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Abstract

Bacillus Calmette–Guérin (BCG) remains the only licensed vaccine against Tubercu-
losis (TB). In 2005, England changed from universal vaccination of school-age children
to targeted vaccination of high-risk neonates. Little work has been done to assess the
impact of this policy change. This thesis evaluates the impact of this change.

Whilst the characteristics of TB in England have been reported elsewhere, little at-
tention has been given to the role of BCG. Consequently, I explored and combined,
the available data sources. Reporting on data quality issues, trends in incidence rates
and differences in outcomes stratified by BCG status.

Prior to the change in policy, several studies were carried out to assess the impact. I
recreated one such study, correcting a methodological flaw, and found that there was
a greater impact than previously thought.

Determining the benefits of being BCG vaccinated is necessary to properly assess the
impact of the policy change. I evaluated the evidence that vaccination may improve
outcomes for TB cases in England and found that there was some evidence of an
association between vaccination and reduced mortality.

Surveillance data can help assess whether changes in vaccination policy have influ-
enced incidence rates. I used surveillance data to determine whether those at school-
age, or neonates, were affected by the policy change. I found that the policy change
was associated with increased notifications in the UK born but this was outweighed
by a reduction in notifications in the non-UK born.

Statistical modelling is restricted by the available data. Therefore, I developed a
dynamic model of TB, fit to available data, to forecast the impact of the policy
change. Although the fit to the data was poor, the forecasts suggested that continuing
school-age vaccination reduced TB incidence in the UK born compared with neonatal
vaccination. Neonatal vaccination reduced incidence in children but had little impact
on other age groups.
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Chapter 1

Introduction

Tuberculosis (TB) is one of the oldest human diseases, with recorded cases in ancient
Egypt, renaissance Europe, and in the modern day across the globe.[1] It is thought that
roughly one-third of the world’s population has been infected with TB, with 1% of the
world’s population being infected annually. However, the vast majority of these cases will
never develop active disease. This reservoir of disease presents a challenge for control and
eradication as, even if transmission can be halted, new cases will still occur for many years to
come. While many people might consider TB to be a problem of the past in England, in 2017
there were 5,900 notified cases, the majority of which occurred in vulnerable populations;
where incidence rates can be as much as 15 times higher than in the general population.[2]
Globally, TB remains the leading cause of death from infectious disease.[3]

The Bacillus Calmette–Guérin (BCG) vaccine was developed in 1921 and was introduced
to the UK in 1953. Globally, it has been shown to offer variable protection that may reduce
over time.[3] However, there is strong evidence that BCG offers high levels of protection for
children, and more generally within the UK born population.[4] It remains the only licensed
TB vaccine with over 100 million doses given globally each year. Serious side effects are
rare but scarring commonly occurs at the site of injection. In 2005, the UK withdrew
the universal BCG program for those at school age and introduced a targeted program
of vaccination for babies that were deemed to be at high risk.[5] This was motivated by
several years of declining transmission, the evidence of high levels of protection in children
and a belief that other control measures would be more cost-effective.[5] Since this change
in policy, declining incidence appears to support this decision.[2] However, due to TB’s
complex dynamics, the long-term effects are difficult to predict.

The availability of data is revolutionising the way we view the world; in few other areas
has this revolution been felt more than in public health. In 2000, Public Health England
(PHE) launched a routine surveillance system for TB, which records demographic, clinical,
and microbiological information on all notified cases.[2] This dataset allows us to study the
details of TB epidemiology in England more easily than ever before. Whilst this information
would present much of interest by itself, by combining it with other datasets we can adjust
for the changing demographics of the English population to study the trends in TB over
time.

This thesis explores the impact of changing BCG policy in England, with the aim of in-
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forming global efforts to control TB. As a first step I outline some of the key background
information and discuss the tooling that I developed in order to explore this information
more fully. I then make use of the detailed PHE routine TB surveillance data to explore
the current epidemiology of TB in England. Next, I use statistical models that make use of
this data to explore the impact from the 2005 change in BCG policy. Finally I develop, and
fit, a detailed, semi-sthochastic, mechanistic model of TB and BCG vaccination in England
in order to forecast the ongoing impact of the change in policy versus multiple alternative
scenarios. This thesis is also available as a website1, a pdf2, and a reproducible Rmarkdown
document3

The remainder of this chapter outlines: the theoretical framework used in this thesis; the
aims and objectives that were used to motivate this thesis; the chapter structure of this
thesis; and the output from this thesis.

1.1 Theoretical framework
This thesis uses three main techniques to explore the impact of BCG vaccination on TB in
England. These are: data exploration and visualisation, statistical modelling, and mecha-
nistic modelling. Each of these techniques is outlined in the following sections.

1.1.1 Data exploration and visualisation

Data visualisation is often discounted in favour of more complex statistical or mechanistic
approaches. However, as an exploratory tool it can be used to generate hypotheses that can
then be evaluated using more complex techniques. It can also be used to visualise results
from more complex methods that can then be used as a form of validation.

In this thesis, data visualisation is used in Chapter 2 to explore the epidemiology of TB
globally and in Chapter 4 to explore the epidemiology of TB in England. Chapter 4 also uses
visualisation to generate many of the hypotheses that are then explored in further detail
throughout the rest of this thesis. The remaining thesis chapters use data visualisation to
explore data and results.

1.1.2 Statistical modelling

At the most basic level a statistical model is a set of assumptions that outline the generative
process of some sample data.[6] These assumptions describe a set of probability distribu-
tions, that approximate the population distribution from which the data has been sampled.
Statistical models are usually specified using mathematical equations that relate one or
more random variables to non-random variables. An example of this is a linear regression
which maps a series of variables, using a linear relationship, to generate a numeric outcome
variable. Statistical models can be used to represent complex multivariate relationships
that would not be possible to visualise. They can also be used to test alternative scenarios
without altering the underlying data, see Chapter 7 for an example of this.

In this thesis, a variety of statistical models are used to explore complex multivariate re-
lationships. Uses cases include: adjusting for confounding variables when estimating the

1Website: https://www.samabbott.co.uk/thesis/
2PDF: https://www.samabbott.co.uk/thesis/thesis.pdf
3Rmarkdown: https://github.com/seabbs/thesis
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relationship between BCG vaccination and TB outcomes (Chapter 6); and estimating the
impact on incidence rates from ending the BCG schools scheme after accounting for various
confounders (Chapter 7).

1.1.3 Mechanistic modelling

Mechanistic mathematical models provide an assumption based framework for understand-
ing the transmission of infectious diseases.[7] Mechanistic models can be used to simplify
complex real-world systems, whilst retaining a linkage to real-world processes.[8] They are
unlike statistical models, which instead focus on modelling the underlying structure of the
data generally without reference to the real-world processes. There are multiple mech-
anistic modelling approaches, the most common being compartmental based models and
individual based models.[7,8] Both of these approaches can be represented as deterministic,
semi-stochastic (deterministic with some stochastic elements),[9] or fully stochastic - both
of the latter include a random component whilst the former does not. Recently, mechanistic
models have been combined with statistical models to account for the fact that events may
be only partially observed.[10] Mechanistic models have an advantage over statistical mod-
els in that they can more easily be used to compare alternative scenarios over long periods
of time for which observed data does not exist.

In this thesis, a partially observed semi-stochastic compartmental model of TB is developed
that models demographic processes such as ageing, births and deaths, as well as vaccination
and TB treatment (Chapter 8). Compartmental infectious disease models generally oper-
ate by separating a given population into a series of groups, most commonly susceptible,
infectious and recovered populations.[7,8] Movements between these groups are then mod-
eled using a series of differential equations. Transmission is modeled using mass action,[7,8]
where infected cases are assumed to randomly interact with susceptible individuals at a rate
dictated by the concentration of susceptibles in the population. Additional detail can be
added to this model by stratifying the population further and adding additional parameters
to modify the degree of mixing between populations. Transition between compartments
is assumed to be exponential. See [7,8] for a theoretical introduction to infectious disease
models and [10] for implementation details using R.

1.2 Aims and objectives of the thesis

1.2.1 Aim

To understand the impact of BCG vaccination on the epidemiology of TB in England,
and to use this understanding to forecast the future effects of current and historic BCG
vaccination policy.

1.2.2 Objectives

• To describe the current epidemiology of TB in England, in the context of global TB
epidemiology.

• To assess some of the statistical modelling evidence used to justify the 2005 change
in BCG vaccination policy in the UK.

• To assess whether there is evidence in routinely-collected surveillance data that BCG
vaccination impacts outcomes for TB cases in England.

3
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• To assess the effects of the 2005 change in vaccination policy on those eligible for
vaccination.

• To develop a parsimonious transmission dynamic model of TB that captures cur-
rent, and historic, vaccination policy and reflects our current understanding of TB
epidemiology in England.

• To fit this model using all available data sources.
• To investigate the effectiveness of universal school-age vs. universal neonatal vs. no

vaccination using the previously developed transmission dynamic model.

1.3 Chapter overview

• Chapter 2: Background information is given on TB and the BCG vaccine. This
information helps motivate future chapters and may be useful for non-subject area
experts.

• Chapter 3: getTBinR, an R package that facilitates downloading TB relevant data
from the World Health Organization and provides functionality for visualising the
downloaded data, is introduced. The motivation and context for this package as part
of the wider thesis is also outlined.

• Chapter 4: This chapter describes the epidemiology of TB in England, using routine
surveillance datasets. Focusing on: the impact of missing data; the mechanisms
underlying that missing date; seasonal trends; the role of age; UK birth status; BCG
status; trends in TB incidence rates over time; and TB outcomes in England using
case rates. These data are used in all subsequent chapters in this thesis.

• Chapter 5: This chapter recreates a simulation based statistical model that was used
as part of the decision making process that led to the 2005 change in BCG vaccination
policy. It extends the previously implemented model by capturing parameter and
model uncertainty, and updating the underlying data. It then estimates the impact
in real-terms of the change in policy using this updated model.

• Chapter 6: This chapter uses regression analysis to explore the evidence that BCG
vaccination is associated with positive outcomes for active TB cases in England. Any
evidence that this is the case may strengthen the case for extending BCG vaccination
coverage.

• Chapter 7: This chapter uses a series of multilevel statistical models to assess the
effects of the 2005 change in BCG vaccination policy on the populations targeted by
each vaccination scheme.

• Chapter 8: In this chapter a mechanistic model of TB and BCG vaccination in Eng-
land is developed. The model structure is justified based on the known epidemiology
of TB in England. Model parameters are given prior distributions based on routine
surveillance data (Chapter 4), the published literature, and assumptions based on
expert knowledge where no other source exists.

• Chapter 9: In this chapter the model developed in the previous chapter is fitted to
the routine surveillance data (Chapter 4) using Bayesian methods. Multiple scenarios
are considered.

4
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• Chapter 10: In this chapter the model, developed and fitted in the previous chapters,
is used to forecast the impact of universal BCG vaccination at school-age vs. universal
vaccination of neonates vs. no vaccination from 2005 on-wards. The ongoing impact
of each policy is then discussed through to 2040.

• Chapter 11: Results from all previous Chapters are summarised and discussed as
a whole. The strengths and weaknesses of the analysis in this thesis are outlined.
Further work is outlined.

1.4 Thesis output

This thesis has produced: peer reviewed papers; preprints; talks at academic conferences;
open source research software; open source software for improving the academic workflow;
dashboards for exposing relevant data; dashboards for exploring the modelling methods used
in this thesis; and an educational dashboard for teaching some the benefits of vaccination.
These outputs are detailed in the following section.

1.4.1 Peer reviewed papers

• Abbott S. getTBinR: an R package for accessing and summarising the World Health
Organisation Tuberculosis data, Journal of Open Source Software, 2019, 4(34), 1260.,
doi: https://doi.org/10.21105/joss.01260

• Abbott, S., Christensen, H., Lalor, M. K., Zenner, D., Campbell, C., Ramsay, M.
E., & Brooks-Pollock, E. (2019). Exploring the effects of BCG vaccination in pa-
tients diagnosed with tuberculosis: Observational study using the Enhanced Tubercu-
losis Surveillance system. Vaccine, 1–6. doi: http://doi.org/10.1016/j.vaccine.
2019.06.056 (preprint: https://doi.org/10.1101/366476)

• Abbott S., Christensen H., Welton N.J., Brooks-Pollock E. (2019) Estimating the
effect of the 2005 change in BCG policy in England: a retrospective cohort study, 2000
to 2015. Eurosurveillance, 49(24). doi: https://doi.org/10.2807/1560-7917.ES.
2019.24.49.1900220 (preprint: https://doi.org/10.1101/567511)

1.4.2 Papers under review

• Abbott S., Christensen H., Brooks-Pollock E. Reassessing the evidence for universal
school-age BCG vaccination in England and Wales, doi: https://doi.org/10.1101/
567511

1.4.3 Software

Packages

• getTBinR: The getTBinR R package facilitates downloading the most up-to-date
version of multiple TB relevant data sources from the World Health Organiza-
tion, along with the accompanying data dictionaries. It also contains functions
to allow easy exploration of the data via searching data dictionaries, summaris-
ing key metrics on a regional and global level, and visualising the data in a
variety of customisable ways. See Chapter 3 for further details. Install from
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CRAN with install.packages("getTBinR") or install the development version
from GitHub with devtools::install_github("seabbs/getTBinR"). Link:
https://www.samabbott.co.uk/getTBinR/

• tbinenglanddataclean: An R package that contains the functions and doc-
umentation required to reproduce all data import and munging used in this
thesis. This package provides a workflow to facilitate reproducing all anal-
yses in this thesis and to expedite the work of others using data from the
Enhanced Surveillance System (ETS) (Chapter 4). Available from GitHub
using devtools::install_github("seabbs/tbinenglanddataclean"). Link:
https://www.samabbott.co.uk/tbinenglanddataclean/

