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Abstract 
 
Environmental DNA analysis using metagenomics can provide an insight into the taxonomy 
and functional potential of microbial communities ex situ, without the need for culturing or DNA 
amplification. However, metagenomics has had limited application to environmental microbial 
ecology, in particular, to microbial communities in proglacial regions. This thesis aims to 
contribute to the body of literature on environmental metagenomics through evaluating 
assemblers for soil microbial ecologists, and subsequently applying metagenomics to 
investigate microbial communities in proglacial environments.  
 
Assembly of metagenome sequencing reads can improve sequence alignment to taxonomic 
and functional databases, thereby improving ecological conclusions. However, limited 
guidance is available for assembler choice by microbial ecologists. The first study in this thesis 
compares assemblers for soil metagenome data, demonstrating the importance of assembler 
evaluation and parameterization. The guidance produced was applied to investigate microbial 
communities in proglacial regions, including fjords and forefields. Proglacial forefields present 
a unique opportunity to understand microbial colonization in land exposed by glacier retreat. 
Here, metagenomics was used to investigate microbial diversity and functional potential during 
forefield succession, alongside comparing the diversity of nitrogen-fixing bacteria between 
Arctic forefields. This work contributes to our understanding of Arctic microbial ecology, which 
has significance given the continued exposure of forefield soils during global warming. In 
addition, metagenomics was used to investigate microbial communities in oligotrophic, dark, 
saline fjord waters, fed by glacial meltwater. This work highlights the potential of 
metagenomics to understand uncultured microbial samples and demonstrate areas for further 
analysis, such as targeting novel genomes.  
 
This thesis has contributed to the literature on metagenomics by providing methodological 
guidance for microbial ecologists, alongside enhancing understanding of microbial diversity in 
proglacial regions. It is hoped that this work will inspire others to use metagenomics to explore 
uncultured microbial samples and to target further analysis or exploration for unique genomes.   
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Chapter 1: Literature Review  

 
1.1 Introduction to glacial systems   
 

At present, it is estimated that ice sheets and glaciers account for ~10% of global land 

coverage (16 million km2) (Knight, 1999). These systems comprise of subglacial (beneath 

glacier), englacial (within glacier), supraglacial (glacier surface) and proglacial (in front of 

glacier) environments (Benn and Evans, 2014). Ice sheets and glaciers have been the focus 

of scientific research over recent years due to ongoing ice melt and glacier retreat with 

warming global temperatures (IPCC, 2013). The importance of these regions with regard to 

meltwater fluxes, sea level rise, sediment and nutrient transport and global surface albedo 

have been documented (Tranter et al., 2002; Hood et al., 2009; Wadham et al., 2010; Wadham 

et al., 2013; Dutton et al., 2015). The importance of glaciers and ice sheets in global 

biogeochemical cycles has also been noted, through supplying limiting nutrients to 

downstream fjord and ocean ecosystems, such as iron, carbon and nitrogen, and thereby 

stimulating productivity in near shore regions (Tranter et al., 1994; Stratham et al., 2008; 

Lawson et al., 2014; Hawkings et al., 2015). 

 

However, the study of microbial communities, in both glaciers and ice sheets has only come 

to the forefront of research in recent years (Hodson, 2006; Hodson et al., 2008; Anesio et al., 

2009). The potential implications of these communities on global biogeochemical cycles, such 

as carbon, nitrogen and methane, are substantial (Anesio et al., 2009; Boyd et al., 2010; Stibal 

et al., 2012; Telling et al., 2012; Wadham et al., 2012). Most research on microbial 

communities in glacial habitats has focused on supraglacial environments, such as cryoconite 

holes and subglacial sediments (Anesio et al., 2009; Boyd et al., 2010; Telling et al., 2010). 

However, limited research has investigated microbial community diversity and function in 

proglacial regions, such as forefields and fjords (Duc et al., 2009; Zumsteg et al., 2013). Thus 

far, these regions have been shown to harbour diverse, active communities, and may 

therefore have vital roles in local biogeochemical cycles (Duc et al., 2009). Additionally, these 

microbial communities may be influenced by warming temperatures and increased glacial 

melt, in line with climate change (Alison and Tresder, 2008; Rinnan et al., 2009). 
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1.2 Microbial communities in glacial systems  
 
In early work, glaciers were considered purely abiotic systems, due to the low temperatures, 

high UV exposure and the oligotrophic nature of the glacial environments (Collins, 1979; 

Raiswell, 1984). However, recent developments have identified active and diverse microbial 

communities in supraglacial, subglacial and proglacial habitats (Skidmore et al., 2000; Sigler 

and Zeyer, 2002; Bhatia et al., 2006; Stibal et al., 2006; Malard and Pearce, 2018). A wide 

range of organisms have been identified, such as diazotrophs, methanogens, heterotrophs 

and chemolithoautotrophs (Skidmore et al., 2000; Christner et al., 2008; Hodson et al., 2008; 

Stibal et al., 2012). The adaptation of these organisms to survive in such extreme conditions, 

and their importance in both local and global biogeochemical cycles has sparked a wave of 

research interest (Mindl et al., 2007; Wadham et al., 2013). These organisms can often be 

found living across environmental gradients, for example at stages of increasing soil 

development in glacier forefields (Bradley et al., 2014) or along salinity gradients in fjords 

draining glacial meltwater (Gutiérrez et al., 2015). Consequently, it is interesting to understand 

the diversity of these communities, how they contribute to biogeochemical cycles, and how 

this varies over environmental gradients. Investigating microbial communities in proglacial 

regions is particularly important, as these may be modified with climate change, for example, 

increased glacial meltwater fluxes may modify salinity balances in fjords (Davila et al., 2002). 

Here, focus is placed on proglacial microbial communities in forefield soils and fjord sediments 

(Figure 1.1).  

 
1.3 Proglacial forefields and microbial communities  
 

The proglacial forefield of land terminating glaciers facilitates the growth of a diverse range of 

microorganisms, due to the presence of proglacial rivers, lakes, soils and vegetation, all of 

which harbour distinct, active communities (Liu et al., 2006; Duc et al., 2009; Reddy et al., 

2009; Zumsteg et al., 2013; Figure 1.1). Proglacial rivers are important for the export of labile 

organic matter and nutrients to downstream ecosystems (Hood & Scott, 2008; Hood et al., 

2009; Hawkings et al., 2014; Hopwood et al., 2014).  

 

Proglacial soils have been the focus of an abundance of plant-based research, in particular, 

looking at the succession of plant species on newly exposed soil, following glacier retreat 

(Frenot et al., 1998; Hodkinson et al., 2003; Breen and Levesque, 2006). However, more 

recently, these soils have been the focus of microbiologists, investigating how microbial 

communities are initially established, and their subsequent role in soil, nutrient and plant 

development (Schutte et al., 2009; Göransson et al., 2011; Wojcik et al., 2019). These 
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microbial communities are present across an environmental gradient of soil succession, and 

therefore may be diverse in taxonomy and function across the proglacial region (Bradley et 

al., 2014). The following section will discuss the research surrounding proglacial soil 

succession in depth, and in particular, its application within microbiology. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.1 Using forefields to investigate microbial succession  

 

Terrestrial soils, exposed following glacial retreat, pose an interesting opportunity to study 

initial soil colonisation and succession (Edwards and Cook, 2015).  As these soils have been 

beneath ice for thousands of years, soil development is limited, alongside the absence of 

established flora or microbial communities (Tscherko et al., 2003). Furthermore, low 

temperatures and slow weathering rates mean that soil development occurs over longer 

timescales, and therefore the successional pathways are more identifiable (Bradley et al., 

2014). Consequently, it is possible to use these soils to investigate how microbial communities 

first colonise, and subsequently advance over time, whilst modifying soil development (Schulz 

et al., 2013). This is typically carried out by utilizing a chronosequence approach, whereby a 

space-for-time substitution is used, moving away from the glacier terminus along a 

perpendicular transect (Tscherko et al., 2003). The bulk of chronosequence-based studies 

have focused on the succession of soil structure and plant matter, whilst limited attention has 

 

Figure 1. Elements of the Greenland ice sheet hydrologic system. (a) In the accumulation
zone above the equilibrium line altitude (ELA), water percolating through the snow/firn can
pool into slush regions and channelize into supraglacial streams. In the ablation zone
beneath the ELA, meltwater pools in supraglacial lakes and flows through streams into
crevasses and moulins, entering englacial and subglacial conduits emerging into
proglacial rivers and lakes. As meltwater moves through the system, erosional debris

© 2013 by SAGE Publications

Figure 1.1: Schematic of glacier forefields (a) land terminating glacier with forefield soils and (b) marine 
terminating glacier with proglacial fjord. Source: Chu et al., (2014).  
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been paid to the advance of microbial communities (Edwards and Cook, 2015; Matthews and 

Vater, 2015).  

 

Whilst chronosequence studies are fundamental to our current understanding of soil 

succession, it is important to acknowledge that chronosequences only show a record for a 

single location and time point (Fastie, 1995). Forefields are heterogeneous, with many micro-

environments, soil structure disparities, differences in water and nutrient availability, and 

subsequently variations in floral and faunal diversity, all occurring within a single foreland (Duc 

et al., 2009). Furthermore, these environments may change with seasonal environmental 

modifications or disturbances (Fastie, 1995; Bradley et al., 2015). Consequently, 

considerations must be taken when extrapolating information obtained from a single 

chronosequence to other environments. 

 

1.3.2 Plant succession and soil development  

 

Investigating soil development is key to understanding how terrestrial environments change 

over time, the driving factors behind this, and the causes of heterogeneous succession both 

within and between environments (Hodkinson et al., 2003). Soil development is mediated by 

key environmental factors, such as the local bedrock and topography, the climate, the time 

available, alongside both plant and microbial communities (Schulz et al., 2013). Cold 

environments, which exhibit slow rock weathering rates, are preferentially used for the study 

of soil succession, due to the slow (and therefore traceable) developments over 

chronosequences (D’Amico et al., 2014; Bradley et al., 2015). Much of the research on 

succession has been focused on plant establishment and development (Frenot et al.,1998; 

Hodkinson et al., 2003). 

 

The key trends identified with soil succession are an increase in nutrients, organic carbon and 

reduction in pH, in line with the development of vascular plants (Ohtonen et al., 1999; Strauss 

et al., 2009; Knelman et al., 2012). Plants have been deemed as fundamental in enhancing 

soil stabilisation, modifying the biogeochemical properties of soils (i.e. building nutrient and 

organic matter pools through litter and root exudates) and subsequently facilitating the 

colonisation of higher plant communities (D’Amico et al., 2014; Matthews and Vater, 2015). 

 

Soil and vegetation development do not occur at the same rate, nor follow the same 

successional pattern between different environments (Hodkinson et al., 2003). This relates to 

the initial soil conditions, local climatic factors and acting disturbances (Moreau et al., 2008; 

Sattin et al., 2009). Some plant communities may be rapidly established, whilst for others, 
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typically in cold, nutrient limited environments, plant free periods exceeding 50 years may be 

identified (Sattin et al., 2009). 

 

1.3.3 Microbial Succession in glacial forefields  

 

Microbial succession in newly exposed soils is a more recent subject of interest, in comparison 

to the study of soil structure and plant colonisation (as reviewed in Bradley et al., 2014). 

Microbial communities play an important role in developing soil structure and biogeochemical 

cycles, therefore influencing soil physicochemical characteristics and vegetation (Tscherko et 

al., 2003; Hahn and Quideau, 2013). Microbial communities often act as the primary colonisers 

of forefield soils exposed by glacier retreat (Schmidt et al., 2008). Examining this initial 

colonisation is key for our understanding of how life may first be established and may act as 

analogous to our understanding of extra-terrestrial life (Bradley et al., 2015). Furthermore, 

initial colonisation, and subsequent succession is important for highlighting the pathways to 

fertile soil, the key factors involved in the heterogeneity between environments and if these 

may be modified with global climate change (Schulz et al., 2013). Much of the research 

surrounding the importance of initial microbial colonisers has been based on glacial forefields, 

in locations such as the Damma Glacier, Switzerland and Midtre Lovénbreen glacier, Svalbard 

(Mindl et al., 2007; Schmidt et al., 2008; Schulz et al., 2013).  

 

The pioneer microbial colonisers may be significant in the development of soil nutrient stocks, 

regulating soil pH and promoting stability for plant colonisation through the release of EPS 

(Sattin et al., 2009; Schulz et al., 2013; Wojcik et al., 2019). This may facilitate the colonisation 

of further microbial communities and higher plant life, which depend on the presence of labile 

nutrient pools and a degree of soil stability (Chapin et al., 1994; Hahn and Quideau, 2013). 

The release of nutrients is particularly significant in extreme locations, such as glacial 

forefields, whereby initial soils are likely to be oligotrophic (Chapin et al., 1994). However, the 

significance of the initial colonizers in developing labile nutrient pools has been debated (Nicol 

et al., 2005). Jumpponen (2003) identified aeolian deposition as the most significant source 

of nutrients to newly exposed soils, alongside nutrients present in the initial soils themselves, 

whilst suggesting that microbial communities were dormant (Jumpponen, 2003). However, 

further research has identified the active contribution of initial microbial colonisers to nutrient 

stocks during the first 20 years of colonisation (Schmidt et al., 2008). The action of 

photoautotrophic cyanobacteria and free living diazotrophs can build carbon and nitrogen 

pools in the soils, however aeolian deposition may also be a significant contribution to nutrient 

stocks (Nicol et al., 2005; Schmidt et al., 2008). 
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Furthermore, the composition of the initial coloniser communities has been the subject of 

debate (Kastovska et al., 2005). One research body identifies autotrophic organisms as the 

dominant entities following soil exposure, facilitating the build-up of nutrients and organic 

carbon and the subsequent colonisation by heterotrophs and higher plants (Hodkinson et al., 

2002). However, more recently, studies have indicated the presence of heterotrophic 

communities, prior to the establishment of autotrophs (Tscherko et al., 2003; Bardgett et al., 

2007). These heterotrophs can deplete the ancient autochthonous organic matter and 

nutrients that are already present in the exposed soils or use allochthonous nutrients received 

by aeolian deposition (Kastovska et al., 2005; Bardgett et al., 2007). Following the depletion 

of these stocks, photoautotrophic and diazotrohic organisms gain a competitive advantage 

and therefore become prevalent (Chapin et al., 1994; Sattin et al., 2009).  

 

It has been shown that microbial communities in forefields become more abundant, active and 

diverse with succession, due to the enhanced availability of organic matter, nutrients, and 

moisture (Kastovska et al., 2005; Nicol et al., 2005; Mindl et al., 2007; Schütte et al., 2010). 

However, some studies do not show this trend, which may be attributed to an increase in 

competition between microbes (Sigler and Zeyer, 2002; Zumsteg et al., 2013). Distinct shifts 

in community composition and functional diversity have been identified, indicating that the 

environmental factors present at each stage of succession are effective in selecting the 

dominant microbial communities (Tscherko et al., 2003; Nemergut et al., 2007; Frey et al., 

2013). These environmental factors include nutrient and organic matter availability, 

disturbances, water flow pathways, soil pH and minerology (Sakata Bekku et al., 2004; Frey 

et al., 2013). Consequently, whilst these factors drive changes along the chronosequence 

within a forefield, they also stimulate differences between forefields (Sigler and Zeyer, 2002; 

Liu et al., 2012). Research by Schütte et al., (2010) identified significant differences between 

bacterial communities in two adjacent glaciers, which share bedrock and dominant climate. 

These differences were attributed to UV exposure and moisture availability, largely in relation 

to topography, alongside the presence of vegetation (Schütte et al., 2010). This is supported 

by Meola et al., (2014), who show that environmental conditions are key drivers between 

successional differences, however stresses the importance of soil mineralogical properties in 

mediating bacterial community composition (Meola et al., 2014). 

 

More recently, microbial succession in glacial forefields has been represented by 

biogeochemical models, with the aim of delineating the complex nature of microbial dynamics 

and their role in soil development (Bradley et al., 2014). Bradley et al., (2015) presents the 

mathematical model SHIMMER, with the aim of simulating the initial microbial colonisation, 

prior to plant establishment. Whilst there are key uncertainties, such as the degree of aeolian 
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deposition, organic matter bioavailability and microbial activity constants, models such as 

SHIMMER provide new insights, supporting field studies on microbial succession (Bradley et 

al., 2015). Furthermore, incorporating biogeochemical models will become increasingly 

important for understanding modifications with global climate change (Bradley et al., 2014).  

 

The above discussion has highlighted the importance of environmental variables in controlling 

the rate, abundance and diversity of microbial succession (Göransson et al., 2011). These 

factors include the soil pH, oxygen, salinity, temperature, soil moisture, organic matter and 

nutrients, disturbances and competition (Hodkinson et al., 2003; Mindl et al., 2007). In 

particular, studies have noted nitrogen limitation as prevalent in newly exposed glacial soils 

(Kastovska et al., 2005; Mindl et al., 2007). Whilst initial soils are likely to be oligotrophic, 

nutrient concentrations following microbial succession are likely to be a result of the in-situ 

biotic and abiotic nutrient cycling, alongside the prevalence of aeolian deposition (Kastovska 

et al., 2005; Schmidt et al., 2008). Consequently, the following section will discuss nitrogen 

dynamics and the role of soil microbial communities during primary succession.  

1.3.4 Microbial nitrogen cycling in glacial forefields  

 

Nitrogen is a fundamental nutrient in forefield soils, required by plants and microbes for protein 

synthesis (Treseder, 2008). Bioavailable nitrogen, which can be readily assimilated, consists 

of organic nitrogen (ON), ammonia, nitrite (NO2
-) and nitrate (NO3

-) (Barber, 1995; Bremner, 

1965). The main sources of bioavailable nitrogen to forefield soils are from bedrock 

weathering, nitrogen-fixing microorganisms (diazotrophs), allochthonous deposition, 

degradation of organic material and in washing of snowmelt (Bradley et al., 2015). Typical 

nitrogen concentrations range between 0.2 – 2 mg g-1 in newly exposed soils, with studies 

observing a general increase with soil development (Strauss et al., 2009; Bradley et al., 2014).  

 

Nitrogen-fixing microorganisms are often shown to be prevalent in the initial pioneer 

communities (Duc et al., 2009; Strauss et al., 2009). If nitrogen levels in newly exposed soils 

are limited, nitrogen fixers obtain a competitive advantage, and readily colonise (Ohtonen et 

al., 1999; Strauss et al., 2009). This nitrogen fixation builds the bioavailable soil nitrogen 

stocks and facilitates the succession of higher microorganisms and vascular plants (Bradley 

et al., 2015). Nemergut et al., (2007) exemplifies this, utilising a chronosequence approach in 

three un-vegetated Peruvian successional soils. Low initial nitrogen concentrations were 

developed by nitrogen-fixing microbes, which increase the habitability of the soils for plant 

colonisation (Nemergut et al., 2007). Studies have identified a plenitude of nitrogen fixation, 

mineralisation and denitrification associated genes in glacial forefields (Deiglamayer et al., 
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2006; Duc et al., 2009). Duc et al., (2009) built upon this, and identified active nitrogen fixation 

was possible in forefield soils, through using assays sourced from Damma glacier soils (Duc 

et al., 2009). This therefore indicates the importance of free-living diazotrophs to nitrogen 

cycling, prior to the establishment of plants (Duc et al., 2009).   

 

However, additional sources, alongside nitrogen fixation have been identified as significant 

contributors to forefield nitrogen stocks (Bradley et al., 2014). Brankatschk et al., (2011) 

suggests that allochthonous deposition and remineralisation of overridden organic matter 

contributes significantly more than microbial communities to soil nitrogen stocks, supported 

by the limited number of nifH genes (encoding nitrogen fixation), found in Damma Glacier soils 

(Brankatschk et al., 2011). A significant increase in soil nitrogen may also be observed 

following the colonisation of soils by vascular plants, attributed to nitrogen from symbiotic root 

associated nitrogen fixers, and degraded plant litter (Bradley et al., 2014).  

 

Alongside nitrogen fixation, other components of the microbial nitrogen cycle have been 

identified in forefield soils (Brankatschk et al., 2011). Kandeler et al., (2006) identified an 

increase in denitrification-associated gene copies with soil development, which may be related 

to anoxic conditions from high moisture, plant dominated soils (Schluz et al., 2011).  

Furthermore, Brankatschk et al., (2011) identified nitrogen mineralisation, from decomposing 

organic matter as the most significant component of the nitrogen cycle in forefield soils. The 

findings also indicated low nitrogen fixation, nitrification and denitrification rates initially, 

however increased with soil age, related to increases in bioavailable nitrogen stocks 

(Brankatschk et al., 2011). Importantly, gene copy numbers were high throughout, and even 

during periods of low activity, highlighting the mismatch between gene abundance and activity 

(Brankatschk et al., 2011). 

 

Consequently, nitrogen dynamics within forefield soils are complex, and likely to vary both 

within and between locations, largely in relation to the prevalent environmental characteristics 

(Deiglamayer et al., 2006).  For example, in areas which nitrogen is restricted in the bedrock 

mineralogy, such as Damma glacier, Switzerland, the soils rely on nitrogen fixation and 

aeolian deposition as the primary sources (Schulz et al., 2013). However, in areas whereby 

nitrogen is readily sourced in initial soils from bedrock weathering, may depend less on 

microbial and allochthonous sources (Bradley et al., 2014).  

 

1.3.5 Carbon, phosphorous and sulfur in glacial forefields  
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Nutrient and organic matter inputs to glacial forefields can come from allochthonous sources, 

such as supraglacial or subglacial runoff, bird and mammal droppings and aeolian deposition 

(Zumsteg et al., 2012; Bradley et al., 2014). Additionally, in situ microbial activity can provide 

autochthonous sources of carbon, nitrogen, phosphate and sulfur (Hahn and Quideau, 2013).  

 

Carbon is fundamental to microbial and plant growth, providing the backbone for biological 

molecules. A range of carbon compounds can be utilized by microbes, such as CO2 which is 

fixed by autotrophic bacteria and plants, organic carbon molecules which are bioavailable for 

heterotrophic organisms, wind-blown hydrocarbons and ancient carbon from overridden soils 

(Hodkinson et al., 2002; Guelland et al., 2013). The total organic carbon (TOC) content of 

forefield soils typically ranges between 0.1 – 40 mg g-1 and increases with soil succession 

(Guelland et al., 2013; Bradley et al., 2014). Consequently, TOC content in forefields has been 

shown to increase in relation to soil age, attributed to the development of microbial 

communities and vegetation (Conen et al., 2007). Autotrophic microbes have been proposed 

as key facilitators for the build-up of organic carbon in forefield soils through CO2 fixation, 

particularly in newly exposed soils (Strauss et al., 2012). However, TOC can be supplied by 

aeolian deposition of materials such as soot or may already be present in soils in the form of 

ancient organic carbon, exposed by glacier retreat (Stibal et al., 2008; Guelland et al., 2013).  

 

Phosphorous is a key limiting nutrient for microbes and plants, used in the synthesis of nucleic 

acids and adenosine triphosphate (ATP). Phosphorous is commonly sourced from weathering 

of underlying bedrock in forefields and therefore soil minerology can be a key control on 

microbial growth potential in initial soils (Egli et al., 2012; Bradley et al., 2014). Similarly, to 

TOC, phosphorous content in forefield soils has been shown to increase with succession, 

ranging between 2 – 8 ug g-1 (Bradley et al., 2014). Furthermore, whilst not a required nutrient 

for all microbial growth, sulfur is cycled in soils through microbial redox reactions (Koltz et al., 

2011). Sulfur oxidation is used by microbes for energy and is coupled to the reduction of 

oxygen or nitrate, in aerobic or anaerobic conditions, respectively (Wainwright, 1978). The 

process oxidises elemental sulfur (S0) or reduced sulfur such as sulfide (H2S), to sulfate (SO4
2-

) (Wainwright, 1978). Conversely, SO4
2- can be used as a terminal electron acceptor for 

microbial oxidation of organic matter, in the absence of oxygen, forming reduced H2S (Widdel 

and Hansen, 1992). Evidence for microbial sulfide oxidation has been found across glacier 

forefields (Szynkiewicz et al., 2013; Wolicka et al., 2014). Bedrock minerology and subsequent 

weathering is a key source of sulfide to the soil microbial sulfur cycle (Synkiewicz et al., 2013).  
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1.4 Proglacial fjords and microbial communities  
 
 1.4.1 Fjord systems  

 

Proglacial fjords are at the interface between glacial meltwater and the open ocean. Glaciers 

supply freshwater, sediment and nutrients to saline nearshore waters (Davila et al., 2002; 

Lawson et al., 2014; Gutiérrez et al., 2015; Hawkings et al., 2015; Figure 1.1). This freshwater 

flux often stratifies the water column, creating a surface freshwater lens on top of dense saline 

waters (Prado-Fiedler, 2009). Fjord systems draining glacier ice fields, such as those in 

Southern Chile, are hotspots of primary productivity (Iriarte et al., 2007). These regions have 

been shown to have high rates of primary productivity, diverse ecosystem structures and to 

harbour unique surface and benthic communities (Iriarte et al., 2007). Fjords may be subject 

to gradients of meltwater influence, with reduced salinity, increased nutrients and suspended 

sediment close to the glacier terminus (Davila et al., 2002; Cowton et al., 2012; Lee et al., 

2013; Wadham et al., 2013). The biological implications of these gradients have yet to be fully 

understood. Bacterial community composition and function are likely to modify along these 

gradients, in line with salinity, light and nutrient content (Gutiérrez et al., 2015). Changes to 

bacterial communities may have impacts on local biogeochemical cycles, and the wider food 

chain (Meerhoff et al., 2013).  

 

Understanding the influence of glaciers on microbial communities is key in the context of global 

climate change. Glaciers, such as those in the Patagonian ice fields, are retreating and 

therefore proglacial fjords and in-situ microbial communities are likely to be influenced by short 

term increases in ice melt (Iriarte et al., 2014). By investigating and understanding microbial 

communities in current fjord systems, the future impacts of rising freshwater fluxes can be 

better understood.  

 

1.4.2 The influence of glacial meltwater   

 

When glacial meltwater drains through fjord systems, both vertical and horizontal 

environmental gradients in nutrients, light, salinity and sediment can be created (Iriarte et al., 

2014). This is due to the mixing of saline ocean water, and fresh glacial meltwater, and 

subsequent stratification of the water column (Iriarte et al., 2014). In Chilean fjords, high 

nutrient, saline, Sub-Antarctic water flows at depth, below a freshwater layer of glacial 

meltwater (Aracena et al., 2011). Mixing between the layers is crucial to distribute nutrients 

from deep water masses (Aracena et al., 2011). Environmental oxygen gradients may occur 

due to the stratified water column, and deep hypoxic zones may be created due to the lack of 
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replenishment of oxygen from surface waters (Silva and Vargas, 2014). Distinct gradients in 

nutrient content are probable due to the stratification, with surface waters likely to be low in 

nutrient content due to lack of mixing with deeper high nutrient bottom waters (González et 

al., 2013). This has been exemplified in the saline Sub-Antarctic bottom waters in Chilean 

fjords, which are high in both nitrogen and phosphate compared to surface waters (González 

et al., 2013). Consequently, glacial runoff may be a key source of nutrients, such as iron, 

silicon, phosphate and nitrogen to nutrient limited surface waters in Chilean fjords (Hood et 

al., 2009; Wadham et al., 2013). Glacial meltwaters have been shown to supply significant 

levels of silicon to surface waters, however may be low in nitrate (González et al., 2013). High 

nutrient bottom waters may therefore also be crucial in stimulating primary productivity through 

the supply of nitrate (and other limiting nutrients) to surface waters (Iriarte et al., 2014). This 

has been exemplified by spring blooms stimulated by vertical mixing of the water column 

(González et al., 2013). Distinct gradients in light attenuation may be created vertically and 

horizontally in glacially-fed fjords, due to the outflow of sediment in glacial runoff (Keck et al., 

2000). Glacier runoff has been shown to carry high sediment loads from glacial weathering, 

which are exported to downstream ecosystems (Hawkings et al., 2015). This sediment load 

may restrict light levels in surface waters close to the glacier outflow, however this effect is 

likely to reduce with distance from the runoff source (Keck et al., 2000; Hawkings et al., 2015).  

 

1.4.3 Microbial communities and fjord systems   

 

The vertical and horizontal environmental gradients in nutrients, salinity, light and sediment 

created by glacial outflow may influence microbial community structure and biogeochemical 

function (González et al., 2013; Gutiérrez et al., 2015). A stratified water column may 

encourage distinct regions of microbial growth depending on salinity tolerance, with organisms 

associated with freshwater environments more likely to be isolated in surface waters 

(Gutiérrez et al., 2015). Research by Gutiérrez et al., (2015) using 16s rRNA found distinctive 

seasonal meltwater influences on fjord microbial community structure from the Jorge Montt 

glacier (SW Chile). In Autumn, the high availability of meltwater was shown to encourage the 

presence of freshwater-tolerant organisms, alongside a greater bacterial richness in surface 

waters (Gutiérrez et al., 2015). Additionally, research by Dethier and Schoch (2005) found that 

changes in salinity to benthic populations reduced species richness. Nutrient and temperature 

gradients have also been shown to be key controls on the composition of fjord communities 

under the influence of glacial meltwater (Renner et al., 2012). The outflow of particulate matter 

in glacial runoff may have a significant influence on microbial community composition, function 

and primary productivity (Iriarte et al., 2014). Although particulate matter may supply additional 

nutrients to surface waters (Hawkings et al., 2015), the sediment may reduce light for 
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photosynthetic organisms (González et al., 2013). The reduction of light attenuation, alongside 

the increase in turbidity caused by glacial outflow, has been shown to limit primary productivity, 

reduce microbial abundance and modify community composition in glacially fed fjords (Keck 

et al., 2000; Iriarte et al., 2014). Research by Aracena et al., (2011) on the primary productivity 

of Chilean fjords showed that glacially fed waters had the lowest levels due to increased 

turbidity and reduced light levels. Overall, glacier outflow may have a significant influence on 

microbial community structure and function, through the development of environmental 

gradients (Iriarte et al., 2014). The impacts of this may be identified at the scale of the microbial 

community structure but also on the wider ecosystem function, such as the distribution and 

growth of fish (Landaeta et al., 2012; Gutiérrez et al., 2015).  

The microbial community of fjord benthic sediments may also be influenced through horizontal 

gradients in salinity, nutrients and temperature, created by glacial outflow (Keck et al., 2000). 

In particular, organic matter has been shown to increase from oceanic sediments to inner 

fjords, in relation to discharge from terrestrially fed rivers (Aracena et al., 2011). However, 

glacially fed fjords are likely to have reduced organic matter contents, largely due to the high 

inorganic sediment fluxes in rivers created from glacial weathering (Silva et al., 2008; Aracena 

et al., 2011). The limited organic matter content of glacier fed fjord sediments may also relate 

to the reduced primary productivity in surface waters from turbidity and limited light levels 

(Aracena et al., 2011). Consequently, glacier meltwaters may influence the structure, function 

and productivity of microbial communities in both the water column and the sediments of 

fjords.  

 
1.5 Proglacial environments and climate change  
 

The structure and function of proglacial microbial communities may be substantially modified 

with global climate change (Yde et al., 2011). Enhanced warming of polar regions will act to 

accelerate glacier melt rates and extent, promoting deglaciation (IPCC, 2013). Continued ice 

melt will expose undeveloped soils in proglacial forefields and drive increased meltwater fluxes 

into fjords (IPCC, 2013).  

 

It is important to understand forefield microbial communities and their succession, alongside 

how this may change with global climate change (Schulz et al., 2013; Bradley et al., 2014). 

Climate warming may modify soil successional pathways, the dominant microbial and plant 

communities, the biogeochemical cycling in these environments and the composition and 

fertility of developed soils (Davidson and Janssens, 2006; Schulz et al., 2013). Fjords draining 

glacial meltwater will experience enhanced freshwater fluxes with ice melt (Davila et al., 2002; 
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IPCC 2013). Changes to the salinity balance may modify the dominant microbial community 

structure and function, enhance water column stratification and subsequently modify local 

biogeochemical cycles (Meerhoff et al., 2013; Gutiérrez et al., 2015). Additionally, enhanced 

meltwater fluxes may increase sediment inputs to fjords and modify nutrient content (Iriarte et 

al., 2010; González et al., 2013). Not only does this have implications on the in-situ microbial 

communities, but also on nutrient dynamics and wider ecosystem functioning (Gutiérrez et al., 

2015). This is particularly significant in regions such as South West Chile, due to the 

commercial importance of Salmon fisheries, which rely on the supporting ecosystem to 

maintain productivity (Iriarte et al., 2010). By Investigating the current microbial community 

structure function and diversity, we can better understand how these may change in future 

years.  

 
1.6 Methodological considerations for investigating microbial communities  
 

1.6.1 Methods available  

 

A variety of methods are available to investigate microbial community composition and 

functional diversity. These techniques range from traditional microbial culture-based studies, 

to more recent molecular methods, such as metagenomics (Ward et al., 1990; Janssen et al., 

2002; Riesenfeld, 2004; Daniel, 2005; Teeling and Glockner, 2012). Whilst single organisms 

can be investigated through culture-based methods, developments in DNA sequencing have 

enabled whole environmental samples to be evaluated at once, using 16s amplicon 

sequencing and more recently, metagenomics (Tringe et al., 2005; Fierer et al., 2012). These 

methods are particularly interesting as they enable researchers to isolate the taxonomic 

diversity (16s), or both the taxonomic and functional potential of microbial communities 

(metagenomics) (Handelsman, 2004; Daniel, 2005; Fierer et al., 2012). This provides a more 

comprehensive insight into natural microbial communities, in comparison to growing a single 

organism independently (Torsvik and Øvreås, 2002). The available techniques to investigate 

microbial communities are discussed in this section, in the context of scientific developments 

and recent advances.  

 

1.6.2 Culture-based studies  

 

Microbial cultures have been extensively used in soil research to investigate single organisms, 

isolated from environmental samples (Teeling and Glockner, 2012). Cultures are used to 

identify new organisms, optimum growth conditions, the ability of organisms to grow under 

extreme stressors (such as darkness and low temperatures), metabolic functions and more 
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recently, used in DNA sequencing (Kirk et al., 2004). For example, Frey et al., (2013) carried 

out microbial cultures of bacteria isolated from the Damma glacier forefield to understand their 

role in granite weathering and therefore soil formation. However, less than 1% of organisms 

can be successfully cultured in laboratory conditions (Riesenfeld, 2004; Teeling and Glockner, 

2012). This was first identified as the ‘great plate count anomaly’ whereby laboratory cultures 

are unable to grow population sizes equal to those observed in natural samples (Handelsman, 

2004). Consequently, the majority of organisms and their metabolisms, remain unidentifiable 

through culture-based techniques (Reed et al., 2014; Riesenfeld, 2004). This has led to the 

emergence of molecular techniques, to investigate microbial genetic and functional diversity, 

without the need to culture (Streit and Schmitz, 2004; Thomas et al., 2012).  

 

1.6.3 First generation DNA sequencing  
 
The emergence and subsequent developments of DNA sequencing technologies have 

revolutionised our understanding of microbial communities (Rondon et al., 2000; Torsvik and 

Øvreås, 2002). Understanding the DNA sequence of a single organism (genomics), or multiple 

organisms (metagenomics) enables microbial taxonomy, phylogenetics and functional 

diversity to be inferred (Riesenfeld et al., 2004; Tringe et al., 2005; Tringe and Rubin, 2005). 

This is particularly significant for uncultured organisms, as sequencing allows an examination 

of the genetic structure, metabolic pathways and community diversity, without the need for 

laboratory growth experiments (Handelsman, 2004; Daniel, 2005; Xu, 2006).  

 

First generation DNA sequencing was based on the chain termination (or Sanger) method 

(Sanger et al., 1977; Swerdlow et al., 1990; Wooley et al., 2010). The isolated DNA or genes 

of interest were first amplified prior to sequencing, either by cloning plasmid vectors, or through 

artificial replication in using polymerase chain reaction (PCR) (Erlich, 1989; Weisburg et al., 

1991; Newton et al., 1997). In PCR, the DNA strands are denatured, a primer annealed and 

subsequently extended by DNA polymerase, to amplify the number of fragments (Shendure 

and Ji, 2008; Wooley et al., 2010). Di-deoxynucleoside triphosphates (ddNTPs) are 

incorporated, which act to halt DNA chain extension (Fierer et al., 2005). The DNA sequence 

is identified through electrophoresis, based on the fluorescent tag of the terminating ddNTPs 

(Shendure and Ji, 2008). Sequencing is repeated to ensure all areas of the gene (or genome) 

of interest are covered, however the read lengths returned by Sanger sequencing (up to 1,000 

base pairs) may still leave unresolved long repeat sequences (homopolymer regions) (Wooley 

et al., 2010).  
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1.6.4 Taxonomic marker genes  

 

PCR-based amplification is now fundamental in DNA sequencing and has given rise to 

improved taxonomic assignment of environmental samples (Riesenfeld et al., 2004; Blazewicz 

et al., 2013). Universal genes, such as 16s rRNA in bacteria, can be used as taxonomic marker 

genes, whereby gene specific primers are used in PCR, and the target regions are sequenced, 

rather than full genomes (Nübel et al., 1997; Handelsman, 2004). Sequences are 

subsequently compared to databases, and operational taxonomic units (OTUs) defined based 

on rRNA sequence similarity (Streit and Schmitz, 2004). The genetic structure and function of 

organisms in environmental samples is therefore inferred from the nearest sequenced 

neighbour, identified on the database (Riesenfeld et al., 2004). Additionally, non-universal, 

function specific, target genes can be used, such as nifH for nitrogen fixation, to understand 

the taxonomic diversity of a microbial population involved in a certain metabolic pathway 

(Gaby and Buckley, 2012). Molecular markers have become a popular mechanism for 

understanding taxonomic diversity, however do not isolate overall community microbial 

function or abundance, as the remaining (un-targeted) functional genes are not sequenced 

(Thomas et al., 2012).  

 

1.6.5 Next generation DNA sequencing 

 

Advances in sequencing technologies have led to the emergence of next generation (NGS) 

(or massively parallel) sequencing (Mardis, 2008). These technologies vastly improve on the 

speed, depth and cost of traditional Sanger sequencing methods (Metzker, 2010). This is due 

to the high throughput of NGS machines and the ability to sequence millions of DNA fragments 

at one time (Mardis, 2008; Shendure and Ji, 2008). The popular NGS platforms include 

Illumina, PacBio and Ion Torrent (Metzker, 2010; Liu et al., 2012). The use of these platforms 

has risen with developments in bioinformatics, such as increased data storage capacities and 

techniques for large dataset analysis (Mardis, 2008; Horner et al., 2009). Each platform 

provides a unique method for DNA sequencing, however they are all based on a ‘cyclic array’ 

approach (Shendure and Ji, 2008). This is where DNA is cycled through repeated steps of 

enzyme-initiated manipulation and DNA bases are read by imaging (Shendure and Ji, 2008). 

NGS techniques can be applied to both single genomes and metagenomes, to sequence 

specific genes, or the whole genomes/communities (Quaiser et al., 2002; Tringe and Rubin, 

2005; Delmont et al., 2011). All NGS sequencing platforms can produce mate-pair or paired-

end reads, whereby each DNA strand is sequenced in two directions, thereby providing the 

distance between each paired read (Shendure and Ji, 2008). This helps resolve structural 

rearrangements, such as INDELS (insertions or deletions), and repeat regions, especially 
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when a fully sequenced reference genome is not available (Hajirasouliha et al., 2010; Metzker, 

2010; Miller et al., 2010). NGS platforms produce varying read lengths, however the longer 

the read length provided, the higher the sequencing error rate (Teeling and Glockner, 2012). 

However, longer reads are beneficial for resolving large repeat regions, enhancing taxonomic 

and functional annotations and revealing structural rearrangements (Wommack et al., 2008). 

Illumina sequencing is currently widely used due to reasonable read lengths (150 – 300bp) 

and minor error rate (Illumina, 2018).  

 

However, NGS sequencing technologies still retain several limitations (Mardis, 2008; Ansorge, 

2009; Alkan et al., 2011; Teeling and Glockner, 2012). The cost of purchasing the sequencing 

platforms may hinder their use in some labs, alongside accounting for the cost of each round 

of DNA sequencing (Ansorge, 2009; Grada and Weinbrecht, 2013). Furthermore, as with 

Sanger sequencing, homopolymer regions may not be accurately resolved, due to spanning 

longer lengths than the short reads returned through sequencing (Alkan et al., 2011; Grada 

and Weinbrecht, 2013). Additionally, base call errors generally increase towards the 3’ end of 

read fragments, and therefore the error rate is not consistent throughout the sequencing run 

(Miller et al., 2010). Furthermore, the datasets returned by NGS place high computational 

demands on downstream analysis, often requiring complex bioinformatic pipelines to 

assemble, annotate, and investigate the resulting DNA sequences (Horner et al., 2009; Grada 

and Weinbrecht, 2013).  

 

Further technological advances from NGS platforms have enabled the development of third 

generation sequencing platforms (Schadt et al., 2010). Platforms have been provided by 

Pacific Biosciences (SMRT), Oxford Nanopore, Life Technologies (FRET) and Ion Torrent 

(Branton et al., 2008; Wash and Image, 2008; Ozsolak, 2012; Quail et al., 2012; Roberts et 

al., 2013). Whilst these technologies are still being established, they aim to improve the time 

and cost efficiency of DNA sequencing (Wash and Image, 2008; Schadt et al., 2010). SMRT 

(Single Molecule sequencing in Real Time), produced by PacBio, is based on sequencing 

individual fragments of DNA, and can provide read lengths of up to 15kb, however error rates 

are still high (Roberts et al., 2013). 

 
1.6.6 Metagenomics  

 

Metagenomics is a more recent approach to DNA analysis and involves sequencing the 

complete DNA of a microbial community without PCR amplification (Handelsman, 2004). As 

multiple genes are sequenced, this approach allows both taxonomic and functional annotation 

of the microbial community (Tringe et al., 2005). Consequently, metagenomics provides an 
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alternative to 16s amplicon sequencing, as the presence of functional genes allows an insight 

into the community’s metabolic potential, and thus, biogeochemical importance (Handelsman, 

2004; Daniel, 2005). Additionally, because this approach does not require DNA amplification, 

it is not susceptible to the bias typically introduced through PCR (Risenfeld et al., 2004). 

However, much greater quantities of DNA are required prior to sequencing, which restricts the 

analysis of low biomass samples (Yilmaz et al., 2010). As metagenomics supplies 

substantially more data than amplicon sequencing and requires greater downstream 

processing, the post-sequencing analysis process is more demanding (Schmieder and 

Edwards, 2011). The relatively recent introduction of this technique means there is a lack of 

formalised guidance or software for the analysis of metagenomic data, hindering its uptake by 

the scientific community.  

 

Metagenome sequence assembly and annotation 

 
NGS metagenome sequencing supplies short DNA fragments, which depending on the 

sequencing platform, can range from 100bp (SOLiD) to 1000bp (Sanger) in length (Miller et 

al., 2010). These raw reads can be directly interpreted using analysis packages such as MG-

RAST, for taxonomic and functional annotation (Glass et al., 2010). As these annotations are 

often made by aligning the DNA fragments to genes in databases, such as NCBI GenBank, 

the short length of the fragments limits the quality and magnitude of the possible alignments 

(Howe et al., 2014; Vázquez-Castellanos et al., 2014). Consequently, to provide better 

sequence annotations, the read fragments can be assembled into longer contigs using a 

sequence assembler (Nagarjan and Pop, 2013). This is particularly important for accurately 

understanding the metabolic function or phylogenetic diversity of the sequenced organisms 

(Pignatelli and Moya, 2011). This is because annotating genes with functional and taxonomic 

identity involves alignment to databases, and sequences which are longer in length will 

provide more accurate alignments (Van der Walt et al., 2017).  

 

Sequence assembly  
 

Sequence assembly aims to reconstruct the gene, genome or metagenome that was 

sequenced (Miller et al., 2010). This involves identifying overlaps in the raw DNA read 

fragments, using an assembly algorithm, generating longer fragments (contigs) (Narzisi and 

Mishra, 2011). This is particularly important when using NGS platforms which supply short 

read fragments that are difficult to directly interpret (Mende et al., 2012). The length of overlaps 

between raw reads are defined by the user, based on a specified k-mer value (a sequence of 

k- base calls) (Narzisi and Misha, 2011). The contigs generated can be built into a scaffold, 
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which define the orientation and order that the contigs occurred in the original genome (Myers 

et al., 2000; Peng et al., 2012). Sequence assemblers assume that similar fragments occur at 

proximity within a genome, however this may be fundamentally undermined by the presence 

of repeats that occur throughout the genome, or between genomes (Nagarjan and Pop, 2013). 

These repeats are less problematic when they fall within the read length, however become 

harder to resolve when they span longer than the sequencing read length (Narzisi and Misha, 

2011). Repeat sequences, short reads and sequencing errors are the key issues that face 

assembly algorithms (Narzisi and Misha, 2011).  

