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ABSTRACT

In the following we develop analytical and numerical methods to study the emergence of
patterns in complex systems, with a particular focus on human mobility, migrations and
population dynamics. The purpose is to provide a quantitative description of the urbanisation

process by defining a general and flexible modelling framework able to reproduce the universal
patterns of population distribution observed empirically in different countries, as well as to
estimate the demographic evolution of cities.

In 2012 the world’s population exceeded 7 billion, and since 2008 the number of individuals
living in urban areas has surpassed that of rural areas. This is the result of an overall increase
of life expectancy in many countries that has caused an unprecedented growth of the world’s
total population during recent decades, combined with a net migration flow from rural villages
to urban agglomerations. While it is clear that the rate of natural increase and migration flows
are the driving forces shaping the spatial distribution of population, a general consensus on the
mechanisms that characterise the urbanisation process is still lacking. In order to address this
problem we focus on three areas of research: the size and spatial distribution of cities, growth
processes at the level of individual citizens and occupational migration. Our aims are threefold:
to determine which model of migration best describes the empirical relationship between the
number of urban agglomerations and the population of a region, testing Heaps’ Law for cities;
to propose a theoretical framework to explain the emergence of the power law distribution of
city sizes, Zipf ’s Law, from a microscopic birth-death process without fine tuning; to measure
the relevance of social connections in determining migration decisions, analysing relocations of
scientists.

We initially present a deterministic model of population dynamics incorporating a logistic
population growth with both gravity and intervening opportunities models of migration. In this
framework, we analytically assess the spatial distribution of cities that each model of migration
produces finding that if individuals relocate according to an intervening opportunities model,
the number of cities in a region increases linearly with the region’s population. To empirically
assess this result we analyse two distinct data sets, presenting two fundamental relationships
that are quantitatively supported by the empirical evidence: 1) the number of cities in a country
is proportional to the country’s total population, irrespective of the country’s area, and 2) the
average distance between cities scales as the inverse of the square root of the country’s population
density. Using these relationships, we verify that a null model of urbanisation, where cities whose
populations follow Zipf ’s law are randomly distributed in space, produces correct estimates of
the expected number of cities in regions of various sizes worldwide. This result supports the
hypothesis that spatial correlations in the distribution of cities are absent and suggests that,
within the deterministic framework considered, an intervening opportunities model may be most
appropriate for describing migratory dynamics during the urbanisation process.

We next address how the populations of non-interacting cities grow. With regards to city
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growth, a general model has emerged that accounts for how the population of cities as a whole
changes in time; Gibrat’s law, or proportionate random growth. Despite its wide acceptance, a
general consensus on how the underlying stochastic processes within a city, namely births and
deaths, interact to give rise to this growth mechanism is lacking. To address this, we show that
proportionate random growth can emerge from a general class of birth-death processes charac-
terised by two mechanisms: correlations (i.e. dependence between individuals) and environmental
variability. Our microscopic processes also demonstrate the relationship between Zipf ’s law for
the distribution of city sizes and Taylor’s law for the scaling of the fluctuations in population
increments. The model may be applied to other systems with an explicit time dependence where
the distribution of group sizes follows Zipf ’s law.

Migrations play a primary role in determining a city’s demographic and economic growth.
Consequentially, understanding the factors behind individual relocation decisions can improve
predictive models of population projection. Here we focus on occupational migration, specifically
the migration of scientists. In the academic community there is a widely accepted belief that
movement between institutions is beneficial to, possibly even essential for, a successful career and
many individuals relocate at some point in their career. Despite its common occurrence, it remains
unclear how a scientist looking to relocate selects their next institution and at which point in
time they decide to make this move. Using a comprehensive dataset on scientific publications, we
reconstruct career trajectories of scientists in order to determine the driving forces behind the
decision to change institutions. We apply methods originating from machine learning, including
decision tree classifiers and logistic regression, in order to determine which factors are most
influential in a scientist’s decision to relocate. Using this insight, we introduce the quality-social-
gravity model; a modified version of a traditional gravity model to estimate mobility flows. We
demonstrate that the quality-social-gravity model places the true destination of a scientist in the
10 most probable destinations for over 23% of cases compared to 7% of the traditional gravity
model, hence improving the model’s predictive power. The insight gained from this work provides
us with a deeper understanding of the factors that influence the migration decisions of scientists
alongside a general modelling approach to describe migration dynamics.

Human migration and demographic growth are examples of complex phenomena showcasing
the typical features of complex systems, namely the presence of heterogeneous distributions,
long-range interactions, complicated individual (microscopic) dynamics and emergent collective
(macroscopic) behaviour. The modelling techniques developed to describe the emergence of these
general patterns in the context of urban dynamics and human migration can also find application
in other complex systems, such as those in ecology and biology, where these patterns are also
present.
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1
INTRODUCTION

Increasing urbanisation rates, generally defined as the increase of the proportion of people living

in urban areas or the proportion of buildings belonging to urban agglomerations [91], is a trend

that has happened in waves throughout human history, with a dramatic acceleration in the last

300 years [113]. In 2015, 56% of China’s population lived in cities, a figure that has more than

doubled compared to the 26% of 1990. The Ministry of Housing and Urban-Rural Development

estimates that by 2025 300M Chinese now living in rural areas will move into cities. State

spending is planned on new houses, roads, hospitals, schools, which could cost up to 600 billion

USD a year. A great rate of urbanisation is also expected in Sub-Saharan African countries.

As a result, by 2030 it is estimated that the world’s population will have increased by over 1

billion people, most of whom will dwell in the rapidly growing cities of Asia and Africa [86]. Such

large migration events may have both positive and negative effects. Positive effects can include

access to better health care and education systems, and more job opportunities. Negative effects

include depletion of resources, traffic, pollution, crime, rising inequalities and segregation in

cities. As a consequence, a quantitative understanding of the mechanisms that drive urbanisation

is important to help governments and decision makers plan their investments in order to achieve

sustainable urban development and growth. These decisions will have a huge impact on the lives

of millions of people, the economy and the environment.

In the following we consider two mechanisms that drive urbanisation: the migration of

individuals from rural areas to towns or cities and overall population growth, which increases

the proportion of individuals living in cities as opposed to rural areas. Specifically we focus on

three main aspects. In Chapter 2 we investigate how population growth and migration interact to

give rise to the size and spatial distributions of cities seen globally. In particular we empirically

validate Heaps’ law for cities and determine whether deterministic models of migration flows

are able to reproduce it. In Chapter 3 we introduce a stochastic model of population growth at
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CHAPTER 1. INTRODUCTION

the level of individual inhabitants of cities, ie. births and deaths. We assess the model’s ability

to reproduce the empirical size distribution of cities, establishing a connection between Taylor’s

law and Zipf ’s law. Finally, in Chapter 4 we consider the factors that drive individuals to migrate

between cities, focussing on relocations due to job transitions and specifically the movement of

scientists. We introduce an adapted gravity model and demonstrate that it is more accurate in

predicting the next location of a scientist compared to a traditional gravity model.

1.1 Cities as Complex Systems

Complex systems have properties that arise from the interactions and relationships of many

underlying components. Such properties are considered emergent and include self organisation,

heterogeneity, hierarchal structure, long-range interactions and decentralised control, to name a

few [24]. Examples of systems that exhibit complex behaviour can be found in many disciplines

including (but not limited to) Physics, Economics, Computer Science and Biology. As such,

numerical and analytical frameworks developed for the study of complex systems may be applied

across many varied domains.

Cities themselves are considered complex adaptive systems; complex systems in which the

individual and collective behaviour of the underlying components displays self-organisation and

adapts to changes in the environment. The study of cities as complex systems has revealed many

interesting properties. Stemming from the fact that most cities develop gradually over time,

cities have been shown to have a hierarchal structure [18]. At each point in development the

structure of the city is organised in such a way that there is a high level of connectivity between

different parts, for example roads connecting one side of the city to another. However, when

viewed at a later time, the city appears highly complex, with underlying patterns at both the

macro- and micro- scale such as power law distributions for the length of street segments [89].

It is this hierarchal development that leads to the hierarchal structure of cities and also their

self-similarity; cities appear the same when viewed at different scales. As a result of this self-

similarity, research has looked into the fractality of cities [19, 21]; fractals, by definition, are

self-similar objects. The fractal dimension of an object is the ratio of the change in detail to the

change in scale. If fractal dimension is fixed and independent of the scale at which an object is

viewed, that object is generated by a single set of processes that operate at every scale. With

regards to cities, the evolution of the perimeter of a city over a period of urbanisation has been

shown to have a fractal dimension that increases with scale and declines over time [22]. Thus

the growth of a city is not controlled by a single set of processes and urbanisation can cause the

fractality of a city’s perimeter to decrease.

Self-similarity in urban systems suggests that the processes driving urbanisation and city

formation are similar across all cities. There is evidence that many urban quantities scale with the

size, or population, of cities. These quantities include urban supply networks [67], average wage,

2



1.1. CITIES AS COMPLEX SYSTEMS

number of patents and the total amount of housing [25]. Explanations for these scalings have

suggested that they are emergent features of cities caused by the underlying interactions of the

individuals residing in them [23, 111]. The scaling exponents, η, for different urban quantities fall

into three different categories: sub-linear (η< 1); linear (η∼ 1); super-linear (η> 1). Each category

can be associated with similar urban indicators. An exponent η∼ 1 is associated with quantities

relating to individual needs such as total housing and total employment. A sub-linear exponent

describes quantities termed ‘economies of scale’; quantities associated with the infrastructure of

the city such as petrol sales and total length of roads. Finally, a super-linear exponent, η> 1 is

linked to quantities attributed to the social nature of a city, such as innovation, wealth, crimes

and patents [25]. When studying cities as complex systems, particularly when using data to

investigate properties such as the scaling of urban quantities, the definition of a city becomes

important. The scaling laws discussed so far were obtained using extensive datasets from sources

such as the US Census Bureau and Eurostat Urban Audit, among others. City data obtained from

sources such as these are linked to definitions of urban areas that are not necessarily consistent

with one another; there is no global consensus on how cities should be defined [128]. In order to

overcome the inconsistencies in administrative definitions of cities, which are based on historical

and political considerations, clustering algorithms [107] have been used [4, 32, 33]. This allows for

the study of complex features of cities, such as the scaling of urban quantities, using a consistent

definition of a city based solely on urban morphology. Repeating the scaling analysis using a

consistent definition of cites has demonstrated that, apart from some small deviations, almost all

urban quantities scale linearly with city population [4, 32, 33]. However, there is also variation in

the scaling exponent when different definitions of cities are considered [33]. A metropolitan area

can be defined as a large central city combined with smaller satellite settlements from which

people commute to the central district. If a clustering algorithm is combined with commuting

data to define metropolitan areas the scaling of certain quantities can change from the sub-

to super-linear regime, and vice versa [4]. Alongside this, the scaling exponents for certain

quantities are highly dependent on the size of the cities being considered: a city with a population

of 10,000 differs from on with 100,000 inhabitants. In [4] it is demonstrated that the scaling

of the number of patents with city population varies with the minimum city population: for a

minimum population of 10,000 the scaling is super-linear whereas for a minimum population of

50,000 it is sub-linear. It has been suggested that this result, namely that the scaling of urban

quantities depends on the definition of a city, provides an opportunity for understanding the

relation between the features of cities and their size at the micro-, meso- and macro-scales [33].

However, the sensitivity of the scaling exponents to the definition of a city suggests that a theory

of cities cannot rest on scaling alone [4].

A further issue with scaling laws arises from the approach most often used to fit the parame-

ters to the data [69]. The most common method for fitting exponent η is to use least-squares on

the log-transform of the data, ie. ln y= η ln x+ c, where y represents the quantity of interest, such
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as average wage or number of patents, x represents the population of the city and c is a constant

corresponding to an intercept in log-log space. While this approach is simple to implement, it con-

tains a number of assumptions and limitations that are often ignored. For example, assumptions

about the fluctuations of y given x are rarely verified in real data, and if the variable of interest y

can have a value of 0, which is the case for patents, due to the log-transform these datapoints

must be removed prior to fitting.

In the following we focus on the urbanisation process. With regards to city formation and

growth, some of the earliest research stems from human geography and urban economics [29,

47, 66]. Christaller’s Theory of Central Places suggests that cities form as an urban hierar-

chy: settlements are regularly spaced on a hexagonal lattice with larger cities being spaced

further apart and surrounded by smaller satellite cities [29]. The ‘Edge City Model’ of urban

economics [66] describes how self-organisation of businesses into compact areas within a city can

evolve from a perturbation to an initially homogeneous business distribution due to economic

competition. From a complex systems perspective, a city is formed by the interactions of many

underlying components. A simple yet effective way of understanding how local interactions of

these components can produce a global order, or city, is through cellular automata [19]. Cellular

automata allow for mathematical analysis due to their analytical simplicity while producing

properties, such as self organisation, that are compatible with cities.

For the purpose of our work, we wish to focus on how the complicated individual (microscopic)

dynamics within a city give rise to the emergent collective (macroscopic) behaviour. Here, the

underlying components are the individual inhabitants of the cities and the urban systems, or

systems of cities, in which they reside. We consider population growth and human migration:

processes of individual and collective behaviour associated with cities. These processes contribute

to emergent phenomena such as the size and spatial distributions of cities and their scaling with

the population of urban systems.

1.2 Zipf’s Law and the growth of cities

A requirement of any general model of population growth in cities it that is must be able to

reproduce the empirical patterns observed in data. One of the most documented empirical findings

in human geography is Zipf ’s law for the distribution of city sizes. Formally, a random variable

follows Zipf ’s law if its probability density function is a power law with exponent −2. For the

case of cities, Zipf ’s law states that the probability to find a city with a given population, x, is

inversely proportional to the square of the population:

(1.1) P(x)∼ x−β,

where β' 2 and P(x) is a probability density function (PDF). In other words and equivalently,

the size (population) x of the rth largest city (ie. a city with rank r) is given by

(1.2) x = c r−
1

β−1 ,
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where c is the population of the largest city [81]. Power laws such as Zipf ’s law provide a good

description of many empirical distributions such as word frequency, earthquake magnitudes,

personal income, scientific citations and astronomical masses to name a few [6, 17, 74, 95, 146].

Zipf ’s law itself has been found in a large number of diverse areas, including systems where

observations correspond to groups of individuals and the variable of interest is the group size,

such as the number of employees in firms [6] or the distribution of family names [95]. With

regards to cities, the exponent β' 2 has been shown to apply to the distribution of city sizes both

globally and historically with surprisingly small deviations [49]. Zipf ’s law also applies to the

population distribution of larger regions, for example countries in Europe [53] as well as counties

in the United States (Chapter 3).

While there is a vast amount of evidence validating Zipf ’s law for cities, it is important to

note that there are situations where the distribution of city sizes can not be fully described by

a power law. For example, countries with “primate cities” by definition do not have a city size

distribution that follows Zipf ’s law: primate cities are at least twice as large as the next largest

city [61] and therefore Equation 1.2 does not hold. Examples of countries with primate cities

include France, where the population of Paris is over 6 times larger than Lyon, and the United

Kingdom, where London’s population is more than 10 times greater than that of Birmingham.

In the economics literature, the existence of primate cities has been attributed to, for example,

imbalances in development and economic influence [61]. From a complex systems perspective,

outliers, such as primate cities, have been found to co-exist with power laws in a large variety of

systems. In [122] these outliers are coined “dragon-kings” which emerge due to mechanisms of

self-organisation and cities such as Paris and London are extreme events that are not expected if

the distribution of all other cities follows a power law. In [37] it is demonstrated that primate

cities are also present in Simon’s model (section 1.2.2), an elementary rich-get-richer model, and

are caused by a dominant first-mover advantage.

Even for regions without primate cities, there exists debate around whether a power law is

truly the best fit for the distribution of city sizes: some have claimed that the lognormal distri-

bution is a better fit than Zipf ’s law [38]. The argument that cities are log-normally distributed

stems from the fact that the lognormal distribution arises asymptotically from proportionate

growth processes (section 1.2.1) and empirical evidence has repeatedly shown that the growth of

cities follows this process: larger cities grow at the same rate as smaller cities. In log-log space

the PDF of a lognormal distribution is a parabola whereas for Zipf ’s law it is a straight line. As

the parabola of the lognormal distribution has two free parameters, as opposed to the one free

parameter of Zipf ’s law, given that the data is often noisy the lognormal may appear to be a better

fit: it has an extra degree of freedom. Alongside this if a parabola has a small curvature, locally

it can appear to be a straight line. However, there is no clear evidence to reject Zipf ’s law (see

section 3.3) and Zipf ’s law provides a simpler explanation for the distribution of city sizes. For

this reason we assume that the stationary distribution of city sizes, above a minimum population,

5



CHAPTER 1. INTRODUCTION

follows Zipf ’s law with exponent β∼ 2.

The existence of a global distribution of city sizes places a constraint on models of city growth.

A number of general mechanisms exist to account for the emergence of Zipf ’s law in various

systems [10, 95, 140]. In [10] it is suggested that when many diverse systems share a common

characteristic, such as a power-law stationary distribution, it must be due to a global feature that

is shared between all of the systems rather than system-specific details. Here this global feature

is presented as the division into groups; people are divided into cities, employees are divided

between firms, people are divided into families based on their surname. They demonstrate that

information theory can be used to find the group-size distribution as follows. Consider a system

that consists of a total of M individuals and N cities. The number of cities with population x is

given by N(x): a city of size x has x inhabitants. If no further information is known about the

system of cities or the individuals, a best guess would be that each person has equal probability

to occupy one of the x spaces in one of the N cities: the chance of finding a specific person at a

specific location is 1/M. In this framework, where there is an equal probability of finding each

of the M individuals in any of the N cities, the stationary distribution of city sizes is given by

P(x)∼ e−axx−1. If the same framework is adapted such that there exists additional knowledge

relating to the location preferences of individuals, there is no longer an equal probability of

finding each of the M individuals in any of the N cities. The consequence of this knowledge is

that there is an additional constraint on the model which results in P(x)∼ x−β where β depends

on how much additional knowledge there is. In the case of β= 2, Zipf ’s law for cities is obtained.

A series of recent work [2, 112] has demonstrated that Zipf ’s law arises naturally when there

are underlying, unobserved variables; latent variables. Systems with latent variables that control

observations can lead to Zipf ’s law without fine tuning by mixing together narrow distributions

with very different means. However, this work focuses on relating Zipf ’s law to latent variables

in static systems, without an explicit time dependence.

Several models have been proposed to explain how Zipf ’s law can emerge as the stationary

distribution of dynamical processes for the sizes of groups of individuals. These models can be

divided into two classes based on the scale considered: mesoscopic models at the scale of the

groups (e.g., cities) and microscopic models at the scale of the individuals (e.g., city inhabitants).

1.2.1 Mesoscopic City Growth: Gibrat’s Law

Mesoscopic models are stochastic processes describing the evolution of a group’s population as a

whole, usually in terms of growth rates. Examples of mesoscopic models are random multiplicative

processes (RMP) [104], also called Gibrat’s law [52] or proportionate random growth in economics

literature [48, 121], and those based on the interplay between intermittency and diffusion [83].

Proportionate random growth In a RMP the population x of a city varies stochastically in

time. The change in size in a time step dt is determined by the growth rate at time t, gt, and the
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new size at time t+dt is given by

(1.3) xt+1 = (1+ gt)xt,

where the growth rate, gt, is a random variable. From Equation 1.3 it is clear that growth rates

are independent of city size; xt+1/xt is independent of xt. The homogeneity in growth rates is

known as Gibrat’s Law. In order for this to apply, growth rates gt must be identically distributed

and independent of city size. Using the diffusive approximation for large populations, xt À 1,

Equation 1.3 may be written in continuous time as a stochastic differential equation (SDE):

(1.4) dxt = ḡ xtdt+σgxt dWt.

Here ḡ and σg are the mean and standard deviation of the growth rate respectively, dWt is a

Brownian motion and dxt = xt+dt − xt . If the growth rates are extracted from a distribution

with small and negative mean, ḡ, and finite variance, σ2
g, introducing a reflecting boundary at

small populations to avoid extinction, ie. by imposing xt ≥ x0, it can be shown that a stationary

distribution of city sizes exists. Asymptotically (ie. at t À 1) the distribution follows Zipf ’s Law

with exponent β= 2−2 ḡ/σ2
g ≈ 2 if the growth rate’s mean is much smaller than the variance [48].

An alternative way of stating this result, from Equation 1.4, is that in a random multiplicative

process both the mean population growth and its standard deviation are proportional to the city

size:

〈dxt|xt = x〉∝ x;(1.5)

〈dx2
t |xt = x〉−〈dxt|xt = x〉2 ∝ x2.(1.6)

These relationships define proportionate random growth: the mean change in city size (population)

and the standard deviation of the population change in time dt is proportional to the population

of the city at time t.

Intermittency Another mesoscopic model of urban development and growth, introduced

in [141] and analysed in [83], which is an alternative to Gibrat’s law, is based on the inter-

play between intermittency and diffusion. Here, a reaction-diffusion process is proposed as a

mechanism for cities to form from an initially homogeneous distribution of individuals. Denoting

the population at location i at time t as x(i, t) with x(i,0)= 1 for all i, the population evolution in

a time step is split into two sub-processes. The first sub-process corresponds to the reaction, based

upon the Zeldovich model for intermittency [142]. At this stage, the population x(i, t) changes

according to the following:

(1.7) x(i, t′)=
(1− q)p−1x(i, t), with probability p,

q(1− p)−1x(i, t), with probability 1− p.

7



CHAPTER 1. INTRODUCTION

where t′ is an intermediate time between t and t+1, p is a probability (0 < p < 1) and q is a

parameter (0 ≤ q ≤ 1). This reaction conserves the average population of the cities and hence

has a well defined mean. However, the variance and higher moments of the population diverge

and consequentially strong inhomogeneities in the distribution of population, ie cities, emerge.

The second sub-process corresponds to diffusion; x(i, t+1) = (1−α)x(i, t′). Here, α represents

the fraction of the population at location i that moves to a different location. In [141], this

diffusing fraction of city dwellers is re-distributed uniformly between neighbouring locations

of i. In analogy with Gibrat’s law, in the first sub-process, cities are growing according to a

RMP and in the second sub-process diffusion acts as a mechanism for implementing a soft lower

boundary condition. In the framework described, the stationary distribution of city sizes, P(x)

can be described as P(x)∼ x−β where β is a function of the model’s parameters and is given by:

β= 1+ ln p/ ln[p/(1−α)]. Thus, for α¿ 1, the stationary distribution of city sizes can be described

by Zipf ’s law.

1.2.2 Microscopic City Growth

Microscopic models provide a more fundamental description of population dynamics. Focussing on

the growth of cities, microscopic models are stochastic processes describing the events experienced

by an individual, namely births, deaths and migrations, that ultimately determine the change

in the size of a population. There are many examples of microscopic models that attempt to

provide a general description of how power law stationary distributions can arise from underlying

processes.

Yule’s and Simon’s model is based on the rich-get-richer mechanism [117, 139]. In the context

of cities, Simon’s model suggests that a system of cities can evolve in two ways; an individual is

born within an existing city, increasing that city’s population by 1, or an individual is born and

relocates to an uninhabited area creating a new city with population 1. If the probability in time

dt that an individual is born to a city inhabitant and stays in the city is s and the probability

that in time dt an individual is born and relocates to a new (uninhabited) city is g then the

distribution of city sizes at any time is given by P(x)= g
s x−β, with β= 1+ g/s. Thus, providing that

the rates s and g are approximately equal the distribution of city sizes will follow Zipf ’s law. It is

important to note the distinction between s and g: s is the probability that any individual within

a city reproduces in time dt, g is the probability that one individual is born and relocates from a

single city. This in fact corresponds to proportionate random growth as the expected amount an

existing city of size n will grow in time dt is s · x ·dt. In contrast, the expected number of new

cities to be created in time dt, assuming i cities already exist, is g · i ·dt.