• idmodelr: An R package that contains a library of infectious disease mod-
els as well as modelling utilities. It provides tooling that includes: example
SEI/SEIR/SHLIR/SHLITR model code, a model solving wrapper; a model summary
function; and a scenario analysis function. Used by the explore infectious disease
model dashboard (http://seabbs.co.uk/shiny/exploreidmodels/) for all func-
tionality. Available from CRAN using install.packages("idmodelr") or install the
development version from GitHub with devtools::install_github("seabbs/idmodelr").
Link: https://www.samabbott.co.uk/idmodelr/

• prettypublisher: An R package that improves the R based reproducible research
workflow. It provides tooling that includes: paper and figure referencing; effect
size reporting; percentage reporting; p-value reporting; and produces a table ready
for further word processing. Used throughout this thesis. Available from GitHub
using devtools::install_github("seabbs/prettypublisher"). Link: https://
www.samabbott.co.uk/prettypublisher/

Interactive tools

• Explore global Tuberculosis: Developed to showcase geTBinR (https://www.
samabbott.co.uk/getTBinR/) package functionality. This dashboard allows the in-
teractive exploration of WHO TB data. It can also be used to generate a static,
country level, report on TB epidemiology. Link: https://github.com/seabbs/
getTBinR/

• Explore Tuberculosis in England and Wales: Developed to allow public Public
Health England TB Notification data to be explored interactively. Key interventions
are highlighted and link to trends in TB notifications. This app is used in its static
form in Chapter 2. Link: https://github.com/seabbs/TB_England_Wales/

• Explore infectious disease models: Developed to be used within a modelling short
course at the University of Bristol (https://github.com/bristolmathmodellers/
biddmodellingcourse). This dashboard allows the user to simulate and compare
a variety of compartmental infectious disease models. All model code is surfaced
in an easily view-able format to allow for users to develop their own models. Link:
https://github.com/seabbs/exploreidmodels/

• Introduction to Tuberculosis models: Developed to allow simple TB models to
be explored in an interactive session. Inspired by practicals from the Introduction to
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TB, run by TB MAC (http://tb-mac.org/) at the 2017 Union conference. Link:
https://github.com/seabbs/intro_to_tb_models/

• The pebble game: Developed as a learning aid to help a general audience understand
the impact of vaccination on infectious disease dynamics. Used at Green Man 2016
as part of a week of outreach work and subsequently developed further. Link: https:
//github.com/seabbs/thepebblegame/

1.4.4 Talks

• Assessing the Evidence for Universal BCG Vaccination in England - Re-
search and Applied Epidemiology Scientific Conference 2016, Warwick, United King-
dom. Received best abstract from an early career researcher. Link: https://www.
samabbott.co.uk/talk/phe-applied_epi-2016/

• Beneficial effects of BCG vaccination in outcomes for patients with ac-
tive TB: observational study using the Enhanced Tuberculosis surveil-
lance system 2000-2014 - Research and Applied Epidemiology Scientific Confer-
ence 2017, Warwick, United Kingdom. Received best PhD student abstract. Link:
https://www.samabbott.co.uk/talk/phe-applied-epi-2017/

• Beneficial effects of BCG vaccination in outcomes for patients diagnosed
with TB: observational study using the Enhanced Tuberculosis surveillance
system 2009-2015 - 48th Union World Conference on Lung Health. Link: https:
//www.samabbott.co.uk/talk/union-2017/

• Estimating the effect of the 2005 UK BCG vaccination policy change: A
retrospective cohort study using the Enhanced Tuberculosis Surveillance
system, 2000-2015 - Research and Applied Epidemiology Scientific Conference
2018, Warwick, United Kingdom. Link: https://www.samabbott.co.uk/talk/phe-
applied-epi-2018/

• What do we really know about BCG? - UK Clinical Vaccine Network Conference
2019, Oxford, United Kingdom. Link: https://www.samabbott.co.uk/talk/uk-
vac-network-2019/

1.5 Summary
• This chapter provides an introduction to TB and the BCG vaccine. It then motivates

the remainder of this thesis.
• An outline of the theoretical framework used throughout this thesis is given.
• The aims and objectives of this thesis are detailed.
• An overview of the chapters is provided.
• Finally the dissemination of this work so far is summarised, broken down into peer

reviewed output, preprints, software output, and talks given at academic conferences.
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Chapter 2

Background

2.1 Tuberculosis
Tuberculosis (TB) is thought to infect over 1.7 billion people globally, of which 5-15% will
develop active (symptomatic) TB in their lifetime.[11] Of those with active TB around
10% are likely to die from TB or TB related causes.[3] TB is preventable and curable, but
the majority of active cases occur in less economically developed countries and may not
be diagnosed.[3] In the following section, the natural history of TB, TB risk factors, TB
treatment, global impact, and the impact TB in England and Wales are explored.

2.1.1 Natural history of TB

TB is primarily a respiratory disease (pulmonary TB) caused by the bacterium Mycobac-
terium tuberculosis, although it can also affect other parts of the body (extra-pulmonary
TB). TB spreads via airborne droplets that are expelled when individuals with active pul-
monary TB cough. After infection with TB, 5-10% of individuals develop primary disease
within 1-2 years of exposure. Children are more likely to develop active disease and to
develop it more quickly than adults.[3] The remaining 90-95% of individuals then enter a
latent stage in which they passively carry TB mycobacterium. Reactivation of bacilli can
then occur many years later due to a loss of immune control.[12]

Both active and latent TB represent a range of diverse individual states. Pulmonary
cases are typically responsible for the vast majority of transmission.[13] Latent cases may
completely clear the bacterium or be asymptotically carrying reproducing active TB bac-
terium.[12] Adolescents have the highest risk of developing active TB, usually in the form of
pulmonary TB.[3] The risk of developing pulmonary TB, versus extra-pulmonary TB, varies
with age. For instance, younger children are more likely to develop pulmonary TB.[3]

The most common symptoms are a chronic cough with sputum containing blood, fever,
night sweats and weight loss. Infectiousness, mortality and likelihood of developing various
types of TB vary with age.

2.1.2 Risk factors

TB has been associated with several risk factors, the most common of which is human
immunodeficiency viruse (HIV). HIV increases the rate of activation 20-fold and TB is the
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most common cause of AIDS-related death.[14] Increased risk of TB can also be the result
of other medical conditions, such as diabetes, or lifestyle and environmental factors. These
include smoking, low socioeconomic status, high density living, homelessness, incarceration,
and drug use.[15–17]

2.1.3 Treatments

Treatment for TB consists of a six month course of multiple antibiotics (see Table 2.1).
These usually consist of isoniazid, rifampicin, pyrazinamide and ethambutol (known as first
line drugs). If the disease is resistant to treatment with the first line drugs then second
line drugs such as aminoglycosides, fluoroquinolones, and cycloserine are employed. The
side effects for these drugs are generally far more severe and the treatment regime is longer,
typically 12-24 months. The World Health Organization (WHO) now recommends the
use of the Directly Observed Treatment short-course (DOTS), which focuses on 5 action
points.[18] These are:

1. political commitment with increased and sustained financing,
2. case detection through quality-assured bacteriology,
3. standardized treatment with supervision and patient support,
4. an effective drug supply and management system,
5. monitoring and evaluation system and impact measurement.
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Table 2.1: A timeline of interventions against TB. Antibiotics used to treat
TB are commonly given together, with those with the fewest side effects
given first. Second line antibiotics are then used if the initial treatment
fails or tests show the strain is multiply drug resistant. BCG - Bacillus
Calmette–Guérin; TB – Tuberculosis; MRSA - Methicillin-resistant extit-
Staphylococcus aureus; DOTS - Directly Observed Treatment Short-course

Year Intervention Type Line Detail

1921 BCG Vaccination The first use of the Bacillus Calmette–Guerin (BCG) vaccine in humans, it
remains the only vaccine against Tuberculosis (TB). Efficacy has been
shown to vary depending on latitude and there is only strong evidence of
protection for 10-15 years after vaccination.

1944 Streptomycin Antibiotic Second The first antibiotic and the first bacterial agent against TB.
1944 4-Aminosalicylic acid Antibiotic Second The second antiobiotic to be developed. Due to lower potency than other

antibiotics it is not considered a first line treatment.
1952 Isoniazid Antibiotic First Used against both active and latent TB, it may also be given as a

prophylatic therapy.
1952 Cycloserine Antibiotic Second An antibiotic with severe side effects such as kidney failure and neurological

conditions, which is therefore restricted for use against multiple drug
resistant TB.

1952 Pyrazinamide Antibiotic First Discovered in 1936, it was first used against TB in 1952. Although showing
no effect in-vitro it was shown to be effective in treating TB in mice. Used
only for treating TB and never on its own.

1953 School age BCG Vaccination After a successful trial which showed high effectiveness for the vaccine, BCG
was introduced in the UK for those at school leaving age as peak incidence
was then in young, working adults.

1962 Ethambutol Antibiotic First Believed to work by interfering with TB bacteria’s metabolism. There are
some concerns that it may not be safe to give during pregancy, as it may
lead to vision loss in the baby.

1971 Rifampicin Antibiotic First Taken daily for at least a period of 6 months, if given alone resistance
develops quickly. It may also be used in the treatment of MRSA amongst
other diseases.

1995 DOTS Strategy Directly Observed Treatment, Short-Course (DOTS) is introdued by the
World Health Organization as a control strategy for TB. The intermittent,
supervised system aims to eliminate drug default.

2005 Neonatal high risk BCG Vaccination Due to a continued decline in TB incidence rates in the indigenous UK
population, the BCG programme was refocused as risk-based. This meant
vaccinating high risk neonates rather than those most likely to transmit TB.11
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Table 2.1: A timeline of interventions against TB. Antibiotics used to treat
TB are commonly given together, with those with the fewest side effects
given first. Second line antibiotics are then used if the initial treatment
fails or tests show the strain is multiply drug resistant. BCG - Bacillus
Calmette–Guérin; TB – Tuberculosis; MRSA - Methicillin-resistant extit-
Staphylococcus aureus; DOTS - Directly Observed Treatment Short-course
(continued)

Year Intervention Type Line Detail

2012 Bedaquiline Antibiotic Second The first new antiobiotic for use against TB in 40 years, reserved for use
against multiple drug resistant TB. Approved via a fast track process, higher
mortality in those that recieve the antibiotic has caused significant concern.
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2.1.4 Global TB

TB is a global disease with an estimated 10.4 million new cases in 2016,[3] of which 4.3
million were estimated to have been missed by health systems.[19] Global incidence rates
have decreased year-on-year since the early 2000s, with an average year-on-year decrease
of 2.9%. However, global TB incidence remains above 134 per 100,000 population (Figure
2.1). On a regional level, incidence rates vary, with Africa and South-East Asia having a
greater concentration of cases. In the Eastern Mediterranean, incidence rates have remained
relatively stable over the last 10 years.
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Figure 2.1: TB incidence rates (per 100,000) by region and globally from
2000 until 2017. Globally incidence rates have been declining since the early
2000s but this decline varies with region.

Regional incidence rates only tell part of the story, as TB incidence rates vary significantly
within regions. India, Indonesia, China, Nigeria, Pakistan, and South Africa account for
60% of new cases. India, Indonesia, and Nigeria are thought to be responsible for nearly
half of all undiagnosed cases.[18] Figure 2.2 shows both regional similarities and countries,
like Mongolia, that stand out as having higher TB incidence rates than surrounding coun-
tries.
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Estimated incidence (all forms) per 100 000 population 0 200 400 600

Source: World Health Organisation

Figure 2.2: Global map of country level TB incidence rates (per 100,000
population) in 2017. Note the clustering of countries with high incidence
rates in southern and central Africa and southern Asia. Incidence rates in
the legend refer to the lower bound for each colour.

TB remains one of the top 10 causes death worldwide, leading to 1.7 million deaths in
2016 alone.[3] The absolute number of deaths due to TB has fallen since 2000, with an
average annual global rate of decline in TB mortality rates of 2.9% between 2000-2016.
Unlike the trend observed for incidence rates, the year-on-year decline of TB mortality
rates has remained consistent in all regions (Figure 2.3). Several regions, including Africa
and Europe, have seen TB mortality rates fall to below 50% of those in 2000.
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Figure 2.3: TB mortality rates (per 100,000 cases) by region and globally
from 2000 until 2017. Mortality rates from TB have been falling in all regions
since 2000.

There is an ongoing global co-epidemic of HIV and TB, with people living with HIV ac-
counting for 1.4 million TB cases in 2016. 22% of deaths from TB were in those living with
HIV. Whilst this is a global problem, it is a particular issue in sub-Saharan Africa with over
60% (95% confidence interval (CI): 55%-64%) of incidence TB cases in South Africa also
having HIV (Figure 2.4). This compares to a global mean of 9.1% (95% CI: 6.0%-13.0%)
and a mean of 26.7% (95% CI: 17.4%-38.1%) in Africa.
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Estimated HIV in incident TB (percent) 0 20 40 60

Source: World Health Organisation

Figure 2.4: Global map of estimated HIV in incidence TB (percent) in 2018.
Note the high percentage of TB cases with HIV in sub-saharan Africa. The
percentages of HIV in incident TB in the legend refer to the lower bound for
each colour.

Multi-drug-resistant TB (MDR-TB), which is defined as being resistant to at least isoniazid
and rifampin, made up 4.6% of all incident TB cases globally in 2015 (480,000). It can be
acquired both through treatment failure and through transmission. Treatment requires the
use of second line antibiotics, which often have more severe side effects and are more likely
to fail, with only 52% successfully treated globally compared to 83% for drug susceptible
TB.[18] As for HIV co-infection, drug resistance is globally heterogeneous with some regions,
like countries in the former USSR, having a much higher proportion of drug resistant cases.
Figure 2.5 shows the country level proportion of cases with at least rifampicin resistance
and highlights the higher level of rifampicin resistance in countries formerly in the USSR.
92% of rifampicin cases in Russia in 2018 also had MDR-TB, which is comparable to the
global median of 81% (Table 2.2). Across all regions, Europe had the highest median
percentage of rifampicin cases with MDR-TB (87%), with the Western Pacific having the
lowest (78%).
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Estimated percentage of new TB cases with rifampicin resistant TB 0 10 20 30

Source: World Health Organisation

Figure 2.5: Global map of the estimated percentage of new TB cases with
rifampicin resistance (percent) in 2018. Note that a far higher percentage of
TB cases have rifampicin resistance in the former Soviet Union that in the
rest of the world. The percentages of rifampicin resistances in incident TB
in the legend refer to the lower bound for each colour.

