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Abstract 

 

Control of many environment-driven infectious diseases is increasingly challenged by 

climate change and the emergence of drug resistance, calling for new approaches such as 

prevention through simulation of future risk and more comprehensive strategies, rather 

than exclusively relying on treatment. The role environmental processes play in 

mediating climate impacts on disease transmission may offer opportunities to use 

environmental interventions for complementing treatment in reducing disease burdens. 

However, most current models do not represent these mechanisms explicitly, which limits 

their ability to assess infection risk under changing conditions and test interventions. By 

focusing on the parasitic liver fluke disease in the UK as a case study, this research aims 

at investigating how process-based knowledge of the environment and water environment 

can be used in support of the study and management of infectious diseases under current 

and potential future conditions. Firstly, we develop a new mechanistic hydro-

epidemiological model that simulates disease risk in connection with key underlying 

environmental processes (HELF). We show that the model can reproduce observed 

infection patterns, but also introduce an expert-driven calibration strategy to make it more 

robust to data with limited reliability and in the presence of climate change. Secondly, we 

use HELF with sensitivity analysis to investigate disease risk drivers across the UK, and 

explore opportunities for risk reduction through environmental management. We 

demonstrate that where landscape heterogeneity plays a larger role on disease 

transmission, risk avoidance management strategies can provide a valuable alternative to 

treatment. Finally, by driving HELF with climate projection data, we assess potential 

climate change impacts on future infection risk patterns. We find that projected changes 

are not spatially nor temporally homogeneous, but that altered parasite-specific climatic 

characteristics result in longer transmission seasons in most UK regions. This reduces the 

effectiveness of current drug-based control, further highlighting the need for alternative 

approaches.  
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Chapter 1. Introduction 

1.1 Relevance of environment-driven infectious diseases 

Infectious diseases are an important burden on public health and global economies. Despite the 

achievements of the United Nations Millennium Development Goals initiatives, infectious (or 

communicable) diseases are still a major cause of morbidity and mortality worldwide (Dye 2014). 

Developing countries in particular suffer a high burden of disease owing to diarrhoea and malaria, which 

are among the 10 leading causes of death, globally (Dye 2014; Global Burden of Disease Study 2018; 

Murray et al. 2012). Similar in burden to these main infections, foodborne diseases (i.e. those caused by 

ingestion of contaminated food) are also a significant threat to human health and obstacle to socio-

economic development throughout the world (Havelaar et al. 2015). Over 2001-2013, infectious 

diseases represented 84% of the health hazards reported to the World Health Organisation (WHO), 

following the International Health Regulations (Figure 1.1). Moreover, they are among the major global 

threats identified by the Cambridge Global Risk Index, which assesses the economic implications of 

rising risk challenges, from natural disasters to financial and geopolitical crises (Cambridge Centre for 

Risk Studies 2018). 

 

Figure 1.1 Global distribution of 2797 health hazards reported to the WHO following the 
International Health Regulations (January 2001 – September 2013). 84% are outbreaks of 
infectious diseases. Figure from Dye (2014). 
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Many human and animal infectious diseases have strong environmental components to their 

transmission. Infectious diseases are caused by a wide range of pathogenic agents (such as bacteria, 

viruses and parasites) that can be transmitted from host to host and/or from an environmental media to 

a host, either directly or indirectly via another organism (an intermediate host or vector, which carries 

and transmits the pathogen to the final host) (WHO 2016). Depending on the disease pathway, pathogen, 

host and transmission environment can all be affected by a multitude of meteorological, environmental, 

biological and socio-economic factors, which may act in a non-linear fashion and over different space-

time scales, often leading to complex infection dynamics and patterns (Figure 1.2) (Cable et al. 2017; 

Lo Iacono et al. 2017; Parham et al. 2015; Semenza et al. 2016; Wu et al. 2016).  

 
Figure 1.2 Complexity of factors involved in the transmission of infectious diseases. Figure from 
Wu et al. (2016).   

Environmental factors, in particular, are crucial determinants of transmission for: (i) diseases that are 

directly spread from the environmental reservoir (whether that is water, soil, or food) to the final host 

(e.g. cholera and other diarrhoeal diseases through water); and (ii) diseases that are transmitted through 

a vector or intermediate host, that lives and develops in the environment (e.g. malaria and dengue 

through mosquitoes, schistosomiasis and fasciolosis through snails, and Lyme disease through ticks) 

(see Figure 1.3) (Eisenberg et al. 2007; Rinaldo et al. 2018). For such infections, environmental 

conditions often affect multiple disease components (e.g., they may define the environmental stage of 

the pathogen, but also affect population levels of the vector/host, as well as the rate at which pathogens 
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are transmitted between hosts, vectors and the environment), and have both direct and indirect effects. 

For example, weather characteristics can directly influence the survival and reproduction of pathogens 

and vectors, with implications for their physiology and demography, but can also indirectly affect these, 

through changes to their habitat. In the latter case, we can say environmental drivers include “distal” 

variables, that influence epidemiological processes through intermediate steps, and “proximal” 

characteristics, that more closely affect disease transmission (Eisenberg et al. 2007). For cholera, mainly 

transmitted through the ingestion of contaminated water, intense rainfall can lead to pathogen dilution, 

but also large-scale contamination, through changes in water level and flooding. For malaria, caused by 

parasites transmitted through mosquitoes, temperature can directly affect disease risk, through its impact 

on the parasite development/survival rates, and rainfall can indirectly affect it, through its impact on the 

availability of water pools, needed by mosquitoes for breeding. For zoonoses (i.e. animal infections that 

can be transmitted to people), transmission is further mediated by the ecology of animal hosts. 

 

Figure 1.3 Relevance of ecologic and social processes for different disease transmission routes: I 
= direct host-to-host (e.g. influenza); II = vector-borne (e.g. malaria); III = environment-mediated 
(e.g. cholera); IV = zoonotic (e.g. fasciolosis or Lyme disease). Figure from Eisenberg et al. (2007). 

As global change accelerates, changes in disease prevalence (i.e. number of infected individuals), 

seasonality and distribution are increasingly observed, raising concerns about implications for human 

and animal health in the future. The total number of infectious disease outbreaks has been rising since 

the 1980s, with zoonoses representing the majority of emerging infectious diseases in people, globally 

(Figure 1.4) (Jones et al. 2008; Smith et al. 2014). This has been referred to as the potential beginning 

of an age of epidemics (Hotez 2016; Weiss and McMichael 2004). 
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Figure 1.4 Global number of human infectious disease outbreaks 1980-2010. Figure from Smith 
et al. (2014). 

Changes in climate have already altered transmission of infectious diseases by affecting the pathogens, 

vectors/hosts and/or their living environment (Altizer et al. 2013; Mas-Coma et al. 2009; Wu et al. 2016). 

Global warming has been playing a key role in driving the emergence or resurgence at new times or 

places of infectious diseases (Wu et al. 2016). For example, increased temperatures have been 

responsible for the expansion of malaria to higher altitudes in regions of South America and Africa 

(Siraj et al. 2014). Similarly, the increase in frequency and intensity of extreme weather events is altering 

the occurrence of floods and droughts, changing the concentration of infectious agents in the water 

environment and human exposure to infection (Rinaldo et al. 2018; Whitmee et al. 2015). For example, 

unusually intense rainfall events have been linked to the resurgence of cholera observed during the 2011 

outbreak in Haiti (Righetto et al. 2013; Rinaldo et al. 2012), and changes in the patterns of drought 

events, followed by re-wetting, have been shown to be increasingly impacting mosquito populations 

responsible for the transmission of vector-borne diseases such as the West Nile virus in Europe (Brown 

et al. 2014). 

On the other hand, we are experiencing significant landscape changes due to an expanding human 

footprint, which also have been shown to be important determinants of the emergence or resurgence of 

many diseases (Altizer et al. 2013; Whitmee et al. 2015). For example, deforestation and agricultural 

development have been found to affect the risk of malaria transmission across different regions, through 

changes in mosquito abundance, survival, and distribution (Yasuoka and Levins 2007). In Africa, 

changes in the prevalence of schistosomiasis have been observed due to the expansion of the 

intermediate snail host habitat, following the expansion of water development projects to meet demands 

for food and energy from increasing numbers of people (Steinmann et al. 2006). Similarly, in China, the 

recent resurgence of one of the major infectious agents of schistosomiasis, despite a 50-year intensive 

national control programme, has been linked to the construction of the Three Gorges dam and ecological 
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recovery of the Dongting Lake, in combination with changes in the occurrence of major flooding events 

(Mas-Coma et al. 2009).  

At the same time, the rapid emergence of resistance to currently used drugs is making disease control 

challenging. Currently, drug treatment is the main control strategy for many of these diseases (e.g. see 

Lo et al. 2018; Webster et al. 2014). However, while interventions focused exclusively on treatment 

may lead to the elimination of infections transmitted directly from host-to-host, there is growing 

recognition of their limited effectiveness for controlling pathogens with an environmental reservoir 

(Garchitorena et al. 2017). Among reasons why control of such diseases is particularly challenging is 

that reinfection may occur rapidly after treatment, as long as environmental conditions remain suitable 

for transmission. In addition, the rapid and widespread development of drug resistance, accelerated by 

the global change-driven spatial and temporal shifts in disease transmission, is beginning to threaten the 

efficacy of treatment-based strategies and the long-term success of control programmes for a large range 

of parasitic and other infections (Garchitorena et al. 2017; Webster et al. 2014). For example, resistance 

is expected to evolve rapidly to existing drugs for Neglected Tropical Diseases (NTDs), as most of these 

are being targeted with only a single available medicine, which is often used across hundreds of millions 

of people (Webster et al. 2014).     

1.2 Need and opportunity to support the study and management of 
environment-driven infections through integrated mechanistic modelling 

Faced with the challenge of global change, compounded by the emergence of drug resistance, prevention 

through simulation of future disease risk and devising alternative control strategies have now become 

an urgent need. As medicine alone seems increasingly insufficient to achieve disease eradication, the 

conceptual difference of environmentally-transmitted diseases from host-to-host directly-transmitted 

ones, highlights opportunities for prevention through disease risk forecasting and for control using 

environmental interventions (Dye 2014; Garchitorena et al. 2017; Rinaldo et al. 2017). Simulation of 

future disease risk and testing of control strategies under changing conditions require:  

1. Acknowledging the environment as an essential element of complex infectious disease systems, 

deepening our understanding of the mechanisms underlying transmission, including the causal 

relationships between distal variables and more proximal characteristics, which directly drive 

seasonality and spatial distribution of epidemiological processes (Bertuzzo et al. 2012; 

Eisenberg et al. 2007; Garchitorena et al. 2017; Liang et al. 2007; Parham et al. 2015; Rinaldo 

et al. 2017, 2018). 

2. Developing mechanistic models (or process-based models, as they are based on process 

understanding rather than empirical correlations), which explicitly describe these mechanisms 
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in space and time (Rinaldo et al. 2017, 2018) in order to: (i) more reliably estimate the long-

term impact of potential changes in climate and the environment on disease risk, overcoming 

the limitations of extrapolating from historic data in a non-stationary world (e.g. see Wagener 

et al. 2010); and (ii) investigate what-if (climate and management) scenarios to inform the 

design of robust and targeted intervention strategies to limit transmission and improve health 

outcomes. This includes supporting the development of comprehensive strategies to 

complement drug treatment with environmental interventions that may be more sustainable and 

cost-effective in the long term (Liang et al. 2005, 2007; Mellor et al. 2016; Wu et al. 2016).  

However, most current studies investigating environmentally transmitted diseases to date are not based 

on the use of mechanistic models. A growing body of literature examining the link between climate and 

infectious disease has emerged in recent decades in response to concerns about potential global change 

impacts. However, while many have called for the use of process-based models to address this challenge, 

most currently available studies investigating this link are still based on empirical approaches (Figure 

1.5) (Altizer et al. 2013; Mellor et al. 2016; Wu et al. 2016). Specifically, a number of studies found an 

association between the occurrence of certain weather conditions and disease incidence (i.e. number of 

reported cases per unit time), highlighting the potential for disease risk to change with future climates, 

but, in most cases, such links are correlational relationships, which may not be causally connected. This 

has been mentioned as a potential reason for the findings of such works to be sometimes contradictory, 

or very local or region-specific (Eisenberg et al. 2002; Mellor et al. 2016; Pearson et al. 2006; Rinaldo 

et al. 2017; Wu et al. 2016). For example, for cholera, empirical studies have found a number of 

correlations between rainfall and disease risk, both positive and negative (e.g. see Ruiz-Moreno et al. 

2007), and for schistosomiasis, while some models predict an increased transmission potential due to 

global warming, others expect an overall risk reduction (e.g. see Pedersen et al. 2014; Stensgaard et al. 

2013, 2016), suggesting that the mechanisms by which weather impacts transmission processes may be 

complex and diverse (Rinaldo et al. 2017). Despite increasing awareness that their effect on 

epidemiological processes may be significantly modified by other on-the-ground environmental 

conditions, rainfall and temperature are the most common drivers considered in current studies (Figure 

1.6) (Lo Iacono et al. 2017; Mellor et al. 2016; Parham et al. 2015; Rinaldo et al. 2017). Most 

importantly, as climate change and direct anthropogenic activities have already pushed hydro-climatic 

and environmental conditions beyond historically observed variability, we cannot rely on relationships 

found between past data to simulate future risk and inform disease control strategies in a non-stationary 

world (Milly et al. 2008; Urban et al. 2016; Wagener et al. 2010). 
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Figure 1.5 Most current studies examining climate and climate change impacts on water-related 
diseases to date are empirical. Figure adapted from Lo Iacono et al. (2017). 

 

Figure 1.6 Currently assumed drivers of disease risk are mainly climatic. Figure from Lo Iacono 
et al. (2017). 

Arguably partly compounded by the fact that most current disease risk models are empirical and do not 

consider on-the-ground environmental processes, environmental strategies to supplement treatment are 
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still poorly developed. Examples of successful cases where treatment is supplemented with interventions 

focusing on the environmental reservoir of the pathogen include: (i) mosquito control strategies for 

reducing risk of infection with malaria (Garchitorena et al. 2017; WHO 2019); and (ii) the use of 

environmental management, incorporated in agricultural activities, water resources development, and 

forestry projects, against schistosomiasis. The latter has been shown to be effective for control of the 

intermediate snail host and has achieved the interruption of transmission in regions of China and Japan 

(Liang et al. 2007; Lo et al. 2018). However, “despite showing promising results in the fight against 

these diseases, environmental strategies to complement medical approaches still remain under-

recognised” (Garchitorena et al. 2017). 

The availability of models that explicitly represent a variety of environmental processes driving disease 

transmission, and recent advances in mechanistic epidemiological understanding, provide opportunities 

to address this challenge. While only few studies have taken an integrated mechanistic approach to study 

the links between infectious disease and environmental processes, these have been the subject of much 

independent investigation (Bertuzzo and Mari 2017; Eisenberg et al. 2007; Garchitorena et al. 2017; 

Mellor et al. 2016). On the environment side, a large number of mechanistic models -of varying 

complexity and at varying scales and resolutions- are now available to represent a multitude of 

hydrological and environmental processes in time and space (from runoff to soil moisture, to 

hydrological extremes such as floods and droughts). At the same time, data to drive and calibrate these 

models has also grown significantly (Addor et al. 2017; Bierkens 2015; Wood et al. 2011). In recent 

decades, this progress has contributed to the expansion of environmental sciences, such as hydrology, 

into more interdisciplinary fields, with studies looking at interactions with ecological processes (“eco-

hydrology” (Rinaldo et al. 2018; Rodriguez-Iturbe 2000)) and human activities (“socio-hydrology” 

(Sivapalan et al. 2012)), among other examples (Thompson et al. 2013; Wagener et al. 2010). On the 

disease side, while mechanistic models representing epidemiological processes may be available (e.g. 

(Macdonald 1965; Turner et al. 2016)), they often ignore underlying on-the-ground environmental 

drivers (Lo Iacono et al. 2017; Rinaldo et al. 2018). Only recently, spatially explicit schemes have begun 

to be adopted to describe disease transmission processes in connection with environmental mechanisms 

(beyond weather characteristics) (Lo Iacono et al. 2017; Rinaldo et al. 2018). However, this has mainly 

been the case for diseases directly transmitted from the environment to the host (e.g. see Bertuzzo et al. 

2008, 2011, 2016; Mari et al. 2012; Rinaldo et al. 2012, for cholera), whereas, with only few exceptions 

(e.g. see Bomblies et al. 2008; Gurarie and Seto 2009; Perez-Saez et al. 2015), vector-borne and 

foodborne zoonoses including an intermediate host have so far been neglected (Lloyd-Smith et al. 2009).  

Therefore, to address the challenges arising from the ecology of many infections, there is a need, and 

opportunity, to integrate disease transmission processes with their underlying environmental drivers 
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within space-time explicit frameworks, by focusing on the interactions and feedbacks between the two. 

This mechanistic coupling across environmental sciences (which traditionally investigate the links 

between distal and proximal environmental processes) and epidemiology (traditionally focused on 

transmission cycles and disease burdens) seems paramount to deepen our understanding of complex 

infectious disease systems, to yield more reliable simulations of future disease risk, and to guide control 

strategies, including potential environmental interventions (Bertuzzo and Mari 2017; Eisenberg et al. 

2002, 2007; Lloyd-Smith et al. 2009; Rinaldo et al. 2018).  

1.3 Research questions  

The overall aim of this thesis is to support the study and management of environment-driven infectious 

diseases, under current and future potential conditions, by explicitly linking environmental and 

epidemiological processes through mechanistic modelling.  

Fasciolosis (or liver fluke disease), a widespread zoonosis, is used as a case study. This parasitic 

infection is responsible for production losses in livestock of above US$ 3 billion per year, globally, and 

is emerging in humans, with the total number of reported cases going from less than 3000 to 

approximately 17 million in recent decades (Mas-Coma et al. 2009). Its transmission pathway is 

inextricably linked with the environment (group IV in Figure 1.3), with environmental characteristics 

affecting multiple disease components (i.e. the free-living stages of the parasite, as well as the 

intermediate host) both directly and indirectly (e.g. direct effect of temperature on the survival of the 

parasitic stages, and indirect effect of rainfall on the presence of intermediate hosts, through its effect 

on their habitat) (e.g. see Ollerenshaw and Rowlands 1959). 

We focus on the UK because:  

1. Liver fluke is the major economically important parasitic worm affecting livestock, together 

with gastrointestinal nematodes (van Dijk et al. 2010), affecting almost 80% of dairy herds in 

England and Wales (McCann et al. 2010a), and costing the British agriculture sector 

approximately £300 million per year due to lost production (Williams et al. 2014). 

2. Climate-driven changes in infection patterns have already been observed across the country, 

which have resulted in an increased use of treatment, exacerbating the development of 

resistance to available antiparasitic drugs (Charlier et al. 2014).  

3. Existing empirical liver fluke risk forecasting models are being used by the UK National 

Animal Disease Information System (NADIS) to inform farmers about potential future risk of 

infection across areas (NADIS 2019). 
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4. The historical presence and veterinary importance of the disease in the country have resulted 

in a good mechanistic understanding of the environmental-epidemiological system, which has 

been reinforced by a significant amount of information from field studies and laboratory 

experiments emerged as the disease attracted renewed attention following the recently observed 

changes (Charlier et al. 2014; van Dijk et al. 2010; McCann et al. 2010a; VIDA 2019).  

Specifically, we address the following research questions: 

1. How can we advance the study of fasciolosis beyond empirical associations of infection levels 

with climatic characteristics? 

2. How sensitive is the risk of infection with liver fluke to heterogeneous environmental 

conditions? What are potential implications for disease management and especially for 

environmental interventions? 

3. How can we expect risk of liver fluke infection to change in response to climate change going 

forwards? 

Regarding (1), we aim to incorporate mechanistic understanding of disease transmission processes and 

key underlying weather–water–environment conditions into a new integrated model. In contrast to liver 

fluke risk forecasting models currently available, which are based on historically observed correlations 

between climatic and disease prevalence data, this involves explicitly describing the bio-physical 

processes underlying transmission of fasciolosis, including how climatic effects are mediated by on-the-

ground environmental characteristics. The result would be the first mechanistic hydro-epidemiological 

model of liver fluke risk that could be used to simulate conditions beyond those previously observed, as 

well as to investigate what-if scenarios for decision support. To address this question, we also need to 

identify a strategy to constrain and test the new model. To this end, we aim to use not only available 

hydrological and epidemiological datasets, but also expert knowledge of system behaviour to make the 

model more robust to data with limited reliability and in the presence of climate change, as similarly 

proposed in previous studies (e.g. Hartmann et al. 2015; Liang et al. 2005; Pianosi et al. 2016). 

With respect to (2), we aim to use the new model to investigate dominant controls of disease risk across 

the UK. To this end, we intend to set up the model to simulate risk of infection across the nation-wide 

domain and to use ANalysis Of VAriance (ANOVA) as a sensitivity analysis method, considering both 

climatic characteristics and landscape properties as disease risk drivers. To better understand the role of 

environmental heterogeneity in shaping disease risk patterns, we intend to compare our results with the 

dominant controls we would obtain if we simulated disease risk using an existing model that does not 

consider the variability of on-the-ground environmental characteristics. This analysis would then 

provide the basis to investigate the potential of environmental interventions (such as risk avoidance 
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management strategies) to reduce disease risk, by exploring where in the UK these can provide benefits 

and how they compare with current treatment-based control. So far, such alternative strategies have 

often been called for (e.g. by Morgan et al. 2013), but their potential effectiveness has not yet been 

assessed quantitatively. 

Regarding (3), our goal is to evaluate potential climate change impacts on liver fluke risk in the UK, 

toward the end of the century, while considering uncertainties in climate projections. So far, the response 

of liver fluke risk to climate change has only been assessed by extrapolating past relationships into wider 

geographical regions and future climates (e.g. Caminade et al. 2015; Fox et al. 2011), and without 

analysing the link with underlying changes in parasite-relevant climatic characteristics, which are 

expected to play a key role on the disease dynamics (Easterling et al. 2000; Lo Iacono et al. 2017). 

Moreover, implications for disease control have not yet been assessed. Instead, here, we aim to use our 

new mechanistic model, together with the most recent ensemble of regional climate projections 

available, to better uncover the relationship between projected changes in disease risk seasonality and 

spread with changes in liver fluke-specific climatic thresholds. Finally, we aim to explicitly evaluate 

implications of these projected changes in climate and liver fluke transmission on the effectiveness of 

current treatment-based control strategies, to understand if and where these may become unsustainable 

going forward. 

1.4 Thesis outline 

The remaining thesis is structured as follows: 

Chapter 2 introduces fasciolosis, including its link with environmental processes, recently observed 

changes in infection patterns, and disease control challenges. Moreover, it reviews the literature on 

existing liver fluke models. 

Chapter 3 introduces the first mechanistic hydro-epidemiological model to simulate risk of infection 

with liver fluke disease, with explicit connections to key underlying environmental drivers. The model 

is tested in two UK case study catchments for which hydrological and epidemiological data are available. 

