

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Liu, Bin

Title:
Cryptographic Access Control

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

Cryptographic Access Control: Security Models,
Relations and Construction

By

Bin Liu

Department of Computer Science

University of Bristol

A dissertation submitted to the University of Bristol in ac-

cordance with the requirements of the degree of Doctor

of Philosophy in the Faculty of Engineering.

November 2019

Word count: 48337

Abstract

Traditional enforcement of access control policies heavily relies on reference monitors,
which need to be run in trusted domains, be permanently online and mediate every
access request from users. This inherent limitation directly impacts scalability and
deployability of its applications. A solution to this problem is to employ cryptography,
where policy enforcement depends on both security of the underlying cryptographic
primitives and appropriate key distribution. This approach is known as cryptographic
access control. It has the potential to reduce the reliance on monitors or even eliminate
this need while enforcing the access control policies.

The existing works in cryptographic access control mainly focused on implementing
various access control systems from basic cryptographic primitives and/or designing new
primitives tailored for access control systems. However, the study on formal security
models for cryptographic access control systems, which are of central importance, is
usually neglected. Specifically, without formal security models, one cannot establish the
link between security guarantees from cryptographic primitives and the enforcement of
access control policies.

This problem was first addressed by Ferrara et al., whose recent work on crypto-
graphic Role-Based Access Control (cRBAC) establishes rigorous foundations for the
analysis of cryptographic access control systems. In this thesis, we continue their line of
research. Our main contributions are definitional. We study security of cRBAC systems
in both game-based and simulation-based settings, and the relations between the secu-
rity notions. We also initiate the study of policy privacy in the context of cryptographic
access control systems. The privacy issue does not arise in traditional monitor-based
policy enforcement, but cryptographic access-control systems may inadvertently leak
information on the underlying access control policies. Such information can be sensitive
in many scenarios. Next, we propose a construction of cRBAC system which employs
a new privacy-preserving encryption. Our security proofs confirm that our purposal
securely enforces both read and write access to the file system, while preserving pol-
icy privacy to a certain degree. Finally, we study the efficiency implications of secure
cRBAC systems. Our result shows that supporting permission revocation is inherently
costly in such systems.

i

Acknowledgements

First and foremost, I would like to sincerely thank my supervisor Professor Bogdan

Warinschi for his continuous support and guidance throughout my studies at University

of Bristol. Thank you for guiding me on the path to become a researcher. Thank you

for being patient with me and encouraging me when I am in difficulty.

I would like to express my special thanks to my wife. I really appreciate her pain and

dedication over these years. She gave up the opportunity to study at a great university

for a master’s degree and decided to support me as a housewife. She gave birth to our

little angel, Alice (a name that all cryptographers are familiar with). She is a great wife

and mother. Without her unconditional support and help, I would not have finished my

PhD study.

I would like to thank my mother for giving me everything. When my father passed

away last year, I suddenly realised just how much I have always asked of her, and how

much I owe her.

I am very grateful to those people who offered me their friendly help last year so

that I can get home for my father’s last moments. Thank you all. Many thanks to my

friends Yan Yan, Si Gao and Zicheng Gui for their friendship and their help in times of

need. I would also like to thank all the people in the crypto group.

Finally, may my father rest in peace.

iii

Declaration

I declare that the work in this dissertation was carried out in accordance with the re-

quirements of the University’s Regulations and Code of Practice for Research Degree

Programmes and that it has not been submitted for any other academic award. Except

where indicated by specific reference in the text, the work is the candidate’s own work.

Work done in collaboration with, or with the assistance of, others, is indicated as such.

Any views expressed in the dissertation are those of the author.

SIGNED: ... DATE:..........................

v

Contents

1 Introduction 1

1.1 Related Work . 4

1.2 Contributions . 6

1.3 Outline of the Thesis . 6

1.4 Publications . 7

2 Preliminaries 8

2.1 Notations . 8

2.2 Provable Security . 9

2.3 Security Definitions . 9

2.3.1 Game-Based Security . 9

2.3.2 Simulation-based Security . 10

2.4 The Universal Composability(UC) Framework 10

2.5 Digital Signature . 11

2.6 Predicate Encryption with Specific Public Keys 13

2.7 Role-Based Access Control . 17

3 Cryptographic Role-Based Access Control 20

3.1 Introduction . 20

3.2 System Model . 21

3.3 Cryptographic RBAC Scheme . 23

4 Game-Based Security of cRBAC 26

4.1 Introduction . 26

4.1.1 Our results . 28

4.2 Correctness . 30

4.3 Read Security . 32

4.3.1 Secure Read Access . 32

vii

4.3.2 Past Confidentiality . 34

4.4 Write Security . 37

4.4.1 Secure Write Access . 38

4.4.2 Local Correctness . 40

4.5 Policy Privacy . 41

4.6 A Construction of cRBAC . 44

4.6.1 Overview of the Construction . 44

4.6.2 CRBAC[PE ,Σ] in details . 47

4.6.3 Cost analysis of CRBAC[PE ,Σ] 56

4.7 Security of CRBAC[PE ,Σ] . 57

4.8 Conclusion . 85

5 UC security of cRBAC 86

5.1 Introduction . 86

5.1.1 Our results . 87

5.2 A UC Security Definition for cRBAC . 88

5.2.1 Functionality FCRBAC . 88

5.2.2 The Associated Protocol . 91

5.3 UC security is stronger than Game-Based Security 92

5.4 Impossibility of UC-secure cRBAC . 97

5.5 Conclusion . 102

6 Some Lower Bounds for secure cRBAC 103

6.1 Introduction . 103

6.2 The Lower Bounds . 104

6.3 Conclusion . 110

7 Conclusion 112

7.1 Future Work . 114

viii

List of Figures

2.1 Ideal functionality for secure message transmission, Fsmt. 12

2.2 Administrative RBAC commands. 18

3.1 The system model of cRBAC. 21

3.2 The system model of traditional monitor-based access control. 22

4.1 Ocorr: Oracles for defining the experiment Expcorr
CRBAC,A. 31

4.2 Oread: Oracles for defining the experiment Expread
CRBAC,A. 34

4.3 Opc: Oracles for defining the experiment Exppc
CRBAC,A. 37

4.4 Owrite: Oracles for defining the experiment Expwrite
CRBAC,A. 39

4.5 Ol-corr : Oracles for defining the experiment Expl-corr
CRBAC,A. 42

4.6 Ox: Oracles for defining the experiment Expx-privacy
CRBAC,A. 45

4.7 The structure of a row in the file system. 46

4.8 Cost analysis for the algorithms of CRBAC[PE ,Σ]. 57

4.9 Õpc (part 1) . 67

4.10 Õpc (part 2) . 68

4.11 Õwrite-1 (part 1) . 74

4.12 Õwrite-1 (part 2) . 75

4.13 Õwrite-2 (part 1) . 78

4.14 Õwrite-2 (part 2) . 79

4.15 Õp2r∗ (part 1) . 83

4.16 Õp2r∗ (part 2) . 84

5.1 Ideal functionality for cryptographic Role-Based Access Control, Fcrbac. 89

5.2 Ideal functionality for versioning file storage, Fvfs. 92

5.3 The Protocol ΠCRBAC in (Fvfs,Fsmt)-hybrid model. 93

5.4 Ideal functionality for non-committing encryption, Fnce (adapted from

[69]). 97

ix

5.5 The Protocol Πnicp in (Fvfs,Fsmt)-hybrid model. 98

x

Chapter 1

Introduction

Traditional access control mechanisms heavily rely on reference monitors to enforce

policies [3]. Since the reference monitors have to be executed in the trusted domains and

be permanently online to mediate every access request from users, this approach has the

inherent limitations that impact scalability and deployability of applications. Especially,

it is not suitable for the emerging trend of outsourcing data storage to untrusted file

storage servers where hosting a trusted monitor is almost impossible. An alternative

solution is to employ cryptographic techniques to enforce access control policies, which is

known as cryptographic access control. The idea behind is simple and elegant: the files

are protected by cryptographic primitives, while the access control policies are enforced

by appropriately providing the keys to the authorised users. It is a promising solution

as cryptography is a natrual solution for preserving data confidentiality and integrity.

More importantly, cryptographic enforcement of access control policies does not suffer

from the limitations mentioned above. Therefore, cryptography can help to reduce the

reliance on reference monitors and even to eliminate this need.

Previous results in cryptographic access control range from designing access control

systems from basic cryptographic primitives [32, 1, 24, 22, 21, 18] to the more advanced

cryptographic primitives tailored for access control [35, 50, 52, 30]. However, a primary

concern of the most existing works is the absence of formal security models for the whole

systems. Although cryptogrpahic primitives can protect data privacy at points, security

of the primitives does not necessarily translate to security of the whole system. More

precisely, the correct policy enforcement in cryptographic access control systems involves

more subtle issues like appropriate key management/distribution and timely update of

cryptographic materials. Without formal security models, one cannot establish the

link between the implementation of the cryptographic access control system and the

1

CHAPTER 1. INTRODUCTION

specification of the policy being enforced. Thus many of the existing works do not offer

any proof at all for their constructions [39, 59, 20, 56], meaning only informal security

guarantees can be provided.

This problem was first addressed by Ferrara et al. in their recent work [28]. They

showed how to use attribute-based encryption scheme to provably enforce Role-Based

Access Control (RBAC) policy on read access to a file system. Particularly, they defined

a precise syntax of the access control system and proposed a formal security model that

captures secure read access to the file system within their framework. Their result comes

with a construction that meets the proposed security notion, but write access to the file

system is still handled by the reference monitor.

The work in this thesis continues the line of Ferrara et al.’s research and extends it in

several directions. First, we further reduce the dependency on policy-enforcing monitors

by supporting access control on write access. In our extended system model, users are

allowed to have (quasi-)unrestricted write access to the files, but only those contents

written by authorised users will be considered as valid. The monitor is therefore tasked

with policy administration only. Based on this, we propose a formal security model with

respect to secure write access for cRBAC systems.

We also address the policy privacy issues in the context of cryptographic access con-

trol. The correct enforcement of policies is the core requirement of cryptographic access

control systems, yet policy privacy is not an ordinary security concern. In traditional

access control, the policy being enforced is kept by the policy enforcer and only policy-

compliant access request will be granted. Therefore, the information about the access

control policy is perfectly hidden from users: they can only learn whether they have ac-

cess to particular files or not. However, cryptographic implementations of access control

systems may reveal more information than desirable. Any change to the policy being

enforced will be directly reflected in the system global state, which means the publicly

available information (e.g. metadata and the encrypted files) and even users’ local states

might unintentionally reveal information about the policy. Such informaiton can be crit-

ical in the areas where privacy is mandated by law or regulations (e.g. governments,

enterprises, etc.) or it can be highly sensitive in some other areas (e.g. institutions,

hospitals, etc.). In such settings, cryptographic access control may become unusable.

There have been many cryptographic primitives for preserving various forms of poli-

cies proposed [11, 31, 63, 9, 58], but these may not suffice to preserve policy privacy in

the access control systems that employ them. Specifically, the absence of formal security

2

CHAPTER 1. INTRODUCTION

models could result in the impossibility of rigorously proving that such information is

not revealed in the system. To this end, we propose different security notions to capture

several distinct aspects of policy privacy. Our work can be considered as the first rig-

orous approach to policy privacy in cryptographic access control systems. Even though

our results are in the RBAC model, they still can serve as an inspiration to the work in

similar contexts.

As widely acknowledged, coming up with precise security models for complex sys-

tems turns out to be a tricky business. In order to appropriately model cryptographic

enforcement of RBAC policies, so far we have already proposed several security mod-

els for different security properties in game-based setting. To step further towards the

goal, we then turn to study cryptographic RBAC system in simulation-based setting,

where security is defined by requiring the information revealed during the execution of

a system is at most as much information revealed by an ideal version of the system.

This type of security notions is intuitive but often cumbersome to work with. Since the

idealised system preserves all security properties expected of a given cryptographic task,

the real system which is considered to be secure under this paradigm therefore inherits

all those security properties. For cryptographic RBAC systems, the idealised version is

exactly the correct enforcement of RBAC policies. Therefore, there is no need to enu-

merate all security properties separately and to worry about if a system that holds all

those security properties can cryptographically enforce the RBAC policy as expected.

Moreover, simulation-based security with composability property is highly desirable in

cryptographic access control due to its applicability. Cryptographic access control sys-

tems need to maintain their security guarantees when employed within different higher

level protocols.

We propose the first simulation-based security notion for cryptographic RBAC sys-

tems within the Universal Composable (UC) security framework [12]. Then we study its

relation with the existing game-based security notions. The result shows our new secu-

rity notion is strictly stronger than the existing ones with respect to secure access. We

also identify a gap between the simulation-based security and the game-based security.

More precisely, we show that there exists no UC-secure cRBAC system with adaptive

corruptions, even given access to secure channels and an idealised versioning file system.

Inspired by the study of the relation between the two types of security models for

cRBAC systems, we identify two different attacks which are not captured by the existing

game-based security notions. Therefore, we propose two new security notions of secure

3

CHAPTER 1. INTRODUCTION

read and write access respectively. The new security notion for read security is called

past confidentiality which is strictly stronger than the existing one. Interestingly, we

found that the recent results on cryptographically access control systems fall short to

this security property, even though their constructions were proven to securely enforce

the access control policies within their individual frameworks. The other one for write

access is called local correctness and serves as a complementary notion to the existing

notion of secure read access.

We then propose a construction of cRBAC system that enforces both read and

write access to a file system. The main ingredient of our construction is a variant of

Predicate Encryption (PE) scheme called Predicate Encryption with Specific Public

Keys (PE-SK). It allows our construction to preserve a certain degree of privacy for the

policy being enforced. Our proofs confirm that the construction securely enforces access

control on both read and write access to a file system, while preserving a certain degree

of policy privacy.

Finally, we present some theoretic results with respect to the lower bounds for secure

cRBAC systems. By lower bound for secure cRBAC systems, we mean the intrinsic

computation overheads of cRBAC systems which securely enforce RBAC policy with

respect to read and write access.

1.1 Related Work

The enforcement of access control policies with the use of cryptographic techniques has

received considerable attention in recent decades. Gudes’ work in 1980 [37] can be seen

as the seminal work in cryptographic access control. He showed how to use cryptography

to enforce different protection policies on a local file system and also suggested some

basic design principles of the use of cryptographic schemes. However, his result does not

include a concrete construction of the access control system and he does not consider

the key management problem in such systems. Later, the works of Gifford’s [32] and

Akl et al.’s [1] addressed the key-management problem in cryptographic access control

but policy update was not considered. Harrington and Jensen discussed the infeasi-

bility of employing traditional monitor-based access control on distributed file systems

and suggests to use cryptographic techniques to enforce the access control policies [39].

However, the access control system they proposed only uses cryptography to implement

partial access control mechanism rather than to enforce the access control policies.

Recently, with the development of advanced cryptographic primitives such as Identity-

4

CHAPTER 1. INTRODUCTION

Based Encryption (IBE) [8], Predicate Encryption (PE) [47] and Attribute-Based En-

cryption (ABE) [36, 7] which are well-suited for enforcing different access control policies,

there have been significant works on cryptographic access control. Crampton has shown

that cryptography can be used to enforce RBAC policy by re-writing RBAC policies as

information flow policies and applying the key assignment scheme accordingly. He also

examined the connection between his cryptographic role-based access control scheme and

ABE [22]. Later, Campton showed that general interval-based access control policies can

be enforced using key assignment schemes [23]. Zhu et al. proposed an access control

system based on role-key hierarchy model and designed new signature and encryption

schemes (both are pairing-based) which are tailored for the system they proposed [70].

There also have been many other similar works on cryptographic access control systems

or on designing new primitives for them [17, 18, 16, 41, 19, 66]. The common problem

of these works is the absence of formal security definitions for the whole system, which

will lead to a worrying situation where only informal security proofs can be provided.

Halevi et al. proposed the first formal security definition for access control in dis-

tributed file storage system [38]. However, their security definition is for a specific

protocol rather than for a general one. Ferrara et al. formally defined security for

cryptographic Role-Based Access Control (cRBAC) systems with respect to read access

[28]. They also provided a construction of the access control system based on a variant

of Predicate Encryption scheme, and showed that the security notion can be provably

achieved. Later, Alderman et al. followed this line of research. They proposed formal

security definitions for cryptographic enforcement of information flow policies (on read

access only) and provided a construction which is proven to be secure with respect to

their security definitions [2]. However, their security definition for read security does not

capture the security concern of retrieving the previous file contents in an unauthorised

manner (which will be discussed in Session 4.3.2).

Garrison III et al. studied the practical implications of cryptographic access control

systems that enforces RBAC policies [43]. They analysed the computational costs of

two different constructions of cryptographic role-based access control systems via sim-

ulations with the use of real-world datasets. Their result shows that supporting for

dynamic access control policy enforcement may be prohibitively expensive, even under

the assumption that write access is enforced with the minimum use of reference monitors.

5

CHAPTER 1. INTRODUCTION

1.2 Contributions

In this thesis, we mainly focus on formal security models of cryptogrpahic Role-Based

Access Control (cRBAC). We highlight our main contributions as follows.

1. We propose several formal security models for cRBAC systems to precisely model

cryptographic enforcement of RBAC policy.

2. We address the policy privacy issues in the context of cryptographic access con-

trol and propose formal security models for different flavours of policy privacy.

Our work can be considered as the first rigorous approach to policy privacy in

cryptographic access control systems.

3. We propose a construction of cRBAC system based on a variant of predicate

encryption, and formally prove that our construction meets the existing security

notions.

4. We study security of cRBAC systems in UC framework. We propose a security

notion for cRBAC systems in UC framework and show that this notion is strictly

stronger than the existing ones. We also identify a gap between simulation-based

and game-based security: it is impossible for a cRBAC system to be UC-secure

with adaptive corruptions.

5. We show some lower-bounds for secure cRBAC systems.

1.3 Outline of the Thesis

The thesis is organised as follows:

The preliminaries are presented in Chapter 2. We include the notations and the

relevant background which are required to understand the remainder of this thesis.

In Chapter 3, we introduce our notion of a cRBAC system, which extends the notion

introduced by Ferrara et al. in [28] by allowing authorised users to perform write

operations on files.

In Chapter 4, we tease out the security properties expected from a cRBAC system

that correctly enforces the policy and formalise them in the game-based setting. Specifi-

cally, we redefine the two existing security definitions: correctness and secure read access

in our current system model and introduce a security definition with respect to write

access. After having studied security of cRBAC systems in simulation-based setting, we

6

CHAPTER 1. INTRODUCTION

identify two different types of attacks which are not captured by the existing security

definitions. Therefore, we propose two new security definitions: past confidentiality and

local correctness. The former provides stronger security guarantee on read access, while

the latter serves as complementary to the definition of secure write access. We also

start to address the issue of policy privacy, which is another important feature in cryp-

tographic access control systems. We identify and formalise several different flavours of

policy privacy targeting to systems with different privacy demands. Finally, we present

a construction of cRBAC system which is built on a PE-SK scheme. Our construction

securely enforces both read and write access to a file system, while preserving a certain

degree of policy privacy.

In Chapter 5, we study security of cRBAC systems in simulation-based setting. Our

first result is a formal security definition for secure cRBAC systems in the UC framework.

Then we study the relation between our UC security definition and the existing security

definitions for cRBAC systems. Finally, we show an impossibility result of the UC secure

cRBAC system with adaptive corruptions.

In Chapter 6, we show some lower bounds for secure cRBAC systems. We mathe-

matically show that the support of dynamic policy update can be costy in secure cRBAC

systems.

In Chapter 7, we make conclusions from our results and discuss the possible directions

for future work.

1.4 Publications

Here we list all the publications related to the work presented in the thesis.

[27] Anna Lisa Ferrara, Georg Fuchsbauer, Bin Liu, and Bogdan Warinschi. Policy

privacy in cryptographic access control. In IEEE 28th Computer Security Foun-

dations Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015, pages 4660, 2015.

[51] Bin Liu and Bogdan Warinschi. Universally composable cryptographic role-based

access control. In Provable Security - 10th International Conference, ProvSec

2016, Nanjing, China, November 10-11, 2016, Proceedings, pages 6180, 2016.

7

Chapter 2

Preliminaries

In this chapter we introduce all of the notations and the foundational concepts which

will be used in the rest of this thesis.

2.1 Notations

For assignment, we use x ← y to denote that we assign x the value of y. If S is a set,

x← S denotes that we assign x the value of a member in S, where the member is chosen

uniformly at random. If A is an algorithm, x← A(y) denotes the assignment of x with

the output of running A on the input y. If A is a randomised algorithm, then we use

x←$A(y) to denote the assignment.

If s is a string, |s| denotes its length. If S is a set, |S| denotes its size. ε denotes

the empty string. ⊥ denotes an error, its meanning depends on the content: it could be

decryption failure or an error returned by the oracle. If k is an integer, 1k denotes the

string of k 1s.

Negligible function. In cryptography, security are usually defined by requiring some

“bad event” to happen with very small probability. When using a function to represent

a probability, we say the function is negligible if it tends to zero faster than the inverse

of any polynomial.

Definition 1 (Negligible Function). A function µ : N → R is negligible if for every

positive polynomial p there exists an integer N such that for every integer n > N ,

µ < 1
p(n) .

We say a function µ is non-negligible, if there exists a polynomial p, there exists

an integer N such that there exists an integer n > N , µ ≤ 1
p(n) .

8

CHAPTER 2. PRELIMINARIES

2.2 Provable Security

In 1984, a paradigm was proposed by Goldwasser and Micali in their seminal paper

probabilistic encryption [34] which was later known as provable security. This approach

relates the security of a scheme to some specified mathematically intractable problem.

The proof of security can be given by reduction. Any efficient algorithm that breaks

the security of the scheme can be used to solve the mathematical problem. However,

if the problem is really intractable, we get a contradiction. Therefore such an efficient

algorithm does not exist and we prove the security of the scheme.

2.3 Security Definitions

In order to reason about the security of a protocol, a security definition must be available.

As a central task of provable security, establishing appropriate security definitions is of

great importance. Typically, there are two main definitional approaches to capture

security requirements of protocols.

2.3.1 Game-Based Security

The so-called game is a conceptualisation of the interactions between the protocol (or

scheme) and an adversary who attacks the protocol. The game specifies some goal for

the adversary to achieve, which is usually posed by a hypothetical challenger. The

goal precisely clarifies what constitutes an attack against the protocol. The adversary

may further get access to some oracles, which will provide it some information that it

can obtain when attacking the protocol. Any oracle call that will lead to a trivially

win is always prohibited. Security defined via this approach demands that no efficient

adversary can achieve its goal with probability exceeding some threshold particularly

the probability of winning by chance.

The security of numerous cryptographic schemes and protocols have been defined

by this approach (e.g. public key encryption[34], key exchange [5, 15], etc.). The

most appealing advantage of this approach is its relative simplicity: executions only

consider stand-alone scenarios where the protocol is in complete isolation from others,

and different security goals (e.g. privacy and integrity of sensitive data) are treated

independently from one another. However, the main concern is the information that

an adversary can learn when attacking the protocol must be specified in the game.

The threat from the environment that the protocol is being employed might not be

9

CHAPTER 2. PRELIMINARIES

appropriately captured. One solution is to explicitly define the security for specific

environments. But in such case the proofs can hardly provide security guarantee when

the protocol is employed in the environments that have not been considered. In addition,

it may not always be possible to exhaustively enumerate the different properties that

one may desire from a system of a certain degree of scale.

2.3.2 Simulation-based Security

An alternative approach to define security is based on the simlulation paradigm. The

root of this approach goes back to Goldreich, Micali and Wigderson’s paper [33]. It is

also known as the real/ideal-world paradigm. Security is defined by comparing a system

with an idealized version and demands that the real execution of a system reveals at

most as much information is revealed by an ideal version of the system. Canetti’s UC-

framework [12], Pfitzmann and Waidner’s composed system [55] are of this paradigm.

Simulation-based security definitions offen demand stringent requirements which

might lead to inefficient implementations of some cryptographic tasks, or even prevent

the implementations - even if some protocols seem to be secure for practice purposes,

they might not be secure under simulation-based definitions (e.g. UC-secure commit-

ment scheme [13]). In addition, some tasks cannot be proved to be secure in simulation-

based settings (e.g. the non-commitment encryption with adaptive corruptions in the

plain model [54]).

2.4 The Universal Composability(UC) Framework

The real/ideal-world paradigm has been further developed by the UC framework. In the

UC framework, the trusted party of the ideal process is modelled as an entity called ideal

functionality and denoted by F . In addition to handling the inputs obtained repeatedly

from the parties and generating the prescribed outputs, F is allowed to interact with

the adversary, in a way that captures the allowed adversarial influence and information

leakage of the protocol. To provide security guarantee under composition, the UC

framework introduces an adversarial entity called the environment Z, which represents

all possible settings in which the protocol can be executed. Z acts as an interactive

distinguisher which aims to tell if it is interacting with the real protocol or with the

ideal one. In the process, the environment is allowed to exchange information with the

adversary, to provide inputs to the participants of it choice and to obtain outputs from

them. A protocol Π is said to securely realise the functionality F , if for any adversary

10

CHAPTER 2. PRELIMINARIES

A, there exists a simulator S such that no environment can distinguish between its

interactions with parties running Π and A and the interactions with the ideal process

for F and S.

An special type of adversary is the so-called dummy adversary D. This adversary

simply delivers the messages from the environment to the parties and forwards the

messages from the parties to the environment: this adversary essentially allows the en-

vironment to fully control the input/output and the communication between the parties.

A simulator that works for the dummy adversary essentially gives rise to a simulator for

any other adversary.

An important concept in the UC framework is the hybrid model, an execution setting

which is a mix between a real protocol and an idealised setting. Specifically, in an F-

hybrid the parties running the protocol can use multiple copies of an ideal functionality

F . The extension of the notion of realizing of an ideal functionality in the hybrid model

is immediate. In fact, it captures the essence of the general composition theorem specific

to UC. If a protocol ρ securely realises an ideal functionality G in F-hybrid model and

there is a protocol π securely realises F , then the composed protocol ρπ/F where all

the calls to F are replaced by calls to π securely realises G. Hence π provides the same

security guarantee as the ideal functionality F even if used within an arbitrary protocol

ρ; furthermore the composed protocol ρπ/F still provides the same security guarantee

as the ideal functionality G.

One particular application of hybrid models is to capture various communication

models. This is achieved by formulating an appropriate ideal functionality F that

represents the abstraction from the communication, then real-world protocols in the

communication model can be presented in the F-hybrid model. To exemplify this ap-

proach, we present Fsmt, the ideal functionality for secure message transmission (aka

secure communication) in Fig. 2.1. In Fsmt, a sender PS with input m sends its input

to a receiver PR, while the adversary only learns |m|, the length of the message m, and

can delay the message delivery. Notice that Fsmt can only transmit a single message, to

transmit multiple messages we need to use multiple instances of Fsmt. We refer to [12]

for more details and formal descriptions about the UC framework.

2.5 Digital Signature

The concept of digital signature schemes was first introduced by Diffie and Hellman in

[25]. A digital signature aims to provide trust on message integrity, authentication and

11

CHAPTER 2. PRELIMINARIES

Functionality Fsmt

Fsmt proceeds as follows, with a sender PS , a receiver PR and an adversary S.

1. Upon receiving an input (Send, sid, PR,m) from PS , send
(Sent, sid, PS , PR, |m|) to the adversary and generate a delayed output
(Sent, PS , sid,m) to PR then halt.

2. Upon receiving (Corrupt, sid, P) from S, where P ∈ {PS , PR}, reveal m to the
adversary. If P = PS and the message has not yet been sent to PR, then ask S
for a value m′ and output (Sent, PS , sid,m

′) to PR then halt.

Figure 2.1: Ideal functionality for secure message transmission, Fsmt.

also non-repudiation. The following definition of digital signature schemes is adapted

from [46].

Definition 2. A digital signature scheme Σ is given by a tuple of probabilistic polynomial-

time algorithms (KeyGen, Sign,Verify) that satisfy the following:

1. The randomised key-generation algorithm KeyGen takes as input a security param-

eter 1λ and outputs a pair of keys (vk , sk), where vk is the verification key and sk

is a secret signing key.

2. The randomised signing algorithm Sign takes as input a secrect signing key sk and

a message m and outputs a signature σ.

3. The deterministic verification algorithm Verify takes as input a verification key vk,

a message m and a signature σ and outputs a bit b, where b = 1 if σ is a valid

signature of m under vk and b = 0 otherwise.

The Existentially Unforgeable under Chosen Message Attacks (EU-CMA) security

is considered as the standard security requirement for digital signature schemes. It is

defined through the experiment Expeu-cma
Σ,A which involves an a digital signature scheme

Σ = (KeyGen,Sign,Verify) and adversary A. In the experiment, a pair of keys (vk , sk) is

generated by running the key generation algorithm. Then A is handed the verification

key vk and has access to a signing oracle Sign. Eventually, the adversary terminates

with an output (m∗, σ∗), where m∗ is a message of its choosing and σ∗ is the signature.

It wins the game if m∗ has never been queried to Sign and σ∗ is a valid signature of m∗

under vk .

Definition 3 (EU-CMA). A digital signature scheme Σ = (KeyGen,Sign,Verify) is Exis-

tentially Unforgeable under Chosen Message Attacks if for any probabilistic polynomial-

12

CHAPTER 2. PRELIMINARIES

time adversary A, it holds that

Adveu-cma
Σ,A (λ) := Pr

[
Expeu-cma

Σ,A (λ)→ true
]

is negligible in λ, where Expeu-cma
Σ,A is defined as follows:

Expeu-cma
Σ,A (λ)

L← ∅

(vk , sk)←$ KeyGen(λ)

(m∗, σ∗)←$A(1λ, vk : Sign)

if m∗ /∈ L ∧ Verify(vk ,m∗, σ∗) = 1 then

return true

else return false

Sign(m)

L← L ∪ {m}

return σ←$ Sign(sk ,m)

2.6 Predicate Encryption with Specific Public Keys

In classical predicate encryption [47], ciphertexts are encrypted with identities (sets of

attributes) and secret keys correspond to predicates. A ciphertext associated with an

identity I can be decrypted by a secret key corresponding to a predicate f only when

f(I) = 1 is satisfied, whereas the identity I must be given explicitly as the input of

the encryption algorithm. This very nature of predicate encryption reveals the identity

associated to the ciphertext explicitly. Thus, we need a way to hide the identity during

encryption.

In [27], we overcome this by introducing a variant of predicate encryption called

predicate encryption with (identity-) specific public keys (PE-SK). It allows for gener-

ating public key with any identity, which can be used to encrypt a message instead of

providing the identity explicitly in the encryption algorithm, while the obtained cipher-

text can be decrypted by the users with secrect keys for predicates which hold on the

identity.

Definition 4. A Predicate Encryption with Specific Public Keys (PE-SK) scheme PE is

given by a tuple of probabilistic polynomial-time algorithms (Setup,PKGen,DKGen,Enc,Dec):

1. The randomised setup algorithm Setup on input the security parameter λ (and

13

CHAPTER 2. PRELIMINARIES

optional parameters such as the attribute universe) returns a pair (mpk ,mdk) of

a master public and master secret (decryption) key.

2. The randomised public-key generation algorithm PKGen on inputs mpk and I re-

turns a public encryption key pk I for identity I.

3. The randomised decryption-key generation algorithm DKGen on inputs mdk and a

predicate f returns a decryption key dkf for f .

4. The randomised encryption algorithm Enc on inputs pk I and m returns a ciphertext

c.

5. The deterministic decryption algorithm Dec on inputs skf and a ciphertext c re-

turns a string m (or ⊥).

Correctness A PE-SK scheme PE is correct if for all λ, f, I,m, r, all (mpk ,mdk) out-

put by Setup(1λ), all pk I output by PKGen(mpk , I) and all dkf output by SKGen(mdk , f)

we have Dec(dkf ,Enc(pk I ,m; r)) = m if and only if f(I) = 1. Since when knowing mdk

one can always derive a key and then decrypt, we also directly write Dec(mdk , c).