Table 2.2: Percentage (%) of rifampicin resistant TB cases that have multi-
drug resistant TB in Russia and regional medians, with interquartile ranges.
The estimate for Europe includes data from the Russian Federation.

WHO region Median Proportion of Rifampicin resistant cases with MDR* (2.5% to 97.5% quantiles)

Global 81.0 (6.8 to 100.0)
Western Pacific 78.0 (0.0 to 100.0)
South-East Asia 100.0 (77.0 to 100.0)
Europe 87.0 (17.2 to 100.0)
Eastern Mediterranean 83.0 (29.5 to 100.0)

Americas 73.0 (34.2 to 93.9)
Africa 81.0 (50.5 to 100.0)
Russian Federation 92.00 ***
** Multi-Drug Resistant TB
*** Only point estimates available

All statistics that are not referenced in this section were generated using getTBinR - see
Chapter 3 for further details.

2.1.5 TB in the England and Wales

TB Notifications

TB incidence in England and Wales has decreased dramatically from a century ago (Figure
2.61). However, in the past several decades, incidence rates first stabilised and have since
increased since their lowest point in the 1990s. In 2000 there were 6044 notified TB cases in
England, increasing to a maximum of 8280 notified TB cases in 2011. Since then, notifica-
tions have declined year-on-year.[20] Figure 2.6 includes the interventions discussed above

1or see http://www.seabbs.co.uk/shiny/TB_England_Wales for an interactive dashboard
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(Table 2.1) and indicates that the introduction of several antibiotics and BCG vaccination
in the 1950s may have led to an extended decrease in incidence.
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Figure 2.6: TB notifications in England and Wales from 1913 to 2017,
stratified initially by respiratory/non-respiratory status and from 1982 by
pulmonary/non-pulmonary TB. Interventions are highlighted with vertical
lines, with linetype denoting the type of intervention, more information on
each intervention is available in the corresponding table.

Heterogeneity of TB

TB incidence in England and Wales is highly heterogeneous with over 70% of cases occurring
in the non-UK born population. Incidence rates in the non-UK born (49.4 per 100,000, in
2016) are 15 times higher than in the UK born population (3.2 per 100,000, in 2016).[2]
The age distribution of cases in the UK born and non-UK born populations differ, with the
UK born population having a relatively uniform distribution. Meanwhile, the non-UK born
have higher incidence rates in those aged 80 years and older (69.3 per 100,000 in 2016),
those aged 75 to 79 years (62.9 per 100,000 in 2016) and those aged 25-29 years old (61.6
per 100,000 in 2016) [2]. In the non-UK born, the majority of cases occur amongst those
who have lived in the UK for at least 6 years (63%) - this has increased year-on-year since
2010 (when it was 49%).[2] 23.3% (420/1,800) of non-UK born cases had traveled outside
the UK in 2016 with the majority returning to their country of origin. Incidence rates in
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the UK born are between 3 and 14 times higher in non-White ethnic groups compared to
the White ethnic groups.[2]

The majority of cases occur in urban areas. London alone accounts for 39% of cases, with
an incidence rate of 25.1 (per 100,000, in 2016).[2] England has few cases of MDR-TB cases,
with only 68 cases recorded in 2016. Similarly the number of co-infections with HIV is low
with only 3.8% of cases in 2015 having HIV - the majority of these cases were born in
countries with high HIV prevalence. In 2016, 11.1% of TB cases in 2016 had at least one
social risk factor, compared with 11.7% in 2015.[2] In general cases with social risk factors
are more likely to have drug resistant TB, worse TB outcomes, and to be lost to follow
up.[2] Amongst cases who were of working age in 2016, with a known occupation; 35.2%
(1,491/4,240) were not in education or employment, 10.2% (432) were either studying or
working in education; and 7.1% (304) were healthcare workers.[2]

TB Transmission

As TB incidence rates alone cannot be used to assess current TB transmission, due to
reactivation of those latently infected, the incidence rate in UK born children (0-14 years
old) is often used as a proxy for transmission. Incidence rates in UK born children have
fallen 47% from 3.4 per 100,000 in 2008 to 1.8 per 100,000 in 2016.[2] This indicates that TB
transmission has fallen in the last decade. However, BCG vaccination was introduced for
those neonates at high risk of TB in 2005, which may partly be responsible for the observed
reduction in incidence rates.

Strain typing or whole genome sequencing is used to establish case clustering. This can be
used to rule out transmission between cases, but does not necessarily confirm transmission.
Approximately 60% of cases cluster with at least one other case, and whilst this varies year-
on-year, the fluctuations appear to be small (approximately 1-2%).[2] Therefore interpreting
any trend in TB transmission from the current strain typing data is difficult. Between
2010 and 2016, the median cluster size was 3 cases (range 2-244). In these clusters, 74.4%
(2,141/2,878) consisted of less than 5 cases and only 8.8% of clusters had more than 10 cases
[2]. UK born cases were more likely to cluster than non-UK born cases (71.1%, 4,200/5,910
vs. 56.1%, 10,166/18,121).[2]

Pulmonary Vs. Extra-Pulmonary TB

Figure 2.7 shows that since the 1980s the proportion of extra-pulmonary TB has increased
from 26.2% (1944/7410) in 1982 to 45.8% (2634/5748) in 2016. This may be attributed to
the age distribution of TB cases changing as different age groups are more likely to progress
to pulmonary vs extra-pulmonary TB. It may also be related to the increase of non-UK
born cases as a higher proportion of non-UK born cases have extra-pulmonary disease only
(51.4%, 2,103/4,089, in 2016), compared to UK born cases (31.9%, 467/1,465, in 2016).[2]
For more details on TB in England, see Chapter 4 and the Public Health England 2017 and
2018 TB reports from which the summary data discussed above was extracted.[2,21]
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Figure 2.7: From 1913 until 1981 the figure shows the proportion respira-
tory vs. non-respiratory cases and from 1982 it shows the proportion of
pulmonary vs. non-pulmonary TB.

2.2 The Bacillus Calmette–Guérin Vaccine

The Bacillus Calmette–Guérin (BCG) vaccine was first given to humans in 1921 and remains
the only licensed vaccine for TB.[22] The BCG vaccine is a live vaccine and was developed
by weakening a strain of Mycobacterium bovis, which is commonly found in cows, over a
period of 13 years.[3] Serious side effects are rare, although a small scar at the injection
site is common. Initially, public acceptance was slow, with low take up until after the
Second World War. However, controversy remains and several countries have scaled back,
or retargeted, their usage in recent years. This section details the action, effectiveness,
duration of protection, effects and usage of the BCG vaccine.

2.2.1 Vaccine action

The BCG primarily acts by directly preventing the development of active, symptomatic
disease. However, there is some evidence to suggest that the BCG vaccine also provides
partial protection against initial infection.[4] There is no evidence that BCG vaccination of
latent TB cases provides protection from developing active TB disease.[3]
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2.2.2 Vaccine effectiveness

The effectiveness of the vaccine is impacted by the age at which it is given, the latitude of the
individual, and the period of time that has lapsed since vaccination. Multiple randomized
control studies (RCTs) have been conducted on BCG efficacy. It has consistently been shown
to be highly protective in children for both pulmonary TB and TB meningitis.[23] Efficacy
in adults ranges from 0% to 78%,[25] with an MRC trial in England finding that BCG was
78% effective in the White UK-born.[26] Effectiveness at preventing initial infection has
been estimated at 19% (95% CI: 8% to 29%) globally.[4]

A meta-analysis of RCTs indicated that increased protection is associated with distance from
the equator.[25] One hypothesis for this is that there is a greater density of mycobacteria
near the equator that may mask, or block, the protection offered by the BCG vaccine.[27]
Recently it has been found that much of this latitude effect may be due to the robustness of
tuberculin skin testing (TST), with lower stringency near the equator.[3] TST screening tests
for the presence of TB infection but may give a false positive if the subject has been exposed
to other mycobacteria or the BCG vaccine. Reduced stringency would lead to a greater
number of latent TB individuals being vaccinated. These individuals would then receive
no protection from the vaccine and would lead to a reduced estimate of the effectiveness of
the vaccine overall. Regardless of the mechanism this effect means that vaccination early
in life maximises the protection conferred by the BCG vaccine in countries with evidence
of decreasing protection with age.

2.2.3 Duration of protection

The effectiveness of the BCG vaccine has been shown to reduce over time.[28] However, there
is good evidence that protection can last up to 10 years, with limited evidence of protection
beyond 15 years.[28] Although, a recent study found that protection from active TB may
extend later into life in England.[29] There is little evidence to suggest that re-vaccination
boosts the protection offered by initial vaccination.[3]

The limited duration of protection has informed vaccination policy globally.[5] In countries
where the BCG vaccination has been shown to be effective when given later in life, vacci-
nation at school-age results in high levels of BCG effectiveness in young adults. As young
adults are typically responsible for large amounts of TB transmission, this is likely to reduce
TB incidence rates. Vaccination of neonates, on the other hand, provides protection against
TB early in life. TB outcomes can be very poor at this time, but early life vaccination can
lead to lower levels of protection later in life when transmission is more likely. This results
in a trade-off, with BCG vaccination of neonates being more effective in low effectiveness
settings and in settings with lower TB incidence rates, whereas school-age vaccination is
potentially more effective in settings with high BCG effectiveness and higher TB incidence
rates.

2.2.4 Additional effects of BCG vaccination

Until recently, little attention has been given to any additional effects of BCG vaccina-
tion.[30,31] However, there is now some evidence that BCG vaccination induces innate im-
mune responses that may provide non-specific protection[32] and reduce all-cause neonatal
mortality.[33,34] There is some evidence that this reduction in all-cause mortality extends
later in life.[35] Additionally, BCG vaccination may improve outcomes for individuals with
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active TB disease. TB patients with BCG scars have been found to respond better to treat-
ment with earlier sputum smear conversion (detection of TB bacterium in a sputum sample)
.[36] There is also evidence to support an association between BCG vaccination and reduced
TB mortality.[28] The evidence for additional effects of BCG vaccination on outcomes in
individuals with notified TB, in England, is explored further in Chapter 6.

In addition to its effect on TB outcomes, the BCG vaccine has also been found to be
effective at preventing leprosy (with a risk ratio (RR_ of 0.45 (95% CI: 0.34-0.56)), with
some evidence that this protection was stronger in those vaccinated before 15 years of age.[3]
Additionally, there is some evidence that the BCG vaccine can provide protection against
Non-TB mycobacteria (NTM) infections, with an estimated effectiveness of 50%.[3] This
protection has been shown to greatly reduce the incidence of NTM lymph node inflammation
and protect against Buruli ulcers for the first 12 months following vaccination (RR, 0.50
[95% CI, 0.37–0.69]). A study also found that individuals with Buruli ulcers are less likely
to develop osteomyelitis (bone infection) if they have a BCG scar (RR, 0.36 (95% CI: 0.22
to 0.58)).[37]

2.2.5 Usage globally

The BCG vaccine is one of the mostly widely-used vaccines worldwide, with approximately
100 million doses given annually.[38] However, due to the variable estimates of BCG ef-
ficacy, vaccination has been controversial since its development. The WHO recommends
vaccination for all neonates as early as possible after birth in high burden settings. Vaccina-
tion in low burden settings is dependent on the country specific epidemiology of TB.[3,39]
This recommendation is based on the strong evidence that the BCG is highly protective
in children (particularly against disseminated TB and TB meningitis),[23,24] whilst its ef-
fectiveness has been shown to vary with latitude when given later in life.[40] Historically,
different strategies have been utilized worldwide. These include universal vaccination of
those at most risk of onwards transmission and high-risk group vaccination targeting either
neonates or children.[28]

In addition, BCG vaccination policies have differed by the number of doses given, the
method of application (although most countries now use the intradermal route), and the
strain type used.[5] Policies have also changed over time within countries due to changes in
evidence, global best practice, TB incidence rates and HIV incidence. This means that in
order to understand the current impact of BCG vaccination in a population it is important
to know both the current vaccination policy but also historic vaccination policies.

As of 2011, among 180 countries with available data, 157 countries recommended universal
BCG vaccination. The remaining 23 countries had either never implemented a universal
programme or have switched to targeted vaccination of high risk individuals.[5] Most coun-
tries began universal programmes between the 1940s and 1980s due to high levels of TB
incidence and strong evidence of the effectiveness of the BCG vaccine.[26] In the last 20
years 49 of these countries reported changing their vaccination programme with 27 coun-
tries reporting major changes in the last 10 years.[5] Globally, in countries that have BCG
vaccination policies in place, coverage is thought to range from 70% to 100%.

22



2.3. Summary

2.2.6 Usage in England

In England, universal school-aged vaccination was introduced after an MRC trial in the
1950s estimated BCG’s effectiveness at 78% in the white UK born population.[26] In 2005,
the UK shifted from this strategy to targeted vaccination in neonates deemed at high
risk.[28] This change was a reflection of current WHO vaccination policy,[39] falling TB
incidence rates, an increasing proportion of TB cases occurring in the non-UK born,[2] and
modelling evidence that suggested stopping the BCG schools scheme would have minimal
long term effects on incidence rates.[41] The impact of this change in policy is explored
throughout this thesis but in particular in Chapter 5, Chapter 7 and Chapter 10.

