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ABSTRACT

High-aspect-ratio wings are of interest to civil aircraft manufacturers, due to the aerodynamic
benefit they provide; however, the flexibility of these wings means that nonlinear dynamical
phenomena, such as limit cycle oscillations (LCOs), may exist, which cannot be captured by
classical tools for aeroelastic flutter prediction. This thesis makes novel contributions by in-
vestigating the nonlinear dynamics of high-aspect-ratio wings using numerical continuation
techniques, which are path-following methods well-suited for the study of parameter dependancy
in nonlinear dynamical systems without using time histories. A fully nonlinear, low-order beam
formulation is combined with strip theory aerodynamics, and it is shown that the geometric
nonlinearity inherent in high-aspect-ratio wings can be a fundamental driver of undesirable
dynamical phenomena, without need for aerodynamic nonlinearity.

A 2 degree-of-freedom (DoF) binary flutter wing is first used as the basis for an analytical and
physical discussion, and it is shown that the criticality of the flutter point (i.e. the supercritical
or subcritical nature of the Hopf bifurcation) can be changed depending on how the frequencies
of the linearised system vary with airspeed. A high altitude, long endurance (HALE) wing is
then investigated, and the one-parameter continuation of equilibria and LCOs reveals that
complex dynamics exist in this system; the two-parameter continuation of Hopf and periodic
fold bifurcations reveals the sensitivity of these dynamics to variations in bending and torsional
stiffness. Observations from the 2 DoF wing, relating to Hopf criticality, are investigated in
the HALE wing. Finally, the dynamics of a ‘free-free’ HALE aircraft are investigated; while the
continuation of LCOs reveals the flutter point to be relatively benign, detrimental nonlinear
phenomena are found to affect the rigid-body flight dynamics due to the presence of periodic
fold bifurcations. These undesirable phenomena are shown to be removed by varying torsional
stiffness.
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1
INTRODUCTION

This chapter outlines the motivations for the research and introduces the engineering problem
pertaining to flexible, high-aspect-ratio wings. The general themes of the thesis are discussed, and
the research aims are stated. The novel contributions are summarised, and a breakdown of the thesis
structure is provided, which includes a summary of each chapter.

1.1 Research motivations & themes

The aerodynamic benefit provided by high-aspect-ratio wings makes them an attractive option

for the aircraft designer. The slender planform of such wings reduces the unwanted effects

of tip vortices, and thus, when compared to lower aspect ratio designs, a greater lift-to-drag

ratio may be achieved at certain flight conditions. Traditionally, high-aspect-ratio wings have

predominantly featured in high altitude, long endurance (HALE) aircraft, seeing use in unmanned

applications such as military reconnaissance and communication services relay. Recently, however,

there has been an increase in the commercial interest in high-aspect-ratio wings and their

applicability to the civil aviation industry [1, 2]. Manufacturers are seeking more economically

and environmentally viable aircraft, and solutions located outside of typical design envelopes

are being investigated. Figure 1.1 shows the Subsonic Ultragreen Aircraft Research (SUGAR)

Volt currently being researched by Boeing, together with the Airbus 2050 concept; both of these

aircraft feature high-aspect-ratio wings (the former has an aspect ratio of 19.551). Initiatives

such as Flightpath 20502 have set challenging targets for the future of civil aviation, requiring

ambitious step-changes in technology; high-aspect-ratio wings are among a variety of novel

concepts currently being researched in the pursuit of greener aircraft.
1For comparison, the aspect ratio of an Airbus A320 is 10.3.
2https://ec.europa.eu/transport/sites/transport/files/modes/air/doc/flightpath2050.pdf (last

accessed on 29th April 2019).
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Figure 1.1: Future aircraft concepts that feature high-aspect-ratio wings, from
Boeing (left) and Airbus (right).

Figure 1.2: Large deformation of a flexible wing, relative to a global coordinate
frame.

An inherent and typically undesired characteristic of high-aspect-ratio wings is their flexibility.

Compared to conventional designs, wings with greater span-to-chord ratios experience greater

bending moments and larger deformations under nominal aerodynamic loading. These large

deformations are problematic from an aeroelastics perspective, as classical toolsets for static

and dynamic analysis rely on linear theory and assume wing deformations to be small. When

wing deformations are not small, the aeroelastic system becomes geometrically nonlinear and,

moreover, aerodynamic load vectors become non-negligibly re-orientated relative to the aircraft,

acting as a ‘follower force’ (where lift and drag no longer act solely in the vertical and horizontal

directions; see Fig. 1.2). Increased torsional flexibility may also result in outboard wing sections

achieving angles of attack large enough for aerodynamic nonlinearity (i.e. stall, resulting from

flow separation) to be significant. The presence of nonlinearities means that the aeroelastic

behaviour of high-aspect-ratio wings cannot be adequately predicted by linear methods, and the

use of nonlinear techniques is necessary.

The concept central to this thesis is aeroelastic flutter and how it is exhibited by high-aspect-

ratio wings. When an aircraft wing exceeds a critically-high airspeed, a self-excited oscillation

occurs - caused by a coupling between structural modes and the airflow - which proceeds to

grow exponentially. According to linear analysis, such an instability is unbounded; however, this
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outcome is not always observed in practice, as nonlinear effects can effectively attenuate the

destabilising forces and lead to sustained periodic motions of finite amplitude. Such phenomena

are called limit cycle oscillations (LCOs), and are a key theme throughout this thesis. While

bounded oscillations may appear preferable to the ‘linear’ flutter outcome, there is evidence in the

literature that shows LCOs can also exist below the critical flutter airspeed. These undesirable

‘subcritical’ phenomena cannot be predicted by linear analysis, and thus, if not identified by other

means, may compromise the safety of an aircraft flight envelope. Flutter is one of the limiting

factors in civil aircraft design; therefore, given the industry trend towards high-aspect-ratio

wings, subcritical LCOs (and nonlinear phenomena in general) caused by large flexibility must be

better understood and, if possible, captured in the conceptual stages of the engineering lifecycle.

The research in this thesis is conducted within the context of parameter dependancy in

smooth, autonomous3 nonlinear dynamical systems, i.e. continuous systems where the states

evolve with time (describable using ODEs) and the rate of change is a nonlinear function

of the current state. In general, nonlinear systems are less straightforward to analyse than

linear systems, as analytical solutions are typically not available, and the possibilities of closed

invariant sets in state space (e.g. attractors, which describe steady behaviours and prescribe the

dynamical flow) can be vastly more complex. Linear systems only permit a single fixed point

(i.e. a static equilibrium, where the rate of change is zero) and thus, provided the stability (i.e.

the behaviour after a small perturbation) of this is known, the long-term destinations of all

dynamical trajectories are easily predicted. In nonlinear systems, coexisting attracting invariant

sets are possible, so steady behaviours can be highly dependant on initial conditions. For example,

multiple stable equilibria may exist, as could isolated periodic orbits, quasi-periodic orbits (tori)

and dense, aperiodic orbits (chaos); the set of initial conditions that flows to a particular attractor

is called its basin of attraction. Much of the analysis of nonlinear systems exploits the fact that,

close to static equilibria, local nonlinearity is usually negligible, and thus nearby dynamics can

be approximated using linearisation, based on a truncated Taylor series expansion about these

points. In truth, all real-life dynamical systems are nonlinear, and any ‘linear’ system is actually

a linearisation about a particular equilibrium. Indeed, engineering systems are typically designed

to behave as ‘linearly’ as possible, so they are amenable to traditional analysis tools; however,

this may lead to overly-conservative solutions.

Should the topology of the invariant sets in a nonlinear system change when a (time-invariant)

parameter is varied, the system is said to have undergone a bifurcation. As this parameter bound-

ary is crossed, the dynamical flow in state space qualitatively changes, and thus the behaviour of

the system can become markedly different. Identifying bifurcations in parameterised nonlinear

systems is crucial, as sometimes the topological changes are drastic and a tiny parameter change

results in vastly different dynamics. In the case of aeroelastic systems, a conventional parameter

is airspeed, and flutter points coincide with so-called Hopf bifurcations, which are characterised

3The dynamics of autonomous systems do not depend explicitly on time, and are fully prescribed by the system
states; this is in contrast to non-autonomous systems, which may (for example) be subject to periodic forcing.
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by the emergence of a periodic solution. Throughout this thesis, bifurcation diagrams are used to

illustrate the occurrence of bifurcations (and thus where dynamics topologically change), when

airspeed is varied, for a variety of different high-aspect-ratio wing configurations.

Numerical continuation describes the family of solution-finding techniques used throughout

this thesis. The classical tools available for linear systems, which are fundamentally based on the

superposition principle (normal modes, Laplace transforms etc.), are not applicable to nonlinear

systems, and other methods must be used. Historically, the nonlinear analysis of flutter has

typically comprised: i) static calculations, solving for deformed equilibria at specified airspeeds,

ii) stability analysis, based on linearisation about these points, and iii) numerical integration

(i.e. time-stepping/simulation) for obtaining LCO behaviour near the identified flutter point.

This last part, in particular, is computationally expensive and is not guaranteed to fully capture

all possible dynamics within a system. Numerical continuation techniques are an attractive

alternative, as they can be used to directly obtain equilibria and periodic solutions of dynamical

systems, as a parameter is varied, using a path-following procedure based on a predictor-corrector

method. Exhaustive integration is thus avoided, and complex bifurcation diagrams can be readily

constructed. Continuation techniques are often used in many nonlinear research areas (for

example, in the analysis of fighter aircraft flight dynamics), and are increasingly being exploited

in aeroelastic contexts. Moreover, while the techniques have been scarcely used in the civil

aviation industry, they are well placed to become a more conventional tool for the conceptual

design of future passenger aircraft.

1.2 Research aims

The fundamental aims and objectives of this thesis are to

• employ numerical continuation techniques for the investigation of low-order nonlinear

aeroelastic models of high-aspect-ratio wings;

• extend the current knowledge regarding the geometric nonlinearity of high-aspect-ratio

wings and its effect on dynamical phenomena;

• establish how readily high-aspect-ratio wings exhibit LCOs below the flutter point, and

investigate the physical drivers of such behaviour;

• investigate how geometric nonlinearity affects the rigid-body flight dynamics of an aircraft

with high-aspect-ratio wings.

Overall, the results from this work are intended to help direct further research, and will

provide evidence as to why geometric nonlinearity must be adequately captured early on in the

design and analysis of flexible, high-aspect-ratio wings.

4
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1.3 Novel contribution

The novel contribution made by this thesis lies in the extensive application of numerical continu-

ation for investigating the nonlinear dynamics of flexible, high-aspect-ratio wings. Numerical

continuation has seldom been used for this purpose; at the time of submission, a single study pre-

dating this thesis [3] is found that applies the techniques in this context (this will be discussed in

Section 2.4). Notable points of novelty of this thesis include: i) the extensive use of two-parameter

continuation for obtaining Hopf and periodic fold bifurcations in a high-aspect-ratio wing, ii)

the investigation of Hopf criticality in high-aspect-ratio wings using a combined analytical and

physical approach, and iii) the use of continuation with a full aircraft model with flexible, high-

aspect-ratio wings. At the time of submission, the journal and conference publications associated

with this thesis are as follows:

• Eaton, A. J. et al., "Numerical continuation of limit cycle oscillations and bifurcations in

high-aspect-ratio wings," Aerospace, vol. 5(3), 78, 2018 [4].

• Eaton A. J. et al., “Flutter of High-Aspect-Ratio Wings using Numerical Continuation”, in

Proceedings of Royal Aeronautical Society 5th Structural Design Conference, Manchester,

UK,, 2016 [5].

The novelty of this work is largely enabled by use of the theory developed by Howcroft et al.

[6], which allows flexible beam-like structures, such as high-aspect-ratio wings, to be modelled

using minimal states, and thus enables the construction of a low-order aeroelastic formulation

that is well suited for the use of numerical continuation.

1.4 Thesis breakdown

This thesis is intended to be accessible to a reader whom is familiar with concepts from aeroe-

lasticity and linear dynamics, but does not have expertise in nonlinear dynamics. As such, full

mathematical discussions of general nonlinear dynamical theorems are not presented; for in-

depth treatment of these, the reader is directed to a number of comprehensive texts, by Kuznetsov

[7], Guckenheimer and Holmes [8], and Wiggins [9]. A useful entry-level book, which presents a

very accessible discussion of nonlinear phenomena in a variety of different contexts, has been

written by Strogatz [10].

A breakdown of the chapters is as follows:

• Chapter 2 discusses the background concepts that serve as prerequisites to the latter

chapters. Terminology used throughout the thesis is defined, e.g. see Section 2.1.2 for the

definition of nonlinear flutter. Limit cycle oscillations (LCOs), Hopf and periodic fold bifurca-

tions are discussed. Numerical continuation techniques are overviewed and contextualised
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within the research. Finally, the literature most relevant to high-aspect-ratio wings is

reviewed.

• Chapter 3 investigates the criticality, i.e. the supercritical or subcritical nature, of Hopf

bifurcations occurring at the flutter point of nonlinear aeroelastic systems. An analytical

approach is applied to a simple 2 degree-of-freedom (DoF) binary flutter wing model featur-

ing structural nonlinearity. Physical insights are then related to Hopf criticality, and use of

numerical continuation investigates how criticality can be changed by varying structural

damping or stiffness. General trends, which relate Hopf criticality to the convergence of the

system mode frequencies, are discussed.

• Chapter 4 is derived from Ref. [4] and investigates a high altitude, long endurance (HALE)

wing modelled using the theory of Howcroft et al. [6]. Numerical continuation explores the

complexity of the dynamics that can exist due to geometric nonlinearity alone, without stall

or unsteady aerodynamics. The use of two-parameter continuation is employed to obtain

dynamical behaviours over large wing stiffness ranges, via the continuation of Hopf and

periodic fold bifurcations. Observations from Chapter 3 are extended.

• Chapter 5 investigates the nonlinear dynamics of a ‘free-free’ HALE aircraft based on

the high-aspect-ratio wings studied in Chapter 4. Trim solutions of the nominal, flexible

aircraft are compared to the equivalent rigid case. Numerical continuation is then used to

explore the complete flight dynamics of the flexible aircraft, accounting for the aeroelastic

instability of the wings. Particular attention is paid to the rigid-body flight dynamics and

the impact of varying the wing torsional stiffness.

• Chapter 6 provides a short summary of the previous chapters, draws more general con-

clusions, proposes extensions for further research, and discusses the future outlook for

numerical continuation and high-aspect-ratio wings in the civil aviation industry.
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2
BACKGROUND THEORY & LITERATURE

This chapter discusses the background theory and literature relevant to the research. The
phenomenon of aeroelastic flutter is discussed within the context of dynamical systems theory, and
the technique of numerical continuation is overviewed. Finally, the existing literature that investigates
the nonlinear dynamics of high-aspect-ratio wings is reviewed.

2.1 Aeroelasticity & flutter

Flexible structures, when subjected to airflow, can deform. Aeroelasticity (a portmanteau of

‘aerodynamic’ and ‘elasticity’) describes the physical interaction between aerodynamic loads and

the restoring forces resulting from elastic strain [11–14]. Aeroelastic systems are encountered in

a wide range of real-life situations, including civil engineering structures [15], helicopter rotors

[16], energy harvesting systems [17], and the respiratory mechanisms of snoring [18]. In all such

systems, an airflow aerodynamically loads a flexible structure, causing it to elastically deform,

which in turn affects the aerodynamic loading, and so on.

Aeroelastic performance is a key factor in the design of an aircraft. The desirability of

lightweight airframes, together with the limits of material stiffness, means that the wings of an

aircraft are not rigid and their in-flight shape may be different from that seen on the ground.

Achieving optimal aerodynamic load distribution, in the cruise condition, is vital for maximising

fuel efficiency, and thus accurate predictions of deformation under nominal aerodynamic loading

are highly desirable. Critically, correctly determining the airspeed at which the static aerodynamic

loads overcome the ultimate load of the wings is essential for the specification of safe flight

envelopes.

The fundamental interactions that occur in aeroelastic systems are best illustrated using

Roderick Collar’s well-known ‘loads triangle’ (see Fig. 2.1) [19]. Static aeroelastic equilibria, which

7



CHAPTER 2. BACKGROUND THEORY & LITERATURE

occur when all loads in a particular system are balanced and there is no motion (for example,

consider a steady wing shape at a fixed airspeed) can be calculated solely using aerodynamic and

elastic loads, whereas the inclusion of inertial forces can yield complete dynamic behaviours (for

example, the time-varying deformation of a wing caused by a gust). In many references, the trian-

gle in Fig. 2.1 is extended to reflect advancements made since Collar’s time, capturing interactions

with aircraft flight controls and thermal effects (‘aero-servo-elasticity’ and ‘aero-thermo-elasticity’

respectively, the latter being particularly important for supersonic and hypersonic aircraft [20]).

Structural dynam
ics

Elastic loadsAero. loads

Inertial loads

Static aeroelasticity

Ri
gi

d
bo

dy
ae

ro
.

Dyn.
aeroelastic

system

Figure 2.1: Collar’s triangle of aeroelastic loads [19]; a dynamical aeroelastic
system requires the capture of aerodynamic, elastic and inertial forces.

Aeroelastic effects are typically undesirable in aircraft, as the presence of flexibility can

lead to a number of detrimental phenomena that, if not accurately predicted, may significantly

compromise safety within the flight envelope. Indeed, aircraft failures caused by aeroelasticity can

be traced back to the pioneers of aviation; the 2nd unsuccessful flight of Samuel P. Langley’s vehicle

is widely attributed to the torsional divergence of the wing [21]. This flight attempt predated the

Wright brother’s successful attempt in 1903. Other detrimental aeroelastic phenomena include

the reduction, or possibly the reversal, of control surface effectiveness and, pertinently to this

thesis, flutter, which is discussed separately below. The increasing use of lightweight composites

in civil aircraft design may lead to more flexible aerostructures, which means that successful

prediction of aeroelastic behaviour looks to be an engineering challenge for the foreseeable

future, especially given the industry trend towards high-aspect-ratio wings. There are currently

many research efforts investigating solutions that mitigate detrimental effects of flexibility (for

example, the use of support structures [22, 23] or hinged wingtips1 [24]) or seek to exploit them for

performance benefit (so-called ‘aeroelastic tailoring’ [25]). Clearly, design solutions that involve

the use of additional mass involve weight penalties, so the implementation of such solutions

necessitates cost/benefit studies that consider the aircraft as a whole.

Aeroelastic flutter is a phenomenon that, according to traditional textbooks, describes a partic-

ular way an aeroelastic equilibrium can become unstable to small disturbances. More specifically,

it pertains to the critical condition where a tiny perturbation, to a static equilibrium, leads

1Typically, these are targeted more for gust load alleviation.
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to oscillatory2 motion that does not decay. In aircraft wings, the classical mechanism for

this is an interaction between flexible bending and torsional structural modes, which combine

with the airflow to create a reinforcing feedback loop (often called binary flutter; see Fig. 2.2 (a)

for a cross-sectional illustration). At pre-flutter (‘subcritical’) airspeeds, the energy imparted by

a tiny disturbance leaves the system, the oscillations of the wing decay, and the net damping

(which comprises damping from both the structure and the airflow) is positive; see Fig. 2.2 (b). At

post-flutter (‘supercritical’) airspeeds (c), energy is extracted from the airflow, oscillations grow

exponentially, and the net damping is negative. In reality, tiny perturbations are unavoidable due

to the unsteadiness of airflow, so divergent oscillations are always observed in real-life systems

once the flutter condition is satisfied. Importantly, the oscillations are self-excited, and have no

dependency on external forcing.

Airflow

Subcritical Supercritical

a b c

Figure 2.2: Illustrations of (a) a flutter interaction between bending and torsional
modes (this example the shows the two motions in-phase) and time histories at (b)
subcritical and (c) supercritical airspeeds.

In practice, flutter interactions are not restricted to the flexible modes of wings, and analyses

must account for aircraft dynamics as a whole. Indeed, the first major flutter study, which dates

back to 1916 in the UK, documented oscillations involving flapping elevators and the twisting of a

fuselage; the aircraft in question was a Handley Page 0/400 biplane [13]. Incidentally, while flutter

has historically been most closely associated with aerospace applications, the most well-known

example is actually the Tacoma Narrows bridge failure, which is often incorrectly attributed to

resonance caused by periodic forcing [15, 26].

According to ‘conventional’, linear flutter analysis (described below in Section 2.1.1), the

divergent oscillations that occur at supercritical airspeeds (Fig. 2.2, c) are always unbounded

and grow until structural failure. Thus, from the perspective of the civil aviation authorities,

flutter is a catastrophic failure mode of a commercial aircraft and is a highly critical design factor.

Before aircraft certification is granted, strict safety criteria must be met, via a combination of

modelling, ground vibration tests, and flight tests, to demonstrate that flutter oscillations do not

occur at any flight condition. Attempts at eliminating flutter, or at least ensuring it occurs at an

2This oscillatory characteristic is the reason why flutter is typically described as a ‘dynamic’ aeroelastic instability
in textbooks. In contrast, divergence, which comprises non-oscillatory motion, is referred to as a ‘static’ instability. The
requirement for oscillations indicates the necessary inclusion of inertial loads; thus, flutter involves all three vertices
in Collar’s triangle shown in Fig. 2.1.
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unachievable airspeed, may comprise the separation of wind-off frequencies of structural modes

that are susceptible to interaction; in wings, this can be achieved by various means, typically

by tailoring the spanwise stiffness or mass distributions. Active control systems that aim to

suppress flutter oscillations are the subject of ongoing research efforts [27]; also see the NASA

X-56 demonstrator.

The classical flutter airspeed of an aeroelastic system is defined as the lowest airspeed where

the flutter condition is met, i.e. where the oscillatory response to tiny perturbations no longer

decays. While this definition provides sufficient basis for the discussion of traditional (i.e. linear)

flutter dynamics, it is not adequate in the context of nonlinear flutter dynamics; thus, it is

instructive to generalise the phenomenon within the broader setting of dynamical systems theory,

and introduce some important concepts using terminology similar to Kuznetsov [7], etc.

Definition 2.1. Generalised flutter airspeed in an aeroelastic system. Let xt =φt(v) x0

describe the evolution of a dynamical aeroelastic system, parameterised by v ∈R+ (airspeed),

where {x0, xt} ∈ X and t ∈R+ is time. Let x∗ be a static equilibrium (fixed point) of the system,

such that φt(v) x∗ = x∗ for all t, let ε be an infinitesimal perturbation, and let ξ0 = x∗+ε.
Thus, the flutter airspeed v f is defined such that

• for v < v f (subcritical airspeeds), x∗ is asymptotically stable for all ξ0, and

• for v > v f (supercritical airspeeds), this is no longer the case and, moreover, the motion

is oscillatory.

In the above definition, x refers to the state vector, which completely describes the state of

the aeroelastic system at a given instant of time, and X refers to the state space of the system,

i.e. the set of all states that describes all possible instances of the system. The equilibrium x∗

can be called an invariant point, as it is unmoved under the operation of φt. Moreover, since all

trajectories converge to x∗ for v < v f , it is an attractor at subcritical airspeeds. Let U ⊂ X define

the basin of attraction of x∗, i.e. the set of all initial conditions in X that flow to x∗ as t evolves.

In this generalised context, the implications of flutter are local, as it concerns infinitesimal

perturbations and makes no prescription for dynamics of the system away from the equilibrium.

Should other attractors exist in X , the global stability characteristics of the system may not be

described by the local stability of x∗. Thus, v f refers to the flutter airspeed of the equilibrium,

not the system, and further exploration of the dynamics is necessary to establish the behaviour

at any given airspeed. Note that, since the motion is oscillatory, the unstable motion must occur

on at least a 2D manifold in X .

Throughout this thesis, dynamical aeroelastic systems are modelled as a series of continuous,

autonomous ODEs (vector fields). In the following sections, x is assumed to comprise the n

generalised coordinates that describe the position and velocity of structural and aerodynamic

10



2.1. AEROELASTICITY & FLUTTER

states. In all cases, the coordinate frame is chosen such that x = 0 describes an undeformed, static

system.

2.1.1 Linear systems

A linear aeroelastic dynamical system may be expressed in the general, parameterised first-order

form

(2.1) ẋ = A(v) x,

where x ∈ Rn, A(v) is a linear operator and v ∈ R+ is airspeed. The classical form for a linear

aeroelastic system is often written as Mq̈+Cq̇+K q = 0, where m, C and K are the mass, damping

and stiffness matrices, respectively. By a change of basis, the general solution to (2.1) for a given

initial condition x0 can be written as

(2.2) x(t)= c1ν1 eλ1 t + ·· · + cnνn eλn t,

where λ1...n and ν1...n are the eigenvalues and eigenvectors of A, and c = [ν1 · · ·νn]−1 x0. Thus, the

flutter airspeed v f of (2.1) is defined as the lowest airspeed where A possess a complex-conjugate

pair of eigenvalues with zero real part (i.e. a pair of critical eigenvalues, λc). For v < v f , all λ

have negative real part, and thus all perturbations asymptotically decay to the origin as t →∞.

At v = v f , there exists a 2D centre subspace or linear manifold Ec embedded in X , described by

the linear span of the eigenvectors of λc (i.e. the flutter mode), to which the system decays and

exhibits simple harmonic motion (see Fig. 2.3, a). For v > v f , one pair of complex eigenvalues has

positive real part, an unstable subspace Eu now exists, and the origin is unstable (Fig. 2.3, b).

Note that the illustrations in Fig. 2.3 are visualisations in 3D space; in reality, a system of size

n ≥ 4 is necessary for the capture of binary flutter. Furthermore, the subspaces corresponding to

the stable eigenvalues are not fully shown.

