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Abstract 

 
 

Neuronal dendrites are the main recipients of glutamatergic synaptic input and 

participate in active integration of information via the generation of local, regenerative 

events called dendritic spikes. Whilst these regenerative events have been mostly 

characterised in adult cortical and hippocampal neurons, it is unclear whether 

dendritic spikes require mature, fully established synapses or whether they can occur 

early during development. To explore this possibility, focal synaptic stimulation was 

used to induce dendritic spiking in postnatal day 7-20 spiny stellate neurons of the 

layer 4 barrel cortex. However, no nonlinearity characteristic of dendritic spiking was 

observed in these young neurons, suggesting dendritic spikes are a feature of mature 

synapses. 

During the first 3 postnatal weeks, functional and structural synaptic formation and 

maturation is accompanied by several changes in the morphology and protein content 

of postsynaptic spines. Correct function of synaptic transmission relies on the precise 

apposition between pre- and post-synaptic compartments. Synaptic components, 

such as ion channels, adhesion proteins and neurotransmitter receptors, are recruited 

to the post-synaptic sites to establish synaptic function. In excitatory synapses, these 

proteins are spatially organized and held in place in the spines by members of the 

membrane-associated guanylate kinase family of proteins. Two members of this 

family, PSD95 and SAP102, have been identified as major players of synaptic 

maturation and receptor trafficking, respectively. Developmental profiling of these two 

proteins revealed a layer-specific, developmentally regulated pattern of expression. 

Both proteins are highly enriched from P4 in L1 and L4, while the protein levels in L2/3 

increase sharply over time. L5A is enriched with PSD95, but not SAP102, from the 

earliest age and this layer receives inputs from Cplx3-positive subplate neurons. 
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Introduction 

1.1 Neocortical organization of sensory systems 

The 3D spatial organization of the mammalian neocortex is striking and it is thought 

to underlie the efficiency of this system in dealing with the intricate neuronal circuits it 

comprises. 

Horizontally, this structure is divided into 6 layers which host neurons with distinct 

morphologies, transcriptomic profiles, electrophysiological properties and connectivity 

patterns. Vertically, the neocortex is organized in cortical columns that further 

increase the organization and optimize neuronal circuit function, by the formation of 

topographically mapped connections that increase the parallel processing and global 

integration of inputs and outputs (Fujita et al., 1992; Hubel and Wiesel, 1963; Kanold 

et al., 2014; Mountcastle, 1957). Cortical columns, first described in the monkey 

somatosensory cortex, are a common organizing principle of several systems, 

including the motor, visual and auditory systems (Fujita et al., 1992; Hubel and Wiesel, 

1963; Kanold et al., 2014; Mountcastle, 1957). Therefore, the neocortex is organized 

in cortical physically- and functionally-related modules to give rise to this extremely 

precise network in which anatomical topology is tightly linked to the precise 

functionality of this system. The laminar location of distinct types of cortical neurons 

is determined during development, via a strict spatiotemporal regulation of neuronal 

generation, migration and synapse formation (Rakic, 1988). 

1.2 Neuronal transmission and computation 

Neuronal communication underlies and directs the execution of brain functions, such 

as movement, sensory processing and higher cognitive processing. Efficient neuronal 

function is therefore essential for the interaction with the surrounding environment. 

The adult human brain has been estimated to contain around 100 billion neurons 

(Azevedo et al., 2009); these neurons form many connections between each other via 

specialised junctions, the synapses. Synapses are usually composed of a presynaptic 

terminal, a synaptic cleft and an electron dense postsynaptic compartment containing 

the postsynaptic density (PSD, Colonnier, 1968; Harris et al., 1992). Each neuron 

receives several inputs from functionally connected partners and propagates the 

signal to downstream neurons. These synaptic connections give rise to neuronal 

pathways, a collection of neurons that connect different areas of the brain that are 

specific to a specific function. The nervous system, therefore, is an extremely complex 

and organised structure that requires the proper establishment of each component to 

support widespread computation of signals. 
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Neurons collect information, in the form of chemical signals driven by synaptic 

transmission. When these signals reach the dendrite, they summate and if they cause 

the neuronal membrane potential to depolarise beyond a threshold voltage, an output, 

called action potential, is generated. Action potentials are initiated at the axonal initial 

segment, a Na+ channel rich area located at the axon hillock, and propagate down the 

axon to presynaptic sites (Fig. 1.1). Action potentials trigger the fusion of 

neurotransmitter-filled synaptic vesicles in the presynaptic terminal, in specifically 

located active zones (Burns and Augustine, 1995; Phillips et al., 2001). 

Neurotransmitters (mainly glutamate in excitatory neocortical neurons) are thus 

released in the synaptic cleft, the 20-25 µm area between the pre- and post-synaptic 

neurons (Schikorski and Stevens, 1997). The released glutamate binds to glutamate 

receptors found on the membrane of the postsynaptic partner; a variety of receptors 

and cell adhesion proteins are present in the electron dense PSD (Kennedy, 2000). 

Most excitatory synapses in the brain are located in dendritic protrusions, named 

dendritic spines (Nimchinsky et al., 2002). Within spines, N-methyl-D-aspartate 

(NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) 

receptors (NMDARs and AMPARs), which are the two main classes of ionotropic 

glutamate receptors (Hollmann and Heinemann, 1994), are clustered at the 

postsynaptic density. The activation of excitatory synapses via binding of 

neurotransmitters at dendritic spines leads to an influx of Na+ ions that drives a 

depolarisation of the membrane potential. The summation of these depolarising 

synaptic potentials drives the cell towards action potential threshold, repeating the 

cycle of information transmission. Importantly, neuronal dendrites are not simply 

passive recipients of electric signals, but instead exhibit electrogenic properties that 

can dynamically process received information locally. This active role in information 

processing is a product of the presence of many voltage-gated ion channels in the 

dendritic membrane that allow nonlinear amplification and active propagation of 

electric signals. In the neocortex, neuronal dendritic arbours can exhibit a variety of 

shapes and sizes, depending on the cell type and the location within the cortical 

layers. These morphological differences in this postsynaptic structure have an impact 

on the way neurons process information. The location and density of dendrites within 

a neuronal dendritic arbour determine the type and number of inputs that neurons can 

sample. Furthermore, the size and shape of single dendrites, can determine its 

passive electrotonic properties. Whilst these morphological features can affect the 

passive properties of the dendrite, the type, number and distribution of ion channels 

along dendritic length affect its active membrane conductances. 
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Figure 1. 1 Basic components of a cortical excitatory synapse 

Action potentials, here symbolised as a red lightning, reach the presynaptic axonal terminal 
and cause the release of neurotransmitters. Neurotransmitters, glutamate in this case, 
diffuse across the synaptic cleft and bind to receptors present on the postsynaptic 
membrane of the synapsing neuron. This event causes the opening of AMPA receptors, 
which lead to depolarisation of the dendritic spine which in turn releases the magnesium 
block from NMDA receptors which open and allow more positive ions to enter the cell. 
When a threshold is reached, an action potential is propagated down the axon to excite 
downstream dendrites. 
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1.3 Active dendrite processing 

Dendritic arbours can be extremely large, meaning that currents resulting from distal 

synapses are considerably attenuated when they reach the soma (Berger et al., 2001; 

Harnett et al., 2015; Larkum et al., 2009; Magee, 1998; Nevian et al., 2007; Stuart 

and Spruston, 1998; Williams and Stuart, 2002). Dendrites have been shown to 

exhibit active properties, which can compensate for this geometrically imposed 

dissipation of distal synaptic inputs. For example, action potentials generated at the 

axonal initial segment have been shown to propagate back into the dendritic arbor 

(backpropagating action potentials, bAPs) and this phenomenon is actively supported 

in dendrites via activation of voltage-dependent Na+ and K+ channels (Colbert et al., 

1997; Hoffman et al., 1997; Jung et al., 1997; Vetter et al., 2001). Additionally, by 

virtue of their active properties, dendrites have also been shown to sustain local 

generation of regenerative potentials, called dendritic spikes, that can boost 

spatiotemporally synchronised inputs (Antic et al., 2010; Branco and Häusser, 2011; 

Brandalise et al., 2016; Golding et al., 2002; Lavzin et al., 2012; Schiller and Schiller, 

2001). Backpropagating action potentials and dendritic spikes have distinct 

spatiotemporal features; bAPs occur after somatic action potential generation and 

spread on a proximal to distal manner (from the soma); on the other hand, dendritic 

spike generation is usually restricted to individual dendritic branches and while it 

contributes to the depolarised state of the neurons, it does not always trigger somatic 

action potentials. 

1.3.1 Dendritic spikes 

Dendritic spikes and active dendritic processing have received extensive interest in 

the past 30 years. These electrophysiological features of neurons are thought to 

dramatically expand neuronal computational repertoire and provide an additional 

mechanism to integrate inputs from different parts of the brain (Antic et al., 2010; 

Branco and Häusser, 2011; Brandalise et al., 2016; Golding et al., 2002; Lavzin et al., 

2012; Schiller and Schiller, 2001). 

These nonlinear regenerative events are restricted to a portion of a single dendritic 

branch. They emerge as consequence of the dendritic electrogenic properties, i.e. the 

distribution of voltage-gated channels along their lengths. When a sufficient number 

of synapses is active on a single dendrite, the ionic influx in the spines causes a 

depolarisation that can trigger the opening of voltage-gated channels present in the 

vicinity, even in synapses which are not directly engaged. The resulting membrane 

potential response triggered by these regenerative events is therefore larger than the 

linear sum of the synapses activated (Antic et al., 2010; Branco and Häusser, 2011; 
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Brandalise et al., 2016; Golding et al., 2002; Lavzin et al., 2012; Schiller and Schiller, 

2001). 

1.3.2 Dendritic spiking in pyramidal cells 

Dendritic spiking has been most extensively characterised in neocortical layer (L) 5 

and L2/3 pyramidal and hippocampal pyramidal neurons (Magee, 1998; Spruston, 

2008). The dendritic arbour of pyramidal neurons comprises of a thick apical dendrite 

and thin basal, oblique and tuft dendrites. At the time when these regenerative 

membrane potentials were first being described, the more easily identified thick apical 

dendrites were the main subjects of study, because technical limitations made the 

visualisation of smaller dendrites very difficult. These dendrites contain voltage-gated 

channels that allow active processing of currents and exhibit Na+ and Ca2+ spikes 

(Magee, 1998; Spruston, 2008; Stuart and Spruston, 1998). With the improvement of 

imaging techniques, the thin dendrites of pyramidal cells started being investigated 

and it was uncovered that these dendrites can also support local dendritic spikes 

mediated by voltage-gated Na+ or Ca2+ channels and NMDARs (Larkum et al., 2009; 

Major et al., 2008; Rhodes, 2006; Schiller and Schiller, 2001). 

Why do dendritic spikes appear to be such a prominent feature of pyramidal neurons? 

These cells have a larger dendritic arbour, with long apical dendrites that reach the 

outermost cortical layer and receive top-down inputs. This means that the inputs that 

need to get integrated in the axonal initial segment have a long distance to travel 

down and the signal dissipates quickly. A dendritic spike, therefore, would help to 

boost the signal in these distal apical synapses, compensating for the dissipation and 

helping to counterbalance the higher synaptic impact of synapses in the more 

proximal dendrites. In silico models of backpropagating action potential has shown 

that dendritic spikes can provide a mechanism by which spatiotemporally clustered 

inputs affect synaptic plasticity; especially in the case of distal synapses, dendritic 

filtering greatly dissipates the bAP, dendritic spikes provide a mechanism by which 

long-term potentiation (LTP) or long-term depression (LTD) can be achieved without 

feedback from the bAP (Golding et al., 2002). This is especially important in pyramidal 

neurons because due to their large dendritic arbour, they span many cortical layers 

and therefore can receive layer-specific inputs (Spruston, 2008). Dendritic spikes 

have been recorded in proximal dendrites of L5 pyramidal cells as well, so they 

probably provide additional processing power and mechanisms that affect neuronal 

computation. 
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1.3.3 Dendritic spiking in L4 spiny stellate cells 

In contrast to the large dendritic arbors of pyramidal neurons, L4 spiny stellate 

neurons of the barrel cortex exhibit a much smaller dendritic arbour. These cells 

receive direct input from thalamocortical afferents (TCAs) and interconnect to each 

other extensively within each barrel, before sending their axons to L2/3 (Harris and 

Woolsey, 1983). Cells within the barrels have been shown to respond maximally to 

whisker deflections at a specific angle (Bruno et al., 2003; Lavzin et al., 2012). Active 

dendritic integration has been speculated to play a role in the sharpening of neuronal 

tuning curves during sensory processing (Archie and Mel, 2000; Branco and Häusser, 

2010; Poirazi and Mel, 2001; Polsky et al., 2004). Therefore, dendritic spiking in L4 

barrel cortex neuron may provide a way to establish and regulate this specificity by 

potentiating spatiotemporally clustered synaptic inputs triggered by whisker 

deflections at a specific angle. Indeed, Lavzin and colleagues showed that blocking 

NMDAR-mediated dendritic spikes also significantly decreases the orientation tuning 

of these cells to specific angular whisker deflections (Lavzin et al., 2012). 

1.3.4 Types and kinetics of dendritic spikes 

Regenerative membrane potentials are named after the main type of channels that 

mediates them, each exhibiting specific kinetics and preferential location of origin 

along the dendritic branch (Fig 1.2, Antic et al., 2010; Branco and Häusser, 2011; 

Brandalise et al., 2016; Golding et al., 2002; Lavzin et al., 2012; Schiller and Schiller, 

2001). Dendritic spikes have been shown to be mediated by voltage-gated Na+ 

channels (sodium spikes), Ca2+ channels (calcium spikes) and NMDA receptors 

(NMDA spikes). Sodium spikes are usually very narrow in width (less than 5 ms); as 

it is the case for most types of dendritic spikes, they can occur in the absence of 

somatic action potential generation, which distinguishes them from backpropagating 

action potentials (Golding and Spruston, 1998; Losonczy and Magee, 2006; Stuart et 

al., 1997; Sun et al., 2014). Calcium spikes are much broader (more than 10 ms in 

duration) and they are usually elicited by more prolonged depolarisations (Amitai et 

al., 1993; Golding and Spruston, 1998; Llinás and Sugimori, 2012; Pockberger, 1991; 

Stuart et al., 1997; Wong et al., 1979). NMDA spikes have been reported to be 

between 40-50 mV in amplitude (Nevian et al., 2007) and are the longest in duration, 

lasting for 50-100 ms (Major et al., 2008; Polsky et al., 2004; Rhodes, 2006; Schiller 

et al., 2000). Due to the high Ca2+ permeability of NMDARs, Ca2+ imaging of the 

dendritic arbour can be used to extract spatiotemporal information about dendritic 

spikes. Using this technique and modelling, NMDA spikes were found to occur within 

short dendritic segments between 10-40 µm (Larkum et al., 2009; Major et al., 2008; 

Rhodes, 2006; Schiller et al., 2000). While Ca2+ spikes occurring in the pyramidal 
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apical thick dendrites usually propagate into the soma and trigger action potentials 

(Amitai et al., 1993; Connors and Gutnick, 1990; Helmchen et al., 1999; Kim and 

Connors, 1993; Larkum et al., 1999; Larkum and Zhu, 2002; Schiller et al., 1997), 

NMDA spikes in the thin dendrites usually involve only one sister branch and rarely 

lead to action potential generation (Holthoff et al., 2004; Larkum et al., 2009; Major et 

al., 2008; Milojkovic et al., 2005; Oakley et al., 2001; Schiller et al., 2000); however, 

multiple NMDA spikes can induce Ca2+ spiking that in turn can trigger somatic action 

potential (Larkum et al., 2009; Lavzin et al., 2012; Milojkovic et al., 2005; Palmer, 

2014; Polsky et al., 2004). 

1.3.5 Location-specific generation of dendritic spikes 

Studies on cortical pyramidal neurons show that different portions of the dendritic 

arbor usually preferentially support a specific type of dendritic spike. Sodium spikes 

occur throughout the length of the arbour, while calcium spikes are generally 

generated in the thick apical dendrites and NMDA spikes occur preferentially in the 

thin apical tuft and basal dendrites (Harnett et al., 2015; Larkum et al., 2009; Nevian 

et al., 2007; Schiller et al., 1997; Stuart et al., 1997; Yuste et al., 1994). Additionally, 

to date, only NMDAR-mediated regenerative events have been observed in the spiny 

stellate neurons of the mouse barrel cortex (Lavzin et al., 2012). 
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Figure 1. 2 Dendritic spikes in two types of cortical neurons 

Dendritic spikes are generated by spatiotemporally synchronous synaptic input. They can be 
mediated by Ca2+, Na+ and NMDAR are generated in specific areas of the dendritic tree. (Left) 
diagram of a L5 pyramidal cell. While Na+ spikes can be elicited almost ubiquitously in the 
dendritic tree, Ca2+ are specific to the apical trunk and NMDA spikes to tufts and basal 
dendrites. (Right) diagram of a L4 spiny stellate neuron. These cells support NMDA spikes. 
DS: dendritic spike; AP: action potential. Adapted from Stuart and Spruston (2015). 
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1.3.6 Effects and implications of dendritic spike generation 

Dendritic spike generation causes an increase in intracellular concentration of Ca2+ 

(Major et al., 2008; Milojkovic et al., 2005; Takahashi and Magee, 2009) which, by 

acting as a second messenger, can affect short- and long-term plasticity (Golding et 

al., 2002; Holthoff et al., 2004; Johnston and Narayanan, 2008; Kampa et al., 2007; 

Kim et al., 2018; Lau et al., 2009; Losonczy and Magee, 2006; Nimchinsky et al., 

2002; Sjöström et al., 2001; Spruston, 2008; Takahashi and Magee, 2009; Zucker 

and Regehr, 2002). This modulation of synaptic plasticity has been shown to occur 

even in the absence of action potential generation at the soma (Gambino et al., 2014; 

Golding et al., 2002). 

Computer modelling studies have supported the idea that dendritic spiking may 

contribute to the compartmentalisation of inputs on the dendritic arbour, so that each 

dendritic branch can act as an independent computational unit (Archie and Mel, 2000; 

Gollo et al., 2009; Poirazi and Mel, 2001). This has important implications for neuronal 

computations as it allows parallel processing of information, as well as integration of 

inputs from different pathways converging onto the same neuron. 

Due to their nonlinear nature, dendritic spikes can amplify spatially clustered and 

temporally synchronised synaptic inputs. From a biological point of view, this also 

means that functionally related inputs that are also spatially clustered can influence 

local plasticity to a level which can be disproportionate to their objective synaptic 

weight (i.e. spatiotemporal patterns are important, as well as input strength). 

Therefore, this would favour a model where synaptic inputs are clustered, over a “salt 

and pepper” model where synaptic inputs relating to the same function are sparsely 

distributed across the dendritic arbour. Indeed, physical clustering of functionally 

related synapses enhances the probability of reaching the threshold for a local 

dendritic spike, leading to more efficient cooperation between inputs related to the 

same functional task. 

1.3.7 Distribution of synaptic inputs: evidence for and against synaptic 

clustering 

Modelling studies have, indeed, shown that the activation of clustered synapses (~ 40 

µm apart) can produce a supralinear response, while inputs resulting from the co- 

activation of synapses located farther apart (~60 µm) summate linearly (Araya et al., 

2006). Electrophysiology data further corroborated the computational data, showing 

how  in  L5  pyramidal  neuron  dendrites,  a  2-fold  larger  response  is  obtained by 
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activation of neighbouring inputs (20-40 µm apart); this nonlinearity was found to be 

NMDAR-dependent (Polsky et al., 2004). 

Therefore, dendritic spikes simultaneously actively reinforce and thrive in a network 

that favours synaptic clustering of spatiotemporally synchronised and putatively 

functionally related inputs. However, it is unclear whether this synaptic organization 

is present universally across all regions and various neuronal cell types of the nervous 

system. 

In order to shed light on whether inputs are randomly distributed on postsynaptic sites 

or whether structured organisation underlies their location, computational models and 

empirical studies have been employed to address this question in several ways. 

In support of a clustered organisation of functionally related inputs, Poirazi and Mel’s 

computational model predicted that, over time, pairing activations of synapses tends 

to cluster and segregate activated inputs from asynchronous others (Poirazi and Mel, 

2001). McBride and colleagues showed the formation of a new circuit in the inferior 

colliculus in owls that were raised with prism glasses that shifts the field of view by 

19° (McBride et al., 2008). This new circuit forms alongside the original visual circuit, 

providing a way to compare the synaptic organisation of functionally relevant and 

functionally suppressed circuits. In the newly formed, functionally learned circuit, the 

intercontact distances of putative synapses was never observed to be <20 µm, while 

in the original functionally suppressed circuit a mixture of <10 µm but also a 

substantial fraction of >20 µm inter-contact distances was found. This suggests that 

functional circuitry favours the clustering of inputs. Furthermore, 2-photon imaging of 

developing hippocampal pyramidal cells in rat pups also revealed that synapses 

located within 16 µm of each other are more likely to be co-active; this arrangement 

is an activity-dependent feature, since the presence of tetrodotoxin significantly 

dispersed the distribution of synapses (Kleindienst et al., 2011). In vivo studies 

involving calcium imaging of spontaneous activity in the developing visual system 

uncovered a synaptic plasticity mechanism whereby transmission efficiency of 

desynchronised synapses becomes depressed; this suggests that synchronisation of 

neighbouring synapses is important not only for efficient transmission but also for 

plastic changes occurring within the developing neural circuit (Winnubst et al., 2015). 

Additionally, in the CA3 of pyramidal cells of postnatal day (P) 7 rats, 10 µm of inter- 

synaptic distance was determined to be the threshold for high probability of co- 

activation (Takahashi et al., 2012). Task learning was also found to cause the 

appearance of new clustered synapses on the L5 pyramidal neurons of the motor 

cortex, albeit in a much smaller scale (2µm average inter-synaptic distance, Fu et al., 
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2012). Furthermore, the learning of a new task induced the generation of new clusters 

of synapses, spatially segregated from those formed in the learning of the previous 

task (Fu et al., 2012). The principle of clustering of functionally related synaptic inputs 

appears to extend to inhibitory synaptic inputs. Studies on inhibitory synaptic inputs 

onto cortical L2/3 pyramidal neurons show that dynamic changes of these inputs are 

spatially clustered and that this plastic organisation is influenced by sensory inputs 

(Chen et al., 2012). Finally, a recent EM study provided structural evidence that 

synaptic inputs onto CA1 pyramidal neurons are spatially clustered in the distal, but 

not proximal dendrites (Bloss et al., 2018). This collection of studies suggests that 

synapses that are functionally related tend to cluster together and this spatial 

organisation is activity dependent. 

However, not all studies show evidence for the clustering of synaptic inputs. The 

Konnerth laboratory has produced a series of 2-photon imaging studies investigating 

spatial distribution of dendritic calcium transient elicited via sensory stimulation in the 

L2/3 cells of the mouse visual cortex (Jia et al., 2014), L2 cells of the mouse barrel 

cortex (Varga et al., 2011) and in the L2/3 cells of the mouse auditory cortex (Chen et 

al., 2011). In all these studies, examples were found where specific sensory features, 

to which all the examined cells were tuned, would elicit a calcium response in different 

non-neighbouring dendrites. On the other hand, different stimulus features could 

activate synapses that were close by on the same dendrite. This spatial arrangement 

of functionally related inputs appears to be geared more towards a “salt and pepper” 

distribution of inputs, which directly contrasts with previously discussed clustering of 

inputs. Additionally, correlated light and electron microscopy of retrogradely traced 

thalamic neurons onto L4 spiny stellate neurons of the visual cortex of the cat also 

presented no evidence of synaptic clustering onto these dendrites (Costa and Martin, 

2011). 

Therefore, the prevalence of clustered synapses or dispersed synapses remains an 

open question. It is unclear whether the presence of a more clustered organisation of 

synaptic inputs is a universally applied feature of neural networks, or whether it is 

restricted to certain regions, cell types or developmental timepoints. The 

establishment and maintenance of a clustered input regime would involve the 

elimination of spatially isolated synapses and the formation of co-active synapses 

localised near each other. Indeed, a mechanism for the bidirectional regulation of this 

process has been proposed by a recent paper, whereby brain-derived neurotrophic 

factor (BDNF) and pro-BDNF act to stabilise clustered synapses and suppresses 

unsynchronised synapses, respectively (Niculescu et al., 2018). 
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1.3.8 Behavioural relevance of dendritic spikes in vivo 

Several studies have probed the behavioural relevance of these local nonlinear 

events in vivo. Takahashi and colleagues showed that in mice (Takahashi et al., 

2016), Ca2+ spiking affects the perception of whisker stimulation. Indeed, the 

probability of the detection of the movement increased when dendritic activity was 

induced and decreased when activity was inhibited. Furthermore, Ca2+ spikes were 

found to be generated during whisking behaviour, when the vibrissal motor cortex and 

thalamic inputs combined, suggesting that this type of dendritic spikes play an active 

role during sensory-motor integration. Finally, NMDA spikes in L2/3 and L4 neurons 

were detected during whisker deflection (Gambino et al., 2014; Lavzin et al., 2012). 

These types of spikes were found to be important for neuronal tuning in the 

somatosensory and visual cortex (Lavzin et al., 2012; Smith et al., 2013). 

In conclusion, dendritic spikes can participate in three processes: 

 
1. Synaptic plasticity: even in the absence of action potential, synapses have 

been shown to modify their strength after dendritic spike generation 

(Gambino et al., 2014; Golding et al., 2002). 

2. Increase of the neuronal computational power: by providing a mechanism for 

supralinear summation of inputs and allowing dendrite-specific independent 

integration of signals. 

3. Sharpening of neuronal tuning of behavioural responses (Lavzin et al., 2012; 

Smith et al., 2013). 

Because of these characteristics, dendritic spikes have the potential to play an 

important role during synapse formation and maturation, a developmental stage 

during which activity has a dramatic effect on shaping neuronal circuitry. However, it 

is unclear whether these events require functionally mature synapses in order to 

occur, or whether they can occur during synaptic development and contribute to this 

process. 

1.3.9 Experimental electrophysiological features of dendritic spikes 

Experimentally, dendritic spikes have been investigated by the detection a nonlinear 

response to an increasing stimulus intensity. Two main methods have been employed 

to stimulate an increasing number of neighbouring synapses on a single dendritic 

branch: focal synaptic stimulation at different intensities or glutamate uncaging on an 

increasing number of dendritic spines (Antic et al., 2010; Branco and Häusser, 2011; 

Brandalise et al., 2016; Golding et al., 2002; Lavzin et al., 2012; Schiller and Schiller, 

2001). Dendritic spikes are characterised by a nonlinear response to increasing input 
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when it exceeds a certain threshold. This ”jump” in the response is thought to be due 

to the activation of voltage-gated receptors on nearby dendritic areas, caused by the 

overflow of depolarisation from the activated synapses. 

Furthermore, as dendritic spikes have been shown to be mediated by either Na+, Ca2+ 

or NMDA receptors, pharmacological or physiological blockage that significantly 

abolishes the characteristic nonlinearity can be used to investigate the contribution of 

the ion channel or receptor, thus determining the type of dendritic spike that is being 

generated. For example, in the case of NMDAR-mediated dendritic spike, washing 

the brain slice with extracellular (2R)-amino-5-phosphonovaleric acid; (2R)-amino-5- 

phosphonopentanoate (APV), using internal solution containing intracellular MK801 

or hyperpolarising the cells thus preventing the activation of the receptors via Mg+ 

block release, have been shown to prevent the generation of dendritic spikes. 

Blocking the ion channels or receptors that mediate the generation of a dendritic spike 

linearizes the input/output curve; i.e. it abolishes the supralinear summation of inputs 

(e.g. Lavzin et al., 2012). This method has been used to prove the mechanism by 

which dendritic spikes can be generated and to ascertain which voltage-gated 

components are involved in this phenomenon. 

Recently Lavzin and colleagues showed that they were able to elicit nonlinear 

responses in the spiny stellate neurons of the mouse barrel cortex between P15-20. 