A novel strategy to constrain the model is also presented based on Monte Carlo sampling and expert-

driven rules. A comparison with the most widely used current liver fluke risk forecasting (empirical) 

model is provided. 

Chapter 4 investigates the role of environmental heterogeneity in driving liver fluke disease transmission 

across the UK by upscaling the previously developed model to the national level and by analysing 

modelled controls with ANOVA. Opportunities for environmental management as a disease control 



 
Chapter 1. Introduction 
 
 
 

12 
 

alternative to drug administration are explored by implementing risk avoidance strategies in the model 

and by comparing the risk reduction they can achieve to the effectiveness of current treatment-based 

control. 

Chapter 5 focuses on estimating how liver fluke risk might change under future potential climatic 

conditions in the UK towards the end of the century, accounting for uncertainty in climate projections. 

Potential seasonality and distributional shifts in disease risk are linked to changing climatic drivers and 

an evaluation of how these, in turn, might affect the effectiveness and sustainability of current control 

strategies is presented. 

Finally, Chapter 6 summarises the findings and contributions of the thesis and proposes directions for 

future research. 
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Chapter 2. Fasciolosis (or liver fluke disease) 

 The importance of fasciolosis 

Fasciolosis is a zoonotic disease caused by infection with two species of parasitic flatworms, or 

trematodes, of the genus Fasciola, which affect the liver (hence the common name liver fluke): F. 

hepatica, originally from temperate regions in Europe and America, and now expanded globally, and F. 

gigantica, which lives in tropical areas of Africa and Asia. Two hosts are required for these parasites to 

complete their life cycle. The primary host range is broad and includes several mammals (such as cattle, 

sheep, goats, equines, camelids and marsupials), including humans. Intermediate hosts are typically 

amphibious mud snails in the case of F. hepatica, and freshwater snails in the case of F. gigantica, both 

of the family Lymnaeidae (Wilson et al. 1982; Mas-Coma et al. 2005; WHO 2018).  

It is the vector-borne parasitic disease with the widest distribution known in terms of latitude, longitude 

and altitude (Mas-Coma et al. 2005). Values of disease prevalence reported in the literature are rarely 

comparable across study sites and regions, as they are often based on different samples (including 

different hosts), sample sizes and time spans (Lo Iacono et al. 2017; Mehmood et al. 2017). However, 

high prevalence values have been documented across all continents, including in Europe (e.g. 79.7% 

across the UK (McCann et al. 2010a; Howell et al. 2015) and up to 82% in Ireland (Selemetas et al. 

2014, 2015a, 2015b), in both cases based on dairy cattle herds), South America (e.g. mean prevalence 

of 21.6% across dairy cattle herds in Colombia (Valencia-López et al. 2012)), Africa (e.g. up to 71.45% 

in Ethiopia (Malone et al. 1998; Yilma and Malone 1998)), Oceania (e.g. 42.5% in cattle from Victoria, 

Australia (Durr et al. 2005)) and Asia (e.g. up to 85.2% in Cambodia (Tum et al. 2004, 2007)), with 

endemic areas ranging all the way from below sea level, along the Caspian Sea, to altitudes of up to 

4000 meters in South America (Mas-Coma et al. 2005). 

Severe acute infections in animals can lead to sudden death (with mortality rates up to 50% reported in 

sheep (Fiss et al. 2013)), but more frequent clinical signs of disease include weight loss and anaemia. 

On the other hand, the major economic losses to the livestock industry are linked to sub-clinical 

infections, which lead to lowered productivity e.g. reduced growth rates in beef cattle and lower milk 

yields in dairy cows (Kaplan 2001). Treatment and associated veterinary costs represent additional 

economic losses, on top of those resulting from condemnation of livers at the abattoir and lost production 

(Kaplan 2001; Bennett and Ijpelaar 2005). Because of the presence of a multitude of farm-specific 
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elements, the effects of infection on farm economics are difficult to quantify (van der Voort et al. 2013). 

However, with more than 600 million animals assumed to be infected, fasciolosis has been estimated to 

be responsible for production losses in livestock of above $3 billion per year, globally (Fairweather 

2005; Turner et al. 2016; Beesley et al. 2018). Moreover, in addition to these direct impacts on the health 

and productivity of animals, recent research indicates that infection with liver fluke may also alter the 

susceptibility of animals to other pathogens, and compromise the diagnosis of co-infections such as 

Bovine Tuberculosis, with serious consequences for disease control (Claridge et al. 2012).  

Finally, while originally considered to be of secondary importance for humans, fasciolosis is now 

estimated to infect about 17 million people worldwide, annually (Mas-Coma et al. 2005, 2018; 

McManus and Dalton 2006; Olsen et al. 2015) (Figure 2.1). Moreover, “different diagnostic limitations, 

and the fact that human fascioliasis is not a disease of obligatory declaration, suggest that the number of 

human cases is much greater than that published” (Mas-Coma et al. 2005). 

 

Figure 2.1 Global distribution of human fasciolosis (map based on cases reported by Esteban et 
al. (1998) and pictures from Mas-Coma et al. (2018)).  

The WHO includes it in the list of Neglected Tropical Diseases (NTDs), among the group of foodborne 

trematodiases (WHO 2018), in fact people get infected through ingestion of contaminated water, 

watercress and other vegetables/plants for human consumption, or raw liver dishes (Mas-Coma et al. 

2018). Typical symptoms of acute infection in people include fever, nausea, skin rashes and abdominal 

pain (WHO 2018), but extreme pathogenicity may also lead to longer-term neurological and 
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ophthalmological problems (Mas-Coma et al. 2018). The highest prevalence and intensity of human 

fasciolosis are found in high-altitude regions of Andean countries, but the disease is also encountered in 

the Caribbean area, northern Africa, western Europe and the Caspian region (Mas-Coma et al. 2005). In 

particular, in poor sheep- and cattle rearing rural communities of Bolivia, Peru, Egypt, Iran and, more 

recently, Vietnam, infection rates are so high that fasciolosis is a serious threat to public health, as well 

as a constraint on social and economic development (WHO 2018). 

 The link with the environment 

Fasciolosis has strong environmental components to its transmission. Liver fluke, the parasite 

responsible for infection, has a complex life-cycle which includes stages that can persist a long time 

outside of the primary host (namely, eggs, miracidia, cercariae and metacercariae), as well as the 

obligatory passage through amphibious or aquatic snails, which serve as intermediate hosts and also live 

in – and are influenced by – the environment (Ollerenshaw and Rowlands 1959; Pantelouris 1963; van 

Dijk et al. 2010).  

The dependence of the disease pathway on abiotic factors is partly related to the intermediate host 

specificity. In fact, as mentioned above, snails transmitting F. hepatica show marked amphibious traits 

and are more adapted to colder conditions, while those responsible for transmission of F. gigantica are 

aquatic and prefer warmer climates. In the UK, F. hepatica is transmitted through Galba truncatula snails 

(originally from Europe, then expanded to other continents, most likely with the commercial exportation 

of European livestock, and now considered to be the main intermediate host of F. hepatica, globally) 

(Charlier et al. 2014a). These are the least aquatic of all lymnaeid snails. Specifically, they are 

amphibious mud snails, which require access to the air, and typically do not survive well in standing 

water (Andrews 1999). Instead, their ideal habitat is along the edges of small ponds or ditches and on 

wet pastures, in areas with poor drainage, subject to alternate flooding and desiccation (Andrews 1999; 

Charlier et al. 2011; De Roeck et al. 2014). Soil type and pH may also potentially play a role in the 

suitability of their habitats (thus, potentially contributing to the uneven spatial distribution of fasciolosis 

across regions), with G. truncatula snails believed to prefer slightly acidic and loamy soils (Charlier et 

al. 2011; Beesley et al. 2018). 

While soil moisture is key, especially for snail presence and activity, with saturated conditions favouring 

the presence of snails and development of the intra-molluscan parasitic stages, temperature is also 

critical for disease transmission. In fact, temperature affects the development rate of eggs and parasitic 

stages within the snail, as well as the survival of metacercariae, and lower and upper temperature 
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thresholds exist below/above which development and survival do not occur (Thomas 1883; Ollerenshaw 

and Rowlands 1959; Pantelouris 1963; Andrews 1999). 

Specifically, the parasite life cycle unfolds as follows. Once passed out on pasture in the faeces of 

infected animals, and washed out of the faeces, fluke eggs start developing at a temperature-dependent 

rate. Once fully developed, eggs hatch into miracidia when both temperature and soil moisture 

conditions are suitable (Andrews 1999; Williams et al. 2014). Miracidia require water to swim through 

and are short lived: either they find a snail host or die within 24 hours (Andrews 1999; Thomas 1883; 

Williams et al. 2014). Galba truncatula snails, which -as previously mentioned- live in poorly drained 

areas, are also known to hibernate with cold weather and aestivate during hot dry periods (Andrews, 

1999). At these times, development of the parasitic stages within the snail may be halted (Pantelouris, 

1963). Within the snail, the fluke multiplies and, after about six to eight weeks, depending on 

temperature, cercariae are released (a snail infected with a single miracidium can produce up to several 

hundred cercariae, which are released over a period of time). Cercariae then encyst on grass to form 

infective metacercariae, which survive on pasture and retain infectivity based on temperature, with 

moderate weather being most favourable (Andrews 1999; Williams et al. 2014). When grazing animals 

ingest infective metacercariae, the immature flukes migrate into their liver, reach the bile ducts in about 

8-10 weeks, mature reaching up to about 5cm in length and 1cm in width, and start producing eggs that 

-again- can be detected in faeces after approximately 5 weeks (resulting into an overall prepatent period 

-i.e. interval between infection of an animal and first ability to detect it- of about 3 months) (Kaplan 

2001; Williams et al. 2014). The larger the amount of infective metacercariae ingested, the higher the 

infection intensity in the animal, and, therefore, the number of eggs produced. 

Traditionally, in humid temperate climates, such as in the UK, the combination of temperature and soil 

moisture conditions has resulted in a distinct seasonal pattern of disease (e.g. see Ollerenshaw and 

Rowlands 1959; Williams et al. 2014). Eggs shed onto pasture in winter and spring usually begin to 

develop in early April, with large numbers of miracidia hatching in late May. This is also the time when 

snails emerge from hibernation, as the weather warms up at the end of winter, and the parasite life cycle 

resumes. If soil moisture is available, cercariae therefore emerge from snails from mid-July onwards, 

resulting into a peak of metacercarial availability on pasture in late summer and autumn.  

 Observed changes in disease patterns 

The strong dependence of fasciolosis on environmental factors has contributed to altered disease 

epidemiology as a result of recent changes in climate and the environment (Mas-Coma et al. 2009; 

Charlier et al. 2014b). At present, the disease is believed to be emerging or re-emerging in many areas 
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of South America, Africa, Asia, and Europe, both in animals and humans, at least partly as a 

consequence of environmental changes, including direct human interventions (Mas-Coma et al. 2005).  

• At the animal level, increases in disease prevalence and shifts in its spatial distribution have 

been documented primarily in the UK, which have been attributed to milder winter temperatures 

and altered precipitation patterns. In England, prevalence of infection in dairy herds increased 

from 48% in 2003 to 72% in 2006 (McCann et al. 2010a). Moreover, fasciolosis has recently 

been reported in previously unaffected regions of the country, such as in Scotland and East 

Anglia (Pritchard et al. 2005; Kenyon et al. 2009). Similarly, shifts in seasonality have been 

observed in the UK and Ireland, which have also been linked to changing climatic conditions, 

and have resulted in the disease shifting towards being more of a year-round – and less of a 

seasonal – threat (Relf et al. 2011; Fairweather 2011). On the other hand, in South America 

(mainly Ecuador and Peru), outbreaks of animal fascioliasis were detected following changes 

in the occurrence of droughts and floods linked to the 1997-1998 El Niño-Southern Oscillation 

event (Mas-Coma et al. 2009).  

• At the human level, the global number of reported cases of fasciolosis has increased from less 

than 3000, prior to 1992, up to the most recent figure of 17 million (Mas-Coma et al. 2018). 

While this is partly linked to factors such as the availability of better diagnostic tools, more 

surveys and increased awareness, rises in health risk due to fasciolosis have also been associated 

to recently developed water resources and irrigation projects. For example, a significant increase 

in human infection, following the quick colonisation of a man-made irrigation system by F. 

hepatica and lymnaeid snails, was recently observed in the Asillo zone of the Northern 

Altiplano, in Peru (Esteban et al. 2002; Mas-Coma et al. 2005).  

This evidence of climate and environment-driven changes in the epidemiology of liver fluke and 

incidence of fasciolosis further suggests that climate change will have significant impacts on the future 

evolution of the disease. For example, in Bolivia, where G. truncatula snails thrive in waters that come 

from the perpetual snow of the Andes, it is believed that short-term increases in runoff due to warming-

driven glacier retreats, and subsequent long-term reductions in water supply, will greatly influence the 

disease epidemiology going forwards; on the other hand, in the Nile Delta region in Egypt, where snail 

intermediate hosts inhabit irrigation canals, complications are expected as raising temperatures and more 

extreme droughts may increasingly impact and change human agricultural activities (Mas-Coma et al. 

2009). 



 
Chapter 2. Fasciolosis (or liver fluke disease) 
 
 
 

18 
 

 Disease control challenges 

Effective control of fasciolosis is challenging for a number of reasons. Most importantly, despite several 

trials in recent years, no commercial vaccine is yet available for prevention (McManus and Dalton 

2006). Therefore, current control is largely based on the use of antiparasitic drugs (mainly 

Triclabendazole, TBZ, for both people and animals) (Fairweather 2011; Beesley et al. 2018). However, 

there are many limitations to their use: 

• First, hosts can be repeatedly infected (i.e. they develop partial or no immunity e.g. see 

Anderson et al. 2014) and there is no drug with persistent action to prevent reinfection. 

Therefore, farmers, for example, may have to treat their animals multiple times every year 

(Morgan et al. 2012). 

• Moreover, current treatment options against the parasitic immature stages, which are the most 

damaging for animals, are limited (e.g. at the moment, TBZ is the only licensed treatment 

available in the UK against these) (Fairweather 2005, 2011; Statham 2015; Beesley et al. 2018). 

• Furthermore, repeated drug use, partly linked to the increasing climate change-driven shifts in 

liver fluke seasonality and spread, has led to treatment failure being reported more and more 

frequently. For example, resistance to TBZ has been already observed in a number of countries, 

including in the UK (Brennan et al. 2007; Kamaludeen et al. 2019; Kelley et al. 2016).  

• Finally, concerns about treatment residues in meat and milk have restricted the use of flukicides 

(i.e. drugs against liver fluke) in animals producing meat/milk for human consumption, and to 

an increase in withdrawal periods for many products (NOAH 2013; Statham 2015). 

 Liver fluke models 

Three modelling directions can be found in the literature in relation to liver fluke: (i) climate-based 

empirical indices for disease risk forecasting, which started being developed in the 1950s and later 

expanded through the use of Geographic Information Systems; (ii) early attempts to model the parasite 

life cycle mechanistically; and (iii) a more recent body of work, again based on empirical approaches, 

mainly aimed at investigating the role of environmental and other risk factors in relation to observed 

infection patterns. 

With respect to the first modelling direction, several climate-based liver fluke risk forecasting systems 

have been developed based on empirical relationships found between historic climate and disease data. 

However, their empirical nature makes them unsuitable for assessing disease risk and guiding 

interventions under changing conditions (Beesley et al. 2018). 
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• Ollerenshaw and Rowlands (1959) were the first to quantitatively link weather characteristics 

to levels of fascioliasis in grazing animals, but their index is still widely used for forecasting 

purposes, including by the UK National Animal Disease Information System (NADIS 2019) 

and the Irish Department of Agriculture and Food, to warn farmers about potential high-risk 

years. The model calculates seasonal risk of infection as a function of monthly number of rainy 

days, rainfall and potential evapotranspiration, based on a relationship found with incidence of 

acute fasciolosis data on the island of Anglesey, Wales (UK), over the period 1948-1957 (also 

see Appendix Section A.1.4).  

• The Stormont wet-day Index (Ross 1970) was developed for use in Northern Ireland and is a 

simplified version of the previous Ollerenshaw Index, based on the accumulation of wet days 

only. 

• The Water Budget-Based System (Malone et al., 1987) calculates a yearly index of suitability 

for disease transmission as a function of growing degree days (i.e. number of days above a 

baseline parasite-specific temperature threshold) and the Thornthwaite water budget (obtained 

from rainfall and min/max temperature data), based on a relationship found with the annual 

number of flukes transmitted on a study herd in Louisiana (US), over the period 1978-1983. 

Despite being empirical in nature, both the Ollerenshaw Index and the Water Budget-Based System 

have been widely used (often after applying some modifications to the original calculations and, 

increasingly, by using Geographic Information Systems) for long-term forecasts and for mapping 

liver fluke risk over large areas, including in Europe (e.g. Ollerenshaw 1966; Fox et al. 2011; 

Caminade et al. 2015), Middle East (e.g. Halimi et al. 2015), Africa (e.g. Malone et al. 1998; Yilma 

and Malone 1998), America (e.g. Fuentes et al. 1999; Valencia-López et al. 2012), and Oceania (e.g. 

Haydock et al. 2016).  

Regarding the second modelling direction, despite the key spatial aspect in the epidemiology of 

fasciolosis (because of its dependence on development of the free-living stages and presence of snail 

hosts, which in turn strongly depend on environmental conditions (Charlier et al. 2014a), none of the 

mechanistic models available simulates the dynamics of soil moisture and its effects, with temperature, 

on life-cycle progress and disease transmission. Specifically: 

• Early mechanistic models for liver fluke focus on one or two stages of the parasite life cycle 

and describe their development as a function of temperature only (e.g. Gettinby et al. 1974; Nice 

and Wilson 1974).  

• Similarly, a more recent model, built with the aim of investigating the effectiveness of potential 

components of a vaccine, describes the acquisition and development of liver fluke within the 

primary host, including a temperature-dependent survival of metacercariae (Turner et al. 2016). 
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However, the model cannot evaluate impacts on infection levels in subsequent seasons, as it 

does not represent the life-cycle stages evolving on pasture, nor how these are affected by 

environmental conditions. 

• Meek and Morris (1981) provide a more comprehensive representation of the life cycle, 

recognising the importance of soil moisture on herbage growth and snail activity (Meek and 

Morris 1981). However, both rainfall and irrigation status are inputs to their model, which still 

neglects the effects of soil moisture dynamics in the landscape on the suitability for disease 

transmission. 

More recently, the observed general rise in infection pressure has resulted into a renewed interest in 

fasciolosis and to a new body of work, again using empirical approaches, aimed at investigating disease 

risk factors. Specifically, most of these studies use similar climate-environment-management variables 

and explore their ability to explain spatial infection patterns observed at a certain moment in time, at 

different scales – from farm to post code areas – and in different countries, mainly UK, Ireland and 

Belgium (Beesley et al. 2018). Usually, this is achieved either by performing statistical tests to analyse 

potential differences in explanatory variables between positive and negative farms (e.g. Selemetas et al. 

2014, 2015b), or by developing multi-variable regression models, including linear or logistic 

regressions, and regression trees (e.g. McIlroy et al. 1990; McCann et al. 2010b; Charlier et al. 2011; 

Howell et al. 2015; Bennema et al. 2011; Ducheyne et al. 2015; Selemetas et al. 2015a). The type of 

explanatory factors which are found to be important are often similar across studies (both environmental 

and management variables, with rainfall and temperature always resulting relevant). However, (i) 

different rainfall and temperature characteristics may result useful; (ii) the level at which these variables 

explain the observed patterns varies, and (iii) the sign of influence (positive or negative) is also often 

different from study to study. For example, poorly drained soil types have been linked to both a higher 

and a lower risk of infection in dairy herds in Ireland (Bennema et al. 2011; Selemetas et al. 2014, 2015b; 

McCann et al. 2010b), suggesting that the indirect information about infection levels that these models 

provide may not be sufficient for understanding the processes underlying disease transmission and for 

predictive purposes under changing conditions (Eisenberg et al. 2002; Mellor et al. 2016; Wu et al. 2016; 

Rinaldo et al. 2017).  
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Chapter 3. A mechanistic hydro-epidemiological 
model for liver fluke 

 Introduction 

The transmission of several highly pathogenic infectious diseases is closely linked to weather and 

environmental conditions (Altizer et al. 2006). Waterborne diseases, like cholera, are directly affected 

by hydro-meteorological factors such as rainfall, through transport and dissemination of the pathogens, 

and water temperature, through their development and survival rates. Diseases involving a vector or 

intermediate host as part of their life cycle, such as schistosomiasis or fasciolosis, are also indirectly 

controlled by characteristics of the water environment and land surface, through their influence on the 

vector or host (Perez-Saez et al. 2016; Rinaldo et al. 2018). 

Our environment is changing at unprecedented rates due to climate change and direct human activities 

(Coumou and Rahmstorf 2012; Van Loon et al. 2016), with implications for the behaviour, seasonality 

and distribution of many diseases and their carriers (Jones et al. 2008; Wu et al. 2016). Evidence of 

climate and environment-driven changes in the phenology of pathogens and incidence of diseases 

already exists. The increase in frequency and intensity of extreme weather events is altering the 

occurrence of floods and droughts, changing the concentration of infectious agents in the water 

environment and human exposure to infection (Righetto et al. 2013; Rinaldo et al. 2012, 2018). 

Similarly, changes in the prevalence of schistosomiasis have been observed due to the expansion of the 

snail intermediate host habitat, following the construction of dams and implementation of irrigation 

schemes to meet demands for food/energy from increasing numbers of people (Steinmann et al. 2006). 

As climate change accelerates and other human-caused disturbances increase, it is urgent to assess 

impacts on disease transmission, to guide interventions that can reduce and/or mitigate risk (Bouley et 

al. 2014). To this end, we need to: (a) understand the mechanisms by which the environment affects 

epidemiological processes, addressing the system as a whole, (b) represent these processes with models 

that are explicit in space and time, to more reliably simulate conditions beyond historically observed 

variability, and (c) test these models in new ways, since simply reproducing past observations may no 

longer be sufficient to justify their use for decision support (Altizer et al. 2006; Fox et al. 2012; Lloyd-

Smith et al. 2009; Rinaldo et al. 2018; Wagener et al. 2010; Wu et al. 2016). 
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However, most current models that predict changes to disease patterns in response to climate change are 

empirical (Lo Iacono et al. 2017; Urban et al. 2016; Wu et al. 2016). This means they do not explicitly 

represent mechanisms, but are based on statistical correlations between historical data, thus becoming 

unreliable when extrapolated to novel conditions, e.g. into different regions or future climates (Dormann 

et al. 2012). Moreover, empirical models do not allow for what-if analyses, i.e. they cannot be used to 

test the effect of interventions on disease incidence, which would be valuable for decision-making 

(Eisenberg et al. 2002; Lloyd-Smith et al. 2009).  