In order to express an aeroelastic system in the linear form (2.1), all inertial, damping and

stiffness loads, in both the structure and the aerodynamics, must necessarily vary proportionally

to the system states. Thus, (2.1) does not capture any change in the modal properties of the

structure, or change in the aerodynamic profile, that could occur due to the static deformation

of the system as airspeed changes. For this reason, the flutter airspeed is independent of the

deformation. Industry flutter analysis, i.e. the analysis used in conventional civil aircraft design

[28, 13], is based on these linearity assumptions, as the structural stiffness of conventional wings

is sufficiently large such that large static deformation does not occur; the flutter condition can

thus be approximated at the undeformed shape of the wing. The various flutter analyses readily

available in MSC NASTRAN3, a widely used finite-element (FE) modelling tool approved by the

certification authorities for flutter prediction, are all eigenvalue solvers of some description that

assume no dependency between deformation and airspeed [13].
3These are the ‘P-method’, the ‘K-method’ and the ‘P-K method’; see Section 5.4 in Ref. [13] for comparisons.
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all other λ
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all other λ
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Figure 2.3: Illustration of the 2D subspace (linear manifold) for (a) v = v f and (b)
v > v f in a linear aeroelastic system.

2.1.2 Nonlinear systems

For aeroelastic systems where the above-mentioned linearity assumptions can no longer be

made (e.g. due the presence of large deformations), the governing equations necessarily become

nonlinear, and (2.1) can no longer be used to describe the system.

A general nonlinear aeroelastic system, parameterised in terms of airspeed, may be expressed

in the first-order form

(2.3) ẋ = f (x, v),

where f is a nonlinear function of x. In this case, to obtain the stability to small perturbations and

thus v f , linearisation is performed about the equilibria in the system, which approximates local

dynamics to the form of (2.1). This is achieved by the calculation of the n×n Jacobian matrix,

which comprises the first-order partial state derivatives (the validity of neglecting higher-order

terms is addressed below).

Definition 2.2. Nonlinear flutter airspeed refers to the airspeed where perturbations to

the linearisation of (2.3),

(2.4) ξ̇= J(x, v)
∣∣
x∗ ξ,

leads to oscillations that do not decay, and thus the Jacobian matrix, which is defined as

(2.5) J =D f =


∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fn
∂x1

· · · ∂ fn
∂xn

 ,

has a complex-conjugate pair of eigenvalues with zero real part λc.

12



2.1. AEROELASTICITY & FLUTTER

According to the Hartman-Grobman theorem [9, 29], the dynamics described by (2.4) are

topologically equivalent4 to those of (2.1), near the equilibrium, provided that the equilibrium is

hyperbolic, i.e. Reλ1..n 6= 0. Thus, the solutions of (2.4), which take the form of (2.2), are locally

equivalent to the solutions of (2.3), provided that the system is not on the precise flutter point

(i.e. v 6= v f ). In other words, for v < v f and v > v f , the dynamics predicted by linearisation are

qualitatively valid near the equilibrium. The 2D subspaces Ec and Eu, which are now described

by the critical eigenvectors of the linearised system, are tangential to a centre manifold W c and

an unstable manifold Wu, respectively, in the nonlinear system. At the flutter airspeed v = v f ,

where the neglected nonlinear terms are critical, W c is of particular importance for characterising

the exact stability of the equilibrium (this is further discussed in Chapter 3).

An important note on terminology is required at this stage. As described above, a flutter mode

corresponds to an eigensolution, defined by λc and νc, of an aeroelastic system; thus, it is a true

mode of either (2.1) or (2.3), in the strictest dynamical theory sense. In aeroelastics contexts, the

term ‘mode’ is typically used more generally to also describe the ways a continuous structure,

within an aeroelastic system, deforms. In this thesis, flutter mode refers to a true system mode,

whereas structural modes refers to the constituent deformations that the system mode comprises;

this distinction will be important for the discussion in Section 3.3.

The inclusion of nonlinear terms in (2.3) essentially means that any changes in the (structural)

modes and aerodynamic characteristics, caused by deformation before flutter, can be captured.

Thus, (2.3) can include non-homogeneous terms, independent of x, that result in the existence

of non-trivial (i.e. highly deformed) equilibria. Most commonly, a term parameterised by v and

α0 (root angle of attack) is included to produce a net lift and thus increasing static deformation

as airspeed increases. In this case, v f is found by linearising about a new x∗ at each airspeed

increment. For the case of flexible high-aspect-ratio wings, non-trivial equilibria can have a

significant effect on the flutter airspeed (further discussed in Section 2.4), so nonlinear treatment

is necessary.

In summary, the flutter airspeed of a nonlinear system (alternatively, a nonlinear flutter air-

speed) refers to the flutter airspeed obtained by linearising a system about non-trivial equilibria

that may vary with airspeed. Put simply, nonlinear flutter accounts for the large static deforma-

tion and the resulting modal changes that a nonlinear system (e.g. a flexible, high-aspect-ratio

wing) may experience under aerodynamic loading. If the system does not statically deform with

airspeed, the flutter airspeed is determined by the linear part of the system; however, as was

described in the generalised definition, the implications of nonlinear flutter are strictly local to

the equilibrium.

4There exists an invertible, continuous mapping (i.e. a homeomorphism) between the two vector fields [7].
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2.2 Nonlinear aeroelastic dynamics

As discussed in Section 2.1, the oscillations that characterise flutter are the result of a reinforcing

feedback loop created by a critical modal interaction. In a linear system (2.1), this interaction is

sustained for any deformation of the system, as neither the structural modes nor aerodynamics

are affected, and thus the oscillations grow unbounded. The stability of the equilibrium x∗ to

infinitesimal perturbations thus characterises the response to any size disturbance; therefore,

once the flutter airspeed is obtained for a linear system, all behaviour can be qualitatively

predicted, for any size of perturbation, depending on the airspeed. This is not true for the

nonlinear system (2.3), however, as changes in the structural modes or aerodynamics, caused by

deformation, may prevent the critical interaction from sustaining indefinitely. The higher-order

terms neglected in the linearisation (2.4) become important once the system is sufficiently far

from the equilibrium; when the time-varying deformation extends beyond this local region, the

dynamics are not captured.

Expressing the above statements more generally, in a nonlinear system (e.g. a flexible, high-

aspect-ratio wing), the critical modal interactions that cause flutter are dependant on both airspeed

and system deformation.

2.2.1 Limit cycle oscillations (LCOs)

Given the discussion above, it follows that the intermittent existence of critical interactions,

during the time-varying deformation of a nonlinear system, can settle to periodic motion with

finite amplitude. In such a case, an interaction exists for part of a period in such a way that

the energy extracted from the airflow, over one cycle, is equal to energy leaving [30]. This type

of periodic solution is called a limit cycle oscillation (LCO) and is a closed invariant set, S, in

state space, as trajectories that lie on the solution do not leave, i.e. for x0 ∈ S, x (t, x0) ∈ S for

all t. Other general terms from dynamical systems theory include closed orbit or isolated orbit.

LCOs are strictly nonlinear phenomena and should not be confused with the periodic orbits of

undamped linear systems (e.g. solutions on the centre subspace shown in Fig. 2.3).

Definition 2.3. Limit cycle oscillation5 (LCO) refers to the periodic solution

(2.6) ẋ = f (x, v), x(t+T)= x(t)

where there are no other periodic solutions nearby. The smallest T > 0 that satisfies (2.6) is

the period of oscillation.

The nonlinearity that could limit (or indeed, amplify) the amplitude of a particular flutter

oscillation may be structural, aerodynamic, inertial, etc. or some combined effect. Should the
5Such solutions are simply referred to as ‘limit cycles’ in general nonlinear dynamics literature; the acronym

‘LCO’ is commonplace in aerospace applications and is thus used throughout this thesis.
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Figure 2.4: Illustration of a limit cycle oscillation (LCO). These finite-amplitude
oscillations are strictly nonlinear phenomena.

angle(s) of attack in a system become large enough for flow separation, the resulting limited

oscillations are commonly referred to as ‘stall LCOs’ or ‘stall flutter’; such phenomena have been

closely associated with flexible helicopter rotors [31]. The effects of structural nonlinearity are

related to the changing modal properties and are discussed in more detail in Chapter 3. Regardless

of the physical source of the nonlinearity, however, the resultant dynamical phenomenon i.e. a

closed orbit, is the same.

Nonlinear oscillations are not restricted to airspeeds beyond the flutter point. Since, in

nonlinear systems, critical interactions are a function of both airspeed and deformation, LCO

phenomena are possible at airspeeds where the static equilibrium is stable. For this to happen,

the airspeed is not high enough to cause flutter, but is sufficiently large to cause interactions if

the modal properties of the system are suitably altered. Thus, the system can enter a sustained,

closed orbit at an airspeed below the flutter airspeed if it is suitably deformed about the (stable)

subcritical equilibrium. Subcritical LCOs are highly undesirable in aircraft, as they may occur

within the operational flight envelope; in the best case, fatigue effects can compromise the

longevity of the structure, and in the worst case, catastrophic failure can occur.

As with static equilibria, LCOs may be stable or unstable to infinitesimal perturbations. In

general terms, LCO stability is obtained via the construction of a Poincaré section Σ, of dimension

n−1, at some point on the orbit in state space (see Fig. 2.5); this section allows the construction of

a discrete, ‘first-return’ map, which describes the evolution at t+T and reduces the invariant set

(i.e. the LCO) to an invariant point on Σ. The stability of this point to perturbations corresponds

to the stability of the orbit and is indicated by Floquet multipliers [7, 10, 29]; should these

multipliers all lie within the unit circle, the LCO is stable. If they do not, the point and orbit

are unstable and nearby trajectories diverge, as is illustrated by the dashed line in Fig. 2.5. The

dynamics on Σ will be revisited in Section 2.2.3 when discussing the bifurcations of periodic

orbits.

The mathematical phenomena responsible for closed periodic orbits in nonlinear systems are

typically Hopf bifurcations, which will be introduced in Section 2.2.2. Generally, the existence

of closed orbits in a particular system is non-trivial to prove, although an analytical criterion

exists for 2D systems (when n = 2), namely the Poincaré-Bendixson theorem [10]. However, as

will become evident, LCOs are practically a certainty in nonlinear aeroelastic systems, at least

theoretically, should there exist a flutter point.
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x(0)

x(T)

Σ

Unstable LCO

Figure 2.5: Isolated orbit in state space, featuring Poincaré section.

2.2.2 Hopf bifurcations

In the general field of nonlinear dynamics, a bifurcation describes any topological change to the

invariant sets of system (2.3) caused by parameter variation. A particular class of bifurcation

is characterised by the emergence of new solutions due to the parameter perturbation of a

nonhyperbolic equilibrium point, i.e. cases where linearisation yields critical eigenvalues and the

count of λc 6= 0.

As discussed in Section 2.1.2, flutter occurs when λc comprises a complex-conjugate pair.

According the Andronov-Hopf theorem, should the genericity conditions

1. d
dp Reλc 6= 0 (‘transversality’ condition)

2. l1 6= 0 (‘non-degeneracy’ condition)

both hold, where p ∈ R is a smooth parameter, and the quantity l1 is the ‘first Lyapunov

coefficient’ [7, 32] (further discussed in Chapter 3), then the dynamical system, close to the

equilibrium, is topologically equivalent to the normal form6 of the Hopf bifurcation, which is

(2.7)

(
u̇1

u̇2

)
=

(
p −1

1 p

)(
u1

u2

)
±

(
u2

1 +u2
2

)(
u1

u2

)
.

At p = 0, a Hopf bifurcation occurs in (2.7), and there are two distinct scenarios that can exist,

depending on the sign of the cubic terms, which is determined by l1. Should these nonlinear

terms be negative, a stable limit cycle exists for p > 0 (supercritical Hopf), whereas if they are

positive, an unstable limit cycle exists for p < 0 (subcritical Hopf). For completeness, it should be

noted that aeroelastic divergence, i.e. the static (non-oscillatory) analogue of flutter, corresponds

to occurrence of a pitchfork bifurcation, which has a 1D normal form.
6The simplest representation of a dynamical phenomenon, where all non-essential nonlinear terms are removed,

leaving the so-called ‘resonant terms’ at the equilibrium.
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In nonlinear aeroelastic systems, supercritical and subcritical Hopf bifurcations typically

occur at the flutter point as per Fig. 2.6 (b & c), where the linear/degenerate7 case (a) is also

included for comparison. In both nonlinear cases, the static equilibrium loses asymptotic stability,

and an LCO solution emanates with finite amplitude. In the supercritical case (b), the LCO

solution is stable and exists for v > v f , whereas in the subcritical case (c), the solution is unstable

and exists for v < v f . In both cases, near the bifurcation point, LCO amplitude grows ∝√|v f −v| .
In the latter, a periodic fold bifurcation (further discussed in Section 2.2.3) is also illustrated,

resulting in a stable LCO solution of large amplitude.

Supercritical

Subcritical

Flutter boundary (v f )
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Figure 2.6: Generic flutter point possibilities: (a) linear/degenerate, (b) supercriti-
cal, and (c) subcritical. In cases (b & c), a Hopf bifurcation occurs at v f .

The supercritical Hopf (Fig. 2.6, b) is the most favourable flutter outcome as, in this case,

the system smoothly transitions to a stable LCO solution once the critical boundary has been

exceeded, and this can be reversed by reducing the airspeed. In the subcritical case (c), the

system becomes attracted to the large amplitude solution, and oscillations can only be removed

by reducing the airspeed to below the fold airspeed. Thus, a hysteresis loop exists in this case.

Additionally, the presence of two attractors in the subcritical region means the system has a

dependency on initial conditions below the flutter airspeed. Should a sufficient disturbance occur

(e.g. from a gust), a system that is settled on the static equilibrium may enter the basin of

attraction of the large amplitude LCO solution.

The detrimental characteristics of the subcritical Hopf means that it is highly undesirable

in an aeroelastic system. Indeed, the effects are often referred to as ‘bad LCO’ or ‘detrimental

nonlinearity’ in the literature (e.g. Ref. [33]); it thus follows that accurate prediction of flutter

criticality, in a given system, is sought after. This analysis is typically not straightforward,

though, as the type of Hopf bifurcation is not captured by the linearisation about the equilibrium.

Provided that the system in question is of sufficiently low-order, analytical tools are available

(one of these is demonstrated in Chapter 3); typically, however, numerical methods must be used,

often involving the simulation of LCO behaviour near the bifurcation point (this is not the case
7See Section 3.2 for details.
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in this thesis). In physical experiments (e.g. wind tunnel tests), obtaining flutter criticality is not

a trivial task, either; if the nonlinearity in the system is weak, the amplitude of the LCO solution

grows rapidly, and thus the deformation may quickly exceed the survivable bounds of the test

rig. This may be true even if the Hopf is supercritical. Moreover, since the damping around the

equilibrium is very small near the bifurcation point, steady behaviours may be tedious to obtain

without the aid of some kind of finite disturbance, which may exacerbate the risk of structural

failure.

From the above, it is clear that understanding the fundamental drivers of Hopf criticality, in

a flutter context, is a key factor in the safe design of flexible, high-aspect-ratio wings. Specifically,

understanding the sensitivity of criticality in particular systems to certain physical design

parameters (for example, the stiffness distribution of a wing) is of interest, as it may be feasible

to ‘convert’ an undesirable subcritical bifurcation to the desirable supercritical case by design (an

example of this, from the literature, is discussed in Section 2.4.4).

It is possible that the flutter point in Fig. 2.6 is not the only Hopf bifurcation in a system.

Should the airspeed continue to increase beyond the flutter airspeed, the critical eigenvalues may

return to the left half plane, and thus the equilibrium regains stability. (In flutter terminology,

this re-stabilising is referred to as a ‘hump mode’, which is reflective of how the damping plot

appears in MSC NASTRAN.) If the Hopf conditions are met, an LCO solution emanates from this

secondary bifurcation point, which may comprise an additional branch of solutions, or may join

to the LCO solution originating from the flutter point. In this latter case, LCOs no longer exist at

the re-stabilised airspeed.

Figure 2.6 is called a bifurcation diagram because it illustrates the location of bifurcation

points in the combined state-parameter space of a system. The horizontal axis in this type of

diagram is the parameter being varied (in this case, airspeed), and the vertical axis is typically

some projection of the system states (for example, wing tip displacement or twist), or simply one

of the states themselves. Bifurcation diagrams are ubiquitous in the general field of nonlinear

dynamics and are used throughout this thesis.

2.2.3 Bifurcations of periodic orbits

The periodic fold that accompanies the subcritical Hopf in Fig. 2.6 (c) is a type of periodic orbit

bifurcation, i.e. a bifurcation that affects periodic solutions, as opposed to equilibria. In the case of

a fold, an unstable and a stable periodic solution collide, resulting in the annihilation of both (at

the bifurcation point, a singular half-stable orbit exists). From a basic physics perspective, such

phenomena are guaranteed to occur in aeroelastic systems when the flutter point is subcritical;

at zero airspeed, there is no energy to extract from airflow, so an LCO cannot exist. The airspeed

at which the fold occurs is not easily obtainable using time histories, as the basin of attraction of

the stable solution diminishes to zero at the bifurcation point.

The generalised behaviours illustrated in Fig. 2.6 are typically only representative of be-
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haviour relatively close to the equilibrium point. In practice, in both supercritical and subcritical

Hopf cases, other nonlinearities can cause additional periodic fold bifurcations to occur, at higher

amplitudes, which may result in several stable LCOs coexisting at the same airspeed; this will

be demonstrated in Chapter 4. The possibility of subsequent periodic folds is an important

consideration, as it means that subcritical LCOs, which always exist in the subcritical Hopf case,

could also exist when the Hopf is supercritical. For this to happen, the stable solution emanating

for v > v f (Fig. 2.6, b) folds and extends to below v f before folding again. This possibility means

that proof of a supercritical Hopf bifurcation does not rule out subcritical LCOs and thus, in

addition to Hopf criticality, analysis of the LCO solutions is also highly important.

The bifurcations that affect periodic orbits can be described by revisiting the discrete map

derived from the Poincaré section shown in Fig. 2.5. Nonlinear maps can undergo bifurcations

themselves, and while this is a large field in itself, the general theory is not unlike that of vector

fields. Similarly, different phenomena occur due to the movement of linearised eigenvalues (or, if

the map is a Poincaré section, Floquet multipliers) as a parameter is varied. Three possibilities,

which are characterised by eigenvalue crossings across the unit circle, are shown in Fig. 2.7 and

discussed below. For detailed mathematical description, see Refs. [7, 9, 29], for example.

Re

Im

a

b

c

Figure 2.7: Bifurcations of periodic orbits, characterised by the movement of
Floquet multipliers: (a) periodic fold, (b) period-doubling and (c) Niemark-Sacker
(torus).

If a single, real multiplier passes through +1, as shown by Fig. 2.7 (a), the result is either a

periodic fold or a branch point. These results are completely analogous to the fold and pitchfork

bifurcations of equilibria; the former is also called a saddle-node or ‘flip’ bifurcation. On the

section Σ, a fold is indicated by the collision of two fixed points. If a multiplier passes through −1

(b), however, a period doubling bifurcation occurs; in this case, the original period orbit changes

stability, and a solution with a doubled period emanates from the bifurcation point. Unlike the

periodic fold, this bifurcation has no static analogue. In this case, two additional points are
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created on Σ and the original point changes stability.

If a complex-conjugate pair of multipliers cross the unit circle (c), a Neimark-Sacker bifur-

cation occurs. In this case, the stability of the periodic solution changes and a quasi-periodic

solution is created. The term quasi-periodic describes the fact that, while the solution can be

broken into periodic components, at least two periods are not commensurable, so the overall

motion is never repeated. The invariant set of such a solution has the topology of a torus8 and is

represented by a closed orbit on Σ.

Any new solutions, created by the bifurcations shown in Fig. 2.7, may subsequently undergo

bifurcations themselves. Indeed, the ‘zero airflow’ argument pertaining to the existence of periodic

folds (made above) applies to any non-static solution, and thus any solution that extends to low

airspeeds must fold back at some point. Also, a series of periodic bifurcations may also rapidly

increase the complexity of the dynamics in a short parameter interval. For example, chaotic

dynamics, which comprise dense, aperiodic solutions with very strong sensitivity to initial

conditions, is often attributed to a ‘cascade’ of period doubling bifurcations [10]. Chaos is difficult

to conclusively prove in high-dimensional systems, although an analytical criterion exists (called

the Lyapunov exponent) which is effectively a measure of how rapidly two very close initial

conditions diverge as time evolves. A chaotic attractor, which is sometimes called a strange

attractor, has fractal geometry; the Poincaré section through such an object shows some kind of

complex, filled structure. Some examples of chaos in aeroelastic systems are described by Lee et

al. [34].

All of the bifurcations discussed so far are local, in the sense that they relate to a linearisation

about some kind of fixed point; either a static equilibrium or a fixed point on a Poincaré section.

Another class of bifurcation exists, called global bifurcations, which cannot be characterised in

this way; examples of these are homoclinic and hetroclinic bifurcations. Phenomena of this type

have not been encountered in this thesis and are not discussed further.

2.3 Numerical continuation

Nonlinear dynamical phenomena, such as LCOs, cannot be captured by conventional flutter tools.

A complete picture of the parameter-dependant dynamics, i.e. a bifurcation diagram, as shown

in Fig. 2.6, in a given nonlinear aeroelastic system must be constructed using wholly nonlinear

methods. Perhaps the most obvious approach is to numerically integrate the system (using e.g.

Runge-Kutta or Newmark-β), in time, to obtain x(t) at a variety of different airspeeds, in an

attempt to identify qualitative changes in the long-term behaviour. However, using time histories

is a cumbersome approach in practice, as

• there is no guarantee that x(t) converges to a steady solution during a given simulation,

8Neimark-Sacker bifurcations are often referred to as torus bifurcations for this reason.
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• transient dynamics, which are not the main interest, are a costly means to an end, and

• the possibility of multiple attractors means that the testing of many initial conditions, at

each airspeed, may be required before all possible behaviours are obtained.

The above inconveniences are compounded by the fact that, close to the flutter point, the damping

in the aeroelastic system is very small. Further to this, unstable solutions (such as the red LCO

solution in Fig. 2.6) cannot be explicitly obtained, unless the system is integrated in reversed

time.

Numerical continuation, a well-established family of methods widely applied in the field of

nonlinear dynamics [35–39], present a general approach that avoids use of ‘brute-force’ simula-

tions. The basic objective of continuation techniques, when used in this context, is to numerically

follow the path of (or ‘continue’) a particular invariant set (e.g. equilibria or periodic orbits) over

the variation of a parameter, given a starting condition, using a predictor-corrector method. The

exact approach used in a particular setting is specific to the solution to be obtained (see Sections

2.3.1 - 2.3.3 below), but in all cases it can be related to the implicit solutions of the nonlinear

system of algebraic equations

(2.8) G(y, p)= 0,

where y ∈Rn and p ∈Rm. Here, G is defined such that the solution of (2.8) defines the invariant

set of interest. While several predictor-corrector schemes exist, the most common is called pseudo-

arclength continuation, which is illustrated in Figure 2.8. The basic components of this scheme

are as follows. From a known solution point y j, which satisfies (2.8), a prediction ŷ j+1 of the

next point is made using the tangent vector (a), the length of which is called the step-size. From

here, a correction (b) is performed to find the next solution y j+1, which comprises finding the

intersection of an orthogonal surface with the targeted implicit curve; this is achieved by using

Newton-Raphson iterations. The rate of convergence then prescribes the step-size of the next

prediction, which is the final stage of the step (if convergence fails, the same step is attempted

using a smaller step prediction).

A particular continuation analysis is conventionally described in accordance to the value of

m, i.e. the number of parameters that are free to vary. For example, the continuation of equilibria

and periodic orbits, with respect to airspeed, are one-parameter continuations, as p ∈R. In this

case, the total solution space has dimension n+1. The continuation of Hopf points and periodic

folds (which are special instances of equilibria and periodic orbits) requires p ∈R2 and are thus

called two-parameter continuations (here, the solution space has dimension n+2). This type

of continuation is potentially a very powerful means of the obtaining the regions of dynamical

behaviour of a system over large envelopes of design parameters; in aeroelastic applications,

the continuation of Hopf points with respect to airspeed and a chosen secondary parameter (for

example, stiffness or root angle of attack, etc.) shows the variation of the flutter airspeed with

respect to that 2nd parameter. Two-parameter continuation is demonstrated in Chapter 4.
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Figure 2.8: Illustration of pseudo-arclength continuation, comprising (a) a predic-
tor step and (b) a corrector step.

The popularity of numerical continuation, in general nonlinear dynamics research contexts,

has been intrinsically linked to the success of the software AUTO [40], which was first developed

by Eusebius Doedel in the late 1970s. Since these early implementations, which were written in

FORTRAN, several software packages emerged, with increased functionality and user accessible,

notably AUTO 97 [41], AUTO 2000 [42], MATCONT [43] and DST [44], the last two being

implementations in MATLAB /Simulink. Continuation tools have become a powerful influence on

the development of dynamical systems theory, and are widely used in many fields of science, as

shown in Ref. [38]. In this thesis, Computational Continuation Core (COCO) is used [45], which is

a MATLAB-based framework that builds on the functionality of previous software, and is aimed

at open-ended application and ongoing development. The source code of COCO is currently freely

available9. Sections 2.3.1-2.3.3 provide a brief overview of the generic numerical continuations

that have been used in this thesis; these are derived from Refs. [7] & [29].