A similar microscopic model to that of Yule and Simon is introduced in [84]. The difference

here is that rather than an existing city growing at a rate s, transition rates for the growth, wg(x),

and decrease, wd(x) of a city of size x are used. Alternatively, in a time dt each city loses a citizen

with probability wd(x)dt or gains a citizen with probability wg(x)dt. Akin to Yule and Simon,
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there is also a probability pdt that in time dt a new city is created with a population of 1. In this

case the stationary distribution of city sizes depends on the transition rates. In particular, if wg(x)

and wd(x) are linear functions of x, which corresponds to the case of there being no interactions

among individuals, the stationary distribution of city sizes does not follow Zipf ’s law. However, if

a pairwise interaction among individuals is considered, corresponding to transition rates ∝ x2,

then the stationary distribution of city sizes can be described by Zipf ’s law.

Other microscopic models have focussed on cluster growth and aggregation to account for

features of cities such as the fractality of their perimeter [108] and the area distribution of an

urban system [82]. In [108], a simple lattice-based model, based on the gravity model, is used to

populate sites on an empty lattice. The central site is initially populated and at each successive

step further sites are populated with a probability proportional to the distance from already

occupied sites. Performing cluster analysis on the results it is found that the size distribution

of cluster areas follows Zipf ’s law apart from the largest cluster. Alongside this, growth rates of

clusters are independent of cluster area; proportionate random growth is an emergent feature of

this simple model. A further class of microscopic models focuses on how migration shapes the size

distribution of cities. In [72] it is suggested that city growth is driven by migration; individuals

have a preference to move to large urban areas. In this model, the power law exponent β= 2 is

accounted for if city population is growing at a faster rate than the overall population, a result

confirmed by historical data on the populations of US cities.

Frasco et al [45] model city growth using a social network which incorporates the notion that

individuals are more likely to move to areas where they are well socially connected. In this model,

N individuals are placed into a square area with side length L. The first individual (node) is

placed randomly. Each remaining individual is successively placed according to a network growth

and redirection model. Each time a new individual y is added to the network, one of the existing

individuals, z, is chosen at random and y is connected to z with probability (1− r); otherwise,

with probability r, y is connected to a neighbour of z, z′, selected at random. The spatial position

of a new individual depends on how they join the network. If they connect directly to z, they are

placed at a point (r,θ) from z where θ is selected randomly and uniformly from the range [0,2π)

and r is drawn from a power law distribution. If an individual instead connects by redirection to

a neighbour of z, z′, they are placed at (b,θ) where θ is again selected randomly and b represents

the closest an individual can be placed to the one it connects to. A clustering can be performed on

the spatial distribution of individuals in order to obtain cities. The distribution of city sizes is

given by P(x)∼ x−β, where β= 1+(− r
2 − 1

2
p

r(2− r) )−1. As such, as r approaches 1, the distribution

of city sizes can be described by Zipf ’s law.

An important point to note about the microscopic models discussed is that they assume

population can only grow. In Yule and Simon’s model, the lattice based model in [108] and Frasco

et al’s social network [45], in each step or time interval existing cities get bigger, new cities are

created, or both. In the variation of Yule and Simon’s model presented in [84], while existing
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cities can decrease in size, because the changes in city size are caused by migration rather than

births and deaths, the population of the system of cities cannot decrease. Furthermore, here

Zipf ’s law with exponent β=−2 can only be obtained when the transition rates scale as x2: this

implies that the average population change in dt, 〈dx〉 also scales as x2 which does not agree

with empirical evidence. Any model of urbanisation that aims to explain the distribution of city

sizes but does not allow for a decline in population is incomplete; empirically urban populations

must both increase and decrease.

1.2.3 Comparison

Mesoscopic models, such as proportionate random growth, are able to explain the emergence

of Zipf ’s law without the need to fine-tune their parameters to specific values [48]. However,

while there exists a satisfactory explanation of the presence of Zipf ’s Law in the distribution

of large city sizes, there is no consensus on a model that describes the underlying stochastic

processes at the level of the individuals, namely births, deaths and migrations: mesoscopic

models are coarse-grained descriptions of population dynamics and lack an explicit link to the

underlying microscopic processes. Microscopic models, in contrast, are able to produce the power

law exponent β = 2 for the distribution of city sizes, however they are only able to do this for

specific values of their parameters. Whilst these models link the distribution of city sizes to the

underlying individual stochastic dynamics, they require fine-tuning.

It has been noted that when Zipf ’s Law fits the stationary distribution of a system, it is

often only present in the tail of the distribution [95]. In particular, Zipf ’s Law for cities only

describes the size distribution of large cities: it does not fit the distribution as a whole. In order to

account for the full distribution of city sizes a microscopic understanding of population dynamics,

describing how cities form and grow without the need for fine tuning, is required.

The rule of proportionate random growth is also unable to answer fundamental questions

about the urbanisation process [19, 20, 23, 25, 46, 77, 80]. Urbanisation can happen in two

ways: diffusion (or sprawl) and aggregation. Diffusion corresponds to existing cities growing and

increasing in size because of either net migration from rural areas or a greater rate of natural

increase in urban areas. Aggregation corresponds to new villages and towns being created in

rural areas that were previously considered non-urbanised. In order to properly characterise

urbanisation patterns we should consider both aspects: the distribution of city sizes, describing

the size and growth of existing cities, and the overall number of cities, describing the abundance

and formation of new urban areas. While proportionate random growth can account for the

distribution of city sizes, it provides no explanation for the number of cities in a region or their

spatial distribution.
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1.3 Human Mobility

Up to now, the literature discussed has focussed on the growth of cities and the evolution of their

size distribution. These models, with the exception of [84], are mostly concerned with how the

population of cites changes due to births and deaths, or rather natural increase. While natural

increase also accounts for external (or international) migration, a key component that is missing

is an explicit dependence of the models on the movement of individuals between existing cities.

Human mobility models can be used to estimate and predict migration flows between cities. For

this reason they are an important tool when considering how the size and spatial distribution

of cities evolves during urbanisation. Alongside this, human mobility models can be used to

characterise specific types of migration, providing a deeper understanding of why individuals

migrate between different locations.

In recent years, the introduction of widely available, high resolution geotagged data sources

has resulted a rapid increase in the number of papers published using the key phrases ‘human

migration’ and ‘human mobility’ [14]. Human mobility models can be broken down into two

general classes reproducing either individual mobility patterns or population flows. Individual

mobility patterns have a high degree of stochasticity due to the uncertainty associated with

free will and the actions of an individual. Consequentially, the most basic models of individual

mobility are based on stochastic processes, the most simple of which is a random walk. Population

level models aim to estimate the average number of people moving between two locations per unit

time. These mobility flows often depend on variables relevant to the locations such as distance

between them and their populations.

1.3.1 Individual Level

As aforementioned, when modelling the movement of individual people the most basic approach

is to assume that movement is random and can be described by a random walk; a path formed by

successive discrete random steps. In the simplest version, spatial displacements ∆xi are taken at

regular times ti. Considering a 1D example, if the initial position of an individual at time t = 0 is

x0, then after N steps the individual will be located at x(tN ):

(1.8) x(tN )= x0 +
N∑

i=1
∆xi.

Here, each displacement ∆xi is an independent random variable taken from a probability distri-

bution f (∆x), called the jump length distribution, which can be used to determine the probability

density function (PDF), P(x, t) for the individual at be at position x at time t.

Of particular interest when considering individual mobility patterns is how the square root of

the mean squared displacement (RMSD), R(t) scales with time. The mean square displacement

corresponds to the second moment of P(x, t),

(1.9) MSD(t)= 〈x(t)2〉 =
∫ ∞

−∞
x2P(x, t)dx,
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and therefore R(t) is given by R(t) = 〈x(t)2〉1/2, characterising the growth of an individual’s

displacement from their origin with time. The scaling of R(t) with time can be used to categorise

the motion of an individual and is therefore important when it comes to finding the correct model

of individual mobility to describe data. If f (∆x) has a finite variance the limit of the random walk

is Brownian motion. For Brownian motion, R(t)∼ t1/2: the distance of an individual from their

origin is proportional to the square root of the time elapsed. As Brownian motion corresponds

to diffusion, random walks with displacement growing at a slower rate than t1/2 are said to be

sub-diffusive whereas if the displacement grows at a rate faster than t1/2 the random walk is

super-diffusive.

From Equation 1.9 it is clear that the behaviour of R(t) with time is determined solely by

P(x, t) and hence f (∆x): the probability distribution that the random walker’s steps are extracted

from. An example of this is the Levy Flight: a random walk in which an individual regularly

moves short distances but occasionally moves further. In this case, f (∆x) is long tailed to account

for the small probability of ∆x being large:

(1.10) f (∆x)∼ 1
∆x1+β

with 0 < β < 2. For a Levy flight, the root mean square displacement scales super-diffusively:

R(t)∼ t1/β.

While random walks provide a good starting point for the modelling of individual mobility,

in order to accurately reproduce individual patterns of movement more complex extensions

of the simple random walk are required. One extension is the continuous time random walk

(CTRW) where displacements do not occur at regular time steps but rather happen at intervals

extracted from a second probability distribution φ(∆t) known as the wait-time distribution. Both

the jump-length distribution f (∆x) and the wait-time distribution φ(∆t) are independent. From

a CTRW four types of random walks are obtained, depending on whether none, either of both

distributions have heavy tails.

For the cases where φ(∆t) has a finite variance, the CTRW corresponds to either Brownian

motion or a Levy Flight depending on the form of f (∆x), as discussed above. Conversely, if the

distribution of jump-lengths has a finite variance but the wait time distribution is described by

a power law, φ(∆t)∼∆t−(1+α), (0<α< 2), the random walk is described as fractional Brownian

motion. In this case, the behaviour of R(t) depends on the exponent α; if α is less than 1, the

process is sub-diffusive whereas if it is greater than 1 it is super-diffusive. Finally, if both the

distribution of jump lengths and the distribution of wait times are described by power-law

distributions with exponents β and α respectively then R(t) ∼ tα/β; the nature of the diffusive

behaviour is fully specified by α and β. Analysis of various data sources (GPS, CDRs, Dollar

Bills) has found that both jump length distributions and the distribution of wait times display

power-law behaviour [26, 55, 119, 144]. The parameter ranges measured from these data sources

for exponents α and β are given by 0.42≤α≤ 0.8 [119, 144] and 0.31≤β≤ 0.75 [55, 144].

12



1.3. HUMAN MOBILITY

One aspect of human behaviour that is missing from the above models is our tendency

to return to previously visited locations. To account for this, Song et al [119] introduced two

extensions to the CTRW model: exploration and preferential return. Here, exploration is the

probability for an individual move to a previously unvisited location. In contrast, preferential

return is the probability to return to a location that the individual has explored before. In [119] it

is shown that on incorporating these two features into a CTRW and fitting the new parameters to

data, results correspond to an individual’s motion being dominated by their most visited location

which is more in line with expected human behaviour. It also captures the ultra-slow diffusion

of R(t) and other statistics of human mobility such as the visitation frequency and radius of

gyration. Further adaptations of random walks have included factors such as recency [15], where

individuals return to previously visited places based on their total number of visits and the time

since their last visit, and social information [132] to account for the fact that individuals who

interact socially don’t always move independently.

1.3.2 Population Level

Information about the movement of individuals can be aggregated to describe the flow of people

moving between locations. These flows are often organised in an origin destination matrix which

contains information on the flow of people between all possible origin and destination pairs. As

it is not possible to disaggregate flows, in order to model how the flow of individuals between

an origin and destination might change in the future the dependences between mobility flows

and attributes of each location need to be determined. Spatial interaction models predict flows

of individuals based on a small number of key local attributes of the origin and destination. In

essence, these models are designed to estimate the number of trips, Ti j between locations i and j

from the spatial distribution and socio-economic characteristics of the populations of i and j. In

the most basic form, a model aims to infer flows using the product of variables specific to each

location, such as the population of i and j, and a variable that relates the two locations, such as

the distance between i and j.

Two main spatial interaction models for human population dynamics have emerged. These

differ in the choice of variables considered and the functional form in which these variables are

used. Gravity models, akin to Newton’s Law of Gravity, assume that the number of trips, or

flow, between two locations decreases with the distance, travel time or travel cost between the

locations. Intervening opportunities models assume that the flow between two locations can be

determined by the number of intervening opportunities, or other potential destinations, that lie

between the locations. Together these models provide a mathematical framework for modelling

human mobility flows [16, 62] along with other types of spatial flows [41, 63, 65].
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1.3.2.1 Gravity Models

Gravity models, first proposed by George Zipf (of Zipf ’s law) in 1946 [145] as a method of

determining mobility flows, suggest that the migratory flow Ti j between locations i and j can be

approximated by

(1.11) Ti j ∝
PiP j

r2
i j

,

where Pi and P j are the populations of i and j and r i j is the (geographic) distance between them.

The model assumes that the number of individuals leaving i is proportional to the population

of i, the number of individuals arriving at j, or its attractiveness, is proportional to the population

of j, and that there is some distance related cost in moving from i to j. Using these ideas, gravity

models can be formulated in the more general form:

(1.12) Ti j = Kmim j f (r i j).

The masses mi, m j, relate to the number of trips leaving i or the number attracted by j and

f (r i j) is a deterrence function; a decreasing function of r i j. Here, the masses are often some

function of the population of i and j but not necessarily linear; it is common in literature to use

the population raised to some power which is different for each location. The deterrence function

f (r i j) is often a power law or exponential function, however other more complex functions can be

considered. The use of a power law or exponential deterrence function allows for the parameters

of the model to be easily fit; for these cases the gravity model belongs to the family of Generalised

Linear Models [93].

Gravity models have been popular in many fields including transport planning [34, 40],

geographical studies [136] and spatial economics [64, 99] due to their ability to estimate trip

flows, and consequently traffic demand, between two different locations based on local properties

of the locations. These models can also be used in situations where it is essential to have

knowledge of mobility flows, such as in epidemic modelling [12, 75]. Despite their widespread use,

gravity models are a simplification of travel flows that may not accurately describe observations

made from data [70, 114]. Furthermore, they require estimations of a number of free parameters

making them sensitive to incomplete data or fluctuations in the data [62, 114].

One way of overcoming some of these limitations is by constraining the gravity model. For

example, if the number of individuals leaving location i is known to be Oi, then the task of

estimating the flow of individuals between location i and j is simplified; the number of unknown

parameters in Equation 1.12 has been reduced as mi is replaced by Oi. This type of model is

called a singly-constrained gravity model and takes the form

(1.13) Ti j = K iOim j f (r i j)=Oi
m j f (r i j)∑
k mk f (r ik)

.

where the constant K i now depends on the origin and its distance from all other locations. The

idea of constraining a gravity model can be taken further; a doubly-constrained gravity model also
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fixes the number of individuals arriving at location j as D j =∑
i Ti j. While the use of constrained

models overcomes some of the limitations of unconstrained gravity models, these models are only

suitable if in-going and out-going flows are known quantities.

A derivation and justification of Equation 1.13 comes from Alan Wilson [135]. He argues

that if no information about an origin destination matrix is known, then the most probable

configuration of a set of flows {Ti j} is one that maximises the number of configurations of trips

associated with it. Considering {Ti j} as a state, we know from information theory that the less

information we have about this state the higher its entropy. In the case of an origin-destination

matrix, if we have no information then for each origin i and destination j we know only the total

number of individuals that leave i, Oi, and the total number of individuals that arrive at j, D j:

we do not know the destinations of the individuals leaving i nor the origins of the individuals

arriving at j.

If we have missing or no information about the flows between locations, the set of flows

{Ti j} can be approximated by maximising the entropy of the number of distinct arrangements

of individuals, Ω({Ti j}), that give rise to the set of flows {Ti j} [14]. Here, Ω({Ti j}) represents the

number of ways in which T11 individuals can be selected from the total number of travellers

T = ∑
i j Ti j; T12 from the remaining T −T11, etc. This maximisation can be performed using

Lagrange multipliers, subject to the constraints:
∑

j Ti j =Oi;
∑

i Ti j = D j;
∑

i j Ti jCi j = C where

Ci j is the cost of travel from location i to location j. In the limit of a large number of trips, the

configuration that maximises Ω is given by

(1.14) Ti j = K iOiL jD j e−βCi j .

Here, the Lagrange multiplier β controls the effect of the cost on flows and can be calibrated

using the data. The values of K i and L j are set to fulfil the constraints on Oi and D j respectively,

namely
∑

j Ti j =Oi and
∑

i Ti j = D j.

1.3.2.2 Intervening Opportunities Model

The intervening opportunities model of human mobility was formally introduced by Stouffer in

1940 [125]. The intervening opportunities model suggests that the key factor in determining the

mobility flow between two locations is not the distance between them but rather the cumulative

number of opportunities between them. Opportunities can be defined based upon the social

phenomena under investigation, for example the number of job opportunities if commuting flows

are being estimated. The probability of making a trip is related to the accessibility of opportunities

for satisfying the purpose of the trip.

Formally, if destinations j are ranked by their travel cost form the origin then the flow Ti j of

individuals from location i to the location with rank j is given by:

(1.15) Ti j =Oi
e−LVi j−1 − e−LVi j

1− e−LVin
.
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where Oi corresponds to the number of individuals leaving the origin i, Vi j is the cumulative

number of opportunities up to the location with rank j and n is the total number of possible

destinations in the region considered. The number of opportunities at locations j is often taken

as the population, m j, or the number of arrivals to j, D j =∑
i Ti j. Parameter L can be considered

the probability of relocating to any destination; this is a free parameter of the model which can

be adjusted when fitting the model to data.

1.3.2.3 Radiation Model

The radiation model [114] can be considered an extension of the intervening opportunities model.

In this case, for every individual each possible destination is given a fitness z j, extracted from a

distribution p(z), which represents the opportunities for the individual at that destination. Each

individual is also assigned a threshold fitness, zt, which represents the minimum number of

opportunities that individual requires from a possible destination. All destinations j are ranked

according to their distance from origin i and the destination is selected such that it is the closest

destination with enough opportunities, z j ≥ zt, to satisfy the individual.

In this framework, the average number of travellers from location i to location j, Ti j is given

by

(1.16) Ti j =Oi
1

1− mi
M

mim j

(mi + si j)(mi +m j + si j)
,

where Oi represents the number of individuals leaving location i which is sampled from a distri-

bution of probabilities that a trip originating in i ends in j. Parameters mi and m j correspond

to the number of opportunities at the origin and destination respectively and si j represents the

total number of opportunities in a circle of radius r i j centred on the origin. The normalising

factor 1/(1−mi/M) ensures that all trips starting in the region under consideration end there.

Here M represents the total number of opportunities; M =∑
i mi.

As with the intervening opportunities model, in the framework of the radiation model oppor-

tunities can be approximated by the population of each location or by the inflow of individuals

arriving at a location D j [70, 71, 85]. The radiation model has the advantage over the gravity and

intervening opportunities models in that there are no free parameters that need to be calibrated

with data. However, this may also be considered a weakness of the model as it is not robust to

changes in the spatial scale being considered [70, 71, 76, 85]. Extensions have been proposed to

overcome this limitation [116, 138] which have been shown to improve the model’s performance.

In the extended version of the model, a free parameter α is introduced to control the strength of

the effect of the opportunities between the origin and destination on the location choice.

1.3.2.4 Model comparison

Naturally, since the gravity, intervening opportunities and radiation models all provide a

framework for estimating mobility flows, the models have been compared on several occa-
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sions [68, 85, 102, 137, 143]. Generally both gravity and intervening opportunities models

perform comparatively well, however the intervening opportunities model has not seen such

widespread use. This is possibly due to a lack of research into its implementation and calibration

and also due to the practical advantage of using geographical distance between two locations to

estimate mobility flows as opposed to inferring opportunities from data. Due to the recency of

its introduction, less research exists on the radiation model. However, that which does suggests

results are competitive with pre-existing spatial models of population dynamics [85].

Despite the fact that both the gravity and intervening opportunities models are able to

estimate migration flows with comparable accuracy when fitted to empirical data, currently there

is no objective quantitative criterion for selecting one modelling approach over the other in order

to infer which between geographic distance or intervening opportunities is the variable that best

describes domestic migration flows.

Spatial models of population dynamics lend themselves to many diverse applications. In [62],

it is shown that the traffic flow between any two cities in Korea is well described by an un-

constrained gravity model with a power law deterrence function f (r i j)= r−2
i j . Research into the

spread of invasive species has looked into the movement of cargo ships between ports [63] due to

their potential to carry such species. They find that a doubly-constrained gravity model with a

truncated power law deterrence function best describes global ship movements. An unconstrained

gravity model has also been shown to be a good fit for commuting flows worldwide [11] however

in this case an exponential form of the deterrence function, f (r i j)= er i j /R , is the most appropriate

to describe the data. The radiation model has also been applied to commuting flows. In fact, the

formulation of the radiation model is based upon the process of how an individual selects a job

from multiple job offers [114]. The model is evaluated against commuting flows in the United

States where it is demonstrated that it out-performs the gravity model at predicting commuting

patterns at both the intra-state and national spatial scales.

1.3.3 Occupational Migration and the Science of Science

Commuting flows can be considered a type of occupational migration: movement occurring due to

an individual’s specific job or the sector that they work in. An alternative aspect of occupational

migration is permanent migration due to job transitions. Job transitions are nowadays seen to be

essential for a successful career across many professional industries. Factors that this may be

attributed to include; higher living costs increasing the pressure to gain a position with a higher

salary, personal and professional goals and the highly competitive nature of the job market. The

normality of job transitions is no less evident in academia; in the academic community there is a

widely accepted belief that movement between institutions is beneficial to, possibly even essential

for, a successful career. Consequentially, changing institution is a key part of academic life and a

key career decision of any scientist, playing an important role in scientific productivity and the

generation of scientific knowledge. For scientists, movement between institutions (henceforth
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referred to as scientific migration) allows them to build their scientific profile; a strong academic

environment can allow a scientist to be more effective in their own research and contribute to the

success of their institution.

Various aspects of scientific profiles have been analysed in recent years, with publication data

being central in the process. One line of research focusses on collaboration networks, which has

brought important insights and results in the field of complex network theory, and its applications

on analysing real-world networks [31, 94, 100]. In such networks, each scientist is a node and

each link represents a collaboration. Early work on scientific collaboration networks [94] found

that they exhibit small world structure; only ∼ 6 steps are needed to get from one randomly

chosen scientist to another. Furthermore, two scientists have at minimum a 30% probability of col-

laboration if they have a collaborator in common, demonstrating a strong clustering effect. It has

also been shown that a rich club phenomenon exists in scientific collaboration networks [31]. In

this case, high degree nodes are very well connected to each other and nodes with high centrality

form tightly interconnected communities. These results suggest that sociability plays a large role

in scientific collaborations; the more scientists you collaborate with, the larger the probability of

forming new collaborations in the future. More recently Scellato et al [109] found that scientists

who have lived and worked in a different country have a larger collaboration network and a higher

number of international collaborations. This demonstrates a link between scientific migration

and collaboration networks, highlighting the importance of scientific migration with regards to

scientific productivity and education.

