways associated with differentially expressed (DE) miRNAs both 

up-and downregulated upon an exposure of  hypoxia-reperfusion to the ex vivo model of the 

placental barrierSupplementary Figure 54 Schematic to illustrate the output from mirPath v3.0 analysis 

to assess enriched KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-

and downregulated upon the administration of  MQ-NP (0.5µM) to the ex vivo model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the ex 

vivo placental barrier under conditions of hypoxia-reperfusion with treatment of MQ-NP (0.5µM) compared with those 

released under conditions of hypoxia-reperfusion. The total number of DE miRNAs ‘miRNA Hits’ relates to the number of 

miRNAs associated with the relevant pathway. P-value  representative of the probability that the specific pathway is 

significantly enriched with gene targets of a least one of the differentially expressed (DE) miRNAs, , p-values have been 
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Supplementary Figure 61 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon the administration of  MQ-NP (0.5µM) to the ex vivo model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the ex 

vivo placental barrier under conditions of hypoxia-reperfusion with treatment of MQ-NP (0.5µM) compared with those 

released under conditions of hypoxia-reperfusion. The total number of DE miRNAs ‘miRNA Hits’ relates to the number of 

miRNAs associated with the relevant pathway. P-value  representative of the probability that the specific pathway is 

significantly enriched with gene targets of a least one of the differentially expressed (DE) miRNAs, , p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method. ‘Top 10 Significant’ refers to the most 

significantly enriched pathways; ‘Neuro’ refers to the pathways associated with neurological disease progression and 

neurological functions; ‘stress’ refers to pathways associated with changes to cellular homeostasis in response to an 

exposure; ‘miRNA’ refers to pathways associated with post-transcriptional regulation, processing and secretory 

mechanisms of molecules; ‘Cardio’ refers to pathways associated with the cardiovascular system and pathogenesis; 

‘Cancer’ refers to oncological pathways. 

NB. miR-614, miR-608, miR-944 and miR-639 were excluded from analysis due to limitation in annotation in miRbase. 

 

 

Supplementary Figure 62 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon the administration of  MQ-NP (0.5µM) to the ex vivo model of the placental barrierSupplementary 

Figure 63 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched KEGG biological 

pathways associated with differentially expressed (DE) miRNAs both up-and downregulated upon the 
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Supplementary Figure 70 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon an insult of hypoxia-reperfusion to the in vivo model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the in 

vivo placental barrier under hypoxia-reperfusion conditions compared with those released under normoxic conditions. The 

total number of DE miRNAs ‘miRNA Hits’ relates to the number of miRNAs associated with the relevant pathway. P-

value  representative of the probability that the specific pathway is significantly enriched with gene targets of a least one of 

the differentially expressed (DE) miRNAs, p-values have been corrected for multiple comparisons using Benjamini–

Hochberg method. ‘Top 10 Significant’ refers to the most significantly enriched pathways; ‘Neuro’ refers to the pathways 

associated with neurological disease progression and neurological functions; ‘stress’ refers to pathways associated with 

changes to cellular homeostasis in response to an exposure; ‘miRNA’ refers to pFigure 0-7  Schematic 

representation of exosome isolation technique from conditioned mediaociated with the cardiovascular 

system and pathogenesis; ‘Cancer’ refers to oncological pathways. 

NB.  miR-195, miR-145, miR-495, miR-3563, miR-203 and miR-122 were excluded from analysis due to limitation in 

annotation in miRbase. 

 

 

Supplementary Figure 71 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon an insult of hypoxia-reperfusion to the in vivo model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the in 

vivo placental barrier under hypoxia-reperfusion conditions compared with those released under normoxic conditions. The 

total number of DE miRNAs ‘miRNA Hits’ relates to the number of miRNAs associated with the relevant pathway. P-

value  representative of the probability that the specific pathway is significantly enriched with gene targets of a least one of 

the differentially expressed (DE) miRNAs, p-values have been corrected for multiple comparisons using Benjamini–

Hochberg method. ‘Top 10 Significant’ refers to the most significantly enriched pathways; ‘Neuro’ refers to the pathways 

associated with neurological disease progression and neurological functions; ‘stress’ refers to pathways associated with 

changes to cellular homeostasis in response to an exposure; ‘miRNA’ refers to pathways associated with post-
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Supplementary Figure 72 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon the administration of MQ-NPs (125µM) to the in vivo model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the in 

vivo placental barrier under conditions of hypoxia-reperfusion with treatment of MQ-NP (125µM) compared with those 

released under conditions of hypoxia-reperfusion. The total number of DE miRNAs ‘miRNA Hits’ relates to the number of 

miRNAs associated with the relevant pathway-value  representative of the probability that the specific pathway is 

significantly enriched with gene targets of a least one of the differentially expressed (DE) miRNAs, p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method. Top 10 Significant’ refers to the most 

significantly enriched pathways; ‘Neuro’ refers to the pathways associated with neurological disease progression and 

neurological functions; ‘stress’ refers to pathways associated with changes to cellular homeostasis in response to an 

exposure; ‘miRNA’ refers to pathways associated with post-transcriptional regulation, processing and secretory 

mechanisms of molecules; ‘Cardio’ refers to pathways associated with the cardiovascular system and pathogenesis; 

‘Cancer’ refers to oncological pathways. 