In their hands, these dendritic spikes were NMDAR-dependent and were visualised 

by performing calcium imaging, which highlighted the branch-specificity of these 

events (Lavzin et al., 2012). Furthermore, their study showed that preventing the 

occurrence of NMDAR-dependent events, acutely in an in vivo mouse brain, 

significantly decreased the angular tuning to whisker deflection of layer 4 spiny stellate 

neurons. 
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1.4 Stages of the development of sensory systems 

The development of the neocortex relies on an intricate and precisely 

spatiotemporally regulated interplay between genetic factors and neuronal activity 

that can be grossly divided in two stages: 

1. an embryonic stage where genetically specified programs govern 

neurogenesis and neuronal migration 

2. an early postnatal, activity-dominated stage during which the immature 

template of the neural circuit is refined 

1.4.1 Embryonic stage of neural development 

The mammalian embryonic CNS originates from the neuroepithelial cells that 

constitute the neural tube (Götz and Huttner, 2005). The two main classes of cortical 

neurons, excitatory and inhibitory gamma-Aminobutyric acid (GABA) -ergic, emerge 

from distinct developmental lineages. 

Excitatory neurons are generated via asymmetric division of progenitor cells located 

in the subventricular and ventricular zone (Fig. 1.3). The major progenitor cells are 

radial glial cells (RGCs, Williams and Price, 1995). RGCs are a transient population 

of non-neuronal cells that are fundamental for the generation of the vast majority of 

neurons and glial cells (Campbell and Götz, 2002; Kriegstein and Gotz, 2003; Noctor 

et al., 2001). They exhibit a characteristic cell morphology, bipolar cells with radial 

processes that span the whole depth of the cortex (Bentivoglio and Mazzarello, 1999; 

Cameron and Rakic, 1991) and they provide structural scaffolding for neurons 

migrating radially towards the cortical plate (Levitt and Rakic 1980; Rakic 1988; 

Hatten, 2002). After an intense period of neurogenesis, RGC cells switch to 

gliogenesis, giving rise to astrocytes and oligodendrocytes (Kriegstein and Alvarez- 

Buylla, 2009). 

Newly-generated postmitotic neurons make their way to the cortical plate to establish 

distinct cortical layers. The stereotypic laminar structure is essential for the correct 

functioning of the neocortex. Cortical layers have been shown to be established in an 

“inside-out” fzashion, whereby early born neurons populate the deeper layers and 

neurons generated later migrate through the early-born neurons and locate in the 

more superficial layers (Angevine et al., 1961, Berry et al, 1965). There are two modes 

of radial migration that excitatory neurons can adopt. During early development the 

most prominent mode is somal translocation (Miyata et al., 2001; Morest, 1970; 

Nadarajah et al., 2001); neurons develop a long radial process and drag their somas 

towards the pial surface (Nadarajah et al., 2001). During later stages of development, 
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newly-born neurons predominantly migrate via radial glia guided locomotion 

(Nadarajah and Parnavelas, 2002; Noctor et al., 2004; Sidman and Rakic, 1973). 

Migrating neurons follow the cortical plate spanning RCG processes towards the 

marginal zone and when their leading process makes contact with this layer, they 

detach from the radial glia (terminal translocation phase, Nadarajah et al. 2001). 

Appropriate radial migration leading to correct laminar organization in the cortex has 

been shown to rely on the secretion of an extracellular glycoprotein, reelin, from Cajal- 

Retzius cells located in the marginal zone (Marin-Padilla and Marin-Padilla, 1982; Río 

et al., 1997; Marín-Padilla, 1998). In fact, in the reeler mouse, where this protein is 

absent due to a mutation, the cortical layers are organized in a reversed “outside-in” 

fashion (Caviness and Rakic, 1978; D’Arcangelo, 2001; Drakew et al., 2002; Forster 

et al., 2002; Magdaleno et al., 2002; Ogawa et al., 1995). This mouse is characterized 

by motor dysfunctions, ataxic and reeling gait 

 
 
 

 

 
Figure 1. 3 Cortical development of excitatory neurons 

The diagram shows the developmental growth of the cortical plate. The red arrow is showing 
the direction of increased time. Neurons are generated in the proliferative zone and migrate 
towards the superficial layers along radial glia processes. They stop their migration just below 
the marginal zone/L1, and establish cortical layers in an inside-out manner. 
IZ, intermediate zone; SVZ, subventricular zone; VZ, ventricular zone. 
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GABAergic cortical interneurons are generated in the extracortical areas of the ventral 

telencephalon, mainly the medial ganglionic eminence (MGE, Lavdas et al., 1999; 

Wichterle et al., 1999), the caudal ganglionic eminence (CGE, Nery et al., 2002; Xu 

et al., 2004), and the preoptic area (POA, Gelman et al., 2011). RCGs in the MGE 

have been shown to undergo asymmetric cell division to generate neocortical 

interneurons (Brown et al., 2011). Due to the distal location of the ganglionic 

eminences compared to the origin of excitatory neurons, neocortical interneurons 

embark in a prolonged tangential migration to reach the appropriate layer in the 

developing cortical plate (Anderson et al., 1999, 2001; Jimenez et al., 2002; Lavdas 

et al., 1999; Miyoshi et al., 2010; Nery et al., 2002; Polleux et al., 2002; Tan et al., 

1998; Ware et al., 1999; Wichterle et al., 1999; Yozu et al., 2005). Once the migrating 

neocortical interneurons finally reach the neocortex, they continue to diffuse 

tangentially in the MZ, SP and SVZ (Lavdas et al., 1999), until eventually they switch 

to radial migration to reach their final destination in the correct cortical layer (Polleux 

et al., 2002; Tanaka et al., 2010). 

The excitatory and inhibitory neurogenesis and migration appears to be an extremely 

coordinated and co-dependent event; indeed, despite the different duration of 

migration from the place of origin, excitatory and inhibitory neurons with similar 

birthdates end up populating the same cortical layer (Fairen et al., 1986; Miller, 1985; 

Nery et al., 2002; Valcanis and Tan, 2003). Additionally, interneurons are added to 

the neocortex only after their excitatory partners, suggesting the former cells follow 

signals from the latter cells (López-Bendito et al., 2004). 

1.4.2 Early postnatal stages of neural development 

Two types of activity sculpt the developing sensory neural system: spontaneous 

activity, which comprises of electrical events not evoked by overt external stimuli, and 

sensory-triggered activity, which is activity generated in response to experiencing the 

surrounding environment via peripheral sensory receptors. 

Spontaneous activity is the most prominent type of activity during the earliest 

postnatal stages of development of many mammalian sensory systems; this type of 

activity has been most extensively studied in the visual system of several mammals, 

including cats and rats, but has also been found in the developing auditory system 

and in the rodent somatosensory cortex (Allene and Cossart, 2010; Clause et al., 

2014; Torborg and Feller, 2005). Most spontaneous activity reported in these systems 

is associated with spontaneous activity in the pertinent sensory organ, e.g. the retinal 

waves (Ackman et al., 2012; Feller et al., 1996; Meister et al., 1991; Wong et al., 

1993), auditory hair cell activation (Tritsch and Bergles, 2010; Wang and Bergles, 
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2015), whisker twitch (Tiriac et al., 2012). In the mouse barrel cortex, in vivo Ca2+ 

imaging in the neonatal pups has revealed “patchwork” patterns of activity in 

correspondence to the barrel cortex map (Mizuno et al., 2018). This activity was 

evoked from the periphery and was relayed to the cortex via thalamocortical axons. 

Spontaneous activity, therefore, appears to be a common and robust feature of 

developing sensory systems. 

Early postnatally, neurons are maturing and forming connections between each other, 

and spontaneous activity is thought to help shape the emerging neural circuits, before 

the organism has had a chance to experience the surrounding world via the senses, 

e.g. before eye opening. (Ackman et al., 2012; Cang and Feldheim, 2013; Kandler et 

al., 2009; Kirkby et al., 2013). Spontaneous activity is thought to be a mechanism for 

priming the system for the advent of sensory experience; this way when, for example, 

the eyes open, a neural system is already in place and the incoming information can 

immediately undergo processing to, at least, some extent. 

During early postnatal ages, developing synaptic connections are extremely plastic 

and very amenable to perturbations. These phases are termed critical periods 

(Erzurumlu and Killackey, 1982). As distinct neuronal components within a circuit 

develop at different times, they also have specific critical periods related to their 

synaptogenesis and synapse maturation timeframe. 

At the onset of sensory perception and processing, experience-dependent plasticity 

is thought to instruct the addition or removal of synapses that contribute to the 

refinement of immature overly interconnected neural circuits (Holtmaat and Svoboda, 

2009; Lichtman and Colman, 2000). The uncovering of this phenomenon is mainly 

due to studies involving sensory manipulation, especially in the visual system and the 

barrel cortex. Changes in sensory perception achieved via perturbing light exposure, 

retinal lesions, whisker trimming, for example, has been shown to cause changes in 

spine morphology and dynamics (Fagiolini and Hensch, 2000; Hofer et al., 2009; 

Holtmaat et al., 2006; Keck et al., 2008; Lendvai et al., 2000; Trachtenberg et al., 

2002; Tropea et al., 2010; Zuo et al., 2005). 

Therefore, while a template of neuronal circuits is genetically specified and largely 

established during embryonic and perinatal stages of development, the refinement of 

this immature network of cells relies on activity-dependent mechanisms that occur 

during the first few weeks after birth. 
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1.5 Morphological and functional changes during synaptic 

formation and maturation 

1.5.1 Synaptic maturation 

The formation and maturation of glutamatergic synapses are accompanied by many 

morphological and functional changes. 

During early development, thin dendritic protrusions called filopodia are predominant 

(Fig. 1.4). As the brain matures, however, the proportion of these dynamic structures 

gradually declines (Zuo et al., 2005). The daily turn over of filopodia is in contrast to 

the stable nature of dendritic spines (Grutzendler et al., 2002; Zuo et al., 2005). In 

mice, substantial synaptic pruning occurs between 1-4 months, as around 30% of 

spines are lost and not replaced (Grutzendler et al., 2002; Zuo et al., 2005). Generally, 

the dynamics of dendritic spines greatly declines with age; however, this is not to say 

that the adult brain is uncapable of changing and adapting. On the contrary, an ever- 

growing plethora of data shows that plastic mechanisms in the brain are retained 

throughout life (Bavelier et al., 2010; Chen et al., 2010; Holtmaat and Svoboda, 2009; 

Zito and Svoboda, 2002). 
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Figure 1. 4 Morphological changes during synapse formation and maturation 

A. Diagram showing developing synapses at different maturational stages. During synapse 
maturation, the shape of the dendritic spine transitions from being filopodia-like to being 
mushroom-shaped. NMDAR-containing silent synapses become unsilenced via the insertion 
of AMPARs. The diagram also shows a switch in the major scaffolding protein at the synapse, 
changing from SAP102 to PSD95. 
B. Maximum projected 2-photon image of the apical dendrite of a L5 pyramidal neuron from 
a P10 mouse. The neuron was patched and filled with Alexa 594. As this neurons is 
developing the three main spine morphologies can be observed, from a thin, filopodial like 
spine, to a stubby spine to a mushroom-shaped spine. Image is false-coloured reflecting the 
depth within the slice. 
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1.5.2 Protein repertoire of synaptic compartments 

A remarkably large number of proteins are incorporated into the presynaptic terminal 

and PSD (Fig. 1.5, Collins et al., 2006). The presynaptic terminal contains many 

proteins involved with ensuring the correct localization and fusion of synaptic vesicles 

(Sudhof, 2004). Synaptic vesicles are tethered to the active zone and to the actin 

cytoskeleton by several scaffolding proteins (Phillips et al., 2001). 

Proteins in the excitatory postsynaptic compartment, such as glutamate receptors and 

other ion channels, are linked to a large number of scaffolding proteins to form a 

dense molecular network. This interaction is crucial for ensuring correct trafficking of 

receptors, synaptic transmission and plasticity (Kennedy, 2000; Kim and Sheng, 

2004; Montgomery et al., 2004). Organization in the PSD is orchestrated by an 

extremely conserved group of scaffolding proteins, the membrane-associated 

guanylate kinase proteins (MAGUKs). 

Additionally, transsynaptic adhesion proteins bind to each other across the synaptic 

cleft, to regulate synapse formation and synaptic plasticity (Craig et al., 2006; Garner 

et al., 2006; Scheiffele, 2003; Waites et al., 2005). 

 
 

Figure 1. 5 Pre- and post-synaptic compartment 

Diagram of a presynaptic neuron (grey) and a postsynaptic neuron (orange). Zoomed in area 
shows a synapse with its basic components: presynaptic vesicles, postsynaptic glutamate 
receptors and scaffolding proteins linking to the actin cytoskeleton. 
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1.5.3 Silent synapses 

During perinatal development glutamatergic chemical synapses are mostly “silent” 

(Khazipov and Luhmann, 2006; Lohmann and Kessels, 2014). These synapses are 

called silent because they contain mainly NMDARs, which require depolarisation- 

induced release of a Mg+ block additionally to glutamate binding for their activation, 

and are therefore inactive at normal neuronal resting potentials (Nowak et al., 1984). 

The presence of silent synapses decreases with increase in developmental age 

(Isaac et al., 1997; Rumpel et al., 2004, 1998). As experimental induction of LTP 

drives the insertion of AMPARs, thereby causing the unsilencing of synapses, this is 

thought to be an important step for the correct establishing of mature neural circuits 

(Kerchner and Nicoll, 2008). 

Indeed, during the first 2 postnatal weeks in mice and rats, the number of gap 

junctions and silent synapses decrease (Valiullina et al., 2016; Vitali and Jabaudon, 

2014), whereas an increase in chemical synapses occurs from the 2nd postnatal week 

(De Felipe et al., 1997). 

In layer 4 neurons of barrel cortex, silent synapses are present in the early stages of 

postnatal development (P2-5) but disappear by P8-9 (Isaac et al., 1997). The 

disappearance of silent synapses has been reported to be activity dependent both in 

the barrel cortex and the visual system (Ashby and Isaac, 2011; Funahashi et al., 

2013; Han et al., 2017). 

As unsilencing of synapses can be triggered by activity, and experiments involving 

visual deprivation or whisker trimming during critical periods causes an extension of 

the existence of silent synapse in the visual and barrel cortex, respectively (Ashby 

and Isaac, 2011; Funahashi et al., 2013; Han et al., 2017), it is speculated that a 

combination of extrinsic and intrinsic factors contribute to the developmentally 

regulated insertion of AMPARs (Kanold et al., 2019). 

Furthermore, during this first postnatal week, a switch from depolarising to 

hyperpolarising action of GABA occurs, mediated by changes in expression of Cl - 

transporters NKCC1 and KCC2 (Kilb, 2012). 
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1.5.4 Subunit switches in glutamate receptors 

NMDARs are heteromeric tetramers containing an essential NR1 subunit (which binds 

to glycine or D-serine), and one or more glutamate-binding NR2 (subunit A-D) and/or 

glycine-binding NR3 (Dingledine et al., 1999; Wenthold et al., 2003). These glutamate 

receptors and scaffolding proteins can be found in dendrites before synapses form 

(Barrow et al., 2009; Craig et al., 2006; Washbourne et al., 2004, 2002). 

The expression of NMDAR subunits is developmentally-regulated and region-specific. 

In situ hybridization studies on the whole mouse brain have shown that the obligatory 

NR1 subunit is expressed embryonically and its levels gradually increase during 

postnatal development (Watanabe et al., 1992). On the other hand, NR2A is mainly 

detected postnatally and its expression levels undergo a striking increase between 

P7 and P21. NR2B is expressed embryonically in the cortical plate and its levels are 

observed to peak around birth and then decline slightly. NR2C is expressed 

postnatally in the cerebellum and the olfactory bulb and in L4 barrel cortex spiny 

stellate cells (Binshtok et al., 2006). Finally, NR4 is expressed in the diencephalon 

and brainstem during embryonic development. Its levels peak around P7 and then 

decline sharply. 

In cultured neurons, NR2B is expressed from 2 days in vitro (DIV) until 15 DIV, then 

its expression abruptly declines (Bustos et al., 2014). On the other hand, NR2A cannot 

be detected at 2 DIV, then its expression increases, peaking in mature hippocampal 

neurons. Either reducing the expression of NR2B or increasing the expression of 

NR2A and PSD95 leads to an enhancement of dendritogenesis in immature neurons. 

This effect is dependent on the level of maturity of the neuronal cultures, as both 

manipulations are required to reach the same effect in mature neurons. Knock-down 

of PSD95 has a direct effect on synaptic clustering of NR2B, which suggests that the 

increasing levels of this MAGUK during development lead to the halting of NR2B 

clustering, thereby preventing further dendritic branching (Bustos et al., 2014). 

Additionally, acute manipulations in in vivo and in vitro preparations have shown that 

NR2B regulates dendritogenesis (Espinosa et al., 2009; Sepulveda et al., 2010). 

Destabilization of NR2A subunit at synapse leads to an increase in NR2B to 

compensate the lack of this subunit; this suggests that distinct, independent, 

mechanisms are employed to anchor at PSD (Bard et al., 2010). 

However, a recent study examining the molar ratio of NR2A to NR2B expression 

found that there is a region-specific difference in expression of these two subunits. 

Consistently with previous literature, in the cerebellum of adult mice the NR2A subunit 
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was most prevalent in the adult mouse. Surprisingly, NR2B subunit was 6- and 3- fold 

more abundant than NR2A in the cortex and hippocampus, respectively (Frank et al., 

2016). By the end of the 4th postnatal week, the extensive period of synaptogenesis 

and dendritic remodelling reached a more stable balance (De Felipe et al., 1997). The 

reported developmental NMDA subunit switch occur concomitantly with a switch in 

members of the MAGUK family of proteins – from early developmentally expressed 

SAP102 to the later-expressed marker for mature synapses PSD95. Additionally, 

several PSD95 direct and indirect interactors (such as GKAP and Shank) have also 

been reported to be developmentally regulated (Kawashima et al., 1997; Kelly and 

Vernon, 1985; Lim et al., 1999). 

These changes in protein content and morphological features of the pre- and 

postsynapses, have a great effect on the functional properties of these developing 

synapses (Fig. 1.6). Changes in the morphology of the postsynaptic dendritic spine is 

likely to have important implication in calcium concentrations and the 

compartmentalization of biochemical gradients. Furthermore, the developmental 

NMDAR  subunit  change NR2BNR2A  increases the kinetics of  channel opening  

of this receptor (Monyer et al., 1994). These two NMDAR subunits have been linked 

to the induction of plasticity, such as LTP and LTD (Bartlett et al., 2007; Massey et 

al., 2004). Because of this closely interlinked relationship between structure and 

function, the study of changes in the prominent MAGUK proteins can help further 

uncovering mechanisms underlying synaptogenesis, such as receptor  trafficking 

and synapse maturation. 
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Figure 1. 6 Structural and functional changes during synapse formation and maturation 

Structure and function are closely linked. This diagram shows a few developmental structural 

changes and how they affect the functional features of neurons and circuitry. 
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1.6 MAGUKs 

The MAGUK proteins are a highly conserved superfamily of scaffolding proteins. 

They have been shown to be involved in a wide variety of cellular processes such as 

cell proliferation and differentiation and neuronal function. 

1.6.1 DLG subfamily of scaffolding proteins 

The DLG subfamily members of MAGUK proteins include synapse-associated protein 

97 (SAP97), synapse-associated protein 102 (SAP102), postsynaptic density protein 

93 (PSD93) and postsynaptic density protein 95 (PSD95). These proteins bind to 

glutamate receptors (either directly or indirectly) and adhesion proteins and 

participate in their trafficking, clustering and retention at the postsynapse (Fig. 1.7). 

All the DLG family members are characterized by the inclusion of 3 PDZ domains and 

a SH3-GK tandem domain. MAGUKs form protein networks at neuronal synapses 

and provide a functional link to the actin cytoskeleton, which can be modulated by 

them (Murata and Constantine-Paton, 2013). On top of providing a structural role and 

being essential for receptor synaptic targeting, they can also regulate changes in 

synaptic function. Aberrant expression of many components of the postsynaptic 

density have been linked to psychiatric disorders, including neurodevelopmental 

disorders, such as autism spectrum disorder and schizophrenia. For example, post- 

mortem studies of patients have uncovered decreased expression of PSD95 and 

SAP102 which underlie synaptic disfunctions observed in these conditions (de 

Bartolomeis et al., 2014; Tarpey et al., 2004; for reviews see Gardoni et al., 2009; 

Kaizuka and Takumi, 2018). This highlights the importance of these family of proteins 

for the correct development and functioning of neural circuits. 

This study focuses on the expression of two MAGUKs: SAP102 and PSD95. Despite 

their similar molecular composition, SAP102 and PSD95 exhibit distinct expression 

pattern, preferential binding partners and functional roles. These differences are 

thought to at least partially be due to different protein regulation based on activity- 

dependent and developmentally-regulated splicing and posttranslational 

modifications that these proteins undergo. 
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Figure 1. 7 The MAGUK family of scaffolding proteins 

The MAGUK family of protein is comprised of 5 subfamilies. The DLG subfamily comprises of 
PSD95, PSD93, SAP102 and SAP97. All the members of this subfamily containg 3 PDZ domains, 
an SH3 and a GUK domain. Additionally, PSD95 has a palmitoylation site at its N-terminus. 

 
 

1.6.2 Proteins and their regulatory sites 

SAP102 is a cytoplasmic MAGUK that is enriched at the PSD, but has also been 

observed in dendritic shafts and axons, albeit more diffusely (El-Husseini et al., 2000; 

Müller et al., 1996; Sans et al., 2005; Zheng et al., 2010). Its expression levels are 

high both in young and mature neurons and it has been shown to have a major role 

during the synaptic trafficking and clustering of NMDARs during early brain 

development (Elias et al., 2008; Sans et al., 2003; Washbourne et al., 2002). This 

protein exists in 3 developmentally-regulated splice variants which regulate its 

synaptic targeting and receptor binding (Chen et al., 2011; Müller et al., 1996). 

SAP102 binds to the NR2B subunit of NMDARs, which is the dominant NMDAR 

subunit in immature synapses (Chen et al., 2011; Sans et al., 2000). This binding is 

specific to the SH3-GK hinge region of one of SAP102 splice variants, which has been 

shown to be upregulated during critical periods of filopodial development in the 

dendrite (Chen et al., 2011). This SH3/GK domain is also required for the synaptic 

localisation of SAP102 (Zheng et al., 2010). 

On the other hand, PSD95 is one of the most abundant proteins at the post-synaptic 

density of mature glutamatergic synapses (Chen et al., 2011; Cheng et al., 2006; 

Kennedy, 1997; MacGillavry et al., 2013; Nair et al., 2013). In fact, it was estimated 

that an average synapse contains approximately 300 copies of this protein (Cheng et 
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al., 2006). While both SAP102 and PSD95 are enriched at the PSD, PSD95 appears 

more discretely densely packed within this structure (Zheng et al., 2010). This protein 

can directly bind NMDARs via its PDZ domain, and indirectly bind AMPARs via 

stargazing (Schnell et al., 2002). AMPARs are recruited to the PSD by interactions 

with the first two PDZ domains of PSD95 (Schnell et al., 2002). 

Membrane targeting of both PSD95 and PSD93 has been shown to rely on the 

palmitoylation of cystine residues at the C-terminus of these proteins (Craven et al., 

1999; Fukata et al., 2004; Jeyifous et al., 2016; Topinka and Bredt, 1998). This 

posttranslational modification is also essential for the retention of PSD95 and 

clustering of AMPARs at the PSD (El-Husseini et al., 2000). PSD95 requires 

palmitoylation to bind to receptors because this modification induces a conformational 

change from compact to elongated form, allowing the binding to occur (Jeyifous et al., 

2016). While SAP102 preferentially binds to NR2B, PSD95 shows preferential binding 

to NR2A, specifically in mature brains (Sans et al., 2000). In baseline conditions, 

PSD95 undergoes continuous cycles of depalmitoylation and repalmitoylation, which 

ensure the maintenance of PSD95 clusters at the PSD (Fukata et al., 2013). This 

protein has a constitutive rate of turnover that can be bidirectionally modulated by 

synaptic activity (El-Husseini et al., 2000; Noritake et al., 2009). 

The direct binding of the L27 domain of SAP97 to both NMDARs and AMPARs 

requires a similar conformational change (from compact to elongated version of the 

protein) and this is mediated by CASK binding. Interestingly, this conformational 

change dictates whether this protein binds to AMPAR (compact form) or NMDARs 

(extended, Jeyifous et al., 2016). 

1.6.3 Assemblies at synaptic sites 

A recent paper highlighted how synaptic proteins follow a rigid structurally hierarchical 

organisation, forming complexes, supercomplexes and nanoclusters (Frank and 

Grant, 2017; Frank et al., 2016). During the maturation of synapses, NMDARs can 

assemble in either small complexes, or can be incorporated in larger supercomplexes 

containing PSD95 and PSD93 and other proteins (Frank et al., 2016). Interestingly, 

these in vivo studies showed that both PSD95 and PSD93 are necessary for the 

formation of these supercomplexes, giving rise to the ‘tripartite rule’ (Frank et al., 

2016); according to this rule, PSD95, PSD93 and NR2B subunit are all required for 

the assembly of supercomplexes. Furthermore, these MAGUK-containing 

supercomplexes were found to be upregulated in the mature forebrain (Frank et al., 

2016). Whilst all PSD95 assembles into supercomplexes, only 3% of these 

supercomplexes contain NMDARs (Frank and Grant, 2017). As PSD95 can bind to 
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AMPARs, via adaptor proteins (Schnell et al., 2002), the proportion of the PSD95 

supercomplexes that lack NMDARs likely contain AMPARs. In fact, colocalization 

between AMPAR nanodomains and PSD95 synaptic clusters was found prominent, 

albeit not systematic (Nair et al., 2013). 

1.6.4 Developmental regulation 

The expression of each MAGUK follows a distinct expression pattern during brain 

development. Western blots of whole brain, hippocampal and cortical lysates show 

that the expression of PSD95 steadily increases with development, starting from very 

low to being most highly expressed in the adult brain (Sans et al., 2000; Song et al., 

1999). PSD93 and SAP97 follow a similar trajectory of expression (Cai et al., 2006; 

Sans et al., 2000). Whilst, PSD95 and PSD93 show different patterns of expression 

across the whole brain, but are both shown to increase in expression over time (E13- 

P21, Fukaya et al., 1999).On the other hand, the expression levels of SAP102 are 

considerably higher than those of the other MAGUKs at birth, and they increase during 

early postnatal ages (Müller et al., 1996). There is some controversy as to whether 

the expression of this protein plateaus in the adult brain or whether it significantly, but 

slightly, declines (Müller et al., 1996; Sans et al., 2000). It was reported, however, that 

the adult rat cortex and cerebellum is considerably less abundant in SAP102 than 

PSD95 (Al-Hallaq et al., 2001). 

 
 

1.6.5 Experimental manipulation 

The MAGUK subfamily proteins exhibit considerable functional overlap. This makes 

it difficult to experimentally disentangle individual contribution of the different member 

proteins as they tend to compensate for each other following a perturbation. 

For example, following a PSD93/95 knock-out, SAP102 was found to be upregulated. 

Nevertheless, chronic and acute manipulations of these proteins have uncovered their 

different roles during the recruitment and retention of receptors at developing 

synapses. Further evidence for compensatory mechanisms is provided by studies 

showing that while removal of SAP102 has little or no effect on AMPAR concentration 

at the PSD under normal conditions (Schnell et al., 2002), in PSD95/PSD93 knock- 

out mice, the knock-down of SAP102 causes a significant reduction in the remaining 

AMPAR-mediated current (Elias et al., 2006). 

The parameters affected by the acute knock-down of endogenous PSD95 was 

successfully rescued by overexpressing SAP102. The significant decrease in 
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AMPAR-mediated currents and frequency of mini EPSCs were brought to control 

levels following expression of SAP102 (Liu et al., 2018). 

Knock-down studies have shown that both SAP102 and PSD95 are necessary for 

excitatory synapse formation and localization of glutamate receptors at the synapse 

(Chen et al., 2015; Murata and Constantine-Paton, 2013). SAP102 has been shown 

to promote spine lengthening (Chen et al., 2011), while PSD95 promotes spine 

maturation (El-Husseini et al., 2000). 