Identity-hiding public keys We first introduce a security notion that formalises the

requirement that keys do not reveal for which identity they are. An adversary must

guess a random bit b after getting the master public key mpk and access to a challenge

oracle LR, which on input (I0, I1) returns an encryption key for Ib. Note that this also

formalises the fact that an adversary cannot tell whether two keys are for the same

identity: given mpk , it can produce a key for pk I0 and being given pk Ib guess b by

linking keys.

The adversary is also provided a DKGen oracle, which models collusions between

users. To prevent trivial attacks, we require the following restriction. When queried

on f , DKGen first checks whether f(I0) = f(I1) for all (I0, I1) queried to LR (other-

wise the decryption key could be used to test whether a ciphertext produced with the

challenge key pk Ib decrypts correctly or not). Analogously, LR only answers queries

(I0, I1) if f(I0) = f(I1) for all f queried to DKGen (otherwise the adversary can use

the decryption key to test whether a ciphertext produced with the challenge Ib decrypts

correctly or not).

14

CHAPTER 2. PRELIMINARIES

Definition 5 (Identity-hiding public keys). The following game formalises the security

requirement that ID-specific public keys do not reveal any non-trivial information about

the identities they are for:

Expid-h-pk
PE,A (λ)

b←$ {0, 1};F ← ∅; Ch ← ∅

(mpk ,mdk)←$ Setup(1λ)

b′←$A(mpk : DKGen,LR)

Return (b′ = b)

DKGen(f)

For all (I0, I1) ∈ Ch:

If f(I0) 6= f(I1) then Return ⊥

F ← F ∪ {f}

Return dkf ←$ DKGen(mdk , f)

LR(I0, I1)

For all f ∈ F :

If f(I0) 6= f(I1) then Return ⊥

Ch ← Ch ∪ {(I0, I1)}

Return pk ←$ PKGen(mpk , Ib)

We say a PE-SK scheme PE has identity-hiding encryption keys if for any p.p.t.

adversary A,

Advid-h-pk
PE,A (λ) :=

∣∣Pr[Expid-h-pk
PE,A (λ)→ 1]− 1

2

∣∣
is negligible in λ.

Message-hiding While our first security notion ensures that public keys (and ci-

phertexts created from them) do not reveal their associated identity, the second notion

formalises the traditional requirement that ciphertexts of different messages should be

indistinguishable. In contrast to the first notion, this also exists for standard PE, where

this is termed as payload-hiding [47].

This notion is formalised via a game where the adversary must distinguish messages

encrypted under a key whose corresponding secret key it must not know. We give the ad-

versary access to an oracle that generates public keys pk I for I of the adversary’s choice.

The adversary then chooses one such key and two equal-length messages (M0,M1) and

15

CHAPTER 2. PRELIMINARIES

gets an encryption of Mb under that key.

More formally, the game stores queried keys pk I and the identity I in the first empty

index of two lists PK and I, respectively. When the adversary asks for a challenge under

the j-th key by querying (j,M0,M1), it receives an encryption of Mb under PK [j]. The

corresponding identity I[j] is then added to the list of challenges Ch.

The adversary can also query decryption keys for any predicate f , which is then

added to a list F . To prevent trivial attacks, the experiment maintains the invariant

that for all f ∈ F and I ∈ Ch it should hold that f(I) = 0; otherwise, if for some f and

I we had f(I) = 1, the adversary could query a challenge under the key for I and then

decrypt it using dkf .

Definition 6 (Message hiding). The following game formalises the fact that ciphertexts

hide the encrypted message:

Expmsg-hide
PE,A (λ)

b←$ {0, 1}; ctr ← 1; PK , I, F,Ch ← ∅

(mpk ,mdk)←$ Setup(1λ)

b′←$A(mpk : PKGen,DKGen,LR)

Return (b′ = b)

PKGen(I)

pk I ←$ PKGen(mpk , I)

I[ctr]← I; PK [ctr]← pk I ; ctr ← ctr + 1

Return pk I

DKGen(f)

For all I ∈ Ch:

If f(I) = 1 then Return ⊥

F ← F ∪ {f}

Return dkf ←$ DKGen(mdk , f)

LR(j,M0,M1)

If |M0| 6= |M1| then Return ⊥

Let (pk I , I)← (PK [j], I[j])

For all f ∈ F :

If f(I) = 1 then Return ⊥

16

CHAPTER 2. PRELIMINARIES

Ch ← Ch ∪ {I}

Return C←$ Enc(pk I ,Mb)

We say a PE-SK scheme PE has message-hiding ciphertexts if for any probabilistic

polynomial-time adversary A,

Advmsg-hide
PE,A (λ) :=

∣∣Pr[Expmsg-hide
PE,A (λ)→ 1]− 1

2

∣∣
is negligible in λ.

2.7 Role-Based Access Control

Role-Based Access Control (RBAC) is a general access control model that has been

widely adopted in various systems. It simplifies the management on users’ permissions

by introducing an indirection, namely the roles [61, 60, 26]. Roles are the central con-

cept of RBAC, since the policies are constructed around roles. The RBAC policies are

decomposed into two assignments: the user-role assignment and the permission-role as-

signment. Both of the assignments can be managed seperately. A user is authorised to

a permission if there exists a role of the users’ has been assigned with the permission.

In this thesis, we will only focus on the core RBAC [60].

An RBAC system consists of:

• U : a finite set of users

• R: a finite set of roles

• O: a finite set of objects

• P : a finite set of permissions where each permission is an object-operation pair

• UA ⊆ U ×R: a relation modelling the user-role assignment

• PA ⊆ P ×R: a relation modelling the permission-role assignment

We denote the read permission and the write permission of a file o ∈ O by (o, read)

and (o, write) respectively. Follow the work of [28], we assume that the set of roles

R is fixed due to the fact that the role structures in organisations are usually stable.

Therefore, at any point the state of a RBAC system over a fixed role set R is a tuple

S = (U,O, P,UA,PA). We summarise the typical administrative RBAC commands and

their descriptions in Figure 2.2.

17

CHAPTER 2. PRELIMINARIES

Command Description

AddUser(u) Add a new user u to the system

DelUser(u) Remove an existing user u from the system

AddObject(o) Add a new object o to the system

DelObject(o) Remove an existing object o from the system

AssignUser(u, r) Assign the user u to the role r

DeassignUser(u, r) Deassign the user u from the role r

GrantPerm(p, r) Grant the permission p to the role r

RevokePerm(p, r) Revoke the permission p from the role r

Figure 2.2: Administrative RBAC commands.

We describe an RBAC system in terms of a state-transition system. Let RULES

be the set of state-transition rules correspond to the administrative RBAC commands

which are specified in Figure 2.2, given two states S = (U,O, P,UA,PA) and S′ =

(U ′, O′, P ′,PA′,UA′), there is a transition from S to S′ with command q ∈ RULES de-

noted S
q−→S S′ if one of the following conditions holds:

• [AddUser(u)]: q = (AddUser, u), u /∈ U , U ′ = U∪{u}, O′ = O, P ′ = P , PA′ = PA

and UA′ = UA;

• [DelUser(u)]: q = (DelUser, u), u ∈ U , U ′ = U \ {u}, O′ = O, P ′ = P , PA′ = PA

and UA′ = UA \ {(u, r) ∈ UA ‖ r ∈ R)};

• [AddObject(o)]: q = (AddObject, o), o /∈ O, O′ = O ∪ {o}, U ′ = U , P ′ =

P ∪ {(o, read), (o, write)}, PA′ = PA and UA′ = UA;

• [DelOject(o)]: q = (DelObject, o), o ∈ O, O′ = O \ {o}, U ′ = U , P ′ = P \ {(o, ·)},

PA′ = PA \ {((o, ·), r) ∈ PA ‖ r ∈ R)} and UA′ = UA;

• [AssignUser(u,r)]: q = (AssignUser, (u, r)), u ∈ U , r ∈ R, U ′ = U , O′ = O,

P ′ = P , PA′ = PA and UA′ = UA ∪ {(u, r)};

• [DeassignUser(u,r)]: q = (DeassignUser, (u, r)), u ∈ U , r ∈ R, U ′ = U , O′ = O,

P ′ = P , PA′ = PA and UA′ = UA \ {(u, r)};

• [GrantPerm(p,r)]: q = (GrantPerm, (p, r)), p ∈ P , r ∈ R, U ′ = U , O′ = O,

P ′ = P , PA′ = PA ∪ {(p, r)} and UA′ = UA;

• [RevokePerm(p,r)]: q = (RevokePerm, (p, r)), p ∈ P , r ∈ R, U ′ = U , O′ = O,

P ′ = P , PA′ = PA \ {(p, r)} and UA′ = UA.

A run of an RBAC system is any finite sequence of transitions S0
q0−→S S1

q1−→S

18

CHAPTER 2. PRELIMINARIES

. . .
qn−→S Sn+1, where S0 is an initial state of the RBAC system.

A predicate IsValid(Cmd , arg) reflects that the execution of an RBAC administrative

command q = (Cmd , arg) is valid for the current state S. It is defined as follows:

IsValid(Cmd , arg)⇔ q ∈ RULES ∧ ∃S′ : S q−→S S′.

A predicate HasAccess(u, p) reflects that a user u has symbolically access to a per-

mission p. It is defined as follows:

HasAccess(u, p)⇔ ∃r ∈ R : (u, r) ∈ UA ∧ (p, r) ∈ PA.

19

Chapter 3

Cryptographic Role-Based Access

Control

The content presented in this chapter is adapted from the paper Policy Privacy in

Cryptographic Access Control [27]. My contribuitons to the paper will be introduced in

the next chapter.

3.1 Introduction

The notion of a cryptographic RBAC system (cRBAC) was first introduced in [28]

where read access to a file system is controlled using cryptography, while write access is

monitored on-line by the manager. We extend their notion by allowing authorised users

to execute write operations on files, thereby foregoing completely the need for on-line

monitors.

Concretely, we extend the cRBAC system in [28] to a setting where the users have

(quasi) unrestricted read/write access to the file system and the manager is now tasked

with the administration of access control policies only. Consider that if users are pro-

vided unrestricted write access to the file system, no amount of cryptography can prevent

a malicious user to simply overwrite the existing contents. To this end, we propose using

versioning file storage where users can only append contents but not delete any. These

appends are then interpreted as logical writes to files. In practice, such a file system can

be implemented with the use of log-structured techniques [64, 65]. In fact, our system

model can be considered as a general model for cryptographic RBAC systems due to the

features of the versioning file storage: the cryptographically protected files are always

publicly accessible to all the users in the system and the file system does not implement

20

CHAPTER 3. CRYPTOGRAPHIC ROLE-BASED ACCESS CONTROL

any access control mechanism, namely the enforcement of access control policy solely

relies on cryptography.

In the published paper [27], the extended cryptographic RBAC system (cRBAC) is

denoted by w-cRABC in order to be distinguished from the previous notion which only

enforces read access. In this thesis, by a slight abuse of notation, we still denote it by

cRBAC.

To summarise, in this chapter we make the following contributions:

• We present the notion of the extended cRBAC system that enforces access

control on both read and write access to the file system.

• We provide a formal definition of cRBAC schemes.

3.2 System Model

The system model of a cRBAC is depicted in Figure 3.1. It involves three main entities:

a manager, a file system and a set of users. The manager is assumed to be a trusted

party and it is tasked with the administration of access control policies. Specifically, it

is in charge of excuting RBAC administrative commands outlined in Session 2.7. The

implementation of those commands involves key management and data encryption/re-

encryption. In traditional monitor-based access control systems (depicted in Figure

3.2), the policy enforcer (the reference monitor) has to mediate every access request

such that only the authorised requests (according to the access control policy being

enforced) will be granted. In fact, the reference monitor needs to be involved in both

policy administration and also the access to the files. Here, the manager of a cRBAC

system is only responsible for the policy administration and does not involve in any

access operation.

Figure 3.1: The system model of cRBAC.

21

CHAPTER 3. CRYPTOGRAPHIC ROLE-BASED ACCESS CONTROL

The file system of a cRBAC is an untrusted storage that stores the files being enforced

access control on. Unlike the file system of a traditional access control system which is in

the protection domain and is controlled by the inherently centralised reference monitor,

the file system of a cRBAC is assumed to be publicly accessible to the users (such as

cloud storage). In implementation, it contains arrays of encrypted files and the related

metadata. The file system itself does not implement any access control mechanism, but

it must guarantee the availablity of data it stores. To support writing to the files by

users, we require that the file system provide some extra guarantee to prevent malicious

users from simply overwriting files and causing denial-of-service. We purpose the use of

versioning storage, where the users can only write to the files by appending new versions

to them instead of overwriting the existing contents. As the data owner, the manager

could have richer interfaces to the file system than the users have and is therefore able

to overwrite the file contents and to add/delete files.

Figure 3.2: The system model of traditional monitor-based access control.

The users can get read and write accesses to the file system directly. When reading

a file, one should first verify and fetch the most recent “valid” version (the file system

should also guarantees correct ordering of file versions and the validity of a file version

is guaranteed by cryptographic primitives) and then retrieve that as the current content

by carrying out some decryption (if it holds the appripriate keys).

Secure channels are assumed between each of any two entities (but not between

the users). For simplicity, we assume the implementation of any RBAC administrative

command as non-interactive multi-party computations which proceeds as follows: when

executing any RBAC command, the manager first carries out some local computation

according to the command to produce some update messages for the file system and also

22

CHAPTER 3. CRYPTOGRAPHIC ROLE-BASED ACCESS CONTROL

the users. After that, those update messages will be sent via secure channels. The users

will update their local states accordingly upon receiving the update messages. The file

system proceeds the update in a similar manner.

The global state of a cRBAC system stG at any point during its execution is given by

the tuple (stM , fs, {stu}u∈U), where stM is the local state of the manager, fs is the state of

the file system and stu is the local state of each user u. Since the manager is tasked with

access control policy administration, we assume the RBAC policy S = (U,O, P,UA,PA)

is a part of its local state stM and let φ(stG) denote the RBAC policy of the global state

stG.

3.3 Cryptographic RBAC Scheme

A cRBAC system is defined by a cRBAC scheme which consists of the following algo-

rithms:

• Init, the initialisation algorithm: A probabilistic algorithm that takes the security

parameter λ and a set of roles R as input and outputs the initial global state of

the cRBAC system.

• AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm,

RevokePerm, the RBAC administrative algorithms: Probabilistic algorithms that

implement the corresponding RBAC administrative commands. Each of these al-

gorithms takes the state of the manager stM , the current state of the file system fs

and the argument for the RBAC command arg as input and then outputs the up-

dated state for the manager and the file system, and also a set of update messages

{msgu}u∈U for all the users u ∈ U .

• Read, the read algorithm: A deterministic algorithm that allows a user retrieve

the current content of a file. It takes the user’s local state stu, the current state

of the file system fs and a file name o as input and outputs the current content of

the file o if u has the read permission; if not, or if the file is empty, the algorithm

returns ⊥;

• Write, the write algorithm: A probabilistic algorithm that allows a user write

content to a file. It takes a user’s local state stu , the current state of the file

system fs, a file name o and the content to be written m as input and outputs the

updated file system.

23

CHAPTER 3. CRYPTOGRAPHIC ROLE-BASED ACCESS CONTROL

• Update, the update algorithm: A deterministic algorithm that takes the local state

of a user stu and an update message msgu received from the manager and outputs

the updated local state.

Recall that the write access to the file system is implemented by letting users ap-

pend new versions to the file system. When one reads a file, it first needs to locate the

latest valid file version so that it can retrieve the current content of the file. There-

fore, in addition to the algorithms mentioned above, there also exists a sub-algorithm

FindValidEntry.

• FindValidEntry: A deterministic algorithm that takes the local state of a user stu,

the current state of the file system fs and a file name o as input and outputs the

most recent valid file version number. In the case that there is no valid version

exists, it returns 0.

Notice that in a cRBAC system, the manager enforces the symbolic access control

policy in a computational sense by generating appropriate cryptographic materials. It

is therefore capable of retrieving the content from any file in order to carrying out

some operations including file re-encryption. For simplicity, we let the manager retrieve

the file content by running the user-specific algorithm Read with its local state stM as

input. Similarly, the manager can also locate the latest valid file version by running

FindValidEntry on its own.

There is also a remark on the updated file system, which is as a part of the output of

some algorithms outlined above. More specifically, the algorithms will produce update

instructions to be carried out on the file system. For example, after running the Write

algorithm, a user will get the update instruction info that includes the information of

the file name and also the content to be appended to the file system. Then the user

uploads info to the file system and the latter gets updated accordingly. The manager

proceeds similarly but the update instructions might be different from the users due

to its privilege of the data owner. For simplicity, we just let those algorithms output

the updated file system. In terms of effect, all the above algorithms except Read can

protentially update the global state of the cRBAC system. Therefore, we may write the

execution of a cRBAC algorithm in the following form:

stG
Q−→ st ′G ⇔ st ′G←$ Cmd(stG, arg),

where Cmd is one of the algorithms that defines a cRBAC scheme, arg is its argument,

24

CHAPTER 3. CRYPTOGRAPHIC ROLE-BASED ACCESS CONTROL

Q is a sequence of operations that implements the algorithm, stG and st ′G are global

state of the cRBAC system.

Let Qi for i = 0 . . . n be a sequence of operations, the execution of ~Q = (Q0, ..., Qn)

can be written as:

stG0

~Q−→ stGn+1 ⇔ stG0

Q0−−→ stG1

Q1−−→, ..., Qn−1−−−→ stGn

Qn−−→ stGn+1 ,

where stG and st ′G are global state of the cRBAC system.

25

Chapter 4

Game-Based Security of cRBAC

The contents presented in this chapter include results adapted from the paper Policy

Privacy in Cryptographic Access Control [27] and also some new results from our follow-

up work.

The aforementioned paper is a collaborative work with Anna Lisa Ferrara, Georg

Fuchsbauer and Bogdan Warinschi. I am responsible for providing all the security

definitions, the construction of the cRBAC system and the security statements with

their proofs. My idea of policy privacy in access control systems is spurred by our work

on using attribute-based signature schemes to enforce write access. Later, the idea is

pushed further with Dr. Ferrara and Prof. Warinschi.

4.1 Introduction

The heavy reliance on reference monitors is a significant shortcoming of traditional access

control mechanisms. It greatly impacts scalability and deployability, since monitors are

single points of failure that need to run in protected mode and have to be permanently

online to deal with every access request of users. Cryptography has the potential to

alleviate this problem. This alternative approach that employs cryptographic primitives

to enforce access control policies, is widely known as cryptographic access control. It

aims to reduce the reliance on monitors or even eliminate this need, since the policy

enforcement is achieved in an indirect way: data is protected by cryptographic primitives

and the policies are enforced by distributing the appropriate keys to right users.

A primary concern of cryptographic access control is the large gap between the policy

specification and the implementation of the access control system. It is best understood

by contrasting it with policy enforcement via monitors. In monitor-based access con-

26

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

trol, every access request to the protected files is mediated by the reference monitor

so that only the policy-compliant request will be granted. Therefore, the enforcement

of access control policies holds by design. In cryptographic access control, the policy

enforcement is more complicated. It relies on security guarantees of the underlying

cryptographic primitives and also the appropriate key distribution/management in the

system. Even though some advanced cryptographic primitives are seemingly well-suited

for cryptographic access control, their security guarantees cannot be directly translated

to security guarantee of the whole system. Therefore, formal security models for cryp-

tographic access control systems are particularly important, since they establish the

link between the implementation of the systems and the specification of access control

policies, and also allow for rigorous security proofs.

There have been works in this area that focus on designing new primitives motivated

by access control systems [32, 1, 42, 19, 67] and on designing access control systems based

on those primitives [44, 66, 4, 70, 41]. Throughout the literature, rigorous definitions

that look at the security of systems for access control have only been heuristically stud-

ied. Halevi et al. proposed a simulation-based security definition for access control on

distributed file storage system in order to reason about the confinement problem [38].

Ferrara et al. defined a precise syntax for cryptographic role-based access control (cR-

BAC) systems and proposed a formal security definition with respect to secure read

access [28]. They also suggested an construction based on predicate-encryption (PE).

Their work eliminates the need for the trusted monitors to mediate every read access

request, while write access is still delegated to the trusted monitors.

We follow the line of Ferrara et al.’s research on cRBAC systems and expand their

works in several distinct directions. In Chapter 3, we have already introduced our

extended system model that allows authorised users to execute write operations on files.

Here, in this chapter, we are going to present our security definitions which aim to

model the correct enforcement of the policies. More importantly, we initiate the study

of policy privacy in the context of cryptographic access control. The information about

the policy being enforced in a cryptographic access control system might be leaked

during its execution. We begin to address this problem by providing formal security

definitions to allow for rigorous study the information leak about the policy. We detail

our contributions next.

27

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

4.1.1 Our results

Secure enforcement of RBAC policy. Our first results are formal security defini-

tions for cRBAC systems. Very roughly, a cRBAC implementation is considered to be

secure if it correctly enforces the RBAC policy. In order to formulate this, we propose

multiple security definitions that capture the distinct security properties expected from

a secure cRBAC system. Our security definitions are based on games, where the adver-

sary is allowed to drive the execution of the system and to take over users. Then security

is defined by measuring the inability of the adversary to triger some event during the

execution or to distinguish between two possible executions.

The notions of correctness and secure read access were first introduced by Ferrara

et al. in [28]. The former captures the security requirement that any user in the system

should have access to the files to which it is allowed to access. The latter requires that

by any means a user cannot learn any partial content of the file to which it does not have

read access. Since their system model is extended here to support for enforcing access

control over write operations to the file system, the two existing security definitions need

to be redefined in our current system model. Next, we introduce a security definition

for write access, which is called secure write access. Informally, it requires that all those

contents written by unauthorised users will not be interpreted as valid.

After having formally defined security of cRBAC systems in game-based setting,

as a step towards the goal for providing formal security definitions that precisely cap-

ture secure policy enforcement, we then turn to study security of cRBAC systems in

simulation-based setting. In the follow-up work, we identify two different types of secu-

rity concerns which are not captured by the existing security definitions. The first one

corresponds to the ability of retrieving the previous contents in an unauthorised manner.

More specifically, a user who is authorised to read a file might be able to retrieve the

previous contents of that file, even it is not authorised to get access to those contents.

The second one is related to secure write access to the files. A user who has the write

permission of a file might be able to cause the other users fail in writing contents to that

file. We propose two new security definitions past confidentiality and local correctness

accordingly to capture the above mentioned security concerns .

Policy privacy in cryptographic access control. Our second contribution is bring-

ing forth the policy privacy issues that appear in the context of cryptographic access

control systems. The problem does not occur in monitor-based policy enforcement: when

28

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

interacting with the access control system, users can only learn if they have access to

certain resources or not, while no other information will be leaked. But in cryptographic

access control, dynamic changes to the files due to the administrative RBAC commands

may reveal some information about the access control policy being enforced, especially

in the case that the adversary has some partial knowledge on the access structure. One

may imagine numerous situations where this information is sensitive. For example, in a

paper submission system, one may always want to keep hidden the information about

the PC members who have been assigned with certain papers in order to prevent au-

thors from affecting them personally. In a hospital, it is always not desirable to leak

if a patient’s medical record can be accessed by certain specialists (e.g. oncologist and

AIDS specialist, etc.).

Some existing works on cryptographic primitives tailored for access control have

already attempted to deal with this type of leak. However, the privacy guarantees from

the underlying cryptographic primitives may not suffice to preserve policy privacy in the

access control systems that employ them. Moreover, there exists no security definition

for policy privacy to allow one to formally prove that an implementation of the system

can preserve such policy privacy guarantees.

Here, we clearly identify the abilities of an attacker and specify what are to be

considered as privacy breaches in a cryptographic access control system. We propose

multiple security definitions instead of a single one to allow for privacy-effiency trade-

offs.

A construction of cRBAC. The additional security requirements mentioned above

lead to a new construction of cRBAC system which strengthens the one proposed in the

published paper [27]. We prove that our new construction meets the stronger security

notions with respect to secure access, while offering a certain degree of privacy for the

underlying policy.

29

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

To summarise, in this chapter we make the following contributions:

• We redefine two existing security definitions for cRBAC in the extended system

model.

• We provide a formal security definition for secure write access.

• We provide two new security definitions called past confidentiality and local

correctness.

• We provide formal security definitions for different flavours of policy privacy.

• We provide a construction which is proven to preserve correctness, write secu-

rity, past confidentiality, local correctness and to preserve policy privacy to a

certain extent.

4.2 Correctness

Informally, a cRBAC system is said to be correct if it guarantees that every user in

the system can get access to the data for which it is authorised according to the policy.

More specifically, a cRBAC system preserves correctness if:

1. any user u has the permission (o, read) should be able to retrieve the current

content of o by reading it, and

2. the current content of a file o which is written by a user u who has the permission

(o, write) will be correctly read by any other user who has the permission (o, read).

We formalise the requirements via a game between a challenger who acts as the

manager of a cRBAC system and a polynomial-time adversary A. The adversary is

allowed to ask the manager to execute any RBAC administrative command and to

request any user to write to the file system. But it cannot take over users. After carrying

out some sequence of operations, A should show that the cRBAC system reaches the

global state where there exists some user who cannot retrieve the current content of the

file correctly to which he has the read access.

We define the following experiment Expcorr
CRBAC,A. The experiment maintains the

RBAC state of the system State which consists of (U,O, P,UA,PA). State is initialised

as (∅, ∅, ∅, ∅, ∅) and evolves according to the (symbolic) execution of the RBAC com-

mands as requested by A. It also maintains an object-indexed list T to record the latest

content written to the files by authorised users. After the initialisation of the cRBAC

30

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

system with a given set of roles R, the adversary can call the oracles to execute the

intended RBAC administrative commands and to write to the file system. Since secure

channels are assumed and party corruption is not allowed, the adversary will be only

provided the current state of the file system as the response for any query it makes. In

addition, A is allowed to query the current state of the file system. At some point in

the experiment, the adversary should output a user u∗ along with a file o∗. The exper-

iment terminates when A outputs a user-object pair (u∗, o∗). The adversary wins the

game if u∗ has the read permission of o∗ but the content it retrieves from o∗ by running

Read(stu∗ , o
∗, fs) does not match the record in T [o∗].

Definition 7 (Correctness). A cRBAC system defined by the scheme CRBAC = (Init,

AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm, RevokePerm,

Read, Write, Update) is correct if for any probabilistic polynomial-time adversary A, it

holds that

Advcorr
CRBAC,A(λ) := Pr

[
Expcorr

CRBAC,A(λ)→ true
]

is 0, where the experiment Expcorr
CRBAC,A is defined as follows:

Expcorr
CRBAC,A(λ)

T ← ∅; State ← (∅, ∅, ∅, ∅, ∅)

(stM , fs, {stu}u∈U)←$ Init(1λ, R)

(u∗, o∗)←$A(1λ : Ocorr)

if HasAccess(u∗, (o∗, read)) ∧ T [o∗] 6= Read(stu∗ , o
∗, fs) then

return true

else return false

The oracles Ocorr that the adversary has access to are specified in Figure 4.1 and

discussed below.

Cmd(Cmd , arg)

if ¬IsValid(Cmd , arg) then

return ⊥
State ← Cmd(State, arg)

(stM , fs, {msgu}u∈U)

←$ Cmd(stM , fs, arg)

foreach u ∈ U :

stu ← Update(stu,msgu)

return fs

Write(u, o,m)

if ¬HasAccess(u, (o, write)) then
return ⊥

fs ←$ Write(stu, fs, o,m)

T [o]← m; return fs

FS(query)

if query =“state” then

return fs

Figure 4.1: Ocorr: Oracles for defining the experiment Expcorr
CRBAC,A.

31

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

The oracle Cmd allows the adversary to ask the manager for the execution of any

RBAC command by providing an RBAC administrative command Cmd (specified in 2.2)

and the command-specific arguments arg . It will first check if the symbolic execution

of Cmd with arg is valid: if not, an error is returned; otherwise, it will execute the

command symbolically and then run the algorithm Cmd that implements the command.

After that, A will be provided the current state of the file system.

The adversary can request an honest user u to write some content m to the file o.

If u has the write permission of o, the oracle runs the algorithm Write to carry out the

write opeartion and then stores m in T [o]. The adversary can check the current state

of the file system at any point during the game by calling the oracle FS with the query

“state” but appending file versions to the file system is not allowed here.

4.3 Read Security

In this section, we introduce two formal security definitions for a cRBAC system with

respect to secure read access. The first one, called secure read access, is presented in the

published paper [27]. The other security definition is called past confidentiality, which

is strictly stronger than secure read access.

4.3.1 Secure Read Access

A cRBAC system is said to be secure with respect to read accesses if no user can deduce

any partial content of a file without having the read permission. It is formalised via an

indistinguishability-based game which involves a challenger who plays as the manager

of a cRBAC system and an adversary A. During the game, the adversary can choose

two messages to be written to a file of which it does not have the read permission. Then

one of the two messages will be written to that file and A’s goal is to determine which

of the messages it is.

More precisely, we define the following experiment Expread
CRBAC,A. The experiment

starts with selecting a random bit b←$ {0, 1}. It maintains the symbolic RBAC state

of the system as it evolves through the adversary’s requests for the execution of RBAC

commands. It also maintains a list Cr to record the corrupt users and another list Ch to

record the files which are specified as challenges. The adversary can drive the execution

of the system by asking the manager to execute any RBAC command and requesting

any honest user to write to the file system. A can also take over any user by corrupting

it and have unrestricted read and write (by appending) access to the file system. The

32

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

experiment only maintains local states for all honest users. For those corrupt users,

their update messages will be sent to adversary instead. At some point, the adversary

can ask for a challenge by specifying a tuple (u, o,m0,m1), where u is a user that has

write access to the file o, m0 and m1 are two mesasges of the same length. In response,

the challenger will run Write(stu, o,mb) to carry out the write operation on bahalf of u.

When A terminates and outputs a guess of the random bit b′, it wins the game if b′ = b.

To prevent trivial wins, the experiment maintains the following invariant: there

exists no user in the list Cr can have the read permission of any file in Ch, which means

A cannot read the contents written to the challenge files directly by corrupting the users

who are authorised to read.

Definition 8 (Secure Read Access). A cRBAC system which is defined by the scheme

CRBAC = (Init, AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser,

GrantPerm, RevokePerm, Read, Write, Update) is secure with respect to read ac-

cess if for any probabilistic polynomial-time adversary A, it holds that

Advread
CRBAC,A(λ) :=

∣∣Pr[Expread
CRBAC,A(λ)→ true]− 1

2

∣∣
is negligible in λ, where Expread

CRBAC,A is defined as follows:

Expread
CRBAC,A(λ)

b←$ {0, 1}; Cr ,Ch ← ∅

State ← (∅, ∅, ∅, ∅, ∅)

(stM , fs, {stu}u∈U)←$ Init(1λ, R)

b′←$A(1λ : Oread)

return (b′ = b)

The oracles Oread that the adversary has access to are specified in Figure 4.2 and

discussed below.

Still, by calling the oracle Cmd the adversary can request for the execution of any

administrative RBAC command, providing the symbolic execution of the command with

its arguments is valid and it will not lead to a violation to the invariant. If the RBAC

command causes some user or some file deleted from the system, the record in Cr or

Ch will be removed accordingly.

The adversary can put a challenge by calling the oracle Challenge. Noticed that

it is allowed to put multiple challenges in the game. In addition, Challenge returns

an error if A’s query will violate the invariant.

33

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Cmd(Cmd , arg)

if ¬IsValid(Cmd , arg) then

return ⊥
(U ′, O′, P ′,UA′,PA′)← Cmd(State, arg)

foreach u ∈ Cr AND o ∈ Ch:

if ∃r ∈ R:

(u, r) ∈ UA′ ∧ ((o, read), r) ∈ PA′

then return ⊥
State ← (U ′, O′, P ′,UA′,PA′)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ Cr :

if u /∈ U then Cr ← Cr \ {u}
foreach o ∈ Ch:

if o /∈ O then Ch ← Ch \ {o}
foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

return (fs, {msgu}u∈Cr)

CorruptU(u)

if u /∈ U then return ⊥
foreach o ∈ Ch:

if HasAccess(u, (o, read)) then

return ⊥
Cr ← Cr ∪ {u}; return stu

Write(u, o,m)

if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o, write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

return fs

Challenge(u, o,m0,m1)

if ¬HasAccess(u, (o, write)) then

return ⊥
if |m0| 6= |m1| then return ⊥
foreach u′ ∈ Cr :

if HasAccess(u′, (o, read)) then

return ⊥
Ch ← Ch ∪ {o}
fs ←$ Write(stu, fs, o,mb)

return fs

FS(query)

if query =“state” then

return fs

if query =“append(info)” then

fs ← fs‖info; return fs

Figure 4.2: Oread: Oracles for defining the experiment Expread
CRBAC,A.