In this work, we incorporate knowledge of environmental and epidemiological processes into a new 

integrated mechanistic model, using fasciolosis as an example. This is a globally distributed parasitic 

disease of livestock and zoonosis, whose most widespread agent is Fasciola hepatica, the common liver 

fluke (Mas-Coma et al. 2005). Clinical signs of disease in animals include weight loss, anaemia and 

sudden death, while sub-clinical infections result in lowered productivity and are estimated to cost the 

livestock industry $3 billion per year, globally (Kaplan 2001; Turner et al. 2016). Risk of infection with 

liver fluke is strongly influenced by weather and environmental conditions, especially temperature and 

soil moisture, as the parasite has an indirect life-cycle involving an intermediate host (in the case of F. 

hepatica, the amphibious mud snail Galba truncatula) and free-living stages, which grow and develop 

in the environment (van Dijk et al. 2010; Ollerenshaw and Rowlands 1959; Pantelouris 1963).  

Addressing fasciolosis is urgent for many reasons. First, resistance to available antiparasitic drugs is on 

the rise worldwide, making disease control challenging (Charlier et al. 2014). Second, increases in 

disease prevalence, expansions into new areas and shifts in its seasonality have been observed in recent 

years and attributed to altered temperature and rainfall patterns, raising concerns about the effects of 

climate change in the future (Charlier et al. 2014; Relf et al. 2011). Finally, fasciolosis is emerging as a 

major disease in humans, with about 17 million people infected around the world, and human treatment 

relying on the same veterinary drug to which resistance is increasing (Mas-Coma et al. 2005). Climate-

based fluke risk forecasting models have been developed since the 1950s (e.g. see Ollerenshaw and 

Rowlands 1959; Malone et al. 1987), the Ollerenshaw Index being the best-known example, which is 

still actively used to predict disease severity in Europe (Caminade et al. 2015; Fox et al. 2011; 

Ollerenshaw 1966; NADIS 2019). However, these models are empirical in nature and therefore of little 

use for assessing risk under changing conditions. On the other hand, previous attempts to model 

fasciolosis mechanistically neglect the role of soil moisture dynamics in driving infection and do not 

account for the spatial aspect of the disease (e.g. Nice and Wilson 1974; Turner et al. 2016). 

Therefore, in this study, we introduce a new mechanistic coupled hydro-epidemiological model for liver 

fluke, which explicitly represents the parasite life cycle in time and space, linked with key environmental 
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conditions. We then parameterise the model for two case studies in the UK and assess whether it can 

replicate temporal and spatial variability of observed infection levels. To overcome limitations of 

available epidemiological data, we propose a calibration approach that combines observations and 

expert knowledge. Finally, we further evaluate the model by comparing it with the widely used empirical 

Ollerenshaw Index. 

 The Hydro-Epidemiological model for Liver Fluke 

The Hydro-Epidemiological model for Liver Fluke (HELF) quantitatively captures the mechanisms 

underlying transmission of fasciolosis, describing the causal relationships between hydro-

meteorological factors and biological processes, instead of relying on correlation. To this end, HELF 

integrates TOPMODEL (Beven and Kirkby 1979; Beven et al. 1995), an existing hydrological model 

which we use to simulate soil moisture dynamics, and a novel epidemiological model, which represents 

the parasite life cycle. TOPMODEL is chosen because its underlying assumptions are physically realistic 

for humid-temperate catchments, such as UK catchments, where the dominant mechanism of runoff 

generation is soil saturation (Beven and Kirkby 1979). The epidemiological model is developed based 

on current understanding of the life cycle of Fasciola hepatica and its dependence upon soil moisture 

and air temperature (van Dijk et al. 2010; Ollerenshaw and Rowlands 1959; Pantelouris 1963). 

3.2.1 Hydrological model component 

TOPMODEL is a catchment-scale rainfall-runoff model, which was developed for hydrological 

predictions and has been extensively used for different water resources applications (e.g. see references 

in Beven 1997). The model uses temperature, rainfall and Digital Elevation Model (DEM) data to 

estimate, at each time step, spatially distributed soil moisture over the catchment (calculated as a 

saturation deficit), as well as streamflow at the catchment outlet. The model we use is based on the 

version explained by Beven et al. (1995) and has seven parameters (Table 3.1). 

 

Table 3.1 Hydrological model parameters and initial ranges. 
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In TOPMODEL, hydrological processes are represented using a sequence of conceptual stores for which 

the model estimates and tracks water balances. An interception store, representing vegetation cover, 

must be filled by rainfall before infiltration into the soil can occur. When water infiltrates into the soil, 

it first enters the root zone, from which it evaporates as a function of potential evapotranspiration, 

maximum capacity of the store, and its actual water content. Water that is not evaporated or retained by 

the soil percolates to the saturated zone (i.e. the groundwater), which contributes to the channel network 

through subsurface flow.  

To simulate the spatial distribution of soil water content over the catchment, this water balance 

accounting routine, which is lumped at the catchment scale, is integrated with spatially distributed 

topographic information derived from DEM data. Specifically, the effect of topography is captured, for 

each grid cell in the catchment, through calculation of a Topographic Index: 𝑇𝐼 = ln⁡ ( 𝑎
tan(𝛽)),  where 𝑎 

is the upslope contributing area and tan(𝛽) the local slope. 𝑇𝐼 is used as a measure of the likelihood 

that a grid cell becomes saturated by downslope accumulation: high values occur over flat regions in 

valleys, which tend to saturate first, whereas low values are associated with areas at the top of hills, 

where there is little upslope area and slopes are steep (Figure 3.1). The model assumes that all points 

with the same index value will respond similarly, hydrologically. For computational efficiency, the 

distribution of 𝑇𝐼 values is then discretised into classes, so that computations are performed for each 

class instead of for each grid cell.  

 

Figure 3.1 Spatial pattern of Topographic Index values for the River Tawe Catchment (UK). 
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Therefore, a saturation deficit for each 𝑇𝐼 class is calculated as a function of the catchment average 

saturation deficit, updated at each time step by water balance calculation, and the spatial distribution of 

the 𝑇𝐼s. Rainfall that falls on saturated areas (i.e. where deficit is less than or equal to zero) cannot 

infiltrate into the soil and generates saturation-excess overland flow. Finally, total streamflow is 

calculated as the integrated subsurface flow and saturation-excess overland flow, and a gamma 

distribution is used to model the time delay in discharge generation at the catchment outlet, due to water 

moving through the river network of the catchment. 

3.2.2 Epidemiological model component  

The epidemiological component of HELF represents the stages of the liver fluke life cycle that live on 

pasture: eggs, miracidia, snail infections and metacercariae (Figure 3.2). Development and survival of 

these, as well as the presence of mud snails, require particular temperature conditions and wet soil. 

Therefore, the model takes as input variables temperature and soil moisture, as well as an egg scenario 

(i.e. number of embryonic eggs we assume are deposited on each 𝑇𝐼 class at each time step by infected 

animals), to calculate the abundance of individuals in each life-cycle stage.  

 

Figure 3.2 Simplified representation of the liver fluke life cycle, with an amphibious mud snail 
serving as intermediate host.  
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Once passed out on pasture in the faeces of infected animals, Eggs (E) develop at a temperature-

dependent rate, and hatch into miracidia when both temperature and soil moisture conditions are suitable 

(Andrews 1999). Miracidia (Mi) are short lived: either they find a snail host or die within 24 hours 

(Andrews 1999; Thomas 1883). Therefore, progression from miracidium to the next stage is calculated 

as the probability of finding a snail. This is assumed to depend on soil moisture levels and temperature, 

as Galba truncatula snails are only found in poorly drained areas and are known to hibernate with cold 

weather and aestivate during hot dry periods (Andrews 1999). Snail infections (SI) also develop in the 

model as a function of both temperature and soil moisture, as development within the snail may be halted 

due to hibernation and aestivation (Pantelouris 1963), until parasites finally emerge from snails in the 

form of cercariae. Once attached to grass as Metacercariae (Me), these survive on pasture and retain 

infectivity based on temperature, with moderate weather being most favourable (Andrews 1999).  

Each stage, except for miracidia that only have a lifespan of one day, is represented as a pool of 

developing cohorts of individuals to capture maturation progress in a more realistic way. Individuals in 

different cohorts are exposed to different environmental conditions, and therefore will develop at 

different times (Andrews 1999; Thomas 1883). We account for this by using two state variables for each 

cohort within each stage: number of individuals and maturation state of the cohort. The rationale is that 

each cohort has a certain maturation state, which increases with the number of days that have suitable 

environmental conditions, until the cohort eventually matures to the next life-cycle stage. Output from 

a stage is then the sum of cohorts per unit area which mature to the next one. 

At each time step, development and/or survival rates for a stage are calculated based on the value of the 

relevant environmental conditions for that stage at that time step, and on the stage-specific requirements 

for development/survival, which are defined through model parameters (Table 3.2). The technique 

employed to build the functions to calculate these rates has previously been used for modelling both 

liver fluke and other parasites (e.g. Nice and Wilson 1974; Rose et al. 2015; Turner et al. 2016). For 

temperature-dependent rates, we use information in the literature from laboratory experiments or 

controlled micro-environment studies that examine the time to development or death at a range of 

constant temperatures. First, rates are calculated for each constant temperature from the reported e.g. 

time to development (i.e. rate = 1/time to development); then piecewise linear models are fitted to these 

rates, yielding a regression equation which can be used to estimate the daily rates based on a time series 

of observed temperature. For soil moisture, we adopt the same approach, assuming that development is 

fastest when the soil is fully saturated (i.e. when deficit = 0) and that there is no development above a 

certain maximum deficit (Andrews 1999; Ollerenshaw and Rowlands 1959). For stages with both 

temperature and soil moisture requirements, we allow for development to progress as a function of both 

(Figure 3.3). 
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Table 3.2 Epidemiological model parameters and initial ranges. 

3.2.3 Coupled model  

The coupled hydro-epidemiological model runs at a daily time step and has a total of 29 parameters. For 

each day, HELF updates the catchment average saturation deficit based on rainfall and temperature, and 

derives the saturation deficit for each of 25 𝑇𝐼 classes, as a function of this and the 𝑇𝐼 value for the class. 

Then, for each class and life-cycle stage, the model calculates the relevant development and/or survival 

rates, based on environmental conditions.  
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Figure 3.3 Functions used in HELF to calculate temperature and soil moisture-dependent 
development and survival rates. 

The maturation state of each cohort is updated based on the development rate, and, given an egg 

scenario, the model finally computes the number of individuals in the stage as a function of the number 

from the previous time step, plus the sum of the cohorts developed from the previous stage, minus those 

that develop to the next one, minus those that die (Figure 3.4). Therefore, the model outputs are the 

abundances of hatched eggs, snails located and infected by miracidia, developed snail infections, and 

infective metacercariae surviving on pasture, which represents the environmental suitability for disease 

transmission to grazing livestock. These variables, calculated for each 𝑇𝐼 class, can then be mapped 

back onto each grid cell in the catchment.  

Regarding the egg scenario, the current assumption is that 100 embryonic eggs are introduced on each 

𝑇𝐼 class daily, over the whole simulation period. This means we are considering a scenario of continuous 

livestock grazing and no disease management over the catchment. However, this assumption can be 

easily changed. The fact that the egg scenario is a model input gives the model-user the possibility to 
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estimate how the environmental suitability for disease transmission translates into risk of infection, 

based on local farm management factors such as grazing season length or disease control strategy. More 

information about both hydrological and epidemiological model components of HELF is provided in 

the Appendix, Section A.1.1. 

 

Figure 3.4 Simplified flow diagram of HELF, which integrates a hydrological and a liver fluke 
life-cycle component, to simulate the abundance of infective metacercariae (Meta) on pasture.  

 Study sites and data 

We test HELF at two UK catchments, located in South Wales and North-West Midlands (England), 

respectively. The datasets employed include both hydro-meteorological and epidemiological data.  

3.3.1 The Tawe and Severn Catchments 

The River Tawe flows approximately 50 km south-westwards from its source in the Brecon Beacons to 

the Bristol Channel at Swansea. The catchment is about 240 km2 in size, with elevation ranging from 

about 10 to 800 m a.s.l., and most of the area characterised by a relatively impermeable bedrock. The 

River Severn rises in mid Wales and flows through Shropshire, Worcestershire and Gloucestershire, 

before also discharging into the Bristol Channel. The catchment, gauged at Upton-on-Severn, is about 

6850 km2 in area, with elevation range and geological characteristics similar to the Tawe (NRFA 2019). 

Both catchments have grassland as the dominant land cover (Figure 3.5), which is extensively used for 

livestock farming, and are located in known liver fluke endemic areas (McCann et al. 2010a; Williams 

et al. 2014). Moreover, these areas are predicted to become increasingly warmer and wetter on average 

(Murphy et al. 2009), which suggests they will become even more favourable for liver fluke transmission 

in the future. 
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3.3.2 Hydro-meteorological and epidemiological data 

The hydro-meteorological dataset includes daily observations of rainfall, temperature and discharge. 

Gridded time series of rainfall and temperature are obtained from CEH-GEAR (Tanguy et al. 2014) and 

the UK MetOffice (MetOffice 2017), respectively. For both case studies, to run HELF, we take the 

average over the grid cells overlapping with the catchment area. For the Tawe, we use these time series 

for a 12-year period (1999-2010), whereas, for the Severn, we use 2 years of data (2013-2014), in line 

with the available epidemiological data periods. Observed discharge, at Ynystanglws for the Tawe and 

Upton-on-Severn for the Severn, is derived from the National River Flow Archive (NRFA 2019). DEM 

data for both catchments are obtained from NextMap with spatial resolution of 5m, then aggregated to 

25m (Intermap Technologies 2009). 

 

Figure 3.5 Location and Land Cover Map (LCM) for the Tawe and Severn Catchments (LCMs 
from Rowland et al. 2017).  

The epidemiological dataset consists of a time series from the Veterinary Investigation Diagnostic 

Analysis (VIDA) database for the Tawe (VIDA 2019), and a spatial dataset based on Faecal Egg Counts 
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(FECs) for the Severn (McCann et al. 2017). The VIDA database, compiled from reports from the UK 

Government’s Animal and Plant Health Agency regional laboratories, provides diagnoses of fasciolosis 

made from ill or dead animals. The time series we use is the monthly number of sheep diagnosed with 

acute fasciolosis from the post code district areas within the Tawe Catchment over 1999-2010. This data 

is believed to reflect well the temporal dynamics of within–year infection levels, but may not always 

reflect the magnitude of infection in the field, as the rate of submission of animals to the laboratories is 

potentially influenced by multiple factors (van Dijk et al. 2008). In our series, no cases are reported for 

2001 and values over the following years are low, which may have been affected by the 2001 foot-and-

mouth outbreak, which killed over 10 million animals in the UK, affecting submissions to the veterinary 

laboratories. On the other hand, the spatial dataset for the Severn Catchment consists of 174 cattle herds, 

from farms within a 60km x 75km area in Shropshire, that have been classified into infected and non-

infected based on FECs collected over the period October 2014 – April 2015. Unlike VIDA, this is 

active surveillance data, and thus more likely to reflect true levels of infection. However, rather than a 

continuous and quantitative measure of the magnitude of infection, this dataset only provides a binary 

classification into positive-negative farms, at one moment in time and at a limited number of points 

within the catchment (also see Appendix Section A.1.2 for more information about these datasets). 

 Model calibration and testing 

HELF comprises parameters related to the environment and parameters related to the phenology of liver 

fluke (Tables 3.1 and 3.2). Usually, more or less well-defined ranges of values can be found in the 

literature for these, rather than point estimates, partly because of their associated natural variability, and 

partly due to uncertainty and poor understanding. Different parameter sets, selected from these ranges, 

can often provide equally good representations of system behaviour, with implications in terms of 

predictive uncertainty and limitations for the applicability of the model (Beven 1993; Dormann et al. 

2012). This type of parameter uncertainty can be reduced through a calibration or constraining process. 

Traditionally, models are calibrated and validated using historic records, assuming that the data available 

reflect the underlying system, and that conditions in the period considered are similar to those under 

which the model will be used. However, this may not be sufficient if data are disinformative in some 

respects and/or if the purpose of the model is to simulate conditions that are significantly different to 

those previously observed (Beven 1993; Klemeš 1986; Wagener et al. 2010).  

Our calibration strategy involves multiple datasets and methods. On one hand, we have high quality 

continuous data for both the meteorology and the hydrology. Therefore, as a starting point, we calibrate 

and validate the hydrological component of HELF by adopting a standard split-sampling approach 
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(Klemeš 1986). On the other hand, given the epidemiological data limitations mentioned in Section 

3.3.2., our approach for constraining the epidemiological model component not only uses past 

observations, but also expert-driven rules. 

3.4.1 Calibration and testing of the hydrological model component 

To estimate TOPMODEL parameter values and evaluate its prediction capabilities, we perform a split-

sample test using streamflow observations (years 2000-2006 for calibration and 2007-2010 for 

validation, with 1999 as warm-up period) (Klemeš 1986). The Shuffled Complex Evolution (SCE-UA) 

global optimisation method is employed to find the parameter set which maximises the coefficient of 

determination (R2) between simulations and observations on our catchments (Duan et al. 1992). The 

algorithm samples an initial population of parameter sets from a priori defined ranges (Table 3.1) and 

then evolves this population of sets to find the best performing one with respect to R2. 

3.4.2 Calibration and testing of the epidemiological model component  

Using the best performing parameterization obtained for TOPMODEL (and therefore for now neglecting 

the uncertainty in representing the hydrology), first, we fit the liver fluke component of HELF to the 

two epidemiological datasets, and assess whether we can reproduce the observed patterns of infection, 

ignoring the data limitations discussed. Second, under the assumption that these data may be 

disinformative, and given that we ultimately want to use HELF to simulate disease risk under changing 

conditions, we propose an alternative calibration approach based on Monte Carlo sampling and expert 

knowledge. Finally, we evaluate the model by comparing results to information from previous studies 

and to the commonly used Ollerenshaw Index. 

Single-objective approach using epidemiological data 

To estimate parameters of the epidemiological model component for the Tawe Catchment, we fit HELF 

to the VIDA time series by using SCE-UA to maximise the Pearson coefficient of correlation (r) between 

simulated abundance of infective metacercariae and observed number of sheep infections. As the VIDA 

dataset only provides a single time series for the Tawe, we aggregate the simulated abundance of 

metacercariae over the catchment by taking the average across 𝑇𝐼 classes. Moreover, to account for the 

delay between the variable we simulate and the observations, a lag parameter is included in the 

optimisation process, which is allowed to vary between 0 (no delay) and +5 months (Kaplan 2001). 

Similarly, to estimate parameters for the Severn Catchment, we fit HELF to the FEC-based spatial 

dataset. First, we divide the area over which we have observations into sub-areas with a minimum of 15 

data points each. Second, we use SCE-UA to find the parameter set which maximises r between the 

simulated percentage of grid cells at risk of infection and the observed percentage of herds infected, 



 
Chapter 3. A mechanistic hydro-epidemiological model for liver fluke 
 
 
 

33 
 

over each sub-area. To this end, for each parameter set, we aggregate the simulated abundance of 

metacercariae over months July-December 2014, assuming that pasture contamination over this period 

will be responsible for the observed disease incidence (Williams et al. 2014). Then, we classify the 

simulated abundance of metacercariae in each grid cell into two classes (no-risk and risk) by setting a 

threshold based on the overall observed percentage of infection. More information about model testing 

using epidemiological data is provided in the Appendix, Section A.1.2. 

Monte Carlo sampling-based approach using expert opinion  

Given the limitations of the epidemiological datasets, we believe that simply fitting these may not be 

sufficient to guarantee reliability of our new model. Moreover, if HELF is to be used to assess future 

disease risk, its credibility should be assessed via more in-depth evaluation of the consistency with the 

real-world system, instead from just comparison against historical data (Beven 1993; Pianosi et al. 2016; 

Wagener et al. 2010). To this end, we collect information from the literature (e.g. see McCann et al. 

2010b; Relf et al. 2011; NADIS 2019) and use our perceptions to characterise the seasonality of the liver 

fluke life-cycle stages in the UK over years 2000-2010. This currently includes shifts in seasonality 

experienced over this time period, compared to what has been traditionally observed, driven by altered 

temperature and rainfall patterns, but could be adjusted to account for further changes and shifts, going 

forwards. Then, we formalise this knowledge into a set of rules: 

• Rule 1: Retain parameter sets that every year predict the first month of snail presence (i.e. with 

positive number of infected snails) to happen earlier than average, if temperature is above 

average over January-March. 

• Rule 2: Retain parameter sets that every year produce higher mean number of developed snail 

infections over summer (June-August), if the number of rainy days over May-July is above 

average. 

• Rule 3: Retain parameter sets that every year produce higher mean number of infective 

metacercariae over autumn (August-October), if rainfall is above average and the number of 

days above 20°C is below average over May-August. 

• Rule 4: Retain parameter sets that every year produce higher mean number of metacercariae 

over winter (January-February), if the total number of days above 10°C is above average over 

January-February. 

Finally, we randomly sample 8000 parameter sets using uniform distributions from ranges in Table 3.2, 

and reject all parameterisations producing model outputs that are inconsistent with these rules. 

Comparison with the Ollerenshaw Index 

To further evaluate HELF, we use the “behavioural” parameterisations, i.e. those retained from 

sequential application of the rules described above, and compare disease risk simulated using these with 
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the Ollerenshaw Index (Ollerenshaw and Rowlands 1959). This, calculated at the monthly scale based 

on rainfall and temperature characteristics as explained by Fox et al. (2011) (see Appendix Section 

A.1.4), is the current standard for providing liver fluke risk forecasts in the UK, where it is used by the 

National Animal Disease Information Service to warn farmers about potential high-risk years (NADIS 

2019).  

 Results  

3.5.1 Performance of the hydrological model 

Comparison of simulated and observed daily streamflow shows that TOPMODEL is capable of 

reproducing the temporal dynamics of observations well, including the peaks and recession periods of 

the hydrograph. The model achieves an R2 = 0.87 during calibration and 0.84 in the validation phase 

(Figure 3.6).  

 

Figure 3.6 Extract of the calibration and validation periods using daily streamflow data for the 
River Tawe Catchment (the total period is 2000-2006 for calibration and 2007-2010 for 
validation).  

3.5.2 Performance of the epidemiological model 

Fit to epidemiological data 

A delay is evident between the simulated catchment average number of metacercariae and the reported 

number of sheep diagnosed with fasciolosis in the Tawe Catchment (Figure 3.7). This is due to the time-

lag between pasture contamination, which HELF simulates, and infection diagnosed in the animal, 
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which the VIDA dataset reports. Except for the year 2000, for which the model predicts risk of infection 

that is not reflected in the VIDA numbers over 2001, HELF seems to adequately predict the observed 

temporal dynamics of infection. It simulates low pasture contamination for most of the period and 

captures the higher peaks over winters 2008-2009 and 2009-2010, driven by the preceding exceptionally 

wet summers and rainy autumns. The highest correlation between the two series (r = 0.62) is found at a 

lag of three months, which corresponds to the prepatent period of fasciolosis reported in the literature 

(Kaplan 2001). If, instead of using the whole dataset for calibration, we perform a 5-fold cross-validation 

(see Appendix Section A.1.2), mean correlation results are 0.52 in calibration and 0.41 in validation. 