Overexpression of PSD95 causes a selective increase in AMPAR-, but not NMDAR, 

mediated EPSCs and an increase in number and size of dendritic spines (Ehrlich et 

al., 2007; Ehrlich and Malinow, 2004; El-Husseini et al., 2000; Schnell et al., 2002; 

Stein et al., 2003). A premature NR2B to NR2A subunit switch was also observed 

(Elias et al., 2008). Knocking down this protein, instead, causes the increase of silent 

synapses (Béïque et al., 2006) and a reduction in AMPA-mediated transmission, with 

little effect on NMDARs (Béïque et al., 2006; Chen et al., 2011). Furthermore, an 

increase in the NR2B subunit contribution to NMDAR-mediated current has been 

detected following a reduction in PSD95 expression (Béïque et al., 2006; Elias et al., 

2008). This protein is involved in behavioral outcomes, as impaired spatial learning 

has been reported in mice lacking this protein (Gandhi et al., 2014). 

SAP102 overexpression promotes synapse formation, but the effects of a 

manipulation of SAP102 expression mainly manifest themselves when perturbations 

are delivered during the critical period of development (Chen et al., 2011; Elias et al., 

2008). Reduction in expression of this protein early during development leads to a 

significant reduction in both NMDAR- and AMPAR-mediated currents (Elias et al., 

2008). While overexpressing SAP102 led to an only slight increase in AMPARs, 

knock-down had no effect on these glutamate receptors (Schnell et al., 2002). 

Since each protein contributes to synaptic transmission by receptor binding, 

unsurprisingly, simultaneous acute knock-down of PSD95, PSD93 and SAP102 in rat 

hippocampal cultures caused a 80% decrease of total synaptic transmission, an 

increase in silent synapses and a decrease of PSD size (Chen et al., 2015). 

Within the ultrastructure of the PSD, PSD95 is mostly uniformly distributed, whereas 

glutamate receptors appear clustered. NMDARs are preferentially located at center 

of the PSD, while AMPARs are mostly situated at the periphery (Chen et al., 2011). 

Electron microscopy (EM) tomography following PSD95 knock-down also revealed a 

patchy loss of filaments perpendicular to the PSD, preferentially occurring at the 

periphery of the PSD, rather than the center (Chen et al., 2011). AMPARs-type 
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structures were identified and estimated to decrease by approximately 30%, while 

putative NMDARs were largely unaffected (Chen et al., 2011). This is likely due to the 

fact that NMDARs are more strongly tethered to the PSD, while AMPARs are loosely 

attached thus favoring their movement into and out of the synapse (Malinow et al., 

2000; Nicoll and Malenka, 1999). Indeed, at the PSD PSD95 is thought to provide 

dynamic slots that AMPARs can bind to as they diffuse into and out of the postsynaptic 

compartment (Bats et al., 2007; Opazo et al., 2012; Schnell et al., 2002). An additional 

factor that may be contributing to the AMPAR-dominated effect is that the 

stoichiometry is different; while there is a 1:1 ratio between PSD95 and AMPAR, there 

is a 2:1 ratio between PSD95 and NMDARs, which would render the PSD95-NMDAR 

interaction less susceptible to perturbations. Finally, PSD95 binds directly to 

NMDARs, but requires an adaptor protein to bind to AMPARs, so the strength of the 

binding might differ. 

1.6.6 Synaptic trafficking of receptors and MAGUK dynamics 

NMDARs and PSD95 are thought to be recruited to the synapse independently of 

each other (Barrow et al., 2009; Bresler et al., 2001; Friedman et al., 2000; 

Washbourne et al., 2004, 2002). Discrete transports packets containing NMDARs 

have been shown to move bidirectionally along the dendrite (Washbourne et al., 2004, 

2002). SAP102, but not PSD95, has been shown to colocalise with NMDAR mobile 

packets that are being transported to the nascent synapse (Barrow et al., 2009; Sans 

et al., 2000; Washbourne et al., 2004). However, a proportion of these mobile packets 

also contained AMPARs (Washbourne et al., 2002). NMDAR transport packets have 

been shown to cycle with the plasma membrane during their journey, this may be a 

way to sense glutamate to direct their transport (Washbourne et al., 2004). However, 

contrasting evidence has provided evidence that NMDAR exist in a diffuse 

cytoplasmic pool and get recruited to the synapse, rather than being transported in 

packets (Bresler et al., 2001). 

In contrast to the relatively fast transport of SAP102-NMDARs, PSD95 is recruited on 

a slower timescale, independently from other MAGUKs and in a palmitoylation- 

dependent manner (Barrow et al., 2009). Some studies have provided evidence of 

immobile clusters of PSD95 prior to synapse formation (Bresler et al., 2001; Friedman 

et al., 2000; Marrs et al., 2001; Okabe et al., 2001, 1999; Rao et al., 1998; Sans et 

al., 2000; Washbourne et al., 2002), whilst other reports described modular transport 

of PSD95 or even pre-assembled complexes comprising of PSD95, GKAP and Shank 

(Gerrow et al., 2006; Prange and Murphy, 2001) . 
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A study on the accumulation of MAGUKs at nascent hippocampal synapses revealed 

that these proteins are asynchronously enriched at the PSD (Lambert et al., 2017). 

SAP102 was the first MAGUK to reach mature levels at the synapse, followed by 

SAP97 and PSD93. PSD95 was the last MAGUK to reach mature levels (compared 

to neighboring spines). Longitudinal in vivo studies in the adult brain also showed 

while PSD95 does not immediately accumulate at new synapses, the presence of a 

PSD containing PSD95 increased the probability of that newly formed spine to survive 

(Cane et al., 2014; Gray et al., 2006). SAP102 exhibits a greater mobility than PSD95 

in spines, and these kinetics are related to actin dynamics (Zheng et al., 2010). 

In adult brains, PSD95 within spines has an estimated turnover of 10 hours; its 

mobility under basal conditions is relatively low, but the kinetics can be upregulated 

following increase in synaptic activity (Fortin et al., 2014; Noritake et al., 2009; Steiner 

et al., 2008; Yoshii and Constantine-Paton, 2007). However, studies conducted in 

L2/3 of the developing barrel cortex (P10-21) show that this protein is much more 

mobile in younger neurons, displaying an average turnover of 22-63 mins. The 

stability of PSD95 at the PSD increased with age and was found to be experience- 

dependent (Gray et al., 2006). 

A picture emerges from this evidence where SAP102 assumes a particularly crucial 

trafficking role during early development, when it binds to NR2B-containing NMDARs, 

while PSD95 reaches the PSD at a later timepoints and it can induce synaptic 

maturation and regulates synaptic strength. This study aims to characterize changes 

in expression of SAP102 and PSD95 in cortical layers, in order to relate these 

changes to pre-existing literature on barrel cortex development and expand our 

knowledge on the sequence of events leading to the establishment of a functional 

barrel cortex. Furthermore, the results from this study can be extrapolated and 

generalized to other developing areas of the brain. 
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1.7 The barrel cortex 

The rodent barrel cortex is a well-suited model to study the formation and refinement 

of neural circuits. This area of the somatosensory cortex is responsible for processing 

information from the animal’s whiskers, via several cortical relays (Fig. 1.8, Woolsey 

and Van der Loos, 1970). Since mice and rats are nocturnal animals, active whisking 

is an extremely important sensory modality of perception. Whiskers are used by 

rodents to build an internal representation of the surrounding environment by locating 

objects and discriminating between textures around them. As active whisking 

movement commences around the second postnatal week (Landers et al., 2006; 

Welker et al., 1988), in younger animals, processing of passive information 

transmitted via sensory receptors in the whisker pad are thought guide their huddling 

and suckling behavior, crucial for their survival (Arakawa and Erzurumlu, 2015). 

Indeed, applying pressure or moving the whiskers has been shown to evoke activity 

in the somatosensory cortex from as early as P2 (Akhmetshina et al., 2016; Arakawa 

and Erzurumlu, 2015; Sullivan et al., 2003). 

The name of the highly specialized area of the somatosensory cortex derives from 

the barrel-like shape formed by clusters of neurons in cortical L4, which are the prime 

recipient of subcortical inputs from the thalamus (Wimmer et al., 2010). This system 

is an extremely well characterized synaptic pathway in literature; its components 

follow a stereotypical topographic pattern from the whisker pad to the somatosensory 

cortex, relaying in several subcortical regions. From the trigeminal ganglion, bipolar 

neurons project to the whiskers and to the brainstem, which in turn send its projections 

to the thalamus. Thalamocortical afferents innervate the cortical layers of the barrel 

cortex, mainly L4. The neurons within this pathway are highly organized in a 

somatotopic arrangement, whereby each whisker can be mapped to a single barrel in 

the cortex. Finally, another advantage of this model is that it allows interference with 

experience-dependent plasticity, both in an invasive (follicle lesions or transection of 

whisker related nerves) or non-invasive manner (daily whisker trimming from birth). 

Because of all these reasons, the barrel cortex constitutes a great model to study 

postnatal neurodevelopment. 
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Figure 1. 8 The mouse barrel cortex 

A. Whisker-related pathways. Whisker inputs get relayed in the trigeminal ganglion, then to 
the brainstem, then the thalamus and finally to the barrel cortex. The input from each 
whisker remains spatially segregated at every step. 
B. In cortical L4, spiny stellate neurons form barrel-shaped clusters. These, barrels organise 
across the cortical plane in a map that resembles the map of whiskers in the whisker pad. 

A 

B 
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1.7.1 Neuronal types populating L4 barrel cortex 

The most prominent cell type in L4 barrels is the spiny stellate neuron. These 

glutamatergic neurons constitute around 80% of all barrel cells (Lefort et al., 2009; 

Simons and Woolsey, 1984; White and DeAmicis, 1977). They have circular cell 

bodies of approximately 10 µm in diameter and large nuclei (Simons and Woolsey, 

1984; White and DeAmicis, 1977). Spiny stellate neurons receive strong innervation 

from the ventro-posterior medial (VPM) thalamic nucleus and then project their axons 

to L2/3, after considerable ramification within their L4 barrel (Harris and Woolsey, 

1983). A much more sparsely present glutamatergic cell type is the star pyramidal 

neuron (around 18%, Lefort et al., 2009). These neurons are characterised by the 

presence of an apical dendrite that extends into L3 (Simons and Woolsey, 1984; 

White and DeAmicis, 1977). The axonal morphology of these cells is similar to that of 

spiny stellate neurons (Lübke et al., 2000; Staiger et al., 2004). Even though spiny 

stellate neurons and star pyramidal neurons exhibit similar synaptic and intrinsic 

properties (Cowan and Stricker, 2004; Feldmeyer et al., 1999, Schubert et al., 2003), 

Schubert and colleagues showed that these two types of barrel neurons integrate in 

non-overlapping circuits, spiny stellate neurons participating in intra-barrel processing 

of inputs and star pyramidal neurons being integrated in a wider horizontal and top- 

down information flow (Schubert et al., 2003). Finally, about 20% of neurons in the L4 

barrels are sparsely spiny or aspiny neurons, which are putatively inhibitory neurons 

(Simons and Woolsey, 1984; White and DeAmicis, 1977). Interneuron population of 

the L4 barrels is heterogeneous, with up to 3 types of neurons that have been 

described (Koelbl et al., 2015). 

 
 

1.7.2 Parallel barrel cortex pathways 

The barrel cortex pathway starts with neurons innervating hair follicles on the mouse 

snout (Fig. 1.8 and 1.9). The whisker pad is composed of 5 rows of mystacial vibrissa 

and an array of sinus hairs. Deflections of the whisker is thought to open 

mechanosensing ion channels on innervating trigeminal ganglion neurons, thus 

eliciting a response. The trigeminal ganglion projects to the brainstem, which then 

projects to the thalamus. The thalamus finally projects to the primary somatosensory 

cortex (S1). Throughout the whisker-related pathway, there is a remarkable 

somatotopic arrangement whereby individual whiskers map onto likewise discretely 

organized “barrellettes” in the brainstem, which, in turn, project to spatially separated 

“barrelloids” in the thalamus and finally “barrels” in the primary somatosensory area 

of the neocortex. There are three identified pathways that follow this sequence of 
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innervations but that specifically target distinct nuclei or layers within each part of the 

circuit: the lemniscal, paralemniscal and extralemniscal pathway. 

These whisker-to-cortex parallel pathways have been suggested to mediate slightly 

different aspects of whisker-related sensory processing (Mo et al., 2017; Yu et al., 

2006). The lemniscal pathway is the primary glutamatergic route in this system. After 

a relay in the principal trigeminal nucleus, neurons carrying whisker information via 

this route project to the dorsomedial portion of the VPM nucleus in the thalamus. 

Thalamocortical afferents then innervate the neocortical layers. The main target of 

these projection neurons are the center-projecting dendritic arbors of L4 neurons 

contained in L4 barrels. L2/3, 5 and 6A also receive VPM thalamic inputs, albeit to a 

considerable lesser extent. The lemniscal pathway is thought to drive information 

bearing and to convey a combination of sensorymotor signals (whisking and touch, 

(Mo et al., 2017; Yu et al., 2006). The paralemniscal pathway acts via the spinal 

trigeminal nucleus and the ventrolateral VPM in the thalamus. In the cortex the 

thalamic inputs from this pathway preferentially innervate L5A and L1 of S1 and also 

send projections to S2 and M1. Experimental stimulations of this pathway revealed 

that it exhibits predominantly modulatory functions and is involved in conveying 

whisking signals (Mo et al., 2017; Yu et al., 2006). The third, most recently discovered 

pathway, is the extralemniscal pathway (Pierret et al., 2000). Neurons in this pathway 

project to the caudal portion of the spinal trigeminal nucleus, which then form 

synapses with the ventrolateral posteromedial (POM) in the thalamus. 

Thalamocortical POM projections then reach the septal area between the L4 barrels 

and also send axons to S2. The axons within this pathway have been suggested to 

be involved in transmitting contact-related signals. Furthermore, all these circuits 

communicate between each other via S1-S2-M1 connections, giving rise to precisely 

integrated motor control and object identification and discrimination (Chakrabarti and 

Alloway, 2006; Welker et al., 1988; White and DeAmicis, 1977). 
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Figure 1. 9 Parallel pathways of the mouse barrel cortex 

Whisker-related pathways segregate into three parallel routes, the lemniscal, paralemniscal 
and extralemniscal pathway. These pathways project to different nuclei within the brainstem 
and thalamus, and specifically target distinct cortical regions. 
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1.7.3 Cortical organization of microcircuits 

The 6 cortical layers house several lamina-specific inhibitory and excitatory cell types, 

which render this structure extremely specialized. The whisker-related 

somatosensory cortex is characterized by the presence of barrel-shaped clusters of 

neurons in L4. Each cortical layer is specifically targeted by well described long-range 

projections from subcortical regions or other cortical regions, and in turn innervates 

well defined areas (Fig. 1.10). 

In the adult brain, L1 is rich in apical dendritic arbors and axonal projections and, 

except for excitatory Cajal-Retzius cells, it mainly contains GABAergic interneurons. 

The rest of the layers (L2-6) contain both glutamatergic neurons and GABAergic 

interneurons. 

L4 is the main recipient of thalamic inputs coming from the VPM (lemniscal pathway). 

The main cell type within this layer is the spiny stellate neuron (SSN). The dendritic 

arbors of these excitatory neurons are restricted to the barrel borders and they exhibit 

biased orientation towards the center of the barrel (Jeanmonod et al., 1981; Steffen 

and Van der Loos, 1980; Woolsey et al., 1975). Discrete bundles of VPM axons 

synapse onto these oriented dendrites; a single axon primarily innervates a single 

barrel (Arnold et al., 2001; Furuta et al., 2011; Jensen and Killackey, 1987) and this 

organization causes each barrel to respond predominantly to a single “primary” 

whisker (Armstrong-James and Fox, 1987; Chapin and Lin, 1984; Simons, 1985; 

Simons and Carvell, 1989; Simons and Woolsey, 1984). 

VPM thalamic afferents make glutamatergic synapses mainly in L4, and to a much 

smaller extent to L3, 5 and 6 (Jensen and Killackey, 1987; Wimmer et al., 2010). The 

neurons contained within the L4 barrels make numerous connections to other SSNs 

within the same barrel and also send their axons to the layer just above, L2/3 

(Feldmeyer et al., 2002). The L2/3 target neurons are mainly the cells located just 

above the barrel. This anatomical arrangement of ordered projections from 

thalamocortical afferents to L4 to L2/3 gives rise to cortical columns. These functional 

modules exhibit a structural basis, whereby the width of the column is determined by 

the width of each barrel and the signal travels towards the surface of the brain in a 

columnar fashion, for each barrel. 

L2/3 cells project to the pyramidal cells in L5 (Reyes and Sakmann, 1999). L5 

excitatory pyramidal neurons are considered the main output cells of the cortex. They 

can be split into two types, L5 intratelencephalic (IT) and L5 pyramidal tract (PT) 

neurons, based on distinct morphology and functional connectivity (Ahissar et al., 

2001; Larsen and Callaway, 2006; Manns et al., 2004; Wise and Jones, 1976). L5 PT 
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are present only in L5B (the deeper portion of L5). These neurons exhibit very few 

local axons, while the main bulk of their output is projected to subcortical areas, such 

as the striatum, POM, pons, and brainstem (Bureau et al., 2006; Guo et al., 2017; 

Oberlaender et al., 2012). L5 IT, on the other hand, are present in both L5A and L5B 

and they strongly project to S1, as well as to other neocortical layers and the striatum 

(Kiritani et al., 2012; Oberlaender et al., 2012). The thalamic POM projects specifically 

to L5A IT neurons (Audette et al., 2018; Bureau et al., 2006; Wimmer et al., 2010). 

The neurons in this layer are also preferentially targeted by L2, 5A and 5B neurons 

(Lefort 2009; Bureau 2006; Schubert 2007). Therefore, L5A neurons receive direct 

innervation from POM neurons (Ahissar et al., 2001; Bureau et al., 2006; 

Chmielowska et al., 1989; Koralek et al., 1988) and indirectly from the VPM, via L4 

(Feldmeyer et al., 2005; Schubert et al., 2003); so the lemniscal and paralemniscal 

pathway converge into L5A neurons which integrate the information and, in turn, 

projects to the caudate nucleus, secondary somatosensory cortex and motor cortex 

(Alloway et al., 2004; Chmielowska et al., 1989; Donoghue and Parham, 1983; Hoffer 

et al., 2003; Koralek et al., 1988). L5 neurons form glutamatergic connections with L6 

neurons. L6 contains a heterogenous population of neurons, which includes 

corticothalamic neurons that project back to the VPM and POM nuclei in the thalamus. 

This long-range feedback pathway is thought to have a modulatory function (Varela, 

2014). 

This intracortical local connectivity of L4  L2/3  L5  L6  Thalamus 

constitutes the “canonical cortical circuit” (Fig. 1.11) 

Functional studies involving imaging of voltage-sensitive dyes following stimulation of 

a single whisker show that at first the response can be observed in the corresponding 

L4 barrel (Laaris and Keller, 2002; Petersen and Sakmann, 2001), then the signal 

spreads across the width of the barrel column, engaging L2/3 cells (Ferezou et al., 

2006; Harris et al., 1992; Peron et al., 2015) and finally extends to a large portion of 

the barrel field (Brecht et al., 2003; Estebanez et al., 2012; Zhu et al., 1999).The 

lateral spread is probably due to extensive horizontal connections between L2/3 that 

are performing large-scale computations and integration of whisker-related signals. 
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Figure 1. 10 Long-range inputs and outputs of distinct barrel cortical layers 

Main long-range inputs into the cortical layers of the barrel cortex (A), main local outputs (B) 
and main long-range outputs (C). M1, motor cortex; VPM, ventroposterior medial nucleus; 
POM, posteromedial nucleus. 
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Figure 1. 11 The canonical cortical loop 

In this canonical loop, thalamic VPM innervates L4 neurons, which in turn project to L2/3. 
L2/3 neurons then project to L5, which then projects to L6. L6 closes the loop by providing 
feedback to the VMP. 
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1.7.3 Development of barrel cortex circuits and critical periods for 

plasticity 

The development of the barrel-related circuitry occurs in a sequential orderly manner, 

from the periphery to the subcortical regions of the brainstem and the thalamus and 

finally to the cortex (Sehara and Kawasaki, 2011, Fig. 1.12 and Fig. 1.13). 

Perinatally, spontaneous whisker movement can be observed and tactile reflexes can 

be evoked from as early as P2-4 (Akhmetshina et al., 2016; Arakawa and Erzurumlu, 

2015; Grant et al., 2012; Sullivan et al., 2003). Proper onset of active whisking 

emerges around P10 (Arakawa and Erzurumlu, 2015). 

Specification of barrel field area is directed by the expression of intrinsic genetically 

instructed signals, e.g. fibroblast growth factor 8, whose gradient expression have 

been implicated with the correct positioning of this area (O’Leary et al., 2007; 

Shimogori et al., 2004; Sur and Rubenstein, 2005). 

The patterning of the whisker circuits in brainstem occurs around birth, and it is shortly 

followed by patterning of the thalamic terminals around P3 (Agmon et al., 1993; 

Erzurumlu and Jhaveri, 1990; Rebsam et al., 2002; Senft and Woolsey, 1991). 

 

 

Figure 1. 12 Neurogenesis and innervation periods of whisker-related pathways 

Diagram of the mouse head showing the whisker-related pathway and times relative to 
neurogenesis (blue) and arrival (red) of the components within the pathway. 
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Figure 1. 13 Embryonic and postnatal development of the whisker-related network 

Timeline of developmental time point for various aspects of development of the trigeminal 

ganglion  (green),  brainstem  (purple),  thalamus  (yellow),  cortex  (orange).  In  white  are 

behavioral events. In blue are the critical periods for synaptic connections. Dashed lines 
indicate dynamic events like migration or innervation, while solid contour designate 
neurogenesis events. 
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1.7.3.1 Neural activity and pattering of somatosensory maps 

Similarly to the inside-out pattern of formation of cortical layers (Rakic, 1988; 

Takahashi et al., 1999), synapse formation and relative critical periods follow the 

same sequential developmental trajectory (Blue and Parnavelas, 1983; Zielinski and 

Hendrickson, 1992). 

Around E18, thalamocortical afferents reach the subplate (SP), which is an early born 

cellular layer situated below the growing cortical plate. Subplate neurons are among 

the first cortical neurons to be generated during embryonic development (subplate will 

be discussed in depth in the next section). After a short waiting period in this layer, 

the thalamocortical axons invade the cortical plate shortly after birth (López-Bendito 

et al., 2006; López-Bendito and Molnár, 2003). Between P2-4, these afferents 

transition from being diffusely spread across the cortical plate to specifically target L4 

in a periphery-related pattern (Higashi et al., 2005, 2002). 

Around this perinatal stage, L4 neurons form sparsely distributed and immature 

synapses (Dufour et al., 2016). A steep increase in the synaptic maturation occurs 

from P4 onwards (Dufour et al., 2016), culminating in an extensive period of 

synaptogenesis between P9-11 (Ashby and Isaac, 2011).The maturation of these 

synapses are most likely driven by in increase and refinement in the thalamocortical 

inputs as well as intralaminar connectivity within this layer, which peaks around P14. 

This stage is followed by a substantial period of synaptic pruning (Ashby and Isaac, 

2011; Tarusawa et al., 2016). 

GABAergic interneurons present in L4 receive substantial thalamic innervation around 

P7 (Daw et al., 2007), followed by intense synaptogenesis between excitatory and 

inhibitory neurons between P7-11; this occurs coincidentally with the switch from 

depolarising to hyperpolarising effect of GABA (Chittajallu and Isaac, 2010; Daw et 

al., 2007). 

The initial innervation of L4 spiny stellate neurons to pyramidal neurons in L2/3 is 

spatially spread wider than the barrel boundaries, but then acquires a columnar 

organisation by P11-14 (Bender et al., 2003). Functional studies have, however, 

revealed that this spatial organisation is present earlier on, around P8, suggesting 

synaptic connections between L4 and L2/3 are biased towards the area just above 

the barrel (Bureau et al., 2004). Additionally, in vivo studies reported the refinement 

of receptive fields of L2/3 by P10 (Bureau et al., 2004). 
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1.7.3.2 Critical periods of the barrel cortex 

Critical periods are developmental stages during which the establishment of sensory 

maps takes place; this process requires peripheral sensory input. Perturbations, such 

as damage to sensory organs or sensory deprivations, during these periods have a 

significant effect on the normal development of the system being perturbed 

(Erzurumlu and Killackey, 1982). Several ways to induce sensory disruptions 

experimentally have been used to study this phenomenon. In the context of the barrel 

cortex, sensory deprivation studies have involved either the transection of the 

infraorbital nerve or lesion of hair follicles, or daily whisker trimming from birth has 

been used to greatly diminish sensory inputs in a non-invasive manner. These studies 

have been crucial to identify important critical periods during barrel cortex formation. 

The critical period for barrel formation is up to P4, meaning lesions and other 

perturbations inflicted past this postnatal age do not disrupt the correct formation of 

this structure (Durham and Woolsey, 1984; Iwasato et al., 2000; Van der Loos and 

Woolsey, 1973; Wong-Riley and Welt, 1980). 

Thalamocortical synapses have been shown to be insensitive to induction of LTP after 

the first postnatal week (Crair and Malenka, 1995), and LTD plasticity was found 

dramatically reduced shortly after (Feldman et al., 1998). This time period coincides 

with the developmentally regulated increase of AMPAR-mediated currents (Crair and 

Malenka, 1995). 

The critical period for connections from L4 to L2/3 has been discovered to be between 

P10 and P14 (Lendvai et al., 2000; Maravall et al., 2004; Shoykhet et al., 2005), which 

then is followed by a longer critical period for L2/3 intralaminar synapses which 

terminates around P18 (Wen and Barth, 2011). 

Therefore, after a period of intense synaptogenesis in the early postnatal days of 

mouse development, synaptic plasticity is seen to significantly decline following the 

1st/2nd postnatal week, depending on the cell type (Barth and Malenka, 2001). 
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1.8 The subplate 

The subplate is an enigmatic layer in the developing cortex that dynamically integrates 

in early intra- and extracortical functional circuits and plays a crucial role in the correct 

establishment of neocortical connectivity. 

This area is anatomically defined as a 50 µm-thick layer situated below the cortical 

plate and above the white matter in the developing brain (Fig. 1.14, Hoerder- 

Suabedissen and Molnár, 2012). The SP contains glutamatergic and GABAergic 

neurons, as well as glial cells. 

The subplate neurons (SPNs) are heterogeneous in terms of electrophysiological 

properties, connectivity, cell morphology and molecular markers (Antonini and Shatz, 

1990; Hanganu et al., 2001; Hevner and Zecevic, 2006; Kostovic and Rakic, 1990; 

Watakabe et al., 2007). 

The diverse morphology of SPNs includes pyramidal, multipolar and neurogliaform 

cells (De Carlos and O’Leary, 1992; Hanganu et al., 2002, 2001; Hoerder- 

Suabedissen and Molnár, 2012; Luhmann et al., 2000; Molnár et al., 1998a, 1998b; 

Rio et al., 1992; Robertson et al., 2000; Valverde et al., 1989). 

Furthermore, during early postnatal stages, developing cortical neurons migrate 

through the SP to reach the cortical plate (Erzurumlu et al., 2006; Kanold and 

Luhmann, 2010). 

In the rat, subplate cells have been shown to receive inputs mediated via AMPA, 

NMDA, GABAA and α/β heteromeric glycine receptors (Hanganu et al., 2001; Kilb et 

al., 2008). Glutamatergic inputs come from cortical as well as subcortical regions 

(Kanold and Luhmann, 2010) and the interneurons within this layer synapses with 

other SPNs thus forming extensive intrinsic GABAergic circuits, the function of which 

is uncertain (Hanganu et al., 2002). 
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Figure 1. 14 The subplate layer during cortical development of glutamatergic neurons 

Diagram of a developing brain and cortical layers during cortical neuronal migration. Neurons 

are generated in the ventricular zone by radial glial cells. These newly generated neurons are 

at first multipolar, then they switch to directed migration after interacting with the subplate. 
They then migrate along the process of the radial glia until they find the marginal zone. They 
stop their migration and join a cortical layer. LGE: lateral ganglionic eminence; MGE: medial 
ganglionic eminence. 