In aerospace engineering, numerical continuation has been prominently exploited in applica-

tions concerning nonlinear flight dynamics [46–48] and, more recently, landing gear dynamics

(for example, Ref. [49]). In aeroelasticity, an early use can be be found in Ref. [50], where the

nonlinear dynamics of a two-dimensional aerofoil are examined. More recent examples can be

found in Strganac et al. [3], Dimitriadis [51–53], Vio et al. [54], and Shukla & Patil [55]. In

industry contexts, continuation techniques do not see widespread use, although they may be

well-placed to meet future demands of transport aircraft; an overview of the applicability to the

conceptual design phase is provided by Sharma et al. [56]. The use of numerical continuation

for aero-servo-elastic stability and control in helicopter rotor blades at AugustaWestland (now

Leonardo Helicopters) is documented in Refs. [57, 58].

It is worth noting that the benefits of continuation techniques are not necessarily exclusive to

numerical models. Implementation of the techniques, in an experimental context, is a focus of

9https://sourceforge.net/projects/cocotools/ (last accessed on 19th October 2018).
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ongoing research (for example, Refs. [59, 60]); in such a setting, in order to safely obtain unstable

solutions, non-invasive feedback control must necessarily be implemented to prevent the physical

system from diverging.

2.3.1 Equilibria continuation

The most fundamental use of continuation, in a nonlinear aeroelastic context, is to obtain the

static equilibria in a system for a range of airspeeds. Consider the parameterised system (2.3); in

this instance, the equation

(2.9) f (x, v)= 0

describes the smooth locus of static equilibria over the variation of v. Clearly, this curve is only

non-trivial if (2.3) contains non-homogeneous terms that are a function of v. While the variable

parameter in this case is typically airspeed, the variation of another parameter is sometimes of

interest; for example, it could be the magnitude of a vertical tip load, which is applied to deform

a wing while airspeed remains constant.

The algebraic system defined by (2.9) can be directly implemented in the form of (2.8) and the

stability of each step can be obtained from the Jacobian of (2.3), which is necessarily computed as

part of the pseudo-arclength method. Hopf bifurcations (i.e. flutter boundaries), or indeed any

other bifurcations of equilibria, can be detected by the construction a test function, ψ(x, v), that

is satisfied at the bifurcation condition. In the case of a Hopf, the function

(2.10) ψH(x, v)= ∏
i> j

(
(λi(x, v)+λ j(x, v)

)
is used, which is equal to zero when there exists a complex-conjugate pair of Jacobian eigenvalues

with zero real part.

2.3.2 Periodic orbit continuation

The periodic orbits (i.e. LCOs) of the nonlinear system (2.3) can be similarly obtained for the

variation of v. In this case, solutions can be written as the boundary problem

(2.11)
dx
dτ

= T f (x, v), x(0)= x(1)

where τ is a time variable rescaled in accordance with period T. Since (2.3) is autonomous, a

phase condition must be imposed in order to uniquely define a solution. Most commonly, the

condition

(2.12)
1∫

0

〈
x(t), xold(t)

〉
dτ= 0,
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is used, which essentially ensures that the next solution has the smallest phase difference relative

to the old (i.e. previous) solution [7]. The unique boundary value problem defined by (2.11) &

(2.12) can be solved by a number of discretisation methods; AUTO and COCO both use orthogonal

collocation [61], which approximates the orbit as a piecewise polynomial on a mesh, typically

with 2-7 collocation points on each interval. The complete discretised boundary value problem

can then be implemented in the form of (2.8), similarly with test functions for bifurcations.

2.3.3 Bifurcation point continuation

The principles for equilibria and period orbit continuation can be extended to the continuation of

specific bifurcations; here the problem takes the generic form

(2.13) G(y, v)=
(

f (x, v)

ψ(x, v)

)
= 0.

2.3.4 Practicalities

A number of general comments can be made about the practical considerations of using numerical

continuation techniques.

• The attraction of continuation techniques is their ability to obtain invariant sets (and their

stability) in a dynamical system without extensive use of numerical integration. They do

not capture the basin of attraction of these sets, nor do they capture the characteristics of

any transient dynamics. Thus, a complete nonlinear analysis of a particular system should

also include simulations at selected test points in state-parameter space.

• Quasi-periodic motions, i.e. the solutions emanating from Neimark-Sacker (torus) bifurca-

tions, cannot be easily obtained.

• Efficient setup of a continuation scheme may sometimes depend on an a priori knowledge

of the implicit solution curve G(y, p) = 0. In practice, upper/lower limits for the variable

step size and a maximum number of Newton iterations must be defined such that a balance

is struck between speed and accuracy. Clearly, a solution featuring many intricate folds

necessitates small steps, although this may mean that more trivial parts of the solution are

obtained slowly.

• From a computational standpoint, a significant factor can be the cost of evaluating the

function that returns ẋ, i.e. f (x, v). If this function is expensive, it is beneficial for the

user to supply the derivatives (i.e elements of the Jacobian matrix) of the system, with

respect to both state and parameter, as otherwise there will be an extensive reliance on

finite-differences. The continuation of periodic orbits may be particularly slow in this

case, depending on the chosen discretisation parameters (e.g. the number of meshes and

collocation points). This is obviously sensitive to the number of states, n.
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• By definition, continuation requires an initial solution. This solution is usually obtained

from some trivial parameter value (e.g. zero airspeed); from here, equilibria and then LCOs

are subsequently obtained. However, it is possible that isolated solutions (‘isolas’) exist in a

system, which are not smoothly connected to any trivial solutions; in practice, these are

impossible to detect without some kind of physical insight into the system, or an initial

‘brute-force’ simulation approach.

2.4 Literature review for high-aspect-ratio wings

As a general field, nonlinear aeroelasticity has been an active and expanding research area in

recent decades [33, 62–67]. This can be mainly attributed to a combination of i) the increasing

use of more flexible structures in engineering applications, and ii) the rapidly reducing costs of

computation. The ubiquity of aeroelastic systems also means that interest in the phenomena

often extends beyond aerospace applications (for example, Ref. [17]). The growth of the field is

also evidenced by a recent textbook by Dimitriadis [30], a title dedicated to nonlinear aeroelas-

ticity, which appears to be the first of its kind. In traditional aeroelastics textbooks (e.g. Refs.

[11–14]), the discussion of nonlinearity is either nonexistent or limited to a few paragraphs;

the multidisciplinary nature of aeroelasticity means that rigorous linear treatment is usually

sufficient introduction to the subject.

A fundamental aim of many nonlinear studies, regardless of the field, is to determine whether

the inclusion of nonlinear terms is even necessary for the sufficient capture of system behaviours.

Clearly, should the approximate predictions made by (cheaper) linearised analysis be satisfactory

for a given application, fully nonlinear analysis is not necessary. When this is not the case, the

objective is to i) determine how many nonlinear terms should be included, and ii) understand

how detrimental nonlinear effects can be avoided and if favourable effects can be exploited. In an

aeroelastics context, nonlinear studies often (unsurprisingly) focus on stability considerations, i.e.

the prediction of flutter and LCOs.

As touched upon in Section 2.3, in the absence of a control system, the nonlinearity in a

generic aeroelastic system can be broadly characterised as either structural or aerodynamic. The

most basic example of the latter is flow separation (dynamic stall), which leads to aerodynamic

loads that no longer linearly increase with effective angle of attack [31]. Shock waves, resulting

from transonic flows, are another physical source of aerodynamic nonlinearity [33].

Structural nonlinearity is often commonly attributed to stiffness characteristics and describes

instances where the force-deformation relationships in a structure are no longer linear. The terms

‘hardening’, ‘softening’ and ‘freeplay’ are commonly used to describe the nature of this type of

nonlinearity; this last case being characterised by the existence of a ‘dead zone’, a region where

the restoring force remains constant. A common test bed for these nonlinearities, in aeroelastics

research, comprises a single aerofoil section, constrained in heave and pitch by cubic springs,
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Figure 2.9: High-aspect-ratio wings prominent in the literature, studied by Patil
et al. [71] (left) and Tang & Dowell [74] (right).

often featuring a control surface. This simple system has demonstrated highly complex behaviour,

and is well documented by Lee et al. [34]. These local nonlinearities, which are characterised as

concentrated nonlinearities, often exist in the mechanisms for control surfaces, or in connections

to pylons, engines, or external stores etc.

In contrast to the above, the structural nonlinearity inherent in high-aspect-ratio wings is

characterised as a continuous nonlinearity. Due to their slender nature, the behaviour of high-

aspect-ratio wings can be approximated to that of a flexible 1D beam; for this type of structure,

it is well established that out-of-plane (flapwise), in-plane (chordwise) and torsional modes can

couple nonlinearly as the beam undergoes large deformations, due to a nonlinear relationship

between strain and displacement gradient [68]. The nonlinear effect is therefore evident when

the continuous wing deforms as a whole and, to reflect this, is often described as a ‘geometric’

nonlinearity. Aerodynamic nonlinearity due to stalling effects may also exist in slender wings,

and is particularly important should the twisting of the wing become very large [69]. Incidentally,

the fundamental theories that describe the structural and aerodynamic nonlinearities inherent

in high-aspect-ratio wings were both developed in the context of helicopter rotor blades.

The first significant research efforts specifically pertaining to high-aspect-ratio wings predate

the current civil industry interest. In the late 1990s and early 2000s, a series of pioneering studies

were published by Patil et al. [70–73] and Tang & Dowell [74–77], motivated by the interest

in high altitude, long endurance (HALE) aircraft, which are very light vehicles designed for

unmanned flight. The subject of these initial studies was either a numerical wing derived from a

‘Daedalus’ aircraft configuration (Fig. 2.9, left) or an experimental wing featuring a tip mass (Fig.

2.9, right). Both of these flexible wings demonstrated nonlinear phenomena and consequently

became the subject of several more recent investigations. To this day, the test data in Ref. [74]

remains the most important set of wind tunnel results pertaining to nonlinear high-aspect-ratio

wings. The findings of these early studies are of particular interest and are further discussed

later.
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2.4.1 Low-order structural modelling

The numerical treatment of high-aspect-ratio wings, in the above-mentioned studies, comprised

the use of nonlinear 1D beam equations, derived from the earlier work of Hodges & Dowell [68]

or Hodges [78]. According to the original paper from 1974 [68], the equations of motion of a

rectangular wing, without cross-sectional warping, can be written as

(2.14) EI2ν
′′′′+ (EI2 −EI1)

(
φ(w+w0)′′

)′′+mν̈+Mν̈x=L = dFν

dx
,

(2.15) EI1(w+w0)′′′′+ (EI2 −EI1)
(
φν′′

)′′+mẅ+Mẅx=L −M gδ(x−L)= dFw

dx
,

(2.16) GJφ′′+ (EI2 −EI1)(w+w0)′′ν′′+mK2
mφ̈= dMx

dx
,

where ν, w and φ are the in-plane, out-of-plane and torsional deformations, EI1 and EI2 are the

out-of-plane and in-plane bending stiffnesses, and GJ is the torsional stiffness. These equations

are not used in this thesis; however, it useful to state them here for future reference, particularly

noting that the structural nonlinearity in the formulation is dependant on the term (EI2 - EI1).

For the full definition of the other symbols, see Appendix A.1. While this formulation appears

in a number of studies [74, 76, 75, 79–81], a geometrically exact, intrinsic formulation was

subsequently developed by Hodges [78], allowing a more accurate description of large beam

deformation [70–73]; this formulation was subsequently further developed, see Ref. [82]. Another

beam formulation, developed by Crespo da Silva [83], has also been used for modelling of

high-aspect-ratio wings [3, 81]. Recent surveys of HALE aircraft, which describe a number of

frameworks for full aircraft modelling, can be found in Refs. [1, 67].

The research in this thesis is similarly conducted using low-order 1D beam models. Specifically,

the work in Chapters 4 & 5 uses the novel nonlinear beam formulation developed by Howcroft et

al. [6]. The reader is directed to Ref. [6] for comprehensive treatment; however, a mathematical

summary will be provided in Chapter 4. The fundamental approach of this method is to describe

the deformation of a slender wing using a basis of shape functions, which span the full length of

the beam, prescribing local sets of Euler angles that are defined in an intrinsic coordinate frame. A

kinematic description of a wing is thus achieved without discretising it along its span, which is in

contrast to finite-element methods; the approach is thus analogous to the Rayleigh-Ritz technique

that is ubiquitous in linear structural modelling (e.g. Ref. [14]). The main attraction of the method

of Howcroft et al. [6] is that very few structural states are required to describe a given system;

favourable computational comparisons with NASTRAN and an FE implementation of Hodges’

formulation [78] can be found in Ref. [6]. For a given test example, the Hodges formulation uses

414 states, whereas the present formulation required 15 to satisfy the same convergence criterion.

This low number of system states is well-suited for numerical continuation techniques; thus, the

use of this formulation is a key enabler for the novelty of this thesis.
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2.4.2 Low-order aerodynamic modelling

The works of Patil et al. [70–73] and Tang & Dowell [74–77] coupled low-order beam models

with a semi-empirical 2D aerodynamic model based on that of ONERA [69], which describes

finite-state unsteady aerodynamic loads in the form of ODEs and requires parameters derived

from experiment or CFD (for example, Ref. [80]). Other low-order aerodynamics models include

those described by Refs. [84] and [85]. The slender planform of high-aspect-ratio wings means

that the assumption of strip theory aerodynamics, i.e. which assumes that flow in the spanwise

direction is negligible, is a reasonable approximation; indeed, for the HALE wing, 3D effects have

been shown to be negligible, even at high static deformations [72].

The aerodynamics in this thesis are implemented using linear, quasi-steady 2D strip theory.

The ‘quasi-steady’ assumption means that the aerodynamic loading on each panel is, at any

given instance of time, the same as that on the strip with constant position and velocity [14];

thus, the loads are prescribed entirely by the states describing structural position and velocity,

and there is no need for aerodynamic states. The use of quasi-steady aerodynamics is not a

limitation of the modelling; in this thesis, it is selected for computational reasons (see Section

6.2 for discussion). The assumption of quasi-steady loads does not prohibit the investigation of

geometric nonlinearity, which is the primary aim of this research.

2.4.3 Effect of nonlinearity on flutter airspeed

An immediate point of interest, pertaining to the nonlinearity in high-aspect-ratio wings, concerns

the effect on the flutter airspeed (i.e. the oscillatory stability to small perturbations); in other

words, understanding the conditions where nonlinear analysis (comprising linearisation about

deformed equilibria, see Section 2.1.2), will predict a significantly different boundary to that from

purely linear analysis (Section 2.1.1). Ahead of addressing this question with specific findings

from the literature, it is useful to highlight the following basic observation. When the nonlinear

system (2.1.2) is linearised about the origin (i.e. x∗ = 0), the flutter result is identical to the

linear system (2.1.1), regardless of the nonlinear terms. This is obviously the case when (2.1.2)

is homogeneous (x∗ = 0 is an equilibrium for all v), but will also occur in a non-homogeneous

case if x∗ = 0 coincides with the flutter point. For example, consider a cantilevered, flexible wing

that deforms with airspeed; should this wing undergo flutter as it reaches the approximate

‘undeformed’ shape, the boundary will be very close to the linear prediction (this is observed in

Ref. [74]). Thus, the presence of strong nonlinearity, in itself, does not explicitly equate to a large

discrepancy in flutter prediction compared to the strictly linear case.

Patil et al. [71] presented an investigation into the nonlinear aeroelasticity and flight dynamics

of the HALE aircraft (Fig. 2.9, left). The linear (i.e. undeformed) flutter airspeed of the 16m

half-wing is calculated and compared to a series of nonlinear (i.e. deformed) cases where gravity

and root angle of attack α0 are non-zero. In all instances, nonlinear flutter occurs at a lower

airspeed than the linear prediction of 32.21 m/s (as can be seen in Fig. 2.10, left); a discontinuity

28



2.4. LITERATURE REVIEW FOR HIGH-ASPECT-RATIO WINGS

Figure 2.10: From Patil et al. [71]: variation of flutter airspeed with α0 (left) and
variation of wind-off structural frequencies with vertical tip displacement (right) of
the HALE wing.

is observed at α0 = 0.61◦, which is the condition that causes flutter to occur when the wing

shape is close to the planar shape. (This result is used as a basis for discussion in Chapter 4.)

A vertical tip force is applied to the wind-off, undeformed wing to illustrate how the structural

frequencies change with out-of-plane deformation (Fig. 2.10, right). The torsion and in-plane

modes (which, critically, gain components from one another as the wing deforms) significantly

vary as tip displacement increases, and this is the direct cause for the detrimental flutter results;

the original torsion mode lowers to become close to the 2nd out-of-plane bending mode, and thus

the critical modal interaction that causes flutter occurs at a lower airspeed.

Another study by the same authors [70] further investigated the HALE wing, but for two

variations of in-plane bending stiffness, specified such that the (wind-off) in-plane frequency

is placed above/below the torsional frequency respectively. In both cases, the higher-frequency

mode increases with deformation and the lower-frequency mode decreases. In both cases, the

flutter airspeed is below the linear result (a reduction of almost 50% is seen from the stiffer case).

As with the previous study, this is attributed to the critical combination of the torsion/in-plane

modes. Results from a ‘curved beam’ linear analysis show good agreement with the fully nonlinear

case, demonstrating that the deformed shape is the dominant factor for flutter. A study by Patil

& Hodges [72], which was completed around the same time but published a few years later,

demonstrates that the detrimental flutter results in Ref. [70] are also obtained using a higher

fidelity 3D aerodynamic model.

A paper published by Tang & Dowell [76] similarly focuses on the HALE wing. Specifically,

it investigates whether the physical means by which a deformed equilibrium is created affects

the flutter result. Static deformation is produced via four different means: i) a tip mass with
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inertial and gravity effects, ii) a tip mass with gravity effects only (i.e. a vertical force), iii) a

‘manufactured’ out-of-plane pre-curvature (similar to the 1st bending mode) and iv) a non-zero

α0. It is shown that the flutter airspeed is not sensitive to cause of deformation; in each of these

cases, the boundary is seen to decrease with tip displacement, and the general trend appears

consistent. (Note that, since only the tip deflection is shown, it is possible that the full spanwise

deformations were different, which could explain any discrepancies.)

Importantly, Tang & Dowell [76] commented on the significance of the ratio between the in-

plane and out-of-plane stiffnesses, EI2/EI1. When this ratio is set to unity, the nonlinearity in the

Hodges & Dowell formulation (2.14-2.16) disappears, and thus, structurally, the system is linear.

This observation is used as the basis for estimating the deformation necessary for nonlinearity

to be effective, i.e. the approximate tip deformations required for the nonlinear stiffness terms

to have similar magnitude to the linear terms. For the 16m HALE wing, where EI2/EI1 = 200,

these are estimated to be 0.7m vertical displacement and 4.6◦ twist. The experimental wing (Fig.

2.9, right) was then introduced by Tang & Dowell [74]. This wing has length 0.4508m and chord

0.0508m (aspect ratio = 9) and features a slender body attached to the tip, the purpose of which

is to sufficiently reduce the torsional frequency so that flutter interactions are achieved at wind

tunnel airspeeds. Nonlinear flutter boundaries are predicted/measured for a series of α0, and

in both the experiment and the modelling, the lowest airspeed occurs between α0 = 1.0◦-1.2◦,
which is where the wing is close to the undeformed (i.e. linear) condition. Thus, the effect of

nonlinearity in this wing is to increase the flutter point, which is opposite to case of the HALE

wing. The flutter interaction for this wing similarly comprises a torsional/in-plane mode and the

2nd out-of-plane bending mode. For this test wing, EI2/EI1 = 44.05, which is substantially lower

than the HALE wing, thus the effects structural nonlinearity caused by deformation should be

weaker.

More recently, a study of the HALE wing by Afonso et al. [86] shows that varying torsional

stiffness GJ produces interesting results for flutter; for higher GJ, the flutter airspeed increases

as the tip displacement increases, while for lower GJ the opposite is true, as the boundary

decreases with tip displacement. This difference is attributed to a change in flutter mode. In the

same paper, sweep and dihedral effect are shown to not greatly affect the boundary. An additional

paper [87] compares the flutter boundaries predicted for deformed equilibria computed by both

linear and nonlinear beam methods; there is a discrepancy between the two, which is observed to

increase with the aspect ratio of the wing. Here, the linear equilibria results are shown to predict

lower boundaries than the nonlinear equilibria.

From the above discussions, it is evident that, while the flutter airspeed of a high-aspect-ratio

wing is sensitive to static deformation, the exact effect of nonlinearity (i.e. whether it compromises

the boundary or not) is highly dependant on the flutter characteristics of the particular system,

i.e. the structural modes that critically interact. Should these modes become closer as the wing

statically deforms (as is the case for the HALE wing), the effect is detrimental, however this may
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not always occur, depending on the stiffness properties and their sensitivity to the geometric

nonlinearity. It should be noted, at this stage, that one solution could be to design a high-aspect-

ratio wing such that an ‘undeformed’ shape is achieved in-flight during cruise condition (for

example, using a manufactured downwards-curvature or decreased EI1). While this may enable

more accurate flutter prediction, there are a few practical problems with this approach, as ground

clearance during taxi, take-off and landing may be not guaranteed, and stability in off-design

flight conditions may be detrimentally affected.

2.4.4 Existence of limit cycle oscillations

There is substantial evidence of high-aspect-ratio wings demonstrating LCOs in the literature; in

the vast majority of cases, these are obtained using numerical integration (i.e. time histories).

However, similarly to Section 2.4.3, it is useful to first make some basic observations before dis-

cussing specific results. Revisiting the definition of the Hopf bifurcation (Section 2.2.2), provided

the transversality and non-degeneracy conditions are met, a solution of closed orbits will always

emanate from the flutter point of an aeroelastic system. Further to this, on physical grounds, a

stable solution can exist at some airspeed, regardless of the Hopf criticality10. Thus, the existence

of LCOs is dependant on i) whether the genericity conditions are met and, if they are, ii) whether

the resulting amplitudes are within survivable bounds, if the system is a real-life system.

A brief point can be made about when the non-degeneracy Hopf condition fails (i.e. when

l1 = 0). In this case, near the equilibrium, the system is topologically equivalent to the linear

system, and thus there is no smooth LCO solution. A simple example of this can be constructed

by combining a linear structural model with a piecewise lift function (for example, setting the

ratio EI2/EI1 = 1 in formulation (2.14 - 2.16), and using CL = 2πα for α<αstall and CL = Cmax
L for

α≥αstall). In the absence of any nonlinearity at the equilibrium, the local behaviour is precisely

that of the linear system within the limits of the stall angle, but is bounded beyond this. The

LCO solution is discontinuous in this case; an example of this can be found in Ref. [79]. Generally

speaking, in any aeroelastic system, if aerodynamics are assumed ~linear at the flutter condition,

which is not unreasonable, it follows that the criticality of the Hopf is determined by the effects

of structural nonlinearity. Thus, should EI2/EI1 be close to unity, the Hopf will be near the

degenerate case and LCO amplitude will grow rapidly with airspeed. This generalisation becomes

less valid the closer the equilibrium condition gets to stall, which could occur if a given wing

is particularly torsionally flexible. Of course, as previously discussed, Hopf criticality does not

characterise all of the possible LCO solutions.

Patil et al. [73] presented a dedicated study to the existence of LCOs in the HALE wing. Here,

the wing is disturbed from an undeformed equilibrium at various airspeeds above and below

the linear flutter airspeed, which is the same airspeed as in Ref. [71]. At supercritical airspeeds,

10At zero airspeed, an LCO cannot exist, so the unstable solution emanating from a subcritical Hopf bifurcation
will often undergo a periodic fold bifurcation (see Section 2.2.3).
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Figure 2.11: LCO hysteresis in an experimental wing (from Tang & Dowell [74]).

small disturbances are shown to grow exponentially, initially, before becoming bounded. In some

cases, the time history is complex and has chaos-like characteristics. Importantly, however, larger

disturbances (e.g. 2m vertical tip displacement) at subcritical airspeeds are also seen to result in

stable LCOs. Moreover, the size of initial disturbance required to produce subcritical LCOs is

seen to decrease as airspeed increases. In all cases, the tip twist is seen to exceed ±20◦, indicating

that the dynamics are, at least in part, due to aerodynamic nonlinearity. LCOs of the HALE wing

are similarly reported in Ref. [76].

Significantly, the wind-tunnel test conducted by Tang & Dowell [74] also revealed subcritical

LCOs. When the system is tested at an airspeed just beyond the nonlinear boundary, the wing

enters into a large amplitude LCO; when the airspeed is subsequently reduced, the LCO ampli-

tude also decreases but does not disappear at the flutter airspeed (as shown in Fig. 2.11). This

hysteresis also appears in the numerical modelling of the test wing, which obtains LCO behaviour

using time histories. The hysteresis is shown to disappear when the nonlinear aerodynamics are

removed from the model; however, it should be noted that this appears to contradict a separate

observation made of the exact same test case [80]. Regardless, the phenomenon is reported to

be dependent on "a delicate balance between stall aerodynamics and the structural nonlinear

forces". A follow-up study by the same authors [75] describes use of the harmonic balance method

to obtain the same LCO solutions.

LCOs of the test wing from Ref. [74] were subsequently the focus of a publication by Stanford

& Beran [79]. In this numerical study, the structural equations (2.14-2.16) are used, and the

method of multiple scales is used to derive a term, β2r, which quantifies the criticality of the Hopf

bifurcation at flutter. Four combinations of structure/aerodynamic nonlinearity are subsequently

investigated, for variations of EI2/EI1: i) nonlinear structure with piecewise linear CL, ii)

nonlinear structure with smooth nonlinear CL, iii) linear structure with piecewise linear CL and
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iv) linear structure with smooth nonlinear CL. In case i), the Hopf is always subcritical, apart

from when EI2/EI1 = 1; the Hopf is always supercritical for case iv). The most insightful result is

shown for case ii); here, the Hopf is supercritical for low EI2/EI1, but becomes subcritical when

EI2/EI1 exceeds ~35. In this case, when the structural nonlinearity is weak, the smooth stalling

effect of the aerodynamics dominates the criticality; however, as the structural nonlinearity

increases, the subcritical influence evident in case i) starts to dominate. (This suggests that, for

the nominal test wing where EI2/EI1 = 44.05, the Hopf bifurcation is reasonably close to the

degenerate case; see Fig. 2.6.) The quantity β2r is subsequently used, together with the flutter

airspeed, as the objective in a series of optimisations, where derivatives for both flutter airspeed

and β2r are calculated for variable inertia and stiffness (spanwise) distributions. It is shown that

flutter airspeed and Hopf criticality are conflicting objectives for this particular wing.