 

Figure 3.7 (bottom) Monthly comparison of simulated catchment average number of 
metacercariae and observed number of infections (VIDA data) over 2000-2010 for the Tawe 
Catchment. (top) Years 2008 and 2009 have the highest mean summer rainfall within the 
simulation period, as well as a sufficiently wet autumn, resulting in high suitability of disease 
transmission. 

Division of the area for which we have observations within the Severn Catchment into sub-areas with 

at least 15 data points each, results into 9 sub-areas (Figure 3.8). When we compare the simulated 

percentage of grid cells at risk of infection with the observed percentage of infected herds, in each of 

the sub-areas, the two are in good agreement (r = 0.83), suggesting that the model can replicate the 

observed spatial pattern (here, performing a leave-one-out cross-validation -as explained in Appendix 

Section A.1.2- results in a mean absolute error of 0.1). Risk of infection seems overestimated in sub-

areas A2 and A5. However, these areas were significantly drier than the others in 2014 (Figure A.1 in 

Appendix Section A.1.3) and have a lower percentage of area suitable for snail hosts in terms of soil pH 

(Figure A.2 in Appendix Section A.1.3), which are aspects that HELF currently does not account for.  
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Figure 3.8 (left) Sub-areas within the Severn Catchment for which we have data points (i.e. cattle 
herds classified into infected and not infected). (right) Comparison of simulated percentage of grid 
cells at risk of infection and observed percentage of infected herds for each sub-area. 

Results of the expert-driven approach  

Sequential application of the expert-driven rules reduces the initial sample of 8000 parameter sets to 14 

behavioural parameterisations (Figure 3.9). The resulting simulated abundance of developed eggs on 

pasture seems to increase in March, as the weather warms up, before decreasing gradually over the 

following months, as hatching into miracidia begins (Figure 3.10). Snail activity, and therefore infection 

of snails by miracidia, also starts in spring and carries on until November, when frosts may send snails 

back into hibernation. Development of intra-molluscan infections peaks around August, leading to high 

numbers of infective metacercariae on pasture in Autumn.  

 

Figure 3.9 Evolution of the initial sample of parameterisations (each including the 22 
epidemiological model parameters sampled from within their initial ranges) along the four 
confinement steps. 
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Figure 3.10 Monthly behaviour of the parasite life-cycle stages simulated with HELF for 2001, as 
an example (median of the behavioural simulations). 

Finally, if we compare the abundance of metacercariae – this time obtained using the whole set of 

behavioural parameterisations - with the VIDA time series, first, we still see the expected delay between 

simulations and observations (Figure 3.11). Second, we note that, while uncertainty is still large in terms 

of magnitude of the yearly peak of infection, bounds are narrower in terms of timing and duration of the 

outbreaks, with the number of infective metacercariae on pasture beginning to increase in July, reaching 

a peak in September, before decreasing again in December, on average. 

 

Figure 3.11 Monthly comparison of simulated catchment average number of metacercariae, 
obtained using the behavioural parameter sets (90% bounds), and observed number of infections 
(VIDA data) over 2000-2010 for the Tawe Catchment. 
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Comparison with the Ollerenshaw Index 

Temporal comparison of the suitability for disease transmission simulated by HELF, constrained using 

the rules, with the Ollerenshaw Index, shows a time-lag of one month between the two series (Figures 

3.12a and A.3 in Appendix Section A.1.4). This is due to the two models representing different things: 

a risk index based on monthly temperature and rainfall in the case of Ollerenshaw, and the abundance 

of metacercariae, based on soil moisture and accounting for the delays in the parasite life cycle, in the 

case of HELF. Moreover, we see that, while matching the empirical index on interannual variation (at 

lag of one month, r = 0.73), the two models’ responses may differ at higher temporal resolution. For 

example, the Ollerenshaw Index reaches the same peak value in years 2007 and 2008, but risk of 

infection in 2007 seems lower than the following year according to HELF.  

 
Figure 3.12 Comparison between the Ollerenshaw Index and HELF for the Tawe Catchment: (a) 
in time, for an extract of the simulation period (median of the behavioural parameterisations in 
blue); and (b) in space, for August 2006, as an example. 
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Comparison of the two models in space (presented in Figure 3.12b for August 2006, as an example) 

shows the presence of high-risk areas in the River Tawe Catchment according to both models. However, 

when using the Ollerenshaw Index, no proportion of the catchment seems risk-free and risk of infection 

is highest in the North-East where rainfall levels are highest (NRFA 2019). In contrast, for the same 

month, assuming an area is at risk if its number of metacercariae is positive, HELF estimates that 17.3% 

of the catchment is risk-free, and that there are 134 patches at risk, spread throughout the catchment, 

with mean size of 1.6 km2. 

 Discussion  

In this study, we developed the first mechanistic model which explicitly simulates the risk of infection 

with F. hepatica in time and space, driven by temperature and soil moisture dynamics. The novelty of 

our work lies in the description of the bio-physical processes underlying transmission of fasciolosis, 

advancing the study of the disease beyond empirical associations of infection levels with temperature 

and rainfall. Despite current forecasting models calculating liver fluke risk based on these 

meteorological variables (Caminade et al. 2015; Fox et al. 2011; Ollerenshaw 1966; NADIS 2019), soil 

moisture has always been recognised as the critical driver of disease transmission for its role on 

development of the free-living stages and presence of the snail intermediate hosts (e.g. see Ollerenshaw 

and Rowlands 1959). Here we included it using an existing hydrologic model, which is based on 

spatially distributed topographic information, also known as an important fluke risk factor (McCann et 

al. 2010b). Moreover, collaboration across the physical and biological sciences was necessary to analyse 

the effect of both soil moisture and temperature on the multiple parasite life-cycle stages (Figure 3.3), 

and translate the mechanistic understanding of the system into an integrated model (Figure 3.4). 

By simulating the system at 25 m resolution with a daily time step, HELF provides new insight into the 

space-time patterns of disease risk, which will be valuable for decision support. Compared to the 

Ollerenshaw Index, which considers each month independently from every other, HELF is dynamic. 

Therefore, high rainfall may result into high risk of infection depending on the antecedent moisture 

conditions of the soil and their effect on the life-cycle progress (Figure 3.12a). Moreover, by providing 

greater temporal resolution, HELF allows capturing the impact of shorter-term weather events, such as 

extremely warm days or intense concentrated rainfall, which are believed to be particularly relevant for 

the biological system (Dormann et al. 2012; Lo Iacono et al. 2017; Urban et al. 2016). Combined with 

the fact that HELF can identify hotspots of transmission potential (Figure 3.12b), this means it may be 

possible for farmers to control the magnitude of exposure to liver fluke in the field, e.g. by altering 

management practices to avoid livestock grazing in high risk areas during peak metacercarial abundance. 

Finally, the stages included in HELF represent the part of the life cycle which is missing in the model 
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of liver fluke dynamics within the primary host (i.e. livestock) developed by Turner et al. (2016). 

Integration of the two models would allow a mechanistic description of the whole life cycle, thus 

providing the opportunity to assess, for example, the impact of vaccines on infection levels.  

In addition to aiding the management of fasciolosis, HELF could also benefit the study of other diseases. 

A similar model could be useful for rumen fluke, which is on the rise in British and Irish livestock, and 

has a similar life cycle to liver fluke, sharing the same intermediate host (Huson et al. 2017). On the 

other hand, a different hydrological model component could be employed instead of TOPMODEL, 

depending on the hydro-environmental drivers relevant for the disease considered (Rinaldo et al. 2018), 

while adopting the same integrated mechanistic modelling approach proposed here. For example, a 

model describing freshwater connectivity would be needed for diseases involving aquatic intermediate 

hosts, such as freshwater snails in the case of schistosomiasis (Perez-Saez et al., 2016). 

Several assumptions are embedded in HELF. Notably, to account for seasonality and distribution of the 

disease, we assumed the parasite life cycle is entirely driven by environmental conditions, simplifying 

the mechanisms related to the intra-molluscan stage and neglecting density-dependent processes. Even 

with regard to environmental factors, characteristics such as soil pH and texture have been described as 

potentially relevant for the suitability of snail habitats (Charlier et al. 2011; McCann et al. 2010b), but 

have not been included in our model, yet. Similarly, surplus runoff water may have a role in the infection 

transmission pathway, contributing to the dispersal of snails and metacercariae down water courses 

(Mas-Coma et al. 2009). However, HELF could be expanded to incorporate these, as well as other 

spatially distributed information, including from remote sensing data. 

To address common disease data limitations, we proposed an approach which includes the use of expert 

knowledge to constrain and evaluate our new model. Fitting observations is standard practice for 

calibration of hydrologic models, when there is a gauging station providing data to compare simulations 

against (Figure 3.6). Distributed soil moisture observations were not available for our case studies, but 

previous works have shown that TOPMODEL can provide good representation of the spatial pattern of 

saturated areas (e.g. see Güntner et al. 2004). More rarely, when data are available, calibration is 

performed to parameterise epidemiological models (e.g. Bertuzzo et al. 2011, 2016; Eisenberg et al. 

2002; Mari et al. 2012, 2015) (Lloyd-Smith et al., 2009). Our results show that HELF is flexible enough 

to replicate the observed time-space patterns of infection over two case study catchments (Figures 3.7 

and 3.8). We speculate that remaining mismatches, when we fit the two datasets, are not necessarily due 

to aspects not yet included in the model only, but may also be related to data issues. The absence of 

reported cases for 2001 from the Tawe Catchment is believed to have been influenced by the UK 

outbreak of foot-and-mouth disease in the same year. Similarly, discrepancies in some sub-areas of the 
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Severn Catchment may also be due to our underlying assumption of uniform distribution of farms per 

sub-area, which may not reflect the real-world system. Mis-reporting and low space-time resolution of 

data are common issues for many diseases and have often been recognised as a bottleneck to developing 

models providing meaningful predictions of disease risk (Eisenberg et al. 2002; Fox et al. 2012; Urban 

et al. 2016). Recent correlative liver fluke studies (e.g. see Byrne et al. 2016), have used geo-referenced 

data from abattoir liver condemnations, which, if routinely collated and made available, may benefit 

testing of models such as HELF across wider areas. However, even if larger, potentially more reliable 

epidemiological data were available, they would still reflect historical conditions, which may not 

necessarily be relevant for the future (Dormann et al. 2012; Wagener et al. 2010). Our calibration 

strategy includes the use of expert-driven rules to overcome these issues. The rules represent mechanistic 

knowledge of the system translated into prior information about the output variables. By using these, 

we can constrain aspects of the model for which no hard data are available in a process-based manner, 

without biasing the parameters towards external drivers not included in the model. The current 

formulation reflects changes in seasonality experienced over our simulation period. However, going 

forward, this can be adjusted to account for further changes, in order to reliably assess the impact on 

disease risk of conditions beyond the range of historical variability (Singh et al. 2011). Our results show 

there are parameterisations satisfying all four our rules (Figure 3.9), and that the behaviour of the 

simulated stages and the lags between them (Figure 3.10) agree with what is reported in the literature 

(Ollerenshaw and Rowlands 1959; Relf et al. 2011). This suggests that HELF reflects well (our current 

knowledge of) the real-world system. The fact that simulations are rejected from the initial sample 

indicate that our parameter confinement strategy is effective, which is crucial as the inability to identify 

behavioural parameterisations may result in significant predictive uncertainty when using the model 

under changing conditions (Beven 1993; Dormann et al. 2012). Moreover, using HELF in combination 

with Monte Carlo sampling allows explicit consideration of the uncertainty, by propagating it from the 

parameter ranges to the model simulations. This means we can provide decision-makers with a degree 

of confidence attributed to the model results. The reason why uncertainty in the simulated risk of 

infection still seems high in terms of magnitude (Figure 3.11) is that the rules are currently based on 

information about the seasonality of the disease only, driven by our aim of providing a model that is 

generally applicable across the UK. However, if reliable local data were available, the rules could be 

modified or increased in number to make the model more accurate locally (e.g. see Eisenberg et al. 2002; 

Liang et al. 2005). Instead, the fact that uncertainty bounds are narrow in terms of timing and duration 

of the disease outbreaks is particularly useful to inform farmers’ decisions about e.g. when to allow 

grazing of animals or when to treat them. 
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 Conclusions  

We developed and tested a new mechanistic hydro-epidemiological model to simulate the risk of liver 

fluke infection linked to key weather-water-environmental processes (HELF). The fact that, unlike 

previous models, HELF explicitly describes processes, rather than relying on correlation, makes it better 

suited for capturing the impact of ‘new’ conditions on disease risk. We showed that the model is 

sufficiently flexible to fit observations for two UK case studies, but also introduced an expert-driven 

calibration strategy to make the model more robust to data with limited reliability and in the presence 

of climate change. Finally, comparison with a widely used empirical model of liver fluke risk showed 

that, while matching the existing index on interannual variation, HELF provides better insight into the 

time-space patterns of disease, which will be valuable for decision support. Driving the model with 

climate and management scenarios will enable assessment of future risk of infection and evaluation of 

control options to reduce and/or mitigate disease burden. This is urgent, given the widespread rapid 

development of drug resistance and threat of altered patterns of transmission due to climate-

environmental change. Through the example of fasciolosis, we demonstrated (i) that sufficient 

mechanistic understanding of the bio-physical system may be available to develop and test a process-

based model for an environment-driven disease, without having to rely only on limited and potentially 

disinformative data, and (ii) how accounting for the critical hydro-environmental controls underlying 

transmission can be valuable to better understand seasonality and spread of emerging or re-emerging 

threatening diseases. 
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Chapter 4. Opportunities for environmental 
management to control liver fluke infection risk 

 Introduction 

Infectious diseases are a significant cause of morbidity and mortality worldwide (Dye 2014). The 

number of human infectious disease outbreaks has been increasing globally, especially those of zoonotic 

origin, and much of this increase has been linked to climate change (Jones et al. 2008; Smith et al. 2014). 

For example, 63% of pathogens have been estimated to be climate-sensitive in Europe (McIntyre et al. 

2017), and costs associated with climate-sensitive health impacts (in humans and animals) have been 

estimated to be as high as 9% of Gross Domestic Product in certain countries in Africa and South Asia 

(Bierbaum et al. 2010). 

The role the environment plays on the transmission of infectious diseases varies depending on their 

pathway. On one hand, transmission is mainly governed by direct host-to-host contact for pathogens 

that cannot survive long in the landscape (e.g. influenza). On the other hand, environmental conditions 

become important the longer pathogens are able to survive outside of their hosts (e.g. schistosomiasis 

or fasciolosis) (Eisenberg et al. 2007). Crucially, while some disease agents are mostly driven by 

meteorological factors, such as temperature and rainfall, transmission routes through vectors, food, soil 

and water are often also associated with other environmental drivers. For example, weather/climate is 

only one element of a complex system of controls for many infections transmitted through intermediate 

hosts or vectors that live and develop in the environment (Craig et al. 1999; McIntyre et al. 2017). In 

such cases, epidemiological processes are controlled by a wide range of interacting drivers, including 

landscape characteristics, which may be distributed unevenly, change rapidly over time, occur at 

different space-time scales (Cable et al. 2017; Parham et al. 2015), and directly and/or indirectly affect 

multiple disease components (Eisenberg et al. 2007). 

Control of many environment-driven infections is increasingly challenged by climate change and the 

emergence of drug resistance. For many of these infections, no commercial vaccines are yet available 

for prevention, and control relies entirely on drug administration. However, as long as environmental 

conditions remain suitable for transmission, reinfection may occur rapidly after treatment (Garchitorena 

et al. 2017). Moreover, the widespread development of drug resistance – from overreliance on a single 
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medicine – is threatening the efficacy of control strategies for an increasing range of parasitic and other 

infectious diseases, globally (Garchitorena et al. 2017; Webster et al. 2014; WHO 2019). For example, 

resistance has been documented to all classes of drugs used against Vibrio cholerae, and is starting to 

complicate the fight against malaria, jeopardising important recent gains in disease control (WHO 2019). 

Similarly, the prospect of emerging drug resistance is worrisome for schistosomiasis and fasciolosis, as 

treatment of these diseases almost entirely relies on a single drug (Beesley et al. 2018; WHO 2016). 

Finally, for many infections, this is aggravated by the frequent misuse and overuse of drugs linked to 

altered space-time epidemiological patterns caused, at least partly, by climate change and direct human 

activities such as land use change (Mas-Coma et al. 2009; Siraj et al. 2014; Smith et al. 2014; Sokolow 

et al. 2017). In fact, the direct response to an increased disease challenge is often an increased use of 

treatment, which is self-defeating and accelerates development of drug resistance (Morgan et al. 2013).  

As climate change accelerates and disease control becomes increasingly challenging, devising of more 

comprehensive strategies – rather than exclusively relying on treatment – is becoming a key concern. 

The role environmental conditions play in driving disease transmission may offer an opportunity to use 

environmental interventions as complementary -or even as alternative- strategies to drug administration 

to reduce disease burdens and improve health outcomes (Bierbaum et al. 2010; Garchitorena et al. 2017). 

To be able to explore the potential of environmental management for risk reduction, better mechanistic 

understanding of the link between disease transmission processes and underlying (direct and indirect) 

drivers is needed (Beltrame et al. 2018; Eisenberg et al. 2002; Lloyd-Smith et al. 2009; Rinaldo et al. 

2018; Wu et al. 2016). Crucially, this includes on-the-ground environmental characteristics (beyond 

climatic variables alone), which are those decision-makers might be able to manipulate locally to 

contribute to sustainable and effective control (Morgan et al. 2013; Prüss-Ustün et al. 2016). Accounting 

for the heterogeneity of environmental drivers and studying disease risk sensitivity to them is critical 

for understanding where environmental management may be an option and where it may be most 

valuable in complementing drug treatment in the future (Liang et al. 2007; Mari et al. 2017). 

However, currently considered drivers of disease risk are often only climatic, and environmental 

strategies to complement medical approaches still under-recognised. The importance of on-the-ground 

environmental processes and their spatial heterogeneity – in mediating disease risk responses to climatic 

factors – is increasingly acknowledged (Lo Iacono et al. 2017; Rinaldo et al. 2018). For example, 

accounting for hydrologic transport across human communities has advanced the understanding of the 

complex dynamics of cholera (Bertuzzo et al. 2008, 2012). Similarly, consideration of hydrologic 

characteristics, including human modifications, has proven critical for better insights into the 

transmission of other water-related diseases, e.g. ephemeral vs. permanent hydrological regime, as well 

as damming and irrigation practices, for schistosomiasis (Liang et al. 2007; Perez-Saez et al. 2016; 



 
Chapter 4. Opportunities for environmental management to control liver fluke infection risk 
 
 
 

45 
 

Steinmann et al. 2006), presence and persistence of water pools for malaria (Bomblies et al. 2008), and 

soil moisture and irrigation of crops for fasciolosis (Beltrame et al. 2018; Nzalawahe et al. 2014). 

However, the majority of current modelling studies only assume climatic drivers of disease risk, usually 

focussing on temperature and rainfall characteristics alone (Lo Iacono et al. 2017). Consequently, 

despite showing promising results in the fight against diseases such as malaria and schistosomiasis, 

strategies targeting the environmental stage of the pathogen to complement treatment are still poorly 

developed (Garchitorena et al. 2017). 

Therefore, in this work, focusing on fasciolosis in the UK, we explore opportunities for environmental 

management as a control strategy, while considering the diversity of disease drivers across this 

heterogeneous domain. First, to better understand the role of landscape heterogeneity in shaping disease 

patterns, we simulate liver fluke risk using two different representations, one only accounting for 

climatic factors (the Ollerenshaw Index) and one also considering the variability of on-the-ground 

environmental drivers (the HELF model). Second, we assess the sensitivity of liver fluke infection risk 

to environmental variability by performing an ANalysis Of VAriance (ANOVA). Finally, we investigate 

the potential of risk avoidance management strategies by analysing where they can provide benefits in 

terms of risk reduction and how they compare with current treatment-based control. 

 Materials and methods 

The data and models we use to simulate the risk of liver fluke infection across the UK are described 

below, together with information on how we analyse disease risk sensitivity to its underlying drivers 

and on how we implement treatment and environmental interventions in our mechanistic hydro-

epidemiological model. 

4.2.1 Data 

The dataset we use includes meteorological, hydrological and Digital Elevation Model (DEM) data. Our 

domain consists of 935 catchments across Great Britain for which both meteorological and hydrological 

data are available for the recent period 2006-2015. Gridded (1km resolution) daily time series of 

observed rainfall and min/max temperature are obtained from CEH-CHESS (Robinson et al. 2017). For 

each catchment, a rainfall and a min/max temperature time series are derived from this gridded dataset 

by averaging grid cells that overlap with the catchment area. Streamflow data for the same 10-year 

period are obtained for all catchments from the National River Flow Archive (NRFA 2019). Finally, 

gridded DEM data for Great Britain are obtained from NextMap, with spatial resolution of 50m 

(Intermap Technologies 2009), and used as a basis for digital terrain analysis to derive a map of 
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topography for each catchment as in Coxon et al. (2019) (see DEM data and catchment masks for Great 

Britain in Figure 4.1, together with a land cover map (Rowland et al. 2017)). 

 

Figure 4.1 Land Cover Map (LCM), Digital Elevation Model (DEM) data, and catchment masks 
for Great Britain. 

4.2.2 Disease risk models 

We simulate disease risk using both a homogeneous and a heterogeneous representation of the 

landscape. We employ the widely used empirical Ollerenshaw Index model for the former (Fox et al. 

2011; Ollerenshaw and Rowlands 1959) and the mechanistic Hydro-Epidemiological model for Liver 

Fluke (HELF) – introduced in the previous chapter – for the latter (Beltrame et al. 2018). Instead of 

estimating risk of infection based on weather variables only, HELF explicitly describes how the impact 

of rainfall on the parasite’s life cycle is mediated by on-the-ground environmental characteristics 

through the mechanism of soil moisture, known to directly drive disease transmission, mainly due to its 

control on the snail host habitat (van Dijk et al. 2010; Ollerenshaw and Rowlands 1959; Pantelouris 

1963). The model estimates the propensity of an area to saturate through calculation of a Topographic 

Index (𝑇𝐼), and discretises the distribution of 𝑇𝐼 values of a catchment into classes, from the highest, 

most prone to saturation, to the lowest, assumed least likely to saturate (see Chapter 3, Section 3.2.1). 

Output of HELF is the abundance of infective metacercariae on pasture, i.e. the stage of the liver fluke 

life cycle that, when ingested, infects grazing animals. This abundance is therefore an indicator of 

environmental suitability for disease transmission that we can compare to the Ollerenshaw Index.  
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Setting up HELF to run over the UK involves introducing a loss term in the hydrological component of 

the model to better represent the hydrology in case of groundwater-dominated catchments. Specifically, 

to account for groundwater that may not reach the river in catchments with low runoff ratio (i.e. with 

low ratio of runoff to rainfall), we introduce an extra parameter in the model and assume that, at each 

time step, storage in the saturated zone (i.e. the groundwater) not only is refilled by vertical flow from 

the root zone and drained by subsurface flow, but also decreases linearly with storage through this extra 

parameter (e.g. see Wagener et al. 2004).  