 

 

Supplementary Figure 73 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

upon an insult of hypoxia-reperfusion to the in vivo model of the placental barrierSupplementary Figure 74 

Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched KEGG biological pathways 

associated with differentially expressed (DE) miRNAs both up-and downregulated upon the administration of 

MQ-NPs (125µM) to the in vivo model of the placental barrier 

Results of KEGG pathway analysis of predicted targets of differentially expressed (DE) microRNAs released from the in 

vivo placental barrier under conditions of hypoxia-reperfusion with treatment of MQ-NP (125µM) compared with those 

released under conditions of hypoxia-reperfusion. The total number of DE miRNAs ‘miRNA Hits’ relates to the number of 

miRNAs associated with the relevant pathway-value  representative of the probability that the specific pathway is 

significantly enriched with gene targets of a least one of the differentially expressed (DE) miRNAs, p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method. Top 10 Significant’ refers to the most 

significantly enriched pathways; ‘Neuro’ refers to the pathways associated with neurological disease progression and 

neurological functions; ‘stress’ refers to pathways associated with changes to cellular homeostasis in response to an 

exposure; ‘miRNA’ refers to pathways associated with post-transcriptional regulation, processing and secretory 
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Supplementary Figure 14 Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess 

enriched KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and 

downregulated under conditions of chronic hypoxia across the three models of the placental barrier  

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed (DE)   
microRNAs released from the in vitro, ex vivo and in vivo model of placental barrier upon an exposure of chronic hypoxia.   
Venn Diagrams produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL.)  
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Supplementary Figure 15 Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated 

under conditions of hypoxia-reperfusion across the three models of the placental barrier 

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed (DE) 

microRNAs released from the in vitro, ex vivo and in vivo model of placental barrier upon an exposure of hypoxia-

reperfusion. 

Venn Diagrams produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL.) 

 

 

 

Supplementary Figure 75 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched KEGG 

biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated upon the 

administration of MQ-NPs (125µM) to the in vivo model of the placental barrierSupplementary Figure 15 

Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess enriched KEGG biological 

pathways associated with differentially expressed (DE) miRNAs both up-and downregulated under conditions of 

hypoxia-reperfusion across the three models of the placental barrier 

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed (DE) 

microRNAs released from the in vitro, ex vivo and in vivo model of placental barrier upon an exposure of hypoxia-

reperfusion. 

Venn Diagrams produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL.) 
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Supplementary Figure 16 Schematic to illustrate the cross comparison of mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs both up-and downregulated under 

conditions of hypoxia-reperfusion with treatment of antioxidant drug (MitoQ) across the three models of the placental 

barrier  

Results of KEGG pathway analysis of significantly enriched pathways (p<0.05) associated with differentially expressed (DE)   
microRNAs released from the in vitro, ex vivo and in vivo model of placental barrier upon an exposure of hypoxia-reperfusion  with  

treatment of antioxidant drug (MitoQ).  

Venn Diagrams produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's 

diagrams. (http://bioinfogp.cnb.csic.es/tools/venny/index.htmL.)  
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 Log2FC (NS-RS)  Log2FC (HR-HR+MQ)  Log2FC Differences  

hsa-miR-378c  -2.124  1.279  -3.403  

hsa-miR-1263  -1.646  0.789  -2.435  

hsa-miR-125b5p  -1.493  0.509  -2.002  

hsa-miR-144-3p  -1.486  0.628  -2.114  

hsa-miR-615-3p  -1.447  1.364  -2.811  

hsa-miR-1913  -1.315  0.513  -1.828  

hsa-miR-149-5p  -1.285  1.030  -2.315  

hsa-miR-451a  -1.187  0.715  -1.902  

hsa-miR-508-3p  -0.937  0.506  -1.443  

hsa-miR-125a3p  -0.922  0.113  -1.035  

hsa-miR-625-5p  -0.891  0.799  -1.690  

hsa-miR-1973  -0.888  0.279  -1.167  

hsa-miR-521  -0.855  0.429  -1.284  

hsa-miR-371a3p  -0.839  0.056  -0.895  

hsa-miR-10a-5p  -0.750  0.725  -1.475  

hsa-miR-641  -0.730  -0.194  -0.536  

hsa-miR-493-3p  0.715  -0.671  1.386  

hsa-miR-1287  0.737  -0.421  1.158  

hsa-miR-627  0.760  -0.096  0.856  

hsa-miR-200b  0.764  -0.785  1.549  

hsa-miR-124-3p  0.862  -0.133  0.995  

hsa-miR-877-5p  0.944  0.067  0.877  

hsa-miR-640  1.049  -1.049  2.098  

hsa-miR-664-3p  1.070  -0.644  1.714  

Supplementary Figure 17 Overview of changes in DE miRNA expression to examine the efficiency of the 

application of MQ-NP to the in vitro placental barrier  

Overview of the miRNA species which are significantly differentially expressed under conditions of oxidative stress (2-12% O2 ) in 

the in vitro BeWo barrier placental model in comparison to control vehicle ( 21% O2 ) (Log2 FC) denoted (NS-RS); compared 

against miRNA species which were significantly differentially expressed in conditioned media obtained from the in vitro BeWo 

barrier placental model treated with an antioxidant drug-loaded NP (0.5µM) before a 24-hr exposure of oxidative stress (2-12% O2 ) 

(Log2 FC) denoted (HR-HR+MQ) . Those denoted in (Green) signify miRNA species which are overexpressed in conditioned 

media in comparison to their representative control; whilst those in (Red) denote miRNA species which were significantly 

downregulated in comparison to their representative control. MicroRNA species which are in Bold represent those which have an 

up or down regulation of at least 25% in comparison to its associated control (Log2 FC>0.25).  
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Supplementary Figure 18 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs upregulated upon an exposure 

of hypoxia-reperfusion to the in vitro model of the placental barrier  

Results of KEGG pathway analysis of predicted targets of upregulated differentially expressed (DE) microRNAs released 
from the in vitro placental barrier under conditions of hypoxia-reperfusion with the treatment of MQ-NP (0.5µM) compared 

with those released under conditions of hypoxia-reperfusion. The total number of DE miRNAs ‘miRNA Hits’ relates to the 

number of miRNAs associated with the relevant pathway. P-value representative of the probability that the specific pathway 

is significantly enriched with gene targets of a least one of the differentially expressed (DE) miRNAs, p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method.  
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 Log2FC (NS-RS)  Log2FC (HR-HR+MQ)  Log2FC Differences  

        

hsa-miR-423-3p  -1.430  1.361  -2.791  

hsa-miR-548z  -1.380  0.620  -2.000  

hsa-miR-325  -1.300  1.105  -2.405  

hsa-miR-548ae  -1.120  0.405  -1.525  

hsa-miR-3690  -0.860  0.931  -1.791  

hsa-miR-520d+has-miR-518a-5p+has-

miR527  

1.650  -0.001  1.651  

hsa-miR-516b-5p  1.770  0.788  0.982  

  