The adversary can obtain the current state of the file system by calling the oracle

FS with the query “state”. To model the unrestricted append-only access to the file

system, the adversary is allowed to write (append) arbitrary content to the file system

by calling the oracle FS with the query “append(info)”, where info should contain a

file name and the content to be appended to the file.

The experiment does not provide the adversary an oracle for read access to the file

system. Since by corrupting users, the adversary can obtain their local states and receive

user-specific update messages afterwards, which means A can retrieve file contents by

running Read on its own.

4.3.2 Past Confidentiality

In our extended cRBAC system, the enforcement of access control on write access is

supported by employing a versioning file storage where users can append contents only.

The versioning file stroage allows users to have quasi-unrestricted read and write access

to the file system, but it is also accompanied by some subtle security issues, even though

it does not implement any access control mechanism.

34

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

The concept of file versions does not appear in traditional monitor-based access

control. When a user gets access to the file to which it is authorised, only the current

content will be available to it but not the previous contents. The previous contents

here refer to those which are not a part of the current content. In cryptographic access

control, due to the publicly accessible file system, users can easily obtain the previous

file versions (even in an encrypted form) by monitoring the state of the file system.

Therefore, a user who is recently granted the read permission of a file might have the

ability to retrieve those previous contents which are written at the time when it does not

have the permission - this can be considered as a violation of the access control being

enforced.

The security concern mentioned above is not appropriately captured by the existing

game-based security definitions of read security from the previous works [28, 27]. Recall

that in those games that define the secure read access, the adversary is not allowed to get

read access to the challenge files at any point during the game. This restriction imposed

on the adversary leads to the attack mentioned above not being ruled out. In fact, the

attack can be easily carried out in the constructions proposed in [28, 27]. Interestingly,

the recently proposed constructions of cryptographic access control systems have the

similar security concern [2, 43, 57], even though they have been proven to securely

enforce the corresponding access control policies within their individual frameworks.

Here we propose a refinement of the existing definition of read security for cRBAC

system. We name our strengthened security definition past confidentiality. The security

property is formalised via the experiment Exppc
CRBAC,A which proceeds similarly to the

Expread
CRBAC,A, but the adversary here is allowed to corrupt the users who have the read

permission of the challenge files under some conditions. The adversary’s goal is still to

determine a random bit b←$ {0, 1} which is selected at the beginning of the game.

The experiment maintains the symbolic RBAC state of the system State, which is

initalised as (∅, ∅, ∅, ∅, ∅) and gets updated according to A’s request for the execution

of RBAC commands. The experiment keeps the following lists during the execution:

Cr for the corrupt users, Ch for the files of which some contents have been specified as

challenges, L for the users who have read access to the challenged contents and Ud for

the files of which the current contents are specified as challenges.

In the experiment, the adversary can request for executing any RBAC administrative

command, taking over users and requesting an honest user to write to a file with the

content it specifies. The adversary can check the current state of the file system and

35

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

also write (append) some new content to it at any time during the experiment. A can

ask for a challenge by specifying a tuple (u, o,m0,m1), where u is a user that has the

write permission of the file o, m0 and m1 are two messages of the same length. Then the

challenger will carry out Write(stu, o,mb) and provide the current state of the file system

to the adversary as response. A can ask for multiple challenges. When A terminates

with an output b′, it wins the game if b′ = b.

To prevent the adversary from winning the game trivially by corrupting a user who

has read access to the challenge contents, the experiment maintains the following invari-

ants. First, there exists no user in Cr can have read access to any file o in Ud . Second,

no user in the list L can be corrupted. In other words, A is not allowed to grant the

read permission of the challenge file to any corrupt user when the file’s current content

is specified as a challenge. Also, any user who has direct access to the challenge contents

cannot be taken over by the adversary.

Definition 9 (Past Confidentiality). A cRBAC system defined by the scheme CRBAC =

(Init, AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm,

RevokePerm, Read, Write, Update) is said to preserve past confidentiality if for any

probabilistic polynomial-time adversary A, it holds that

Advpc
CRBAC,A(λ) :=

∣∣Pr[Exppc
CRBAC,A(λ)→ true]− 1

2

∣∣
is negligible in λ, where the experiment Exppc

CRBAC,A is defined as follows:

Exppc
CRBAC,A(λ)

b←$ {0, 1}; Cr ,Ch,L,Ud ← ∅

State ← (∅, ∅, ∅, ∅, ∅)

(stM , fs, {stu}u∈U)←$ Init(1λ, R)

b′←$A(1λ : Opc)

return (b′ = b)

The oracles Opc that the adversary has access to are specified in Figure 4.3 and

discussed below.

The oracle Cmd allows the adversary to request for the execution of any valid RBAC

command. When A’s query will lead to an update to Cr , Ch, L or Ud , the lists will get

updated accordingly. When any user in L loses the read permission of any file in Ch, it

will be removed from the list L. When A requests to grant the read permission of the

files in Ud to an honest user, the user will be added to L.

36

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Cmd(Cmd , arg)

if ¬IsValid(Cmd , arg) then

return ⊥
(U ′, O′, P ′,UA′,PA′)← Cmd(State, arg)

foreach (u, o) ∈ Cr ×Ud :

if ∃r ∈ R: (u, r) ∈ UA′

∧ ((o, read), r) ∈ PA′ then

return ⊥
State ← (U ′, O′, P ′,UA′,PA′)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ U \ L :

if ∃o ∈ Ud : HasAccess(u, (o, read)) then

L← L ∪ {u}
foreach u ∈ L:

if @o ∈ Ch : HasAccess(u, (o, read))

∨u /∈ U then

L← L \ {u}
foreach o ∈ Ch:

if o /∈ O then

Ch ← Ch \ {o}; Ud ← Ud \ {o}
foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

return (fs, {msgu}u∈Cr)

CorruptU(u)

if u /∈ U ∨ u ∈ L then return ⊥
Cr ← Cr ∪ {u}; return stu

Write(u, o,m)

If u ∈ Cr then return ⊥
if ¬HasAccess(u, (o, write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

if o ∈ Ch then

Ud ← Ud \ {o}
return fs

Challenge(u, o,m0,m1)

if ¬HasAccess(u, (o, write)) then

return ⊥
if |m0| 6= |m1| then return ⊥
foreach u′ ∈ Cr :

if HasAccess(u′, (o, read)) then

return ⊥
fs ←$ Write(stu, fs, o,mb)

foreach u′ ∈ U :

if HasAccess(u′, (o, read)) then

L← L ∪ {u′}
Ch ← Ch ∪ {o}; Ud ← Ud ∪ {o}
return fs

FS(query)

if query =“state” then return fs

if query =“append(info)” then

fs ← fs‖info; return fs

Figure 4.3: Opc: Oracles for defining the experiment Exppc
CRBAC,A.

When the adversary requests an honest user to write some content to a file of which

the current content is specified as a challenge, the file will be removed from the list Ud ,

meaning from then on, the read permission of the file can be granted to a corrupt user.

When A requests to put a challenge by calling the oracle Challenge, if there exists

some corrupt user that has read access to the specified file, the oracle returns an error.

Otherwise, it carries out the write operation and add the file to the lists Ch and Ud .

4.4 Write Security

The security definition for cRBAC system with respect to write security is first presented

in our published paper [27]. When updating the paper for this thesis, we refine our

security definition by making a small change to the adversary’s output, which yields a

slightly stronger security definition.

After presenting the security definition for write security, we will introduce a new

security definition called local correctness. This security requirement is considered as a

37

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

sort of write security, but it is closely related to correctness.

4.4.1 Secure Write Access

We first introduce our security definition for secure write access. Informally, a cRBAC

system is secure with respect to write accesses if no user can write any “valid” content

to a file without having the write permission. Here “valid” means the entry appended

by an unauthorised user is considered as valid and there is no requirement on wheather

the content can be correctly retrieved or not. We use the term valid due to the use of

open-accessible file system in our framework: every user can write to the file system by

appending new file versions, but only those contents written (appended) by authorised

users should be considered as valid.

We formalise this security requirement via a game between a challenger who plays

the role as the manager of a cRBAC system and an adversary A. The adversary can

ask for executing any RBAC administrative command, impersonating any user by party

corruption and writing some content to a file it specifies on behalf of any honest user.

In addition, A is allowed to query the current state of the file system and also to append

arbitrary content to it.

The experiment maintains the symbolic RBAC state of the system State, which is

initialised as (∅, ∅, ∅, ∅, ∅) and gets updated as the system evolves. It also keeps a list

Cr ∈ U to record the corrupt users and another object-indexed list T to record the

contents written to the files by honest users. In addition, whenever there exists some

corrupt user which has the write permission of o, T [o] will store a special value adv and

the content written by honest user will not be stored in T [o]. This remains invariant in

the experiment.

When the adversary terminates with an output a file o∗, A wins the game if the

content of o∗ read by the manager is different from the record in T [o∗] and T [o∗] 6=

adv, which means A has successfully written some valid content to o∗ while no corrupt

user can get write access to o∗, meaning it manages to write some content to the file

successfully without having the permission.

To prevent trivial wins, from the point when the last write operation to the target

file is carried out by an honest user till when A generates its output, no corrupt user is

allowed to be granted the write permission of the target file. Otherwise, the adversary

can write to the file system on his own with the use of the local states of any corrupt

user who has write access to the target file.

38

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Definition 10 (Secure Write Access). A cRBAC system which is defined by the scheme

CRBAC = (Init, AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser,

GrantPerm, RevokePerm, Read, Write, Update)is secure with respect to write ac-

cess if for any probabilistic polynomial-time adversary A, it holds that

Advwrite
CRBAC,A(λ) := Pr

[
Expwrite

CRBAC,A(λ)→ true
]

is negligible in λ, where Expwrite
CRBAC,A is defined as follows:

Expwrite
CRBAC,A(λ)

Cr ,T ← ∅

State ← (∅, ∅, ∅, ∅, ∅)

(stM , fs, {stu}u∈U)←$ Init(1λ, R)

o∗←$A(1λ : Owrite)

if T [o∗] 6= adv ∧ T [o∗] 6= Read(stM , fs, o
∗) then

return true

else return false

The oracles Owrite that the adversary has access to are specified in Figure 4.4 and

discussed below.

Cmd(Cmd , arg)

if ¬IsValid(Cmd , arg) then

return ⊥
State ← Cmd(State, arg)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

if Cmd = “DelObject” then

Parse arg as o; T [o]← ∅
if Cmd = “DelUser” then

Parse arg as u; Cr ← Cr \ {u}
foreach o ∈ O:

if ∃u′ ∈ Cr : HasAccess(u′, (o, write)) then

T [o]← adv

foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

return (fs, {msgu}u∈Cr)

CorruptU(u)

if u /∈ U then return ⊥
foreach o ∈ O:

if HasAccess(u, (o, write)) then

T [o]← adv

Cr ← Cr ∪ {u}; return stu

Write(u, o,m)

if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o, write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

foreach u′ ∈ Cr :

if HasAccess(u′, (o, write)) then

return fs

T [o]← m; return fs

FS(query)

if query =“state” then

return fs

if query =“append(info)” then

fs ← fs‖info; return fs

Figure 4.4: Owrite: Oracles for defining the experiment Expwrite
CRBAC,A.

39

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

By calling the oracle Cmd, A can make the manager execute any RBAC command

Cmd if its execution with the argument arg is valid. After executing the command

symbolically, the oracle runs the corresponding algorithm Cmd to update the file system

accordingly and to generate update messages for all the users. For every honest user,

the oracle updates its local state by running Update with the dedicated update message.

For those corrupt users, their update messages are sent to adversary. Throughout the

game Cmd ensures that whenever there is any corrupt user has the write permission of

a file o, T [o] = adv.

The adversary can request for taking over any user u ∈ U by calling the oracle

CorruptU. The oracle then adds u to the list Cr and returns the local state stu to A.

For every file o ∈ O such that u has the permission (o, write), the record T [o] will be

assigned with the special value adv. The adversary can request an honest user to write

some content m to a file o by calling the oracle Write. If the specified user has the

permission, the oracle then runs Write with the user’s local state to carry out the write

operation. Only if there exists no user in the list Cr has the write permission of the file

to be written to, T [o] will store the content m. Otherwise, it stores the special value

adv instead.

4.4.2 Local Correctness

The local correctness of a cRBAC system can be considered as a sort of write security

notion. It captures the security concern from the “insiders” with respect to data avail-

ability. Namely, a user who has the write permission of a file should not be able to

invalidate the file’s future version which is written by an authorised user.

In other words, local correctness guarantees that even though there exists some

corrupt user who has write access to a file, as long as it does not touch the file after an

authorised user writes to the system, then any user who has the read permission should

be able to retrieve the current content of that file.

This security requirement is formalised via the following experiment Expl-corr
CRBAC,A

that involves an adversary A. The experiment maintains a list Cr to record the corrupt

users and another object-indexed list T to record the contents written to files by the

honest users. After the initialisation of the cRBAC system, the adversary can request for

the execution of any administrative RBAC command, taking over any user and writing

some content to a file on behalf of any honest user. A can also query for the current

state of the file system and request to append arbitrary content to it.

40

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

The use of the list T here is different from that in the experiment of Definition 10.

When an hoenst user writes some content to a file o, the content will be recorded in

T [o]. If the adversary requests to update the file by appending any entry to it, T [o]

will store a special value adv, which means the file has been touched after the previous

authorised write access.

The experiment terminates when the adversary outputs an object o∗. A wins the

game if the content of o∗ read by the manager is different from the record in T [o∗] while

T [o∗] cannot be the special value adv.

Definition 11 (Local Correctness). A cRBAC system defined by the scheme CRBAC =

(Init, AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm,

RevokePerm, Read, Write, Update) is said to preserve local correctness if for any

probabilistic polynomial-time adversary A, it holds that

Advl-corr
CRBAC,A(λ) := Pr

[
Expl-corr

CRBAC,A(λ)→ true
]

is negligible in λ, where Expl-corr
CRBAC,A is defined as follows:

Expl-corr
CRBAC,A(λ)

T ,Cr ← ∅; State ← (∅, ∅, ∅, ∅, ∅)

(stM , fs, {stu}u∈U)←$ Init(1λ, R)

(u∗, o∗)←$A(1λ : Ol-corr)

if T [o∗] 6= adv ∧ T [o∗] 6= Read(stu∗ , o
∗, fs) then

return true

else return false

The oracles Ol−corr that the adversary has access to are specified in Figure 4.5.

To append some content to the file system, A can call FS with the query “append(info)”,

where info should contain a file name o and the content to be appended to the file. Then

T [o] will store the special value adv.

4.5 Policy Privacy

In cryptographic access control systems, the particular type of privacy we are concerned

with is related to the access polices. In traditional monitor-based access control, the

users only know the resource they have access to and there is no other information is

leaked. But when we use cryptographic techniques in access control, the information

41

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Cmd(Cmd , arg)

if ¬IsValid(Cmd , arg) then

return ⊥
State ← Cmd(State, arg)

(stM , fs, {msgu}u∈U)

←$ Cmd(stM , fs, arg)

foreach u ∈ Cr :

if u /∈ U then

Cr ← Cr \ {u}
if Cmd = “DelObject” then

Parse arg as o; T [o]← ∅
if Cmd = “DelUser” then

Parse arg as u; Cr ← Cr \ {u}
foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

return (fs, {stu}u∈Cr)

CorruptU(u)

if u /∈ U then return ⊥
Cr ← Cr ∪ {u}; return stu

Write(u, o,m)

if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o, write)) then

return ⊥
fs ←$ Write(stu, fs, o,m)

T [o]← m; return fs

FS(query)

if query =“state” then

return fs

if query =“append(info)” then

Parse info as (o, c)

T [o]← adv; fs ← fs‖info

return fs

Figure 4.5: Ol-corr : Oracles for defining the experiment Expl-corr
CRBAC,A.

about access policies might be unintentionally revealed, while such information might

be sensitive.

In this section, we address the problem of keeping the access policy private by de-

signing the formal security models that clearly identify the abilities of an attacker and

specify what are to be considered as privacy breaches in cRBAC systems.

Here we are faced with a choice. One possibility is to provide a general privacy

definition that any adversary would not be able to distinguish among any changes to

the access control privacy. For example, we could require that no adversary can tell when

a user is added to the system, or a permission has been revoked from some role. It is not

difficult to see that such onerous requirements would immediately lead to prohibitively

expensive implementations.

Instead, we pursue another approach where we identify privacy requirements seper-

ately. This approach allows for trade-off between privacy and efficiency such that system

designers can choose to sacrifice the privacy of some component deems less important in

order to gain efficiency. The first distinction we made is to consider the privacy of the

two matrices UA and PA separately. Then for each component we identify two further

refinements. For privacy notions regarding the PA matrix we define two distinct notions:

p2r-privacy, modelling the idea that a cRBAC system hides the assignment that maps a

single permission to the roles that have it. Conversely, r2p-privacy demands that a cR-

BAC system hides the assignment that which permissions a certain role has. Similarly,

42

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

u2r-privacy and r2u-privacy model that a cRBAC system hides the assignment of a user

to its roles and which users have a certain role.

We describe our formalisation of these notions below. For conciseness, we present

one security experiment here and the different notions are obtained as instances.

The experiment involves a challenger who plays the role as the manager of a cRBAC

system and an adversary A. It starts with selecting a random bit b←$ {0, 1}. The

experiment maintains the symbolic RBAC state of the system as it evolves throught

adversary’s requests for the execuiton of RBAC commands. The adversary can corrupt

arbitrary users and can ask for performing a write operation on behalf of an honest user

to some file with the content it specifies. Moreover, the adversary can query for the

current state of the file system and also append information to it. At some point, the

adversary can request for a challenge about privacy of the policy information in UA or

in PA by calling the challenge oracle. The oracle can be called only once. For privacy

related to PA, the adversary can speicify an RBAC command of either GrantPerm or

RevokePerm with a quadruple (p0, p1, r0, r1) ∈ P 2 ×R2. Then the manager will execute

the command on (pb, rb) depending on the random bit b. After that, the adversary is not

allowed to query oracles other than query the state of the file system and must output a

guess of the bit b′. It wins the game if b′ = b. The intuition behind the definition is that

an adversary that observes the execution should not learn which of the two roles and

which of the two permissions are involved in the execution of the command. We obtain

two notions that capture different flavours of policy privacy related to the matrix PA

by requiring p0 = p1, which defines p2r-privacy; and r0 = r1 which defines r2p-privacy.

For instance, p2r-privacy models that a cRBAC system hides which roles have a certain

permission by requiring the adversary not to be able to tell which of the two roles the

permission has been granted/revoked.

We also define a weaker notion of p2r-privacy that we call p2r∗-privacy. This notion

is defined just like p2r-privacy except that the adversary can only request for permission

granting when it queries the challenge oracle. Although very simple, p2r∗-privacy is

relevant for practical purposes. Indeed, in our motivating example of RBAC controlled

access to hospital files, p2r∗-privacy suffices to guarantee that granting access to the

clinical record of a patient to a doctor would not reveal the speciality of the doctor.

Definition 12 (Policy Privacy). A cRBAC system defined by the scheme CRBAC =

(Init, AddUser, DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm,

RevokePerm, Read, Write, Update) preserves x-privacy, where x ∈ {u2r, r2u, p2r, r2p, p2r∗},

43

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

if for any probabilistic polynomial-time adversary A, it holds that

Advx-privacy
CRBAC,A(λ) :=

∣∣Pr[Expx-privacy
CRBAC,A(λ)→ true]− 1

2

∣∣
is negligible in λ, where the experiment Expx-privacy

CRBAC,A is defined as follows:

Expx-privacyCRBAC,A(λ)

b←$ {0, 1}; Cr ← ∅

(stM , fs, {stu}u∈U)←$ Init(1λ, R)

b′ ← A(1λ : Ox)

return (b = b′)

The oracles Ox that the adversary has access to are specified in Figure 4.6. Here

Ou2r and Or2u consist of all oracles except ChllPA. Analogously, Op2r, Or2p and Op2r∗

are the oracles except ChllUA. The different notions are obtained via the restrictions

outlined in the same figure. The adversary is allowed to call the challenge oracle only

once, and after that it is not allowed to make any query to the oracles other than FS.

4.6 A Construction of cRBAC

In this section, we present our instantiation of cRBAC. We first describe how the files

are stored in the file system and how to enforce access control on files via a combination

of key-management and resigning/re-encrypting operations. Then we provide a detailed

description of the algorithms of which our cRBAC scheme consists.

4.6.1 Overview of the Construction

The main ingredient of our cRBAC scheme is a PE-SK scheme. Specifically, we require

that the PE-SK scheme is based on the Predicate Encryption for Non-Disjoint Sets

(PE-NDS) scheme introduced in [28]. It is used as follows. To each role in the system

we associate two attributes: attribute arr to which we refer as the read attribute of the

role r and arw to which we refer as the write attribute of r. We use former to control

reading rights associated to the role and latter to control writing rights. To all the users

who have the role r, we provide them the decryption keys associated to arr and arw

respectively. More precisely, each user in the system will be provided two keys and it

will only hold two keys: one corresponds to the read attribtues of all the roles it belongs

and the other corresponds to the write attributes of the same roles.

44

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Cmd(Cmd , arg)

if challd = 1 then return ⊥
if ¬IsValid(Cmd , arg) then

return ⊥
State ← Cmd(State, arg)

(stM , fs, {msgu}u∈U)←$ Cmd(stM , fs, arg)

foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

return (fs, {msgu}u∈Cr)

CorruptU(u)

if challd = 1 then return ⊥
if u /∈ U then return ⊥
Cr ← Cr ∪ {u}; return stu

ChllUA(x)(Cmd , (u0, u1, r0, r1))

if challd = 1 then return ⊥
if Cmd /∈{AssignUser ,DeassignUser}

∨¬IsValid(Cmd , (u0, r0))

∨¬IsValid(Cmd , (u1, r1)) then

return ⊥
if (x = u2r ∧ u0 6= u1)

∨ (x = r2u ∧ r0 6= r1) then

return ⊥
if u0 ∈ Cr ∨ u1 ∈ Cr then return ⊥
(stM , fs, {msgu}u∈U)

←$ Cmd(stM , fs, (ub, rb))

foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

challd← 1; return (fs, {msgu}u∈Cr)

Write(u, o,m)

if challd = 1 then return ⊥
if u ∈ Cr then return ⊥
if ¬HasAccess(u, (o, write)) then

return ⊥
fs ←$ Write(stu, fs, o,m); return fs

FS(query)

if query =“state” then return fs

if query =“append(info)” then

fs ← fs‖info; return fs

ChllPA(x)(Cmd , (p0, p1, r0, r1))

if challd = 1 then return ⊥
if Cmd /∈{GrantPerm,RevokePerm}

∨¬IsValid(Cmd , (p0, r0))

∨¬IsValid(Cmd , (p1, r1)) then

return ⊥
if (x = p2r ∧ p0 6= p1)

∨ (x = r2p ∧ r0 6= r1)

∨ (x = p2r∗ ∧ p0 6= p1

∧ Cmd 6= GrantPerm) then

return ⊥
foreach u ∈ Cr:

if (u, r0) ∈ UA ∨ (u, r1) ∈ UA then

return ⊥
(stM , fs, {msgu}u∈U)

←$ Cmd(stM , fs, (pb, rb))

foreach u ∈ U \ Cr :

stu ← Update(stu,msgu)

challd← 1; return (fs, {msgu}u∈Cr)

Figure 4.6: Ox: Oracles for defining the experiment Expx-privacy
CRBAC,A.

To control read access to a file o, we simply encrypt the file content under a public

key that corredponds to all the read attributes of roles that have reading rights to o

(computing such keys is one of the functionalities provided by PE-SK schemes). If a

user is assigned with a role that has the reading right of o, it can retrieve the file content

with the use of its decryption key for read access. To control write access, we use a

standard digital signature scheme. Since all users in the system can append to the

storage, the challenge is to ensure that only those contents appended by the users who

have the writing right can be recognised as valid. We proceed as follows. To each file

o, we associate it with a signing/verification key pair sko, vko. Users can update o by

adding the modified variant to the storage, but only those updates that are signed with

sko are valid, which can be verified by using vko. To ensure only the authorised users

can obtain sko, we encrypt the signing key under all the attributes of the roles that

45

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

have write access to o and require that when writing to a file, a user needs to decrypt

and retrieve the signing key first.

In more detail, we assume an append-only file system is (logically) organised as a

matrix. Each row corresponding to a file and each column to a version of the file. The

structure of a row in the file system is specified in Figure 4.7.

Figure 4.7: The structure of a row in the file system.

In the position i = 0 is the header of the file o to which the row corresponds. The

information here is publicly readable but can be written only by the manager. It consists

of three fields which, for a file o, we identify by fs[o][0].pk , fs[o][0].vk and fs[o][0].sk .

Here fs[o][0].pk is the encryption key that corresponds to the read attributes of the roles

that can read o, fs[o][0].vk is the verification key associates to o and fs[o][0].sk is the

encryption of the signing key associates to o.

Users can append new versions to a file o by appending them to the row corresponding

to o. Thus, each position i > 0 contains the i-th version of the file which we identify by

(fs[o][i].ctx , fs[o][i].sig). A valid entry on the row of the file o is of the form (ctx , sig),

where ctx is the encryption of the file content and sig is a signature on ctx . In a normal

execution, to add a new version to o an authorised user first needs to encrypt the file

content under the public key fs[o][0].pk . Then it retrieves the signing key from fs[o][0].sk

and signs the encrypted content with the obtained signing key. To prevent the roll-back

attack where a malicious user simply copies some old entries and appends them to the

file, the signature is on the ciphertext together with the index that corresponds to the

position of the row to which the new entry is appending. For a more powerful attack we

called content-copying attack (will be explained in the next section), the content to be

written to file needs to be appended with the index of the next available position and

then gets encrypted under the public key associated to the file. The user then posts the

ciphertext-signature pair to position i and this becomes the most recent version of the

file.

Whenever an authorised user wishes to read a file o, she first needs to fetches the

latest version of the file (fs[o][i].ctx , fs[o][i].sig) for some i > 0, and determines whether

fs[o][i].sig is a valid signature and whether the signed index is equal to i. If not, she

46

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

fetches a previous version until a valid entry is encountered. When a valid entry is

located at the position i of the file, the user decrypts fs[o][i].ctx using her decryption

key for read access and obtains some file content m which is concatenated with an index

i′. In the case that i′ = i, the content m is considered as the current content of o.

To add a new version to o, an authorised user first encrypts the new content under

fs[o][0].pk, obtains sko by decrypting fs[o][0].sk and uses it to sign the ciphertext. To

prevent roll-back attacks where a malicious user simply copies some old entry, the signa-

ture is on the ciphertext together with the index of the entry. The user then appends the

ciphertext-signature pair to the row corresponding to file o on the next empty position,

and this becomes the most recent version of the file.

Whenever a role loses writing privileges to o, a new signature key pair for o is freshly

generated. The new verification key is made public and the signing key is encrypted

under the roles that still have the right to write. The latest valid version of the file

is signed by the manager, so that the signature is valid under the new verification key

associated to o.

Since multiple (encrypted) versions of the file are present in the system, the manage-

ment of keys needs to be carefully crafted to avoid pitfalls where newly assigned rights

permit access to old content. For example, whenever a read access is revoked from role

r, the manager (1) assigns a fresh read attribute ar to role r, (2) recomputes all the

public keys for files to which r has still read access (to account for the changed attribute

for r), (3) re-encrypts all latest (valid) ciphertexts under these public keys, and (4) sends

the decryption keys associated to ar to all users assigned to r.

Whenever a user is deassigned from a role r, the attribute for r is also changed and

all the steps (1)–(4) are executed as above. In fact, when revoking a read permission

p from some set of users, the local states of those users must be updated (will be

demonstrated in Chapter 6). In addition, all signature key pairs for files to which r has

write permission are also renewed; in particular, the new signing key is encrypted, and

the concerned files will be re-signed to maintain validity under the new verification key.

Thus if for example u is deassigned from r, she will no longer be able to decrypt the

encrypted signing key and also the file contents using the old attributes associated to r.

4.6.2 CRBAC[PE ,Σ] in details

Our cRBAC implementation CRBAC[PE ,Σ] starts with the initialisation algorithm Init,

which takes as input a security parameter and a set of roles. It first runs Setup, the setup

47

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

algorithm of PE , with the security parameter and a sufficiently large attribute universe

A = {1, . . . , nmax}. It then initializes two role tables RT rd and RT wr with an increasing

counter. Both tables are indexed by roles and they associate each role with two separate

attributes (for read and write access respectively). Next, it initialises the file system fs,

the symbolic RBAC state State and two object-indexed list: SK for recording signing

keys of objects in the file system and TT rd for recording read attributes which helps the

manager retrieve the contents of the files to which no user can get read access. Finally,

it outputs the initial states of the manger stM and the users stu.

Algorithm Init(1λ, R)

1 : (mpk ,mdk)←$ Setup(1λ, A)

2 : fs,RT rd,RT wr,TT rd,SK ← ∅; ctr ← 1

3 : foreach r ∈ R :

4 : RT wr[r]← ctr ; ctr ← ctr + 1

5 : foreach r ∈ R :

6 : RT wr[r]← ctr ; ctr ← ctr + 1

7 : State ← (∅, ∅, ∅, ∅, ∅)
8 : stM ← (mdk ,RT rd,RT wr,TT rd,SK , ctr ,State)

9 : fs[0][0]← mpk ; {stu}u∈U ← ∅
10 : return (stM , fs, {stu}u∈U)

Before we specify the algorithms implementing the RBAC commands, for conve-

nience, we define the following auxiliary algorithms.

GetLength on input the state of the file system fs and a file o∗ outputs the index of

the last entry in fs[o∗]. EraseRest on input the state of the file system fs, a file o∗ and

an index idx erases all the entries at positions in fs[o∗] greater than or equal to idx.

Algorithm GetLength(fs, o∗)

1 : if o∗ /∈ O then

2 : return 0

3 : for i← 1 to ∞ :

4 : if fs[o∗][i] = ∅ then

5 : return i− 1

Algorithm EraseRest(fs, o∗, idx)

1 : if o∗ /∈ O then

2 : return fs

3 : for i← idx to GetLength(fs, o∗) :

4 : fs[o∗][i]← ∅
5 : return fs

FindValidEntry on input of the state of the file system fs and a file o∗ outputs the

index i of the last entry that contains a valid signature. If there is no valid entry in o∗,

FindValidEntry returns 0.

48

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm FindValidEntry(fs, o∗)

1 : if o∗ /∈ O then

2 : return 0

3 : for i← GetLength(fs, o∗) to 1 :

4 : m← fs[o∗][i].ctx ‖ i
5 : if Verify(fs[o∗][0].vk ,m, fs[o∗][i].sig) = 1 then

6 : return i

7 : return 0

The following auxiliary algorithms are run by the manager only.

ReEnc on input the manager’s state stM , the state of the file system fs and a file o∗

re-encrypts the content of its last valid entry according to the current encryption key of

o∗ and signs the new ciphertext using the signing key of o∗, which is stored in SK [o∗].

Then all the entries with the index greater than the last valid entry’s will be erased.