 
 
 

1.8.1 Molecular markers 

Molecular profiling uncovered the existence of several subpopulations of SPNs that 

express partially overlapping markers. For example the SPNs in the embryonic mouse 

express UNC5C and CDH10 (Oeschger et al., 2012) and Lpar1 (Hoerder- 

Suabedissen et al., 2013). In the postnatal brain, some identified SPN markers are 

CTGF, NURR1, CPLX3, Tmem193, MoxD1 (Hoerder-Suabedissen et al., 2009). The 

expression of CTGF, NURR1, CPLX3 partially overlaps (Hoerder-Suabedissen et al., 

2013). Since CTGF, CPLX3, NURR1, and Lpar1 are not expressed in interneurons, it 

is thought that these markers are specific to glutamatergic SPNs (Boon et al., 2019; 

Hoerder-Suabedissen et al., 2013, 2009). Cplx3 and CTGF have been shown 

localised in the SP layer from early postnatal ages into adulthood (Hoerder- 

Suabedissen et al., 2013, 2009). 

1.8.2 Age-specific connectivity and electrophysiological properties 

SPNs are among the earliest neurons to be generated, around E11 (Angevine and 

Sidman, 1961; Bystron et al., 2008; Hoerder-Suabedissen et al., 2013; Price et al., 

1997; Smart et al., 2002). Extending their neuronal projections around E13, they are 
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the first neurons to establish functional neuronal connections (De Carlos and O’Leary, 

1992; Molnár et al., 1998a). Indeed, they have been shown to be the first cortical 

neuron to respond to auditory stimuli in neonatal ferrets, before L4 neurons become 

responsive (Wess et al., 2017). Conflicting experimental data exists regarding the 

fate of these early cell population in the adult brain. Some data suggests that SPNs 

are a largely transient population of neurons and that a great proportion of these cells 

die via apoptosis towards the end of the first postnatal week (Ferrer et al., 1990; Price 

et al., 1997; Rakic and Zecevic, 2000); on the other hand, different experiments show 

very minimal cell death (Valverde et al., 1995). Furthermore, numerous SP cells have 

been observed to persist until adulthood and SP molecular markers label a layer of 

cells in L6B in adult brains (Clancy et al., 2001; Friedlander and Torres-Reveron, 

2009; Hoerder-Suabedissen et al., 2013, 2009; Jacobs et al., 2007; Reep, 2000; 

Valverde et al., 1989; Woo et al., 1991). 

SPNs receive a variety of inputs, from the cortical plate as well as from the thalamus 

(Meng et al., 2014; Viswanathan et al., 2017). In turn, these early born neurons have 

been shown to project back to the cortical plate and the thalamus (Myakhar et al., 

2011; Viswanathan et al., 2017). The thalamus–subplate–cortical plate circuit is 

thought to be essential for the correct establishment of thalamocortical connections 

(Allendoerfer and Shatz, 1994; Friauf and Shatz, 1991; Kanold and Shatz, 2006). The 

functional interactions between these layers change dynamically during development 

of the barrel cortex. 

SPNs originate both from the cortical VZ and the extracortical rostromedial 

telencephalic wall (RMTW, Pedraza et al., 2014). The newly generated neurons 

migrate radially or tangentially, from the VZ or RMTW, respectively, to reach the SP 

cortical area (Pedraza et al, 2014). Cajal-Retzius neurons (CRN) are generated 

around the same time from the cortical hem (García-Moreno et al., 2007); Cortical 

GABAergic interneurons are generated in the ganglion eminence, preoptic area or the 

VZ (Gelman et al., 2011). Subsequently, they migrate tangentially towards the final 

destination in the cortex (Marín, 2013), appearing at the cortex around E12 (Rio et al., 

1992). 

TCAs start travelling towards the SP around E11; concomitantly, the SP axons 

migrate toward the thalamus. The projections from these two populations of neurons 

make contact around E13, when, according to the ‘handshake hypothesis’, molecular 

signals instruct the TCAs to follow the SPN path to the SP area (Molnár and 

Blakemore, 1995). Indeed, TCAs project to the SP by E15.5 (Antón-Bolaños et al., 

2018; Auladell et al., 2000; Gezelius and López-Bendito, 2017; López-Bendito and 
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Molnár, 2003). In this location the thalamocortical projections sustain a waiting period 

during which activity-directed interactions with SPNs occur (Catalano and Shatz, 

1998; Kanold and Luhmann, 2010). 

Before thalamic innervation of the developing cortical plate, SPNs have been shown 

to project to the marginal zone and send axon collaterals into the cortical plate (Friauf 

and Shatz, 1991). Monosynaptic connections have been described between SPn 

interneurons and Cajal Retzius cells in marginal zone (Myakhar et al., 2011). This 

connection occurs via a primary dendrite that is retracted to L4 or below by P7 

(Hoerder-Suabedissen and Molnár, 2012). 

Around birth, thalamic afferents invade the developing cortical plate (Catalano et al., 

1991, Fig. 1.15). The innervation pattern of TCAs in the cortical plate is refined during 

development as the projections are restricted to the L4 barrels, the main targets of 

these afferents in the adult somatosensory cortex. 

Voltage-sensitive dyes have been used to investigate the functional connections 

between the thalamus and the cortex in the rat developing somatosensory cortex 

(Higashi et al., 2005, 2002). A functional connection was observed in embryos as 

young as E17. Soon after birth (P0-2), the activation pattern was diffuse, spanning 

the whole cortical depth. Between P2 and P4, the functional spread changed from 

being restricted to individual columns, still across the whole cortical depth, to being 

confined to L4 and L6. 

This developmental pattern is consistent with a study that characterised SP and TCA 

innervation of L4 in the mouse somatosensory cortex (Piñon et al., 2009). In fact, TCA 

labelling in Golli-tau-eGFP transgenic mice, where SPNs are labelled with eGFP 

(Jacobs et al., 2007), has shown that between late embryonic and early postnatal 

development, the distribution of GFP-labelled SP fibres and thalamocortical afferents 

is reorganised in relation to the L4 barrels. From E17 until the perinatal stages, a 

diffuse distribution pattern of both SP neurites and thalamic afferents is observed in 

L4. By P4-6, both sets of projections organised in a periphery-related pattern, showing 

a preference to the barrel hollows. Gradually this pattern changes and by P10 the 

GFP-positive SPN fibres accumulate in the barrel septa, at the L4/L5 border, while 

the thalamic afferents persist in the barrel hollows. 

This temporal sequence is consistent with the notion of SPNs pioneering the 

connections to the cortical plate, and the thalamic inputs using these projections as 

substrate to find the correct cortical location to innervate. 
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Figure 1. 15 The relationship between subplate, thalamus and cortex over development 

Diagram of a developing brain and cortical layers during early development, critical period 

and adulthood. During early development the thalamus projects to the subplate, which in 

turn projects to L4 and  back  to  the thalamus. During the critical period the  thalamus  also 
starts to project to L4 until during adulthood the thalamus directly synapses with L4 neurons. 
LGE: lateral ganglionic eminence; MGE: medial ganglionic eminence; SP: subplate; MZ: 
marginal zone; CP: cortical plate; 

 
 
 
 

1.8.3 Proposed functions 

SPNs are present in the brain from embryonic development and the expression of SP 

markers is seen in L6B in the adult brain. These neurons are thought to assume 

distinct roles at different developmental stages and thereby impact brain development 

and maturation. 

In the embryonic brain, SPNs have been implicated in axon guidance of corticofugal 

and corticopetal projections from the thalamus (Ghosh et al., 1990; Grant et al., 2012; 

McConnell et al., 1994). Studies involving ablation of the SP layer in the cat’s primary 

visual system show the importance of this area for appropriate thalamocortical 

targeting and the correct establishment of ocular dominance and orientation columns 

(Allendoerfer and Shatz, 1994; Kanold et al., 2003; Kanold and Shatz, 2006). 

Furthermore, the barrel cortex fails to develop properly following ablation of the SP 

(Tolner et al., 2012). 
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Perinatally, these neurons have been suggested to be involved in the generation of 

cortical oscillations in gap junction coupled neurons (Dupont et al., 2006). Moreover, 

SPNs are thought to be pivotal in the process of innervation of the L4 barrels in the 

visual system, as subplate ablation experiments have shown (Ghosh and Shatz, 

1992). 

Elimination of the subplate also causes the failure to upregulate genes involved in 

mature GABAergic function, thus preventing the switch of excitatory to inhibitory 

GABA action (Kanold et al., 2003; Kanold and Shatz, 2006). Additionally, it has also 

been proposed that SPNs transiently assume a secretory function, by secreting the 

serine protease inhibitor neuroserpin, which impacts the formation of cortical circuits 

during early postnatal development (Kondo et al., 2015) 

Finally, as previously mentioned, at least a subset of this early-generated neuronal 

population is still present in the adult brain. The role of the SP during adulthood is less 

clear, but is speculated that these neurons can provide support to the cortico-cortical 

networks (Friedlander and Torres-Reveron, 2009; Kostović et al., 2011; Kostovic and 

Rakic, 1990; Suarez-Sola et al., 2009). 
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1.9 Aims and hypotheses 

A wide variety of interlinked structural and functional changes occur during early 

postsynaptic development. All these modifications at the levels of synapses and 

neural circuits are essential to ensure the correct functioning of the adult brain. 

During my PhD, I addressed 2 main questions regarding the development of the 

mouse barrel cortex within the first 3 postnatal weeks: 

1. It is established that dendritic spikes occur in the adult brain and there is 

evidence for NMDA spikes in P15-20 L4 barrel neurons. When do these 

regenerative, branch specific events first emerge during development of the 

barrel cortex? 

2. SAP102 and PSD95 are crucial in developing and mature neurons, 

respectively. Does their pattern of expression mirror the timeline of synaptic 

development in the different cortical layers of the barrel cortex accordingly? 

The hypotheses regarding aim 1 were that during the first postnatal week neurons 

would be too immature (i.e. would not be expressing the correct number/density of 

voltage-gated receptors) to support dendritic spiking, but around P15 (so between 4- 

6 days after the critical period for these cells) the electrophysiological features of these 

neurons would suffice to be able to elicit dendritic spiking. 

Regarding aim 2, we hypothesized that since there is a well-documented succession 

of maturation of the neurons in the different layers (which, following the innervation 

pattern, goes L4  L2/3   L5  L6), the expression of MAGUKs would  follow 

a similar laminar enrichment pattern, with SAP102 levels increasing before 

PSD95 levels. 

Ultimately this research will provide further information about the synaptic events that 

occur during synaptic formation and maturation in a healthy, developing brain. 
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Chapter 2: Emergence of dendritic spikes during 

development. 

 
2.1 Dendritic spikes 

 
 

 

The vast majority of evidence around dendritic spikes is based on studies conducted 

in L2/3 or L5 pyramidal neurons, in mature (6 weeks of age or older) murine models 

(Larkum et al., 2009; Magee and Johnston, 1995; Major et al., 2008; Rhodes, 2006; 

Schiller et al., 2000; Spruston et al., 1995; Stuart and Sakmann, 1994). The local and 

regenerative nature of these events, however, and the fact that they can greatly 

amplify incoming inputs, make them a great candidate to play a role during 

development. This is because during the establishment of new synapses and the 

plasticity occurring during this period of substantial change, neuronal activity has a 

major role on sculpting the developing neural circuits. On the other hand, it is unclear 

whether the electrophysiological state of the neurons is required to be mature in order 

to support dendritic spikes. A recent paper reported the presence of dendritic spikes 

in layer 4 spiny stellate neurons as early as P15-20 (Lavzin et al., 2012). The aim of 

the present study is to replicate these results and perform the same experiments at 

earlier ages to characterise the emergence of dendritic spikes. Understanding the 

timings of emergence of these events would allow the exploration of the possible 

interaction between regenerative membrane potentials and synapse formation and 

maturation using a combination of electrophysiological and imaging techniques. 

 
 

2.1.4 Aim: Are dendritic spikes present in the developing brain? 

The aim of the present study is to assess the emergence of dendritic spikes during 

the developmental ages of P7-20. This developmental timeframe encompasses the 

critical period for L4 spiny stellate neurons (P9-11, Ashby and Isaac, 2011) and the 

ages at which NMDA spikes were detected in previous literature (P15-21, Lavzin et 

al., 2012). 
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2.2 Methods 
 
 

2.2.1 Thalamocortical slice preparation 

For these experiments, PSD95-eGFP or C57BL/6J mouse pups between P7 and P20 

were used (see Table 1 for exact number of animals and cells). 

 
 

 

Postnatal 

day 

Number 

of 

animals 

Number 

of cells 

 
Genotype 

Cell 

type 

7 1 2 PSD95 SS, Pyr 

8 1 4 WT SS 

9 1 2 PSD95 SS 

10 1 3 WT SS, SS, IN 

11 1 1 WT SS 

12 1 1 WT SS 

13 0 0 n/a n/a 

14 3 4 PSD95 SS 

15 1 2 PSD95 SS 

16 1 1 PSD95 SS 

17 0 0 n/a n/a 

18 1 1 PSD95 SS 

19 1 1 PSD95 SS 

20 1 2 WT SS 

21 1 1 WT SS 

 
Table 1. Summary of animal numbers used for dendritic spike experiments 

For each postnatal day examined, a list of n numbers of animals and cells, the genotype of 
the mice used and the type pf cell type patched are indicated. 
WT, wild type;SS, spiny stellate neurons; Pyr, pyramidal cells; IN, interneurons. 
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The pups were euthanised by cervical dislocation in accordance with Home Office 

guidelines and as directed by the Home Office Licensing Team at the University of 

Bristol. The PSD95-eGFP mouse line is a knock-in mouse line where all endogenous 

PSD95 is fused to GFP and expressed under the endogenous promoter (Zhu et al., 

2018). The brains were dissected and placed in ice-cold cutting solution containing 

(in mM): 119 NaCl, 2.5 KCl, 11 D-Glucose, 1 NaH2PO4, 26.5 NaHCO3, 9 MgSO4, 2.5 

CaCl2. To obtain thalamocortical slices, the brain was cut at a 45/55° angle (as 

described in Agmon and Connors 1991). Using a VT1200 vibratome (Leica), 4-5 

thalamocortical brain slices (400 µm thick) were cut at the plane containing the barrel 

field of the somatosensory cortex, using the hippocampal anatomy as landmark to 

identify the approximate area. The freshly cut brain slices were submerged in artificial 

cerebrospinal fluid (ACSF) containing (in mM): 119 NaCl, 2.5 KCl, 11 D-Glucose, 1 

NaH2PO4, 26.5 NaHCO3, 1.3 MgSO4, 2.5 CaCl2. ACSF was bubbled with carbogen 

(95% O2, 5% CO2) throughout experiments. The tissue was left to rest at room 

temperature for at least 30-45 minutes in CO2 bubbling ACSF before beginning 

electrophysiological experiments. 

 
 

2.2.2 Whole-cell patch clamp 

Whole-cell patch clamp technique was used to visualise the neuronal structure of 

layer 4 neurons within the barrels and record their membrane potential. 

Thalamocortical slices were placed in a recording chamber on the microscope rig 

which was continually superfused with carbonated ACSF. The recordings were 

performed at physiological temperature by heating the imaging bath to 37°C. The 

brain slices were first inspected using a 4X objective (Olympus, 0.06 NA) to check for 

the presence of visible barrels in the cortex (Fig. 2.1A). Care was taken to align the 

pial surface of the brain slice so it was parallel to the top edge of the field of view. The 

slice was then stabilised in the imaging bath using a tissue anchor to minimize motion 

during imaging and electrophysiological recordings. Spiny stellate neurons of L4 were 

identified using oblique brightfield imaging through a 60X water immersion objective 

(Olympus, 1 NA, Fig. 2.1B). Starting from the pia, L1 was recognizable because 

mostly devoid of cells, L2/3 presented densely packed small pyramidal cells. The 

spiny stellate neurons in L4 can be distinguished because their cell body is more 

circular then the pyramidal cell bodies of L2/3, and the neurons also appear more 

densely packed. Furthermore, the sparse and large pyramidal cells in L5, located 

below the barrels in L4, constitute another clearly distinguishable landmark for the 

position within the cortex. 
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Patch pipettes with tip resistance of 3-5 MΩ were made from borosilicate filamented 

glass capillaries (Harvard Apparatus) pulled using a p-87 micropipette puller (Sutter 

Instrument). These glass pipettes were filled with intracellular solution containing (in 

mM): 130 KMeSO4, 8.5 NaCl, 5.0 HEPES, 0.5 EGTA, 4.0 MgATP, 0.3 NaGTP and 

with 285 mOsm (pH of 7.25 adjusted using KOH). In order to visualise neuronal 

morphology to identify the right cell type and to stimulate precisely a dendritic branch, 

either Alexa Fluor 594 or Alexa Fluor 488 (concentration 50µM, Thermo Fisher 

Scientific) was added to the patch pipette internal solution. 

Whole-cell current clamp recording were made using a MultiClamp 700A amplifier 

(Axon Instruments). Immediately following the patching of the cell, a series of voltage 

steps (2 hyperpolarising and 6 depolarising) were given to obtain an indication of the 

health status and action potential threshold of the neuron before starting the 

stimulating experiments. The cell was then left around 10 minutes to allow the 

diffusion of the dye inside the cell membrane. 

2.2.3 Live 2-photon imaging 

The chosen neuronal cell body was patched and 2-photon imaging of the cell provided 

further confirmation of the cell type being targeted (Fig. 2.1B). The morphology of 

pyramidal cells and spiny stellate cells is distinctly different, as the former are much 

longer and exhibit the characteristic dendritic arbour (with basal and apical dendrites), 

while the latter have a much more radial dendritic arbour spanning a significantly 

smaller area. 

Patched neurons were imaged using a Prairie Ultima 2-Photon laser scanning 

microscope (Prairie Technologies, Madison, WI) equipped with a 60X water 

immersion objective (Olympus, 1 NA). Imaging of neurons filled with Alexa Fluor 594 

Hydrazide or Alexa Fluor 488 Hydrazide was performed using a 910 or 810 excitation 

wavelength, respectively (1 µm step, 1024X1024 pixels, 2 times line average). 
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Figure 2. 1 Experimental procedure for eliciting dendritic spike 

A. Brighfield image taken with a 4X objective lens showing a barrel cortex of an acutely 
dissected thalamocortical brain slice. The barrel field is highlighted inside the dotted line 
rectangle, white dotted line for single barrel. The zoomed in image shows a glass patch 
electrode attached to a L4 spiny stellate neurons. B. middle, maximum intensity projection 
2-photon image of a spiny stellate neuron. A patch pipette, on the left of the image, has been 
used to fill the cell with Alexa Fluor 594 and to record electrical activity. A stimulation 
electrode, on the right of the image, is used for focal synaptic stimulations. On either side of 
the 2-photon image is a diagram showing whole-cell patch clamp and focal synaptic 
stimulation technique. 

A 

B 
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2.2.4 Focal synaptic stimulation 

Focal synaptic stimulations were used to elicit dendritic spikes in the spiny stellate 

neurons of cortical layer 4 (Fig. 2.2 and 2.4, similar to Lavzin et al., 2012) in P7-P20 

mice. Following whole-cell patch clamp of spiny stellate neurons, the cell was imaged 

and a suitable dendrite was chosen. The criteria for targeting the dendrite was the 

orientation, location and spatial relation to other dendrites of the patched cell; the 

selected dendrite was ideally located on the left side of the cell, as the stimulating 

electrode would approach the cell from that side of the objective; it was chosen so 

that it was deep enough to not be cut during slice preparation, to ensure preservation 

of the structural integrity of the cell, yet not too deep that it is difficult to image due to 

increased light scattering; finally, the dendrites preferentially targeted were relatively 

isolated from the rest of the dendritic branches to minimize the possibility of 

stimulating multiple dendrites, thus jeopardising the branch-specific effect of dendritic 

spike generation. The targeting of axonal projections innervating a single dendritic 

branch was achieved by stimulating in proximity of a chosen dendrite of the patched 

cell; electric pulses in the vicinity of an axon triggers glutamate release at the synapse 

and elicit a synaptic response which is supposedly local to the dendritic branch of 

choice. Care was taken to avoid direct stimulation of the dendrite (by monitoring the 

presence of a latency between the stimulus artefact and the change in membrane 

potential, reflective of the underlying synaptic transmission time). Stimulation was 

achieved using a monopolar electrode pulled from a patch glass pipette (similarly to 

the patch electrode) and filled with ACSF containing either Alexa 594 or Alexa 488 

(50µM, Thermo Fisher Scientific). The stimulating electrode was connected to a 

Digitimer DS2A stimulation box (Digitimer Ltd.). 200 µs long square pulse stimulations 

were injected in trains of 5 stimulations at 0.2Hz. The intensity of the stimulations 

varied after each train of stimulations and the output was recorded and analysed. 

Intensities were varied in a pseudorandom non-incremental manner to limit the 

plasticity at the synapses and possibly mimic a more physiological pattern of inputs. 

Increasing the intensity putatively increases the number of fibres recruited to the 

dendrite, therefore providing a way to control the number of synapses being activated. 

The experiments were conducted in current clamp. Current was injected to hold the 

neuron at the desired resting membrane potential (Vm). In the control conditions, Vm 

was set at -60mV while in the hyperpolarised conditions Vm was held at -75 mV. The 

hyperpolarisation of the cell was used to investigate the effect of disengaging 

NMDARs. Furthermore, all focal synaptic stimulation experiments analysed were 

conducted in the presence of 50 µM pictrotoxin (PTX, Sigma-Aldrich) to block GABAA 
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receptors and reduce interference of inhibitory responses in the electrophysiological 

traces. 

 
 

 

Figure 2. 2 Schematic of mechanisms of focal synaptic stimulation 

A. shows a dendritic branch innervated by several axons. When a stimulating electrode is 
placed in proximity to the dendritic branch, it can stimulate the release of neurotransmitters 
from axons which synapse onto that dendritic branch. The resulting change in membrane 
potential can be recorded from the cell body, and an example is provided In the blue trace 
underneath the diagram. As the intensity increases, the sphere of action of the stimulation 
increases also, recruiting more and more fibres. A dendritic spike occurs when enough axons 
are activated on a dendrtitic branch and this leads to the activation of nearby synapses. This 
causes the membrane potential to leap up in a supralinear manner as shown by the difference 
between the expected (linear) and actual (supralinear) response. This is also shown in an 
example of an input/output curve for this experiment (C). B. shows a simplified response trace 
and the parameter being analysed in this study. 

 
 

 

2.2.5 Analysis of dendritic stimulation data 

The electrophysiological data were analysed using MATLAB (MathWorks, version 

R2018q). Traces containing action potentials were excluded from the analysis and 

the remaining subthreshold traces were normalised to the baseline (100 ms prior to 

the stimulus). The peaks of amplitudes of the response to the train of stimuli was then 

averaged for each stimulus intensity either between 2-20 ms after the stimulus (short 

window) or between 2-500 ms after the stimulus (long window). The results were 

plotted to construct an input/output curve at the different ages, for both the control and 

hyperpolarised conditions. The areas under the curve of the response were also 
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averaged at each stimulus intensity and it was plotted against the intensity of the 

stimulus. 

The maximum response during short and long window, as well as the maximum area 

under the curve was calculated and compared between the two membrane potential 

conditions. For each cell, the maximum value of each parameter was selected, 

regardless of stimulus intensity and within a whole trial. The raw data was plotted and 

an average was calculated (+/- SEM). This data from all ages investigated was 

combined together and a paired student’s t-test was run using SPSS to test whether 

there is a significant difference in maximum response for the three parameters 

between experiments run with cells held at control and hyperpolarised resting 

membrane potential. 

This same data was used to run a regression analysis to assess age-dependency of 

the maximum responses between P5-20. The plots were made in MATLAB 

(MathWorks, version R2018q) and a line of best fit was plotted using the polyfit and 

polyval in-built functions. Similar regression analysis (SPSS, IBM Statistics, version 

24) was also run for the ratio of control/hyperpolarised values calculated for each cell. 

Plots of the ratio as a function of mouse age and best line of fit were created using 

MATLAB (MathWorks, version R2018q). 
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2.3 Results 
 
 

2.3.1 Morphologies of L4 neurons 

To investigate the presence of dendritic spikes in developing cortex, neuronal 

dendrites were stimulated and the membrane potential of layer 4 neurons was 

recorded using whole cell patch clamp in barrel cortex slices from mice aged P7-P20. 

These neurons were also filled with fluorescent dye from the patch pipette to allow 2- 

photon imaging of their morphology during recordings (Fig. 2.3 and 2.4). Most of the 

cells imaged (34/41 cells) exhibited the characteristic small cell bodies and 

symmetrical dendritic arbour, with dendrites spanning approximately the same 

distance from the cell body, in multiple directions. The rest of the imaged cells (7/41) 

had an apical dendrite extending towards the outer layers, which is characteristic of 

star pyramidal neurons which are also found in L4 barrels (Lübke et al., 2000; Staiger 

et al., 2004). Because barrel cortex spiny stellate and star pyramidal neurons have 

been shown to exhibit similar intrinsic properties (Cowan and Stricker, 2004; 

Feldmeyer et al., 1999; Schubert et al., 2003), the below analysis was carried out on 

both cell types. 

Zooming in the dendrite reveals the presence of dendritic spines on the dendrites of 

both types of neurons from P7. Further analysis is required to quantify the increase of 

spines with age, but it is possible to qualitatively assess that the number of dendritic 

spines appears to increase with age, consistently with previous literature on the barrel 

cortex (Ashby and Isaac, 2011). 

The cell bodies of spiny stellate cells in the L4 barrel cortex have been shown to be 

preferentially located on the barrel wall (Arnold et al., 2001; Egger et al., 2008). When 

fully mature, the dendrites of these neurons are projected into the barrel hollow where 

they are extensively innervated by thalamocortical afferents (Harris and Woolsey, 

1983). The 2-photon images of patched neurons show that several neurons imaged 

exhibited this biased orientation of the dendrites towards one side, putatively the 

barrel hollow (Fig. 2.4). However, since the barrels were not labelled, it is only possible 

to postulate that this biased orientation is related the position of the neuron within a 

barrel. 
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Figure 2. 3 Range of neuronal morphologies in L4 

Maximum intensity projections of 2-photon image stacks showing neurons patched and filled 
with Alexa fluorescent dyes from 3 example ages, P7, P11 and P15. A(i) and A(ii): for each 
age, an example of a characteristic spiny stellate neuron and a pyramidal neuron is shown. 
The red hollow arrows in A(ii) show the apical dendrite that is present in pyramidal-like 
neurons, but not spiny stellate neurons. The light blue arrow indicates the direction where 
the pial surface is located. B(i) and B(ii): zoomed in images of single dendrites is shown next 
to each image. The red arrows indicate putative dendritic spines. 
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Figure 2. 4 Dendritic orientation of L4 spiny stellate neurons 

2-photon images of L4 spiny stellate neurons from several ages (noted top left inside the 
image). A proportion of these neurons (4/6) exhibit a preferential orientation of the dendritic 
arbour towards one side of the image. All images are shown at the same scale. 
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2.3.2 Dendritic stimulation at different developmental ages 

In order to elicit a dendritic spike, whole-cell patch clamp was used to record changes 

in the membrane potential of L4 barrel neurons in response to stimulations of axonal 

projections. The monopolar electrode was placed near (around 20-30 µm) a dendrite 

of the recorded cell in order to cause neurotransmitter release at the synapse and 

trigger a postsynaptic response. The response was anticipated to be almost 

exclusively due to glutamate release because GABAA receptors were blocked by the 

picrotoxin (PTX) included in the external solution. Care was taken to avoid direct 

stimulation of the dendrite by monitoring the presence of a latency of at least 2 ms 

between the stimulus artefact and the change in membrane potential, reflective of the 

underlying synaptic transmission time. The stimulations were given in trains of 5 

pulses at 0.2Hz; Increasing the stimulus intensity putatively increases the number of 

fibres recruited to the dendrite, providing a way to control the number of synapses 

being activated. Therefore, to investigate the scaling of the excitatory postsynaptic 

potential (EPSP) size with different numbers of simultaneously activated inputs, the 

stimulus intensity was varied in a pseudorandom, non-incremental fashion. 