A large proportion of existing work on scientific migration focuses on large-scale surveys of

country-level movements. These surveys are designed to reveal long-term cultural and economic

priorities [5, 88, 96]. Appelt et al. [3] looked at OECD data on changes in affiliation of authors

between 1996 and 2011, using a gravity-based empirical framework to investigate the factors that

influence the international mobility of scientists. They found that, whilst geographic distance and

scientific proximity negatively correlate with the mobility of scientists between two countries,

researchers are more likely to move to a country that has no visa restrictions based on their

nationality, speaks the same language and is in a similar or better economic position. Research

into the mobility of elite scientists has investigated the professional and personal determinants

of the decision to relocate to a new institution [9]. Elite scientists are defined as scientific

researchers that are highly funded or cited, have a high number of patents, are a member of

a national academy of scientists or are award winners. Findings show that elite scientists are

less likely to move if they have recently received funding or have children of high-school age,

suggesting they find it costly to disrupt the social networks of their children. However highly

productive scientists, ie. scientists with more publications, are more likely to move, particularly

if their local environment is of lower quality compared to a distant environment. A recent survey

of over 2000 Nature readers [96] mostly from the US and Europe, found that improved quality of

life, increased funding opportunities and a better salary were all incentives for scientists to move
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and work abroad. In contrast, yet in agreement with [3], they also find that unfavourable socio-

economic conditions such as visa restrictions and an unstable political situation act as barriers

to movement. The GlobSci survey [44], involving around 17,000 researchers in four scientific

fields across 16 countries has generated further results that align with those aforementioned:

better career prospects and stronger environments are the most important factors in a scientist’s

decision to move [96].

Another line of research has looked at the evaluation of the productivity and performance of

scientists. Scientific productivity can be considered relevant for career progression in academia

and is therefore an important part of a scientific profile and scientific migration. Multiple

performance indices have been proposed over the years including the number of papers published

(in a year) [118], and the time it takes for a paper to collect the majority of its citations [133].

Research into understanding the impact of a scientist’s relocation on their scientific performance

also features prominently in this area. Analysing the relocations and the scientific performance

of scientists, it has been found that while moves from elite to lower-rank institutions lead to a

moderate decrease in scientific performance, moves to elite institutions do not necessarily result

in subsequent performance gain [36] . In [118] empirical evidence demonstrates that scientific

impact is randomly distributed within the sequence of papers published by an individual during

their scientific career. This implies that temporal changes in impact can be explained by temporal

changes in productivity or luck. An analysis of the migration traces of scientists extracted from

Web of Science had revealed that, regardless the nation of origin, scientists who relocate are

more highly cited than their non-moving counterparts [126]. Further outcomes from the GlobSci

survey [43, 110] show that on average the impact of foreign born scientists is higher than that of

natives who have no international mobility experience. Findings suggest that scientific migration

between countries correlates with a performance boost; scientific migration enhances scientific

performance. These results all support the belief that migration between institutions is beneficial

to a scientific career.

In the context of studying occupational migration, the availability of massive datasets of

individuals’ career paths has led to models that aim to predict what an individual’s next job will

be. In [97] a system is built to recommend new jobs to people who are seeking a job, using all their

past job transitions as well as their employment data. They train a machine learning model to

show that job transitions can be accurately predicted, significantly improving over a baseline that

always predicts the most frequent institution in the data. Recently a system to predict next career

moves based on profile context matching and career path mining from a real-world LinkedIn

dataset has been proposed [73]. The system is demonstrated to accurately predict future career

moves, revealing interesting insights into occupational migration at the micro-level.

Despite this wealth of research, our understanding of the factors influencing a scientist’s

decision to relocate, such as their scientific profile or the quality of their scientific environment, is

limited. Furthermore, while the role of social relationships is known to influence human activity
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in several contexts [28, 133], it is not clear what the contribution of a scientist’s collaboration

network is on their decision to relocate.

1.4 Thesis outline

In the following, we address the knowledge gaps highlighted in the previous sections. In Chapter

2 we introduce a deterministic model of population dynamics combining population growth and

migration. Using both gravity and intervening opportunities models of migration, we analytically

assess the spatial distribution of population that each model produces. We use data on the size

and spatial distribution of cities globally to assess whether it is possible to determine which

spatial model of migration correctly describes the migration of individuals within a fixed region.

We conjecture ‘Heaps’ Law of Cities’: a scaling relation between the total population of a region

and the number of cities within it. This is validated using the same data. Finally we assess

the extent to which the size and spatial distribution depends on the definition of a city using

a gridded population dataset. We use a clustering algorithm to obtain cities from the gridded

population and investigate the presence of Zipf ’s law for population and area of cities and Heaps’

law for the number of cities. In Chapter 3 we present a microscopic model of births and deaths

that is able to reproduce Zipf ’s Law for the distribution of large cities without fine tuning. We

also characterise the scaling between the expected population growth and its variance, relating it

to a relationship originating from ecology: Taylor’s law. We validate our model using empirical

data on the populations of cities and counties in the United States. In Chapter 4 we use machine

learning techniques to determine which factors are most influential in a scientist’s decision to

migrate. Using these results we present an adaptation of a singly constrained gravity model

which incorporates additional factors in the decision to relocate. We demonstrate that this model

is more successful than a singly constrained gravity model at predicting where a scientist will

move to once they have made the decision to relocate.

Our work provides further insight into important aspects of the urbanisation process. Our

results from Chapter 2 demonstrate that the number of cities in a region can be fully described

by the total population of the region and is independent of the region’s population density or

area. We also show that the spatial distribution of cities suggests cities are randomly distributed

in space; there are no significant spatial correlations. Our novel deterministic model, while

producing interesting analytical results, needs adapting into a stochastic form in order to provide

a realistic description of the interplay between migration and population growth. In Chapter 3

we demonstrate that in order to produce a size distribution of cities that is in line with empirical

distributions, the assumption that growth rates are independent and identically distributed, must

be relaxed. While aggregately (ie. at the level of a city) this assumption is valid, we show that, at

the level of the individual inhabitants, introducing correlations and environmental variability

results in a distribution of city sizes that, above a threshold population, can be described by
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Zipf ’s law: our model provides a microscopic explanation of Gibrat’s law. Finally in Chapter 4

we demonstrate that when a scientist moves between institutions it is personal factors that

are most important in determining when they move and where they move to. The methodology

implemented in this chapter, using machine learning methods to inform a modified model of

migration, marks a possible advancement for future models of migration and a general model of

urbanisation.
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2
THE SIZE AND SPATIAL DISTRIBUTION OF CITIES

2.1 Introduction

Compared to the great efforts made to characterise the distribution of city sizes both empirically

and theoretically, much less work has been done to answer the other fundamental question

about the urbanisation process: What determines the number of cities in a country? In this

chapter we investigate the relationship between the population of a region and the number and

spatial distribution of cities within it. Initially we consider the analytical relationship between

population and number of cities, introducing a deterministic model of population dynamics

in section 2.2 in order to understand how cities form due to the interplay between natural

increase and migrations. To account for migrations, in section 2.3 we consider a gravity model

and in section 2.4, an intervening opportunities model. For each migration model we linearise

the deterministic equation about a steady-state population density and study the evolution

of a small perturbation to the steady state. We obtain analytical relationships between the

population of a region and the number of cities expected for each of the gravity and intervening

opportunities models. Analytically, we find that if individuals migrate according to a gravity

model, the number of cities is independent of the population of a region whereas if they migrate

according to an intervening opportunities model, the number of cities increases linearly with

population. We assess the extent to which the analytical results agree with numerical simulations

of our deterministic model in section 2.6. Following on from this, in section 2.7 we investigate

the empirical relationship between the total population of a region, the number of cities within

it and their spatial distribution using a dataset on the population of all cities globally. Here we

introduce the concept of Heaps’ law for cities: an empirical relationship between the number of

cities in a region and the region’s population. The validity of Heaps’ law demonstrates that cities

are randomly distributed in space; that is, there is no evidence of a relationship between the size
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of urban areas and their spatial distribution. In 2.8 we demonstrate that these results are also

valid for urban clusters in the United States. The empirical evidence for Heaps’ law for cities,

where the number of cities increases with a region’s population, suggests that an intervening

opportunities model may offer a more realistic description of migration flows: Heaps’ law is

equivalent to the analytical result for this model obtained in 2.4. In section 2.9 we discuss the

merits and limitations of our deterministic approach to modelling population dynamics.

The work presented in this chapter has been carried out in collaboration with F. Simini and

can, in part, be found in [115]. Specifically, F. Simini derived the analytical results presented in

sections 2.7.1 and 2.8 and performed the data analysis presented in section 2.8.

2.2 A deterministic model of population dynamics

Our first step in investigating how the number of cities within a region is affected by the

region’s population is to theoretically understand how cities are formed. Our approach is to use a

deterministic model, similar to those used in economic geography [47, 66], which describes the

evolution of the population density.

A general theory aiming at describing human demographic dynamics, i.e. the spatio-temporal

evolution of the population distribution in a region, must consider all factors that contribute

to the population change in any location. These contributions are reduced to the following two

fundamental categories: births, deaths and external (international) migrations on one end, and

internal (national) migrations or relocations on the other. The first contribution modifies the

total population of the region, while the second is responsible for the redistribution of individuals

within the region’s area.

If relocations from one point to another are to be considered, alongside population growth and

international migrations, a deterministic equation to describe the change in population density,

ρ(x, t), at location x is given by:

(2.1)
∂ρ(x, t)
∂t

= g(ρ(x, t))−Tout(x, t,ρ)+T in(x, t,ρ).

Tout and T in are the number of individuals leaving and relocating to point x from other parts

of the region respectively; these terms represent internal migrations. The form of these functions

is determined by the mathematical model used to describe the flow of individuals who relocate

from one point to another. Here we consider a gravity model alongside intervening opportunities

and radiation models. The probability that an individual will relocate to a given location is

dependent on both the distance to and opportunities at the destination (gravity models) or at all

intermediate locations (intervening opportunities and radiation models). Here, an opportunity

refers to any property of a location that may be of interest to the relocating individual. We

distinguish between two classes of opportunities; those that depend on the population, such as

the availability of goods and services, and those that are independent of population, such as the

presence of naturally occurring resources.
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The function g(ρ(x, t)) represents the contribution to population change caused by births,

deaths, and external (international) migrations. It can be zero, g(ρ(x, t))= 0, if the system has

constant population, linear g(ρ(x, t))= g ·ρ(x, t) for an exponential population growth, or Logistic

g(ρ(x, t))= g ·ρ(x, t)(1−ρ(x, t)/ρ0), characterising population dynamics with a uniform stationary

state, ρ(x, t)= ρ0 in the absence of internal migrations. Here g is the population growth rate and

ρ0 is often called the carrying capacity.

In the following we consider a logistic form of growth and study the time evolution of a

continuous population distribution when subjected to small perturbations about a uniform

stationary state ρ(x, t)= ρ0. While this approach neglects the inherent randomness of stochastic

models required to reproduce phenomena such as Zipf ’s law, it allows for a fully deterministic

analysis of the migration models and their parameters, particularly the parameter constraints

under which cities will form. Furthermore we note that additional contributions, such as a

diffusion term responsible for the local relocation of individuals from highly populated areas to

less populated suburbs, can easily be added, however these will not be considered here.

2.3 Gravity Model

In the context of migratory dynamics, the gravity model suggests that the probability per unit

time that an individual moves between two locations, say xi and x j, is proportional to the product

of the population densities at xi and x j, each to some power, and a function of the distance, r i j,

between xi and x j, ie:

(2.2) Pxi (x j)=
ρ(xi)αρ(x j)β f (r i j)∫

D dx jρ(xi)αρ(x j)β f (r i j)
.

The denominator ensures that the probability, Pxi (x j), is correctly normalised over the domain D.

Exponents α and β are usually positive, and often β= 1. f (r) may be any continuous function,

usually an exponential, e−rR , or power law, r−γ.

In Equation 2.2 it is assumed that individuals will relocate to another position only if there is

a non-zero population at the destination. In reality, the probability for an individual to relocate is

also dependent upon the availability of natural resources at the new location or more generally,

any opportunity which is not related to the population, such as the presence of fertile soil or

minerals. If these resources are combined into a single term, w, which has the same units as the

population opportunities, then we can re-write Equation 2.2 as

(2.3) Pxi (x j)=
[ρ(x j)+w(x j)] f (r i j)∫

D dx j[ρ(x j)+w(x j)] f (r i j)
.

where β has been replaced with 1, ρ(xi)α has cancelled, and ρ(x j)+w(x j) denotes the total number

of opportunities at location x j. For simplicity we assume that w is stationary in time; this may

be justified by the fact that the rate of recovery of such resources is greater than the rate of

consumption. Setting the value of β to equal 1 means that the probability of migration to x j
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is linearly proportional to the population density at that location. For β> 1, the effect of large

cities is amplified: the probability per unit time of an individual relocating to a given city grows

at a faster rate than the population of the city itself resulting in a small number of very large

cities. In contrast, for β< 1, the probability per unit time of an individual relocating to a given

city increases at a slower rate than the population of the city, resulting in many smaller cities

forming.

In order to model the change in population density at location xi, ie ρ(xi), in time, the average

number of people both leaving from and moving to xi must be included. The number of people

leaving i per unit time is given by:

(2.4) Tout(xi)= T(ρ(xi),w(xi))ρ(xi)
∫

D
dx jPxi (x j)= T(ρ(xi),w(xi))ρ(xi).

In the above, T(ρ(xi),w(xi)) is the average migration rate, i.e. the fraction of people in xi that will

relocate in a time unit. To a first approximation this is assumed to be constant and independent

of location; T(ρ(xi),w(xi)) = T. The average number of people relocating to xi per unit time is

given by:

T in(xi)=
∫

D
dx jT(ρ(x j),w(x j))ρ(x j)Px j (xi)

= [ρ(xi)+w(xi)]
∫

D
dx j

T(ρ(x j),w(x j))ρ(x j) f (r i j)∫
D dxi[ρ(xi)+w(xi)] f (r i j)

.
(2.5)

Inserting these expressions into Equation 2.1 allows for the change in population density with

time, as described by a gravity model, to be studied.

2.4 Intervening Opportunities & Radiation Models

The intervening opportunities model suggests that the probability of migration is more strongly

influenced by the opportunities at the new destination as opposed to distance or population

density. According to this model, the probability per unit time of observing an individual at

location xi moving to location x j is given by:

(2.6) Pi(x j)= [ρ(x j)+w(x j)] f

(∫
Bxi (r i j)

dz[ρ(z)+w(z)]

)
,

where Bxi (r i j) is a ball of radius |x j − xi| centred on xi and f is a continuous function. The

normalisation of Equation 2.6 over a domain D with total population N may be imposed as a

condition on f :
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∫
D

dx jPxi (x j)=
∫ ∞

0
drr

∫ 2π

0
dθ[ρ(r,θ)+w(r,θ)] f

(∫ r

0
dzz

∫ 2π

0
dθ[ρ(z,θ)+w(z,θ)]

)
=

∫ ∞

0
dr

da(r)
dr

f (a(r))

=
∫ N

0
daf (a)

= F(0)−F(N)= 1.

(2.7)

Here, a(r) = ∫ r
0 dzz

∫ 2π
0 dθ[ρ(z,θ)+w(z,θ)], and F(a) ≡ ∫ ∞

a duf (u) is a decreasing function

such that F(0)= 1 and F(N)= 0. The deterrence function, F(a), may be either exponential, e−aR ,

as is the case for the intervening opportunities model, or power law, 1
1+a , which corresponds to

the radiation model.

For these models, the total number of travellers leaving xi per unit time is the same as for

the gravity model, described by Equation 2.4. The total number of people moving to xi per unit

time is given by:

T in(xi)=
∫

D
dx jT(ρ(x j),w(x j))ρ(x j)Px j (xi)

= [ρ(xi)+w(xi)]
∫

D
dx jT(ρ(x j),w(x j))ρ(x j)] f

(∫
Bxi (r i j)

dz[ρ(z)+w(z)]

)
.

(2.8)

These terms combine to give the general dynamic equation for the time evolution of the population

density as per Equation 2.1.

2.5 Analytical results

The uniform distribution ρ(x)= ρ0 is a stationary state of Equation 2.1 because the growth term

is equal to zero and T in is equal to Tout for all x, hence the time derivative on the left-hand

side is zero. In order to analytically assess the differences between the gravity and intervening

opportunities models of migration we linearise Equation 2.1 about the stationary state and

study the time evolution of a small perturbation ρ̃(x, t) = ∑
k hk(t)eikx; the perturbation is a

the sum over normal modes of wavenumber k and amplitude hk(t) (see Appendix A). For each

model of migration we consider an exponential deterrence function, f (r)= e−rR , and a power-law

deterrence function, f (r)= (1+ r)−γ with γ> 0.

On performing this analysis we find that if a population is described by a logistic growth with

individuals relocating according to a gravity model (see A.1), cities will develop if the following

two conditions are met simultaneously:

1. The carrying capacity is much larger than the density of resources: ρ0 À w.

2. The population is sufficiently mobile: T > 4g.
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FIGURE 2.1. a Gravity Model - exponential f(r): Parameter space (ρ0/w, T/g). Above the
critical curve the formation of cities is possible whilst below it, any perturbations
to the steady state distribution will decay back to ρ0 and the landscape will be flat.
b Gravity Model - power law f(r): Parameter space (ρ0/w, T/g). By comparison with
a we demonstrate that for the gravity model the particular deterrence function
has no effect on the condition for cities to form. c Intervening Opportunities Model:
Parameter space (ρ0/w, T/g). From comparison with a and b it can be seen that
for an intervening opportunities model cities may form when the ratio between
the migration rate and growth rate is lower than that required for gravity models.
d Radiation Model: Parameter space (ρ0/w, T/g). By comparison with c it can
be seen that if people relocate according to a radiation model, the ratio between
the migration rate and growth rate must be higher than that for an intervening
opportunities model in order for cities to form.

When the population density is sufficiently high, the average distance between cities depends only

on the deterrence function f : it is independent of the growth rate, migration rate and carrying

capacity. These results are shown in Figures 2.1a and 2.1b where it is seen that the critical

curves for the gravity model with both exponential and power-law deterrence functions are the

same. As the carrying capacity increases, ρ0 →∞, the wavelength of the mode with the highest

instability, km, which is proportional to the average number of cities per unit length, saturates to

a constant value: the number of cities within a region is independent of the region’s population.

The first condition, namely that the carrying capacity must be much larger than the density of

resources in order for cities to form, suggests that resources relating to the population, such as

the availability of goods and services, are far more important for the urbanisation process than

resources, such as fertile soil, that are independent of the population.

If instead the population relocates according to an intervening opportunities or radiation
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model (see A.2), an initial perturbation to the steady state population distribution will result in

the development of urban settlements if the following two conditions are met simultaneously:

1. The carrying capacity is much larger than the density of resources: ρ0 > c0w, with c0 = 1/3

and 1 for the intervening opportunities and radiation models respectively.

2. The population is sufficiently mobile: T > c1 g with c1 = 3 and 5 for the intervening opportu-

nities and radiation models respectively.

Here, the intervening opportunities model corresponds to the exponential deterrence function,

F(r)= e−rR , and the radiation model corresponds to the power-law deterrence function, F(r)=
(1+ r)−γ with γ > 0. These results are shown in Figures 2.1c and 2.1d where it is seen that

the critical curves for the intervening opportunities and radiation models are not the same; in

contrast to gravity models, for intervening opportunities type models these curves do depend on

the deterrence function used. In this case as the carrying capacity ρ0 increases, km increases

linearly with ρ0: the number of cities within a region is linearly dependent on the region’s

population. These results apply for both the 1-dimensional and 2-dimensional versions of our

deterministic equation.

It is important to note the distinct contrast between the gravity model and an intervening

opportunities model; the variation of km with increasing density ρ0. The value of km may be

related to the number of cities, C, that will grow from a small perturbation through the equation

(2.9) C = Lkm/2π.

For the gravity model, as ρ0 →∞, km saturates to a constant value, whereas for the intervening

opportunities model, km increases proportionally to ρ0. This result is summarised in Figure 2.2.

From this difference is it possible to determine which model of migration best describes patterns

seen in data.

2.6 Numerical Simulations

We simulate both the gravity and intervening opportunities models using numerical methods

in order to assess the accuracy of the analytical results derived above. Specifically, as we are

interested in the spatial distribution of cities, we simulate our deterministic model, Equation

2.1, for both the gravity and intervening opportunities models of migration and assess how

the number of cities varies with an increasing carrying capacity ρ0. Numerical simulations

demonstrating the validity of the conditions for city formation can be found in [115].

2.6.1 Gravity Model

To simulate the gravity model in 1-dimension, we evolve the dynamic equation A.1 in time

for an exponential deterrence function, starting with an initial distribution at t = 0 of small
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FIGURE 2.2. The wavelength of the mode with the highest instability, km, which is
proportional to the number of cities per unit length, as a function of the ratio ρ0/w.
For gravity models km tends to a constant in the limit of high carrying capacity,
ρ0 À w, whereas in the same limit km grows proportionally to ρ0 for intervening
opportunities models.

random perturbations about the steady state solution ρ0. The integrals are evaluated using the

trapezoidal rule. By varying the model parameters, the validity of the relationship between the

wavenumber and the number of cities, Equation 2.9, is determined. Unless otherwise stated, we

rescale variables by setting growth rate and resources, g and w respectively, to equal unity: this

allows for the model to be specified with 3 variables rather than 5 and is equivalent to rescaling the

units of time and population. We consider the case where resources, w, are uniformly distributed

in space.

We simulate the model with fixed parameters T = 10 and R = 1.5 and increasing carrying

capacity 10 ≤ ρ0 ≤ 90. We use an average migration rate of T = 10 based on the condition that

in order for cities to form, T > 4g : for the case of g = 0 (Figure 2.3a), cities will form for any

value of T, however for g = 1 (Figure 2.3b), cities will form for any T > 4 however the time for the

population distribution to reach equilibrium increases as T → 4. The value of R was selected to

align with empirical values found for European countries [124]. From the simulations we find

that increasing the carrying capacity increases the size of cities however the number of cities

remains constant, determined by Equation 2.9. The results of this simulation are displayed in

Figure 2.3a,b.

2.6.2 Intervening Opportunities Model

In order to numerically simulate the intervening opportunities model, we make an adjustment

to the expression for the probability of observing an individual at xi moving to x j, originally

formulated in Equation 2.6. Rather than using the probability density function f (a), we use the
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FIGURE 2.3. The final distribution obtained from a Gravity model, with parameters
T=10, R=1.5, g=0 b Gravity model, with parameters T=10, R=1.5, g=1 c Inter-
vening opportunities model, with parameters T=10, R=0.1, g=0 d Intervening
opportunities model, with parameters T=10, R=0.1, g=1. ρ0 is varied between 4
and 100 to demonstrate the relationship between the number of peaks and the
steady state population density for each model.

cumulative distribution function, F(a). On doing this, we write the dynamic equation, analogous

to Equation A.14, as:

∂ρ(xi)
∂t

=gρ(xi)(1− ρ(xi)
ρ0

)−Tρ(xi)+T
∑

j
Pi j

=gρ(xi)(1− ρ(xi)
ρ0

)−Tρ(xi)+T.
∑

j

[F(ai j)−F(ai j +ρ(x j)+w(x j))
F(ρ(xi)+w(xi))−F(N)

]
.

ρ(x j)+w(x j)∑
xk∈Ri j

ρ(xk)+w(xk)

(2.10)

where Ri j is the set of locations on the ring of radius r i j, centered on xi, therefore the summation:

(2.11)
∑

xk∈Ri j

ρ(xk)+w(xk)

is a sum over all locations xk at the same distance as x j from the origin xi. We define D i j such that

it represents the set of locations within the disc of radius r i j centered in xi and the opportunities

between but not including locations xi and x j may be written:

(2.12) ai j =
∑

xk∈D i j

ρ(xk)+w(xk).
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Using this formulation, the dynamical equation corresponding to a population relocating accord-

ing to an intervening opportunities model with an exponential deterrence function is simulated.

Simulations are carried out for fixed T and R whilst varying ρ0, the results of which are

shown in Figure 2.3c-d. From this we find that the number of cities increases with ρ0 for an

intervening opportunities model as expected from Equations A.19 and A.14.