Further numerical investigation of the experimental wing was undertaken by Arena et al. [88];

here, a newly-developed beam formulation is coupled with the Beddoes-Leishman aerodynamic

model [85], and time histories are used to demonstrate LCOs occurring beyond the flutter airspeed.

The dynamic stall model is compared with unsteady and quasi-steady linear aerodynamics; quasi-

steady is shown to be the least conservative of the three models. Zhang & Xiang [89] studied a

configuration of the HALE wing with anisotropic composite material properties and similarly

used time histories to obtain LCOs; here, a response is observed in which the wing tip does not

exceed the stall angle and thus the LCO is attributed to structural nonlinearity in this case.

Studies by Kim & Strganac [90] and Strganac et al. [3] demonstrate LCOs for different

high-aspect-ratio wings. The first of these focusses on the nonlinearity induced by an external

store, however the second investigates a slender ‘SensorCraft’ UAV wing, using the numerical

continuation software AUTO to explore the dynamics. An interesting observation is made re-

garding the parameter βη, which is equivalent to the stiffness ratio EI2/EI1 in the Hodges &

Dowell formulation above; the subcriticality of the Hopf bifurcation at the flutter point is found

to be dependant on the inclusion of the βη in the nonlinear beam formulation. When this term

is removed, the Hopf is supercritical, and it is concluded that criticality is explicitly linked to

a nonlinear stiffness term that couples out-of-plane bending and torsion. More generally, the

observation underlines the important role that the stiffness ratio EI2/EI1 plays in the dynamics.

2.5 Summary

A summary of the key themes of Chapter 2 is as follows.

• Aeroelastic flutter is the condition where a tiny perturbation to a static aeroelastic equilib-

rium (i.e. a solution where aerodynamic, elastic and inertial loads are all balanced) leads to

an oscillation that does not decay. The flutter mode is the mode of the aeroelastic system

that loses stability; it comprises the interaction of flexible structural modes with the airflow.
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• In a nonlinear aeroelastic system, the flutter point is defined by the existence of a complex-

conjugate pair of eigenvalues, with zero real part, within the linearised system. If a

nonlinear system does not deform with airspeed, the flutter airspeed is determined by

the linear part of the system. Provided a number of genericity conditions are satisfied, a

Hopf bifurcation occurs at the flutter point, which prescribes a smooth solution of finite

amplitude limit cycle oscillations (LCOs) that exist near the equilibrium.

• The type of the Hopf bifurcation at the flutter point determines whether the LCO solutions

emanate above or below the flutter airspeed.

• Evidence in the literature shows that the geometric nonlinearity inherent in deformed

high-aspect-ratio wings can lead to significantly different flutter results compared to linear

(i.e. undeformed wing) predictions. LCOs have been observed in high-aspect-ratio wings

(including at undesirable, subcritical airspeeds), which have been closely linked to geometric

nonlinearity.

• Numerical continuation techniques, which comprise path-following, predictor-corrector

methods, can be used obtain the parameter-dependant dynamics (i.e. the equilibria and

LCOs) of a nonlinear dynamical system, and do not rely on time histories. Numerical

continuation techniques have been seldom used for analysing the nonlinear dynamics of

high-aspect-ratio wings.
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3
HOPF BIFURCATION CRITICALITY

This chapter discusses how the criticality of a Hopf bifurcation, which occurs at the flutter
point of a nonlinear aeroelastic system (e.g. a flexible, high-aspect-ratio wing), can be related to
structural nonlinearity. An analytical method is combined with numerical continuation and a
physical discussion to demonstrate how, for a 2 DoF nonlinear flutter wing model, the modal
properties of the linearised aeroelastic system are linked to Hopf criticality.

3.1 Introduction

The discussions in Chapters 1 & 2 established that, given the industry trend towards flexible,

high-aspect-ratio wings, nonlinear dynamical phenomena resulting from geometric nonlinearity

should be better understood. Section 2.4 described how, in both numerical and experimental

studies of high-aspect-ratio wings, limit cycle oscillations (LCOs) have been found to exist below

the classical flutter airspeed. LCO behaviour is typically obtained using numerical integration,

i.e. via the generation of time histories; such an approach is cumbersome in practice, as many

simulations may be necessary for all possible behaviours to be detected.

As discussed in Section 2.1.2, provided some genericity conditions are satisfied, the flutter

point of a nonlinear aeroelastic system (that describes e.g. a flexible, high-aspect-ratio wing

with geometric nonlinearity) coincides with a Hopf bifurcation. From this bifurcation point, a

smooth solution of LCOs emanates, for either increasing or decreasing airspeeds. The former

case is called a supercritical Hopf bifurcation, whereas the latter is called a subcritical Hopf

bifurcation. In the supercritical case, the LCOs are stable to small perturbations, whereas in

the subcritical case, they are unstable. While these two bifurcations respectively have clear

desirable and undesirable characteristics, particularly when compared to the linear outcome,

the underlying physical mechanisms that differentiate them have not been well researched. In
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previous studies, the criticality of a Hopf bifurcation in a nonlinear flutter context is usually

obtained via purely analytical or numerical means, without focus on the physical characteristics

(for example, see Refs. [79, 55]).

The aim of this chapter is to combine theoretical and physical approaches to obtain a better

insight into the drivers of Hopf criticality in flexible, high-aspect-ratio wings. This will be

achieved by investigating a simple, 2 degree-of-freedom (DoF) binary flutter wing model, with

cubic structural nonlinearity, using numerical continuation (see Section 2.3). As with all other

work in this thesis, no stall effects are modelled; the aerodynamics close to the equilibrium are

thus assumed linear, so the criticality of the Hopf bifurcation is solely prescribed by nonlinearity

in the structure.

3.2 Analytical discussion

In generic nonlinear dynamical systems, the criticality of a Hopf bifurcation is directly related to

the behaviour very close to the equilibrium. This section provides an overview of this concept,

specifically applied to an aeroelastic flutter context, and applies an established analytical criterion

to a 2 DoF flexible wing model with parameterised nonlinearity. The results from this example

are then compared to one-parameter continuation of LCO solutions of the system, and forms the

basis for a physical discussion of the phenomena in Section 3.3.

Consider the general, parameterised nonlinear dynamical system

(3.1) ẋ = f (x, v),

where x ∈ Rn and v ∈ R is a smooth parameter (e.g. airspeed). Recall, from Chapter 2, that

linearisation about a static equilibrium x∗ is only valid if said equilibrium is hyperbolic, i.e.

Re (λ1..n) 6= 0. Should there exist any critical eigenvalues with zero real part, λc, the dynamics

predicted by linearisation are not topologically equivalent to those of the nonlinear system and,

if all non-critical λ are stabilising, the overall stability of x∗ is determined by the nonlinear

dynamics of (3.1) restricted to the invariant local centre manifold, W c. At the precise equilibrium,

W c is tangential to the linear manifold Ec, which is prescribed by the critical eigenvector νc (i.e.

the flutter mode) of the linearised system (this linear manifold was illustrated in Fig. 2.3).

At the flutter point in a nonlinear aeroelastic system, the critical eigenvalues comprise a

complex-conjugate pair (i.e. λc =±iω0), and thus W c is 2D. Figure 3.1 illustrates the two generic

scenarios that can exist at this critical condition, which correspond to supercritical and subcritical

Hopf bifurcations respectively. As per the definition of flutter (see Section 2.1.2), all non-critical

eigenvalues are stabilising and so all trajectories x(t) near x∗ tend to W c; in the supercritical

case (a), a decaying oscillation exists, which very slowly converges to the equilibrium, whereas in

the subcritical case (b), a slowly divergent oscillation exists. Therefore, the equilibrium is stable

in (a) and unstable in (b).
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Im
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all other λ

W c

x(t)
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all other λ

W c

x(t)a b

x∗ stable x∗ unstable

Figure 3.1: Generic illustrations of the 2D centre manifold, at the flutter point, for
a (a) supercritical and (b) subcritical Hopf bifurcation. All non-critical eigenvalues
are stabilising.

As shown by Kuznetsov [7], the dynamics of the parameterised system (3.1), undergoing

a generic Hopf bifurcation, when restricted to the critical centre manifold, are topologically

equivalent to the complex normal form

(3.2) ẇ = (µ+ iω) w+ l1w|w|2,

where w ∈ C is a complex variable and µ ∈ R is a smooth parameter. The scalar coefficient of

the cubic terms, l1, is called the first Lyapunov coefficient and determines the criticality of the

bifurcation; for l1 < 0, the nonlinearity is stabilising, whereas for l1 > 0 it is destabilising. Note

that this expression is also topologically equivalent to the Hopf normal form shown in Section

2.2.2.

Adopting the notation where 〈◦, •〉 corresponds to the complex dot product ◦̄ᵀ•, a generalised,

analytical expression for l1 can be written as

(3.3) l1 = 1
2ω0

Re
〈

p, C(q, q, q̄) − 2B
(
q, A−1 B(q, q̄)

)+B
(
q̄, (2iω0I − A)−1 B(q, q)

)〉
,

see [7], where p and q are complex eigenvectors defined by

(3.4) Aq = iω0q, Aᵀp =−iω0 p, 〈p, q〉 = 1,

and where B and C are bilinear/trilinear functions of the second and third Jacobian tensors (J2

& J3, evaluated at u∗) and are given by

(3.5) Bi(p, q)=
n∑

j,k=1

∂3 f i(x,v)
∂x j∂xk

p j qk, Ci(p, q, r)=
n∑

j,k,l=1

∂3 f i(x,v)
∂x j∂xk∂xl

p j qkr l .

where f i corresponds to the ith row of (3.1). See also Govaerts et al. [32]. When l1 < 0, the Hopf is

supercritical, whereas when l1 > 0, the Hopf is subcritical. For instances where l1 = 0, the result

37



CHAPTER 3. HOPF BIFURCATION CRITICALITY

is referred to as a degenerate or generalised Hopf or a Bautin point, and the local behaviour of

the system may be dependant on nonlinearities of 5th order and above [32]. As demonstrated in

Chapter 4, a 1D locus of Hopf points can be obtained in a given system if two parameters are free

to vary (in this example, these were airspeed and stiffness); should a degenerate Hopf (l1 = 0)

exist within this set of bifurcation points, this indicates that a change of flutter criticality occurs.

The location of this degenerate bifurcation is not only interesting from a design standpoint,

but also from a fundamental perspective that seeks to understand the underlying phenomena

determining criticality.

The use of formula (3.3) has several benefits over alternative analytical approaches; for

example, it can be directly implemented without performing any coordinate transforms on

(3.1). Methods that seek to approximate the surface W c require a change of basis into Jordan

form; see [7]. In general, however, the rapid evaluation of l1 is only feasible for very low-order

systems; obtaining J2 and J3 for complex systems is typically not straightforward, and the

overall calculation may be cumbersome if it is dependant on numerical approximations (e.g.

finite-difference derivatives). Thus, more practical methods for predicting Hopf criticality in

real-life engineering systems are highly desirable, particularly in the early stages of design where

the investigation of vast areas of parameter space is useful. For particular systems, however, use

of (3.3) is achievable, as is demonstrated in Section 3.2.1.

3.2.1 2 DoF binary flutter wing (with trivial equilibria)

The analytical criterion described in Section 3.2 is now applied to a simple, 2 degree-of-freedom

(DoF) nonlinear model of a flexible wing. This system is based on the two-mode approximation

binary flutter wing model used in Wright & Cooper [14] (Chapter 10 of the textbook), which

uses a single shape function for each of the out-of-plane bending and torsional deformations.

Originally used to demonstrate linear binary flutter, the model is extended in the present study

to include nonlinearity in the structural part of the formulation. The nominal wing parameters

used here are identical to those in the original text. The 2 DoF flutter binary flutter wing model,

including structural nonlinearity, can be expressed as

(3.6)

[
üb

üt

]
=−A−1 (

ρvB+D
)[u̇b

u̇t

]
− A−1 (

ρv2C+E
)[ub

ut

]
+

[
γbu3

b
γtu3

t

]
,

where v is airspeed, and

A = m


sc
5

s
4

(
c2

2
− cx f

)

s
4

(
c2

2
− cx f

)
s
3

(
c3

3
− c2x f + x f c2

)
 , B =


cs
10

aw 0

− c2s
8

eaw − c3s
24

Mθ̇

 ,
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C =


0

cs
8

aw

0 − c2s
6

eaw

 , D =
[

d 0

0 d

]
, E =


4EI
s3 0

0 −GJ
s

 .

The various symbols shown above are defined in Table 3.1, along with their nominal values. Note

that the bending and torsional DoFs are described by a quadratic and a linear assumed shape,

respectively (see illustration in Fig. 3.2).

Table 3.1: Nominal 2 DoF binary flutter wing parameters.

Parameters from Ref. [14]

Wing
Semi-span (s) 7.5 m
Chord (c) 2 m
Elastic axis (x f ) 0.48c
Mass axis (x f ) 0.5c
Mass per unit area (m) 200 kg/m2

Out-of-plane stiffness (EI) 2×107 N m2

Torsional stiffness (GJ) 2×106 N m2

Lift curve slope (aw) 2π
Pitch damping derivative (Mθ̇) -1.2
Air density (ρ) 1.225 kg/m3

Additional parameters

Structural damping factor (d) 0
Bending nonlinearity coefficient (γb) 0
Torsion nonlinearity coefficient (γt) 0

v

Bending Torsion

v

Figure 3.2: 2 DoF binary flutter wing model.

The second order system (3.6) can be expressed as

(3.7)

˙
ub

ut

u̇b

u̇t

=


u̇b

u̇t

−A−1 (
ρvB+D

)[u̇b

u̇t

]
− A−1 (

v2C+E
)[ub

ut

]
+


0

0

γbu3
b

γtu3
t

 ,
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which, after defining x ∈R4 = (
ub ut u̇b u̇t

)ᵀ and parameterising in terms of airspeed, may be

written in the general first order form

(3.8) ẋ = f (x, v) = A(v) x+G(x3).

The nonlinear part can be written as

(3.9) G(x3, γb, γt)=
(
0 0 γb u3

b γt u3
t
)ᵀ,

noting that the parameters γb, γt ∈ R are the coefficients of the nonlinear terms. These terms

comprise uncoupled cubic stiffness terms, which may be described as hardening (γb,t < 0) or

softening (γb,t > 0). As will be shown, there is a direct relationship between these stiffness terms

and the criticality of the Hopf bifurcation occurring at the flutter point of the system.

The 2 DoF nonlinear system described by (3.8) is homogeneous, and thus has a trivial (i.e.

undeformed) equilibrium, x∗ = 0, at all airspeeds. Therefore, the location of the flutter point is

entirely prescribed by the linear part of the system, A(v), and all Hopf points occur at x∗ = 0.

Given this, and exploiting the fact that the nonlinearity in the system is cubic only, the general

expression for l1 (3.3) can be reduced to

(3.10) l1 = 1
2ω0

Re
〈

p, C(q, q, q̄)
〉

,

as all elements of J2 are equal to zero, which from (3.5), leads to B = 0. Furthermore, only two

elements of J3 are nonzero, i.e.

(3.11)
∂3 f3(x,v)
∂x1∂x1∂x1

= 6 and
∂3 f4(x,v)
∂x2∂x2∂x2

= 6.

With symbolic manipulation, this allows (3.10) to be reduced to

(3.12) l1 = 1
2ω0

Re
[
γb p̄3 q2

1 q̄1 +γt p̄4 q2
2 q̄2

]
,

which may be expressed in the form

(3.13) l1 = 1
2ω0

(
lb γb + l t γt

)
,

where

lb = 6
(
q3

1Re
p3Re + q3

1Im
p3Im + q1Re q2

1Im
p3Re + q2

1Re
q1Im p3Im

)
,

l t = 6
(
q3

2Re
p4Re + q3

2Im
p4Im + q2Re q2

2Im
p4Re + q2

2Re
q2Im p4Im

)
,

(3.14)

where ◦iRe =Re (◦i) and ◦iIm = Im (◦i). Given this, the implicit linear curve

(3.15) lb γb + l t γt = 0
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therefore describes the set of generalised Hopf points (i.e. where l1 = 0) for variations in γb and

γt, and thus defines the regions where the bifurcation is supercritical (l1 < 0) and subcritical

(l1 > 0).

For the nominal wing parameters (Table 3.1) the flutter airspeed v f is found to be 82.22 m/s,

where (3.4) gives p = [-1.3433−1.1262i, 0.6837+13.8674i, 0.0358−0.0988i, -0.5664+0.0491i]ᵀ

and q = [-0.0024+0.0173i, 0.0000+0.0370i, -0.4221−0.0584i, -0.9038+0.0000i]ᵀ. Using (3.14), the

quantities lb and l t at this condition are thus computed as -3.285e-6 and 1.499e-5 respectively.

From the different signs of these values, and using (3.15), it is evident that the nonlinearity

prescribed by γb and γt have opposing effects on Hopf criticality; for the case where γb < 0 and

γt = 0 (bending is hardening), l1 > 0 (subcritical), whereas for γb > 0 and γt = 0 (bending is

softening), l1 < 0 (supercritical). These relationships are reversed when γb = 0 and γt 6= 0. Clearly,

l1 vanishes when γb, γt = 0, as the system is purely linear.

Figure 3.3 shows the one-parameter numerical continuation of LCO solutions for a number of

mixed nonlinear cases, where both γb, γt 6= 0 and so both cubic terms in (3.9) are active; in each

case, the max. & min. of the LCO solutions in ub are shown. From the direction and stability of

the solutions, cases (a) and (b) reveal subcritical and supercritical Hopf bifurcations respectively,

as expected. Cases (c) and (d) are specifically placed close to the implicit curve (3.15); the solutions

for these cases show that the bifurcations are closer to the degenerate case1, as expected.

From equation (3.14), it is clear that when γb and γt are fixed, l1 is only dependant on p and

q, i.e. the normalised critical and adjoint eigenvectors of A(v). Thus, the linear flutter mode νc

(i.e. the aeroelastic mode that loses stability) directly prescribes how the nonlinear terms γb, γt

affect the criticality of the Hopf point of (3.8).

3.2.2 2 DoF binary flutter wing (with nontrivial equilibria)

Briefly, consider a case where an additional general term, independent of x but dependant on v,

extends the nonlinear system (3.8) to

(3.16) ẋ = A(v) x+G(x3)+H(v,α0),

where α0 ∈R corresponds, for example, to the root angle of attack of the wing. The system is no

longer homogenous, and thus provided both v and α0 6= 0, now has nontrivial equilibria (i.e. the

wing now statically deforms with airspeed). Therefore, the nonlinear terms are now exercised

within the equilibria solutions, and thus x∗ and v f both vary with {γb, γt}. Due to this, B 6= 0 in

(3.3), and the complete expression must be used for the calculation of l1. However, as will become

evident in the next section, a change in criticality due to nontrivial equilibria is only expected if

the deformation is sufficiently large to cause a significant change in the structural properties of

the wing.

1A degenerate Hopf would be indicated by a vertical LCO solution.
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Figure 3.3: One-parameter continuation of LCOs, for varying airspeed, for 2 DoF
wing when {γb, γt} = (a) {−0.2e5,−0.1e4}, (b) {−0.4e5,−1.5e4}, (c) {0.82e4,−1.7e4}
and (d) {0.77e4,1.8e4} (varying cubic coefficients). In all cases, lb = −3.285e-6 and
l t = 1.499e-5.

3.3 Physical discussion

The opposing effects of γb and γt on Hopf criticality, shown in Fig. 3.3, can be interpreted using

some physical insight of the aeroelastic system. Recall, from Section 2.2.1, that finite amplitude,

self-sustained oscillations (i.e. LCOs) are the result of critical modal interactions intermittently

occurring during the time-varying deformation of a wing [30]. Near the equilibrium, at the flutter

condition, provided the local aerodynamics are linear (which is the case for 2 DoF binary flutter

wing, but also applies generally if a wing is not stalled), any change to the critical interaction is

caused by nonlinearity in the structure.

Consider the case where the flutter point of (3.8) is supercritical. In this instance, the

amplitude of the resulting stable LCO solution grows smoothly for v > v f (e.g. see Fig. 3.3, cases

b & d). At the critical airspeed (v = v f ), the LCO amplitude is precisely zero and, as illustrated in

Fig. 3.1 (a), the equilibrium x∗ is nonlinearly stable on the centre manifold W c. Now, for this to

occur physically, the critical flutter interaction that, by definition, exists at x∗, must necessarily
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decrease when the system is perturbed on W c. In subcritical cases, where x∗ is nonlinearly

unstable at v = v f (Fig. 3.1, b) the opposite is true, i.e. the interaction must necessarily increase
when the system is perturbed on W c. If the structural nonlinearity has no effect, the flutter

interaction is unchanged, and the amplitude of oscillation is constant, as is expected in the linear

or degenerate Hopf case.

The bending and torsional DoFs in system (3.8) are coupled by both inertial and aerodynamic

terms; this is evident from the full aeroelastic formulation shown in (3.6), which contains off-

diagonal terms in matrix A. At any given airspeed, the system modes of (3.8), which are defined

by the eigenbasis ν1, ν2 ∈Cn (i.e. the eigenvectors of A), comprise components of both bending

and torsion; let these constituent deformations be referred to as the structural ‘modes’ that are

present within the system modes. Define ωb, ωt ∈R as the natural frequencies of the bending and

torsional components of the flutter mode νc, respectively; therefore, at the equilibrium at the

flutter point, the frequency difference

(3.17) δωc = |r1ωb − r2ωt|

must be sufficiently ‘small’ such that a critical flutter interaction, with ratio r1/r2, exists between

the two structural modes and the airflow. The nonlinear stability of the equilibrium, and thus the

criticality of the flutter point, is determined by how this difference varies as the wing deforms on

W c; should it increase, the structural modes become less effectively coupled, and the equilibrium

is stable (supercritical Hopf), whereas if it decreases, the modes become more efficiently coupled,

and the equilibrium is unstable (subcritical Hopf). If the difference is unchanged, the result

is a degenerate Hopf. Clearly, the variation of δωc is determined by the relative effect of the

nonlinearity (which is prescribed by γb and γt) on the frequencies ωb and ωt when the system is

perturbed. This variation is obviously dependant on the softening/hardening effect of γb and γt,

but also (importantly) on the relative ordering of ωb and ωt, as will soon be discussed.

While the variation of (3.17) cannot be obtained explicitly, an implicit indication can be found

using the two system modes of (3.8) at the flutter point. Figure 3.4 shows the variation of the

system modes of (3.8), for increasing airspeed, where the flutter airspeed is indicated by the

vertical dashed line at 82.22 m/s. The colouring of the modes in Fig. 3.4 is derived from the

mode shapes (i.e. the eigenvectors ν1, ν2 converted to Rn), where red = bending and green =

torsion. Since (3.8) is homogeneous, the variations shown in Fig. 3.4 are entirely prescribed by

the linear part of the system, and are not affected by γb or γt. Figure 3.4 (left) shows that, at

the flutter point, the modes are bending-dominated and torsion-dominated, respectively, and

have frequencies of 2.89 Hz and 3.88 Hz (the latter being the flutter mode); thus, ωt >ωb in this

instance.

First, consider the two generic nonlinear scenarios where only a single cubic term is nonzero,

i.e. the cases where {γb 6= 0,γt = 0} or {γb = 0,γt 6= 0}. For the latter case {γb = 0,γt 6= 0} (nonlinear

torsion), the active cubic term u3
t clearly has a greater effect on ωt relative to ωb. Now, since

ωt >ωb at this flutter condition, the frequency difference δωc therefore increases as ωt increases,
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Figure 3.4: Variation of system modes, for varying airspeed, for 2 DoF wing
(coloured according to mode shape, where red = bending, green = torsion). Ver-
tical dashed line indicates flutter airspeed.

and decreases as ωt decreases. Thus, if γt < 0 (hardening), δωc increases, whereas if γt > 0

(softening), δωc decreases; these correspond to supercritical and subcritical Hopf bifurcations,

respectively. For the other scenario, where {γb 6= 0,γt = 0} (nonlinear bending), the opposite

relationships are now true; the active u3
b term more greatly affects ωb (the lower frequency), and

thus δωc decreases when ωb increases, and vice versa.

The basic relationships described above are in agreement with the numerical calculations

of lb and l t in Section 3.2.1, which showed that hardening-bending or softening-torsion led to a

subcritical Hopf, and softening-bending or hardening-torsion led to a supercritical Hopf. For the

more general case, where both cubic terms u3
b, u3

t are active, i.e. {γb 6= 0,γt 6= 0}, the criticality is

more dependant on the composition of the flutter mode. Given that νc is torsion-dominated in

this case (Fig. 3.4, right), and recalling that the centre manifold W c is tangential to the linear

manifold of νc, the criticality has a greater sensitivity to u3
t than to u3

b, so γt is more dominant

than γb. This is evident from Fig. 3.3, and because l t > lb, which from (3.13) means that l t has

greater influence on the the Lyapunov coefficient, l1.

The general applicability of using the system modes for an indication of Hopf criticality

can be demonstrated using a simple time history at a non-critical airspeed (i.e. where v 6= v f ).