 

There are two dominant approaches for NGS sequence assembly; reference guided and de 

novo (Miller et al., 2010; Zhang et al., 2011). Reference guided assembly is used for single 

genomes, when a ‘gold standard’ assembled genome is available to assist the assembly of 

the raw sequence data (Cattonaro et al., 2010). Typically, the raw sequencing reads are 

aligned against the reference genome, to help guide the assembly (Vezzi et al., 2011). De 

novo sequence assembly is used in the absence of a reference genome and can be used for 

both single and metagenome datasets (Zhang et al., 2011). De novo assemblers aim to merge 

the short sequencing reads based on common overlapping fragments of a specified length (k-

mers) (Miller et al., 2010). These assemblers therefore aim to simplify the raw dataset and 

reproduce the metagenome in the environmental sample (Nagarjan and Pop, 2013). There 

are three key approaches to de novo assembly, which include; Greedy algorithms, Overlap 

Layout Consensus algorithms (OLC) and de Bruijn graph algorithms (Miller et al., 2010).    

 

Greedy sequence assembly algorithms work by selecting the highest scoring read overlaps, 

before merging raw reads into longer contigs (Miller et al., 2010; Zhang et al., 2000). This is 

carried out until all the available merges have been exhausted (Narzi and Misha, 2011). 

Heuristic corrections are carried out on each merge, with assembly gaps left in regions where 

corrections are not possible (Zhang et al., 2000). Greedy algorithms consequently provide a 

set of assembled contigs, for a single genome or metagenome (Pop, 2009). Examples of 

assemblers based on this algorithm include PHRAP, CAP3, PCAP, TIGR, SSAKE and 

Phusion (Sutton et al., 1995; Huang and Madan, 1999; Mullikin and Ning, 2003; Bastide and 

McCombie, 2007; Warren et al., 2007; Simpson et al., 2009; Pignatelli and Moya, 2011).  

 

OLC algorithms are optimally used on raw reads exceeding 200bp in length (Zhang et al., 

2011; Deng et al., 2015). This algorithm works by graphically representing the sequencing 

reads and the base pair overlaps between them (Miller et al., 2010; Nagarjan and Pop, 2013). 

The overlaps are generated through pairwise comparisons of the raw reads, by in built aligners 

(Narzi and Misha, 2011). Each graph node comprises a metagenome read, with the edges 
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connecting nodes representing the overlaps between reads (Miller et al., 2010). Contigs are 

graphically shown by the paths running through the graph, connecting nodes (Deng et al., 

2015). The aim of OLC algorithms is to simplify the raw assembly graph by connecting each 

node (raw read) to a single ‘Hamiltonian’ path (Miller et al., 2010). However, the presence of 

inter and intra genome repeats and sequencing errors result in multiple diverging paths (Miller 

et al., 2010; Deng et al., 2015). Whilst OLC algorithms are computationally expensive, they 

can incorporate both forward and reverse DNA strands, alongside distinguishing the 5’ and 3’ 

read ends (Miller et al., 2010; Narzi and Misha, 2011). Examples of OLC based sequence 

assemblers include Edena, MIRA and Celera (Denisov et al., 2008; Hernandez et al., 2008).  

 

Finally, de Bruijn graph-based assemblers are optimal for short reads around 100bp, such as 

those obtained from Illumina sequencing (Miller et al., 2010). Similar to OLC, the algorithm 

represents the assembly graphically, through a series of edges and nodes (Nagarjan and Pop, 

2013). Sequencing reads are split up into fragments of length k (k-mers) and represented by 

edges on the graph (Narzi and Misha, 2011). The k-mer length is specified by the user and 

must be below the read length (Narzi and Misha, 2011). The defined k-mer length is significant, 

as reads significantly longer than length k will be fragmented, prior to being re-assembled 

(Miller et al., 2010). Nodes on the graph represent the read overlaps, of length k-1 (Nagarjan 

and Pop, 2013). Consequently, nodes connect two edges if they share a common sequence 

of k-1 length (Nagarjan and Pop, 2013).  As with OLC algorithms, de Bruijn graphs aim to 

simplify the assembly by merging reads into contigs and forming a single sequence (an 

Eulerian path) (Pevzner et al., 2001; Conway et al., 2012). Repeats and errors prevent the 

assembly of a single large sequence, so contigs are merged and extended before the paths 

branch, resulting in numerous Eulerian paths (Pevzner et al., 2001; Narzi and Misha, 2011; 

Pignatelli and Moya, 2011). Miller et al., (2010) identifies three key types of errors that may be 

represented in a fragmented de Bruijn graph (Miller et al., 2010). ‘Bubbles’ are created when 

the Eulerian path splits and subsequently recombines due to errors in the centre of a read 

(Miller et al., 2010). ‘Spurs’ are created when a second Eulerian path is generated, due to an 

error at the 3’ end of a sequencing read (Pevzner et al., 2001; Miller et al., 2010). Finally, 

‘cycles’ form when two paths converge due to repeat sequences, present in multiple reads, 

which ideally need to be separated (Miller et al., 2010). Whilst these graphical representations 

are computationally expensive, both forward and reverse DNA reads can be represented as 

k-mers (Narzi and Misha, 2011). Assemblers that utilise the de Bruijn graph algorithm include 

Velvet, IDBA, SOAPdenovo, CLC, AllPaths, metaSPAdes and AbySS (Butler et al., 2008; 

Zerbino and Birney, 2008; Simpson et al., 2009; Li et al., 2010; Miller et al., 2010; Peng et al., 

2010; Nurk et al., 2017).  
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Sequence annotation 

 

Following DNA sequencing and assembly, contigs can be annotated with their taxonomic and 

functional identity, using a database (Thomas et al., 2012). Annotation software and pipelines 

exist, such as MG-RAST, which allow short unassembled reads to be annotated (Wooley et 

al., 2010; Vincent et al., 2013). However, assembled contigs with longer lengths pose fewer 

challenging alignments to gene databases and can provide more accurate results, given a 

high-quality assembly (Thomas et al., 2012). Taxonomic and functional annotation of 

assembled contigs can be carried out using a range of algorithms and software platforms, 

such as MEGAN and IMG/M (Huson et al., 2007; Chen et al., 2017). These programs provide 

homology and sequence similarity alignments to databases such as NCBI GenBank, KEGG 

and eggNOG, to reveal the taxonomic distribution and functional potential of metagenomes 

(Kaneisha and Goto et al., 2000; Benson et al., 2005; Huerta-Cepas et al., 2015).  

 
The choice of assembler  

 
When conducting a genome or metagenome assembly, the user is faced with numerous 

choices. In the absence of a reference genome, a de novo assembly must be carried out, 

however the assembly algorithm and specific assembler need to be selected (Zhang et al., 

2011).  There is currently an absence of formalised guidance on assembler selection and 

evaluation (Arumugam et al., 2010). The decision-making is therefore left to the user, with the 

dataset size, complexity and availability of computational power all key considerations 

(Finotello et al., 2011). Consequently, it is important for the user to evaluate and compare 

assemblers, to make an informed decision (Kurtz et al., 2004; Peng et al., 2012; Howe et al., 

2014).  

 

Greedy algorithms are simple, less computationally expensive, and apply well to single 

genomes, with minimal repeats (Zhang et al., 2011). On the other hand, the graph-based 

algorithms, OLC and de Bruijn, are more computationally expensive, however function better 

for complex genomes or metagenome samples, with repeat structures (Zhang et al., 2011). 

Furthermore, as all NGS platforms vary in terms of the error rate, read lengths, coverage depth 

and evenness, different assemblers will be better aligned to one platform than another (Earl 

et al., 2011). Whilst the quality of the assembly does inherit issues from the sequencing 

platform (base call errors, short read length), the assembler selected will introduce variances 

through contig length, miss-joined contigs and single nucleotide polymorphisms (SNPs) 

(Finotello et al., 2011; Salzberg et al., 2012). For example, some assemblers, such as 

SOAPdenvo prioritise extending the contig lengths, at the expense of accuracy (thereby 
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increasing the number of erroneous contigs) (Salzberg et al., 2012). It is therefore important 

to compare different assembly algorithms and assemblers for the sequenced dataset in 

question, however this is seldom done (Finotello et al., 2011; Lin et al., 2011).  

 

As metagenomics has been newly introduced into the field of microbial ecology, it is still not 

widely utilised. This largely relates to the cost, computational intensity and popularity of other 

community analysis approaches such as 16s amplicon sequencing (Handelsman, 2004). 

However, the use of this approach is rising, with more papers incorporating metagenomes to 

study functional ecology (Eloe-Fadrosh et al., 2016a). Consequently, there is a growing need 

for guidance on assembler use and choice for environmental data analysis. Additional 

guidance may aid the incorporation of this technique into the research community, highlighting 

the benefit and need for metagenome assembly and evaluation.  

 
Selecting an appropriate assembler  

 

To choose an appropriate assembler, several platforms can be compared using the same 

dataset, and evaluated using selected metrics. However, a range of evaluation metrics exist, 

none of which provide a complete or standardised evaluation of assembly quality (Arumugam 

et al., 2010). Traditionally, studies have looked at measures of the assembly size, including 

the number of contigs produced, the mean contig lengths and the contig N50 length (Earl et 

al., 2011). However, a long contig length does not fully indicate the assembly quality, as long 

contigs may be a result of misjoins, and the N50 value cannot be directly compared across 

assemblies (Finotello et al., 2011). Consequently, an additional measure can look at the 

accuracy of the assembly, by mapping the assembled contigs to a reference genome if 

available, identifying any mismatched regions (Miller et al., 2010; Narzisi and Misha, 2011). 

Quantification of the metagenome coverage may also be utilised, which involves mapping the 

raw sequence reads to the assembled contigs and identifying the number of which can be 

correctly aligned (Earl et al., 2011; Huson et al., 2001). The optimal assembly will utilise all 

raw sequencing reads supplied, and any errors will be random (Kumar and Blaxter, 2010; 

Bräutigam et al., 2011). Typically, as assemblies tend to trade-off contig length and quality, it 

is important to combine a series of measures that look at the size, coverage and accuracy of 

the assembly (Nagarjan and Pop, 2013).  

 

Traditional studies may only choose a single assembler, with selection based on previous 

findings. This may be due to the complex nature of the raw data and the computational 

intensity required to carry out an assembler comparison (Najaran and Pop, 2013). Evaluation 

metrics are often presented to validate the choice of assembler, for example by showing N50 
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values in comparison to those of other studies (Miller et al., 2010). Some studies have carried 

out comparisons between assembly algorithms to resolve a specified dataset or have used 

simulated datasets to test assembler quality (Narzisi and Misha, 2011; Lin et al., 2011). 

However, these have been restricted to single genome assemblies or using contigs from 

human samples, or combined human and environmental datasets (Huson et al., 2001; 

Mavromatias et al., 2007; Earl et al., 2011; Pignatelli and Moya, 2011; Saltzberg et al., 2012). 

More recently, a study by Vollmers et al., (2017) compared assemblers using real Illumina 

sequencing data for forest soil and algal biofilms. This study highlighted the importance of 

comparing assemblers on multiple metrics, however did not investigate parameter settings, 

all assembly algorithms or use simulated data to test the accuracy of assemblers (Vollmers et 

al., 2017). Additionally, Sczyrba et al., (2017) compared a range of software for metagenomic 

data analysis, including assemblers, using artificial metagenomes. However, as this study 

utilised newly sequenced genomes, the analysis was not specific to bacteria, and in particular, 

those from heterogeneous environmental samples, such as soils. Thus far, there is no 

assembler comparison available specifically for studies investigating bacterial communities 

obtained from sediment or soil.  

 
1.7 Summary and research gaps  
 
Diverse and unique microbial life can be found in proglacial regions, including forefield soils 

and proglacial fjords. These microbes can be subject to distinct environmental gradients and 

biogeochemical perturbations created by ice melt, which may modify community structure and 

function. In proglacial soils, ice melt and glacier retreat expose undeveloped soils, providing 

an opportunity to study microbial colonisation and development. These microbial communities 

are likely to modify in line with soil development and may have key roles in soil biogeochemical 

cycling, such as the nitrogen cycle. Understanding community composition and development 

in terms of structure and function will aid our understanding of microbial colonisation in 

extreme environments, and the role of these organisms in nutrient cycling. In proglacial fjords, 

microbial communities are subject to environmental perturbations from glacial freshwater 

fluxes. These fluxes create distinct changes to salinity, sediment, light attenuation and 

nutrients in fjords, which again may influence the microbial community taxonomic and 

functional diversity. As meltwater fluxes continue to increase with climate change, meltwater 

may pose challenges to the wider biogeochemical functioning of fjords. This is particularly 

important as fjords in regions such as Chilean Patagonia have been shown to be hotspots of 

primary productivity, and support commercially significant fisheries. Understanding current 

community composition and function will help us understand how microbial communities may 

contribute to biogeochemical cycling and how this may change in the future.  



	 35	

 

Metagenomics is a technique which can be used to profile both the taxonomic and functional 

diversity of microbial communities. It can therefore be applied to the understanding of 

microbial communities in proglacial regions. The assembly of metagenome sequencing data 

can improve downstream functional and taxonomic annotation, and thus, can raise the 

accuracy of ecological conclusions. However, the lack of guidance and complex nature of 

DNA assembly means there is a minimal uptake within the field of microbial ecology. Selecting 

an appropriate assembler for the data type in question is paramount, to obtain an improved 

outcome and minimise erroneous results. Consequently, additional guidance for the selection 

of metagenome assemblers is needed, to improve the outcome of assembly-based studies 

and encourage the use of DNA assembly. This is particularly needed in the field of soil 

microbial ecology, as limited focus has been made to this research group.  

 

1.8 Aims and objectives  
 

Objective 1: To compare the performance of five publicly-available metagenome assemblers 

for soil bacterial communities   
 
Metagenomics involves the study of all genes present in a microbial community sample. The 

analysis of the community gene pool provides information on both the taxonomic and 

functional composition. This provides an insight into the potential role of the microbial 

community in local biogeochemical cycles. Assembling short metagenome DNA sequencing 

reads is beneficial to obtain longer fragments (contigs) for alignment to functional gene 

databases. However, there is currently no formailsed guidance for the assembly of complex 

bacterial communities isolated from soil samples. In particular, the choice of metagenome 

assemblers for this research community requires further investigation. This study investigated 

the performance five publicly available metagenome assemblers, spanning the three dominant 

assembly algorithms (OLC, de Bruijn graph and Greedy). The assemblers were evaluated 

based on a series of artificial soil metagenomes of varying complexity, with evaluation based 

on assembly size, completeness and contiguity. Overall, the choice of assembler was shown 

to influence assembly quality and thus downstream functional or taxonomic annotation. The 

more complex de Bruijn graph assemblers, metaSPAdes and CLC provided the highest quality 

assemblies. This is because these assemblers have more tuneable parameter settings to fit 

the data type in question and are better suited for short reads returned from Illumina 

sequencing. It is hoped that the results from this work will help guide assembler selection for 

the soils community, alongside highlighting the importance of informed choice in the use of 

metagenome assembly tools.  
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Objective 2: To investigate the similarities and differences in taxonomic composition of 

diazotrophic bacteria in metagenomes sampled from four Arctic glacier forefields  

 

Published in FEMS Microbiology (Nash et al., 2018).  

 

Microbial nitrogen fixation is crucial for building labile nitrogen stocks and facilitating higher 

plant colonization in oligotrophic glacier forefield soils. Here, the diazotrophic bacterial 

community structure across four Arctic glacier forefields was investigated using metagenomic 

analysis. In total, 70 soil metagenomes were used for taxonomic interpretation based on 185 

nitrogenase (nif) sequences, extracted from assembled contigs. The low number of recovered 

genes highlights the need for deeper sequencing in some diverse samples, to uncover the 

complete microbial populations. A key group of forefield diazotrophs, found throughout the 

forefields, was identified using a nifH phylogeny, associated with nifH Cluster I and III. 

Sequences related most closely to groups including Alphaproteobacteria, Betaproteobacteria, 

Cyanobacteria and Firmicutes. Using multiple nif genes in a Last Common Ancestor analysis 

revealed a diverse range of diazotrophs across the forefields. Key organisms identified across 

the forefields included Nostoc, Geobacter, Polaromonas and Frankia. Nitrogen fixers which 

are symbiotic with plants were also identified, through the presence of root associated 

diazotrophs, which fix nitrogen in return for reduced carbon. Additional nitrogen fixers 

identified in forefield soils were metabolically diverse, including fermentative and sulfur cycling 

bacteria, halophiles and anaerobes.   

 

Objective 3: To investigate the bulk microbial community composition along a 

chronosequence of soil succession in the Midtre Lovénbreen forefield, Svalbard, using 

metagenomics 

 

Arctic glaciers are currently undergoing retreat with global climate change, revealing 

undeveloped soils at the glacier terminus. These soils can be used to study succession, 

utilising a chronosequence based approach along a transect of soil age and development. 

Understanding microbial communities in the Arctic is important for our understanding of 

microbial function, diversity and importance in harsh oligotrophic, cold conditions. Additionally, 

microbial succession in Arctic forefields may provide insights into how extra-terrestrial life may 

colonise on cold planets such as Mars. Whilst some research has been carried out using 16s 

rRNA sequencing on forefield communities, metagenomics has yet to be applied to 

understanding succession. This study used metagenomes spanning the forefield of Midtre 

Lovénbreen glacier, Svalbard, to investigate microbial community development. A 

combination of metagenome DNA reads, assemblies and genome binning were used to gain 
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an insight into microbial taxonomy and function during soil development. A diverse range of 

microbes were recovered, including those with carbon, sulfur and nitrogen cycling 

metabolisms. Cyanobacteria were detected in early soils, attributed to their ability to fix carbon 

and nitrogen in oligotrophic conditions, alongside the production of protective EPS. The 

microbial community was shown to modify along the chronosequence, in line with the 

establishment of labile carbon and nitrogen pools. Overall, this study provided an insight into 

the diversity and metabolic potential of microbial communities during forefield succession and 

highlighted the potential of metagenomic analysis for those studying Arctic microbial ecology.  

 
Objective 4: To investigate the composition and potential function of microbial communities 

sourced from benthic metagenomes in a Chilean fjord.  
 
The fjord systems of Chilean Patagonia contain three UNSECO bio-reserves, support 

commercially important Salmon fisheries and host high rates of primary productivity. These 

fjords are particularly of interest due to the interaction of glacial meltwater from Patagonian 

ice fields with marine waters, harboring a range of physico-chemical conditions for microbial 

life. However, the microbiology of the fjord sediments, crucial for understanding the wider 

ecosystem functioning, has received limited research attention. 

 

This study applied metagenomics to understand the taxonomic diversity of uncultured benthic 

sediment metagenomes from a Patagonian fjord. The uncovered taxonomic diversity was 

used to drive genome binning and functional analysis, providing insights into the novelty, 

metabolic potential and ecological diversity of these microbial communities. In particular, 

extremophiles associated with anoxia and oligotrophy were detected. Despite the harsh nature 

of the environment, organisms with carbon, nitrogen and sulfur metabolisms were detected, 

indicating a range of potential biogeochemical cycles. Additionally, the results highlight the 

novelty of the microbial community, with the potential for new genomes within the samples. 

The findings provide an insight into this unique environment, whist highlighting areas where 

targeted single cell genome sequencing and culture-based studies may be beneficial.  
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2.1 Introduction  
 
Natural soils incorporate complex and dynamic bacterial communities, which play important 

roles in local biogeochemical cycles, such as nutrient cycling and carbon fixation (Handelsman 

et al., 1998; Van Der Heijden et al., 2008). Investigating these communities from a genomic 

perspective aids understanding of their taxonomic composition and functional potential, and 

how this changes between locations or over environmental gradients (Cong et al., 2015). 

However, due to the complex structure of soils, small spatial scale of biogeochemical 

processes and heterogeneity of bacterial life, it is difficult to extract and culture cells for 

analysis (Riesenfeld et al., 2004; Teeling and Glockner, 2012). Whilst some studies have used 

16s rRNA amplicon sequencing and microarrays to investigate soil bacterial communities, 

these provide limited information on novel uncultured organisms and the functional genes they 

contain (Fierer et al., 2012; Cong et al., 2015). A more comprehensive understanding of 

microbial communities may be obtained through metagenomics, as ideally the complete 

microbial DNA is sequenced (Daniel, 2005; Handelsman, 2004). This provides the user with 

information on the community composition and functional genes, therefore highlighting the 

potential contribution of the community to local biogeochemical processes (Tringe et al., 2005; 

Tringe and Rubin, 2005).  

 

There is currently a limited (but growing) uptake of metagenomic sequencing in the microbial 

ecology community, largely related to the considerable use and lower cost of 16s amplicon 
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sequencing (Risenfeld et al., 2004). However, metagenomics has been explored more 

extensively in other fields, for example in studying the human gut microbiome (Guill et al., 

2006; Qin et al., 2010; Qin et al., 2012). The approach is gaining interest from the microbial 

ecology community, as more research has been published exemplifying the possibilities with 

metagenomic data from environmental samples (Piganeau and Moreau, 2007; Makelprang et 

al., 2011; Pearce et al., 2012; Eloe-Fadrosh et al., 2016a). As there is a lack of guidance on 

metagenome data analysis, the majority of studies use short unassembled sequencing reads, 

in programs such as MG-RAST (Meyer et al., 2008; Glass et al., 2010). This may not be 

optimal, as the short DNA fragments may not provide good alignments to taxonomic and 

functional databases during metagenome annotation, limiting the potential of the data analysis 

(Van der Walt et al., 2017). Consequently, assembling the DNA fragments into longer contigs, 

using a metagenome assembler, can improve the dataset annotation quality (Nagarjan and 

Pop, 2013). Assembled metagenomes have enabled scientists to explore community 

functional genes in greater detail, such as through comparing environments or even 

assembling complete genomes from metagenomic datasets (Sharon and Banfield, 2013; 

Eloe-Fadrosh et al., 2016b). However, it must be acknowledged that assembly may not always 

be the optimal approach, for example when investigating highly diverse, novel and fragmented 

metagenomes, which can be harder to assemble.  

 

A limited number of ecological studies have started assembling metagenome DNA, however 

these studies often select a single assembler without justification for that choice (Najaran and 

Pop, 2013). This is widely accepted, as there is limited formalised assembler comparisons or 

guidance specifically for the analysis of bacterial microbial communities sourced from soils. 

However, as assemblers are based on multiple algorithms, they will work differently depending 

on the sequencing platform, community structure and complexity of the input dataset (Zhang 

et al., 2011). Testing several assemblers for the type of dataset in question, selecting the best 

performing algorithm, can enhance the quality of the metagenome assembly, and therefore 

annotation (Kurtz et al., 2004; Peng et al., 2012; Howe et al., 2014). More accurate functional 

annotations will not only increase the reliability of the ecological conclusions drawn, but also 

enable more detailed analysis of the microbial community, such as extracting single draft 

genomes from community datasets (Eloe-Fadrosh et al., 2016b). Several studies have 

attempted assembler comparison for animal, human and mixed environmental samples 

(Mavromatis et al., 2007; Lin et al., 2011; Zhang et al., 2011; Peng et al., 2012; Deng et al., 

2015; Sczyrba et al., 2017; Vollmers et al., 2017). However, many of these comparisons have 

been for single genome assemblies, not metagenomes, or focused on mixed environmental 

metagenomes from numerous habitats (Earl et al., 2011; Salzberg et al., 2012; van der Walt 

et al., 2017; Vollmers et al., 2017). The recently completed CAMI inter-comparison aimed to 
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evaluate software for metagenomic data analysis, including assemblers, based on simulated 

metagenomes (Sczyrba et al., 2017). However, this study used newly sequenced genomes 

from a range of sources, spanning Bacteria, Archaea and Fungi (Sczyrba et al., 2017). Thus 

far, there has been no assembler comparison focused on complex soil bacterial communities, 

comparing all assembly algorithms.  

 

When conducting an assembler comparison, simulating artificial microbial communities to use 

as the test dataset(s) is often useful (Mavromatis et al., 2007; Sczyrbra et al., 2017; van der 

Walt et al., 2017). This allows the user to construct the input dataset, and therefore evaluate 

how well the assemblers do in recreating it (Mavromatis et al., 2007). These simulated 

datasets can contain DNA sequences of choice from publicly available databases, alongside 

artificially introduced sequencing errors, to reflect typical metagenome data preparation 

(Mavromatis et al., 2007). It is important to conduct assembler comparisons using multiple 

evaluation measures, including both contiguity and completeness (Arumugam et al., 2010; 

Vollmers et al., 2017). This will highlight any assemblers that are producing long, but 

erroneous contigs (Kumar and Blaxter, 2010; Bräutigam et al., 2011).  

 

Here, five publicly available metagenome assemblers, spanning the three main assembly 

algorithms, were compared for four artificially curated soil metagenomes of different 

complexity. Assembler evaluation was carried out using both the contiguity and completeness 

of metagenome assemblies. This study aims provide a more standardized method for the 

assembly of complex soil metagenome data, aiding assembler choice within the soil bacterial 

ecology community.  

 

2.2 Methodology 
For this analysis, five metagenome assemblers were selected for comparison, spanning the 

three key assembly algorithms (Arumugam et al., 2010; Zhang et al., 2011). A summary of 

these assemblers can be identified in Table 2.1.  
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Table 2.1: The five assemblers used in the evaluation, detailing the assembler version and 
algorithm, alongside assembly specific details.  

 

 

To test these assemblers, an artificial metagenome was created in MetaSim, incorporating 

123 complete soil bacterial genomes downloaded from NCBI GenBank, identified in Table 2.2 

(Richter et al., 2008). Simulated Illumina sequencing errors were introduced to the 

metagenome to replicate typical sequencing error profiles, such as declining sequencing 

quality with run time (Richter et al., 2008). Four variants of the artificial metagenome were 

created (A-D), with increasing levels of complexity, each containing 10,000000 reads, 80 base 

pairs (bp) in length (Table 2.3). The metagenome size was selected as a trade-off between 

accurately representing soil metagenome sizes, whilst minimising computational 

requirements. Metagenome complexity modifications were carried out by amending the 

abundance profile of bacterial species in the MetaSim simulations, in line with the 

methodology of Mavromatis et al., (2007). The low complexity community (Metagenome A) 

Assembler Algorithm Assembly details 

MetaSPAdes 3.7.0 
 
(Nurk et al., 2013) 

de Bruijn graph Assembly run in paired end mode, with error correction switched 
off (--only-assembler flag) as base quality values are required for 
this, however are not supplied in the MetaSim datasets. Read 
coverage cut-off was not set as this cannot be used in paired end 
mode.  
 
Key parameter to modify was the kmer length, which ranged 
between 21 and 71.  
 

SSAKE 3.8.4 
 
(Warren et al., 2007)  

Greedy  Assembly run in paired end mode. 
 
Key parameters to modify were the minimum contig coverage 
depth, the minimum number of overlapping bases required for a 
consensus sequence join, and to trim bases when all other 
extension prospects have been trialled.  
  

ABYSS 1.9.0 
 
(Simpson et al., 
2009) 

de Bruijn graph Key parameters to modify were the kmer length, the minimum 
contig coverage and to pop assembly bubbles below a threshold 
value.  
 

MIRA 4.0 
 
(Chavreux, B., 2014) 

Overlap layout 
consensus 

Assembly run without base quality values, using the –
no_qualities flag, as these are not supplied by Metasim. 
Assemblies were run using the flag for Illumina input data 
(SOLEXA_SETTINGS).  
 
Key parameters to modify were the minimum read length used in 
the assembly and the minimum contig length.   
 

CLC 4.4.1 
 
(Qiagen 
Bioinformatics, 2016) 

de Bruijn graph Assembly run in paired end mode without scaffolding.  
 
The key parameters to modify were the minimum output contig 
length, the minimum word size for the de Bruijn graph, and the 
maximum assembly bubble size allowed.  
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contained a small number of high abundance organisms, with the remainder of the bacterial 

population at a lower abundance. This theoretically would allow a good assembly of the high 

abundance bacteria, due to an increase in read coverage for those organisms (Mavromatis et 

al., 2007). In contrast, the high complexity community (Metagenome D) contains organisms 

at a range of abundance levels, with varying levels of coverage. As the population abundance 

is more variable, the assemblers may create a smaller and more erroneous output, for 

example by increasing the number of chimeric contigs, whereby reads from different 

organisms are merged (Mende et al., 2012). This is because there would be reduced 

sequencing support for each read from low abundance organisms, thereby causing difficulties 

in assembling regions with long repeats or INDELS. Furthermore, a default dataset with even 

coverage (or abundance) across all bacteria (Metagenome A) was also included. This is to 

remove the effect of high abundance organisms, which, due to the associated increase in read 

coverage, tend to pull the average assembly quality up (Mavromatis et al., 2007). In total 100 

assemblies were carried out, with the full list available in Appendix 1 Table 1.  

 

Table 2.2: Complete bacterial genome sequences used for artificial metagenomes created in 
MetaSim, sourced from NCBI GenBank. GenBank ID numbers are given, alongside genome 
description.  

 
No. 

 
NCBI accession number NCBI sequence name 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

CP007128.1 
NC_000964.3 
NC_002516.2 
NC_002942.5 
NC_002947.3 
NC_003030.1 
NC_003155.4 
NC_003210.1 
NC_003212.1 
NC_003366.1 
NC_003450.3 
NC_003888.3 
NC_003902.1 
NC_004668.1 
NC_004722.1 
NC_005085.1 
NC_005296.1 
NC_005957.1 
NC_006177.1 
NC_006270.3 
NC_006361.1 
NC_006582.1 
NC_006834.1 
NC_007005.1 
NC_007404.1 
NC_007406.1 
NC_007761.1 
NC_008009.1 
NC_008255.1 
NC_008536.1 
NC_008555.1 
NC_008593.1 
NC_008711.1 

Gemmatimonadetes bacterium KBS708, complete genome 
Bacillus subtilis subsp. subtilis str. 168 chromosome, complete genome 
Pseudomonas aeruginosa PAO1 chromosome, complete genome 
Legionella pneumophila subsp. pneumophila str. Philadelphia 1  
Pseudomonas putida KT2440 chromosome, complete genome 
Clostridium acetobutylicum ATCC 824 chromosome, complete genome 
Streptomyces avermitilis MA-4680 = NBRC 14893, complete genome 
Listeria monocytogenes EGD-e chromosome, complete genome 
Listeria innocua Clip11262 complete genome 
Clostridium perfringens str. 13 DNA, complete genome 
Corynebacterium glutamicum ATCC 13032 chromosome, complete genome 
Streptomyces coelicolor A3(2) chromosome, complete genome 
Xanthomonas campestris pv. campestris str. ATCC 33913 chromosome 
Enterococcus faecalis V583 chromosome, complete genome 
Bacillus cereus ATCC 14579 chromosome, complete genome 
Chromobacterium violaceum ATCC 12472, complete genome 
Rhodopseudomonas palustris CGA009 complete genome 
Bacillus thuringiensis serovar konkukian str. 97-27 chromosome 
Symbiobacterium thermophilum IAM 14863 DNA, complete genome 
Bacillus licheniformis ATCC 14580, complete genome" 
Nocardia farcinica IFM 10152 DNA, complete genome 
Bacillus clausii KSM-K16 DNA, complete genome 
Xanthomonas oryzae pv. oryzae KACC 10331, complete genome 
Pseudomonas syringae pv. syringae B728a chromosome, complete genome 
Thiobacillus denitrificans ATCC 25259, complete genome 
Nitrobacter winogradskyi Nb-255, complete genome 
Rhizobium etli CFN 42, complete genome 
Candidatus Koribacter versatilis Ellin345, complete genome 
Cytophaga hutchinsonii ATCC 33406, complete genome 
Solibacter usitatus Ellin6076, complete genome 
Listeria welshimeri serovar 6b str. SLCC5334 complete genome 
Clostridium novyi NT, complete genome 
Arthrobacter aurescens TC1, complete genome 
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34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
65 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
95 
97 
98 
99 
100 

NC_008726.1 
NC_009328.1 
NC_009434.1 
NC_009439.1 
NC_009441.1 
NC_009515.1 
NC_009636.1 
NC_009674.1 
NC_009720.1 
NC_009792.1 
NC_010001.1 
NC_010002.1 
NC_010337.2 
NC_010571.1 
NC_010572.1 
NC_010617.1 
NC_010655.1 
NC_010725.1 
NC_010995.1 
NC_011000.1 
NC_011001.1 
NC_011002.1 
NC_011666.1 
NC_011886.1 
NC_012483.1 
NC_012490.1 
NC_012560.1 
NC_012660.1 
NC_012669.1 
NC_012778.1 
NC_012781.1 
NC_012881.1 
NC_012969.1 
NC_013061.1 
NC_013131.1 
NC_013132.1   
NC_013595.1 
NC_013739.1 
NC_013743.1 
NC_013757.1 
NC_013861.1 
NC_013892.1 
NC_013929.1 
NC_013947.1 
NC_014103.1 
NC_014158.1 
NC_014170.1 
NC_014228.1 
NC_014259.1 
NC_014323.1 
NC_014391.1 
NC_014551.1 
NC_014622.2 
NC_014623.1 
NC_014734.1 
NC_014814.1 
NC_014958.1 
NC_015177.1 
NC_015514.1 
NC_015677.1 
NC_016109.1 
NC_016629.1 
NC_016803.1 
NC_016845.1 
NC_017384.1 
NC_017770.1 
NC_017960.1 

Mycobacterium vanbaalenii PYR-1, complete genome 
Geobacillus thermodenitrificans NG80-2, complete genome 
Pseudomonas stutzeri A1501, complete genome 
Pseudomonas mendocina ymp, complete genome 
Flavobacterium johnsoniae UW101, complete genome 
Methanobrevibacter smithii ATCC 35061, complete genome 
Sinorhizobium medicae WSM419 chromosome, complete genome 
Bacillus cytotoxicus NVH 391-98, complete genome 
Xanthobacter autotrophicus Py2, complete genome 
Citrobacter koseri ATCC BAA-895, complete genome 
Clostridium phytofermentans ISDg, complete genome 
Delftia acidovorans SPH-1, complete genome 
Heliobacterium modesticaldum Ice1, complete genome 
Opitutus terrae PB90-1, complete genome 
Streptomyces griseus subsp. griseus NBRC 13350, complete genome 
Kocuria rhizophila DC2201 DNA, complete genome 
Akkermansia muciniphila ATCC BAA-835, complete genome 
Methylobacterium populi BJ001, complete genome 
Cellvibrio japonicus Ueda107, complete genome 
Burkholderia cenocepacia J2315 chromosome 1, complete genome 
Burkholderia cenocepacia J2315 chromosome 2, complete genome 
Burkholderia cenocepacia J2315 chromosome 3, complete genome 
Methylocella silvestris BL2, complete genome 
Arthrobacter chlorophenolicus A6, complete genome 
Acidobacterium capsulatum ATCC 51196, complete genome 
Rhodococcus erythropolis PR4 DNA, complete genome 
Azotobacter vinelandii DJ, complete genome 
Pseudomonas fluorescens SBW25 complete genome 
Beutenbergia cavernae DSM 12333, complete genome 
Eubacterium eligens ATCC 27750, complete genome 
Eubacterium rectale ATCC 33656, complete genome 
Desulfovibrio salexigens DSM 2638, complete genome 
Methylovorus glucosetrophus SIP3-4, complete genome 
Pedobacter heparinus DSM 2366, complete genome 
Catenulispora acidiphila DSM 44928, complete genome 
Chitinophaga pinensis DSM 2588, complete genome 
Streptosporangium roseum DSM 43021, complete genome 
Conexibacter woesei DSM 14684, complete genome 
Haloterrigena turkmenica DSM 5511, complete genome 
Geodermatophilus obscurus DSM 43160, complete genome 
Legionella longbeachae NSW150, complete genome 
Xenorhabdus bovienii SS-2004 chromosome, complete genome 
Streptomyces scabiei 87.22 complete genome 
Stackebrandtia nassauensis DSM 44728, complete genome 
Bacillus megaterium DSM319, complete genome 
Tsukamurella paurometabola DSM 20162, complete genome 
Xenorhabdus nematophila ATCC 19061 plasmid XNC1_p, complete genome 
Xenorhabdus nematophila ATCC 19061 chromosome, complete genome 
Acinetobacter oleivorans DR1, complete genome 
Herbaspirillum seropedicae SmR1, complete genome 
Micromonospora aurantiaca ATCC 27029, complete genome 
Bacillus amyloliquefaciens DSM7 complete genome 
Paenibacillus polymyxa SC2, complete genome 
Stigmatella aurantiaca DW4/3-1, complete genome 
Paludibacter propionicigenes WB4, complete genome 
Mycobacterium gilvum Spyr1, complete genome 
Deinococcus maricopensis DSM 21211, complete genome 
Pedobacter saltans DSM 12145, complete genome 
Cellulomonas fimi ATCC 484, complete genome 
Ramlibacter tataouinensis TTB310, complete genome 
Kitasatospora setae KM-6054, complete genome 
Desulfovibrio africanus str. Walvis Bay, complete genome 
Desulfovibrio desulfuricans ND132, complete genome 
Klebsiella pneumoniae subsp. pneumoniae HS11286 chromosome 
Ketogulonigenium vulgarum WSH-001 chromosome, complete genome 
Solitalea canadensis DSM 3403, complete genome 
Enterococcus faecium DO chromosome, complete genome 
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101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 
123 

NC_018750.1 
NC_020800.1 
NC_020815.1 
NC_020816.1 
NC_020817.1 
NC_020990.1 
NC_020995.1 
NZ_AP014683.1 
NZ_CP002190.1 
NZ_CP007215.1 
NZ_CP007557.1 
NZ_CP009124.1 
NZ_CP009576.1 
NZ_CP009962.1 
NZ_CP009963.1 
NZ_CP010028.1 
NZ_CP010946.1 
NZ_CP011253.2 
NZ_CP011451.1 
NZ_CP012329.1 
NZ_CP012382.1 
NZ_CP013106.1 
NZ_HG916826.1 

Streptomyces venezuelae ATCC 10712 complete genome 
Xanthomonas axonopodis Xac29-1, complete genome 
Xanthomonas citri subsp. citri Aw12879, complete genome 
Xanthomonas citri subsp. citri Aw12879 plasmid pXcaw19, complete genome 
Xanthomonas citri subsp. citri Aw12879 plasmid pXcaw58, complete genome 
Streptomyces albus J1074, complete genome 
Enterococcus casseliflavus EC20, complete genome 
Burkholderiales bacterium GJ-E10 DNA, complete genome 
Bdellovibrio bacteriovorus W, complete genome 
Enterobacter sacchari SP1, complete genome 
Citrobacter freundii CFNIH1, complete genome 
Streptomyces lividans TK24, complete genome 
Listeria ivanovii subsp. londoniensis strain WSLC 30151, complete genome 
Collimonas arenae strain Cal35, complete genome 
Collimonas arenae strain Cal35 plasmid, complete sequence 
Deinococcus swuensis strain DY59, complete genome" 
Mycobacterium chelonae genome 
Pandoraea oxalativorans strain DSM 23570, complete genome 
 Nitrosomonas communis strain Nm2, complete genome 
Bacillus pumilus strain NJ-M2, complete genome 
Streptomyces ambofaciens ATCC 23877, complete genome 
Halomonas huangheensis strain BJGMM-B45, complete genome 
Pseudomonas pseudoalcaligenes CECT 5344 complete genome 

 
 
Table 2.3: Four artificial bacterial metagenomes created in MetaSim. The community 
complexity description is given, alongside the number of organisms at each abundance level. 
The relative abundance values used in MetaSim are given in parentheses.  
 

Metagenome Community complexity Metagenome composition 

 
A 
 

 
Default test community 
(all organisms at same 
abundance) 
 

 
123 even abundance (100) 
 

 
B 
 

 
Low complexity  

 
4 high abundance (200) 
119 standard abundance (100) 
 

 
C 
 

 
Medium complexity 

20 high abundance (200) 
93 standard abundance (100) 
10 low abundance (50) 
 

 
D 
 

 
High complexity 

 
20 high abundance (200) 
20 medium-high abundance 
(150) 
63 standard abundance (100) 
20 low abundance (50)  
 

 
Each of the assemblers were subsequently run on the four metagenome variants (A-D) in turn. 

However, whilst many studies currently run assemblies using default parameter settings, it 

must be acknowledged that modifying the parameter values to fit the input metagenome size, 

structure and complexity can produce a better assembly (Howe et al., 2014). Consequently, 

whilst a full parameter space optimisation was not the aim of this analysis, for each assembler, 

five parameter sets were tested on each metagenome, to obtain an improved result. The 
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importance of this is to generate longer and more accurate contigs, which may provide 

enhancements for subsequent functional and phylogenetic annotations (Nielsen et al., 2014). 

A schematic for this methodology can be identified in Figure 2.1, and the full list of parameter 

sets used is available in Appendix 1 Table 2. Key parameters to modify were the k-mer length 

(or word size) used to build assemblies, alongside the minimum read length and coverage. 

Parameter values were selected systematically, to test periodic intervals across the parameter 

space. 

 

The final assemblies were evaluated based on both contiguity and completeness metrics. This 

allows the comparison to incorporate both the assembly length and coverage of the input 

dataset, to avoid large erroneous contigs masking the quality of the assembly (Earl et al., 

2011; Finotello et al., 2011). The assembly contiguity was evaluated in Quast, using the 

measures of maximum contig length, contig N50 and number of contigs over 1000bp 

(Gurevich et al., 2013). Assembly size was also evaluated, based on number of contigs in the 

assembly, and overall assembly size (bp). To analyse assembly completeness, the input 

metagenome reads were mapped to the assembled datasets using BWA (Li and Durbin, 

2009). This identifies the amount of the input metagenome that has been used in the 

assembly, shown through the percentage coverage of the input dataset. Assembly chimerism 

was explored by searching for chimeric contigs using VSEARCH, enabling reference-based 

chimera detection (Rognes et al., 2016). Using VSEARCH, the output metagenome 

assemblies were searched against the input artificial metagenomes using a global alignment 

to detect for chimeric sequences.  

 

Additionally, the accuracy of the best metagenome assemblies in terms of the taxonomic 

distribution of organisms was evaluated using MetaPhlAn2 (Segata et al., 2012). This method 

uses clade-specific markers to profile the assembled metagenome taxonomy and provide an 

output taxonomic distribution of the dataset (Segata et al., 2012). This allows an insight into 

the presence of chimeric contigs, which may create erroneous organisms which were not 

present in the input dataset, due to joining sequences from unrelated bacteria (Lai et al., 2012). 

This may also cause assemblers to eliminate highly abundant organisms, particularly when 

containing DNA sequences with numerous repeat regions or INDELS, as the assemblers find 

these difficult to resolve. This can be identified by viewing the top most abundant genus’ 

between assemblies of the same metagenome, in comparison with the input dataset. Overall, 

the best performing assembly will most closely match the taxonomic profile of the input 

metagenome. Phylogenetic heat maps were created displaying the 25 most abundant clades 

in each metagenome in a logarithmic scale. Clustering was performed by average linkage and 

Euclidean distances for both clades and samples (Segata et al., 2012). Finally, the best 
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performing parameter set for each assembler (for each metagenome) was selected based on 

the above metrics.  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
2.3 Results  
 

2.3.1 Assembly coverage and contiguity  

 

The best overall assemblies from the five tested assemblers are summarised in Table 2.4, 

with the full results available in Appendix 1 Table 3. As the study is primarily focused on 

assembler comparison (rather than parameter optimisation), the parameter set shown in Table 

2.4 is the best performing out of the five tested, and not a product of testing the whole 

parameter space. For each assembly, a range of contiguity and completeness metrics are 

presented, including assembly N50, commonly used to describe contiguity. However, as the 

N50 is not a standardised metric, and relies on the dataset size, it should not be used to 

directly compare assemblies of different magnitudes. 

 

 

 

 

 

 

Figure 2.1: Overview schematic of the methodology used in assembler comparison.  
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Assembler CLC (2) ABYSS (2) MIRA (1) MetaSPAdes (1) SSAKE (4) 
Assembly A A A A A 

Number of contigs  1334018 1227327 186625 666045 351881 
Contigs over 1000bp 1369 143 373 939 21 

Maximum contig length 5060 4641 5387 5299 1725 
N50 232 109 203 597 122 

% coverage of BWA mapping 59.35 22.13 10.30 42.08 8.89 
      

Assembler CLC (2) ABYSS (2) MIRA (1) MetaSPAdes (1) SSAKE (4) 
Assembly B B B B B 

Number of contigs  1289769 1204906 205976 645872 366959 
Contigs over 1000bp 3234 146 389 2285 29 

Maximum contig length 4585 4730 4773 4940 1643 
N50 234 112 210 624 123 

% coverage of BWA mapping 59.56 23.56 12.24 43.03 9.75 
      

Assembler CLC (2) ABYSS (2) MIRA (1) MetaSPAdes (1) SSAKE (4) 
Assembly C C C C C 

Number of contigs  1179804 1189639 272144 613234 417318 
Contigs over 1000bp 6144 147 418 4622 28 

Maximum contig length 7265 5090 5552 5386 1999 
N50 243 121 217 662 124 

% coverage of BWA mapping 60.80 27.47 16.81 46.69 11.82 
      

Assembler CLC (2) ABYSS (2) MIRA (1) MetaSPAdes (1) SSAKE (4) 
Assembly D D D D D 

Number of contigs  1038353 1253133 400485 613787 536263 
Contigs over 1000bp 10876 189 456 8162 32 

Maximum contig length 12412 4345 5931 10045 1743 
N50 281 138 218 682 126 

% coverage of BWA mapping 67.00 36.04 24.67 57.31 16.13 
 

 

 

Table 2.4: Summary table of metagenome assemblies, split by metagenome complexity (A-D). The 
single overall best performing parameter set for each assembler is shown, with results for all parameter 
sets available in Appendix 1. The parameter set is given in parentheses. Assembly size (number of 
contigs) and contiguity (N50, maximum contig length, contigs over 1000bp) statistics are given. The 
assembly completeness is identified by % coverage, which is the percentage of raw input metagenome 
reads that could be mapped to the final assembly.  
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As the best performing assembly will have both the longest contigs, and include the greatest 

portion of the input dataset, it is important to evaluate based on both contiguity and 

completeness, as opposed to a single metric. Figure 2.2 exemplifies the percentage coverage 

against a commonly used contiguity metric, maximum contig length. The results are provided 

for each metagenome (A-D), with increasing complexity (Table 2.4; Figure 2.2). For all 

metagenomes, the de Bruijn based assemblers, CLC, metaSPAdes and ABYSS output the 

assemblies with the highest coverage and maximum contig length (Table 2.4; Figure 2.2). For 

the best performing assembler, CLC, the coverage and contiguity scores range between 59 

to 67% and 4585 to 12412 bp, between metagenomes, respectively (Table 2.4; Figure 2.2).  