Since 2015, BCG vaccination has been included in the Cover Of Vaccination Evaluated
Rapidly (COVER) programme, allowing coverage to be estimated in areas of England with
universal vaccination (implemented due to high incidence rates and based on WHO guide-
lines). Coverage for areas in England implementing targeted vaccination remains unknown.
In London, current coverage estimates are made by Local Authority and range from 5.3%
to 92.1%.[2] These estimates may not be reliable as COVER has only relatively recently
begun to include returns for BCG, meaning that data quality may be poor. Prior to the
switch to targeted neonatal vaccination, coverage in those at school leaving age was thought
to be approximately 75%.[41]

2.2.7 Replacement vaccines

Multiple replacement vaccines are currently in clinical trials.[5,42] Vaccine candidates in-
clude both live and sub-unit vaccines. Many of these candidate vaccines serve as a boost
to the BCG vaccine, with the BCG vaccine being administered prior to the candidate vac-
cine.[5] Several BCG replacements are also being trialed, both based on alternative methods
of attenuating TB mycobacteria and using other approaches.[42] However, in the short-to-
midterm it is unlikely that a new vaccine will replace the BCG vaccine. This means that
its optimal usage is as important as ever.

2.3 Summary
• This chapter provides an overview of the natural history, risk factors, treatment, global

epidemiology, and epidemiology in England and Wales of TB.

• This chapter also details the action, effectiveness, duration of protection, effects and
usage of the BCG vaccine. The only licensed vaccine for TB.

• Motivation is given for the remaining chapters in this thesis.
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Chapter 3

getTBinR: an R package for
accessing and summarising World
Health Organization Tuberculosis
data

3.1 Introduction

Developing tools for rapidly accessing and exploring datasets benefits the public health
research community by enabling multiple datasets to be combined in a consistent manner,
increasing the visibility of key datasets, and providing a framework that can be used to
explore key questions of interest. Tooling also reduces the barriers to entry, allowing non-
specialists to explore datasets that would otherwise be inaccessible. This widening of access
may also lead to new insights and wider interest for key public health issues.

getTBinR is an R package[43] that I developed to facilitate working with the data[19]
collated by the World Health Organization (WHO) on the country level epidemiology of
Tuberculosis (TB). All data is freely available from the WHO1 and the package code is
archived on Zenodo2 and Github3. The aim of getTBinR is to allow researchers, and other
interested individuals, to quickly and easily gain access to a detailed TB dataset and to start
using it to derive key insights. It provides a consistent set of tools that can be used to rapidly
evaluate hypotheses on a widely used dataset before they are explored further using more
complex methods or more detailed data. Prior to the development of getTBinR access
to the WHO data was ad-hoc and there were no standardised visualisation or summary
tools.

The remainder of this chapter outlines the structure, and key functionality, of getTBinR
0.6.1. The use of getTBinR in this thesis is explored as well as the use of the package
in work external to this thesis and by others. Much of the work done for this chapter was
code, documentation, and case study development and so is not fully captured here. The

1WHO TB data: https://www.who.int/tb/country/data/download/en/
2Zenodo: https://zenodo.org/badge/latestdoi/112591837
3GitHub: https://github.com/seabbs/getTBinR/

https://www.who.int/tb/country/data/download/en/
https://zenodo.org/badge/latestdoi/112591837
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GitHub repository contains a full development history of the package, as well as providing
links to the documentation and accompanying case studies.

3.2 Installation
getTBinR has been released to the Comprehensive R Archive Network (CRAN) and can
therefore can be installed with the following code,
install.packages("getTBinR")

As getTBinR is under active development, the development version can be installed from
GitHub with the following,
# install.packages("remotes")
remotes::install_github("seabbs/getTBinR")

3.3 Data extraction and variable look-up
The data sourced by getBTinR is collated by the WHO, via member governments, and used
to compile the yearly global TB report.[19] Data collation and estimation encompasses TB
incidence, TB mortality rates, the age distribution of TB cases, the proportion of drug
resistant cases, case detection rates, and treatment rates. For a complete description of the
data and data collection process, see [19]. These data are used by the WHO, governmental
organisations and researchers to summarise country level TB epidemiology, as well as the
wider global and regional picture.

getTBinR provides a single user facing function for data extraction, get_tb_burden. This
function downloads multiple datasets from theWHO, cleans variables names where required,
and finally joins all datasets together. On top of the core datasets provided by default,
getTBinR also supports importing multiple other datasets. These include data on latent
TB, HIV surveillance, intervention budgets, and outcomes (see ?additional_datasets for
a full list of available datasets). To reduce unnecessary downloads, and improve perfor-
mance, downloads are cached automatically. get_tb_burden is called by all other package
functions allowing for a seamless user experience. get_data_dict has similar functionality
to get_tb_burden but extracts data dictionaries rather than the underlying data. It is
called by the majority of the package functions in order to provide intelligent labels.

To improve the user experience, and to facilitate intelligent labeling, getTBinR provides
a search function for the data dictionary (search_data_dict). This function is able to
search, using fuzzy matching, for variables, variable descriptions, key phrases, and datasets.
The code below gives an example search for country and e_inc_100k (TB incidence rate)
variables, along with an accompanying search for variables referencing mortality.
search_data_dict(var = c("country","e_inc_100k"),

def = c("mortality"), verbose = FALSE)

# A tibble: 11 x 4
variable_name dataset code_list definition
<chr> <chr> <chr> <chr>

1 country Country ide~ "" Country or territory name
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2 e_inc_100k Estimates "" Estimated incidence (all forms~
3 e_mort_100k Estimates "" Estimated mortality of TB case~
4 e_mort_100k_hi Estimates "" Estimated mortality of TB case~
5 e_mort_100k_lo Estimates "" Estimated mortality of TB case~
6 e_mort_exc_tbhiv~ Estimates "" Estimated mortality of TB case~
7 e_mort_exc_tbhiv~ Estimates "" Estimated mortality of TB case~
8 e_mort_exc_tbhiv~ Estimates "" Estimated mortality of TB case~
9 e_mort_tbhiv_100k Estimates "" Estimated mortality of TB case~

10 e_mort_tbhiv_100~ Estimates "" Estimated mortality of TB case~
11 e_mort_tbhiv_100~ Estimates "" Estimated mortality of TB case~

3.4 Data visualisation

getTBInR implements a range of functions to allow rapid development of complex visuals,
with minimal R knowledge. All functions make use of cached data so that no data needs
to be provided and can automatically match variables to variable names. Additionally,
all visualisation functions have a common user interface, allowing for knowledge transfer
between functions. As all visualisation functions return ggplot2 objects (a commonly used
R graphing library), user modification is readily supported.

Functionality that is common to all plotting functions is the ability to: plot data for a given
list of countries; fuzzy match country names; plot data for a given metric present in the data;
compute percentage changes from raw metric values; look up the supplied metric to see if the
data dictionary contains an appropriate name; plot data over a user supplied range of years;
facet over a user supplied variable; implement a user supplied transform (i.e log scaling);
modify the colour palette used; and switch to comparable interactive graphics (using the
plotly package). In addition to this, plot_tb_burden and plot_tb_burden_summary can
incorporate confidence intervals. By default this is done by searching the data provided for
matching variables. Function specific functionality is outlined below.

3.4.1 Mapping TB burden metrics

The map_tb_burden function makes use of an inbuilt, country level, shapefile (a geospatial
vector data format) to produce a global or regional map of the metric supplied. Figure 3.1
gives a global overview of country level TB incidence rate. The use of a map here allows
for the identification of spatial patterns that would be difficult to distinguish using other
plot types. Figure 3.1 was produced with the following code,
map_tb_burden(metric = "e_inc_100k", verbose = FALSE) +

theme(text = element_text(size = 12))
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Figure 3.1: Map of global TB incidence rates in 2017 as generated by get-
TBinR. Visualising the data with a map allows for spatial trends to be
rapidly explored.

3.4.2 Plotting an overview for a given TB metric

The plot_tb_burden_overview function returns a dot plot that allows the trend over time
of a metric to be plotted in a simplified way. Figure 3.2 shows incidence rates, by country,
in Europe from 2000 to 2017. The dot plot format allows us to identify common trends
across countries, after ranking for incidence rate. A more traditional line plot of the same
data would be difficult to interpret due to the large number of countries. Figure 3.2 was
produced with the following code,
plot_tb_burden_overview(metric = "e_inc_100k",

countries = "United Kingdom",
compare_to_region = TRUE,
interactive = FALSE,
verbose = FALSE) +

theme(text = element_text(size = 12))
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Figure 3.2: Dot plot showing trends over time in TB incidence rates in
Europe ordered by TB incidence rates in 2017.

3.4.3 Plotting a comparison between country, regional and global metric
values

The plot_tb_burden_summary function plots a regional, global, or custom overview of the
supplied metric and can also include country level data for comparison. It can make use
of a range of summary methods including: the country level mean, country level median,
and summarised rates and proportions. Rates and proportions can be weighted with a user
supplied variable but the package default is to use the summarised population. Confidence
intervals are recomputed using a bootstrapping method where appropriate so that country
level uncertainty is properly incorporated into the summarised metrics. The data can also
be smoothed using a locally weighted regression to provide trend lines. Figure 3.3 shows a
regional summary of TB incidence rates produced using plot_tb_burden_summary. This
plot allows regional trends to be identified and compared against the global trend. Figure
3.3 was produced with the following code,
plot_tb_burden_summary(conf = NULL, metric_label = "e_inc_100k",

verbose = FALSE) +
theme(text = element_text(size = 12))
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Figure 3.3: TB incidence by region and globally as computed and visualised
by getTBinR. Confidence intervals have been disabled in order to avoid ob-
scuring the dominant trends.

3.5 Plotting country level trends for a given metric

The plot_tb_burden function plots TB trends at a country level using a simple, unaggre-
gated, line plot. This allows for trends identified with the more complex plotting functions
outlined above to be examined in more detail. Figure 3.4 shows the trend over time in TB
incidence rates in the United Kingdom, along with confidence intervals. Unlike the plots
above the focus on a single country allows changes over time to be more easily understood.
Figure 3.4 was produced with the following code,
plot_tb_burden(metric = "e_inc_100k",

countries = "United Kingdom",
verbose = FALSE) +

theme(text = element_text(size = 12))
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Figure 3.4: TB incidence rates over time, with confidence intervals, in the
UK. As produced by getTBinR.

3.6 Data summarisation
The same summarisation functionality outlined in 3.4.3 is also available in a separate func-
tion, summarise_tb_burden, which can be used to generate summarised datasets for further
analysis or visualisation. All non-plotting functions outlined for plot_tb_burden_summary
are implemented here. The code below summarises TB incidence rates in the UK, in Europe,
and globally.
summarise_tb_burden(metric = "e_inc_num",

stat = "rate",
countries = "United Kingdom",
compare_to_world = TRUE,
compare_to_region = TRUE,
verbose = FALSE)

# A tibble: 152 x 5
area year e_inc_num e_inc_num_lo e_inc_num_hi
<fct> <int> <dbl> <dbl> <dbl>

1 United Kingdom of Great Brita~ 2000 11.9 10.7 13.1
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2 United Kingdom of Great Brita~ 2001 11.5 10.3 12.7
3 United Kingdom of Great Brita~ 2002 13.1 11.8 14.3
4 United Kingdom of Great Brita~ 2003 13.4 12.1 14.8
5 United Kingdom of Great Brita~ 2004 13.2 11.9 14.5
6 United Kingdom of Great Brita~ 2005 15.3 13.8 16.6
7 United Kingdom of Great Brita~ 2006 15.3 13.8 16.4
8 United Kingdom of Great Brita~ 2007 14.6 13.2 16.1
9 United Kingdom of Great Brita~ 2008 15.0 13.5 16.1

10 United Kingdom of Great Brita~ 2009 14.5 13.1 15.9
# ... with 142 more rows

3.7 Dashboard

To explore the package functionality in an interactive session, or to investigate TB without
having to code extensively in R, a shiny dashboard has been built into the package. This
can either be used locally using,
run_tb_dashboard()

Any metric in the WHO TB data can be explored, with country selection using the built
in map, and animation possible by year. The shiny app can also be used to generate the
country level reports discussed in the next section. Figure 3.5 shows a screenshot of the
dashboard, with South Africa selected as the country of interest.

Figure 3.5: Snapshot of the built in package dashboard.

3.8 Country report

An automated country level report has also been built into getTBinR. This summarises key
TB metrics and provides regional and global rankings. The most commonly required plots
are also produced, including the trend in TB incidence rates, proportion of cases that lead
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to death, and the proportion of cases with MDR-TB. The report can be generated with the
following code,
## Code saves report into your current working directory
render_country_report(country = "United Kingdom", save_dir = ".")

Figure 3.6 shows a screenshot of the start of the report for the United Kingdom. Note
the automated reporting of country rankings in the text, along with summary metrics of
interest.

Figure 3.6: Screenshot of the start of the built-in package summary report,
for the United Kingdom.

3.9 Package infrastructure

getTBinR has been developed using R package best practices and as such is thoroughly
tested using an automated testing suite that runs against Linux, Windows and MacOS en-
vironments. Package documentation is supplied in a searchable website4 and a development
environment can be launched with a single button press5. Use cases for the package have
been outlined using multiple case studies, see the package documentation for details.