The decryption of the content in the last valid entry of o∗ is carried out with the use

of a freshly generated decryption key by running DKGen on the predicate associates to

the attributes of the roles that have the read permission of o∗. Here it is possible that

there exist no such roles, this can be checked by looking up the record in TT rd[o∗]: in

the case that TT rd[o∗] 6= ∅, it means the current content of o∗ is written when there is

no role has the read permission of o∗. Then a decryption key is generated with respect

to the attribute stored in TT rd[o∗]. After decryption, the validity of the file content will

be checked by comparing the obtained index i′ with the index of the last valid entry of

o∗, and comparing the obtained file name o′ with the current file name o∗. If the file

content is valid, the file content will be re-encryted and also a new signature will be

generated with it.

49

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm ReEnc(stM , fs, o
∗)

1 : if o∗ /∈ O then

2 : return fs

3 : i← FindValidEntry(fs, o∗)

4 : if i > 0 then

5 : if TT rd[o∗] 6= ∅ then

6 : x← TT rd[o∗]

7 : else

8 : x← {RT rd[r] | ((o∗, read), r) ∈ PA}
9 : dk ←$ DKGen(mdk , fx)

10 : m← Dec(dk , fs[o∗][i].ctx)

11 : if m 6= ⊥ then

12 : Parse m as m′ ‖ i′ ‖ o′

13 : if i′ = i ∧ o′ = o∗ then

14 : fs[o∗][i].ctx ←$ Enc(fs[o∗][0].pk ,m)

15 : fs[o∗][i].sig ←$ Sign(SK [o∗], fs[o∗][i].ctx ‖ i)
16 : fs ← EraseRest(fs, o∗, i+ 1)

17 : return fs

ReSign on input the manager’s state stM , the state of the file system fs and a file

o∗ re-signs the last valid content of o∗ using the signing key of o∗. Then all the entries

with the index greater than the last valid entry of o∗’s will be erased.

Algorithm ReSign(stM , fs, o
∗)

1 : if o∗ /∈ O then

2 : return fs

3 : i← FindValidEntry(fs, o∗)

4 : if i > 0 then

5 : m← fs[o∗][i].ctx ‖ i
6 : fs[o∗][i].sig ←$ Sign(SK [o∗],m)

7 : fs ← EraseRest(fs, o∗, i+ 1)

8 : return fs

RoleUpdate takes as input the manager’s state stM , the state of the file system fs

and a role r∗ then assigns r∗ with a new read attribute which is recorded in RT rd.

After that, the public keys and the content of the files for which r∗ has read access are

updated to the new attribute. The users of role r∗ are issued new decryption keys for

read access.

50

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm RoleUpdate(stM , fs, r
∗)

1 : if r∗ /∈ R then

2 : return (stM , fs, {∅}u∈U)

3 : {rdku}u∈U ← ∅
4 : RT rd[r∗]← ctr ; ctr ← ctr + 1

5 : foreach ((o, read), r∗) ∈ PA :

6 : y ← {RT rd[r] | ((o, read), r) ∈ PA}
7 : // y must be a non-empty here

8 : fs[o][0].pk ←$ PKGen(mpk , y)

9 : fs ←$ ReEnc(stM , fs, o)

10 : foreach (u, r∗) ∈ UA :

11 : x← {RT rd[r] | (u, r) ∈ UA}
12 : rdku←$ DKGen(mdk , fx)

13 : return (stM , fs, {(rdku, ∅)}u∈U)

Now, we describe the algorithms implementing the RBAC commands. The algo-

rithms that implement the RBAC commands are of the form that takes as input the

manager’s state stM , the state of the file system fs and some argument specified by the

RBAC command. It outputs the udpated state of the manager stM , the file system fs

and a set of update messages {msgu}u∈U for all users.

AddUser simply adds a new user u∗ to U . The algorithm AddObject adds a new

object o∗ to O, and adds the related permissions to P . It generates a signature key pair

(sko∗ , vko∗) by running KeyGen. Then sko∗ is stored in SK [o∗] while vko∗ is stored in

o∗’s header. It also runs PKGen with a distinct attribute to generate a public key for

o∗. Such an attribute is used only once for providing a public key to allow legal users

can write to the object, even if there is no user can get read access to it. In addition,

the attribute will not be recorded in either RT rd or RT wr but in TT rd, which means

the manager will never issue a user with an decryption key that contains this attribute

but he can still decrypt any ciphertext encrypted under this public key by generating

a decryption key for the read attribute recorded TT rd. At this point, the encrypted

signing key field in o∗’s header remains empty.

51

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm AddUser(stM , fs, u
∗)

1 : if u /∈ U then

2 : U ← U ∪ {u∗}
3 : return (stM , fs, {∅}u∈U)

Algorithm AddObject(stM , fs, o
∗)

1 : if o /∈ O then

2 : O ← O ∪ {o∗}
3 : P ← P ∪ {(o∗, read), (o∗, write)}
4 : y ← {ctr}; ctr ← ctr + 1

5 : fs[o∗][0].pk←$ PKGen(mpk , y)

6 : TT rd[o∗]← y

7 : (sko∗ , vko∗)←$ KeyGen(1λ)

8 : fs[o∗][0].vk ← vko∗ ; SK [o∗]← sko∗

9 : return (stM , fs, {∅}u∈U)

The algorithm AssignUser adds a new pair (u∗, r∗) to UA. The role r∗ will be assigned

with a new read attribute by running the algorithm RoleUpdate. Then the user u∗ is

given two decryption keys rdk and wdk which are for the sets of attributes corresponding

to u∗’s current roles (via RT rd and RT wr individually), while the other users who are

assigned with r∗ will be provided a new decryption key for read access.

Algorithm AssignUser(stM , fs, u
∗, r∗)

1 : if u∗ /∈ U ∨ r∗ /∈ R ∨ (u∗, r∗) ∈ UA then

2 : return (stM , fs, {∅}u∈U)

3 : UA← UA ∪ {(u∗, r∗)}
4 : {msgu}u∈U ← ∅
5 : (stM , fs, {msgu}u∈U)←$ RoleUpdate(stM , fs, r

∗)

6 : x← {RT wr[r] | (u∗, r) ∈ UA}
7 : wdk ←$ DKGen(mdk, fx)

8 : msgu∗ .wdk ← wdk

9 : return (stM , fs, {msgu}u∈U)

GrantPerm adds a pair (p∗, r∗) to PA. If p∗ is a read permission of some o∗, it first

replaces the encryption key for o∗ by a new one for the set of attributes corresponding

to the roles (now including r∗) that have read access to o∗. The content of o∗ is then

re-encrypted under this new encryption key. Now there exists at least a role r∗ can

have read access to o∗, then the attribute stored in TT rd[o∗] can be removed (recall that

when TT rd[o∗] 6= ∅ it means no role can get read access to o∗).

If p∗ is for write access, the signing key sko∗ is encrypted with a set of attributes

of the roles that have the permission p∗ currently. Then the encrypted signing key is

stored in o∗’s header to replace the previous one.

52

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm GrantPerm(stM , fs, p
∗, r∗)

1 : if p∗ /∈ P ∨ r∗ /∈ R ∨ (p∗, r∗) ∈ PA then

2 : return (stM , fs, {∅}u∈U)

3 : PA← PA ∪ {(p∗, r∗)}
4 : Parse p∗ as (o∗,mode)

5 : if mode = read then

6 : y ← {RT rd[r] | ((o∗, read), r) ∈ PA}
7 : fs[o∗][0].pk ←$ PKGen(mpk , y)

8 : fs ←$ ReEnc(stM , fs, o
∗)

9 : TT rd[o∗]← ∅
10 : if mode = write then

11 : y ← {RT wr[r] | ((o∗, write), r) ∈ PA}
12 : // set of attributes for roles with write access to o∗

13 : pk ←$ PKGen(mpk , y)

14 : fs[o∗][0].sk ←$ Enc(pk ,SK [o∗])

15 : return (stM , fs, {∅}u∈U)

DeassignUser removes (r∗, u∗) from UA and assigns a new read attribute to r∗ using

RoleUpdate. This then updates the file system accordingly and issues new decryption

keys to the users having the role r∗. It also runs KeyGen to generate new signature key

pairs for all the files for which r∗ has write access. The new signing keys are encrypted

under the attributes of the roles that have write access to them and are stored in the

corresponding files’ headers.

Algorithm DeassignUser(stM , fs, u
∗, r∗)

1 : if (u∗, r∗) /∈ UA then

2 : return (stM , fs, {∅}u∈U)

3 : UA← UA \ {(u∗, r∗)}
4 : {msgu}u∈U ← ∅
5 : (stM , fs, {msgu}u∈U)←$ RoleUpdate(stM , fs, r

∗)}
6 : foreach ((o, write), r∗) ∈ PA :

7 : (sko, vko)←$ KeyGen(1λ)

8 : SK [o]← sko; fs ←$ ReSign(stM , fs, o)

9 : fs[o][0].vk ← vko

10 : y ← {RT wr[r] | ((o, write), r) ∈ PA}
11 : pk ←$ PKGen(mpk , y)

12 : fs[o][0].sk ←$ Enc(pk , sko)

13 : return (stM , fs, {msgu}u∈U)

To delete a user u∗ from U , DelUser first deassigns u∗ from any of his roles and then

updates U .

53

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm DelUser(stM , fs, u
∗)

1 : if u∗ /∈ U then

2 : return (stM , fs, {∅}u∈U)

3 : foreach (u∗, r) ∈ UA :

4 : (stM , fs, {msgu}u∈U)←$ DeassignUser(stM , fs, u
∗, r)

5 : U ← U \ {u∗}
6 : return (stM , fs, {msgu}u∈U)

RevokePerm removes (p∗, r∗) from PA. If p∗ is a read permission for some file o∗,

the encryption key of o∗ is renewed and current content of o∗ is re-encrypted by using

ReEnc. If there is no role has the read access to o∗, a new read attribute will be assigned

for r∗ and is stored in TT rd[o∗]. Then the read attribute associated to r∗ is updated by

running RoleUpdate (this is done so that users being assigned r∗ later cannot decrypt

ciphertexts of o∗ from before the revocation).

If p∗ is a write permission of some file o∗, a new signature key pair is generated for

o∗ and the last valid entry of o∗ is re-signed with the new signing key. Then the new

signing key is encrypted with the attribute set of the roles that write permission for o∗

and stored in o∗’s header. When there is no user has the permission p∗, the manager

will be the only one who can get access to the signing key. But the other users can still

verify the validity of the entries of o∗ by using the verification key.

Algorithm RevokePerm(stM , fs, p
∗, r∗)

1 : if (p∗, r∗) /∈ PA then

2 : return (stM , fs, {∅}u∈U)

3 : PA← PA \ {(p∗, r∗)}
4 : {msgu}u∈U ← ∅
5 : Parse p∗ as (o∗,mode)

6 : if mode = read then

7 : y ← {RT rd[r] | ((o∗, read), r) ∈ PA}
8 : if y = ∅ then

9 : y ← {ctr}; ctr ← ctr + 1

10 : fs[o∗][0].pk ←$ PKGen(mpk , y)

11 : fs ← ReEnc(stM , fs, o
∗)

12 : (stM , fs, {msgu}u∈U)← RoleUpdate(stM , fs, r
∗)

13 : if mode = write then

14 : (sko∗ , vko∗)←$ KeyGen(1λ)

15 : SK [o∗]← sko∗ ; fs ←$ ReSign(stM , fs, o
∗)

16 : fs[o∗][0].vk ← vko∗

17 : y ← {RT wr[r] | ((o∗, write), r) ∈ PA}
18 : pk ←$ PKGen(mpk , y)

19 : fs[o∗][0].sk ←$ Enc(pk , sko∗)

20 : return (stM , fs, {msgu}u∈U)

54

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

To delete an object o∗, the manager revokes every permission granted to o∗ and

updates O and P accordingly. Then all the entries of o∗ is erased. The records in

TT rd[o∗] and SK [o∗] will also be deleted.

Algorithm DelObject(stM , fs, o
∗)

1 : if o∗ /∈ O then

2 : return (stM , fs, {∅}u∈U)

3 : {msgu}u∈U ← ∅
4 : foreach (p, r) ∈ PA :

5 : if p ∈ {((o∗, read), (o∗, write)} then

6 : (stM , fs, {msgu}u∈U)← RevokePerm(stM , fs, p, r)

7 : O ← O \ {o∗}
8 : P ← P \ {(o∗, read), (o∗, write)}
9 : TT rd[o∗],SK [o∗]← ∅

10 : fs ← EraseRest(fs, o∗, 0)

11 : return (stM , fs, {msgu}u∈U)

Finally, we define the algorithms run by users: Update, Read and Write. The algo-

rithm Update allows the users to get their local states updated. The users can get read

and write access to files by running Read and Write.

An update message contains two decryption keys: rdk for read access and wdk for

write access. When a user receives such a message from the manager, it runs algorithm

Update to update its local state with the new keys.

Algorithm Update(stu,msgu)

1 : Parse msgu as (rdk ,wdk)

2 : if rdk 6= ∅ then

3 : stu.rdk ← rdk

4 : if wdk 6= ∅ then

5 : stu.wdk ← wdk

6 : return stu

To write some content m to a file, a user first encrypts the concatenation of m with

the index of the next available position i under the encryption key associated to the

file. Next, she uses wdk , her decryption key for write access, to obtain the signing key

encrypted in the file’s header. She then signs the ciphertext along with the current index

of the entry and the file name then appends a new entry containing the ciphertext and

the signature to the file.

55

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm Write(st , fs, o∗,m)

1 : if o∗ /∈ O then

2 : return fs

3 : Parse st as (rdk ,wdk)

4 : sko∗ ← Dec(wdk , fs[o∗][0].sk)

5 : i← GetLength(fs, o∗)

6 : ctx ←$ Enc(fs[o∗][0].pk ,m ‖ i+ 1 ‖ o∗)
7 : sig ←$ Sign(sko∗ , ctx ‖ i+ 1)

8 : fs[o∗][i+ 1].ctx ← ctx

9 : fs[o∗][i+ 1].sig ← sig

10 : return fs

To read a file, a user first needs to locate the last valid entry of the file by verifying

the signatures of the entires starting from the last entry. Let i be the index of the first

entry found to contain a valid signature. If i = 0, meaning the file has no valid entry,

Read outputs ∅; otherwise, the user uses her decryption key for read access, to decrypt

the ciphertext of the last valid entry to obtain some file content m′ with an index i′

and a file name o′. If i′ = i and o′ = o∗, meaning m′ is valid then Read outputs m′;

otherwise, the algorithm outputs ⊥.

Algorithm Read(st , fs, o∗)

1 : if o∗ /∈ O then

2 : return ⊥
3 : Parse st as (rdk ,wdk)

4 : i← FindValidEntry(fs, o∗)

5 : if i > 0 then

6 : m← Dec(rdk , fs[o∗][i].ctx)

7 : if m 6= ⊥ then

8 : Parse m as m′ ‖ i′ ‖ o′

9 : if i′ = i ∧ o′ = o∗ then

10 : return m′

11 : return ⊥
12 : return ∅

4.6.3 Cost analysis of CRBAC[PE ,Σ]

We remark that the main contribution of this chapter is the rigorous security definitions

for cRBAC systems with respect to secure access and policy privacy. The construction

we propose are not efficient and should be regarded as a proof of concept showing that

secure policy enforcement and also meaningful levels of policy privacy can be achieved.

Nevertheless, we list the costs of the administrative RBAC operations and read/write

operation in Figure 4.8. Since the computation overhead of each operation depends on

56

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

the instantiation of the PE-SK scheme and also the digital signature scheme employed in

our construction, by a slight abuse of notation we represent the computations in terms

of the algorithms and even the operations themselves.

For simplicity, we also define the following notations:

• U (r): the set of users which have been assigned with the role r.

• R(u): the set of roles to which the user u has been assigned.

• R(p): the set of roles to which the permission p has been granted.

• Or (r): the set of objects of which the read permissions have been granted to the

role r.

• Ow (r): the set of objects of which the write permissions have been granted to the

role r.

• V (o): the number of the invalid file versions appended to the file o after its last

valid version.

Algorithm Computation Overhead

AddUser(u) None

AddObject(o) PKGen + KeyGen

AssignUser(u, r)
|Or (r)| · (PKGen + Dec + Enc + Sign) +

∑
o∈Or (r)V (o) ·Verify+

(|Or (r)|+ U (r) + 1) ·DKGen
GrantPerm((o, read), r) V (o) · Verify + DKGen + PKGen + Dec + Enc + Sign

GrantPerm((o, write), r) PKGen + Enc

DeassignUser(u, r)
(|Or (r)|+ |Ow (r)|) · (PKGen + Enc + Sign) + (|Or (r)|+ U (r))·
DKGen + |Ow (r)| · KeyGen + (

∑
o∈Or (r)V (o) + |Ow (r)|)·

Verify + |Or (r)| · Dec
DelUser(u)

∑
r∈R(u)DeassignUser(u, r)

RevokePerm((o, read), r)
(|Or (r)|+1)·(PKGen+Dec+Enc+Sign)+ |Or (r)+U (r)+1|·
DKGen+(V (o)+

∑
o′∈Or (r)V (o′))·Verify

RevokePerm((o, write), r) KeyGen + V (o) · Verify + Sign + PKGen + Enc

DelObject(o)
∑

r∈R((o,·))RevokePerm((o, ·), r)

Figure 4.8: Cost analysis for the algorithms of CRBAC[PE ,Σ].

4.7 Security of CRBAC[PE ,Σ]

Having proposed formal security definitions for cRBAC systems and provided the con-

struction CRBAC[PE ,Σ], we now turn to examine security properties of our contruction.

57

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Past Confidentiality =⇒ Read Security. We start with the following theorem,

which shows that secure read access is implied by past confidentiality. This implication

is not surprising at first glance, as the adversary in the game that defines past con-

fidentiality is obviously more powerful due to its ability of granting read acess of the

challenged files to corrupt users.

Theorem 1. Past confidentiality is strictly stronger than secure read access.

Proof sketch. We first show that any cRBAC system which preserves past confiden-

tiality is secure with respect to read access. This part of proof is straightforward, since

the reduction from past confidentiality to read security is obvious. Given any adversary

A against read security of a cRBAC system, an adversary B for past confidentiality can

be easily constructed. B runs a local copy of A and then simulates to it the read security

game with the use of its oracles. During the simulation, B does not maintain the global

state of the cRBAC system, but it keeps the lists defined in the experiment for read

security. B starts the simulation by providing A the initial state of the file system it

received from its challenger. Next, B simply forwards A’s query to its oracles and then

answers A with the response obtained from its oracles. If A’s query will violate the

restrictions of the read security game, B just replies with an error and ignores the query.

When A outputs a guess of the random bit, B outputs the same guess.

Clearly, B just provides a perfect simulation. The global states in B’s game and

the simulated game are identical. All A’s oracle queries will not lead to a violation to

the restricitons of the past confidentiality game, since any query from A which does

not violate the restrictions of the read security game will not violate any of the past

confidentiality game’s. In addition, the simulation directly depends on the random bit

chosen in B’s game. Thus, B wins the game with the same probability as A wins the

simluated game. Thus, any cRBAC system is not secure with respect to read access

does not preserves past confidentiality.

In addition, the construction of cRBAC system proposed in [27] has been proven to

be secure with respect to read access. But clearly it does not preserve past confidentiality

since granting the read permission of any file to a user will allow the user get access to

those previous contents which are encrypted under the same public key. Therefore, we

can conclude that past confidentiality is strictly stronger than secure read access.

We next show that our construction preserves correctness, local correctness, past

confidentiality, write security and p2r∗-privacy. For brevity, we only provide the proof

ideas for the security statements about correctness and local correctness.

58

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Theorem 2. If both the predicate encryption scheme PE and the signature scheme Σ

are correct, CRBAC[PE ,Σ] is correct (Definition 7).

Proof idea. Recall that in the security game that defines correctness, the execution of

the cRBAC system is only considered in a setting that taking over users is not permitted

and users can update the file system by honestly running the write algorithm. In such

case, correctness of the system solely depends on if the system design can provide the

appropriate key management and resigning/re-encrypting operations. Meanwhile, from

the specification of CRBAC[PE ,Σ], we can observe that the design clearly satisfies the

above requirement. Then in such a normal execution, if at some point there exists a user

who cannot correctly retrieve the content of a file of which she has the read permission,

there are only two possible reasons: signature verification failed and/or decryption failed.

The former will lead to the user fetching some entry other than the last valid one or even

cannot find any valid entry; while the latter will prevent the user from retrieving the

signing key or the file content. Thus, if there exists any user who can break correctness

of CRBAC[PE ,Σ], it either breaks correctness of either PE or Σ.

Theorem 3. If both the predicate encryption scheme PE and the signature scheme Σ

are correct, CRBAC[PE ,Σ] preserves local correctness.

Proof idea. In the security game that defines local correctness, it is required that

from the time when the last write operation to a file carried out by an honest user untill

the adversary terminates with that file as its output, appending any content to that file

is not allowed. Before that, the adversary is allowed to corrupt any user who has the

write permission of that file and to append arbitrary content to it.

We need to show that in CRBAC[PE ,Σ], no matter what content the adversary writes

to a file, after that, any content written by an authorised user to the file will be correctly

retrieved by any user who has the read permission.

From the specification of the write algorithm Write, we can observe that the algorithm

will come up with the new entry to be appended to the file to be written to. The content

of the new entry is completely independent from any of the previous entries and it only

depends on the index of the file’s last entry and the metadata stored in the header of that

file. Since the file system is assumed to preserve correct ordering of the file indices and

the metadata can only be updated by the manager, these two factors will not be affected

by corrupt users’ behaviours to the file system. In such case, the other possibility is

either the predicate encryption scheme or the signature scheme is not correct and the

59

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

manager therefore cannot correctly retrieve the content written to the target file. Then

we can conclude that CRBAC[PE ,Σ] preserves local correctness under the assumption

that both PE and Σ are correct.

Past Confidentiality. One might expect, if the underlying encryption scheme is se-

cure while the key-management and data encryption/re-encryption operations are per-

formed appropriately according to the policy updates, the cRBAC system should pre-

serve past confidentiality. However, this obvious intuition is not always true. Some

care is needed to be taken since the system enforces access control on write access with

the use of the append-only file system. The unrestricted write access to the files by

appending new versions may concern read security of a cRBAC system. Consider the

following “content-copying” attack. A malicious user may simply copy the encrypted

content from some previous entry of a file (or even the entry from some other file), then

come up with a new valid entry that contains the encrypted content and appends it to

another file of which it has the write permission. Later, after being granted the read

permission, the user might be able to retrieve the content by just reading it. This attack

can be a potential threat to the cryptographic access control systems where the read

access and write access are implemented based on separate mechanisms.

In fact, such an attack is thwarted in our implementation by requring the file content

to be encrypted with the current index of the entry and also the file name. But this is

not reflected in our theorem and its proof below.

The following theorem states that our cRBAC implementation preserves past confi-

dentiality, under the assumption that all write operations are carried out by the manager,

namely the manager will come up with the users’ local states and write to the file system

on behalf of them. Recall that the earlier result from Ferrara et al,’s work [28] showed

read security of their cRBAC implementation solely relies on security of the underly-

ing encryption scheme. In their system model, write opeartions are performed by the

manager. Technically, this means that the simulator always knows the contents written

to the file system when constructing the reduction. But our system model allows users

append file entries on their own and the simulator is not always able to retrieve those

contents. An alternative solution is to allow the manager to carry out the computation

over the encrypted content (e.g. to have a construction that jointly uses a public key

homomorphic encryption scheme with the predicate encryption scheme). However, it

does not mean the new construction is more secure than the current one while it clearly

leads to a more complicated result. Here, our theorem serves as a separation from the

60

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

previous result under the similar assumption.

Theorem 4. If the PE-SK scheme PE has message-hiding ciphertexts, then CRBAC[PE ,Σ]

preserves past confidentiality in the setting that the manager carries out all write oper-

ations on behalf on the users.

Proof. We prove the theorem by showing a reduction from past confidentiality of

CRBAC[PE ,Σ] to message-hiding of PE under the assumption that all write operations

can only be performed by the manager on behalf of the users, namely no user can append

new entries to the file system on its own. Given any adversary A for Exppc
CRBAC[PE,Σ],

an adversary B for Expmsg-hide
PE can be constructed with the use of A as a subroutine

such that:

Advmsg-hide
PE,B (λ) = Advpc

CRBAC[PE,Σ],A(λ).

Recall that in Expmsg-hide
PE , the adversary is provided the master public key mpk by

its challenger and has access to the following oracles: Oracle PKGen, on input a set of

attributes y, returns a public key pky for y. pky will be stored in a list PK and y will

be stored in another list I at the same position. Oracle DKGen, on input a predicate

f , return a decryption key dkf for f and records dkf in a list F . Finally, oracle LR, on

input an index k and a pair of mesages (m0,m1) returns the encryption of mb under the

public PK [k] and adds I[k] to a list Ch, here b is a random bit chosen by the challenger.

The oracles will return an error when any query from the adversary will lead to f(I) = 1

holds for some f ∈ F and I ∈ Ch. Notice that our construction is based on predicate

encryption for non-disjoint sets (PE-NDS) where the predicate is associated to a set of

attributes x ⊆ A and for any set of attributes y ⊆ A : fx(y) = 1⇔ x ∩ y 6= ∅. Let X be

the union of the attributes associated to all the predicates queried to DKGen and let

Y be the union of all attributes under which the the challenges were encrypted. Then

thoughtout the game, oracle queries will be answered only if the the following invariant

is maintained: X ∩ Y = ∅, meaning no queried key can decrypt a challenge ciphertext.

We now describe how B works. B simulates Exppc
CRBAC[PE,Σ] depending on the random

bit chosen by its challenger (and unknown to B) and proceeds as the challenger of the

simulated game. It starts from initialising a CRBAC[PE ,Σ] as specified by Init, with

the exception that it does not run the setup algorithm Setup of PE but just stores

the received master public key mpk in fs[0][0]. B maintains two extra lists during the

simulation: MS , the “message system”, which is indexed by objects and it stores the

current contents of the file system. When B needs to re-encrypt the (non-challenge) file

61

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

contents, it can look them up from MS instead of decrypting the ciphertexts. Thus,

with the use of MS there is no need to maintain the list TT rd; PK , a list to record the

public keys generated by PKGen so far, which corresponds to the list PK maintained

by B’s challenger. It is used along with a counter ctr ′, which is identical to the counter

ctr in B’s own game. Later, when B needs to call LR for the encryption under some

public key, it can look up PK to obtain the corresponding index of the key. Then B

runs A internally and answers to A’s queries as follows.

In general, B follows the specification of the oracles in the experiment Exppc
cRBAC

with the use of the implementation of the cRBAC scheme specified by CRBAC[PE ,Σ].

Notice that B does not hold a master decryption key mdk , it therefore does not create

and maintain decryption keys for honest users. For those corrupt users, B queries its

oracle DKGen to obtain the decryption keys when needed. When A asks for excution

of any valid RBAC command, B checks if the execution will lead to any corrupt user

getting read access to the files of which the current contents are specified as challenges

(i.e. those objects recorded in Ud). If so, B refuses the request and returns an error;

otherwise, B executes the algorithm implementing the command and updates the system

RBAC state accordingly. When B needs to generate a public key for some file, it queries

PKGen with the set of attributes associated to the roles which have the permission to

that file. Here the attribute set should be of the same type as the permission. When B

needs to create decryption keys for corrupt users, it calls DKGen with predicates related

to the attribute sets of the same type (either read attributes or write attributes). Any

request for corrupting the users in the list L will be refused.

When A requests a user u∗ to write some content to a file o∗, B records the content

in MS [o∗]. Since it is assumed that all write access to the file system can only be carried

out by the manager, u∗ is no longer required to be an honest user here. B then retrieves

the signing key from SK [o∗] and uses it to generate a new file version for o∗ directly,

without querying the decryption key for u∗. This has the same effect as that u∗ runs

Write with its local state to write the content to o∗. If o∗ is specified as a challenge, B

removes o∗ from the list Ud , namely the current content o∗ is no longer a challenge.

When A wants to be challenged on some file o∗ by specifying a user u∗ and two

messages m0,m1 of equal length, B first checks whether no corrupt user has read access

to o∗ at this point. If this is the case, it means that B has not made any decryption-key

query for the predicate associated to any attribute under which o∗ will be encrypted. B

then does the followings: add o∗ to both Ch and Ud , and record (m0,m1) in MS [o∗] for

62

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

further use of re-encryption. Look up the index k of fs[o∗][0].pk in PK and query the

left-right oracle LR on (k,m0 ‖ i + 1,m1 ‖ i + 1) to obtain the ciphertext and append

it to fs[o∗] together with a corresponding signature, here i is the index of the lastest

version of o∗. Then add all the users who can get read access to o∗ to the list L.

For any o ∈ Ud , it must hold that MS [o] stores a pair of plaintext. If re-encryption

is later required for a challenge file, B looks up the two plaintexts from MS , appends

them with the index of the current file version, and again sends them to LR with the

index of the file’s current public key in PK . The public key here should be a new one,

since re-encryption is required only after a new public key is generated for the file. After

that, B updates the entry with the ciphertext received from LR and generates a new

signature for it. For all other files, the re-encryption is done by looking up the file

content in MS and encrypting the content under the new key.

When A terminates with a guess of the random bit b′, B forwards it as the output.

We now argue that the simulation provided by B is perfect.

First, we show that the invariant X ∩ Y = ∅ is maintained thoughtout the game.

Assuming by contradiction that the invariant is violated, namely X∩Y 6= ∅. Then there

exists an attribtue a such that a ∈ X∩Y . We denote the role associated to the attribute

a in the cRBAC system by ra. Whenever the role is assigned with a new attribute, it is

not considered as ra from then on.

Recall that, the set X is the union of the attributes correspond to all the predicates

for which decryption keys were queried and B calls DKGen only when it needs to

generates decryption keys for corrupt users. Then set Y contains all the attributes

under which the challenges were encrypted. B queries LR for a ciphertext only when A

specifies its challenge or re-encryption is required for the challenged contents. Since Y

contains only read attributes (those have been ever stored in RT rd), a ∈ X ∩ Y implies

that the following two conditions must have ever been met in the simulated game:

∃u ∈ Cr :(u, ra) ∈ UA (C1)

∃o ∈ Ud :((o, read), ra) ∈ PA (C2)

Then there are two possibilities here: both the conditions (C1) and (C2) are satisfied

simultaneously at some point during the game, or they are satisfied one after another.

63

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Consider the first case, if at some point the two conditions hold, we immediately have:

∃u ∈ Cr , o ∈ Ud : HasAccess(u, (o, read)),

meaning there exists a corrupt user which is authorised to read one of the challenged

contents. Obviously, this will never occur during the simulation. B maintains the list L to

record the users who have read access to any of the challenge contents and it guarantees

that the invariant L ∩ Cr 6= ∅ should always hold during the game (in order to prevent

trivial wins). Thus, there cannot exist any corrupt user that has the read permission of

any challenge content during the simulation, which means that two conditions will not

be satisfied simultaneously.

Now consider the other possibility, the two conditions are met one after another. We

show that no matter which of the conditions is satisfied first, the other one will never

hold later in the game.

In the case that (C1) is satisfied first, it means that B calls DKGen to obtain the

decryption key for some corrupt user u who is assigned with the role ra before it asks

for a challenge under a public key with respect to the attribute set which contains a.

As we have already known that at no point in the game, the two conditions can be

both satisfied. Thus, in order to meet (C2), A must make queries to remove u from Cr

(by calling DelUser) or deassign u from the role ra (by calling DeassignUser). But

from the specification of the algorithms DelUser and DeassignUser, we can observe that

either call to invalidate (C1) will lead to a new attribute to be assigned to the role ra

and therefore B will not be able to request for a challenge with respect to the public

key which is related to the attribute a from then on, which means (C2) will never occur

later.