Figure 3.5 shows an example response for the case {-1e5, 1e5} for v = 90 m/s; note that the Hopf

is subcritical in this case (Fig. 3.3). Here, ut is compared with the time-varying δω, which is

defined as the frequency difference between the system modes, |ω1 −ω2|. In the initial part of the

response (a), the phasing is such that the maxima of δω coincide with ut = 0, and the minima
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of δω coincide with the maxima/minima of ut. Thus, the interaction is increasing as the wing

deforms, further destabilising the motion, which is as expected for a subcritical case. In part (b),

the relative phasing is seen to change (due to a change in sign of ω1−ω2), and thus in part (c) the

system is settled into an LCO, where now the minima of δω (approximately) coincide with the

maxima/minima of ut and the maxima of δω coincide with ut = 0. Thus, the interaction of the

structural modes is now reducing as the wing deforms.

Time (s)

u
t

δ
ω

a

b

c

{-1e5, 1e5}

Figure 3.5: Time history for {γb, γt} = {-1e5, 1e5} (subcritical Hopf), v = 90 m/s,
comparing ut and δω.

Given the discussions above, a pertinent question is to ask how the Hopf criticality of the 2 DoF

wing (3.8) can be changed, for fixed γb and γt, when a physical parameter of the wing is varied.

From (3.17), it is clear that any parameter that affects the relative ordering of the structural mode

frequencies, at the flutter condition, will cause such a change; this could result from two general

possibilities: i) the mode frequencies themselves vary, or ii) the solutions maintain similar

frequencies, but ‘exchange’ bending/torsional composition. In both cases, the mode frequencies

become effectively reordered; therefore, the structural nonlinearity will prescribe a different Hopf

criticality compared to the nominal case. Revisiting Fig. 3.4, it is clear that in the nominal system

(3.8), the modes do not cross over as airspeed increases, but do undergo a significant change in

composition; at ~125 m/s, for example, the torsion-dominated mode is clearly now dominated by

bending, and the bending-dominated mode has gained a larger torsion component. Thus, should
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CHAPTER 3. HOPF BIFURCATION CRITICALITY

the flutter point occur at this higher airspeed, and γb & γt are fixed, the new Hopf bifurcation

may have different criticality to the Hopf that occurs at 82.22 m/s. In Section 3.3.1, it will be

shown that this is indeed the case.

The convergence of mode frequencies as airspeed increases, shown for the 2 DoF wing (Fig.

3.4, left), is typical of an aeroelastic system that undergoes flutter, particularly if the critical

structural mode interaction comprises a 1:1 ratio. A 1:1 interaction requires the modes to be

sufficiently close in frequency; thus, given that wind-off modes are often purposely separated by

design, the convergence of two modes, with airspeed, is necessary for the interaction to occur.

Figure 3.6 shows an illustration of two generalised convergence trends that may exist, which

could both result in a different bifurcation criticality, should the Hopf occur before or after the

convergence. In case (a), the modes do not cross, but the compositions of the modes sufficiently

change, and in case (b), the modes do not change composition, but instead they cross over and

change order. Assuming the same solution loses stability in both cases, the Hopf bifurcation

occurring at v̂ f will generally have different criticality to that occurring at v f ; examples of this

will be shown throughout the rest of this chapter. If the nonlinear system in question is statically

deforming with airspeed (i.e. the case of non-trivial equilibria), additional indicators of Hopf

criticality can be found in frequency plots; this will be revisited in Section 4.7.

Airspeed (m/s)

ω

v f v̂ f

a

b
Exchange of mode shape

Figure 3.6: Generic illustration of the mode convergence that could cause change
in Hopf criticality; solid line (a) shows two modes exchanging mode compositions
without crossing, grey line (b) shows two modes crossing whilst maintaining original
mode compositions.

3.3.1 Variation of structural damping

To demonstrate how the Hopf criticality in the nominal 2 DoF wing can be changed, for fixed

nonlinearity, (3.8) is parameterised to include a nonzero structural damping term. The purpose of

this parameter is to enable the flutter point of (3.8) to be moved to a higher airspeed, without
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greatly affecting the overall frequencies and compositions shown in Fig. 3.4; thus, it allows the

boundary to be placed beyond the mode convergence, to where a change in Hopf criticality is

expected per the illustration in Fig. 3.6. Re-parameterising (3.8) to include a structural damping

term, it may be rewritten as

(3.18) ẋ = A(v, d) x+G(x3),

where d ∈R; see (3.6). Note that the nonlinear part of the system is unchanged. Figure 3.7 shows

the variation of mode frequencies and damping for (3.18), for increasing airspeed, for d = 2.5e3.

Compared to the modes of the original system (Fig. 3.4), where d = 0, the overall frequencies

and mode compositions are negligibly affected; however, the presence of structural damping has

increased the flutter airspeed to 145.21 m/s, where the flutter mode now has a significant bending

component (see Fig. 3.7, right). Thus, varying d suitably changes the airspeed of v f , without

significantly affecting the modes of the linearised system.

ω
(H

z)

ζv f

Airspeed (m/s) Airspeed (m/s)

v f

Figure 3.7: Variation of system modes, for varying airspeed, for 2 DoF wing when
d = 2.5e3 (increased from nominal).

Figure 3.8 shows the one-parameter continuation of LCO solutions, for the nonlinear case

{γb,γt} = {0, 1e3} (softening-torsion), for d = 0, 1e3, 2e3 and 2.5e3. Inspecting these solutions, it

is clear that, for this case, the subcritical Hopf bifurcation (which was the nominal outcome for

softening-torsion nonlinearity) becomes supercritical as damping increases, and the degenerate

case occurs at a value between d = 2e3 and 2.5e3 (in the airspeed region 127.3 - 145.2 m/s). Since

the nonlinearity is unchanged, this change of Hopf criticality is due to the varying modes alone.

Figure 3.9 shows the two-parameter continuation of Hopf bifurcations, for varying d and

airspeed, for the separate cases {γb,γt} = (a) {-1e3, 0} (hardening-bending), (b) {1e5, 0} (softening-
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bending), (c) {0, -1e5} (hardening-torsion), and (d) {0, 1e3} (softening-bending). The locus of

bifurcations is identical in all instances, since x∗ = 0, and show that the flutter airspeed mono-

tonically increases with d, as expected from Fig. 3.8. In each example, the secondary vertical

axis shows the variation of the Lyapunov coefficient l1, which is obtained using a numerical

implementation of expression (3.12) at each continuation step. In every case, the sign of l1

changes as d increases, indicating that the Hopf criticality changes, for every type of nonlinearity.

For the nonlinear bending cases {-1e3, 0} and {1e5, 0}, the change occurs at d = 1942.38 (125.6

m/s), whereas for the torsion cases {0, -1e5} and {0, 1e3}, it occurs at d = 2381.91 (139.4 m/s).

This discrepancy is expected, given that the critical eigenvector νc gains an increasing bending

component as d increases (the variation of δωc on W c is thus more sensitive to changes in γb).

Airspeed (m/s)

T
ip
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sp

la
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m
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t
(m

)

d = 0 (nominal)

d = 1e3 d = 2e3

d = 2.5e3

{0, 1e3}

Figure 3.8: One-parameter continuation of LCOs, for varying airspeed, for 2 DoF
when d = 0, 1e3, 2e3 and 2.5e3, where {γb,γt} = {0, 1e3} (softening-torsion).
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Figure 3.9: Two-parameter continuation of Hopf bifurcations, for varying d and
airspeed, for 2 DoF wing (l1 > 0= subcritical, l1 < 0= supercritical).

.

3.3.2 Variation of structural stiffness

Another means of affecting Hopf criticality of the 2 DoF wing (3.8) is to parametrise the system

in terms of bending and torsional structural stiffness. Unlike the structural damping parameter

used in the previous section, these stiffness parameters are intrinsically related to the structural

characteristics of the wing; their variation will more fundamentally affect the modes of the system,

which in turn affects the flutter airspeed. However, as will be shown, the general phenomena

relating to Hopf criticality are still found, and can be observed by varying either bending or

torsional stiffness. Re-parameterising system (3.18) to include these terms, it may be written as

(3.19) ẋ = A(v, d, EI, GJ) x+G(x3),

where EI, GJ ∈R are the bending and torsional stiffness parameters, respectively, with nominal

values of 2e7 Nm2 and 2e6 Nm2 (Table 3.1). The structural damping parameter from Section

3.3.1 is now fixed at d = 0.

Figure 3.10 shows the LCO solutions for the increasing bending stiffness cases EI = 2e7, 4e7

and 5e7, for the nonlinear case {0, 1e5} (softening-torsion); here, GJ is fixed at its nominal value.

The flutter airspeed can be seen to decrease as stiffness increases, and the nominal subcritical
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Hopf is supercritical at EI = 5e7. Figure 3.11 shows the solutions for the decreasing torsional

stiffness cases GJ = 2e6, 1e6 and 0.8e7, for {1e3, 0} (softening-bending), where EI is now fixed.

The flutter airspeed similarly decreases and the nominal supercritical Hopf is subcritical at GJ =
0.8e6.
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{0, 1e5}

Figure 3.10: One-parameter continuation of LCOs, for varying airspeed, for 2 DoF
wing when EI = 2e7, 4e7, and 5e7, where {γb,γt} = {0, 1e5} (softening-torsion).
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Figure 3.11: One-parameter continuation of LCOs, for varying airspeed, for 2 DoF
wing when GJ = 2e6, 1e6, and 0.8e6, where {γb,γt} = {1e3, 0} (softening-bending).

The frequencies of the modes corresponding to the cases shown in Figs. 3.10 & 3.11 are shown
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in Fig. 3.12 and Fig. 3.13, respectively, where the vertical line indicates flutter. In the first case

(Fig. 3.12), increasing EI increases the frequency of the lower mode (as expected), and thus moves

it closer to the torsion-dominated upper mode. The compositions of the modes also change; the

torsion mode gains an increasing bending component, and vice versa. At EI = 5e7, the original

bending mode is almost entirely torsion-dominated. A similar outcome is observed when, instead,

GJ is decreased (Fig. 3.13); here, the torsion mode is shifted down towards the bending mode,

although both undergo a similar change in their composition. As can be seen from the last panels

in both Figs. 3.12 & 3.13, the change in Hopf criticality coincides with when the two modes are

practically intersecting at flutter.
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v f
v f

{0, 1e5}

EI = 2e7 EI = 4e7 EI = 5e7

ω
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Airspeed (m/s) Airspeed (m/s) Airspeed (m/s)

Subcritical
Hopf

Subcritical
Hopf

Supercritical
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Figure 3.12: Variation of mode frequencies, for varying airspeed, for 2 DoF wing
when EI = 2e7, 4e7, and 5e7, where {γb,γt} = {0, 1e5} (softening-torsion).

Figure 3.14 shows the two-parameter continuation of Hopf points for varying EI and GJ,

respectively, for the case {γb,γt} = (a, e) {-1e5, 0}, (b, f) {1e3, 0}, (c, g) {0, 1e5} and (d, h) {0, -1e3}. As

in Figs. 3.12 & 3.13, bending stiffness EI is increased from the nominal value, whereas torsional

stiffness GJ is decreased; in all cases, varying the stiffness parameter therefore causes the modes

to move closer together, and initially reduces the flutter airspeed. For every case, the sign of

l1 changes, which means that for every combination of softening/hardening nonlinearity and

stiffness parameter, a change of Hopf criticality occurs due to the modes becoming closer.

The softening-torsion example of {γb,γt} = {0, 1e5} and EI = 4e7 (the middle panel of Fig.

3.12), for which Fig. 3.10 revealed a subcritical Hopf, is now investigated with nonzero structural

damping, to discover whether the criticality changes as indicated by the modes. Figure 3.15 shows

the frequencies and LCO solutions for d = 1e3; the flutter point now occurs at a higher airspeed

where the mode compositions have changed, and the Hopf is now supercritical, as expected.
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Figure 3.13: Variation of mode frequencies, for varying airspeed, for 2 DoF wing
when GJ = 2e6, 1e6, and 0.8e6, where {γb,γt} = {1e3, 0} (softening-bending).
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Figure 3.14: Two-parameter continuation of Hopf bifurcations, for varying stiffness
and airspeed, for 2 DoF wing (l1 > 0= subcritical, l1 < 0= supercritical).
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Figure 3.15: One-parameter continuation of LCOs, for varying airspeed, for 2 DoF
wing when EI = 4e7, {γb,γt} = {0, 1e5} and d = 1e3.
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3.4 Conclusions

This chapter has combined analytical and physical approaches to investigate the underlying

phenomena that govern nonlinear Hopf criticality in flexible, high-aspect-ratio wings. Using a

simple, 2 degree-of-freedom (DoF) nonlinear binary flutter wing model, it was shown that the

properties of the linearised system, specifically the convergence of the varying mode frequencies,

can be related to the criticality (i.e. the supercritical or subcritical nature) of the Hopf bifurcation

at the flutter airspeed. Given this insight, it was shown that the criticality of the flutter point

could readily be changed, via the variation of either structural damping or stiffness parameters;

the same observations were made, regardless of the parameter being varied, or the type of

softening/hardening nonlinearity. The nonlinearity in this model was easily characterised in

terms of cubic stiffness prescribed by the parameters; in more complex aeroelastic systems,

which better approximate real-life wings, the nonlinear effects cannot be expressed as explicitly,

and many more structural modes are captured. However, since classical binary flutter (i.e. a

critical interaction of two structural modes) is the most typical physical route through which

flutter occurs, it is possible that the basic observations from the 2 DoF wing may be observable

regardless of the complexity of the model. While nonlinear techniques must be used to fully

obtain the dynamics of high-aspect-ratio wings with geometric nonlinearity, this chapter has

shown how the modes of the linearised system can provide a useful indication - potentially a ‘rule

of thumb’ - of the nonlinear behaviour near the flutter point.
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4
NONLINEAR DYNAMICS OF A HIGH-ASPECT-RATIO WING

This chapter examines the nonlinear dynamics of a flexible, high-aspect-ratio wing. One-
parameter continuation is used to obtain equilibria and limit cycle oscillations (LCOs), and complex
dynamical phenomena are found to exist in the nominal system. Two-parameter continuation of
Hopf and periodic fold bifurcations reveals how the nominal dynamics change as the wing stiffness
is varied. Critically, it is shown that subcritical LCOs exist due to geometric nonlinearity alone. The
criticality of the Hopf bifurcation is then changed by varying the damping and stiffness of the wing.
Results and discussions in this chapter are partly derived from Ref. [4].

4.1 Introduction

The focus of Chapter 3 concerned the criticality of Hopf bifurcations occurring in a simple, 2 DoF

nonlinear model of a flexible wing. Whilst knowledge of Hopf criticality provides valuable insight

into wing behaviours near the bifurcation point, models that better represent real-life wings may

exhibit more complex dynamics away from the equilibrium. The presence of many structural

modes in more realistic models means that multiple flutter interactions are possible as the wing

deforms; thus, in addition to Hopf criticality, the limit cycle oscillation (LCO) solutions must be

investigated for additional bifurcations.

In this chapter, an aeroelastic formulation derived from the theory of Howcroft et al. [6]

is used to model the nonlinear dynamics of a flexible, high-aspect-ratio wing. The method of

Howcroft et al. comprises a reduced-order approach, which uses a basis of shape functions to

define sets of Euler angles that describe the deformation of a 1D beam using minimal system

states (further discussed in Section 4.2). Large deformations of the beam-like wing are thus

captured, and the re-orientation of aerodynamic load vectors, which occurs as the wing deforms,

are also accounted for.

57



CHAPTER 4. NONLINEAR DYNAMICS OF A HIGH-ASPECT-RATIO WING

In order to examine the geometric nonlinearity of the high-aspect-ratio wing alone, the beam

formulation of Ref. [6] is combined with quasi-steady, linear, strip theory aerodynamics. The

wing in question is the high altitude, long endurance (HALE) wing previously studied by Patil

et al. [71–73], which was first discussed in Section 2.4. The HALE wing has a half-span of 16m,

with an aspect ratio of 16; Fig. 4.1 shows a view of the wing in a global inertia frame, in an

arbitrary deformed equilibrium condition. One-parameter continuation will be used to directly

obtain equilibria and LCOs, for varying airspeed; the two-parameter continuation of bifurcations

(i.e. Hopf points and periodic folds) will then be used to reveal the sensitivity of these dynamics

to variations in out-of-plane, in-plane and torsional stiffness, and a ‘wash out’ stiffness coupling

parameter. As an extension to the discussion in Chapter 3, the criticality of the Hopf bifurcation

occurring at the flutter airspeed is then investigated.

Y (m)

Z (m)

X (m)

v

Figure 4.1: Visualisation of HALE wing in a global inertial frame.

4.2 Aeroelastic formulation

The aeroelastic formulation used in this chapter is based on the beam theory of Howcroft et al.

[6]; the reader is directed to this paper for rigorous derivation and for comparisons against other

low-order modelling approaches. Also, see Howcroft et al. [91, 92]. The following mathematical

summary is derived from Ref. [6]; however, some terms are simplified due to the absence of shear,

extensional effects or pre-curvature of the wing.

The formulation is based on a geometrically exact kinematic description of a 1D beam. Let

Γ[G](s) denote a reference line of length L, in coordinate frame [G], where s ∈ [0, L] is a curvilinear

spanwise coordinate, and define r̄A as shown in Fig. 4.2. Let the vectors ex(s), e y(s) and ez(s)

define the intrinsic/local coordinate frame [I] at a given spanwise location s, where e y is tangent
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to the local spanwise direction and ex and ez align with the cross sectional axis of the beam, as

shown in Fig. 4.2. Thus, the beam reference can be expressed as

(4.1) Γ[G](s)= r̄A +RG, A

∫ L

0
e y[G](s) ds,

where RG, A is defined as an arbitrary 3×3 matrix that rotates the coordinate system at the wing

root, [A], relative to [G]. In the present study, coordinate systems [G] and [A] share the same

origin, so the vector r̄A is 0.

Γ(s)

ez(s)

ex(s)
e y(s)

[A]

[G]

[I]

r̄A

X

Y

Z

Figure 4.2: Kinematic description of a flexible, high-aspect-ratio wing, showing
local coordinate frame at one spanwise discretisation point [6].

The intrinsic system [I] is defined along the beam via a 3-1-2 Euler angle parameterisation,

which is related to [A] by the mapping

(4.2) e[A] =
(

ex[A] | e y[A] | ez[A]

)

=


cos(ψ)cos(φ)+sin(θ)sin(ψ)sin(φ) cos(θ)sin(ψ) cos(ψ)sin(φ)−sin(θ)sin(ψ)cos(φ)

−sin(ψ)cos(φ)+sin(θ)cos(ψ)sin(φ) cos(θ)cos(ψ) −sin(ψ)sin(φ)−sin(θ)cos(ψ)cos(φ)

−cos(θ)sin(φ) sin(θ) cos(θ)cos(φ)

 .

The virtual work contributions from internal strain (δWK ), structural damping (δWC), applied

forces (δWF ), applied moments (δWM), translational inertia (δWT(trans.)) and rotational inertia

(δWT(rot.)) can be written as the integrals

(4.3) δWK =
∫ L

0
FK[I] ·δκ[I] ds,

(4.4) δWC =
∫ L

0
FC[I]

(
κ̇[I]

) ·δκ[I] ds,

(4.5) δWF =
∫ L

0
F[A] ·δrF[A] ds,
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(4.6) δWM =
∫ L

0
M[A] ·δϑ[A] ds,

(4.7) δWT(trans.) =
∫ L

0
− d

dt
(
mṙm[A]

) ·δrm[A] ds,

(4.8) δWT(rot.) =
∫ L

0
− d

dt

(
e[A]Iϑ[I]eT

[A]ϑ̇[A]

)
δϑ[A] ds.

In contributions (4.3) and (4.4), the variation of curvature along the beam δκ[I] is given by

(4.9) δκ[I](s) = (
δκx,δκy,δκz

)T =
(
δ

[
e′y[A] · ez[A]

]
, δ

[
e′z[A] · ex[A]

]
s, δ

[
e′x[A] · e y[A]

]T
)
,

where (◦)′ denotes differentiation with respect to s. Linear structural stiffness and damping

relationships are assumed, so FK[I] =−Kκ and FC[I] =−Cκ̇. In the absence of shear effects, the

stiffness matrix can be expressed as

(4.10) K =


EIout 0 0

0 GJ 0

0 0 EIin

 ,

where EIout, GJ and EIin are the out-of-plane bending, torsional and in-plane bending stiffnesses,

respectively. In this study, the structural damping is proportional to stiffness, so C = dK .

The applied forces F[A] and moments M[A] in (4.5) and (4.6) are prescribed by the gravitational

and aerodynamic loads on the wing. In the present work, linear, quasi-steady 2D strip theory

aerodynamics are implemented and loads are computed based on the effective angle of attack,

at a spanwise distribution of strips, using the strip orientation and local velocity vector. The

apparent flow vector at a given strip is defined by

(4.11) vflow = v∞− d
dt
Γα[G],

where v̄∞ is the global free stream velocity vector (magnitude equal to airspeed v), and Γα is the

position vector1 of the strip at a chosen aerodynamic control point (e.g. 3/4 chord). The apparent

flow vector vflow is effectively the flow seen by the panel in the global coordinate system. The

effective angle of attack of an arbitrary strip is given by

(4.12) αeff. = tan−1
(

vz

vx

)
,

where vz and vx are the components of vflow (4.11) mapped onto the intrinsic system [I] defined

by ex, e y and ez (see Fig. 4.2). The aerodynamic load vectors per span can be expressed as

(4.13) F[G]aero.(s)= 1
2
ρv2a CL(αeff) ez(s), M[G]aero.(s)= 1

2
ρv2aec CL(αeff) ez(s)

1Note that the Z direction is positive upwards.
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where ρ is air density, v is airspeed, a is the strip area and ec is the offset from the beam axis.

Aerofoil sections comprise NACA0012 profiles, and in each case, CL(αeff) is linear with gradient

2π. In this study, loads are computed at a discrete set of 20 spanwise stations located along the

wing. In the absence of stall, large twist angles are permitted, however these would not occur in

practice. The term δrF[A] in (4.5) describes the variation caused by the applied force, accounting

for offsets, and is given by

(4.14) δrF[A] = δΓ[A] + ex[A] + ez[A]

The variational rotation along the beam in (4.6) and (4.8) is given by

(4.15) δϑ[A](s) = 1
2

(
ex[A] ×δex[A] + e y[A] ×δe y[A] + ez[A] ×δez[A]

)
.

In (4.7), rm denotes the mass reference line of the beam which, in the present study, is

coincident with the beam axis, so rm =Γ. In (4.8), Iθ[A] is the 3×3 mass moment of inertia matrix

about Γ[A].

In order to assemble the equations of motion of the wing, a basis set of kinematic shape

functions, B(s), are first selected and combined with a set of time-varying generalised coordinates,

q(t). The shapes B(s) describe the spanwise variation of the 3-1-2 Euler angles and so define

the 3D deformation of the beam; combining with q(t) therefore describes the spanwise and

time-varying deformation. The variation of the Euler angles are thus expressed by

φ(s, t) = ∑
Bφ(s) qφ(t), ψ(s, t) = ∑

Bψ(s) qψ(t), and θ(s, t) = ∑
Bθ(s) qθ(t),(4.16)

which may be written as

ζ(s, t)=∑
B(s) q(t).(4.17)

In this work, scaled Chebyshev polynomials of the first kind are used for B(s) (see Ref. [91] for a

comparison of various different shape functions); see Fig. 4.3. The subsets Bφ(s), Bψ(s), and Bθ(s)

are allocated 5, 3 and 4 functions respectively in this study.

The beam reference line Γ is therefore a nonlinear function of both the kinematic shape

functions B(s) and generalised coordinates q(t). The spanwise twist of the beam, ϑ, can be

similarly expressed; hence,

(4.18) Γ[A](s, t) = Γ[A]
(
B(s), q(t)

)
and ϑ[A](s, t) = ϑ[A]

(
B(s), q(t)

)
.

According to d’Alembert’s principle, considering the virtual work performed with respect to

the state vector q ∈Ri yields the system of equations

(4.19)
∂WT

∂q
+ ∂WC

∂q
+ ∂WK

∂q
+ ∂WF

∂q
+ ∂WM

∂q
= ∑

i

∂Wi

∂q
(
q(t), q̇(t), q̈(t), B(s), B′(s)

)= 0
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s/L

B
(s

)

Figure 4.3: Scaled Chebyshev polynomials used as kinematic shape function set.

where i is the total number of shape functions used; in the present work, q ∈ R12. Combining

with the virtual work terms in (4.3) - (4.8), system (4.19) becomes

∫ L

0

(
F[A] ·

∂Γ[A]

∂q
+M[A] ·

∂ϑ[A]

∂q
− (Kκ) · ∂κ[I]

∂q
− (Cκ̇) · ∂κ[I]

∂q

− d
dt

(
mΓ̇[A]

) · ∂Γ[A]

∂q
− d

dt

(
e[A]Iϑ[I]eT

[A]ϑ̇[A]

)
· ∂ϑ[A]

∂q

)
ds = 0.

(4.20)

Rearranging the kinetic virtual work terms that depend on q̈, as described in Ref. [6], leads

to final equations of motion that take the generalised 2nd order form

(4.21) M q̈ =−w+
∫ L

0

(
F[A] ·

∂Γ[A]

∂q
+M[A] ·

∂ϑ[A]

∂q
− (Kκ) · ∂κ[I]

∂q
− (Cκ̇) · ∂κ[I]

∂q

)
ds,

where expressions for M and w are provided in Appendix A.2. Alternatively, (4.21) may be

expressed as

(4.22) M
(
q(t), B′(s)

)︸ ︷︷ ︸
12×1

q̈ = g
(
q(t), q̇(t), B(s), B′(s)

)︸ ︷︷ ︸
12×1

.