2.6.3 Model Comparison

From both the analytical results and those obtained from simulations, we note that the main

contrast between the gravity and intervening opportunities models is their behaviour with

increasing ρ0, specifically how the number of cities changes due to a change in the steady state

population density. From the analysis of the gravity model, we find that the number of cities does

not vary with ρ0; this is shown in Equation A.7 and supported by Figure 2.3a-b. In comparison to

this, for the intervening opportunities model, we find that increasing ρ0 also results in an increase

in the number of cities. For this model, the expression for km suggests a linear relationship

between ρ0 and the number of cities, when all other parameters are fixed, and this is supported

for low values of ρ0 by Figure 2.3c-d.

The dynamic equation, 2.1, used for each model only differs in the migration term; both

models follow a logistic growth. As a result, by setting this growth to equal zero the differences

between gravity driven migration and migration driven by an intervening opportunities model

may be effectively analysed. Setting the growth to zero to study the number of peaks is also

justified by the fact that the number of peaks is proportional to km; for both models this is

independent of the value of g.

2.6.3.1 1D

Figures 2.3a and 2.3c demonstrate the difference between the two models noted above when the

growth term is set to zero. Here we simulate both models with an identical initial distribution

and equal parameters except for R, the value of which is specific to the model being used. It

is seen that as ρ0 is increased the final distribution from the gravity model displays peaks of

increasing height whereas that for the intervening opportunities model displays an increasing

number of peaks alongside a less significant increase in height.

In Figures 2.3b and 2.3d we demonstrate the effect of a small growth on the final distributions

for the gravity and Intervening Opportunity models respectively. We observe that the effect of a

non-zero growth rate on the final distribution of cities is that all cities evolve to approximately

the same size; ρ0. This is a result of the logistic form of growth, g· (1− ρ(x, t)/ρ0); as ρ(x, t)

approaches ρ0, the growth rate tends to zero, all cities have reached the same size and have equal

opportunities, therefore there is also no further migration.
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FIGURE 2.4. The final stationary distribution of cities when individuals relocate accord-
ing to a gravity model (red) and an intervening opportunities model (green) for
increasing values of ρ0 = 10,25,50 with fixed parameters L = 15, T = 30, R = 0.5
(gravity model) and R = 0.2 (intervening opportunities model). It is observed that
the final number of cities remains constant with increasing ρ0 if individuals relo-
cate according to a gravity model whereas the number of cities increases with ρ0 if
individuals relocate according to an intervening opportunities model.

2.6.3.2 2D

In Figure 2.4 we display the final stationary distributions of cities obtained from simulations of

both the gravity model (red squares) and intervening opportunities model (green triangles) for

initial distributions randomised about increasing values of ρ0 over the range [10,50]. From this

we observe that, in correspondence with the 1-dimensional simulations, the number of cities for

the gravity model remains fixed and constant with increasing ρ0 whereas for the intervening

opportunities model the number of cities increases with ρ0. As the initial distribution of popula-

tion is randomised about ρ0 this result demonstrates that if individuals relocate according to a

gravity model the number of cities is unaffected by the total population of the region. In contrast,

if it is an intervening opportunities model by which people relocate then the number of cities

within a region will increase with the total population of that region.

2.6.3.3 Numerical results : summary

Numerical simulations have confirmed the analytical results summarised in section 2.5. Specifi-

cally, we have demonstrated that if ρ0, the carrying capacity, is increased, the number of cities

remains constant if individuals relocate according to a gravity model whereas it increases if

individuals relocate according to an intervening opportunities model.

2.6.4 Summary

In the previous sections we assume that population grows logistically and migration can be

described by either a gravity or intervening opportunities model. Our deterministic model

suggests that if the number of cities in a country increases with the country’s population,
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individuals relocate according to an intervening opportunities model. In contrast, if the number

of cities is independent of the population of a region, a gravity model is a better description of the

demographic dynamics. However, so far our results are only analytical; in the following sections

we empirically investigate the relationships between the number of cities in a region and some of

the region’s properties, such as the region’s total population and built-up area. In particular, we

consider how the total population (or the total built-up area) of a region affects the number of

cities.

2.7 Heaps’ Law for Cities

The relationship between the total population of a region and the number of cities is analogous to

Heaps’ Law in linguistics [51, 58], which describes the empirical scaling relationship between the

number of distinct words, W, in a document and the total number of words in the document (or

text length), N: W ∼ Nγ, where γ≤ 1 is the Heaps exponent.

In fact, the analogy of Heaps’ Law in the context of cities would state that the number of

cities C in a total population of N individuals would scale as

(2.13) C ∼ Nγ.

Previous research has shown that Zipf ’s law and Heaps’ law often appear together [81], suggesting

that the presence of Zipf ’s law implies Heaps’ law.

However, this relationship does not necessarily hold for spatially extended systems, such as

cities, because evidence for Zipf ’s law at the country (global) scale does not necessarily imply

the presence of Zipf ’s law and Heaps’ law at the regional (local) scale. In fact, even if Zipf ’s

law for the distribution of city sizes holds globally at the level of countries, it might not hold

locally at smaller spatial scales if correlations in the spatial distribution of urban clusters are

present. This would be the case, for example, if urban clusters were aggregated by size, so that

it is more common to find clusters of similar sizes close to each other compared to the case

in which clusters are randomly distributed among the regions, irrespective of their size. The

overall (global) distribution of cluster sizes would not change and still be a power-law, but the

size distributions in the regions would not follow Zipf ’s law anymore and as a consequence Heaps’

law would not hold. Indeed, this is what happens in ecological systems, where macro-ecological

statistical patterns of species distribution and abundance display a strong dependence on the

spatial scale considered [8]. One of the most relevant statistics used to characterise the degree of

biodiversity of ecosystems is the species-area relationship (SAR), which measures the number of

different species expected to be found in areas of increasing size. Since the density of individuals

per unit area is constant, the SAR is the equivalent of Heaps’ law for ecosystems, as it measures

the relationship between a region’s total population and the expected number of different groups

of individuals in the region, where here groups correspond to species instead of cities. Empirical

measurements of the SAR show a different functional behaviour as the region’s area increases,
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and this is due to the fact that the shape of the distribution of species sizes, called the relative

species abundance, depends on the spatial scale considered.

There is another reason to investigate the relationship between Zipf ’s and Heaps’ laws for

cities. Zipf ’s law for the distribution of city sizes usually holds only for the tail of the distribution,

or the distribution of large cities. However the fact that in a region the distribution of city

sizes has a power-law tail does not give any information regarding the relationship between the

number of cities in the region and its total population. In other words, when Zipf ’s law holds only

for large cities, there is no guarantee that Heaps’ law holds as well. To understand this, consider

a region in which city sizes follow Zipf ’s law. If the population of each city is doubled and hence

the total population of the region is also doubled, yet no new cities are created, Zipf ’s law will still

be present, albeit with a larger scale parameter (i.e. the minimum city size is doubled). However,

Heaps’ law will not hold in this case, or it will have exponent γ= 0, because the total population,

N, is doubled, but the number of cities, C, has not changed. This result would in fact correspond

to our deterministic equation with individuals relocating according the the gravity model.

In the following, we use a dataset on the population and location of cities globally to assess if

Heaps’ law holds for all countries in all continents (except Australia and Antartica), and to test

the predicted relationship between Heaps’ and Zipf ’s exponents. Cities can be defined in many

different ways and various relevant properties of urban agglomerations, including the scaling

relationships between population size and urban indicators such as area of roads and number

of patents, depend on the method used to define cities [4, 23]. In particular, the relationship

between the number of cities in a region and the region’s total population, i.e. Heaps’ law, can

also depend on the definition of city considered. To understand how Heaps’ law depends on the

definition of city, we use a second dataset of the spatial distribution of population in the United

States that allows us to consider various definitions of urban clusters and provide additional

support to our results.

2.7.1 Analytical Results

When considering the distribution of cities in space, the most simple assumed (or null) model is

that cities are in fact distributed randomly and that there are no spatial correlations between

them. If we start by assuming that Zipf ’s law, ie. the global distribution of city sizes, holds for all

regions then we can populate space by drawing from this distribution. For a total (target) region

population N, the sizes of the cities populating the region are drawn from the distribution of city

sizes. This process stops when the sum of the city sizes exceeds N and the number of cities C is

given by the number of drawings from the distribution. Repeating this process many times and

averaging over the results from all realisations we obtain an estimate for the number of cities

expected in a region of total population N: 〈C|N〉.
For this null model, it is possible to obtain an analytical expression for 〈C|N〉, or Heaps’ law.

The probability to find a city with population x in a region with total population N and C cities is
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FIGURE 2.5. Relationship between the expected number of cities and the total popu-
lation for the null model, which assumes a Zipf law with exponent β= 1.75 and
minimum city size X = 102 for the distribution of city sizes and no spatial corre-
lations between cities. The thin blue lines are 100 realisations of the model and
the blue circles denote the average number of cities, 〈C|N〉, for a fixed value of the
total population, N. The solid red line is the theoretical prediction of Equation 2.17
and the dashed black line is Heaps’ law, 〈C|N〉 ∼ Nβ−1, which holds in the limit of
very large population N À X

p(x|C, N). The average population of these C cities is given by N/C, therefore

(2.14) N = C · 〈x|C, N〉

where 〈x|C, N〉 corresponds to the conditional expectation of x given C and N. If we multiply this

by p(C|N) on both sides and integrate with respect to C we obtain:

(2.15) N =
∫

dCp(C|N)C
∫

dxxp(x|C, N).

If the probability to find a city with population x in a group of C cities is assumed to be

independent of the number of cities, ie. p(x|C, N) ≈ p(x|N) then we can say that the expected

number of cities C in a region of total population N is 〈C|N〉 ≈ N/〈x|N〉. We have already assumed

that city sizes follow Zipf ’s law, with exponent β< 2, we also know that the maximum city size

cannot be greater than the total population of the region. Using this, we can therefore write:

(2.16) p(x|N)= β−1
X1−β−N1−β x−βH (N − x),

where H (·) is the Heaviside step function and X is a minimum city size. From this and Equation

2.15 we obtain an equation relating the average number of cities to the total population:

(2.17) 〈C|N〉 ≈ 2−β
β−1

·N (X1−β−N1−β)
(X2−β−N2−β)

.
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Continent β σβ γ σγ

Africa 1.77 0.05 0.78 0.09
Asia 1.94 0.04 0.85 0.05
America 1.96 0.04 0.97 0.07
Europe 2.02 0.05 1.01 0.06

TABLE 2.1. Exponents β of Zipf ’s law and γ of Heaps’ law for Africa, Asia, America and
Europe. Values σβ and σγ correspond to the standard deviation in the exponents of
Zipf ’s and Heaps’ laws respectively. We observe that for Europe and America the
expected relationship β= γ+1 is satisfied within 1 standard deviation. Exponents
β and γ were fit to the data using non-linear least squares.

Noting that 〈C|N〉 is a function of the ratio N/X , when the population is large, N À X we obtain

Heaps’ law: 〈C|N〉 ∼ (N/X )β−1. Figure 2.5 shows 100 realisations of the null model and the

theoretical prediction given by Equation 2.17 for β= 1.75.

2.7.2 Empirical Results

Initially, we wish to assess whether Heaps’ law holds for the four most populated continents: Asia,

Africa, America and Europe. In order to do so, we analyse the Geonames data [130], grouping

countries by their associated continent. This dataset contains the population of all cities with

1,000 or more inhabitants globally. Information relating to the location of each city, such as the

latitude and longitude, country, state and county is also included in the dataset. Data on the area

and population of all countries was obtained from Worldbank [127].

Firstly we verify the existence of Zipf ’s law for each continent. For all countries in each

continent we find that the city size distribution, for each continent, follows Zipf ’s law above

a minimum city population of ∼ 105, as shown in Figure 2.6a where the darker parts of the

distribution correspond to city sizes above this threshold. Fitting a power law to the tails of

each city size distribution, we obtain a measure of the Zipf exponent β. Exponents β of the

PDFs are displayed in Table 2.1. We find that, while Europe and America both satisfy Zipf ’s

law, ie. their exponents are given by β= 2 within errors, Asia and Africa have exponents smaller

than 2. Our power-law fitting is implemented using non-linear least squares. The population

at which the distribution of city sizes follows Zipf ’s law (Figure 2.6a), is 105 for consistency

across all continents. The validity of selecting this population was confirmed by minimising the

Kolmogorov-Smirnov distance between the data and the fitted power-law, as suggested in [30].

This method gives values for the minimum population in the range [47000,55000]. The values of

Zipf ’s exponent β for the continents using these values are consistent with those obtained using

a minimum city population of 105 for all continents.

Following this we assess whether Heaps’ law holds for all countries in our four continents. To

do this, for each country within a continent we calculate the number of cities with population

x > X , where X is the minimum city population. We then fit a power law to a scatter plot of
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Continent Population Density Area
Africa 0.84 0.04 0.45
Asia 0.95 -0.09 0.45
America 0.99 -0.23 0.82
Europe 0.95 0.10 0.67

TABLE 2.2. The correlation coefficients between the number of cities and the population
density, area and total population for countries in Africa, Asia, America and Europe.

the total population of a country vs the number of cities for which x > X , thus obtaining Heaps’

exponent γ. From Table 2.1 we observe that Heaps’ law, C ∼ Nβ−1 is satisfied, within errors, by

all continents. This is further demonstrated in Figure 2.6d.

Examples of the scatter plots used to fit Heaps’ law for each continent are given in Figure

2.6b,c,e,f. Here, the total population of a country (x-axis) is plotted against the number of cities

with population x > 105. The marker size for each country corresponds to the logarithm of the

area and the colour corresponds to the country’s population density. From these plots it is clear

that the number of cities does not scale with a country’s area or density; in order to determine

the number of cities in a region it is the total population that is the informative feature. The

correlation coefficients for cities-density, cities-area and cities-population are displayed in Table

2.2. For figures displaying the number of cities vs country density and area see A.4.

2.7.3 Heaps’ Law for States

As aforementioned, the presence of Zipf ’s law and Heaps’ law at the continental scale does not

imply its presence at a smaller scale where regions can be more homogeneous. To assess the

presence of Heaps’ law as a smaller scale we look as states within the United States. Figure 2.7a
provides clear evidence that the number of cities grows proportionally to the state population.

Furthermore, it is clear that there is at most only a small relationship between the number of

cities and the area or population density of a state: for this data, the correlations coefficients for

cities-population, cities-area and cities-density are given by 0.95, 0.04 and -0.08 respectively.

Combining our results with Zipf ’s law we obtain an expression for C(N, X ), the number of

cities above a minimum city population X given a total population N: C(N, X )= C(N)P(> X )∼
N/X . This is equivalent to Heaps’ law, with γ= 1. In Figure 2.7b we plot the number of cities

with more than X inhabitants as a function of the ratio N/X for values of X ranging from 5,000

to 5,000,000 inhabitants. As all points collapse on the same line, this confirms that the Equation

C(N, X )∼ N/X holds over several orders of magnitude of N and X . We find further evidence for

the validity of Heaps’ law throughout time in the state of Iowa in the United States. Historical

data shows that between 1850 and 2000 the number of incorporated places (i.e. self-governing

cities, towns or villages) grew at the same rate as the state population. This result is displayed in

Figure 2.7c.
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FIGURE 2.6. a, Zipf ’s Law: PDF (y-axis) of city sizes X (x-axis) for all cities in Europe,
America, Asia and Africa. The darker regions correspond to cities with population
X > 105, above which the distributions are a power law with exponent β given in
Table 2.1. The dashed lines correspond to y= x−β. Distributions have been shifted
in the y-axis for clarity. b-c and e-f, Heaps’ law for America, Europe, Africa and
Asia. The following information is displayed for each country: population (x-axis),
number of cities with more than 100k inhabitants (y-axis), 2-letter country code
(marker), logarithm of the area (marker size) and population density (color). The
black line is a power law fit of the scaling relationship between the number of
cities and the total population; Heaps exponents γ are reported in Table 2.1. d,
The exponent of the Zipf PDF, β (y-axis) and the corresponding exponent γ of
Heaps’ law for Europe, America, Asia and Africa. Marker size corresponds to the
minimum city population used in determining the values of γ and β: values used
are 103,5×103,104 and 105, where 103 is represented by the smallest marker and
105 by the largest. The black dashed line corresponds to the relationship between
the exponents, β= γ+1.

2.7.4 Spatial distribution of cities

If cities are randomly and uniformly distributed in space, the average number of cities in a region

with uniform population density 1 is proportional to the region’s area, or equivalently the density

of cities scales as χ∼ C/A. Combining this result with Heaps’ law, C ∼ N/X , and observing that

the average distance to the closest city, 〈dc〉, scales as the inverse square root of the density of

cities, we obtain the following relation:

(2.18) 〈dc〉 ∼ 1/
p
χ ∼

p
A/C ∼

√
X (A/N) ∼

√
X /ρ .

1If measured on a length scale larger than the average distance between cities
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FIGURE 2.7. a, The number of cities with more than 5,000 inhabitants in the United
States is proportional to the state’s population, corr(C, N)= 0.95. The correlations
with area (0.04) and population density (−0.08, see inset) are negligible, as il-
lustrated by the following pairs of states with similar area or density and very
different number of cities: Alaska (“AK": A = 1.5M km2, C(5k)= 22) vs Texas (“TX":
A = 0.7M km2, C(5k)= 392), and Rhode Island (“RI": ρ = 393 km−2, C(5k)= 35) vs
New Jersey (“NJ": ρ = 467 km−2, C(5k)= 316). b, Combining Heaps’ law with Zipf ’s
law it is possible to estimate the number of cities with more than X inhabitants in
a country with population N as C(N, X ) ∼ N/X . As a consequence, the scattered
cloud of points resulting when plotting C(N, X ) against N for various X ’s in the
range 5 ·103 −5 ·106 (inset) collapses on a straight line when C(N, X ) is plotted
against the ratio N/X . c, Historical records of the number of incorporated places
(C, red triangles) and the state population (N, blue circles) in Iowa from 1850 to
2000 [123]. The similar growth rates of C and N entail the validity of the first law
of urbanisation C ∼ N during the 150-year period (inset). d, The average distance
to the closest city in the United States scales as the inverse of the square root of
the state’s population density (here all cities with more than 5,000 inhabitants are
considered). The asymmetric error bars denote the standard deviations above and
below the average. e, Illustration of the relationships between total population,
number of cities, and their average distance in Iowa and Connecticut. In agreement
with Heaps’ law, C ∼ Nβ−1, Iowa and Connecticut have similar populations and a
similar number of cities with more than 5,000 inhabitants, despite Connecticut
having one-twelfth the area of Iowa. In agreement with cities in Connecticut are
closer than cities in Iowa because of the higher population density in Connecticut.
By rescaling distances such that Connecticut’s area becomes equal to Iowa’s area,
the two states would have the same population density and consequently the same
average distance between cities.
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2.8. HEAPS’ LAW FOR URBAN CLUSTERS

We assess the validity of this assumption using the Geonames dataset. Figure 2.7d shows the

average distance to the closest city with more than X = 5000 inhabitants for states in the United

States, as a function of the states’ population density. We observe that the average distance to the

closest city is inversely proportional to the square root of the population density, thus confirming

the relationship of Equation 2.18.

This finding supports some of the conclusions of the Central Place Theory of human geography,

whilst disproving others [29]. On the one hand, it is true that for regions with a given population

density the larger the cities are, the fewer in number they will be, and the greater the distance,

i.e. increasing X in Equation 2.18 results in a greater average distance 〈dc〉. On the other hand,

the average distance between cities of a given size X is not the same for all the states, but

depends on the state’s population density; cities of a given size are closer in densely populated

states than in sparsely populated ones, i.e. for a fixed city size X and state area A the distance

between cities decreases as the inverse square root of the state population, N. This result is

demonstrated in Figure 2.7e for the states of Iowa and Connecticut in the United States. Here

we observe that while both states have a similar total population and number of cities with over

5,000 inhabitants, Connecticut has a much smaller area. As a result, the average distance to the

closest city in this state is much less than in Iowa. However, if the area of Connecticut is rescaled

such that it is equal to that of Iowa, the average distance to the closest city becomes comparable

to Iowa’s.

2.8 Heaps’ law for urban clusters

To understand how Heaps’ law depends on the definition of a city, we analyse data from the

Global Rural-Urban Mapping Project [27] (GRUMPv1) consisting of estimates of the population

of the United States for the year 2000 at a resolution of 30 arc-seconds (∼ 1km). In particular,

we wish to determine the relationship between the area and population of urban clusters and

whether the area of urban clusters, a, is also valid as the relevant size variable for Zipf ’s and

Heaps’ laws. Indeed, the PDF of the distribution of urban areas is also known to follow Zipf ’s

law with exponent β' 2 [82], hence our null model predicts that the number of urban clusters is

given by Equation 2.17, where N now denotes the total urbanised area and β−1 the exponent of

the counter cumulative distribution function (CCDF) of city areas.

In the GRUMP data the spatial distribution of population is represented as a matrix, whose

elements denote the estimated number of individuals resident within each of the grid cells.

We apply a city clustering algorithm [107] (CCA) to the GRUMP data and define cities as

spatial clusters of neighbouring grid cells with population over a given threshold, X , which also

corresponds to the minimum cluster population. Initially we consider how the number, size and

areas of cities in a fixed region depends on the minimum population X . We vary the parameter

X over the interval [10-600] persons per km2, clustering adjacent cells with population above
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FIGURE 2.8. a, Portion of the GRUMP dataset representing the distribution of pop-
ulation in a region of the Midwest US. The color denotes the logarithm of the
population: light yellow for high population, dark blue for low population. b-d,
Urban clusters in the region depicted in panel a obtained applying the City Clus-
tering Algorithm for different values of the minimum population parameter: X =
28 in b, 129 in c, 599 in d. e, Scaling relationship between area and population
of clusters. The different colors denote different values of the CCA parameter
X (see the legend of panel f for the X values). The points indicate the average
area of clusters with a given rescaled population. Data are fit to the power law
in Equation 2.19 and the legend reports the values of the scaling exponent ω for
the various X . f, Counter Cumulative Distribution Functions of cluster areas. The
different colors denote different values of the CCA parameter X (see the legend for
the X values). The grey line is a power law with exponent −1 as a guide for the eye.
g, Counter Cumulative Distribution Functions of cluster populations, x (dashed
curves), and rescaled populations, (x/X )ω(X ) (solid curves). The grey line is a power
law with exponent −1 as a guide for the eye.

the threshold X . As a reference, the official definition of urban area adopted by the US census

considers values of X between 193 and 386 people per square kilometer [103]. In the range

of X considered, the numbers and sizes of clusters obtained with the CCA are very different.

Panels b-d of Figure 2.8 show the clusters within a square region in the Midwest (Figure 2.8a)

for X = 28,129, and 599. Both the number and area of clusters decrease as X increases and

some large clusters split into multiple smaller clusters. This suggests that the exponents of both

Zipf ’s law and Heaps’ law may depend on the definition of a city being used and our minimum

population X .

The area and population of urban clusters are strongly correlated variables. Measuring the

scaling relationship between the area, a, and population, x, of the clusters provides a means of

characterising the expansion of urban areas. We use the gridded population data to measure
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urban sprawl for different definitions of city, i.e. different values of the CCA parameter X

(see Figure 2.8e). We observe that the scaling relationship between a and x has the following

dependence on the minimum population parameter X :

(2.19) a ∼ (x/X )ω(X )

Note that the area of a cluster scales with the ratio x/X . This can be interpreted as the maximum

area that a cluster of population x can have, given X . The scaling exponent ω depends on X . In

particular, ω(X ) is an increasing function of X , which grows from 0.66 to 0.88. The sub-linear

scaling between a cluster’s area and population, ω(X ) < 1 for all X , implies an increase in the

population density of large clusters: the population density scales as x/a = x1−ω, which is a

growing function of x when ω< 1. This is a result of the economies of scale in the use of urban

space. In large clusters space is organised more efficiently than in small clusters, so that each

square kilometre of land can host a larger number of individuals, hence increasing the cluster’s

population density [23]. Urban sprawl happens when the exponent ω has a large value, indicating

a reduced efficiency in the utilisation of space as the size of clusters grows. The fact that ω

increases with X means that the estimated urban sprawl is bigger when clusters are defined

using a large X and smaller when X is small.