Supplementary Figure 19 Overview of changes in DE miRNA expression to examine the efficiency of the application of 

MQ-NP to the ex vivo placental barrier  

Overview of the miRNA species which are significantly differentially expressed under conditions of oxidative stress (2-12% O2 ) in ex 

vivo first trimester human placental explants in comparison to the control vehicle (21% O2 ) ( Log2 FC) denoted (NS-RS); compared 

against miRNA species which were significantly differentially expressed in conditioned media obtained from the ex vivo placental 

model treated with an antioxidant drug-loaded NP (0.5µM) before a 24-hr exposure of oxidative stress (2-12% O2 ) ( Log2 FC) denoted 

(HR-HR+MQ). Those denoted in (Green) signify miRNA species which are overexpressed in conditioned media in comparison to 

their representative control; whilst those in (Red) denote miRNA species which were significantly downregulated in comparison to 

their representative control. MicroRNA species which are in Bold represent those which have an up or down regulation of at least 25% 

in comparison to its associated control (Log2 FC>0.25). N.B. Samples obtained from (2-12%) +MQ was (n=1).   
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Supplementary Figure 20 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched 

KEGG biological pathways associated with differentially expressed (DE) miRNAs upregulated upon an exposure 

of hypoxia-reperfusion to the ex vivo model of the placental barrier  

Results of KEGG pathway analysis of predicted targets of upregulated differentially expressed (DE) microRNAs released 

from the ex vivo placental barrier under conditions of hypoxia-reperfusion with the treatment of MQ-NP (0.5µM) compared 

with those released under conditions of hypoxia-reperfusion. The total number of DE miRNAs ‘miRNA Hits’ relates to the 

number of miRNAs associated with the relevant pathway. P-value representative of the probability that the specific pathway 

is significantly enriched with gene targets of a least one of the differentially expressed (DE) miRNAs, p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method.  
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 Log2FC (NS-RS)  Log2FC (HR-HR+MQ)  Log2FC Differences  

rno-miR-148b-5p  1.343  0.560  0.783  

rno-miR-295  1.273  0.631  0.642  

rno-miR-1224  1.070  1.041  0.029  

rno-miR-330  0.907  0.702  0.205  

rno-miR-101a  0.746  0.973  -0.227  

rno-miR-153  0.740  1.055  -0.315  

rno-miR-532-3p  0.700  0.727  -0.027  

rno-miR-378  0.697  0.844  -0.147  

rno-miR-500  0.663  0.710  -0.047  

rno-miR-195  0.662  0.788  -0.126  

rno-miR-1193-3p  0.657  0.829  -0.173  

rno-miR-29b  0.586  0.697  -0.111  

rno-miR-376c  -0.5389  1.345  -1.884  

rno-miR-145  -0.576  1.597  -2.173  

rno-miR-214  -0.576  1.460  -2.036  

rno-miR-410  -0.586  1.395  -1.981  

rno-miR-495  -0.591  1.252  -1.843  

rno-miR-382  -0.633  1.235  -1.868  

rno-miR-202  -0.635  0.899  -1.534  

rno-miR-329  -0.678  1.491  -2.168  

rno-miR-487b  -0.714  0.950  -1.664  

rno-miR-200a  -0.727  1.482  -2.209  

rno-miR-3563-5p  -0.743  1.067  -1.810  

rno-miR-340-5p  -0.800  1.545  -2.345  

rno-miR-203  -0.963  1.437  -2.400  

rno-miR-1224  -0.970  1.437  -2.407  

rno-miR-125a-5p  -1.089  1.030  -2.119  

rno-miR-200c  -1.150  2.412  -3.563  

  

Supplementary Figure 21 Overview of changes in DE miRNA expression to examine the efficiency of the 

application of MQ-NP to the in vivo placental barrier  

Overview of the miRNA species which are significantly differentially expressed under conditions of oxidative stress (2-12% O2 ) in 

the in vivo rodent placental explants in comparison to control vehicle (21% O2 ) ( Log2 FC) denoted (NS-RS); compared against 

miRNA species which were significantly differentially expressed in conditioned media obtained from rodent explants treated with 

an antioxidant drug-loaded NP (125µM) before a 24hrs exposure of oxidative stress (11-21% O2 ) (Log2 FC) denoted (HR-

HR+MQ). Those denoted in (Green) signify miRNA species which are overexpressed in conditioned media in comparison to their 

representative control; whilst those in (Red) denote miRNA species which were significantly downregulated in comparison to their 

representative control. MicroRNA species which are in Bold represent those which have an up or down regulation of at least 25% in 

comparison to its associated control (Log2 FC>0.25).  
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Supplementary Figure 22 Schematic to illustrate the output from mirPath v3.0 analysis to assess enriched KEGG 

biological pathways associated with 16 differentially expressed (DE) miRNAs downregulated upon an exposure of 

hypoxia-reperfusion to the in vivo model of the placental barrier  

Results of KEGG pathway analysis of predicted targets of downregulated differentially expressed (DE) microRNAs released 

from the in vivo placental barrier under conditions of hypoxia-reperfusion with the treatment of MQ-NP (125µM) compared 

with those released under conditions of hypoxia-reperfusion. The total number of DE miRNAs ‘miRNA Hits’ relates to the 

number of miRNAs associated with the relevant pathway .P-value  representative of the probability that the specific pathway is 

significantly enriched with gene targets of a least one of the differentially expressed (DE) miRNAs, p-values have been 

corrected for multiple comparisons using Benjamini–Hochberg method.  
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Supplementary Table 11 Overview of DE miRNAs released from the in vivo placental barrier in response to 

different treatment parameters. MicroRNAs which were differentially upregulated (Green) and miRNAs 

differentially downregulated (Red).  