3.10 Discussion

In this chapter I have introduced the getTBinR R package. getTBinR facilitates downloading
the most up-to-date version of multiple TB relevant data sources from the WHO, along with

4Website: https://www.samabbott.co.uk/getTBinR/
5Binder: https://mybinder.org/v2/gh/seabbs/getTBinR/master?urlpath=rstudio
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the accompanying data dictionaries. It also contains functions to allow easy exploration of
the data via searching data dictionaries, summarising key metrics on a regional and global
level, and visualising the data in a variety of highly customisable ways. In addition, it
provides both a dashboard and an automated country level report that enables the global,
regional, and country level picture to be quickly summarised. It was developed using R
package development best practices and has been peer-reviewed.[44]

As of the 8th of August 2019, getTBinR has been released on CRAN for over a year. It has
been downloaded over 10,000 times, has a growing user base, no outstanding bug-related
issues, and has received multiple updates greatly expanding the functionality available. The
standalone dashboard hosted online6 has had over 3000 unique users. It has been used as a
teaching aid, as an example of open science, to facilitate exploratory data analysis and to
provide context for other research. In this thesis, it has been used extensively in Chapter 2
to provide context and was also used as a hypothesis generating tool in all other chapters.
Outside of the work presented in this thesis I have used getTBinR extensively as a data
analysis tool7, to widen the appreciation of TB as a global health problem8, and to provide
contextual information for other research9.

Whilst getTBinR is feature complete, and stable, development work continues. Future
projects include: using the shinymeta R package to provide downloadable R code to users
of the interactive application; iterating on the current automated report to improve for-
matting and to increase the amount of information displayed; and expanding the range of
visualisation functions available. As additional WHO TB data are released they will be
added to getTBinR.

3.11 Summary
• In this chapter I have introduced getTBinR an R package for accessing, summarising

and visualising the WHO TB surveillance dataset used to compile the yearly WHO
global TB report.

• I have outlined the need for data access packages in general - more specifically ex-
plaining the purpose of getTBinR, detailing the package functionality and outlining
the package infrastructure used.

• The current impact and future direction of getTBinR has also been detailed.

6Dashboard: http://www.seabbs.co.uk/shiny/ExploreGlobalTB/
7Blog: https://www.samabbott.co.uk/tags/who/
8Twitter: https://twitter.com/search?q=getTBinR&src=typd; Reddit: https://www.reddit.com/

user/seabbs/posts/
9Presentation: https://www.samabbott.co.uk/what-do-we-really-know-about-bcg/presentation.

html#1
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Chapter 4

The epidemiology of tuberculosis
and the role of BCG vaccination in
England

4.1 Introduction
Although the characteristics of tuberculosis (TB) in England have been reported else-
where,[2,21] and key risk factors such as non-UK birth status have been identified,[45]
little attention has been given to the role of BCG vaccination. In particular, there is little
information available regarding the demographics of vaccinated versus unvaccinated cases
and the impact of BCG vaccination on TB outcomes in England has not been explored.
There has also only been limited reporting of the age distribution, and trends over time, in
incidence rates stratified by UK birth status.

In this chapter I explore the epidemiology of TB in England using routine datasets with
a particular focus on the impact of missing data, the mechanisms underlying that missing
data, seasonal trends, the role of age, UK birth status and BCG status. I also estimate
incidence rates, stratified by UK birth status and age, which I use to identify trends in
TB incidence over time. Finally I report TB outcomes in England using case rates, again
stratified by BCG status and UK birth status. These data are then used throughout this
thesis to explore the impact of BCG vaccination on TB outcomes (Chapter 6), to estimate
the direct impact of the 2005 change in BCG vaccination policy (Chapter 7), to parameterise
a dynamic TB transmission model (Chapter 8) and to fit the same model to data (Chapter
9).

4.2 Data sources

4.2.1 Enhanced tuberculosis surveillance (ETS) system

Background

The ETS is a database that collects demographic, clinical, and microbiological data on
all notified TB cases in England and is maintained by Public Health England (PHE).
Notification is required by law, with health service providers having to inform PHE of
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all confirmed TB cases.[2] Data collection began in 2000 and was expanded, with additional
variables, with the launch of a web based system in 2008.[46] It is updated annually with de-
notifications, late notifications and other updates. A descriptive analysis of TB epidemiology
in England is published each year, which reports on data collection, cleaning, and trends in
TB incidence at both a national, and sub-national level.[2]

Data extraction and management

Data on all notifications (114,820 notifications) from the ETS system from 2000 to 2015 were
obtained from PHE via an application to the TB monitoring team. Data fields included:
notification date, age, PHE centre, occupation, ethnic group, UK birth status, years since
entry to the UK, date of symptom onset, date of presentation, date of diagnosis, date
of treatment start, date of treatment end, date of death, pulmonary TB status, culture
status, sputum smear status, drug resistance, BCG vaccination status, year of vaccination,
outcome at 12 months, overall outcome, and cause of death. Notifications were assessed for
identifiability and the data release was conditional on the raw data not being shared further.
Invalid entries were replaced with missing values unless otherwise noted, with character
variables stored as factors using their most common entry as the baseline. Notifications
from Scotland, Northern Ireland andWales were dropped from the dataset. Several variables
were created, or modified, for use in further analysis, Table 4.1 summarises these variables.
The code used for data cleaning is available as an R package1.

1Data cleaning code: https://www.samabbott.co.uk/tbinenglanddataclean/reference/clean_munge_
ets_2016.html
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Table 4.1: Variables derived or modified from the ETS system for use in
the analyses throughout this thesis.

Created/modified variable Description

Years since BCG Derived using year of vaccination and year of
notification. Categorised into ≤ 10 and 11+ due to the
evidence of waning protection for the BCG vaccine.[28]

Age at BCG Derived using year of vaccination and age at
vaccination. Categorised into < 1, 1 to 11, 12 to 16 and
16+ to capture historic vaccination policy.[47]

Successful treatment For cases that had a recorded date of starting
treatment, with their outcome recorded at the latest
available follow up. Those that completed treatment
are defined as successfully treated: treatment failure is
defined as those that stopped treatment, were lost to
follow up, those that died during follow up from TB,
those that died during follow up where TB contributed
to their death, or those who were still on treatment.
Those that were not evaluated were treated as missing.

Mortality Assessed via follow up at 12 and 24 months: mortality
is defined as cases with an overall outcome of death,
and survival is defined as those that completed
treatment, were still on treatment, or stopped
treatment. Those that were lost to follow up, or not
evaluated were treated as missing

TB mortality For cases with an overall outcome of died, and whose
cause of death was known to be TB or to be related to
TB. Those that were known to have not died, or who
were known to have died from a cause other than from
TB were defined to have not died from TB.

Death due to TB Death due to TB is defined as those that died directly
from TB, or where TB had contributed to their death
with death not due to TB being cases that died from
any other cause. Conditioned on all-cause mortality, for
cases with a known cause of death.

Structure of the ETS

The ETS is in a wide format with each notification having a single row, and with each unique
variable having a single column. This structure means that the progression of TB in each
individual is captured by a series of dates rather than as a series of events. As notifications
are not linked to a unique patient I.D it is possible that individuals are duplicated within
the ETS, with multiple notifications. These recurrent notifications have been flagged within
the data extract by the TB section at PHE. The majority of variables are factors, with a
significant minority of numeric and date variables.
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Data completeness

Missing data can take several forms, data that are missing completely at random (MCAR),
data that are missing at random (MAR) and data that are missing not at random
(MNAR).[48] Data that are MAR are missing with a mechanism that is conditional on
observed variables, whilst MNAR are missing with a mechanism that is conditional on
variables that are not observed. Data that is MAR, and MNAR may lead to biases
when analysing the data, however it is not possible to deduce from the observed data
what the mechanism driving missing data is. Therefore, it is necessary to account for
these potential biases during the analysis stage. This is possible using a variety of
methods such as scenario analysis accounting for the ‘best’ and ‘worst’ case scenarios, and
multiple imputation of missing data using additional variables in the dataset to inform the
imputation model.[48]

As the ETS is aggregated across England, from a variety of sources, some level of missing
data are inevitable. This takes two forms: under-reporting of notified cases, of which there
is some evidence in the literature,[49] and data missing for a notified case. The former is
particularly problematic as apart from using comparative studies the characteristics of those
that are not notified is unknown. For variables that are missing data within the dataset it
is possible to calculate the proportion of missing data (Figure 4.1, Table 4.2) but care must
be taken to account for nested variables such as date of death and year of BCG vaccination.
After accounting for nested variables, there was high completeness for common demographic
variables such as sex, age, ethnic group and UK birth status. More problematically, BCG
status and year of BCG status have a high percentage missing, even after accounting for
the introduction of national collection of these variables in 2008. Socio-economic status
(as national quintiles) was not collected until 2010 but after this point is highly complete.
Comparing pre 2009 and post 2008 in Table 4.2 (and by inspecting Figure 4.1) there are
also issues of changing completeness over time,[2,50] if this is not accounted for than it may
lead to spurious trends. Figure 4.1 also indicates that there are multiple groups of variables
that share a common pattern of missing data.
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Figure 4.1: Summary plot of missing data in the extract of the ETS data
used in this thesis. Due to the large size of the dataset, the data has been
sub-sampled with only 20% of the data shown in this figure. Notifications
have been ordered by date of notification from left to right. The follow-
ing subset of variables are shown: year (year), sex (sex), age (age), PHE
Centre (phec), Occupation (occat), Ethnic group (ethgrp), UK birth status
(ukborn), Time since entry (timesinceent), date of symptom onset (symp-
tonset), date of diagnosis (datediag), started treatment (startedtreat), date
of starting treatment (starttreatdate), treatment end date (txenddate), pul-
monary or extra-pulmonary TB (pulmextrapulm), culture (culture), sputum
smear status (sputsmear), drug resistance (anyres), previous diagnosis (pre-
vdiag), BCG status(bcgvacc), Year of BCG vaccination (bcgvaccyr), overall
outcome (overalloutcome), cause of death (tomdeathrelat), socio-economic
status quintiles (natquintile), and date of death (dateofdeath). Nested vari-
ables have been accounted for (i.e date of death has had an entry added
for cases that are known to have not died), so that true missingness for all
variables is estimated.
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Table 4.2: Breakdown of missing data from the ETS prior to the web based
system (pre 2009) and post (post 2008) by variable, ordered by the per-
centage missing for a subset of variables. The following subset of variables
are shown year (year), sex (sex), age (age), PHE Centre (phec), Occupa-
tion (occat), Ethnic group (ethgrp), UK birth status (ukborn), Time since
entry (timesinceent), date of symptom onset (symptonset), date of diag-
nosis (datediag), started treatment (startedtreat), date of starting treat-
ment (starttreatdate), treatment end date (txenddate), pulmonary or extra-
pulmonary TB (pulmextrapulm), culture (culture), sputum smear status
(sputsmear), drug resistance (anyres), previous diagnosis (prevdiag), BCG
status(bcgvacc), Year of BCG vaccination (bcgvaccyr), overall outcome
(overalloutcome), cause of death (tomdeathrelat), socio-economic status
quintiles (natquintile), and date of death (dateofdeath). Nested variables
have been accounted for (i.e data of death has had an entry added for cases
that are known to have not died), so that true missingness for all variables
is estimated.

Pre 2009 Post 2008

Variable Missing (N) Missing (%) Missing (N) Missing (%)

natquintile 63175 100.0 8120 15.7
bcgvaccyr 62479 98.9 31421 60.8
bcgvacc 61916 98.0 17133 33.2
datediag 45557 72.1 10303 19.9
sputsmear 32912 52.1 32094 62.1

timesinceent 29084 46.0 18670 36.2
anyres 27485 43.5 20995 40.7
occat 24870 39.4 5513 10.7
symptonset 23937 37.9 12829 24.8
txenddate 18711 29.6 1137 2.2

prevdiag 13204 20.9 3148 6.1
starttreatdate 9151 14.5 2127 4.1
tomdeathrelat 7539 11.9 1191 2.3
ukborn 6230 9.9 1825 3.5
overalloutcome 6044 9.6 0 0.0

startedtreat 4242 6.7 602 1.2
ethgrp 2811 4.4 1229 2.4
dateofdeath 1235 2.0 357 0.7
pulmextrapulm 177 0.3 213 0.4
sex 101 0.2 110 0.2

phec 32 0.1 0 0.0
age 25 0.0 0 0.0
caserepdate 0 0.0 0 0.0
year 0 0.0 0 0.0
culture 0 0.0 0 0.0
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For nested variables with rare outcomes an alternative approach for estimating the pro-
portion of missing data is to first filter the data for the top level variable required for the
nested variable to be defined and to then compute the proportion of these notifications
that are missing data for the outcome of interest. For the date of starting treatment this
approach leads to an estimate of 5.9% (6434/108410) being missing, which is more complete
than previously estimated. For cases that are known to have completed treatment 16.5%
(13804/83891) are missing a date for the end of treatment. In notifications that are known
to have died, 26.6% (1592/5976) were missing the date of death and 44.9% (2686/5976)
were missing the cause of death. In any analysis where these variables are used the missing
data for these variables will need to be carefully adjusted for. In particular, if cause of
death is used it must be clearly stated that it is highly missing and results based on this
variable should be properly caveated.

Drivers of Variable completeness

As previously discussed, missing data may be MAR or MNAR, which may introduce biases
into any analyses based on these data. This is of particular importance for variables that
have high levels of missingness, as any introduced bias is likely to have a greater impact
on the overall results, and for variables that are used extensively in analyses later in this
thesis. Unfortunately MNAR data cannot be detected, so bias from this source cannot be
discounted. However, it is possible to detect potential MAR mechanisms from observed
variables that would not necessarily be included in a model used for analysis, although
any associations may themselves be caused by an external factor. In the following section
I explore variables associated with data being missing for several key variables including:
BCG status, year of BCG vaccination, date of death, cause of death, date of symptom
onset, date of diagnosis, date of starting treatment and date of ending treatment. All of
these variables were shown to have high levels of missing data in the previous section and
they will all be used extensively throughout this thesis.

In order to explore the drivers of missing data I have reformulated the problem as a lo-
gistic regression for each variable of interest, with the outcome being data completeness
(complete/missing). This allows variables that are hypothesised to be related to missing
data to be adjusted for and their independent impact on data completeness to be esti-
mated. Unlike classic approaches to missing data, such as multiple imputation by chained
regression (MICE),[51] this is not an imputation. The details of the approach are discussed
below.