Similarly, in the case that (C2) is satisfied first, there should exist an object o ∈ Ud

such that ((o, read), ra) ∈ PA holds. Therefore, A needs to remove either o from Ud

or ((o, read), ra) from PA before it requests to corrupt some user who is assigned with

the role ra. In order to remove o from Ud , A can request a user to write some content

to o (by calling Write) or delete the object (by calling DelObject). After some

new content has been written to o, A can assign some corrupt user with ra (by calling

AssignUser). However, in such case a new attribute will be assigned to ra then (C1)

will never hold later. In addition, at the moment when o is specified as the challenge,

the users who have read access to o will be recorded in the list L, including all the users

who have the role ra. Even though o /∈ Ud holds after some new content is written to

64

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

o, A cannot corrupt any of these users before their read permission to o is revoked (by

calling DeassignUser or RevokePerm). Still, from the specification of the algorithms

DeassignUser and RevokePerm, either deassigning some user from the role ra or revoking

(o, read) from ra will lead to a new attribute assigned to the role ra. In addition, without

writing some content to o, deleting o or just removing (o, read) from PA will also have

the same effect to the attribute associated to ra. So, if (C2) is satisfied first, (C1) will

not occur later during the simulation. Therefore we can conclude that such an attribute

a ∈ X ∩ Y does not exist so X ∩ Y = ∅ is always maintained.

Moreover, B is in charge of the signature scheme Σ and during the simulation it can

always udpate the file system correctly with the user of MS and SK . Thus, B provides

perfect simulation of Exppc
CRBAC[PE,Σ] where the bit b is the same as the one chosen by

B’s challenger. Thus we have:

Advmsg-hide
PE,B (λ) = Advpc

CRBAC[PE,Σ],A(λ).

We detail the adversary B in the following.

Adversary B(mpk : PKGen,DKGen,LR)

Cr ,Ch,Ud ,L,MS ,PK ← ∅

fs,RT rd,RT wr,SK ← ∅; ctr , ctr ′ ← 1

foreach r ∈ R:

RT rd[r]← ctr ; ctr ← ctr + 1

foreach r ∈ R:

RT wr[r]← ctr ; ctr ← ctr + 1

State ← (∅, ∅, ∅, ∅, ∅); fs[0][0]← mpk

b′←$A(1λ : Õpc)

return b′

The auxiliary algorithms ReEnc, ReSign and RoleUpdate used in B’s simulation are

specified as follows. The other algorithms GetLength, EraseRest and FindValidEntry are

identical to those specified in the the cRBAC construction.

65

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm ReEnc(fs, o∗)

1 : if o∗ /∈ O then

2 : return fs

3 : i← FindValidEntry(fs, o∗)

4 : if i > 0 then

5 : if o∗ ∈ Ud then

6 : Parse MS [o∗] as (m0,m1)

7 : Let k be such that : PK [k] = fs[o∗][0].pk

8 : Query : fs[o∗][i].ctx ← LR(k,m0 ‖ i ‖ o∗,m1 ‖ i ‖ o∗)
9 : else

10 : fs[o∗][i].ctx ←$ Enc(fs[o∗][0].pk ,MS [o∗] ‖ i ‖ o∗)
11 : fs[o∗][i].sig ←$ Sign(SK [o∗], fs[o∗][i].ctx ‖ i)
12 : fs ← EraseRest(fs, o∗, i+ 1)

13 : return fs

Algorithm ReSign(fs, o∗)

1 : if o /∈ O then

2 : return fs

3 : i← FindValidEntry(fs, o∗)

4 : if i > 0 then

5 : m← fs[o∗][i].ctx ‖ i
6 : fs[o∗][i].sig ←$ Sign(SK [o∗],m)

7 : fs ← EraseRest(fs, o∗, i+ 1)

8 : return fs

Algorithm RoleUpdate(fs, r∗)

1 : {rdku}u∈Cr ← ∅
2 : RT rd[r∗]← ctr ; ctr ← ctr + 1

3 : foreach ((o, read), r∗) ∈ PA :

4 : y ← {RT rd[r] | ((o, read), r) ∈ PA}
5 : // y must be non-empty here

6 : Query : fs[o][0].pk ← PKGen(y)

7 : fs ←$ ReEnc(fs, o)

8 : PK [ctr ′]← fs[o∗][0].pk

9 : ctr ′ ← ctr ′ + 1

10 : foreach u ∈ Cr :

11 : if (u, r∗) ∈ UA then

12 : x← {RT rd[r] | (u, r) ∈ UA}
13 : Query : rdku←$ DKGen(fx)

14 : return (fs, {(rdku, ∅)}u∈Cr)

B maintains the oracles that A has access to as specified in Figure 4.9 and 4.10.

Recall that in the security game that defines past confidentiality of cRBAC systems, the

66

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Oracle AddUser(u∗)

if u ∈ U then return ⊥
U ← U ∪ {u∗}
return (fs, {∅}u∈Cr)

Oracle AddObject(o∗)

if o ∈ O then return ⊥
O ← O ∪ {o∗}
P ← P ∪ {(o∗, read), (o∗, write)}
y ← {ctr}; ctr ← ctr + 1

Query : fs[o∗][0].pk ← PKGen(y)

PK [ctr ′]← fs[o∗][0].pk; ctr ′ ← ctr ′ + 1

(sko∗ , vko∗)←$ KeyGen(1λ)

fs[o∗][0].vk ← vko∗ ; SK [o∗]← sko∗

return (fs, {∅}u∈Cr)

Oracle AssignUser(u∗, r∗)

if u∗ /∈ U ∨ r∗ /∈ R ∨ (u∗, r∗) ∈ UA

then return ⊥
if ∃o ∈ Ud : ((o, read), r∗) ∈ PA then

if u∗ ∈ Cr then return ⊥
else L← L ∪ {u}

UA← UA ∪ {(u∗, r∗)}
{msgu}u∈Cr ← ∅
(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

x← {RT wr[r] | (u∗, r) ∈ UA}
Query : wdk ← DKGen(fx)

msgu∗ .wdk ← wdk

return (fs, {msgu}u∈Cr)

Oracle DeassignUser(u∗, r∗)

if (u∗, r∗) /∈ UA then return ⊥
UA← UA \ {(u∗, r∗)}
{msgu}u∈Cr ← ∅
(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

foreach ((o, write), r∗) ∈ PA :

(sko, vko)←$ KeyGen(1λ)

SK [o]← sko; fs ←$ ReSign(fs, o)

fs[o][0].vk ← vko
y ← {RT wr[r] | ((o, write), r) ∈ PA}
Query : pk ← PKGen(y)

fs[o][0].sk ←$ Enc(pk , sko)

PK [ctr ′]← pk ; ctr ′ ← ctr ′ + 1

foreach u ∈ L:

if @o ∈ Ch : HasAccess(u, (o, read))

then L← L \ {u}
return (fs, {msgu}u∈Cr)

Oracle GrantPerm(p∗, r∗)

if p∗ /∈ P ∨ r∗ /∈ R ∨ (p∗, r∗) ∈ PA

then return ⊥
Parse p∗ as (o∗,mode)

if o∗ ∈ Ud ∧mode = read then

if ∃u ∈ Cr : (u, r∗) ∈ UA then

else foreach u ∈ U \ L:

if (u, r∗) ∈ UA then L← L ∪ {u}
PA← PA ∪ {(p∗, r∗)}
if mode = read then

y ← {RT rd[r] | ((o∗, read), r) ∈ PA}
Query : fs[o∗][0].pk ← PKGen(y)

fs ←$ ReEnc(fs, o∗)

PK [ctr ′]← fs[o∗][0].pk; ctr ′ ← ctr ′ + 1

if mode = write then

y ← {RT wr[r] | ((o∗, write), r) ∈ PA}
Query : pk ← PKGen(y)

fs[o∗][0].sk ←$ Enc(pk ,SK [o∗])

PK [ctr ′]← pk ; ctr ′ ← ctr ′ + 1

return (fs, {∅}u∈Cr)

Oracle RevokePerm(p∗, r∗)

if (p∗, r∗) /∈ PA then return ⊥
PA← PA \ {(p∗, r∗)}
{msgu}u∈Cr ← ∅
Parse p∗ as (o∗,mode)

if mode = read then

y ← {RT rd[r] | ((o∗, read), r) ∈ PA}
if y = ∅ then

y ← {ctr}; ctr ← ctr + 1

Query : fs[o∗][0].pk ← PKGen(y)

fs ←$ ReEnc(fs, o∗)

PK [ctr ′]← fs[o∗][0].pk; ctr ′ ← ctr ′ + 1

(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

if mode = write then

(sko∗ , vko∗)←$ KeyGen(1λ)

SK [o∗]← sko∗ ; fs ←$ ReSign(fs, o∗)

fs[o∗][0].vk ← vko∗

y ← {RT wr[r] | ((o∗, write), r) ∈ PA}
Query : pk ← PKGen(y)

fs[o∗][0].sk ←$ Enc(pk , sko∗)

PK [ctr ′]← pk ; ctr ′ ← ctr ′ + 1

foreach u ∈ L:

if @o ∈ Ch : HasAccess(u, (o, read))

then L← L \ {u}
return (fs, {msgu}u∈Cr)

Figure 4.9: Õpc (part 1)

67

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Oracle DelObject(o∗)

if o∗ /∈ O then return ⊥
{msgu}u∈Cr ← ∅
foreach (p, r) ∈ PA:

if p ∈ {(o∗, read), (o∗, write)} then

(fs, {msgu}u∈Cr)

←$ RevokePerm(p, r)

O ← O \ {o∗}
P ← P \ {(o∗, read), (o∗, write)}
Ch ← Ch \ {o∗}; Ud ← Ud \ {o∗}
MS [o∗],SK [o∗]← ∅
fs ← EraseRest(fs, o∗, 0)

return (fs, {∅}u∈Cr)

Oracle DelUser(u∗)

if u∗ /∈ U then return ⊥
foreach (u∗, r) ∈ UA:

(fs, {msgu}u∈Cr)

←$ DeassignUser(fs, u∗, r)

U ← U \ {u∗}
Cr ← Cr \ {u∗}; L← L \ {u∗}
return (fs, {msgu}u∈Cr)

Oracle Write(u∗, o∗,m)

if ¬HasAccess(u∗, (o, write)) then

return ⊥
i← GetLength(fs, o∗)

ctx ←$ Enc(fs[o∗][0].pk ,m ‖ i+ 1 ‖ o∗)
fs[o∗][i+ 1].ctx ← ctx

sig ←$ Sign(SK [o∗], ctx ‖ i+ 1)

fs[o∗][i+ 1].sig ← sig

MS [o∗]← m; Ud ← Ud \ {o∗}
return fs

Oracle CorruptU(u∗)

if u /∈ U ∨ u ∈ L then

return ⊥
Cr ← Cr ∪ {u∗}
x← {RT rd[r] | (u∗, r) ∈ UA}
Query : rdk ← DKGen(fx)

x′ ← {RT wr[r] | (u∗, r) ∈ UA}
Query : wdk ← DKGen(fx′)

return (rdk ,wdk)

Oracle Challenge(u∗, o∗,m0,m1)

if ¬HasAccess(u∗, (o∗, write)) then

return ⊥
if |m0| 6= |m1| then return ⊥
foreach u ∈ Cr :

if HasAccess(u, (o∗, read)) then

return ⊥
Let k be such that PK [k] = fs[o∗][0].pk

Query : ctx ← LR(k,m0 ‖ i+ 1,m1 ‖ i+ 1)

fs[o∗][i+ 1].ctx ← ctx

sig ←$ Sign(SK [o∗], ctx ‖ i+ 1)

fs[o∗][i+ 1].sig ← sig

MS [o∗]← (m0,m1)

foreach u′ ∈ U :

if HasAccess(u′, (o∗, read)) then

L← L ∪ {u′}
Ch ← Ch ∪ {o∗}; Ud ← Ud ∪ {o∗}
return fs

FS(query)

if query =“state” then

return fs

Figure 4.10: Õpc (part 2)

adversary is allowed to get access to a single oracle Cmd to request for the execution of

any administrative RBAC command. Here, for clarity, it is achieved in a different favour

but still has the same effect: the adversary now gets access to a group of oracles of which

each corresponds to a single RBAC command. All of the oracles listed below follow the

description of the oracle Cmd with some slight changes (e.g. the condition of removing

a user from the list L is more specific here). In each oracle, the run of the corresponding

algorithm are replaced by those specified in the construction CRBAC[PE ,Σ].

Theorem 5. If the digital signature scheme Σ is existentially unforgeable under chosen-

message attacks and the PE-SK scheme PE is message-hiding, CRBAC[PE ,Σ] is secure

with respect to write access.

68

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Proof. We prove this theorem through a sequence of games. It starts from the original

security game that defines write security of cRBAC systems, and ends with a game

where the adversary can gain advantage from the digital signature scheme Σ only. The

description of the games and also the hops between successive games are as follows.

Game 0 : The initial game is simply the game that defines write security of cRBAC

systems in the presence of an adversary A. Recall that at the beginning of the game, the

challenger initialises the system by running the initialisation algorithm Init with a set of

roles. Then the adversary is given access to the oracles maintained by the challenger,

by calling which it is allowed to request for the execution of any valid RBAC command,

user corruption, writing on behalf of some honest user, querying the current state of the

file system and appending data to the file system.

At some point during the game, the adversary terminates with an output of an

object o∗. The advantage of the adversary in this game is defined by the probability

that some content has been written to o∗ in an unauthorised manner: the current content

of o∗ (read by challenger with the use of the manager’s local state) differs from the last

recorded written content.

Game 1 : We now transform Game 0 into Game 1 by requiring the adversary to write

some valid content to the file associated to the verification and signing key pair specified

by the challenger. More specifically, Game 1 proceeds as the Game 0 with the following

changes.

At the beginning of the game, the challenger selects a random index i in the range of

{1, . . . , p(λ)}, where p(λ) is a bound on the number of key pairs generated by running

KeyGen, the key generation algorithm of Σ (if the adversary is polynomially bounded,

this number is also polynomially bounded).

Whenever the challenger needs to generate a new verification and signing key pair

for some file o, in case it is the i-th run of KeyGen, the challenger records the generated

key pair (sk i, vk i) and stores the verification key vk i in fs[o][0].vk . The signing key

sk i is encrypted with a set of attributes which are associated to the roles that have

write access to o and the encrypted key is stored in fs[o][0].sk . When A outputs o∗ and

terminates, if the verification key stored in fs[o∗][0].vk is not the recorded verification

key, the challenger aborts the game.

Since the choice of the random index i is independent of the event that A manages

69

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

to write to the file o∗, it is clear that

Pr[GameA,1] =
1

p(λ)
Pr[GameA,0]. (5.1)

Here and below we write for simplicity Pr[GameA,i] for the adventage of the adversary

A in Game i.

Game 2 : This game proceeds as the one above, with the exception that in the i-th run

of KeyGen, the challenger records the obtained key pair (vk i, sk i) and selects a random

string of the same length of the signing key sk i. Then it encrypts the random string

and stores it in the related file’s header instead of sk i. Whenever the challenger needs

to generate signatures for this file, it signs the messages with the recorded signing key

until the key gets updated.

Lemma 1. Let ε0 be the advantage with which an efficient adversary can break message-

hiding of the PE-SK scheme PE, then:

∣∣Pr[GameA,1]− Pr[GameA,2]
∣∣ = ε0.

We prove this lemma by constructing a distinguisher D given access to the oracles

O = (PKGen, DKGen, LR), defined for message-hiding in Definition 6. The idea is,

with use of these oracles D can simulate a hybrid game of Game 1 and Game 2 to an

adversary A. If there is a difference in the adversary’s success probability between the

two games, the distinguisher can gain the advantage equals to this in the message-hiding

game of PE .

In the i-th run of KeyGen for some file o, D checks if any corrupt user has write

access to o. If so, D terminates and outputs 0. Recall that the winning condition of the

game which requires that no corrupt user can have write access to the file outputs by A

when A generates its output. It means in order to win the game, A needs to revoke the

write permission from the corrupt users later and this will lead to the verification and

signing key pair gets updated. Otherwise, D generates a key pair (sk i, vk i) and selects

a random string rs of the same length as sk i. D queries its LR oracle with (sk i, rs) to

obtain a ciphertext and stores it in fs[o][0].sk .

After that, when D needs to update fs[o][0].sk due to A’s oracle calls, it queries

LR with the appropriate index and (sk i, rs) to obtain the ciphertext. Meanwhile, if

any of A’s queries will lead to any corrut user can have the write permission of o or

70

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

A asks for executing some RBAC command which will also cause the current signing

and verification key pair of o being updated, D terminates the simulation and outputs

0. Finally, when A outputs an object o∗, D outputs 1 if all the winning conditions are

satisfied and else outputs 0. D is specified as follows.

Distinguisher D(mpk : O)

Cr ,T ,TT rd,SK ,PK ← ∅

i←$ {1, ..., p(λ)}; vk , sk , rs ← ∅

fs,RT rd,RT wr ← ∅; j, ctr , ctr ′ ← 1

foreach r ∈ R:

RT rd[r]← ctr ; ctr ← ctr + 1

foreach r ∈ R:

RT wr[r]← ctr ; ctr ← ctr + 1

State ← (∅, ∅, ∅, ∅, ∅); fs[0][0]← mpk

o∗←$A(1λ : Õwrite-1)

if fs[o∗].vk = vk ∧ T [o∗] 6= adv ∧ T [o∗] 6= Read(stM , fs, o
∗) then

return 1

else return 0

The auxiliary algorithms of CRBAC[PE ,Σ] are also used in D’s simulation, with some

changes on the ReEnc, ReSign and RoleUpdate which are specified as follows.

Algorithm ReEnc(fs, o∗)

1 : if o∗ /∈ O then

2 : return fs

3 : i← FindValidEntry(fs, o∗)

4 : if i > 0 then

5 : if TT rd[o∗] 6= ∅ then

6 : x← TT rd[o∗]

7 : else

8 : x← {RT rd[r]|((o∗, read), r) ∈ PA}
9 : Query : dk ← DKGen(fx)

10 : m← Dec(dk , fs[o∗][i].ctx)

11 : fs[o∗][i].ctx ←$ Enc(fs[o∗][0].pk ,m)

12 : fs[o∗][i].sig ←$ Sign(SK [o∗], fs[o∗][i].ctx ‖ i)
13 : fs ← EraseRest(fs, o∗, i+ 1)

14 : return fs

71

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm ReSign(fs, o∗)

1 : if o /∈ O then

2 : return fs

3 : i← FindValidEntry(fs, o∗)

4 : if i > 0 then

5 : m← fs[o∗][i].ctx ‖ i
6 : fs[o∗][i].sig ←$ Sign(SK [o∗],m)

7 : fs ← EraseRest(fs, o∗, i+ 1)

8 : return fs

Algorithm RoleUpdate(fs, r∗)

1 : {rdku}u∈Cr ← ∅
2 : RT rd[r∗]← ctr ; ctr ← ctr + 1

3 : foreach ((o, read), r∗) ∈ PA :

4 : y ← {RT rd[r] | ((o, read), r) ∈ PA}
5 : Query : fs[o][0].pk ← PKGen(y)

6 : fs ←$ ReEnc(fs, o)

7 : PK [ctr ′]← fs[o∗][0].pk

8 : ctr ′ ← ctr ′ + 1

9 : foreach u ∈ Cr :

10 : if (u, r∗) ∈ UA then

11 : x← {RT rd[r] | (u, r) ∈ UA}
12 : Query : rdku ← DKGen(fx)

13 : return (fs, {(rdku, ∅)}u∈Cr)

During the simulation, whenever D needs to run KeyGen to generate a verificaiton

and signing key pair, it runs the following algorithm KeyGen′ instead. KeyGen′ takes as

input the security parameter 1λ and an object o∗ and outputs the signature key pair

by running KeyGen of the digital signature scheme. In the i-th run, if there exists some

corrupt user who has the write permission of file that the new key pair will be associated

to, D aborts the simulation and outputs 0; otherwise, it records the key pair in (sk , vk)

and selects a random string rs of the same length as sko∗ . In the case that the run of

KeyGen′ is to generate a new key pair for the object which is associated to (sk , vk), D

also aborts and outputs 0.

72

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm KeyGen′(1λ, o∗)

1 : if fs[o∗][0].vk = vk then

2 : output 0

3 : (sko∗ , vko∗)←$ KeyGen(1λ)

4 : if j = i then

5 : if ∃u ∈ Cr : HasAccess(u, (o∗, write)) then

6 : output 0

7 : (sk , vk)← (sko∗ , vko∗)

8 : rs ←$ {0, 1}|sko∗ |

9 : j ← j + 1

10 : return (sko∗ , vko∗)

The oracles that D maintains are specified in Figure 4.11 and 4.12. Again, A now

can get access to a group of oracles correspond to the administrative RBAC commands

which are functionally equivalent the oracle Cmd in the security game that defines past

confidentiality.

According to the specification of D above, it is clear that D will not lead to its oracles

return an error. Since D calls LR only when it needs to generate the encryption of the

signing key for the file associated to (vk i, sk i) and it ensures that no corrupt user can

get write access to that file during the simulation. Therefore D will never request for

any decryption key which allows it decrypt any of the ciphtertexts returned by LR. For

those decryption keys that D queries for decrypting the file contents and the encrypted

signing keys, they cannot be used to decrypt the challenge ciphertexts obtained from

LR and therefore will not cause D’s oracles return an error.

In the case that LR always returns the encryption of sk i, meaning the random bit b

selected in the message-hiding game is 0. Then the hybrid game is identical to Game 1

and D outputs 1 with the same probability as A’s advantage in Game 1. Then we have

Pr[D(mpk : O)→ 1 | b = 0] = Pr[GameA,1]. (5.2)

Meanwhile, LR always returns the encryption of rs when b = 1, then the game is

identical to Game 2 and the probability that D outputs 1 is the same as A’s advantage

in Game 2. Thus we have

Pr[D(mpk : O)→ 1 | b = 1] = Pr[GameA,2], (5.3)

73

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Oracle AddUser(u∗)

if u ∈ U then return ⊥
U ← U ∪ {u∗}
return (fs, {∅}u∈Cr)

Oracle AddObject(o∗)

if o ∈ O then return ⊥
O ← O ∪ {o∗}
P ← P ∪ {(o∗, read), (o∗, write)}
y ← {ctr}; ctr ← ctr + 1

Query : fs[o∗][0].pk ← PKGen(y)

PK [ctr ′]← fs[o∗][0].pk; ctr ′ ← ctr ′ + 1

TT rd[o∗]← y

(sko∗ , vko∗)←$ KeyGen′(1λ, o∗)

fs[o∗][0].vk ← vko∗ ; SK [o∗]← sko∗

return (fs, {∅}u∈Cr)

Oracle AssignUser(u∗, r∗)

if u∗ /∈ U ∨ r∗ /∈ R ∨ (u∗, r∗) ∈ UA

then return ⊥
UA← UA ∪ {(u∗, r∗)}
{msgu}u∈Cr ← ∅
(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

x← {RT wr[r] | (u∗, r) ∈ UA}
Query : wdk ← DKGen(fx)

msgu∗ .wdk ← wdk

if u∗ ∈ Cr then

foreach ((o, write), r∗) ∈ PA :

T [o]← adv

return (fs, {msgu}u∈Cr)

Oracle DeassignUser(u∗, r∗)

if (u∗, r∗) /∈ UA then return ⊥
UA← UA \ {(u∗, r∗)}
{msgu}u∈Cr ← ∅
(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

foreach ((o, write), r∗) ∈ PA :

(sko, vko)←$ KeyGen′(1λ, o)

SK [o]← sko; fs ←$ ReSign(fs, o)

fs[o][0].vk ← vko
y ← {RT wr[r] | ((o, write), r) ∈ PA}
Query : pk ← PKGen(y)

if fs[o][0].vk = vk then

Query : fs[o][0].sk

← LR(ctr ′, sko, rs)

else fs[o][0].sk ←$ Enc(pk , sko)

PK [ctr ′]← pk ; ctr ′ ← ctr ′ + 1

return (fs, {msgu}u∈Cr)

Oracle GrantPerm(p∗, r∗)

if p∗ /∈ P ∨ r∗ /∈ R ∨ (p∗, r∗) ∈ PA

then return ⊥
Parse p∗ as (o∗,mode)

PA← PA ∪ {(p∗, r∗)}
if mode = read then

y ← {RT rd[r] | ((o∗, read), r) ∈ PA}
Query : fs[o∗][0].pk ← PKGen(y)

fs ←$ ReEnc(fs, o∗)

PK [ctr ′]← fs[o∗][0].pk; ctr ′ ← ctr ′ + 1

TT rd[o∗]← ∅
if mode = write then

y ← {RT wr[r] | ((o∗, write), r) ∈ PA}
Query : pk ← PKGen(y)

if fs[o][0].vk = vk then

Query : fs[o∗][0].sk

← LR(ctr ′,SK [o∗], rs)

else fs[o∗][0].sk ←$ Enc(pk ,SK [o∗])

PK [ctr ′]← pk ; ctr ′ ← ctr ′ + 1

if ∃u ∈ Cr : HasAccess(u, p∗) then

T [o∗]← adv

return (fs, {∅}u∈Cr)

Oracle RevokePerm(p∗, r∗)

if (p∗, r∗) /∈ PA then return ⊥
PA← PA \ {(p∗, r∗)}
{msgu}u∈Cr ← ∅
Parse p∗ as (o∗,mode)

if mode = read then

y ← {RT rd[r] | ((o∗, read), r) ∈ PA}
if y = ∅ then

y ← {ctr}; ctr ← ctr + 1

TT rd[o∗]← y

Query : fs[o∗][0].pk ← PKGen(y)

fs ←$ ReEnc(fs, o∗)

PK [ctr ′]← fs[o∗][0].pk; ctr ′ ← ctr ′ + 1

(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

if mode = write then

(sko∗ , vko∗)←$ KeyGen′(1λ, o∗)

SK [o∗]← sko∗ ; fs ←$ ReSign(fs, o∗)

fs[o∗][0].vk ← vko∗

y ← {RT wr[r] | ((o∗, write), r) ∈ PA}
Query : pk ← PKGen(y)

if fs[o∗][0].vk = vk then

Query : fs[o∗][0].sk

← LR(ctr ′, sko∗ , rs)

else fs[o∗][0].sk ←$ Enc(pk , sko∗)

PK [ctr ′]← pk ; ctr ′ ← ctr ′ + 1

return (fs, {msgu}u∈Cr)

Figure 4.11: Õwrite-1 (part 1)

74

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Oracle DelObject(o∗)

if o∗ /∈ O then return ⊥
{msgu}u∈Cr ← ∅
foreach (p, r) ∈ PA:

if p ∈ {(o∗, read), (o∗, write)} then

(fs, {msgu}u∈Cr)

←$ RevokePerm(p, r)

O ← O \ {o∗}
P ← P \ {(o∗, read), (o∗, write)}
T [o∗],SK [o∗]← ∅
fs ← EraseRest(fs, o∗, 0)

return (fs, {msgu}u∈Cr)

Oracle Write(u∗, o∗,m)

if ¬HasAccess(u∗, (o, write)) then

return ⊥
i← GetLength(fs, o∗)

ctx ←$ Enc(fs[o∗][0].pk ,m ‖ i+ 1 ‖ o∗)
fs[o∗][i+ 1].ctx ← ctx

sig ←$ Sign(SK [o∗], ctx ‖ i+ 1 ‖ o∗)
fs[o∗][i+ 1].sig ← sig

foreach u ∈ Cr :

if HasAccess(u, (o∗, write)) then

return fs

T [o∗]← m; return fs

Oracle DelUser(u∗)

if u∗ /∈ U then return ⊥
foreach (u∗, r) ∈ UA:

(fs, {msgu}u∈Cr)

←$ DeassignUser(fs, u∗, r)

U ← U \ {u∗}; Cr ← Cr \ {u∗}
return (fs, {msgu}u∈Cr)

Oracle CorruptU(u∗)

if u /∈ U then return ⊥
Cr ← Cr ∪ {u∗}
foreach o ∈ O:

if HasAccess(u∗, (o, write)) then

T [o]← adv

x← {RT rd[r] | (u∗, r) ∈ UA}
Query : rdk ← DKGen(fx)

x′ ← {RT wr[r] | (u∗, r) ∈ UA}
Query : wdk ← DKGen(fx′)

return (rdk ,wdk)

FS(query)

if query =“state” then

return fs

if query =“append(info)” then

fs ← fs‖info; return fs

Figure 4.12: Õwrite-1 (part 2)

Recall that, the advantage of D in the message-hiding game is

∣∣Pr[D(mpk : O)→ 1 | b = 0]− Pr[D(mpk : O)→ 1 | b = 1]
∣∣ = ε0. (5.4)

Then combining Equations (5.2), (5.3) and (5.4), we have

∣∣Pr[GameA,1]− Pr[GameA,2]
∣∣ = ε0,

and the lemma is proved.

Lemma 2. Let ε1 be the advantage with which an efficient adversary gains in EUF-CMA

attack game of the digital signature scheme Σ, then Pr[GameA,2] = ε1.

Assume that the file related to the verification and signing key pair (sk i, vk i), which

is obtained from the i-th run of KeyGen, is o. We first observe that in Game 2, the

encrypted “signing key” fs[o][0].sk is independent of sk i. Then A is provided the verifi-

cation key vk i and is allowed to see the signatures on messages chosen by itself. In this

case, A wins the game only when he is able to forge a valid signature on his own. In

75

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

other words, from A we can construct an adversary B for Expeu-cma
Σ as follows. Given

a verification key vk and the access to the oracle Sign, B simulates for A Game 2 by

playing the role of the challenger. Here B is in charge of the PE-SK scheme PE and

also the signature scheme Σ. It generates signing and verification key pairs for the files

in its simulated game, except for the the one in the i-th run of KeyGen. By that time,

B uses key vk that it receives instead of key vki and uses his signing oracle to produce

the necessary signatures. When A terminates with an output o∗, B checks if all winning

conditions are satisfied. If so, B outputs the file content and the signature of the last

valid entry of o∗; otherwise, it aborts the simulation. The adversary B is detailed as

follows.

Adversary B(vk : Sign)

(mpk ,mdk)←$ Setup(1λ, A)

Cr ,T ,TT rd,SK ← ∅

i←$ {1, ..., p(λ)}

fs,RT rd,RT wr ← ∅; j, ctr ← 1

foreach r ∈ R:

RT rd[r]← ctr ; ctr ← ctr + 1

foreach r ∈ R:

RT wr[r]← ctr ; ctr ← ctr + 1

State ← (∅, ∅, ∅, ∅, ∅); fs[0][0]← mpk

stM ← (mdk ,RT rd,RT wr,TT rd,SK , ctr ,State)

o∗←$A(1λ : Õwrite-2)

if fs[o∗].vk = vk ∧ T [o∗] 6= adv ∧ T [o∗] 6= Read(stM , fs, o
∗) then

idx ← FindValidEntry(fs, o∗)

return (fs[o∗][idx].ctx , fs[o∗][idx].sig)

else abort

In B’s simulation of Game 2, the auxiliary algorithms are identical to those spec-

ified in CRBAC[PE ,Σ]. Still, B runs a modified algorithm KeyGen′ instead of the key

generation algorithm KeyGen of Σ. In the i-th run of KeyGen′, it does not generate a

signing and verification key pair. Instead, it returns vk , the verification key B obtains

from its game, and a random string rs of the same length of the signing key sk which is

unknown to B.

76

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm KeyGen′(1λ, o∗)

1 : if fs[o∗][0].vk = vk then

2 : output 0

3 : if j = i then

4 : if ∃u ∈ Cr : HasAccess(u, (o∗, write)) then

5 : output 0

6 : rs ←$ {0, 1}|sk |; j ← j + 1

7 : return (rs, vk)

8 : else

9 : (sko∗ , vko∗)←$ KeyGen(1λ); j ← j + 1

10 : return (sko∗ , vko∗)

The oracles that D maintains are specified in Figure 4.13 and 4.14. During the

simulation, D is able to update the global state of the cRBAC system on its own since

it is in charge of the PE-SK scheme and also the signature scheme. There is only one

situation that D needs to call its own oracle Sign, that is to provide signatures for the

contents of the file associated to the verification key vk .

It is immediate that a successful attack of A against write security of CRBAC[PE ,Σ]

translates into a forgery against the signature scheme Σ and we can conclude that

Pr[GameA,2] = ε1,

where ε1 is the advantage of B against Σ in the EU-CMA game. Thus the lemma is

proved.

Now, combining Lemma 1 and 2, we have

Pr[GameA,1] ≤ ε0 + ε1. (5.5)

From Equations (5.1) and (5.5), we can conclude that

Pr[GameA,0] ≤ (ε0 + ε1) · p(λ).