Normoxia-Hypoxia Normoxia -Hypoxia-reperfusion Hypoxia- reperfusion-(Hypoxia-repefursion+MQ) 

 rno-let-7e  rno-miR-148b-5p  rno-miR-145  

rno-miR-17-5p  rno-miR-295  rno-miR-143  

rno-miR-743a  rno-miR-1224  rno-miR-133a  

rno-miR-1193-3p  rno-miR-743b  rno-miR-224  

rno-miR-1224  rno-miR-330  rno-miR-195  

 rno-miR-210  rno-miR-101a  rno-miR-146a  

 rno-miR-379  rno-miR-153  rno-miR-184  

 rno-miR-322  rno-miR-532-3p  rno-miR-200a  

 rno-miR-208  rno-miR-378  rno-miR-203  

 rno-miR-742  rno-miR-500  rno-miR-1  

 rno-miR-29b  rno-miR-195  rno-miR-130a  

 rno-miR-19a  rno-miR-1193-3p  rno-miR-122  

rno-miR-106b  rno-miR-29b  rno-miR-126  

 rno-miR-19b  rno-miR-376c  rno-miR-429  

 rno-miR-30e  rno-miR-145  rno-miR-10a-5p  

 rno-miR-29a  rno-miR-214  rno-miR-200c  

 rno-miR-132  rno-miR-410  rno-miR-335  

rno-miR-345-5p  rno-miR-495  rno-miR-135a  

rno-miR-743b  rno-miR-382  rno-miR-26b  

rno-miR-125b-5p  rno-miR-202  rno-miR-23b  

rno-miR-196b  rno-miR-329  rno-miR-3568  
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rno-miR-291b  rno-miR-487b  rno-miR-137  

 rno-miR-425  rno-miR-200a  rno-miR-138  

 

rno-miR-532-3p  rno-miR-3563-5p  rno-miR-218a  

rno-miR-652  rno-miR-340-5p  rno-miR-200b  

rno-miR-542-5p  rno-miR-203  rno-miR-21  

rno-miR-365  rno-miR-122  rno-miR-139-5p  

rno-miR-29c  rno-miR-125a-5p  rno-miR-3590-5p  

rno-miR-3580-3p  rno-miR-200c  rno-miR-340-5p  

rno-miR-292-3p  

  

rno-miR-27b  

rno-miR-107  

  

rno-miR-100  

rno-miR-23a  

  

rno-miR-196a  

rno-miR-199a-5p  

  

rno-miR-488  

rno-miR-30a  

  

rno-miR-340-3p  

rno-miR-23b  

  

rno-miR-181c  

rno-miR-330  

  

rno-miR-150  

rno-miR-191  

  

rno-miR-295  

rno-miR-342-5p  

  

rno-miR-24  

rno-miR-152  

  

rno-miR-22  

rno-miR-466c  

  

rno-miR-455  

rno-miR-455  

  

rno-miR-327  

rno-miR-540  

  

rno-miR-496  

rno-miR-505  

  

rno-miR-192  

rno-miR-384-5p  

  

rno-miR-3563-5p  
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rno-miR-3563-3p  

  

rno-miR-425  

rno-miR-3583-5p  

  

rno-miR-374  

rno-miR-3560  

  

rno-miR-210  

rno-miR-3595  

  

rno-miR-326  

 

rno-miR-3567  

  

rno-miR-1188-5p  

rno-miR-188  

  

rno-miR-487b  

rno-miR-200c  

  

rno-miR-106b  

rno-miR-448  

  

rno-miR-345-5p  

rno-miR-421  

  

rno-let-7e  

rno-miR-3566  

  

rno-miR-3580-3p  

rno-miR-202  

  

rno-miR-542-3p  

rno-miR-3593-3p  

  

rno-miR-299  

rno-miR-412  

  

rno-miR-423  

rno-miR-3558-5p  

  

rno-miR-471  

rno-miR-489  

  

rno-miR-208  

rno-miR-147  

  

rno-miR-291a-5p  

rno-miR-551b  

  

rno-miR-466b  

rno-miR-3583-3p  

  

rno-miR-463  

rno-miR-598-5p  

  

rno-miR-17-5p  

rno-miR-3594-5p  

  

rno-miR-466c  

rno-miR-504  

  

rno-miR-542-5p  

rno-miR-184  

  

rno-miR-483  

rno-miR-3578  

  

rno-miR-292-5p  



  ~Appendix 2 ~  

                                                               

  

329  

  

rno-miR-3551-3p  

  

rno-miR-196b  

rno-miR-547  

  

rno-miR-322  

rno-miR-3590-5p  

  

rno-miR-185  

rno-miR-3569  

  

rno-miR-132  

rno-miR-770  

  

rno-miR-1912-3p  

rno-miR-3571  

  

rno-miR-1949  

rno-miR-3596c  

  

 rno-miR-1193-3p  

rno-miR-3593-5p  

  

 

  

rno-miR-340-3p  

  

 

  

rno-miR-3596d  

  

 

  

rno-miR-3573-3p  

  

 

  

rno-miR-3597-5p  

  

 

  

rno-miR-3581  

  

 

  

rno-miR-224  

  

 

  

rno-miR-3584-3p  

  

 

  

rno-miR-3568  

  

 

  

rno-miR-3592  

  

 

  

rno-miR-142-5p  

  

 

  

rno-miR-3586-3p  

  

 

  

rno-miR-3594-3p  

  

 

  

rno-miR-190b  

  

 

  

rno-miR-501  

  

 

  

rno-miR-3589  
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rno-miR-449c-3p  

  

 

  

rno-miR-544  

  

 

  

rno-miR-3590-3p  

  

 

  

rno-miR-122  
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 Normoxia -Vs-Hypoxia   Normoxia-Vs-Hypoxia Reperfusion    

  

 
  

  Hypoxia-Reperfusion-vs- Hypoxia-Reperfusion +Treatment  

    
    

Supplementary Figure 23 Venn Diagrams to provide a visual summation of the overall cross comparisons between 

the number of significant DE miRNAs within each experimental parameter across the three models of the placental 

barrier  

Venn Diagrams produced using; Oliveros, J.C. (2007-2015) Venny. An interactive tool for comparing lists with Venn's diagrams. 