In contrast, the two worst scoring assemblers are MIRA and SSAKE, based on OLC and 

Greedy assembly algorithms (Table 2.4; Figure 2.2). The lowest scoring assembler for all 

metagenomes, SSAKE, output coverage and contiguity scores ranging between 8 to 16% and 

1643 to 1999bp, respectively.  
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Figure 2.2: Maximum contig length (bp) and percentage coverage for assembled artificial 
metagenomes (A-D). For each assembler, the results for the best performing parameter set 
from the five tested are shown. Metagenome A: even organism abundance; Metagenome B: 
low organism complexity; Metagenome C: medium organism complexity; Metagenome D: 
high organism complexity.  
 

A B 
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A similar pattern to that observed in contiguity is also identified when analysing assembly size 

(as number of contigs), with assembly coverage (Figure 2.3).  The largest assemblies with the 

most coverage are produced by de Bruijn based assemblers CLC, metaSPAdes and ABYSS 

(Figure 2.3). Again, CLC is the best performing assembler across all metagenomes tested, 

with assembly sizes ranging between 1038353 to 1334018 contigs in metagenomes D and A 

respectively (Table 2.4). These assemblies are in contrast to those obtained from SSAKE, 

which range between 351881 and 536263 contigs for metagenomes A and D. Results from a 

one-way analysis of variance (ANOVA) on the best performing parameter sets, identifies 

significant differences between assemblers for each maximum contig length, number of 

contigs and percentage coverage (P= <0.05, Appendix 1 Table 4). This identifies that 

significant differences in assembly coverage, contiguity and size can be obtained by using 

different assemblers.  

 
 

 

 

 

 

Figure 2.3: Number of contigs and percentage coverage for assembled artificial 
metagenomes (A-D). For each assembler, the results for the best performing parameter set 
from the five tested are shown.  
 

A B 

C D 
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Assembler Number of contigs  Maximum contig length % coverage  

CLC 455,954 5,728 30 

metaSPAdes 188,893 3,699 16 

ABYSS 246,006 2,206 8 

MIRA 266,292 3,967 13 

SSAKE 241,520 1,363 6 

 

On average, de Bruijn based assembler ABYSS produces a maximum contig length of 2,206, 

with a mean maximum contig number of 246,006 (Table 2.5). This is comparable to both 

metaSPAdes and CLC, which obtained a maximum number of contigs, on average of 188,893 

and 455,954, respectively (Table 2.5). However, ABYSS obtains lower assembly coverage 

values than the other de Bruijn graph assemblers, CLC and metaSPAdes (Table 2.5). 

 
 
When looking at the best performing parameter sets (Table 2.4) and overall assembly 

averages (Table 2.5) SSAKE and MIRA, based on simple Greedy and OLC algorithms, 

performed worst in terms of assembly coverage (Figures 1-2). SSAKE produced the least 

complete metagenome assemblies, with coverage values at 6% of the input data on average, 

and MIRA outputting a slightly higher average of 13% (Table 2.5). SSAKE assembler also 

produced the lowest number of contigs, and contigs over 1000bp, with maximum values of 

536,263 and 32 contigs, for assembly D (Table 2.4). This compares to the best performing 

CLC assembler, which output at total of 1,038,353 contigs for assembly D, with 10,876 contigs 

over 1000bp (Table 2.4). This represents a percentage difference of 64% and 199% for total 

number of contigs and contigs over 1000bp between CLC and SSAKE for assembly D (high 

complexity) (Table 2.4). This pattern is reflected in the lower complexity datasets, with 

percentage differences of 111% and 196% for these variables between CLC and SSAKE for 

assembly B (low complexity) (Table 2.4). This identifies SSAKE as producing less complete 

assemblies, with smaller more fragmented contigs, than the de Bruijn based assembler CLC.  

 

For OLC based assembler, MIRA, the number of contigs output is comparable to de Bruijn 

based assemblers ABYSS and metaSPAdes on average (Table 2.5). Average maximum 

contig numbers are 226,292 for MIRA, compared to 188,893 and 246,006 contigs for 

metaSPAdes and ABYSS respectively, however, these are still lower than CLC averages at 

455,954 contigs (Table 2.5). When looking at contiguity statistics, maximum contig length is 

Table 2.5: Number of contigs, maximum contig length and percentage BWA coverage for each 
assembler. Values are reported as averages across all assemblies carried out for each 
assembler, over the four metagenomes (A-D), and the five parameter sets tested for each 
metagenome assembly.  
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again comparable (if not higher than) metaSPAdes and ABYSS for both the best performing 

parameter sets (Table 2.4, Figures 1-2) and the assemblies on average (Table 2.5). For 

example, for high complexity metagenome (D) MIRA has a maximum contig length of 5,931bp 

compared to 4,345bp, 10,045bp and 12,412bp for ABYSS, metaSPAdes and CLC 

respectively (Table 2.4). This indicates that both assembly size and contig length are 

comparable to the more complex de Bruijn based assemblers, whilst coverage is significantly 

lower (Table 2.4). This indicates that metaSPAdes and CLC outperform ABYSS in terms of 

assembly quality, as they are able to incorporate a greater amount of the input data in the 

resulting assemblies, thereby increasing assembly coverage.  

 

2.3.2 Modifying community complexity  

 

For each assembler, it is useful to compare the results across the different artificial 

metagenomes tested, as this will highlight how metagenome complexity influences the 

assembly outcome. Interestingly, in terms of the assembly coverage, N50 and number of 

contigs over 1000bp, overall assembler performance increases with greater metagenome 

complexity (Table 2.4; Table 2.5). For example, on average, assembly coverage (for best 

performing assemblers) rises from 36% to 50% between assembly A and assembly D (Table 

2.4). This trend can be seen across all assemblers tested, with number of contigs over 1000bp 

increasing between 13% (CLC) and 770% (metaSPAdes), with an average increase of 2,473 

(56%) in maximum contig length between metagenome A and D (Table 2.4). This indicates 

that with an increase in metagenome complexity, both the assembly contiguity and coverage 

improve, creating longer contiguous sequences, compared to shorter, fragmented sequences. 

However, whilst there are improvements in the assembly coverage and contiguity, the overall 

assembly size does not show a significant difference between low and high complexity 

metagenomes. On average, the assembly size only increases by 15,225 contigs (2%) 

between metagenomes A and D (Table 2.4). For de Bruijn graph assemblers, CLC and 

metaSPAdes, the number of contigs decreased by 22% and 8%, respectively (Table 2.4). 

Therefore, whilst contig length and coverage increases with greater complexity, the number 

of contigs assembled does not show a substantial improvement.  

 
To test the significance of the metagenome complexity on the output assembly quality. A one-

way ANOVA was carried out for each assembler independently. The contiguity, complexity 

and assembly size scores outlined in Table 2.4 were compared for each assembler across the 

four metagenomes tested. Overall, no significant difference could be observed in the assembly 

outcomes, when analysing metagenomes of different complexity (Appendix 1 Table 5). 

Consequently, whilst the metagenome complexity may play a role in modifying contiguity and 
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completeness of assemblies, overall this change was not substantial. Therefore, it can be 

argued that the optimal assembler selected for the data type (e.g. soil or sediment microbial 

communities) could be applied to numerous datasets of a similar type, with different 

community compositions.  

 

2.3.3 Assembler parameterisation  

 

Whilst it may be possible to identify a suitable generic assembler for soil microbial 

communities, each assembler has a range of parameter values that can be modified 

(Appendix 1 Table 2). Whist assembler optimisation is not the fundamental aim of this study, 

it is important to acknowledge the influence these have on assembly outcomes. Hence, for 

each assembler, 5 different parameter sets were tested, with the full results available in 

Appendix 1 Table 3. This gives an indication of the sensitivity of assembly outcomes to 

parameter values and helps highlight assemblers where more thorough parameter 

optimisation may be required. The results of parameter testing for each assembler are given 

in Figures 4 and 5, showing percentage coverage and maximum contig length, respectively. 

This gives an indication of the possible spread of assembly quality that can be obtained by 

modifying parameters, such as the Kmer length. De Bruijn graph assemblers CLC, 

MetaSPAdes and ABYSS scored the highest values for both contiguity and coverage (Figure 

2.4; Figure 2.5). CLC recorded the maximum values in both metrics, across all metagenomes 

tested, followed by metaSPAdes (Figure 2.4; Figure 2.5). For example, for CLC, maximum 

contig length reached 14,158 bp and a coverage of 67% for parameter sets 2 and 3 

respectively (Metagenome D; Figure 2.4; Figure 2.5). This is compared to SSAKE, the worst 

performing assembler, which reached maximum values of 2064 bp (contig length) and 16% 

(coverage) for parameter sets 3 and 4 respectively (Metagenome D) (Figure 2.4). 

MetaSPAdes and ABYSS recorded maximum coverage values of 57% and 36% for 

Metagenome D, with the highest contig lengths reaching 10,045 bp and 50,90 bp respectively 

(Figure 2.4; Figure 2.5).  

 

Despite de Bruijn based assemblers showing the most promising assembly outcomes, the 

spread of contiguity, completeness and size values across parameter sets far exceeds the 

simpler OLC and Greedy algorithm-based assemblers (Figure 2.4). This indicates simpler 

assemblers have a smaller range of outcomes, in comparison to more complex, highly 

modifiable assemblers. For example, for Metagenome D, CLC and metaSPAdes have a range 

of maximum contig lengths between 11,964 bp and 6,818 bp, respectively (Figure 2.4). This 

is compared to SSAKE, which had a range of 278 bp. This pattern is also reflected in the range 

of coverage scores, with CLC showing a spread of 66%, compared to 15% for SSAKE, in 
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assemblies of Metagenome D (Figure 2.4). Consequently, whilst de Bruijn based assemblers 

can provide the highest scoring coverage and contiguity values, they can also provide the 

largest range in scores. This is compared to the assemblers based on simpler OLC and 

Greedy algorithms, that express a narrower range of outcomes, despite modifying parameter 

values. This is indicative of pronounced sensitivity to parameterisation in more complex 

assemblers, and thus a greater need for parameter set optimisation or testing.  
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Figure 2.4: Coverage (%) of metagenome assemblies against the input dataset, for artificial 
metagenomes A-D. Results for each parameter set (1-5) are shown, with values for each 
assembler distinguished. Assemblers tested include: CLC, metaSPAdes MIRA, ABYSS, 
SSAKE.  
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Figure 2.5: Maximum contig length (bp) of metagenome assemblies against the input 
dataset, for artificial metagenomes A-D. Results for each parameter set (1-5) are shown, 
with values for each assembler distinguished. Assemblers tested include: CLC, 
metaSPAdes MIRA, ABYSS, SSAKE. 
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2.3.4 Assembly chimeras  

 

For all assemblies, chimeric (incorrectly assembled) contigs were identified using VSEARCH, 

which utilises an optimal global aligner to identify misassembled contigs in the final assemblies 

(Rognes et al., 2016). This highlights which assemblers produce more accurate contigs, in 

comparison to those which produce longer, but incorrect sequences, which would adversely 

affect downstream functional analysis (Wooley et al., 2010). As identified in Table 2.4, both 

CLC and metaSPAdes produced the longest contig lengths and metagenome coverage. 

However, CLC produced the largest percentage of chimeric contigs, in relation to the total 

number of contigs assembled, with a maximum number of chimeras at 0.1% for metagenome 

B, compared to 0.006% for metaSPAdes (Figure 2.6). This indicates that whilst CLC produces 

long contigs, they are slightly more prone to errors. The lowest number chimeric contigs were 

found in MIRA and SSAKE assemblers, accounting for a maximum of 0.002% of total 

assembled contigs (Figure 2.6). However, as these assemblies are generally smaller and 

more fragmented, they may be less useful for downstream functional analysis. For all 

assemblers tested, assemblies of metagenome D (high complexity) produced the lowest 

percentage of chimeric contigs, ranging between 0 and 0.06%, between MIRA and CLC 

assemblers respectively (Figure 2.6). This is in agreement with the coverage and contiguity 

statistics presented in Table 2.4, identifying metagenome D as having the best overall 

assembly statistics across all the artificial metagenomes tested (Table 2.4).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Chimeras as a percentage of total contigs for assemblies of metagenomes 
A-D, for each assembler. The results for the best performing parameter set for each 
assembler are shown (identified in Table 2.4).  
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2.3.5 Taxonomic distribution of assemblies  

 

Alongside using chimera searches to highlight assembly accuracy, identifying the taxonomic 

distribution of outputs can also provide an insight into assembly quality. MetaPhlAn2 was used 

to evaluate the taxonomic distribution of assemblies of each metagenome across all five 

assemblers tested, in comparison to the input unassembled metagenome (Figure 2.7; Segata 

et al., 2012). This helps to highlight erroneous assemblies by isolating unusual community 

profiles, or over/under abundant organisms in assembled data (Segata et al., 2012). Greedy 

based assembler, MIRA, was shown to perform poorly in representing the input metagenome 

in resulting assemblies. At the genus level, this assembler over represented genus’ including 

Listera, Pseudomonas and Xanthomonas, in comparison to the input dataset (Figure 2.7). 

This was shown to vary significantly between input metagenomes, with substantial over 

representation of Gammaproteobacteria and Deltaproteobacteria for high complexity 

Metagenome C, in comparison to the other assemblers (Figure 2.7). This pattern was not 

reflected in Metagenomes A, B and D. However, SSAKE, the second greedy-based assembler 

tested, appeared to more accurately represent the input metagenome in resulting assemblies 

(Figure 2.7). Additionally, whilst outputs from ABYSS, CLC and metaSPAdes (de Bruijn graph 

based assemblers), did not completely recreate the input dataset, they did not show a 

consistent bias in the taxonomic distribution of organisms (Figure 2.7). Consistent bias in 

assemblies is more problematic for downstream analysis, as inaccurate conclusions about the 

community composition may be drawn, as opposed to random assembly error, which is 

unlikely to skew the overall community distribution.  
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Figure 2.7: Taxonomic heat maps for each artificial metagenome assembled (A-D), showing the 
top 25 most abundant genus’, clustered based on Euclidean distances. Relative genus 
abundance for the best parameter set for each assembler are shown, alongside the input 
microbial community for comparison (flagged by Input_MC).  
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2.4 Discussion  
 

2.4.1 Premise of the study    

 

This study tested the performance of five metagenome assembly tools for the assembly of 

complex soil bacterial metagenomes. The artificial metagenomes were simulated using an 

identical community composition, but were modified based on organism abundance profiles, 

to produce metagenomes at a range of complexities.  

 

Simulated metagenome datasets are generally simplifications of true environmental 

communities (Vazquez-Castellanos et al., 2014). However, as the aim of this study was to test 

metagenome assemblers, rather than to study the taxonomy of the dataset, this does not 

undermine the conclusions drawn (Vazquez-Castellanos et al., 2014). Additionally, using test 

datasets where the species composition is known a priori, allows a direct comparison of the 

assemblers (Mavromatis et al., 2007). This would not be possible using true bacterial 

metagenomes, as the species composition is unknown prior to assembly (Mavromatis et al., 

2007). Consequently, using simulated datasets allows a comparison of how well the resulting 

assemblies represent the ‘true’ input bacterial sequence composition. The best performing 

assemblers will most accurately represent the composition of the test dataset, have minimal 

chimeric contigs, and have a large contig length to maximise the quality of downstream 

functional and taxonomic annotation (Howe and Chain, 2015). 

 
2.4.2 Assembly evaluation metrics  

 
This study has demonstrated the importance of using more than one evaluation metric for 

assembly comparison, and that measures incorporating contiguity, completeness and 

accuracy should be used. This is important as no single metric is comprehensive enough to 

summarise overall assembly quality (Kurtz et al., 2004; Peng et al., 2012; Vollmers et al., 

2017). When looking at assemblies based solely on contiguity, CLC shows the overall highest 

number of contigs and contig length, in comparison to SSAKE which produces the shortest 

contigs, and therefore most fragmented assemblies. This is important, as long contigs, such 

as those produced by CLC (and metaSPAdes) can provide better alignments to gene 

databases for functional annotation. However, when also considering the number of chimeric 

contigs, CLC exemplified the highest number of chimeras across all tested datasets (Figure 

2.6).  This indicates that whilst CLC is producing long contigs, these are sometimes miss-

assembled, incorporating read fragments from different organisms. This could subsequently 

produce some incorrect taxonomic and functional annotations in downstream analysis 
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(Mavromatis et al., 2007). Whilst this is not a substantial proportion of the overall number of 

contigs produced during CLC assemblies (0.1%) it is important to select an assembler that 

can produce both long, and correctly assembled contigs. As metaSPAdes was able assemble 

contigs with substantial lengths (Table 2.4) and with a very minimal number of chimeras, at 

0.006% of total contigs (Figure 2.6), this assembler also provides a reasonable trade-off 

between these metrics. Interestingly, an inter-comparison of assemblers by Vollmers et al., 

(2017) based on real Illumina sequencing data (forest soil and algal biofilm) selected 

metaSPAdes as having the best trade-off between assembly size and coverage of diversity, 

in comparison to the assemblers tested. Whilst this study was primarily focused on de Bruijn 

graph-based assemblers, and did not explore parameter values, it does indicate the 

performance of this assembler is upheld in real sequence data (Vollmers et al., 2017).  

 

2.4.3 Simulated bacterial communities  

 

This study also demonstrated the use of simulated datasets in conducting metagenome 

assembly evaluation. Using artificial metagenome datasets allowed the assemblies to be 

compared based on percentage coverage and taxonomic composition, in comparison to the 

‘true’ community structure (Sczyrba et al., 2017). This consequently enabled the accuracy of 

the assemblers to be evaluated, alongside using more standard measures of assembly size 

and contiguity. Out of the two simpler ‘Greedy’ based assemblers tested (MIRA and SSAKE), 

MIRA showed the highest number of contigs, contig length and coverage of the input dataset 

(Table 2.4). However, when investigating the taxonomic composition of MIRA assemblies in 

comparison to the input dataset, MIRA is shown to both under and over represent the 25 most 

abundant organisms (Figure 2.7). This assembler is therefore not completely representing the 

true species composition and therefore may produce incorrect downstream annotations and 

ecological conclusions. Consequently, this demonstrated the value of using artificial datasets, 

and the importance of selecting a good assembler, in order to produce un-fragmented 

accurately assembled contigs (Risenfeld et al., 2004). 

 

Here, metagenome assemblers were also tested on several simulated communities, at a 

range of complexities, as opposed to a single dataset. This is because each assembler is 

formatted based on a different algorithm, with varying parameter options and will therefore suit 

datasets with different sizes and community structures (Miller et al., 2010; Sczyrba et al., 

2017). Consequently, assemblers showed some differences in performance across the 

simulated communities, in relation to the algorithm on which they are based. Overall, high 

complexity metagenome ‘D’ was shown to be assembled with the highest coverage, contig 

lengths and the minimal number of chimeras (Figure 2.2; Figure 2.6). This contrasts with low 
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complexity metagenome ‘B’, and even abundance metagenome ‘A’, which demonstrated 

highest numbers of chimeric contigs and lowest contig lengths (Table 2.4; Figure 2.6). These 

differences in outcomes between metagenomes can be attributed to the community 

abundance structure, as the taxonomic composition is identical. These differences in 

assembly outcome may be due to raised abundance of some organisms, and subsequent 

increases in its read coverage in the dataset. Organisms with high abundance are likely to be 

well assembled, pulling the quality of the assembly up, as there is more data support for each 

DNA sequence. Metagenome B was classified as the low complexity community as it was 

comprised of 4 highly abundant organisms, with the remainder as low abundance flanking 

organisms (Table 2.3). This is in line with Mavromatis et al., (2007) whom created test 

communities in MetaSim, to reflect simpler bacterial populations with a select group of 

organisms. This is similar to Metagenome A, where all the organisms have the same level of 

abundance.  It is likely that these metagenomes were assembled poorly as there were limited 

organisms at a high abundance, and therefore most organisms had a low read coverage. This 

low coverage could have increased the difficulty in resolving artificial sequencing errors, gaps 

and repeats (Sims et al., 2014). On the other hand, Metagenome D had more organisms at a 

higher abundance, and therefore the increase in read coverage may have improved the 

assembly outcome, despite having a more complex species distribution (Table 2.4; Sims et 

al., 2014). However, the overall differences between assemblies of the different metagenomes 

were found to be insignificant for all assemblers (Appendix 1 Table 5). In the instance of low 

coverage datasets, read based analysis, as opposed to assemblies may therefore be 

beneficial for taxonomic investigations. This is because using reads will be able to profile more 

of the community, as opposed to assemblies which may not utilise all of the sequencing data.  

 

2.4.4 Choice of assembler  

 

In contrast to community complexity, overall assembler selection was found to have a 

significant influence on the quality of the assembly (Appendix 1 Table 4). This indicates that 

overall assembler selection for the type of data in question (e.g. soil or sediments) is important, 

however the complexity of that community does not have a substantial influence on the 

assembly outcome (Table 2.4; Figure 2.2; Figure 2.3). For metaSPAdes assemblies, the 

percentage coverage increased by 15% between Metagenomes A to D, up to a maximum of 

57% (Table 2.4). This can be compared to the increase of 7% up to a maximum coverage of 

16% for SSAKE. Thus, the difference between SSAKE and metaSPAdes coverage scores for 

Assembly D is 41%, exceeding the 15% and 7% increase in coverage obtained by changing 

metagenome complexity for metaSPAdes and SSAKE, respectively (Table 2.4).  
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2.4.5 The importance of parameterisation  

 

The analysis highlighted that modifying key parameter values, such as the kmer length, can 

influence the assembly outcome (Figure 2.4; Figure 2.5). This was an important aspect to test, 

as many studies will run assemblies using default parameter values, which may not obtain the 

most optimal results (Howe et al., 2014; Vollmers et al., 2017). This was shown to be 

particularly evident for more complex de Bruijn Graph assemblers such as CLC and 

metaSPAdes (Figure 2.4; Figure 2.5). This is likely to relate to the wider range of parameter 

settings available in these assemblers or their sensitivity to changing key variables such as k-

mer values. Whilst simpler assemblers often produce lower quality results, these are generally 

more consistent between parameterisations. Consequently, in order to obtain an improved 

assembly outcome, it is beneficial to iterate through several sets of parameter values, before 

making the final selection. This is in agreement with the CAMI inter-comparison, which 

identified parameters such as the kmer length, to be highly influential on assembly outcome 

(Sczyrba et al., 2017). For studies which are highly focused on obtaining the most optimal 

assembly quality, parameter space optimisation can be used to select the most favourable 

parameter values (Chikhi & Medvedev, 2013). Some assemblers, such as metaSPAdes 

already incorporate optimisation of kmer length selection, by iterating through several values 

during the assembly process, before selecting the most appropriate to the dataset in question 

(Nurk et al., 2017).  

 

2.4.6 Best performing assemblers  

 

Overall, CLC and metaSPAdes, de Bruijn graph-based assemblers, were shown to perform 

best in terms of contiguity, size and coverage across all datasets (Figure 2.2; Figure 2.3). 

Greedy algorithm based assembler, SSAKE was shown to perform worst over these metrics. 

Furthermore, OLC based assembler, MIRA, did not show a substantial improvement in 

assembly outcome from the worst performing assembler, SSAKE (Figure 2.2; Figure 2.3). 

However, when considering the number of incorrectly assembled contigs, CLC shows the 

highest proportion of chimeras relative to its dataset size (Figure 2.6). Whilst this is not a 

substantial proportion, it is higher than the other assemblers tested. In contrast, simpler 

assemblers, MIRA and SSAKE show a smaller proportion of incorrectly assembled contigs in 

their resulting assemblies (Figure 2.6). However, as these assemblers have created much 

shorter contig lengths, and therefore smaller, more fragmented assemblies, the number of 

long, incorrectly joined reads is lower overall. However, as the contig lengths are much shorter 

for these assemblers than the de Bruijn graph-based assemblers, CLC and metaSPAdes, the 

accuracy of downstream functional annotation could be limited (Narzisi and Misha, 2011). 
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Consequently, it can be suggested that metaSPAdes and CLC produce suitable assemblies 

for the investigation of complex bacterial metagenomes formed from environmental samples. 

This is because the assemblies produced are accurate, large and provide long contigs for 

downstream annotations (Table 2.4; Figure 2.6; Figure 2.7). Whilst CLC does produce slightly 

more chimeric contigs, this is arguably a small proportion of contigs and therefore should not 

impact the inferences from the bulk of the data.  

 
2.5 Conclusion  
 
This study has used artificially simulated metagenomic data to test publicly available 

metagenome assemblers, to provide better guidance on assembler selection for those 

investigating soil and sediment bacterial communities. The assemblers were selected to cover 

the range of assembly algorithms available, including de Bruijn graph assemblers 

(metaSPAdes, CLC, ABYSS), OLC assemblers (MIRA) and simple Greedy assemblers 

(SSAKE).  

 

The study has shown the importance of using more than one metric when evaluating 

assemblies. Using one type of metric, such as contiguity, may provide misleading results, as 

long contigs may not necessarily be accurate. Incorrectly assembled contigs may provide 

inaccurate functional and taxonomic annotation in downstream analysis and may 

subsequently influence ecological conclusions. Evaluating based on assembly size may also 

be misleading, as large assemblies of short contigs will not provide optimal alignments to 

databases for functional annotation. Fragmented contigs may therefore inaccurately represent 

key groups of the dataset, as shown by MIRA assemblies, which missed out several highly 

abundant genera’s. Consequently, testing the assemblers on artificial communities proved 

useful, as the assemblies could be evaluated based on their accuracy and coverage of the 

‘true’ dataset. A combination of contiguity, assembly size, coverage and accuracy metrics are 

therefore needed to adequately summarise the quality of the metagenome assembly, or to 

compare between assemblies.  

 

Assembler selection was shown to be important for the output quality, with de Bruijn based 

assemblers, CLC and metaSPAdes producing assemblies with the highest coverage, 

contiguity and assembly size. Assembly outcomes were shown to be significantly different 

across the assemblers tested, and therefore identifying a suitable assembler for the data type 

is important for obtaining high quality results. Whilst the assemblers were tested across 

communities at a range of complexities, no significant difference could be found between 

these, when looking at a single assembler. It is arguably more important to select an 

appropriate assembler for the data type, which can then be applied to similar data without 



	 64	

significant disadvantages. Some differences were obtained when modifying the community 

complexity, mainly in terms of assembly coverage, N50 and number of contigs over 1000bp. 

Therefore, if computational power and time permits, it is recommended to test the assemblers 

for the dataset in question, rather than just the data type. However, we would not expect 

substantial reductions in assembly quality when using an assembler tested on a similar data 

type.  

 

Modifying parameter values was also shown to influence output quality. Whilst the assembly 

itself can improve the dataset quality for functional and taxonomic annotation, by testing 

several parameter sets, the assembly outcome can be improved. Whilst providing a full 

parameter optimisation was not the aim of this study, we have shown that the more complex 

de Bruijn graph assemblers are more sensitive to parameter settings, such as the kmer length. 

It would therefore be beneficial to test a few parameter sets, or carry out a parameter 

optimisation, if assembly quality was a key concern.  

 
Overall, we have identified the metaSPAdes and CLC assemblers as providing the highest 

quality assemblies for soil and sediment bacterial datasets. These assemblers are 

recommended for use on datasets of similar types. However, the more the user attempts to 

improve the assembly outcome (i.e. testing for the dataset in question and modifying 

parameter settings), the greater the outcome quality can be. Improving the quality of the 

assembly will not only increase the reliability of the functional and taxonomic annotations, but 

also allow more detailed investigation of the microbial community. For example, improved 

annotation may aid extraction of draft genomes from metagenome datasets.  

 

2.6 Observations   
 

The results of this chapter have highlighted a series of observations, when considering 

metagenome assembly within an analysis pipeline.  

 

• Assembling metagenome reads can increase their length, which may help 

downstream annotation.  

• Assemblers do not all perform the same, the most appropriate choice will 

depend on the data type and complexity.  

• If possible, testing a selection of assemblers may help determine the most 

appropriate choice.  

• Testing of assemblers can be carried out on real environmental data, or a 

simulated community (which will allow the evaluation of accuracy).  
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• Assemblers should be evaluated on multiple metrics: contiguity, completeness, 

size and accuracy.  

• Parameter values can influence assembly outcomes, especially for de Bruijn 

graph assemblers. Testing several parameter sets may help improve assembly 

quality.  

• Once testing has been carried out, the same assembler can be used on 

multiple samples from a similar environment, without significant cost to 

assembly quality.  

• Assembly may not always be the most appropriate choice, for example, given 

high fragmented datasets with low sequencing coverage.  

 

2.7 Recommendations for best practice  
 
The results of this analysis have highlighted some recommendations for best practice when 

using metagenome assembly as part of an analysis pipeline. Here it has been shown that de 

Bruijn graph assemblers, such as CLC and metaSPAdes are most appropriate for complex 

soil metagenomes. This is likely related to the use of a graph-based algorithm which identifies 

read overlaps and read layout, alongside multiple tuneable parameters.  However, we 

recommend that if the resources are available, several de Bruijn graph-based assemblers are 

tested on the dataset under analysis, to obtain an improved outcome. Comparing and 

selecting an assembler can increase read coverage, assembly contiguity and completeness, 

which will improve downstream annotation opportunities. This analysis has shown that the 

simpler Greedy assemblers and those designed for single genomes should not be applied to 

metagenomic assembly. This is because these assemblers produce small localised 

assemblies through read overlaps, often creating fragmented datasets which hinder 

annotation.  

 

Once an assembler has been selected, multiple parameter sets should be tested to obtain an 

improved result. This is especially the case for de Bruijn graph assemblers, which are sensitive 

to key parameter values such as the kmer length. A consideration should also be made to the 

expected composition and complexity of the dataset. This analysis has shown substantial 

differences in assembly outcome based on the complexity of the community, and that 

assembler choice should take this into account. For example, a simple community 

monopolised by a few microbes may assemble reasonably well with a Greedy based 

assembler, given the increased read coverage for these organisms. However, with a complex 

community structure, such as found in soils, a variability in microbial abundance and therefore 
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read coverage requires the use of a more tuneable assembler. Given limited computational 

resources and time, it is recommended that those assembling soil metagenomes use a de 

Bruijn graph assembler, and test several values of kmer length as a minimum. Some 

assemblers, such as metaSPAdes incorporate kmer length optimisation as part of the 

assembly process.  

 
2.8 Limitations and additional work 
 
As the aim of this study was to test overall assembler function on simulated bacterial 

communities, parameter space optimisation was not carried out. Whilst the study could have 

been conducted by running each assembler on default values, we also wanted to show how 

modifying some parameter settings could enhance the results available. In this study we 

tested a total of five parameter sets for each assembler, including the default values. Whilst 

this was sufficient to highlight the sensitivity of more complex de Bruijn graph assemblers to 

parameters such as the kmer length, greater analysis of the parameter space could be carried 

out. This would include running optimisation of key parameters such as the kmer length, 

minimum contig length and bubble size (Chikhi and Mendelev, 2013). Identifying the optimal 

parameter set is likely to improve the quality of the assembly outcome. This would be 

particularly important for studies that are interested in more detailed aspects of the microbial 

community structure, such as gene arrangements or assembling single draft genomes (Eloe-

Fadrosh et al., 2016b).  

 

A subset of publicly available assemblers were selected for this study, in order to cover the 

three main assembly algorithms available. To obtain the most optimal assembler for soil 

microbial data, all publicly available assemblers could be included. This would require 

collaboration between several research centres, as carried out by Assemblethon 2 for the 

assembly of single vertebrate genomes (Bradman et al., 2013). However, we have shown 

here that by selecting a de Bruijn graph assembler, such as CLC or metaSPAdes, assemblies 

of improved quality can be obtained compared to using simpler OLC or Greedy assemblers, 

which are better fitted to longer sequencing reads. In future, the soils community may wish to 

conduct a wider inter-comparison for metagenome data, in order to highlight the best 

performing assembler. This in itself has limitations, as the assemblers may only be tested on 

one data type, and as the field is constantly evolving with the release of new assemblers, this 

will also only be a snapshot of the assembly platforms available.  

 

This study tested the selected assemblers on a series of artificial bacterial metagenomes. This 

was carried out so that the ‘true’ bacterial community was known, and therefore the assembly 

accuracies could be evaluated. The assemblers could also be tested on real bacterial data, 
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however, this would limit the evaluation metrics to contiguity, coverage and size criteria. The 

assemblies could also be repeated in order to test the reliability of each assembly, and how 

variable the assembly outcomes can be. As far as the authors are aware, there is no current 

knowledge on the reliability of assemblers when repeating assemblies of the same dataset.  
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3.1 Introduction  

Arctic glaciers are undergoing fast retreat, exposing soils that have been locked under ice for 

thousands of years (Bradley, Singarayer and Anesio, 2014). Microbial communities have been 

identified as the primary colonisers of these newly exposed soils (Schmidt et al., 2008) and 

are important for building up initial carbon and nitrogen pools, enhancing soil stability through 

the release of exopolymeric substances, and mediating forefield soil pH (Sattin et al., 2009; 

Schulz et al., 2013). However, there is a lack of coherent understanding on the diversity and 

biogeochemical importance of these bacterial communities in relation to nitrogen fixation 

(Brankatschk et al.,2011). Bacterial nitrogen fixation uses the enzyme nitrogenase to convert 

atmospheric nitrogen (N2) into fixed ammonia (NH3) for biological uptake by non-diazotrophic 

organisms (Brill 1975). As nitrogen is a key nutrient for microbe and plant growth, nitrogen 

limited forefield soils may place restrictions on heterotroph colonisation, productivity and 

succession (Duc et al., 2009). Subsequently, diazotrohic organisms have been proposed as 

crucial facilitators of succession in newly exposed forefield soils (Knelman et al., 2012). 

Nitrogen-fixing cyanobacteria have been identified as key in building these initial nitrogen 

stocks, and therefore expediting the establishment of heterotrophic organisms (Kaštovská et 

al., 2005; Schmidt et al., 2008; Duc et al., 2009). 

Whilst the importance of early diazotrophs is evident, similarities and variations in the nitrogen-

fixing communities across forefields, in terms of both diversity and phylogeny, have received 

limited attention. The majority of research to date has focused on understanding changes in 

nitrogen fixation within individual forefields, along transects or chronosequences of soil 

development (Duc et al., 2009; Brankatschk et al., 2011). Thus far, the taxonomic diversity 

and abundance of the nifH gene, encoding nitrogenase for nitrogen fixation, has been shown 

to decrease with soil age and distance from the glacier terminus, in line with increasing fixed 

nitrogen in soils, and a reduced need for diazotrophy (Duc et al., 2009; Brankatschk et al., 

2011). The dominant diazotrohic community composition in forefields is likely to be influenced 

by factors such as soil physicochemical status, climate, topography, the establishment of 

plants and any disturbances, such as water flow pathways, which may elicit both similarities 

and differences in diazotrophy between sites (Hodkinson, et al., 2002; Nicol et al., 2005; 

Schütte et al., 2010; Liu et al., 2012). Furthermore, the current body of evidence surrounding 

microbial succession in forefields has a limited geographical range, with most studies 

conducted in the Damma Glacier forefield in Switzerland (Duc et al., 2009; Frey et al., 2010; 
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Bernasconi et al., 2011; Brankatschk et al., 2011; Brunner et al., 2011; Zumsteg et al., 2013, 

2013; Bradley et al., 2015). Investigation across multiple glacier forefields is needed to fully 

explore similarities and differences between forefields in terms of diazotrophic community 

composition and their phylogenetic relations (Schütte et al., 2010). This will help highlight the 

microbial community diversity involved in nitrogen fixation among glacier forefields. 

Bacterial nitrogen fixation is encoded by clustered nitrogenase (nif) genes, typically through 

an enzyme containing an iron (Fe) cofactor and a molybdenum-iron (Mo-Fe) cofactor (Dixon 

and Kahn, 2004). Overall, the abundance of bioavailable nitrogen controls the transcription of 

nitrogenase genes, whilst the variant of nitrogenase transcribed is regulated by the presence 

of molybdenum (Oda et al., 2005; Teixeira et al., 2008). In the absence of Mo, nitrogenase is 

transcribed with vanadium (Fe-V co-factor), or exclusively with iron (Fe-Fe cofactor) in the 

absence of both Mo and V (Raymond et al., 2004; Teixeira et al., 2008). These nitrogenases 

are in turn encoded by the nifHDK, vnfH-vnfDGK and anfHDGK operons (Dixon and Kahn 

2004; Teixeira et al., 2008). The phylogenetically conserved nifH gene can be used to classify 

bacterial diazotrophs into Clusters I-IV based on the nitrogenase (Chien and Zinder 1996). 

Cluster I covers the typical Mo nifH, whilst Cluster II covers the alternative vnfH and Cluster 

III generally includes a diverse range of anaerobic bacteria (Zehr et al., 2003). Furthermore, 

Cluster IV contains organisms with ‘nif-like’ sequences, as opposed to conventional nif genes 

(Zehr et al., 2003). 

Previous research conducted on microbial succession in glacial forefields, including those on 

functional genes, has mostly focused on marker gene data, such as the universal bacterial 

marker 16s rRNA and amplified nifH (Schmidt et al., 2008; Brankatschk et al., 2011; Rime et 

al., 2015). However, studies are now applying alternative methods, such as metagenomics, 

to study microbial communities (Wooley, Godzik and Friedberg, 2010). This is because 

metagenomics can provide gene sequences for the entire microbial community gene pool, 

rather than target sequences (Handelsman 2004; Daniel 2005). Thus, both microbial diversity 

and functional potential can be inferred using one approach (Wooley, Godzik and Friedberg 

2010; Thomas et al., 2012). To maximise the quality of the output metagenome, the short DNA 

fragments from next generation sequencing can be assembled (Vázquez-Castellanos et al., 

2014). This generates longer continuous DNA reads (contigs), which can provide enhanced 

functional and taxonomic annotations (Howe et al., 2014; Vázquez-Castellanos et al., 2014). 
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In this study, we investigated 70 soil metagenomes spanning transects and chronosequences 

across four Arctic forefields in N-Sweden, Greenland and Svalbard. The datasets have been 

assembled separately and subsequently annotated for use in a comparative metagenomics 

analysis. This study leads on from Chapter 2, by utilising metagenome assembly with 

metaSPAdes in an environmental setting. Here, we use metagenomics to present an 

investigation into the taxonomy and phylogenetic relationships of the functional genes 

recovered relating to bacterial nitrogen fixation in the four forefields. This analysis aims to 

contribute to the existing knowledge on pioneer microbial communities, helping to identify key 

genera of diazotrophic bacteria, which may have a key role building labile nitrogen stocks and 

soil development in oligotrophic forefield soils. 

3.2 Materials and methods  

3.2.1 Field sampling 

Four Arctic glacier forefields were selected for sampling and analysis, in front of Rabots glacier 

(Rb), N-Sweden (67° 54′ 25.6284″ N, 18° 26′ 51.0792″ E); Storglaciären (St), N-Sweden (67° 

52′ 21.1116″ N, 18° 34′ 2.676″ E); Midtre Lovénbreen (Ml), Svalbard (79° 6′ 1.8″ N, 12° 9′ 

21.996″ E) and Russell Glacier (Rl), Greenland (67° 9′ 23.4324″ N, 50° 3′ 50.342″ W). Samples 

were obtained in July 2013 (Midtre Lovénbreen) and July 2014 (Russell, Rabots and 

Storglaciären). Surface soil from each site was sampled using a chronosequence/transect-

based approach, constructing three parallel transects along the forefield moving away from 

the terminus (Bradley, Singarayer and Anesio 2014). Chronosequence-based sampling was 

used to capture the diversity in nutrient concentration and microbial taxonomy of each 

forefield, to make more holistic comparisons between glacial forefields. Bulk surface samples 

were collected into sterile Whirlpak bags, and frozen at −20°C. Observationally, the sites 

comprised soils at very different development stages. A ‘typical’ smooth successional 

chronosequence from bare ground, to more developed, plant colonised soil was observed in 

the Ml forefield. However, the other sites sampled had a more heterogeneous 

chronosequence, with earlier and often more patchy plant colonisation. 

3.2.2 Soil organic carbon and total nitrogen content 

Soil total nitrogen (TN) and total organic carbon (TOC) were determined using mass 

spectrometry on a FlastEA 1112 nitrogen and carbon elemental analyser. The protocol 

described in Hedges and Stern (1984) was used for sample preparation. In brief, for TN 
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analysis soil samples were weighed and dried at 50°C overnight, before subsamples were 

transferred into tin capsules. For TOC analysis, 2 ml of 1 M HCL was incrementally added to 

0.1 g of sample (Wo) until effervescence stopped. Subsequently samples were again dried 

overnight at 50°C, left to equilibrate with hydroscopic salts, and re-weighed (Wf). Finally, 

subsamples were transferred into tin vials for analysis. The percentage of TOC in each sample 

was calculated using a correction for acidification induced weight change (Equation 2.1). 

Where possible, three environmental replicates were analysed for each TN and TOC per 

sampling site. 

Equation 2.1: Correction for weight change during acidification of samples for organic carbon 
elemental analysis.  
 

%𝑂𝐶 =
100	x	mgOC
mg	sample

𝑥	
𝑊𝑓
Wo

 

     
Where Wo is sediment dry weight prior to acidification, and Wf is dry weight after acidification.  
 
3.2.3 DNA extraction, library preparation and sequencing 

As this study was focused on the microbial diversity in bulk surface soil, DNA was extracted 

using a Mo-Bio DNAEasy PowerSoil DNA extraction kit (QIAGEN, UK), with DNA yield 

quantified using a Qubit 2.0 fluorometer. Samples that yielded less than 50 ng of DNA during 

extractions were pooled with their field replicates prior to sequencing. This method has been 

previously shown to obtain high DNA yields from soils and has been used for soil microbial 

diversity analysis in a number of studies, including root microbiomes (Fierer et al., 2007; 

Allison et al., 2008; İnceoǧlu et al., 2010; Carvalhais et al., 2013; Vishnivetskaya et al., 2014). 

However, as this approach is not directly targeting the soil rhizosphere communities, there 

may be limitations to DNA extraction from this subset of the microbial community. 

Metagenomes were sequenced using an Illumina Next-Seq 500 (Rb, St and Rl) and an 

Illumina-Mi Seq (Ml), with a TruSeq library prep kit at the University of Bristol Genomics facility. 

A total of 70 metagenomes were sequenced across the four sites using 2x 150bp (Rb, ST, Rl) 

and 2x 100bp (Ml) paired-end reads (Appendix 2 Table 1). Sequencing read output for each 

site can be identified in Appendix 2 Table 2, ranging between 3 817 852 and 10 510 0186 

reads per metagenome. 
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3.2.4 Metagenome assembly and annotation 

The 70 sequenced datasets were quality trimmed and subsequently assembled individually 

using the metaSPAdes 3.10.0-dev assembler, a development release of metaSPAdes, tested 

in Chapter 2 (Bankevich et al., 2012). These assemblies were carried out in collaboration with 

the DOE Joint Genome Institute (Walnut Creek, CA), using the BFC algorithm for read error 

correction (Li 2015), and the --meta and --only-assembler flags. Furthermore, incremental 

Kmer lengths were used (22, 33, 55 and 77) to identify the most appropriate parameter value 

for assembly. Assembly size for each metagenome ranged between 241,660 and 429,543,524 

bases (Appendix 2 Table 2). Functional annotation of the 70 metagenomes was subsequently 

carried out using the Integrated Microbial Genomes with Microbiome Samples (IMG/M) 

system (Chen et al., 2017). Rarefaction curves were created in MG-RAST 4.0.3 for each 

metagenome (Appendix 2 Figures 1–4; Meyer et al., 2008). Each metagenome was evaluated 

based on the number of contigs assembled and species obtained, to highlight metagenomes 

that may be under sampled through sequencing. Under sampling can occur in highly diverse 

metagenomes, where the sequencing is not adequate to reveal all taxa present in the sample 

(Torsvik and Øvreås 2002). Consequently, in under sampled datasets, some organisms, 

particularly those which were less abundant, may not be included in the output metagenome 

(Rodriguez and Konstantinidis 2014). 