In first-order form, the equations of motion can be written as

(4.23)
d
dt

(
q

q̇

)
=

(
q̇

M−1 g

)
︸ ︷︷ ︸

24×1

.

Since the choice of B(s) in this formulation is arbitrary, the integral terms within M and g are

computed numerically and are not expressed analytically; in the present work, computation is

performed at 201 discrete spanwise points along the wing.
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4.3 Nominal wing configuration

The nonlinear dynamics of the HALE wing described by (4.23) can be described by the parame-

terised, first-order form

(4.24) ẋ = f
(
x, v),

where x ∈R24 = [q1... q12, q̇1... q̇12]T and v ∈R is airspeed.

Table 4.1 shows the parameters of the nominal wing. A fixed, non-zero root angle of attack α0

is chosen, ensuring static deformation with airspeed, and gravitational loads are included. Since

the aerodynamics used in this study are both linear and quasi-steady, to allow the examination

of geometric nonlinearity, aeroelastic results are not targeted to quantitatively match the time

histories shown in Ref. [73], which account for unsteady and stall effects [93, 94]. The structural

model, however, can be readily verified via the comparison of structural natural frequencies,

for increasing static tip displacement at zero airspeed and with zero gravity. Fig. 4.4 shows the

frequencies obtained by applying increasing vertical tip loads and linearising system (4.24) about

each static solution. It can be seen that the frequencies of the coupled in-plane bending and

torsional modes (Fig. 4.4, pts. b & c) change significantly with deflection; recall, from Section

2.4, that the variation of these modes was the cause of the reduced-airspeed flutter results in

the study by Patil et al. [73]. Frequencies from Refs. [71, 73] are shown in black; the small,

quantitative discrepancies between these and frequencies of the present model are attributed

to the use of a coarse finite-element mesh in the previous studies. A +11.8% error against an

alternate Rayleigh-Ritz method is stated in Ref. [71] for the 3rd out-of-plane bending frequency at

zero deflection. The undeformed frequencies obtained in the present work, however, are in good

agreement with analytical calculations using exact beam theory. Table 4.2 shows a comparison of

the first five undeformed modes (see Appendix A.3 for formulae used for exact values).
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Table 4.1: Nominal HALE wing parameters from Ref. [71].

Original parameters

Wing
Semi-span 16 m
Chord 1 m
Mass per unit length 0.75 kg/m
Out-of-plane stiffness (EIout) 2×104 N m2

In-plane stiffness (EIin) 4×106 N m2

Torsional stiffness (GJ) 1×104 N m2

Moment of inertia 0.1 kg m2

Spanwise elastic axis 0.5 chord
Centre of gravity 0.5 chord

Flight condition
Altitude 20 km
Air density 0.0889 kg/m3

Additional parameters

Aerofoil NACA0012
Root angle of attack 5◦
Structural damping factor (d) 1×10−3

Stiffness coupling factor (K) 0

Tip displacement (m)

ω
(H

z)

(a1)

(a2)

(a3)

(b)

(c)

Figure 4.4: Variation of HALE wing natural frequencies with static tip deflection:
(a) out-of-plane, (b) torsion/in-plane and (c) in-plane/torsion (black from Refs. [71,
73]).
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Table 4.2: Comparison of undeformed HALE mode frequencies.

Mode ω (Hz)

Ref. [71] Exact Present Error

1st out-of-plane bending 0.358 0.357 0.357 0.00%
2nd out-of-plane bending 2.325 2.237 2.225 -0.54%
1st torsion 4.957 4.941 4.941 0.00%
1st in-plane bending 5.051 5.048 5.042 -0.12%
3rd out-of-plane bending 7.005 6.312 6.234 -1.24%

4.4 Nominal wing bifurcation results

The dynamics of the nominal wing configuration (defined per Table 4.1) are first obtained.

Numerical integration of (4.24) is initially used to find a number of steady deflected wing shapes

(i.e. static aeroelastic equilibria) at increasing subcritical airspeeds; see Fig. 4.5. Figure 4.6 shows

the response of the wing when a gradual airspeed ramp (22.5 m/s - 24 m/s) is applied and reveals

the emergence of an LCO. The growth of this LCO amplitude is rapid, indicating the presence

of a subcritical Hopf bifurcation (see Fig. 2.6 for a generic illustration of this type of nonlinear

flutter outcome).

Span (m)

T
ip

di
sp

la
ce

m
en

t
(m

)

0 m/s

10 m/s

15 m/s

20 m/s

22.38 m/s

Figure 4.5: Deflected equilibria of the HALE wing, for various airspeeds before
flutter.

Starting from one of the static solutions shown in Fig. 4.5, one-parameter numerical continu-

ation is now used. Figure 4.7 shows the continuation of equilibria and LCOs of (4.24) as airspeed

varies, and plots solutions in terms of vertical tip displacement (upper panel) and tip twist (lower

panel). In both cases, the minimum and maximum of the LCOs are shown. For low airspeeds, a

single branch of stable equilibria exists, the magnitude of which increases steadily as airspeed

increases (the variation of tip displacement can be related to Fig. 4.5). This equilibria solution

undergoes a Hopf bifurcation and becomes unstable at 22.38 m/s; at this point, which is labelled
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Figure 4.6: Time histories, showing response of the HALE wing to a gradual
airspeed ramp (22.5 m/s - 24 m/s).

v f to indicate the nonlinear flutter airspeed, the tip displacement is 1.08m and the tip twist

is 2.01◦ (total angle of attack is 6.98◦). The flutter frequency is 3.37 Hz. The Hopf bifurcation

is subcritical, as is demonstrated by the emergent unstable LCO. The unstable LCO solution

undergoes a number of periodic folds, at increasing amplitudes, alternating between unstable and

stable solutions, before undergoing a final fold at approximately 25.56 m/s. The resulting unstable

solution subsequently leaves the near-equilibria region and is not plotted beyond this point (it is

found that these LCOs comprise very large wing deformations). The LCOs at points (a), (b) and (c)

will be discussed later. Figure 4.8 shows the variation of frequencies and damping, for increasing

airspeed, for the nominal wing; these are obtaining via linearisation of the nonlinear system

(4.24) at each of the equilibrium solutions shown in Fig. 4.7. The inclusion of in-plane bending is

reflected in the colouring of the modes, which is defined by: red = out-of-plane bending, green =

torsion, blue = in-plane bending. Since the wing is modelled with a nonzero angle of attack that

permits static deformation as a function of airspeed, the variation of the aeroelastic modes in Fig.

4.8 is due to a combination of varying aerodynamic stiffness/damping and geometric nonlinearity

(in Section 3.3, in the absence of static deformation, frequency variation was due to aerodynamic

loads alone). Due to this, indications of how the frequencies vary with deformation are contained

within Fig. 4.8; this idea will be revisited in Section 4.7. From the damping in Fig. 4.8 it can be

seen that the mode that loses stability is a mode comprising strongly-coupled torsional/in-plane

motion, which is in agreement with Patil et al. [73]. Note that the out-of-plane bending mode

with lowest frequency in Fig. 4.8 is found to separate into two distinct real modes at 18.4 m/s.

Figure 4.9 illustrates the time histories from Fig. 4.6 superimposed onto the corresponding

continuation solution in Fig. 4.7. It can be seen that the time histories closely match the contin-

uation result, although the system is slow to to enter into the LCO once the flutter airspeed is

exceeded and the equilibrium is unstable.

The continuation solutions in Fig. 4.7 show that subcritical LCOs are present near the
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Figure 4.7: One-parameter continuation of equilibria and LCOs, for varying air-
speed, for the HALE wing. LCOs at (a), (b) and (c) are shown in Fig. 4.11.
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v f

Airspeed (m/s)

v fζ

Figure 4.8: Variation of mode frequencies and damping, for varying airspeed,
for nominal HALE wing (red = out-of-plane bending, green = torsion and blue =
in-plane bending).
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Figure 4.9: Time histories from Fig. 4.6 superimposed onto the continuation solu-
tion in Fig. 4.7.

equilibria for airspeeds as low as 19.61 m/s; thus, the subcritical LCO region δv (which can be

defined as the airspeed interval between the Hopf and the lowest-airspeed fold, see Fig. 4.7), is

equal to 2.77 m/s. A useful metric is the ratio δv/v f , which quantifies the subcritical LCO region

relative to the nonlinear flutter airspeed; in this case, this ratio is 0.124. Figure 4.10 shows the

wing response when a decreasing airspeed ramp is applied to the final state of the time history

shown in Fig. 4.6. In this reversed case, the LCO is sustained below v f , and thus the hysteresis
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in the system is evident.
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Figure 4.10: Time histories, showing response of the HALE wing to a decreasing
airspeed ramp (24 m/s - 19 m/s).

The characteristics of the individual LCOs located at the selected points on Fig. 4.7 are now

shown. Figure 4.11 shows a time history, frequency decomposition and spanwise deformation

for each of the solutions at (a) 20 m/s, (b) 23 m/s, and (c) 25 m/s. For each case, the spanwise

deformation is shown for the instances where the tip displacement and twist are at the maximum,

minimum and mid value of the oscillation. The LCOs at 20 m/s and 23 m/s show evidence of the

2nd out-of-plane bending mode of the wing, whereas the larger LCO at 25 m/s shows a presence

of the 1st bending mode. In all three cases, the first torsion mode is present; thus, the physical

characteristics of the LCOs can be related to Fig. 4.4, which shows that the 1st torsional frequency

approaches the 2nd and then 1st bending mode as tip displacement increases.
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Figure 4.11: Time histories, frequencies, and spanwise deformation∗ for the LCOs
of the HALE wing located at points (a), (b), and (c) on Fig. 4.7. ∗Red = max. tip
deformation, black = min. tip deformation, and blue = mid. tip deformation.

4.5 Variation of stiffness

The effect of varying the stiffness of the HALE wing is now demonstrated, using two-parameter

continuation (see Section 2.3.3). Re-parameterising the nominal system (4.24) to include stiffness

parameters, it may be written as

(4.25) ẋ = f (x, v, EIout, EIin, GJ),

where EIout, EIin, GJ ∈ R are the out-of-plane, in-plane bending and torsional stiffness para-

meters, respectively. The Hopf bifurcation shown in Fig. 4.7 is first continued with respect to

both EIout and airspeed, and thus the locus of v f for varying stiffness is directly obtained; see

Fig. 4.12, where one-parameter continuations of equilibria are also shown for (a) 35% and (b)
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100% EIout. It can be seen that neither decreasing nor increasing EIout significantly affects the

airspeed of the main Hopf solution branch, however an additional low-airspeed branch (c) exists

within the system for stiffnesses below ~45%; these additional Hopf points are shown in inset (a).
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Figure 4.12: Two-parameter continuation of Hopf bifurcations, for varying out-
of-plane stiffness and airspeed, for the HALE wing. One-parameter equilibria
continuations are shown for (a) EIout = 35% and (b) EIout = 100% nominal. A
low-airspeed branch exists at (c).

Figure 4.13 shows the variation of frequency and damping for EIout = 35% and shows that

the mode that loses stability at the higher-speed Hopf bifurcation also causes the low-speed

instability. It is found that removing gravity from the system removes the low-speed phenomena,

indicating that for low EIout, the large downwards out-of-plane deformation (due to self-weight)

enables a destabilising flutter interaction to occur at a much lower airspeed; indeed, this is

evident in Fig. 4.13, which shows that the frequency of the torsion/in-plane mode is close to that

of the 2nd bending mode at low airspeeds. This result is similar to observations made in Ref.

[71], where low-speed instability regions were predicted for cases with low α0; in such instances,

deformation is similarly dominated by self-weight, but as the result of reduced aerodynamic

loading. One-parameter continuation of equilibria and LCOs, at 35% EIout (shown in Fig. 4.14,

left), reveals that the LCOs emanating from these low-speed Hopf points are small amplitude,

and disappear as airspeed increases. Continuation of the LCOs emanating from the third Hopf

point (Fig. 4.14, right) reveals a very complex structure of solutions, similar to that shown in Fig.

4.7, although in this case the periodic folds are greater in quantity, and mostly occur at airspeeds

below the Hopf bifurcation; the final fold at large amplitude is not plotted, but is found to occur
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at 22.4 m/s. This means that, compared to the nominal wing (EIout = 100%), a greater number of

subcritical LCOs exist in the system; however, δv/v f = 0.129, which is similar.

ω
(H

z)

Airspeed (m/s) Airspeed (m/s)

ζ

Figure 4.13: Variation of mode frequencies and damping, for varying airspeed, for
HALE wing when EIout = 35%. The vertical dashed lines correspond to the Hopf
points shown in inset (a) in Fig. 4.12.

In addition to the continuation of Hopf bifurcations (Fig. 4.12), two-parameter continuation

can also be used to obtain periodic folds. This is a very effective means of building a global picture

of the system dynamics, as the variation of the complex LCO structures can be inferred from

these solutions. Identifying subcritical LCOs is easily achieved by inspection, via comparison of

the loci of folds and the loci of Hopf points; for any given stiffness, a subcritical LCO solution

exists if a fold occurs at an airspeed lower than that of the Hopf point.

Figure 4.15 shows the continuation of the periodic folds shown in Fig. 4.7, and Fig. 4.14

(right), combined with the main Hopf bifurcation branch from Fig. 4.12. (The inset shows how

the intersections on the vertical plane EIout = 100% relate to the periodic folds shown in Fig.

4.7.) The shaded area between the Hopf branch and the lowest-airspeed folds illustrates the

region where LCOs exist at subcritical airspeeds. It can be seen that subcritical LCOs exist at

all stiffness values, although the quantity of these solutions increases greatly for lower EIout. A

wider range of vertical tip displacements is also achieved at lower stiffness, which is expected

given that EIout is reduced. Stiffening the wing can be seen to yield marginal benefit; increasing

EIout to ~118% achieves the smallest relative subcritical region (here, δv/v f = 0.096), although

72



4.5. VARIATION OF STIFFNESS

Airspeed (m/s) Airspeed (m/s)

T
ip

di
sp

la
ce

m
en

t
(m

)

T
ip

di
sp

la
ce

m
en

t
(m

)

Small amplitude LCOs

Figure 4.14: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the HALE wing where EIout = 35% nominal.

this is still comparable to that seen for the nominal wing. In all cases, the Hopf bifurcation is

found to be subcritical.

Figure 4.16 shows the continuation of Hopf points and periodic folds for the variation of

in-plane bending stiffness, EIin. As with the variation of EIout, the Hopf branch is marginally

affected, although in this case no other solutions are found within the parameter range. The

minimum value of δv/v f , which is 0.11, is found at the upper boundary of the range; it can be

seen that this ratio rapidly increases as EIin reduces below ~50%. The periodic folds become

generally more separated, in airspeed, as stiffness is reduced, although there is little variation in

tip displacement and twist along the solutions.

Figure 4.17 shows the continuation of Hopf points and periodic folds for the variation of

torsional stiffness, GJ. (Note that additional Hopf solutions are found in the system for low

stiffness values, although in all instances, these occur at very large tip deflections and are

therefore not shown in the figure.) From Fig. 4.17, it can be seen that varying GJ has a significant

effect on the main Hopf branch; the flutter airspeed increases to 24.6 m/s (+9.9% compared to the

nominal system) when GJ is increased to 150%. For decreasing stiffness, v f steadily decreases,

before reaching a critical value where the solution drops rapidly and levels out. The periodic folds

become more densely concentrated, both in airspeed and tip displacement, although some twist

values become very high. For GJ values between ~32% and ~52%, all LCOs exist at airspeeds

greater than the Hopf bifurcation, which itself is found to be supercritical at stiffnesses below

~54%; this change of Hopf criticality is indicated by the emergence of a new branch of fold

solutions at point (a) (this will be further discussed in Section 4.7). When stiffness increases, a
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number of subcritical LCOs disappear from the system, although the remaining solutions follow

a trend similar to that of the Hopf branch. There is a single subcritical LCO for values of GJ

above ~105%.
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Figure 4.15: Two-parameter continuation of Hopf points and periodic folds, for
varying airspeed and out-of-plane stiffness, for the HALE wing.

75



CHAPTER 4. NONLINEAR DYNAMICS OF A HIGH-ASPECT-RATIO WING

EIin%

A
ir

sp
ee

d
(m

/s
)

v f

No LCO region

Subcritical LCO region

M
ax

.t
ip

di
sp

la
ce

m
en

t
(m

)

EIin%

A
ir

sp
ee

d
(m

/s
)

v f

Subcritical LCO region M
ax

.t
ip

tw
is

t
(◦

)

No LCO region

Figure 4.16: Two-parameter continuation of Hopf points and periodic folds, for
varying airspeed and in-plane stiffness, for the HALE wing.
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Figure 4.17: Two-parameter continuation of Hopf points and periodic folds, for
varying airspeed and torsional stiffness, for the HALE wing.
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4.6 Variation of stiffness coupling

A stiffness coupling factor, K∗, is now applied between EIout and GJ. This factor is implemented

in the off-diagonal elements of the 3×3 stiffness matrix of the 1D beam, and is expressed as

a % of the nominal value of EIout shown in Table 4.1. The use of such a term is intended

to approximate aeroelastic tailoring techniques that involve the use of directional stiffness

properties to provide performance benefit (e.g. gust loads alleviation or flutter suppression; e.g.

Ref. [25]). Re-parameterising the nominal system (4.24) to include this factor, it may be expressed

as

(4.26) ẋ = f (x, v, K∗)

where K∗ ∈R is the stiffness coupling parameter, implemented as

(4.27) K =


EIout K∗ 0

K∗ GJ 0

0 0 EIin

 .

Figure 4.18 shows the continuation of Hopf points and periodic folds, for varying airspeed and

K∗, where K∗ = 0 is the nominal wing. In this study, K∗ > 0 corresponds to the case where GJ

increases with out-of-plane deformation, providing a ‘wash-out’ effect. Negative values of K∗ are

not investigated, as these would (detrimentally) increase the twisting of the wing. It can be seen,

from Fig. 4.18, that the Hopf branch increases in airspeed as coupling increases; for example,

at 30% the flutter airspeed has increased to 26.19 m/s. Subcritical LCOs exist in the system for

all values, however the region between the lowest-airspeed folds and the Hopf points decreases

significantly. At 30%, a single subcritical LCO exists, and the subcritical region is reduced (here,

δv/v f = 0.037).

Periodic folds occurring beyond the flutter airspeed are seen to rapidly increase in airspeed

when coupling is increased. Use of one-parameter continuation shows that the overall LCO

solution structure undergoes a significant topological change between 10% and 15%; see Fig. 4.19.

During this parameter interval, the LCO solution re-attaches to the equilibrium solution, via a

second Hopf bifurcation, before a third Hopf point subsequently occurs.
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Figure 4.18: Two-parameter continuation of Hopf points and periodic folds, for
varying airspeed and stiffness coupling, for the HALE wing.
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Figure 4.19: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the HALE wing when K∗ = 10% (left) and 15% (right).

80



4.7. HOPF BIFURCATION CRITICALITY

4.7 Hopf bifurcation criticality

It was shown in Fig. 4.7 that, in the present work, the flutter point of the nominal HALE wing

is a subcritical Hopf bifurcation. It will be shown in this section that, as was observed with the

2 DoF flutter wing in Chapter 3, Hopf criticality in the HALE wing can be changed by varying

damping and stiffness parameters; moreover, as was found in Section 3.3, these changes similarly

coincide with changes to the modes of the linearised system at flutter. Given the size of the

dynamical system used to model the HALE wing, the quantity l1 (see Section 3.2) is not rapidly

computable; instead, Hopf criticality is obtained by inspecting the one-parameter continuation of

LCO solutions emanating from the bifurcation point.

First, the structural damping of the wing is varied. It was shown in Section 3.3.1 that the

variation of structural damping effectively allows a flutter point to be placed at an airspeed

where the modes of the linearised system are different. The nominal damping factor2 applied

to the HALE wing is d = 1e-3; Fig. 4.20 compares the LCO solutions of the nominal wing to the

cases where d is increased to 5.5e-3 and 20e-3, respectively. When d = 5.5e-3, the Hopf is close to

the degenerate case, whereas when d = 20e-3, the Hopf is supercritical; thus, the criticality has

changed with increased damping. The modes for d = 5.5e-3 and d = 20e-3 are shown in Figs. 4.21

& 4.22, respectively; the degenerate Hopf occurs when the in-plane/torsion (i.e. flutter) mode and

the 2nd bending mode have similar frequency, whereas the supercritical Hopf occurs when the

in-plane/torsion mode has lower frequency than the 2nd bending mode. Recall that in the nominal

case (subcritical Hopf) shown in Fig. 4.8, the in-plane/torsion frequency was greater than the 2nd

bending frequency at flutter.

The variation of the out-of-plane and in-plane bending stiffnesses is also found to change Hopf

criticality; the necessary variations are found to exceed the stiffness ranges previously explored

in Figs. 4.15 & 4.16. The one-parameter continuation of LCOs for increasing EIout and decreasing

EIin are shown in Figs. 4.23 & 4.24, respectively; the Hopf is supercritical at EIout = 310% and

EIin = 10%, and (approximate) degenerate Hopfs are found at EIout = 308% and EIin = 13.6%.

Figures 4.25 & 4.26 show the modes for EIout = 308% and EIout = 310% and show that,

compared to the nominal wing (Fig. 4.8), all modes with large out-of-plane component have

increased in frequency. Similarly to the damping observations, the degenerate Hopf occurs when

the in-plane/torsion and 2nd bending modes have similar frequency at flutter, and the supercritical

Hopf occurs when the in-plane/torsion mode is below the 2nd bending mode at flutter. The modes

for EIin = 13.6% and EIin = 10% are shown in Figs. 4.27 & 4.28 and show that, while the

supercritical Hopf is similarly caused by the reordering of the in-plane/torsion and 2nd bending

modes, the degenerate case is less precisely aligned to the when the two frequencies are similar.

With regards to the torsional stiffness, the two-parameter continuation of Hopf and periodic

fold bifurcations in Fig. 4.17 already revealed a new branch of folds at point (a), and thus a

change in Hopf criticality, when GJ is reduced below ~53%. Fig. 4.29 shows the one-parameter of

2The total structural damping is given by d multiplied by the stiffness distribution; see Section 4.2.
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Figure 4.20: One-parameter continuation of LCO solutions, for varying airspeed,
for HALE wing when d = 1e-3, 5.5e-3 and 20e-3.

LCOs for GJ = 53% and GJ = 40% and shows that the Hopf is close to the degenerate case at

53% and strongly supercritical at 40%.

Figures 4.30 & 4.31 show the modes for GJ = 53% and GJ = 40% and show that, unlike the

previous examples, the change of Hopf criticality does not coincide with the reordering of the

torsion/in-plane and 2nd bending mode frequencies. The physical justification of this difference

can be explained as follows. As was noted in Section 4.3, equilibria solutions of the HALE wing

non-trivial and so contain structural nonlinearity; therefore, since the wing is statically deforming

with airspeed, the variation of equilibria frequencies with airspeed contains information of how

the structural frequencies vary with deformation. Essentially, in Figs. 4.30 & 4.31, the gradient

of the frequencies with respect to airspeed may provide indication of how the frequencies vary

when the wing deforms about the equilibrium condition. Thus, should there be a change in the

sign of the frequency gradient at flutter, this could coincide with a change in Hopf criticality. In

the nominal HALE wing, which exhibited a subcritical Hopf, the gradient of the in-plane/torsion

mode at flutter is negative (see Fig. 4.8); Fig. 4.30 shows that for the supercritical Hopf at GJ =
40%, the gradient of the torsion/in-plane mode has become positive. Moreover, Fig. 4.31 shows

that the approximate degenerate Hopf at GJ = 53% coincides with when the torsion/in-plane

frequency gradient is approximately zero.
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Figure 4.21: Variation of mode frequencies and damping, for varying airspeed, for
HALE wing when d = 5.5e-3.
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Figure 4.22: Variation of mode frequencies and damping, for varying airspeed, for
HALE wing when d = 20e-3.
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Figure 4.23: One-parameter continuation of LCO solutions, for varying airspeed,
for HALE wing when EIout = 100%, 300% and 310%.
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Figure 4.24: One-parameter continuation of LCO solutions, for varying airspeed,
for HALE wing when EIin = 100%, 13.5% and 10%.
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Figure 4.25: Variation of mode frequencies and damping, for varying airspeed, for
HALE wing when EIout = 308%.
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Figure 4.26: Variation of mode frequencies and damping, for varying airspeed, for
HALE wing when EIout = 310%.
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Figure 4.27: Variation of mode frequencies, for varying airspeed, for HALE wing
when EIin = 13.6%.
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Figure 4.28: Variation of mode frequencies and damping, for varying airspeed, for
HALE wing when EIin = 10%.
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Figure 4.29: One-parameter continuation of LCO solutions, for varying airspeed,
for HALE wing when GJ = 50%, 53% and 100%.
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Figure 4.30: Variation of mode frequencies and damping, for varying airspeed, for
HALE wing when GJ = 40%.
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Figure 4.31: Variation of mode frequencies and damping, for varying airspeed, for
HALE wing when GJ = 53%.
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4.8 Conclusions

This chapter has demonstrated the use of numerical continuation for obtaining the complex

nonlinear aeroelastic dynamics of a flexible, high-aspect-ratio wing. A reduced-order nonlinear

beam model was used with linear, quasi-steady aerodynamics, and one-parameter continuation

showed that subcritical limit cycle oscillations (LCOs), which are detrimental solutions existing

at airspeeds below the nonlinear flutter airspeed, exist due to geometric nonlinearity. The two-

parameter continuation of Hopf and periodic fold bifurcations revealed the sensitivity of the

nominal dynamics to variations in out-of-plane, in-plane and torsional stiffness, and a ‘wash out’

stiffness coupling parameter. By the inspection of these complex bifurcation diagrams, regions

in parameter space where subcritical LCOs exist were easily identified, and it was shown that

such phenomena are present for a wide range of stiffness values. Indeed, the only instance where

subcritical LCOs did not exist is when torsional stiffness is reduced to 52% of the nominal value.