Method In order to reformulate missing data as a logistic regression I took the following
steps:

1. For the variable of interest create a new temporary binary variable, called data status,
that is “Missing” when the variable of interest is missing and “Complete” when it is
not. Specify “Complete” as the baseline.

2. For nested variables exclude notifications that do not have the top level outcome
required by the variable of interest. An example of this is excluding cases that did
not die, or have a missing overall outcome, when investigating TB mortality.

3. Specify the hypothesised drivers of missingness for the variable of interest. These
should be variables with a reasonable hypothesis for how they would drive missingness
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in the variable of interest. They must also be relatively complete as this approach
does not impute missing confounder data.

4. Fit a logistic regression model with the temporary data status variable as the outcome,
adjusting for the hypothesised drivers of missingness.

5. Exponentiate the returned coefficients, and confidence intervals so that they represent
Odds Ratios (ORs).

6. Refit the model, dropping each variable in turn and then comparing the updated
model with the full model using a likelihood ratio test.

7. Interpret the results, using the estimated size of the effect, the width of the confidence
intervals and the size of the likelihood ratio test p values to determine which variables
are related to missingness for the variable of interest. Evidence should be interpreted
on a spectrum, rather than using arbitrary significance cut-offs.[52] To avoid issues
of multiple testing the level of evidence should be weighted based on the number of
variables adjusted for and the number of outcomes explored.

For all outcomes considered I adjusted for the same set of demographic variables that were
both highly complete and also plausibly linked to missingness for all outcomes considered.
These were: year, sex, age (grouped as grouped as 0-14 year olds, 15-44 year olds, 45-64
year olds, and 65+), ethnic group, UK birth status and socio-economic status (national
quintiles). For socio-economic group 1 indicates the most deprived quintile. Complete case
analysis has been used, with the dataset limited to notifications from 2010 and on-wards as
socio-economic status was not collected prior to this.

BCG status It is clear that BCG status is missing with a MAR mechanism for the
variables considered (Table 4.3). BCG data missingness is strongly associated with year
of notification, sex age, ethnic group, and socio-economic status. It appears that after
adjusting for other variables data completeness increased from 2010 until 2012 but has
since showed no clear trend. Men appear to be more likely than women to have a missing
BCG status, with the non-UK born also being more likely than the UK born to be missing
BCG status. The proportion of those missing BCG status increases with age, with those
aged 65+ being over 4 times more likely to be missing BCG status than those aged 0-14
years old. There is also evidence to suggest that notifications in the lowest socio-economic
group are more likely to have a missing BCG status but there was no clear evidence of a
trend across socio-economic quintiles. The White ethnic group was more likely to have a
missing BCG status than any other ethnic group.
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Table 4.3: Results from a logistic regression model with data complete-
ness (Complete/Missing) for BCG vaccination as an outcome, adjusted for:
year, sex, age (grouped as 0-14 year olds, 15-45 year olds and 65+), eth-
nic group, UK birth status and socio-economic status (national quintiles).
Socio-economic group 1 indicates the most deprived quintile. Notifications
from 2010 onwards were included as socio-economic status was not collected
before this. Complete case analysis was used. Odds ratios shown are ad-
justed for all explanatory variables. The model indicates that BCG status
is missing at random for the variables considered.

Variable Category Missing (N) Notifications
(41659)

Odds Ratio P value

Year 2010 31.3% (2235) 7143 1.27e-08
2011 29.8% (2319) 7781 0.93 (0.87, 1.00)
2012 27.9% (2164) 7755 0.85 (0.79, 0.91)
2013 27.1% (1907) 7034 0.79 (0.74, 0.86)
2014 30.1% (1907) 6327 0.91 (0.85, 0.98)

2015 29.7% (1668) 5619 0.89 (0.82, 0.96)
Sex Female 27.4% (4847) 17664 8.74e-11

Male 30.6% (7353) 23995 1.16 (1.11, 1.21)
Age 0-14 13.1% (235) 1793 1.67e-157

15-44 26.0% (6557) 25235 2.10 (1.82, 2.43)

45-64 32.8% (2964) 9026 2.84 (2.45, 3.30)
65+ 43.6% (2444) 5605 4.42 (3.80, 5.15)

Ethnic
group

White 35.4% (2959) 8359 2.15e-41

Black-Caribbean 24.6% (228) 928 0.62 (0.52, 0.72)
Black-African 27.3% (1966) 7204 0.73 (0.67, 0.80)

Black-Other 24.1% (89) 369 0.65 (0.51, 0.83)
Indian 25.9% (2805) 10848 0.62 (0.58, 0.68)
Pakistani 33.2% (2258) 6806 0.89 (0.82, 0.97)
Bangladeshi 27.9% (469) 1680 0.71 (0.62, 0.80)
Chinese 33.6% (166) 494 0.88 (0.72, 1.07)

Mixed / Other 25.3% (1260) 4971 0.65 (0.59, 0.71)
UK birth
status

Non-UK Born 29.5% (9104) 30880 7.2e-18

UK Born 28.7% (3096) 10779 0.75 (0.70, 0.80)
Socio-
economic
status

1 30.7% (4948) 16131 4.88e-08

2 26.8% (3383) 12621 0.84 (0.80, 0.89)

3 29.2% (1905) 6530 0.92 (0.86, 0.98)
4 30.1% (1142) 3796 0.91 (0.84, 0.99)
5 31.8% (822) 2581 0.94 (0.85, 1.03)

Year of BCG vaccination As for BCG status, year of BCG vaccination is also clearly
missing with MAR mechanisms for the variables considered (Table 4.4). As for BCG status
men were more likely to have a missing year of BCG vaccination as were the non-UK born.
Older notifications were again more likely to have missing data, with those aged 65+ being
more than 2 times more likely to have a missing year of vaccination. However, unlike BCG
vaccination status, year of notification shows a clear trend of increasing data completeness
from 2010 until 2015. Additionally, for year of BCG vaccination the White ethnic group
is more likely to have complete data than any other ethnic group, with those of Black-
Caribbean descent being over 3 times more likely to have a missing year of BCG vaccination.
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Socio-economic status is highly associated with year of vaccination being missing but there
is little clear evidence of a trend. The second, and third, poorest quintiles were more likely
to have a missing year of vaccination. Whilst the richest, and second richest quintiles were
less likely to have a missing year of vaccination.

Table 4.4: Results from a logistic regression model with data completeness
(Complete/Missing) for year of BCG vaccination as an outcome, adjusted
for: year, sex, age (grouped as grouped as 0-14 year olds, 15-44 year olds,
45-64 year olds, and 65+), ethnic group, UK birth status and socio-economic
status (national quintiles). For socio-economic group 1 indicates the most
deprived quintile. Notifications from 2010 onwards were included as socio-
economic status was not collected before this. Complete case analysis was
used. Odds ratios shown are adjusted for all explanatory variables. The
model indicates that year of BCG vaccination is missing at random for the
variables considered.

Variable Category Missing (N) Notifications
(20835)

Odds Ratio P value

Year 2010 61.0% (2090) 3424 2.03e-07
2011 59.6% (2304) 3869 0.93 (0.84, 1.03)
2012 56.2% (2216) 3945 0.82 (0.75, 0.91)
2013 55.7% (2025) 3638 0.82 (0.74, 0.90)
2014 56.6% (1776) 3138 0.86 (0.77, 0.95)

2015 54.2% (1530) 2821 0.75 (0.67, 0.83)
Sex Female 55.5% (5089) 9174 6.9e-06

Male 58.8% (6852) 11661 1.14 (1.08, 1.21)
Age 0-14 43.9% (488) 1111 3.94e-14

15-44 58.3% (8216) 14102 1.54 (1.34, 1.76)

45-64 57.6% (2526) 4388 1.66 (1.44, 1.93)
65+ 57.6% (711) 1234 2.02 (1.69, 2.42)

Ethnic
group

White 44.2% (1370) 3102 5.94e-82

Black-Caribbean 77.5% (371) 479 3.91 (3.12, 4.95)
Black-African 65.2% (2524) 3870 1.83 (1.63, 2.05)

Black-Other 72.0% (154) 214 2.89 (2.12, 3.99)
Indian 56.1% (3516) 6267 1.17 (1.06, 1.30)
Pakistani 51.6% (1583) 3066 1.09 (0.97, 1.22)
Bangladeshi 73.1% (583) 797 2.67 (2.23, 3.20)
Chinese 58.2% (142) 244 1.43 (1.09, 1.89)

Mixed / Other 60.7% (1698) 2796 1.50 (1.33, 1.69)
UK birth
status

Non-UK Born 61.1% (9665) 15808 4.35e-28

UK Born 45.3% (2276) 5027 0.64 (0.59, 0.69)
Socio-
economic
status

1 55.4% (4221) 7615 2.2e-124

2 66.3% (4463) 6729 1.60 (1.49, 1.72)

3 59.4% (2019) 3401 1.22 (1.12, 1.33)
4 45.3% (838) 1848 0.71 (0.64, 0.79)
5 32.2% (400) 1242 0.41 (0.36, 0.47)

Date of death For date of death there is some evidence that data is missing with an
MAR mechanism for ethnic group and socio-economic status, with little evidence for any
other association (Table 4.5). These associations should be interpreted carefully due to
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the strength of the evidence when compared to the number of tests conducted, there is a
high likelihood of a type 1 error. Whilst the confidence intervals were wide for all ethnic
groups there was some weak indication that the White ethnic group were more likely to
have a complete date of death than other ethnic groups. Similarly, those in the lowest socio-
economic group were somewhat more likely to have a complete date of death than other
quintiles. The reduction in the levels of evidence found for case of death may be linked to
the reduction in power for this outcome, as mortality is a rare outcome.

Table 4.5: Results from a logistic regression model with data completeness
(Complete/Missing) for date of death as an outcome, adjusted for: year, sex,
age (grouped as grouped as 0-14 year olds, 15-44 year olds, 45-64 year olds,
and 65+), ethnic group, UK birth status and socio-economic status (national
quintiles). For socio-economic group 1 indicates the most deprived quintile.
Notifications from 2010 onwards were included as socio-economic status was
not collected before this. Complete case analysis was used. Odds ratios
shown are adjusted for all explanatory variables. The model indicates that
there is some evidence that date of death is missing at random for ethnic
group, with weaker evidence for all other variables.

Variable Category Missing (N) Notifications
(1883)

Odds Ratio P value

Year 2010 16.6% (53) 320 0.0876
2011 15.9% (52) 327 0.95 (0.62, 1.46)
2012 14.5% (51) 351 0.81 (0.53, 1.25)
2013 13.5% (42) 312 0.73 (0.46, 1.14)
2014 9.5% (30) 317 0.52 (0.32, 0.84)

2015 13.3% (34) 256 0.69 (0.43, 1.11)
Sex Female 14.8% (97) 657 0.609

Male 13.5% (165) 1226 0.93 (0.70, 1.23)
Age 0-14 10.0% (1) 10 0.929

15-44 15.7% (31) 198 1.90 (0.32, 36.43)

45-64 14.6% (68) 465 1.92 (0.33, 36.42)
65+ 13.4% (162) 1210 1.95 (0.34, 37.04)

Ethnic
group

White 11.1% (102) 920 0.00373

Black-Caribbean 21.7% (10) 46 1.58 (0.67, 3.51)
Black-African 20.1% (27) 134 1.49 (0.76, 2.94)

Black-Other 20.0% (1) 5 1.59 (0.08, 11.72)
Indian 17.4% (64) 367 1.08 (0.62, 1.92)
Pakistani 8.0% (20) 249 0.50 (0.25, 0.99)
Bangladeshi 22.7% (10) 44 1.65 (0.67, 3.87)
Chinese 14.3% (3) 21 0.89 (0.19, 3.00)

Mixed / Other 25.8% (25) 97 1.99 (1.01, 3.92)
UK birth
status

Non-UK Born 16.6% (167) 1004 0.133

UK Born 10.8% (95) 879 0.67 (0.40, 1.14)
Socio-
economic
status

1 11.4% (79) 695 0.0265

2 18.3% (86) 470 1.67 (1.19, 2.35)

3 16.2% (48) 296 1.49 (0.99, 2.22)
4 12.7% (30) 237 1.21 (0.75, 1.90)
5 10.3% (19) 185 0.95 (0.54, 1.62)
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Cause of death For cause of death there is less evidence of an MAR mechanism, with
little evidence of an association for year, sex, age, or socio-economic group (Table 4.6).
There was, however, strong evidence of an association with ethnic group and very weak
evidence of an association with UK birth status. The White ethnic group was less likely to
have an incomplete cause of death when compared to the majority of other identified ethnic
groups but there was evidence to suggest that cause of death was more likely to be missing in
those identifying as being of Black-Caribbean, Black-Other, Indian and Bangladeshi descent.
The confidence intervals for these estimates were wide, indicating that these estimates may
not be reliable. There was again some weak evidence to suggest that the UK born were
more likely to be missing a cause of death than the non-UK born, which reverses the trend
observed in the other variables explored. The reduction in the levels of evidence found for
case of death may be linked to the reduction in power for this outcome, as mortality is a
rare outcome.
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Table 4.6: Results from a logistic regression model with data completeness
(Complete/Missing) for cause of death as an outcome, adjusted for: year,
sex, age (grouped as grouped as 0-14 year olds, 15-44 year olds, 45-64 year
olds, and 65+), ethnic group, UK birth status and socio-economic status
(national quintiles). For socio-economic group 1 indicates the most deprived
quintile. Notifications from 2010 onwards were included as socio-economic
status was not collected before this. Complete case analysis was used. Odds
ratios shown are adjusted for all explanatory variables. The model indicates
that cause of death is missing at random for ethnic group and UK birth
status, with little evidence for any other variables

Variable Category Missing (N) Notifications
(1883)

Odds Ratio P value

Year 2010 45.0% (144) 320 0.724
2011 45.6% (149) 327 1.03 (0.75, 1.41)
2012 45.3% (159) 351 1.02 (0.75, 1.39)
2013 43.9% (137) 312 0.99 (0.72, 1.37)
2014 44.8% (142) 317 0.96 (0.70, 1.32)