For each metagenome, the nifH gene for nitrogen fixation was searched using the Basic Local 

Alignment Search Tool for Proteins (BLAST-p) with an e-value of 1e−5and extracted. As nifH 

genes are generally found in a phylogenetically conserved nitrogenase cluster (with nif D, K, 

N and E), these genes were also searched for and extracted (Howard and Rees 1996). Nif 

genes were dereplicated, removing duplicate copies, using VSEARCH 2.6.0, leaving a total 

of 185 assembled nif genes for subsequent analysis (Rognes et al., 2016). The nif genes used 

for the analysis have been deposited in GenBank, under accession numbers MH551286 - 

MH551470. Gene abundance was calculated as a combined value of nifHDKNE, normalised 

in relation to the abundance of the bacterial single copy housekeeping gene, rpoB, for each 

site (Vos et al., 2012; Ishii et al., 2015). As this method relies on sequencing unamplified 

genes, the nif gene counts are limited and may not be exhaustive for individual samples. This 

is particularly the case for unamplified sequencing of complex microbiome datasets, such as 

soil samples (Rodriguez and Konstantinidis 2014). Additionally, diazotrophs can contain 

multiple different nif genes, and several copies of a single variant, so should not be used as a 

measure to enumerate the explicit number of diazotrophs in each sample (Zehr et al., 2003). 
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Finally, the raw sequencing reads were mapped to the extracted nif contigs for each 

metagenome using the BWA-MEM algorithm (Li and Durbin 2009). The alignment score (AS) 

of each read/contig is reported, which numerically indicates the quality of the alignments. 

3.2.5 Nif taxonomy 

The taxonomic distribution of all nif sequences (HDKNE) was carried out using a Last 

Common Ancestor (LCA) analysis in MEGAN 6.9.0 (Huson et al., 2016). For each forefield, 

nifHDKNE sequences were nucleotide BLAST (BLASTn) searched against an NCBI GenBank 

database of complete bacterial genomes. The sequences were subsequently binned based 

on the NCBI taxonomy, using an LCA algorithm, and visualised at the genus level for each 

forefield (Huson et al., 2016). 

3.2.6 Gene phylogeny 

A phylogeny for nifH, based on clusters identified in Zehr et al., (2003), was carried out, as 

this gene is supported by the largest body of research. Sample nifH sequences were aligned 

to sequences of cultured isolates, largely derived from the phylogeny by Deslippe and Egger 

(2006). GenBank and UniProtKB accession numbers for cultured isolates are available in 

Table 3.1. DNA sequence alignments were generated in SATé 2.2.7, using MAFT, MUSCLE 

and FASTTREE (Liu et al., 2011). The GTR+CAT model was implemented, with the 

decomposition set to longest (to minimise long branch attraction) and a maximum number of 

iterations set to 8. Alignments were manually edited in Mesquite, alongside generating Nexus 

and Phylip format files (Maddison and Maddison 2017). Maximum likelihood phylogenies were 

carried out using the CIPRES implementation of RAXML-HPC2 8.2.10 on XSEDE1, with 1000 

bootstrap iterations (Stamatakis, 2014). The GTR+G model of nucleotide substitutions was 

implemented, as identified with j model test (Guindon and Gascuel 2003; Darriba et al., 2012). 

Trees were evaluated using Figtree 1.4.32, before annotation with EvolView v23 (He et al., 

2016). Graphical enhancements were made using Inkscape 0.92.24. Comparisons between 

nifH sample sequences and cultured isolates were made using NCBI BLASTn5, to identify 

nearest cultured relatives. 
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Table 3.1: GenBank and UniProtKB accession numbers for nifH sequences derived from 
Deslippe and Egger (2006), for use in the nifH phylogeny. 
 
Database  Accession 

number  
Species  Gene 

 
GenBank 
GenBank 
GenBank  
GenBank  
GenBank 
GenBank 
UniProtKB 
GenBank 
GenBank 
UniProtKB 
UniProtKB 
GenBank 
GenBank 
GenBank 
UniProtKB 
UniProtKB 
GenBank 
GenBank 
GenBank 
GenBank 
UniProtKB 
GenBank 
UniProtKB 
GenBank 
GenBank 

 
X13519.1  
AY367395.1 
AF484674.1 
AF216883.1 
V01215.1 
U97122.1 
P26251 
AJ515294.1 
Z31716.1 
P33178 
P08925 
X57006.1 
ABQ25379.1 
M23528.1 
P16269 
Q07942 
AF065617.1 
AY221832.1 
AF227926.1 
AY040513.1 
P25767 
AY029234.1 
P00456 
AF065618.1 
AF216881.1 

 
Azotobacter vinelandii 
Kiebsiella variicola  
Methylomonas rubra 
Azomonas agilis  
Rhizobium meliloti 
Azoarcus tolulyticus 
Azorhizobium caulinodans 
Paenibacillus azotofixans 
Nostoc sp. 
Anabaena sp.  
Frankia alni 
Frankia sp. 
Geobacter uraniireducens  
Azotobacter vinelandii 
Azotobacter vinelandii 
Azotobacter capsulatus 
Chlorobium tepidum 
Pelodictyon lutolum CC11OA0 
Desulfovibrio salexigens 
Desulfomicrobium baculatum 
Methanococcus thermolithotrophicus 
Methanosarcina mazei 
Clostridium pasteurianum 
Desulfonema limicola 
Acetobacterium woodii 

 
vnfH 
nifH 
nifH 
nifH 
nifH 
nifH 
nifH 
nifH 
nifH 
nifH 
nifH 
nifH 
nifH 
anfH 
anfH 
anfH 
anfH 
anfH 
nifH 
anfH 
nifH 
nifH 
nifH 
anfH 
anfH 
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3.3 Results and Discussion  

3.3.1 Soil carbon and nitrogen 
 
Table 3.2: Summary statistics for total nitrogen (TN) and total organic carbon (TOC) across 
the four forefields (Midtre Lovénbreen Ml, Russell Rl, Storglaciären St and Rabots Rb). The 
average, minimum, maximum and standard deviation (SD) across each forefield is given. The 
detection limit for both TN and TOC was 1 mg g-1. Sites recording values below detection (b.d) 
are shown.  
 

TN (mg g-1) Average  Minimum Maximum SD 
Ml b.d. b.d 4.90 1.56 
Rl 1.95 b.d 6.94 2.15 
St b.d. b.d 4.19 0.93 
Rb 1.04 b.d 3.35 1.33 

      
TOC (mg g-1) Average Minimum Maximum SD 

Ml 10.56 b.d. 72.36 21.14 
Rl 26.36 b.d. 82.70 26.35 
St 2.78 b.d. 27.89 6.25 
Rb 6.81 b.d. 22.90 9.66 

 

The range of values obtained within and between forefields for TOC and TN for samples from 

each forefield is listed in Table 3.2. These values include TOC and TN from both microbial 

and plant sources. Looking at average nutrient contents, comparing across the forefields, TN 

content ranges from averages below detection to 1.95 mg g−1, between St and Rl, respectively 

(Table 3.2). TOC content follows the same trend, increasing from the two Swedish glaciers 

(St and Rb), to Ml and Rl. Results from a one-way ANOVA analysis for each nutrient did not 

show any statistically significant differences in the TN measured between forefields (P > 0.05). 

However, concentrations of TOC were found to vary significantly (P = 0.002) (Table 3.3). 

Additional analysis of the TOC variance between forefields using a post-hoc Tukey analysis 

revealed the significant difference was between the St and Rl forefields, with Rl containing 

almost 10 times the TOC content of St on average (P < 0.01, Table 3.2; Table 3.4). 
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Table 3.3 ANOVA comparing differences between the four forefields (Midtre Lovénbreen, 
Russell, Rabots and Storglaciären) based on total nitrogen (TN) and total organic carbon 
(TOC). Significant differences observed between the forefields are noted at the 0.01 or 0.05 
level.  

 
 

		 TN TOC 
f-ratio value 2.46 5.375 

p-value 0.071 0.002357 

Significance level Not 
significant 0.05 

 
Table 3.4: Results of a post-Hoc Tukey analysis, comparing differences between forefields 
(Midtre Lovénbreen Ml, Russell Rl, Storglaciären St and Rabots Rb), based on total nitrogen 
(TN) and total organic carbon (TOC). Significant differences between the forefields are noted 
at the 0.01 significance level.  
 

TN Treatments Q statistic p-value Inference 
		 Ml vs Rl 2.65 0.25 insignificant 

		 Ml vs Rb 0.14 0.89 insignificant 
		 Ml vs St 0.89 0.89 insignificant 
		 Rl vs Rb 1.54 0.68 insignificant 
		 Rl vs St 3.64 0.05 insignificant 
		 Rb vs St 0.72 0.89 insignificant 
		 		 		 		 		

TOC Treatments Q statistic p-value Inference 
		 Ml vs Rl 3.56 0.07 insignificant 
		 Ml vs Rb 0.52 0.89 insignificant 
		 Ml vs St 1.66 0.62 insignificant 
		 Rl vs Rb 2.79 0.21 insignificant 
		 Rl vs St 5.39 0.00 ** p<0.01 
		 Rb vs St 0.56 0.89 insignificant 
		 		 		 		 		

 

Samples from the Rl forefield revealed the widest range in both TOC (below detection—

82.70mg g−1) and TN (below detection—6.94mg g−1), respectively (Table 3.2). This contrasts 

with the Rb forefield, where TOC and TN values expressed a smaller range, from below 

detection to 22.90 mg g−1 and below detection up to 3.35 mg g−1, respectively. A range of 

values is expected across sites within each forefield, due to soil development which takes 

place over successional chronosequences and given variations in sources of autochthonous 
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and allochthonous material (Bradley, Singarayer and Anesio 2014), for example, in the 

deposition of aeolian material (such as soot), or the presence of ancient in situ organic pools, 

exposed by glacier retreat (Schulz et al., 2013; Bradley et al., 2015). For example, across the 

Ml chronosequence TN and TOC increase from below detection and 2.85 mg g−1, to 4.4 mg 

g−1 and 14.5 mg g−1, in line with expected soil development (Table 3.5; Bradley et al., 2016). 

However, whilst differences in soil nutrient content do occur between sites, the values fall into 

the general range observed from other forefields (1–2 mg g−1 nitrogen, and 0.1–40 mg 

g−1 carbon) (Bradley, Singarayer and Anesio 2014) and are indicative of a generally 

oligotrophic environment. 

Table 3.5: Initial and final concentrations of total nitrogen (TN) and total organic carbon (TOC) 
in forefield soils. Values are shown at the start of the transect/ chronosequence (by the glacier 
terminus) and at the end of the transect.  
 

  Start TN (mg g-1) End TN (mg g-1) Start TOC (mg g-1) End TN (mg g-1) 

Ml b.d 4.40 2.85 14.47 

St b.d b.d b.d 1.24 

Rb b.d 1.74 b.d b.d 

Rl b.d 1.33 b.d 17.46 
 
3.3.2 Rarefaction analysis 

Rarefaction analysis was used to investigate the coverage of diversity in each metagenome, 

identifying any datasets where species content may be under sampled (Appendix 2 Figures 

1-4). For each forefield, an assortment of both adequately sequenced and under sampled 

metagenomes were obtained (Figure 1-4, Appendix 2). Metagenomes that show rarefaction 

curves to reach saturation are likely to adequately profile the microbial diversity in the samples, 

for example metagenomes Ml 7, Rl 15, St 16 and St 17 (Figures 1, 2 and 3, Appendix 2). 

However, those metagenomes in which species number does not reach saturation are most 

likely to exclude taxa, for example ML1, ML 20, Rl 14 and Rl 20 (Figure 1 and 2, Appendix 2). 

In these metagenomes, the least abundant taxa are most probably excluded from the dataset, 

due to the reduced abundance of DNA for sequencing from these organisms (Rodriguez and 

Konstantinidis 2014). Whilst this does not detract from conclusions drawn on the organisms 

present in the samples, the full depth of diversity in under-sampled metagenomes cannot be 

highlighted. This issue is often prevalent in highly complex datasets such as soil and can only 
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be resolved through continued deeper sequencing of those metagenomes (Rodriguez and 

Konstantinidis 2014). 

3.3.3 Nif genes recovered 

The total abundance of dereplicated rpoB normalised contigs containing nif genes 

(nifHDKNE), in relation to the variation of TN and TOC, spanning all sampling sites is shown 

in Figure 3.1. A total of 185 nif genes contained on assembled contigs were recovered from 

the datasets. In 75% of samples where nif genes were detected, the TN and TOC 

concentrations fell below 1 and 5 mg g−1, respectively (Figure 3.1). Conversely, in samples 

where nif genes were not detected, 61% and 49% measured below 1 and 5 mg g−1, of TN and 

TOC, respectively (Figure 3.1). As sequencing output varied substantially between 

metagenomes, further sequencing may reveal additional genes due to the complex nature of 

soil microbiome samples (Table 2, Appendix 2; Rodriguez and Konstantinos 2014). However, 

this may indicate that samples with limited TN/TOC could have a larger relative abundance of 

genes for diazotrophy, as these were recovered through the sequencing effort undertaken. 

Interestingly, a similar trend between nitrogen fixation and TN has been reflected by the 

assays carried out by Telling et al., (2011), whereby fixation rates on Arctic glaciers were 

negatively correlated with total inorganic nitrogen content. Additionally, a link between nif gene 

abundance and activity is supported theoretically, as fixation becomes less metabolically 

beneficial when labile nitrogen stocks increase (Gutschink et al,.1978). When applied to 

forefield soils, both TN and TOC have been shown to increase over successional 

chronosequences, indicating nitrogen fixation may become less profitable with soil 

development (Duc et al., 2009; Brankatschk et al., 2011; Bradley, Singarayer and 

Anesio 2014). Furthermore, research by Brankatschk et al., (2011) identified a link between 

nif gene abundance and enzyme activity, indicating sites with high numbers of nif genes, such 

as Storglaciären, would have enhanced nitrogen fixation activities. However, the relationship 

between gene abundance and nitrogen fixation activity is not always fully defined, as areas 

with low nitrogenase activity have previously been linked to high gene abundance in the 

Damma Glacier (Swiss Alps) (Duc et al., 2009). 
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Figure 3.1: Relationship between normalized nif gene abundance (nifHDKNE) and 
concentration of total organic carbon (TOC) and total nitrogen (TN) per gram of soil, across 
all sampling sites. Nif gene abundance values are normalized against the bacterial single copy 
housekeeping gene, rpoB, for each metagenome. Values across the different forefields are 
noted, including: Midtre Lovénbreen (Ml), Russell (Rl), Rabots (Rb) and Storglaciären (St). 

The results of mapping sequencing reads to the nif genes is provided in Table 3 (Appendix 2). 

This highlights the Alignment Score (AS), which indicates the alignment quality between reads 

and contigs (Table 3, Appendix 2). The number of nif genes for each score threshold is 

provided, alongside the percentage of reads with AS over 60. The Alignment Score ranges 

between 0 and the maximum length of the reads (0–100 for MI dataset and 0–150 for Rb, St 

and RI datasets). For each forefield, the percentage of alignments with an AS greater than 60 

N
or

m
al

iz
ed

 n
if 

ab
un

da
nc

e

0

0.05

0.10

0.15

0.20

0.25

TOC (mg g-1)
0 10 20 30 40 50 60 70 80 90

Ml         vs TN (g-1)
Rl  
Rb         vs TN rb
St        vs TN st

N
or

m
al

iz
ed

 n
if 

ab
un

da
nc

e

0

0.05

0.10

0.15

0.20

0.25

TN (mg g-1)
0 1 2 3 4 5 6 7



	 81	

was 1.06x10−3 (Ml), 4.23x10−5 (Rl), 2.38x10−4 (Rb) and 9.56x10−4 (St). Plots of the normalised 

nif genes recovered and the number of reads aligning to genes with an AS over 60, for each 

metagenome, are available in Figure 5–8 (Appendix 2). 

3.3.4 Nitrogenase clusters 

Our newly sampled bacteria were analysed and grouped with previously published relatives, 

as shown in Zehr et al., (2003). Forefield sequences were distributed across Cluster I (23 

sample sequences) and III (3 sample sequences), with no representatives in Cluster II or IV 

(Figure 3.2). Thus, 88.5% of sample sequences were attributed to Cluster I, which contains 

the typical Mo nifH, indicating the presence of plentiful molybdenum in soils for the nitrogenase 

cofactor (Zehr et al., 2003). 

Environmental samples in Cluster I included the groups Alphaproteobacteria, 

Betaproteobacteria, Cyanobacteria and Firmicutes (Figure 3.2). The first group, associated 

with Alphaproteobacteria and Betaproteobacteria, incorporated five environmental samples 

that clustered most closely with Azorhizobium caulinodans and Azoarcus tolulyticus. These 

are plant-associated diazotrophs, important for establishing stocks of fixed nitrogen for legume 

uptake, supporting plant growth (Hurek and Hurek 1995; Dreyfus, Garcia and Gillis 1988). The 

second group was comprised of six sample sequences, clustering with the 

Cyanobacteria, Nostoc and Anabaena, which are free living nitrogen fixers (Zehr et al., 2003). 

Cyanobacteria have been proposed as crucial for building labile nitrogen pools in newly 

exposed soils, important for facilitating heterotroph colonisation, and have been identified in 

other forefields using 16s rRNA amplicon sequencing (Schmidt et al., 2008; Duc et al., 2009; 

Frey et al., 2013). Group 3 contained 11 highly related sample nifH sequences, grouping 

closely to Frankia. This genus is composed of nitrogen-fixing bacteria that are symbionts of 

actinorhizal plant roots, and again provides evidence for bacterial support of plant growth and 

establishment, through supplies of fixed nitrogen (Benson and Silvester 1993). Whilst the 

forefields may have a low diversity of root symbiotic diazotrophs, this may also relate to sub-

optimal cell lysis and separation of root-associated cells during the DNA extraction process, 

or that these organisms were at a low abundance and thus not captured through sequencing. 
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Figure 3.2: nifH maximum likelihood phylogeny of sample sequences (bold) and sequenced 
samples derived from NCBI GenBank and UniProtKB. Most sample sequences were obtained 
from the nifH phylogeny of Deslippe and Egger, (2006). For study samples, the Sample ID is 
given, corresponding to Appendix 2 Table 1. For sequenced samples, the database, organism 
name and gene are given. Bootstrap support values are given, based on 1000 tree iterations. 
The nifH clusters (derived from Zehr et al., 2003) are denoted by leaf colours (Cluster I-IV). 
The tree is rooted on Cluster IV, as this group contains divergent ‘nif-like’ sequences (Zehr et 
al., 2003). Key groups containing sample sequences are noted, including Firmicutes, 
Cyanobacteria, Alphaproteobacteria, Betaproteobacteria and Deltaproteobacteria. 

Environmental samples were also present in Cluster III, which is attributed to a group of 

anaerobic bacteria (Zehr et al., 2003). The three sample sequences clustered most closely 

to Geobacter uraniireducens, an anaerobe common in sediments under metal reducing 

conditions, capable of dissimilatory Fe(III) reduction (Shelobolina et al., 2008). However, no 

sample sequences were linked to Cluster II, which is associated with organisms containing 

the alternative anfH, containing an Fe–Fe cofactor, used in the absence of molybdenum and 

Vanadium (Zehr et al., 2003). 
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These results reflect those of Duc et al., (2009), who used clone libraries to evaluate the 

phylogeny of diazotrophs across the Damma Glacier, Switzerland. Interestingly, nifH 

sequences from their analysis also grouped with nitrogenase Clusters I and III (Duc et al., 

2009). Additionally, genera identified by Duc et al., (2009) included the key genera identified 

in this analysis, such as Geobacter, Nostoc and Anabaena, suggesting that these organisms 

are common across forefields (Duc et al., 2009). The prevalence of these organisms may be 

due to adaptations or attributes to cold environments, such as cold or UV tolerance, and the 

release of protective exudates (Tamaru et al., 2005; Chattopadhyay 2006; Pattanaik et al., 

2007). Cyanobacteria such as Nostoc have been shown to produce extracellular 

polysaccharides (EPS) which are important for desiccation and freeze-thaw tolerance in Arctic 

environments (Tamaru et al, .2005). Geobacter are commonly found in anaerobic 

environments, and therefore may tolerate any anoxia in forefield soils created by frequent 

meltwater flooding and the formation of melt pools (Duc et al., 2009). The consistent 

identification of Geobacter, Nostoc and Frankia in forefield soils using nifH analysis indicates 

that a core group of diazotrophs may be present across Arctic forefields. These diazotrophs 

may be important for facilitating plant colonisation and establishment, either by building labile 

pools in newly exposed soils (Cyanobacteria) or through symbiosis (Frankia, Azorhizobium). 

Results from BLASTn searching each nifH sequence against cultured isolates revealed 

forefield sample sequences were divergent, with sequence identity ranging between 80%–

95% (Table 3.6). This indicates that the diazotrophs present in the samples are novel 

compared to those which have been previously identified and may be unique or contain 

adaptations to cold oligotrophic forefield conditions. However, as less abundant organisms will 

contribute to a minor proportion of the unamplified sequenced DNA and nifH gene pool, using 

additional nif genes may help highlight the presence of rare organisms in samples 

(Cowan et al., 2005). This may be especially helpful for metagenomes where sequencing 

coverage was not sufficient to profile the complete community structure, and thereby some 

low abundance organisms may not have been represented in the final dataset (Figure 1–4, 

Appendix 2). 
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Table 3.6: NCBI blastn matches for sample sequences, against cultured isolates. The best 
match accession number and % identity is given. Sequences with no significant matches have 
been left blank.  
 

Sample Cluster Blast match 
Accession 

number  
% 

similarity 
Rb10 I Frankia sp.  X57006.1 83 
Ml 10 I Frankia sp.  CP000820.1 84 
Ml 6 I Frankia alni str.  CT573213.2 82 

Ml 18 I - - - 
Ml 10 I Frankia casuarinae strain  CP000249.1 82 
St 11 I Frankia sp.  AY115490.2 82 
Ml 2 I Frankia alni str.  CT573213.2 82 
St 17 I Frankia HRN18a X17522.1 81 
St 8 I Frankia sp.  X73983.1 81 

St 17 I Frankia sp.  HM026362.1 81 
Rl13 I Leptosprillum ferriphilum  JN390678.1 85 

          
St3 III Geobacter uraniireducens  CP000698.1  88 
St3 III Geobacter lovleyi  CP001089.1 90 
St5 III Geobacter uraniireducens  CP000698.1  89 

          
Rl 6 I Nostoc flagelliforme  AP018269.1 95 
Rl 6 I Scytonema sp.  AP018268.1 91 
Ml1 I Nostoc punctiforme  CP001037.1 94 
Ml1 I Scytonema sp.  AP018268.1 90 
St15 I Scytonema sp.  AP018268.1 84 
St9 I Anabaena variabilis  AP018216.1 84 

          
Rb2 I Bradyrhizobium oligotrophicum  AP012603.1 94 
Rb3 I Bradyrhizobium oligotrophicum  AP012603.1 91 
St 11 I Polaromonas napthalenivorans CJ2 CP000529.1 87 

          
St18 I Bradyrhizobium oligotrophicum S58 AP012603.1 80 
St11 I Polaramonas napthalenivorans CJ2  CP000529.1 94 
St11 I Polaromonas napthalenivorans CJ2 CP000529.1 90 

 
3.3.5 Diazotroph community structure 

LCA analysis with multiple nif genes (HDKNE) identified the key organisms consistent 

between two or more forefields, including Geobacter, Frankia and Nostoc, which were also 

highlighted in the nifH analysis. Additional genera, for example Polaromonas, Pelobacter and 

Microcoleus were also identified here through the inclusion of additional nif genes (nifDKNE) 
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(Figure 3.3). This suggests including multiple nitrogenase genes provides a more holistic view 

of the diazotroph community structure in each forefield, due to the low copy number of these 

genes in unamplified samples. This is a particular issue of highly diverse metagenome 

samples, such as those from soils, as sequencing depth may not profile the complete 

community structure (Rodriguez and Konstantinidis 2014). 

 

 

 

 

 

 

 

 

 

 

Figure 3.3: Taxonomic distribution of nif (HDKNE) genes for each forefield at the genus level: 
Midtre Lovénbreen Ml (A), Russell Rl (B), Rabots Rb (C), Storglaciären St (D). The total nif 
gene sequence count for each site was 42, 15, 13 and 91, respectively. 

 

The assignment of nif genes in the Rl forefield covers two key genera, Geobacter and Frankia. 

Limited research has been conducted into the presence of Frankia in Greenland; however, 

these organisms are typically associated with common actinorhizal plants (Benson and 

Silvester 1993; Chaia et al., 2010). This group forms nitrogen-fixing root nodules 

with Frankia in exchange for reduced carbon and therefore are commonly found as early 

colonisers of undeveloped, oligotrophic soils (Wall 2000; Schwinter 2012). This is in 

agreement with the limited nitrogen content detected in this forefield, at 2.04 TN g−1 (Figure 
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3.1 and Table 3.2). Additionally, the presence of plants has been identified as a key control 

on microbial community structure over the Damma Glacier forefield, Switzerland (Miniaci et al., 

2007). Furthermore, the identification of the anaerobic Geobacter indicates the presence of 

periodically saturated and anoxic conditions along the forefield, possibly attributed to 

meltwater flooding (Duc et al., 2009). Geobacter are dissimilatory metal and sulfur reducing 

bacteria and have been proposed as key players in sediment nutrient cycles, oxidation of 

organic matter, bioremediation and soil gleying (Lovley et al., 1993; Childers et al., 2002; 

Methe et al., 2003). Geobacter have been consistently identified across glacier forefield soils, 

which may relate to their metabolic diversity, thereby making these organisms well suited to 

fluctuating environmental conditions in forefield soils (Duc et al., 2009; Edwards and 

Cook 2015; Rime et al., 2015). This group has been shown to use chemotaxis to access Fe(III) 

oxides as an electron acceptor, which may explain their prevalence over other non-motile 

Fe(III) reducers (Hartmann and Brunner 2015). Whilst deeper sequencing in some 

metagenomes may highlight additional rare diazotrophic bacteria in Rl samples, it is likely 

that Geobacter and Frankia were the most dominant nitrogen fixers present, as these were 

identified through direct sequencing of unamplified DNA (Cowan et al., 2005; Figure 2, 

Appendix 2). 

Similarly, to Rl, the taxonomic diversity detected in the N-Swedish Rb forefield was largely 

comprised of root associated diazotrophs, including the genera Bradyrhizobium, Frankia, 

Methylobacterium and Rhodopseudomonas (Figure 3.3). This may relate to the lack of bare 

soil observed at this forefield, and therefore limited requirement for free living diazotrophs 

(Miniaci et al., 2007). This site also had a low average soil nitrogen content, at 1.04 mg 

g−1 (Figure 3.1 and Table 3.2), which, alongside the detection of Rhizobia, Fabaceae root-

nodule symbionts, indicates that nitrogen limitation for plant growth may have been occurring 

in soils (Mylona et al.,1995). Actinorhizal and legume plants, which directly benefit from 

biological nitrogen fixation through symbiosis, such as Clover, are likely to prevail in 

developing forefield soils (Fagerli and Svenning 2005; Chaia et al., 2010). This is because 

they maintain a competitive advantage over other plants in nitrogen limited conditions, typical 

of newly exposed soils (Menge and Hedin 2009; Bradley, Singarayer and Anesio 2014). 

Additionally, Rb had a lower average soil TOC content than other forefields, at 6.8 mg 

g−1 (Figure 3.1 and Table 3.2). Thus, Rhizobia are likely to benefit from symbiosis with plants 

through the supply of reduced carbon (Denison and Kiers 2004). Plants may therefore be 

acting as a control on the forefield microbial community structure, endorsing the presence of 
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root-associated diazotrophs (Miniaci et al., 2007). Rarefaction curves for Rb sites were shown 

to be nearing saturation, indicating much of the microbial community structure was profiled 

(Figure 4, Appendix 2). Additional sequencing for these samples may reveal further low 

abundance taxa; however, it is likely that the most dominant fraction of diazotrophs have been 

identified adequately through our analysis. 

The nif genes recovered from the Ml forefield showed a wider taxonomic diversity of 

diazotrophs and contained sequences linked to the genera Nostoc, 

Polaromonas, Bradyrhizobium, Pelobacter, Azoarcus and Anaeromyxobacter. The presence 

of the Cyanobacteria, Nostoc, was expected due to the greater extent of bare soil observed in 

this forefield, enhancing the need for early colonisers (Frey et al., 2013). Additionally, EPS 

production enables this group to resist harsh freeze-thaw cycles, common in Arctic 

environments (Tamaru et al., 2005). Given the high latitude of this forefield, it is also not 

surprising to find Polaromonas, which are known psychrophiles (Irgens et al.,1996). The 

presence of Bradyrhizobium and Frankia indicate plants may require additional fixed nitrogen 

through symbiosis, corresponding with the low nitrogen stocks detected (Benson and 

Silvester 1993; Mylona et al., 1995; Chaia et al., 2010; Figure 3.1 and Table 3.2). Additionally, 

the presence of legume symbiotic diazotrophs is interesting, as Fabaceae are non-native to 

Svalbard, having been introduced over the 20th Century (Fagerli and Svenning 2005). The 

absence of early plant colonisation in the forefield may also have been a control on overall 

microbial community structure, endorsing a range of non-symbiotic diazotrophs 

(Knelman et al., 2012). Alongside Geobacter, the identification of Pelobacter, 

Thiocystis and Anaeromyxobacter, again indicates permanent or periodic anaerobic 

conditions in the glacier forefield, similarly to Rl (Schink and Stieb, 1983; Sanford et al., 

2002). Pelobacter are anaerobic organisms containing diverse fermentative metabolisms, 

which may make this group well suited to the rapidly changing conditions in forefield soils 

(Schink, 2006). For example, Pelobacter have been shown to ferment acetylene using 

acetylene hydratase to acetate for cell growth or using nitrogenase to ethylene through 

nitrogen fixation (Akob et al., 2017). The genomic results for the Ml forefield falls in line with 

16s amplicon data presented by Bradley et al., (2016). This study also found Frankia, 

Rhizobium, Nostoc and Geobacter in the Ml forefield (Bradley et al., 2016). The identification 

of additional organisms such as Devosia, Sphingomonas and Rhodoplanes may relate to the 

use of amplification in their methodology, thereby aiding the discovery of low abundance 

organisms (Bradley et al., 2016). Additionally, some metagenomes from this forefield would 
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have benefitted from greater sequencing depth in order to completely profile the microbial 

community composition (Figure 1, Appendix 2). Therefore, deep sequencing of these samples 

may reveal additional low abundance diazotrophs, unidentified in this analysis. 

Finally, the St forefield contained sequences relating to Nostoc, Geobacter, Rhizobium, 

Polaromonas and Frankia, in line with the other forefields sampled (Figure 3.3). This supports 

the identification of a core group of diazotrophs present across Arctic glacier forefields. 

However, several diazotrophs detected at this site may also have importance in sulfur cycling, 

alongside nitrogen fixation (Figure 3.3). The detection of the anaerobic 

diazotrophs Geobacter and Desulfovibrio indicates the potential for sulfur reduction, whereby 

energy is gained through reducing sulfur (S) or sulfate (SO4
2−) to hydrogen sulfide (H2S), with 

the oxidation of organic carbon (Boopathy and Kulpa 1993; Caccavo et al.,1994). However, 

inorganic S and SO4 have been found to be limiting for both plants and microbes in newly 

exposed glacier forefield soils (Allison et al., 2007; Prietzel et al., 2013). Nevertheless, 

desulfonating bacteria, whom metabolise organically bound sulfur to labile sulfates, have been 

found in forefield soils, and may therefore help overcome S limitation (Schmalenberger and 

Noll, 2009; Prietzel et al., 2013). Additionally, suitable anaerobic growth conditions for sulfur 

reducing bacteria may occur frequently in stagnated proglacial meltwater pools and during 

periods of meltwater flushing (Duc et al., 2009). Furthermore, the detection of organisms such 

as Chlorobaculum, Thioflavicoccus, Halorhodospira and Thiocystis indicates the potential for 

St forefield bacteria to carry out both nitrogen fixation and sulfur oxidation (Figure 3.3). These 

organisms have the potential to oxidise H2S to S and SO4, alongside gaining fixed nitrogen 

through diazotrophy (Imhoff and Pfenning 2001; Chan, Morgan-Kiss and Hanson 2008; 

Peduzzi et al., 2011; Challacombe et al., 2013). The ability of these organisms to overcome 

nitrogen limitation through fixation, and to respire anaerobically in anoxic soils, may make this 

group well suited to harsh forefield environments. Additionally, as Halorhodospira is also 

halophilic, this may indicate resistance to high salinity environments, such as ice brine 

channels, or evaporation ponds in the St forefield (DasSarma and DasSarma 2006). 

The diazotroph community composition observed using LCA nifHDKNE analysis was again 

largely consistent with those found at the Damma Glacier, Switzerland (Duc et al., 2009;  

Frey et al., 2013). This includes genera such 

as Methylobacterium, Bradyrhizobium, Azotobacter, Anabaena, Nostoc and Geobacter (Duc 

et al., 2009). This supports the results from the nifH phylogeny, indicating the presence of 
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consistent genera across forefields, which may be well adapted to the cold, oligotrophic and 

high UV conditions. Plant colonisation has also been identified as an influence on the 

diazotrophic community composition, in agreement with studies on the Damma Glacier, 

Switzerland (Miniaci et al., 2007; Duc et al., 2009; Zumsteg et al., 2013). However, it is 

important to acknowledge that additional factors, such as latitude, bedrock minerology, 

organic matter and aeolian nitrogen deposition, may also have an influence on diazotroph 

community structure and abundance (Duc et al., 2009; Zumsteg et al., 2013). Some genera 

found by Duc et al., (2009), such as Oscillatoria, Ideonella and Paenibacillus were not 

identified in this study (Figure 3.3). This may relate to the absence of these organisms in the 

four forefields in this analysis, but also may relate to the alternate approach used. As this 

analysis uses unamplified nifH sequences, some low abundance organisms may not be 

sequenced due to incomplete sequencing depth in highly complex samples (Rodriguez and 

Konstantinos 2014; Figures 1–4, Appendix 2). Thus, it cannot be ruled out that these 

organisms were also not present in the forefields, but at a lower abundance than those 

captured by the sequencing effort (Prakash and Taylor, 2012). In order to profile the complete 

community of some metagenomes, including low abundance organisms, deeper sequencing 

would be required, due to the diverse nature of soil samples (Rodriguez and 

Konstantinos 2014). Despite this, this analysis has been able to capture a diverse group of 

diazotrophs that appear to be common across glacier forefields and are likely the most 

abundant fraction of the nitrogen-fixing community, as these were captured by unamplified 

DNA sequencing (Rodriguez and Konstantinos 2014). 

3.4 Conclusions  

Overall, this study has used metagenomics to understand the diversity of diazotrophs across 

four Arctic glacier forefields. The results of Chapter 2 were applied to this analysis, to 

assemble metagenome contigs for interpretation. The subsequent analysis used a nifH 

phylogeny to identify a key group of diazotrophs across four Arctic forefields, associated with 

both Cluster I and III nitrogenase, linked to aerobic and anaerobic organisms containing the 

typical Mo nifH (Zehr et al., 2003). Incorporating multiple nif genes (HDKNE) revealed 

additional organisms from unamplified metagenome samples, compared to using the nifH 

gene exclusively. This may relate to the complex nature of soil metagenome samples, 

whereby sequencing depth is not always adequate to profile the complete microbial 

community diversity. Thus, to reveal all low abundance diazotrophs, some metagenomes 
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would require additional deep sequencing. Key diazotrophs were found to be metabolically 

diverse, including genera such as Geobacter, Frankia, Nostoc, 

Polaromonas and Bradyrhizobium. A range of diazotrohic organisms outside the key group 

were also highlighted, including halophiles, psychrophiles and bacteria associated with 

fermentative metabolisms and sulfur cycling. Therefore, this analysis has shown a diverse 

group of diazotrohic bacteria present in Arctic forefield soils, including a consistent core 

subset. These diazotrophs have the potential to build labile nitrogen stocks in forefield soils, 

which may support further colonisation and soil development. 

3.5 Limitations and Future work  

Metagenomics was applied in this study to investigate the diversity of diazotrophic bacteria 

across four Arctic glacier forefields. However, metagenomics is unable to provide evidence 

for the activity of microbial nitrogen fixation, as it focuses on providing genomic verification for 

the potential of the pathway (Wooley et al., 2010). To clarify if the diazotrophs recovered were 

active, transcriptomics could be used. Transcriptomics involves the sequencing of microbial 

community RNA, highlighting the function of actively expressed genes (Wang et al., 2009). 

However, this technique only provides a snapshot of the expression at the time of sampling, 

so cannot be extrapolated to year-round activity (Lowe et al., 2017). It would also be interesting 

to investigate the rate of nitrogen fixation in each forefield and if there are any differences 

between sites. To do this, gasometric incubations of N2 uptake could be implemented using 

forefield soil samples, for example utilising acetylene reduction assays, or alternatively utilizing 

a radio tracer for N2 incorporation, such as 15N2 (Burris et al., 1972; Hardy et al.,1973). This 

would highlight how active community nitrogen fixation was and how this varies over the 

chronosequences or between forefields.  

Furthermore, as shown by the rarefaction analysis (Figures 1-4, Appendix 2) the sequencing 

coverage was not sufficient to profile the complete microbial community in all forefield 

samples. The recovered diazotrophs are likely to be those which were most abundant in the 

samples, as they would account for a greater portion of the sequenced DNA (Rodriguez and 

Konstantinidis 2014). To reveal less abundant diazotrophic organisms, additional deep 

sequencing could be carried out.  Not only would this provide a more complete picture of the 

microbial community, but the enhanced sequencing coverage may enable more detailed 

analyses, for example extracting complete genomes from the metagenomes (Sharon and 

Banfield, 2013; Eloe-Fadrosh et al., 2016b). This would allow a more refined investigation of 
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the microbial genomes, for example, by providing genomic evidence for cold, desiccation or 

UV tolerance adaptations which enable these microbes to survive in Arctic environments 

(Chrismas et al., 2016).  

 
Footnotes  
 
1 https://www.phylo.org/ 
2 http://tree.bio.ed.ac.uk/software/figtree/ 
3 http://www.evolgenius.info/evolview/ 
4 https://inkscape.org/en/ 
5 https://blast.ncbi.nlm.nih.gov/ 
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4.1 Introduction 
 

Arctic glaciers face continued ice retreat with warming global temperatures (Zemp et al., 

2015). As the terminus of a glacier retreats, undeveloped soils are exposed which were 

previously shielded by ice cover (Bradley et al., 2014). A transect of soil succession can often 

be identified in glacier forefields, with newly exposed bare soil close to the glacier terminus 

and more developed plant colonized soils moving outwards (as reviewed by Bradley et al., 

2014). These soils pose an interesting opportunity to understand how land is first colonized, 

the changes to microbe and plant communities during soil succession and the impact these 

communities have on soil structure and physicochemical characteristics during development 

(Edwards and Cook, 2015). Investigating microbial communities during forefield soil 

succession is important to understand Arctic microbial diversity and the role of microbial 
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communities in soil biogeochemical cycles (Bradley et al., 2014). Additionally, this information 

will help improve our understanding of how Arctic microbial ecology and nutrient cycles may 

modify in the future, given the continued retreat of glaciers with global warming (Edwards and 

Cook, 2015).  

 

A chronosequence based approach can be applied to study soil succession in glacier 

forefields, employing a space for time substitution, with older soils at a greater distance from 

the glacier terminus (Tscherko et al., 2003; Bradley et al., 2014). Thus far, the majority of 

forefield chronosequence studies have focused on plant communities and soil structure during 

succession (Ohtonen et al., 1999; Strauss et al., 2009; Knelman et al., 2012). A general 

increase in organic carbon and nitrogen has been shown during succession, alongside a 

reduction in pH, as soils become colonised by plants (Ohtonen et al., 1999; Strauss et al., 

2009; Knelman et al., 2012; Turpin-Jelfs et al., 2019). Microbial community colonisation and 

development in forefields is important for influencing soil nutrient cycles, physicochemical 

status and structure (Tscherko et al., 2003; Hahn and Quideau, 2013). Microbial communities 

are typically the initial colonisers of newly exposed soils and thus facilitate soil development 

(Chapin et al., 1994; Hahn and Quideau, 2013). In particular, phototrophic and diazotrophic 

microbes are important for building labile carbon and nitrogen stocks, facilitating the 

establishment of heterotrophic microbial populations and plants (Chapin et al., 1994; Hahn 

and Quideau, 2013). Microbial carbon and nitrogen fixation is particularly important following 

glacier retreat, as newly exposed soils are often oligotrophic (Chapin et al., 1994). Additionally, 

microbes help to stabilise soils for plant colonisation through the secretion of extracellular 

polymeric substances (EPS) during growth (Magner and Thomas, 2011). 

 
The initial coloniser microbial communities in glacial forefields have attracted substantial 

research, as these microbes are key facilitators for further soil development. However, the 

composition of these initial communities remains unclear (Kastovska et al., 2005). On one 

hand, diazotrophic and phototrophic bacteria may constitute early colonisers, as these 

microbes can fix carbon and nitrogen in nutrient deplete conditions, subsequently facilitating 

labile nutrient pools for heterotroph colonisation (Hodkinson et al., 2002). However, 

heterotrophic microbes may also be present in initial soils given the availability of organic 

carbon, which may be derived from ancient organic matter in overridden soils or from aeolian 

deposition (Kastovska et al., 2005; Bardgett et al., 2007; Bradley et al., 2014). The pioneer 

microbial community may be derived from ice surface microbes, aeolian deposition, or legacy 

subglacial microbial communities (Anesio et al., 2009; Boyd et al., 2010). Furthermore, the 

composition of forefield microbial communities has been shown to modify with soil succession, 

related to changes in environmental factors such as nutrients, organic matter, water flow 
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pathways and pH (Tscherko et al., 2003; Sakata Bekku et al., 2004; Frey et al., 2013). 

Additionally, research by Knelman et al., (2012) identified that plant colonisation (alongside 

the type of plant), as having a key influence on microbial community structure during 

succession, as opposed to soil pH and nutrient status.  

 
Nutrient and organic matter inputs to forefields may be from both allochthonous (glacial runoff, 

animal droppings and aeolian deposition) and autochthonous sources (in situ microbial 

activity) (Bradley et al., 2014). Bioavailable nitrogen is needed by both plants and microbes 

for protein synthesis (Tresder, 2008). Nitrogen is supplied to forefields by diazotrophic nitrogen 

fixation, aeolian deposition, degradation of organic matter and in washing from snowmelt 

(Bradley et al., 2014; Bradley et al., 2015; Duc et al., 2009). Nitrogen fixation is important in 

newly exposed soils, especially when the total nitrogen content is initially low (Duc et al., 2009; 

Turpin-Jelfs et al., 2019). Denitrification has been shown to increase in line with soil 

succession, attributed to the increase in water logged soils following plant colonization 

(Kandeler et al., 2006; Schulz et al., 2011). Additionally, nitrification has been shown to 

increase with soil age, due to a greater availability of bioavailable nitrogen in older soils 

(Brankatschk et al., 2011). Nitrogen mineralization from organic matter is an important 

mechanism for recycling bioavailable nitrogen in forefield soils (Brankatschk et al., 2011). This 

process converts organic nitrogen from cell death or excrement to labile ammonium (Figure 

4.1). A schematic identifying the key processes involved in the soil nitrogen cycle is available 

in Figure 4.1 
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Furthermore, organic carbon is a crucial nutrient for microbial growth and forms the backbone 

of molecules. Organic carbon can be supplied through aeolian deposition, carbon fixation and 

may also be present in the form of ancient organic matter in overridden soils (Hodkinson et 

al., 2002; Guelland et al., 2013). During the course of succession, organic carbon stocks 

increase in soils, particularly following plant colonization, whereby plant litter can be recycled 

by microbial communities back into the soil carbon pool (Knelman et al., 2012; Zumsteg et al., 

2013). In early soils, phototrophic bacteria such as cyanobacteria can be crucial, as these 

microbes fix carbon dioxide into labile organic carbon (Strauss et al., 2012). These microbes 

may therefore be key facilitators of heterotrophic colonization, as heterotrophs rely on the 

availability of labile fixed carbon (Freeman et al., 2009; Zumsteg et al., 2013). Finally, sulfur 

may be cycled in forefield soils through microbial redox reactions. Energy can be produced by 

chemolithotrophic bacteria through the oxidation of sulphur, coupled to the reduction of carbon 

or nitrate (Koltz et al., 2011, Wainwright 1978). Sulfate can also be reduced when used as a 

terminal electron acceptor for the oxidation of organic matter, in the absence of oxygen, 

forming hydrogen sulfide (Widdel and Hansen 1992). Isotopic evidence for microbial sulfate 

reduction has been found in Arctic subglacial systems (Wadham et al., 2004) and therefore 

may continue in soils following ice retreat.  