With regard to model calibration, on one hand, we estimate parameters for the hydrological component 

of HELF by using signatures derived from streamflow observations, namely, runoff ratio and central 

slope of the flow duration curve, calculated as in Sawicz et al. (2011) and Yadav et al. (2007) (see 

Appendix Section A.2.1). On the other hand, no additional calibration of the epidemiological component 

of the model is performed compared to Chapter 3, since nation-wide continuous disease prevalence data 

is not available. Instead, we use one (mean) parameter set from the ranges obtained after application of 

the expert-driven rules in Chapter 3 (Section 3.4.2), assuming liver fluke life-history parameters to be 

relatively constant across the UK. Similar assumptions have been made in previous studies focussed on 

regions of similar ecology and single snail host species (e.g. see Liang et al. 2002), which are conditions 

consistent with our case. 

4.2.3 ANOVA   

ANalysis Of VAriance (ANOVA) is a mathematical technique for partitioning the observed variance in 

a variable of interest (the response variable) into contributions from individual drivers (the factors) and 

their interactions. It has been widely used for different applications including for uncertainty estimation 

in climate change impact studies (e.g. see Vetter et al. 2015), and for dominant control analysis, i.e. to 

assess the relative contribution of drivers of different processes (e.g. see Shen et al. 2013).  

The response variable we focus on in our analysis is the catchment-average disease risk (for HELF this 

is the mean abundance of infective metacercariae, weighted based on the frequency of 𝑇𝐼 classes). 

Because of the known seasonality of fasciolosis in Europe, following previous liver fluke studies across 

the UK (e.g. Fox et al. 2011; Ollerenshaw 1966), this is averaged to obtain seasonal values. Then, the 

mean over 9 years of the simulation period is considered, excluding 2006 for warm-up. The factors we 

use for variance decomposition include climatic characteristics (i.e. temperature, potential 

evapotranspiration, rainfall and number of rainy days), but also topography (specifically, the mean of 

𝑇𝐼 values over each catchment), for a total of 5 factors (i.e. we perform a 5-way ANOVA test, assessed 

at the 95% confidence level). In order to perform the test, we group each of our factors into two levels 

(low and high), each with a similar number of catchments and level of disease risk variability. This set 
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up (i.e. using disease risk variability of the 9-year means and two levels per factor) allows us to have 

response variable observations for all combinations of factor levels (i.e. a “fully-crossed” experiment), 

making it possible to estimate the contribution of two-way interactions.  

In ANOVA, the total variation in the response variable, to be attributed to the different factors, is 

expressed though the total sum-of-squares. This is split into main effects, corresponding to individual 

drivers, and interaction terms, related to non-additive or non-linear effects (Vetter et al. 2015). 

Therefore, the contribution of each factor to disease risk variability can be calculated as the proportion 

of its (partial) sum-of-squares and the total sum-of-squares (multiplied by 100 to obtain a percent 

contribution). The higher the contribution, the more the factor plays a key role in driving disease risk. 

Given our ANOVA experiment is unbalanced, i.e. we have unequal number of observations of the 

combinations of factor levels, the sum-of-squares will depend on the order in which the sources of 

variation are considered. Therefore, to make sure our resulting raking of drivers is independent from 

such order, we perform ANOVA for each possible order of drivers and then calculate and analyse 

average contributions of factors.  

We carry out the analysis at the regional scale to better capture the spatial distribution of dominant 

disease risk drivers. Specifically, we divide our domain into nine regions, as much as possible 

resembling the standard areas for which the National Animal Disease Information System (NADIS) 

currently provides forecasts of liver fluke risk based on the Ollerenshaw Index (NADIS 2019). These, 

in turn, are based on the districts used by the MetOffice when generating climatologies for the UK 

(MetOffice 2017). The regions are: South East of England (SE), East Anglia (EAng), South West of 

England and West Wales (SW), the rest of Wales and the Midlands (Mid), North West and North East 

of England (NW and NE), and, finally, West, East and North of Scotland (WScot, EScot, NScot). 

4.2.4 Disease control strategies 

There are not many published data on how farmers in the UK control infection with fasciolosis. Though, 

a recent survey throughout Great Britain and Ireland shows that almost 70% of farmers routinely treat 

their animals against liver fluke, Triclabendazole being the most common drug, which can reach above 

90% efficacy, preventing egg shedding on pasture for up to 12 weeks (Morgan et al. 2012). However, 

climate-driven changes in disease patterns and the rapid emergence of drug resistance indicate that 

current treatment-based control is costly and might become unsustainable in the long run, while new 

approaches, such as risk avoidance management strategies, have often been advocated (e.g. temporarily 

limiting access of livestock to potential snail habitats at high-risk times) (Beesley et al. 2018; 

Fairweather 2011; Gordon et al. 2012; Mitchell 2002; Morgan et al. 2013; Skuce and Zadoks 2013; 

SRUC 2016). Therefore, using HELF, we implement disease control strategies as follows:  
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1. We investigate the effect of current drug-based control practice on risk of infection. Based on 

information in the literature and available guidelines (Fairweather and Boray 1999; Morgan et 

al. 2012), we assume farmers treat animals twice per year, once in January and a second time in 

April, with a product that has 90% efficacy and suppresses egg shedding onto pasture for 12 

weeks (i.e. using Triclabendazole). This is meant to reflect the top reduction in disease risk that 

can currently be achieved in the field using treatment (also see Appendix Section A.2.2).   

2. We simulate the effect of fencing off high-risk areas to prevent animals from grazing during 

high-risk periods, and investigate where in the UK this may provide benefits. Traditionally, the 

period at highest risk of infection in the UK is summer, when temperatures are generally more 

favourable for the parasite life cycle to progress. The areas at highest risk are those most prone 

to saturation, i.e. those particularly flat, at the bottom of valleys. Therefore, we implement this 

intervention by sequentially removing summer infective metacercariae from 𝑇𝐼 classes (i.e. 

setting them to zero), starting from that with the highest value, which will saturate first, until 

the whole catchment is virtually fenced off. At each step, we evaluate the benefit of using this 

strategy by calculating the achieved reduction in disease risk compared to the case of no 

intervention. We do this for each catchment and then evaluate results at the regional level using 

the 9 administrative areas defined above.  

3. Finally, for each catchment, by using the summer risk level achieved by treating animals in 

winter/spring as a baseline, we estimate the percentage of area we would have to fence off if we 

wanted to obtain the same level or lower through environmental management. 

 Results  

4.3.1 Simulated UK-wide disease risk  

Despite the differences between the Ollerenshaw Index and HELF, with only the latter mechanistically 

accounting for soil moisture dynamics driving the parasite life cycle (see Chapter 3), some similarities 

can be found when comparing disease risk simulated using the two models across the UK (Figure 4.2). 

First, summer risk values are significantly higher than winter values with both representations, across 

all regions. Second, in winter, the only regions where weather conditions may allow for some 

development of the life cycle are those in the south of the country, where temperatures are milder. Third, 

in summer, if we look at median risk levels, risk is highest on the west coast of England and Wales 

(especially SW and NW, where rainfall is abundant even during the warmer months), lower in the South 

East of the country, which in summer may become too warm and dry for parasite survival and 

development, and even lower in Scotland, where, even during milder summer months, temperatures may 

still be unfavourable (also see maps in Figure 4.3).  
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Figure 4.2 Difference in disease risk simulated with the Ollerenshaw Index (top) and HELF 
(bottom) for winter and summer, across 9 UK regions (in the map, ungauged catchments -i.e. with 
no hydrological data over the simulation period- are masked in grey). Boxplots represent 
variability in disease risk between catchments within regions, on average over 2007-2015.  

These patterns are in agreement with current understanding and data. For example, one of the largest 

UK studies on liver fluke prevalence found the highest infection levels in wetter western areas of the 

country, which historically have been providing ideal climatic conditions for disease transmission 

(McCann et al. 2010a). Moreover, these results suggest that climatic factors are important controls on 

risk of infection with both representations.  

However, the two representations of disease risk differ notably in that summer values simulated using 

HELF show significantly more variability compared to what we obtain using the Ollerenshaw Index, 

especially in SW and NW. In fact, even if, in summer, risk values are generally high, we see there still 

can be areas associated with low abundance of infective metacercariae. This difference between the two 

representations can be explained as, on one hand, with the Ollerenshaw Index, if temperatures are 

favourable, two areas with similar rainfall amounts will be associated with similar risk levels. On the 

other hand, this may not be true using HELF, depending on landscape heterogeneities (namely, 

topography and antecedent moisture conditions of the soil), as well as dynamic weather effects on 

development within the parasite life cycle. This also is in agreement with existing datasets, which show 

significant differences in disease prevalence between neighbouring areas within homogeneous climate 

regions, already suggesting that other factors may affect the prevalence of liver fluke in addition to 

climate (McCann et al. 2010a).  
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Figure 4.3 Example of summer risk maps obtained using the Ollerenshaw Index (left) and HELF 
(right), for 935 gauged UK catchments (ungauged catchments are masked in grey). 

4.3.2 Disease risk sensitivity to environmental drivers 

Performing ANOVA at the regional level enables us to investigate what drives disease risk across areas 

and better understand reasons for the greater variability we see in summer when using HELF. Figure 

4.4, which -for each region- presents the average percent contribution of the top three drivers to summer 

disease risk variability, calculated with the Ollerenshaw Index and HELF, shows different sensitivities 

to environmental drivers between the two models. In particular, disease risk simulated with the 

Ollerenshaw Index is mainly limited by rainfall characteristics (rainfall, R, and rainy days, RD, in blue) 

in the drier and warmer south-east of the UK, and by temperature-related variables (temperature, T, and 

potential evapotranspiration, P, in red) over the wetter and colder North West of England and Scotland. 

Notable is the low share of the interaction terms (which in the figure are combined into one single term, 

INT, in yellow) to the total variance, when simulating disease risk using this model, with INT figuring 

among the top three contributing drivers only for NW and Scotland.  

On the other hand, variance decomposition identifies interactions between factors to play a significant 

role across all regions when using HELF (with INT dominant driver in 5 out of 9 areas), suggesting that, 

without considering interactions, the importance of individual drivers may be overestimated. While in 

flat areas in the south east of the country (SE and EAng), it is the interaction between climatic drivers 

that explains most of disease risk variability, in the south west of the UK and north of England (e.g. SW 

and NW) disease risk shows higher sensitivity to interactions between climatic characteristics and 

topography (see Table A.2 in Appendix Section A.2.3 for sum-of-squares and p-values of individual 
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factors including two-way interaction terms). Notably, in the three Scottish regions, while temperature 

is still the dominant driver of risk of infection as with the Ollerenshaw Index model, topography (TOPO, 

in green) individually emerges as important, potentially because it creates differences in disease risk 

even in areas close to each other, highlighting opportunities for environmental management to control 

disease transmission.  

 

Figure 4.4 Average percent contribution of the top three environmental drivers to summer disease 
risk variability simulated using the Ollerenshaw Index (left) and HELF (right), per region. 
Rainfall-related characteristics (RD=number of rainy days and R=rainfall) are coloured in blue; 
temperature-related variables (P=potential evapotranspiration and T=temperature) are coloured 
in red; topography (TOPO) is in green; and the interaction term (INT), which combines here all 
two-way interactions between factors, is in yellow. 

4.3.3 Effectiveness of disease control strategies 

Effect of current treatment-based control 

Figure 4.5 shows the effect of treating animals with antiparasitic drugs on risk of infection modelled 

using HELF, in space and time. On average, our results show that drug treatment over winter/spring 

achieves a reduction in disease risk over summer months of 65%. For most catchments, risk is reduced 

by more than 70%. However, due to differences in climatic-environmental conditions and their 

seasonality, the reduction in egg output onto pasture, obtained with treatment, can have different effects 

on the abundance of infective metacercariae across our domain. Specifically, the histogram of summer 

risk reductions shows that treatment-driven reductions in risk range between 45% and 84.9% across 

catchments. On the other hand, if we look at the impact of treatment on disease risk in time (on average 

across catchments and years), we see that the rise in metacercarial abundance on pasture is delayed by 

approximately one month, compared to the option of not treating. Moreover, in addition to being 

significantly reduced, the peak of disease risk is also shifted to later in the year (approximately from 
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August-September to October) as a result of drug administration. These effects of our modelled 

treatment-based strategy seem plausible, in fact reinforcement of the treatment in January with the spring 

dose is expected to reduce pasture contamination with eggs when intermediate snail hosts are most 

primed for summer infections and production of metacercariae in late summer / autumn.  

 

Figure 4.5 Effect of treating livestock over winter/spring with antiparasitic drugs on: (left) 
summer disease risk across all 935 catchments; (right) the monthly behaviour of metacercarial 
abundance on pasture, on average across catchments and years.  

Potential benefits of temporary fencing of high-risk areas 

Simulating disease risk using HELF also allows us to understand how different sensitivities to 

environmental drivers may translate into different effectiveness of environmental management across 

areas (Figure 4.6). For all 9 regions considered, represented one per box in Figure 4.6, percentages of 

catchment area on the x–axes are ordered by 𝑇𝐼 class, from the most to the least prone to saturation. 

From this figure we see, on one hand, that the impact of fencing off the highest 𝑇𝐼 classes, which 

represent on average 5-10% of the catchment area, is similar across regions. These are presumably areas 

of a catchment that are saturated for much of the year (e.g. see Güntner et al. 1999, 2004). On the other 

hand, the risk reductions achieved by fencing off larger portions of catchment area differ between 

regions. For example, to reduce risk of infection by 65%, as we currently obtain with treatment on 

average (as found above), we can see that grazing should be avoided on large fractions of catchment 

area in East Anglia (approximately 56%), but on smaller percentages in Wales/Midlands (on average 

about 38% for Mid), and even smaller percentages in Scotland (e.g. approximately 18% for NScot). 

Moreover, in Figure 4.6, the 9 years of our simulation period are colour-coded from that with the driest 

summer (in red) to that with the wettest summer (in blue), for each region. In terms of risk reduction 

achieved with environmental management, this seems to make a difference in some areas (such as SE 

and NScot) more than others, but not consistently between drier and wetter years. For example, 
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percentages of land to be fenced off seem to generally increase in Mid, NE, NScot and EScot, when 

moving from the year with the driest summer to that with the wettest one. However, this is not the case 

e.g. for SE and does not seem to hold for every year, suggesting that other factors also play a role, such 

as rainfall and temperature distributions over preceding months, rather than just during the season under 

consideration. In summary, these results show how opportunities for environmental management differ 

with place and weather in a particular year or season. Specifically, they indicate that fencing off high-

risk areas may provide benefits especially in regions where topography plays a larger role on disease 

transmission, which is where snail habitats will be more localised, particularly in relatively dry years. 

This is in line with recommendations of recent guidelines for liver fluke control (e.g. see SRUC 2016). 

 

Figure 4.6 Percentage reduction achieved in summer risk of infection by fencing off portions of 
catchment area, starting from the most prone to saturation (mean across catchments within each 
region, one line for each of the 9 years in the simulation period, color-coded from that with the 
driest summer in red to that with the wettest summer in blue).   
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Comparison of environmental management vs. current drug-based practice 

Figure 4.7 shows, for each of our 9 regions, the percentage of catchment area we would have to fence 

off – on average across catchments within the region – if we wanted to reduce summer risk by at least 

the same percentage achieved over the same region using treatment, comparing a relatively dry and a 

relatively wet year within our simulation period (i.e. 2013 vs. 2014). The map for 2013 shows that the 

highest percentages that require fencing off are found in the south east (specifically, East Anglia, where 

42.1% of land has to be avoided, on average), despite areas in this region being the driest and warmest 

of the country. In comparison, portions of land to be avoided in the wetter south west of England and 

west Wales (SW) are more than 15% lower, confirming that temporary fencing may be particularly 

convenient where topographic variations are larger, rather than where the landscape is mostly flat. 

Overall, the lowest percentages are found in Scotland (23.8%), where topography varies the most (see 

Figure 4.1) and were risk of infection is generally lower due to less favourable temperatures.  

 

Figure 4.7 Percentage of catchment area that would need fencing off to reduce summer risk of 
infection by at least the same percentage achieved using treatment (on average across catchments 
within each region). Comparison of 2013 and 2014, which represent a relatively dry and a 
relatively wet year within our simulation period, respectively. 

Comparison of wet 2014 with dry 2013 shows similar patterns across administrative regions but different 

values. In North and East Scotland, where summer temperatures decrease moving from the former to 

the latter year in this specific example, percentages of land to fence off are lower in 2014. In fact, a 

colder summer will result in less favourable conditions for development of the parasite life cycle in these 

areas where disease risk is significantly limited by temperature (as seen in section 4.3.2). In all other 

regions, the portions of land to be fenced off – to be at least as effective as treatment in each area– are 
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higher in 2014 (by 5.7% on average). This means that, as expected, even on the west coast of the country 

including in the North, where snail habitats will be more localised than on flat areas in the east, 

temporary fencing becomes less effective in case of particularly wet years. 

 Discussion 

This study, for the first time, considers environmental drivers of fasciolosis, beyond just climatic 

characteristics, across a large heterogeneous domain and in a mechanistic (rather than empirical) 

manner. Specifically, instead of only focusing on temperature and rainfall-related controls, as in 

previous large-scale liver fluke studies (e.g. Caminade et al. 2015; Fox et al. 2011; Ollerenshaw 1966), 

we also account for soil moisture patterns, which vary with heterogeneous topography, and directly 

control habitat suitability for liver fluke intermediate host and free-living stages (van Dijk et al. 2010; 

Ollerenshaw and Rowlands 1959; Pantelouris 1963). This represents the first step for then investigating 

opportunities for environmental management as a disease control strategy across the UK. In fact, on-

the-ground environmental characteristics may be modifiable or “reasonably amenable to management 

or change given current knowledge and resources” towards reducing risk of infection (Prüss-Ustün et 

al. 2016). 

Our analysis of disease risk sensitivity to environmental factors shows that, while climatic drivers 

remain key across the country, topography emerges as important in specific areas. While environmental 

effects on epidemiological processes are increasingly acknowledged, the role of specific factors in 

modulating disease transmission is still rarely characterized quantitatively (Lo Iacono et al. 2017; Liang 

et al. 2007; Morgan et al. 2013). Our simulations of liver fluke risk over UK catchments suggest that 

climatic characteristics are important with both homogeneous and heterogeneous representations of the 

landscape, as well as with empirical and mechanistic modelling approaches (Figure 4.3). However, if 

we tease apart the effect of factors regionally, we find that accounting for environmental heterogeneity, 

using HELF, shows a larger role of interactions between drivers across regions and a significant 

contribution of topography in higher relief areas of the country (Figure 4.4 and Figure 4.1 for the UK 

DEM map). First, the fact that drivers other than climate may come into play when moving towards 

more regional levels, confirms information in previous studies on fasciolosis, as well as findings of 

works on other environment-driven diseases. Crucially, Fox et al. (2011) warn about using the 

Ollerenshaw Index at regional levels as, at these scales, many non-climatic factors become relevant in 

driving liver fluke survival and transmission. Similarly, Liang et al. (2007) find that, within a 

climatologically homogeneous region in China, land use and characteristics of the irrigation system are 

the main drivers of human infection with schistosomiasis. Second, the fact that landscape heterogeneity 

may alter risk of liver fluke infection, and its sensitivity to climate variability, suggests that future UK 
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disease control strategies will need to explicitly account for it, and that current simulations of disease 

risk based on models with no representation of landscape heterogeneities (such as those used by NADIS) 

may have limited utility over regions with more pronounced topographic variability going forwards. 

The role of topography in controlling soil moisture patterns, and therefore snail host habitats and 

subsequent liver fluke transmission, in north-western regions of the UK, indicates opportunities for 

environmental management to reduce risk of infection, with important implications for disease control. 

More frequent reporting of treatment failure for an ever-increasing range of infections caused by 

parasites like liver fluke, but also viruses and bacteria, globally, demonstrates the urgent need to use 

available drugs in a more targeted way to help slow down the development of resistance and preserve 

their efficacy for when they are most needed (Garchitorena et al. 2017; Kamaludeen et al. 2019; Morgan 

et al. 2012, 2013; Webster et al. 2014; WHO 2019). With regard to fasciolosis in the UK, temporary 

fencing off of high-risk areas to avoid grazing over high-risk periods, which we implement here, has 

been often called for as an aid to current treatment-based control (e.g. see Mitchell 2002; Morgan et al. 

2012, 2013). The fact that fencing off high-risk areas results to provide greatest benefits in terms of risk 

reduction in the north-west of the country (Figure 4.6) is of interest as these areas: (i) are characterised 

by extensive grazing (see land cover map in Figure 4.1); (ii) are those where treatment is most common 

(Morgan et al. 2012) and Triclabendazole resistance is prevalent (Kamaludeen et al. 2019); and (iii) are 

either those associated with the highest liver fluke prevalence historically (e.g. see McCann et al. 2010a 

and Figures 4.2 and 4.3), or where liver fluke is expanding rapidly with warmer climates (as rainfall is 

not the dominant limiting factor) (Kenyon et al. 2009). Therefore, they are areas where treatment is 

particularly expected to become unsustainable in the future. 

The percentages of land to fence off, to achieve at least the same risk reduction as that obtained with 

treatment, are relatively high, ranging from approximately 20% of catchment area up to almost 50% on 

the flattest regions, on average (Figure 4.7). This may make environmental management seem difficult 

to implement in practice. However, first, these values depend on the treatment option implemented, and 

our current treatment assumption aims to reflect the maximum reduction in risk obtainable with available 

drugs (Figure 4.5). In reality, farmers may treat at different times, with different (and often a 

combination of) products, that have different efficacy and impact on infections and egg shedding based 

on time of year, fluke age, drug resistance, etcetera (Morgan et al. 2012). Therefore, different treatment 

strategies should be tested using our same approach and compared with environmental management 

according to specific interests (e.g. see Meek and Morris 1981). Second, the percentages we calculate 

here represent the proportion of land to fence off if we wanted to match or outperform treatment by 

using environmental management only, while -in reality- temporary fencing would most likely be 

implemented in combination with (targeted) treatment rather than individually, still contributing to 
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reduce reliance on drugs and delaying development of resistance. Third, our study investigates the 

importance of landscape heterogeneity on risk of infection through the analysis of topographic 

variability to start with, based on current knowledge that topography is the strongest landscape control 

on habitat distribution for both liver fluke intermediate snail host and free-living stages (van Dijk et al. 

2010; Ollerenshaw and Rowlands 1959; Pantelouris 1963). However, there are other spatially 

heterogeneous on-the-ground environmental properties, that may have an influence on liver fluke risk 

in the UK and may be possible to manipulate to reduce disease transmission, which we are currently 

neglecting, e.g. soil type and pH or land cover/pasture type (Bennema et al. 2011; Charlier et al. 2011; 

McCann et al. 2010b). This means the catchment fractions to fence off that we obtain represent – once 

again – upper limits, and suggests that they could be smaller if soil pH and other environmental variables 

further limited habitat suitability. 