The maximum intensity of the delivered stimulus in each experiment was increased 

until action potential generation (Fig. 2.5). The lowest intensity was that which clearly 

evoked no EPSPs at all. Recordings in which the cell spiked at every single 

stimulation within a train were discarded. 

NMDA dendritic spikes are subthreshold events that, while they contribute to the 

depolarised state of the neuron, on their own do not usually trigger an action potential 

in the axon of the targeted neuron (Holthoff et al., 2004; Larkum et al., 2009; Major et 

al., 2008; Milojkovic et al., 2005; Oakley et al., 2001; Schiller et al., 2000);. The 

presence of action potentials in the response traces masks subthreshold events; 

therefore, only the traces that did not contain action potentials were analysed. Figure 

2.8 shows traces from the same experiments before (Fig. 2.5A) and after (Fig. 2.5B) 

the removal of trials containing action potentials. 
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Figure 2. 5 Examples of somatic voltage recordings following focal synapti stimulations at 
different intensities 

A. Example of traces from spiny stellate neurons being stimulated in thalamocortical brain 
slices from a P7 mouse. The number at the top of each graph indicates the stimulus intensity 
of the stimulation. The stimulus was given at 100 ms. In black are the single trials (5 
stimulations at 0.2 Hz) while the overlaying trace in red is the mean of all the 5 traces. The 
traces are normalised to the mean baseline prior to the stimulus. B. The same example as in 
A after the removal of the traces containing action potentials, leaving subthreshold EPSPs 
only. 
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2.3.3 Average peak responses and areas under the curve following focal 

synaptic stimulation 

In order to investigate the emergence of dendritic spikes during postnatal neuronal 

development, the experiments were conducted on P7-21 mice. This developmental 

period incapsulates the critical period of development of the spiny stellate neurons 

(Ashby and Isaac, 2001). 

During the early stages of neuronal development, NMDARs are the main contributors 

to synaptic transmission, while AMPARs are inserted in the membrane later on (Barth 

and Malenka, 2001; Carmignoto and Vicini, 1992; Crair and Malenka, 1995; Daw et 

al., 2007; Feldman et al., 1998; Hestrin, 1992; Isaac et al., 1995, 1997; LoTurco et al., 

1991; Monyer et al., 1994). These receptors are characterised by a large 

conductance, Na+ and Ca2+ permeability and slow kinetics (Glasgow et al., 2015; Tong 

and Jahr, 1994). Because of the slow activation and opening duration of these 

receptors, the dendritic spike they support is very long lasting (up to 100 ms, Major et 

al., 2008). Previous literature has shown that NMDAR-mediated dendritic spikes can 

affect both the amplitude and the duration of the postsynaptic response, 

independently. Therefore, the parameters extracted from the electrophysiological 

recordings in the responses to focal synaptic stimulation were the average peak of 

the EPSP (both in the short, 2-20 ms, and long, 2-500 ms, window post-stimulus) and 

the area under the curve for the whole duration of the recording (2-500 ms post- 

stimulus). The area under the curve was used to measure differences in the duration 

and amplitudes of the responses, thus giving information about the shape and length 

of the trace, which might be underlying the NMDAR component. 

L4 spiny stellate neurons have been previously reported to support NMDAR-mediated 

dendritic spikes in P15-20 mice (Lavzin et al., 2012). In order to investigate the 

requirement of NMDARs in dendritic spike generation, focal synaptic stimulation was 

carried out at normal voltage and then the neuron was hyperpolarised and the same 

set of stimuli was injected (Fig. 2.6). Hyperpolarisation of neurons reduces potential 

activation of NMDARs as it prevents voltage-dependent release of a magnesium 

block release, which therefore imposes a physical block to ionic influx via these ion 

channels (Mayer et al., 1984; Nowak et al., 1984). Hyperpolarizing the neuron by 

approximately 15 mV was previously shown to abolish NMDA-mediated dendritic 

spikes (Lavzin et al., 2012). 
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Figure 2. 6 Resting membrane potential in control and hyperpolarised conditions 

Current injection in current clamp mode was used to hold the whole-cell patched cell at a 
specific membrane potential. In the control condition, the resting Vm was set at -60 mV (in 
blue) while in the hyperpolarised condition the cell was held at -75 mV. Cell resting 
membrane potential for each cell, averaged for each stimulation train, before stimulus, is 
shown. Error bars: S.E.M. 

 
 
 
 

The average peak of the response to the stimulus is normalised to the baseline before 

the injection of current in all the graphs in Fig. 2.7. The data shown in this figure has 

been obtained by analysing the subthreshold-only traces. In all the recordings the 

dendrite was stimulated until the cell reached the threshold for action potential, but 

only subthreshold traces were analysed here. 
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Figure 2. 7 Recording traces from a single cell in brain slices of selected ages following 
focal synaptic stimulation 

Example traces from P7, P11, P15 and P20 pups. The responses from a single cell per age are 
shown overlaid. In black are the responses to the focal synaptic stimulations in the control 
resting Vm condition and in red the responses in the hyperpolarised condition. 

 
 

Periodically throughout the recording session, the neuron was briefly imaged to 

ensure that the electrodes had not drifted from their original location; additionally, 

electrophysiological parameters, such as the amount of current being injected to keep 

the membrane potential at the desired value, were monitored as a measure of the 

health status of the neuron (leakiness). Aside from these imaging periods, 2-photon 

imaging was kept minimal to avoid phototoxic effects on the neurons. 

The variability between each cell, dependent on various factors such as cell intrinsic 

differences and the proximity of the stimulating pipette to the dendrite, made it difficult 
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to average the data from different neurons. Therefore, results from single example 

trials from P7, P11, P15 and P20 mouse pups are shown in Fig 2.8. 

The peak in the first window is indicative of fast-responsive currents (2-20 ms post 

stimulus), while the peak of the long window includes the peak value from the 

beginning of the short window and expanding until 500 ms post stimulus, thus 

including contributions from channels exhibiting both fast and slow kinetics. At all the 

examined ages, as the intensity of the stimulus increases there is an increase of the 

peak of the resulting EPSP in both the short and long window (Fig. 2.8). This shows 

how the amplitude of subthreshold EPSPs gets larger as putatively more fibres are 

recruited with increasing stimulations. The increase in amplitude can be observed in 

both control and hyperpolarised conditions. Similarly, the area under the curve 

becomes larger as the stimulus intensity increases, in both conditions and at all ages 

examined. 

These results suggest that the stimulation close to the dendrite of the recorded cell is 

eliciting postsynaptic responses that become larger as the stimulus intensity 

increases. 

A previous study by Lavzin and colleagues reported a NMDA-dependent supralinear 

response to increasing focal synaptic stimulation intensity (Lavzin et al., 2012). In the 

example shown in that paper, an approximately 5-fold increase in the postsynaptic 

output of the recorded neuron was obtained once a threshold of stimulation was 

reached. This nonlinear effect was completely abolished when NMDARs were 

pharmacologically blocked via superfusion of the brain slice with APV. The nonlinear 

effect (i.e. “jump" in response) resulting from the occurrence of a NMDA spike was 

distinctly obvious in their voltage recording traces and in the stimulus current-voltage 

relationship curves. 

In the data presented in this study, no noticeable jump in the response to gradual 

increases of stimulus intensity was observed in the control or hyperpolarised 

condition. Instead, a gradual increase in the response was recorded. This was the 

case in all ages and animals looked at (P7-P21 for a total of 15 animals and 22 

neurons). 
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Figure 2. 8 Representative examples of parameters that were analysed for P7, P11, P15 
and P20 animals 

The relevant age can be seen on the left column of the figure. In all ages the average peak of 
the response between 2-20ms or 2-500ms and the average of the area under the curve was 
calculated and plotted. The black circles show the results in the control condition (membrane 
potential = -60mV), while the red squares indicate the results for the hyperpolarising 
condition (membrane potential = -75mV). The peak EPSP is normalised to the mean baseline 
prior to the stimulus. In all the examples shown the peak of the response increases as the 
stimulus increases in both the short and long time window (A and B). Similarly, stimulus 
dependent increase of the area under the curve can be observed (C). 

A B C 

P7 

P11 

P15 

P20 
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2.3.3 The effects of disengaging NMDA receptors 

In order to further explore the effect of the hyperpolarisation-dependent 

disengagement of NMDARs in response to focal synaptic stimulations, the maximum 

EPSP for each trial is plotted in Fig. 2.9. First, the response within the short window 

(2-200 ms post stimulus) was analysed. No statistically significant difference was 

detected in the maximum peak of the EPSP between the control and the 

hyperpolarised state of the cell. A similar result was found for the response during the 

long window (2-500 ms). On the other hand, the maximum value for the area under 

the curve is significantly reduced in the hyperpolarised state of the cell, compared with 

the control membrane potential. Because no statistically significant difference in the 

amplitude was detected, the difference in area under the curve is most likely due to a 

change in the duration of the EPSP. These results suggest that while hyperpolarising 

the cell, and therefore putatively blocking the action of NMDARs, shortens the 

duration of the EPSP, but has no significant effect on the amplitude of the response. 

This suggests that, overall, there is an NMDAR-component in the electrophysiological 

data acquired. In order to check this, NMDAR blockers such as APV should be used. 

We then moved on to testing whether the value of the maximum EPSPs change with 

increasing developmental age of the mouse pups (Fig. 2.10). Regression analysis 

shows that there is a modest correlation between the maximum EPSPs recorded and 

age in both the short (R2 = 0.349) and the long (R2 = 0.272) window (Fig. 2.10A). The 

peaks of the responses for each cell increase from ~10 to ~15 mV between P7 and 

P20. On the other hand, non-statistically significant developmentally regulated 

changes were detected in the maximum of the area under the curve in response to 

focal synaptic stimulation. The same analysis was carried out for the responses 

following hyperpolarisation of the cell. A very weak correlation was found for the short 

and long window (R2 = 0.162 and R2 = 0.105, respectively), and for the area under 

the curve (R2 = 0.031, Fig. 2.10B). These results suggest that hyperpolarising the 

cells influences developmental functional changes mediated by NMDAR activation. 

Finally, in order to determine whether hyperpolarising the cell has an age-dependent 

effect on the three parameters investigated, a ratio of the control and hyperpolarised 

data was calculated, and regression analysis was carried out (Fig. 2.11). For both the 

maximum response in the short and long window, no statistically robust difference 

was observed across the ages investigated (P7-20). Similarly, the 

control/hyperpolarisation ratio of maximum area under the curve does not seem to be 

affected by the age of the animal. 
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Figure 2. 9 Maximum responses in the control and hyperpolarised conditions 

The peak of the EPSP for each trial is plotted for the short (A) and long (B) window and the 
maximum area under the curve (C). The bar plot shows the average of the maximum 
response for the two conditions (during control and hyperpolarised membrane potentials). 
Paired Student t-test was run. Error bar: SEM. 
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Figure 2.10 Age-dependent changes in maximum responses and area under the curve 

For both the control (A) and the hyperpolarised (B) conditions, maximum EPSP for each cell is 
plotted against developmental age for the short and long window. Maximum area under the 
curve per trial is also shown. Red line shows the best fit line. 

B A 
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Figure 2. 11 Age-dependent changes in the ratio of control/hyperpolarised data 

The ratio between control and hyperpolarised date for maximum EPSP for each cell is plotted 
against developmental age for the short and long window. Maximum area under the curve 
per trial is also shown. Red line shows the best fit line. 
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2.4 Discussion 
 
 

2.4.1 Morphology of the L4 neurons of the developing barrel cortex 

In the acute slice preparations, two main types of neuronal morphologies were 

observed by 2-photon imaging of fluorescent dye filled cells. The most prominent cell 

morphology exhibited radially extended dendrites and lacked an apical dendrite; these 

cells are morphologically similar to L4 spiny stellate cells. The other, rarer, type had 

a long apical dendrite that extended towards the more superficial cortical layers. 

These pyramidally-looking cells could be explained in a number of ways. They could 

be migrating pyramidal neurons that are passing through L4 to establish L2/3. 

However, the morphology of the imaged cells does not reflect the typical bipolar 

feature of migrating neuron (Noctor et al., 2004). Another option is that these neurons 

are spiny stellate neurons that have not retracted their apical dendrite yet. However, 

long term imaging studies reported that the retraction of the apical dendrite and 

dendritic refinement is close to completion by P5 (Mizuno et al., 2014; Nakazawa et 

al., 2018); as P7 is the youngest age of these experiments, and pyramidal-like 

neurons were imaged at various ages, including P15, it is unlikely that this can 

account for these observations. There is also a possibility that these cells are 

pyramidal neurons from L2/3 or L5 that have been patched by mistake, close to the 

border from L4. However, the morphology of L5 giant pyramidal cells and L2/3 cells 

is very recognizable, so while that is a possibility, it is unlikely. Finally, the most likely 

option is that the pyramidal-looking cells are L4 star pyramidal neurons, as these cells 

have been described to have an apical dendrite and sparsely populate the L4 barrels 

(Simons and Woolsey, 1984; White and DeAmicis, 1977). The incidence of these cells 

was low, so they were not excluded from subsequent analysis. 

Spiny stellate neurons in the barrel cortex are oriented so that the cell bodies are 

preferentially located towards the periphery of the single barrel, while they project their 

dendrites towards the middle of the barrel (Simons and Woolsey, 1984; Steffen and 

Van der Loos, 1980; Woolsey et al., 1975). The biased orientation of spiny stellate 

neuron dendrites toward the centre of the barrel hollow has been proposed be optimal 

to sample the direct thalamocortical input (Arnold et al., 2001; Koralek et al., 1988). 

In this study, several, but not all, spiny stellate neurons extend their dendritic branches 

preferentially towards one side of the field of view. The development of this orientation 

is a dynamic process that has been reported to occur between P3 and P6 (Nakazawa 

et al., 2018). As no independent marker for the barrels has been used in these 

preparations, we can only speculate that the cell bodies of the spiny stellate neurons 



Chapter 2 

75 

 

 

 

align with the barrel walls and send their dendrites towards the middle of the barrel, 

consistently with previous literature (Arnold et al., 2001; Egger et al., 2008; Koralek et 

al., 1988; Nakazawa et al., 2018). Whilst the lack of biased dendritic orientation could 

be due to a delay in dendritic gross morphological refinement in the youngest pup 

imaged, it is unlikely to be the case in P14 brains. However, as barrels are 3D 

structures, the fact that we cannot see the orientation in the projected images does 

not exclude the fact that this is due to the point of view of the image acquisition, i.e. 

that the neurons are towards the surface or at the bottom of the barrel and projecting 

dendrites perpendicularly to the imaging planes. 

 
 

2.4.2 Methodological differences with previously published method 

Focal synaptic stimulation on the dendrites of developing spiny stellate neurons has 

previously been shown to elicit NMDAR-mediated dendritic spikes in P15-20 mice 

(Lavzin et al., 2012). 

In the present study, the aim was to replicate these results and determine at what 

postnatal age dendritic spikes first emerge during neuronal development. Therefore, 

similarly to the method employed by Lavzin and colleagues, focal synaptic stimulation 

was used to trigger dendritic spiking in L4 spiny stellate cells in pups aged P7-P20. 

Unfortunately, in contrast to the observations reported in that paper, characteristic 

nonlinearity of dendritic spikes was not detected at any of the ages examined. The 

protocol was adapted from the Lavzin paper, but a few details differed slightly (Table 

2 shows the similarities and difference between the two protocols). 

The mouse lines used in the two studies were different. Lavzin and colleagues 

performed their dendritic stimulations in CD1 mice, an albino outbred stock, while the 

present experiments were conducted in brains from either PSD95-eGFP on a 

C57BL/6J background or wild type C57BL/6J mice. However, PSD95-eGFP knock-in 

mice show no electrophysiological difference from the control wild type mice (Zhu et 

al., 2018) and no nonlinearity was present in the wild type mice either; so this is 

unlikely to be the source of the discrepancy between the results. The reason for using 

the PSD95-eGFP for these experiments was because the plan was to eventually 

relate function (dendritic spikes) to structure (presence of PSD95 in specific dendritic 

branches). 

Moreover, in the present study electrodes were pulled from glass capillaries and used 

for both whole-cell patch clamp and dendritic stimulation; this is a monopolar 

electrode, meaning that one pole is the electrode and the other pole is the ground 
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electrode in the bath. On the other hand, in the Lavzin paper, theta glass electrodes 

were used to deliver the focal synaptic stimulation; these glass electrodes are bipolar, 

containing two isolated channels, constituting the two poles, running along the length 

of the glass tube. The + and – poles are very close together and this conformation 

helps restricting the electric field, thus making it more local. Therefore, the differences 

in how focal the synaptic stimulation actually is could be the cause of the discrepancy; 

using a monopolar electrode producing a less local stimulation might mean that the 

neuron is being driven too much from the beginning, and therefore the dendritic spikes 

may already being occurring at the lower intensities, thus preventing the detection of 

the nonlinearity characteristic of the dendritic spikes. 

The concentrations of the components for the intracellular solution and ACSF were 

also slightly different. The Alexa Fluor dyes used to visualise the neuron were of 

different wavelengths, but the same concentration was used in both studies; 

therefore, this is unlikely to have made a difference. 

The recordings analysed only contained subthreshold traces, while traces containing 

action potentials were removed. The reason for the exclusion of traces containing 

somatic action potential was based on the assumption that dendritic spikes are 

subthreshold events; single dendritic spikes have been shown not to be sufficient to 

elicit a somatic action potential (Larkum et al., 2009; Lavzin et al., 2012; Milojkovic et 

al., 2005; Palmer et al., 2014; Polsky et al., 2004). In the reference paper, it is not 

mentioned if any adjustments to avoid somatic spiking were taken, and the NMDAR- 

mediate dendritic spikes presented in the figures did not have any overriding somatic 

spikes. There is, however, a possibility that in my preparation focal synaptic 

stimulation is triggering somatic action potentials quickly and this is masking 

underlying dendritic spiking activity. 

The generation of dendritic spikes relies on the stimulation of synapses on a single 

dendritic branch, which triggers the local event. While care was taken in selecting a 

relatively spatially isolated dendritic branch, in a few instances, especially in older 

ages, this was rendered more difficult by the presence of sister dendrites around the 

stimulated dendrite. Furthermore, for the axons to be stimulated they need to be within 

the range of the electric field generated by the stimulating pipette (located close to the 

dendrite); however, there is no way of controlling the location on the dendrite (of the 

patched cell or other cells) where that axon makes synapses. This adds more 

confounding factors to the specificity of the targeting of a single dendritic branch, 

which is crucial for the subthreshold synaptic response of dendritic spikes. 

Additionally, the axonal density and innervation is likely to change over development 
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and this developmental shift may affect the results. Glutamate uncaging on visually- 

identified synapses on a single dendritic branch would be a way to more efficiently 

control the activation of synapses. 

In general, the imprecision of stimulation range, the intrinsic cellular properties, and 

cell morphology might have added extra variability in the results presented in this 

study. The stimulation of more than one branch increases the risk of reaching 

threshold and driving an action potential, which then would make the detection of 

dendritic spikes more complicated. This may constitute an additional possible factor 

that may have influenced the results. 

 

  Lavzin et al., 2012  My protocol  

Mouse breed  CD1 mice, P15-20 
C57BL/6J mice or 

PSD95-eGFP, P7-20 

FSS protocol  1 stimulation 5 stimulations at 50 hz 

FSS electrode  Theta electrode 
Patching electrode (3-5 MΩ 

resistance) 

Whole-cell 
patching  
electrode  

 
Patching electrodes (6-10 MΩ) 

 
Patching electrodes (3-5 MΩ) 

Fluorescent dye  Alexa Fluor 633 (50 µM) 
Alexa Fluor 594 or 488 (50 

µM) 

 

ACSF components 
(mM)  

NaCl (125) 
NaHCO3 (25) 
Glucose (25) 

NaH2PO4 (1.5) 
CaCl2 (2) 
MgCl2 (1) 

NaCl (119) 
NaHCO3 (26.5) 
D-Glucose (11) 

NaH2PO4 (1) 
CaCl2 (2.5) 
MgCl2 (1.3) 

 

Intracellular 
solution 

composition 
(mM)  

  

KGluconate (135) 
KCl (4) 

HEPES (10) 
Na2 phosphocreatine (10) 

GTP (0.3) 
Alexa and biocytin (0.05) 

pH 7.25 
Osmolarity 285 mOsm 

KMeSO4 (130) 
NaCl (8.5) 
HEPES (10) 
NaGTP (0.3) 
EGTA(0.5) 

Alexa and biocytin (0.05) 
pH 7.25 

Osmolarity 285 mOsm 

NMDAR function  
block  

APV or MK801 15mV hyperpolarisation 

 
Table 2. Differences between the published and my protocol for dendritic spike generation 

Differences in terms of mouse breed, focal synaptic stimulation (FSS) protocol and solutions 
are highlighted. 
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2.4.3 Dendritic spikes during development 

Dendritic spikes occurring during development could lead to synaptic functional 

clustering that could potentially increase the computational efficiency of the 

processing of neuronal signals. In vivo studies showed that, during development, 

spontaneous activity preferentially activates synapses located nearby in CA3 

pyramidal neuronal dendrites (Kleindienst et al., 2011) and in the visual system 

(Winnubst et al., 2015). This synchronicity between spatially close synapses was also 

found to be essential for synaptic regulation, as synapses asynchronous with respect 

to their neighbours became depressed (Winnubst et al., 2015). However, whilst the 

idea of developmentally regulated dendritic spikes as a mechanism to direct physical 

and functional synaptic clustering is extremely enticing, there is no conclusive 

evidence that this occurs in our model system yet. Furthermore, the 

electrophysiological and morphological nature of young immature neurons could 

mean that possibly NMDA spikes are not such a prevalent phenomenon, or they are 

not present at all, and this is the reason they could not be detected in our preparations. 

 
 

2.4.4 Effects of hyperpolarising the membrane potential of L4 cells 

Hyperpolarising the cell should reduce the activation of NMDARs by preventing the 

release of a voltage-dependent Mg+ block, which constitutes a physical block to ion 

entry through the channel (Nowak et al., 1984). However, hyperpolarisation should 

also increase the driving force for EPSP (as it places the Vm further from the reversal 

potential for AMPARs and NMDARs). The lack of dendritic spiking in these 

experiments may be due to the small engagement of NMDARs in these young 

neurons of the barrel cortex. However, comparisons between the kinetics of the 

maximum responses between the control (Vm maintained at 60mV) against the 

hyperpolarised (Vm maintained at 75 mV) condition suggested that the area under 

the curve, but not the amplitude, of the response is affected by the interference with 

NMDAR activation. A reduction in the area under the curve, but not the amplitude, of 

the postsynaptic response suggests that the EPSPs are longer in duration in the 

control condition. Therefore, decreasing the membrane potential of the cell by 15 mV 

is potentially affecting the slow, NMDAR-mediated component of EPSPs. 

The fact that a significant NMDAR-dependent effect was detected in our preparation 

suggests that these receptors contribute to the EPSPs. However, since dendritic 

spikes were not observed using our analysis methods, the drive from the focal 

synaptic stimulations may just not be enough to trigger non-linear NMDAR-mediated 

dendritic events. A way to get around this problem and increase the activation of 
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NMDAR could be to do a sequence of 2 or more stimuli to try and test whether the 

resulting depolarising input is then sufficient to elicit dendritic spikes. 

Furthermore, to achieve a more robust and reliable block of NMDARs, 

pharmacological blockers (e.g. the intracellular MK801 or the extracellular APV) can 

be used. This method would help ascertain the involvement of these receptors 

directly. 

An age-dependent effect was also observed, by which the maximum EPSPs 

postsynaptic response increased with development. This is likely to reflect changes 

in the intrinsic properties of developing neurons. Fig. 2.7 shows the subthreshold 

EPSP responses from a single cell, in four brain slices from P7, P11, P15 and P20 

mice. The responses at P20 appear considerably larger (note the difference in scale 

compared to traces from the other ages). This suggests that changes in dynamics 

and kinetics of ion channels underlying this response might be responsible for the 

developmentally regulated increase in the maximum EPSP observed in these cells. 

 
 

2.4.5 Future experiments 

The present study failed to replicate the previously published results showing 

NMDAR-mediated dendritic spikes in L4 neurons in P15-20 mice. In my hands, I could 

not elicit nonlinear responses to focal synaptic stimulation between P15-20 and in 

younger ages. A future experiment will be to elicit dendritic spike using a more 

spatially precise technique: photostimulation via glutamate uncaging. Glutamate 

uncaging allows to specifically target fluorescently identified dendritic spines by using 

2-photon lasers to release glutamate from its chemical cage, at a specific location. 

This method has been previously used to trigger dendritic spiking in adult pyramidal 

neurons (Schiller et al., 2000). Similarly to focal synaptic stimulations, the aim is to 

increase the synaptic input until dendritic spike threshold is reached and a local 

nonlinear event occurs. This is achieved by uncaging glutamate on an increasing 

number of synapses, allowing a greater spatiotemporal control over synaptic input 

than was possible with focal synaptic stimulations. The downside of this method is 

that it is not clear that this pattern of activation would ever take place physiologically. 

However, it would inform us of whether regenerative nonlinear dendritic events are 

able to be supported by developing neurons. 
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Chapter 3: Developmentally regulated changes of 

PSD95 and SAP102 expression 

 
3.1 PSD95 and SAP102 

Members of the DLG subfamily of the MAGUK proteins form a protein network at the 

synapse which is extremely important for the correct transmission of neuronal signals. 

Whilst they share the main functional domains and all are involved to some degree in 

the recruitment, trafficking and/or scaffolding of receptors, these different proteins 

differ in terms of binding partners, subcellular localisation and orientation, dynamics 

and temporal expression during development. 

This study focuses on two members of the MAGUK family of proteins: PSD95 and 

SAP102. PSD95 is a major component of the mature post-synaptic density of 

excitatory synapses (Cheng et al., 2006; Kennedy, 1997; MacGillavry et al., 2013; 

Nair et al., 2013; Sheng and Hoogenraad, 2007). and has been shown to promote 

synaptic maturation; on the other hand, SAP102 is a more dynamic and 

developmentally expressed protein that is involved in receptor trafficking at synapses 

(Elias et al., 2008; Sans et al., 2003; Washbourne et al., 2002). 

Therefore, the comparison between the laminar expression of PSD95 and SAP102 

provides a way to investigate changes in synapse maturation during brain 

development, as neurons in the layers develop and intracortical and long-range 

circuits. However, there are no studies that focus on a systematic interrogation of the 

presence of PSD95 or SAP102 in the cortical layers and how this might change at 

different stages of development, as the layers form and neuronal circuits are 

established and refined. 

 
 

3.1.1 Aims: 

1. Establish whether SAP102 and PSD95 follow a cortical layer-specific pattern 

of expression 

 
2. Investigate whether the distribution of SAP102 and PSD95 changes over the 

course of development 

 
3. Compare the temporal-spatial trajectory of SAP102 and PSD95 
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3.2 Methods 
 
 

3.2.1 Mouse strains and breeding 

All following procedures were conducted in accordance to the Animal Scientific 

Procedures Act 1986 (Home office, UK) and approved by the University of Bristol 

Animal Welfare and Ethics Review Board. 

PSD95-eGFP and GKD mice (Fig. 3.1) were provided by Seth Grant (University of 

Edinburgh). In both mouse lines, a fluorophore was fused in-frame to the C-terminus 

of the wildtype protein, which was expressed under the endogenous promoter, using 

gene targeting (Zhu et al., 2018). In the PSD95-eGFP mice, PSD95 is fused to a 

single eGFP molecule (Broadhead et al., 2016). The GKD mice express endogenous 

PSD95 tagged with eGFP, endogenous SAP102 tagged with monomeric Kusabira 

Orange 2 (mKO2) and a tandem affinity purification (TAP)-tagged NR1 subunit3. 

Adult mice from the two mouse colonies were kept in the same room on a 12/12 

light/dark cycle. The cages contained the same enrichment consisting of a cardboard 

tube and nesting material (shredded paper). Groups of same sex siblings consisted 

of maximum 4 animals, to avoid overcrowding of the cages. Breeding mice were 

housed in cages as mating pairs or trios and checked daily for the presence of pups. 