 

Figure 4.1: The soil nitrogen cycle. Sourced from Abatenh et al., (2018) 
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The Damma Glacier, Switzerland, has often been used as a study site to investigate soil, 

microbial and plant succession (Bernasconi et al., 2008; Duc et al., 2009; Frey et al., 2010; 

Bernasconi et al., 2011; Brunner et al., 2011). Comparatively, less research is available for 

the Midtre Lovénbreen forefield, Svalbard (Kastovska et al., 2005; Schutte et al., 2009; 

Bradley et al., 2016; Nash et al., 2018). Bradley et al., (2016) combined field and laboratory 

data from the Midtre Lovénbreen glacier with the forefield microbial model SHIMMER 1.0, to 

help inform parameter values (Bradley et al., 2016). The model results show that microbial 

biomass developed over the chronosequence and microbial activity was important for nutrient 

fixation and recycling in soils (Bradley et al., 2016). Consequently, microbial communities may 

be important facilitators for plant colonization in these oligotrophic forefield soils (Bradley et 

al., 2016). Furthermore, the microbial community of five Svalbard Glaciers, including Midtre 

Lovénbreen was investigated by Kastovska et al., (2005). Both cryoconite and barren soils 

were found to contain the highest abundance of cyanobacteria, however cyanobacteria were 

also found in vegetated sites. Schutte et al., (2009) found different microbial community 

compositions in surface and mineral depth soils, alongside a difference between newly 

exposed and more developed soils in the Midtre Lovénbreen forefield. However, this study 

also exemplified how forefield disturbances, such as water flow pathways may disrupt the 

pattern of succession (Schutte et al., 2009). Finally, the Midtre Lovénbreen forefield was used 

in Chapter 3 of this thesis to investigate the diversity of diazotrophs between four Arctic glacier 

forefields using functional genes for nitrogen fixation (nif genes) (Nash et al., 2018). 

Diazotrophs were identified in the Midtre Lovénbreen forefield and included cyanobacteria 

(Nostoc), root associated bacteria (Rhizobia, Frankia) and anaerobes (Geobacter) (Nash et 

al., 2018).  

 
Thus far, the majority of research on microbial communities in glacial forefields has used 16s 

rRNA sequencing or targeted functional gene amplification to investigate microbial community 

taxonomy (Sigler and Zeyer, 2002; Nemergut et al., 2007; Knelman et al., 2012; Zumsteg et 

al., 2013). Metagenomics involves unamplified sequencing of the microbial community gene 

pool, providing information on both the taxonomy and functional genes present (Wooley et al., 

2010). Metagenomics has yet to be applied to understanding microbial community 

development during soil succession. Metagenomic sequencing would be a useful contribution 

to the current body of literature, as it would provide more information on microbial community 

functional potential and their role in soil biogeochemical cycles during succession. 

Furthermore, genome binning is a method which can be used to extract single draft genomes 

from community metagenome data (Albertsen et al., 2013; Nielsen et al., 2014). This 

technique is beneficial as it allows draft genomes to be extracted without the need for culturing 

(Kunin et al., 2008; Albertsen et al., 2013). The completeness of the draft genome can vary 
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depending on the depth of sequencing and the complexity of the microbial community under 

investigation (Kunin et al., 2008; Albertsen et al., 2013). This means that the gene content, 

functional pathways and taxonomy of genomes of interest can be investigated further. This 

technique has yet to be applied to forefield samples and would be beneficial to explore the 

novelty of genomes in this harsh environment, which is not possible with 16s rRNA analysis.  

 
This study aims to use metagenomics to explore the microbial community composition along 

a chronosequence of soil succession in the Midtre Lovénbreen forefield, Svalbard. In 

particular, we hypothesize that the microbial community composition, function and metabolic 

pathways modify during succession, in line with soil development, the establishment of labile 

nutrient pools and plants. We hypothesize that autotrophic carbon and nitrogen-fixing bacteria 

will be prevalent in low nutrient early soils, with heterotrophic microbes dominant in older soils 

with established nutrient pools. We expect carbon and nitrogen fixation to be detected in 

recently deglaciated soils, with pathways such as denitrification, carbon remineralization and 

sulfate reduction to occur in line with nutrient pool development. Additionally, we hypothesis 

that extremophilic, well adapted or unique genomes may be found in the metagenomes, 

related to the harsh environmental conditions found in forefield soils. Whilst Chapter 3 looked 

at the broad diversity of diazotrophs between forefields, this analysis investigates whole 

community changes within a forefield during succession. In addition, this work follows on from 

Chapter 2, as the metagenome assembler, metaSPAdes, is applied for functional analysis. 

The results of this analysis aim to contribute to the current body of literature on forefield 

microbial communities, providing additional evidence for community functional potential, 

which has not previously been explored in the context of succession.   

 
 
4.2 Methodology  
 
4.2.1 Field Sampling  

 

Surface sediment was sampled along the forefield of Midtre Lovénbreen glacier, Svalbard, in 

July 2013. Additional sampling of cryoconite sediment and dark ice from the glacier surface 

was carried out for comparison. Chronosequence based sampling of the forefield was 

implemented, whereby sediment was obtained from three parallel transects, moving out from 

the glacier terminus (Bradley et al., 2014; Nash et al., 2018). This chronosequence sampling 

technique was applied to capture the changes in microbial community composition and 

nutrient content with soil development along the forefield. Additionally, this sampling approach 

enabled the sites to be dated from their year of exposure following glacier retreat (Brankatschk 

et al., 2011; Bradley et al., 2014; Bradley et al., 2015). Bulk sediment was sampled in triplicate 
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from each site into WhirlpakTM bags, and frozen at -20° C prior to analysis. The sampling site 

locations, transect numbers (T1-T3) and associated soil age are provided in Table 4.1, with 

sites ranging from 0 – 2000 years since glacier retreat (Brankatschk et al., 2011; Bradley et 

al., 2015).  

 

Table 4.1: Sampling site locations and associated soil exposure age (measured in years since 
glacier retreat), in line with Brankatschk et al., (2011) and Bradley et al., (2015). Samples 
obtained from the glacier surface are marked with ‘*’.  

 
 
4.2.2 DNA extraction, library preparation and sequencing  

 

In total, 23 samples were selected for DNA extraction and metagenome sequencing (Table 

4.1), spanning the range of soil ages. DNA from bulk soil samples was extracted in line with 

Sample 

Number 

Latitude / Longitude Transect number 

(T1 - T3) 

Estimated soil age 

(Years) 

1 79.101 / 12.156 T2 0 

2 79.112 / 12.175 T2 3 

3 79.112 / 12.258 T3 3  

4 79.118 / 12.094 T1 5  

5 79.114 / 12.196 T2 5  

6 79.104 / 12.279 T3 5  

7 79.152 / 12.216 T1 29 

8 79.151 / 12.254 T2 29 

9 79.141 / 12.090 T3 29 

10 78.928 / 12.254 T1 50 

11 78.927 / 12.077 T2 50 

12 78.908 / 12.164 T3 50 

13 78.901 / 12.076 T2 50 – 113  

14 78.901 / 12.076 T2 50 – 113  

15 78.901 / 12.076 T2 50 - 113 

16 78.990 / 12.083 T2 113  

17 78.992 / 12.230 T2 113  

18 78.979 / 12.332 T2 113 

19 79.768 / 12.144 T2 2000  

20 79.768 / 12.144 T2 2000  

21 79.768 / 12.144 T2 2000 

22 79.484 / 12.092 N/A *Cryoconite hole  

23 79.484 / 12.092 N/A *Dark Ice  
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the methodology detailed in Chapter 3, section 3.2.3 (Nash et al., 2018). Metagenomes were 

sequenced using an Illumina-Mi Seq, with a TruSeq library prep kit at the University of Bristol 

Genomics facility. The 23 selected sites were sequenced for metagenomics, providing 2x 

100bp paired-end reads. Sequencing read output for each site ranged between 4013376 – 

66567072 reads per metagenome (Table 4.2).  

Table 4.2: Statistics for unassembled and assembled metagenomes, including contiguity and 
completeness metrics. The % Coverage is calculated using the percentage of raw reads 
mapped back to the assembly.  
 

 

4.2.3 Rarefaction curves 

 

Rarefaction curves for quality trimmed sequencing reads were created in MG RAST 4.0.3 

(Glass et al., 2010; Figure 4.2). Rarefaction curves display the number of species obtained 

with increasing sequencing effort (number of reads). Curves which reach saturation (i.e. more 

sequencing effort does not increase the species count) highlight metagenomes which profile 

the microbial diversity sufficiently (Rodriguez and Konstantinidis, 2014). Metagenomes which 

Sample Unassembled Reads Assembled Contigs Contigs > 1000bp Largest Contig % Coverage 
1 18800440 58428 445 52064 23.2 
2 23227446 15534 18 43675 3.7 
3 17611153 34535 154 314188 16.0 
4 20076741 14007 7 46511 2.9 
5 22256997 26820 31 32120 6.4 
6 21156969 33757 91 51529 7.6 
7 22729904 19399 199 106118 4.6 
8 20076740 14007 7 46511 2.9 
9 22977962 15533 19 43675 2.7 

10 57959962 60667 221 150624 5.1 
11 38013530 22180 3 67008 1.9 
12 38014196 22214 3 67008 1.9 
13 4013376 851 0 8102 1.5 
14 22329785 13861 38 1072806 3.7 
15 22371213 11373 16 19032 2.4 
16 22371175 11374 16 19032 2.4 
17 38409045 19556 296 256358 3.5 
18 66567072 75376 423 768884 6.9 
19 23966913 5931 0 4646 0.9 
20 20702648 4905 0 5800 0.9 
21 29107763 14288 0 8822 1.6 
22 19259216 89619 878 371579 26.6 
23 22255419 26820 31 32120 9.5 
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are under saturated profile the more abundant factions of the microbial community, however 

may not sample those which are less abundant. Under saturated rarefaction curves are 

common when investigating complex microbial communities, such as those in soil, as the 

sequencing depth may not be enough to recover the entire microbial community composition 

(Rodriguez and Konstantinidis, 2014). In these cases, additional deep re-sequencing would 

be useful if the less abundant microbial fractions were of particular interest.  

 

4.2.4 Metagenome assembly and mapping  

 

The 23 metagenomes were quality trimmed and subsequently assembled with metaSPAdes 

v3.11.1 (Nurk et al., 2017). The size and contiguity of the assembled metagenomes were 

evaluated using QUAST on the KBASE platform (Arkin et al., 2016). Raw reads were mapped 

back to the assemblies using Bowtie 2 v2.3.2, to identify the proportion of the input reads 

which were incorporated into the final assemblies (Langmead and Salzberg, 2012). Assembly 

size for each metagenome ranged between 851 – 89619 contigs and read coverage ranged 

between 0.9 – 23.2 % (Table 4.2). These read coverage scores mean that over 75% of reads 

in each sample were not incorporated in to the assembled metagenome. The low coverage 

scores may be attributed to the complex community structure, combined with a sequencing 

depth which was insufficient to fully profile all the organisms. Combined, these can result in 

short fragmented assemblies, as the assembler cannot resolve repeat regions or insertion/ 

deletions (INDELs). 

 

4.2.5 Taxonomic annotation  

 

Read-based taxonomic annotation for each metagenome was carried out in Kaiju v1.5.0 

(Menzel et al., 2016). Read based annotation was used, as opposed to assembly annotation, 

due to the low read recruitment in assemblies (Table 4.2). Consequently, using trimmed reads 

enabled more of the dataset to be annotated, which is particularly important when aiming to 

gain an overview of the complete community composition. Kaiju is a kmer based taxonomic 

classifier, based on protein sequences (Menzel et al., 2016). This classifier is suited to novel 

metagenome samples and those with sequencing errors, as sequence conservation is 

generally greater in protein sequences than the corresponding DNA (Menzel et al., 2016). 

 

4.2.6 Metagenome binning  

 

Genome binning was applied to recover draft microbial genomes from the metagenomes, 

using MaxBin2 v2.2.4 (Bankevich et al., 2012; Wu et al., 2015). This binning algorithm uses 
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an expectation- maximum approach, based on contig tetra nucleotide frequencies, to recover 

draft genomes (Wu et al., 2015). MaxBin2 employs the assembled metagenomes and 

coverage information from raw reads to group contigs into discrete genome bins. In this 

instance, using assembled metagenomes was beneficial to provide longer sequences for tetra 

nucleotide frequencies to be assessed during binning and subsequent gene annotation.  

BinUtil v1.0.1 was used to extract the genomes from the metagenomes using the KBASE 

platform (Arkin et al., 2016). Each genome bin was functionally annotated using RAST v0.0.12 

on KBASE (Aziz et al., 2008; Overbeek et al., 2013; Arkin et al., 2016). Features were 

predicted using glimmer3 and prodigal in RAST, before matching to the SEED ontology (Aziz 

et al., 2008; Overbeek et al., 2013). For each sampling site, extracted genomes were pooled 

and a function profile was created in KBASE, based on the SEED Ontology (Overbeek et al., 

2013; Arkin et al., 2016). The SEED categories relating to nitrogen cycling (nitrogen fixation, 

nitrification and denitrification) were selected for analysis, given the importance of the nutrient 

for microbial growth and the limited nitrogen stocks recorded (Table 4.3).  

 

Each genome bin was assigned a taxonomy using BLASTn against NCBI RefSeq (e 10-5). For 

each sampling site, the genome bins were aligned to closely related genomes on the KBASE 

platform, using Species Tree Builder, based on a subset of COG groups (Appendix 3 Table 

1). The alignments were used to generate a phylogenetic tree for each site, using Fast Tree 

2.2.10 (Aziz et al., 2008). Given the incomplete sequencing depth and low assembly read 

recruitment, we do not aim to gain any near complete draft genomes or sample all genomes 

present. However, genome binning can provide an insight into the functional potential of some 

of the most abundant genomes in the forefield. Additionally, this exemplified the potential of 

metagenomics to reveal genome specific functions, given the availability of deep sequencing. 

 
4.2.7 Soil metadata  
 
Soil pH and temperature for each of the sampling sites was obtained using a Hanna pH meter. 

Soil total nitrogen (TN) and total organic carbon (TOC) for each of the 23 sediment samples 

was evaluated using the protocol detailed in Chapter 3, section 3.2.2 (Nash et al., 2018).  
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4.3 Results  
 

 
4.3.1 Rarefaction curves  
 
Rarefaction curves for each of the 23 metagenomes are displayed in Figure 4.2. Mid transect 

sites (50-113 years) display more under saturation than earlier sites, which could be related 

to an increase in species count and diversity but no increase in sequencing effort (Figure 4.2). 

Additional sequencing of these samples would be beneficial to recover the less abundant 

microorganisms. However, no samples were shown to be severely under sequenced and 

therefore we can be confident in profiling the most abundant constituents of the microbial 

communities for each site.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
4.3.2 Soil metadata  
 
Soil temperature, pH, TN and TOC measurements were obtained from each metagenome 

sampling site and are displayed in Table 4.3. Soil temperature ranged between 4.8 – 8.5 °C, 

Figure 4.2: Rarefaction curves for the 23 metagenomes sampled from Midtre Lovénbreen, 
Svalbard. The curves display the number of species with increasing sampling (or number of 
reads). Curves that reach saturation display an adequate sequencing depth to profile the microbial 
community. 
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between sites 1- 15 respectively. Soil pH ranged around neutral, between 6.2 – 8.5, and does 

not show a distinct variance with soil age (Table 4.3). The TOC values fell in to the general 

range observed in Arctic soils, with most soils ranging between 0 – 40 mg g-1 TOC (Chu et al., 

2010). The results for TOC and TN are displayed in Table 4.3 and shown graphically in Figure 

4.3. TOC ranged between 2.47 mg g-1 – 86.97 mg g-1, between sites 8 – 21 (ages 29 – 2000) 

(Figure 4.3). The highest TOC values were found in the oldest soils (2000 years), the furthest 

sampled from the glacier terminus (Figure 4.3). Furthermore, in total, 86% of forefield sites 

had a TN content which fell below the instrumental limit of detection of 1 mg g -1 (Table 4.3). 

However, older sites 19-21 (2000 years) had detectable TN, ranging between 3.89 - 4.89 mg 

g-1 (Table 4.3). Consequently, both TN and TOC values showed an increase with rising soil 

age (Figure 4.3). Results of a one way ANOVA between all sites showed a significant 

difference in both TN and TOC, at the 0.01 significance level (Table 4.4). A post-hoc Tukey 

identified this significant difference to occur between earlier soils (ages 0-113 years) and the 

2000 year soils (Table 4.4) This identifies a statistically significant increase in TN and TOC 

along the forefield, as expected with soil development.  
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Table 4.3: Total organic carbon (TOC), total nitrogen (TN), temperature and pH for 
metagenome sampling sites 1 – 21, soil ages 0- 2000 years. For TN and TOC analysis the 
instrumental limit of detection was 1 mg g-1, with samples falling below this limit marked as 
b.d. TN and TOC vales are not available for ice sampling sites 22 and 23.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample 
Number 

Soil age 
(Years) 

TOC (mg g-1) TN (mg g-1) Temperature  

(°C) 

pH 

1 0 6.68 b.d.  4.8 7.5 

2 3 4.30 b.d. 7.6 7.6 

3 3 3.89 b.d. 5.9 7.0 

4 5 3.72 b.d. 6.6 7.5 

5 5 3.68 b.d. 7.5 6.2 

6 5 5.07 b.d. 7.6 7.3 

7 29 4.07 b.d. 7.0 7.5 

8 29 2.47 b.d. 8.3 7.5 

9 29 2.96 b.d. 8.0 7.5 

10 50 3.48 b.d. 7.4 7.5 

11 50 5.47 b.d. 8.4 7.5 

12 50 7.17 b.d. 8.5 7.3 

13 50-113 3.09 b.d. 8.5 7.4 

14 50-113 4.95 b.d. 8.4 7.5 

15 50-113 2.72 b.d. 8.5 7.3 

16 113 4.67 b.d. 7.8 7.5 

17 113 11.53 b.d. 7.8 8.5 

18 113 9.97 b.d. 7.7 7.5 

19 2000 54.88 3.89 7.4 7.5 

20 2000 67.08 4.39 7.4 7.5 

21 2000 86.97 4.89 8.1 7.5 
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Table 4.4: One-way ANOVA comparing TN and TOC differences between all soils. A post-
hoc Tukey identifies which sites display the significant difference. Significant differences 
observed between the sites are noted at the 0.01 or 0.05 level. 
 

  Total organic carbon (TOC)  Total Nitrogen (TN) 
p value  1.5e-08 7.3e-15 

significance level  0.01 0.01 
 

Pot hoc Tukey 
0-113  vs. 2000 

years All (P<0.01) All (P<0.01) 
   

Figure 4.3: Box plots for total organic carbon (TOC) and total nitrogen (TN) for Midtre 
Lovénbreen forefield sampling sites, spanning soil ages 0 – 2000 years. The boxplots 
show the mean, first quartile, third quartile and range of the replicate field samples (where 
available).  
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4.3.3 Microbial community composition 
 

The read-based microbial community composition of Midtre Lovénbreen metagenomes is 

displayed in Figure 4.4 and in Appendix 3 Table 2 (Genus Level) and in Table 4.5 (Phylum 

level). Metagenomes spanning the forefield chronosequence (0 years – 2000 years) are 

displayed alongside cryoconite and dark ice samples for comparison. The most abundant 

phyla recovered included Proteobacteria and Actinobacteria, accounting for 35% and 21% of 

annotated protein coding genes, respectively (Table 4.5). Other phyla assigned included 

Cyanobacteria, Chloroflexi, Verrucomicrobia, Firmicutes and Bacteroidetes, amongst others 

(Table 4.5). The percentage of protein coding genes attributed to Acidobacteria, 

Verrucomicrobia and Nitrospirae increased along the forefield, from 1.0%, 0.6% and 0% at 0 

years to 11.7%, 4.9% and 0.9% at 2000 years, respectively (Table 4.5). This does not show 

an absolute change in organism abundance, due to differing depths of sequencing (Figure 

4.2). However, as the sequencing profiles the most abundant fraction of the microbial 

community, it shows these phyla become a greater fraction of the microbial community 

recovered at older soil ages. Furthermore, in site 0 and dark ice, cyanobacteria account for 

13.8% of the protein coding genes (Table 4.5). However, this reduces to 1.59% in soils aged 

2000 years (Table 4.5). Whilst the cryoconite sample contains relatively few protein coding 

genes associated with cyanobacteria (0.7%), 13.8% of genes are attributed to the phototroph 

Chloroflexi, compared to the range of 1.4 - 3.9% in forefield samples (Table 4.5). Interestingly, 

no clear pattern can be seen in the distribution of Archaea and Fungi (Table 4.5). The Fungi 

Ascomyota is present in soils aged 0,3 and 50-113 years, with the Archaea, Thaumarcheaota 

and Eurayarchaeota present in 113 years and 3 years,113 years and basal ice, respectively 

(Table 4.5).  

 

Between 34.6 – 57.9 % of metagenome reads were annotated using Kaiju at the genus level 

(Table 4.6). The reads were assigned to a range of taxa, associated with diverse metabolisms 

including nitrogen, carbon and sulfur cycling (Figure 4.4). In particular, genera associated with 

nitrogen fixation (Rhizobium, Nostoc, Oscillatoria), denitrification (Conexibacter), nitrification 

(Nitrospira), sulfur oxidation (Chromatiales, Thiobacillus), sulfur reduction (Shewanella) and 

carbon fixation (Phormedesmis, Nostoc, Oscillatoria, Synechococcales, Rhodoferax, 

Rhodoplanes, Crococcales) were identified (Figure 4.4; Appendix 3 Table 2). Genera 

associated with both aerobic (Niabella, Variovorax, Rhodococcus) and anaerobic 

metabolisms (Rhodoferax, Geobacter, Bacillus) were also identified (Figure 4.4). Whilst we 

cannot determine the change in abundance of microbes along the chronosequence, due to 

differing metagenome sequencing depths, we can identify changes to the most abundant 

fraction of the microbial community. Soils aged 0 years contained the diazotrophs Rhizobium 
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and Nostoc, alongside the sulfur oxidizer Thiobacillus (Figure 4.4). In soils aged 3-5 years, the 

recovered microbial community included nitrifying, denitrifying and sulfur reducing microbes 

(Figure 4.4). Carbon fixing (and often diazotrophic) cyanobacteria detected in the 

metagenomes included Synechococcales, Phormidesmis, Oscillatoriales and Nostocales 

(Figure 4.3). Cyanobacteria were only recovered from soils aged 0 years and cryoconite (8.4 

and 11% of annotated reads) and not found in more developed soil sites (Figure 4.4). Root 

associated microbes, including symbiotic diazotrophs (Frankia, Rhizobium, Massilia, 

Burkholderia) were detected throughout the forefield and accounted for 1.2% - 3.4% of 

annotated reads, between soils ages 0 years and 2000 years, respectively (Figure 4.4).  

 

Table 4.5: Read based microbial community composition of Midtre Lovénbreen sample sites, 
presented as the percentage of annotated sequences at the phylum level. Replicate 
metagenomes for each soil age/ sampling site have been merged.  
 

 
 
Table 4.6: Percentage classified and unclassified reads for each metagenome at the genus 
level, following read based taxonomic annotation in Kaiju. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample % Classified % Unclassified
1 57.95 42.05
2 40.31 59.69
3 56.89 43.11
4 52.44 47.56
5 53.17 46.83
6 53.13 46.87
7 50.99 49.01
8 52.44 47.56
9 52.5 47.5

10 49.44 50.56
11 49.65 50.35
12 49.7 50.3
13 34.82 65.18
14 47.73 52.27
15 47.8 52.2
16 45.86 54.14
17 34.56 65.44
18 46.04 53.96
19 47.02 52.98
20 46.75 53.25
21 46.34 53.66
22 36.71 63.29
23 53.17 46.83

0 3 5 29 50 50 - 113 113 2000 Cryoconite Dark ice 
Acidobacteria 1.01 1.62 3.31 4.65 6.20 4.75 4.96 11.73 1.79 1.79
Actinobacteria 8.77 22.67 24.39 29.50 24.28 17.61 25.29 15.53 20.64 20.64
Ascomycota 1.33 4.01 0.00 0.00 0.00 0.66 0.00 0.00 0.00 0.00

Bacteroidetes 13.08 4.14 7.26 7.55 7.59 8.00 7.44 6.24 1.21 10.19
Candidatus Rokubacteria 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.90 0.00 0.00

Chloroflexi 1.44 2.30 2.92 3.22 3.90 2.98 2.74 2.74 13.81 1.21
Cyanobacteria 13.76 1.96 1.50 1.83 1.48 3.04 2.37 1.59 0.71 13.81

Deinococcus-Thermus 0.00 0.30 0.00 0.00 0.00 0.00 0.21 0.00 0.69 0.71
Euryarchaeota 0.00 0.27 0.00 0.00 0.00 0.00 0.23 0.00 0.00 0.69

Firmicutes 5.07 4.96 3.74 2.49 2.37 3.85 3.15 3.32 4.30 4.30
Gemmatimonadetes 0.00 0.76 1.08 1.13 1.61 1.05 1.16 1.35 0.77 0.77

Nitrospirae 0.00 0.34 0.53 0.73 0.83 0.79 0.86 0.89 0.00 0.00
Planctomycetes 1.16 2.75 2.93 4.10 4.47 6.10 6.21 3.59 1.71 4.30
Proteobacteria 42.04 45.09 40.84 35.44 36.96 38.55 35.12 36.21 38.98 0.77

Thaumarchaeota 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00
Verrucomicrobia 0.58 1.21 1.74 1.66 1.98 3.52 2.36 4.95 0.53 0.53
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4.3.4 Genome bins  
 
In total, 83 genome bins were extracted from the metagenomes (Table 4.7). Genome bins 

were extracted from all metagenomes, except for sample 13. The percentage identity of the 

extracted bins ranged between 70.5 – 100 % identity to NCBI GenBank (Table 4.7).  In total, 

21% of bins fell below 80% identity to cultured representatives on NCBI GenBank, with only 

8.5% with over 95% identity (Table 4.7). The bins were assigned to organisms with nitrogen 

metabolisms (16% of bins), sulfur metabolisms (11%) and also cyanobacteria (5%), 

anaerobes (12%) and plant associated organisms (4%) (Table 4.7). Some BLAST 

assignments were more prevalent than others, such as Polaromonas (5% of bins), 

Sphingomonas (5%), Conexibacter woesei (6%), Sulfuricaulis limicola (4%) and Thiobacillus 

denitrificans (3%). However, due to the low percentage identity of BLAST matches to publicly 

available sequences, we cannot be confident in the specificity of the assignments. The 

extracted bins were annotated with functional genes in RAST, with each bin containing 

between 144 - 9902 genes (Table 4.7). The genes were matched to known functions using 

the SEED database, with each bin containing between 126 – 3005 distinct functions (Table 

4.7). Binned genomes were grouped with their field replicate samples and a function profile 

created, based on the SEED ontology. A subset of SEED functions was extracted for 

investigation, focused on nitrogen cycling pathways.   

 

For each sample (1-23), extracted bins were used in maximum likelihood phylogenies based 

on a subset of COG groups (Appendix 3, Figure 1 – 22). This was used to audit the BLAST 

results and to investigate how well bins aligned to KBASE genomes. The trees show 77% of 

sample bins to be uniquely branching, clustering independently from publicly available KBASE 

genomes, in agreement with the low percentage identity of BLAST match results (Appendix 

3, Figure 1-22).  
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Table 4.7: Genome binning results for the 23 assembled metagenomes. For each 
metagenome, the extracted bins are listed with the top BLASTn hit to NCBI GenBank, along 
with the RAST annotation results.  

Blastn Results  RAST annotation 
results  

Sample Acession 
No  

% identity E value  Max 
Score  

Species  Number 
of genes 

SEED 
Functions 

1           		 		

Bin 1 CP002355.1 94.81 0 5243 Sulfuricurvum kujiense 2849 1070 

Bin 2 CP024785.1 92.15 0 13771 Nostoc flagelliforme  3440 1157 

Bin 3 CP003178.1 76.26 0 1629 Niastella koreensis  1421 648 

Bin 4 CP011131.1 79.79 0 1321 Lysobacter gummosus 1362 884 

Bin 5 CP026692.1 88.52 0 3860 Nostoc sp.  806 373 

Bin 6 CP000116.1 86.93 0 3068 Thiobacillus denitrificans  1992 867 

Bin 7 CP019508.1 91.72 0 2747 Brevundimonas  1194 867 

Bin 8 CP003614.1 89.43 0 2645 Oscillatoria nigro-viridis  1177 515 

Bin 9 CP027482.1 81.53 0 4942 Aeromicrobium  2224 960 

Bin 10 CP000116.1 83.22 0 3788 Thiobacillus denitrificans  3553 1161 

2               

Bin 1 CP025581.1 80.17 0 3472 Nocardioides  3005 1050 

Bin 2 CP001854.1 92.76 0 3864 Conexibacter woesei  162 73 

3               

Bin 1 AP014879.1 84.39 0 4165 Sulfuricaulis limicola 2625 1140 

Bin 2 CP012573.1 84.04 0 6135 Clavibacter capsici 1329 751 

Bin 3 AP012057.1 80.85 0 2261 Ilumatobacter coccineus  2022 815 

Bin 4 CP010554.1 87.37 0 2030 Rugosibacter aromaticivorans 1060 563 

Bin 5 CP012371.1 80.27 0 2462 Nitrosospira briensis 1535 798 

Bin 6 CP015079.1 83.56 0 2970 Nocardioides dokdonensis  2748 992 

Bin 7 AP014879.1 86.33 0 3921 Sulfuricaulis limicola 1194 593 

Bin 8 CP000116.1 84.61 0 1947 Thiobacillus denitrificans  841 468 

4               

Bin 1 CP015732.1 94.33 0 3085 Arthrobacter  3212 1057 

Bin 2 CP000529.1 90.13 0 3720 Polaromonas 
naphthalenivorans  

1144 612 

5               

Bin 1 AP014879.1 76.92 0 2534 Sulfuricaulis limicola 2609 996 

Bin 2 CP031145.1 92.32 0 4575 Intrasporangium calvum 1574 581 

Bin 3 CP009111.1 85.94 0 1930 Rhodococcus opacus 1574 1073 

Bin 4 CP001854.1 78.26 0 2145 Conexibacter woesei 2031 787 

6               

Bin 1 CP002399.1 83.06 0 3013 Micromonospora  5386 11259 
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Bin 2 CP004036.1 70.05 2.00E-45 196 Sphingomonas  4866 1200 

Bin 3 CP002199.1 90.2 2.00E-06 67.6 Cyanothece  3388 940 

Bin 4 CP006005.1 93.33 9.00E-07 67.6 Vibrio parahaemolyticus  2224 272 

7               

Bin 1 CP002994.1 82.83 2.00E-13 89.8 Streptomyces violaceusniger  2678 861 

Bin 2 CP021181.1 74.87 1.00E-78 307 Sphingomonas wittichii  3426 1086 

Bin 3 CP012184.1 77.19 7.00E-157 566 Pseudonocardia 3089 905 

Bin 4 CP011339.1 81.37 2.00E-11 84.2 Microcystis panniformis  2315 726 

8               

Bin 1 CP015732.1 94.33 0 3085 Arthrobacter  3212 1057 

Bin 2 CP000529.1 90.13 0 3720 Polaromonas 
naphthalenivorans  

1130 611 

9               

Bin 1 LT827010.1 95.24 0 2918 Actinoplanes  2996 1041 

Bin 2 CP001854.1 92.76 0 3864 Conexibacter woesei  153 67 

10               

Bin 1 CP014989.1 83.94 0 3241 Serinicoccus 1303 742 

Bin 2 CP010954.1 79.31 0 1493 Sphingobium  1966 924 

Bin 3 CP000316.1 83.2 0 2499 Polaromonas  4632 791 

Bin 4 CP030865.1 85.71 5.00E-46 198 Micromonospora  1900 760 

Bin 5 CP001124.1 81.21 0 1123 Geobacter bemidjiensis Bem 2919 1098 

Bin 6 CP000533.1 91.78 0 3690 Streptomyces lunaelactis 1619 552 

Bin 7 CP026304.1 94.06 0 3241 Polaromonas naphth. 
 

4633 1049 

Bin 8 CP000531.1 96.7 0 1358 Polaromonas naphth.  852 381 

11               

Bin 1 FO117623.1 91.54 0 2510 Blastococcus saxobsidens  2136 791 

Bin 2 CP006644.1 92.08 0 2643 Sphingomonas sanxanigenens  1291 516 

12               

Bin 1 FO117623.1 91.65 0 2521 Blastococcus saxobsidens 
DD2 

2142 772 

Bin 2 CP006644.1 92.08 0 2643 Sphingomonas sanxanigenens  1285 515 

14               

Bin 1 CP029343.1 91.03 0 4739 Massilia oculi 3661 1109 

Bin 2 CP029343.1 93.05 0 5033 Massilia oculi 2665 1124 

15               

Bin 1 CP027775.1 95.55 0 2837 Clostridium botulinum 427 136 

Bin 2 LT827010.1 95.41 0 2942 Actinoplanes  2138 798 

16               

Bin 1 CP027775.1 95.55 0 2837 Clostridium botulinum 429 135 

Bin 2 CP002479.1 75.86 2.00E-21 117 Geobacter  2137 795 

17               

Bin 1 CP009241.1 91.3 0.00004 62.1 Paenibacillus  2394 1006 

Bin 2 CP009241.1 91.3 0.00004 62.1 Paenibacillus  3534 891 

Bin 3 CP009571.1 81.75 0 734 Sphingomonas taxi 6927 1083 
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Bin 4 CP031968.1 80 9E-10 78.7 Chromobacterium rhizoryzae 1495 600 

18               

Bin 1 CP031146.1 92.86 5E-11 82.4 Pseudomonas plecoglossicida 2094 830 

Bin 2 AP014946.1 76.36 0 2464 Variibacter gotjawalensis 2839 1258 

Bin 3 CP001854.1 76.88 9E-143 520 Conexibacter woesei  5058 958 

Bin 4 CP021904.1 100 0.000003 65.8 Alkalitalea saponilacus 1170 499 

Bin 5 CP020569.1 85.71 0 2311 Streptomyces gilvosporeus 5924 1015 

Bin 6 CP026952.1 81.25 5E-11 82.4 Aeromicrobium  5313 1191 

Bin 7 CP011271.1 78.03 0 983 Gemmata  5397 1016 

Bin 8 CP011132.1 82.42 3E-10 80.5 Citrobacter amalonaticus  3734 910 

19               

Bin 1 CP001854.1 87.68 0 1101 Conexibacter woesei  331 138 

Bin 2 CP001389.1 76.65 1E-27 137 Sinorhizobium fredii  188 93 

20               

Bin 1 CP022522.1 97.56 6E-08 71.3 Pseudoalteromonas 144 56 

Bin 2 CP018171.1 89.74 7E-32 150 Mesorhizobium oceanicum 181 83 

21               

Bin 1 CP011491.1 78.61 3E-55 228 Mycolicibacterium vaccae  673 243 

Bin 2 CP001197.1 80.31 1E-44 193 Desulfovibrio vulgaris  432 172 

22               

Bin 1 AP017308.1 80.64 0 2817 Leptolyngbya sp.  2239 1026 

Bin 2 CP016768.2 90.99 0 4482 Candidatus Nanopelagicus 
limnes 

9902 636 

Bin 3 CP000494.1 82.08 0 1205 Bradyrhizobium  2663 894 

Bin 4 CP016768.2 79.64 0.00E+00 2198 Candidatus Nanopelagicus 
limnes 

1948 707 

Bin 5 CP016282.1 73.68 3.00E-127 468 Cryobacterium arcticum 1266 534 

23               

Bin 1 AP014879.1 76.92 0 2534 Sulfuricaulis limicola 2608 995 

Bin 2 CP031145.1 92.32 0.00E+00 4575 Intrasporangium calvum 1584 583 

Bin 3 CP009111.1 85.94 0 1930 Rhodococcus opacus 3320 1072 

Bin 4 CP001854.1 78.26 0.00E+00 2145 Conexibacter woesei  2029 784 
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For the binned genomes at each sampling site, a SEED function profile was created for 

nitrogen cycling pathways. This profile highlights the percentage of protein coding genes 

attributed to each functional classification. Whist the functional profiles were not exhaustive of 

all microbes (due to inadequate sequencing depth in some samples and incomplete 

metagenome assembly), it does show the most abundant nitrogen cycling pathways in the 

genomes that were recovered from the binning process. Additionally, whist the binning did not 

sample all genes in each binned genome due to inadequate coverage, it exemplifies the 

potential of this approach for deeply sequenced samples, highlighting genome functionality.  

 
The SEED classifications for nitrogen cycling pathways are available in Figure 4.5. The 

pathways include nitrogen fixation, nitrification, denitrification and ammonia assimilation 

(Figure 4.5). Nitrogen fixation was present in extracted genomes up to 50 years and was not 

detected in binned genomes from cryoconite and dark ice samples (Figure 4.5). However, 

ammonia assimilation was found in all samples, reaching 0.63% of recovered protein coding 

genes in the cryoconite sample (Figure 4.5). Denitrification, nitrite and nitrate ammonification 

and dissimilatory nitrite reductase were largely found in genome bins throughout the forefield, 

however were not detected in bins from 2000 year soils (Table 4.3; Figure 4.5). Ammonia 

assimilation and ammonification were the most prevalent nitrogen cycling pathways, 

accounting for up to 0.63% and 0.29% of protein coding genes, respectively (Figure 4.5). Whist 

SEED genome annotation can’t be used to profile the complete nitrogen cycling pathways in 

the metagenomes (due to inadequate sequencing and assembly), it does provide an insight 

into the functional potential of abundant genomes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.5: SEED function profile for nitrogen metabolism in genome bins across sampling sites. The 
percentage of protein coding genes attributed to each pathway is shown.  
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4.4 Discussion  
 
4.4.1 Total nitrogen and total organic carbon  
 
Soil carbon and nitrogen content were investigated to understand changes to soil nutrient 

content along the chronosequence. This provides important contextual information from which 

hypotheses regarding community composition and functional shifts can be investigated.  The 

soil total nitrogen and total organic carbon content revealed changes in soil nutrient content 

with succession. As shown by Figure 4.3, the highest TN and TOC values were found in the 

soils which were furthest from the glacier terminus and therefore had been exposed for the 

longest duration. This is in agreement with research by Turpin-Jelfs et al., (2019) who found 

both carbon and nitrogen content to increase in soils along the Midtre Lovénbreen forefield. 

This may be because these soils have been exposed by glacier retreat and have been subject 

to soil development, in line with our hypothesis (Bradley et al., 2014).  TOC accumulates in 

forefield soils from allochthonous and autochthonous sources, such as through deposition of 

soot and organic matter, alongside the action of autotrophic microbial communities (Guelland 

et al., 2013; Bradley et al., 2014). The increased TOC content observed here in older soils is 

consistent with studies from other forefields, such as the Damma Glacier (Switzerland) and 

has been represented in SHIMMER, a numerical model of glacier forefield succession 

(Guelland et al., 2013; Bradley et al., 2016). The increase in TOC content with soil age is a 

crucial factor in soil development and facilitates colonization by plants and heterotrophic 

microbes (Schutte et al., 2009). This largely explains why initial (newly exposed) soils typically 

support minimal vegetation and a greater plant density can be observed in the later more 

developed soils (Tscherko et al., 2005). Variance within the forefield may relate to 

disturbances such as water flow pathways or variance in soil type (Bekku et al., 2004; Frey et 

al., 2013). Whilst older soils contained the highest TOC content, initial soils (0 – 5 years) were 

also found to contain detectable levels of TOC, between 3.89 – 6.68 mg g-1 (Table 4.3). The 

presence of TOC in newly exposed soils has been previously attributed to ancient subglacial 

organic carbon and aeolian deposition, which may be crucial for supporting initial heterotrophic 

microbial communities, prior to the establishment of autotrophs (Hodkinson et al., 2002; 

Schulz et al., 2013).  

 
The majority of sites across the forefield had TN levels below detectable limits (Table 4.3). As 

nitrogen is crucial for microbial and plant protein synthesis, minimal levels are indicative of low 

nutrient conditions and potential nitrogen limitation (Turpin-Jelfs et al., 2019). Typically, 

nitrogen is supplied to forefield soils through autochthonous sources such as microbial 

nitrogen fixation or remineralization, alongside allochthonous sources such as snowmelt or 

aeolian deposition (Bradley et al., 2014). In general, studies have shown that microbial 
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nitrogen fixation (diazotrophy) is the most important source in early sites, helping to facilitate 

the establishment of higher microbes and plants (Brankatschk et al., 2011). The lack of 

detectable nitrogen in the early soils may relate to an inactivity of diazotrophs or a tight 

coupling between nitrogen fixation and consumption in soils. Low TN values are often 

observed in recently deglaciated forefields due to a lack of soil development, with studies 

across forefields from Canada, Antarctic, Svalbard, Austria, Italy and Switzerland finding 

values ranging between 0.1 – 2 mg g-1 (Bradley et al., 2014). However, at a soil age of 2000 

years a TN content of 3.89 – 4.89 mg g-1 was detected (Figure 4.3). This is consistent with the 

expected increase in TN with soil development, in line with the TOC results. Whilst the source 

of the additional TN cannot be isolated, it may come from a combination of diazotrophy, 

nitrogen remineralization or increased aeolian deposition (Bradley et al., 2014).  

 
4.4.2 Microbial community composition 
 

A chronosequence of metagenomes were evaluated along the forefield, to test our hypothesis 

that microbial community composition and function would change alongside soil succession 

and nutrient pool development. We hypothesized autotrophic organisms would be dominant 

in early soils, with more heterotrophic nutrient cycling appearing later in the chronosequence, 

relating to nutrient availability.  

 

Throughout all metagenomes, the read based taxonomic annotation shows both aerobic and 

anaerobic organisms can be identified, with no sites containing exclusively anaerobes or 

microaerophilic organisms (Figure 4.4). Aerobes identified include organisms such as 

Niabella, Variovorax, Rhodococcus and Pseudomonas (Figure 4.4). Anaerobic organisms 

recovered from the metagenomes include Rhodoferax, Opitutus, Geobacter and Bacillus 

(Figure 4.4). The presence of strict and facultative anaerobes in forefield soils has been 

previously attributed to the periodic flushing by subglacial meltwater (Duc et al., 2009). 

However, as anaerobic strains have been identified in each site, this may indicate anoxic or 

microaerophilic micro environments, alongside the aerobic soil surface layer. This could be 

attributed to poor drainage of glacial meltwater. Anoxic environments are often found in poorly 

drained subglacial systems, and therefore these anaerobes may be a legacy from the 

subglacial environment (Wadham et al., 2008; Boyd et al., 2010).  

 

Extremophilic and psychrophilic organisms were recovered from the metagenomes, alongside 

those with traits to aid colonization and survival in the cold, high UV, oligotrophic conditions 

typical of Arctic forefields (Figure 4.4). Sequences attributed to Bacillus were identified in soils 

at 5 years following glacier retreat (Figure 4.4). This extremophile is endospore forming and 
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is resistant to both cold and desiccation, with psychrophilic, acidophilic, alkaliphilic, 

halotolerant, and halophilic properties (Joan et al., 2011). The production of endospores 

allows Bacillus to remain in a dormant state under stressful conditions (Nicholson et al., 2000). 

Bacillus are typically found in extreme environments, such as deserts and Arctic soils, due to 

their high resistance to environmental stressors (Rüger et al., 2000). In addition, Candidatus 

Solibacter and Pseudomonas were recovered from sites ranging from 3 – 2000 years since 

exposure (Figure 4.4). These organisms secrete extracellular polymeric substances (EPS), 

consisting of polysaccharides, proteins, lipids and DNA (Yang et al., 2011).  This EPS creates 

a biofilm surrounding the microbes, helping to reduce temperature and nutrient fluctuations 

(Flemming and Wingender, 2010). This is a crucial mechanism for environmental tolerance, 

particularly to cold and desiccation stressors in the Arctic. Bacteria with cold-tolerance 

mechanisms were also identified in the forefield metagenome samples and dark ice, such as 

Cryobacterium and Polaromonas (Figure 4.4). Both species are psychrophiles and found in 

cold environments such as the Arctic, which may be due to cold tolerance mechanisms such 

as EPS production and cell membrane fluidity (Irgens et al., 1996; Suzuki et al., 1997).  

 

The cyanobacteria, Nostoc, Oscillatoria, Phormidesmis and Synechococcales were found in 

recently exposed soils (0 years) and cryoconite samples, in support for our hypothesis (Figure 

4.4). Cyanobacteria have previously been proposed as early colonizers of forefield soils and 

are often found in cryoconite (Zumsteg et al., 2013; Christner et al., 2003; Edwards et al., 

2011). Cyanobacteria are photosynthetic and many are diazotrophic, and therefore they do 

not rely on fixed sources of carbon (and nitrogen) for growth (Mitusi et al., 1986). This is crucial 

in newly exposed soils and cryoconite on the glacier surface, as labile carbon and nitrogen 

stocks are typically limited (Christner et al., 2003). Furthermore, cyanobacteria are resilient to 

environmental stressors such as sub-freezing temperatures, attributed to the production of 

protective EPS, which buffers temperature, desiccation and pH (de los Rios et al., 2015). The 

recovery of the mat forming cyanobacteria, Oscillatoria, from the cryoconite metagenome is 

in agreement with the surrounding literature, which highlights it as one of the most abundant 

cryoconite cyanobacteria (Müller et al.,2015; Edwards et al., 2011). Cyanobacterial sequences 

were not recovered from more developed soil sites, however this may relate to inadequate 

sampling, as including more sample sites and DNA extraction from rock biofilms may highlight 

the presence of cyanobacteria. Additional deep sequencing of samples would help to highlight 

less abundant microbes in the metagenome samples, however the results show that 

cyanobacteria are not a dominant fraction of microbial communities in older soil samples. This 

reflects the results of Zumsteg et al., (2013), who found cyanobacteria to decline with 

increasing soil age across the Damma Glacier forefield, Switzerland.  
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The microbial community composition of newly exposed soils has previously been the subject 

of scientific debate. The presence of heterotrophic microbial populations in early colonizer 

communities is not consistent between forefields. Some studies have identified heterotrophic 

colonizers in newly exposed soils, whilst others suggest autotrophic bacteria comprise the 

bulk of the initial community composition (Hodkinson et al., 2002; Kastovska et al., 2005). The 

composition of colonizer communities in this study (Site 0 years) contained both autotrophs 

(Nostoc, Phormedesmis, Rhodoferaz, Thiobacillus) and heterotrophs (Gemmata, 

Rhodospirillales, Sphingopyxis) (Figure 4.4). This may relate to the presence of low, but 

detectable TOC at this site, of 6.68 mg g-1 (Table 4.3). This TOC may have been sourced from 

aeolian deposition or from the subglacial environment (Kastovska et al., 2005; Bardgett et al., 

2007). The presence of TOC can provide a labile carbon pool for heterotrophic colonization 

(Kastovska et al., 2005). However, as the TOC content of newly exposed soils will vary 

between glaciers, based on the content of overridden material and deposited material, the 

presence of heterotrophs is likely to be inconsistent between glaciers. 