Finally, environmental management could also take other forms than fencing off high-risk areas. For 

example, permanent eradication of snail habitats through drainage of pastures, which is currently 

considered prohibitively expensive, may become a competitive option for risk reduction in the long-run, 

faced by changing climatic conditions, even if in the UK is increasingly discouraged for environmental 

reasons (Fairweather 2011; Howell et al. 2015; Mitchell 2002; SAC 2003; SRUC 2016). Most 

importantly, several factors underlie farmers’ decisions about which parasite control programmes to put 

into practice, as maximal and sustainable disease control may be mutually exclusive aims, and multiple 

other trade-offs may be involved, e.g. the need to reduce liver fluke transmission while preserving 

wetlands (see Pritchard et al. 2005). Ultimately, the optimal strategy will be farm-specific and depend 

on agricultural policy and on the long-term costs and benefits of less intensive disease control strategies 

(Morgan et al. 2013; van der Voort et al. 2013). 

 Conclusions  

We investigated the role of heterogeneous environmental drivers on risk of infection with liver fluke 

across 935 UK catchments using a new mechanistic hydro-epidemiological model. Crucially, in contrast 

to existing studies, our analysis included not only climatic factors but also on-the-ground environmental 

characteristics, which may be possible to modify locally to reduce and/or mitigate disease burdens. We 

showed that, while rainfall and temperature-related characteristics are key determinants of risk across 

the country, topographic variability plays a role through interactions with these and emerges as 

important in higher relief areas of the UK. This (i) suggests that future simulation of disease risk will 

need to explicitly account for it to be able to provide decision support over areas with larger topographic 

variability, and (ii) highlights opportunities for environmental management to reduce disease 

transmission. Specifically, having recognized the importance of landscape heterogeneity in driving risk 
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of infection, we demonstrated how, in these areas, tackling disease transmission through isolating 

specific areas at high risk over periods of high metecarcarial abundance can be particularly effective, 

especially in relatively dry years. This will be paramount to maintain or regain control over fasciolosis 

in the UK, as current treatment-based control becomes costly and unsustainable. The same approach as 

that adopted here can be valuable to assess potential benefits of using environmental management – as 

an alternative or complementary strategy to treatment – in the fight against other environmentally-

transmitted diseases, as global change increasingly alters their seasonality and spread, and drug 

resistance increases rapidly. 
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Chapter 5. Future risk of liver fluke infection across 
the UK under climate change 

 Introduction 

The WHO estimates that one-quarter of the global disease burden, mostly felt in less developed 

countries, is linked to environmental change associated with human activity (Prüss-Ustün et al. 2016; 

Whitmee et al. 2015). In fact, a multitude of anthropogenic stressors are already having measurable 

effects on disease transmission processes, globally (Cable et al. 2017; Hotez 2016; Parham et al. 2015). 

In response to increasing temperatures (IPCC 2014), several species have started invading higher 

elevations or latitudes, towards cooler climates (Altizer et al. 2013; Fischlin et al. 2007; Harvell et al. 

2002; WHO 2003), with implications for the distribution of many vector-borne diseases. For example, 

a shift in the distribution of malaria towards higher altitudes has been documented in areas of South 

America, Africa and Oceania (Park et al. 2016; Siraj et al. 2014). Observed increases in the frequency 

of floods and droughts, linked to more frequent extreme weather events as well as to direct human 

interventions (Coumou and Rahmstorf 2012; Dai 2013; Hirabayashi et al. 2013; Van Loon et al. 2016; 

Milly et al. 2002; Sheffield and Wood 2008), has resulted in large-scale contamination with waterborne 

infections and affected disease transmission patterns through habitat alteration (Cann et al. 2013; Harvell 

et al. 2002; WHO 2003). For example, a resurgence of cholera occurred in Haiti in 2011, following 

unusually intense rainfall events (Righetto et al. 2013), while drought conditions have been documented 

to trigger outbreaks of horse sickness in Africa (Baylis et al. 1999). Habitat change, with its implications 

for epidemiological processes, is also on the rise due to direct human activities (Allan et al. 2003; Altizer 

et al. 2013; Cable et al. 2017; Fischlin et al. 2007; Keesing et al. 2010; LoGiudice et al. 2003; Patz et al. 

2008). For example, changes in the prevalence of schistosomiasis and foodborne trematodiases have 

been observed in Africa and Asia, due to the expansion of snail intermediate host habitats following the 

construction of dams and the implementation of irrigation schemes to meet demands for 

water/food/energy from a growing population (Hotez 2016; Steinmann et al. 2006). On the other hand, 

in Europe, many regions have been experiencing an increase in snail-borne parasites following the 

restoration of wetlands (in combination with grazing of marshy areas by new potential reservoir hosts 

and a milder climate), with implications for animal health and productivity of the livestock industry (van 

Dijk et al. 2008; Pritchard et al. 2005). Finally, land use change is also documented and predicted to 
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have direct effects on human and animal health. Over the last 50 years, unprecedented changes in land 

use, driven by demands for higher yields (Balmford et al. 2005; FAO 2015), have resulted in a growing 

number of large-scale farming practices relying on concentrating and containing animals, which 

increases exposure to parasites and facilitates disease transmission (Cable et al. 2017). Going forwards, 

higher vulnerability to diseases like dengue (most prevalent in high human density cities due to the 

presence of man-made habitats for the transmitting mosquito) is expected (Cable et al. 2017), as 68% of 

the world population is projected to live in urban areas by 2050 (United Nations 2014).  

Implications of future climatic-environmental changes for disease transmission processes will be 

complex, especially for vector- and snail-borne diseases. Climate change is not homogeneous in time 

nor space and could make previously unaffected regions suitable for transmission and vice versa, 

potentially leading to the emergence or re-emergence of threatening diseases (e.g. Mas-Coma et al. 

2009). Moreover, climate projections are subject to large uncertainties due to the unknown state of the 

climate system and the simplified model representation of complex physical mechanisms (e.g. see 

Dalelane et al. 2018; Meinshausen et al. 2011). Furthermore, while climate change processes occur on 

timescales of years to centuries, knowledge of ecological and physiological processes provides evidence 

that shorter-duration episodes of extreme weather, and changes in the frequency of conditions exceeding 

species-specific temperature/rainfall thresholds, are often responsible for the major impacts on health, 

other than long-term changes in climate averages (Easterling et al. 2000; Parham et al. 2015). Finally, 

the fact that parasites often need to undergo several developmental stages to complete their life cycle, 

each with its own space-time scale, makes predictions especially complicated for many vector- or snail-

borne diseases (as opposed to infections transmitted directly from an environmental media to the host). 

In fact, multiple stressors might act simultaneously on multiple life-history traits and their combined 

impacts may be synergistic, but also antagonistic, potentially leaving the total rate of parasite 

transmission unaltered (Cable et al. 2017; van Dijk et al. 2010; Molnar et al. 2013; Rohr et al. 2011). 

To support sustainable disease control in the long run, we need regional assessments of vulnerability to 

health risks, based on the use of models that mechanistically account for complexities and multi-scale 

interactions. Identifying the most vulnerable regions to climate change represents the first step to assist 

in targeting monitoring efforts and disease management (e.g. Patz 2005). This needs to be based on the 

use of mechanistic models, which can explicitly simulate the impact of climatic-environmental-

hydrological processes on disease risk, coupling their time-space scales in biologically relevant ways 

and without relying on the assumption of stationarity. Specifically:  

• Consideration of the link between climate/environment and each stage of the pathogen 

transmission pathway is needed to estimate the net effect of changes on disease risk (Cable et 

al. 2017); 
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• While incorporating a long-term timescale, simulation of climate change impacts must still be 

performed at ecologically-relevant (space-time) resolutions, so that changes in disease risk can 

be better linked to changes in specific drivers, beyond alterations in mean seasonal climate 

(Easterling et al. 2000; Lo Iacono et al. 2017; Parham et al. 2015); 

• Mechanisms need to be represented explicitly, as past (empirically-derived) relationships may 

not hold anymore going forwards (Beltrame et al. 2018; Lloyd-Smith et al. 2009; Mellor et al., 

2016; Milly et al. 2008; Wagener et al. 2010; Wu et al. 2016).  

Finally, looking at the future success and sustainability of drug administration and other interventions, 

implications of estimated changes in epidemiological processes for disease control need to be assessed 

explicitly, and ensemble modelling approaches should be used to estimate projection uncertainties to 

support robust decision-making at various organizational levels (e.g. see Cable et al. 2017; Parham et 

al. 2015). 

However, questions such as on which regions climate change will have the greatest impact in terms of 

disease transmission, have only begun to be addressed, mainly by extrapolating past relationships into 

wider regions and future climates (Lo Iacono et al. 2017; Parham et al. 2015; Rohr et al. 2011; Wu et 

al. 2016). The majority of existing models used for assessing future potential climate change effects on 

health are based on statistical relationships found between historic climate and disease prevalence data 

(e.g. Wu et al. 2016), and large-scale studies are often limited to one or few ensemble members (e.g. see 

Fox et al. 2011; Stensgaard et al. 2016). Moreover, most current works relate average climate to mean 

disease trends, with little analysis of the role of shorter term species-specific climatic characteristics on 

infection levels (Easterling et al. 2000; Lo Iacono et al. 2017). Finally, the implications of climate change 

for the long-term efficacy of current control strategies are rarely addressed and not well understood 

(Cable et al. 2017). 

In the UK, changes in climate have already been observed with significant implications for the 

transmission of fasciolosis, a widespread parasitic zoonosis, raising concerns about potential future 

impacts on animal health and productivity of the livestock industry.  

• A shift towards warmer wetter winters and hotter drier summers has been documented in recent 

decades, with evidence that some of these changes are at least partly linked to human influences 

(IPCC 2014; Kendon et al. 2014). In turn, changes in the time-space distribution and prevalence 

of fasciolosis (or liver fluke disease), attributed to altered rainfall and temperature patterns, have 

increasingly been reported (Charlier et al. 2014; Kenyon et al. 2009; McCann et al., 2010a; 

Pritchard et al. 2005; Relf et al. 2011).  

• Projected mean climatic changes suggest that the trend towards warmer wetter winters and 

hotter drier summers will continue throughout the century (IPCC 2014; Murphy et al. 2018). 
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According to the IPCC report (2014), it is virtually certain that there will be fewer cold and 

more frequent hot temperature extremes (with heat waves occurring more often and lasting 

longer) over most areas, as global mean temperature rises. Moreover, increases in the 

precipitation intensity on wet days are expected in winter across the UK, as well as decreases in 

summer across central and southern areas of the country (Kendon et al. 2014; Murphy et al. 

2018). Finally, with regard to changes in terms of soil moisture, recent research anticipates an 

intensification of droughts in Europe due to anthropogenic warming, and shows a decrease in 

soil water content in all seasons for the UK (Samaniego et al. 2018). Given the climate 

sensitivity of liver fluke, these changes are expected to have major implications for the 

transmission of fasciolosis across the country in the future. For example, northern areas (where 

disease risk is currently limited by temperature) may become suitable with a warmer climate, 

while south-eastern regions (where disease risk is limited by rainfall) may become unsuitable 

as periods of drought become more frequent. However, as development of both the free-living 

stages of liver fluke and its intermediate snail host depends (in different ways) on both 

temperature and soil moisture conditions, projecting net outcomes is not straightforward. How 

climate change may affect future liver fluke risk has been previously addressed at the national 

and European scale (Caminade et al. 2015; Fox et al. 2011). However, this has been achieved 

in both cases using the empirical Ollerenshaw Index model (Ollerenshaw and Rowlands 1959), 

and the implications of epidemiological changes for disease control have not yet been assessed. 

Therefore, in this study, to overcome limitations of previous works, we use bias-corrected climate 

projection data to investigate potential future impacts on risk of infection with fasciolosis across the UK, 

using the recently developed mechanistic Hydro-Epidemiological model for Liver Fluke (HELF) 

(Beltrame et al. 2018). Specifically: 

1. We assess late twenty-first century changes in mean climate and liver fluke-relevant climatic 

characteristics in comparison with historical conditions, based on the most recent high-resolution 

regional climate projections made available by the UK MetOffice. We consider twelve different 

realisations to estimate projection uncertainties. 

2. We force HELF with these projections to determine potential impacts of such changes on future 

liver fluke risk, analysing changes in disease seasonality, in addition to alterations in terms of 

magnitude, and estimating how these may vary across the country in relation to varying climatic 

drivers. 

3. We investigate implications for disease control regionally, by assessing projected changes in the 

effectiveness of current treatment-based strategies. 



 
Chapter 5. Future risk of liver fluke infection across the UK under climate change 
 
 
 

65 
 

 Materials and methods 

This section presents the climate projections we use to drive HELF and assess potential future disease 

risk, as well as the correction methods we employ to adjust for temperature and rainfall biases. Some 

summary information about the domain of this study and the metrics of disease risk we calculate is also 

provided below. 

5.2.1 Climate data 

Climate data are obtained from the UKCP18 dataset (Lowe et al. 2018; Murphy et al. 2018). This is a 

new set of climate projections obtained from the latest generation of MetOffice Global and Regional 

Climate Models (GCM and RCM).  

Among UKCP18 products available, we use regional projections. These are an ensemble of twelve high-

resolution (12km) future climates for the UK, downscaled from global projections using the Hadley 

Centre most recent RCM (HadREM-GARA11M). More specifically, they are derived by forcing this 

RCM with the outputs from twelve variants of the latest MetOffice GCM (HadGEM3-GC3.05), 

produced by generating a perturbed parameter ensemble to account for process uncertainties, while 

providing a wide range of potential climate changes for the 21st century. Reasons for choosing this 

product for our analysis include the enhanced spatial detail, suitable in connection with our highly 

resolved hydrologic model, and the improved simulation of weather extremes at daily timescales. Global 

(rather than regional) projections are run at much coarser resolution. Moreover, the fact they provide 

data with full spatial and temporal coherence is important to investigate climate-driven changes in 

disease risk at multiple locations across the UK simultaneously.  

These data are available for the period 1980-2080 at daily time steps and under one emission scenario 

(Representative Concentration Pathway RCP8.5). 8.5 is the most extreme RCP among those introduced 

within the Fifth IPCC Assessment Report (2013), representing a world in which global greenhouse gas 

emissions continue to rise, as countries choose not to shift towards a low-carbon future (IPCC 2013). 

For our study, we use precipitation and near-surface minimum and maximum air temperature data for 

two 20-year periods (1981-2000, or “1990s”, and 2061-2080, or “2070s”) to evaluate changes in the 

future, relative to the recent past. 1981-2000 is chosen to represent present-day conditions as by Murphy 

et al. (2018), because the RCP emission scenario used in the projections starts from 2006, hence 

simulations include an element of predictive information starting from the following decade.  
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5.2.2 Bias correction of climate data  

UKCP18 projections, common to all climate projections, contain considerable biases, i.e. there may be 

systematic differences between climate model results and observations (due to factors such as imperfect 

conceptualisation, discretisation and averaging within grid cells). Therefore, we need to adjust climate 

data before using them within our study by carrying out bias correction (Murphy et al. 2018).  

The underlying idea of bias correction is to identify potential biases between simulated and observed 

climatic variables, and to use this as a basis for adjusting both past and future runs. To this end, several 

approaches have been developed, from simple scaling to more sophisticated methods (see Teutschbein 

and Seibert (2012) for a review).  

Here, we use observed daily time series of rainfall and temperature for the period 1981-2000 from CEH-

CHESS (Robinson et al. 2017) to correct UKCP18 simulations (for each of the 12 ensemble members) 

by using local intensity scaling for precipitation and variance scaling for temperature, as described by 

Teutschbein and Seibert (2012). Briefly, local intensity scaling of precipitation allows us to adjust both 

the mean and the wet-day frequencies and intensities of rainfall time series (see Appendix Section 

A.3.1), whereas variance scaling allows us to correct temperature by (i) adjusting the means of the RCM-

simulated time series by linear scaling (i.e. using an additive term based on the difference of long-term 

monthly mean observed and simulated data), and (ii) scaling their standard deviations (based on the ratio 

of observed and simulated standard deviation).   

5.2.3 Model, domain, climatic characteristics and disease risk metrics 

We use the recently developed Hydro-Epidemiological model for Liver Fluke (HELF) to simulate future 

disease risk, as, unlike previous liver fluke risk models, it explicitly describes processes, rather than 

relying on correlation. Therefore, it is better suited to represent out of sample conditions (Beltrame et 

al. 2018). The model output we consider here, as a baseline for our analyses, is the mean metacercarial 

abundance over a catchment (which provides an index of environmental suitability for disease 

transmission), for each day over the past and future simulation periods. Our domain consists of the 935 

UK catchments for which the hydrological component of HELF was calibrated by using signatures 

derived from streamflow observations, as described in Chapter 4 (Section 4.2). The DEM data employed 

to derive Topographic Index values for all catchments are described in the same section. 

With regard to climatic characteristics, for each catchment, changes in seasonal mean temperature and 

total rainfall (averaged over the two 20-year periods, and calculated for all 12 ensemble members) are 

assessed first, separating winter (Nov-Apr) and summer (May-Oct), as in previous liver fluke studies 

(e.g. see Fox et al. 2011; Ollerenshaw 1966). Secondly, the assessment of temperature over winter is 
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extended to consider the number of days above 10°C, which is the minimum temperature developmental 

threshold for liver fluke in the UK, and the assessment of temperature over summer is extended to 

consider the number of days above 20°C, which is assumed to be critical for the survival and infectivity 

of metacercariae on pasture. Similarly, for rainfall, we investigate the fraction of rainy days (here defined 

as those with accumulated rainfall exceeding 1 mm) over both winter and summer, which influences 

whether an area is moist enough for the parasite life cycle to progress. 

To investigate potential climate-driven changes in disease risk, first, we focus on the seasonal scale, 

estimating changes in terms of mean metacercarial abundance, number of days at risk of infection 

(defined as those with positive metacercarial abundance on pasture), as well as number of days at high 

risk (defined as those with metacercarial abundance above the 70th percentile). Second, to better capture 

changes in the seasonality of disease transmission, we analyse the magnitude and timing of the annual 

peak of infection (the latter defined as month of maximum metacercarial abundance in a year), and 

assess potential alterations in terms of duration of the risk period at the monthly scale. Then, to 

understand where disease risk may increase or decrease in the future compared to the past, projected 

changes are assessed for the nine administrative regions presented in Chapter 4 (see last paragraph of 

Section 4.2.3).  

Finally, to examine how the effectiveness of current measures may change going forwards due to a 

changing climate, we implement the treatment-based control strategy introduced in Chapter 4 (Section 

4.2.4) for both past and potential future conditions, assuming farmers treat twice per year (in January 

and April), with a 90% efficacy product, which suppresses egg shedding on pasture for 12 weeks. 

 Results and discussion 

5.3.1 Changes in climate 

Temperature 

Figure 5.1 shows the seasonal spatial patterns of warming projected for 2061-2080 relative to 1981-

2000 for the UK, on average across ensemble members. With regard to winter surface air temperature, 

estimated changes range from +2.2°C to more than +3.3°C across Great Britain, with the largest 

increases occurring over the south-east of England and the Scottish Highlands (average change across 

all catchments is +3°C). The changes projected for summer are larger in magnitude than those for winter, 

with values ranging from approximately +3°C in Northern Scotland to about +5°C across the south-east, 

by the 2070s. These results are consistent with changes estimated by Guillod et al. (2018), as well as 

with previous UK climate projections (Murphy et al. 2009). 
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Figure 5.1 Ensemble mean difference in near-surface air temperature (top) and number of mild 
days and hot days (bottom) between future (2061-2080) and baseline (1981-2000), for winter (left) 
and summer (right). Ungauged catchments are masked in grey. 

While potential future changes in mean temperature are relevant, changes in the number of days above 

10°C (or “mild days”) over winter are particularly interesting because of the close relationship with liver 

fluke epidemiology (10°C being the assumed minimum developmental threshold for the parasite life-

cycle stages). Figure 5.1 shows an overall increase in the number of mild days over winter, in agreement 

with IPCC projections (IPCC 2014). In Scotland, the expected range is between 4 and 23 additional mild 

days compared to the past. Then, values get progressively larger towards the south of the country, with 

the number of mild days projected to increase by up to 2 months in some catchments in Cornwall. 

Similarly, if we look at changes in the number of days above 20°C (or “hot days”) over summer, assumed 

to play a role on the survival and infectivity of metacercariae, we see a strong north-west to south-east 

gradient, from no change up to more than 70 additional hot days in East Anglia and the South East. 
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Rainfall 

Projected changes in seasonal total rainfall between the 2070s and the 1990s are shown in Figure 5.2. 

For winter, increases of different magnitude are estimated across all regions. Most of the UK (78% of 

the analysed catchments) shows relatively modest increases, up to 90 mm. However, for 3% of the 

catchments, located along the west-facing coastal regions of the country, larger increases (above 220 

mm) are expected. On the other hand, changes in summer precipitation reveal a substantial drying 

response in most areas, with strong reductions potentially exceeding 300 mm in South Wales and 

Cornwall by the late 21st century. The only exceptions are some coastal areas in the north-west of 

Scotland, where potential increases can be seen, up to approximately 120 mm. These findings are in 

agreement with previous projections for the UK, which also show relatively small rainfall increases in 

winter and large decreases in summer, on average, resulting into a general drying (Guillod et al. 2018; 

Murphy et al. 2009).  

 

Figure 5.2 Ensemble mean difference in rainfall (top) and number of rainy days (bottom) between 
future (2061-2080) and baseline (1981-2000), for winter (left) and summer (right).  
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Figure 5.2 also shows the average response across the 12 ensemble members for changes in the number 

of rainy days (above 1 mm) for winter and summer. In winter, while total rainfall is projected to increase 

over all catchments, we see that, except for parts of Wales and the west coast of north England and 

Scotland, rainy days are expected to become less frequent (the relatively narrow range for these changes 

is ±7 rainy days, with the largest reductions occurring in the north-east of the country). This suggests 

that, over most areas, the projected increases in winter total rainfall discussed above mainly arise from 

increases in the average rainy-day intensity, which is in agreement with previous results obtained from 

a range of RCMs, including EUROCORDEX simulations (Kendon et al. 2014; Rajczak and Schär 2017). 

In contrast to the relatively modest future change in the occurrence of rainy days in winter, a strong 

signal for reductions in the fraction of rainy days can be seen in summer for all the catchments analysed 

(ensemble average decrease of 21.8%). These changes vary approximately in the range [-2 -24] rainy 

days across regions of the UK, with the largest reductions occurring in the south-west of England and 

in Wales. Drawing conclusions from here about changes in terms of heavy rainfall seems less 

straightforward. The decreases seen in both total rainfall and number of rainy days suggest decreases 

also in terms of precipitation intensity on rainy days, at least for central and southern areas of the country. 

However, a recent study using a sub-daily finer-scale model (1.5km) showed significant increases in 

heavy rainfall intensities also in summer (linked to convective enhancement of rain within large scale 

storms), which do not seem to be simulated by current RCMs (Kendon et al. 2014).  

5.3.2 Changes in disease risk 

In comparison to historic conditions, an overall increase in risk of infection with liver fluke is projected 

for the future across the UK (Figure 5.3). In fact, our results show that, on average across ensemble 

members, 84.6% of the analysed catchments are projected to experience an increase in mean annual 

abundance of infective metacercariae of 28.9% by the 2070s (standard deviation is 25.8%).  