The scaling relationship between area and population of clusters, Equation 2.19, implies that

the Zipf exponents of the distributions of cluster areas and populations, βa and βx respectively,

are not independent, but related by the equation

(2.20) βx −1= (βa −1) ·ω(X ).

The empirical distributions of cluster areas for different values of the CCA parameter X , shown

in Figure 2.8f, indicate that the Zipf exponent for the areas is βa −1' 1, independent of X . The

distributions of cluster populations, instead, have exponents that depend on X . If the populations

are rescaled by X and elevated to the power of ω(X ), the curves for different X collapse on the

same power law with exponent βx −1' 1, verifying the relationship βx −1= (βa −1) ·ω(X ) (see

Figure 2.8g).

2.8.1 Local distributions of areas and populations of urban clusters

To further understand how the number, areas and populations of clusters depend on the CCA

parameter X , we perform a systematic analysis of the GRUMP data, considering regions at a

smaller spatial scale. We divide the US into non-overlapping square regions of size L = 128 km,

and obtain urban clusters in each region by applying the CCA for all values of X between 10 and

600. We use geographical areas of 128km2 to ensure that each region contains enough clusters

to compute the distribution of cluster sizes and areas. In order to avoid finite-size effects, we

only consider regions with low urbanisation, having a percentage of built-up area smaller than

5% (this condition is satisfied by 49% of the regions for m = 10 and up to 93% for m = 599). We
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group together regions with similar total population, Nx, and built-up area, Na, and compute

the distributions of cluster sizes (i.e. populations and areas) separately for each each group (see

Figure 2.9a,d). If the assumptions of our null model hold, the Counter Cumulative Density

Functions (CCDFs) of cluster areas and populations should be truncated power laws and have

the forms

P(> a|Na)∼ a1−βa fa(a/Na)(2.21)

P(> x|Nx)∼ (x/X )1−βx(X ) fx(x/Nx),(2.22)

where fa and fx are scaling functions that rapidly go to zero when their argument is larger than

1, to account for finite-size effects. We find that the assumptions of the null model hold: the local

distributions of city sizes are power laws with the same exponent as the global distribution at the

country scale, with cutoffs that account for the finite sizes of the regions. The scaling collapses

shown in Figure 2.9b,e provide a validation to the predicted functional forms of the CCDFs,

Equations 2.21 and 2.22.

2.8.2 Heap’s law at the local scale

Finally, we wish to verify that the average number of clusters is related to the total size of the

region as predicted by the null model (Equation 2.17). This means that cities are randomly

distributed among the regions, even at small spatial scales. For each group of regions with similar

total population, Nx, and built-up area, Na, we compute the average number of clusters for all

values of the CCA parameter X , 〈C|Na, X 〉 and 〈C|Nx, X 〉, and we check if these empirical values

are compatible with the estimates of the null model. To this end we perform 100 realisations of

the null model, sampling cities with replacement from the list of all the empirical values of cluster

areas, and we repeat the same procedure for the cluster populations. For each value of Na and Nx,

we compute the confidence intervals for the null model, defined as the 10th and 90th percentiles

of the number of clusters in the 100 realisations. We observe that the empirical estimates of the

average number of clusters lie within the null model’s confidence intervals (see Figure 2.9c,f),
confirming that empirical data is compatible with a random distribution of clusters within the

regions.

2.9 Conclusion

In this chapter we presented a deterministic model of population dynamics. This model in-

corporated a logistic growth of the total population and either a gravity model or intervening

opportunities model to describe the movement of individuals between cities. We demonstrated

analytically that if individuals relocate according to a gravity model, the number of cities in a

region is independent of the region’s population. In contrast, if individuals relocate according to
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FIGURE 2.9. a, Counter Cumulative Distribution Functions of areas of the clusters
in all US regions of 128×128 km2 having urbanised area up to 5%. Regions are
grouped in six groups according to their total urbanised area, Na, and the CCDFs of
each group are computed separately for the different values of the CCA parameter
X (see the legend in Figure 2.8f for the X values). b, The CCDFs of panel a collapse
on the same curve when the axes are properly rescaled. The dashed grey line is a
power law with exponent −1 as a guide for the eye. c, Average number of clusters
as a function of the total urbanised area, Na, for the 128×128 km2 US regions
(circles). The lower and upper values of the dashed areas denote the 10th and
90th percentile of 100 realisations of the null model. For clarity, curves have been
shifted by X2 along the x-axis. d, Counter Cumulative Distribution Functions of
populations of the clusters in all US regions of 128×128 km2 having urbanised area
up to 5%. Regions are grouped in six groups according to their total population, Nx,
and the CCDFs of each group are computed separately for the different values of
the CCA parameter X . e, The CCDFs of panel d collapse on the same curve when
the axes are properly rescaled. The dashed grey line is a power law with exponent
−1 as a guide for the eye. f, Average number of clusters as a function of the total
population, Nx, for the 128×128 km2 US regions (circles). The lower and upper
values of the dashed areas denote the 10th and 90th percentile of 100 realisations
of the null model. For clarity, curves have been shifted by X2 along the x-axis.
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an intervening opportunities model, the number of cities in a region is proportional to the total

population of that region.

To formalise these results, we introduced the concept of Heaps’ Law of cities to describe how

the number of cites within a region depends on the total population of the region. Using the

Geonames dataset we found that in the context of cities, Heaps’ Law has an exponent γ= 1; the

number of cities within a region is proportional to the total population of that region. Following

on from Heaps’ Law, we also investigated how the spatial distribution of cities depends on the

population of a region. We demonstrated analytically, using Heaps’ Law, that if cities are randomly

distributed in space, the average distance to the closest city must scale as the square root of

the inverse of the population density, Equation 2.18. Using the Geonames dataset we validated

this result for states within the United States. This result suggests that cities are randomly

distributed in space; spatial interactions between cities are not strong enough to produce spatial

correlations. Finally we assessed whether the presence of Heaps’ law depends on the definition

of a city. Using the GRUMP dataset we applied a city clustering algorithm to obtain urban

clusters with a minimum population X . We found that Zipf ’s law for urban areas is independent

of parameter X and has exponent βa −1∼ 1. In contrast, Zipf ’s law for urban populations does

depend on X and the exponent βx −1 is given by (βa −1) ·ω(X ). Rescaling cluster populations by

X and raising to the power ω(X ), Zipf ’s law for cities is obtained with exponent β∼ 2. Following

on from this we confirmed that Heap’s law successfully describes the distribution of the number

of urban clusters as a function of the total population, Nx, and built-up area, Na, of a region.

Further evidence for both Heaps’ Law for cities and the spatial distribution of cities can be found

in [115].

Our empirical investigation suggests that intervening opportunities rather than geographic

distance may be the better variable at describing migration flows; Heaps’ exponent γ= 1 and the

number of cities increases with the total population of a region. However, our deterministic model

is unable to reproduce Zipf ’s Law for city sizes at it neglects the inherent randomness of stochastic

models required to reproduce this phenomena. As a consequence, our modelling framework fails

to properly describe key statistical patterns of demographic dynamics; a general framework must

reproduce both Zipf ’s Law and Heaps’ Law in order to be compatible with patterns observed in

data. We have designed and assessed a stochastic adaptation of our model [115] however further

work is required. A description of the stochastic model can be found in Appendix A.3. In particular,

the linear stability analysis, Appendix A, performed on both models of migration is only valid

for small perturbations about the stationary distribution. With regards to the simulations, this

means that the conditions for the number of cities (Equation 2.9) are only valid during the initial

stages of the simulation; at later times the effects of the non-linearities present in Equation 2.1

become more pronounced. From the linear stability analysis it was concluded that the growth and

migration rates affect whether or not cities may form from the initial perturbation (Equations

A.8 and A.20) however the number of cities that form depend on the parameters ρ0, R and w
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only. Numerical simulations indicate that on longer time scales, the number of cities that are

present also depends on the growth rate g and the migration parameter T [115]. In particular

the number of cities is constant for a given ratio T/g, however if the ratio is varied, by changing

either g or T, the number of cities also changes.

In order to find empirical confirmation for the model’s predictions, we would need a complete

series of historical data on both growth and migration rates. While it is possible to estimate

the growth rate of each state within the US since 1790 using census data, we were not able to

determine the migration rates of the states prior to 1940, the first year in which the US census

included questions about people’s mobility [101]. Due to the lack of historical data on migration

rates prior to 1940 we are unable to estimate the ratio T/g of each state, hence precluding the

possibility to test the presence of a correlation between the ratio T/g and the number of cities.

The limitations of our deterministic model of population dynamics suggest that a description of

urbanisation based on stochastic processes might be more appropriate in order to capture both

Heaps’ law and Zipf ’s law for cities.
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STOCHASTIC FLUCTUATIONS IN CITIES

3.1 Introduction

Driven by increasing global population and urbanisation, recent years have seen a wealth of

research into how cities evolve. With regards to city growth, a general model has emerged that

accounts for how the population of cities as a whole changes in time; Gibrat’s law, or proportionate

random growth. Despite its wide acceptance, a general consensus on how the underlying stochastic

processes within a city, namely births, deaths and migrations, interact to give rise to this growth

mechanism is lacking. In particular, and as aforementioned, existing microscopic models of

population dynamics that are able to account for Zipf ’s Law for the distribution of city sizes are

only able to do so for specific values of their parameters.

In this chapter we present a microscopic model of births and deaths that does not require

fine-tuning of parameters and is able to reproduce both Zipf ’s Law for the size distribution of

cities and the fluctuation scaling in population sizes associated with Gibrat’s Law (Equation 1.5).

The assumptions of the central limit theorem, that demographic processes have uniform and

constant rates and that individuals are independent and identical, are almost never satisfied in

natural systems; empirically, people are essentially different from one another and they interact

with each other. To relax these assumptions, we consider processes with environmental variability,

section 3.2.1, and correlations between individuals, section 3.2.2.

Environmental variability is easily justified by the development of a country; as access to

healthcare improves, birth rates and death rates will fall. Correlations in birth and death rates

can occur due to political and economic effects: post World War II there was a large increase in

birth rates attributed to improving economies and veterans returning home [105].

In section 3.2 we show that if the assumptions of the central limit theorem are relaxed,
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FIGURE 3.1. a Zipf ’s law, data. Probability density function P(x) (y-axis) vs size x (x-
axis) for cities (circles) and counties (triangles) within the United States. The solid
lines are guides for the eye corresponding to P(x)∝ x−2. Data on the population of
cities is obtained from the Geonames dataset [130]. County level data is obtained
from the US Census Bureau [129]. The distribution for US cities has been shifted
for clarity. b Taylor’s law, data. The variance of population in year t+1 conditioned
to the population in year t (y-axis) vs the average population in year t+1 conditioned
to the population in year t (x-axis) for cities (circles) and counties (triangles) in the
United States during the period 1970 to 2010. The vertical dashed line denotes
the cross-over city size xc at which Taylor’s exponent defined in Equation 3.3
transitions from α= 1/2 to α= 1 (solid lines); as shown in panel a), xc corresponds
to the cross-over city size at which the distributions start following Zipf ’s law. The
distribution for US cities has been shifted for clarity.

that is birth and death rates are not either independent or identically distributed but rather

realistic features like temporal variability and dependence between individuals are considered,

the resulting processes are able to reproduce Zipf ’s law with exponent β= 2 without fine tuning.

These processes are characterised by an anomalous scaling of the temporal fluctuations of the

population increments, commonly known as Taylor’s law in ecology [35, 39, 54];

(3.1) σ2
x ∝〈x〉2α.

The exponent α often takes a value of either 1/2 or 1 with the latter corresponding to a random

multiplicative process (Figure 3.1b, Equation 1.5). Taylor’s law, specifically temporal fluctuation

scaling, appears in many diverse areas. For example: fluctuations in the weekly traffic of internet

routers have exponent α= 0.75; the size of stock market transactions have exponent α= 0.69; the

yearly reproductive variability of trees has an exponent α= 1 [39].

We demonstrate that a microscopic process of individual population dynamics where the

variance of the population increments scales as the square of the population and hence has

Taylor’s exponent ∼ 1 has a stationary distribution that follows Zipf ’s law. This connection is
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empirically investigated in section 3.3 using data on the population of the largest cities, x ≥ 3×105,

globally. We demonstrate that countries which satisfy Zipf ’s law, P(x)∼ x−2, also satisfy Taylor’s

law with exponent α∼ 1. The work presented in this chapter has been carried out in collaboration

with S. Azaele, A. Maritan and F. Simini. Specifically S. Azaele performed the initial calculations

and F. Simini implemented the method of generating correlated variables that was used for

Figure 3.3c-d.

3.2 The Microscopic Model

We present our microscopic model as one in which individuals belong to different cities.To describe

how the population in each city evolves in time due to births and deaths we use a modified version

of the Galton-Watson branching stochastic process. The original Galton-Watson process [57] is a

discrete-time stochastic process describing the evolution of a population of xt individuals at time

t according to the equation

(3.2) xt+1 =
xt∑

i=1
zi,

where zi are independent and identically distributed random variables over the integers, with

finite mean and variance. The probability density function for these variables, zi, is given by

P(z|λ), where λ corresponds to the parameters. At each time step, the population xt can change

in one of three ways. If zi = 0, individual i dies, if zi = 1, they do nothing and if zi = 2,3,4... then

they have 1,2,3... children.

In the original Galton-Watson process, extinction will occur with probability 1 if the average

number of offspring per individual is less than or equal to one, E(z) ≤ 1. To avoid extinction

we include the boundary condition xt ≥ 1 for all t, which accounts for immigration. Modelling

immigration using a boundary condition is a solution adopted in several models of population

dynamics [8]. We verified that the specific implementation of the boundary (as a hard reflecting

boundary or as a constant influx of individuals) and its value does not affect our results. If E(z)> 1,

then the population will experience an exponential growth and there will be no stationary state.

For E(z)≤ 1, the stationary distribution does not follow Zipf ’s law; it is a power law with exponent

-1.

The conditional mean and variance of the population increments, defined as E(∆x|xt = x)

and V ar(∆x|xt = x) respectively, where ∆x = xt+1 − xt, can be used to measure the scaling of the

fluctuations in the population size. Given that the random variables zi are independent and

identically distributed with finite mean and variance, the conditional mean and variance of

population increments both scale as x: E(∆x|x)∼ x and V ar(∆x|x)∼ x.

This scaling behaviour can be summarised considering the relationship between these two

quantities, i.e. Taylor’s law:

(3.3) V ar(∆x|x)∝ E(∆x|x)2α.
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FIGURE 3.2. a Zipf ’s law, models. Stationary distributions of city sizes P(x) for modified
branching processes with environmental variability (circles) and correlated individ-
uals (triangles). See the main text for details on the numerical simulations and the
parameter values. The distributions have been shifted along the y-axis for clarity.
The vertical line denotes the cross-over city size xc at which the distributions start
following Zipf ’s law: xc = 104 for both models. b Taylor’s law, models. The variance
of population change in time interval [t, t+1] conditioned to the population at time
step t (y-axis) vs the average population change in time interval [t, t+1] conditioned
to the population at time step t (x-axis) for branching processes with environmental
variability (circles) and correlated variables (triangles). Simulations and parameter
values are the same as in a). We observe a transition of Taylor’s exponent from
α= 1/2 for x < xc to α= 1 for x > xc. The black lines correspond to the analytical
results of Equation 3.5 and Equation 3.12. Curves have been shifted along the
y-axis for clarity.

Taylor’s law usually refers to the scaling of the (unconditioned) variance versus the mean of

a random variable [35, 39, 54]. Here we extend it to the case of the scaling of the variance of

the random variable increments versus the mean of the random variable, both conditioned to

the value of random variable itself before the increment. As aforementioned, the exponent α

often takes a value of either 1/2, as in the original Galton-Watson process, or 1, as in a random

multiplicative processes. As random multiplicative processes are known to produce Zipf ’s law,

this suggests Zipf ’s law will be present with exponent γ= 1 when Taylor’s exponent is α= 1. On

the other hand, when Taylor’s exponent is α = 1/2 we hypothesise that Zipf ’s law will not be

present. This suggests a connection between Taylor’s law and Zipf ’s law, which we characterise

in the following sections with analytical arguments and numerical simulations. Formalising

this intuition, we propose two variations of the Galton-Watson process, namely processes with

environmental variability and processes with correlated individuals, and show that for large

populations they have Zipf exponent β= 2 and Taylor exponent α= 1.
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3.2.1 Environmental variability

We first present the case of processes with environmental variability. In order to introduce

environmental variability we consider a modified Galton-Watson process where the parameters λ

of the distribution of the individuals are not constant values but random variables drawn from

a distribution G(λ) at each time step. To be specific, we assume that the zi are Poisson random

variables with distribution P(z|λ)=Poiss(λ)= e−λλz/z!. We select a Poisson distribution due to

its analytical amenability, however any discrete distribution with infinite support that satisfies

zi ≥ 0 may be used. For further discussion see section 3.4.

In order to determine the fluctuations in the population increments, we compute the variance

of the population change, ∆x = xt+1 − xt, conditioned to the population at time t by applying the

law of total variance [134];

(3.4) V ar(∆x|xt = x)= Eλ[V ar∆x|λ(∆x)]+V arλ(E∆x|λ[∆x]).

Here E∆x|λ and V ar∆x|λ denote the mean and variance with respect to P(z|λ), and Eλ and V arλ
denote the mean and variance with respect to G(λ). For a Poisson distribution, where both

the mean and variance are given by parameter λ, we have that V ar∆x|λ(∆x) = E∆x|λ[∆x] = xλ.

Substituting this into Equation 3.4 we obtain

(3.5) V ar(∆x|xt = x)= x Eλ(λ)+ x2 V arλ(λ).

Note that the fluctuations in the size of a city’s population are proportional to x and follow

Equation 3.3 with exponent α= 1/2 for small populations, x ¿ xc ≡ Eλ(λ)/V arλ(λ), whereas they

scale as x2 for large populations x À xc. The crossover population xc marks the transition between

these two scaling regimes.

Empirical evidence of the presence of this crossover can be found analysing the fluctuations

of the populations of cities and counties in the United States, where data shows a transition

between Taylor exponents α= 1/2 and α= 1 around xc ∼ 104 (Figure 3.1b). It is important to note

that the cross-over population we use, xc, is only approximately 104 and is taken from Figure

3.1b: we observe that at this population, the fluctuation scaling is smoothly transitioning from a

power law with exponent α= 1/2 to a power law with exponent α= 1. Within our framework, a

cross-over population of xc ∼ 104 result means that on average the ratio between the variance and

the mean of the growth rates is very small, around x−1
c =V arλ(λ)/Eλ(λ)∼ 10−4. For example, if

the distribution of λ is a Gamma distribution, G(λ)=Gamma(λ|κ,ν), then Equation 3.5 becomes

V ar(∆x|xt = x)= xκν+x2κν2 and xc = ν−1. We verify the validity of this prediction with numerical

simulations of Equation 3.2 shown in Figure 3.2b, where the zi are independent and identical

Poisson random variables with distribution Poiss(λ) and a new parameter λ is drawn at each

time step from a Gamma distribution with fixed parameters κ= 104 and ν= 10−4.

Next we demonstrate that the stationary distribution of city sizes follows Zipf ’s law for large

populations, as shown empirically in Figure 3.1a, numerically in Figure 3.2a and summarised
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Distribution γ D p

US Counties 0.86 0.04 <0.00

US Cities 0.96 0.07 0.01

Environmental variability 0.91 0.02 <0.00

Correlated individuals 1.00 0.01 <0.00

TABLE 3.1. Exponent γ for the distribution of city sizes obtained using a Maximum like-
lihood estimate, Kolmogorov-Smirnov statistic D and p-value for the distributions
in Figures 3.1a and 3.2a. All numbers are rounded to two decimal places.

in Table 3.1. When the total population is sufficiently large, we expect that Equation 3.2 can be

approximated as

(3.6) ∆x ≡ xt+1 − xt ≈ µ̂x + σ̂x ξ(t),

where ∆x(t) is a continuous random variable, µ̂x = E(∆x|xt = x), σ̂x =
√

V ar(∆x|xt = x) , and ξ(t)

is a zero-mean Gaussian white noise with autocorrelation 〈ξ(t)ξ(t′)〉 = 2δ(t− t′). Figures 3.3a-b
demonstrate that numerical simulations support the validity of the ansatz of Equation 3.6.

Using the law of total expectation [134] and Equation 3.5, we obtain

µ̂x = x (Eλ(λ)−1)≡ xµ̂(3.7)

σ̂x =
√

xEλ(λ)+ x2V arλ(λ) ≡
√

xσ̂2
1 + x2σ̂2

2 .(3.8)

Using the formal substitutions t+1 → t+dt, µ̂→ µdt, σ̂1 → σ1dt and σ̂2 → σ2dt, expanding in

Taylor series to first order in dt, we obtain the following stochastic differential equation:

(3.9) ẋ(t)=µx(t)+
√
σ2

1x(t)+σ2
2x(t)2 ξ(t),

with a reflecting boundary at x = 1. Solving the Focker-Planck equation for this stochastic

differential equation gives us the stationary distribution of city sizes;

(3.10) P(x)=N
(σ2

1 +σ2
2x)

µ

σ2
2

(σ2
1x+σ2

2x2)
,

where N is a normalisation constant depending on parameters µ, σ1 and σ2. For large popula-

tions, x À xc =σ2
1/σ2

2, Equation 3.9 becomes a random multiplicative process with growth rate

of mean µ and variance σ2
2. In this limit the stationary distribution of Equation 3.10 can be

approximated as P(x)∼ x
−2+ µ

σ2
2 . From this we observe that, providing |µ|¿σ2

2, the distribution

of city sizes follows Zipf ’s Law with exponent β= 2. If the average city population is large this

condition is always satisfied.
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From Equation 3.10 we also observe that for small cities, with population x ¿ xc, the station-

ary distribution does not follow Zipf ’s Law; in this limit it can be approximated as P(x)∼ x
−1+ µ

σ2
2 .

Thus, our microscopic model is able to account for both Zipf ’s Law in the tail of the distribution of

city sizes and its absence in the distribution of smaller cities.
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FIGURE 3.3. Numerical simulations support the ansatz of Equation 3.6 for processes
with environmental variability (panels a,b), and with correlated individuals (panels
c,d). a Distribution of the fluctuations of the population increments in consecutive
time steps, ∆x = xt+1 − xt, for a process with environmental variability where
P(z|λ)=Poiss(λ) and G(λ)=Gamma(λ|κ,ν) with κ= 100,ν= 0.01. Different curves
correspond to different values of populations xt = x. b The curves in panel a
collapse on the same distribution, a standard normal distribution (dashed line),
when the population increments are shifted by removing the mean and rescaled
by the square root of the variance derived in Equation 3.5. c Distribution of the
fluctuations of the population increments in consecutive time steps for a process
with correlated individuals, where the n Poisson random variables have covariance
matrix Cov(zi, z j)= δi jλ+ (1−δi j)ρλ with λ= 0.999,ρ = 0.1. d The curves in panel
c collapse on the standard normal distribution (dashed line) when the population
increments are shifted by removing the mean and rescaled by the square root of
the variance derived in Equation 3.12.
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3.2.2 Correlated individuals

The second case we present is the class of processes where individuals are correlated. To introduce

correlations between individuals we again consider a modified Galton-Watson process, where the

joint probability P(z1, . . . , zx|λ) does not factorise into the product of the individual probabilities

P(zi|λ). To be specific, we assume that the z random variables have a Poisson distribution with

fixed parameter λ, which is the same for all individuals, and correlation matrix ρ i j = Cov(zi, z j)/λ,

where Cov(zi, z j)≡ E[(zi−λ)(z j−λ)]. When individuals are correlated the off-diagonal terms of the

covariance matrix are non-zero. For simplicity we consider the simplest case where correlations

between individuals are all equal;

(3.11) Cov(zi, z j)= δi jλ+ (1−δi j)ρλ.