Therefore, if the PE-SK scheme PE is message-hiding and the signature scheme Σ

is existentially unforgeable under adaptive chosen-message attacks, then both ε0 and ε1

are negligible and therefore so is Pr[GameA,0].

Theorem 6. If the PE-SK scheme PE has attribute-hiding keys, CRBAC[PE ,Σ] pre-

serves p2r∗-privacy.

Proof. We prove this theorem by reducing p2r∗-privacy of CRBAC[PE ,Σ] to identity-

77

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Oracle AddUser(u∗)

if u ∈ U then return ⊥
U ← U ∪ {u∗}
return (fs, {∅}u∈Cr)

Oracle AddObject(o∗)

if o ∈ O then return ⊥
O ← O ∪ {o∗}
P ← P ∪ {(o∗, read), (o∗, write)}
y ← {ctr}; ctr ← ctr + 1

fs[o∗][0].pk←$ PKGen(mpk , y)

TT rd[o∗]← y

(sko∗ , vko∗)←$ KeyGen′(1λ)

fs[o∗][0].vk ← vko∗ ; SK [o∗]← sko∗

return (fs, {∅}u∈Cr)

Oracle AssignUser(u∗, r∗)

if u∗ /∈ U ∨ r∗ /∈ R ∨ (u∗, r∗) ∈ UA

then return ⊥
UA← UA ∪ {(u∗, r∗)}
{msgu}u∈Cr ← ∅
(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

x← {RT wr[r] | (u∗, r) ∈ UA}
wdk ← DKGen(mdk , fx)

msgu∗ .wdk ← wdk

if u∗ ∈ Cr then

foreach ((o, write), r∗) ∈ PA :

T [o]← adv

return (fs, {msgu}u∈Cr)

Oracle DeassignUser(u∗, r∗)

if (u∗, r∗) /∈ UA then return ⊥
UA← UA \ {(u∗, r∗)}
{msgu}u∈Cr ← ∅
(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

foreach ((o, write), r∗) ∈ PA :

(sko, vko)←$ KeyGen′(1λ, o)

SK [o]← sko; fs ←$ ReSign(fs, o)

fs[o][0].vk ← vko
y ← {RT wr[r] | ((o, write), r) ∈ PA}
pk ←$ PKGen(mpk , y)

fs[o][0].sk ←$ Enc(pk , sko)

return (fs, {msgu}u∈Cr)

Oracle GrantPerm(p∗, r∗)

if p∗ /∈ P ∨ r∗ /∈ R ∨ (p∗, r∗) ∈ PA

then return ⊥
Parse p∗ as (o∗,mode)

PA← PA ∪ {(p∗, r∗)}
if mode = read then

y ← {RT rd[r] | ((o∗, read), r) ∈ PA}
fs[o∗][0].pk ← PKGen(mpk , y)

fs ←$ ReEnc(fs, o∗)

TT rd[o∗]← ∅
if mode = write then

y ← {RT wr[r] | ((o∗, write), r) ∈ PA}
pk ←$ PKGen(mpk , y)

fs[o∗][0].sk ←$ Enc(pk ,SK [o∗])

if ∃u ∈ Cr : HasAccess(u, p∗) then

T [o∗]← adv

return (fs, {∅}u∈Cr)

Oracle RevokePerm(p∗, r∗)

if (p∗, r∗) /∈ PA then return ⊥
PA← PA \ {(p∗, r∗)}
{msgu}u∈Cr ← ∅
Parse p∗ as (o∗,mode)

if mode = read then

y ← {RT rd[r] | ((o∗, read), r) ∈ PA}
if y = ∅ then

y ← {ctr}; ctr ← ctr + 1

TT rd[o∗]← y

fs[o∗][0].pk ←$ PKGen(mpk , y)

fs ←$ ReEnc(fs, o∗)

(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

if mode = write then

(sko∗ , vko∗)←$ KeyGen′(1λ, o∗)

SK [o∗]← sko∗ ; fs ←$ ReSign(fs, o∗)

fs[o∗][0].vk ← vko∗

y ← {RT wr[r] | ((o∗, write), r) ∈ PA}
pk ←$ PKGen(mpk , y)

fs[o∗][0].sk ←$ Enc(pk , sko∗)

return (fs, {msgu}u∈Cr)

Figure 4.13: Õwrite-2 (part 1)

hiding public keys of PE . Let A be an adversary for Expp2r∗

CRBAC[PE,Σ], we show that an

adversary B for Expid-h-pk
PE can be constructed with the use of A as a subroutine such

that

Advid-h-pk
PE,B (λ) = Advp2r∗−privacy

CRBAC[PE,Σ],A(λ).

78

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Oracle DelObject(o∗)

if o∗ /∈ O then return ⊥
{msgu}u∈Cr ← ∅
foreach (p, r) ∈ PA:

if p ∈ {(o∗, read), (o∗, write)} then

(fs, {msgu}u∈Cr)

←$ RevokePerm(p, r)

O ← O \ {o∗}
P ← P \ {(o∗, read), (o∗, write)}
T [o∗],SK [o∗]← ∅
fs ← EraseRest(fs, o∗, 0)

return (fs, {msgu}u∈Cr)

Oracle Write(u∗, o∗,m)

if ¬HasAccess(u∗, (o, write)) then

return ⊥
i← GetLength(fs, o∗)

ctx ←$ Enc(fs[o∗][0].pk ,m ‖ i+ 1)

fs[o∗][i+ 1].ctx ← ctx

if fs[o∗][0].vk = vk then

Query : sig ← Sign(ctx ‖ i+ 1)

else sig ←$ Sign(SK [o∗], ctx ‖ i+ 1)

fs[o∗][i+ 1].sig ← sig

foreach u ∈ Cr :

if HasAccess(u, (o∗, write)) then

return fs

T [o∗]← m; return fs

Oracle DelUser(u∗)

if u∗ /∈ U then return ⊥
foreach (u∗, r) ∈ UA:

(fs, {msgu}u∈Cr)

←$ DeassignUser(fs, u∗, r)

U ← U \ {u∗}; Cr ← Cr \ {u∗}
return (fs, {msgu}u∈Cr)

Oracle CorruptU(u∗)

if u /∈ U then return ⊥
Cr ← Cr ∪ {u∗}
foreach o ∈ O:

if HasAccess(u∗, (o, write)) then

T [o]← adv

x← {RT rd[r] | (u∗, r) ∈ UA}
rdk ← DKGen(mdk , fx)

x′ ← {RT wr[r] | (u∗, r) ∈ UA}
wdk ← DKGen(mdk , fx′)

return (rdk ,wdk)

FS(query)

if query =“state” then

return fs

if query =“append(info)” then

fs ← fs‖info; return fs

Figure 4.14: Õwrite-2 (part 2)

The idea is, with the access to the oracles of its own game, B can simulate to A the

experiment Expp2r∗

CRBAC[PE,Σ].

We now describe how B works. The simulation that B provides depends on the

random bit b chosen by its own challenger. Upon receiving the master public key mpk

from its challenger, B starts with the simulation of Init to initialise a CRBAC[PE ,Σ].

Here B will not run the setup algorithm of PE but just stores mpk in fs[0][0]. It will

generate the keys by calling its own oracles when needed. B then queries DKGen with

a predicate of the universe of the attribute A = {1, ..., nmax} to obtain a decryption

key dkA. Notice that this key allows B access to all the files encrypted in the system,

therefore B does not need to maintain the list TT rd as specified in the cRBAC scheme.

B then runs A internally and answers to its queries according to the specification of the

oracles in Expp2r∗

CRBAC[PE,Σ].

Whenever B needs to generate the public encryption key for some file, it submits to

its own challenge oracle a pair of the same identities. When A asks to corrupt some

79

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

honest user, B calls DKGen with predicates related to the identities associated to the

user’s roles to obtain the two decryption keys for read and write access respectively

then forwards them to A. If B needs to decrypt some ciphertext of the system (e.g. to

perform a re-encryption of some content), it uses dkA to recover the plaintext.

Finally, when A queries the challenge oracle ChllPA with the query (p, p, r0, r1)

(for p2r∗-privacy, the specified command can only be GrantPerm) where p ∈ P and

r0, r1 ∈ R, the adversary B checks that the query would have been valid in the identity-

hiding public keys experiment. If this is not the case then it answers with an error ⊥.

Otherwise, B queries its own challenge oracle LR with (I0, I1) where Ib = I ∪ {RT [rb]}

with RT can be RT rd or RT wr, depending on the type of p and I is the set of attributes

associated to the roles that have access to the permission p, which is retrieved from RT .

After B receives a response of a public key pk b which is generated according the

random bit chosen in B’s game from LR, if the challenge permission is a read permission,

B updates the corresponding file’s public key with pk b and re-encrypts the last valid entry

of that file. If the permission is a write permission, B re-encrypts the signing key of the

file with pk b. Afterwards, all further oracle calls from A will be ignored.

Whenever A outputs a guess b′, B outputs the same bit. We now argue that the

simulation provided by B is perfect.

First notice that before A calls ChllPA, B is capable of coming up all the required

cryptographic materials. Since B is fully in charge of the signature, it knows all of the

signing keys and therefore can provide all the necessary signatures. Moreover, B is able

to decrypt all the encrypted content of the file system, including signing keys stored in

file headers and also the file contents. In addition, whenever B needs to generate public

key for any file, it queries the oracle PKGen with the appropriate set of attributes to

obtain one.

The details of the adversary B which we construct are as follows.

80

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Adversary B(mpk : PKGen,DKGen,LR)

Cr ,Ch,SK ← ∅

fs,RT rd,RT wr ← ∅; ctr ← 1

foreach r ∈ R:

RT rd[r]← ctr ; ctr ← ctr + 1

foreach r ∈ R:

RT wr[r]← ctr ; ctr ← ctr + 1

Query : dkA ← DKGen(fA)

State ← (∅, ∅, ∅, ∅, ∅); fs[0][0]← mpk

b′←$A(1λ : Õp2r∗)

return b′

In B’s simulation of Expp2r∗

CRBAC[PE,Σ](λ), the auxiliary algorithms ReEnc, ReSign and

RoleUpdate work as follows.

Algorithm ReEnc(fs, o∗)

1 : if o∗ /∈ O then

2 : return fs

3 : i← FindValidEntry(fs, o∗)

4 : if i > 0 then

5 : m← Dec(dkA, fs[o∗][i].ctx)

6 : fs[o∗][i].ctx ←$ Enc(fs[o∗][0].pk ,m ‖ i)
7 : fs[o∗][i].sig ←$ Sign(SK [o∗], fs[o∗][i].ctx ‖ i)
8 : fs ← EraseRest(fs, o∗, i+ 1)

9 : return fs

Algorithm ReSign(fs, o∗)

1 : if o /∈ O then

2 : return fs

3 : i← FindValidEntry(fs, o∗)

4 : if i > 0 then

5 : m← fs[o∗][i].ctx ‖ i
6 : fs[o∗][i].sig ←$ Sign(SK [o∗],m)

7 : fs ← EraseRest(fs, o∗, i+ 1)

8 : return fs

81

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Algorithm RoleUpdate(fs, r∗)

1 : {rdku}u∈Cr ← ∅
2 : RT rd[r∗]← ctr ; ctr ← ctr + 1

3 : foreach ((o, read), r∗) ∈ PA :

4 : y ← {RT rd[r] | ((o, read), r) ∈ PA}
5 : Query : fs[o][0].pk ← LR(y, y)

6 : fs ←$ ReEnc(fs, o)

7 : PK [ctr ′]← fs[o∗][0].pk

8 : ctr ′ ← ctr ′ + 1

9 : foreach u ∈ Cr :

10 : if (u, r∗) ∈ UA then

11 : x← {RT rd[r] | (u, r) ∈ UA}
12 : Query : rdku ← DKGen(fx)

13 : return (fs, {(rdku, ∅)}u∈Cr)

B answers A’s oracle calls as specified in Figure 4.15 and 4.16.

Then we argue that the way B carries out the simulation will not lead to its oracle

returning an error. Recall that, in B’s game, a list Ch is used to record all the pairs of

attribute sets which have been queried to the oracle LR so far. There is also another

list F maintained in the game, which is used to record all the predicates submitted to

DKGen for decryption keys so far. The oracles will not return an error if for all f ∈ F

and all (I ′0, I
′
1) ∈ Ch, it holds that f(I ′0) = f(I ′1).

During the simulation, B calls DKGen for generating decryption keys only with

the universe of attributes and the decryption keys for corrupt users. Thus, the list F

contains a predicate with the universe of attributes and also the predicates associated

to attribute sets of corrupt users’ roles. Before A calls the challenge oracle, B queries

LR only for generating public keys with pairs of identical attribute sets. Therefore, the

list Ch (in B’s game) only contains pairs of same attribute sets at this stage. Thus, for

all f ∈ F, (I ′0, I ′1) ∈ Ch, we have that f(I ′0) = f(I ′1) is always satisfied before A calls

ChllPA.

When A specifies its challenge (p, p, r0, r1) by calling ChllPA, B sends a pair of

attribute sets (I0, I1) to LR, where Ib is the set of attributes related to the roles that

have the permission p after the execution of GrantPerm with (p, rb) individually. From

the specification of LR, it is required that no corrupt user can have either the role r0 or

r1. Thus the attributes associated to the two roles will not exist in any predicate in F .

If there ever exists some corrupt user belonging to any of the two roles, the attribute

will be renewed after the user is deassigned from the role. Moreover, fA(I0) = fA(I1) is

clearly satisfied since A is the universe of attributes.

82

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Oracle AddUser(u∗)

if challd = 1 then return ⊥
if u ∈ U then return ⊥
U ← U ∪ {u∗}
return (fs, {∅}u∈Cr)

Oracle AddObject(o∗)

if challd = 1 then return ⊥
if o ∈ O then return ⊥
O ← O ∪ {o∗}
P ← P ∪ {(o∗, read), (o∗, write)}
y ← {ctr}; ctr ← ctr + 1

Query : fs[o∗][0].pk ← LR(y, y)

(sko∗ , vko∗)←$ KeyGen(1λ)

fs[o∗][0].vk ← vko∗ ; SK [o∗]← sko∗

return (fs, {∅}u∈Cr)

Oracle AssignUser(u∗, r∗)

if challd = 1 then return ⊥
if u∗ /∈ U ∨ r∗ /∈ R ∨ (u∗, r∗) ∈ UA

then return ⊥
UA← UA ∪ {(u∗, r∗)}
{msgu}u∈Cr ← ∅
(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

x← {RT wr[r] | (u∗, r) ∈ UA}
Query : wdk ← DKGen(fx)

msgu∗ .wdk ← wdk

return (fs, {msgu}u∈Cr)

Oracle DeassignUser(u∗, r∗)

if challd = 1 then return ⊥
if (u∗, r∗) /∈ UA then return ⊥
UA← UA \ {(u∗, r∗)}
{msgu}u∈Cr ← ∅
(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

foreach ((o, write), r∗) ∈ PA :

(sko, vko)←$ KeyGen(1λ)

SK [o]← sko; fs ←$ ReSign(fs, o)

fs[o][0].vk ← vko
y ← {RT wr[r] | ((o, write), r) ∈ PA}
else fs[o][0].sk ←$ Enc(pk , sko)

return (fs, {msgu}u∈Cr)

Oracle GrantPerm(p∗, r∗)

if challd = 1 then return ⊥
if p∗ /∈ P ∨ r∗ /∈ R ∨ (p∗, r∗) ∈ PA

then return ⊥
Parse p∗ as (o∗,mode)

PA← PA ∪ {(p∗, r∗)}
if mode = read then

y ← {RT rd[r] | ((o∗, read), r) ∈ PA}
Query : fs[o∗][0].pk ← PKGen(y, y)

fs ←$ ReEnc(fs, o∗)

if mode = write then

y ← {RT wr[r] | ((o∗, write), r) ∈ PA}
Query : pk ← PKGen(y, y)

fs[o∗][0].sk ←$ Enc(pk ,SK [o∗])

return (fs, {∅}u∈Cr)

Oracle RevokePerm(p∗, r∗)

if challd = 1 then return ⊥
if (p∗, r∗) /∈ PA then return ⊥
PA← PA \ {(p∗, r∗)}
{msgu}u∈Cr ← ∅
Parse p∗ as (o∗,mode)

if mode = read then

y ← {RT rd[r] | ((o∗, read), r) ∈ PA}
if y = ∅ then

y ← {ctr}; ctr ← ctr + 1

Query : fs[o∗][0].pk ← PKGen(y, y)

fs ←$ ReEnc(fs, o∗)

(fs, {msgu}u∈Cr)←$ RoleUpdate(fs, r∗)

if mode = write then

(sko∗ , vko∗)←$ KeyGen(1λ)

SK [o∗]← sko∗ ; fs ←$ ReSign(fs, o∗)

fs[o∗][0].vk ← vko∗

y ← {RT wr[r] | ((o∗, write), r) ∈ PA}
Query : pk ← PKGen(y, y)

fs[o∗][0].sk ←$ Enc(pk , sko∗)

return (fs, {msgu}u∈Cr)

Figure 4.15: Õp2r∗ (part 1)

Thus we have, no matter whether the challenge permission specified by A is a write

or a read permission, after the execution of GrantPerm with any of the two speicifed

roles, f(I0) = f(I1) still holds for all f ∈ F . Therefore, all A’s queries will not lead to

B’s oracle return an error.

So we conclude that the simulation provided by B is perfect. In addition, the simu-

83

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

Oracle DelObject(o∗)

if challd = 1 then return ⊥
if o∗ /∈ O then return ⊥
{msgu}u∈Cr ← ∅
foreach (p, r) ∈ PA:

if p ∈ {(o∗, read), (o∗, write)} then

(fs, {msgu}u∈Cr)

←$ RevokePerm(p, r)

O ← O \ {o∗}
P ← P \ {(o∗, read), (o∗, write)}
SK [o∗]← ∅
fs ← EraseRest(fs, o∗, 0)

return (fs, {msgu}u∈Cr)

Oracle Write(u∗, o∗,m)

if challd = 1 then return ⊥
if ¬HasAccess(u∗, (o, write)) then

return ⊥
i← GetLength(fs, o∗)

ctx ←$ Enc(fs[o∗][0].pk ,m ‖ i+ 1 ‖ o∗)
fs[o∗][i+ 1].ctx ← ctx

sig ←$ Sign(SK [o∗], ctx ‖ i+ 1)

fs[o∗][i+ 1].sig ← sig

return fs

Oracle CorruptU(u∗)

if challd = 1 then return ⊥
if u /∈ U then return ⊥
Cr ← Cr ∪ {u∗}
x← {RT rd[r] | (u∗, r) ∈ UA}
Query : rdk ← DKGen(fx)

x′ ← {RT wr[r] | (u∗, r) ∈ UA}
Query : wdk ← DKGen(fx′)

return (rdk ,wdk)

Oracle DelUser(u∗)

if challd = 1 then return ⊥
if u∗ /∈ U then return ⊥
foreach (u∗, r) ∈ UA:

(fs, {msgu}u∈Cr)

←$ DeassignUser(fs, u∗, r)

U ← U \ {u∗}; Cr ← Cr \ {u∗}
return (fs, {msgu}u∈Cr)

ChllPA(Cmd , (p0, p1, r0, r1))

if challd = 1 then return ⊥
if Cmd 6= GrantPerm ∨ p0 6= p1 then

return ⊥
foreach u ∈ Cr :

if (u, r0) ∈ UA ∨ (u, r1) ∈ UA then

return ⊥
Parse p0 as (o,mode)

if mode = read then

y0 ← {RT rd[r] | (p0, r) ∈ PA ∨ r = r0}
y1 ← {RT rd[r] | (p0, r) ∈ PA ∨ r = r1}
Query : fs[o][0].pk ← LR(y0, y1)

fs ← ReEnc(o)

if mode = write then

y0 ← {RT wr[r] | (p0, r) ∈ PA ∨ r = r0}
y1 ← {RT wr[r] | (p0, r) ∈ PA ∨ r = r1}
Query : pk ← LR(y0, y1)

fs[o][0].sk ←$ Enc(pk ,SK [o])

challd← 1

return (fs, {msgu}u∈U)

FS(query)

if query =“state” then

return fs

if query =“append(info)” then

fs ← fs‖info; return fs

Figure 4.16: Õp2r∗ (part 2)

lation is determined by the random bit chosen in B’s own game. Thus, if A guesses the

bit correctly, B guesses it correctly with the same probability, it holds:

Advid-h-pk
PE,B (λ) = Advp2r∗−privacy

CRBAC[PE,Σ],A(λ),

and therefore the theorem is proved.

84

CHAPTER 4. GAME-BASED SECURITY OF CRBAC

4.8 Conclusion

In this chapter, we presented the existing game-based security definitions for cRBAC

systems. More specifically, the existing security definitions from previous work for cor-

rectness and secure read access were both redefine within the extended system model

where access control on write access is supported. We also provide two formal security

defintions for write access: the first one is with respect to secure access and the other

one is closely related to correctness.

One main contribution in this chapter was the formal definition of past confiden-

tiality. As observed from the study in UC framework, there exists a gap between the

existing security definition for secure read access and the specification of the access con-

trol policy being enforced. Therefore, the purpose of defining past confidentiality serves

as an atempt towards briding the gap.

The other main contribution is the rigorous security definition of policy privacy.

When we use cryptographic techniques to enforce access control policies, the information

about the policies might be unintentionally revealed. The security definition allows one

to formally prove that such sensitive information will not be leaked during the system

execution.

Finally, we provided a construction of the cRBAC system based on a novel type

of predicate encryption scheme. The construction is proven to be secure under the

definitions with respect to secure access and to preserve policy privacy to a certain

degree.

85

Chapter 5

UC security of cRBAC

The content of this chapter is adapted from the paper Universally Composable Crypto-

graphic Role-Based Access Control [51]. The work was done in conjunction with Bogdan

Warinschi. I am responsable for providing most of the results which include the security

definition, main theorems and their proofs. For consistency with the previous chap-

ters, the results presented in this chapter have been slightly changed from those in the

published paper.

5.1 Introduction

The security definitions for cRBAC systems presented in the previous chapter use the so-

called game-based approach. The game formalises the interactions between the system

and an attacker against the system and rigorously clarifies what a security breach is (e.g.

as an event occurs during the execution or distinguishability between two executions).

The most significant advantage of definitions defined via this approach is simplicity. It

usually only considers the stand-alone scenarios where the execution environments of

the system are not taken into account, since the game must specify the information that

an adversary can obtain when attacking the system. Therefore, its security guarantee

might not be preserved when the system is employed in those environments along with

unforeseen security threats. Moreover, for complex systems like cRBAC, it is always

difficult to exhaustively enumerate the different security properties we desire from the

system. Sometimes we may not even sure whether the proposed security definitions

appropriately capture the desired security requirements or not.

In this chapter, we consider a definitional alternative, called simulation-based ap-

proach, that does not suffer from the above shortcomings mentioned above. Under

86

CHAPTER 5. UC SECURITY OF CRBAC

this paradigm, security is defined by comparing a system with an idealised version and

demands that the real execution of a system reveals at most as much information is

revealed by an ideal version of the system. As a consequence, the real system inherits

all of the security properties of the ideal one, so there is no need to enumerate security

properties separately. One important class of simulation-based security considers exe-

cutions determined by an arbitrary environment (tasked, e.g. to provide inputs to and

obtain outputs from the system), so security in this sense is composable in the sense

that it is preserved in any environment in which the system is employed [12, 40, 48].

Unfortunately, simulation security is often difficult to establish and imposes stringent

restrictions on the implementations which rule out constructions with no obvious weak-

ness or, at the very least, require inefficient realisations [14, 54]. So far the only attempt

to provide a simulation-based security definition for access control systems is the work

of Halevi et al. [38]. They proposed a security security definition for access control in a

specific distributed file storage system rather than a general model.

5.1.1 Our results

Security definition. Our first result is a universally composable security definition of

cRBAC systems. The expected security guarantees are captured by ideal functionality

named Fcrbac, which simply behaves as a server-mediated access control on the files

being protected. Only authorised access request from users will be granted. This essen-

tially requires that a cRBAC implementation should enforce the expected semantics of

RBAC system [60].

Relation with existing definitions. Next, we study the relation between the exis-

tent game-based security definitions and the level of security that our definition entails.

It is generally believed that, for the same cryptographic task, simulation-based security

is stronger than game-based security, even if only because the former is supposed to

capture all of the security properties expected of a system. As expected, we show that

our definition is strictly stronger than the two existing game-based security definitions:

secure read access (introduced in [28]) and secure write access (introduced in [27]).

Lower-bound for UC-secure cRBAC. Our main result is a gap between simulation-

security and game-based security. More precisely, we show that it is impossible for a

cryptographic RBAC system to be UC-secure. In technical terms, we show that the

so-called commitment problem [14] occurs in the context of access control. Roughly,

87

CHAPTER 5. UC SECURITY OF CRBAC

the problem is that the simulator required by the security definition needs to produce

valid looking encryptions of the objects that are protected without actually knowing the

actual content of these objects (e.g. files). The problem is that when the adversary gains

access to such a file (e.g. by corrupting a user who has access to this file), the simulator

needs to produce a decryption key that explains the ciphertext as an encryption of some

particular content which the simulator did not know when the ciphertext was created.

The commitment problem is usually due to adaptive corruption of parties, in access

control the problem can also be due to the transient access to files as parties gain and

lose access to files depending on administrative commands. Apart from this, in access

control adaptive party corruption is more significant since the party corruption can be

motivated by change on the access control policy. Therefore, while the commitment

problem can sometimes be waved away whenever adaptive corruption is not a concern,

in cryptographic access control the problem seems inherent and posses severe limitations

if one aims for simulation-based security.

To summarise, in this chapter we make the following contributions:

• We propose a formal security definition for cRBAC in the UC framework.

• We study the relation between the UC definition and two existing definitions

presented in Chapter 4.

• We show a lower bound for UC-secure cRBAC systems with adaptive corruption.

5.2 A UC Security Definition for cRBAC

In this section, we present a universally composable security definition for cRBAC sys-

tems. We formalise the security requirements by designing an ideal functionality Fcrbac.

5.2.1 Functionality FCRBAC

The ideal functionality we present in Figure 5.1 captures the intuitive security properties

of cRBAC systems in the way of simply behaving as a server-mediated access control on

the files being protected. Very roughly, Fcrbac keeps track of every operation performed

on the system and maintains the induced access control matrix within, while it preserves

that only the authorised access requests will be granted. This is achieved by having

Fcrbac maintain a built-in database to store the content of every file, along with a

symbolic RBAC state of the system. Then it handles every access request according to

88

CHAPTER 5. UC SECURITY OF CRBAC

Functionality Fcrbac

Fcrbac proceeds as follow, with a manager M , users u1, ..., un and an adversary S.

Initialisation: Upon receiving an input (Initialisation, sid,R) from M where R
is a set of roles, send (Initialisation, sid,R) to S, initialise an
object-indexed list FS ← ∅ and the symbolic RBAC state
(U,O, P,PA,UA)← (∅, ∅, ∅, ∅, ∅). After that, mark the system as initialised
and ignore all the inputs of the form (Initialisation, sid,R′) for any R′

from now on.

RBAC administration: Upon receiving an input (RBAC, sid,Cmd , arg) from M
where Cmd is one of the administrative RBAC commands specified in
Figure 2.2 and arg is the command-specific arguments, proceed as follows: if
the system has not yet been initialised, or ¬IsValid(Cmd , arg) holds, return an
error. Otherwise, execute the RBAC command symbolically by
(U,O, P,UA,PA)← Cmd((U,O, P,UA,PA), arg). If Cmd = DelObject and
arg = o, also delete the content stored in FS [o]. Then send
(RBAC, sid,Cmd , arg) to S.

Write: Upon receiving an input (Write, sid, o,m) from some party P where o is an
object and m is some content, returns an error if the system has not been
initialised. If P is some user u such that HasAccess(u, (o, write)) is not
satisfied, returns an error; otherwise, set FS [o]← m. If there exists a corrupt
user u′ ∈ U such that HasAccess(u′, (o, read)), send a message
(Wrote, sid, o,m) to S; otherwise, send (Wrote, sid, o, |m|) instead, where |m|
is the length of m.

Read: Upon receiving an input (Read, sid, o) from some user u where o is an
object, if the system has not been initialised or HasAccess(u, (o, read)) is not
satisfied, return an error; otherwise, set m← FS [o] (if FS [o] stores no content
then set m as an empty value). If there exists a corrupt user u′ ∈ U such that
HasAccess(u′, (o, write)), send a message (Choose-value, sid, u, o) to the
adversary. Upon receiving a message (Value, sid,m′) from S, set m = m′;
upon receiving a message (Proceed, sid) from S, it does not change the value
of m. Then return m to u.

Corruption: Fcrbac is a standard corruption ideal functionality, with the
exception that any request for corrupting M will be ignored.

Figure 5.1: Ideal functionality for cryptographic Role-Based Access Control, Fcrbac.

the RBAC state.

More specifically, Fcrbac embodies the essential interfaces of a cRBAC system, in-

cluding system initialisation, RBAC administration and read/write access to the file

system. It proceeds as follows. Having received an initialisation request with a set of

roles R from the manager M , Fcrbac initialises an object-indexed list FS and the sym-

bolic system RBAC state. Then it notices the adversary that the access control system

is initialised with the set of roles R. Once Fcrbac is initialised, it ignores the other

89

CHAPTER 5. UC SECURITY OF CRBAC

initialisation request afterwards. Having received a request of executing an adminis-

trative RBAC command from M , Fcrbac checks if the execution of command and its

arguments specified in the request is valid. If so, it executes the command symbolically

and updates the maintained system RBAC state. The administrative RBAC command

can be either of the commands presented in Section 2.7. Having received a request to

write some content m on a file o from some party P , if P is a user and it has the write

permission of o or P is the manager, Fcrbac stores m in FS [o] and leaks the file name

o and the length of m to the adversary. Otherwise, it returns an error. Having received

a request to read the content of a file o from some party P , if P is a user and it has the

read permission of o or P is the manager, Fcrbac sets m as the content stored in FS [o].

If FS [o] stores no content, m is set to be the empty string ε. In the case that there

exists a corrupt user who has the write permission of o, Fcrbac asks the adversary for

providing the file content that u can read. If S provides a value m′, Fcrbac replaces the

value of m by m′. Then Fcrbac returns m to u. Fcrbac is a standard corruption ideal

functionality, with an exception that the manager M cannot be corrupted. It captures

the reasonable trust on the manager to administrate the access control system.

Several remarks on Fcrbac are in order. First, Fcrbac is an ideal functionality for

cryptographic enforcement of (core) role-based access controls. Due to the purpose of

studying the relation between the existing game-based security notions, Fcrbac does not

handle any administrative command of adding a new role to the system or removing an

existing role from it. Second, Fcrbac only guarantees secure access to the file system

and preserves no policy privacy (when handling an administrative request, it simply

reveals the command and its arguments to the adversary). There are still some design

choices available on policy privacy preserving (e.g. only leaking the executed command

but not its arguments to the adversary), which is left as further study. Third, Fcrbac

makes no explicit restriction on the form of the file system. Moreover, the file system is

not designed as an individual party of the system. Thus in a real-world cRBAC system,

the file system should be implemented by the protocol itself. It also captures that the

file system does not implement any access control mechanism. Fourth, Fcrbac does not

have any authentication mechanism on the parties’ identities. The authentication is left

to the protocols that make calls to Fcrbac.

90

CHAPTER 5. UC SECURITY OF CRBAC

5.2.2 The Associated Protocol

Before presenting our definition of universally composable cRBAC system, we first need

to transform a cRBAC scheme CRBAC = (Init, AddUser, DelUser, AddObject, DelObject,

AssignUser, DeassignUser, GrantPerm, RevokePerm) into an associated protocol ΠCRBAC in

the UC setting. Recall that in a cRBAC system, private channels are assumed between

the manager and the users. To model this, we let the parties have access to Fsmt, the

ideal functionality of secure message transmission which is presented in Figure 2.1. Also,

CRBAC makes use of a public-accessible versioning file system. This is modelled by an

appropriate functionality Fvfs which is presented in Figure 5.2.