 

Furthermore, runoff from the ice surface and cryoconite may be a key fertilizing mechanism 

for newly exposed soils (Kastovska et al., 2005; Stibal et al., 2006). This dispersal may be due 

to the drainage of supraglacial meltwater through moulins to the glacier terminus (Stibal et al., 

2006).  In our study site, autotrophic and heterotrophic microbial populations found in the 

cryoconite or dark ice sample were also found in newly exposed soils (0 years), including 

Nostoc, Thiobacillus, Sphingomonas, Gemmata, Frankia, Corynebacteriales, Bacteriodiales 

and Rhodospirillales (Figure 4.4). Consequently, ice surface microbial populations may be 

important for facilitating the colonization and composition of pioneer microbial communities. 

Again, this is largely a function of aeolian deposition, as glacier ice is most often fertilized by 

microbial populations in wind driven material (Marshall and Chalmers, 1997). Additionally, the 

composition of subglacial microbial communities may mediate the composition of initial 

colonizer communities, for example supplying anaerobic or sulfur cycling organisms, however 

subglacial samples were not available for validation in this analysis. Consequently, the 

composition of pioneer microbial communities is likely to vary between glaciers, influenced by 

the content of depositional material, ice microbial surface populations, subglacial communities 

and the nutrient content of initial soils.  

 

4.4.3 Microbial metabolisms – Carbon 

 

A wide range of microbial metabolic potential was identified in the forefield and glacier 

metagenomes, including chemolithoautotrophs, organoheterotrophs, chemoheterotrophs and 

chemolithotrophs, involved in carbon, nitrogen and sulfur cycling (Figure 4.4). This identifies 
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microbial communities to have a potential influence on a multitude of biogeochemical cycles 

in forefield soils. Heterotrophic organisms potentially involved in microbial carbon cycling were 

found in soils 3 years following glacier retreat (Figure 4.4). This includes organisms such as 

Micromonospora, which grows off decaying organic matter in soils (White et al., 1996). 

Additionally, bacteria capable of utilizing multiple carbon sources, including aromatic 

compounds, were recovered, such as Rhodococcus opacus, Sphingomonas and 

Rugosibacter aromaticivorans (Figure 4.4). The presence of carbon cycling microbes in sites 

above 3 years may relate to the minimal carbon content in newly exposed soils (Figure 4.3). 

Although TOC does not increase significantly from 0 years to 3 years, deposition of aromatic 

hydrocarbons from fossil fuel combustion and carbon fixation by phototrophic cyanobacteria, 

may provide sufficient labile carbon for heterotrophic carbon cycling bacteria to colonize 

(Margesin et al., 2003; Frey et al., 2013). The importance of phototrophs in facilitating the 

colonization of heterotrophic microbes and plants in forefield soils is supported by the 

surrounding literature, highlighting the important source of carbon phototrophs provide 

(Kastovska et al., 2005; Frey et al., 2013). Consequently, this provides support for our 

hypothesis that heterotrophic cycling would appear in later sites, due to nutrient availability.  

 

4.4.4 Microbial metabolisms – Nitrogen   

 

Microbes with soil nitrogen cycling potential were also highlighted using the read based 

taxonomic annotation. Nitrogen-fixing cyanobacteria were recovered from 0 year soils and 

cryoconite metagenomes using read annotation and genome binning, including Nostoc, 

Oscillatoria and Leptolyngbya (Figure 4.4; Table 4.7). Nitrogen-fixingcyanobacteria may be 

fundamental for the build-up of labile nitrogen in nutrient deplete initial soils, as they convert 

nitrogen gas (N2) to ammonium (NH4
+) (Duc et al., 2009; Figure 4.1). These cyanobacteria 

may therefore be important facilitators for the colonization of heterotrophs, considering the low 

nitrogen stocks observed at site 0 years (Figure 4.3). This is supported by SEED function 

profiles, which identified the nitrogen fixation pathway to be present in soils up to 50 years 

(Figure 4.5). This provides support for our hypothesis that autotrophic nitrogen cycling 

microbes would be found in early soils, due to low nutrient availability. The findings are 

supported by Turpin-Jelfs et al., (2019) who found biological nitrogen fixation to occur in newly 

exposed soils in the Midtre Lovénbreen forefield, and decreased long the chronosequence.  

 

Our results show the presence of cyanobacteria in cryoconite samples.  As these microbes 

can fix carbon and often nitrogen, they are able to withstand the oligotrophic conditions on the 

glacier surface (Stibal et al., 2006; Cameron et al., 2012). The flushing of meltwater from 

cryoconite, through moulins to the glacier terminus, may be an important dispersal 
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mechanism, alongside wind drift, for cyanobacteria to reach newly exposed soils (Mueller et 

al., 2001). Interestingly, the nitrogen fixation pathway was not detected in genome bins from 

the cryoconite sample, however this may relate to poor recovery of diazotrophic (nif) genes 

during sequencing due to EPS interference with DNA extraction, or a reduced need for 

nitrogen fixation (Figure 4.5). However, data on sediment nitrogen content was not available 

for this site. Root associated diazotrophs were found in metagenome samples exposed for 

113 years or more (Figure 4.4). These organisms are symbiotic, fixing nitrogen in return for 

organic carbon substrates from plant roots (Franche et al., 2009). The root associated 

diazotrophs recovered from read annotation and genome binning included Mesorhizobium 

oceanicum, Bradyrhizobium, Sinorhizobium fredii and Chromobacterium rhizoryzae (Figure 

4.4; Table 4.7). The identification of rhizobia in older soil sites is consistent with the 

colonization of plants at later stages of soil development (Knelman et al., 2012). However, 

Bradyhizobium were detected in cryoconite samples, despite a lack of vascular plants (Figure 

4.4). This may be the result of wind dispersal and bird droppings, common mechanisms for 

fertilizing the glacier surface with microorganisms (Kastovska et al., 2005).  

 

Bacteria related to nitrification (Nitrospira briensis) and denitrification (Conexibacter woesei, 

Thiobacillus denitrificans) were also found in soils after 3 years of exposure (Figure 4.4; Table 

4.7). Nitrospira briensis are involved in ammonia oxidation, the first step in nitrification, 

oxidizing ammonia (NH3) to Nitrite (NO2
-) (Figure 4.1; Teske et al., 1994; Daims et al., 2015). 

As nitrifying bacteria rely on labile ammonia, they may only occur after 3 years of soil 

exposure, when sufficient stocks have accumulated from deposition, ammonification and 

nitrogen fixation. This is supported by Brankatschk et al., (2011) who found low potential 

nitrification and denitrification rates at initial forefield sites, attributed to the lack of available 

nitrate and ammonium (Brankatschk et al., 2011). However, if this is the case, the production 

or deposition of labile ammonia must be tightly coupled to uptake, given the minimal TN values 

recorded in our sampling sites (Table 4.3). Denitrifying bacteria are largely responsible for the 

loss of labile nitrogen from soil environments. Denitrification involves the reduction of fixed 

nitrate (NO3
-) to nitrogen gas (N2) by anaerobic or facultatively anaerobic bacteria (Figure 4.1; 

Aulakh et al., 1992). Through denitrification, nitrate/nitrite is used as the terminal electron 

acceptor in respiration, in the absence of oxygen (Simon et al., 2009). Denitrifying bacteria 

were recovered from soils exposed for 3 years or more and from the dark ice sample (Figure 

4.4). This may relate to the requirement of labile nitrate, hindering the occurrence in newly 

exposed soils (0 years) (Brankatschk et al., 2011). This supports the research of Kandeler et 

al., (2006), who found evidence of denitrifying communities developing under soil succession, 

driven by an increasing availability of organic substrates. Denitrification is common in soils 

and may occur along the Midtre Lovénbreen forefield in wet or waterlogged conditions, where 
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the oxygen supply is limited (Christensen et al.,1990). The presence of Conexibacter woesei 

in the dark ice metagenome indicates the potential for denitrification on the glacier surface 

(Figure 4.4). Denitrifying bacteria have been found in anoxic glacier ice and basal samples 

where oxygen is limited, including the Midtre Lovénbreen subglacial environment (Hodson et 

al., 2005; Simon et al., 2009; Ansari et al., 2013). This is also supported by the SEED function 

profile for genome bins, which found denitrification to occur throughout the forefield and in the 

dark ice sample (Figure 4.5). Interestingly, the nitrification and denitrification pathways were 

not found in soils aged 2000 years in the SEED profiles. This may be due to the genome 

sampling that was carried out (i.e. based on assembled, binned, genomes) and therefore is 

not as comprehensive in terms of diversity as the read based taxonomic annotation.  The 

results presented here therefore support the hypothesis that heterotrophic nitrogen cycling 

would appear in later soil sites, requiring an initial buildup of labile nitrogen stocks.  

 

4.4.5 Microbial metabolisms – Sulfur  

 

Evidence for the potential of microbial sulfur cycling was also found in the forefield 

metagenomes and cryoconite samples. Sulfur oxidizing microbes were found in early soils, 

aged 0 and 5 years, alongside the cryoconite sample by both read annotation and genome 

binning and included Thiobacillus denitrificans, Sulfuricurvum kujinse and Sulfuricaulis 

limicola (Figure 4.4; Table 4.7). Sulfur oxidation is the process by which elemental (S0) or 

reduced (H2S, HS-) sulfur is oxidized to sulfate (SO4
2-), coupled with the reduction of oxygen 

(aerobic) or nitrate (anaerobic) (Eriksen et al., 1998). This mechanism is used for energy 

production by chemolithotrophic sulfur oxidizers and has been identified in subglacial systems 

(Wainright 1978; Bottrell and Tranter, 2002). In addition, evidence for microbial sulfate 

reduction was provided by the recovery of Desulfovibrio vulgaris and Geobacter bemidijensis 

Bem sequences from more developed soil sites (aged 50 – 2000 years) (Figure 4.4; Table 

4.7).  Sulfate reducers use sulfate (SO4
2-) as a terminal electron acceptor for anaerobic 

respiration, reducing it to hydrogen sulfide (H2S) and aid the degradation of organic matter 

(Eriksen et al., 1998). The presence of anaerobic sulfur reducers is indicative of anoxic micro-

environments along the chronosequence, for example waterlogged soils, where oxygen 

availability is limited. Again, the presence of sulfate reducers may be a legacy from the 

subgalcial environment, however, additional sampling of subglacial sediments would be 

needed to validate this. The location of sulfur reducing bacteria in more developed forefield 

soils compared to sulfur oxidizers, is interesting. An explanation for this is that sulfate reduction 

requires the availability of SO4
2-, produced by oxidation, and therefore cannot occur in newly 

exposed nutrient deplete soils. However, additional measurements of sulfur species would be 

needed to validate this. Whilst sulfur reducing bacteria may be present in early soil samples, 
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they were not recovered by the read based annotation carried out. Consequently, sulfur 

reducing microbes do not constitute a major fraction of the microbial community composition 

at early stages of soil succession in the Midtre Lovénbreen forefield. Additional research on 

the transcription of sulfur cycling genes (using transcriptomics) would be beneficial to highlight 

if the sulfur oxidation and reduction pathways were indeed active in the forefield.  

 
4.4.6 Unique genomes  
 
Genome binning was carried out to investigate the presence of novel genomes in forefield 

soils, as expected by our hypothesis. The results of this analysis have indicated a degree of 

novelty of genomes extracted during the binning process, with 21% of bins falling below 80% 

identity to NCBI GenBank (Table 4.7). Of these bins, three matched most closely to the 

denitrifying bacteria, Conexibacter woesei and two were associated with the sulfur oxidizing 

Sulfuricaulis limicola (Table 4.7). This indicates the samples may contain unique species with 

ecological importance in local biogeochemical cycles, for example in nitrogen and sulfur 

cycling. The low percentage identity of these bins is related to using incomplete genome 

databases to perform taxonomy assignments (Albertsen et al., 2013). As the complete global 

microbial diversity has not been captured on genome databases, it is likely that some samples 

may not match closely to the genomes that are available (Albertsen et al., 2013). In the future, 

developments in NGS technologies, analysis pipelines and methodologies such as 

metagenomics will allow more environmental microbial diversity to be profiled in online 

databases.  However, the results of this analysis do provide scope for further single cell 

sequencing and culture based studies, to fully ascertain the novelty of genomes found during 

the binning process.  

 
4.5 Conclusions  
 
 
This study has used metagenomics to explore the microbial community composition along a 

chronosequence of soil succession in the Midtre Lovénbreen forefield, Svalbard. Prior to this 

study, most research on forefields had focused on plant succession, changes to soil 

physicochemical properties or utilized 16s rRNA or single gene sequencing. For the first time, 

this study implements metagenomics to understanding the succession of microbial 

communities in a glacial forefield. We aimed to test several hypotheses: (1) community 

composition and function would modify with soil development; (2) autotrophic microbes would 

be present in newly exposed soils, with heterotrophic nutrient cycling occurring in later sites; 

and (3) extremophilic or novel microbes may be identified due to the harsh environmental 

conditions in Arctic forefields.  
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The key pathways and processes discussed in this analysis are highlighted in Figure 4.6. This 

study finds that along the successional chronosequence, both total organic carbon (TOC) and 

total nitrogen (TN) increased, in line with soil development. This is consistent with previous 

findings from glacier forefields, which identify TN and TOC pools to rise with soil development 

due to aeolian deposition, microbial fixation and the establishment of plants. This study also 

finds a range of extremophilic microbes to be present along the forefield, which may be 

adapted to the high UV, oligotrophic, cold conditions present, in line with our hypothesis. 

Additionally, we recovered cyanobacterial sequences from newly exposed soils and 

cryoconite, in line with previous forefield literature. This may be related to the ability of 

cyanobacteria fix carbon (and often nitrogen) in low nutrient conditions, alongside the 

secretion of protective exopolymeric substances (EPS) to buffer the harsh environmental 

conditions. The composition of the initial pioneer microbial community has previously been the 

subject of debate, in particular, the prevalence of heterotrophs in newly exposed soils. Our 

findings conclude that both autotrophic and heterotrophic bacteria were present in the initial 

pioneer community. This may be attributed to the availability of an initial TOC pool, from 

Figure 4.6: Scematic outlining proglacial features and processes described in this chapter. Key drainage 
features include: englacial, subglacial and proglacial pathways. Microbial features include: cryoconite and 
ice algae, the pioneer community and plant colonization. Soil nutrient content is displayed graphically, 
highlighting overridden organic matter and the buildup of labile organic carbon and nitrogen with 
succession. Nutrient sources are autochthonous (microbial fixation by autotrophs) and allochthonous 
(deposition). Source: The figure is an adaptation of Chu et al., (2014).  
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overridden soils or aeolian deposition, which heterotrophic bacteria could utilize. Additionally, 

heterotrophic and autotrophic microbes identified in the pioneer community were also 

recovered from glacier ice samples. Consequently, we conclude that the community 

composition of newly exposed soils may be mediated by the microbes supplied in runoff from 

the glacier surface or from subglacial systems. In response to the debate on pioneer 

community composition, we suggest the presence of heterotrophic bacteria in newly exposed 

soils is likely to vary between glaciers, due to differences in the ice surface microbial 

communities, aeolian deposition and overridden TOC stocks.  

 

The use of metagenome sequencing in this study enabled an investigation into the carbon, 

nitrogen and sulfur cycling pathways along the chronosequence, through read annotation, 

genome binning and SEED functional pathway annotation. The use of functional genes 

provides evidence for microbial biogeochemical cycling potential, which is not possible with 

taxonomic markers such as 16s rRNA. Our study concludes that forefield soils contain the 

potential for microbial carbon fixation, heterotrophic carbon cycling, nitrogen fixation, 

nitrification, denitrification, alongside sulfur oxidation and reduction. We show that microbes 

associated with heterotrophic carbon, nitrogen and sulfur cycling were recovered from older 

soils, as these pathways require labile nutrient stocks which may not be present in newly 

exposed soils, in agreement with our hypothesis. The use of metagenomics in our study also 

allowed the recovery of discrete genome bins from the samples. Whist the genomes extracted 

were not comprehensive of the complete diversity (due to incomplete assembly and read 

coverage), they provide an insight into the functional potential of microbes in forefield samples. 

Several of these genome bins did not align closely to those on NCBI GenBank, indicating a 

degree of genome novelty. In particular, several genomes related to denitrifying and sulfur 

oxidizing microbes were recovered, highlighting these pathways as potentially prevalent in the 

forefield soils. Whilst extracting complete draft genomes was not the aim of this analysis, due 

to sequencing limitations, the results demonstrate the potential of metagenomics to explore 

functionality on a single genome scale, given deep sequencing.   

 

Overall, this study has provided an insight in to the diversity and metabolic potential of 

microbial communities along a successional chronosequence. It is hoped that this work will 

help to stimulate further research exploring functional activity rates, gene expression using 

transcriptomics and probe deeper into genome novelty using single cell sequencing and 

culture based studies.  
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4.6 Limitations and Future Work  
 
To build on the results of this study, additional deep metagenome sequencing would be 

beneficial in under sampled sites (Figure 4.2). This would enable less abundant microbes to 

be recovered and thus fully profile the microbial community composition in each site. 

Additionally, deep sequencing would provide more read coverage for each microbe, thus 

enabling a greater number (and more complete) genomes to be extracted during the binning 

process (Albertsen et al., 2013). Consequently, this may provide the opportunity to build draft 

metagenome-assembled genomes, enabling an insight into genome structure, diversity and 

novelty (Albertsen et al., 2013; Hugerth et al., 2015). In particular, building near complete draft 

genomes would enable a comparison of the average nucleotide identity (ANI) between sample 

sequences and previously sequenced genomes (Konstantinidis and Tiedje, 2005). This 

information would be beneficial to fully ascertain how unique our genomes are in comparison 

to those available on public databases. Draft microbial genomes may also be extracted using 

culture based studies and single cell sequencing, focused on those genomes highlighted in 

the binning process (Table 4.7). The benefit of single cell sequencing would be an increased 

coverage for the target genome, increasing the likelihood of a fully closed genome assembly 

(Blainey 2013; Shapiro et al., 2013). Additionally, culture based studies may be beneficial, to 

understand the life cycle and growth conditions of any newly isolated genomes (Marx 2017).   

 

Furthermore, (meta) transcriptomics could also be applied to each sampling site, to highlight 

which metabolic pathways are active. As transcriptomics involves sequencing the transcribed 

mRNA, it goes one step further from metagenomics, as it identifies which processes are active 

at a snapshot in time (Moran et al., 2013). This would be beneficial to understand which 

aspects of biogeochemical cycles are functioning and any changes along the forefield. Finally, 

metagenomics supplemented with 16s rRNA analysis may also be useful. Not only would this 

enable a comparison between the taxonomy conclusions of each method, but the addition of 

16s analysis would enable the less abundant fractions of the microbial community to be 

profiled (Franzosa et al., 2015). The reduced cost and ability of this method to fully profile the 

community composition enables further diversity metrics and gene abundance calculations to 

be applied. Finally, a subglacial sample from Midtre Lovénbreen would have been beneficial 

for this analysis. This would allow a comparison between newly exposed soils, to ice surface 

and subglacial systems, to identify how influential supraglacial or subglacial microbes are on 

the composition of the pioneer microbial community.  
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5.1 Introduction  
 

The fjord systems of Chilean Patagonia present a unique habitat for microbial life, draining 

glacial melt water into marine fjord systems. These fjords have been hypothesized as a 

hotspot of primary productivity at the land-ocean interface and are crucial for understanding 

coastal ecosystem functioning and diversity (Iriarte et al., 2007). The fjord systems of Chilean 

Patagonia host three UNESCO bio-reserves and support commercially important Salmon 

fisheries (Haussemann and Forsterra, 2009; Niklitscheck et al., 2013). High rates of primary 

productivity have been observed in Chilean fjords, alongside harboring diverse and unique 

ecosystems, such as the Patagonian cold-water corals (Iriarte et al., 2007). However, the 

microbiology of the fjord sediments, crucial for understanding the wider ecosystem functioning, 

has received limited research attention. These fjords are particularly of interest due to the 
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interaction of glacial meltwater from Patagonia ice fields with marine waters, harboring a range 

of physico-chemical conditions for microbial life.  

 

The Patagonian ice fields drain into downstream fjords, influencing the fjord’s physical 

characteristics, with implications on primary productivity (PP) (Iriarte et al., 2014). The fjords 

are also supplied by marine Sub-Antarctic water, which mixes in the inner fjords with 

freshwater runoff from terrestrial and glacial rivers (Palma and Silva, 2004; Iriarte et al., 2014). 

The greater density of the marine waters means that a vertical stratification of the water 

column is often observed (Palma and Silva, 2004). Consequently, Patagonia fjords often 

contain a surface freshwater lens, over more dense marine waters, promoting a range of 

dynamic conditions for endemic and novel organisms (Iriarte et al., 2010). Corresponding 

vertical gradients in oxygen, salinity, nutrients and light have been observed, all of which have 

implications on PP (Iriarte et al., 2014). Oxygen can reduce to near a hypoxic state with depth, 

caused by the oxidation of organic matter in the inner fjords (Gonzalez et al., 2013; Iriarte et 

al., 2014). Horizontal gradients in oxygen have also been observed, reducing towards the 

inner fjords and glacier outflows (Davila et al., 2002; Silva and Vargas, 2014). This relates to 

the supply of oxygen from the Sub-Antarctic water, which is depleted by microbial 

consumption towards the fjord head (Silva and Vargas, 2014). Consequently, deep waters in 

the inner fjords are more likely to experience anoxic conditions.  

 

Research on the hydrochemistry of Patagonia fjords indicates that the glacial meltwater is low 

in nutrients, and that mixing plumes from the Sub-Antarctic water may help to stimulate 

phytoplankton blooms (Arancena et al., 2011; Gonzalez et al., 2013; Montero et al., 2017). 

Additionally, the inner fjord regions, dominated by glacial runoff, typically have lower nitrate 

and phosphate than the distal marine waters (Aracena et al., 2011). The glacial runoff is 

sediment dense, largely attributed to inorganic matter from glacial weathering (Aracena et al., 

2011). Alongside the low nutrient content of glacial runoff, the high sediment yield may block 

out light for photosynthetic microorganisms (Aracena et al., 2011; Landaeta et al., 2012; 

Meerhoff et al., 2013). Consequently, the biological export from inner fjord regions can be 

reduced (Silva, 2008). However, the fjords are also fed by terrestrial rivers which contain 

increased loads of organic matter, silicon, nitrate and phosphate to fjord surface waters (Mayer 

et al., 1998; Tréguer et al., 2013; Gonzalez et al., 2013).  

 

On average, Patagonian glaciers discharge 70 km3 of freshwater a year into downstream 

fjords and this flux is increasing with glacier thinning (Lenaerts et al., 2014; Schaefer et al., 

2017). The implications of a greater meltwater flux on the microbial communities is hard to 

ascertain, particularly because fjord PP is a result of complex interactions between light, 
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nutrients and temperature, all of which may be influenced by glacial runoff (Landaeta et al., 

2012). For example, increased sediment flux may reduce water column and benthic microbial 

activity due to increased light attenuation, with implications propagating up the food chain to 

fish populations (Landaeta et al., 2012; Gonzalez et al., 2013). Additionally, a study by 

Gutiérrez et al., (2015) suggests that a change in hydrographic conditions from increased 

glacial meltwater may influence the microbial community structure, favoring freshwater 

dominant species such as nano and pico plankton. Consequently, a greater understanding of 

the current microbial community composition and function in these fjords in needed, to help 

understand how the ecology and ecosystem services may change in the future.  

 

Biological analysis of the fjords has focused on the water column, and in particular, on plankton 

activity and diversity (Iriarte et al., 2007; Gonzalez et al., 2013). Ecological indicators have 

classified benthic microbial communities at a ‘good’ status, however communities may be 

unbalanced due to the high outflow of glacial meltwater into the fjords (Quiorga et al., 2013). 

The overall water column net primary productivity (NPP) and export production has been 

shown to increase when moving out from the inner fjords, largely related to the high sediment 

flux and freshwater in inner fjords (Aracena et al., 2011; Gonzalez et al., 2013). Research 

using 16s rRNA amplicon sequencing has been carried out on the water column microbial 

communities (Gutiérrez et al., 2015). This research indicates that the glacial meltwater 

influences the microbial community structure in inner fjords, increasing the dominance of 

freshwater and cold adapted communities (Gutiérrez et al., 2015). Consequently, meltwater 

drainage has been proposed as a key influence on biological activity and diversity in 

Patagonian fjords.  

 

Chilean fjords present an interesting opportunity to study the influence of glacial meltwater on 

marine habitats, as they form the intersection between the land and open ocean. Currently, 

little is known about the diversity and function of microbial communities in these fjord 

environments. This information will aid our understanding of microbial diversity, fjord 

biogeochemical cycling and may help inform predictions to how these functions may change 

with increased ice melt in future years. This is especially important in Chilean Patagonia, given 

the presence of commercially important Salmon fisheries, which rely on fjord ecosystem 

functioning. Additionally, the interaction of saline and fresh waters, alongside dark and cold 

conditions within the sediments may harbor novel and ecologically significant microbes. 

Techniques such as metagenomics and genome binning, which enable both the functional 

and taxonomic diversity of uncultured microbial communities to be uncovered, have yet to be 

applied to this environment. These approaches may be highly beneficial for answering 

questions on the diversity, importance and uniqueness of communities in this region.  
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This study applied metagenomics to understand the taxonomic diversity of uncultured benthic 

sediment metagenomes from Patagonian fjords. The uncovered taxonomic diversity was used 

to drive genome binning and functional analysis, providing insights into the novelty, metabolic 

potential and ecological diversity of these microbial communities. The findings of Chapter 2 

are used to inform metagenome assembly for functional annotation, however the limitations 

of assembly highlighted by Chapter 4 are also considered. The findings aim to provide an 

insight into this unique environment, whist highlighting areas where targeted single cell 

genome sequencing and culture-based studies may be beneficial.  
 
5.2 Methods 
 
5.2.1 Field Sampling  

 

Sampling was undertaken to investigate the microbial community composition of the benthic 

fjord sediments along the Steffen fjord and the outflow to the Baker channel, Chilean 

Patagonia. A total of 17 sites were investigated by the PISCES project for temperature, 

oxygen, salinity, pH and turbidity with depth using a CTD with a microfluidic colorimetric 

analyzer (Figure 5.1). From these sites, 5 were selected for analysis of benthic sediment 

microbial community composition (sites 1,2,4,5 and 7, Table 5.1). For these sites, integrated 

sediment grab samples were taken in a Van Veer grab sampler and stored in sterile Eppendorf 

tubes. Samples were frozen at -20°C for analysis at the University of Bristol. Temperature, 

oxygen, salinity, pH and turbidity of the fjord network surface waters were measured using 

underway sampling. This data was recorded using an EXO 2 sonde during the boat cruise 

track, which provided continuous measurements of the fjords. This data is used here to 

supplement the microbial community composition data obtained from the sediment samples 

from Sites 1,2,4,5 and 7.  
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Figure 5.1: Sampling sites for aqueous nutrients, salinity, pH and dissolved oxygen. Sampling 

sites for sediment microbial community composition were 1,2,4,5 and 7. Source: Google Earth  

 

 

Table 5.1: Benthic sediment sampling site locations  

Sample Coordinates South Coordinates West   Date sampled  

1 S47 38.373 W73 40.046 18/02/2017 

2 S47 40.748 W73 42.897 20/02/2017 

4 S47 46.396 W73 41.770 20/02/2017 

5 S47 47.263 W73 36.512 16/02/2017 

7 S47 56.756 W73 45.839 17/02/2017 

 
5.2.2 Metagenome DNA extraction and sequencing  

 

DNA extraction and sequencing was carried out in line with the protocols detailed in Chapters 

3 and 4 (Nash et al., 2018). DNA for metagenomics was extracted using the same protocol 

applied in Chapter 3 and 4 (section 3.2.3; Nash et al., 2018). Metagenomes were sequenced 

using an Illumina Next-Seq 500, with a TruSeq library prep kit at the University of Bristol 

Genomics facility (Nash et al., 2018). A total of 5 metagenomes were sequenced (one 

metagenome per site) using 2x 150bp reads.  
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5.2.3 Metagenome read annotation  

 

The 5 sequenced metagenomes were quality trimmed using Trimmomatic V0.38, with quality 

checks carried out using FASTQC v0.11.7 (Bolger et al., 2014; Babraham Bioinformatics). 

Read based taxonomic annotation was carried out in Kaiju v1.5.0 (Menzel et al., 2016). Kaiju 

is a kmer based approach which utilises protein sequences, which are more highly conserved 

when compared to nucleotide sequences (Menzel et al., 2016). This method has been shown 

to be well suited to novel and divergent metagenome samples (Menzel et al., 2016). Interactive 

hierarchical microbial community structures of the annotated samples were obtained in Krona, 

using the KBASE platform (Ondov et al., 2015; Arkin et al., 2016).  

 

5.2.4 Metagenome assembly, genome binning and annotation  

 

The sequenced reads for each metagenome were assembled using metaSPAdes V3.11.1 

with kmer length optimisation and reads mapped back to the metagenomes using Bowtie 2 

v2.3.2 (Langmead and Salzberg, 2012; Nurk et al., 2017). The assembled metagenomes were 

imported in to JGI IMG/ MER for annotation and gene calling (Chen et al., 2017). Genome 

binning was used to extract novel genomes from the assembled metagenomes, using 

MaxBin2 v2.2.4, which clusters genomes based on sequence coverage and tetra-nucleotide 

frequencies of assembled contigs (Bankevich et al., 2012; Wu et al., 2015). The genomes 

were extracted using BinUtil v1.0.1 on KBASE (Arkin et al., 2016). The taxonomic identity of 

the extracted bins were assigned using a BLAST-n search against all complete NCBI RefSeq 

genomes (e-value 10-5). The top BLAST hit for each bin was used to assign the taxonomy, 

based on the BLAST max score value, with an E-value below 1x 10-5. Thresholds of 95 and 

85 % identity or better to classify bins to species and genus level were used, in line with 

analysis carried out by Camparano et al., (2016). Bins classified at below 80% identity were 

proposed as potentially unique, as they cannot be accurately placed given the current 

available DNA sequences.  

 

5.2.5 16s rRNA and dsrAB phylogenies  

 

To demonstrate the potential capabilities of metagenome analysis, 16s rRNA and dissimilatory 

sulfite reductase (dsrAB) phylogenies were carried out, based on the results from genome 

binning. Whilst other explorative analyses and phylogenies could be carried out, these were 

selected to provide an example for how metagenome sequencing can be used.  
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The archaeon genus Nitrosopumilus was selected for phylogenetic analysis based on the 16s 

SSU rRNA marker gene. This is because the genus was abundant, accounting for 10-26% of 

genome bins across the samples and may have biogeochemical significance in the sediment 

nitrogen cycle. 16s rRNA sequences from reference Nitrosopumilus genomes were obtained 

from NCBI GenBank, based on the phylogeny of Qin et al., (2017). Nitrosopumilus 16s 

sequences were extracted from the assembled metagenome samples using JGI IMG/MER, 

using BLASTn, with an e-value of 10-5 (Chen et al., 2017). As the assembled metagenomes 

incorporated unamplified DNA from complex sediment microbial communities, the 16s 

sequences obtained may not cover the complete set of Nitrosopumilus genomes in the 

samples (Rodriguez and Konstantinidis, 2014). However, those obtained through BLAST 

searching are likely to be those most prevalent in the metagenomes, as these have been 

recovered by sequencing (Rodriguez and Konstantinidis, 2014).  Metagenome and reference 

sequence alignments were created in SATé 2.2.7, using MAFT, MUSCLE and FASTTREE 

with the GTR+CAT model, in line with Chapter 3 (Liu et al., 2011; Nash et al., 2018). Manual 

inspection of the 16s rRNA sequence alignment and production of Phylip files was carried out 

using Mesquite 3.2 (Maddison and Maddison, 2017). A 16s maximum likelihood phylogeny 

was generated using RAXML-HPC2 8.2.10 on XSEDE through the CIPRES Science Gateway, 

with 1000 bootstrap iterations, implementing the GTR+G nucleotide substitution model 

(Stamatakis, 2014; Nash et al., 2018). Final trees were produced using Figtree 1.4.3 and visual 

modifications were made in Inkscape 0.91. Similarity evaluation between Nitrosopumilus 16s 

sample sequences and NCBI GenBank relatives were made using NCBI BLASTn.  

 

Additionally, genome binning and taxonomic analysis of the metagenomes highlighted the 

presence of sulfur cycling microbes. As metagenomes contain functional genes (alongside 

taxonomic markers such as 16s rRNA), the functional gene dsrAB (dissimilatory sulfite 

reductase) for sulfite reduction was explored phylogenetically to demonstrate the potential of 

using metagenomes for functional exploration. This gene encodes the reduction of sulfite 

(SO3
2-) to sulfide (S2-) in anaerobic respiration by both bacteria and archaea (Müller et al., 

2015). Reference dsrAB sequences were obtained from NCBI GenBank based on the 

phylogeny of Moreau et al., (2010). Sequences were obtained from assembled metagenomes 

with IMG/MER using BLASTn with an e-value of 10-5, with the alignment and phylogeny 

generated as outlined above. The metagenome dsrAB sequences were compared to nearest 

relatives using BLASTn against NCBI GenBank.  

 

5.2.6 Sediment organic carbon and total nitrogen content   
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Sediment total nitrogen (TN) and total organic carbon (TOC) were determined in triplicate for 

each sample site, using mass spectrometry. The protocol demonstrated in Chapters 3 and 4 

was applied (section 3.2.2; Nash et al., 2018).  

 

5.3 Results and Discussion 
 

5.3.1 Fjord metadata and influence of glacial meltwater  

 

The results of underway sampling the surface waters of the Steffen fjord and Baker channel 

for temperature, oxygen, salinity, pH and turbidity are shown in Table 5.2 and Figure 5.2. The 

results of depth profiles for each site are shown in Table 5.2 and Figure 5.3.   

 
Table 5.2: Metadata for benthic sediment sampling sites, courtesy of the PISCES project.  

Site  Water depth 
(m) 

Water 

temperature (°C) 

Surface water 
dissolved 
oxygen (% sat) 

Bottom 
water 
salinity  

Surface 
water pH 

Turbidity  
(FNU) 

1 61 10 104 32 6.76 40 

2 199 8 104 34 7.65 38 

4 268 8 102 34 7.98 50 

5 78 8 104 34 7.65 50 

7 360 9 104 34 7.71 30 

 

For sediment sampling sites, water depth ranged between 61 - 360m, between sites 1 and 7. 

This reflects the movement from shallower inner waters of the Steffen Fjord, to more distal, 

marine dominated sites (Iriarte et al., 2014). Surface water temperature ranged between 8 - 

10°C and displayed limited variation with depth using a CTD sensor (Table 5.2; Figure 5.2). 

Surface water temperatures reduced at sites 1 and 13 due to the outflow of the Steffen and 

Jorge Montt glaciers (Figure 5.1; Figure 5.3).  Surface water pH ranged between 6.8 – 8 at 

sediment sampling sites, with the lowest pH found at sample site 1, at the outflow of the Steffen 

glacier into the fjord (Table 5.2). Surface water salinity ranged between 0.4 – 1.3 and 

increased to 32 – 34 in bottom waters (Table 5.2; Figure 5.3; Figure 5.4). This reflects the 

distinct salinity stratification in the Steffen fjord, whereby fresh terrestrial and glacial runoff 

largely remained at the fjord surface, over a layer of dense saline marine water (Pickard, 1971; 

Iriarte et al., 2014). This indicates a lack of mixing between the two water masses (Iriarte et 

al., 2014).  
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Surface water turbidity ranged between 30 – 50 FNU, however reduced to 0.4 – 1.2 FNU at 

the sediment bed (Table 5.2; Figure 5.2). This again reflects the distinct fjord stratification, 

whereby surface waters contain more suspended sediment from terrestrial runoff than marine 

bottom waters (Iriarte et al., 2014). The turbidity of surface waters showed distinct variation in 

the fjord network, increasing from 0 FNU in the Baker channel to 40 FNU in the Steffen fjord 

(Figure 5.3). This may relate to sediment flux from the terrestrially fed River Baker and glacial 

flour from the Steffen glacier, which is largely retained in the fresh surface waters of the Steffen 

fjord (Figure 5.1). Surface waters were saturated with oxygen, however this reduced with 

depth to 51 – 71% saturation at the sediment bed (Table 5.2; Figure 5.2). This is due to air-

sea gas exchange with oxygen in surface waters maintaining atmospheric equilibrium, 

influenced by wind velocity (Broecker and Peng, 1974). This is not maintained with depth due 

to inadequate mixing and microbial consumption of oxygen (Leon-Munoz et al., 2013). 

 

The freshwater glacial runoff in the Steffen fjord and wider Baker channel was therefore shown 

to have distinct influences on the fjord physicochemical characteristics. Glacial and terrestrial 

runoff provided a less dense freshwater lens over more saline bottom waters throughout the 

fjord (Iriarte et al., 2014; Figure 5.2). This freshwater lens had greater turbidity, oxygen content 

and lower salinity than benthic waters (Table 5.2; Figure 5.2). This information provides the 

physicochemical background for understanding the microbial community structure in the 

benthic sediment metagenomes sampled.  
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Figure 5.2: CTD depth profiles for sediment sampling cites 1,2,4,5,7. Temperature, dissolved 
oxygen, chlorophyll, turbidity and salinity are plotted with depth for each sampling site.  
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5.3.2 Sediment TN and TOC  

 

The results for sediment total organic carbon (TOC) and total nitrogen (TN) are displayed in 

Figure 5.4. TOC ranged between 3 mg g-1 to 13.5 mg g-1, from Site 2 to Site 17 respectively. 

The sites sampled for metagenomics along the Steffen Fjord (Sites 1-7) display a smaller 

range of values, between 3 – 5.8 mg g-1 TOC (Figure 5.4). The range of TN values from 

sediments was more constrained, ranging between 0.2 – 1 mg g-1 (Figure 5.4). The limit of 

detection was 1 mg g-1 for both TOC and TN. These values are indicative of low nutrient 

Figure 5.3: Underway sampling data of surface waters for (A) Salinity, (B) Temperature, (C) pH and 

(D) Turbidity. Data curtesy of Alex Beaton, PISCES project.  
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conditions in the benthic fjord sediments, which may mediate the microbial communities which 

they can sustain. In particular, the minimal values of TN indicate nitrogen may be limiting, and 

thus may influence the diversity and structure of microbial life in the sediments.  

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.3.3 Metagenome assembly and annotation  

 
Following sequencing, the five benthic sediment metagenomes were assembled to create 

longer contigs for functional annotation. Metagenome assembly has been shown to improve 

the annotation quality of the datasets, due to longer DNA sequence lengths for alignment-

based interpretation (Nagarajan and Pop, 2013, Chapter 2). The output quality for 

metagenome assembly and read mapping are displayed in Table 5.3. The number of contigs 

ranged between 25,112 – 64,579, with contig size between 10,000 – 1,000,000 bp (Table 5.3). 

Figure 5.4: A) total nitrogen (TN) and B) total organic carbon (TOC) per gram of sediment 
for metagenome sampling sites (1,2,4,5,7). The limit of detection was 1 mg g-1 for both TOC 
and TN. The relative standard deviation of measurement was 1.44% and 4.86% for TOC 
and TN respectively, calculated by measuring a series of 9 standards.  
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The read coverage of the metagenomes ranged between 87.1- 95.4%, highlighting the 

majority of the raw read data was used in the assemblies (Table 5.3). However, following 

taxonomic and functional annotation in JGI IMG/MER 98.76 – 99.33% of reads were not 

assigned to a taxonomy at 90% identity (Table 5.4). This may highlight a substantial novelty 

of genomes in the samples which cannot be identified using current databases, as these do 

not fully profile current global microbial diversity (Ferrer et al., 2005).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 

 
 
 
Read based taxonomic annotation  
 

 

Table 5.3: Metagenome assembly statistics for microbial community metagenomes, 
highlighting assembly size and contig length, produced in Quast (Gurevich et al., 2013). 
Output quality metrics for raw read mapping against the metagenomes are also 
provided.  
 

Site 1 Site 2 Site 4 Site 5 Site 7
Assembly parameters
# contigs 47703 44713 42395 64579 25112
# contigs (>= 0 bp) 47703 44713 42395 64579 25112
# contigs (>= 1000 bp) 47703 44713 42395 64579 25112
# contigs (>= 10000 bp) 2374 1581 2050 3227 946
# contigs (>= 100000 bp) 6 14 14 10 0
# contigs (>= 1000000 bp) 0 0 0 0 0
Largest contig 169641 297725 360451 227878 82647
Total length 197488635 174470052 175632561 268241056 95362614
Total length (>= 0 bp) 197488635 174470052 175632561 268241056 95362614
Total length (>= 1000 bp) 197488635 174470052 175632561 268241056 95362614
Total length (>= 10000 bp) 42735865 33490431 41852693 62069788 15473582
Total length (>= 100000 bp) 762550 1960800 2074273 1341724 0
Total length (>= 1000000 bp) 0 0 0 0 0
N50 4300 3842 4189 4236 3774
N75 2731 2602 2691 2725 2598
L50 11553 11316 9829 15263 6821
L75 26303 25409 23230 35496 14572
GC (%) 51.32 47.16 45.67 46.93 50.36
Mapping parameters 
Total Reads 174621110 161768224 164078036 155907364 164920816
Unmapped Reads 160588571 148029200 149463098 136710343 157328781
Mapped Reads 14032539 13739024 14614938 19197021 7592035
Singletons 958195 981434 853002 1273877 798535
% coverage 91.96 91.5 91.1 87.1 95.4

Table 5.4: Percentage of taxonomically unassigned assembled sequences at 60 and 
90% identity, using JGI IMG/MER  
 

Sample % unassigned sequences (90% identity) % unassigned sequences (60% identity) 
1 98.97 68.35
2 99.15 80.8
4 99.33 83.46
5 99.24 75.94
7 98.76 65.19
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Taxonomic annotation of quality trimmed (unassembled) sequencing reads was carried out 

following the limited scope of assembled metagenome annotation (Table 5.4). The read 

classifier Kaiju was selected, as this classifier has been shown to have a higher sensitivity to 

underrepresented genera than other kmer based classifiers (Menzel et al., 2016). 

Furthermore, the read classification is based upon protein sequences, which are more 

conserved and resilient to sequencing errors than DNA based analysis (Menzel et al., 2016).  