Following on from the discussions in Chapter 3, the criticality of the Hopf bifurcation in the

HALE wing was found to be affected by the variation of structural damping and stiffness; these

changes were similarly related to the modes of the linearised system at the flutter airspeed.

Given the results in this chapter, it is clear that the geometric nonlinearity inherent in

flexible, high-aspect-ratio wings can be a fundamental driver of complex phenomena, without the

need for aerodynamic nonlinearity. Overall, this chapter has shown that the effects of geometric

nonlinearity must be adequately captured in the analysis of high-aspect-ratio wings if undesirable

dynamical phenomena (e.g. subcritical LCOs) are to be mitigated by design. Moreover, it has

shown that numerical continuation techniques are applicable to this type of analysis.
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NONLINEAR AEROELASTIC DYNAMICS OF AN AIRCRAFT

This chapter examines the nonlinear dynamics of an aircraft with flexible, high-aspect-ratio
wings. Trim solutions are obtained for varying airspeed and are compared to those for the equivalent
rigid aircraft. One-parameter continuation is used to obtain the nonlinear dynamics of the flexible
case, and it is revealed that periodic fold bifurcations, which occur after a supercritical Hopf
bifurcation, have a detrimental effect on the behaviour. Variation of torsional stiffness is shown to
remove these phenomena.

5.1 Introduction

So far, the nonlinear dynamics investigated in this thesis have solely pertained to flexible,

high-aspect-ratio wings with fixed root conditions. As has been demonstrated, highly complex

dynamical phenomena can exist in such systems, due to the geometric nonlinearity inherent in

large deformations, without the need for aerodynamic stall. In this chapter, the focus turns to

the nonlinear dynamics of a full aircraft that features high-aspect-ratio wings. The behaviour of

this system comprises the combined effects of: i) aeroelastic phenomena, which are the result

of flexible modes and large wing deformations, and ii) the rigid-body motion of the aircraft.

In this study, one-parameter numerical continuation is used to obtain equilibrium solutions

and sustained periodic motions, i.e. limit cycle oscillations (LCOs), of the aircraft for increasing

airspeed. While the Hopf bifurcation occurring at the flutter point is found to be supercritical

(i.e. the desirable outcome when compared to the subcritical case, see Fig. 2.6), it is shown

that detrimental nonlinear phenomena nevertheless exist in the system, due to the existence of

periodic fold bifurcations.

The complete flight dynamics of any aircraft are inherently nonlinear, regardless of whether

the airframe is flexible or not. The fundamental equations of rigid-body motion (as found in
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many textbooks, for example Refs. [48] & [95]) reveal that nonlinearity exists due to kinematic

coupling (e.g. between angle of attack and sideslip), gyroscopic effects (involving angular rates of

change) and gravitational effects. For a given aircraft, the typical approach comprises obtaining

a trim solution, i.e. a steady flight condition where all forces and moments are balanced, about

which the nonlinear dynamical system (with fixed parameters) is linearised. The stability of

this linearised system, to small perturbations in state, is then obtainable from eigenanalysis;

classical responses are characterised as longitudinal modes (variations in heave and pitch, i.e. the

phugoid or short-period), or lateral-directional modes (variations in roll, yaw and sideslip, such

as the Dutch roll or spiral divergence). Provided that the trimmed aircraft is symmetric about

the fuselage, longitudinal dynamics are easily uncoupled and examined in isolation. However,

as with any linearisation approach, behaviours away from the equilibrium (or in this case, the

trim solution) are not captured and the complete dynamics are only obtainable using nonlinear

methods. Consequently, the study of rigid-body aircraft behaviour has been a key area in which

nonlinear tools have been exploited; this is particularly true in the analysis of fighter aircraft,

where numerical continuation has successfully been used for determining of critical flight regimes

(e.g. Refs. [96, 97, 47, 98]). More recently, the techniques have been used for the study of airliner

loss-of-control (i.e. upset) dynamics [99].

The impact of nonlinear aeroelastic phenomena on the flight dynamics of aircraft has been of

increasing interest in recent decades. This is mainly due to the increased interest in high altitude,

long endurance (HALE) vehicles, which are flexible configurations designed for the provision of

scientific data and military reconnaissance [100] (see Section 2.4). A variety of low-order frame-

works have been developed to enable the aeroelastic modelling of such aircraft, as shown in Refs.

[101, 71, 102–106, 67, 107, 108]; such studies invariably adopt the typical approach described

above, i.e. solving for a nonlinear equilibrium (i.e. deformed trim condition) and performing

linear stability analysis, sometimes with numerical integration (i.e. time-stepping). Patil et al.

[71] showed that, compared to a rigid HALE case, the presence of large wing flexibility can lead

to greater trim angles of attack and the short-period mode becoming non-oscillatory at certain

airspeeds. The phenomenon called ‘body-freedom flutter’, i.e. the oscillatory instability caused by

a critical interaction between flexible and rigid-body modes, has been the focus of several studies

[109–111]; such behaviour is particularly problematic for flying wing configurations, as these

aircraft have a high short-period frequencies, due to low pitch inertia, making interactions with

flexible bending modes more likely. Fuselage-tail configurations are less susceptible to this type

of instability, by virtue of the inertia and damping provided by the tail.

In the present study, the longitudinal nonlinear dynamics of the HALE aircraft (first intro-

duced in Ref. [71] and shown in Fig. 2.9) are investigated using numerical continuation. This

aircraft consists of highly flexible wings (which are implemented identically to the wing examined

in Chapter 4), a rigid horizontal tailplane and a point-mass payload. Fig. 5.1 shows the deformed

aircraft, in a steady trim condition, in the global inertial frame; note that Z is positive upwards in
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this instance. The force and moment balances required for trim solutions are obtained by varying

i) the angle of incidence of the tailplane, and ii) the magnitude of a horizontal thrust vector, which

acts through the centre of gravity (CG) of the aircraft. In Section 5.2, the general form of the

aeroelastic system is described, extending the formulation from Section 4.2. Section 5.3 provides

an overview of the aircraft parameters, mostly derived from Ref. [71], that describe the nominal

(i.e. flexible) configuration. Section 5.4 compares the trim solutions of this system, obtained at

varying airspeeds, to the equivalent rigid configuration, i.e. where stiffness is sufficiently high

such that the wings do not deform. In Section 5.5, the trim solutions for the flexible aircraft

are combined with one-parameter numerical continuation to obtain the equilibria and LCOs.

In Section 5.6, the torsional stiffness of the wing is varied. Upset dynamics, which describe

uncontrolled aircraft behaviours away from a trim condition, are not investigated.

X (m)

v∞

Y (m)

Z (m)

Figure 5.1: Visualisation of the HALE aircraft in a global inertial frame.

As with the vast majority of the work in this thesis, the aeroelastic formulation used is based

the theory of Howcroft et al. [6] (see Section 4.2). This is a very low-order, geometrically exact

method that describes the spanwise kinematic quantities of a flexible beam using a series of shape

functions. The aerodynamics are modelled using linear, quasi-steady strip theory; consequently,

quantitative comparison with the aeroelastic results in Ref. [71], which were obtained using

the aerodynamic model of Peters et al. [93, 94], is not targeted. (Note that a comparison of the

structural frequencies of the deformed wing was previously shown in Fig. 4.4.) A comparison of

the rigid aircraft modes can be made, however; this will be discussed in Section 5.4.
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5.2 Aeroelastic formulation

The aeroelastic formulation used in this chapter is an extension to the theory previously described

in Chapter 4. In the present study, the general flexible beam formulation from Section 4.2 is

appended with six rigid-body coordinates to describe ‘free-free’ translational and rotational

dynamics. The generalised coordinates are

(5.1) q =


qf

qT

qR

 , where qT =


X

Y

Z

 , qT =


α

β

φ

 ,

where qf comprises the coordinates that describe flexible wing deformation (see Section 4.2)

and qT and qR define the global position and rotation vectors of the aircraft, respectively. The

rigid-body derivative q̇R is expressed as

(5.2) q̇R =


α̇

β̇

φ̇

= Ttan.(qR)
d
dt


α

β

φ


where Ttan. is a tangent operator (see Chapter 4 of Ref. [112]).

Similarly to in Section 4.2, the equations of motion are assembled by summing the virtual

work terms, this time for each constituent aircraft part, which may be flexible or rigid, using the

expressions (4.3) - (4.8). Thus, d’Alembert’s principle can be stated as

(5.3)
∂WT

∂q
+ ∂WC

∂q
+ ∂WK

∂q
+ ∂WF

∂q
+ ∂WM

∂q
= 0

In the present study, there are two flexible wings, a rigid tailplane (with angle of incidence i t;

see Ref. [48]), a rigid massless fuselage and a point-mass payload. A thrust vector T acts through

the CG in the X direction. For rigid parts (i.e. the tailplane, fuselage and payload), stiffness and

damping virtual work terms are alway zero, so their contributions to δWK and δWC are zero;

moreover, for all (flexible and rigid) parts, the derivatives of wing curvature κ, with respect to the

rigid-body coordinates, are similarly zero, i.e.

(5.4)
∂

∂qT
κ[I] =


0 0 0

0 0 0

0 0 0

 ,
∂

∂qR
κ[I] =


0 0 0

0 0 0

0 0 0

 ,

The derivatives of the global position and rotation of the aircraft, with respect to the rigid-body

coordinates, are simply

(5.5)
∂

∂qT
rA[G] =


1 0 0

0 1 0

0 0 1

 ,
∂

∂qR
rA[G] =


0 0 0

0 0 0

0 0 0

 ,
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and

(5.6)
∂

∂qT
ϑA[G] =


0 0 0

0 0 0

0 0 0

 ,
∂

∂qR
ϑA[G] =


1 0 0

0 1 0

0 0 1

 .

Since the present work is concerned with longitudinal aircraft dynamics only, the flexible

wings are assigned the same set of kinematic shape functions (qf ∈R12), ensuring they are always

symmetric; moreover, the rigid-body motions in Y , β and φ are neglected. Thus, (5.3) can be

expressed as

(5.7) Ma/c
(
q(t), B′(s)

)︸ ︷︷ ︸
15×15

q̈ = ga/c
(
q(t), q̇(t), B(s), B′(s)

)︸ ︷︷ ︸
15×1

,

where B(s) is the basis of shape functions (see Fig. 4.3) and

(5.8) Ma/c = Mwing +Mtail +Mfuselage +Mpayload, ga/c = gwing + gtail + gfuselage + gpayload.

In first-order form, the system may be expressed as

(5.9)
d
dt


qf

qT

qR

q̇

=


q̇f

q̇T

Ttan.(qR)\ q̇R

M−1
a/c ga/c


︸ ︷︷ ︸

30×1

.

5.3 Nominal aircraft configuration

The nonlinear dynamics of the HALE aircraft can be described by expressing (5.9) in the parame-

terised first-order form

(5.10) ẋ = f
(
x ,v∞, it, T

)
,

where v∞ ∈ R is airspeed, it ∈ R is the tailplane angle of incidence and T ∈ R is the thrust

magnitude. The state vector may be written as

(5.11) x = [xflex., xrigid]ᵀ,

where xflex ∈R24 describes the deformation of the flexible wings and xrigid ∈R4 are the rigid-body

states. As noted in Section (5.2), the present study is concerned with longitudinal motion only, so

both wings are described by a single shape function set, which ensures symmetric deformation.

The freed rigid-body states, which describe the longitudinal aircraft motion in the global inertial

frame shown in Fig. 5.1, may be written as

(5.12) xrigid = [
α α̇ Ẋ Ż

]ᵀ,
where α is the angle of attack of the aircraft, α̇ is the rate of change and Ẋ and Ż are the

translational velocities1. To ensure that the numerical continuation problem is well-posed, the
1Note that the true forward velocity of the aircraft is equal to Ẋ −v∞.
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Table 5.1: Nominal HALE aircraft parameters from Ref. [71].

Original parameters

Wing
Semi-span 16 m
Chord 1 m
Mass per unit length 0.75 kg/m
Out-of-plane stiffness (EIout) 2×104 N m2

In-plane stiffness (EIin) 4×106 N m2

Torsional stiffness (GJ) 1×104 N m2

Moment of inertia 0.1 kg m
Spanwise elastic axis 0.5 chord
Centre of gravity 0.5 chord

Payload and tailboom
Mass (payload) 50 kg
Moment of inertia (payload) 200 kg m2

Length of tail boom 10 m

Tail
Half span 2.5 m
Chord 0.5 m
Mass per unit length 0.08 kg/m
Moment of inertia 0.01 kg m
Centre of gravity 0.5 chord

Flight condition
Altitude 20 km
Air density 0.0889 kg/m3

Additional parameters

Aerofoil NACA0012
Structural damping factor (wing) 1×10−3

states corresponding to translational positions X and Z are not captured2.

The parameters of the nominal HALE configuration are shown Table 5.1. The aircraft has an

aspect ratio of 32 and features highly flexible wings, the properties of which are identical to the

half wing studied in Chapter 4 and include a non-zero (stiffness proportional) structural damping

term. In the present study, the 50kg payload carried by the aircraft is located on the beam axis of

the wings, and the tailboom does not have mass. A rigid aircraft configuration, which is useful for

comparative purposes, is obtained by increasing the nominal wing stiffness EIout, EIin and GJ

to sufficiently large values to prevent wing deformation.

2Inclusion of these position states would result in a non-invertible Jacobian matrix.

96



5.4. TRIM SOLUTIONS

5.4 Trim solutions

The trim solutions (i.e. static equilibria) of the nonlinear dynamical system (5.10) are described

by the implicit curve

(5.13) f
(
x ,v∞, it, T

)= 0,

which may be solved for given values of airspeed. Since the translational displacement states X

and Z are not present in (5.12), the solutions of (5.13) actually describe all force/moment-balanced

flight conditions, including cases where Ẋ , Ż 6= 0 (i.e. steady translational motion). Thus, the trim

solutions corresponding to rectilinear level flight, which are of most interest, must be obtained by

solving the constrained trim problem

(5.14) f
(
x ,v∞, it, T

)= 0, Ẋ = Ż = 0.

In the present study, solutions of (5.14) are found using a standard gradient-based optimisation

routine, which is implemented to obtain the trimmed state vector x∗ and trimmed parameters i∗t
and T∗ as functions of v∞. Thus, the original dynamical system (5.10) may be expressed as

(5.15) ẋ = f
(
x ,v∞, i∗t (v∞), T∗(v∞)

)
and now describes the longitudinal dynamics of the aircraft, at a given airspeed, about a trim

solution that satisfies (5.14).

Figure 5.2 (a, b) shows the trim solutions and resulting trimmed angles of attack, α∗, for both

the flexible and rigid HALE aircraft configurations. In both cases, the requisite (negative3) i∗t
reduces with airspeed, as does the necessary thrust T∗; however, the magnitude of both trim

parameters is greater for the flexible aircraft. The flexible case also necessities larger α∗ than

the rigid case, as expected due to the deformation of the wings, although this discrepancy reduces

with airspeed. Figure 5.2 (c) shows that the wings provide a lower proportion of the overall lift

in the flexible case. Overall, an appreciable difference exists between the two aircraft at lower

airspeeds; however, this becomes smaller as airspeed is increased. At 30 m/s, Fig. 5.2 shows that

the trim solutions for both aircraft are very similar.

Figures 5.3 & 5.4 shows the variation of the system modes for both cases. These are obtained

using the linearisation of (5.15) about the trim conditions described in Fig. 5.2. The colouring of

the solutions denotes the relative flexible/rigid modal compositions (magenta = flexible and black

= rigid-body), which are derived from the eigenvectors converted to R. In the rigid case (Fig. 5.3),

the two modes in the system have no flexible component, as expected, and represent the classical

phugoid and short-period responses. The frequencies of these rigid modes respectively decrease

and increase with airspeed; at 15 m/s, they are 0.102 Hz and 0.523 Hz, whereas at 30 m/s they

3Note that, given large α∗, the tailplane still produces upwards force, which is as expected given the location of
the aircraft CG.
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Figure 5.2: Trim solutions for the nominal (i.e. flexible) and rigid HALE aircraft
configurations, for varying airspeed.

are 0.048 Hz and 1.03 Hz. As can be seen from the variation of modal damping, both modes

are stable within the examined airspeed region, although the damping of the phugoid mode is

very small at 30 m/s. As stated in Section 5.1, the rigid aircraft modes in the present study can

be compared to those shown in Ref. [71]; at 25 m/s, the phugoid and short-period frequencies

from this previous study are 0.051 Hz and 0.87 Hz, with damping ratios of 0.07 and 0.91. In the

present study, the comparable frequencies are found to be 0.057 Hz and 0.86 Hz, with damping of

0.048 and 0.90 (Fig. 5.3). Thus, the largest discrepancy lies in the phugoid damping, which is as

expected, due to the dominance of drag (and thus higher sensitivity to aerodynamic modelling) in

this mode.

When the modes of the flexible aircraft are examined (Fig. 5.4), the presence of aeroelastic

effects is clear. Distinct modes that are dominated by wing deformation now exist in the system

(indicated by the magenta solutions); at 15 m/s, the lowest four have frequencies of 0.37 Hz, 2.25

Hz, 3.46 Hz and 6.21 Hz, respectively. The first, second and fourth of these modes correspond

to the 1st, 2nd and 3rd out-of-plane bending modes, whereas the third is the 1st torsion/in-plane

coupled mode (this structural coupling was discussed in Section 2.4). From its varying colouring,

it can be seen that the 1st bending mode gains an increasingly large rigid-body component as

airspeed increases. At 21.93 m/s, the torsion/in-plane flexible mode becomes negatively damped,
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Figure 5.3: Variation of phugoid and short-period frequencies and damping, for
varying airspeed, for rigid HALE aircraft.

as shown by the vertical dashed line, indicating the occurrence of a critical flutter interaction. This

interaction destabilises the trim solutions beyond 21.93 m/s; at airspeeds above this boundary, tiny

perturbations to the system will result in divergent oscillatory behaviour. The flutter frequency

is 3.51 Hz; the nature of the oscillations will be discussed in Section 5.5.

The mode in Fig. 5.4 that has the lowest frequency comprises purely rigid-body motion and

corresponds to the phugoid mode. This mode varies very similarly to that of the rigid aircraft;

at 15 m/s, it has a frequency of 0.104 Hz, whereas at 30 m/s this has decreased to 0.047 Hz.

Moreover, the damping similarly decreases with airspeed, as shown in the right panel. The short-

period mode, however, is significantly different compared to the rigid case; in the low-airspeed

region close to 15 m/s (Fig. 5.4, a), the mode actually comprises two real eigenvalues and is

non-oscillatory, whereas in region (b) the eigenvalues have become complex-conjugate and the

mode is oscillatory. In the airspeed region beyond 23.13 m/s (c), the mode is non-oscillatory

again. Thus, the presence of wing flexibility leads to a qualitatively different short-period mode

compared to the rigid aircraft; this was similarly observed in Ref. [71].
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Figure 5.4: Variation of modal frequencies and damping, for varying airspeed, for
nominal (i.e. flexible) HALE aircraft (magenta = flexible, black = rigid).

5.5 Nominal aircraft bifurcation results

Figures 5.5 and 5.6 show the one-parameter continuation of equilibria and LCOs for the nominal

(i.e. flexible) HALE aircraft. Here, solutions are shown in terms of out-of-plane bending displace-

ment and twist, at the wing tip, as observed in the local aircraft frame. A Hopf bifurcation at

21.93 m/s indicates flutter, which is as expected from the negative modal damping shown in Fig.

5.4. This Hopf is supercritical, as is evident from the stable LCO solution emanating from the
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bifurcation point. Periodic fold bifurcations occur at 25.67 m/s and at 23.69 m/s, respectively;

within this airspeed interval, there exists a sensitivity to initial conditions, due to the coexistence

of two attracting LCOs, and a hysteresis loop. The result is a discontinuous jump after the the

first fold at 25.67 m/s; the detrimental effects of this phenomena will become evident. In both

figures, single-period time histories are shown for selected LCO solutions at 22.14 m/s, 25.07 m/s

and 29.96 m/s respectively; these will be discussed later.

The equilibrium solution in Fig. 5.5 shows that the trim tip displacement, and thus overall

out-of-plane bending of the wing, decreases with airspeed. This is as expected from Fig. 5.2,

which shows that the difference between the flexible and rigid aircraft trim solutions reduces

as airspeed increases. Beyond the flutter point, the LCOs have small amplitude and remain

close to the destabilised equilibria; after the first fold at 25.67 m/s, the oscillations maintain a

similarly small amplitude, but the mean deformation drops. The solutions further depart from

the equilibrium solution as airspeed further increases. The variation of tip twist in Fig. 5.6 shows

that, while there is negligible deformation in the trim conditions, this is not true beyond the

flutter point, as the LCOs have a large torsional component that monotonically increases with

airspeed. (Just after the first fold, the amplitude jumps from ±4.34◦ to ±13.89◦.) Thus, while the

out-of-plane bending deformation is most present in the trim solutions, it is the twisting of the

wing that is most significant in the oscillations beyond the flutter point (this is expected, given

that it is the torsion/in-plane mode that loses stability).

As was shown in Chapter 4, the existence of periodic folds in the system may be understood

by considering the physical characteristics of the LCOs. The time history for the LCO at 22.14

m/s (i.e. just beyond the Hopf bifurcation), which is shown in both Figs. 5.5 & 5.6, reveals that

the out-of-plane bending component has twice the frequency of the torsional component. Thus,

the critical interaction that destabilises the equilibrium at the flutter point actually comprises a

2:1 ratio, involving the 3rd out-of-plane bending mode, which has a frequency of 6.21 Hz at the

critical airspeed (see Fig. 5.4). This is in contrast to the flutter mechanism observed for the half

wing with a fixed root, where the critical interaction instead involved the 2nd bending mode (as

shown in Fig. 4.11). The selected LCO at 25.07 m/s, which occurs within the fold interval, clearly

shows an additional frequency component, which is indicative of a 4:1 interaction with the 4th

bending mode; this interaction also exists, to a lesser extent, in the LCO at 29.96 m/s. Figure

5.7 shows the mean spanwise out-of-plane deformation for each of the selected oscillations, and

illustrates that the 4th bending mode is indeed present at 25.07 m/s and at 29.96 m/s.

The relevance of the higher mode is as follows. Recall, from Section 2.2.1, that LCOs in

a nonlinear aeroelastic system are the result of critical interactions occurring intermittently

during its time-varying deformation. Thus, for two stable periodic motions to coexist at the

same airspeed, the interaction that necessarily decreases for the first LCO must be replaced by

another as the system further deforms; this second interaction necessarily increases and then

also decreases with deformation. In the current example, it is clear that between 25.67 m/s -
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Figure 5.5: One-parameter continuation of equilibria and LCOs, for varying air-
speed, for the flexible HALE aircraft.

23.69 m/s, the torsional/in-plane motion of the wing strongly interacts with both the 3rd and

4th out-of-plane bending modes, respectively, at different deformations. At the linearised flutter

point, these modes have frequencies of 6.21 Hz and 12.91 Hz, which are respectively ~1.8 and

~3.7 multiples of the 3.51 Hz flutter mode.

As has been emphasised throughout this thesis, a supercritical Hopf bifurcation is the desired

outcome at the flutter point of a nonlinear aeroelastic system (see Section 2.2.2). While this

desired bifurcation is indeed present in the current aircraft system, the subsequent periodic fold

bifurcations lead to phenomena that, despite occurring beyond the flutter point, are nevertheless

detrimental. The aforementioned sensitivity to initial conditions, between 25.67 m/s - 23.69 m/s,

means that finite disturbances to the aircraft within this interval may result in large unexpected

twisting of the wing (as is evident from Fig. 5.6; the oscillations could more than double in

amplitude), which cannot be removed immediately due to the hysteresis. The detrimental effects
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Figure 5.6: One-parameter continuation of equilibria and LCOs, for varying air-
speed, for the flexible HALE aircraft.

of the folds are also impactful when the overall rigid-body motion of the aircraft is considered, as

will now be discussed.

Figures 5.8 - 5.11 show the above continuation results in terms of the rigid-body states α, α̇,

Ẋ and Ż. In all cases, the periodic solutions emanating from the Hopf have very small amplitude,

indicating that very little oscillatory motion of the aircraft, as a whole, is present in the LCOs.

(In fact, the amplitudes of the oscillations in α, Ẋ and Ż are negligible, and can practically be

viewed as equilibria.) At any supercritical airspeed, the aircraft has almost-steady (i.e. balanced

forces and moments) translational motion; this lack of interaction with the oscillating wings

is not unexpected, given the large frequency difference between the critical flutter mode and

the rigid-body modes (shown in Fig. 5.4). This behaviour is clearly the desirable outcome when

compared to other more deleterious possibilities (e.g. the upset and loss of aircraft control);

moreover, just beyond the Hopf bifurcation, the LCO solutions remain very close the equilibria
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Figure 5.7: Mean spanwise out-of-plane deformation of wing, for the selected LCOs
at 22.14 m/s, 25.07 m/s and 29.96 m/s shown in Fig. 5.5.

solution, meaning that the aircraft remains practically stationary just after the boundary is

exceeded.

The detrimental effect of the periodic folds, however, is significant. The discontinuous jump

at 25.67 m/s is found to be large in all rigid-body states; α jumps from 9.1◦ to 6◦, and Ẋ and Ż

jump from 0.23 m/s and -0.24 m/s to 2.07 m/s and -2.05 m/s respectively. Thus, while marginally

exceeding the 21.93 m/s flutter point is not particularly detrimental, exceeding 25.67 m/s results

in an immediate change in both the angle of attack and the translational velocity of the aircraft,

which cannot be reversed unless the airspeed is reduced to below 23.69 m/s.