The ideal functionality Fvfs proceeds with a set of users and a data manager. Essen-

tially, it serves as an ideal versioning file system which guarantees the correct ordering

of the file versions. The users can “write” to the file system by appending new versions

to the files instead of overwriting existing contents. The data manager is provided with

richer interfaces: it can remove and even rewrite some existing version of a file. All the

users in the system can check the current state of the file system by providing a status

request to Fvfs. In implementation, the state of the file system would be a bitstring

which consists of an array of (possibly encrypted) files; while in Fvfs, it is presented as a

list of entries with no loss of generality. When any change happens to the file system, the

ideal functionality reveals the change to the adversary and also notices the users about

the change. These reflect the public-accessible feature of the file system. In addition,

any write operation to the file system is done in an anonymous manner, Fvfs will not

reveal information about the identity of the party who carries out the write operation.

To simplify the protocol presentation, we define the following shorthand notations.

When a party runs an cRBAC algorithm, it may generate a set of order-preserving

instructions to be carried out on the file system. We use {infoi}i∈N to denote such a set

of instructions. If the party is the manager, each instruction infoi ∈ {infoi}i∈N can be

either (Write, sid, o, ver, c) or (Remove, sid, o, ver), where sid is the session id of Fvfs.

If the party is a user, it can only be the form (Write, sid, o, c). A party may also need

to come up with a set of order-preserving instructions {infofs→fs′

i }i∈N such that after

carrying out the instructions on the file system in order, the current state of the file

system fs would become fs ′. We say a party sends {infoi}i∈N (or {infofs→fs′

i }i∈N) to

Fvfs, it means the party provides every instruction infoi of the set as the input to Fvfs

in order.

We now present the associated protocol ΠCRBAC (in Figure 5.3) and define universally

91

CHAPTER 5. UC SECURITY OF CRBAC

Functionality Fvfs

Fvfs proceeds as follows, running with users u1, ..., un, a file system manager M and
an adversary S. At the first activation Fvfs initialises a list L to be empty.

Status: Upon receiving an input (Status, sid) from a party P , output
(Content, sid, L) to P .

Write (user): Upon receiving an input (Write, sid, o, c) from some user u, if no
record r ∈ L of the form (sid, o, ·, ·) exists, set L← L ∪ {(sid, o, 1, c)} and set
ver = 1; otherwise, set L← L ∪ {(sid, o, verm + 1, c)} and set ver = verm + 1,
where verm = max({ver|(sid, o, ver, ·) ∈ L}). Then send (Wrote, sid, o, ver, c)
to S, and send (Updated, sid) to every user.

Write (manager): Upon receiving an input (Write, sid, o, ver, c) from M , if a
record r ∈ L of the form (sid, o, ver, ·) exists, modify r as (sid, o, ver, c);
otherwise, set L← L ∪ {(sid, o, ver, c)}. Then send (Wrote, sid, o, ver, c) to S
and send (Updated, sid) to every user.

Remove: Upon receiving an input (Remove, sid, o, ver) from M , set
L← L \ {(sid, o, ver, c)}. Then send (Removed, sid, o, ver, c) to S and send
(Updated, sid) to every user.

Figure 5.2: Ideal functionality for versioning file storage, Fvfs.

composable cRBAC system.

Now we can define UC security of cRBAC systems.

Definition 13. A cRBAC system defined by the scheme CRBAC = (Init, AddUser,

DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm, RevokePerm, Read,

Write, Update) is UC-secure if the associated protocol ΠCRBAC securely realises Fcrbac

in (Fvfs,Fsmt)-hybrid model and in the setting that the manager never gets corrupted.

5.3 UC security is stronger than Game-Based Security

Based on the transformation above, we now study the relation between UC security

and two existing game-based security definitions: secure read access (Definition 8) and

secure write access (Definition 10). We treat security of read access separately from that

of write access.

Theorem 7. Any cRBAC system defined by the scheme CRBAC = (Init, AddUser,

DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm, RevokePerm) which

is UC-secure (in (Fvfs,Fsmt)-hybrid model) is secure with respect to write access.

Proof. We prove this theorem by showing that if a cRBAC system which is not secure

with respect to write access, then it cannot be UC-secure. Assumes that a cRBAC sys-

92

CHAPTER 5. UC SECURITY OF CRBAC

The Protocol ΠCRBAC

The participants: a manger M and a set of users u1, ..., un.

Initialisation: Upon receiving an input (Initialisation, sid,R) where R is a set
of roles, M computes (stM , fs, {msgu}u∈U)←$ Init(1λ, R). It then invokes an
instance of Fvfs as the data manager with session id (M, sid), parses fs as
{infoi}i∈N and sends {infoi}i∈N to Fvfs. If {msgu}u∈U is non-empty, M sends
msgu to every user u using Fsmt.

Administration: Upon receiving an input (RBAC, sid,Cmd , arg) where Cmd can
be either of the administrative commands specified in Session 2.7 and arg is
the arguments of the command. If IsValid(Cmd , arg) holds, M sends
(Status, (M, sid)) to Fvfs to obtain (Content, sid, fs) and then computes
(st ′M , fs

′, {msgu}u∈U)←$ cmd(stM , fs, arg), where cmd is the algorithm that
implements the administrative command Cmd . M sets stM ← st ′M , and then

comes up with {infofs→fs′

i }i∈N. If {infofs→fs′

i }i∈N is non-empty, M sends

{infofs→fs′

i }i∈N to Fvfs. If {msgu}u∈U is non-empty, M sends msgu to every
user u using Fsmt.

Update: Upon receiving a message (Update, sid,msgu) from M , a user u computes
st ′u←$ Update(stu,msgu), where stu is u’s local state (stu is an empty value
when u receives the first update message from M). Then it sets stu ← st ′u.

Write: Upon receiving an input (Write, sid, o,m), a user u sends (Status, (M, sid))
to Fvfs to get (Content, sid, fs) and computes fs ′←$ Write(stu, fs, o,m). Then

u comes up with {infofs→fs′

i }i∈N and sends it to Fvfs.

Read: Upon receiving an input (Read, sid, o), a user u sends (Status, (M, sid)) to
Fvfs to get (Content, sid, fs) and then outputs (Read, sid,Read(stu, fs, o)).

Figure 5.3: The Protocol ΠCRBAC in (Fvfs,Fsmt)-hybrid model.

tem defined by the scheme CRBAC is not secure with respect to write access, then there

exists an adversary AW which can win in the game that defines secure write access with

non-negligible probability. We show that given such an adversary, an environment Z

can be constructed to distinguish its interactions with the associated protocol ΠCRBAC

and a dummy adversary D, from the interactions with the ideal process for Fcrbac and

a simulator S with non-negligible probability. Due to the subroutine respecting require-

ment, for simplicity, we make a mild assumption that in the experiment Expwrite
CRBAC,AW

,

the adversary can append contents to a file by calling FS only when there exists some

corrupt user in the system. It restricts that the file system is publicly acceesible only to

the users in the system.

We now describe how Z works. During its execution, Z maintains three lists: an

object-indexed list T for recording the last valid file contents written by users, fs for

recording the current state of the file system and Cr for recording the corrupt users.

93

CHAPTER 5. UC SECURITY OF CRBAC

Z first activates the manager M with an input (Initialization, sid,R), where sid is

an arbitrary string and R is a random set of roles, to initialise the cRBAC system. It

then obtains a sequence of messages regarding the changes on Fvfs (via the dummy

adversary D who just simply delivers the messages) and updates fs accordingly so that

fs is identical to the list L maintained by Fvfs. Then Z runs a local copy of AW and

starts to simulate Expwrite
CRBAC,AW

as follows.

1. When AW asks for executing any RBAC command Cmd with arguments arg , if the

execution of Cmd with arg is valid, Z activatesM with an input (RBAC, sid, cmd , arg)

and updates fs according to the messages received from Fvfs (via D). If the exe-

cution of the command will lead to any user in the list Cr has the write permission

of any file o, Z sets T [o] as a special value adv. If M sends update messages to the

corrupt users when executing the command, Z will receive the update messages

(via D) and then forward them to AW . In addition, if AW requests to delete

some user which is in the list Cr , Z removes this user from Cr after executing the

command. If AW requests to delete some file o, the content in T [o] will be also

deleted. Finally, Z hands fs to AW .

2. When AW requests an honest user u to write some content m to a file o, if u does

not have the write permission of o, Z returns an error; otherwise Z activates u

with an input (Write, sid, o,m) and updates fs according to the messages received

from Fvfs (via D). Then Z hands fs to AW . If there exists no user in the list Cr

that has write access to o, Z sets T [o] as m.

3. When AW requests for corrupting a user u, Z corrupts u (via D) and forwards

the obtained local state to AW . For every file o to which u has write access, Z

sets T [o] as the special value adv. Then it adds u to Cr .

4. When AW queries the current state of the file system, Z hands fs to AW .

5. When AW requests to update the file system with some information info, Z parses

info as (o, c), where o is a file name and c is the content to be appended to the file

system. Z chooses a corrupt user u and sends u a message (via D) to let it provide

an input (Write, sid′, o, c) to Fvfs, where sid′ is the session id of Fvfs. Then Z

updates the fs according to the messages received from Fvfs and hands it to AW .

If such a corrupt user u does not exist, Z just returns an error.

6. When AW outputs a target file o∗, Z activates M with (Read, sid, o∗) to obtain

94

CHAPTER 5. UC SECURITY OF CRBAC

the output m. If both T [o∗] 6= adv and T [o∗] 6= m are satisfied, Z outputs 1;

otherwise it outputs 0.

We now discuss Z’s outputs in the two worlds separately. In the case that Z interacts

with real-world execution of ΠCRBAC and D, from AW ’s perspective, Z’s simulation is

indistinguishable from the real experiment. Therefore, by assumption AW should have

written some valid content to the file system without having the permission with non-

negligible probability. Hence Z will output 1 with the same probability.

If Z interacts with the ideal process for Fcrbac and S, we show that Z will always

output 0 since AW can never win in this case. First recall that, in order to win the write

security game, when AW terminates with an output o∗ the following two conditions

must hold: (1) T [o∗] must not equal to the special value adv (the experiment maintains

an invariant that if there exists any corrupt user has the write permission of some file

o, the list T [o] must be the special value adv) and (2) the current content of o∗ (read

by M) must be different from the record in T [o∗]. Next we discuss that the above two

winning conditions cannot be both satisfied when AW generates its output.

Suppose that condition (1) holds when AW outputs o∗. Since T [o∗] 6= adv, T [o∗]

can be one of the two possible values, either an empty value ε or the content written

by the last operation to o by some honest user who has the write permission (otherwise

Z will not record that in T [o∗]). In the first case, T [o∗] is an empty value implies that

Z has not yet handled any write request to o∗ since the recent initialisation of o∗ (o∗

might have been deleted before but it is added back to the system later). Therefore,

the value of FS [o∗] in Fcrbac would be also an empty value. From the specification of

Fcrbac, it is clear that when Z activates M with the input (Read, sid, o∗), it will obtain

the content stored in FS [o∗] which is the empty value here. Thus we have, the content

read by u must equal to the record in T [o∗] in this case. For the other possibility, if

T [o∗] equals to the content m which is written by the last write operation to o by some

honest user, Z should have activated that user with an input (Write, sid, o∗,m) when

AW requests for this write operation. Once Fcrbac receives such an input, it stored m

in FS [o∗]. Then when Z activates the manager with an input (Read, sid, o∗), Fcrbac will

always return m in this case, Thus the content read by M also equals to the record in

T [o∗].

So, if T [o∗] 6= adv, T [o∗] must equal to the content read by the manager, which

means the two winning conditions can never be both satisfied. Thus, if Z interacts with

the ideal process for Fcrbac and S, AW can never win in the simulated experiment and

95

CHAPTER 5. UC SECURITY OF CRBAC

Z will output 1 with probability 0.

Finally, it can be concluded that Z’s outputs in the two worlds differ by a non-

negligible amount, which means ΠCRBAC does not securely realise Fcrbac and the theorem

is proved.

Theorem 8. Any cRBAC system defined by the scheme CRBAC = (Init, AddUser,

DelUser, AddObject, DelObject, AssignUser, DeassignUser, GrantPerm, RevokePerm) which

is UC-secure (in (Fvfs,Fsmt)-hybrid model) is secure with respect to read access.

Proof idea. The proof idea of this theorem is analogous to Theorem 7’s. Given an

adversary AR that breaks read security of the cRBAC system defined by the scheme

CRBAC with non-negligible probability, an environment Z can be constructed to tell its

interactions with the execution of ΠCRBAC and a dummy adversary from the interactions

with the ideal process for Fcrbac and a simulator. Similarly, Z runs a local copy of

AR and simulates to it the experiment Expread
CRBAC,AR

. Z first selects a random bit

b←$ {0, 1}. When AR specifies his challenge, Z writes to the file according to the value

of b. Then Z transforms every query from AR, which will not lead to any corrupt user

can get read access to any challenge file, into appropriate inputs being provided to the

parties and the adversary.

In the case that Z is interacting with the real-world execution of ΠCRBAC and D, from

AR’s perspective, Z’s simulation would be identical to the real experiment. Therefore,

by assumption on AR, Z outputs 1 with probability significantly greater than 1
2 . If Z

is interacting with the ideal process for Fcrbac and S, from the specification of Fcrbac,

we can infer that the only way that AR can learn some partial information about the

contents of the files is to retrieve them via the authorised users. However, Z prevents all

the corrupt users from being granted the read permission of any challenge file. Therefore

AR will not be able to learn any partial content of the challenge files which means the

best it can do is to output a random guess. Thus, Z outputs 1 with probability 1
2 in

this case.

Finally, it can be concluded that Z would be able to distinguish its interactions in

the two worlds with non-negligible probability, which means ΠCRBAC does not securely

realise Fcrbac in Fvfs,Fsmt-hybrid model and therefore is not UC-secure. The proof

of this theorem is also under the assumption that in the experiment Expread
CRBAC,AR

, the

adversary can append contents to a file on its own only when there exists some corrupt

user in the system.

96

CHAPTER 5. UC SECURITY OF CRBAC

Functionality Fnce

Fnce works as follows. It interacts with a message sender PS , a receiver PR and an
adversary S.

Pre-processing phase: Upon receiving an input (Init, sid, PR) from PS , send
(Init, sid, PS) to PR and send (Init, sid, PS , PR) to S. After that, mark the
channel as established.

Communication phase: Upon receiving an input (Send, sid, PR,m) from PS , if
the channel has not been established, ignore this input. Otherwise, deliver the
message (Send, sid, PS ,m) to PR and reveal (Sent, sid, PS , PR, |m|) to S,
where |m| is the length of the message.

Corruption: Upon receiving (Corrupt, sid, P) from S where P ∈ {PS , PR}, reveal
m to S. If P = PS and the message has not yet been delivered to PR, ask S
for a value m′ then output (Sent, sid, PS ,m

′) to PR.

Figure 5.4: Ideal functionality for non-committing encryption, Fnce (adapted from [69]).

5.4 Impossibility of UC-secure cRBAC

In this section we present our main result. We show that the level of security demanded

by a UC-secure cRBAC system cannot be achieved, even in a setting where the cRBAC

system has access to an idealised file system and secure channels between all parties are

assumed. Our impossibility result is in a setting where the adversary can adaptively

corrupt honest protocol participants.

Theorem 9. In the (Fvfs,Fsmt)-hybrid model, there exists no UC-secure cRBAC system

with adaptive corruptions.

Proof: Our proof consists of two steps. First, we show that the existence of any UC-

secure cRBAC system implies the existence of a universally composable non-interactive

communication protocol (NICP). Specifically, we provide a generic construction of a

NICP that securely realises the functionality Fnce of non-committing encryption (which

is presented in Figure 5.4), from any UC-secure cRBAC system. Next, we argue that

the resulting communication protocol in fact cannot securely realise Fnce – this step is

an extension of a well-known result by Nielsen, to a setting where parties have access

to a secure file system and secure channels. Thus, it contradicts the existence of the

UC-secure cRBAC systems.

We start by describing the generic construction for the universally composable NICP.

Recall that based on our transformation, the associated protocol of a cRBAC scheme

works in the (Fvfs,Fsmt)-hybrid model and in a setting that the manager never gets

97

CHAPTER 5. UC SECURITY OF CRBAC

The Protocol Πnicp

The participants: a message sender PS , a receiver PR and a trusted party M namely
the manager.

Pre-processing phase. M establishes the communication channel for PS and PR.
In this stage, some content might be written to Fvfs for the channel set-up.

1. Upon receiving an input (Init, sid, PR), PS sends (Init, sid, PR) to M using
Fsmt.

2. Upon receiving a message (Init, sid, PR) from PS , M selects a random role r
and computes (stM , fs, {stuS , stuR})←$ Init(1λ, {r}), where uS and uR are two
users to be added to the system. It initialises two lists msgS ← stuS and
msgR ← stuR . M then invokes an instance of Fvfs with session id (M, sid) as
the data manager and parses fs as {infoi}i∈N. If {infoi}i∈N is non-empty, M
sends {infoi}i∈N to Fvfs. After that, M runs a sequence of algorithms which
implement the related administrative RBAC commands to add two users uS ,
uR and an object o to the system, to grant the write permission of o to uS via
the role r and to grant the read permission of o to uR via r. The run of any of
the algorithms might lead to the file system’s current state fs gets updated to

fs ′. If so, M comes up with {infofs→fs′

i }i∈N and sends it to Fvfs. Whenever an
update message msg for uS (uR resp.) is generated, M appends it to the list
msgS (msgS resp.). Finally, after the run of the algorithms M sends
(Update, sid,msgS) to PS and sends (Update, sid,msgR) to PR using Fsmt.

3. Upon receiving a message (Update, sid,msgX) from M where X ∈ {S,R}, the
party PX updates its local state by running the update algorithm
stX ←$ Update(stX ,msg) on each update message msg ∈ msgX in order.

Communication Phase. Once the channel has been established, PS can send
arbitrarily many messages to PR via Fvfs.

1. Upon receiving an input (Send, sid, PR,m), PS sends (Status, (M, sid)) to
Fvfs to get (Content, (M, sid), fs), and then computes

fs ′←$ Write(stS , fs, o,m). Next, PS comes up with {infofs→fs′

i }i∈N and sends it
to Fvfs.

2. Upon receiving an subroutine output (Updated, (M, sid)) from Fvfs, PR sends
(Status, (M, sid)) to Fvfs to get (Content, (M, sid), fs), and then outputs
m′ ← Read(stR, fs, o).

Figure 5.5: The Protocol Πnicp in (Fvfs,Fsmt)-hybrid model.

corrupted, the resulting communication protocol therefore works in the same hybrid

model and makes use of such a trusted party in a restricted way.

The communication protocol involves a message sender, a receiver and a trusted

party namely the manager. We demand that there exists no direct communication

channel between the sender and the receiver. They have to communicate with each

other in an indirect way: after a pre-processing phase in which the manager interacts

with the other two parties over secure channels to establish the communication, the

98

CHAPTER 5. UC SECURITY OF CRBAC

sender can send messages to the receiver by writing to the file system and then the

receiver performs read operations to get the messages. Notice that the read operation

will not make any change to the file system, and the manager only works in the pre-

processing phase and does not involve in the communication phase. The communication

protocol in fact requires no interaction between the sender and the receiver. Hence it

can be considered as non-interactive.

More specifically, let CRBAC = (Init, AddUser, DelUser, AddObject, DelObject,

AssignUser, DeassignUser, GrantPerm, RevokePerm, Update, Write, Read) be the cRBAC

scheme that defines the UC-secure cRBAC system. We denote the NICP by Πnicp and

present it Figure 5.5.

Then we show that Πnicp securely realises Fnce in the (Fvfs,Fsmt)-hybrid model.

By assumption, the system cRBAC is UC-secure implies that there exists a simulator

S such that no environment can tell with non-negligible probability whether it inter-

acts with the parties running ΠCRBAC in the (Fsmt,Fvfs)-hybrid model and a dummy

adversary D, or it interacts with the ideal process for Fcrbac with S. Then we give the

construction of the simulator Snce for Πnicp as follows. Snce internally runs an instance

of S. Then it interacts with S as the environment and simulates to S the ideal process

for Fcrbac. It proceeds as follow.

1. Simulating the pre-processing phase. Upon receiving from Fnce a mes-

sage (Init, sid, PS , PR), Snce selects a random role r. It then simulates the pre-

processing phase by sending messages to S sequentially in the name of Fcrbac

indicating that the cRBAC system is initialised with a role r, two users uS and

uR, an object o are added to the system, uS is granted the write permission of

o via the role r and uR is granted the read permission of o via r. When the

environment requests Snce to provide any information that it can obtain during

this phase including the length of any final update message sent by the manager

in Πnicp and any content written to Fvfs, Snce instructs S to provide the related

information and hands it to the environment appropriately.

2. Simulating the communication phase. Upon receiving from Fnce a message

(Sent, sid, PS , PR, |m|), Snce sends (Wrote, sid′, o, |m|) in the name of Fcrbac to S,

where sid′ = (M, sid). When the environment requests Snce to report the content

written to Fvfs, Snce instructs S to report such content and forwards it as its

output appropriately.

99

CHAPTER 5. UC SECURITY OF CRBAC

3. Party corruption. When the environment instructs Snce to corrupt PS (PR

resp.), Snce delivers the corruption message to Fnce and also requests S to corrupt

uS (uR resp.). If the corruption happens after PS has ever sent some message to

PR, Snce will also obtain the messages sent so far from Fnce. Then it provides the

obtained information to S in the name of Fcrbac. Once S outputs the internal

state of the corrupt party, Snce forwards it to the environment. After that, any

message provided by the environment to the corrupt party would be modified as the

message for uS (uR resp.) accordingly and forwarded to S (e.g. if the environment

instructs the corrupt sender to send some message c, Snce then instructs S to write

the message c to the file o on behave of uS). Any request from the environment

to corrupt the manager will be ignored.

We briefly analyse the validity of Snce. Suppose there exists an environment Z which

can tell its interactions with parties running Πnicp in the (Fvfs,Fsmt)-hybrid model and

a dummy adversary, from the interactions with the ideal process for Fnce and Snce with

non-negligible probability. We show that an environment Z ′ can be constructed to tell

whether it is interacting with parties running ΠCRBAC in the (Fvfs,Fsmt)-hybrid model

and a dummy adversary or the interactions with the ideal process for Fcrbac and the

simulator S with non-negligible probability. The main idea is that Z ′ runs an internal

copy of Z towards which it simulates the view of the ideal process for Fnce and the

simulator Snce. The simulation depends the information that Z ′ can obtain during the

protocol execution. From the construction of Snce above, it can be inferred that every

instruction for Snce can be broken down to corresponding instructions to S. Also, for

the inputs that Z provides to the dummy parties in the ideal process for Fnce, Z ′ can

modify them appropriately and provide to the parties it interacts with. Hence we have

the simulation Z ′ provides to Z is perfectly identical to the view which Z expects to see.

Then by assumption, Z can tell its interactions in the two worlds with non-negligible

probability, and so can Z ′ in this case. Thus, S cannot be a valid simulator for ΠCRBAC

which reaches a contradiction. So if S is a valid simulator for ΠCRBAC , Snce is also a

valid simulator for Πnicp and therefore Πnicp securely realises Fnce in (Fvfs,Fsmt)-hybrid

model.

Now we argue that in fact such a simulator S does not exist. In [54], it has been

shown that no NICP that securely realises Fnce exists in the plain model. However,

we cannot apply directly that result to complete our proof, since Πnicp makes use of

Fvfs and Fsmt, albeit in a restricted way. Nonetheless, we show that under these usage

100

CHAPTER 5. UC SECURITY OF CRBAC

restrictions, we can extend Nielsen’s result to our setting.

Since Πnicp securely realises Fnce in the (Fvfs,Fsmt)-hybrid model, it allows the

sender to send arbitrarily many messages to the receiver non-interactively (e.g. by per-

forming write operations to the file system). Any real-world adversary that attacks the

protocol cannot obtain more than the length of the transmitted message. Consider the

following environment Z. After the communication is established between the message

sender PS and the receiver PR, Z activates PS with an input (Send, sid,m) and requests

the adversary to report the content c that has been written to some file o of Fvfs. Once Z

obtains c, it instructs the adversary to corrupt PR to obtain its internal state stR. Then

Z produces the current state of the file system from the update information provided by

the adversary as fs and computes m′ ← Read(stR, fs, o). By assumption Z should have

m′ = m except for negligible probability. Then we consider the ideal-world case, the

simulator Snce should be able to come up with c given the length of m by Fnce, and later

it should be able to provide the internal state stR which is consistent to the transmitted

message c when m is available by the time PR is corrupt. Notice that the ideal function-

ality Fnce guarantees correctness on the transmitted message, which means for every

message sent by the sender, the receiver should be able to recover the original message

except for negligible probability. Hence for Πnicp, there should not exist any local state

of the receiver that allows it to decrypt any written content to the file system into two

different messages with non-negligible probability each. Otherwise an environment can

distinguish its interactions in the two worlds with non-negligible probability. Thus if we

fix a file version c, there exists an injective mapping from the underlying messages to

the local state of the receiver, which implies that the number of possible internal states

stR of PR should be at least the same as the number of the possible messages. Notice

that the only way PR can receive the message from PS is to execute the Read algorithm

to retrieve the current content of o from the file system. The injective mapping will not

be affected by executing read operations since (by assumption) Read updates neither

the file system nor the local state of PS . Therefore it is impossible for PR to use the

unchanged local state to receiver arbitrary many messages from PS . Thus we can con-

clude that Πnicp does not securely realise Fnce in the (Fvfs,Fsmt)-hybrid model, which

contradicts the existence of the simulator S. Hence there exists no UC-secure CRBAC

(in the (Fvfs,Fsmt)-hybrid model) with adaptive corruptions.

101

CHAPTER 5. UC SECURITY OF CRBAC

5.5 Conclusion

In this chapter, we present the first security definition for cRBAC systems in the UC

framework. Our approach should work for any other model that benefits from a precise

semantics with an induced access control matrix. We study the relation between the our

security definition and the two existing game-based definitions with respect to secure

access, which are presented in the previous chapter. Moreover, we show an impossibility

result that no cRBAC system can be UC-secure with adaptive corruptions.

From the above results, we can observe that there is a gap between the two types

of security definitions for cRBAC systems. Recall that in [27], the construction of

cRBAC system is proven to be secure with respect to both read and write access. Thus,

UC security of cRBAC systems is strictly stronger the existing game-based security

definitions. However, the existence of the gap is not solely due to the commitment

problem which leads to the impossibility result. In fact, UC security does provide

stronger security guarantees with respect to both read and write access. To this end,

we propose a refinement of the existing game-based definition of read security and also

provide a new security definition of write security (both are presented in Chapter 4).

102

Chapter 6

Some Lower Bounds for secure

cRBAC

The work presented in this chapter is adapted from our on-going work on lower bounds

for secure cRBAC systems which is not published yet. Some of the theorems are provided

with proof ideas only.

6.1 Introduction

Cryptographic access control has received a lot attention in recent decades. However,

designing cryptographic access control systems which are of practical use is still a chal-

lenging task in this research direction.

Garrison III et al. studied the practical implications of using cryptography to enforce

RBAC policies in their recent work [43]. They considered a system model with necessary

use of reference monitors to enforce access control on write access and to maintain the

metadata of each file in the file system. For their purpose, they developed two different

constructions of cryptographic RBAC systems: one bases on identity-based encryption

and identity-based signature schemes, while the other one bases on the traditional public

key cryptography with the use of Public key infrastructure (PKI). In order to analyse

the costs of their constructions, they carried out the simulation over real-world RBAC

datasets to generate traces. Their experimental results show that even with the min-

imum use of reference monitors, the computational costs of the cryptographic RBAC

systems which supports for dynamic policy update can be prohibitively expensive.

Motivated by Garrison III et al.’s work, we turn to study lower bounds for secure

cRBAC systems to find out where the inefficiency stems from. We show that the costs

103

CHAPTER 6. SOME LOWER BOUNDS FOR SECURE CRBAC

are inherent in secure cRBAC systems and also in those cryptographic access control

systems that greatly or solely rely on cryptographic techniques to enforce access control

on both read and write accesses. The main idea is, since the manager does not involve

in any read and write operation to the file system, the local states of the users and also

the file system should reflect the access control policy being enforced. Whenever the

policy gets updated, the system might inevitably require re-keying and re-encryption

in order to guarantee secure access. Our results can be valuable in the design of such

systems for practical purposes.

To summarise, in this chapter we make the following contribution:

• we presented two lower bounds for secure cRBAC systems.

6.2 The Lower Bounds

Before we introduce our results, we introduce technical term which we call Permission

Adjustment for an RBAC system. Informally, permision adjustment is a sequence of

RBAC administrative commands which changes the access rights of some user with

respect to a set of permissions. In comparison with any sequence of typical RBAC

commands, permission adjustment emphasises the change it will bring to the access

matrix of the system. Formally:

Definition 14 (Permission Adjustment). Let S0 = (U,O, P,UA,PA) be the state of an

RBAC system over a set of roles R. Given a set of user Ũ ⊆ U and a set of permis-

sions P̃ ⊆ P , where both Ũ and P̃ are non-empty, a sequence of RBAC administrative

commands ~q = (q0, ..., qn) is called a permission adjustment for S0 with respect to Ũ

and P̃ :

(1) if ∀u ∈ Ũ , p ∈ P̃ : ¬HasAccess(u, p) holds for S0 and after a sequence of transitions

S0
q0−→S S1

q1−→S , . . . ,
qn−1−−−→S Sn

qn−→S Sn+1, ∀u ∈ Ũ , p ∈ P̃ : HasAccess(u, p) holds

for Sn+1 or

(2) if ∀u ∈ Ũ , p ∈ P̃ : HasAccess(u, p) holds for So and after a sequence of transitions

S0
q0−→S S1

q1−→S , . . . ,
qn−1−−−→S Sn

qn−→S Sn+1, ∀u ∈ Ũ , p ∈ P̃ : ¬HasAccess(u, p) holds

for Sn+1.

We denote the set of all possible ~q in case (1) by Ũ↑P̃ (S0) and the set of all possible ~q

in case (2) by Ũ↓P̃ (S0).

In addition, we introduce two key properties with respect to efficiency.

104

CHAPTER 6. SOME LOWER BOUNDS FOR SECURE CRBAC

Definition 15. Let stG = (stM , fs, {stu}u∈U) be the global state of a cRBAC system

over a set of roles R at some point during its execution. Given a sequence of RBAC

administrative commands ~q = (q0, ..., qn) and its any implementation ~Q = (Q0, ..., Qn)

such that for each 0 ≤ i ≤ n: Qi implements the command qi. After carrying out ~Q:

(1) if the state of the file system remains unchanged with overwhelming probability,

we say that ~q is file system preserving for stG. It is reflected by the following

predicate:

FSP(~q, stG)⇔ Pr[∀ ~Q : stG
~Q−→ st ′G; fs = fs ′] = 1,

where st ′G = (st ′M , fs
′, {st ′u}u∈U ′), φ(st ′G) = (U ′, O′, P ′,UA′,PA′) and ε is a negli-

gible function in the security parameter;

(2) if the local states of a set of users U remain unchanged with overwhelming proba-

bility, we say that ~q is U-user local state preserving for stG. It is reflected by

the following predicate:

LSP(~q, stG,U)⇔ Pr[∀ ~Q : stG
~Q−→ st ′G;∀u ∈ U : stu = st ′u] = 1,

where st ′G = (st ′M , fs
′, {st ′u}u∈U ′), φ(st ′G) = (U ′, O′, P ′,UA′,PA′), U ⊆ U ′ and ε is

a negligible function in the security parameter.

Finally, we introduce the concept of non-trivial execution for cRBAC system. A non-

trivial execution consists of a sequence of operations such that after executing each of

the operations in order, for each file in the system, there should exist at least a user that

has the read permission for it and also exist at least a user that has the write permission

for it. The non-trivial execution serves as a mild assumption on the execution on the

cRBAC systems, for the purpose of studying the lower bound of cRBAC systems which

are commonly used in practice.