Pups born on the same day were recorded as P0 and the pups were weaned 21 days 

post birth. All genotypes were maintained on a C57BL/6J background. 

Breeding was devised and monitored to have a constant supply of 4-20 day old 

homozygous pups. At arrival, PSD95-eGFP original breeders were homozygous 

(PSD95eGFP/eGFP). On the other hand, the GKD mice were all homozygous for 

PSD95-eGFP and NR1 epitope but a mix of homozygous and hetero- and 

hemizygous for SAP102-mKO2 (PSD95eGFP/+, GRIN1TAP/+, SAP102mKO2/+, 

SAP102mKO2/X, SAP102mKO2/ Y). SAP102 is located on the X chromosome, therefore 

males can be hemizygous for SAP102-mKO2 or they are wildtype. The GKD mice 

were strategically paired in order to obtain SAP102 homozygous females and 

hemizygous males from one pair (homozygous female PSD95eGFP/+, GRIN1TAP/+, 

SAP102mKO2/+ crossed with hemizygous male PSD95eGFP/+, GRIN1TAP/+, 

SAP102mKO2/Y), and a mixture of homozygous, hemizygous and wild type (for 

SAP102) genotypes from a trio (2 heterozygous females PSD95eGFP/+, GRIN1TAP/+, 

SAP102mKO2/X crossed with hemizygous male PSD95eGFP/+, GRIN1TAP/+, 

SAP102mKO2/Y). Pups born within a day were checked for fluorescence using a 

flashlight paired with a set of coloured glass goggles (Nightsea, USA). The 
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fluorescence across the whole brain was bright enough to be detected on the 

dissected brain at any age (Fig. 3.2) and through the thin skull and meninges at 

younger ages. 

Table 2 shows the exact number of brain slices and animals used for the 

experiments with the PSD95-eGFP and GKD mice. 
 
 
 
 

 PSD95-eGFP GKD 

Postnatal  
day  

Number  
of animals  

Number  
of slices  

Number  
of animals  

Number  
of slices  

4  3 10 2 4 

5  3 10 2 5 

6  3 6 3 6 

7  4 12 1 3 

8  3 10 3 8 

9  3 8 2 8 

10  2 6 2 6 

11  3 11 3 8 

12  3 7 0 0 

13  2 11 1 2 

14  3 10 1 3 

15  2 7 2 5 

16  1 2 0 0 

17  2 5 2 7 

18  2 7 1 4 

19  0 0 2 2 

20  0 0 2 2 

 
Table 3. Summary of animal numbers used for imaging experiments 

For each postnatal day examined, a list of n numbers of animals and slices imaged for each 
mouse line are indicated. 
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Figure 3. 1 The two mouse lines used for this study 

A. In PSD95-eGFP mouse brains endogenous PSD95 is tagged with eGFP at the C-terminus. B. 
GKD mice express eGFP-tagged PSD95 and mKO2-tagged SAP102, allowing dual imaging of 
these proteins in the same slice preparations. 

 
 

 

 

Figure 3. 2 Assessment of genotype using flashlight and goggles 

Dissected brains from a P10 mouse observed under a lightbulb (A), a flashlight (B) and through 
goggles (C). The brain on the left in all the pictures is SAP102-mKO2 negative, while in the 
brain on the right SAP102-mKO2 is expressed. 
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3.2.2 Live 2-Photon imaging on thalamocortical PSD95-eGFP brain 

slices 

Thalamocortical brain slices containing the barrel cortex were obtained from PSD95- 

eGFP mice between P5 and P20 as described in the previous chapter and in (Agmon 

and Connors, 1991, Fig. 3.3A). The tissue was left to rest at room temperature for 30- 

45 minutes and it was then imaged with an upright Prairie Ultima 2-Photon laser 

scanning microscope (Prairie Technologies, Madison, WI). Low magnification images 

of the barrel cortex were acquired using a 16X objective (Nikon, 0.8 NA). This 

objective allowed the capturing of cortical layers 1-5A at all the ages investigated, 

without the need to adjust to account for the growth of the tissue. High magnification 

images of the single barrels were obtained using a 60X water-immersion objective 

(Olympus, 1 NA). The settings of the 2-photon laser microscope (laser wavelength, 

power and gain) were kept constant throughout the study. PSD95-eGFP was excited 

using a 2-photon excitation wavelength of 910, using a MaiTai Ti-Sapphire tuneable 

laser (Spectra Physics), controlled through a Pockels cell (Thorlabs) and detected 

using a gallium arsenide phosphide (GaAsP) detector. The acquisition was controlled 

by the Prairie Software. Barrel structures in cortical L4 were identified by brighfield 

imaging using a 4X objective (Olympus, 0.1 NA). The thalamocortical section was 

then held in place in the perfused bath using a harp. 2-photon cortical z-stacks of 50- 

100 slices were acquired with a 60X immersion objective lens (1 µm step, 1024X1024 

pixels, 2 times line average). 

 
 
 

 

Figure 3. 1 Brain slice preparations for 2-photon and confocal imaging 

A. PSD95 -eGFP mouse brains were sectioned to obtain thalamocortical slices, which were 
live imaged using a 2-photon microscope. B. GKD mouse brains were fixed and coronal 
sections were obtained. After mounting, they were imaged using a confocal microscope. 
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3.2.3 Coronal sectioning 

GKD mouse brains were dissected in ice cold dissecting solution and drop fixed in 4% 

paraformaldehyde overnight. The brains were washed 3 times in phosphate buffer 

solution (PBS, VWR international) and stored at 4°C until needed. In preparation for 

sectioning, the brains were kept in a 30% sucrose solution for at least 1 day to 

cryoprotect the tissue. On the sectioning day, after embedding in optimal cutting 

temperature compound (OCT, Agar Scientific), the brain was sliced using a freezing 

microtome (Reichert) to obtain cortical brain slices (Fig. 3.3B). Individual slices were 

collected in a 90 well plate and kept in PBS at 4°C until either mounted or stained 

with antibodies. 

3.2.4 Immunohistochemistry 

The brain sections were collected using a thin brush and gently placed in a well of 6 

well plate containing 2ml of block solution containing 0.3% triton-100X (Sigma- 

Aldrich) and 3% bovine serum albumin (BSA, Fisher) in equal parts. A maximum of 4 

slices per well was established as optimal in order to avoid the sticking together of 

tissue due to overcrowding. After blocking for 1 hour on a rotating table at room 

temperature, the block solution was removed and the slices were incubated with 1.5 

ml of complexin3 rabbit primary antibody in block solution (1:1000, Synaptic systems) 

overnight, on a rotating table at 4°C. After the incubation time, the tissue was washed 

3 times for 15 minutes with 0.3% triton-100X solution (Sigma-Aldrich) and it was then 

incubated in the dark with 1.5 ml of block solution containing Alexa 633-conjugated 

goat anti-rabbit secondary antibody (1:500, Invitrogen) for 2 hours on a rotating table 

at room temperature. Slices were then washed with 0.3% triton-100X 3 times and 

were then mounted on superfrost slides (Thermo Scientific). The slides were left to 

dry at room temperature for either 30 minutes or overnight and mounting was finished 

by applying a couple of drops (~10 µl) of Vectashield hard mount medium containing 

DAPI (Vectorlabs) and a coverslip was gently lowered to the slide to minimise bubble 

entrapment. The slides were stored flat at 4°C until imaging. All this procedure was 

carried out minimising the exposure to light of the brain slices, to prevent bleaching of 

fluorophores. 
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3.2.5 Confocal imaging of coronal sections of fixed P4-20 GKD mice. 

Confocal imaging was carried out with a Leica SP8 laser scanning microscope using 

a dry 10X (Leica, 0.4 NA) for the low magnification images and an oil-immersion 63X 

(Leica, 1.4 NA) for the higher magnification images. The settings for image acquisition 

were as specified in Fig. 3.4. 50 µm stack images were acquired (1 µm step size, 

1024X1024 pixels resolution). 

 
 

 

Figure 3. 2 Confocal spectra for imaging of SAP102, PSD95 and Alexa Fluor 
633 

Excitation (A) and emission spectra for eGFP, mKO2 and Alexa 633, and confocal 
settings used to image them. %T = percentage of transmission. Adapted from 
Chroma Technology corp. Spectra Viewer. 
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3.2.6 Distinguishing cortical layers based on anatomical landmarks 

Cortical layers can be distinguished using specific anatomical landmarks, which are 

visible in PSD95-eGFP expressing brain sections (Fig. 3.5). Layer 1 is identifiable by 

its adjacency to the pial surface and the noticeably scarce presence of neuronal cell 

bodies. Layer 4 is recognisable by the presence of barrel structures within the barrel 

field of the primary somatosensory area. PSD95 is present in abundance inside the 

barrel edges and its levels are greatly reduced in the septa between the barrels. 

These anatomical landmarks were present from the earliest age that was examined 

(P4) and were clearly visible in bright field, 2-photon and confocal images. Layer 2/3 

is defined by being flanked by layer 1 and layer 4. Finally, layer 5A is defined as the 

layer located just deeper of the barrels in layer 4. The layers deeper of layer 5A, layer 

5B and layer 6 were not distinguishable by imaging PSD95 only, therefore the 

following analysis focused on the area between layer 1 and layer 5A only. 

 
 
 
 
 
 

 

Figure 3. 3 Method to define cortical layers 

2-photon images of the cortex of a P10 mouse. High magnification images show the different 
layers. L1 is clearly recognizable as it mostly lacks cell bodies and it’s adjacent to edge of the 
slice. L4 contains the barrel structures (red rectangle on image and plot of the profile of 
fluorescence intensity). L2/3 is formed of highly dense pyramidal neurons and is in between 
L1 and L4. Finally, layer 5A is situated just deeper of L4. 
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3.2.7 Image analysis with ImageJ 

Confocal images were analysed using ImageJ to extract the values of the intensity of 

fluorescence (Fig. 3.6 for experimental workflow). After performing a projection of the 

50-frames image stacks according to the maximum intensity, the whole imaging field 

was selected and a plot profile function in ImageJ was run to calculate the average 

pixel intensity across the whole field of view. For each image, the distance of the pia 

(coinciding with the beginning of L1), the bottom of L4 (as identified by the top of the 

barrel field) and the boundary between L4 and L5 (as assessed by bottom of the barrel 

field) from the left edge of the image (pixels) was noted down and used to normalise 

the data. These values and all the values of the plot profile function were stored in a 

structure in MATLAB, ready for further analysis. 

3.2.8 Analysis of plot profiles with MATLAB 

Firstly, the raw data for both the distance and the intensity values of each plot profile 

was normalised. The distance (X) was normalised by using the values for the location 

of the pia (Xminimum) and the L4/L5 boundary (Xmaximum) using the formula: 

Xnormalised = [X – Xminimum] / (Xmaximum – Xminimum) 

 
This important step allows a comparison of the expression of the proteins of interest 

in the same layers at different timepoints by compensating for the expansion of the 

tissue during developmental growth. By maintaining the distance between L1 and the 

beginning of L5 we are then able to make meaningful comments on the relative 

expression of these proteins in the different layers and compare it between ages. 

Secondly, the raw intensity (Y) was also normalised to the maximum intensity (usually 

in Layer 1) using the following formula: 

Ynormalised = [Y – Yminimum] / (Ymaximum – Yminimum) 

 
Even though the settings used to acquire the confocal images were kept exactly the 

same for all the images acquired, this further normalisation helped compensating for 

any changes in lasers which were out of our control and regardless of the total level 

of fluorescence. Furthermore, this normalisation is pivotal to compare the 

fluorescence of the two fluorophore-tagged proteins at different timepoints as it 

normalises for changes in expression level by providing a relative measure of intensity 

across the cortical layers. 

Finally, the normalised intensity data was binned in a consistent manner for all the 

data to provide smoother curves to analyse and facilitate averaging of profiles. 
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Figure 3. 4 Experimental workflow 

 

The plot profiles were plotted against each other across all the timepoints and 

comparisons between the levels of the three proteins across the different layers and 

how this changes during development was analysed. 

 

 

Images of the cortex were acquired using either a 2-photon or confocal microscope. 
Following maximum intensity projection of the z-stacks using ImageJ, the plots of the 
intensity were averaged by animal for each age using Matlab. SPSS was used to perform 
statistical tests such as one- and two-way ANOVAs and t-tests. 
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3.2.9 Peaks of fluorescence in different ages 

In order to further quantify the data and unpick the contribution to the fluorescence in 

the different cortical layers, small consistent sections of the fluorescence curve in 

each of the cortical layers were extracted and averaged together (Fig. 3.7). The areas 

selected was based on the manual image-based identification of the layers, based on 

anatomical landmarks. Following normalisation and binning, the x value for the pia 

was set at 0, while the boundary between L4 and L5A was set at 1. The areas of the 

data representative from each layer were isolated using the binned normalised 

distance value as a reference; L1 fluorescence values were selected just deeper of 

the pial surface (between 0.05 and 0.15), while L4 values were chosen between 0.8 

and 0.95, 0.05 pixels before the L4/L5 boundary. L5 values were taken between 1 

and 1.15. Finally, data for layer 2/3 was identified as the middle values in between the 

pial value (0) and the layer4/layer5A boundary (1), at 0.4 and 0.55. This measure 

unfortunately does not allow for a distinction between cortical layer 2 and layer 3, 

which is not easily achieved by our imaging paradigms, but it provides an objective 

manner to select these layers without relying on the imaging alone. The mean of the 

range of these fluorescence values and the standard errors of the means were 

calculated. Throughout the analysis of the fluorescence across the different layers, 

the curvature of the cortex was not taken into account. The profile of fluorescence 

was extracted for the whole imaging frame, and the above method of analysing a 

small portion within the layers helped balancing against areas from neighbouring 

layers crossing the borders. 

The fluorescence in layer 1 consisted of a much narrower peak, compared to the other 

layers. This meant that the mean value did not appear to be representative of the 

actual intensity of fluorescence, but rather it fell lower. For this reason, a slightly 

different approach was adopted to calculate the mean peaks of fluorescence in this 

area. A larger area was selected starting from the pia (0 – 0.2), the maximum intensity 

value of this selected region was found and an average of 7 binned values on either 

side was calculated. This method results into a more accurate calculation of the 

average peak of layer 1. 

3.2.10 Area under the curve 

The raw fluorescence data was used to calculate the area under the curve. This 

parameter was computed using the “trapz” function in MATLAB (MathWorks, version 

R2018q). This function uses the trapezoidal method, which consists of breaking down 

the area into smaller trapezoids, thus approximating the integration of the area. 
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Figure 3. 5 Layer by layer analysis method 

A. Plot profiles of intensity of fluorescence for example ages to show how the layers were 
selected in an objective manner for each analysis. The overlaid dot is the average for each layer 
(blue for Cplx3, red for SAP102 and green for PSD95). 
B. shows the correspondent area of the image frame that was averaged. 
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3.2.11 Fluorescent puncta and colocalization analysis 

The analysis of fluorescent puncta and the co-localisation between PSD95 and Cplx3 

was achieved by running a custom Fiji macro (Stephen Cross, University of Bristol) 

on the high magnification confocal images acquired with 63X objective (Fig. 3.8). After 

thresholding the images (threshold multiplier 0.8), regions of interest were 

automatically drawn around the fluorescent puncta across the whole imaging field 

(minimum punctum area set to 0.01µm2). For both the PSD95 and Cplx3 channel the 

density, area, intensity of puncta in each layer were calculated. The extracted 

parameters were then averaged for the whole image at all ages. Puncta colocalization 

was defined as any PSD95-eGFP punctum that overlapped for at least 25% of its area 

with Cplx3 puncta. This data was then plugged into Matlab to obtain averages and 

further analysis. 

 
 

Figure 3. 6 Puncta analysis method 

Single plane confocal images from L1 and L5 acquired with a 63X objective and 4X zoom. The 
zoomed in view shows the regions of interest that were identified by the ImageJ plug-in and 
used to extract information about puncta density, intensity and area and colocalization. 



Chapter 3 

93 

 

 

 

3.2.12 Statistical analysis and age-grouping 
All statistical analysis was run on age-grouped data using the SPSS software. Whilst 

the data acquisition and the averages were carried out on a daily basis, grouping of 

the postnatal days was employed in order to account for natural variability in actual 

hours of birth (mice were checked for pups once a day, leading to 12-24 hours of 

imprecision) and to test differences between comparable sizes of animal numbers. 

The ages were grouped in a way to encapsulate reported critical periods of this 

somatosensory system: P4-7 (critical periods of thalamic inputs into L4, Barth and 

Malenka, 2001; Crair and Malenka, 1995), P8-10 (critical periods of spiny stellate cells 

in L4, Ashby and Isaac, 2011), P11-14 (critical periods of projections from L4 to L2/3, 

Lendvai et al., 2000; Maravall et al., 2004; Stern et al., 2001), P15-17 (critical periods 

for horizontal connections in L2/3, Wen and Barth, 2011) and finally the last timepoint 

P18-20. 

When testing the changes of intensity of fluorescence of single fluorophores over 

development, a one-way ANOVA with Bonferroni post hoc test was run. When 

comparing the expression of the two proteins over time a two-way ANOVA was run to 

test for significance, and if the output showed significant interaction between the 

independent factors then multiple t-tests with Bonferroni correction were run to 

establish which elements were statistically significant. The new alpha value was 

0.0125 for the 4 age groups of the 2-photon imaging and 0.01 for the 5 age groups of 

the confocal imaging. 
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3.3 Results 
 
 

3.3.1 Developmental profile of PSD95 

To assess developmental changes of the spatial expression pattern of PSD95-eGFP, 

2-photon live imaging of thalamocortical PSD95-eGFP brain slices during the first 3 

postnatal weeks was performed. Since the genetic tagging of PSD95 allows 

quantitative analysis of the anatomical distribution of this protein, layer-specific 

developmental profile of expression of PSD95-eGFP was constructed between P4 

and P18. 

The barrels in L4 were clearly visible both with the brightfield and 2photon imaging of 

the eGFP-tagged protein as early as P4 and until the last age imaged (P18, Fig. 3.9). 

The localisation of this cortical layer was instrumental to define the boundaries to the 

more superficial L2/3 and the deeper L5. 

 

3.3.1.1 PSD95-eGFP appears as precisely distributed puncta 

Live 2-photon imaging of thalamocortical brain slices revealed that PSD95-eGFP is 

distributed throughout the neocortex as fluorescent puncta (Fig. 3.10). In the cortical 

plate, the cell bodies are noticeable for the lack of fluorescence, as they appear as 

black circles. A closer look into the barrel-containing layer 4 shows how the puncta 

are preferentially located within the barrel boundaries, and as the brain grows and 

develops, the PSD95-defined barrel structures increase in size and the number of 

puncta appears to increase. 

In order to explore the localisation of PSD95-eGFP puncta within the neuron, few 

individual neurons were patched and filled with Alexa Fluor 594 hydrazyde and 2- 

photon imaging was conducted (Fig. 3.11). Dual imaging of the dye filled neuron and 

PSD95-eGFP shows that PSD95-eGFP is found in some but not all dendritic spines 

during development. Despite the high fluorescence intensity within the L4 barrels, it 

proved to be difficult to identify PSD95-eGFP proteins in dendritic spines of spiny 

stellate neurons. The overlap between this protein and dendritic spines was most 

prominent in more mature looking spines, usually belonging to pyramidal neurons. 

These observations were mostly qualitative, more experiments will be required to 

further characterise the expression of PSD95 in spines and related morphology to 

function with functional studies. 
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Figure 3. 7 2-photon imaging of the PSD95-eGFP brains 

Example ages of cortical plates imaged and analyses. Images on the left show 2-photon 
images; the barrels are distinguishable in all ages examined (white dashed circles). On the 
right, brighfield images of the same thalamocortical slices. Scalebar same throughout. 
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Figure 3. 8 PSD95-eGFP appears as puncta 

2-photon images of the PSD95-eGFP mouse thalamocortical brain slices, showing barrels 
in L4 (white dashed circles). Images at the side show higher magnification sections to show 
that eGFP puncta increases over time and is mostly present within barrel hollows, rather 
than in the septa. 
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Figure 3. 9 Subcellular localisation of PSD95-Egfp 

A. 2-photon maximum projections of PSD95-eGFP and an Alexa 594-filled cortical neuron 
from a P14 mouse. B. shows zoomed in images of dendrites and spines. White arrows 
show colocalization of PSD95-eGFP onto individual spines, while the yellow arrows show 
spines lacking PSD95-eGFP. 
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3.3.1.2 Laminar expression of PSD95-eGFP is developmentally regulated 

In order to compare the expression of PSD95-eGFP in cortical layers during brain 

development, barrel cortices between P4 and P18 were fixed and the profiles of 

fluorescence across the field of view were analysed (Fig. 3.12). 

The profiles of fluorescence were normalised to the maximum value, which was 

usually within L1. Sections of the profile plots representing L1, L2/3, L4 and L5A were 

averaged in order to investigate if the proportional (rather than absolute) intensity of 

the separate layers changed over development. Our results show that the expression 

of PSD95 follows a layer-specific distribution, which is developmentally regulated (Fig. 

3.13). 

The analysis of the 2-photon images shows that the relative levels of PSD95-eGFP 

in L1 are high from P4, the first time point examined. Whilst the high relative proportion 

of L1 remains constant during the 2 postnatal weeks investigated, the proportional 

intensity of fluorescence in L2/3, L4 and L5A undergoes a significant change in 

relative expression over time. The normalised PSD95-eGFP levels significantly 

increase in L2/3, sharply increasing between P4-7 and P11-14, reaching a stable level 

of expression from P15 onwards. On the other hand, the relative fluorescence 

intensity in L4 and L5A is stable between P4 and P15 and then significantly declines 

between P15 and P18. This result shows that there is a layer-specific enrichment of 

PSD95 and this changes as the brain grows and neuronal circuits refine. 
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Figure 3. 10 Day-by-day analysis of profile of intensity of PSD95-eGFP 

A. 2-photon images of example time points. Underneath is the plot profile of intensity for L4, 
showing the barrel structures. B. Averages of normalised plot of the intensity of the 
fluorescence for each postnatal day. Plots were normalised to the maximum intensity and 
the distance between L1 and L4 was normalised as well. In dark green is the average, in light 
green is the +/- SEM for each data point. Number of animals, number of slices: P4(3,10), 
P5(3,10), P6(3,6), P7(4,12), P8(3,10), P9(3,8), P10(2,6), P11(3,11), P12(3,7), P13(2,11), 
P14(3,10), P15(2,7), P16(1,2), P17(2,5), P18(2,7). 
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Figure 3. 11 Laminar profile of expression of PSD95-eGFP 

A. PSD95-eGFP follows a layer-specific profile of expression in all layers except L1 where 
intensities remain constant. B. Averages of normalised data in grey open circles and averaged 
of the age groups in green filled squares. Error bars represent SEM. Number of animals, 
number of slices: P4(3,10), P5(3,10), P6(3,6), P7(4,12), P8(3,10), P9(3,8), P10(2,6), P11(3,11), 
P12(3,7), P13(2,11), P14(3,10), P15(2,7), P16(1,2), P17(2,5), P18(2,7). Statistical test: one-way 
ANOVA and Bonferroni post-hoc. * p<0.05 ** p<0.01 *** p<0.001. 
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3.3.2 PSD95 and SAP102 

The analysis of the spatiotemporal expression of PSD95-eGFP in my previous 

experiments revealed that this protein is enriched in specific cortical layers and this 

pattern of expression changes over development. In the interest of understanding the 

sequence of events that occurs during brain and synaptic development, the cortical 

distribution of PSD95 and SAP102 during development was compared by imaging 

PSD95-eGFP and SAP102-mKO2 using the GKD mice pups. 

 

3.3.2.1 Confocal imaging of GKD mice 

After breeding to achieve the correct PSD95eGFP/+/SAP102mKO2/+ genotype, confocal 

images of coronal fixed brain sections were acquired. 2-photon imaging of live tissue 

was not to be suitable for the characterisation of SAP102 because we were not able 

to image the mKO2 fluorophore with sufficient brightness while minimizing bleaching. 

Confocal imaging of fixed coronal brain slices shows that both proteins appear as 

fluorescent puncta across the tissue (Fig. 3.14). 

As it was the case in the PSD95-eGFP mouse line, in the GKD mice both PSD95- 

eGFP and SAP102 proteins show a high barrel hollow-low septa distribution that 

allows the identification of the L4 barrels. This enables the detection of the layer 

boundaries at all the ages examined. 

High magnification single confocal images of the cortex show a difference in the 

punctate distribution of SAP102-mKO2 and PSD95-eGFP. Whilst individual puncta 

can mostly be resolved, SAP102 puncta appear diffuse, while PSD95 appears in 

much more discrete clusters (Fig. 3.14A and B). Furthermore, the image with merged 

channels shows that there is not a complete overlap between these two proteins (Fig. 

3.14C). The subcellular distribution of SAP102 and PSD95 is also distinct. 

Superimposing the images from the two channels also shows that, in neuronal cell 

bodies, SAP102-puncta are present in the cytoplasm, but excluded from the putative 

nucleus, while PSD95 is completely absent in both the putative nucleus and the whole 

cell body (Fig.15B). This is consistent with previous reports that PSD95 is mainly 

synaptic, while SAP102, while also enriched at glutamatergic PSDs, it is also 

cytoplasmic (El-Husseini et al., 2000; Müller et al., 1996; Sans et al., 2005; Zheng et 

al., 2010). 
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Figure 3. 12 Confocal imaging of GKD mice 

Coronal sections of GDK mouse shows SAP102 (A), PSD95 (B) and a merged channel image 
(C) of a P15 mouse. Higher magnification images for both proteins and merged channels are 
found on right panels, showing the barrels (white dashed circle). Hipp, hippocampus. 
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Figure 3. 13 Subcellular localisation of SAP102-mKO2 and PSD95-eGFP 

Confocal images of a P15 GKD mouse. Low magnification images are shown in A, and zoomed 
in images for each layer are shown in B. White dashed line marks the boundaries of cell 
bodies that contain SAP102-MKO2 puncta but lack PSD95-eGFP. 
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3.3.2.3 The size of cortical layers during development 

As the mouse pup grows and develops, the whole organism is expanding in size as 

well as refining the function of its components. The brain, and specifically the 

neocortex, is no exception to this process. Using the cortical anatomical landmarks of 

the pial surface (at the edge of the coronal brain slice) and the lower and upper edges 

of the barrels in L4, the change in dimensions of the distance from the edge of the 

brain slice to L2/3 and the width of L4 was quantified (Fig. 3.16). The outer-most layers 

of the GKD mouse neocortex undergo a significant expansion, doubling in size (from 

an average of 300 µm in P3 animals, to an average of 600 µm in P20 mice). This 

increase in size appears to be a gradual until it plateaus in the older animals. Layer 4 

is about half the size of L1 and 2/3 in the first time point and also undergoes a physical 

expansion, reaching 260 µm in width. L1 and L2/3 expand by almost 400 µm, while 

the size of L4 increases by 150 µm. Regression analysis shows a strong age-related 

prediction for the size of L1 and 2/3 (R2=0.692, fig. 3.16B) and a weaker prediction for 

L4 (R2=0.302, fig. 3.16C). 