(http://bioinfogp.cnb.csic.es/tools/venny/index.htmL.)  
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Supplementary Table 12 Summary of Gene Union target KEGG pathways of upregulated DE miRNAs under conditions 

of hypoxia-reperfusion in the in vitro model of the placental barrier  

KEGG pathway  

Target Genes  

Hit  

miRNA  

Hits  p-value  

Prion diseases  5  3  1.14E-07  

Proteoglycans in cancer  76  6  9.54E-06  

Long-term depression  27  6  9.57E-06  

TGF-beta signalling pathway  28  5  0.000119757  

FoxO signalling pathway  49  6  0.000337518  

Axon guidance  47  6  0.000337518  

Signalling pathways regulating 

pluripotency of stem cells  52  6  0.000337518  

Pathways in cancer  120  6  0.006229307  

Gap junction  30  4  0.007499263  

Glutamatergic synapse  40  5  0.007499263  

Hippo signalling pathway  54  5  0.008586918  

Focal adhesion  70  6  0.010770563  

Arrhythmogenic right ventricular 

cardiomyopathy (ARVC)  27  5  0.010810372  

Renal cell carcinoma  27  6  0.015933242  

Adherens junction  25  5  0.020155672  

Oxytocin signalling pathway  52  4  0.02968078  

Hypertrophic cardiomyopathy (HCM)  32  6  0.02968078  

Vascular smooth muscle contraction  37  6  0.033676843  

Retrograde endocannabinoid signalling  36  5  0.034395384  

Serotonergic synapse  34  5  0.049530238  
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Supplementary Table 13 Summary of Gene Union target KEGG pathways of upregulated DE miRNAs under conditions 

of hypoxia-reperfusion in the ex vivo model of the placental barrier  

KEGG pathway  

Target  

Genes  

miRNA  

Hits  p-value  

TGF-beta signalling pathway  20  2  6.05E-09  

Mucin type O-Glycan biosynthesis  6  2  8.70E-09  

Signalling pathways regulating 

pluripotency of stem cells  34  2  1.39E-07  

Glycosaminoglycan biosynthesis - 

heparan sulphate / heparin  6  2  2.44E-06  

Endocrine and other factor-regulated 

calcium reabsorption  13  2  0.000166139  

Glioma  15  2  0.000708035  

Wnt signalling pathway  30  2  0.000893284  

MAPK signalling pathway  50  2  0.001027066  

Dorso-ventral axis formation  11  1  0.001165895  

FoxO signalling pathway  25  2  0.001317224  

Amphetamine addiction  18  2  0.001317224  

Proteoglycans in cancer  32  2  0.002740243  

Chronic myeloid leukaemia  18  2  0.003734353  

Oestrogen signalling pathway  18  2  0.004350562  

Hepatitis B  27  2  0.004571652  

Long-term potentiation  17  2  0.006342177  

Circadian rhythm  10  2  0.006379103  

GnRH signalling pathway  20  1  0.007033011  

Lysine degradation  8  2  0.018812285  

ErbB signalling pathway  16  2  0.019568865  

Thyroid cancer  7  2  0.019782986  
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Maturity onset diabetes of the young  5  1  0.020605297  

Axon guidance  23   2  0.020605297  

Adrenergic signalling in 

cardiomyocytes  25  2  0.021230307  

Prostate cancer  19  2  0.027714666  

Oocyte meiosis  23  2  0.032914353  

Adherens junction  17  2  0.032914353  

Arrhythmogenic right ventricular 

cardiomyopathy (ARVC)  15  2  0.032914353  

Pantothenate and CoA biosynthesis  4  1  0.043066952  

Non-small cell lung cancer  13  1  0.043066952  
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Supplementary Table 14 Summary of Gene Union target KEGG pathways of upregulated DE miRNAs under conditions 

of hypoxia-reperfusion in the in vivo model of the placental barrier  

KEGG pathway  Target  

Genes  

miRNA 

Hits 

p-value  

MAPK signalling 

pathway  

50  11  1.95E-05  

Mucin type O-Glycan 

biosynthesis  

5  4  0.000398  

Synaptic vesicle cycle  12  7  0.000652  

T cell receptor signalling 

pathway  

23  8  0.002889  

Gap junction  15  8  0.003825  

Axon guidance  24  7  0.013544  

TGF-beta signalling 

pathway  

15  10  0.015839  

Thyroid hormone 

signalling pathway  

19  9  0.026977  

Transcriptional mis 

regulation in cancer  

25  9  0.026977  

Hepatitis B  24  10  0.026977  

Ras signalling pathway  38  11  0.026977  

Rap1 signalling pathway  32  11  0.026977  

Renal cell carcinoma  13  8  0.03719  

MicroRNAs in cancer   21  8  0.042777  
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Supplementary Table 15 Summary table assessing the diseases associated with microRNA species which were 

differentially expressed (upregulated or downregulated) under conditions of chronic hypoxia in the in vitro 

model of the placental barrier obtained from miR2Disease analysis  

miRNA  

Areas of Interest 

U
p

re
g

u
la

te
d

 

 
Neurodevelopment Detection 

Method 

References Cancer Detection 

Method 

References 

miR-

520e 

Alzheimer's Disease RT-qPCR, Gene 

Expression Assay, 

TaqMan 

Cogswell et al 

(2012) 

Breast Cancer 
 

Yi et al (2016) 

   
Embryonal 

Tumours 

RT-qPCR Spence et al 

(2013) 

   
Glioblastoma Microarray Dong et al 

(2014) 

   
Pituitary 

Neoplasm 

Microarray, RT-

PCR 

Liang et al 

(2013) 

   
Glioma Microarray Wuchty et al 

(2011) 

miR-

877-5p 

   
Glioblastoma Microarray, RT-

qPCR 

Herman et al 

(2015) 

miR-

664-3p 

Parkinson's Disease Microarray Li et al (2013) Glioma Microarray Shi et al (2015) 

   
Melanoma Microarray Leidinger et al 

(2010)  

miR-

651 

Lesch-Nyhan Syndrome MiRNA array Guibinga et al 

(2013) 

Embryonal Tumor Microarray Braoudaki et al 

(2014) 

   
Glioma Microarray Wuchty et al 

(2011) 

miR-34-

5p 

yasthenia Gravis 

Autoimmune 

RT-qPCR Punga et al 

(2014) 

   

Parkinson's Disease Microarray Li et al (2013) 
   

Intracranial aneurysm RNA Sequencing Holcomb et al 

(2015) 