Definition 16. Let So = (U0, O0, P0,UA0,PA0) be the initial state of an RBAC system

and let ~q = (q0, ..., qn) be a sequence of operations. We say ~q is a non-trivial execution

if after the sequence of transitions

S0
q0−→S S1

q1−→S . . .
qn−→S Sn+1 = (Un+1, On+1, Pn+1,UAn+1,PAn+1),

for each file o ∈ On+1, there exist users u, u′ ∈ Un+1 such that HasAccess(u, (o, read))

and HasAccess(u′, (o, write)) hold.

105

CHAPTER 6. SOME LOWER BOUNDS FOR SECURE CRBAC

Now we present our first necessary lower bound for cRBAC systems which preserve

correctness and read security. The theorem states that in a normal execution of a cRBAC

system, any (sequence of) RBAC command for cancelling read permissions from users

requires update either all the corresponding files or the local states of all the users who

have the write permissions to those files.

Theorem 10. For any cRBAC system which is correct and secure with respect to

read access, it holds that:

Pr

stG←$ Init(1λ, R); stG
~Q−→ st ′G;∀~q ∈ Ur↓Pr(φ(st ′G)) :

FSP(~q, st ′G) ∧ LSP(~q, st ′G, Uw)

 ≤ ε,
where ~Q is any non-trivial execution for the system, st ′G = (st ′M , fs

′, {st ′u}u∈U ′), φ(st ′G) =

(U ′, O′, P ′,UA′,PA′), Ur ⊆ U ′, Pr ⊆ {(o, read)|o ∈ O′}, Uw = {u|∀(o, read) ∈ Pr :

HasAccess(u, (o, write))} and ε is a negligible function in λ.

Proof. We prove the theorem by showing that if the above condition is not satisfied,

the cRBAC system cannot be both correct and secure with respect to read accesses.

Assume by contradition that there exists a cRBAC system Π which is correct and read

secure, while the above condition holds with probability ε0, which is greater than any ε.

Consider the following adversary A for Expread
Π,A(λ). After the random bit b is selected

and Π is initialised by running stG←$ Init(λ,R), A is provided λ and proceeds as follows:

1. A comes up with a sequence of oracle queries (query0, ..., queryn) for Or such that

it is equivalent to some non-trivial execution ~Q for Π. A also comes up with a

permission adjustment ~q which is valid for the global state of Π after making the

sequence of oracle queries;

2. For each 0 ≤ i ≤ n: A makes the oracle call according to queryi. After that, A

calls FS to obtain the current state of the file system fs;

3. A calls CorruptU to corrupt a random user u0 ∈ Ur to obtain its local state

stu0 ;

4. For each administrative RBAC command in ~q, A calls oracle that corresponds to

the command with its argument in order;

5. A chooses a random file o ∈ O such that its read permission (o, read) ∈ Pr. It

then calls Challenge with (u1, o,m0,m1), where u1 ∈ U is a random user such

106

CHAPTER 6. SOME LOWER BOUNDS FOR SECURE CRBAC

that HasAccess(u1, (o, write)) holds, m0 and m1 are two random messages of the

same length. Then A will obtain the updated state of the file system fs ′ from the

challenge oracle;

6. A computes m∗ ← Read(stu0 , fs
′, o). It terminates with an output 0 if m∗ = m0

and 1 if m∗ = m1; otherwise, it outputs a random bit b′←$ {0, 1}.

Recall that there is an invariant maintained in Expread
Π,A(λ) to prevent trivial wins:

at any point in the experiment, no corrupt user in the list Cr can be granted the read

permission of any file in the list Ch. From the construction of A above, it is clear that

when A calls CorruptU, Cr = {u0} and Ch = ∅. After carrying out ~q, u0 is no longer

authorised to the read permissions in Pr. Hence when A calls Challenge to specify

any file whose read permission is in Pr as its challenge, the invariant will not be violated.

Also notice that after carrying out any non-trivial execution, for every file o ∈ O, there

should exist at least a user that has its read permission and also a user that has its write

permission. Hence the existance of u1 is guaranteed. Therefore, it can be concluded

that A will not cause any error returned by the oracles.

We now analyse the success probability of A under Expread
Π,A(λ). Let E0 be the event

that after A mades the queries (query0, ..., queryn), Π reaches some global state st ′G such

that FSP(~q, st ′G) and LSP(~q, st ′G, Uw) hold. Let E1 be the event that m∗ = mb. The

advantage that A can gain in the experiment is:

Advread
Π,A(λ) =

∣∣Pr[Expread
Π,A(λ)→ true]− 1

2

∣∣
=
∣∣1
2
· Pr[¬E1] + Pr[E1]− 1

2

∣∣
=
∣∣1
2
· (Pr[¬E1 ∧E0] + Pr[¬E1 ∧ ¬E0])

+ Pr[E1 ∧E0] + Pr[E1 ∧ ¬E0]− 1

2

∣∣
=
∣∣1
2
· (Pr[¬E1 | E0] · Pr[E0] + Pr[¬E1 | ¬E0] · Pr[¬E0])

+ Pr[E1 | E0] · Pr[E0] + Pr[E1 | ¬E0] · Pr[¬E0]− 1

2

∣∣ ≤ ε1 (6.1)

where ε1 is a negligible function of λ.

We also consider the following adversary A′ for Expcorr
Π,A′(λ). Here the sequence of

queries (query0, ..., queryn) which is equivalent to the non-trivial execution ~Q, the user

u0, u1, the file o and the contents m0,m1 are identical to those in Expread
Π,A(λ) above.

The experiment starts from the system initialisation by running Init with the input of

security parameter λ and a set of roles R. Then A′ is provided λ and proceeds as follows:

107

CHAPTER 6. SOME LOWER BOUNDS FOR SECURE CRBAC

1. For each 0 ≤ i ≤ n: A′ call the corresponding oracle to make the query queryi.

Then A′ calls FS to obtain the current state of the file system fs;

2. A′ selects a random bit b←$ {0, 1} and then calls the write oracle Write with

(u1, o,mb) and obtains the updated state of the file system fs ′;

3. A′ terminates with an output (u0, o).

The challenger then computes m∗ ← Read(stu0 , fs
∗, o). A′ wins the game if m∗ 6= mb.

Let E2 be the event that Π reaches the global state st ′G and let E3 be the event that

m∗ = mb. The advantage that A′ can gain in the experiment is:

Advcorr
Π,A′(λ) = Pr[Expcorr

Π,A′(λ)→ true]

= Pr[¬E3]

= Pr[¬E3 ∧E2] + Pr[¬E3 ∧ ¬E2] = 0 (6.2)

From (6.2), it is clear that Pr[¬E3 ∧E2] = 0. Hence we have:

Pr[¬E3 | E2] · Pr[E2] = 0

Pr[¬E3 | E2] = 0 (6.3)

and

Pr[E3 | E2] = 1− Pr[¬E3 | E2] = 1 (6.4)

Now we relate the advantages of the adversaries in the above two experiments. After

carrying out ~Q, the tuples (stu0 , stu1 , fs) in the two experiments are identical when the

events E0 and E2 occur in their individual experiments since the system will reach

the same global state st ′G. Notice that in Expread
Π,A(λ), when both FSP(~q, st ′G) and

LSP(~q, st ′G, Uw) hold, stu1 and fs likely remain unchanged before and after carrying

~q. Therefore, after A calls Challenge and A′ calls Write (for the last time), in both

cases the file system will be updated by having fs ′←$ Write(stu1 , fs, o,mb). The distri-

butions of fs ′ in both experiments are identical and fs ′ will be read with the same user

local state stu0 . Then we have:

Pr[E1 | E0] = Pr[E3 | E2] (6.5)

108

CHAPTER 6. SOME LOWER BOUNDS FOR SECURE CRBAC

and

Pr[¬E1 | E0] = Pr[¬E3 | E2] (6.6)

Combining Equations (6.1), (6.3), (6.4), (6.5) and (6.6), we have:

Advread
Π,A(λ) =

∣∣1
2
· [0 · ε0 + Pr[¬E1 | ¬E0] · (1− ε0)]

+ 1 · ε0 + Pr[E1 | ¬E0] · (1− ε0)− 1

2

∣∣
=
∣∣1
2
· (1− Pr[E1 | ¬E0]) · (1− ε0)

+ ε0 + Pr[E1 | ¬E0] · (1− ε1)− 1

2

∣∣
=ε0 +

1

2
· Pr[E1 | ¬E0] · (1− ε0) ≤ ε1 (6.7)

From Equation (6.7), we have:

Pr[E1 | ¬E0] ≤ 2 · ε1 − ε0

1− ε0

Notice that by assumption ε0 is greater than any negligible function ε, which means

Pr[E1 | ¬E0] is negative. Thus, we can conclude that Π cannot be both correct and

secure with respect to read accesses in such case, which reaches a contradition. The

theorem is therefore proved.

The following lower bound is for cRBAC systems which preserve correctness and

write security. In a similar form, the theorem states that in a normal execution of a

cRBAC system, any (sequence of) command which will lead to the revocation of write

permissions from users requires update either all the corresponding files or the local

states of all the users who have the read permissions to those files. The theorem and

its proof only work for the security definition presented in the paper [27] but not for

the one presented in this thesis, because the definition presented in Chapter 4 does not

require that there exists any user who can read to the file outputed by the adversary

and therefore the equation implied by correctness does not hold here. But Definition 10

is strictly stronger than the previous definition, the lower bound is still valuable.

Theorem 11. For any cRBAC system which is correct and secure with respect to write

109

CHAPTER 6. SOME LOWER BOUNDS FOR SECURE CRBAC

accesses, let ~Q be its any non-trivial execution, it holds that:

Pr

∀ ~Q : stG←$ Init(1λ, R); stG
~Q−→ st ′G;∀ Uw↓Pw :

FSP(Uw↓Pw, st ′G) ∧ LSP(Uw↓Pw, st ′G, Ur)

 ≤ ε,
where st ′G = (st ′M , fs

′, {st ′u}u∈U ′), φ(st ′G) = (U ′, O′, P ′,UA′,PA′), Uw ⊆ U ′, Pw ⊆

{(o, write)|o ∈ O′}, Ur = {u|∀(o, write) ∈ Pr : HasAccess(u, (o, read))} and ε is a

negligible function in λ.

Proof sketch. The proof strategy of this theorem is similar to Theorem 10’s. Assume

by contradicition that the above condition holds with some non-negligible probability,

while the system is both correct and secure with respect to write access. Let A, A′ be

two adversarys against write security and correctness of the system respectively.

After the two adversaries drive the execution of the cRBAC systems in their indi-

vidual games according to the non-trivial execution. By assumption, there would exist

a user u0 who has the write permission to a file o and also a user u1 has the read

permission of o (here the adversaries need to make a random guess). Also, the global

state of the system will reach the same global state st ′G such that after carrying out the

permission adjustment Uw↓Pw, both FSP(Uw↓Pw, st ′G) and LSP(Uw↓Pw, st ′G, Ur) hold

for non-negligible probability.

Then the adversary A (against write security) requests to corrupt the user u0 to

obtain its local state stu0 . After that, the two adversaries request to carry out the

permission adjustments in their games respectively. Notice that at this point, u0 does

not have write permission of o any more. A then writes some content to o with the local

state stu0 . Then A outputs (u1, o) and A′ outputs o.

Since the above two conditions hold, the distributions of (stu0 , stu1 , fs) in the two

games are identical. Then by assumption, if the cRBAC system is correct, u1 should

be able to read the content written to o by A with non-negligible probability overall. It

therefore leads to a contradicition to the assumption on write security. Thus, the system

cannot be both correct and secure with respective to write access in such case.

6.3 Conclusion

In this chapter, we presented two lower bounds for secure cRBAC systems. To some

extent, they mathematically explain the reason why cRBAC systems that support dy-

namic policy updates may be prohibitively expensive: permission revocation can be

110

CHAPTER 6. SOME LOWER BOUNDS FOR SECURE CRBAC

costly. Therefore, for practical purpose one may choose to sacrifice security (e.g. to

use lazy re-encryption or support for batch processing) or functionality (e.g. to jointly

use other mechanisms to enforce access control policies) to some extent in order to gain

efficiency.

There is another lower bound which is not presented in this thesis. It is related to

read security and requires some mild assumption on the non-trivial execution. It states

that cancelling read permissions from users must result in updating the local states of

all the users who have those read permissions. This explains Garrison III’s experimental

results better but is left as one possible direction for the future work.

111

Chapter 7

Conclusion

Cryptographic access control, which aims to enforce access control policies with the

use of cryptographic techniques, is a promising solution to alleviate the limitations of

traditional monitor-based access control. With the emerging trend of outsourcing data

storage, there has been considerable interest in this area. However, in the literature of

cryptographic access control, formal security models for the whole access control sys-

tems have been rarely provided. This leaves a disconnection between the specification of

the policies being enforced and the implementation of the cryptographic access control

systems. More specifically, since the security of the underlying cryptographic primi-

tives may be overestimated and their use within access control systems may be poorly

understood, the absence of formal security models leads to a worrying situation that

many of the existing works do not offer formal security proofs for the constructions they

proposed.

The starting point of the work in this thesis is the recent study on cryptographic

Role-Based Access Control by Ferrara et al. Our main contribution is a comprehensive

study of rigorous security models for cRBAC systems.

For the purpose of precisely modelling cryptographic policy enforcement, we study

security of cRBAC systems in both game-based and simulation-based settings. We start

with proposing security notions of different security properties for cRBAC systems in

game-based setting. We believed that our security notions are sufficient for appropriately

modelling cryptographic policy enforcement. However, in the follow-up study of cRBAC

systems in UC framework, we identify a gap between the UC security notion and our

existing game-based notions. Our results show that the UC notion is strictly stronger.

Since the UC notion requires the execution of a cRBAC system emulating an ideal

process which behaves as a server-mediated access control system, an implementation

112

CHAPTER 7. CONCLUSION

of cRBAC system which is considered to be secure in this sense guarantees that the

access control policy is always correctly enforced - this is exactly the goal that we want

our game-based notions to achieve. Therefore, the existance of the gap has brought

us to a question: are the existing game-based security notions appropriately modelling

the correct enforcement of the RBAC policy? Unfortunately, there is no definitive

answer yet. We also show that no cRBAC implementation can achieve UC security

with adaptive party corruption. The impossibility result stems from the well-known

commitment problem, which also occurs in the context of cryptographic access control.

Nevertheless, the study of relations between the two types of security notions for

cRBAC sytems still gives us some inspiration. We identify two types of attacks which

are not captured by the existing game-based security notions. Therefore, we refine the

existing notions with respect to secure read and write access respectively in order to

capture those overlooked attacks. The refinement work on game-based notions can be

seen as a step forward towards our goal, but we still want evidence to confirm that the

existing game-based notions are sufficient for modelling correct policy enforcement. The

future research on bridging the gap between the two types of security notions may give

us the answer and also allow us enjoy the benefits from the two definitional approaches.

We will discuss this in the next section.

We also bring forth the study of privacy issues in the context of cryptographic access

control systems. We point out that cryptographic implementations may unintentionally

leak information about the access control policy being enforced in the system. Indeed,

users need to get access to the public available metadata used to implement file system

and to the encrypted file contents themselves, yet these may reveal the access policy

in place. Therefore, privacy protection becomes an important security requirement of

cryptographic access control system, since such information can be sensitive in many

application scenarios. We identify and formalise different flavours of policy privacy,

targeted to different aspects of such systems. Our results are instructive for the work in

similar context.

Finally, we provide a construction of cRBAC system based on a novel type of privacy-

preserving predicate encryption and a standard digital signature scheme. We show that

our construction securely enforces access control on both read and write access to the

file system, while preserving policy privacy to a certain degree.

113

CHAPTER 7. CONCLUSION

7.1 Future Work

In this section, we will give several research directions for future work.

Lower bounds for secure cRBAC. A direction for future research is to study the

efficiency implications of secure cRBAC systems. Garrison III et al.’s has shown that

cryptographic enforcement of dynamic role-based access control policies can be costly

[43]. Their findings are based on simulations driven by real-world datasets rather than

mathematical proofs. Inspired by their results, we are currently working on the lower

bounds for secure cRBAC systems with respect to secure policy enforcement and also

preservation of policy privacy. This direction is worth pursuing because it will give us

some insights of the efficiency aspects of such systems.

Bridging the gap. The UC security notion for cRBAC systems provides stronger

security guarantees, but it requires additional assumption on the underlying encryption

scheme due to the well-known difficulty of adaptive security in the UC framework, which

renders cRBAC implementations impractical. However, the general composability of-

fered by the UC framework is an important property for cryptographic access control

systems. Recall that the system model of cRBAC is in fact a general one, the publicly

accessible file storage can consist of encrypted files and metadata which are logically

organised as a whole file system. Such data can be used independently by arbitrary

application while the policy should still be enforced correctly in such case. On the

other hand, our refined game-based notions are seemingly sufficient for capturing cryp-

tographic enforcement of RBAC policy, even though their composability property has

not been examined. The game-based notions are sometimes preferable to work with due

to its simplicity, especially for complex security tasks like cRBAC systems. Therefore,

bridging the gap between the two types of security notions for cRBAC systems can be

an interesting research direction since it will allow us enjoy the benefits from the two

definitional approaches.

Access Control in Blockchain-based file storage. Blockchain-based technology

has received a lot of attention since Bitcoin [53] was launched. As the key feature of

blockchain-based systems, the cryptographically auditable, append-only, decentralised

transaction ledger has unrolled a wide range of interesting applications. Decentralised

file storage is one of the applications that benefit from it. Users who need to rent

storage service can pay some fees to hire storage space provided by other users to

114

CHAPTER 7. CONCLUSION

store their own data. Currently, several blockchain-based file storage services have

been already launched on the market [6, 68, 49] based on various proof systems [45,

10, 62, 29]. In comparison with traditional cloud-based storage service, decentralised

file storage can reduce the trust in the service provider while preserving strong data

security and also user privacy. The enforcement of access control policies in decentralised

file storage would allow for many interesting applications (e.g. granting access and

transfering copyright/ownership of digital products, etc.), which are difficult to achieve

with traditional cloud-based file storage.

115

Bibliography

[1] Selim G. Akl and Peter D. Taylor. Cryptographic solution to a problem of access

control in a hierarchy. ACM Trans. Comput. Syst., 1(3):239–248, August 1983.

[2] James Alderman, Jason Crampton, and Naomi Farley. A framework for the crypto-

graphic enforcement of information flow policies. In Proceedings of the 22nd ACM

on Symposium on Access Control Models and Technologies, SACMAT 2017, Indi-

anapolis, IN, USA, June 21-23, 2017, pages 143–154, 2017.

[3] James P Anderson. Computer security technology planning study. Technical report,

ESD-TR-73-51, 1972.

[4] Mrinmoy Barua, Xiaohui Liang, Rongxing Lu, and Xuemin Shen. ESPAC: enabling

security and patient-centric access control for ehealth in cloud computing. IJSN,

6(2/3):67–76, 2011.

[5] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.

In Advances in Cryptology - CRYPTO ’93, 13th Annual International Cryptology

Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings,

pages 232–249, 1993.

[6] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System. arXiv preprint

arXiv:1407.3561, 2014.

[7] John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-

based encryption. In 2007 IEEE Symposium on Security and Privacy (S&P 2007),

20-23 May 2007, Oakland, California, USA, pages 321–334, 2007.

[8] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil

pairing. In Advances in Cryptology - CRYPTO 2001, 21st Annual International

Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001, Pro-

ceedings, pages 213–229, 2001.

116

BIBLIOGRAPHY

[9] Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based

encryption: Hiding the function in functional encryption. In Advances in Cryptology

- CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,

August 18-22, 2013. Proceedings, Part II, pages 461–478, 2013.

[10] Kevin D Bowers, Ari Juels, and Alina Oprea. Proofs of retrievability: Theory and

implementation. In Proceedings of the 2009 ACM workshop on Cloud computing

security, pages 43–54. ACM, 2009.

[11] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption

(without random oracles). In Advances in Cryptology - CRYPTO 2006, 26th Annual

International Cryptology Conference, Santa Barbara, California, USA, August 20-

24, 2006, Proceedings, pages 290–307, 2006.

[12] Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In 42nd Annual Symposium on Foundations of Computer Science, FOCS

2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 136–145, 2001.

[13] Ran Canetti and Marc Fischlin. Universally composable commitments. In Advances

in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,

Santa Barbara, California, USA, August 19-23, 2001, Proceedings, pages 19–40,

2001.

[14] Ran Canetti and Marc Fischlin. Universally composable commitments. In Joe

Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages

19–40. Springer, 2001.

[15] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use

for building secure channels. In Advances in Cryptology - EUROCRYPT 2001, In-

ternational Conference on the Theory and Application of Cryptographic Techniques,

Innsbruck, Austria, May 6-10, 2001, Proceeding, pages 453–474, 2001.

[16] Arcangelo Castiglione, Alfredo De Santis, Barbara Masucci, Francesco Palmieri,

Aniello Castiglione, and Xinyi Huang. Cryptographic hierarchical access control for

dynamic structures. IEEE Trans. Information Forensics and Security, 11(10):2349–

2364, 2016.

[17] Arcangelo Castiglione, Alfredo De Santis, Barbara Masucci, Francesco Palmieri,

Aniello Castiglione, Jin Li, and Xinyi Huang. Hierarchical and shared access control.

IEEE Trans. Information Forensics and Security, 11(4):850–865, 2016.

117

BIBLIOGRAPHY

[18] Ya-Fen Chang. A flexible hierarchical access control mechanism enforcing extension

policies. Security and Communication Networks, 8(2):189–201, 2015.

[19] Michael Clear, Arthur Hughes, and Hitesh Tewari. Homomorphic encryption with

access policies: Characterization and new constructions. In Progress in Cryptology

- AFRICACRYPT 2013, 6th International Conference on Cryptology in Africa,

Cairo, Egypt, June 22-24, 2013. Proceedings, pages 61–87, 2013.

[20] Stefan Contiu, Rafael Pires, Sébastien Vaucher, Marcelo Pasin, Pascal Felber, and

Laurent Réveillère. IBBE-SGX: cryptographic group access control using trusted

execution environments. In 48th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks, DSN 2018, Luxembourg City, Luxembourg, June

25-28, 2018, pages 207–218, 2018.

[21] Jason Crampton. Practical constructions for the efficient cryptographic enforcement

of interval-based access control policies. CoRR, abs/1005.4993, 2010.

[22] Jason Crampton. FAST 2010. Revised selected papers., chapter Cryptographic En-

forcement of Role-Based Access Control, pages 191–205. 2011.

[23] Jason Crampton. Practical and efficient cryptographic enforcement of interval-

based access control policies. ACM Trans. Inf. Syst. Secur., 14(1):14:1–14:30, 2011.

[24] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi,

and Pierangela Samarati. Over-encryption: Management of access control evolution

on outsourced data. In VLDB, pages 123–134. ACM, 2007.

[25] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE

Trans. Information Theory, 22(6):644–654, 1976.

[26] David Ferraiolo and Richard Kuhn. Role-based access control. In In 15th NIST-

NCSC National Computer Security Conference, pages 554–563, 1992.

[27] Anna Lisa Ferrara, Georg Fuchsbauer, Bin Liu, and Bogdan Warinschi. Policy pri-

vacy in cryptographic access control. In IEEE 28th Computer Security Foundations

Symposium, CSF 2015, Verona, Italy, 13-17 July, 2015, pages 46–60, 2015.

[28] Anna Lisa Ferrara, Georg Fuchsbauer, and Bogdan Warinschi. Cryptographically

enforced RBAC. In 2013 IEEE 26th Computer Security Foundations Symposium,

New Orleans, LA, USA, June 26-28, 2013, pages 115–129, 2013.

118

BIBLIOGRAPHY

[29] Ben Fisch, Joseph Bonneau, Nicola Greco, and Juan Benet. Scaling proof-of-

replication for filecoin mining. Technical report, Technical report, Stanford Univer-

sity, 2018. https://web. stanford. edu , 2018.

[30] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. TCC 2016-A, Proceed-

ings, Part II, chapter Functional Encryption Without Obfuscation, pages 480–511.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

[31] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lat-

tices and new cryptographic constructions. In Proceedings of the 40th Annual ACM

Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-

20, 2008, pages 197–206, 2008.

[32] David K. Gifford. Cryptographic sealing for information secrecy and authentication.

Commununications of the ACM, 25(4):274–286, 1982.

[33] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game

or A completeness theorem for protocols with honest majority. In Proceedings of

the 19th Annual ACM Symposium on Theory of Computing, 1987, New York, New

York, USA, pages 218–229, 1987.

[34] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci.,

28(2):270–299, 1984.

[35] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based en-

cryption for fine-grained access control of encrypted data. In Ari Juels, Rebecca N.

Wright, and Sabrina De Capitani di Vimercati, editors, ACM Conference on Com-

puter and Communications Security, pages 89–98. ACM, 2006.

[36] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based

encryption for fine-grained access control of encrypted data. In Proceedings of the

13th ACM Conference on Computer and Communications Security, CCS 2006,

Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages 89–98, 2006.

[37] E. Gudes. The Design of a Cryptography Based Secure File System. IEEE Trans-

actions on Software Engineering, 6(5):411–420, 1980.

[38] Shai Halevi, Paul A. Karger, and Dalit Naor. Enforcing confinement in distributed

storage and a cryptographic model for access control. IACR Cryptology ePrint

Archive, 2005:169, 2005.

119

BIBLIOGRAPHY

[39] Anthony Harrington and Christian Jensen. Cryptographic access control in a dis-

tributed file system. In Proceedings of the eighth ACM symposium on Access control

models and technologies, pages 158–165. ACM, 2003.

[40] Dennis Hofheinz and Victor Shoup. GNUC: A new universal composability frame-

work. IACR Cryptology ePrint Archive, 2011:303, 2011.

[41] Jie Huang, Mohamed A. Sharaf, and Chin-Tser Huang. A hierarchical framework

for secure and scalable EHR sharing and access control in multi-cloud. In 41st Inter-

national Conference on Parallel Processing Workshops, ICPPW 2012, Pittsburgh,

PA, USA, September 10-13, 2012, pages 279–287, 2012.

[42] Luan Ibraimi. Cryptographically enforced distributed data access control. Univer-

sity of Twente, 2011.

[43] William C. Garrison III, Adam Shull, Adam J. Lee, and Steven Myers. Dynamic and

private cryptographic access control for untrusted clouds: Costs and constructions

(extended version). CoRR, abs/1602.09069, 2016.

[44] Sonia Jahid, Prateek Mittal, and Nikita Borisov. Easier: encryption-based access

control in social networks with efficient revocation. In Proceedings of the 6th ACM

Symposium on Information, Computer and Communications Security, ASIACCS

2011, Hong Kong, China, March 22-24, 2011, pages 411–415, 2011.

[45] Ari Juels and Burton S Kaliski Jr. Pors: Proofs of retrievability for large files. In

Proceedings of the 14th ACM conference on Computer and communications security,

pages 584–597. Acm, 2007.

[46] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second

Edition. CRC Press, 2014.

[47] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting

disjunctions, polynomial equations, and inner products. In Advances in Cryptol-

ogy - EUROCRYPT 2008, 27th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008.

Proceedings, pages 146–162, 2008.

[48] Ralf Küsters and Max Tuengerthal. The IITM model: a simple and expressive

model for universal composability. IACR Cryptology ePrint Archive, 2013:25, 2013.

120

BIBLIOGRAPHY

[49] Protocol Labs. Filecoin: A decentralized storage network, 2017.

[50] Benôıt Libert and Damien Vergnaud. Topics in Cryptology – CT-RSA 2009, chapter

Adaptive-ID Secure Revocable Identity-Based Encryption, pages 1–15. 2009.

[51] Bin Liu and Bogdan Warinschi. Universally composable cryptographic role-based

access control. In Provable Security - 10th International Conference, ProvSec 2016,

Nanjing, China, November 10-11, 2016, Proceedings, pages 61–80, 2016.

[52] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Topics in Cryptology –

CT-RSA 2011, chapter Attribute-Based Signatures, pages 376–392. 2011.

[53] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.

[54] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic

proofs: The non-committing encryption case. In Advances in Cryptology - CRYPTO

2002, pages 111–126. Springer Berlin Heidelberg, 2002.

[55] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation

of secure reactive systems. In CCS 2000, Proceedings of the 7th ACM Conference

on Computer and Communications Security, Athens, Greece, November 1-4, 2000.,

pages 245–254, 2000.

[56] Uthpala Subodhani Premarathne, Alsharif Abuadbba, Abdulatif Alabdulatif,

Ibrahim Khalil, Zahir Tari, Albert Y. Zomaya, and Rajkumar Buyya. Hybrid cryp-

tographic access control for cloud-based EHR systems. IEEE Cloud Computing,

3(4):58–64, 2016.

[57] Saiyu Qi, Yichen Li, Yuanqing Zheng, and Yong Qi. Crypt-dac: Cryptographically

enforced dynamic access control in the cloud. IACR Cryptology ePrint Archive,

2017:90, 2017.

[58] Mariana Raykova, Hang Zhao, and Steven M. Bellovin. Privacy enhanced access

control for outsourced data sharing. In Financial Cryptography and Data Security -

16th International Conference, FC 2012, Kralendijk, Bonaire, Februray 27-March

2, 2012, Revised Selected Papers, pages 223–238, 2012.

[59] Sushmita Ruj, Milos Stojmenovic, and Amiya Nayak. Privacy preserving access

control with authentication for securing data in clouds. In 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012),

pages 556–563. IEEE, 2012.

121

BIBLIOGRAPHY

[60] Ravi Sandhu, David Ferraiolo, and Richard Kuhn. American national standard for

information technology–role based access control. ANSI INCITS, 359:1–49, 2004.

[61] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-

based access control models. IEEE Computer, 29(2):38–47, 1996.

[62] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Interna-

tional Conference on the Theory and Application of Cryptology and Information

Security, pages 90–107. Springer, 2008.

[63] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems.

In Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San

Francisco, CA, USA, March 15-17, 2009. Proceedings, pages 457–473, 2009.

[64] Craig A. N. Soules, Garth R. Goodson, John D. Strunk, and Gregory R. Ganger.

Metadata efficiency in versioning file systems. In Proceedings of the FAST ’03

Conference on File and Storage Technologies, March 31 - April 2, 2003, Cathedral

Hill Hotel, San Francisco, California, USA, 2003.

[65] John D. Strunk, Garth R. Goodson, Michael L. Scheinholtz, Craig A. N. Soules, and

Gregory R. Ganger. Self-securing storage: Protecting data in compromised systems.

In 4th Symposium on Operating System Design and Implementation (OSDI 2000),

San Diego, California, USA, October 23-25, 2000, pages 165–180, 2000.

[66] Guojun Wang, Qin Liu, and Jie Wu. Hierarchical attribute-based encryption for

fine-grained access control in cloud storage services. In Proceedings of the 17th

ACM Conference on Computer and Communications Security, CCS 2010, Chicago,

Illinois, USA, October 4-8, 2010, pages 735–737, 2010.

[67] Stefan G Weber. Designing a hybrid attribute-based encryption scheme supporting

dynamic attributes. IACR Cryptology ePrint Archive, 2013:219, 2013.

[68] Shawn Wilkinson, Tome Boshevski, Josh Brandoff, and Vitalik Buterin. Storj a

peer-to-peer cloud storage network. 2014.

[69] Huafei Zhu and Feng Bao. Error-free, multi-bit non-committing encryption with

constant round complexity. In Information Security and Cryptology - 6th Interna-

tional Conference, Inscrypt 2010, Shanghai, China, October 20-24, 2010, Revised

Selected Papers, pages 52–61, 2010.

122

BIBLIOGRAPHY

[70] Yan Zhu, Gail-Joon Ahn, Hongxin Hu, and Huaixi Wang. Cryptographic role-based

security mechanisms based on role-key hierarchy. In Proceedings of the 5th ACM

Symposium on Information, Computer and Communications Security, ASIACCS

2010, Beijing, China, April 13-16, 2010, pages 314–319, 2010.

123