Qualitative observations of the confocal imaging suggest that the expansion of L2/3 

is what is mostly contributing to the L1-2/3 increase in size. It is important to note that 

the area of the barrel cortex that the brain sections images were acquired from was 

not kept constant. Previous studies have shown that cortical depth and laminar 

organization of the single barrels can vary across the murine vibrissal cortex (Egger 

et al., 2012). The cortices included in this analysis contained visible barrel structures, 

but the part of the barrel cortex being examined was not noted down. Nevertheless, 

despite this inherent variability, the growth of the neocortex follows a clear upward 

and gradual trend which plateaus between P10-15. 
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Figure 3. 14 Changes in the size of the cortical layers in the first 3 postnatal weeks 

A shows the anatomical landmarks used to determine layer size in each image. B and C shows 
the linear fit used for the regression analysis for L1-3 and L4, respectively. Number of animals, 
number of slices: P4(2,4), P5(2,5), P6(3,6), P7(1,3), P8(3,8), P9(2,8), P10(2,6), P11(3,8), 
P13(1,2), P14(1,3), P15(2,5), P17(2,7), P18(1,4), P19 (2,2), P20(2,2). 
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3.3.2.2 Comparison between PSD95 expression in PSD95-eGFP and GKD 

mice 

As a first step in characterising the expression of SAP102 and PSD95 during early 

postnatal development of the GKD mice, it was important to assess whether the layer- 

specific developmental trajectory of PSD95-eGFP was similar in the two genotypes 

(PSD95-eGFP and GKD) and using the two different imaging methods (2-photon live 

imaging of thalamocortical brain slices vs. confocal imaging of fixed coronal sections, 

Fig. 3.17). The age-grouped analysis showed there was no significant difference 

between the layer-specific relative expression of PSD95-eGFP between the two 

genotypes. It was therefore concluded that the developmentally regulated laminar 

enrichment of this protein is independent of the imaging modality and is not affected 

by the presence of another fluorophore-tagged protein (SAP102-mKO2). 

The developmental profiles of fluorescence of PSD95-eGFP and SAP102-mKO2 in 

the GKD mouse brain cortex were then examined in order to compare the pattern of 

expression of two proteins (Fig. 3.18 and Fig. 3.19). 

Figure 3. 15 Comparison of layer-specific developmental expression between the two 

genotypes and imaging methods 

Layer analysis of confocal (in black) and 2-photon (in grey) imaging of PSD95-eGFP in the GDK 
and PSD95-eGFP mouse line, respectively. Filled squares represent the age-grouped averages 
of the normalised intensity at different time points during development. The error bar is the 
SEM. There was no significant difference between the two genotypes in any of the layers and 
ages analysed. 2-photon number of animals, number of slices: P4(3,10), P5(3,10), P6(3,6), 
P7(4,12),  P8(3,10), P9(3,8),  P10(2,6),  P11(3,11),  P12(3,7),  P13(2,11),  P14(3,10), P15(2,7), 
P16(1,2), P17(2,5), P18(2,7). Confocal number of animals, number of slices: P4(2,4), P5(2,5), 
P6(3,6), P7(1,3), P8(3,8), P9(2,8), P10(2,6), P11(3,8), P13(1,2), P14(1,3), P15(2,5), P17(2,7), 
P18(1,4), P19 (2,2), P20(2,2).Statistical test: repeated paired t-test with Bonferroni 
correction. * p<0.05 ** p<0.01 *** p<0.001. 
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Figure 3. 16 Day-by-day analysis of profile of intensity of PSD95-eGFP in the GKD mice 

A. Confocal images of example time points. B. Averages of normalised plot of the intensity 
of the fluorescence for each postnatal day. Plots were normalised to the maximum intensity 
and the distance between L1 and L4 was normalised as well. In dark green is the average, in 
light green is the +/- SEM for each data point. Number of animals, number of slices: P4(2,4), 
P5(2,5), P6(3,6), P7(1,3), P8(3,8), P9(2,8), P10(2,6), P11(3,8), P13(1,2), P14(1,3), P15(2,5), 
P17(2,7), P18(1,4), P19 (2,2), P20(2,2). 
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Figure 3. 17 Day-by-day analysis of profile of intensity of SAP102-mKO2 in the GKD mice 

A. Confocal images of example time points. B. Averages of normalised plot of the intensity 
of the fluorescence for each postnatal day. Plots were normalised to the maximum intensity 
and the distance between L1 and L4 was normalised as well. In red is the average, in pink is 
the +/- SEM for each data point. Number of animals, number of slices: P4(2,4), P5(2,5), 
P6(3,6), P7(1,3), P8(3,8), P9(2,8), P10(2,6), P11(3,8), P13(1,2), P14(1,3), P15(2,5), P17(2,7), 
P18(1,4), P19 (2,2), P20(2,2). 
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3.3.2.4 The expression of both MAGUKs increases over time 

Many different laboratories have quantified the presence of PSD95 and SAP102 in 

whole brain or cortical lysates using western blotting or immunohistochemistry, and 

have shown that the expression of both proteins increases during the development of 

animals. In order to assess whether this increase also occurs in the barrel cortex of 

the GKD brains, the area under the curve of raw intensity profiles from L1 to L4 was 

calculated at the different developmental time points (Fig 3.20). Importantly, the 

imaging settings of the confocal microscope were kept consistent between imaging 

sessions, in order to be able to compare data across the developmental ages. Using 

the raw (not normalised) data, the area under the curve was calculated between L1 

and L4/5 boundary. For both proteins, the area under the curve between L1 and L4 

of the raw intensity of fluorescence significantly increases over time. Obviously, as 

previously shown, the brain cortex is also physically enlarging; were the protein 

amount staying stable, the intensity would be diluted down as the cortex grows. 

Therefore, the increase of the areas under the curve in the growing cortical layers 

suggest that the expression of SAP102 and PSD95 exhibits a significant 

developmentally regulated increase during the first 3 postnatal weeks. 
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Figure 3. 18 Area under the curve of the raw intensity of profile across the different time 

points 

The raw intensity between L1 and the deeper edge of L4 was averaged by animal and then 
by age and plotted for SAP102 (A) and PSD95 (B). Statistical analysis showed a significant 
increase in the area under the curve over time. Number of animals, number of slices: P4(2,4), 
P5(2,5), P6(3,6), P7(1,3), P8(3,8), P9(2,8), P10(2,6), P11(3,8), P13(1,2), P14(1,3), P15(2,5), 
P17(2,7), P18(1,4), P19 (2,2), P20(2,2).Statistical test: one-way ANOVA and Bonferroni post- 
hoc. * p<0.05 ** p<0.01 *** p<0.001. 
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3.3.2.5 Layer-specific, developmentally regulated distribution of MAGUKs 

Since the confocal imaging settings were kept constant for all the ages investigated, 

the raw fluorescence of SAP102-mKO2 and PSD95-eGFP was analysed (Fig 3.21). 

For both proteins, the levels of expression in every layer significantly increase over 

the course of the first 3 postnatal weeks. 

In L1 and L4, the levels of SAP102-mKO2 fluorescence significantly increase between 

P4-7 compared to P18-20. In layer 2/3, levels increase from P11-14 and then remain 

stable. Similarly, fluorescent levels in L5A increase from P11-14 and then plateau. 

The laminar expression of PSD95-eGFP over development follows a similar 

trajectory. The expression of this protein in L1 significantly increases around P11-14 

and then it plateaus. Similarly, in L2/3 the levels of fluorescence gradually increase 

from P8-10 until P15; after this time points no significant increase is observed until 

P20. The expression within L4 significantly increases from P4-7 to P8-10, P11-14 and 

P15-17. After P11-14 the levels reach stability. Finally, in L5A a significant increase 

in PSD95-eGFP fluorescence is observed between P4-7 to P11-14 and then the 

levels remain stable. 

By dividing the value of the fluorescence intensity in the final timepoint (P18-20) by 

the fluorescence value at the earlies age-group investigated (P4-7), we can assess 

by how much the expression of the two protein increases over time. The raw levels of 

fluorescence of SAP102-mKO2 approximately double in each layer (fold changes 

between the first and last age group (in A.U.): L1 = 2.18, L2/3 = 2.6, L4 = 1.7, L5A = 

2.07). On the other hand, the expression of PSD95-eGFP increases by slightly more 

in L1, 4 and 5A (fold changes between the first and last age group (in A.U.): L1 = 2.18, 

L2/3 = 2.6, L4 = 1.7, L5A = 2.07) and it exhibits a 4-fold enrichment in L2/3 (fold 

change between the first and last age group (in A.U.): L4 = 4.40). 

This general laminar increase of expression is consistent with the increase of the total 

level of fluorescence in the whole field of view imaged shown in our previous analysis. 

Interestingly, for both SAP102-mKO2 and PSD95-eGFP, the intensity of the relative 

expression of the two MAGUKs is not statistically significantly different between the 

two last timepoint, suggesting the expression peaks around P15. Additionally, the 

distribution of both PSD95 and SAP102 suggests that the most pronounced 

developmental increase occurs in L2/3. 
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Figure 3. 19 Laminar analysis of the changes in raw expression of PSD95-eGFP and 
SAP102-mKO2 

Raw data for each brain slice imaged in grey open circles and averages by animal for the age 
groups in red squares (SAP102, B) or green squares (PSD95, B). Error bars represent SEM, 
vertical for intensity and horizontal for age group. Number of animals, number of slices: 
P4(2,4), P5(2,5), P6(3,6), P7(1,3), P8(3,8), P9(2,8), P10(2,6), P11(3,8), P13(1,2), P14(1,3), 

P15(2,5), P17(2,7), P18(1,4), P19 (2,2), P20(2,2).Statistical test: one-way ANOVA and 
Bonferroni post-hoc. * p<0.05 ** p<0.01 *** p<0.001. 
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3.3.2.6 Comparison between the two MAGUKs PSD95 and SAP102 

Since literature has shown that these proteins have a specifically different 

developmental profile (SAP102 levels rising before PSD95), and since PSD95 is a 

marker for mature synapses, we then moved onto assessing the difference between 

the expression of these two MAGUKs by comparing the normalised intensity over 

time. 

The direct comparison of the raw intensities of PSD95-eGFP and SAP102-mKO2 is 

not possible because they are tagged with two different fluorophores requiring distinct 

settings to optimise image acquisition. In order to compare the laminar distribution of 

these two MAGUKs and how it changes over time, the intensity of fluorescence was 

normalised to the maximum value and normalising the distance between L1 and L4/L5 

boundary allows a closer look to the relative contribution of each layer compared to 

the maximum intensity of fluorescence at the different timepoints (Fig. 3.22 and 3.23). 

Qualitatively, in P5 slices, the mean fluorescence profiles of relative laminar 

expression of PSD95 and SAP102 appears to be differentially distributed across the 

cortical layers (Fig. 3.22A). The relative expression of SAP102 is higher than the 

expression of PSD95 in L2/3, while the relative proportion of L5A appears higher in 

PSD95 than SAP102. This difference in relative distribution appears to attenuate in 

older animals where the shape of the profile of intensity follows a more similar laminar 

pattern (Fig. 3.22B). 

In the case of SAP102, the relative expression in L1 is stable until P11-14, then 

significantly increases around these postnatal days, and finally stabilises again (Fig. 

3.23). The expression in L2/3 exhibits the most prominent developmental increase of 

proportional fluorescence. The levels significantly increase from P8-10, then again to 

P11-14 and then remain stable. SAP102-mKO2 relative fluorescence in L4 is stable 

throughout early postnatal development, and L5A exhibits a slight increase in relative 

fluorescence intensity between P4-7 and P18-20. 

In contrast, the relative layer-specific expression of PSD95-eGFP does not 

significantly change during development in L1, L4 and L5. The expression of this 

protein, however, undergoes a nearly 2-fold enrichment of the relative amount in L2/3 

from the end of the 1st postnatal week until the end of the 3rd again (Fig. 3.23). The 

levels are statistically stable until P11-14 when a significant increase in relative 

fluorescence occurs. The levels of expression of this PSD95-eGFP then reaches a 

plateau. 
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The comparison between the normalised intensity of fluorescence for SAP102-mKO2 

and PSD95-eGFP shows no significant difference in both L1 and L4 at any ages 

examined. On the other hand, SAP102 was significantly more enriched in L2/3 than 

PSD95 between P4-7, and this relative difference disappeared as PSD95 levels 

increase at later time points. L5A showed the opposite trend of relative expression of 

the two proteins; the relative enrichment of PSD95-eGFP in L5A was higher than that 

of SAP102 between P4-7, while from P8 onwards the two proteins were relatively 

distributed at the same level in this layer. This suggests that earlier on, in L2/3, the 

fluorescence of SAP102 are higher than the levels of PSD95 and the opposite in L5A. 
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Figure 3. 20 Comparison of the laminar expression of the two MAGUKs 

A. shows representative maximum projected confocal images of the barrel cortex at different 
ages. B. shows overlaid plot profiles of fluorescence of SAP102 and PSD95 across the barrel 
field. 
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Figure 3. 21 Laminar profiles of expression of the two MAGUKs 

A and B. Plot profiles of intensity for SAP102 (A) and PSD95 (B). Ages are color coded from 
coldest (youngest) to warmest (oldest). C. Normalised laminar expression of PSD95 (green) 
and SAP102 (red). Normalised data for each animal in circles (green for PSD95 and red for 
SAP102) and averages by animal for the age groups in green squares (PSD95) or red squares 
(SAP102). Statistical significance for SAP102 in red, for both PSD95 and SAP102 in yellow and 
the difference between the two proteins is in black. Error bars represent SEM. Number of 
animals,   number  of  slices:  P4(2,4),  P5(2,5),  P6(3,6),  P7(1,3),  P8(3,8),  P9(2,8),  P10(2,6), 
P11(3,8), P13(1,2), P14(1,3), P15(2,5), P17(2,7), P18(1,4), P19 (2,2), P20(2,2).Statistical test: 
repeated paired t-test with Bonferroni correction. * p<0.05 ** p<0.01 *** p<0.001. 
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3.3.2.7 Layer 5 expression of MAGUKs is differentially regulated during 

development 

The comparison between PSD95 and SAP102 across the cortical layers revealed an 

interesting, previously unreported, enrichment of PSD95-eGFP expression in L5A 

early on during development (P4-7). PSD95-eGFP forms a fluorescent band located 

just below the barrels of L4, in putative L5A, from the earliest timepoint (P4) until the 

oldest age (P20). On the other hand, SAP102-mKO2 does not appear to be as 

enriched in L5A until after P10. In order to further quantify these observations, a ratio 

of L5 to L4 fluorescence was calculated using both the normalised and the raw data 

(Fig. 3.24). 

While the L5/L4 ratio of the normalised fluorescence of PSD95-eGFP remains stable 

over time, the ratio of normalised SAP102-mKO2 fluorescence significantly increases 

over time, from P4-10 to P18-20 (Fig. 3.24A). The ratio of fluorescence in the two 

layers is significantly higher for PSD95 over SAP102 between P4 and P14; after this 

age the difference disappears as the L5/L4 ratio of SAP102-mKO2 reaches PSD95 

level. 

Measurement of the raw fluorescence intensity shows slightly different results (Fig. 

3.24B). While the L5/L4 ratio of SAP102-mKO2 increases over time, the ratio of 

PSD95-eGFP fluorescence is shown to decline over time between P4-7 and P11-20. 

The comparison between the two MAGUKs shows that the fluorescence L5/L4 ratio 

is significantly higher for PSD95-eGFP between P4 and P10; from P11 until P18 there 

is no significant difference between the L5/L4 ratio of PSD95-eGFP and SAP102- 

mKO2; finally from P18-20 the ratio of L5/L4 is significantly higher for SAP102-mKO2 

than for PSD95-eGFP. 

The confocal imaging suggests that L5A PSD95-eGFP fluorescence is higher than 

the L5A fluorescence of SAP102-mKO2 (Figs. 3.18, 3.19, 3.22). Furthermore, the raw 

data shows that the raw intensity of both proteins in L4 and in L5 increases over time 

(Fig. 3.21). We therefore conclude that the increase in the L5/L4 ratio of SAP102 

intensity is due to a developmentally regulated enrichment in L5A, which is already 

present from early postnatal ages in the case of PSD95. 
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Figure 3. 22 Developmental changes of the ratio of L5 to L4 for the two MAGUKs 

A. L5-to-L4 ratio of normalised expression of SAP102 (red) and PSD95 (green). Averages for 
each brain slice in circles and averages by age group in green squares (PSD95) or red squares 
(SAP102). B. L5-to-L4 ratio of raw expression of SAP102 (red) and PSD95 (green). Averages 
for each brain slice in circles and averages by age group in green squares (PSD95) or red 
squares (SAP102). Statistical significance for SAP102 in red, for both PSD95 and SAP102 in 
yellow and the difference between the two proteins is in black. Error bars represent SEM. 
Number of animals, number of slices: P4(2,4), P5(2,5), P6(3,6), P7(1,3), P8(3,8), P9(2,8), 
P10(2,6), P11(3,8), P13(1,2), P14(1,3), P15(2,5), P17(2,7), P18(1,4), P19 (2,2), 
P20(2,2).Statistical test: repeated paired t-test with Bonferroni correction. * p<0.05 ** 
p<0.01 *** p<0.001. 



Chapter 3 

119 

 

 

 

3.3.3 Developmental profile of Complexin 3-positive subplate neurons 

 

 
Our results suggest that PSD95, but not SAP102, is specifically slightly enriched in 

L5A from very early on in postnatal mouse brain development. PSD95 is a marker for 

mature synapses and Lambert and colleagues have shown that it is the last MAGUK 

to accumulate at nascent synapses, which further supports the notion of the 

involvement of this postsynaptic scaffolding protein in relatively mature synapses 

(Lambert et al., 2017). Therefore, the presence of PSD95-eGFP in L5A before an 

increase in SAP102-mKO2 was very perplexing and might suggest that a 

subpopulation of synapses in this layer is part of an early-developed circuit. The next 

step was to investigate a potential presynaptic partner: a subpopulation of subplate 

neurons expressing the protein Cplx3. 

Subplate neurons are among the first neurons to be generated and they have been 

shown to be crucial for thalamocortical pathfinding and correct circuit development. 

Recently, Viswanathan et al. showed that Cplx3-positive subplate neurons send their 

projections to L5A and L1 as early as P8; this population is shown to largely disappear 

by P21 (Viswanathan et al., 2017, Ferrer et al., 1990; Price et al., 1997; Rakic and 

Zecevic, 2000). As Cplx3 is a presynaptically located SNARE-complex regulator, this 

marker can be used to test whether this subpopulation of subplate neurons can 

constitute a presynaptic partner to the L5A synapses enriched with PSD95-eGFP. 

 

3.3.3.1 Developmental expression of Cplx3 

Immunohistochemistry was performed to stain for Cplx3 in the GKD mouse brains 

and compare the laminar distribution of genetically tagged PSD95-eGFP, SAP102- 

mKO2 and antibody-labelled Cplx3-Alexa633. 

Firstly, primary and secondary controls were conducted on fixed GKD coronal slices 

of barrel cortex (Fig. 3.25). For the primary antibody control, the brain slice was 

incubated with the primary antibody only, whilst keeping all the other components and 

timing of the staining consistent with the immunostaining protocol (Fig. 3.25A); this 

ensured that there was no auto-fluorescence in the tissue that would contribute to 

Cplx3-Alexa Fluor 633 signal. The secondary antibody control consisted of incubating 

the brain tissue with secondary antibody Alexa 633 in the absence of a primary 

antibody (Fig. 3.25B); this control was used to test for non-specific binding of Alexa 

633. In both cases, the fluorescence in the 633 channel was non-existent or negligible. 

It was therefore concluded that these antibodies are an efficient and accurate method 
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to detect Cplx3 in these brain slices. Additionally, the fluorescence of PSD95-eGFP 

and SAP102-mKO2 did not appear to be affected by the immunohistochemical 

procedure and no bleed through from these channels was observed, even in older 

aged (P15), where the expression of the MAGUKs is relatively high. 

 
 
 

 

Figure 3. 23 Antibody controls for Cplx3 immunostaining 

Following incubation with both primary only (A) and secondary only (B) negligible 
fluorescence can be seen in the 633 imaging channel. 
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Confocal images of the whole coronal section of a P15 mouse shows that this protein 

is enriched in selected areas of the brain, including specific hippocampal areas and 

the cortex (Fig. 3.26). Consistently with previous reports, fluorescence can be 

observed in the cell bodies of neurons in the subplate layer, located below the cortical 

plate. A sparse population of Cplx3-positive neuronal cell bodies can also be noticed 

scattered in L6 and L5 (Fig. 3.26, red inserts). Whilst Cplx3 acts at the presynaptic 

terminal, the immature form of this protein, retained in the endoplasmic reticulum, is 

likely responsible for the cell body labelling. Cplx3 fluorescent puncta are present 

across the cortical plate, but they are absent from the barrel hollows. High 

magnification images show that Cplx3 appears as fluorescent puncta, putatively in 

the presynaptic terminals of SP neurons. Cplx3-positive neuronal cell bodies were 

observed in the subplate at all ages examined (from P4 to P20, Fig. 3.27). 

 
 
 
 

 

Figure 3. 24 Confocal imaging of coronal sections showing Cplx3 staining 

Example of a P15 mouse brain slice stained for Cplx3. A. The cortical image shows Cplx3+ 
neurons located in the subplate area, below the cortical plate (E). B. Staining is present in 
L1,L2/3 and 5, but absent from the barrels (white dashed circles). C. A high magnification image 
shows Cplx3 punctate pattern. D. Some sparse cell bodies can also be noticed in L5 (red arrows 
in red insert). 
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Figure 3. 25 Example confocal images of the cortical plate and subplate 

Images of GKD mice stained for Cplx3 show that the subplate is present at every age that was 
examined. PSD95 on the left and Cplx3 on the right. Cplx3 is absent from barrels in L4 
(identified by imaging PSD95). SP, subplate; WM, white matter. 
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In order to assess whether the expression of the protein changes in the cortical plate 

with increasing developmental age, the area under the curve of L1-L4 intensity was 

calculated. The raw intensity of Cplx3 fluorescence is stable from P4 to P14 (as 

statistically assessed) and then significantly increases at P15. From P15 until P20 its 

expression is stable (Fig. 3.28). 

Layer-specific analysis of normalised fluorescence intensity shows that there is no 

significant change in Cpxl3 expression between P4 and P20 in any of the layers 

interrogated (Fig. 3.29). This suggests the cortical expression of Cplx3 rises after P15 

without changing its relative distribution in L1-5A, i.e. Cplx3 preferential enrichment in 

specific layers does not change during development. It is important to notice that the 

level of expression is reflective of the presynaptic terminals innervating the cortical 

layers, while the fluorescent somas contained in the subplate were entirely excluded 

from this analysis, as they were located deeper than the image acquired with the 10x 

objective. 

In a similar manner to the expression of the MAGUK proteins, the levels of Cplx3 in 

layer 1 are high from the earliest timepoint imaged (P4). Moreover, at all examined 

ages, Cplx3 is consistently mostly absent from the barrels, but enriched in a band just 

below the barrels, in putative L5A. 
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Figure 3. 26 Area under the curve of the raw intensity of Cplx3 

A. plot profiles of raw fluorescence of Cplx3 stained with AlexaFluor 633. Ages are color coded 
from coldest (youngest) to warmest (oldest). B. area under the curve of expression of Cplx3 
over development. Grey bars show average for each postnatal age, blue squares show the 
averages for each age group. Error bars: S.E.M. Number of animals, number of slices: P4(2,4), 
P5(2,5), P6(3,6), P7(1,3), P8(3,8), P9(2,8), P10(2,6), P11(3,8), P13(1,2), P14(1,3), P15(2,5), 
P17(2,7), P18(1,4), P19 (2,2), P20(2,2). Statistical test: one-way ANOVA and Bonferroni post- 
hoc. * p<0.05 ** p<0.01 *** p<0.001. 
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Figure 3. 27 Normalised intensity of Cplx3 in the GKD animals 

A. Plot profiles of normalised intensity for Cplx3-Alexa Fluor 633. Ages are color coded from coldest 
(youngest) to warmest (oldest). B. Normalised laminar expression of Cplx3. Normalised data for 
each animal in circles and averages by animal for the age groups in squares.No statistical 
significance was found for any of the layers. Error bars represent SEM. Number of animals, number 
of slices: P4(2,4), P5(2,5), P6(3,6), P7(1,3), P8(3,8), P9(2,8), P10(2,6), P11(3,8), P13(1,2), P14(1,3), 
P15(2,5), P17(2,7), P18(1,4), P19 (2,2), P20(2,2).Statistical test: one-way ANOVA and Bonferroni 
post-hoc. * p<0.05 ** p<0.01 *** p<0.001. 
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3.3.3.2 Analysis of PSD95-eGFP and Cplx3 puncta characteristics 

Layer 5A shows a consistent enrichment of PSD95 from early on, while SAP102 levels 

are seen to rise towards the middle of the 2nd postnatal week of life of the mouse. 

Furthermore, the expression pattern of Cplx3 suggests that the SP neurons 

containing this presynaptic protein are projecting to L1, L2/3 as well as L5A. As 

previously discussed, PSD95 is mainly postsynaptic, while Cplx3 is mainly 

presynaptic, therefore the question arises: are the subplate neurons projecting and 

making contacts directly to PSD95-containing synapses in layer 5? 

In order to address this question, high magnification confocal images of L1 and L5 

from coronal brain slices of the GKD mice were acquired (Fig 3.30). Firstly, we 

examined the protein density, size and intensity of the PSD95-eGFP and Cplx3 

puncta. Because the size of the PSD is related to amounts of PSD95 and glutamate 

receptors and therefore synaptic strength (Holtmaat and Svoboda, 2009; Matsuzaki 

et al., 2004; Patterson and Yasuda, 2011; Takumi et al., 1999), this measure gives us 

an indication of the developmental change in strength of synapses. 

In both L1 and L5A, the density of PSD95-eGFP puncta significantly increases from 

P8-10 until P15-17 (Fig. 3.31). In L1, the intensity and area of these puncta also 

increases with developmental age, from P4-10 until P18-20. In L5 PSD95-eGFP 

puncta increase in intensity between P4-10 and P15-17, while the area does not 

significantly change over development. 

In L1, Cplx3-positive puncta decrease in both density and intensity between P4-7 and 

P8-10 (Fig. 3.32); From P11-14 the density significantly increases and stabilises, 

while the intensity does not change further. The area of Cplx3 puncta in this superficial 

layer also decreases between P4-7 and P8-10. 

In L5, no developmentally regulated change in the density or intensity of Cplx3-postive 

puncta, but the area significantly decreases between P4-7 and P11-14. 
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Figure 3. 28 High magnification images of L1 and L5A 

Confocal imaging of PSD95-eGFP and Cplx3 in the GKD mice at specific postnatal ages. 
Barrels are highlighted in the white dashed circles. Zoomed in images show cortical 
portions from L1 (red) and L5A (black). 
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Figure 3. 29 PSD95-eGFP puncta analysis in L1 and L5A 

Puncta parameters analysed were puncta density, intensity and area for Layer 1 (A) and L5A 
(B). Averages from single animals shown in gray cicles and averages in green squares. Error 
bars represent S.E.M. Number of animals, number of slices: P4(2,4), P5(2,5), P6(3,6), P7(1,3), 
P8(3,8), P9(2,8), P10(2,6), P11(3,8), P13(1,2), P14(1,3), P15(2,5), P17(2,7), P18(1,4), P19 (2,2), 
P20(2,2).Statistical test: one-way ANOVA and Bonferroni post-hoc. * p<0.05 ** p<0.01 *** 
p<0.001. 
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Figure 3. 30 Cplx3 puncta analysis in L1 and L5A 

Puncta parameters analysed were puncta density, intensity and area for Layer 1 (A) and L5A 
(B). Averages from single animals shown in gray cicles and averages in blue squares. Error 
bars represent S.E.M. Number of animals, number of slices: P4(2,4), P5(2,5), P6(3,6), P7(1,3), 
P8(3,8), P9(2,8), P10(2,6), P11(3,8), P13(1,2), P14(1,3), P15(2,5), P17(2,7), P18(1,4), P19 (2,2), 
P20(2,2).Statistical test: one-way ANOVA and Bonferroni post-hoc. * p<0.05 ** p<0.01 *** 
p<0.001. 



Chapter 3 

130 

 

 

 

3.3.3.3 Co-localization analysis to investigate L5 enrichment 

To assess the colocalization of the presynaptic Cplx3 and postsynaptic protein 

PSD95, a custom ImageJ macro was used to draw regions of interest around each 

puncta and calculate the percentage of overlap between the two proteins 

(colocalization percentage) and the area that they overlap by (colocalization area) in 

L1 and L5A (Fig. 3.33 and 3.34). 

Both L1 and L5A exhibited a developmental increase in the percentage of puncta 

exhibiting an overlap. In fact, an increase in the percentage of PSD95-eGFP puncta 

that co-localise with Cplx3 between P4-10 and P11-21 was observed in both layers. 

The overlapping area of PSD95 onto Cplx3 peaked around P8-10 and remained 

stable in L1 and decreased significantly in L5. 