Figure 5.12 shows time histories for the rigid states at 26.5 m/s, after a +1◦ perturbation to α

at the trim condition. The slowly-decaying phugoid mode is clearly evident in the initial part of

the response, however, after ~100s the system rapidly converges to the almost-steady LCO; the

resulting steady descent in Z is shown in Fig. 5.13 (recall that Z is positive upwards, as shown in

Fig. 5.1).

Given the above discussion, a practical scenario for the flight dynamics of the flexible HALE

aircraft could be as follows, assuming that airspeed increases slowly and the trim parameters

i t and T are scheduled per Fig. 5.2. At airspeeds below the flutter point (i.e. 21.93 m/s), the

aircraft is in a ‘straight line’ trim condition, where any small disturbance (e.g. to α) results in

the expected decaying phugoid and short-period response. (The frequencies of these modes vary

with airspeed as shown in Fig. 5.4.) As airspeed increases, the static deformation of the trimmed

wings reduces, as does α. When the airspeed exceeds 21.93 m/s, the wings begin to oscillate, due

to a critical interaction between torsion/in-plane and 3rd bending, and the aircraft gains very

slow translational motion. When the airspeed exceeds 23.13 m/s, the short-period response is no

longer oscillatory, as shown in Fig. 5.4. As the airspeed exceeds the periodic fold at 25.67 m/s, the

wing oscillations now have a large component of the 4th bending mode, and have almost twice the
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Figure 5.8: One-parameter continuation of equilibria and LCOs, for varying air-
speed, for the flexible HALE aircraft (rigid-body).

torsional amplitude. As a consequence, the practically-steady α jumps from 9.13◦ to 6.11◦, and

the horizontal and vertical translational velocities increase in magnitude to 2.14 m/s and -1.99

m/s, respectively. At even higher airspeeds, α eventually become negative, the amplitude of the

periodic twisting of the wing further increases, as do the translational velocities.

In summary, while the trim solutions for the flexible aircraft are not hugely dissimilar to the

rigid case, the onset of flutter and the subsequent folds in the LCO solutions means that the

stability and overall behaviour is significantly different. Thus, despite the minimal interaction

between the flexible and rigid-body modes, rigid analysis alone does not adequately predict the

flight dynamics of the aircraft beyond the flutter point.
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Figure 5.9: One-parameter continuation of equilibria and LCOs, for varying air-
speed, for the flexible HALE aircraft (rigid-body).
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Figure 5.10: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft (rigid-body).
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Figure 5.11: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft (rigid-body).
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Figure 5.13: Time history of flexible HALE aircraft, showing vertical rigid-body
displacement.
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5.6 Variation of torsional stiffness

As discussed above, coexisting LCOs in a nonlinear aeroelastic system are the result of several

different critical interactions occurring as the system deforms. In the present aircraft system,

the 1st torsional/in-plane mode of the flexible wing critically interacts with both the 3rd and 4th

out-of-plane bending modes in the airspeed region 25.67 m/s - 23.69 m/s. The resulting coexisting

LCOs, and more pertinently, the periodic fold bifurcations, have been shown to detrimentally

affect the performance of the aircraft, particularly when the rigid-body motion is considered; it

is therefore useful to investigate how readily the phenomena can be removed. In the present

system, the simplest means of affecting the LCOs is to vary the torsional stiffness GJ, as doing

so will largely affect the flutter frequency, whilst having little effect on the out-of-plane bending

frequencies. Moreover, given that the secondary LCOs have frequency lower than the torsional

mode (e.g. see the time history for 25.07 m/s in Fig. 5.5), it follows that sufficiently raising GJ

may prevent the interaction from critically occurring.

Figures 5.14 & 5.15 show the equilibria and LCOs, in terms of tip displacement and twist, for

the case where GJ is increased to 150% of the nominal value shown in Table 5.1. Here, flutter

occurs at a higher airspeed of 26.2 m/s and, similarly to the nominal case, is caused by a 2:1

interaction involving the 3rd bending mode. The periodic folds no longer exist, however, indicating

that the 4:1 interaction with the 4th bending mode is no longer sufficient for the additional LCOs.

(Note that the frequency of the flutter mode has increased to 4.16 Hz in this case.) Figure 5.16

shows the rigid-body states and demonstrates that, although there are no folds, the LCO solutions

in Ẋ and Ż do not stay close to the equilibria immediately after the Hopf, as was seen for the

nominal case; thus, should the aircraft marginally exceed the flutter point, the translational

motion is no longer very slow. Depending on the exact flight requirements, these dynamics may

or may not be more favourable than the nominal system, despite the removal of the detrimental

periodic fold bifurcations.

Figure 5.17 compares the LCO solutions for GJ = 100%, GJ = 125% and GJ = 150%, which

are shown in terms of α. In the intermediate case (125%), the folds are evidently still present in

the system, but occur at very close airspeeds, indicating that they are close to vanishing. Thus,

the transition is smooth; should a two-parameter continuation of periodic folds be performed

for varying airspeed and GJ, a fold in the solutions would be expected at a critical stiffness

just higher than 125%. The flutter frequencies for these cases are 3.5 Hz, 3.86 Hz and 4.16 Hz

respectively.

Figures 5.18 & 5.19 show the flexible solutions for the case where GJ is reduced to 50%. The

flutter point now occurs at a lower airspeed, and has a frequency of 2.6 Hz. The folds still exist

in the system, at 18.98 m/s and 18.11 m/s respectively; the unstable LCO solution is very close

to the unstable equilibria, indicating that, in the fold region, the critical interaction involving

the 4th bending mode occurs very close to the trim condition. Figure 5.19 shows the tip twist and

shows that very large angles (which, in reality, would be prohibited by aerodynamic nonlinearity)
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Figure 5.14: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft when GJ = 150% nominal.

are present in the LCOs beyond the folds. Figures 5.20 - 5.23 show the rigid-body states; in

each case, the unstable LCOs are similarly close to the equilibria and, moreover, the resulting

discontinuous jump is less significant compared to the nominal case. Thus, while reducing GJ

causes the critical 4:1 interaction to occur more readily (i.e. closer to the trim condition), the

overall effect on the supercritical dynamics is actually beneficial when compared to the nominal

aircraft. This benefit, however, is clearly offset by the significantly reduced flutter airspeed.
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Figure 5.15: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft when GJ = 150% nominal.

111



CHAPTER 5. NONLINEAR AEROELASTIC DYNAMICS OF AN AIRCRAFT

α
(◦

)

Airspeed (m/s) Airspeed (m/s)

Airspeed (m/s)Airspeed (m/s)

α̇
(◦

/s
)

Ẋ
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Figure 5.16: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft (rigid-body states) when GJ = 150%.
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Figure 5.17: One-parameter continuation of LCOs, for varying airspeed, for the
flexible HALE aircraft (increasing GJ).
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Figure 5.18: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft when GJ = 50% nominal.
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Figure 5.19: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft when GJ = 50% nominal).
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Figure 5.20: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft (rigid-body, when GJ = 50% nominal).
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Figure 5.21: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft (rigid-body, when GJ = 50% nominal).
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Figure 5.22: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft (rigid-body, when GJ = 50% nominal).
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Figure 5.23: One-parameter continuation of equilibria and LCOs, for varying
airspeed, for the flexible HALE aircraft (rigid-body, when GJ = 50% nominal).
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5.7 Conclusions

In this chapter, numerical continuation has been used to investigate the nonlinear longitudinal

dynamics of a high altitude, long endurance (HALE) aircraft with flexible, high-aspect-ratio

wings. Trim conditions have been obtained for the nominal (i.e. flexible) aircraft and compared

to the equivalent rigid configuration; while the phugoid mode is similar, the short-period mode

is qualitatively different between the two. The numerical continuation of equilibria and limit

cycle oscillations (LCOs) reveals that flutter occurs in the system due to an interaction between

two flexible modes of the wing, although the involved bending mode is not the same as that

previously observed for the half wing in a fixed root condition. The Hopf bifurcation at the flutter

point is supercritical, and the resulting small-amplitude oscillations almost solely involve the

wings, due to a lack of significant interaction between the flexible and rigid-body modes. However,

the presence of periodic fold bifurcations in the LCO solutions leads to detrimental phenomena,

particularly in the translational rigid-body velocities of the aircraft. Increasing the torsional

stiffness of the wing is seen to remove the periodic folds, although the resulting dynamics are not

necessarily more desirable than the nominal case. Conversely, reducing the torsional stiffness

causes the folds to occur closer to the trim solutions; due to this, the detrimental effects are

observed to be less impactful compared to the nominal case. Overall, this chapter has shown

that the flutter analysis of an aircraft with flexible, high-aspect-ratio wings with geometric

nonlinearity necessitates the use of nonlinear methods, and that even a supercritical Hopf with

small-amplitude LCOs can lead to negative effects on the overall aircraft flight dynamics.
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CONCLUSIONS

This chapter summarises the key outcomes and overall conclusions from the research in this
thesis. Potential extensions of the work are proposed, and there is a discussion regarding the future
outlook for high-aspect-ratio wings and the use of numerical continuation techniques in the civil
aviation industry.

6.1 Research outcomes

This thesis has investigated the nonlinear dynamics of flexible, high-aspect-ratio wings. The

aerodynamic benefit afforded by high-aspect-ratio wings means they are likely to play a role

in the design of future commercial aircraft; the flexibility of these wings, however, may lead to

nonlinear dynamical phenomena that cannot be investigated using traditional flutter methods.

In the present research, novel contributions have been made by using numerical continuation to

obtain equilibria, limit cycle oscillations (LCOs), and bifurcations, for low-order models describing

high-aspect-ratio wings with geometric nonlinearity. Chapter 3 investigated Hopf criticality in

a nonlinear, 2 degree-of-freedom (DoF) flutter wing model and demonstrated how criticality

is related to physical characteristics of the modes of the linearised system; specifically the

convergence of the mode frequencies. Chapter 4 used a fully nonlinear beam model of a high

altitude, long endurance (HALE) wing and revealed complex dynamics; moreover, the observations

from Chapter 3 relating to Hopf criticality were built upon. Chapter 5 investigated the complete

HALE aircraft, and while the flutter point of the flexible system was found to be supercritical and

led to small-amplitude LCOs, the existence of periodic fold bifurcations resulted in undesirable

phenomena, particularly when considering the rigid-body flight dynamics.

Extending the conclusions drawn within each chapter, a number of more general conclusions

can be made:
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1. Geometric nonlinearity must be captured, as it can be the cause of detrimental
phenomena

In all of the studies in this thesis, undesirable nonlinear dynamics (e.g. subcritical LCOs or

periodic folds) were shown to exist, due to the presence of large wing flexibility and the re-

sulting variation of structural modes, without aerodynamic nonlinearity. (The implications

of using linear aerodynamics will be discussed in Section 6.2.) Detrimental phenomena were

either observed in the nominal wing configurations, or after the variation of a structural

parameter (e.g. stiffness or damping). Indeed, as explained in Chapter 3, provided no part

of a given aeroelastic system is stalled at the bifurcation condition, flutter criticality is

entirely prescribed by nonlinearity in the structure. Further to this, Chapter 5 showed that

undesirable dynamics can still be encountered even when a flutter outcome is relatively

benign. Thus, the effects of flexibility must be adequately captured in the analysis and

design of high-aspect-ratio wings.

2. Properties of a linearised system can help predict the nonlinear dynamics

As was established in Chapter 2, flutter describes a static, aeroelastic equilibrium losing

oscillatory stability to small perturbations; thus, it is a local phenomenon, where the

underlying physical mechanisms are prescribed by the linearised characteristics of the

system. Once a nonlinear system deforms, the dynamics are no longer strictly governed

by these characteristics; however, insight can nevertheless be gained by maintaining a

‘quasi-linear’ view, even for complex cases. LCOs can generally be characterised in terms

of linearised modes, and as shown in Chapter 3, indications of Hopf criticality can be

found by inspecting the mode variation in traditional frequency/damping plots. Thus,

while obtaining the complete behaviour of a high-aspect-ratio wing necessitates the use of

nonlinear techniques, indicators can be found in the linearised properties.

3. Uncertainties in structural damping could be important

Structural damping is a notoriously difficult property to quantify. Indeed, when flutter

analysis is conducted within industry, the effects of structural damping are sometimes

neglected, the intention being to obtain a ‘worst-case’ boundary prediction, to which a pre-

determined safety margin may then be applied. While this strategy is perfectly applicable

if the wing is assumed linear (i.e. sufficiently rigid), the possibility of detrimental LCOs in

high-aspect-ratio wings means that it must be used with caution. Given the relationship

between damping and flutter criticality shown in Chapter 3, uncertainty in damping,

which would lead to uncertainty in the flutter airspeed, could result in an erroneous

supercritical/subcritical Hopf prediction. The risk of this is clearly greatest in cases where

the Hopf is nominally close to the degenerate case, or where there is a rapid variation in

the linearised modes caused by the geometric nonlinearity inherent in largely deformed

equilibria.
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While it is, theoretically, possible to construct a system where increasing the structural

damping has a detrimental effect (i.e. it causes a supercritical Hopf to become subcritical,

e.g. see two of the cases in Fig. 3.9), this was not observed in the more representative

HALE wing investigated in Section 4.7; here, maximising the structural damping, which

is typically desirable anyway for increasing the flutter airspeed, was also favourable with

regards to Hopf criticality.

It should be noted that the above discussion also applies to the additional aerodynamic

damping provided by unsteadiness; this will be discussed in Section 6.2.

4. Numerical continuation techniques are appropriate methods

The nature of the dynamical phenomena shown in this work clearly demonstrates the

applicability of continuation methods for the investigation of high-aspect-ratio wings.

Detrimental phenomena were readily found in all cases; moreover, very complex LCO

behaviours were revealed, particularly in Chapter 4). Thus, continuation techniques (or

path-following methods, in general) are the only feasible means of obtaining the complete

dynamics of these systems. Furthermore, the coupling with the low-order beam formulation

of Howcroft et al. [6] demonstrated that continuation is particularly effective for exploratory

research, i.e. where the objective is to obtain the topological structure of the dynamics, over

a very wide range of parameters (this was particularly true for the work in Chapter 3).

6.2 Extensions

There are several areas where further work may build on the findings of this thesis and yield

interesting results. Suggested extensions are described below.

• Aerodynamic nonlinearity (e.g. dynamic stall) could be investigated

As stated above, provided the aerodynamics are linear at the flutter condition of a nonlinear

system, aerodynamics do not affect the criticality of the Hopf bifurcation. In all studies in

this thesis, flutter occurs at low angles of attack; thus, the dynamics are topologically valid

near the equilibrium. While aerodynamic nonlinearities are not essential for investigating

the near-equilibria effects of geometric nonlinearity, they are clearly important for the

capture of larger-amplitude LCOs, where spanwise sections may experience flow separation.

It would be interesting to investigate whether the inclusion of the hysteresis effects relating

to dynamic stall can lead to any detrimental, high-amplitude LCOs in a wing where the

geometric nonlinearity prescribes a relatively benign and supercritical flutter point. This

study could be achieved, using continuation, via the implementation of a parameterised

nonlinear aerodynamic model that allows the continuation of periodic bifurcations with

respect to, for example, stall angle. The sensitivity of the LCO solutions to uncertainty in

the aerodynamic parameters could thus be investigated. Of course, any further studies that
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more precisely target quantitative behaviour should include both nonlinear and unsteady

aerodynamic effects as a necessity.

• Unsteady aerodynamics effects should be included

In all studies within this thesis, quasi-steady aerodynamics (where the loads are a function

of the effective angle of attack, with no unsteadiness) were implemented. For a given

high-aspect-ratio wing, the effect of geometric nonlinearity does not change when linear

unsteady aerodynamics are included; of course, the airspeed of the flutter point may be

different (typically, it increases due to additional aerodynamic damping), but any resulting

change in the nonlinear dynamics (i.e. the criticality of the Hopf bifurcation) is not caused

by unsteadiness. Thus, the inclusion of unsteady aerodynamics is not a requisite for

investigating the fundamental geometric nonlinearity that characterises high-aspect-ratio

wings in isolation. For this reason, together with the extra computational costs of capturing

aerodynamic states, unsteady effects were omitted; however, much like the effects of

structural damping, unsteadiness must be modelled with low uncertainty in the future if

precise predictions of behaviours are sought.

• Trends relating flutter criticality to the convergence of modes could be tested
experimentally

Further verification of the flutter criticality observations found in Chapter 3 is highly

desirable, particularly if obtained empirically, e.g. by varying the structural damping of an

experimental wing and observing a change of Hopf criticality that relates to the convergence

of the linearised modes. Should this ’rule of thumb’ become well-established, it would serve

as a very useful tool in both the design and testing of flexible, high-aspect-ratio wings.

• Body-freedom flutter, or asymmetric aircraft dynamics, could be investigated

An extension to the study in Chapter 5 may comprise varying the HALE configuration in a

way that causes body-freedom flutter to occur; this could be achieved by altering the nominal

aircraft parameters, such that the short-period frequency increases and moves closer to

the flutter frequency of the wing. This frequency increase could be achieved by reducing

the aircraft pitch inertia, which could be acheived by reducing the payload or shortening

the fuselage, etc. Alternatively, a study of the asymmetric aeroelastic flight dynamics

(i.e. including both longitudinal and lateral-directional dynamics) would be interesting,

although this would require an individual set of shape functions for each wing, and hence

would be more computationally expensive.

On a more general note, the application of numerical continuation in the study of high-aspect-

ratio wings is not restricted to the typical objectives of flutter analysis. Fundamentally, the

techniques seek to obtain the parameter-dependant behaviour of a given dynamical system; thus,

their applicability is limited only by how adequately the system in question is parameterised. In

122



6.3. GENERAL OUTLOOK

this thesis, the primary continuation parameter used in all studies was airspeed, and secondary

parameters included structural properties, such as stiffness and damping. However, any of the

parameters in a given wing may be used; for example, the root angle of attack, sweep angle, taper,

span, stiffness distribution etc. could all be used as primary or secondary continuation parameters,

and may yield interesting results. As noted above, the use of a parameterised aerodynamic model

could provide insight into how wing behaviour may be affected by uncertainties in the lift/stall

profile. The benefit of using continuation, in this context, is that the most critical parameters, i.e.

those which the dynamics are most sensitive to, can be readily identified; thus, use of techniques

can direct the focus of more computationally expensive, high-fidelity studies (e.g. FEA, CFD).

6.3 General outlook

Regarding the general question of whether continuation techniques (or more broadly, nonlinear

dynamical systems approaches) can be impactful on the design of high-aspect-ratio wings, it

is clear that several obstacles must be overcome first. Civil aviation is a highly conservative

engineering environment, for obvious reasons; not only must new technologies present a convinc-

ing business case (‘buy their way’ onto an aircraft), they must also comply with the stringent

airworthiness regulations that ensure passenger safety. Flutter phenomena are treated with

particular caution, due to the unbounded, catastrophic failure predicted by linear methods, so

central use of nonlinear tools in this area would likely necessitate significant amendments to

existing regulations (for example, see EASA CS 25.629 - ‘aeroelastic stability requirements’1), or

the formulation of new ones, which may demand extensive evidence of empirical data verifying

numerical predictions. The tests required by new regulations would likely be significant engi-

neering challenges in and of themselves; the pursuit of nonlinear behaviour in a real-life system

is potentially dangerous, so the costly development of novel experimental techniques might be

necessary. Consequently, it is likely that nonlinear approaches would have to permeate multiple

areas of the engineering lifecycle before continuation techniques can make sizeable impacts in

design. This industry conservatism is also compounded by the fact that i) nonlinear dynamics

are not a core part of undergraduate engineering courses, and ii) there is no production-ready,

easy-to-use software that can readily be used with industry models for continuation analysis

(although, an important step towards addressing this second point is detailed in Sharma et al.

[56], which describes a toolbox that enabled use of AUTO for the analysis of Simulink-based

Airbus landing gear models).

Currently, the virtues of nonlinear approaches are not easily visible to those without specialist

expertise; thus, to facilitate more widespread use of continuation techniques, the key is to make

the potential applications more tangible. Presently, points of entry are likely to only be instances

when nonlinear analysis is unavoidable, i.e. where detrimental nonlinearity is found after a

1https://www.easa.europa.eu/document-library/certification-specifications (last accessed on 24th

February 2019).
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design solution has been frozen. An example of this could be the discovery of unwanted shimmy

oscillations (i.e. LCOs), in an existing landing gear system, and the subsequent use of nonlinear

tools for the retrofitting of a damping device. This use of nonlinearity would be entirely reactive,

however, and is less applicable to the safety-critical design of wings; should a wing exhibit

detrimental nonlinear phenomena (e.g. subcritical LCOs) in, say, flight test, it is likely that

a solution/redesign would be found using established linear methods, rather than nonlinear

analysis.

Further to the above, another potential issue that may hinder the use of continuation tech-

niques in industry may lie in methods themselves. An important requirement for the success of

continuation methods is the sufficient smoothness of the dynamical system in question, i.e. the

existence of enough continuous derivatives, to enable the traversing of solution curves. Due to

this requirement, empirically-obtained aerodynamic data, which is typically stored in tabulated

form, may necessitate the fitting of a smooth function, resulting in a loss of information. This

type of compromise would similarly apply to models featuring feedback control systems, where

discontinuities or discrete control laws may be present. A further limitation commonly attributed

to continuation is the requirement of low-order models; while it is true that the methods are most

effective when coupled with simple systems, this can be said of any analysis technique. The use of

continuation with a high-fidelity, nonlinear FE model of a high-aspect-ratio wing would indeed be

computationally expensive; nevertheless, it would still be the most efficient means of obtaining

the parameter-dependant dynamics when compared to other methods (e.g. time histories).

Despite the above reservations, there are reasons to be optimistic about the future role of

continuation techniques in industry. Recent textbooks on both nonlinear aeroelasticity (Dimitri-

adis [30]) and flight dynamics (Sinha & Ananthkrishnan [48]) include detailed discussions of

continuation in applied aerospace contexts; thus, there are encouraging signs that awareness of

the methods may become more commonplace amongst non-specialist engineers. Importantly, in

the particular area of flexible wing aeroelastics, there is clearly scope for exploiting nonlinearity

in the context of flutter; if nonlinear tools are used to ensure that the flutter point is supercritical,

they could facilitate the use of an active LCO suppression system, which could substantially

extend the aircraft flight envelope. Compared to reactive uses of nonlinear analysis (e.g. the

aforementioned example of landing gear shimmy), this type of ‘enhancing’ impact is far more

likely to garner interest, as it presents compelling opportunities for performance benefit and hence

a competitive advantage. Provided the aerodynamic benefits of high-aspect-ratio wings remain an

attraction for aircraft designers, and the aeroelastic behaviours of flexible wings with geometric

nonlinearity are better understood through research, there will likely be strong incentives for the

development of LCO suppression technology using nonlinear methods.
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A.1 Hodges & Dowell model

The original Hodges & Dowell [68] beam equations, discussed in Section 2.4.1, can be written as

EI2ν
′′′′+ (EI2 −EI1)

(
φ(w+w0)′′

)′′+mν̈+Mν̈x=L = dFν

dx
,

EI1(w+w0)′′′′+ (EI2 −EI1)
(
φν′′

)′′+mẅ+Mẅx=L −M gδ(x−L)= dFw

dx
,

GJφ′′+ (EI2 −EI1)(w+w0)′′ν′′+mK2
mφ̈= dMx

dx
,

where the symbols are defined in Table A.1.

Table A.1: Symbols of the Hodges-Dowell model.

Symbol Definition

dFν, dFx Section chordwise and vertical component forces
dMx Section pitch moment about elastic axis

E Modulus of elasticity
g Gravitational constant
G Shear modulus

I1, I2 Vertical, chordwise moments of area
J Torsional stiffness constant

Km Wing mass radius of gyration
L Wing span
m Mass per unit length
M Tip mass
ν Chordwise bending deflection
w Vertical bending deflection
x Position coordinate along wing span
φ Twist about deformed elastic axis
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A.2 Additional terms from Howcroft et al.

The terms M and w in equation (4.21) can be expressed as

(A.1) M =
∫ L

0
m(s)

(
∂rm[G]

∂q

)T (
∂rm[G]

∂q

)
+

(
∂ϑ[G]

∂q

)T
e[G]Iϑ[I]eT

[G]

(
∂ϑ[G]

∂q

)
ds,

(A.2) w=
∫ L

0
m(s)

(
∂rm[G]

∂q

)T
r̈∗m[G] +

(
∂ϑ[G]

∂q

)T
ė[G]Iϑ[I]eT

[G]ϑ̇[G] +
(
∂ϑ[G]

∂q

)T
e[G]Iϑ[I]e∗

[G]ϑ̈
∗
[G] ds.

Details of the steps required to obtain this expressions, and expressions for r̈∗m[G] and ϑ̈∗[G],

can be found in Ref. [6].

A.3 Beam frequency formulae

The formulae for the natural frequencies of a uniform beam, fixed at one end, can be derived from

e.g. Ref. [113] and are stated here for completeness.

The bending frequencies are given by

ωn =α2
n

√
EI

mL4 ,

where m is the mass per unit length, L is total length of the beam, and EI is the bending stiffness.

The first three bending modes are obtained using α1 = 1.875, α2 = 4.694, and α3 = 7.885. The

fundamental torsional frequency can be obtained using

ω1 = π

2L

√
GJ

I
,

where I is the inertia per unit length, and GJ is the torsional stiffness. In each case, division by

2π obtains the frequencies in Hz.
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