2015 38.7% (99) 256 0.80 (0.57, 1.12)
Sex Female 44.7% (294) 657 0.628

Male 43.7% (536) 1226 0.95 (0.78, 1.16)
Age 0-14 50.0% (5) 10 0.116

15-44 35.4% (70) 198 0.64 (0.17, 2.48)

45-64 43.0% (200) 465 0.90 (0.24, 3.44)
65+ 45.9% (555) 1210 0.96 (0.25, 3.67)

Ethnic
group

White 48.2% (443) 920 0.000704

Black-Caribbean 21.7% (10) 46 0.40 (0.18, 0.82)
Black-African 45.5% (61) 134 1.41 (0.85, 2.36)

Black-Other 20.0% (1) 5 0.41 (0.02, 2.87)
Indian 35.7% (131) 367 0.83 (0.55, 1.27)
Pakistani 49.4% (123) 249 1.47 (0.95, 2.29)
Bangladeshi 27.3% (12) 44 0.60 (0.27, 1.26)
Chinese 52.4% (11) 21 1.64 (0.64, 4.23)

Mixed / Other 39.2% (38) 97 1.00 (0.58, 1.72)
UK birth
status

Non-UK Born 40.1% (403) 1004 0.072

UK Born 48.6% (427) 879 1.41 (0.97, 2.07)
Socio-
economic
status

1 43.7% (304) 695 0.345

2 40.0% (188) 470 0.93 (0.72, 1.18)

3 42.9% (127) 296 0.98 (0.74, 1.31)
4 49.8% (118) 237 1.24 (0.91, 1.69)
5 50.3% (93) 185 1.21 (0.86, 1.71)

Date of symptom onset For date of symptom onset there was strong evidence of an
MAR mechanism for all variables considered, except for sex (Table 4.7). As found previ-
ously, the likelihood of date of symptom onset being missing reduced with year of notifica-
tion. Children (0-14 years old) were more likely to have a missing date of symptom onset
than any other age group as were those in any socio-economic quintile when compared to
the poorest group. UK born cases were more likely to have a complete date of symptom
onset than non-UK born cases, with the White ethnic group being more likely to have a
missing date of symptom onset than most other ethnic groups.
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Table 4.7: Results from a logistic regression model with data completeness
(Complete/Missing) for date of symptom onset as an outcome, adjusted for:
year, sex, age (grouped as grouped as 0-14 year olds, 15-44 year olds, 45-
64 year olds, and 65+), ethnic group, UK birth status and socio-economic
status (national quintiles). For socio-economic group 1 indicates the most
deprived quintile. Notifications from 2010 onwards were included as socio-
economic status was not collected before this. Complete case analysis was
used. Odds ratios shown are adjusted for all explanatory variables. The
model indicates that date of symptom onset is missing not at random for
the variables for all variables considered, except for sex.

Variable Category Missing (N) Notifications
(41659)

Odds Ratio P value

Year 2010 34.0% (2426) 7143 0
2011 30.1% (2339) 7781 0.83 (0.78, 0.89)
2012 24.2% (1878) 7755 0.61 (0.57, 0.66)
2013 17.5% (1233) 7034 0.41 (0.38, 0.44)
2014 11.8% (744) 6327 0.25 (0.23, 0.28)

2015 6.9% (390) 5619 0.14 (0.13, 0.16)
Sex Female 22.0% (3894) 17664 0.93

Male 21.3% (5116) 23995 1.00 (0.95, 1.05)
Age 0-14 38.1% (684) 1793 3.59e-73

15-44 20.5% (5182) 25235 0.35 (0.31, 0.39)

45-64 20.7% (1870) 9026 0.37 (0.33, 0.42)
65+ 22.7% (1274) 5605 0.43 (0.38, 0.49)

Ethnic
group

White 20.9% (1749) 8359 3.98e-09

Black-Caribbean 23.1% (214) 928 1.04 (0.88, 1.23)
Black-African 23.0% (1654) 7204 0.89 (0.80, 0.98)

Black-Other 18.7% (69) 369 0.79 (0.60, 1.04)
Indian 22.2% (2404) 10848 0.86 (0.79, 0.94)
Pakistani 19.2% (1305) 6806 0.75 (0.68, 0.83)
Bangladeshi 23.9% (401) 1680 1.05 (0.91, 1.20)
Chinese 18.8% (93) 494 0.74 (0.58, 0.94)

Mixed / Other 22.6% (1121) 4971 0.93 (0.83, 1.03)
UK birth
status

Non-UK Born 21.9% (6774) 30880 5.44e-12

UK Born 20.7% (2236) 10779 0.77 (0.71, 0.83)
Socio-
economic
status

1 19.9% (3218) 16131 5e-17

2 22.9% (2888) 12621 1.22 (1.15, 1.29)

3 24.2% (1578) 6530 1.33 (1.24, 1.43)
4 22.0% (837) 3796 1.20 (1.09, 1.31)
5 18.9% (489) 2581 1.00 (0.89, 1.12)

Date of diagnosis For date of diagnosis there was again strong evidence for an MAR
mechanism for all variables considered, except for sex for which there was very weak evidence
(Table 4.8). Increasing completeness was found for year of notification as seen previously,
as was an increased likelihood of missing data in males and the non-UK born. The White
ethnic group was less likely to be missing data on the data of diagnosis as compared to
the majority of other ethnic groups, as were the poorest socio-economic group compared to
all other socio-economic quintiles. Children (0-14 years old) were again more likely to be
missing data than adults in any age group.
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Table 4.8: Results from a logistic regression model with data completeness
(Complete/Missing) for date of diagnosis onset as an outcome, adjusted for:
year, sex, age (grouped as grouped as 0-14 year olds, 15-44 year olds, 45-
64 year olds, and 65+), ethnic group, UK birth status and socio-economic
status (national quintiles). For socio-economic group 1 indicates the most
deprived quintile. Notifications from 2010 onwards were included as socio-
economic status was not collected before this. Complete case analysis was
used. Odds ratios shown are adjusted for all explanatory variables. The
model indicates that date of diagnosis is missing at random for the variables
for all variables considered, except for sex.

Variable Category Missing (N) Notifications
(41659)

Odds Ratio P value

Year 2010 26.9% (1918) 7143 1.65e-283
2011 22.3% (1736) 7781 0.78 (0.72, 0.84)
2012 18.8% (1458) 7755 0.63 (0.58, 0.68)
2013 12.9% (909) 7034 0.41 (0.37, 0.44)
2014 10.4% (659) 6327 0.32 (0.29, 0.35)

2015 7.4% (415) 5619 0.22 (0.19, 0.24)
Sex Female 16.9% (2984) 17664 0.0296

Male 17.1% (4111) 23995 1.06 (1.01, 1.12)
Age 0-14 19.4% (348) 1793 0.000164

15-44 17.8% (4504) 25235 0.76 (0.67, 0.87)

45-64 15.9% (1434) 9026 0.73 (0.64, 0.84)
65+ 14.4% (809) 5605 0.72 (0.62, 0.84)

Ethnic
group

White 12.5% (1043) 8359 2.91e-67

Black-Caribbean 25.2% (234) 928 2.21 (1.87, 2.61)
Black-African 21.9% (1577) 7204 1.49 (1.34, 1.66)

Black-Other 17.9% (66) 369 1.32 (0.98, 1.74)
Indian 18.0% (1957) 10848 1.09 (0.99, 1.21)
Pakistani 11.8% (805) 6806 0.75 (0.67, 0.84)
Bangladeshi 21.5% (361) 1680 1.57 (1.35, 1.82)
Chinese 13.4% (66) 494 0.82 (0.61, 1.07)

Mixed / Other 19.8% (986) 4971 1.32 (1.18, 1.48)
UK birth
status

Non-UK Born 18.4% (5696) 30880 6.07e-16

UK Born 13.0% (1399) 10779 0.71 (0.65, 0.77)
Socio-
economic
status

1 14.4% (2317) 16131 1.05e-45

2 19.6% (2469) 12621 1.48 (1.39, 1.58)

3 20.3% (1325) 6530 1.62 (1.50, 1.75)
4 17.0% (645) 3796 1.37 (1.24, 1.52)
5 13.1% (339) 2581 1.07 (0.94, 1.21)

Date of starting treatment For date of starting treatment there is little evidence that
missing data is associated with any variable considered, except for year of notification (Table
4.9). Variable completeness improved year-on-year, with a 96% drop in missing data in 2015
compared to 2010.
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Table 4.9: Results from a logistic regression model with data completeness
(Complete/Missing) for date of starting treatment as an outcome, adjusted
for: year, sex, age (grouped as grouped as 0-14 year olds, 15-44 year olds,
45-64 year olds, and 65+), ethnic group, UK birth status and socio-economic
status (national quintiles). For socio-economic group 1 indicates the most
deprived quintile. Notifications from 2010 onwards were included as socio-
economic status was not collected before this. Complete case analysis was
used. Odds ratios shown are adjusted for all explanatory variables. There
is little evidence that the missing data for the date of starting treatment is
associated with any variable considered, except for year of notification.

Variable Category Missing (N) Notifications
(40977)

Odds Ratio P value

Year 2010 3.5% (244) 7020 2.4e-70
2011 3.2% (242) 7655 0.91 (0.76, 1.08)
2012 2.5% (187) 7628 0.69 (0.57, 0.84)
2013 2.2% (154) 6923 0.63 (0.51, 0.77)
2014 0.8% (51) 6239 0.23 (0.17, 0.31)

2015 0.1% (8) 5512 0.04 (0.02, 0.08)
Sex Female 2.2% (383) 17439 0.83

Male 2.1% (503) 23538 0.99 (0.86, 1.13)
Age 0-14 3.0% (54) 1783 0.157

15-44 2.2% (539) 25000 0.72 (0.53, 0.98)

45-64 2.0% (180) 8896 0.68 (0.49, 0.95)
65+ 2.1% (113) 5298 0.69 (0.49, 0.99)

Ethnic
group

White 2.3% (182) 8055 0.423

Black-Caribbean 2.2% (20) 916 0.89 (0.54, 1.39)
Black-African 1.9% (139) 7140 0.73 (0.55, 0.96)

Black-Other 3.0% (11) 368 1.33 (0.67, 2.38)
Indian 2.1% (230) 10707 0.86 (0.67, 1.10)
Pakistani 2.4% (158) 6721 0.92 (0.72, 1.19)
Bangladeshi 2.2% (37) 1665 0.88 (0.59, 1.29)
Chinese 1.7% (8) 483 0.68 (0.30, 1.33)

Mixed / Other 2.1% (101) 4922 0.86 (0.64, 1.15)
UK birth
status

Non-UK Born 2.1% (646) 30481 0.763

UK Born 2.3% (240) 10496 0.97 (0.79, 1.18)
Socio-
economic
status

1 2.3% (364) 15884 0.517

2 2.1% (263) 12422 0.92 (0.78, 1.08)

3 2.0% (131) 6435 0.89 (0.72, 1.09)
4 1.9% (70) 3712 0.83 (0.63, 1.07)
5 2.3% (58) 2524 1.04 (0.77, 1.37)

Date of ending treatment For date of ending treatment there is evidence that missing
data is associated with year of notification and weaker evidence of an association with
ethnic group and socio-economic status, with little evidence for any other variable. As
found previously, variable completeness increased over time. There was some evidence that
poorest socio-economic group was more likely to be missing the date of ending treatment
but the evidence for this was mixed. The White ethnic group was more somewhat likely to
be missing date of treatment ending than most other ethnic groups.
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Table 4.10: Results from a logistic regression model with data completeness
(Complete/Missing) for date of ending treatment as an outcome, adjusted
for: year, sex, age (grouped as grouped as 0-14 year olds, 15-44 year olds,
45-64 year olds, and 65+), ethnic group, UK birth status and socio-economic
status (national quintiles). For socio-economic group 1 indicates the most
deprived quintile. Notifications from 2010 onwards were included as socio-
economic status was not collected before this. Complete case analysis was
used. Odds ratios shown are adjusted for all explanatory variables.

Variable Category Missing (N) Notifications
(33606)

Odds Ratio P value

Year 2010 2.9% (182) 6171 2.52e-14
2011 2.6% (177) 6855 0.88 (0.71, 1.08)
2012 2.4% (164) 6882 0.80 (0.64, 0.99)
2013 1.5% (97) 6298 0.51 (0.39, 0.65)
2014 1.2% (66) 5341 0.40 (0.30, 0.53)

2015 1.4% (28) 2059 0.45 (0.30, 0.66)
Sex Female 2.1% (311) 14630 0.859

Male 2.1% (403) 18976 1.01 (0.87, 1.18)
Age 0-14 2.7% (44) 1617 0.711

15-44 2.0% (419) 21027 0.83 (0.60, 1.18)

45-64 2.3% (165) 7272 0.88 (0.62, 1.27)
65+ 2.3% (86) 3690 0.83 (0.56, 1.23)

Ethnic
group

White 2.9% (176) 6076 0.00931

Black-Caribbean 2.8% (21) 753 1.01 (0.62, 1.57)
Black-African 1.9% (114) 6071 0.69 (0.52, 0.93)

Black-Other 2.3% (7) 306 0.88 (0.37, 1.78)
Indian 1.7% (150) 8842 0.66 (0.51, 0.87)
Pakistani 2.5% (140) 5668 0.94 (0.72, 1.22)
Bangladeshi 1.3% (18) 1409 0.48 (0.28, 0.78)
Chinese 2.8% (11) 396 1.09 (0.54, 1.99)

Mixed / Other 1.9% (77) 4085 0.75 (0.54, 1.02)
UK birth
status

Non-UK Born 1.9% (480) 25174 0.153

UK Born 2.8% (234) 8432 1.17 (0.94, 1.45)
Socio-
economic
status

1 2.4% (308) 13080 0.000621

2 1.7% (170) 10266 0.72 (0.60, 0.87)

3 1.9% (100) 5265 0.82 (0.65, 1.03)
4 2.8% (84) 2994 1.19 (0.92, 1.52)
5 2.6% (52) 2001 1.07 (0.78, 1.44)

Biases in the ETS

Routine observational datasets are subject to numerous potential biases, such as selection
bias, recall bias, measurement bias, and unmeasured confounding.[53] Additionally, as the
data has not been collected with a specific analysis in mind there maybe issues with the
specificity of variables. The ETS system is likely to suffer from all of the above biases to
some extent, which must be accounted for as far as possbile, and explicitly stated at every
level of analysis. The most important consideration is that the ETS system is unlikely
to be representative of the general population as it contains only notified TB cases that
occurred in England during the study period, research questions must therefore be either
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limited to active TB patients, or when extended to the general population the differing
population demographics must be accounted for. If this is not done then any results may
be due to selection bias. Additionally, multiple variables may suffer from misclassification
bias, including BCG status which can be assessed via vaccination record, the presence of a
scar, or case recall: this may lead to spurious associations.[54] Validation studies would be
required to account for this, which is beyond the scope of this thesis.