Seasonal projected changes in disease risk and climatic drivers, for 2061-2080 relative to 1981-2000, 

are shown in Figure 5.4. From here we see that, in winter, as mean temperatures approach the minimum 

developmental threshold of 10°C in the future, with up to a 3-fold increase in the number of mild days 

compared to historic conditions, risk of infection increases according to all three examined 

characteristics. Specifically, we see potential 10-fold increases in mean metacercarial abundance, as 

well as a doubling of (consecutive) days at risk of infection, compared to the past. While the increase in 

average wet-day rainfall intensity emerged from Figure 5.2 may be assumed to play a role, our results 

confirm that temperature represents the parasite life-cycle limiting factor in winter, and, therefore, that 

changes in temperature-related characteristics are more important drivers of projected changes over this 

season.  
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Figure 5.3 Annual mean metacercarial (meta) abundance across all analysed catchments for past 
(black) and future (blue), on average across ensemble members. 

Also for summer, when -on average across the country- temperatures are favourable for transmission in 

the future as they were the past, our results show an overall increase in mean metacercarial abundance. 

However, while the number of days at risk is projected to increase (with approximately two additional 

weeks at risk over the season compared to the past), the number of days at high risk may decrease. This 

seems to be linked to the 21.8% reduction in the number of rainy days, which limits parasite 

development and survival, as well as snail intermediate host habitats, through decreasing soil water 

content (Samaniego et al. 2018), and is potentially exacerbated by the overall increase in the number of 

hot days seen in Figure 5.1. In summer, average temperatures across the country are already above the 

development threshold of 10°C, and therefore the main control of disease risk changes is a change in 

rainfall patterns. Thus, the increases in summer heavy rainfall intensities predicted by Kendon et al. 

(2014) may have significant implications for disease transmission. For example, extreme rainfall could 

limit transmission, as metacercariae may be washed away by large amounts of rain, but could also favour 

it, by facilitating dispersal of snails into new habitats (Fox et al. 2011; Skuce et al. 2014). However, 

even higher resolution models may be needed to better understand potential changes in the intensity of 

future rainfall events (Kendon et al. 2014), and, in turn, in liver fluke epidemiology, over summer 

months.  

As these changes presented for winter and summer may mask changes occurring at shorter time scales, 

we further investigate climate-driven impacts on future disease risk seasonality focusing on the monthly 

scale.  
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Figure 5.4 Projected seasonal changes in disease risk (left) and climate characteristics (right) for 
the future (2061-2080), compared to the baseline (1981-2000). Boxplots represent variability 
across ensemble members. 

Figure 5.5 shows how the timing of greatest parasite challenge in a year is expected to change in the 

future compared to historic conditions (using the mode across ensemble members). From here we see, 

on one hand, that, historically, infection peaks in late summer across the whole of the UK (earlier, in 

August, in the warmer south, and later, in September, along the comparatively colder west coast and in 

the north), which reflects current understanding and farmers’ experience (e.g. see Williams et al. 2014).  

 

Figure 5.5 Timing of greatest parasite challenge in the past (left) vs. future (right), mode across 
ensemble members. Ungauged catchments are masked in grey. 
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On the other hand, in the future, except for Scotland, where the annual abundance of metacercariae still 

reaches a peak in late summer (August-September-October), disease risk is estimated to peak either 

earlier (in July) or later in the year (in October or November), which is expected to have important 

implications for disease control both at the farm level, e.g. for drug administration, and within national 

adaptation plans, e.g. to decide when and where to focus active disease surveillance (Beesley et al. 2018; 

NADIS 2019). 

Future duration of the risk period also presents substantial changes compared to the past. Figure 5.6 

shows that, under historic conditions, the period of positive metacercarial abundance on pasture lasts 

approximately from July to October (on average across all catchments). Therefore, in the past, risk of 

infection is confined to four months (with only two associated with particularly high risk within this 

period, in late summer-early autumn, as seen above), which accurately reflects the present seasonality 

of liver fluke in Great Britain. On the other hand, simulations of the future period using the RCP8.5 

climate change scenario show an earlier emergence of infective metacercariae on pasture in spring and 

a later recession of disease risk in autumn, resulting into an average increase in the duration of the 

transmission period of 3 months. This appears to be linked to the change in the monthly number of days 

above the liver fluke minimum temperature development threshold compared to historic conditions. In 

fact, while, in the past, it was only from mid-April to mid-October that at least 10 mild days would occur 

per month, this is projected to extend to the period from mid-March onwards in the future. 

 

Figure 5.6 Projected monthly changes in catchment average metacercarial (meta) abundance 
(right) and climate characteristics (left) for the future vs. past. Dashed lines represent variability 
across ensemble members. 
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Other than an extension of the yearly risk period, a change in the number of peaks of infection is also 

clear from Figure 5.6. In the future, in fact, two distinct periods of high risk are expected (one earlier 

and one later in the season compared to historic conditions), separated by a period of lower risk over 

August-September. Specifically, our results show that, while 95.7% of catchments used to peak only 

once in the past (and 3.5% twice), the percentages of catchments with one peak and two peaks are similar 

for the future (approximately 48.7%). This may be explained by the trade-off emerging between 

increased development rates, with more frequent mild days throughout the year, and reduced snail 

presence and halted development within snails, when considerable reductions in the fraction of rainy 

days decreasing soil moisture availability (Samaniego et al. 2018) are expected. The projected shift 

towards a longer transmission season, with the disease becoming more of a year-round rather than a 

seasonal threat, and the emergence of a bimodal pattern in the yearly cycle of infection, agree with 

previous speculations (e.g. Fairweather 2011) and seem consistent with larger-scale and coarser 

projections previously developed for liver fluke, as well as for other parasites, under various climate 

change scenarios (e.g. see Caminade et al. 2015 for liver fluke, and Rose et al. 2015 for gastrointestinal 

nematodes, as well as Molnar et al. 2013 and Rose and Wall 2011). However, while existing 

(correlation-based) projections of climate suitability for liver fluke suggest an emergence of two peaks 

for the whole of northern Europe (Caminade et al. 2015), simulating risk over the UK using HELF shows 

that this does not necessarily hold across all regions. Specifically, in the north-east of Scotland, where 

summer changes in the number of hot days and rainy days are limited (see Figures 5.1 and 5.2) and 

where soil moisture may not become as restrictive compared to other areas, the projected increase in 

infection pressure appears to be linked to an increase in magnitude of the summer peak, rather than to a 

temporal expansion of the transmission season (see Figure A.7 in Appendix Section A.3.2). 

In fact, in addition to temporal variability, changes in the spatial distribution of infection risk are also 

expected across the UK. Figure 5.7 shows that, in the future, risk of infection (in terms of seasonal mean 

metacercarial abundance) is projected to be highest in southern regions over winter (SW, SE and EAng), 

and along the west coast of the country over summer (especially NW, Mid and NScot, based on the 

median across ensemble members). This is qualitatively consistent with previous projections for the UK 

based on the Ollerenshaw Index (Fox et al. 2011) and gives an indication of where active disease 

surveillance may have to be focussed. However, when evaluating regional changes in comparison with 

historic conditions, our results show differences from findings of the previous UK-wide assessment of 

future liver fluke risk. In fact, while projections based on the Ollerenshaw Index show increases in mean 

disease risk in all regions over both seasons, our results show potential decreases in the south-east of the 

country over summer. Specifically, on the one hand, we find the largest increases in risk to occur in 

summer in the north of Great Britain (i.e. Scotland, followed by the North West of England), where 

average temperatures are expected to increase by approximately +3°C and potential increases in rainfall 
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are projected, with the smallest reductions in the number of rainy days across the country (see Figures 

5.1 and 5.2). On the other hand, we find reductions in summer risk in East Anglia and the South East of 

England, where declines in the number of rainy days are large (Figure 5.2), potentially limiting soil 

moisture (Samaniego et al. 2018) and therefore the presence of snails and the survival of free-living 

stages on pasture, and where increases in the number of hot days are the largest across the UK (Figure 

5.1), potentially leading to increased temperature-dependent mortality of metacercariae. 

 

Figure 5.7 Projected changes in mean seasonal metacercarial (meta) abundance across 9 
administrative regions. Boxplots represent variability across ensemble members. 

Comparison with the study by Fox et al. (2011) can only be qualitative, due to differences from this 

work in a number of factors (e.g. use of previous and coarser UKCP09 climate projection data with a 

medium emission scenario). However, the fact that we see similar changes over winter and potential 

differences over summer seems sensible, as it is in summer that disease risk is more limited by rainfall 

than temperature and that how rainfall impacts on the parasite life cycle are mediated through soil 

moisture will matter most. 

5.3.3 Implications for disease control 

By altering the epidemiology of liver fluke across the UK, the projected patterns of climate change could 

also affect the future effectiveness of current control strategies. Specifically, our results show that 
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treating animals over winter/spring, as farmers have been doing historically to reduce the peak of 

infection in late summer, is projected to become on average 41% less effective compared to the past, 

across UK regions (Figure 5.8). This may require farmers to adapt by increasing the frequency of 

parasite treatments. For example, our results also show that treating one extra time per year (assuming 

to use the most effective product currently available -as in our previously implemented strategy- also in 

July, in addition to January and April) could achieve up to 90% risk reductions in late summer, on 

average across regions and ensemble members. However, this may equally become a threat to the 

economic sustainability of livestock farming, as increasing the frequency of drug administration 

involves extra costs for farmers (van der Voort et al. 2013) and carries the risk of worsening the issue 

of drug resistance (Fairweather 2011), further highlighting the need for a shift towards environmental 

management (with interventions such as those tested in  Chapter 4) as a complementary or alternative 

disease control strategy for the future. 

 

Figure 5.8 Comparison of future vs. past percent reduction in late summer risk, achieved using 
current treatment-based control. Boxplots represent variability across ensemble members.  

While potentially requiring more frequent treatments, the impact of changing climatic conditions on 

disease transmission may also be complicated by the development of parasite adaptive responses to 

climate change (Cable et al. 2017) and by changes in a number of confounding non-climatic factors 

(Parham et al. 2015) that have so far been neglected. For example, changes in land use and stocking 

rates (i.e. number of livestock per unit area), linked to varying socio-economic, policy, as well as 

bioclimatic controls, may potentially exacerbate but also outweigh the contribution of climate-
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environment aspects to disease risk, in the latter case potentially providing an opportunity to mitigate 

negative effects of a changing climate (Morgan and Wall 2009; Rose et al. 2015).  

 Conclusions  

Assuming a stationary climate is no longer possible given anthropogenic climate change. Therefore, we 

assess the impact of future potential changes on liver fluke risk in the UK using, for the first time, a 

mechanistic hydro-epidemiological model, driven by the most recent ensemble of climate projections 

available to estimate related uncertainties. Maps of seasonal changes in temperature and rainfall show 

significant alterations for the late 21st century compared to historic conditions, including in liver fluke-

relevant climatic characteristics, such as an increase in the number of mild days over winter 

(progressively larger towards the south of the UK, up to 2 additional months) and a strong decline in the 

number of rainy days across the country in summer (-21.8% on average). An overall rise in infection 

pressure is estimated for liver fluke in the UK under such projected changes in climate. However, this 

is not expected to be uniform in time nor space. Regarding changes in time, in comparison to historic 

conditions, RCP8.5 simulations show a temporal expansion of the yearly transmission period by 

approximately 3 months and the emergence of a bimodal seasonal risk pattern, linked to more frequent 

days above the parasite minimum temperature developmental threshold throughout the year and to a 

declining number of rainy days, coupled with more extremely warm days, reducing risk over summer. 

As a consequence, while, in the past, the greatest parasite challenge used to be confined to the months 

of August-September across whole of the UK, risk of infection is expected to peak all the way from 

June to November in the future, depending on the area. With respect to changes in space, regionally, 

projected increases in disease risk are found to be largest in Scotland over summer, where, while 

temperatures will be warmer, rainfall is not expected to become restrictive. Instead, decreases in summer 

risk are projected in the south-east of the UK, where reductions in rainy days are expected to be large 

and warming levels are the highest of the country. Finally, we demonstrate that, as climate change 

lengthens disease transmission seasons, more frequent treatments are required, further highlighting the 

need for a shift to more cost effective and sustainable disease control strategies in the future. 
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Chapter 6. Summary and Outlook 

 Summary 

In this potentially fast-developing and at least partially global change-driven “age of epidemics” (Hotez 

2016; Weiss and McMichael 2004), the overall aim of this thesis was to better understand how we can 

use knowledge of the environment and water environment in support of the study and management of 

infectious diseases. 

Using the widespread parasitic disease of fasciolosis in the UK as a case study (introduced in Chapter 

2), we developed and tested a mechanistic coupled hydro-epidemiological model for disease risk 

(Chapter 3), which we then applied to explore opportunities for risk reduction through environmental 

management (Chapter 4), and to assess potential climate change impacts on future infection risk patterns 

(Chapter 5).  

More specifically, this thesis makes three main contributions: (1) it introduces the first mechanistic 

hydro-epidemiological model that simulates risk of liver fluke infection in explicit connection with 

underlying environmental drivers (HELF), (2) it assesses the sensitivity of disease risk to environmental 

controls across the UK and demonstrates potential benefits of using environmental interventions for risk 

reduction, and (3) it evaluates late 21st century potential changes in the seasonality and spread of disease 

transmission, highlighting potential shortcomings of current treatment-based control strategies. 

6.1.1 HELF 

The majority of existing models for predicting disease risk in response to climate change are empirical. 

These models exploit correlations between historical data, rather than explicitly describing relationships 

between cause and response variables. Therefore, they are unsuitable for capturing impacts beyond 

historically observed variability and have limited ability to guide interventions.  

In this study, we integrate environmental and epidemiological processes into a new mechanistic model 

of liver fluke risk. The model simulates environmental suitability for disease transmission at a daily time 

step and 25 m resolution, explicitly linking the parasite life cycle to key weather–water–environment 

conditions. Using epidemiological data, we show that the model can reproduce observed infection levels 

in time and space for two case studies in the UK. To overcome data limitations, we propose a calibration 
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approach combining Monte Carlo sampling and expert opinion, which allows constraint of the model in 

a process-based way, including a quantification of uncertainty. The simulated disease dynamics agree 

with information from the literature, and comparison with a widely used empirical risk index shows that 

the new model provides better insight into the time–space patterns of infection, which will be valuable 

for decision support. 

6.1.2 Disease control strategies 

Control of many environment-driven infections is increasingly challenged by climate change and the 

emergence of drug resistance, calling for more comprehensive strategies, rather than exclusively relying 

on treatment. The role on-the-ground environmental factors play, within disease transmission pathways, 

may offer an opportunity to use environmental interventions as complementary or alternative options to 

drug administration to reduce disease burdens. However, as currently considered drivers of disease risk 

are often only climatic, environmental strategies to complement treatment are still poorly developed and 

under-recognised.  

In this study, we explore opportunities for environmental management to control fasciolosis in the UK, 

while considering the diversity of disease drivers across this heterogeneous domain. By using ANOVA, 

we show that, while rainfall and temperature-related characteristics are key determinants of risk across 

the country, topographic variability is important in higher relief areas, suggesting that future disease risk 

simulations will need to explicitly account for it to be able to provide plausible disease transmission 

patterns as well as decision support. Having recognized the importance of landscape heterogeneity in 

driving risk of infection, we then demonstrate how, in these regions, tackling disease transmission 

through risk avoidance management strategies can be particularly effective, especially in relatively dry 

years. This will be paramount to maintain/regain control over fasciolosis in the UK, as current treatment-

based control may become costly and unsustainable. 

6.1.3 Climate change impacts 

Climate change is already having measurable effects on the transmission of infectious diseases, globally. 

However, questions such as which areas will be most impacted going forwards, have only begun to be 

addressed, mainly by extrapolating past relationships into wider regions and future climates, and 

investigating changes in climate averages, rather than pathogen-relevant characteristics. Moreover, 

implications for disease control strategies are rarely assessed.  

In this study, we evaluate the impact of future potential changes on liver fluke risk in the UK using 

HELF. The most recent ensemble of regional climate projections, made available by the UK MetOffice, 

is employed to estimate related uncertainties. Late 21st century temperature and rainfall under the most 
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severe scenario (RCP8.5) suggest significant changes compared to historic climatic conditions, 

including an increase in the number of mild days over winter of up to 2 months and an average 21.8% 

decline in the number of rainy days across the country during summer. These changes result in a 

temporal expansion of the yearly parasite transmission period of up to 3 months, with the emergence of 

a bimodal seasonal risk pattern. Despite an overall increase in infection pressure, decreases in summer 

risk are expected in the south-eastern areas of the UK, where reductions in rainy days are large and 

warming levels are the highest of the country. Finally, projected changes are found to reduce the 

effectiveness of current treatment-based control strategies by 41% on average, affecting their 

sustainability and further highlighting the need for a shift towards alternative approaches. 

 Outlook 

In this thesis, we focused on animal fasciolosis in the UK, but infectious disease systems, especially 

where infections are also transmitted to people, can often be more complex. Liver fluke infection in the 

UK provided a good case study because, due to its long-time veterinary importance, related to the 

substantial economic losses it causes in livestock, we now have a good mechanistic understanding of 

fasciolosis at the animal level, which is primarily linked to underlying environmental processes (Figure 

6.1). Moreover, following the recent rise in infection pressure in the UK, a significant amount of data 

has been collected from field studies and laboratory experiments, and a new body of literature has been 

providing additional knowledge on different aspects of the disease and its environmental drivers. 

However, especially when it comes to human infections, higher complexity is often involved associated 

with human behaviour, which adds onto the sensitivity of health conditions to several environmental 

stressors (for example, a number of factors related to living standards and dietary habits may become 

key in case of foodborne diseases, in addition to environmental controls, e.g. see Figure 6.2). Therefore, 

for diseases affecting multiple regions around the world, not only the environmental setting may change 

from place to place, but also the social and other human-related drivers may vary, giving rise to 

significantly different disease transmission pathways. For example, in addition to its veterinary 

importance, in the UK and globally, fascioliasis has also recently become a serious human health 

problem in some regions, especially in poor rural areas in South America and in the Middle East (Mas-

Coma et al. 2018). In Bolivia, where the highest prevalence levels and intensities have been reported, 

despite intermediate snail hosts being the same as in the UK, ecological conditions are different, with 

G. truncatula snails adapted to living at altitudes above 4000 m a.s.l., and in permanent water bodies 

rather than on the ground (Mas-Coma et al. 1999). Here, fasciolosis can be transmitted year-round -

mainly through the ingestion of infected wild plants and vegetables- and children, who spend many 

hours in the fields involved in the tending of animals, are most at risk. On the other hand, in Iran, where 
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also large epidemics have occurred, the setting is very different: infection rates are highest in the lowland 

areas along the Caspian Sea; transmission is bi-seasonal, linked to both climate conditions and rice field 

irrigation practices; dietary habits associated with religion play a role; and adults get infected more often 

than children, as they participate in agricultural and cooking activities while children are at school (Mas-

Coma et al. 2018). 

 

Figure 6.1 Simplified representation of the environmental-epidemiological system addressed in 
this thesis: animal fasciolosis in the UK. 
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Figure 6.2 Simplified representation of the wider system of disease transmission characterising 
human fasciolosis hyper-endemic areas in South America. 



 
Chapter 6. Summary and Outlook 
 
 
 

84 
 

It seems clear that progress in the study and control of such complex diseases requires to broaden the 

view of the system, addressing a wider set of risk factors and integrating across even more disciplines 

and data. To better understand the causes of disease, which is key for designing effective control 

strategies and interventions to reduce/mitigate risk, we need a means to incorporating knowledge about 

elements and mechanisms beyond environmental and epidemiological processes (e.g. Eisenberg et al. 

2002). In this context, “the study of multi-layered non-linear systems, in which infections evolve and 

where key events can be governed by unpredictable human behaviour, represents a significant 

conceptual challenge. On the other hand, more practical challenges range from establishing appropriate 

data collection to managing increasingly large volumes of information, combining and leveraging data 

from different sources” (Heesterbeek et al. 2015). In fact, relevant data are often diverse (e.g. climatic, 

environmental, epidemiological, clinical and demographic data, plus information on social connectivity 

and behaviour such as travel patterns), as well as variable, uncertain, and at different spatial and temporal 

scales (Eisenberg et al. 2002, 2007; Heesterbeek et al. 2015). 

However, the fact that available data is often limited, potentially leads to oversimplifying infectious 

disease systems in our studies, which may hide disease control opportunities. Even for relatively limited 

and well-studied systems, underreporting is a critical challenge and data can often be patchy and 

incomplete (Eisenberg et al. 2002; Parham et al. 2015; Urban et al. 2016), especially in developing 

countries (which are often also those that suffer from the greatest disease burdens e.g. see Jones et al. 

2008), and in case of endemic transmission (as this is poorly measured by existing surveillance systems, 

in comparison with outbreak conditions (Eisenberg et al. 2002)). This is exacerbated for diseases 

involving a wider set of risk factors including social and other human aspects, as these require collecting 

and synthesizing more data, that often introduce further considerable uncertainties in the understanding 

of infection patterns (e.g. associated with human behaviour, including non-linear and interactive links 

with natural systems) (Heesterbeek et al. 2015; Mellor et al. 2016). Such knowledge and data limitations 

may result in oversimplifications of the infectious disease systems we address in our studies. However, 

by omitting parts of the system due to uncertainties or lack of quantitative data, we may overlook 

potential mitigation or risk reduction opportunities (Mellor et al. 2016; Ostrom 2009). 

Therefore, a mechanistic systems-based approach may provide a valuable way forward and direction for 

future research. Rather than focusing on one mechanism, a systems-based approach can serve as a way 

to define important elements of an infectious disease system, integrating information from a variety of 

disciplines, and to explicitly represent the coupling of different components (Eisenberg et al. 2007). This 

can enhance understanding by providing a framework to (i) examine relationships between factors and 

address questions of causality, to explain how infection pathways may vary across different climatic-

environmental-social settings, and (ii) identify points in the transmission pathway where disease control 
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strategies may be most effective (Eisenberg et al. 2002, 2007; Lloyd-Smith et al. 2009). Moreover, by 

providing a way to summarise what is known and unknown about the system, this approach can help 

assess data availability for each mechanism and highlight potential data gaps (Eisenberg et al. 2007; 

Lloyd-Smith et al. 2009; Mellor et al. 2016). Finally, such framework could also provide the basis for 

building initial mechanistic models of more complex infectious disease systems. In fact, even with 

limited data, these models can be used, in combination with sensitivity analysis techniques, for 

hypothesis testing (by evaluating the potential influence of unknown information) and to translate the 

identified data gaps into priorities for data collection, in order to improve understanding of the relevant 

processes across areas (Eisenberg et al. 2002; Lloyd-Smith et al. 2009; Mellor et al. 2016; Urban et al. 

2016; Wu et al. 2016). For example, sensitivity analysis can be employed to identify factors that drive 

uncertainty in disease risk, or that are crucial to discriminate between disease control options, and 

therefore require better definition (Eisenberg et al. 2002). Once the sensitivity of infection risk to the 

different factors has been estimated, data collection funding resources can be allocated to refine the 

identified most sensitive factors (Eisenberg et al. 2002; Heesterbeek et al. 2015; Mellor et al. 2016; 

Urban et al. 2016; Wu et al. 2016). 