 

The overall microbial community composition of the five metagenomes, at the class level, can 

be identified in Figure 5.5. The full classification from class to species level is available in 

Appendix 4, Tables 1-5. In total, only 25% of the sequenced reads could be annotated with a 

taxonomy at the class level (Figure 5.5). Of these reads, 20% could not be annotated at the 

class level, or were at a very low abundance (Figure 5.5). This indicates a presence of either 

novel, and/or highly fragmented DNA in the datasets. As current annotation techniques rely 

on the use of known sequences, any novel or unique organisms will not be assigned a 

taxonomy (Menzel et al., 2016). This is particularly the case for environmental samples, as 

known sequenced genomes are often biased towards those which have a medical application 

(Menzel et al., 2016). The use of binning techniques may help to delineate the presence of 

novel genomes in the samples. However, as the samples were derived from low nutrient 

sediments, it is possible that a large fraction of the DNA is degraded (i.e. not living) due to the 

hash environmental conditions and exposure to water (Taberlet et al., 2012; Bohmann et al., 

2014). As DNA is generally fragmented during the degradation process, the shorter length 

hinders the ability to annotate proteins, either by sequence alignment, sequence composition 

or tetranucleotide frequencies (Taberlet et al., 2012; Menzel et al., 2016). To reveal the 

composition of this more degraded DNA, amplification using short primers would be needed, 

for example using metabarcoding (Taberlet et al., 2012; Leray and Knowlton, 2015) however 

this is beyond the scope of the current analysis.  
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From the classified reads, the five samples show a similar overall bacterial community 

composition, with Deltaproteobacteria, Gammaproteobacteria, Alphaproteobacteria and 

Actinobacteria dominant in all samples (Figure 5.5). The presence of organisms related to 

Methanomicrobia, Chlorobia, Clostridia, Nitrospira and Anaerolineae is indicative of anoxic 

conditions in the surface sediments, thus eliciting the detection of anaerobic organisms and 

the potential for methanogenesis (Eisen et al., 2002; Luker et al., 2010; Mackelprang et al., 

2011; Matsuura et al., 2015). This aligns with the reduction in oxygen saturation with depth, 

which may continue below the sediment surface due to microbial activity in sediments and 

lack of oxygen replenishment (Figure 5.2; Oschmann, 2001). The microbial communities in 

the benthic fjord sediments were subjected to low nutrient, saline and dark conditions (Figure 

5.4; Figure 5.5). Consequently, there may be evidence for adaptations within the bacterial 

community, as the environment may be highly selective for the organisms which can survive 

(Figure 5.5). For example, Acidobacteria (1.4 - 1.6% of metagenomes) have been shown to 

produce large amounts of exopolysaccharide (EPS), which is both protective and adhesive 

(Ward et al., 2009). The adhesive properties of EPS can increase the nutrient uptake, which 

is beneficial in a low TN environment such as the Steffen fjord (Weiner et al., 1995; Ward et 

al., 2009). Additionally, Acidobacteria are facultative anaerobes and use ferric iron reduction 

Figure 5.5: Kaiju taxonomic classification of reads for the five sequenced samples, at the Class 
level. Only the annotated sequences are shown, which account for 25% of the total metagenome 
sequenced for each site. The percentage of the classified metagenome attributed to each Class is 
shown. Sequences that have been classified but cannot be assigned to a class and very low 
abundance reads, are also provided. The legend is ordered in line with the sequence of bars in the 
main plot. The full taxonomic classification from class – species level is available in Appendix 4, 
Tables 1-5.  
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in the absence of oxygen for respiration (Blothe et al., 2008). Facultative anaerobic respiration 

may be beneficial in the Steffen fjord given the potential for low oxygen conditions. 

Furthermore, taxa related to the aerobic chemoorganotroph, Deinococci, were identified in 

sediment samples (Copeland et al., 2012). This organism is a known extremophile and can 

survive ionizing radiation, cold and oligotrophy (Copeland et al., 2012). Additionally, evidence 

for the selection of resilient microbes is supported by the identification of the extremophile, 

Epsilonproteobacteria (Figure 5.5). These bacteria are commonly found in extreme 

environments such as hydrothermal vents and cold seeps and obtains energy through 

chemolithotrophy, thus can survive without organic compounds and light (Takai et al., 2005). 

This may be significant given the low TOC in the sediment samples (Figure 5.4). This 

consequently provides additional evidence for the selection of well adapted resilient organisms 

to the environmental conditions in the benthic sediment of the Steffen fjord, if active.  

 

The hierarchical structure of the Kaiju microbial community composition was visualized in 

interactive Krona plots for each site, to derive more detail from the classifications (Appendix 4 

Tables 1-5; Table 5.5). Overall, Proteobacteria accounted for 46 - 55% of bacteria in the 

metagenomes and provided evidence for sulfur cycling potential within the fjord sediments 

(Table 5.5). The presence of Desulfovibrionales and Desulfobacterales indicates the potential 

for anaerobic sulfate reduction, producing sulfide (H2S) from sulfate (SO4
2-) (Kuever, 2014, 

Table 5.5). Sulfate reducing bacteria are commonly found in seawater due to the abundance 

of sulfate, alongside in anaerobic sediments, as they contribute to the degradation of organic 

matter (Goldharber and Kaplan, 1974). Additional evidence for sulfur cycling potential is 

provided through the identification of the purple sulfur bacteria Chromatiales, accounting for 

3-6% of the metagenomes (Table 5.5). Chromatiales are typically anaerobic, and utilise the 

waste H2S from sulfate reduction, and oxidise it to elemental sulfur (S) (Imhoff, 2005). 

Consequently, the sediment metagenomes provide evidence for microbial sulfur cycling 

potential within the sediments. In order to validate the activity of sulfur cycling, further work 

using transcriptomics could be implemented to identify the transcription of key marker genes, 

such as dsrAB and apsA for sulfate reduction (Wagner et al., 2005).  

 

Archaea accounted for 3-5% of cellular organisms within the metagenomes (Table 5.5). The 

depth of sequencing used in shotgun metagenomics is often suitable to profile bacterial 

communities, however may not have the coverage to isolate the archaea and eukaryotes 

present (Hugenholtz and Tyson, 2008). Deep sequencing is often required to reveal the full 

breath of these communities (Narasingarao et al., 2012). However, the archaea identified do 

provide support for the presence of anaerobic conditions at the sediment bed. The presence 

of the methanogens Methanomicrobia, Methanobacteriales, Methanococcales and 



	 141	

Thermoplasmata indicate the potential production of methane (CH4), using carbon dioxide 

(CO2) as the terminal electron acceptor in anaerobic respiration (Table 5.5; Valentine, 2002; 

Bonin and Boone, 2006). Methanogenesis is significant for carbon cycling, acting as the final 

stage in the degradation of organic material following the preferential use of other electron 

acceptors such as oxygen, sulfate and nitrate (Zeikus, 1977; Valentine, 2002). Methane has 

been shown to be a substantial contributor to global climate change, having a warming 

potential greater than that of CO2 (Valentine, 2002). The presence of methanogenesis may 

therefore have implications on both the local and global carbon cycle over long timescales, for 

both the degradation and recycling of organic matter, and production of CH4.  

 

 

Finally, the metagenomes in this study provide evidence for nitrogen cycling potential within 

the sediments. The presence of organisms relating to Thaumarchaeota (3 – 5 % of the 

metagenomes), chemolithotrophic ammonia oxidisers, suggests that microbial nitrification 

Table 5.5: Extract of Kaiju read based classification for the 5 metagenome samples, based on 
those discussed in this analysis. The classification name and percentage of metagenome 
assigned is provided. Full classification for each metagenome is available in Appendix 4 Tables 
1-5.  

Classification rank Sample 1 (%) Sample 2 (%) Sample 4 (%) Sample 5 (%) Sample 7 (%)

Bacteria Domain 93 92 90 96 91

Archaea Domian 5 4 5 3 7

Viruses Domain 2 4 5 1 2

Proteobacteria Phylum 55 49 49 46 54

Terrabacteria Phylum 15 17 17 19 16

FCB group/ Sphingobacteria  Phylum 12 13 11 17 8

PVC group Phylum 5 5 6 6 6

Thaumarchaeota Phylum 3 2 3 3 5

Other - 10 14 14 9 11

Methanomicrobia Class 0.6 0.8 0.9 0.9 0.7

Epsilonproteobacteria Class 0.4 0.5 0.5 0.5 0.4

Clostridia Class 3 4 4 4 3

Bacilli Class 2 3 3 3 2

Thermoplasmata Class 0.08 0.1 0.2 0.1 0.1

Other - 93.92 91.6 91.4 91.5 93.8

Desulfovibrionales Order 0.7 0.9 0.9 1 0.8

Desulfobacterales Order 1 2 2 7 2

Chromatiales Order 5 4 4 3 6

Micrococcales Order 0.08 0.8 0.7 0.8 0.7

Oscillatoriales Order 0.7 0.5 0.5 0.5 0.6

Methanobacteriales Order 0.1 0.2 0.3 0.2 0.2

Methanococcales Order 0.09 0.2 2 0.1 0.1

Other - 92.33 91.4 89.6 87.4 10.4

Nitrobacter Genus 0.09 0.08 0.07 0.09 0.08

Rhizobium Genus 0.7 0.3 0.3 0.3 0.4

Pseudomonas Genus 1 1 1 1 1

Other - 98.21 98.62 98.63 98.61 98.52
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may be taking place within the sediments (Table 5.5; Park et al., 2012). Ammonia oxidising 

archaea convert ammonia (NH3) to nitrite (NO2
-), which can be utilised by nitrite oxidisers in 

such as Nitrobacter, to convert NO2
- to nitrate (NO3

-) for assimilation (Jetten, 2008). In addition 

to this, the presence of Epsilonproteobacteria provides evidence for denitrification potential 

within the sediments, converting NO3
- to nitrogen gas (N2) and is a key pathway for fixed 

nitrogen removal from sediments (Murdock and Juniper, 2017). Nitrogen-fixing bacteria such 

as Clostridia, Rhizobium and N2 fixing cyanobacteria such as Micrococcales, and 

Oscillatoriales were identified in the sediment metagenomes (Table 5.5). These organisms 

may be instrumental in providing labile fixed nitrogen into the sediments, to be utilized by 

heterotrophic bacteria for protein assimilation (Bergman et al., 1997). If the nitrogen fixers 

were active in the sediments, they may be crucial for facilitating heterotrophic microbial 

communities, given the oligotrophic conditions identified (Figure 5.4). Finally, ammonification 

is performed by bacteria to convert organic nitrogen to more bioavailable ammonium (NH4
+) 

(Gruber, 2008). Evidence for the potential of this pathway is shown through the presence of 

organisms relating to Pseudomonas and Bacilli in the sediments (Table 5.5). Consequently, 

the metagenomes sampled contain organisms capable of the complete nitrogen cycle, despite 

the low nitrogen concentrations sampled (Figure 5.4). If active, the nitrification and 

denitrification pathways may be tightly coupled to microbial nitrogen fixation to obtain sufficient 

nitrogen stocks.  

 
5.3.4 Genome binning 
 
Genome binning was carried out using assembled metagenomes, to isolate discrete genomes 

which may be unique compared to those currently available in reference datasets. The results 

for each metagenome are shown in Tables 5.6 – 5.10, identifying the genome bins (discrete 

genomes) alongside the BLASTn match of each genome to NCBI GenBank. Metagenome 1 

contained 36 genome bins, with 67% of bins containing less than 80% identity to cultured 

relatives on NCBI GenBank (Table 5.6). This indicates that the metagenomes may contain 

several novel species and/or strains, which have yet to be cultured or fully sequenced. This 

pattern was continued within the remainder of the metagenomes, with 58%, 55%, 71% and 

63% of genome bins below 80% identity to GenBank for samples 2,4,5 and 7 respectively 

(Tables 5.6 – 5.10). This highlights a need for further culture-based studies or single cell 

sequencing, to isolate complete genome sequences for these potentially novel organisms. 

The presence of novel sequences may relate to the dark, cold and low nutrient conditions 

within the fjord sediments, lack of previous exploration of these sediments and the incomplete 

nature of current DNA reference databases.  
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In line with the taxonomy, the genome bins obtained were broadly similar between the 

metagenomes, however Sample 5 contained a wider range of genomes than Sample 7 

(Tables 5.6 – 5.10). The genome bins predominately spanned the bacterial phyla 

Proteobacteria, Cyanobacteria, Bacteroidetes, Chloroflexi, Firmicutes and Verrucomicrobia, 

alongside the archeal phyla Thaumarchaeota and Euryarchaeota (Tables 5.6 – 5.10). The 

Thaumarchaeota Nitrosopumilus was common between metagenomes, accounting for 

between 10 – 26% of genome bins for each site. The binned Nitrosopumilus sequences 

contained between 75 – 98% identity to NCBI GenBank reference genomes, highlighting the 

presence of both unique and previously isolated genomes in the samples (Tables 5.6 – 5.10). 

Nitrosopumilus are ammonia-oxidising archaea, which use CO2 as a carbon source to covert 

ammonia (NH3) to nitrite (NO2
-) during nitrification (Banning et al., 2015). These organisms 

may therefore be significant in sediment nitrogen cycling, helping to provide nitrite (and 

subsequently nitrate) for biological uptake by heterotrophic organisms (Francis et al., 2005). 

This may be substantial for facilitating the activity of heterotrophic microbes, given the 

potential for nitrogen limitation in the sediments (Figure 5.4).  

 

Interestingly, sequences relating to the Proteobacterium Magnetospirillum were found in 

samples 1, 4 and 7 (Tables 5.6 – 5.10). This organism is microaerophilic, magneto tactic and 

capable of producing high quality magnetite from low iron aquatic environments (Matsunaga 

et al., 2005). However, sequences ranged between 74 – 78% identity to Magnetosprillum, 

highlighting the potential for a novel species in the metagenomes (Tables 5.6 – 5.10). As 

Magnetosprillium has a wide range of commercial applications, such as bioremediation, 

manufacture and pharmaceuticals, the isolation of a new novel species may provide additional 

commercial applications to those already identified (Safarik and Safarikova, 2004). This again 

highlights the need for further culture-based analysis and single cell sequencing of 

environmental genomes from unique environments, such as those sampled here.   

 

The binned genomes also displayed evidence of sulfur cycling, in line with the results of the 

read based taxonomic annotation (Figure 5.5). The presence of the chemolithotrophic 

Thioalkalivibrio, in metagenomes 1, 2 and 7 indicates the potential of sulfur oxidation in the 

sediments, whereby elemental sulfur (S) is converted to sulfate (SO4
2-) (Sorokin et al., 2001). 

In turn, the presence of the anaerobic Desulfococcus, Desulfuromonas, Desulfobacter and 

Desulfobacterium highlight the presence of sulfur and sulfate reduction (Taylor and Parkes, 

1983; Kleindienst et al., 2014). These organisms have been shown to oxidise organic 

compounds such as acetate and pyruvate using sulfate and sulfur, to reduced forms of sulfur 

(Brysch et al., 1987).  
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Consequently, the genome binning has identified the potential for novel species with 

ecological importance in the sediment metagenomes. Deep re-sequencing of the 

metagenomes may help to recover longer more complete metagenome assembled genomes. 

This may be beneficial to gain a better understating of the strain level diversity and 

metabolisms of unique species. This, alongside genome sequencing of cultured stains would 

help provide new draft genomes to publicly available databases.  

 
Table 5.6: Metagenome Sample 1 assembled bins and top BLAST match for each bin, with 
% NCBI GenBank identity and bit score. In total, 36 assembled bins representing distinct 
genomes within Sample 1 metagenome were identified. The genomes with an % identity less 
than 80% to GenBank sequences are highlighted.  
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Table 5.7: Metagenome Sample 2 assembled bins and top BLAST match for each bin, with 
% identity and bit score. In total, 36 assembled bins representing distinct genomes within 
Sample 2 metagenome were identified. The genomes with an % identity less than 80% to 
GenBank sequences are highlighted. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample	2
Bin number Match GenBank accession number % identity Bit score Match definition

1 CP021431.1 100 150 Loktanella vestfoldensis strain SMR4r
2 CP003843.1 97.522 3856 Candidatus Nitrosopumilus sp. AR2
3 CP011412.1 81.859 5535 Sedimenticola thiotaurini strain SIP-G1 
4 CR522870.1 78.462 457 Desulfotalea psychrophila LSv54 
5 CP001147.1 82.116 1735 Thermodesulfovibrio yellowstonii DSM 11347
6 CP000478.1 77.095 1048 Syntrophobacter fumaroxidans MPOB
7 CP001339.1 75.921 3068 Thioalkalivibrio sulfidiphilus HL-EbGr7 
8 CP018632.1 72.188 893 Granulosicoccus antarcticus IMCC3135
9 CP000252.1 80.675 737 Thioalkalivibrio sulfidiphilus HL-EbGr7 

10 CP011070.1 78.046 8626 Thioalkalivibrio sulfidiphilus HL-EbGr7 
11 CP016268.1 80.768 4023 Woeseia oceani strain XK5
12 CP017478.1 71.649 292 Lutibacter sp. LPB0138 
13 CP003843.1 81.137 3921 Candidatus Nitrosopumilus sp. AR2
14 CP011070.1 85.923 2769 Candidatus Nitrosopumilus adriaticus strain NF5
15 CP011036.1 86.065 2265 Pseudoalteromonas nigrifaciens strain KMM 661
16 CP013355.1 77.878 2198 Lutibacter profundi strain LP1 chromosome
17 CP003843.1 85.51 2846 Candidatus Nitrosopumilus sp. AR2
18 CP011412.1 84.806 1216 Sedimenticola thiotaurini strain SIP-G1 
19 CP001131.1 75.762 1206  Anaeromyxobacter sp. K
20 CP001032.1 84.372 1886 Opitutus terrae  PB90-1
21 CP011070.1 75.438 983 Candidatus Nitrosopumilus adriaticus strain NF5
22 CP010869.1 81.564 2023 Confluentimicrobium sp. EMB200-NS6
23 CP000142.2 79.661 1079 Pelobacter carbinolicus DSM 2380
24 CP011070.1 84.783 2320 Candidatus Nitrosopumilus adriaticus strain NF5
25 CP020892.1 75.18 761 Pseudomonas sp. M30-35 chromosome
26 CP011412.1 74.583 1262 Sedimenticola thiotaurini  strain SIP-G1 chromosome
27 CP000083.1 74.989 1014 Colwellia psychrerythraea 34H
28 CP018889.1 77.537 712 Beggiatoa leptomitoformis strain D-401 chromosome
29 AP018042.1 76.407 1153 Marinifilaceae bacterium SPP2 DNA
30 CP012398.1 76.8 987 Chelatococcus  sp. CO-6
31 CP016268.1 77.68 2095 Woeseia oceani strain XK5
32 CP020555.1 79.577 1653 Streptomyces sp. Sge12
33 CP013355.1 78.791 2067 Lutibacter profundi strain LP1 
34 CP000859.1 78.682 1262 Desulfococcus oleovorans Hxd3
35 LN890655.2 90.747 1195 Ardenticatena sp. Cfx-K strain Cfx-K 
36 CP023439.1 79.824 1461 Thauera sp. K11 chromosome
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Table 5.8: Metagenome Sample 4 assembled bins and top BLAST match for each bin, with 
% identity and bit score. In total, 31 assembled bins representing distinct genomes within 
Sample 4 metagenome were identified. The genomes with an % identity less than 80% to 
GenBank sequences are highlighted. 
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Table 5.9: Metagenome Sample 5 assembled bins and top BLAST match for each bin, with 
% identity and bit score. In total, 51 assembled bins representing distinct genomes within 
Sample 5 metagenome were identified. The genomes with an % identity less than 80% to 
GenBank sequences are highlighted. 
 

 
 
 
 
 
 
 
 
 
 
 

Sample	5
Bin number Match GenBank accession number % identity Bit score Match definition

1 CP000724.1 83.259 2180 Alkaliphilus metalliredigens QYMF
2 CP016268.1 79.953 3103 Woeseia oceani strain  XK5
3 CP012851.1 76.274 1037 Persicobacter sp. JZB09
4 LT981265.1 77.833 1290 Candidatus Nitrosocaldus cavascurensis strain SCU2 
5 CP013118.1 73.115 878 Salinivirga cyanobacteriivorans strain L21-Spi-D4 
6 CP002031.1 76.244 1387 Geobacter sulfurreducens KN400
7 CP001032.1 76.652 1676 Opitutus terrae PB90-1
8 CP009788.1 73.92 682 Geobacter pickeringii strain G13
9 CP010802.1 75.07 2220 Desulfuromonas soudanensis strain WTL chromosome

10 CP002271.1 78.881 737 Stigmatella aurantiaca DW4/3-1
11 CP003843.1 91.176 3602 Candidatus Nitrosopumilus sp. AR2
12 CP003360.1 78.68 4414  Desulfomonile tiedjei  DSM 6799
13 CP003350.1 74.774 1461 Frateuria aurantia DSM 6220
14 CP013355.1 75.697 590  Lutibacter profundi strain LP1 
15 CP009505.1 83.006 1927 Methanosarcina sp. MTP4
16 FO203503.1 73.2 1469  Desulfobacula toluolica Tol2
17 LT934425.1 75.995 815 Candidatus Kuenenia stuttgartiensis
18 CP012358.1 82.159 1640 Oblitimonas alkaliphila strain B4199 chromosome
19 CP013355.1 74.638 1397 Lutibacter profundi strain LP1 chromosome
20 CP003985.1 73.498 669  Desulfocapsa sulfexigens  DSM 10523
21 CP003843.1 86.747 15400 Candidatus Nitrosopumilus sp. AR2
22 CP006900.2 73.958 484 Pandoraea pnomenusa 3kgm
23 CP003273.1 76.135 1574 Desulfotomaculum gibsoniae DSM 7213
24 CP019913.2 75 928 Desulfococcus multivorans strain DSM 2059 
25 CP016268.1 79.47 1724 Woeseia oceani strain XK5
26 CP000859.1 83.796 1672  Desulfococcus oleovorans Hxd3
27 CP000934.1 74.105 1664 Cellvibrio japonicus Ueda107
28 CP025791.1 75.197 994 Flavivirga eckloniae strain ECD14 chromosome
29 CU207366.1 73.988 130 Gramella forsetii KT0803 
30 CP013457.1 80.632 1099 Burkholderia sp. MSMB617WGS 
31 CP013118.1 74.824 734 Salinivirga cyanobacteriivorans strain L21-Spi-D4 
32 CP003843.1 86.724 2320 Candidatus Nitrosopumilus sp. AR2
33 CP003843.1 94.042 9022 Candidatus Nitrosopumilus sp. AR2
34 CP001087.1 76.225 1709 Desulfobacterium autotrophicum HRM2
35 CP003985.1 74.536 881 Desulfocapsa sulfexigens DSM 10523
36 CP003843.1 88.372 1705 Desulfobacterium autotrophicum HRM2
37 CP003843.1 88.209 4833 Desulfobacterium autotrophicum HRM2
38 CP016268.1 79.01 2320 Woeseia oceani strain XK5
39 CP013355.1 81.96 1448  Lutibacter profundi strain LP1 chromosome
40 CP000473.1 77.081 1903 Candidatus Solibacter usitatus Ellin6076
41 CP003380.1 89.854 1404 Methylophaga frappieri strain JAM7
42 CP011454.1 78.822 931 Gemmatimonas phototrophica strain AP64
43 CP010904.1 75.319 669 Kiritimatiella glycovorans strain L21-Fru-AB 
44 CP013355.1 78.896 2442  Lutibacter profundi strain LP1 chromosome
45 CP011125.1 73.835 1144 Sandaracinus amylolyticus strain DSM 53668
46 CP013355.1 77.89 5387 Lutibacter profundi strain LP1 chromosome
47 CP003389.1 77.644 992  Corallococcus coralloides DSM 2259
48 CP003843.1 87.817 3410  Candidatus Nitrosopumilus sp. AR2
49 CP013355.1 84.56 1770 Lutibacter profundi strain LP1 chromosome
50 CP015080.1 78.171 1742 Desulfuromonas sp. DDH964
51 CP006587.1 78.762 1112 Hymenobacter  sp. APR13
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Table 5.10: Metagenome Sample 7 assembled bins and top BLAST match for each bin, with 
% identity and bit score. In total, 19 assembled bins representing distinct genomes within 
Sample 7 metagenome were identified. The genomes with an % identity less than 80% to 
GenBank sequences are highlighted. 
 

 
 
 

5.3.5 Phylogenetic analysis – 16s rRNA  

 

To explore the findings from genome binning further and to highlight the potential of 

metagenome data analysis, the genus Nitrosopumilus was selected for 16s rRNA analysis, as 

this archaeon was identified in multiple genome bins and may be ecologically important in the 

sediment nitrogen cycle, if active. The 16s sequences were obtained from the metagenomes, 

however as amplification was not used, some less abundant strains may not have been 

recovered through sequencing. However, it is likely that the Nitrosopumilus sequences 

obtained were those which were the most dominant in the samples (Rodriguez and 

Konstantinos, 2014). The metagenome 16s sequences relating to Nitrosopumilus were 

aligned with and subsequently evaluated in a maximum likelihood phylogeny with GenBank 

cultured relatives (Figure 5.6). The results show that the sample sequences align most closely 

with Nitrosopumilus HCE1 (Nitrosopumilus oxclinae) and Nitrosopumilus HCA1 

(Nitrosopumilus cobalaminigenes) (Figure 5.6). When the 16s sample sequences were 

BLAST searched, Nitrosopumilus sequence 1, 2 and 3 aligned at 99% sequence similarity to 

Nitrosopumilus oxclinae, Nitrosopumilus cobalaminigenes and Candidatus Nitrosopumilus 

sediminis (Park et al., 2012; Qin et al., 2017; Figure 5.6). This supports the genome bins and 

phylogeny in identifying these sequences as belonging to Nitrosopumilus genomes. However, 

whilst 99% similarity was shown using the 16s sequences, work by Park et al., (2012) has 

shown that when looking at overall genome nucleotide identity, the nucleotide similarity can 

reduce below 80%, providing evidence for new species or strains, in line with the results from 
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genome binning. Consequently, this highlights the need for culturing and full genome 

sequencing of these organisms, as these may constitute new genomes to the Nitrosopumilus 

genus, as found by Park et al., (2012).  

 

As highlighted above, the presence of Nitrosopumilus genomes provided evidence for 

ammonia oxidising archaea (AOA) in the sediments, which if active, would contribute to 

nitrogen cycling (Banning et al., 2015). These AOA are well suited to low nitrogen 

environments such as the fjord sediments sampled, as they have a high affinity to ammonia 

(Qin et al., 2017; Figure 5.4). Additionally, they are suited to the low organic carbon contents 

of the sediments as they efficiently use CO2 as a carbon source (Qin et al., 2017). This could 

explain why these genomes were consistently identified using genome binning, as these 

genomes may be tolerant to low nutrient conditions (Tables 5.6 – 5.10). Furthermore, the 99% 

similarity with Nitrosopumilus cobalaminigenes indicates the genomes may have additional 

adaptive mechanisms to the extreme conditions in the fjord sediments. Nitrosopumilus 

cobalaminigenes is psychotolerant and can survive in a wide salinity range (10 – 40 PSU) (Qin 

et al., 2017). This suggests these genomes may be able to survive preferentially in the cold 

fjord conditions and withstand fluctuating salinities during mixing of stratified waterbodies (Qin 

et al., 2017).  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.6: 16s rRNA Maximum likelihood phylogeny of Nitrosopumilus sample sequences 
with cultured relatives, obtained from NCBI GenBank. The accession numbers for cultured 
relatives are shown and metagenome sample sequences highlighted in bold. Bootstrap 
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support values are provided for each branch node, resulting from 1000 tree iterations. The 
tree is rooted on Nitrosophaera, in line with the phylogeny of Quin et al., (2017). 
5.3.6 Phylogenetic analysis – dissimilatory sulfite reductase  
 

A key advantage of metagenomics, in comparison to 16s rRNA sequencing, is that functional 

genes can be investigated (Wooley et al., 2010). This means that functional pathways can be 

searched for, and the taxonomy subsequently assigned (Handelsman, 2004). The benefit of 

this is that it provides more accurate evidence for biogeochemical cycling in the sediments, as 

the genes encoding the functional pathways are present (Handelsman, 2004). Whilst this does 

not show activity of the pathways, it highlights the potential for these to occur (Wooley et al., 

2010).  

 

The findings of both the read based taxonomy and genome bins (Figure 5.5, Tables 5.6 – 

5.10) identified the presence of sulfur cycling microbes in the sediments. To investigate this 

further, and demonstrate the potential of metagenome sequencing, the dsrAB gene 

(dissimilatory sulfite reductase) was investigated. This gene encodes the reduction of sulfite 

(SO3
2-) to sulfide (H2S) (Müller et al., 2015). This is a key reduction step in the sulfur cycle, 

whereby prokaryotes reduce sulfite for energy in combination with the oxidation of organic 

matter, during anaerobic respiration (Müller et al., 2015). A maximum likelihood phylogeny of 

metagenome sample dsrAB genes and those from GenBank relatives is shown in Figure 5.7. 

Here, cultured relatives have been grouped in to the classes of Clostridia, Archaeglobi, 

Nitrospira and Deltaproteobacteria (Figure 5.7), based on the phylogeny of Moreau et al., 

(2010). The sample sequences (Sf dsr 1 – 7) are grouped together, branching between 

Clostridia and Deltaproteobacteria (Figure 5.7). This may highlight a unique set of sulfite 

reducers in the samples. To investigate this further, the sample dsrAB sequences were 

BLASTn searched against cultured isolates in NCBI GenBank, with results shown in Table 11. 

The sequences were matched with several sulfite reducing microbes, with 75% of samples 

identified under the class of Gammaproteobacteria (Table 8). Samples SF dsr 1 – 2 were 

classified as Deltaproteobacteria and Chlorobia, respectively. However, as the matches 

received a low score, and identity of 82%, there is limited confidence in these assignments. 

Overall, the identity of matches ranged between 76 – 93%, suggesting that these sequences 

may be unique (Table 11). Additional single genome sequencing would help isolate the full 

genomes of these prokaryotes, thereby validating the suggestions made here. Furthermore, 

future work with meta-transcriptomics would help highlight if these sulfite reducers were active, 

as this technique investigates the transcribed mRNA (Carvalhais et al., 2013).  

 

The identification of dsrAB sequences in the samples supports the potential of sulfur cycling 

highlighted by the read based taxonomy and genome bins (Figure 5.5; Table 5.5; Tables 5.6 
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– 5.10). This contributes to the evidence indicating the potential for biogeochemical cycling 

within these oligotrophic sediments. The sulfite may be lost by volatilisation or mineral 

formation, however may also be oxidised back to sulfite and sulfate by chemo-lithotrophic 

prokaryotes such as Chromatiales, identified in the read based taxonomic annotation (Holmer 

and Stockholm, 2001; Imhoff, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 5.7: Maximum likelihood phylogeny of the Dissimilatory Sulfite Reductase (dsrAB) gene, 
including metagenome sample dsr sequences (bold and yellow, SF dsr 1 - 7) and reference genes (blue) 
obtained from NCBI GenBank and the phylogeny of Moreau et al., (2010). Reference sequences display 
the GenBank accession number, followed by the species name. Reference sequences are grouped in 
to classes A) Clostridia; B) Archaeglobi; C) Nitrospira and D) Deltaproteobacteria.  
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Table 5.11: BLASTn matches for metagenome dsrAB sequences 1-7 against NCBI GenBank. 
The BLAST match name, GenBank accession number, % identity and score is provided.  
 

 
 
 
5.3.7 Implications for biogeochemical cycling  
 
This analysis has used metagenomics to highlight the microbial community composition and 

functional potential of benthic fjord sediments. Whilst productivity assays would be needed to 

measure rates of activity, the presence of functional genes can be used to indicate potential 

biogeochemical implications of fjord microbial communities.  

 

Interestingly, the fjord waters of Chilean Patagonia had been proposed as a hotspot of primary 

productivity, hosting three UNESCO bio reserves and support commercially important 

fisheries (Iriate et al., 2007; Haussemann and Forsterra 2009; Niklitscheck et al., 2013). 

However, the results from our analysis indicated a low nutrient environment, one which would 

not typically be classed as productive. In line with previous literature, we confirmed the 

presence of a surface freshwater lens, supplied by glacial runoff (Arancena et al., 2011). This 

surface lens was low nutrient and high turbidity, attributed to the outflow of inorganic sediments 

from glacial runoff (Arancena et al., 2011). We propose that the turbid surface waters may 

block light, limiting surface productivity and thus the export of organic matter to deep 

sediments. This is supported by previous research which has shown productivity to increase 

moving away from inner fjord waters, attributed to light and nutrient availability (Silva 2008; 

Arancena et al., 2011; Gonzalez et al., 2013). However, nutrient export from terrestrial surface 

waters may provide some limiting nutrients, helping to stimulate biological productivity to inner 

fjord waters (Gonzalez et al., 2013).  

 

With rising global temperatures, it is likely that glacial meltwater export will increase in this 

region. Increased meltwater export may reduce benthic and surface water biological 

productivity, through limiting light penetration and nutrient availability. Decreased surface 

productivity will not only limit nutrient export to benthic sediments, but may also have 

Sample Name Blast Match Accession Number % identity Total Score  
sf dsr 1 Sulfurifustis variabilis  AP014936.1 93 686
sf dsr 2 Desulfobulbus sp. ORNL CP021255.1 82 95.3
sf dsr 3 Chlorobaculum limnaeum  strain DSM 1677 CP017305.1 82 149
sf dsr 4 Thioalkalivibrio paradoxus  ARh 1 CP007029.1 78 431
sf dsr 5 Sulfuricaulis limicola  DNA, complete genome  AP014879.1 76 490
sf dsr 6 Thiohalobacter thiocyanaticus  AP018052.1 91 854
sf dsr 7 Thiohalobacter thiocyanaticus AP018052.1 82 848
sf dsr 8 Thioflavicoccus mobilis 8321 CP003051.1 92 81
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implications on wider ecosystem functioning and fisheries (Landaeta et al., 2012; Gonzalez et 

al., 2013).  

 

Despite limitations on light and nutrient availability, we were able to detect genomic potential 

for microbial carbon, sulfur and nitrogen cycling in the sediments investigated. Potentially 

attributed to the extreme conditions, we found a combination of anaerobes, extremophiles and 

chemolithotrophs, who are resilient to the low light, oligotrophic and cold conditions. These 

results lay a foundation for the identification of potential novel genomes within the samples, 

which could relate to environmental selection for a unique subset of traits for survival. 

However, more exploration on the genomic level is needed to characterize these genomes 

and their biogeochemical functionality.  

 
5.4 Conclusions  
 
This study aimed to investigate the microbial community composition of the Steffen Fjord, 

Chilean Patagonia. This fjord sparked interest as it is fed by melt water from the Steffen 

glacier, and drains into the marine Baker fjord system. The lack of investigation in this region 

means that new microbial genomes, that have yet to be sequenced, may be in the sediments, 

with ecological, biotechnological or industrial uses.  

 

The metadata showed the Steffen glacier to have a clear effect on fjord salinity, turbidity and 

temperature, with glacial freshwater runoff separated at the surface from the more dense 

marine bottom waters. The benthic sediments displayed low TN and TOC, indicating that 

nutrient limitation may be taking place. This indicates that increased freshwater runoff in future 

years may increase the fjord stratification, which could influence biological productivity. 

Overall, the sediment microbial community composition was largely dominated by bacteria, 

with archaea accounting for 3-5% of the metagenomes. The bacteria and archaea recovered 

related to anaerobic (and often methanogenic) taxa, indicating the presence of anoxia, or low 

oxygen zones within the surface sediments. Additionally, bacteria with adaptations or 

extremophilic qualities were detected, attributed to the oligotrophic, low oxygen, cold and dark 

conditions present in the sediments. Despite this, microbes relating to nitrogen and sulfur 

cycling organisms were found in the sediments, indicating the potential for microbial nutrient 

cycling in this low nutrient environment.  Genome binning was used to help identify the 

presence of potentially novel genomes within the samples. Over half the genome bins scored 

below 80% identity to NCBI GenBank. This indicates that some genomes found during binning 

could represent new strains or species. Additionally, microbes relating to sulfur cycling 

organisms were found frequently among the metagenomes, and bins relating to the ammonia 

oxidizing archaea, Nitrosopumilus, were common.   
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Sequences relating to Nitrosopumilus were selected for a 16s rRNA phylogeny with 

sequenced relatives from the phylogeny of Park et al., (2012). The sample sequences were 

shown to have 99% similarity to the 16s sequences of sequenced Nitrosopumilus relatives 

Nitrosopumilus oxclinae, Nitrosopumilus cobalaminigenes and Candidatus Nitrosopumilus 

sediminis (Park et al., 2012; Qin et al., 2017). The presence of Nitrosopumilus-like genomes 

may be related to the high affinity to ammonia, and thereby resilience to the low TN of the 

sediments. Additionally, the presence of these genomes highlights the potential for nitrogen 

cycling in the sediments, despite the oligotrophy detected. Furthermore, the detection of sulfur 

cycling microbes within the sediments was used to drive a dsrAB phylogeny, for sulfite 

reducing organisms in the metagenomes. This provides an addition to 16s analysis, as it 

shows the presence of functional genes involved in sulfur cycling. The sulfite reducers were 

shown to constitute a discrete group within the phylogeny and had below a 91% identity to 

cultured relatives.  

 

Overall the results highlight the presence of extremophiles and nutrient cycling microbes, 

despite the hostile conditions. The results demonstrate the presence of potentially unique 

microbes within the samples, which may have ecological or commercial implications. It is 

hoped that this work will stimulate further culture based analysis and single cell sequencing to 

fully isolate novel genomes, to facilitate understanding of environmental microbial diversity. 

Additionally, this analysis has shown the scope of metagenomics for investigating microbial 

communities, as it enables taxonomic and functional potential to be inferred.  

 
5.5 Limitations and Further work 
 
 
Whilst this analysis has provided an insight into the taxonomic diversity and functional 

potential of Patagonian fjord benthic microbial communities, it has also highlighted areas for 

future work.  Firstly, a large fraction of the sequenced DNA was unannotated, attributed to 

either novelty or the presence of degraded DNA. To reveal the composition of more degraded 

DNA, amplification using short primers could be used, for example with metabarcoding 

(Taberlet et al., 2012; Leray and Knowlton, 2015). This would increase the abundance of 

shorter DNA fragments for sequencing and annotation. Additionally, 16s rRNA amplicon 

sequencing and deep metagenome sequencing could also be used to uncover less abundant 

microbes, which may not have been recovered from this analysis. As sediment metagenomes 

are diverse, the sequencing carried out in this analysis is likely to focus on the most abundant 

fraction and may exclude some less abundant organisms (Rodriguez and Konstantinidis, 

2014).  
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Deep metagenome sequencing may also be beneficial to recover complete genome 

sequences, which could be used to compile metagenome assembled draft genomes (MAGs). 

This would be largely related to an increase in sequencing coverage which would help resolve 

repeat regions during the assembly of genomes (Albertsen et al., 2013). The recovery of 

MAGs would provide a deeper understanding of the metabolic functioning and strain level 

diversity of novel genomes. Culture based analysis and subsequent complete genome 

sequencing would also be beneficial for the Nitrosopumilus genomes. This would allow 

comparison of the average nucleotide identity (ANI) to current sequenced strains, to clarify if 

the species and strains recovered in this analysis are novel, alongside the growth conditions 

and physiology (Park et al., 2012). Finally, radio-labelled 13C assays or meta-transcriptomics 

could also be used to identify if the organisms or functional pathways were active. As 

metagenomics only highlights the functional potential of the microbial community (rather than 

the active fraction), it would be interesting to investigate which pathways were more active 

than others in this unique environment.  
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Chapter 6: Concluding discussion 
 
6.1 Summary  
 

Through the rise of DNA sequencing, our understanding of global microbial diversity has 

increased. Advances through 16s rRNA amplicon sequencing has aided understanding of 

microbial community composition in natural environments, without the need for culturing. More 

recently, metagenomics has been used in medical and environmental applications to directly 

sequence community DNA without the need for amplification. This method allows both the 

functional diversity and taxonomy of communities to be investigated and is especially 

beneficial for unique microbial samples. The more commonly-used 16s rRNA sequencing 

relies on publicly-available databases to assign taxa to DNA sequences, however these 

databases do not capture global microbial diversity. Whist taxonomy assignments can be 

made using metagenome data, the function of sequences or genomes that cannot be 

annotated with taxonomic databases can be investigated. Consequently, more information on 

the ecological and biogeochemical importance of the uncultured fraction of microbial 

communities can be understood.  

 

Currently, limited guidance is available for metagenomic data analysis in the field of microbial 

ecology. Whilst raw metagenomic sequencing data can be directly analysed for taxonomy and 

function, assembling the DNA reads in to longer fragments (contigs) may be beneficial. DNA 

assembly can be carried out using a range of different assembly algorithms and aims to 

improve the alignment of DNA sequences to functional or taxonomic databases. DNA 

assembly is not commonly used in soil microbial ecology, and when it is, the choice of 

assembler and parameters often requires greater attention.   

 

This study applied metagenomics to several areas in microbial ecology, to improve 

understanding of microbial function and taxonomy. Prior to this study, metagenomics had not 

been applied to understanding microbial succession in glacial forefields. Microbes have been 

proposed as the initial colonisers of newly exposed soil, but more research into how these 

communities change and the role they play in soil biogeochemical cycles was needed. In 

addition, the composition of the initial pioneer microbial community has been subject to 

debate, so metagenomic data may help to contribute to this discussion. This is significant 

given the continued retreat of glaciers, exposing more land for microbial colonisation. 

Furthermore, microbial nitrogen fixation (diazotrophy) has been previously identified as 

important for building up labile nitrogen stocks in oligotrophic forefield soils, facilitating the 
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colonisation of higher microbes and plants during succession. However, little research had 

been carried out into the diversity of these diazotrophs and how they vary between forefields. 

In addition to this, a significant fraction of global microbial diversity has yet to be explored, 

including the glacially fed fjord sediments of Chilean Patagonia. These fjords are hotspots of 

primary productivity and support commercially important Salmon fisheries. Using 

metagenomics in this region will help facilitate understanding of microbial diversity, function 

and biogeochemical significance in these unexplored sediments.  

 

Broadly, this study aimed to contribute to the use of metagenomics in the field of environmental 

microbial ecology, in terms of providing both methodological advancements and to broaden 

understanding of microbial diversity. In particular, the objectives of this study were to: 1) 

evaluate metagenome assemblers for soil microbial ecology, and subsequently apply 

metagenomics to investigate; 2) microbial nitrogen fixation in Arctic glacier forefields; 3) 

microbial diversity during succession in an Arctic forefield and 4) the diversity and functional 

potential of microbial communities in benthic fjord sediments.  The following section provides 

an overview of the key findings:  

 
Objective 1: To compare the performance of five publicly available metagenome assemblers 

for soil bacterial communities   

This study found de Bruijn graph based assemblers (CLC and metaSPAdes) to provide the 

highest coverage and contig lengths during metagenome assembly of artificial soil bacterial 

datasets. However, due to the increased complexity of this algorithm, these assemblers are 

more sensitive to parameterisation, in particular, to components such as the kmer length. 

Therefore, de Bruijn graph-based assemblers can provide high quality assemblies, but also 

produce the largest spread of values. Consequently, testing parameter values to suit the 

dataset in question may improve the output quality, over simply using default values. 

Additionally, this study also showed the importance of evaluating assembly quality using 

multiple metrics, covering assembly contiguity, size and completeness. Using a spread of 

metrics helps to avoid large fragmented datasets or long erroneous contigs, which would not 

be optimal for downstream analysis. Additionally, the use of artificial test datasets was shown 

to be beneficial in evaluating the accuracy of metagenome assembly in producing the correct 

taxonomic composition.  

Overall, the study found assembler selection to have a significant influence on outcome 

quality. This has importance for the microbial ecology community, as it shows assembler 

selection is an important factor to consider during sequence analysis. Fitting the assembler 
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(and parameterisation) to the complexity of the dataset can improve assembly outcome and 

thus taxonomic and functional annotation. It is therefore recommended that assembler 

comparison, or justification of assembler choice is made during methodology development.   

Objective 2: To investigate the similarities and differences in taxonomic composition of 
diazotrophic bacteria in metagenomes sampled from four Arctic glacier forefields 

This study applied the assembler selected in Objective 1 (metaSPAdes) to investigate the 

diversity of nitrogen-fixingbacteria across four Arctic forefields (Storglaciären, Rabots, Russell 

and Midtre Lovénbreen). Metagenome assembly was applied to provide longer contigs for 

taxonomic annotation of nif genes (for nitrogen fixation). The study found a diverse range of 

diazotrophs across the forefields, including a core group of cyanobacteria, anaerobes and 

extremophiles, which were identified across sites. The composition of this core group may be 

related to adaptive mechanisms, including tolerance to the oligotrophic, high UV and cold 

conditions that are typical in forefield soils. This analysis provided a new nifH phylogeny, 

demonstrating the phylogenetic distribution of Arctic diazotrophs, in relation to sequenced 

relatives. The study contributes to our understanding of microbial diversity in the Arctic, 

including how a range of bacterial species may contribute to local biogeochemical cycling 

through nitrogen fixation. In addition, the study exemplified how metagenomics can be applied 

to functional and taxonomic analysis of microbial communities in extreme environments. The 

use of metagenomics allowed the taxonomy of functional (nitrogen fixation, nif) genes to be 

interpreted, which would not be possible with 16s analysis or culture-based methodologies. It 

is hoped this work will stimulate others in the microbial ecology community to apply 

metagenomics to widen understanding of microbial diversity.  

Objective 3: To investigate the bulk microbial community composition along a 
chronosequence of soil succession in the Midtre Lovénbreen forefield, Svalbard, using 
metagenomics.  

Objective 3 applied metagenomics to understand microbial community composition during soil 

succession along the Midtre Lovénbreen forefield, Svalbard. In this study, unassembled DNA 

sequencing was used for community taxonomic annotation, due to limitations of assembly 

resulting from the community complexity and sequencing coverage. However, sequences 

were assembled with metaSPAdes and used for functional interpretation and genome binning, 

to benefit from longer contig lengths.   

During succession, forefield soil total nitrogen and total organic carbon content increased, 

attributed to allochthonous and autochthonous sources. This included both aeolian deposition 

and the fixation of carbon and nitrogen by autotrophic bacteria. Throughout the forefield, 
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aerobic, anaerobic and extremophilic species were identified, attributed to the low nutrient, 

high UV and cold conditions, in line with Objective 2. Newly-exposed soils were shown to 

contain both autotrophic cyanobacteria and heterotrophs, providing further information on the 

current debate surrounding the composition of pioneer communities. The presence of 

heterotrophic bacteria may relate to the identification of some organic carbon in early soils, 

which may be sourced from overridden material or aeolian deposition. Furthermore, from 3 

years post ice retreat, organisms with carbon, nitrogen and sulfur cycling metabolisms were 

identified, in line with soil nutrient build up. Genome binning was used to support the taxonomy 

and also indicated the potential for novel strains and species in the soils.  