   

D
o

w
n

r
eg

u
la

te
d

 

miR-

548m 

      

miR 

484 

Hyperalgesia TaqMan, qPCR McDonald et al 

(2014) 

Glioblastoma NGS Fang et al (2011) 

Autistic Disorder RT-qPCR Abu-Elneel et al 

(2008) 

Adrenocortical 

Carcinoma 

Microarray Bimpaki et al 

(2010) 

   
Hepatocellular 

Carcinoma 

MiRNA Array Ai et al (2011) 



  ~Appendix 2~  

                                                               

337  

  

   
Glioma Microarray Liu et al (2013) 

miR-

761 

      

miR-

374c-5p 

      

miR-

320e 

Stroke RT-qPCR Wang et al 

(2014) 

Glioblastoma Microarray Roth et al (2011) 

   
Breast Cancer HMDD v2.0 Bronisz et al 

(2012) 

miR-

4286 

   
Glioblastoma Microarray Liao et al (2015) 
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   Supplementary Table 16 A summary table assessing the diseases associated with microRNA species whi 

were differentially expressed (Upregulated or Downregulated) under conditions of Hypoxia-reperfusion in 

in vitro model obtained from miR2Disease analysis  

ch  

 the   
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miRNA Area of Interest 

 

Neurodevelopment Detection 

Method 

References Cancer Detection 

Method 

References 

U
p

r
e
g

u
la

te
d

 

miR-664-3p Parkinson's Disease Microarray Li et al. (2013) Glioma Microarray Shi et al (2015) 

miR-640 Infarction, Middle Cerebral Artery Microarray Hunsberger et al 

(2012) 

Glioblastoma Microarray, RT-

qPCR 

Herman et al 

(2015) 

   
Glioblastoma Microarray Dong et al 

(2014) 

   
Pituitary 

Neoplasm 

Microarray, RT-

PCR 

Liang et al 

(2013) 

miR-877-5P Huntington's Disease NGS Hoss et al (2015) Glioblastoma Microarray, RT-

qPCR 

Herman et al 

(2015)  

miR-124-3p Intracranial Haemorrhage RT-qPCR Leung et al 

(2014) 

Glioblastoma Microarray, RT-

qPCR 

Wu et al (2015) 

Astrocytoma RT-qPCR Sharma et al 

(2016) 

   

Alzheimer's Disease NGS Burgos et al 

(2014) 

   

Meningioma RT-qPCR Zhi et al (2013) 
   

miR-208b 

 

 

 

Huntington's Disease NGS Müller et al 

(2014) 

   

Pituitary Neoplasms Microarray Stilling et al 

(2010) 

   

Chorea NGS Hoss et al (2015) 
   

Alzheimer's Disease Microarray Bekris et al 

(2013) 

   

miR-627 Stroke Taqman Low 

Density Array 

Sepramaniam et 

al (2014) 

Glioma Microarray Wuchty et al 

(2011) 

D
o

w
n

r
eg

u
la

te
d

 

miR-1287 Astrocytoma RT-PCR, 

Luciferase 

Reporter Assay, 

WB 

Wolter et al 

(2016) 

Glioblastoma NGS Fang et al 

(2011) 

miR-493-3p Duchene Muscular Dystrophy Microarray Eisenberg et al 

(2007) 

Glioblastoma Microarray, RT-

qPCR 

Herman et al 

(2015) 

miR-641 Fatigue Syndrome NGS Brenu et al 

(2014) 

Glioblastoma Microarray, RT-

qPCR 

Herman et a 

(2015) 

miR-10a-5p Intracranial Haemorrhage Microarray Zhu et al (2015) 
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miR-371a-3p 
      

miR-521 Subarachnoid Haemorrhage Microarray Stylli et al 

(2017) 

   

miR-1973 Epilepsy Microarray Kan et al (2012) 
   

miR-625-5p Amyotrophic Lateral Sclerosis miRNA array Figueroa-

Romero et al 

(2016) 

   

miR-508-3p Neoblastoma RT-qPCR Chen et a (2010) Glioblastoma Microarray, RT-

qPCR 

Herman et al 

(2015) 

Pituitary Neoplasms Microarray Stilling et al 

(2010) 

   

Alzheimer's Disease Microarray Lau et al (2013) 
   

Subarachnoid Haemorrhage Microarray Stylli et al 

(2017) 

   

miR-125a-3p Myasthenia Gravis Autoimmune Microarray Jiang et al (2014) Glioblastoma RT-PCR, 

Luciferase 

Reporter Assay, 

WB 

Yin et al (2015) 

Moya Moya Disease Microarray Dai et al (2014) 
   

Amyotrophic Lateral Sclerosis Taqman Campos-Melo et 

al (2013) 

   

miR-451a Fibromyalgia microarray, RT-

qPCR 

Cerdá-Olmedo et 

al (2015) 

   

miR-149-5p Multiple Sclerosis TaqMan Hecker et al 

(2013) 

Astrocytoma Microarrays Li et al (2011) 

Cerebral Infarction PCR Schaefer et al 

(2010) 

Carcinoma TaqMan, RT-

PCR 

Schaefer et al 

(2010) 

miR-1913 Stroke Microarray Li et al (2015) 
   

miR-615-3p Multiple Sclerosis Microarray Søndergaard et al 

(2013)  

Glioblastoma NGS Fang et al 

(2011) 

miR-144-3p Alzheimer's Disease Luciferase 

Reporter Assay 

Cheng et al 

(2013) 

Glioblastoma RT-qPCR, 

Luciferase 

Reporter Assay 

Lan et al (2015) 

miR-125b 

 

 

 

Epilepsy Taqman McKiernan et al 

(2012) 

   

Amyotrophic Lateral Sclerosis miRNA array Figueroa-

Romero et al 

(2016) 

   

Fibromyalgia RT-qPCR Bjersing et al 

(2013) 
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Supplementary Table 17 Summary table assessing the diseases associated with microRNA species which 

were differentially expressed (upregulated or downregulated) under conditions of hypoxia-reperfusion with the 

application of the antioxidant (MQ-NP) in the in vitro model. Data obtained from miR2Disease analysis  