The relatively low level of colocalization between PSD95 and Cplx3, suggests that the 

subplate might not be the only presynaptic partner for the PSD95-containing 

synapses in L5A. 
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Figure 3. 31 High magnification images of PSD95 and Cpx3 puncta 

Single confocal images from L1 and L5A GKD mice barrel cortex stained for Cplx3 
at different postnatal ages. 
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Figure 3. 32 PSD95-eGFP and Cplx3 puncta colocalisation in L1 and L5 

Colocalisation percentages and areas for L1 (A) and L5A (B) is plotted as a function of 

postnatal day. Averages from single animals shown in gray cicles and averages in black 
squares. Error bars represent S.E.M. Number of animals, number of slices: P4(2,4), 
P5(2,5),   P6(3,6),   P7(1,3),  P8(3,8),   P9(2,8),   P10(2,6),   P11(3,8),   P13(1,2), P14(1,3), 
P15(2,5), P17(2,7), P18(1,4), P19 (2,2), P20(2,2).Statistical test: one-way ANOVA and 
Bonferroni post-hoc. * p<0.05 ** p<0.01 *** p<0.001. 
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3.4 Discussion 

This study provides evidence for a developmentally regulated, layer-specific 

expression of SAP102 and PSD95. Furthermore, it reveals an interesting 

developmental pattern whereby in L5A, the levels of PSD95 are high early in 

development. 

A substantial amount of evidence suggests that PSD95 and SAP102 assume 

complementary but distinct roles during synapse formation and maturation: PSD95 

promotes synaptic stability in mature synapses, while SAP102 is important during 

early trafficking of receptors to the developing synapse (Elias et al., 2008; Sans et al., 

2003; Washbourne et al., 2002). We can therefore extrapolate our results about the 

relative distributions of these two MAGUKs and speculate about the functional 

sequential development of the cortical layers of the early postnatal mouse barrel 

cortex. 

3.4.1 Methodological considerations 

 
 

3.4.1.1 Genetic labelling 

The visualisation of cellular proteins has been pivotal to further our understanding of 

the complex cellular machines and mechanisms underlying cell functions. 

Immunolabelling is a widely used technique that allows the visual detection of proteins 

via antibody binding. However, one of the main drawbacks of this technique is that it 

requires the fixation and permeabilization of the tissue to allow antibody binding. This 

method, therefore, imposes limitations on the investigation of protein dynamics as it 

is incompatible with live cell imaging. 

An alternative approach is to tag the target protein with fluorophores (Chalfie et al., 

1994; Cubitt et al., 1995). While this allows the live imaging of protein dynamics, the 

tagged proteins are usually overexpressed in the tissue and this perturbation can have 

effects on what is being studied. For example, many studies have shown that over 

expressing PSD95 and SAP102 leads in changes in number and size of dendritic 

spines, electrophysiological parameters and plasticity (Béïque and Andrade, 2003; 

Ehrlich and Malinow, 2004; El-Husseini et al., 2000; Stein et al., 2003). 

In order avoid confounding effects due to contingent overexpression, the investigation 

of changes in expression of SAP102 and PSD95 in the barrel cortex during 

development was achieved by imaging the brains from 2 knock-in mouse lines. In 

these mice, gene targeting was used to make sure every single copy of the 

endogenous proteins is tagged with a fluorescent protein (eGFP for PSD95 and 
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mKO2 for SAP102) and that this tagged protein is expressed under the endogenous 

promoter (Zhu et al., 2018). The 1:1 stochiometric ratio of the protein to the 

monomeric fluorophores means that measuring parameters like the size of 

fluorescent puncta or the brightness accurately reflects actual changes in the proteins 

that have been tagged. Therefore, this technique allows for quantitative analysis of 

the MAGUK proteins whilst avoiding their overexpression, which, especially the case 

of PSD95 and SAP102, has been shown to cause undesirable morphological and 

functional effect (El-Husseini et al., 2000). 

The introduction of proteins tagged with fluorescent molecules into the cells, however, 

may lead to undesired effects on protein function, targeting and folding, even when 

the fluorophores are relatively small and chemically inert (eGFP is 32.7 kDa and 

mKO2 is 24.5 kDa). For example, even though largely no overt toxicity has been 

detected when using GFP (Brazelton and Blau, 2005), some studies have reported 

induction of apoptosis and oxidative stress related to the expression of this protein 

(Ganini et al., 2017; Liu et al., 1999). In the PSD95-eGFP and GKD mice, a 

comparison between mice expressing fluorescently tagged PSD95 and SAP102 and 

endogenous proteins in wild type mice was carried out to examine potential negative 

effects of the fusion of the two proteins (Zhu et al., 2018). No abnormality was found 

in terms of global and regional expression levels of the proteins, subcellular targeting 

to the postsynaptic density or electrophysiological properties. Furthermore, general 

animal development, body weight and behaviour were reported to be normal. 

Therefore, as far as it has been investigated, in this double knock-in mouse line the 

tagging of the two MAGUKs and NR1 subunit does not lead to overt effects (Zhu et 

al., 2018). 

One of the limitations of a global labelling technique, however, is that it prevents cell- 

type specific and high-contrast investigations. Both SAP102 and PSD95 are part of 

protein complexes putatively present in synaptic structure of all neuronal cell types. 

Therefore, in adult brains both proteins are extremely concentrated, and this makes 

investigating their localisation in individual neurons more complex. 

Therefore, genetic tagging of the MAGUK proteins has the clear advantages over 

immunohistochemical and transfection methods that it allows to extract quantitative 

measures of the proteins and explore protein dynamics with live imaging, without 

encountering potentially deleterious effects of over expression of the proteins. While 

the live imaging aspect was not thoroughly exploited in this study, it would certainly 

be very interesting to follow this avenue by, for example, combining electrophysiology 

and calcium imaging with the imaging of PSD95-eGFP. 
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3.4.1.2 Identification of cortical layers 

The aim of the present study was to identify developmental patterns of expression of 

SAP102 and PSD95 in the cortical layers of the barrel cortex. The layers were 

distinguished by imaging the fluorescence and discerning patterns of distributions and 

relating it to what is known about the cellular composition of each layer. Therefore, L1 

was identified by the fact that it is the outermost layer and contains very few cell bodies 

(which were visible as round silhouettes lacking fluorescence). The layer 4 barrels 

were also clearly noticeable because of the enrichment in the barrel hollows, rather 

than the septa. Finally, L2/3 was defined as the area between L1 and L4, and L5A 

was the area just deeper from the barrel containing L4. 

This method does exhibit a certain circularity, because in order to study changes in 

fluorescence in cortical layers we define these cortical layers using the patterns of 

fluorescence in the tissue. Another way to approach this and increase the subjectivity 

of the layer detection process would be to use independent markers. The labelling of 

various transcription factors has been used to label cortical layers, as they are 

expressed in waves during the development of the cortex (Mukhtar and Taylor, 2018). 

While retaining some level of laminar specificity, most of these transcription factors 

are expressed in several layers or cell types. For example, Cux1 preferentially labels 

superficial layers (L2-4), while FoxP2 is preferentially expressed in deeper layers (L5- 

6). The barrels of the barrel cortex can also be specifically labelled using cytochrome 

oxidase, Nissl stain and markers for thalamocortical afferents, such as VGlut1 and 

SERT (Ballester-Rosado et al., 2016; Crandall et al., 2017; Li et al., 2013; Sehara et 

al., 2010). These methods to label specific layers and laminar structures could be 

employed to provide an objective way to identify layers and also give an independent 

view of layer development. 

 

3.4.1.3 Puncta analysis 

High magnification single plane confocal images were analysed to extract information 

about fluorescent puncta size, density and intensity over development. One important 

consideration is that my previous images show that PSD95 is completely absent from 

cell bodies. In this analysis, the cell bodies have not been excluded from the analysis, 

and this may have a significant impact on our quantification of the density of these 

puncta, especially in L5A which contains more cell bodies than L1. 
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3.4.2 Developmentally regulated laminar distribution of proteins 

 

 
Neurons in different cortical layers exhibit different ontogenetic age, morphology, 

connectivity and molecular profiles; they are denominated according to which layer 

hosts their cell body (e.g.: L2/3 neurons). However, the axonal and dendritic 

projections which are crucial for synaptic function usually span multiple if not all 

cortical layers. It is therefore crucial, when examining differences in laminar 

distribution of neuronal proteins, to take into account all neuronal compartments and 

their locations across the whole width of the neocortex, as functionally the areas 

affected by neurons are greatly bigger than the area where the cell body is located. 

As previously discussed, PSD95 is a marker for mature synapses, as corroborated 

by studies showing its expression increases with age (Sans et al., 2000; Song et al., 

1999). Larger dendritic spines contain bigger PSDs (Arellano et al., 2007; Harris et 

al., 1992; Harris and Stevens, 1989) and larger PSDs contain more AMPA and NMDA 

receptors (Katz et al., 2009; Noguchi et al., 2005; Nusser et al., 1998); therefore, PSD 

area positively correlates with synaptic strength (Holtmaat and Svoboda, 2009; 

Matsuzaki et al., 2004; Patterson and Yasuda, 2011; Takumi et al., 1999). PSD95 is 

the major component of the PSD and is thought to provide “slots” for AMPA receptors 

to bind to (Ehrlich and Malinow, 2004; Schnell et al., 2002; Stein et al., 2003). As 

receptors move in and out of the synapse, they can bind to these “slots”. PSD95 is 

thought to affect the number of glutamate receptors, and therefore synaptic strength, 

through this mechanism. Therefore, the levels of this protein can be used as a proxy 

for the maturation state of synapses in the different layers. On the other hand, the 

interpretation of the presence of SAP102 is a little bit more complicated, as this protein 

is highly dynamic and present in the cytoplasm, as well as in synapses (El-Husseini 

et al., 2000; Müller et al., 1996; Sans et al., 2005; Zheng et al., 2010). 

Studies in the hippocampus have shown that in newly formed synapses MAGUKs are 

accumulated in an asynchronous and sequential fashion (Lambert et al., 2017). 

SAP102 is the first MAGUK to enrich and reach mature levels compared to 

neighbouring spines (within 1.5 hours), followed by SAP97 and PSD93 and finally 

PSD95, corroborating that this protein is specifically enriched in more functionally 

mature synapses. Therefore, our prediction was that on the larger scale of the cortical 

plate our two fluorescently tagged proteins would follow a similar temporal order, with 

SAP102 being enriched first and PSD95 levels ramping up subsequently (Lambert et 

al., 2017). 
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While it is true that this protein is the first MAGUK to be accumulated at newly born 

synapses and its levels are higher than the other MAGUKs early on, the expression 

of SAP102 increases developmentally, suggesting it plays a role throughout life, 

rather than being simply developmental. 

In order to study the developmental trajectory of these two MAGUKs, developmental 

profiles of expression were constructed for SAP102 and PSD95. The laminar specific 

distribution of these proteins highlighted an interesting pattern in L5A, which prompted 

the investigation of the expression patterns of Cplx3 SP axonal terminal in that layer. 

Throughout the study, the raw data is shown to measure the amount of fluorescently- 

labelled proteins in specific layers; in order to compare laminar distribution between 

different proteins, the normalised data was analysed. The normalisation informs us of 

the relative contribution of the fluorescence from different layers, rather than the 

absolute value of fluorescence intensity. 

 

3.4.2.1 Subcellular localisation 

SAP102-mKO2 and PSD95-eGFP puncta appear to have a different characteristics 

and subcellular localisation. SAP102-mKO2 puncta appear much more diffuse, while 

PSD95-eGFP puncta appear as discrete clusters. Additionally, dual channel images 

show that while PSD95-eGFP is absent from both cell bodies and putatively the 

nucleus, SAP102-mKO2 is present in the cell body, but absent from the putative 

nucleus as well, suggesting this protein is expressed throughout the cytoplasm. 

Confirmation would be provided by DAPI staining of nuclei. These observations are 

consistent with the knowledge that SAP102 is a highly mobile cytoplasmic protein that 

is present in axons, cell bodies and dendrites, while PSD95 is specifically enriched at 

the post synapse (Chen et al., 2011; El-Husseini et al., 2000; Kennedy, 1997; 

MacGillavry et al., 2013; Müller et al., 1996; Nair et al., 2013; Sans et al., 2005; Sheng 

and Hoogenraad, 2007; Zheng et al., 2010). 

Most puncta seem to be either SAP102 or PSD95, not a lot of overlap is obvious from 

my confocal images. This is consistent with data suggesting that they form distinct 

complexes (Frank and Grant, 2017; Frank et al., 2016). My colocalization analysis 

focused on PSD95 and Cplx3 solely; this is because the diffuse staining specific to 

SAP102-mKO2 made it difficult for the ImageJ macro to identify puncta reliably. 

Therefore, we can only speculate and make qualitative observations on the differential 

synaptic localisation of these two proteins. 
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3.4.2.2 Cplx3-positive subplate neurons 

The barrel cortex circuits in the adult are extremely well characterised. L5A is 

specifically targeted by the POM nucleus of the thalamus (which also sends its axons 

to L1) and the primary motor cortex (Ahissar and Kleinfeld, 2003; Bureau et al., 

2006; Chmielowska et al., 1989; Kim and Ebner, 1999; Koralek et al., 1988; Lu 

and Lin, 1993). However, because PSD95-eGFP is present from such an early age, 

it was speculated that early developmental circuits may be involved. One such 

essential early neural loops is the thalamus-subplate-L4 circuit. This connection is 

essential to allow the thalamocortical connections to reach their correct cortical 

targets (mainly L4 for VPM nucleus and L5 and L1 for POM nucleus). 

Cplx3 is a presynaptic SNARE complex regulator. In the retina, it is involved in fast 

synaptic transmission at ribbon synapses (Reim et al., 2005). This proteins is also a 

subplate marker as it labels a subpopulation of these cells located between the white 

matter and L6 (Hoerder-Suabedissen et al., 2013, 2009). It has been reported to be 

expressed in glutamatergic subplate cell bodies and axonal terminals from early 

postnatal stages to adulthood, with its expression peaking around P8 (Hoerder- 

Suabedissen et al., 2013, 2009). While most of subplate markers show that the 

subplate terminals project to L4 from early postnatal ages, Cplx3 has been shown to 

be absent from L4 barrels and to be enriched in L1 and L5A (Viswanathan et al., 

2017). 

In order to investigate the possibility that PSD95-enriched synapses in L5A forming 

synapses with Cplx3-positive subplate axonal terminals, two complementary 

approaches can be used.: an imaging-based method by which the analysis of co- 

localisation of the proteins provides a measure of their possible interaction, and a 

functional-based method, whereby functional connectivity is tested between the 

subplate neurons and the layer 5 pyramidal neurons via paired stimulation. As there 

is little information about the connection probabilities of these two types of neurons, 

time constraints called for the employment of an imaging-based approach. 

 

3.4.2.3 Laminar expression 

From the earliest time points that were examined, PSD95, SAP102 and Cplx3 were 

significantly enriched in L1. This layers contains a sparsely distributed population of 

interneurons (Bradford et al., 1977; Lee et al., 2015; Schuman et al., 2019) and, 

primarily during early development, is populated with Cajal-Retzius neurons (Cajal, 

1995). Similarly to subplate neurons, Cajal-Retzius cells are among the first neurons 

to be generated during development (Marín-Padilla, 1998). However, these neurons 
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are only present transiently and disappear by P11 in the mouse cortex (Portera- 

Cailliau et al., 2005). Subplate neurons have been reported to send their projections 

to this marginal zone, and to retract their axonal terminals to L4 by P7 (Hoerder- 

Suabedissen and Molnár, 2012; Piñon et al., 2009). 

Due to the transient nature and scarce density of the Cajal-Retzius cells in the 

developing L1, it is unlikely that the fluorescent band observed in correspondence to 

this layer is solely due to glutamatergic PSD in these cells; furthermore, no significant 

decrease, but rather an increase can be detected around P11, when these cells cease 

to be present; this suggests that while Cajal-Retzius may express some PSD95 and 

SAP102, a great portion of the fluorescence proteins detected must be contained in 

the postsynaptic compartments of other cells. 

This superficial layer is also densely populated with apical dendrites from L2/3 and L5 

pyramidal neurons, probably substantially contribute to the postsynaptic 

compartments containing the MAGUKs imaged in this study. 

During the first 3 postnatal weeks, the fluorescence of the two MAGUKs undergoes 

the greatest developmentally regulated increase in L2/3. This layer is also physically 

significantly expanding over the course of this time period. The concomitant increase 

in size and in fluorescence suggests that even more protein is being added in order 

to make this value larger, as if the number of puncta was the same but the layer was 

growing, the apparent density would decrease. Whilst the expression of both proteins 

of interest increases in L2/3, comparing the two MAGUKs led to discover that SAP102 

is present at higher levels than PSD95 in the first week, and subsequently levels of 

PSD95 match up with those of SAP102. 

The intensity of L4 appears to significantly increase in the confocal images of the GKD 

mice, whilst the proportional fluorescence remains stable over time. Since the mouse 

barrel septa are relatively small, this data has been obtained by analysing 

fluorescence across the whole field of view, regardless of single barrel boundary. 

However, further analysis focusing on the L4 barrel hollows vs. septa might provide 

further information on the expression of these proteins over development. For 

example, septal-specific distribution has been previously shown for Cplx3-SPN 

axonal terminals (Viswanathan et al., 2017). 

The developmental pattern of expression in L5A is extremely intriguing, as PSD95 

expression appears to be higher specifically in the area of the tissue before SAP102 

expression increases. This is unexpected, as SAP102 has previously been reported 

to be expressed in abundance before PSD95. In order to investigate further what is 
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synapsing with the PSD95-containing postsynaptic compartment in this layer, 

immunohistochemistry for Cplx3 was performed on the GKD mice. This presynaptic 

protein, in fact, had been previously reported to be specifically enriched in L1 and L5 

(Viswanathan et al., 2017). Our imaging and analysis suggest that only about 10-20% 

of PSD95 puncta colocalize with Cplx3 in L1 and 5-20% in L5. However, it is unclear 

whether all Cplx3 SPNs contain this protein at their presynaptic sites, so the Cplx3 

axonal terminals may be underreported in this study. Both PSD95 and presynaptic 

Cplx3 appears to increase over development. Concomitantly, there is an increase of 

the numbers of PSD95 puncta, while the numbers of Cplx3 puncta remains mostly 

stable over the time period analysed. This suggests that more synapses are maturing 

and being enriched with PSD95 and this may lead to the increase in overlap between 

Cplx3 and PSD95. 

Additionally to Cplx3 SPNs, there might be other presynaptic partners that are making 

contact with putative PSD95-eGFP containing synapses. In L5A, similarly to L1, the 

colocalization between postsynaptic L1 and L5A are both recipients of thalamocortical 

innervation from the POM (Ahissar and Kleinfeld, 2003; Bureau et al., 2006; 

Chmielowska et al., 1989; Kim and Ebner, 1999; Koralek et al., 1988; Lu and Lin, 

1993), therefore, it is a possibility that the developmental trajectory of synaptic 

maturation in this layer is related to the POM pathway development. It would be very 

interesting to stain for these neurons and assess the developmental pattern alongside 

that of PSD95, SAP102, and Cplx3. 

 

3.4.2.4 Developmental regulation 

Our results suggest that the levels of SAP102, PSD95 and Cplx3 increase during the 

first two postnatal weeks and that their expression plateaus from P15 onwards. 

The fluorescence intensity of PSD95-eGFP in L4 significantly increase between P4-8 

and P11-14, suggesting these synapses are becoming more mature during this time. 

P4-8 is the critical period for thalamocortical inputs to L4 (Barth and Malenka, 2001; 

Crair and Malenka, 1995) and between P9-11 synapses in this layer undergo an 

extensive period of synaptogenesis (Ashby and Isaac, 2011), so it would make sense 

for synapses to start maturing and accumulating PSD95 around this time. 

The critical period for L4 to L2/3 connections is slightly later, between P10-14 P14 

(Lendvai et al., 2000; Maravall et al., 2004; Shoykhet et al., 2005; Stern et al., 2001), 

and the intralaminar connections in this layer mature even later (P14-17, Wen and 

Barth, 2011). Indeed, in this layer, the relative intensity of SAP102 is higher that 

PSD95 between P4-7; additionally, a significant spike in PSD95 raw expression can 
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be observed around P11-14 and the levels continue to rise until P17 when the 

expression profile plateaus. 

Therefore, the observed changes in SAP102 and PSD95 expression align with the 

idea that synapses are maturing at particular times, slightly different between layers. 

Consistently with previous reports of Cplx3 expression, in the GKD mice this protein 

was highly expressed in L1 and L5A, but absent from L4 barrels at all postnatal ages 

investigated. Our results, furthermore, suggest that the expression of this protein is 

stable until approximately P11 and then peaks around the end of the 2nd postnatal 

week, slightly later than was shown in previous studies. 

3.4.3 Future studies 

The use of the GKD knock-in mouse line and my results offer the scope for many 

prospective studies to understand synaptic and network changes occurring during 

early postnatal development. 

In terms of expanding our understanding of MAGUKs, the following experiments can 

be carried out; It would be interesting to construct developmental profiles of laminar 

expression of other proteins. For example, as changes in MAGUKs are thought to 

occur simultaneously with the developmental switch of NR2B to NR2A, staining for 

specific NMDAR subunits and looking at their relative enrichment over time compared 

with the MAGUKs could provide insight into structural-functional synaptic 

development. 

Subcellular localisation suggested that PSD95 is specifically enriched in some 

synapses, so a further experiment would be to combine 2P imaging to characterise 

PSD95 content in dendritic spines and perform glutamate uncaging; by specifically 

targeting PSD95-enriched vs. PSD95-depleted dendrites, it would be possible to 

investigate changes (if any) in electrophysiological properties e.g. AMPA-to-NMDA 

ratio, EPSP kinetics characteristic of NMDAR subunit (and relate this to the 

developmental switch); this would allow to collect information about the relationship 

between the presence of this mature marker and mature electrophysiologic signature. 

Further experiments can be conducted to explore the relationship between the Cplx3- 

positive subplate neurons and L5A. For example, paired recordings between SP and 

L5A would help elucidate whether they are functionally connected. Also exploring the 

spatiotemporal pattern of thalamocortical inputs in relation to PSD95-eGFP and Cplx3 

expression in L5A via immunohistochemistry, neuronal retrograde labelling or crosses 

with thalamic reporter lines would further our understanding of the temporal sequence 
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of thalamocortical and subplate innervations of L5A and relate it to neuronal 

maturation using SAP102 and PSD95 as proxies. 

Finally, it would be very interesting to investigate changes in MAGUKs following 

manipulation of the development of the barrel cortex via experience-deprivation 

experiments (either infraorbital nerve severing or whisker trimming/ablatio) or genetic 

approaches (for example on genetically silenced models such as in the conditional 

Snap 25 knock-out mouse line, Hoerder-Suabedissen et al., 2019; Korrell et al., 

2019). 
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Chapter 4: General discussion and conclusion 

 

The first 3 weeks of neocortical development are rich in synaptic and network 

changes; synapses are added and eliminated, neuronal proteins are trafficked around 

and are developmentally regulated, and many functional switches occur. Changes in 

the structure and the function in the developing neuronal network are closely linked 

to and all work towards the refinement of the neural circuit to give rise to a fully mature 

and operational brain. We know that this is important because when aspects of this 

finely tuned developmental mechanisms go wrong, it can lead to neurodevelopmental 

disorders. For example, aberrant expression of the two proteins investigated during 

my PhD have been implicated in several neurodevelopmental disorders, such as 

autism spectrum disorder and schizophrenia. Whilst the contributing factors to these 

disorders is most likely multifactorial, and it is difficult to disentangle cause and effect, 

understanding how brain development occurs normally is crucial to understand what 

happens when process goes wrong. 

The focus of this research was to investigate whether dendritic spikes can occur early 

in development and to construct a developmental profile of the laminar distribution of 

SAP102 and PSD95 during the first 3 postnatal weeks of life of mouse pups. 

Dendritic spikes have been shown to play an active role during synaptic plasticity, 

both instructing it and being affected by it. Therefore, it is speculated that these events 

may be important during synaptic development, a period of extreme and widespread 

plasticity that crucially relies on synaptic activity. However, to date only one study has 

shown nonlinear activity in the developing L4 spiny stellate neurons (Lavzin et al., 

2012). In these studies, P15-20 brain slices were probed for dendritic spikes and 

NMDA-dependent regenerative activity was elicited using focal synaptic stimulation. 

I attempted to replicate these results in the same animal model and cell type, and 

using a very similar approach, in the same age range and earlier in order to map out 

how early on dendritic spikes could be elicited; the developmental angle was taken to 

try and unpick at what point during development barrel cortex neurons express the 

synaptic machinery necessary to support these events. 

However, in contrast to the data shown in the Lavzin paper (Lavzin et al., 2012), the 

lack of overt nonlinearity in my responses suggests that dendritic spikes either were 

not elicited because of technical difficulties, or they simply are not a prominent feature 
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of immature neurons. This negative result was consistent both at very young ages 

(P7-15), and during the 3rd postnatal week. 

The focus of my PhD then moved onto investigating sequential synaptic development 

in the cortical layers of the mouse barrel cortex, using PSD95 and SAP102 as a proxy 

for mature and developing synapses, respectively. The developmental profile of 

expression was constructed by confocal imaging of the PSD95-eGFP and GKD 

mouse cortices. This approach revealed a precise and robust developmental pattern 

of expression of these two MAGUKs in the different cortical layers. The levels of both 

PSD95 and SAP102 increased with developmental age. Whilst levels of both proteins 

were high in L1 and L4, compared to the rest of the layers, the levels in L2/3 doubled 

or quadrupled over the three postnatal weeks. L5A exhibited an interesting pattern, 

by which PSD95 was present in a band just deeper of L4 from early on, while levels 

of SAP102 increased over postnatal development. Further investigation revealed that 

Cplx3 subplate neurons project to this area from the first to the third postnatal week; 

therefore, neurons from this early-born layer might be responsible for at least a portion 

of the maturing synapses in cortical L5A. 

The dendritic spike experiments were carried out in L4 spiny stellate neurons, the 

main cell type in the L4 barrels, between the second and third postnatal week. The 

developmental expression of PSD95 shows that this protein is enriched in this area 

from early on, but its expression peaks around the end of the second postnatal week. 

This suggests that synaptic maturation, as inferred from the presence of PSD95, 

occurs around then. As, in my hands, dendritic spikes were not elicited between P7 

and P20, this suggests that more mature mechanism may be required to elicit 

dendritic spikes in these cells. 
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Main results 
 
 
 

In conclusion these were my main results: 

 
1. Between P7-20, focal synaptic stimulation causes no obvious nonlinearity in 

subthreshold EPSPs in response to increasing stimulus intensity. 

 
2.  Hyperpolarisation-induced block of NMDARs causes a decrease in duration 

of the postsynaptic response, suggesting these receptors are contributing to 

the depolarised state of the neuron in these young cells. 

 
3. SAP102 and PSD95 follow a developmentally regulated, lamina specific 

pattern of distribution in the barrel neocortex. 

 
4. PSD95 is specifically enriched in L5A early on, before SAP102 levels increase, 

and this layer receives innervation from Cplx3+ subplate neurons. 

 
 

Future directions 

The PSD95-eGFP and GKD mice are a powerful tool to investigate neuronal 

development. A major advantage of a knock-in mouse line is the ability to live image 

the tagged proteins, without needing to fix or process the sample in any way. This 

provides a way to investigate functional changes related to the presence of that 

protein in particular locations. 

Preliminary experiments where I have patched and filled the neuron with Alexa 

fluorescence dyes to visualise the structure, have suggested that PSD95 is found in 

several mature looking (mushroom shaped, rather than filopodia) synapses, but not 

all. Therefore, it would be extremely interesting to specifically select dendrites 

containing a large number of PSD95-eGFP proteins in their dendritic spines and 

perform glutamate uncaging on these spines to try eliciting dendritic spikes. Then 

compare these results with the stimulation of dendrites mostly lacking PSD95-eGFP. 

In order to do so, a more thorough characterisation of the subcellular localisation of 

PSD95-eGFP in the different cortical neurons, at different developmental stages, 

would be required. 
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