The fluctuations of the population increments for the process with correlated individuals have

the same scaling form of the fluctuations for the process with environmental variability. The

conditional variance of ∆x = xt+1 − xt for a given population xt = x is the sum of all the elements

of the covariance matrix:

(3.12) V ar(∆x|xt = x)=∑
i, j

Cov(zi, z j)= xλ(1−ρ)+ x2ρλ

Here the cross-over population between the regimes with Taylor exponents α= 1/2 and α= 1 is

xc = 1/ρ−1. As seen before, for cities and counties in the United States the transition between

these two scaling regimes occurs at xc ∼ 104 (Figure 3.1b). Within the framework of a process with

correlated individuals, this cross-over population corresponds to a very small value of correlation

between people in a city or county, ρ ∼ 1/xc ∼ 10−4. The physical meaning of this correlation can be

interpreted considering that the inverse of the correlation matrix corresponds to the interaction

between individuals [7, 131]. Since the off-diagonal elements of the inverse of the covariance

matrix vanish in the small ρ limit we get that only a small amount of interaction is needed

for the fluctuation scaling in large cities to follow Taylor’s law with exponent α= 1, yet in the

absence of correlations this will not be present. With regards to our modelling framework, as the

cross-over population is inversely proportional to the amount of correlation, ρ ∼ 1/xc, any increase

or decrease in the strength of the correlation will alter the exponent of the stationary distribution

of city sizes. In the case of strong correlation, as ρ approaches 1, the cross-over population xc

also approaches 1: for x À xc = 1 the distribution of city sizes can be described by Zipf ’s law with

exponent β= 2 and the fluctuation scaling for all cities will follow Taylor’s law with exponent

α = 1. In contrast, as the correlation approaches 0, such that individuals are non-interacting,

xc →∞: the stationary distribution of city sizes, up to population xc, is a power-law with exponent

β= 1 and fluctuations follow Taylor’s law with α= 1/2.

Using the ansatz of Equation 3.6 we follow the same steps taken for the case of environmental

variability to demonstrate that the stationary distribution of city sizes is a power law. The validity

of the ansatz for correlated individuals is once again supported by numerical simulations, Figures
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3.3c-d. Using the law of total expectation and Equation 3.12 we obtain the mean and variance of

a population change for correlated individuals:

µ̂x = x (λ−1)≡ xµ̂(3.13)

σ̂x =
√

xλ(1−ρ)+ x2ρλ ≡
√

xσ̂2
1 + x2σ̂2

2(3.14)

Again using the substitutions t+1→ t+dt, µ̂→µdt, σ̂1 →σ1dt and σ̂2 →σ2dt we obtain Equation

3.9, where the variables µ, σ1 and σ2 now correspond to those in Equation 3.14. As such, the

stationary distribution of Equation 3.10 is also valid for the case where individuals are correlated.

In this case, the stationary distribution of city sizes for large populations, x > xc, is a power-

law given by P(x) ∼ x−2+ λ−1
ρλ , that follows Zipf ’s law when |λ−1|/λ¿ ρ. Furthermore, for small

populations x < xc, the size distribution of cities will not follow Zipf ’s law thus correlations

between individuals are also able to account for both Zipf ’s Law in the tail of the distribution and

its absence in the distribution of smaller cities. Numerical simulations support presence of Zipf ’s

law in the distribution tail for cities with population x > xc and its absence in the distribution of

smaller cities (Figure 3.2a).

In the numerical simulations, we used two methods to generate correlated Poisson variables.

In the first method, used in the simulations of Figure 3.2, we consider the modified Galton-Watson

process xt+1 = ∑xt
i=1(zi + k) where the zi are independent and identical random variables with

Poisson distribution Poiss(λ(1−ρ)) and we introduce the random variable k, independent of

the zi, with Poisson distribution Poiss(ρλ). One can show that for this process the conditional

variance of ∆x is identical to Equation 3.12. In Figure 3.2 we use λ = 1 and ρ = 10−4. In the

second method, used in the simulations of Figure 3.3c-d, we use a Gaussian copula model to

link the Poisson marginals [13]. We verified with numerical simulations that for appropriate

values of the multivariate Gaussian’s parameters, this method generates Poisson variables with

the desired values of λ and covariance matrix Cov(zi, z j) = Ci j; the conditional variance of ∆x

is again identical to Equation 3.12. Both methods give results compatible with the theoretical

predictions.

3.3 Empirical evidence of Zipf’s and Taylor’s Laws

In order to further demonstrate the connection between Zipf ’s and Taylor’s Laws we analyse

a comprehensive dataset on the population, x, of cities with more than 300,000 inhabitants

globally [92]. This dataset consists of population estimates for the largest cities from 1950 to 2030

where cities are defined as urban agglomerations according to each country’s definition of urban.

To be consistent with our previous data analysis, Figure 3.1, we use only the data corresponding

to 2010.

Figure 3.4a shows Zipf ’s Law for the countries with over 50 large cities (x > 3×105). From

this we observe that alongside the United States, the distribution of city sizes in India, China,
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FIGURE 3.4. a Zipf ’s law, data. The CCDF (y-axis) of city sizes x (x-axis) for Brazil,
China, India, Mexico, USA and Russia. Exponents quoted are equivalent to β−1. All
countries follow Zipf ’s law with β= 2 within a 2σ confidence interval. The quoted
p-values provide further support at the 95% confidence level that the distribution
of city sizes follow Zipf ’s law with β= 2. b Taylor’s law, data. The variance in the
population change, V ar(∆x) (y-axis) of mean city sizes E(∆x) (x-axis) for Brazil,
China, India, Mexico, USA and Russia. All countries follow Taylor’s law with α=
within a 1σ confidence intreval.

Brazil, Mexico and the Russian Federation follow Zipf ’s Law with exponent β−1= 1, within a

2σ confidence interval. Exponents are determined using the counter-cumulative distribution

function (CCDF) of the populations of each city. As we are only considering large cities, we are

dealing with the tail of the distribution of city sizes which is often noisy. By using the CCDF

rather than the PDF, any noise associated with binning the data is removed and the value of

the fitted exponent is generally more accurate [95]. The errors in the exponent were calculated

using bootstrapping [90] by performing N = 1000 trials where for each trial we sample with

replacement from the list of true city sizes until our sample contains C cities. Here C corresponds

to the number of cities with x > 3×105 for each country. By doing this we are able to fit Zipf ’s

exponent to the distribution for each trial and hence we obtain a distribution of N values of the

exponent.

Taking this further, we compute the p-value for each country’s exponent. This is obtained

by performing N = 1000 trials of sampling C city sizes from a power law distribution with pdf

exponent −2: the Zipf distribution. Fitting the exponent to the distribution of city sizes for each

trial we obtain a p-value: the fraction of exponents that are more extreme than the exponent of

the true city size distribution. From Figure 3.4 we observe that for all countries the distribution

of city sizes follows Zipf ’s Law at the 95% confidence level.

In Figure 3.4b we demonstrate the validity of Taylor’s Law for all countries that have over

50 cities with population x > 3×105. We observe that all countries follow Taylor’s Law with
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exponent α= 1 within a 1σ confidence interval. The errors in the values of α fitted to the data

were obtained in the same way as the errors on the Zipf ’s exponents.

3.4 Conclusion

In this chapter we have presented two general classes of microscopic birth-death processes that

can be shown to be equivalent to proportionate random growth and can reproduce Zipf ’s law

for city sizes without fine tuning. For the processes considered the statistical properties of city

sizes observed empirically can be obtained by relaxing the assumptions that individuals are

independent and homogeneous. To summarise our results, we have shown that environmental

variability and correlations between individuals are able to produce Zipf ’s law and Taylor’s

law. The exponent of Taylor’s law shifts from α = 1/2 for small populations to α = 1 for large

populations. Also, when population is large Zipf ’s law emerges naturally without fine tuning

whenever the growth rate’s mean is much larger than the variance. This reveals a general

connection between Zipf ’s law and Taylor’s law in microscopic stochastic processes of population

dynamics under realistic assumptions. Our processes are applicable to dynamical systems with

an explicit time dependence where the stationary distribution of group sizes can be described

by Zipf ’s law. In this respect, our derivation of Zipf ’s law differs from static models without an

explicit time dependence and from models where groups can only grow [2, 117, 140].

The models outlined are the most basic form possible; using a Poisson distribution reduces

each model to just two parameters, however the use of other probability distributions is possible.

Using an alternative distribution results in increasing the number of parameters from 2 to 4,

thus allowing for more flexibility when fitting the model to data. The parameter values used

in the simulations of Figure 3.2 are chosen to fit the models to city data, capturing both the

Zipf exponent of the tail and the large value of nc. Because of the specific choice of a Poisson

distribution for P(z|λ), this requires to use a set of parameter values that are very close to

criticality (i.e. λ= 1). However, it is important to emphasise that this is not an intrinsic limitation

of the models, and it is possible to find various distributions P(z|λ) and G(λ) that satisfy the

conditions |µ|¿σ2
2 ¿σ2

1 and produce non-critical systems with stationary distributions close to

Zipf ’s law for any value of nc. In general, for generic distributions P(z|λ) and G(λ), we have:
σ2

1 = Eλ
(
V ar∆x|λ(∆x)

)
σ2

2 =V arλ
(
E∆x|λ(∆x)

)
µ = Eλ

(
E∆x|λ(∆x)

)−1

so it is possible to find many combinations of functions and parameter values such that |µ| ¿
σ2

2 ¿ σ2
1, corresponding to Zipf ’s law and large nc. For example, using a Negative Binomial

distribution for P(z|λ), whose mean and variance can be independently set, and choosing an

appropriate distribution over its parameters, G(λ).
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Within the proposed framework, migrations between cities are not explicitly modelled. A

comprehensive microscopic model of human population dynamics should include a more thor-

ough treatment of migration. In particular, we wish to have more accurate descriptions of the

mechanisms behind individuals’ choices to relocate to a new city and to understand what factors

influence their choice of destination. These topics will be addressed in the next chapter.
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4
WHY, WHEN , WHERE: UNCOVERING THE DECISION MAKING

BEHIND SCIENTIFIC MIGRATION

4.1 Introduction

The increasing availability of rich data sources related to research inputs and outputs, in

particular publication datasets, has resulted in a new field emerging; the science of science

(SciSci) [42]. The purpose of this field is to quantitatively understand how scientific creativity

and discovery evolve by determining the driving forces behind successful science. One aspect

of this emerging field is scientific mobility: the movement of scientists between institutions. As

aforementioned in 1.3.3, so far the study of scientific mobility has either been based upon data

obtained from large scale surveys with no modelling or predictive component or it has looked at

how movement between institutions effects a scientist’s performance and productivity.

In this chapter we investigate a new perspective; how a scientist’s profile influences their

decision to move. In order to do this we consider two unanswered questions: Why does a scientist

decide to move institutions? When they have made this decision, where do they choose to move

to? To answer these questions we present a novel model of scientific migration that combines data

mining with a customised model of human mobility. This work can have important implications,

helping research institutions and governments understand scientific mobility and implement

policies to attract the best researchers, improving the quality of their research. Alongside this

they can facilitate the construction of services that recommend new jobs to scientists based on

their profile, or help search committees seek successful candidates for research jobs. Scientific

migration is a specific type of occupational migration. While the answers to these questions cannot

be generalised to the general population, the development of a modelling framework which uses

data mining and machine learning techniques to inform a novel model of human mobility presents
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an advancement in the modelling of human migration. Therefore, the framework used to study

scientific migration can be adapted to other types of migration for which there are large-scale

datasets.

We approach this problem by answering each question successively. Initially, in section 4.3,

we define a career trajectory and in section 4.4, the profile of a scientist. In section 4.5 we present

a model designed to predict whether or not a scientist will move in the next year based on their

scientific profile. From this model we identify the most important factors that lead a scientist to

make the decision to move. Finally, for those researchers who are predicted to move, in section

4.6 we predict which institution they will choose. We do this by introducing a novel version of

a singly-constrained gravity model; an adaptation of the traditional gravity model of human

mobility to include the factors identified at the first step.

The work presented in this chapter has been carried out in collaboration with L. Pappalardo,

A. Sirbu and F. Simini. Specifically L. Pappalardo pre-processed the data, A. Sirbu obtained data

on the citation network and F. Simini wrote the code to fit the gravity models presented in section

4.6 to the data.

4.2 Dataset

Our dataset consists of all articles published in the American Physical Society (APS) journals from

1950 to 2009. For each article, the date of publication, the author names and the corresponding

affiliations are stored. In addition to this, location information (latitude and longitude) is available

for every affiliation that appears in the dataset, as is citation information for every paper; we

have a list of publications each paper cites and a list of publications in which each paper is

cited. In total, the dataset consists of ∼ 1,000,000 papers, over 200,000 scientists and over 3,500

institutions.

For our aims, we consider only scientists in the dataset with 2 or more distinct affiliations; a

change in affiliation represents a move (see section 4.3). This constraint reduces the dataset to

over 60,000 scientists, 3,500 institutions and 360,000 articles. Some of the measures obtainable

from this reduced dataset, are displayed in Figure 4.1. These measures, along with others, are

used to determine the profile of each scientist.

From Figure 4.1 we observe that the number of papers published in APS journals has been

increasing at a constant rate since ∼ 1980 (panel a). Comparing panels c and d it is interesting

to observe that the number of new authors publishing in these journals has seen a sharp decline

from 2005 onwards (c) yet in contrast, many authors who had previously published in APS

journals published again during this period (d). This suggests that the number of new scientists

is declining, while experienced scientists are becoming more productive. While this observation is

of interest, and warrants further investigation, we will not explore it here.
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FIGURE 4.1. Features of the dataset: a the number of papers published in each year
from 1950 to 2009; b histogram of the number of citations received by each paper;
c the number of scientists publishing for the first time from 1950 to 2009; d
the number of scientists publishing for the last time between 1950 and 2009; e
histogram of the number of institutions scientists are affiliated with; f histogram
of the number of moves a scientist makes during their career.

4.3 Career Trajectory

We define a career trajectory as a time-ordered list of institutions that a scientist has worked at.

Formally, if a scientist s has worked at n institutions then their career trajectory, T(s), is a list of

n tuples;

T(s)= 〈(t1, i1), . . . , (tn, in)〉,

where t j for 1≤ j ≤ n corresponds to the year that the scientist moved to their jth institution and

i j is the corresponding institution that the scientist moved to. Two consecutive affiliations in

a career trajectory correspond to a move, i.e., that the scientist moved from one institution to

another. A move is therefore formally defined as a pair of consecutive tuples in T(s). For example,

T(s)= 〈(1968,Evanston), (1973,Hamburg)〉

is a career trajectory indicating that scientist s moved from Evanston, Illinois to Hamburg,

Germany in the year 1973.

Figure 4.2 shows an illustrative example of a 40-year long career trajectory: the scientist s is

initially at Stanford University and moves to four other institutions during their career, each

migration being detected by the changing of the main affiliation in s’s publications.
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FIGURE 4.2. The career trajectory of a scientist. Blue circles represent publications.
Black dashed lines represent moves from an institution to another. Green squares
represent the publication at the new institution corresponding to the move.

4.3.1 Computation of career trajectories

For each scientist s in our dataset, we construct their career trajectory T(s) as follows. First,

we sort all their publications by time, from the least recent to the most recent publication. We

then link to each publication their affiliation. Note that a scientist may specify more than one

affiliation in a publication. We disambiguate these cases using the first affiliation reported by the

scientist, as suggested in the literature [36]. From this time-ordered list of tuples, we remove all

tuples (t j, i j) for which i j−1 = i j, ie. tuples where the consecutive affiliations are the same. The

resulting list is a career trajectory for scientist s where each pair of tuples represents a move the

scientist has made between institutions.

4.4 Scientific Profile

We define the scientific profile of scientist s as a multidimensional feature vector:

p(h,t)(s)= [c(h,t)
1 , . . . , c(h,t)

n︸ ︷︷ ︸
career

, e(h,t)
1 , . . . , e(h,t)

m︸ ︷︷ ︸
environment

, r(h,t)
1 , . . . , r(h,t)

w︸ ︷︷ ︸
relationships

],

where each element of p(h,t)(s) is a feature describing a specific aspect of scientist s’s activity

during a time window (t−h, t) of h years preceding time t.

We consider a scientific profile to be composed of three main elements: (i) their scientific

career, which corresponds to features that are personal to the scientist such as their experience,

publications and citations; (ii) their scientific environment, which relates a scientist to their

colleagues at their current institution, comparing their respective scientific output; and (iii)

their scientific relationships, indicating the working relationships a scientist has established
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with collaborators at external institutions during the h years. Table 4.1 describes the features

composing the scientific profile.

4.4.0.1 Scientific career

The scientific career includes features describing individual characteristics of scientist s in the

past h years. As proxies of scientific production, we consider the number of publications the

scientist has produced and the citations they have accrued during the considered period. Moreover,

we estimate a scientist’s experience as the number of years since their first publication and define

a scientist’s scientific mobility using boolean values which represent whether they have or have

not changed institutions in the last h years.

4.4.0.2 Scientific environment

A scientist’s production shapes, and it is shaped by, the scientific environment in which they

operate. For this reason we estimate the level of production of a scientist’s environment as the

number of citations and the number of publications of their colleagues during the h years. A

colleague is a scientist working at the same institution as scientist s at time t. We also consider

the differential of citations, i.e., the mean difference between s’s citations and their colleagues’

citations. This allows us to compare the productivity of a scientist to the productivity of their

peers.

4.4.0.3 Scientific relationships

Scientific collaboration is a proven mechanism for promoting excellence in scientific research,

as higher collaboration rates are linked to higher citation rates [1, 3, 126]. For this reason we

take into account a scientist s’s collaborations by estimating the size of their collaboration circle

using three features: the number of institutions they have collaborated with during the h years,

the total number of distinct collaborators and their tendency to collaborate with scientists at

external institutions (that we call xenophilia), computed as the ratio of external collaborators to

the total number of collaborators in the h years.

4.4.1 Computation of scientific profiles

Given time t and history window h, from our dataset we compute the career, environment and

relationship features for the scientist’s activity in the h years preceding t in the following way.

The number of publications by a scientist s is given by the total number of papers in the dataset

for which s is an author and the publication date falls within the period (t−h, t). We compute

the number of citations of s as the sum of citations to all papers in the dataset for which s is

an author and for which the citing paper is published in the period (t−h, t). The experience of

scientist s is computed as the difference t− t1, where t1 is the time of s’s first publication in the
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category variable description
publications number of papers published in the last h years

citations number of citations received in the last h years
experience years since the first publication

(i) career

mobility whether she changed institutions in the last h
years

colleagues’
citations

mean number of citations received by col-
leagues in the last h years

colleagues’
publications

mean number of papers published by col-
leagues in the last h years

(ii) environment

differential
of citations

mean difference between citations and col-
leagues’ citations in the past h years

institutions number of institutions she has collaborated
with in the past h years

collaborators number of scientists she collaborated with in
the last h years

(iii) relationships

xenophilia ratio of external collaborators to total collabo-
rators in the last h years

TABLE 4.1. The features describing scientific profile with the corresponding description.
They are grouped in three macro-categories: (i) career; (ii) environment; and (iii)
relationships.

dataset. Finally, the mobility of s relates to how recently they have changed institution: if s has

moved within the period (t−h, t), the mobility feature has value 1, if they have not moved the

feature has value 0, if at time t they are at their first institution (i.e., the only institution they

have been affiliated with so far in the dataset) they are assigned a value of −1.

To compute the environmental features we define the colleagues (or peers) of scientist s as all

the scientists who publish a paper during the period (t−h, t) that are affiliated with s’s institution

at time t. For each colleague we compute their publications and citations as described above. The

colleagues’ citations and publications features are then given by the mean number of citations

and the mean number of publications for all colleagues, respectively. The differential of citations

is determined by taking the difference between the scientist’s citations and each peer’s citations

individually, and then taking the mean of these differences.

To compute the relationships features we define a collaborator as a scientist who is a co-

author of s for at least one paper published in the period (t−h,t). The collaborators feature is

then the number of distinct collaborators in the list of co-authors and the institutions feature is

the number of distinct affiliations. We compute xenophilia as the ratio between the number of

collaborators at external institutions divided by the total number of collaborators.
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4.5 Why does a scientist decide to move institutions?

In order to understand why a scientist chooses to move institutions we construct a predictive

model. This model aims to predict if a scientist will migrate in the next year given the features in

their scientific profile. We consider two types of machine learning models to classify scientists s.

A classification model is one in which, given an observation (or feature vector) determines the

probability of that observation belonging to one of two or more classes. When there are only two

classes, this is termed binary classification. For our first model we have a binary classification

task; given the feature vector p(h,t)(s), does scientist s move (class 1) or not (class 0). We will

consider two binary classifiers, a logistic regression and a decision tree, and compare the accuracy

of each one to a baseline classifier. For technical descriptions of the classifiers and evaluation

measures, see Appendix B.1.

For each scientist s in our dataset we compute their feature vector p(h,t)(s) that describes their

scientific profile between years t−h and t. Since the features in p(h,t)(s) have different ranges of

values and distributions, we standardise them by computing their quantiles with respect to each

feature of the other scientists. The transformed features are all uniformly distributed. By doing

this, each element in p(h,t)(s) lies between 0 and 1 and represents how the features of s compare

to all other scientists in our dataset. Standardising the features in this way allows us to compare

the values of their coefficients once the model has been trained; a feature with a large coefficient

suggests it is an important factor in a scientist’s decision to relocate.

After standardising the features we assign each scientist s to a label; m(s) = 0 or m(s) = 1.

Here 1 indicates that scientist s will migrate the next year, and 0 that s will not migrate. From

the scientists’ feature vectors we construct a dataset of examples p(h,t) = {p(h,t)(s)|s ∈ DAPS} each

associated with the corresponding label in m = {m(s)|s ∈ DAPS}. Here, DAPS denotes our dataset.

For examples where m(s)= 1, we use the move events of all 60,000 scientists: all values of t for

which the affiliation of s in year t+1 is different from the affiliation of s in year t. For examples

where m(s)= 0, for each scientist s we generate a random value t between the scientist’s first and

last publications in the dataset until t+1 is not a year in which s moved. We repeat this process

3 times to ensure that our classes, m(s) = 0 and m(s) = 1 are approximately balanced. In total,

we have 290,000 points in p(h,t) to train and test our classifiers on: 140,000 examples for which

m(s)= 1 and 150,000 examples for which m(s)= 0.

4.5.1 Results

To investigate to what extent we can predict whether a scientist will migrate next year given

their history, for each value h = 1, . . . ,10 we train two predictors Lh and Th on the dataset p(h,t)

and the associated labels m, where Lh is a logit and Th is a decision tree. We evaluate the

predictors with 10-fold cross-validation and investigate the goodness of the predictions – in terms

of accuracy, recall, precision, F1-score and AUC. Table 4.2 shows the values of the evaluation

67



CHAPTER 4. SCIENTIFIC MIGRATION

measures for the best tree and the best logit. We find that hbest = 1 for Th and hbest = 10 for Lh.

model hbest ACC recall prec F1 AUC

tree 1 0.65 0.84 0.61 0.71 0.65

logit 10 0.62 0.64 0.62 0.63 0.62

dummy - 0.50 0.50 0.50 0.50 0.50

TABLE 4.2. Predictive performance of the best tree (T1) and the best logit (L10), com-
pared with a baseline classifier (dummy). The models are evaluated with a 10-fold
cross-validation, and the goodness of predictions are measures in terms of accuracy
(ACC), recall, precision (prec), F1-score (F1) and Area Under the Curve (AUC).