In conclusion, (1) through the example of fasciolosis in the UK, we demonstrated how mechanistic 

knowledge of the environment can be incorporated in the study of disease transmission processes to 

assess risk of infection and guide interventions under current and future potential conditions; (2) we 

believe that, by integrating it into a wider system-based framework, which allows considering a broader 

set of risk factors in addition to environmental and epidemiological processes, the same mechanistic 

approach can also support the study and management of other (potentially more complex and less 

understood) infectious diseases, which is urgent as this age of epidemics potentially unfolds. 
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Appendix  

A.1 Supplements to Chapter 3 

A.1.1 Additional information on HELF 

HELF was implemented in the MATLAB environment (software and programming language: Matlab). 

The model code is available on github (https://github.com/ludobeltrame/helf). Below we provide a 

description of HELF that follows the protocol proposed by Grimm et al. (2006). 

1. Overview 

Purpose: HELF was developed as a mechanistic model to investigate the impact of weather-water-

environment processes on time-space patterns of risk of infection with liver fluke under changing 

conditions. 

State variables: The model comprises 2 levels: the parasite life cycle and the hydrologic environment. 

The former describes the 4 liver fluke life-cycle stages that live on pasture: eggs, miracidia, snail 

infections and metacercariae. Each stage (except for miracidia, that have a lifespan comparable to the 

temporal resolution of the model) is represented as a pool of developing cohorts of individuals. Each 

cohort is characterised by 2 state variables: number of individuals and maturation state, where the latter 

is a dimensionless quantity that depends upon stage-specific development rates. With regard to the water 

environment, the state variable in the model is soil moisture, expressed as a saturation deficit [mm]. 

Scales: HELF is a dynamic (daily temporal resolution) and spatially explicit grid-based model, in which 

space is represented in the form of discrete grid cells. Specifically, one cell represents a 25m x 25m area. 

The extent of the whole spatial domain is given by the area (i.e. number of grid cells) of the hydrological 

catchment under consideration.  

Process overview and scheduling:  

• First, spatially distributed topographic information is derived from Digital Elevation Model 

(DEM) data in the form of a Topographic Index (𝑇𝐼), calculated for each grid cell comprising 

the given catchment. 
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• This is followed by discretisation of the distribution of 𝑇𝐼 values into classes, so that following 

computations are performed for each class instead of for each grid cell.  

• The model proceeds in discrete (daily) time steps.  

• At every step, first, soil moisture in each 𝑇𝐼 class is calculated as a function of the 𝑇𝐼 value of 

the class and the catchment average saturation deficit, which is derived based on a number of 

processes: 

o Interception of rainfall by vegetation cover 

o Infiltration of water into the upper part of the soil (i.e. the root zone) 

o Actual evapotranspiration from the root zone, based on potential evapotranspiration, 

maximum capacity of the zone and its actual water content 

o Percolation of water from the root zone to the lower part of the soil (i.e. the 

groundwater) 

o Generation of subsurface flow and saturation-excess overland flow 

• Then, soil moisture for each 𝑇𝐼 class becomes an input to the parasite life-cycle model 

component of HELF, where it is used, together with temperature, to calculate the relevant stage-

specific development and survival rates.  

• The maturation state of cohorts in each stage is updated, based on the stage-specific 

development rates, to derive how many individuals progress to the next stage (“matured”). 

• The number of individuals in each stage is then derived as a function of: the number from the 

previous time step, the number of individuals that die, the number of matured, and the number 

of those that develop from the previous stage. 

• Finally, the number of individuals for each stage can be mapped back from 𝑇𝐼 classes to grid 

cells. 

2. Design concepts  

HELF is not individual-based, therefore the “Design Concepts” block as defined by Grimm et al. (2006) 

does not apply here. However, two key concepts underlying the development of our model are: 

• Soil moisture dynamics is simulated within HELF using TOPMODEL. This model was built 

with the specific characteristics of UK hydrology in mind i.e. humid-temperate catchments, 

where the dominant mechanism of runoff generation is surface saturation, and where surface 

saturation is strongly related to landscape topography (Beven and Kirkby 1979). TOPMODEL 

is therefore a sensible choice for a hydrological model in the context of HELF, as long as this 

assumption is valid. 

• In the liver fluke component of HELF, each life-cycle stage is represented as a pool of 

developing cohorts of individuals to better capture maturation progress within each stage. The 
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underlying idea is that different cohorts are exposed to different environmental conditions and, 

therefore, will develop at different times (Andrews 1999). 

3. Details  

• Initialization: All state variables are arbitrarily initialised to zero. However, the initial saturation 

deficit in the root zone is a model parameter and, as such, is calibrated, as the other parameters 

within the hydrological component of HELF, using streamflow observations. Moreover, the 

initial number of embryonic eggs on each 𝑇𝐼 class is defined (as for the rest of the simulation 

period) by the egg scenario considered. The model is run for one year before all analyses are 

started, in order to limit initialisation effects (i.e. we use 1 year of warm-up). 

• Inputs: DEM data for the catchment under study; catchment average rainfall time series; 

catchment average minimum and maximum temperature time series; egg scenario (i.e. one time 

series per 𝑇𝐼 class, which can be defined based on local farm management factors). 

• Sub-models:  

• Hydrological model component:  

o TOPMODEL concepts and equations are explained in detail e.g. in Beven et al. (1995). 

o Topographic Index values are calculated using the Multiple Flow Direction algorithm 

based on Quinn et al. (1991).  

o Potential evapotranspiration is calculated using Hargreaves equation following Allen et 

al. (1998) and Droogers and Allen (2002). 

o A gamma distribution is employed to model the time delay in discharge generation at 

the catchment outlet, due to water moving through the river network (as used, for 

example, by Clark et al. (2008)).  

o Parameters and their initial ranges can be found in Table 3.1 (Chapter 3). 

• Liver fluke model component:  

o Given the purpose of HELF, the parasite life cycle is driven in the model by temperature 

and soil moisture, which are known as the main environmental drivers of infection risk. 

o Eggs (E) develop on pasture at a temperature-dependent rate, and hatch into Miracidia 

(Mi) when both temperature and soil moisture conditions are suitable.  

o Progression from miracidia to the next life-cycle stage depends upon the probability of 

miracidia finding a snail host. This is assumed to be a function of soil moisture and 

temperature, as Galba truncatula snails are only found in poorly drained areas and are 

known to hibernate with cold weather and aestivate during hot dry periods. The number 

of snails is not explicitly modelled. Instead, increased environmental suitability is 

assumed to instantaneously increase snail availability, which in turn increases the 
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probability of miracidia finding and infecting snails (we assume infection success rate 

of 1). 

o Snail infections (SI) develop also as a function of both soil moisture and temperature, 

as it is known that development within the snail may be halted due to hibernation and 

aestivation.  

o Despite, within snails, parasites are known to pass through several developmental 

stages, we do not explicitly model them in HELF and simplify the process by only 

representing one “snail infection” stage. 

o When snail infections emerge from snails (in the form of Cercariae), they 

instantaneously encyst on grass forming Metacercariae (Me). 

o Metacercariae survive on pasture and retain infectivity as a function of temperature.  

o Functions to calculate development rates for all stages and survival rates for 

metacercariae are derived using data and information in the literature by piecewise 

linear regression (Table 3.2 and Figure 3.3 in Chapter 3). For stages with both 

temperature and soil moisture requirements, we allow for development to progress as a 

function of both. The mortality rate for miracidia is set to one minus the probability of 

finding a snail, as miracidia either find a snail or die within 24 hours. The mortality 

rates for eggs and snail infections are currently assumed to be constant, as no 

information could be found on their dependence on environmental conditions. 

o A Weibull function is used to simulate the distribution of development times, as we 

assume that even individuals from the same cohort, which are exposed to same 

environmental conditions, will not all develop at the same time (Andrews 1999). 

o Parameters and their initial ranges can be found in Table 3.2 (Chapter 3), together with 

references. 

A.1.2 Additional information on epidemiological data and model testing 

The two epidemiological datasets we use are very different and come from different sources. With 

respect to the VIDA dataset, yearly reports containing monthly number of diagnoses of fasciolosis from 

the 15 UK Government’s Animal and Plant Health Agency regional laboratories are freely available 

from www.gov.uk/apha (VIDA 2019). Extracts of diagnoses associated with specific post code districts 

of interest are also freely available upon request, which is how it was possible to obtain a time series 

specific for the River Tawe Catchment. Regarding the spatial dataset based on Faecal Egg Counts 

(FECs), this was derived based on a recent study aimed at assessing liver fluke infection levels and risk 

factors at the farm scale (McCann et al. 2017). Within the study, FECs are calculated as number of eggs 

found per gram of faeces. Forty cattle were sampled and four 10 x 10g composite counts were performed 

http://www.gov.uk/apha
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per farm. Farms were subsequently classified either as positive, if at least one of the counts was positive, 

or negative, otherwise. Based on this, 41.9% of the farms sampled were positive (this is the overall 

observed percentage of infection which we use to calibrate the epidemiological component of HELF for 

the River Severn Catchment - see Section 3.4.2 in Chapter 3). 

With regard to model performance metrics, while the coefficient of determination, 𝑅2, calculated as: 

𝑅2 =  (∑ (𝑜𝑏𝑠𝑖−𝑜𝑏𝑠̅̅ ̅̅ ̅)(𝑠𝑖𝑚𝑖−𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )𝑁
𝑖=1 )2

∑ (𝑜𝑏𝑠𝑖−𝑜𝑏𝑠̅̅ ̅̅ ̅)2𝑛
𝑖=1  ∑ (𝑠𝑖𝑚𝑖−𝑠𝑖𝑚̅̅ ̅̅ ̅̅ )2𝑛

𝑖=1
 is employed as a standard measure to evaluate how the 

hydrological component of HELF reproduces the dynamics of observed streamflow (with an emphasis 

on the peaks), for evaluating the epidemiological component of the model we use the Pearson correlation 

coefficient. In fact, as the variable we simulate (i.e. abundance of infective metacercariae on pasture) is 

different from the available observations, we are more generally interested in the agreement between 

the two.  

Finally, cross-validation for the epidemiological component of HELF was performed as follows. For the 

Tawe Catchment, we randomly divided the VIDA time series into 5 sub-sets and repeated calibration 

and validation 5 times, using every time (5-1) sub-sets for calibration and the remaining one for 

validation. For the Severn Catchment, given the limited number of data points that could be used (in 

accordance with a confidentiality agreement), we performed a leave-one-out cross-validation, which 

consists in sequentially removing one data point only, re-fitting the model to the rest of the data, and 

predicting the value of the previously ignored observation. The residuals from this process were used to 

evaluate the predictive ability of the model based on the mean absolute cross-validation error. 

A.1.3 Potential reasons for the mismatches between simulations and observations found 
for the Severn Catchment 

When fitting the epidemiological model component of HELF to the FEC-based spatial dataset over the 

Severn Catchment, risk of infection seems overestimated in sub-areas A2 and A5 (Figure 3.8, Chapter 

3). A first potential reason for this mismatch is that these two sub-areas were significantly drier 

compared to the others in 2014 (Figure A.1), but this is currently not accounted for in our model. In fact, 

we are currently neglecting the spatial variability of rainfall over the catchment, by driving HELF with 

one rainfall time series only (average of the time series from the grid cells overlapping with the 

catchment area). A second potential reason for this mismatch is related to how suitable these areas are 

in terms of soil pH for development progress of the parasite life cycle. In fact, Galba truncatula snails 

(the intermediate host for F. hepatica in the UK) are known to prefer slightly acidic soils, i.e. soil pH 

between 5.5 and 6.5 (Ollerenshaw 1971). Figure A.2 shows that only 25.5% of the area of A2 has slightly 

acidic soil (NSRI LandIS 2017) and that the value is higher for A5 (40.4%), but still lower than the 
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average across the 9 sub-areas (43.7%). However, risk of infection in HELF is currently calculated based 

on temperature and soil moisture only, neglecting potential effects of soil pH on snail presence. 

 

Figure A.1 2014 rainfall levels for the 9 sub-areas within the Severn Catchment, which we use 
when fitting the epidemiological model component of HELF to the spatial FEC-based dataset. 

 

Figure A.2 Percentage area with slightly acidic soil (and thus presumably suitable for G. 
truncatula snails) for our 9 sub-areas within the Severn Catchment (from lowest to highest). 
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Finally, we are currently driving HELF with a scenario which assumes continuous livestock grazing and 

absence of disease management over the catchment. This could also result in mismatches depending on 

the real farm management strategies in use, e.g. housing of cattle or administration of treatment may 

result in lower observed risk than what simulated using our model. 

A.1.4 Additional information on the Ollerenshaw Index 

The Ollerenshaw Index (𝑀𝑡), originally proposed by Ollerenshaw and Rowlands (1959), and 

subsequently modified for values in mm rather than inches (e.g. see Fox et al. (2011)), is calculated as 

follows: 𝑀𝑡 = 𝑛 ( 𝑅
25.4 − 𝑃

25.4 + 5). Where: 

• 𝑀𝑡 is a monthly index of risk of infection with fasciolosis; 

• 𝑛 is the monthly number of rainy days (above 1mm); 

• 𝑅 is the monthly rainfall [mm]; 

• 𝑃 is the monthly potential evapotranspiration [mm], calculated using the Hargreaves equation 

as in HELF (Allen et al. 1998; Droogers and Allen 2002). 

Figure A.3 shows a comparison in time between the Ollerenshaw risk index and the abundance of 

infective metacercariae on pasture simulated using HELF (measure of environmental suitability for 

disease transmission) for the River Tawe Catchment. 

 

Figure A.3 Temporal comparison of the risk pattern obtained using the Ollerenshaw Index (in 
grey) with pasture contamination simulated using HELF (in blue), over our whole simulation 
period (2000-2010) for the Tawe Catchment. 



 
Appendix 
 
 
 

94 
 

A.2 Supplements to Chapter 4 

A.2.1 Additional information on the parameterisation of the hydrological component of 
HELF across UK catchments 

For simulating the risk of liver fluke infection across UK catchments, we estimate parameters for the 

hydrological model component of HELF by using signatures derived from streamflow observations 

(from the National River Flow Archive, NRFA). Different hydrological signatures can be used to 

constrain different aspects of the model (Sawicz et al. 2011; Yadav et al. 2007). Here, based on findings 

by Yadav et al. (2007), and given that we are mainly interested in constraining the water balance to 

verify our representation of soil moisture, we use the runoff ratio, combined with the slope of the Flow 

Duration Curve (FDC) as an index of flow variability (Figure A.4). We calculate both following Sawicz 

et al. (2011) and Yadav et al. (2007). Specifically, 

• The runoff ratio is the (dimensionless) ratio between long-term average streamflow, 𝑄, and 

long-term average rainfall, 𝑅. “It represents the long-term water balance separation between 

water being released from the catchment as streamflow and as evapotranspiration (assuming no 

net change in storage)” (Sawicz et al. 2011). Catchments with high ratio have large amounts of 

water leaving the catchment as streamflow, whereas those with low ratio are evapotranspiration-

dominated, with more water leaving as evapotranspiration. 

𝑟𝑢𝑛𝑜𝑓𝑓 𝑟𝑎𝑡𝑖𝑜 =  
𝑄
𝑅 

• The Flow Duration Curve (also dimensionless) is the distribution of probabilities of streamflow 

being equal to or greater than a certain magnitude (see Figure A.5). Here, we derive it for each 

(gauged) UK catchment using daily streamflow data and we focus on the part between the 33rd 

and the 66th streamflow percentiles as in Sawicz et al. (2011) and Yadav et al. (2007). 

Catchments with a high slope have a variable flow regime, while those with lower value have 

more damped responses (either because of widespread and year-round rainfall and/or because 

they are groundwater-dominated). 

𝑠𝑙𝑜𝑝𝑒 𝑜𝑓 𝐹𝐷𝐶 =  
ln(𝑄33%) − ln (𝑄66%)

(0.66 − 0.33)  

In order to estimate parameters, for each catchment:  

• First, we sample a large number of parameter sets from a priori ranges (Table 3.1, Chapter 3);  

• Second, we run the model with each set, obtaining an ensemble of model realisations;  

• Third, we identify a pareto front (i.e. trade-off when maximising the match with both observed 

runoff ratio and observed central slope of FDC);  

• Finally, we pick the corner solution as the “best” parameter set. 
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Figure A.4 Observed values for the two hydrological signatures employed in our analysis (gauged 
UK catchments). 

 

Figure A.5 Flow Duration Curves for the (gauged) UK catchments in our analysis (normalized by 
mean flows to facilitate comparison). 

A.2.2 Additional information on implementation of the drug-based control strategy 

As current treatment-based approaches usually employ whole-herd treatments, rather than having 

specific high-risk targets (Morgan et al. 2013), we implement our assumed treatment-based disease 

control strategy for all catchments by, every year, (i) setting egg counts to zero over January-May and 

(ii) allowing eggs to linearly increase back to the constant value of 100 eggs/day over June (as the rate 

of reinfection by May is expected to be rather low), over the whole catchment. This is implemented by 

accordingly modifying the egg scenario, which is an input to HELF (see Chapter 3, Section 3.2.3). 
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A.2.3 Additional information on ANOVA 

To investigate the relative contribution of environmental drivers and their interactions to disease risk 

variability across the UK, we perform a 5-way ANOVA experiment for each of our 9 regions. This 

means that, for every region, we consider 5 potential sources of variation (factors) and one response 

variable. The 5 factors we use are: number of rainy days (RD), rainfall (R), temperature (T), potential 

evapotranspiration (P) and topography (TOPO). The response variable we are interested in is disease 

risk, as modelled using either the Ollerenshaw Index or HELF. In order to perform ANOVA, each factor 

needs to be classified into a number of levels. In our case, each of the 5 factors has 2 levels, which means 

we have a 25 experiment, i.e. 32 combinations of factor levels, each associated to an observation of the 

response variable. The fact all these combinations are present in our dataset makes our experiment 

“fully-crossed”, which allows us to study the effect of interactions between factors on disease risk. 

However, the number of observations we have for each combination may differ, which often makes our 

ANOVA test “unbalanced”. As, when applying ANOVA to unbalanced data, the resulting sum-of-

squares will depend on the order in which the sources of variation are considered, instead of performing 

one test per region only, we perform one test for each possible order of our 5 factors, and then evaluate 

the resulting ranking of drivers on average across these. Tables A.1 and A.2 summarise regional 

ANOVA results obtained with one specific order of drivers, as an example, for the Ollerenshaw Index 

and HELF, respectively. They include sum-of-squares and p-values associated with individual drivers 

and interaction terms, as well as relative proportions of the variance that remain unaccounted for (i.e. 

the error terms). Results are statistically significant (i.e. factors are important drivers of disease risk) if 

their p-value is ≤ 0.05 (highlighted in green in both tables). In looking at differences between the two 

models in this example, it is interesting to note that, when disease risk is modelled using the Ollerenshaw 

Index (Table A.1), topography only results significant once, and the majority of significant interaction 

terms are interactions between climatic factors only (e.g. see RD x P for NScot, and RD x P, R x P, T x 

P for WScot). On the other hand, when disease risk is modelled using HELF (Table A.2), topography 

matters significantly in all three Scottish regions, and significant interaction terms are not always 

necessarily interactions between climatic factors. For example, while in flat areas in the south east of 

the country (SE and EAng), it is the interaction between climatic drivers that explains most of disease 

risk variability (e.g. see RD x T for SE, and of RD x T and R x P for EAng), along the west coast of 

England and Wales disease risk shows higher sensitivity to interactions between climatic characteristics 

and topography (e.g. see P x TOPO for SW and RD x TOPO for NW). Finally, we remark that, in this 

example, percent contributions do not always sum to 100 and error terms are large. The former is due 

to the fact that partitioned variances do not always sum up to 1 when ANOVA tests are unbalanced. The 

latter may partly be affected by this, but also potentially indicates that the complex dynamics of disease 

risk cannot be explained by simple linear models of the explanatory variables. 
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Table A.1 Example of regional 5-way ANOVA of Rainy Days (RD), Rain (R), Temperature (T), 
Potential evapotranspiration (P) and Topography (TOPO) on disease risk modelled using the 
Ollerenshaw Index. Significant p-values (≤ 0.05) are highlighted in green. 
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Table A.2 Example of regional 5-way ANOVA of Rainy Days (RD), Rain (R), Temperature (T), 
Potential evapotranspiration (P) and Topography (TOPO) on disease risk modelled using HELF. 
Significant p-values (≤ 0.05) are highlighted in green. 
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A.3 Supplements to Chapter 5 

A.3.1 Additional information on bias correction of precipitation data 

Among the bias correction methods reviewed by Teutschbein and Seibert (2012), we choose to use the 

local intensity scaling approach for precipitation in order to adjust not only for potential biases in the 

mean, but also for errors in the wet-day frequency and intensity of our rainfall time series. In fact, 

overestimating the number of wet days is a common error in climate models (Murphy et al. 2018; 

Rajczak and Schär 2017) and the number of wet days is a particularly critical climate characteristic with 

respect to the life cycle of liver fluke. The local intensity scaling method consists of two main steps. 

First, we calibrate an ensemble member-specific precipitation threshold, so that the number of simulated 

days above this threshold corresponds to the number of observed days with positive rainfall (i.e. above 

0 mm). Then, the number of wet days for both historical and future simulations is adjusted by using the 

threshold, so that all days below the threshold are set back to being days with 0 mm of rainfall. Second, 

both historical and future simulations are adjusted using an intensity scaling factor calculated based on 

simulated and observed long-term monthly mean wet-day intensities (Teutschbein and Seibert 2012). 

Figure A.6 shows that, in our application, the calibrated ensemble member-specific precipitation 

threshold varies between 0.2 and 1 mm, and (if we look at the mean across ensemble members) seems 

higher during spring - early summer, which indicates excessive days with low rainfall in the climate 

simulations especially from February to July. 

 

Figure A.6 Monthly adjusted precipitation thresholds used within the local intensity scaling bias 
correction approach. Each line is the average across catchments for an ensemble member. 
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A.3.2 Additional information on regional projected changes in the seasonality of liver 
fluke infection  

Figure A.7 shows projected changes in the seasonality of liver fluke infection across UK regions (future, 

2061-2080, vs. past, 1981-2000). From here we see that, in most areas, the yearly peak of infection is 

reduced in the future compared to the past (especially in the south regions EAng, SE, SW and Mid), and 

that the transmission period lengthens, with the emergence of two separate periods at higher risk rather 

than one. On the other hand, this does not seem to be the case for the north of the country. In fact, in 

north, west and east Scotland, where summer declines in the number of rainy days and increases in the 

number of hot days are not as extreme as in the south, the projected overall increase in infection pressure 

seems to be linked more to an increase in magnitude of the summer peak of infection, rather than only 

to an extension of the transmission season.  

 

Figure A.7 Monthly changes in the seasonality of liver fluke infection projected for the future 
(2061-2080) compared to the past (1981-2000) across 9 UK regions.  
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