Overall, this study has used metagenomics to aid understanding of how microbial community 

structure (and function) modified during soil succession. This is significant for highlighting how 

microbes may contribute to soil development and local biogeochemical cycles in the Arctic, a 

region which was once thought to be abiotic. This is especially significant given the expected 

increase in soil exposure in the Arctic with glacier retreat in future years, and thus, microbial 

colonisation. Furthermore, this study has also shown how metagenome assembly, whilst 

beneficial for functional analysis, may not always be the most useful approach. Given datasets 

that are highly complex or have low read coverage, read-based taxonomic annotation may 

provide a better overview, than that based on incomplete assemblies.  

Objective 4: To investigate the composition and potential function of microbial communities 

sourced from benthic metagenomes in a Chilean fjord. 

Objective 4 applied metagenomics to understand the microbial community composition of 

benthic fjord sediments, fed by glacial meltwater. The glacial outflow from the Steffen glacier 

has a distinct influence on fjord salinity, turbidity and temperature. However, as this freshwater 

was stratified as a surface lens, there was limited influence on the benthic sediments. These 

sediments were in more saline (marine) conditions, with very low total organic carbon and 

nitrogen content. Alongside metagenome assembly, read-based annotation was also carried 

out, due to the low read recruitment in assemblies, which may be due to limited DNA quality 

from this extreme sampling location. This highlights that metagenome assembly may not 

always be the best approach and the data type/quality in question needs to be considered. A 

substantial fraction of the DNA reads could not be annotated, which again may be related to 

DNA quality or the presence of unique genomes in the samples. The majority of the recovered 

community composition consisted of bacteria, including anaerobes and those with potential 

extremophilic adaptations, to the dark, cold, oligotrophic conditions. Results from genome 

binning revealed that over half the genomes did not match to NCBI GenBank accurately, 
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indicating a degree of species novelty may be present in the samples. This provides a focus 

for further single cell sequencing or culture-based studies, that may wish to isolate these 

genomes. Additionally, 16s rRNA and drsAB gene phylogenies where applied to demonstrate 

the potential of metagenomics for both taxonomic and functional analysis. 

Overall, this study has shown how metagenomics can provide useful insights into community 

composition and function of uncultured, potentially unique, samples. This technology can 

provide insights into microbial diversity, which may help to focus further analysis, such as 

culturing or deep re-sequencing. However, it has also been shown how metagenome 

assembly may not always be the most optimal tool, given a dataset that is highly diverse or 

fragmented. It is therefore suggested that methodologies are constructed with consideration 

of the dataset at hand.  

6.2 Limitations and future opportunities  
 
The studies here have demonstrated metagenomics to be a useful tool for understanding 

microbial diversity and functional potential. However, metagenomics is unable to provide 

information on the activity of microbes or functional pathways because it is based on DNA 

sequencing (Wooley et al., 2010). Transcriptomics may be a useful addition to metagenomic 

analysis, which involves sequencing the microbial community mRNA (Moran et al., 2013). 

Transcriptomics is therefore able to provide an insight into the functional pathways which are 

active at a snapshot in time. Whilst this cannot be extrapolated to daily (or yearly) activities, it 

is useful to gauge if functional pathways are indeed active. Incubation experiments may also 

be carried out to measure rates of productivity, for example through acetylene reduction 

assays for microbial nitrogen fixation (Burris et al., 1972; Hardy et al.,1973). 

 

Furthermore, sequencing coverage can also be an issue, especially for complex microbial 

communities, as shown in this analysis. It is difficult to determine the level of sequencing 

required a priori, and therefore all genomes in diverse community samples may not be 

recovered. To recover the less abundant microbial fraction, or to extract metagenome 

assembled genomes, deep resequencing can be carried out to improve the coverage 

(Narasingarao et al., 2012). However, this is not necessary if the analysis aims to only gauge 

an insight into the dominant microbial taxonomy and functions.  

 

Currently, there is a lack of formalised guidance for the use of metagenomics by microbial 

ecologists. Multiple stages during the analysis require informed judgement, for example; to 

assemble the metagenome or not, the choice of assembler, to undertake genome binning or 

to target specific functional genes. If metagenomics is used to a greater degree in future, a 
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methodological consensus or guidance may be achieved. This study has contributed by 

evaluating the use of assembly and the choice of assemblers for soil microbial ecologists. 

However, the development of more formalised tutorials, guidance and analysis platforms 

would be beneficial to improve uptake of metagenomics by the research community. More 

recently, platforms such as KBASE have moved towards this, by providing interactive user 

interfaces for scientists without substantial bioinformatic experience.  

 
6.3 Implications  
 
The results from this analysis have demonstrated the potential of metagenomics for 

understanding microbial taxonomy and functional potential within the field of environmental 

microbial ecology. Not only can metagenomics provide insights into the diversity and potential 

role of microbes in local biogeochemical cycles, it can also help guide further analysis, such 

as single cell sequencing, genome assembly and culturing. It is hoped that this work will help 

to demonstrate the benefit of metagenomics, which can be used as an alternative to, or 

alongside, 16s or targeted gene sequencing.  

 

Here, we have used metagenomics to contribute to the understanding of microbial ecology in 

glaciated regions. In particular, the work has improved understanding of microbial function 

and diversity in glacial forefields, which has particular significance given continued ice retreat 

with climate change. This analysis has identified distinct changes to microbial diversity and 

functional potential during forefield succession, and supplied a new nifH phylogeny for forefield 

diazotrophs. In addition, metagenomics has provided new insights into microbial community 

structure and function in deep low biomass Chilean fjord sediments, a largely unexplored 

environment. We have also discussed the benefit of metagenome assembly and how the 

choice of assembler can impact the output quality and downstream analysis. It has been 

suggested that studies which use metagenomics consider assembler choice with respect to 

the dataset, and acknowledge that assembly may not always be the best approach for 

taxonomic analysis given highly diverse or fragmented metagenomes. This is because low 

abundance sequences may be excluded from sequencing in complex samples, and therefore 

the full diversity may not be profiled. This work has identified de Bruijn graph based 

assemblers as the most appropriate choice for soil metagenome assemblies, however 

consideration needs to made to the data type, complexity and choice of parameters during 

assembler selection. Our recommendations include careful assembler selection, testing and 

parameter optimisation to provide an improved assembly outcome for downstream annotation.  

 

It is hoped that the application of metagenomics in this work will encourage those in the field 

of soil microbial ecology to explore this technique. However, we suggest that scientists do so 
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with methodological care and caution. Further methodological inter-comparisons and 

guidance may encourage the use metagenomics in microbial ecology. This is because there 

is limited formalised structure available for metagenomic analysis, in contrast to the body of 

literature using 16s rRNA sequencing. Metagenomics is a high useful tool for understanding 

the uncultured microbial fraction and can help guide further studies and more detailed 

analysis. This not only has application and benefit for understanding global microbial diversity, 

but can be beneficial for applied studies, for example in biotechnology or anti-microbial 

resistance. Whilst metagenomics is a highly beneficial tool for understanding microbial 

diversity, it is best applied in a holistic approach, incorporating culture based studies, 

modelling and microscopy, to gain a full understanding of community structure and function.  
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Appendix 1 
 

A1 Table 1: Full list of assemblies carried out in the assembler evaluation. The 
assembler, metagenome (A-D) and parameter set are identified.  

 
Assembly number  
 

 
Assembler 

 
Metagenome 

 
Parameter set  
 

1 MIRA A Set 1 
2 MIRA A Set 2 
3 MIRA A Set 3 
4 MIRA A Set 4 
5 MIRA A Set 5 
6 MIRA B Set 1 
7 MIRA B Set 2 
8 MIRA B Set 3 
9 MIRA B Set 4 
10 MIRA B Set 5 
11 MIRA C Set 1 
12 MIRA C Set 2 
13 MIRA C Set 3 
14 MIRA C Set 4 
15 MIRA C Set 5 
16 MIRA D Set 1 
17 MIRA D Set 2 
18 MIRA D Set 3 
19 MIRA D Set 4 
20 MIRA D Set 5 
21 SSAKE A Set 1 
22 SSAKE A Set 2 
23 SSAKE A Set 3 
24 SSAKE A Set 4 
25 SSAKE A Set 5 
26 SSAKE B Set 1 
27 SSAKE B Set 2 
28 SSAKE B Set 3 
29 SSAKE B Set 4 
30 SSAKE B Set 5 
31 SSAKE C Set 1 
32 SSAKE C Set 2 
33 SSAKE C Set 3 
34 SSAKE C Set 4 
35 SSAKE C Set 5 
36 SSAKE D Set 1 
37 SSAKE D Set 2 
38 SSAKE D Set 3 
39 SSAKE D Set 4 
40 SSAKE D Set 5 
41 ABYSS A Set 1 
42 ABYSS A Set 2 
43 ABYSS A Set 3 
44 ABYSS A Set 4 
45 ABYSS A Set 5 
46 ABYSS B Set 1 
47 ABYSS B Set 2 
48 ABYSS B Set 3 
49 ABYSS B Set 4 
50 ABYSS B Set 5 
51 ABYSS C Set 1 
52 ABYSS C Set 2 
53 ABYSS C Set 3 
54 ABYSS C Set 4 
55 ABYSS C Set 5 
56 ABYSS D Set 1 
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57 ABYSS D Set 2 
58 ABYSS D Set 3 
59 ABYSS D Set 4 
60 ABYSS D Set 5 
61 MetaSPAdes A Set 1 
62 MetaSPAdes A Set 2 
63 MetaSPAdes A Set 3 
64 MetaSPAdes A Set 4 
65 MetaSPAdes A Set 5 
66 MetaSPAdes B Set 1 
67 MetaSPAdes B Set 2 
68 MetaSPAdes B Set 3 
69 MetaSPAdes B Set 4 
70 MetaSPAdes B Set 5 
71 MetaSPAdes C Set 1 
72 MetaSPAdes C Set 2 
73 MetaSPAdes C Set 3 
74 MetaSPAdes C Set 4 
75 MetaSPAdes C Set 5 
76 MetaSPAdes D Set 1 
77 MetaSPAdes D Set 2 
78 MetaSPAdes D Set 3 
79 MetaSPAdes D Set 4 
80 MetaSPAdes D Set 5 
81 CLC A Set 1 
82 CLC A Set 2 
83 CLC A Set 3 
84 CLC A Set 4 
85 CLC A Set 5 
86 CLC B Set 1 
87 CLC B Set 2 
88 CLC B Set 3 
89 CLC B Set 4 
90 CLC B Set 5 
91 CLC C Set 1 
92 CLC C Set 2 
93 CLC C Set 3 
94 CLC C Set 4 
95 CLC C Set 5 
96 CLC D Set 1 
97 CLC D Set 2 
98 CLC D Set 3 
99 CLC D Set 4 
100 CLC D Set 5 
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A1 Table 2: Parameter settings modified during assemblies, with description of the parameter 
function. All other settings (unlisted) were kept at the default values, which can be found in the 
individual assembler manuals and publications (references listed).  

 
 
 
 
 
 
 
 

 
Assembler 
 

 
Parameter 
details  

 
Set 1 

 
Set 2 

 
Set 3 

 
Set 4 

 
Set 5 

 
MetaSPAdes 3.7.0 
 
(Nurk et al., 2013) 

 
-k : kmer length  

 
-k : 21,33,55 

 
-k : 41 

 
-k : 61 

 
-k : 71 

 
-k : 51 

 
SSAKE 3.8.4 
 
(Warren et al., 2007) 

 
-w : minimum contig 
coverage depth 
 
-m  Minimum number 
of overlapping bases 
required during contig 
assembly 
 
-t  Number of contig 
bases to trim when 
other extension 
possibilities are 
depleted  
 

 
-w : 5 
 
 
-m : default (20) 
 
 
-t : 0 

 
-w : 1 
 
 
-m : default (20) 
 
 
-t :  0 

 
-w : 3 
 
 
-m : default (20) 
 
 
-t :  0 

 
-w : 1 
 
 
-m : 16 
 
 
-t :  0 

 
-w : 1 
 
 
-m : default (20) 
 
 
-t : 1 

 
ABYSS 1.9.0 
 
(Simpson et al., 
2009) 

 
-k : kmer length  
 
-c : remove contigs 
below N coverage 
threshold  
 
-b : pop bubbles less 
than N base pairs  
 

 
-k : 64 
 
-c :  N/A 
 
-b :  N/A 

 
-k : 40 
 
-c :  N/A 
 
-b : N/A 

 
-k : 64 
 
-c :  2 
 
-b : N/A 

 
-k : 70 
 
-c :  N/A 
 
-b : N/A 

 
-k : 64 
 
-c :  N/A 
 
-b : 192 

 
MIRA 4.0 
 
(Chavreux, B., 
2014) 

 
SOLEXA_SETTINGS : 
flag used to indicate 
illumine specific 
settings   
 
-AS:mrl : minimum 
read length 
 
-AS:ardml : minimum 
contig length  
 

 
SOLEXA_SETT
INGS : off 
  
 
-AS:mrl= N/A 
 
 
-AS:ardml = N/A 
 

 
SOLEXA_SETT
INGS : on 
  
 
-AS:mrl= N/A 
 
 
-AS:ardml = N/A 
 

 
SOLEXA_SETT
INGS : on 
  
 
-AS:mrl= N/A 
 
 
-AS:ardml = 100 
 

 
SOLEXA_SETT
INGS : on 
  
 
-AS:mrl= N/A 
 
 
-AS:ardml = 150 
 

 
SOLEXA_SETT
INGS : on 
  
 
-AS:mrl= 50 
 
 
-AS:ardml = 200 
 

 
CLC 4.4.1 
 
(Qaigen 
Bioinformatics, 
2016) 

 
-m : minimum output 
contig length  
 
-w : wordsize for the de 
Bruijn graph (12 – 64). 
Default sets the value 
based on the input 
dataset size.   
 
-b : maximum bubble 
size for the de Bruijn 
graph  

 
-m : default 
(200) 
 
-w:  default  
 
 
-b: default (50) 
 
 

 
-m: 100 
 
 
-w:  default  
 
 
-b: default (50) 

 
-m : default 
(200) 
 
-w:  20 
 
 
-b: default (50) 

 
-m : default 
(200) 
 
-w:  60 
 
 
-b: default (50) 

 
-m : default 
(200) 
 
-w:  default  
 
 
-b: 40 
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%	Coverage Number	of		contigs	 Maximum	contig	length
F	value 59.32 92.67 4.72
P	value <0.0001 <0.0001 0.112

A1 Table 4: One way analysis of variance (ANOVA) results for best performing parameter sets. F 
value and P value significance for dependent variables, percentage coverage, number of contigs 
and maximum contig length are shown. For each dependent variable, the ANOVA was carried out 
between the five tested assemblers for the best performing parameter sets.  

CLC ABYSS MIRA MetaSPAdes SSAKE
F	value 0.86 1.10 1.00 0.66 1.00
P	value 0.49 0.41 0.42 0.59 0.43

A1 Table 5: One way analysis of variance (ANOVA) results for each assembler, comparing 
the contiguity, completeness and assembly size across the four metagenomes tested. For 
each metagenome, the summary statistics used included: number of contigs; contigs over 
1000bp; maximum contig length and % coverage. These were compared across the 
assembly results for metagenomes A-D, to identify significant differences stemming from 
metagenome complexity, rather than the assembler.  
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Appendix 2 
 

A2 Table 1: Samples used in metagenomic sequencing across the four Arctic forefields, and 
the corresponding metadata. Samples were obtained in a transect across each forefield, 
moving away from the glacier terminus. For the Midtre Lovénbreen (Ml), Russell (Rl) and 
Storglaciären (St) sites, three parallel transects were conducted to obtain field replicates. This 
was not possible for the Rabots (Rb) site.  
 

Site ID Forefield Latitude  Longitude  Altitude (m) Date obtained  
Ml 1 Ml 79.100555 12.156111 54 29/07/2013 
Ml 2 Ml 79.112223 12.175555 44 29/07/2013 
Ml 3 Ml 79.112222 12.258333 44 29/07/2013 
Ml 4 Ml 79.118333 12.093611 54 29/07/2013 
Ml 5 Ml 79.113611 12.195833 52 29/07/2013 
Ml 6 Ml 79.104444 12.278888 52 29/07/2013 
Ml 7 Ml 79.152555 12.215555 50 29/07/2013 
Ml 8 Ml 79.151388 12.253611 43 29/07/2013 
Ml 9 Ml 79.140833 12.092222 43 29/07/2013 

Ml 10 Ml 78.927777 12.254166 35 29/07/2013 
Ml 11 Ml 78.921666 12.076666 40 29/07/2013 
Ml 12 Ml 78.907777 12.164444 48 29/07/2013 
Ml 13 Ml 78.900555 12.076111 30 29/07/2013 
Ml 14 Ml 78.900555 12.076111 40 29/07/2013 
Ml 15 Ml 78.900555 12.076111 105 29/07/2013 
Ml 16 Ml 78.900555 12.082777 29 29/07/2013 
Ml 17 Ml 78.991666 12.233333 30 29/07/2013 
Ml 18 Ml 78.978888 12.332222 30 29/07/2013 
Ml 19 Ml 79.768333 12.143611 19 29/07/2013 
Ml 20 Ml 79.768333 12.143611 19 29/07/2013 
Ml 21 Ml 79.768333 12.143611 19 29/07/2013 
Ml 22 Ml 79.484166 12.092222 105 29/07/2013 
Ml 23 Ml 79.484166 12.092222 105 29/07/2013 

            
Rl 1 Rl 67.15650902 -50.06398397 439 24/07/2014 
Rl 2 Rl 67.15651598 -50.06386997 440 24/07/2014 
Rl 3 Rl 67.15655998 -50.06389101 439 24/07/2014 
Rl 4 Rl 67.16295303 -50.01826898 589 25/07/2014 
Rl 5 Rl 67.16301103 -50.01844500 589 25/07/2014 
Rl 6 Rl 67.16306903 -50.01828399 589 25/07/2014 
Rl 7 Rl 67.15211598 -50.04869697 515 26/07/2014 
Rl 8 Rl 67.15208103 -50.04859303 516 26/07/2014 
Rl 9 Rl 67.15210701 -50.04851701 516 26/07/2014 

Rl 10 Rl 67.15685402 -50.08261903 404 26/07/2014 
Rl 11 Rl 67.15680499 -50.08249900 403 26/07/2014 
Rl 12 Rl 67.15684304 -50.08236104 404 26/07/2014 
Rl 13 Rl 67.15642001 -50.08365101 403 26/07/2014 
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Rl 14 Rl 67.15646099 -50.08366501 403 26/07/2014 
Rl 15 Rl 67.15638698 -50.08376702 403 26/07/2014 
Rl 16 Rl 67.15559204 -50.08486102 411 26/07/2014 
Rl 17 Rl 67.15558601 -50.08499002 411 26/07/2014 
Rl 18 Rl 67.15567200 -50.08488097 411 26/07/2014 
Rl 19 Rl 67.08225802 -50.32251497 251 27/07/2014 
Rl 20 Rl 67.08222499 -50.32243500 238 27/07/2014 
Rl 21 Rl 67.08218602 -50.32229704 237 27/07/2014 
Rl 22 Rl 67.05702002 -50.45979604 147 27/07/2014 
Rl 23 Rl 67.05700200 -50.45969403 148 27/07/2014 
Rl 24 Rl 67.05692296 -50.45960804 148 27/07/2014 

            
Rb 1 Rb 67.910855 18.470863 1250 07/02/2014 
Rb 2 Rb 67.907119 18.447522 1105 07/02/2014 
Rb 3 Rb 67.907119 18.447522 1105 07/02/2014 
Rb 4 Rb 67.906846 18.445550 1110 07/02/2014 
Rb 5 Rb 67.872223 16.713705 1054 07/02/2014 

    	 	 	 	 
St 1 St    67.904568	     18.607115	        1131	      07/01/2014	
St 2 St 67.904687 18.610965 1103 07/01/2014 
St 3 St 67.904687 18.610965 1103 07/01/2014 
St 4 St 67.904687 18.610965 1103 07/02/2014 
St 5 St 67.899243 18.344347 1147 07/01/2014 
St 6 St 67.899244 18.344371 1147 07/01/2014 
St 7 St 67.900853 18.441750 1146 07/01/2014 
St 8 St 67.900853 18.441750 1146 07/01/2014 
St 9 St 67.900853 18.441750 1146 07/01/2014 

St 10 St 67.900879 18.434740 1130 07/01/2014 
St 11 St 67.900879 18.434740 1130 07/01/2014 
St 12 St 67.900879 18.434740 1130 07/01/2014 
St 13 St 67.901082 18.428257 1113 07/01/2014 
St 14 St 67.901082 18.428257 1113 07/01/2014 
St 15 St 67.865505 16.714941 1103 07/01/2014 
St 16 St 67.865505 16.714941 1103 07/01/2014 
St 17 St 67.865505 16.714941 1103 07/01/2014 
St 18 St 67.903128 18.604355 1182 07/01/2014 
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A2 Table 2: Output statistics for metagenome sequencing and assembly, for each site. The 
number of raw reads returned from sequencing is given, alongside the subsequent assembly 
sizes, in both sequences and bases.  
 

		
Sequencing 
reads 

Assembly size 
(sequences) 

Assembly size 
(bases) 

Ml 1 17465080 73894 33376241 

Ml 2 28186722 66450 32695412 
Ml 3 16801828 28727 17783002 

Ml 4 25805412 18484 6405001 
Ml 5 20630402 25643 10899365 
Ml 6 21421268 36952 16375348 
Ml 7 22655970 26238 13376228 
Ml 8 20003790 10239 3947663 
Ml 9 22650764 7883 3544627 

Ml 10 58387594 52836 25394805 
Ml 11 56518916 78995 29749304 
Ml 12 37925220 15664 4751816 
Ml 13 3952496 612 272071 
Ml 14 22179120 10999 8951989 
Ml 15 6433798 608 241660 
Ml 16 22231192 6823 2827176 
Ml 17 38684672 18250 16687388 
Ml 18 68392102 78312 52131008 
Ml 19 23405212 3192 998864 
Ml 20 20152212 2871 859271 

Ml 21 28777734 6620 2019562 
Ml 22 22182332 115393 61826702 
Ml 23 28234260 120239 81857371 

        
Rl 1 67748804 204281 181720264 
Rl 2 77474456 205426 192219830 
Rl 3 61199512 176255 115011779 
Rl 4 74992750 314429 325818814 
Rl 5 74220220 374929 341656927 
Rl 6 68161082 292741 302935645 
Rl 7 75975046 274719 186606224 
Rl 8 91844214 588635 395690349 
Rl 9 77023868 238198 157627061 

Rl 10 139381778 344195 180851046 
Rl 11 91962344 203511 112190691 
Rl 12 81681122 86956 82284058 
Rl 13 105431412 251779 123396624 
Rl 14 63240678 37335 22184640 
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Rl 15 72243790 125592 88672076 
Rl 16 82137112 232607 118301737 
Rl 17 107570706 393735 228570150 
Rl 18 78274268 162862 98312835 
Rl 19 75392190 99149 52942968 
Rl 20 65582044 81726 58507862 
Rl 21 91522052 264245 149668891 
Rl 22 96384726 236649 128282042 
Rl 23 96207238 406505 410018759 
Rl 24 80981820 99519 60773858 

        
Rb 1 76498938 350951 429543524 
Rb 2 72691820 275858 181694382 
Rb 3 70126632 334545 249845086 
Rb 4 61828928 303591 231705319 
Rb 5 74667258 375682 213265070 

    
St 1 68111048 336424 219250082 
St 2 71828498 154126 83781202 
St 3 85214054 320463 188269776 
St 4 71411294 184331 103140952 
St 5 66910678 323872 236040965 
St 6 72683122 384288 290006175 
St 7 60148730 298633 216231874 
St 8 67844804 75868 48601571 
St 9 63953088 437238 275297528 

St 10 83010234 324248 214964286 
St 11 74901072 263784 180223385 
St 12 83405572 261266 175258662 
St 13 64225756 179953 121520140 
St 14 64764076 196033 140418783 
St 15 66675200 146437 83396680 
St 16 66848090 149134 96714442 
St 17 72051286 332892 268415228 
St 18 78397352 478826 377436650 
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A2 Figure 1: Rarefaction curves for metagenomes sampled from Midtre Lovénbreen, 
Svalbard. The total assembled contigs in each metagenome is shown, against the total 
species count obtained from these contigs.  
 
 

 
 
A2 Figure 2: Rarefaction curves for metagenomes sampled from Russell Glacier, Greenland. 
The total assembled contigs in each metagenome is shown, against the total species count 
obtained from these contigs. 
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A2 Figure 3: Rarefaction curves for metagenomes sampled from Storglaciären, N-Sweden. 
The total assembled contigs in each metagenome is shown, against the total species count 
obtained from these contigs. 
 

 
 
A2 Figure 4: Rarefaction curves for metagenomes sampled from Rabots glacier, N-Sweden. 
The total assembled contigs in each metagenome is shown, against the total species count 
obtained.  
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A2 Figure 5: rpoB normalized nif gene abundance and percentage of reads with an Alignment 
Score (AS) over 60, for samples obtained from Midtre Lovénbreen (Ml), Svalbard. The 
Alignment Score ranges between 0 and the maximum length of the reads (0-100) and 
indicates the quality of the alignment between reads and contigs.  
 
 
 

 
A2 Figure 6: rpoB normalized nif gene abundance and percentage of reads with an Alignment 
Score (AS) over 60, for samples obtained from Russell Glacier (Rl), Greenland. The Alignment 
Score ranges between 0 and the maximum length of the reads (0-150) and indicates the 
quality of the alignment between reads and contigs.  
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A2 Figure 7: rpoB normalized nif gene abundance and percentage of reads with an Alignment 
Score (AS) over 60, for samples obtained from Rabots Glacier (Rb), N-Sweden. The 
Alignment Score ranges between 0 and the maximum length of the reads (0-150) and 
indicates the quality of the alignment between reads and contigs.  
 
 

 
A2 Figure 8: rpoB normalized nif gene abundance and percentage of reads with an Alignment 
Score (AS) over 60, for samples obtained from Storglaciären Glacier (St), N-Sweden. The 
Alignment Score ranges between 0 and the maximum length of the reads (0-150) and 
indicates the quality of the alignment between reads and contigs.  
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A2 Table 3: Mapping alignments between nif genes and raw sequencing reads. The number 
of read alignments in each metagenome is shown, grouped by the alignment score (AS) >=30, 
>=60, >=90, >=120 and >=140. A total for each forefield is also provided. The alignment score 
represents the quality of the alignment and ranges between 0-100 for the MI dataset and 0-
150 for the Rb, St and RI datasets. The number of sequencing reads is provided, shown as 
the total number of forward and reverse reads for each sample. The percentage of alignments 
with an AS equal or higher than 60 is listed for each metagenome sample (% AS >= 60). 
  

Sample Number of reads 
AS >= 

30 
AS >= 

60 
AS >= 

90 AS >= 120 AS >= 140 % AS >= 60 
Ml 1 17465080 407 342 280 - - 0.0019582 
Ml 2 28186722 1175 1089 947 - - 0.0038635 
Ml 3 16801828 62 39 20 - - 0.0002321 
Ml 4 25805412 466 268 79 - - 0.0010385 
Ml 5 20630402 242 118 16 - - 0.0005720 
Ml 6 21421268 1653 1008 449 - - 0.0047056 
Ml 7 22655970 172 91 8 - - 0.0004017 
Ml 8 20003790 1040 542 69 - - 0.0027095 
Ml 9 22650764 344 175 17 - - 0.0007726 

Ml 10 58387594 2260 1336 230 - - 0.0022882 
Ml 11 56518916 244 135 30 - - 0.0002389 
Ml 12 37925220 314 161 22 - - 0.0004245 
Ml 13 3952496 72 38 3 - - 0.0009614 
Ml 14 22179120 660 355 46 - - 0.0016006 
Ml 15 6433798 164 93 11 - - 0.0014455 
Ml 16 22231192 125 68 8 - - 0.0003059 
Ml 17 38684672 333 197 31 - - 0.0005092 
Ml 18 68392102 932 560 93 - - 0.0008188 
Ml 19 23405212 79 40 6 - - 0.0001709 
Ml 20 20152212 37 20 8 - - 0.0000992 
Ml 21 28777734 98 61 12 - - 0.0002120 
Ml 22 22182332 24 4 0 - - 0.0000180 
Ml 23 28234260 6 0 0 - - 0.0000000 

Ml forefield 633078096 10909 6740 2385 0 0 0.0010646 
Rl 1 67748804 28 0 0 0 0 0.0000000 
Rl 2 77474456 20 0 0 0 0 0.0000000 
Rl 3 61199512 39 11 7 0 4 0.0000180 
Rl 4 74992750 130 80 64 23 49 0.0001067 
Rl 5 74220220 109 60 43 16 34 0.0000808 
Rl 6 68161082 240 156 121 46 90 0.0002289 
Rl 7 75975046 28 0 0 0 0 0.0000000 
Rl 8 91844214 47 0 0 0 0 0.0000000 
Rl 9 77023868 34 6 4 2 3 0.0000078 

Rl 10 139381778 32 5 1 0 0 0.0000036 
Rl 11 91962344 131 63 32 16 27 0.0000685 
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Rl 12 81681122 61 29 18 1 9 0.0000355 
Rl 13 105431412 190 143 92 18 53 0.0001356 
Rl 14 63240678 26 10 4 0 3 0.0000158 
Rl 15 72243790 428 215 76 5 29 0.0002976 
Rl 16 82137112 23 6 1 0 0 0.0000073 
Rl 17 107570706 74 24 10 4 6 0.0000223 
Rl 18 78274268 33 3 1 0 1 0.0000038 
Rl 19 75392190 30 10 2 0 0 0.0000133 
Rl 20 65582044 16 0 0 0 0 0.0000000 
Rl 21 91522052 24 1 0 0 0 0.0000011 
Rl 22 96384726 43 14 3 0 2 0.0000145 
Rl 23 96207238 5 0 0 0 0 0.0000000 
Rl 24 80981820 30 9 3 0 1 0.0000111 

Rl forefield 1996633232 1821 845 482 131 311 0.0000423 
Rb 1 76498938 95 29 23 2 11 0.0000379 
Rb 2 72691820 211 117 76 21 49 0.0001610 
Rb 3 70126632 379 199 132 55 104 0.0002838 
Rb 4 61828928 584 396 307 99 226 0.0006405 
Rb 5 74667258 215 105 52 10 32 0.0001406 

Rb Forefield 355813576 1484 846 590 187 422 0.0002378 
St 1 68111048 247 120 67 8 37 0.0001762 
St 2 71828498 1817 1385 1031 480 749 0.0019282 
St 3 85214054 2871 2235 1571 734 1143 0.0026228 
St 4 71411294 1967 1552 1150 484 804 0.0021733 
St 5 66910678 726 563 457 285 389 0.0008414 
St 6 72683122 142 59 39 17 28 0.0000812 
St 7 60148730 645 481 349 190 274 0.0007997 
St 8 67844804 1956 1586 1213 784 1026 0.0023377 
St 9 63953088 1447 1222 1003 616 851 0.0019108 

St 10 83010234 102 60 44 25 38 0.0000723 
St 11 74901072 577 459 369 182 297 0.0006128 
St 12 83405572 586 384 259 100 182 0.0004604 
St 13 64225756 119 86 71 19 44 0.0001339 
St 14 64764076 295 229 182 83 140 0.0003536 
St 15 66675200 350 238 185 101 150 0.0003570 
St 16 66848090 363 302 250 127 203 0.0004518 
St 17 72051286 1064 947 760 447 611 0.0013143 
St 18 78397352 485 346 260 118 209 0.0004413 

St Forefield  1282383954 15759 12254 9260 4800 7175 0.0009556 
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Appendix 3 
 
A3 Table 1: COG domains used in Tree construction using KBASE Species Tree Builder for 
binned genomes, sourced from https://kbase.us 

COG Gene Description 
COG0013 AlaS Alanyl-tRNA synthetase 
COG0016 PheS Phenylalanyl-tRNA synthetase alpha subunit  
COG0018 ArgS Arginyl-tRNA synthetase 
COG0030 KsgA Dimethyladenosine transferase (rRNA methylation)  
COG0041 PurE Phosphoribosylcarboxyaminoimidazole (NCAIR) mutase  
COG0046 PurL Phosphoribosylformylglycinamidine (FGAM) synthase, synthetase domain  
COG0048 RpsL Ribosomal protein S12 
COG0049 RpsG Ribosomal protein S7  
COG0051 RpsJ Ribosomal protein S10 
COG0052 RpsB Ribosomal protein S2  
COG0072 PheT Phenylalanyl-tRNA synthetase beta subunit 
COG0080 RplK Ribosomal protein L11 
COG0081 RplA Ribosomal protein L1  
COG0082 AroC Chorismate synthase 
COG0086 RpoC DNA-directed RNA polymerase, beta' subunit/160 kD subunit 
COG0087 RplC Ribosomal protein L3 
COG0088 RplD Ribosomal protein L4  
COG0089 RplW Ribosomal protein L23 
COG0090 RplB Ribosomal protein L2 
COG0091 RplV Ribosomal protein L22  
COG0092 RpsC Ribosomal protein S3 
COG0093 RplN Ribosomal protein L14 
COG0094 RplE Ribosomal protein L5  
COG0096 RpsH Ribosomal protein S8  
COG0097 RplF Ribosomal protein L6P/L9E  
COG0098 RpsE Ribosomal protein S5  
COG0099 RpsM Ribosomal protein S13  
COG0100 RpsK Ribosomal protein S11  
COG0102 RplM Ribosomal protein L13  
COG0103 RpsI Ribosomal protein S9 
COG0105 Ndk Nucleoside diphosphate kinase  
COG0126 Pgk 3-phosphoglycerate kinase  
COG0127 COG0127 Xanthosine triphosphate pyrophosphatase 
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COG0130 TruB Pseudouridine synthase  
COG0150 PurM Phosphoribosylaminoimidazole (AIR) synthetase  
COG0151 PurD Phosphoribosylamine-glycine ligase 
COG0164 RnhB Ribonuclease HII  
COG0172 SerS Seryl-tRNA synthetase  
COG0185 RpsS Ribosomal protein S19  
COG0186 RpsQ Ribosomal protein S17  
COG0215 CysS Cysteinyl-tRNA synthetase  
COG0244 RplJ Ribosomal protein L10 
COG0256 RplR Ribosomal protein L18  
COG0343 Tgt Queuine/archaeosine tRNA-ribosyltransferase  
COG0504 PyrG CTP synthase (UTP-ammonia lyase) 
COG0519 GuaA GMP synthase, PP-ATPase domain/subunit  
COG0532 InfB Translation initiation factor 2 (IF-2; GTPase)  
COG0533 QRI7 Metal-dependent proteases with possible chaperone activity  
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A3 Table 2: Read based community composition, expressed as the percentage of annotated 
reads for Midtre Lovénbreen sample sites at the genus level. Replicate samples for each soil 
age have been combined. Green indicates the recovery of the genus from each sample.  
 

Genus 0 3 5 29 50 50 - 113 113 2000 Cryoconite  Basal Ice  

Acidobacteriales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.04 0.00 

Actinoplanes 0.00 0.30 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 

Arthrobacter 0.00 0.29 0.21 0.43 0.00 0.00 0.00 0.00 0.00 0.00 

Bacillales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.55 0.00 

Bacillus 0.00 0.00 0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Bacteroidales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.00 

Bradyrhizobium 0.00 1.42 1.03 1.48 1.23 0.75 1.18 2.78 0.00 0.67 

Brevundimonas 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Burkholderia 0.00 0.26 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 

Burkholderiales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 13.96 0.00 

Cand. Nitrosocosmicus 0.00 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00 

Candidatus Solibacter 0.00 0.26 0.00 0.00 0.00 0.00 0.19 0.17 0.00 0.00 

Caulobacterales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.62 0.00 

Cellulomonas 0.00 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Chitinophagales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.70 0.00 

Chromatiales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 

Chroococcales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.86 0.00 

Chthoniobacter 0.00 0.00 0.00 0.00 0.00 0.76 0.52 0.71 0.00 0.00 

Clostridiales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.57 0.00 

Collinsella 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.00 0.00 0.00 

Conexibacter 0.00 0.89 0.00 0.23 0.00 0.00 1.00 0.41 0.00 0.00 

Corynebacteriales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.74 0.00 

Cryobacterium 0.51 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cytophagales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.83 0.00 

Desulfuromonadales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.00 

Devosia 0.00 0.31 0.68 0.41 0.00 0.00 0.00 0.00 0.00 0.00 

Enterobacterales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 0.00 

Enterococcus 3.42 2.72 0.67 0.00 0.00 1.25 0.00 0.77 0.00 1.88 

Flavisolibacter 0.00 0.32 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 

Flavobacteriales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.65 0.00 

Flavobacterium 1.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Frankia 0.00 0.37 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 

Frankiales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.00 

Gemmata 0.00 0.45 0.19 0.83 0.72 1.00 1.43 0.00 0.00 0.00 

Gemmatimonadales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.00 

Gemmatimonas 0.00 0.34 0.00 0.00 0.23 0.00 0.19 0.00 0.00 0.00 

Geobacter 0.00 0.00 0.18 0.00 0.00 0.66 0.00 0.00 0.00 0.00 
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Hymenobacter 1.17 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 

Hyphomicrobium 0.00 0.00 0.19 0.35 0.57 0.00 0.51 0.00 0.00 0.00 

Ilumatobacter 0.00 0.55 0.00 0.18 0.00 0.00 0.32 0.00 0.00 0.00 

Intrasporangium 0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Kribbella 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Luteipulveratus 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Marmoricola 0.00 0.00 0.29 0.77 0.71 0.00 0.13 0.00 0.00 0.00 

Massilia 0.00 0.00 0.00 0.00 0.00 1.55 0.00 0.00 0.00 0.00 

Mesorhizobium 0.00 0.35 0.42 0.73 0.78 0.00 0.70 0.66 0.00 0.00 

Methylibium 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Methylobacterium 0.00 0.25 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 

Methylophilales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.00 

Micrococcales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 8.30 0.00 

Micromonosporales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 

Mycobacterium 0.00 0.79 0.66 1.23 1.32 1.26 1.73 1.35 0.00 0.00 

Myxococcales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.17 0.00 

Neisseria 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00 0.00 

Niabella 0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Niastella 0.00 0.31 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 

Nitrospira 0.00 0.29 0.16 0.16 0.52 0.50 0.29 0.16 0.00 0.00 

Nocardioides 0.00 2.45 1.97 3.15 2.28 1.10 1.42 0.00 0.00 0.96 

Nostoc 1.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Nostocales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 0.00 

Novosphingobium 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.04 

Opitutus 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Oscillatoriales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.29 0.00 

Pedobacter 1.15 0.41 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pedosphaera 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 

Phormidesmis 6.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Phycicoccus 0.00 0.00 0.92 0.83 0.35 0.52 0.00 0.00 0.00 0.60 

Pimelobacter 0.00 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pirellula 0.00 0.24 0.22 0.00 0.00 0.04 0.21 0.00 0.00 0.00 

Planctomyces 0.00 0.25 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 

Planctomycetales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.62 0.00 

Polaromonas 3.12 1.02 0.94 1.02 0.58 0.82 0.00 0.25 0.00 0.52 

Propionibacteriales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.12 0.00 

Pseudomonadales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.12 0.00 

Pseudomonas 0.00 2.51 0.39 0.17 0.39 1.15 0.21 0.20 0.00 0.63 

Pseudonocardia 0.00 0.37 0.16 0.74 0.35 0.00 0.43 0.00 0.00 0.00 

Pseudonocardiales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.24 0.00 

Purpureocillium 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Pyrinomonas 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 

Rhizobacter 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Rhizobiales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.59 0.00 

Rhizobium 1.22 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rhodobacterales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 0.00 

Rhodococcus 0.00 0.40 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 

Rhodocyclales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.73 0.00 

Rhodoferax 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rhodoplanes 0.00 0.27 0.00 0.00 0.00 0.00 0.19 0.68 0.00 0.00 

Rhodopseudomonas 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Rhodospirillales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.66 0.00 

Shewanella 0.00 0.00 5.35 0.00 0.00 0.00 0.00 0.00 0.00 15.11 

Singulisphaera 0.00 0.00 0.00 0.21 0.00 0.00 0.52 0.00 0.00 0.00 

Solibacterales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 

Solirubrobacter 0.00 0.00 0.00 0.48 0.69 0.00 0.93 1.23 0.00 0.00 

Sorangium 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00 

Sphingobacteriales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.53 0.00 

Sphingobium 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 

Sphingomonadales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.28 0.00 

Sphingomonas 1.25 1.47 1.76 2.39 2.07 1.64 1.74 0.73 0.00 1.01 

Sphingopyxis 0.00 0.27 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 

Spirosoma 0.00 0.30 0.28 0.00 0.00 0.00 0.20 0.00 0.00 0.00 

Streptomyces 0.52 1.67 1.42 1.99 1.81 1.24 2.09 1.32 0.00 0.83 

Streptomycetales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.93 0.00 

Streptosporangiales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.59 0.00 

Synechococcales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.80 0.00 

Thiobacillus 0.79 1.10 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.80 

Variovorax 1.05 0.00 0.20 0.20 0.93 0.64 0.28 0.00 0.00 0.00 

Xanthomonadales 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.47 0.00 

Zavarzinella 0.00 0.00 0.00 0.00 0.00 0.03 0.29 0.00 0.00 0.00 

Viruses 0.08 0.13 0.05 0.04 0.03 0.05 0.07 0.02 0.22 0.05 

cannot be assigned  31.29 26.02 33.30 33.91 36.86 35.40 30.08 45.24 6.94 31.93 
genus > 0.5% of all 
reads 41.29 48.47 46.66 47.25 47.58 49.64 50.84 42.42 15.44 43.96 
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SAMPLE1_TREE: Species Tree generated by Species Tree Builder
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A3 Figure 1: Maximum likelihood Species tree for Sample 1, bins 1-10. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  
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SAMPLE2_TREE: Species Tree generated by Species Tree Builder
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A3 Figure 2: Maximum likelihood Species tree for Sample 2, bins 1-2. The species tree is based 
off alignments of COG groups to publicly available genomes on the KBASE platform.  
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SAMPLE4_TREE: Species Tree generated by Species Tree Builder

0.20

A3 Figure 3: Maximum likelihood Species tree for Sample 3, bins 1-8. The species tree is based 
off alignments of COG groups to publicly available genomes on the KBASE platform.  

A3 Figure 4: Maximum likelihood Species tree for Sample 4, bins 1-2. The species tree is based 
off alignments of COG groups to publicly available genomes on the KBASE platform.  
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SAMPLE6_TREE: Species Tree generated by Species Tree Builder
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A3 Figure 5: Maximum likelihood Species tree for Sample 1, bins 1-4. The species tree is based 
off alignments of COG groups to publicly available genomes on the KBASE platform.  

A3 Figure 6: Maximum likelihood Species tree for Sample 6, bins 1 - 4. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  
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SAMPLE8_TREE: Species Tree generated by Species Tree Builder
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A3 Figure 7: Maximum likelihood Species tree for Sample 1, bins 1-4. The species tree is based 
off alignments of COG groups to publicly available genomes on the KBASE platform.  

A3 Figure 8: Maximum likelihood Species tree for Sample 8, bins 1-2. The species tree is based 
off alignments of COG groups to publicly available genomes on the KBASE platform.  
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SAMPLE10_TREE: Species Tree generated by Species Tree Builder
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A3 Figure 9: Maximum likelihood Species tree for Sample 9, bins 1-2. The species tree is based 
off alignments of COG groups to publicly available genomes on the KBASE platform.  

A3 Figure 10: Maximum likelihood Species tree for Sample 1, bins 1-8. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  
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SAMPLE12_TREE: Species Tree generated by Species Tree Builder
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A3 Figure 11: Maximum likelihood Species tree for Sample 11, bins 1-2. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  

A3 Figure 12: Maximum likelihood Species tree for Sample 12, bins 1-2. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  
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A3 Figure 13: Maximum likelihood Species tree for Sample 14, bins 1-2. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  

A3 Figure 14: Maximum likelihood Species tree for Sample 15, bins 1-2. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  
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SAMPLE17_TREE: Species Tree generated by Species Tree Builder
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A3 Figure 15: Maximum likelihood Species tree for Sample 16, bins 1-2. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  

A3 Figure 16: Maximum likelihood Species tree for Sample 17, bins 1-4. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  
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SAMPLE19_TREE: Species Tree generated by Species Tree Builder
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A3 Figure 17: Maximum likelihood Species tree for Sample 18, bins 1-8. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  

A3 Figure 18: Maximum likelihood Species tree for Sample 19, bins 1-2. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  
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A3 Figure 19: Maximum likelihood Species tree for Sample 20, bins 1-2. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  

A3 Figure 20: Maximum likelihood Species tree for Sample 21, bins 1-2. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  
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A3 Figure 21: Maximum likelihood Species tree for Sample 22, bins 1-5. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  

A3 Figure 22: Maximum likelihood Species tree for Sample 23, bins 1-4. The species tree is 
based off alignments of COG groups to publicly available genomes on the KBASE platform.  
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