Both predictors perform better than a baseline classifier which generates predictions based upon

the class distribution of the training set.

Figure 4.3 shows how the AUC score changes with the size of the history window for Th and

Lh, h = 1, . . . ,10. We observe that: (i) the decision tree performs slightly better than the logit; (ii)

the performance of the logit improves with increasing h; (iii) the decision tree performs best with

a small history window and performance declines with increasing h suggesting that a greater

history window adds no predictive power to the model.
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FIGURE 4.3. AUC score of predictors Th and Lh, for h = 1, . . . ,10. The baseline classifier
has AUC = 0.5.

Figure 4.4a shows the feature importances resulting from T1, indicating that a scientist’s

experience is the strongest predictor of the probability to migrate. Figure 4.4b shows the stan-

dardised features of a scientist correctly predicted to move (red bars) and a scientist correctly

predicted to stay (grey bars) using model T1. We observe that the scientist who moves scores

highly in experience and mobility compared to the scientist who does not move. In contrast, the
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FIGURE 4.4. a Coefficients resulting from model T1. The experience of a scientist is the
strongest predictor of future migration. b Feature values for a scientist predicted
to move by model T1 (red) and a scientist predicted to stay (grey).

scientist who does not move scores highly against other scientists for features, such as differential

of citations and colleague’s citations, that are of little importance according to Figure 4.4a.

4.6 Where do scientists move to?

The second stage of our model aims at predicting the destination institution that a scientist will

move to. The task of estimating the probability that a scientist will relocate to a given institution

can be interpreted as a classification problem with as many classes as institutions. The state-

of-the-art model to estimate mobility and migration flows is the gravity model [40, 62, 98],

which is a multinomial logistic regression based on distance and size (population) of locations.

Specifically, the features of a traditional singly-constrained gravity model are the size of the

potential destination, estimated here as the logarithm of the number of scientists affiliated to

the destination institution, and the logarithm of the distance between the scientist’s current

institution and the potential destination. We compare the performance of the traditional gravity

model with a quality-social-gravity model, an extended model that includes additional indicators

relating to the quality of the potential destination and social interactions a scientist has had

with researchers at the potential destination. The new social and quality features are: (i) the

fraction of collaborators at the potential destination; (ii) the average number of papers published

by the scientists at the potential destination; (iii) the average number of citations received by the

scientists at the potential destination. We compute these features using h = 5 and we standardise

them by computing their quantiles, as done for the move prediction. The probability that a

69



CHAPTER 4. SCIENTIFIC MIGRATION

scientist s will relocate to institution i is then estimated as

(4.1) P(s → i)= ez(xs,i)∑
j ez(xs, j)

where the score z(xs,i)=β ·xs,i is a linear combination of the features defined above. The parame-

ters β are estimated by maximising the model’s likelihood using stochastic gradient ascent. For

technical details see Appendix B.2.

The models are assessed using the cumulative distribution function (CDF) of the ranks r of

possible destinations and the Mean Percentile Ranking (MPR) [73]. A rank corresponds to the

probability of scientist s relocating to a given destination, with r = 1 representing the most likely

destination. The MPR is defined as

(4.2) MPR = 1
|S|

∑
s∈S

rs

|I| ,

where rs is the rank of scientist s’s actual destination, S represents all scientists the model is

tested on and I corresponds to the number of possible destinations. This is therefore a measure

of a model’s ability to correctly predict a scientist’s destination. A low value of MPR is more

desirable as means that the model can assign the true destination a high rank.

We train the models using a subset of 200 of the scientists in our dataset; we find that there

is no performance improvement using a larger number of scientists and training the models on

200 reduces the computational cost. In order to reduce the computational cost of the optimisation,

which can be quite high when the total number of destination locations is over 103, we consider

an approximation of the likelihood computed considering a subset of 100 potential destinations,

as proposed in [73]. A random subset of potential destinations is extracted for each move of

each scientist in our training set. This subset of potential destinations always includes the true

destination, while the other locations are randomly selected with a probability that increases

linearly with their sizes and slowly decreases with the distances from the origin location. This

ensures that the most relevant potential destinations, i.e., the larger and closer to the origin, are

included in the likelihood’s estimate. Numerical tests show that the optimal size of the subset of

potential destinations is 100 locations, i.e., considering more than 100 potential destinations does

not significantly improve the model’s performance.

The model’s performance is evaluated considering all the remaining scientists in the dataset.

For each scientist s in our testing set we compute the probabilities, P(s, i), to relocate to any

institution in the dataset according to the model. We then sort all institutions in decreasing order

of P(s, i) and define the rank of each institution so that the model’s top prediction has the largest

P(s, i) and rank 1. We then consider the rank of the scientist’s actual destination, rs, and we use

it to compute two statistics: (1) the cumulative distribution function (CDF) of the ranks r of all

the moves of all scientists in our testing set (Figure 4.5); and (2) the Mean Percentile Ranking

(MPR).
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4.6.1 Results

Results show that including information on the quality of the institutions improves the model’s

performance. In particular, the quality-social-gravity model that includes quality and social

information has CDF(r=10) = 0.23, i.e., for 23% of the scientists in our testing set the real

destination is among the top 10 model’s predictions. This is in contrast to the original gravity

model without quality and social information, which has CDF(r=10)= 0.07, i.e., for only 7% of

the scientists the real destination is among the top 10 model’s predictions (see Figure 4.5). This

result, that a quality-social-gravity model which incorporates social and quality information is

superior, is further supported by the MPR: MPRquality-social = 0.069 while MPRgravity = 0.074,

corresponding to an error reduction of 7%. These results are summarised in Table 4.3.

model MPR CDF (r=10) r̄

gravity 0.074 7% 275

quality-social-gravity 0.069 23% 257

TABLE 4.3. Performance comparison between the original gravity model and the quality-
social-gravity model
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FIGURE 4.5. CDF of the ranks of scientists’ true destinations according to the original
gravity model (black) and the quality-social-gravity model (red). Black stars repre-
sent the mean rank: we find that r̄ = 275 for the original gravity model and r̄ = 257
for the quality-social-gravity model.
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4.7 Conclusion

In this chapter we proposed a solution to the problem of predicting the next institution a scientist

will move to. In the first part, we used data mining to predict whether or not a scientist will

migrate in the next year on the basis of the quality of their career, environment and collaborations.

The use of data mining and machine learning methods revealed which features where most

influential in determining whether a scientist will move or not. Using these features we moved to

the second, and more challenging, task of predicting where a scientist will move to. We showed

that our quality-social-gravity model, obtained by injecting information about the quality of

institutions and the scientist’s collaboration network into the traditional gravity model, achieves

a prediction error which is up to 7% less than a traditional gravity model.

Our work is placed at the point of intersection of previous research, outlined in section 1.3.3.

We explore the characteristics of scientific performance which most affect the decision to relocate,

focusing on aspects that have not been previously investigated, such as a scientist’s propensity to

collaborate with external institutions and their relationship with their scientific environment.

Moreover, we propose an algorithm to predict the next career move which is tailored for scientists,

hence considering science-specific features and the distance between scientific institutions. From

a methodological point of view, our work provides a novel solution to the next (scientific) career

move problem, as we combine data mining and predictive models with global generative migration

models.
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DISCUSSION

In the preceding chapters we have presented new advances in addressing knowledge gaps in

three distinct areas relating to the mathematical modelling of human mobility and population

dynamics, with a focus on urbanisation.

Initially we aimed to determine which model of migration best describes the spatial distribu-

tion of cities. In order to do this we introduced a deterministic model of population dynamics and

demonstrated analytically that if migration is described by a gravity model, the spatial pattern

of the population distribution is independent of the total population. In contrast, if migration is

described by an intervening opportunities model of migration the number of cites, and hence their

spatial distribution, varies with the total population of the region. These results were confirmed

using numerical simulations. Following on from this we conjectured Heaps’ Law for cities; an

analytical relationship between the number of cities in a region and the region’s population,

C ∼ Nγ. Here, γ= 0 represents the analytical result from a gravity model of migration and γ= 1

an intervening opportunities model. To validate the existence of Heaps’ Law we used data on

the population of all cities with over 1000 inhabitants. We found that the number of cities in a

country or region scales linearly with the total population of the region; γ∼ 1. Hence, according to

our deterministic model the spatial distribution of population is best described by an intervening

opportunities model of migration. We also investigated whether Zipf ’s law and Heaps’ law depend

on the definition of a city and whether they exist for the areas of cities, as well as the populations.

To do this we analysed a gridded dataset for the United States, which reports the number of

people living in each square kilometre. Using a clustering algorithm to obtain cities we found

that Zipf ’s law is present for the size distributions of both cluster populations and cluster areas.

For populations the exponent of Zipf ’s law depends on parameter X of the clustering algorithm

which defines the minimum population of a cell within a cluster. We also validated Heaps’ law
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for urban clusters; the number of clusters within a given area is linearly proportional to the

population of that area.

The deterministic equation combined with both gravity and intervening opportunities models

of migration is a novel attempt at describing the evolution of the population density. This allowed

us to highlight the differences between the two models in terms of the number of cities expected in

a region of increasing total population. However, the logistic function is not a realistic description

of population growth. In order to mathematically model city formation, a stochastic approach is

more appropriate as this can naturally reproduce Zipf ’s law for the distribution of city sizes.

While the deterministic model may have limitations, the analytical results obtained from

its analysis led us to empirically test the validity of Heaps’ Law for Cities. Heaps’ Law provides

a quantitative description of the number of cities expected from a given total population. We

empirically verified that a null model of urbanisation where cities are randomly distributed in

space produces correct estimates of the expected number of cities in regions of various sizes

worldwide. While this suggests that cities are not spatially correlated, it does not mean that

cities are non-interacting and independent of each other. On the contrary, it is apparent that

urban systems are strongly interacting [59]: migrations, for example, create a dependency in

the dynamics of the population in various cities, with some cities increasing in size because

others are decreasing. However, our analysis demonstrates that such interactions do not produce

urbanisation patterns characterised by significant spatial correlations. These results provide a

new insight into the urbanisation process. They suggest that as a region’s population increases,

existing cities will not only grow in size but new cities will also form, as demonstrated for Iowa in

the United States. The absence of spatial correlations suggests that the growth or formation of a

city does not depend on its location in relation to existing cities.

In the analysis of gridded population data we only consider regions with low urbanisation,

having a percentage of urbanised area smaller than 5% (this condition is satisfied by 49% of

the regions for X = 10 and up to 93% for X = 599). We do this because in highly urbanised

areas deviations from Zipf ’s law and Heaps’ law are inevitable. In fact, in regions with large

population density, urban clusters start to merge and, as a result, when population keeps

increasing the number of clusters decreases instead of increasing. Alongside this, the distribution

of cluster sizes loses its characteristic power law tail because of the emergence of one giant

cluster. The characterisation of urban patterns in the regime of large population density requires

the development of a different theoretical framework, which is a task left for future work. The

theoretical result Zipf ’s and Heaps’ laws in finite-size systems, Equation 2.17, is completely

general and applicable to all systems characterised by Zipf ’s law for the distribution of group

sizes, including word counts, the size of biological genera, the number of firm employees and

views/popularity of Youtube videos.

Secondly, we introduced a novel microscopic model of population growth that does not require

fine tuning of its parameters. Our aim was to understand how Zipf ’s Law for cities appears as
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a mesoscopic distribution of city sizes from the underlying microscopic dynamics at the level

of the individual inhabitants. We considered a simple birth-death process and demonstrated

that by relaxing the assumptions of the central limit theorem, namely that individual birth and

death events are independent and identically distributed, the stationary distribution of city sizes

follows Zipf ’s Law. Analytical results were validated using numerical simulations and data on the

populations of cities and counties in the United States. We used the scaling between the mean

and variance of population increments to conjecture a link between Taylor’s Law and Zipf ’s Law:

when Zipf ’s Law describes the stationary distribution of city sizes, the population increments

follow Taylor’s Law with exponent α= 1. This result was also validated using both numerical

simulations and data from the United States and other countries globally.

Our models differ from other microscopic models of population dynamics in several ways.

Previous models are only able to obtain a distribution of city sizes that can be described by Zipf ’s

law for certain values of their parameters [45, 117, 139]. In contrast, our models can reproduce

Zipf ’s law for a range of parameters; the only constraint is that |µ|/σ2
2 ¿ 1 which can be satisfied

by many (µ,σ2) pairs. Alongside this, other models that do reproduce Zipf ’s law do so for the

whole distribution of city sizes. This is in spite of the fact that, historically, is has been noted

that Zipf ’s Law is only present in the tail of the distribution of city sizes [95] and does not fit

the distribution as a whole. Our models are able to account for the absence of Zipf ’s law in the

distribution of smaller cities and relate the population from which Zipf ’s law is present to the

transition between Taylor’s exponents 1/2 and 1.

Considering the probability density function in Equation 3.10, it is important to highlight

that the values of parameters µ and σ2 allow for deviations from the exponent of Zipf ’s law, β= 2.

While an exponent of 2 is traditionally associated with the distribution of city sizes, this is not

stable when preforming a cross country comparison; exponents both higher and lower than this

value are also common [106, 120]. On the one hand, our model may account for the variation in

Zipf ’s exponent globally, suggesting that if overall population growth is negative, exponent β> 2

whereas if population growth is positive, β< 2. On the other hand, in section 3.3 we demonstrated

that although the exponents β−1 fitted to the data deviate from 1, the p-values suggest that

the distributions of city sizes are still compatible with Zipf ’s law and an exponent β= 2. Further

exploration of this relationship is a task for the future however it suggests that our methods may

be a starting point for explaining the distribution of city sizes in all countries.

The microscopic models presented are not only applicable to cities; they can be applied to any

other dynamical system where group sizes follow Zipf ’s law. In fact, if a stationary distribution of

group sizes is known to approximately follow Zipf ’s law from a minimum size, our models can be

exactly fit to the data. Thus, the models are both flexible and accurate in describing the evolution

of groups whose stationary distribution follows Zipf ’s law.

Finally, we focussed on the migration of scientists with the aim of understanding why a

scientist makes the decision to move and how they select their next institution. In order to
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determine the factors that are most important in a scientist’s decision to relocate we used

decision tree and logistic regression classifiers. These classifiers have built in feature selection

and revealed that a scientist’s experience along with their mobility are the most significant

in determining whether they will move or not. Using these results we constructed a novel

quality-social-gravity model; a singly constrained gravity model with a deterrence function

that incorporates quality and social factors along with the distance. We demonstrated that the

incorporation of these additional features improves the model’s accuracy at predicting which

institution a scientist is most likely to move to when compared to a traditional singly-constrained

gravity model.

Predicting when a scientist will move and where they will move to is inherently a challenging

task, however our results provide us with a deeper understanding of the factors influencing a

scientist’s decision to relocate. Our first model, predicting whether or not a scientist will move in

the next year, performed better than the baseline classifier on all measures. In the future, the

predictive power of our model could be further improved by considering a longer future window:

rather than predicting whether a scientist will move next year, predicting whether they will move

in, for example, the next 2, 5 or 10 years.

While the inclusion of additional quality and social features improved the performance of

the gravity model, the difference in performance between the traditional gravity model and

quality-social-gravity model was minimal, with an error reduction of only 7%. This suggests that

quality and social features alone do not provide enough information to accurately predict where

a scientist will next move. The APS dataset used in our work has been widely used by other

researchers [31, 36, 118]. Of particular interest is the work by F. Gargiulo and T. Carletti [50]

which is similar to ours; the data is used to reconstruct researchers’ career trajectories and their

evolution is studied in terms of some selected features. However it also differs from ours: features

selected are focussed on cultural-geographical aspects and there is no predictive model, rather

they embed trajectories in a spatial network and use methods from network theory for analysis.

They find that distance is not a good predictor of a scientist’s next institution but rather cultural

similarity such as shared language and history are important factors. In the future it would be

interesting to incorporate features such as these into our quality-social-gravity model: additional

features relating to cultural aspects could further improve the predictive power of the model.

Our work also paves the road to many other research lines. For example it would be interesting

to generalise our approach to other classes of high-skilled individuals, such as senior managers

[60] or soccer players [79]. As the relocation of those individuals strongly affects the success

of both the origin and destination companies, predicting their relocation decisions can have

wide economic consequences in the companies’ revenues and future profits. If the inclusion of

additional or alternative features improves the accuracy of our adapted gravity model, we plan

to exploit the proposed framework for the creation of a human migration model for the general

population. In this context, we can use mobile phone data and social media data to describe
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individual relocations and social relationships, respectively, and construct an adapted gravity

model for human migration. A general model of human migration would mark a significant

advancement in the modelling of urbanisation. Such a model could allow governments and city

planners to estimate how the population of a city will grow due to migration. Combined with a

model of population growth within cities, such as the one presented in Chapter 3, sustainable

urban planning and growth in countries undergoing rapid urbanisation would become more

possible.
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MATHEMATICAL ANALYSIS OF THE DETERMINISTIC MODEL AND A

STOCHASTIC MODEL OF POPULATION DYNAMICS

A.1 Gravity Model

A.1.1 Pattern Formation and Growth in 1D

Considering a 1-dimensional line of infinite length, we write the dynamic Equation, 2.1, for the

gravity model as:

∂ρ(x, t)
∂t

=g(1− ρ(x, t)
ρ0

)ρ(x, t)−Tρ(x, t)

+T(ρ(x, t)+w)
(∫ ∞

0

f (r)ρ(x− r, t)∫ ∞
0 f (z)(ρ(−r+ x− z, t)+ρ(−r+ x+ z, t)+2w)dz

+ f (r)ρ(r+ x, t)∫ ∞
0 f (z)(ρ(r+ x− z, t)+ρ(r+ x+ z, t)+2w)dz

dr
)
.

(A.1)

The uniform distribution ρ(x)= ρ0 is a stationary state of Equation 2.1 because the growth

term is equal to zero and T in is equal to Tout for all x, hence the time derivative on the left-hand

side is zero. In order to determine the stability of the uniform steady state we linearise Equation
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APPENDIX A. THE SIZE AND SPATIAL DISTRIBUTION OF CITIES: MATHEMATICAL
ASPECTS

A.1 about ρ0 and study the time evolution of a small perturbation ρ̃(x, t);

∂ρ̃(x, t)
∂t

=(−g−T)ρ̃(x, t)+T
∫ ∞

0

2ρ0 f (r)ρ̃(x, t)∫ ∞
0 f (z)(2ρ0 +2w)dz

dr

+T(u+w)
∫ ∞

0

(
− ρ0 f (r)

∫ ∞
0 f (z)(ρ̃(−r+ x− z, t)+ ρ̃(−r+ x+ z, t))dz(∫ ∞

0 f (z)(2ρ0 +2w)dz
)

2

− uf (r)
∫ ∞

0 f (z)(ρ̃(r+ x− z, t)+ ρ̃(r+ x+ z, t))dz(∫ ∞
0 f (z)(2ρ0 +2w)dz

)
2

+ f (r)ρ̃(x− r, t)∫ ∞
0 f (z)(2ρ0 +2w)dz

+ f (r)ρ̃(r+ x, t)∫ ∞
0 f (z)(2ρ0 +2w)dz

)
dr.

(A.2)

Here, ρ̃(x, t) represents a small fluctuation in the stationary density, ie ρ(x, t)= ρ0 + ρ̃(x, t), and

can be decomposed as a sum of normal modes of wave number k ∈ R and amplitude hk(t).

Substituting ρ̃(x, t)= hk(t)eikx into Equation A.2 we obtain an equation for the time evolution

of the amplitude;

∂hk(t)
∂t

=(−g−T)hk(t)+ Tρ0hk(t)
(∫ ∞

0 f (r)dr
)∫ ∞

0 f (z)(ρ0 +w)dz

+T(ρ0 +w)hk(t)

( ∫ ∞
0 f (r)cos(kr)dr∫ ∞
0 f (z)(ρ0 +w)dz

− ρ0
(∫ ∞

0 f (r)cos(kr)dr
)2(∫ ∞

0 f (z)(ρ0 +w)dz
)

2

)
,

(A.3)

which may be written as

(A.4)
∂hk(t)
∂t

= hk(t)Λk(ρ0, g,T,w, f ).

Here Λk is the growth rate of the instability of the normal mode with wavenumber k; in order for

cities to develop and patterns to emerge Λ must be greater than zero for some k. We consider the

cases in which the deterrence function, f (r) takes an exponential or power law form.

A.1.1.1 Exponential Deterrence Function

If f (r) takes an exponential form (ie. f (r)= e−rR) then the growth function Λ is given by:

(A.5) Λk(ρ0, g,T,w,R)=−g−T
ρ0

ρ0 +w
+T

w+ (k/R)2(ρ0 +w)
(1+ (k/R)2)2(ρ0 +w)

.

This expression simplifies using rescaled variables to give:

(A.6) λκ(µ0,τ)=−1−τ µ0

µ0 +1
+τ 1+κ2[µ0 +1]

[1+κ2]2[µ0 +1]
.

Here, κ= k/R, τ= T/g, µ0 = ρ0/w and λ=Λ/g. The curve defined by Equation A.6 is displayed in

Figures A.1a and A.1b for different values of µ0 and τ.

As aforementioned, in order for cities to form, λκ must be greater than zero at its maximum

κ. The maximum is found by differentiating the expression for λκ with respect to κ. On doing

this, we find that λκ(µ0,τ) has a maximum in κm=0 of µ0 ≤ 1 and in

(A.7) κm =
√

(µ0 −1)/(µ0 +1)
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otherwise. This corresponds to a wavenumber km = R
√

(ρ0 −w)/(ρ0 +w) which, providingΛkm > 0,

corresponds to the average number of cities per unit length. For the case that ρ0 À w it can be

seen that km only depends on R, therefore the density, or number, of cities is fully determined

by the characteristic length of travel, R−1, and is independent of all other variables such as the

growth and migration rates.

The condition on the migration parameter T in order for λκ to be greater than zero is found

by substituting the expression for κm back into Equation A.6 and solving for τ. On doing this, the

conditions:

(A.8) Tc ≥ 4gρ0
(ρ0 +w)
(ρ0 −w)2 , τc ≥ 4µ0

(µ0 +1)
(µ0 −1)2

are obtained. From these relations we can conclude that if ρ0 À w then cities will emerge if τ> 4,

or T > 4g. It is important to note that Equation A.8 is independent of R; the characteristic travel

distance has no effect on whether or not cities will emerge.

A.1.1.2 Power Law Deterrence Function

The power law form for the deterrence function is given by f (r)= (1+r)−γ with γ> 0. The analysis

of Equation A.2 is more complicated for this case, however the maximum of λk(µ0,τ,γ) will occur

at a κm that is only dependent on µ0 and the function f with its parameter γ. This is a general

result for every function f due to the fact that κm is defined as λ′
km

(µ0,τ,γ)= 0,

λ′
k =

d
dk

{
−1−τ 1

µ0 +1
+τ

[∫ ∞
0 f (r)cos(kr)dr∫ ∞

0 f (z)dz
− µ0

µ0 +1

(∫ ∞
0 f (r)cos(kr)dr∫ ∞

0 f (z)dz

)2]}

= τ
[

d
dk

(∫ ∞
0 f (r)cos(kr)dr∫ ∞

0 f (z)dz

)
− µ0

µ0 +1
d

dk

(∫ ∞
0 f (r)cos(kr)dr∫ ∞

0 f (z)dz

)2]
,

(A.9)

a function of µ0 and f only. For the case of µ0 À 1 (that is ρ0 À w), it is only the function f ,

defining the spatial range of the migration process, that the characteristic distance between cities

is dependent upon.