Myotonic Dystrophy Microarray Greco et al 

(2012) 

   

miR-1263 Down syndrome microarray, RT-

qPCR 

Lim et al (2015) 
   

miR-378e 

 

   
Carcinoma, 

Basal Cells 

Microarray Sand et al 

(2012) 

   
Urinary 

Bladder 

Neoplasms 

RT-qPCR Zaravinos et al 

(2012) 
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miRNA Area of Interest 

 

Neurodevelopment Detection 

Method 

References Cancer Detection  

Method 

References 

U
p

re
g

u
la

te
d

 

miR-

664-

3p 

Parkinson's Disease Microarray Li et al. (2013) Glioma Microarray Shi et al 

(2015) 

miR-

640 

Infarction, Middle 

Cerebral Artery 

Microarray Hunsberger et 

al (2012) 

Glioblastoma Microarray, RT-

qPCR 

Herman et 

al (2015) 

   
Glioblastoma Microarray Dong et al 

(2014) 

   
Pituitary 

Neoplasm 

Microarray, RT-PCR Liang et al 

(2013) 

miR-

877-

5P 

Huntington's Disease NGS Hoss et al 

(2015) 

Glioblastoma Microarray, RT-

qPCR 

Herman et 

al (2015)  

miR-

124-

3p 

Intracranial 

Haemorrhage 

RT-qPCR Leung et al 

(2014) 

Glioblastoma Microarray, RT-

qPCR 

Wu et al 

(2015) 

Astrocytoma RT-qPCR Sharma et al 

(2016) 

   

Alzheimer's Disease NGS Burgos et al 

(2014) 

   

Meningioma RT-qPCR Zhi et al 

(2013) 

   

miR-

208b 

 

 

 

Huntington's Disease NGS Müller et al 

(2014) 

   

Pituitary Neoplasms Microarray Stilling et al 

(2010) 

   

Chorea NGS Hoss et al 

(2015) 

   

Alzheimer's Disease Microarray Bekris et al 

(2013) 

   

miR-

627 

Stroke Taqman Low 

Density Array 

Sepramaniam 

et al (2014) 

Glioma Microarray Wuchty et 

al (2011) 
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D
o

w
n

re
g

u
la

te
d

 
miR-

1287 

Astrocytoma RT-PCR, 

Luciferase 

Reporter 

Assay, WB 

Wolter et al 

(2016) 

Glioblastoma NGS Fang et al 

(2011) 

miR-

493-

3p 

Duchene Muscular 

Dystrophy 

Microarray Eisenberg et al 

(2007) 

Glioblastoma Microarray, RT-

qPCR 

Herman et 

al (2015) 

miR-

641 

Fatigue Syndrome NGS Brenu et al 

(2014) 

Glioblastoma Microarray, RT-

qPCR 

Herman et 

a (2015) 

miR-

10a-

5p 

Intracranial 

Haemorrhage 

Microarray Zhu et al 

(2015) 

   

miR-

371a-

3p 

      

miR-

521 

Subarachnoid 

Haemorrhage 

Microarray Stylli et al 

(2017) 

   

miR-

1973 

Epilepsy Microarray Kan et al 

(2012) 

   

miR-

625-

5p 

Amyotrophic Lateral 

Sclerosis 

miRNA array Figueroa-

Romero et al 

(2016) 

   

miR-

508-

3p 

Neoblastoma RT-qPCR Chen et a 

(2010) 

Glioblastoma Microarray, RT-

qPCR 

Herman et 

al (2015) 

Pituitary Neoplasms Microarray Stilling et al 

(2010) 

   

Alzheimer's Disease Microarray Lau et al 

(2013) 

   

Subarachnoid 

Haemorrhage 

Microarray Stylli et al 

(2017) 

   

miR-

125a-

3p 

Myasthenia Gravis 

Autoimmune 

Microarray Jiang et al 

(2014) 

Glioblastoma RT-PCR, Luciferase 

Reporter Assay, WB 

Yin et al 

(2015) 

Moya Moya Disease Microarray Dai et al 

(2014) 

   

Amyotrophic Lateral 

Sclerosis 

Taqman Campos-Melo 

et al (2013) 
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miR-

451a 

Fibromyalgia microarray, 

RT-qPCR 

Cerdá-Olmedo 

et al (2015) 

   

miR-

149-

5p 

Multiple Sclerosis TaqMan Hecker et al 

(2013) 

Astrocytoma Microarrays Li et al 

(2011) 

Cerebral Infarction PCR Schaefer et al 

(2010) 

Carcinoma TaqMan, RT-PCR Schaefer et 

al (2010) 

miR-

1913 

Stroke Microarray Li et al (2015) 
   

miR-

615-

3p 

Multiple Sclerosis Microarray Søndergaard et 

al (2013) 

Glioblastoma NGS Fang et al 

(2011) 

miR-

144-

3p 

Alzheimer's Disease Luciferase 

Reporter 

Assay 

Cheng et al 

(2013) 

Glioblastoma RT-qPCR, Luciferase 

Reporter Assay 

Lan et al 

(2015) 

miR-

125b 

 

 

 

Epilepsy Taqman McKiernan et 

al (2012) 

   

Amyotrophic Lateral 

Sclerosis 

miRNA array Figueroa-

Romero et al 

(2016) 

   

Fibromyalgia RT-qPCR Bjersing et al 

(2013) 

   

Myotonic Dystrophy Microarray Greco et al 

(2012) 

   

miR-

1263 

Down syndrome microarray, 

RT-qPCR 

Lim et al 

(2015) 

   

miR-

378e 

 

   
Carcinoma, 

Basal Cells 

Microarray Sand et al 

(2012) 

   
Urinary 

Bladder 

Neoplasms 

RT-qPCR Zaravinos 

et al (2012) 
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Supplementary Table 1 A summary table assessing the diseases associated with microRNA species which 

were differentially expressed (Upregulated or Downregulated) under conditions of chronic hypoxia in the ex 

vivo model of the placental barrier obtained from miR2Disease analysis 

miRNA Areas of Interest 
 

 
Neurodevelopment Detection Method References 

U
p

re
g

u
la

te
d

 

miR-23b-3p Meningioma RT-qPCR Zhi et al (2013) 

miR-371a-3p 
   

miR-4435 Multiple Sclerosis NGS Keller et al (2014) 

miR-551b-3p Pituitary Neoplasms Microarray Stilling et al (2010) 