The function λ′
km

= 0 may be solved numerically for different values of γ. On doing this we

find that the critical curve collapses on the same universal function, independent of γ. Moreover,

it turns out that the critical curve of Equation A.8 determining the condition for the formation

of cities is valid for any continuous function f , including a power law deterrence function and

therefore holds universally. We may prove this by defining A(k)≡ (∫ ∞
0 f (r)cos(kr)dr

)
/
(∫ ∞

0 f (z)dz
)
.

From Equation A.9 we have

0= A′(km)− 2µ0

µ0 +1
A(km)A′(km)

A(km)= µ0 +1
2µ0

.
(A.10)

Inserting this into λkm (µ0,τc)= 0, the critical curve defined in Equation A.8 is re-obtained.
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FIGURE A.1. a The function λκ(µ0,τ) from Equation A.6 with fixed µ0 =10 and varying
τ: 1,3,10,20. The red line corresponds to τc = 5.4321, as described by Equation A.8. b
The function λκ(µ0,τ) from Equation A.6 with fixed τ =5.4321 and varying µ0: 0.5, 1,
4, 40. The red line corresponds to µ0=10 for which τ = 5.4321 is critical, as described
by Equation A.8. c The function λκ(µ0,τ) from Equation A.6 at the critical value
τc defined in Equation A.8 for different µ0: 0.5(green), 2(red), 5(yellow), 10(blue).
If µ0 < 1 the maximum of λκ is in κm = 0. As µ0 grows, the maximum approaches
the limiting value of κm = 1. d The function λκ̃(µ0,τ) from Equation A.18 with
fixed µ0 =0.65 and varying τ: 1,5,20,100. The red line corresponds to τc = 46.03, as
described by Equation A.20. e The function λκ̃(µ0,τ) from Equation A.18 with fixed
τ =46.03 and varying µ0: 1/4, 1/3, 1/2, 1. The red line corresponds to µ0 = 0.65, for
which τ = 46.03 is critical (Equation A.20). f The function λκ̃(µ0,τ) from Equation
A.18 at the critical value τc defined in Equation A.20 for different µ0: 0.25(green),
0.5(red), 1(yellow), 1.5(blue). If µ0 < 1/3 the maximum of λκ is in κm = 0. As µ0
grows, the maximum κm increases indefinitely.

A.1.2 Pattern formation and Growth in 2D

In 2 dimensions, Equation 2.1 describing the evolution of the density of population for a gravity

model of human migration becomes a function of ρ(x, y, t), the population density in 2 dimensions.

∂ρ(x, y, t)
∂t

=gρ(x, y, t)
(
1− ρ(x, y, t)

ρ0

)
−Tρ(x, y, t)+T(ρ(x, y, t)+w).(∫ ∞

0

∫ 2π

0

f (r)ρ(r cos(θ)+ x, rsin(θ)+ y, t)∫ ∞
0

∫ 2π
0 f (z)(ρ(r cos(θ)+ x+ zcos(φ), rsin(θ)+ y+ zsin(φ), t)+w)dφdz

dθdr

)
.

(A.11)

82



A.1. GRAVITY MODEL

Linearising this equation about the stationary solution, ρ0, results in an expression for the

evolution of a small perturbation in the population density hk,l :

∂hk,l(t)
∂t

=hk,l(t)
{
T(ρ0 +w)

∫ ∞

0

∫ 2π

0

( f (r)ei(kr cos(θ)+lrsin(θ))∫ ∞
0 2π f (z)(ρ0 +w)dz

−
ρ0 f (r)

∫ ∞
0 2π f (z)J0

(p
k2 + l2 z

)
ei(kr cos(θ)+lrsin(θ)) dz(∫ ∞

0 2π f (z)(ρ0 +w)dz
)

2

)
dθdr

+Tρ0

∫ ∞

0

f (r)∫ ∞
0 f (z)(ρ0 +w)dz

dr− g−T
}
.

(A.12)

The amplitude hk,l corresponds to a 2 D plane wave with wave-vector components k, l.

A.1.2.1 Exponential Deterrence Function

For the 2D case, the exponential form of f (r) is given by f (r) = e−Rr, where r =
√

x2 + y2 , the

classic Euclidean distance. Substituting this into the expression for the evolution of hk,l , Equation

A.12, we obtain an expression for the growth function Λk,l :

(A.13) Λk,l = T

(
ρ0

(
k2 + l2)

(ρ0 +w)
(
k2 + l2 +R2

) + Rp
k2 + l2 +R2

−1

)
− g.

The functionΛk,l depends only on the magnitude of the wavevector, p =
p

k2 + l2 . Substituting

p2 for k2 + l2 in Equation A.13 results in an identical expression as that for Λk, Equation A.5.

Hence the critical value of the ratio between migration and growth above which cities are able to

form is the same for both the 1D and 2D gravity models, given by Equation A.8.

A.1.2.2 Power Law Deterrence Function

The power law form of the deterrence function in 2D is given by f (r) = (1+ r)−γ, as for the 1D

case, but with r equal to the Euclidean distance. Substituting this into the equation for the time

evolution of a perturbation, Equation A.12, we find that an analytical expression for Λ is not

obtainable. Solving the resulting equation for the formation of cities numerically, in analogy

with the 2D model with an exponential f (r), the critical curve of Equation A.8 is obtained.

Summarising, in both 1 and 2 dimensions, if population dynamics are described by a logistic

growth with individuals relocating according to a gravity model cities will form if T > 4g and

ρ0 À w and this is independent of the deterrence function considered.
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A.2 Intervening Opportunities & Radiation Models

A.2.1 Pattern formation and Growth in 1D

The full 1D dynamic equation for the intervening opportunities and radiation models is given by

∂ρ(x, t)
∂t

=gρ(x, t)[1− ρ(x, t)
ρ0

]−Tρ(x, t)+T[ρ(x, t)+w].∫ ∞

0

[
ρ(x− r, t) f

(∫ x

x−2r
[ρ(z, t)+w]dz

)
+ρ(x+ r, t) f

(∫ x+2r

x
[ρ(z, t)+w]dz

)]
dr.

(A.14)

Using the same method as used for the gravity model, we write this equation for small fluctuations

in ρ(x, t), denoted ρ̃(x, t), by linearising about the uniform stationary state ρ0.

∂ρ̃(x, t)
∂t

=− (g+T)ρ̃(x, t)+2Tρ0ρ̃(x, t)
∫ ∞

0
f (2r[ρ0 +w])dr+

T[ρ0 +w]
∫ ∞

0

(
f (2r[ρ0 +w])[ρ̃(x− r, t)+ ρ̃(x+ r, t)]+

ρ0 f ′(2r[ρ0 +w])
∫ x+2r

x−2r
ρ̃(z, t)dz

)
dr.

(A.15)

Λk =− (g+T)+ Tρ0

ρ0 +w
+

2T[ρ0 +w]
[∫ ∞

0
cos(kr) f (2r[ρ0 +w])dr+ρ0

∫ ∞

0

sin(2kr) f ′(2r[ρ0 +w])
k

dr
]

.
(A.16)

Introducing the rescaled variables: τ= T/g, µ0 = ρ0/w, κ= k/w and λ=Λ/g, the above expression

becomes:

λκ(µ0,τ, f )=− (1+τ)+ µ0

µ0 +1
+2τ[µ0 +1].[∫ ∞

0
cos(κz) f (2z[µ0 +1])dz+µ0

∫ ∞

0

sin(2κz) f ′(2z[µ0 +1])
κ

dz
]

.
(A.17)

A.2.1.1 Exponential f(a) - Intervening Opportunities Model

For the intervening opportunities model, the deterrence function takes the form of an exponential;

f (a)= Re−Ra. With this, Equation A.17 is evaluated exactly to give

(A.18) λκ̃(µ0,τ)=−(1+τ)+τ µ0

µ0 +1
−τ(µ0 +1)

[
µ0

κ̃2 + (µ0 +1)2 − 4(µ0 +1)
κ̃2 +4(µ0 +1)2

]
,

where κ̃= κ/R = k/(wR). The curve described by Equation A.18 is shown in Figures A.1d and A.1e

for different values of the parameters.

The function λκ̃(µ0,τ) has a maximum in κ̃m = 0 if µ0 ≤ 1/3 or in

(A.19) κ̃m =
√

−4µ0(µ0 +2)+6
√
µ0(µ0 +1)5 −4

3µ0 +4
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otherwise. The parameter κ̃m corresponds to a wavenumber km = Rwκ̃m. If λkm > 0, cities are

able to form and km is proportional to the number of cities per unit length. From the expression

for km we find that, in contrast to the gravity model, as µ0 →∞ (ie ρ0 À w), km →∞. This implies

that for a fixed R, or travel distance, the density of cities will be greater in more populated

regions.

The condition for λκ̃m > 0 is found by inserting the expression for κ̃m into Equation A.17 and

solving for τ, to obtain an expression for τc; if τ> τc, cities will emerge. τc is given by:

(A.20) τc =
3(5µ3

0 +11µ2
0 +7µ0 +4

√
µ0(µ0 +1)5 +1)

(µ0 +1)(3µ0 −1)2 .

It should be noted that this equation is independent of R. Furthermore, if µ0 À 1 (ρ0 À w), the

condition for growth reduces to τ> 3, or T > 3g. Here we may draw a parallel with the gravity

model; in both cases cities can only emerge if the migration rate is sufficiently higher than the

growth rate.

A.2.1.2 Power Law f(a) - Radiation Model

For the radiation model, f (a) = 1/(1+a)2 and, as with a power law deterrence function in the

gravity model, the evaluation of Equation A.17 is more complicated. By solving λκ̃(µ0,τ, f )= 0

numerically, we find that κ̃m = 0 if µ0 ≤ 1, and κ̃m > 0 otherwise. From this we also obtain critical

values of the parameters that will allow the emergence of cities. The results are shown in Figures

2.1c and 2.1d where it is seen that the critical curves for the intervening opportunities and

radiation models are not the same; in contrast to gravity models, for intervening opportunities

type models these curves do depend on the deterrence function used.

A.2.2 Pattern formation and Growth in 2D

The intervening opportunities model in 2 dimensions is

∂ρ(x, y, t)
∂t

= gρ(x, y, t)
(
1− ρ(x, y, t)

u

)
−Tρ(x, y, t)+T(ρ(x, y, t)+w).(∫ ∞

0

∫ 2π

0
ρ(x+ r cos(θ), y+ rsin(θ), t).

f
[∫ r

0

∫ 2π

0
(ρ(x+ r cos(θ)+ zcos(φ), y+ rsin(θ)+ zsin(φ), t)+w)dφdz

]
dθdr

)
.

(A.21)

This is analogous to the equation in 1 dimension, Equation A.14, however now we consider the

opportunities within a circle of radius r, with r being the Euclidean distance between the origin

and destination for a 2 dimensional population density ρ(x, y, t).

Performing linear stability analysis on this equation, with a perturbation to the stationary

distribution of the form ei(kx+l y), we find that the conditions for growth of cities are unchanged

from the 1-dimensional case if the 1 dimensional wavenumber k is replaced by the magnitude of
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FIGURE A.2. a The function λp̃(µ0,τ) for fixed µ0 = 0.65 and varied τ = 1,5,20,100. The
red line corresponds to τc = 46.03, the same as the critical value for the 1D case. b
The function λp̃(µ0,τ) for fixed τ = 46.03 and varied µ0 = 1 /4, 1 /3,1 /2,1. The red
line corresponds µ0 = 0.65, for which τ = 46.03 is critical.

the 2 dimensional wave-vector p. This result is demonstrated in Figures A.2a and A.2b where all

parameters are equal to those used to generate Figures A.1d and A.1e respectively, for the 1D

case. Here, p̃ = p /R.

A.3 A stochastic model of population dynamics

We present a stochastic model of population dynamics which combines the models of migration,

presented in Chapter 2, with Gibrat’s proportionate random growth. Such an approach is expected

to reproduce Heaps’ Law for cities, Equation 2.13, and Zipf ’s law for city sizes.

For this approach, we model the population as individuals rather than a continuous density.

Space is discretised into cells of size (Lx/Nx)×(L y/Ny); Lx and L y are the sizes of the 2-dimensional

region being considered and Nx, Ny are the number of cells in each dimension. For simplicity, we

will start by only considering square regions with Lx = L y = L, and Nx = Ny = N, thus the total

number of cells is N2 and each has an area of (L/N)2 ≡ dl2. Each cell may be specified by a pair

of coordinates (x, y) with 0≤ x < N and 0≤ y< N. The population of cell (x, y) at time t is given by

n(x, y, t).

The population in any cell may change in two ways; natural increase and migrations. Here,

natural increase refers to the difference between the number of births and the number of deaths

within a cell therefore it may be both positive or negative. Migrations refers to any person

relocating between cells; both inward migrations and outward migrations must be accounted for.

The mechanism that dictates the natural increase in the population of a cell is proportionate

random growth, the growth mechanism known to produce Zipf ’s Law. If we consider the change in

the population of cell (x, y) due to births and deaths between time t and t+dt, calling this change

δg(x, y, t), then by the rule of proportionate random growth we have δg(x, y, t)= ξ(t)n(x, y, t). Here,
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ξ(t) is a normally distributed random variable with mean µ and variance σ2. In order for the

resulting distribution of city sizes to be a power-law [48], µ must be slightly negative, σ must be

small (of order ≈ 0.1) and there must be a reflecting boundary condition preventing the population

of a cell from going below a minimum value, nmin = n0.

We model relocations between cells using either a gravity or an intervening opportunities

model. To implement this, we define a probability of migration, T, which corresponds to the

probability that an individual in cell (x, y) will relocate to any other cell between time t and

t+dt. The total number of outgoing migrants from cell (x, y) in time dt, m(x, y, t) is extracted

from a binomial distribution with migration probability T = 0.4. We then relocate these outgoing

migrants according to the gravity or intervening opportunities model as described in the following

sections.

A.3.1 Gravity Model

If individuals relocate according to a gravity model, the probability of a migrant relocating from

(x, y) to (i, j) is given by

(A.22) P(x, y→ i, j)= F(r(x, y→ i, j))[n(i, j, t)+w(i, j, t)]∑
i, j F(r(x, y→ i, j))[n(i, j, t)+w(i, j, t)]

where r(x, y → i, j) is the euclidean distance between locations (x, y) and (i, j). The deterrence

function F is assumed to be exponential, e−rR .

A.3.2 Intervening Opportunities Model

According to the intervening opportunities model, the probability of a migrant relocating from

(x, y) to (i, j) is given by

(A.23) P(x, y→ i, j)=
[F(Ax,y→i, j)+F(Ax,y→i, j + A i, j)

F(n(x, y, t)+w(x, y))−F(N)

]
.
n(i, j, t)+w(i, j)

A i, j

where A i, j corresponds to the sum of the population and opportunities in all cells at an equal

distance from (x, y) as (i, j) and F is the deterrence function that we assume to be exponential,

e−AR . Ax,y→i, j is the sum of the population and resources of all intervening cells; all cells that

lie at a distance from (x, y) that is less than the distance to (i, j), including the population and

resources of cell (x, y) itself.

Using Equations A.22 or A.23, we compute the probability of relocation to all cells according

to the model in question. The number of migrants moving between any two locations are then

extracted from a multinomial distribution. The number of incoming migrants to cell (x, y) in

between time t and t+dt, δin(x, y, t+dt), is given by the sum of the outgoing migrants from all

other cells that have destination (x, y). We denote this sum Φ(x, y, t).

Using this framework, the population dynamics can be simulated. In a time dt, the population

in each cell will change due to natural increase, outgoing migrants and incoming migrants. The
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population of a cell (x, y) after dt is therefore given by:

n(x, y, t+dt)= n(x, y, t)+δg(x, y,d)−δout(x, y,d)+δin(x, y,d)

= n(x, y, t)+ξ(t)n(x, y, t)−m(x, y, t)+Φ(x, y, t).
(A.24)

Simulations start at time t = 0 from an initial condition where the population of each cell is

drawn from a uniform distribution within the range n0 ≤ n ≤ 1.2·n0, where n0 is the minimum

population of a cell.

After each time step, dt, the state of the system is assessed by counting the total number

of cities and their populations. Cities correspond to clusters of population and may therefore

be defined as adjacent populated geographical spaces (cells) [107]. We define a cluster as a set

of adjacent cells for which the Manhattan distance of a single cell from the closest cell that

is a member of the cluster has a maximum of 1. This satisfies the adjacency condition and is

equivalent to a condition on the cell edges; any cell that is a member of a cluster must share

at least one edge with another cell within the same cluster. Alongside this, the population of

every cell within the cluster must be greater than a minimum value X to ensure that all cells are

populated.
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A.4 Heaps’ law for Continents

101 102 103 104

Country Density

100

101

102

103

C(
N

,5
k)

, n
um

be
r o

f c
iti

es

Asia

a

101 102

Country Density

100

101

102

C(
N

,5
k)

, n
um

be
r o

f c
iti

es

Africa

b

10 1 100 101 102 103

Country Density

100

101

102

103

104

C(
N

,5
k)

, n
um

be
r o

f c
iti

es

America

c

101 102 103 104

Country Density

101

102

103

C(
N

,5
k)

, n
um

be
r o

f c
iti

es

Europe

d

FIGURE A.3. Number of cities (y-axis) vs population density (x-axis) for countries in
Europe, America, Asia and Africa. For all plots we observe that the cities-density
correlation is very low (for values see table 2.2).
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FIGURE A.4. Number of cities (y-axis) vs area (x-axis) for countries in Europe, America,
Asia and Africa. For all plots we observe that the cities-area correlation is positive.
The strongest correlation exists for countries in America however this is not as
strong as the cities-total population correlation (see table 2.2).
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SCIENTIFIC MIGRATION: TECHNICAL ASPECTS

B.1 Technical aspects: prediction 1

B.1.1 Logistic Regression

Logistic regression is a linear model used for classification. In this framework the probability for

scientist s to move is given by the logistic function;

F(x(s))= 1
1+ e−x(s)

where x(s) = β0 +∑
iβi p(h,t)

i (s). If F(x(s)) > 0.5 the model predicts that the scientist s will

move, otherwise it predicts that they will stay. The coefficients, βi, of each feature in ~p(h,t) are

determined using maximum likelihood estimation [87].

B.1.2 Decision Tree

A Decision tree is a classifier that predicts the class of a target using simple decision rules learned

from the features of that target. The root of the tree contains all samples in the dataset. From the

root there are branches and subsequent nodes. Starting with the root node, each node corresponds

to a division of the dataset according to a rule. For example, if one of the features of the dataset

is age, anyone less than 40 takes the left branch to a new leaf node and anyone greater than or

equal to 40 takes the right branch. The feature value on which the node is split is selected such

that it maximises the information (or minimises the entropy) of the leaf nodes. This process will

terminate when some condition, such as a minimum number of samples in each leaf, has been

met [78].
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B.1.3 Evaluation measures

In order to evaluate the above models, we use compare them in terms of accuracy, recall, precision,

F1-score and AUC, to a baseline classifier. We define Pt as the number of true positives, or

scientists correctly predicted to move, and P f as the number of false positives, or scientists

incorrectly predicted to move. Analogously, we define the number of true negatives, scientists

correctly predicted to stay, as Nt and N f as the number of false negatives; scientists incorrectly

predicted to stay. Using these definitions, accuracy refers to the number of true results (Tp +T f )

as a fraction of the total number of points in the dataset. Recall is given by Pt/(Pt + N f ); it

represents the number of scientists correctly predicted to move as a fraction of the total number

of movers. Precision is the number of true positives as a fraction of the total number of positives

returned: Pt/(Pt +P f ). The F1-score is the harmonic mean of precision and recall. Finally, the

AUC is the area under the graph when the recall is plotted against the fall - out, or false positive

rate. Fall-out is given by P f /(Pt +N f ), defined such that the sum of recall and fall-out is equal to

1.

B.1.4 Baseline classifier

For comparison and completeness, we compare the results of both the logistic regression and

decision tree classifiers to a baseline classifier. As our dataset is balanced a stratified classifier

seems most informative. This classifier generates predictions according to the datasets class

distribution, therefore we expect the baseline classifier to score ∼ 0.5 for all evaluation measures.

B.2 Technical aspects: prediction 2

B.2.1 Stochastic gradient ascent

Stochastic gradient ascent (SDA) is an optimisation method [56]. For a given function L(ω)

with unknown parameter ω, SDA finds the value of ω that maximises the likelihood of L. It

approximates the gradient of L, dL/dω by considering a single sample of a training set at each

step. At each step, the value of ω is updated according to

ω←ω+ηdL
dω

.

where η corresponds to a step size or learning rate and controls the speed at which the algorithm

converges on the optimal value of ω.

For our task of predicting where a scientist will relocate to, L is the model’s log-likelihood and

ω is a vector of the features of the gravity model. The optimisation is of the coefficients for each

feature. We use mini-batch gradient ascent, where the gradient of L is approximated considering
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a small subset of samples from the training set at each step in order to minimise computational

time.
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[143] F. ZHAO, L.-F. CHOW, M.-T. LI, A. GAN, AND S. D. L., Refinement of FSUTMS trip

distribution methodology, tech. rep., Technical Memorandum 3, Florida International

University, 2001.

[144] M. ZHAO, L. MASON, AND W. WANG, Empirical study on human mobility for mobile

wireless networks, in Military Communications Conference, 2008. MILCOM 2008.

IEEE, IEEE, 2008, pp. 1–7.

104



BIBLIOGRAPHY

[145] G. K. ZIPF, The P1 P2/D hypothesis: On the intercity movement of persons, American

Sociological Review, 11 (1946), pp. 677–686.

[146] , Human behavior and the principle of least effort: An introduction to human ecology,

Ravenio Books, 2016.

105




	List of Tables
	List of Figures
	Introduction
	Cities as Complex Systems
	Zipf's Law and the growth of cities
	Mesoscopic City Growth: Gibrat's Law
	Microscopic City Growth
	Comparison

	Human Mobility
	Individual Level
	Population Level
	Occupational Migration and the Science of Science

	Thesis outline

	The Size and Spatial Distribution of Cities
	Introduction
	A deterministic model of population dynamics
	Gravity Model
	Intervening Opportunities & Radiation Models
	Analytical results
	Numerical Simulations
	Gravity Model
	Intervening Opportunities Model
	Model Comparison
	Summary

	Heaps' Law for Cities
	Analytical Results
	Empirical Results
	Heaps' Law for States
	Spatial distribution of cities

	Heaps' law for urban clusters
	Local distributions of areas and populations of urban clusters
	Heap's law at the local scale

	Conclusion

	City Growth
	Introduction
	The Microscopic Model
	Environmental variability
	Correlated individuals

	Empirical evidence of Zipf's and Taylor's Laws
	Conclusion

	Scientific Migration
	Introduction
	Dataset
	Career Trajectory
	Computation of career trajectories

	Scientific Profile
	Computation of scientific profiles

	Why does a scientist decide to move institutions?
	Results

	Where do scientists move to?
	Results

	Conclusion

	Discussion
	The Size and Spatial Distribution of Cities: Mathematical Aspects
	Gravity Model
	Pattern Formation and Growth in 1D
	Pattern formation and Growth in 2D

	Intervening Opportunities & Radiation Models
	Pattern formation and Growth in 1D
	Pattern formation and Growth in 2D

	A stochastic model of population dynamics
	Gravity Model
	Intervening Opportunities Model

	Heaps' law for Continents

	Scientific Migration: Technical Aspects
	Technical aspects: prediction 1
	Logistic Regression
	Decision Tree
	Evaluation measures
	Baseline classifier

	Technical aspects: prediction 2
	Stochastic gradient ascent


	Bibliography