Alzheimer's Disease Microarray Stilling et al (2010) 

D
o

w
n

re
g

u
la

te
d

 

miR-604 Amyotrophic Lateral Sclerosis TaqMan Campos-Melo et al (2013) 

miR-409-5p Huntington's Disease Illumina Sequencing Martí et al (2010) 

Oligodendroglioma Membrane-Array Hybridisation Lages et al (2011) 

Glioblastoma Membrane-Array Hybridisation Lages et al (2011) 

Amyotrophic Lateral Sclerosis TaqMan Campos-Melo et al (2013) 

Alzheimer's Disease Microarray Lau et al (2013) 

Chorea RNA-sequencing Martí et al (2010) 

miR-548ab 
   

miR-517-3p 
   

miR-1286 Glioblastoma Microarray Niyazi et al (2011) 

miR-520c-3p 
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 Supplementary Table 2 A summary table assessing the diseases associated with microRNA species which 

were differentially expressed (Upregulated or Downregulated) under conditions of hypoxia-reperfusion in the ex 

vivo model of the placental barrier. Data obtained from miR2Disease analysis 

miRNA 
 

Areas of Interest 

U
p

re
g

u
la

te
d

 

 
Neurodevelopment Detection 

Method 

References  
 

miR-516-5p Glioma Microarray Wuchty et al (2011) 
 

 

miR-520d-5p Myasthenia Gravis 

Autoimmune 

MiRNA Array Nogales-Gadea et al 

(2014)  

 

 

miR-518a-5p Intracranial Aneurysm Microarray Liu et al (2014) 
 

 

Amyotrophic Lateral Sclerosis TaqMan Campos-Melo et al (2013) 
 

 

Alzheimer's Disease Microarray, NB Wang et al (2011)  
 

 

miR-527 Alzheimer's Disease Microarray, NB Wang et al (2011) 
 

 

Downregulated miR-325 Glioma Microarray Birks et al (2011) 
 

 

Cerebral Haemorrhage Microarray Zheng et al (2012)  
 

Intracranial Haemorrhage Microarray Zheng et al (2012)  
 

miR-548z Neuromyelitis Optica NGS Keller et al (2015)  
 

 

miR-548ae 
    

 

miR-423-3p Multiple Sclerosis Microarray Jernås et al (2013) 
 

 

Myasthenia Gravis 

Autoimmune 

Microarray Jiang et al (2014) 
 

 

Glioblastoma NGS Fang et al (2011) 
 

 

Stroke TaqMan Low Density 

Array 

Sepramaniam et al (2014) 
 

 

Alzheimer's Disease Microarray, NB Wang et al (2011) 
 

 

miR-3690 Amyotrophic Lateral Sclerosis Microarray Chen et al (2016) 
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Supplementary Table 3 Summary table assessing the diseases associated with microRNA species which were 

differentially expressed (upregulated or downregulated) under conditions of hypoxia-reperfusion with the 

application of the antioxidant (MQ-NP) in the ex vivo model. Data obtained from miR2Disease analysis 

  
Areas of Interest 

miRNA Neurodevelopment Detection 

Method 

References Cancer Detection 

Method 

Reference 

U
p

re
g
u

la
te

d
 

miR-

125a-

3p 

Myasthenia Gravis 

Autoimmune 

Microarray Jiang et al (2014) 
   

Parkinson's Disease TaqMan Cardo et al (2013) 
   

Intracranial Aneurysm Microarray Jin et al (2013) 
   

Chronic Pain RT-PCR Ciszek et al (2015) 
   

miR-

371b-

5p 

Myasthenia Gravis 

Autoimmune 

Microarray Jiang et al (2014) 
   

Huntington's Disease Illumina 

Sequencing 

Martí et al (2010) 
   

Parkinson's Disease Microarray Li et al (2013) 
   

Gaucher Disease RT-PCR Siebert et al 

(2014) 

   

Glioblastoma RT-qPCR Manterola et al 

(2014) 

   

Machado-Joseph Disease Microarray Shi et al (2014) 
   

Intracranial Aneurysm Microarray Li et al (2014) 
   

Subarachnoid Haemorrhage Microarray Su et al (2015) 
   

Alzheimer's Disease Microarray, NB Wang et al (2011) 
   

Glioma Microarray Shi et al (2015) 
   

221-3p Embryonal Tumours RT-PCR Hsieh et al (2014) 
   

Glioblastoma miRNA Array Dong et al (2014) 
   

Stroke RT-PCR Sørensen et al 

(2014) 

   

Myotonic Dystrophy Microarray Greco et al (2012) 
   

miR-

409-3p 

Medulloblastoma TaqMan Low 

Density Array 

Genovesi et al 

(2011) 

   

Parkinson's Disease TaqMan Gui et al (2015) 
   

Subarachnoid Haemorrhage Microarray Su et al (2015)  
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Muscular Dystrophy 
 

Eisenberg et al 

(2007) 

   

 

D
o
w

n
re

g
u

la
te

d
 

miR-

608 

Meningioma Microarray Saydam et al 

(2009) 

Ovarian 

Cancer 

Microarray Dahiya et al 

(2008) 

miR-

4508 

Amyotrophic Lateral Sclerosis Microarray Freischmidt et al 

(2014) 

   

miR-

614 

Friedreich Ataxia Microarray Mahishi et al 

(2012) 

Hodgkin's 

Lymphoma 

Microarray Van Vlierberghe et 

al (2009)  

miR-

1266 

Multiple Sclerosis Microarray Keller et al (2009) 
   

miR-

548b-

5p 

Astrocytoma Solexa 

Sequencing 

Yang et al (2013) 
   

miR-

944 

Friedreich Ataxia Microarray Mahishi et al 

(2012) 

   

Gait Ataxia Microarray Mahishi et al 

(2012) 

   

 

 

 

 

 

 

 

 

  

  

  

  