Date variables in the ETS

For analyses that aim to reproduce temporal trends in TB incidence, such as dynamic
modelling studies, it is important to understand which variables represent the most accurate
date of contact with the health system and more generally on what scale date variables can
be considered reliable. In the ETS extract used in this thesis there are several date variables
that encode useful information including: the date of notification, the date of symptom
onset, the date of diagnosis, the date of starting treatment, the date of completing treatment,
and the date of death. In the following section I explore these variables using counts and
proportions aggregated to the nearest year, month and day. These summary measures are
displayed graphically using scatterplots (with trend lines) and violin plots. Violin plots are
a compact method of plotting continuous distributions across multiple categories. They
are effectively mirrored density plots and can be interpreted similarly. Here the underlying
data has also been plotted.

As seen in the previous section (Section 4.2.1), many of these variables have a large pro-
portion of missing data, with date of notification and date of starting treatment having the
least amount of missing data. It is also likely that some of the dates recorded are inaccurate
or systematically biased. The date of notification represents the simplest variable to use
to represent when a case can be defined to have occurred as it is complete for all records.
Unfortunately, cases may be notified at any stage of active TB, from initially becoming
symptomatic to post-mortem diagnosis and notification. Despite this limitation, date of
notification can be used as a baseline on which to judge other date variables and some of
these limitations may be mitigated by aggregating data by month or by year. Figure 4.2
a.) shows the number of TB notifications by year and Figure 4.2 b.) shows the number of
TB notifications by month. These figures indicate that aggregating by year, rather than
month, reduces the level of noise in the estimates and makes the trend over time easier
to identify. This is an acceptable approximation if inference is being drawn on the scale
of years. For shorter term processes, such as the duration of treatment which is generally
considered to take approximately 6 months (Chapter 2), aggregating by year would reduce
the accuracy of the estimated parameter. There is some evidence of a seasonal trend in
notifications (Figure 4.2 c.)), with a higher proportion of cases notified in the May, June
and July than in the rest of the year. This seasonality would have to be accounted for if
conducting analysis on a monthly scale and date of notification was being used as the date
of first contact with the health system. There is little evidence that date of notification
varies by day of the month (Figure 4.2 d.)).
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Figure 4.2: a.) and b.) show notifications over time by date of notification
in the ETS, with a.) aggregated by year and b.) aggregated by month. A
trendline has been produced using a locally weighted regression model. Both
of these plots show the same overall trend, but b.) contains a large amount
of apparent noise. c.) Shows the proportion of cases notified in a given
month for each year, with some evidence of a seasonal trend. d.) Shows the
proportion of cases notified on a given day for each month, there is little
evidence of between day variation in cases notified.

An alternative measure is to use the date of symptom onset. Unfortunately there are multi-
ple issues with this measure, the first of which being is that it is only 68.0% (78054/114820)
complete across the data extract. Additionally, completeness changes with time, with 65.7%
(3969/6044) complete in 2000, 60.4% (4720/7809) complete in 2008, and 87.7% (5677/6472)
complete in 2014. This could lead to spurious trends in the number of cases. Perhaps most
importantly the date of symptom onset is highly susceptible to recall bias with the major-
ity of cases becoming symptomatic on the first of each month (Figure 4.3 d.)), with some
evidence that a greater number of cases occur in January than would be expected (Figure
4.3 c.)). Theses biases may also be the result of the defaults used during data entry with
the first of the month or the first month of the year being used when the exact date is not
known. Another possible measure of the number of cases is the date of diagnosis, this should
be a more reliable variable than the date of symptom onset, as it does not rely on the recall
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of the case. However it is only 51.3% (58960/114820) complete across the dataset, with
strong evidence of increasing completeness going from 11.6% (699/6044) complete in 2000,
to 89.4% (5786/6472) complete in 2014. This trend would be hard to properly account for
in any analysis and therefore this variable should not be used as a primary measure.

Figure 4.3: a.) and b.) show notifications over time by date of symptom
onset in the ETS, with a.) aggregated by year and b.) aggregated by month.
A trendline has been produced using a locally weighted regression model.
Both of these plots show the same overall trend, but b.) contains a large
amount of apparent noise. c.) Shows the proportion of cases notified in
a given month for each year, with some evidence of a seasonal trend and
a higher proportion of cases reporting symptoms starting in January than
would be expected. d.) Shows the proportion of cases notified on a given day
for each month, with a much higher proportion of cases reproting symptoms
on the first of the month than would be expected. On both the scale of
months and years there is some evidence of recall bias, with the first month,
or first day, reporting higher proportions of cases than would be expected.

The date of starting treatment should be a more reliable contact date as it records an official
contact with the health system. Indeed it was 75.7% (4464/5899) complete in 2000 which
increased year-on-year to 98.8% (5612/5680) complete in 2015. This increasing completeness
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may lead to a temporal bias if not properly adjusted for when evaluating the date of starting
treatment over time. As for the data of notification there is some evidence of a seasonal
trend for date of starting treatment (Figure 4.4 c.)), with a peak of cases starting treatment
in May, June and July. However, this seasonal trend is difficult to identify when cases
starting treatment are visualised by month over time (Figure 4.4 b.)). Unlike the date of
symptom onset there is little evidence of recall bias by month, or by day (Figure 4.4 c.)
and d.)).

Figure 4.4: a.) and b.) show notifications over time by date of starting
treatment in the ETS, with a.) aggregated by year and b.) aggregated by
month. A trendline has been produced using a locally weighted regression
model. Both of these plots show the same overall trend, but b.) contains a
large amount of apparent noise. c.) Shows the proportion of cases starting
treatment in a given month for each year, with some evidence of a seasonal
trend. d.) Shows the proportion of cases starting treatment on a given day
for each month, with little evidence of between day variation. Data is only
shown from 2001 until 2015 and prior to 2001 this variable was not recorded
and it is not complete for 2015.

The date of ending treatment does not appear to display similar seasonality (Figure 4.5
c.)). This maybe because treatment time varies between individuals and this dilutes the
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seasonality observed for the date of starting treatment. As noted previously, there was some
evidence of recall bias when the proportion of those ending treatment was examined on a
day of the month basis, with a larger proportion ending treatment on the first of the month
than on any other day (Figure 4.5 d.)). Also as previously noted, these biases may also be
the result of the defaults used during data entry. There were also several outlier months
in which all notifications were reported as having their treatment on the same date. This
is highly unlikely and may indicate an additional data quality issue. The date of ending
treatment was not recorded in 2000, or 2001, and was highly missing for the first several
years after collection began (45.4% (2593/5712) complete in 2002 and 58.7% (3475/5921)
complete in 2003). From 2009 it was over 90% complete, reaching 97.7% (5359/5486)
complete in 2013. As for the other data variables discussed this increasing completeness
over time may lead to a bias if not accounted for in future analyses.
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Figure 4.5: a.) and b.) show notifications over time by date of treatment
ending in the ETS, with a.) aggregated by year and b.) aggregated by
month. A trendline has been produced using a locally weighted regression
model. Both of these plots show the same overall trend, but b.) contains a
large amount of apparent noise. c.) Shows the proportion of cases finishing
treatment in a given month for each year, with little evidence of a seasonal
trend. d.) Shows the proportion of cases finishing treatment on a given day
for each month, with a much higher proportion of cases finishing treatment
on the first of the month than would be expected. d.) also contains several
clear outliers with data from some months indicating that 100% of notifica-
tions had their treatment on the same day. Data is only shown from 2001
until 2015 and prior to 2001 this variable was not recorded and it is not
complete for 2015.

Finally, date of death displays little evidence of seasonal variation or recall bias (Figure 4.6
c.) and d.)) but has a strong temporal trend for data completeness, with a year-on-year
increase. Data was not collected in 2000 and was only 11.8% (199/1689) complete in 2001,
data completeness remained below 20% until 2005 when it increased to 38.3% (353/921).
This can be seen as a discontinuity when deaths are aggregated by year and plotted (Figure
4.6 a.)). Missing data also masks a drop in notified cases that died, which fell from 1451 in
2005 to 921 in 2006. In comparison, only 352 cases in 2005 and 353 cases in 2006 had a date
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of death. Data completeness has remained below 80% with increases in data completeness
decreasing year-on-year.

Figure 4.6: a.) and b.) show notifications over time by date of death in
the ETS, with a.) aggregated by year and b.) aggregated by month. A
trendline has been produced using a locally weighted regression model. Both
of these plots show the same overall trend, but b.) contains a large amount
of apparent noise. c.) Shows the proportion of cases who died in a given
month for each year, with no evidence of a seasonal trend. d.) Shows the
proportion of cases who died on a given day for each month, with little
evidence of between day variation. Data is only shown from 2001 until 2015
and prior to 2001 this variable was not recorded and it is not complete for
2015.

4.2.2 Demographic data

Background

Demographic data used in this thesis is drawn from two main sources: mid-year resident
populations, by single year of age, downloaded from the Office for National Statistics (ONS)
website for 2000 to 2015 and population estimates from the yearly April to June Labour
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Force Survey (LFS) stratified by single year of age and UK birth status2. The LFS is a study
of the employment circumstances of the UK population and provides the official measures
of employment and unemployment in the UK. It also records other details such as ethnicity
and UK birth status which may be used, along with population weightings, to estimate the
UK and non-UK born population.

Data management

The mid-year population estimates were transformed from wide format into tidy data,[55]
with the population estimates from 2000 being reformatted to match those from 2001 on-
wards. Data from the LFS was available by year, so each dataset was separately imported
into R.[56] Reporting practices have changed with time so the appropriate variables for age,
country of origin, country of birth, and survey weight (used to make survey responses repre-
sentative of the general population) were extracted from each yearly extract, standardised,
and combined into a single dataset. The LFS data was then aggregated, accounting for
survey weight, by year, age, and UK birth status to provide yearly estimates of the UK
born/Non-UK born demographics by age. Finally 5 year age groups were defined using the
single year of age.

Data structure, completeness, and biases.

Both the mid-year ONS population estimates,[57] and the LFS are assessed for performance
and quality elsewhere.[58,59] However, both have several failings that it is important to
note, as they could introduce bias in future analysis. Whilst the ONS mid-year, and LFS
estimates compare well when aggregated by age (Figure 4.7) there is more disagreement
when they are broken down by 5 year age groups (Figure 4.8). For those at working age
both data sources are comparable (with approximately a 1% difference across all years).
However, for children, young adults, and those who are 85+ the LFS underestimates the
total population. This is particularly the case for older adults with between a 5% and 20%
discrepancy for those aged 85-89 and a 25% to 45% discrepancy between those aged 90+.
This could be problematic as these age groups often have the most severe outcomes to TB
infection. A pragmatic approach to this is to exclude those aged 90+ from future analysis
as results for this age group will be subject to large amounts of uncertainty which will be
difficult to directly incorporate into the results.

2Demographic data sources: https://github.com/seabbs/tbinenglanddataclean
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Figure 4.7: Overall population estimates in England derived using ONS
(Total) and LFS (Total (LFS)) demographic data. The ONS data is likely
to be more reliable as the LFS data is derived using a weighted survey. After
accounting for missing UK birth status both datasets provide comparable
estimates of the population of England, with a clearly increasing trend over
time. However, the ONS data indicates a reduction in population from 2000
until 2001 that is not seen in the LFS data. The UK born and non-UK born
populations are estimated using the LFS data.
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Figure 4.8: Percentage difference between ONS population estimates and
estimates derived from the LFS by 5 year age group. For most age groups
there is less than a 2% difference over time. In older adults (85+) there is a
substantially greater difference ranging from 5% to 40%.

4.3 TB notifications

4.3.1 Overview

There were 114,820 notifications between 2000-2015 in England of which 67.6%
(77669/114820) were non-UK born. Over this period notifications increased in the
non-UK born from 2000 until 2011, since when they have decreased year-on-year (Figure
4.9). In the UK born, notifications remained relatively stable from 2000 until 2011, since
then there has been a small decrease. Notifications with missing UK birth status have
decreased year-on-year, with only 121 in 2015. The majority of cases were aged between
15-44 years old (60.2% (69106/114820)), with few cases in young children (0-14; 5.1%
(5842/114820)) or older adults (65+; 14.4% (16538/114820)). Cases are heterogeneously
distributed with the majority of cases in London (42.8% (49142/114820)) with the
next highest number of notifications in the West Midlands (12.3% (14100/114820)).
Since 2009, 47.2% (24354/51645) of notifications have been BCG vaccinated with 33.2%
(17133/51645) having a missing BCG status. Of cases with a known BCG status 66.8%
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(34512/51645) were recorded as having been BCG vaccinated. From 2010, when collection
of socio-economic status began, 38.6% (16800/43533) of cases have been in the lowest
socio-economic quintile. For a more complete breakdown of notifications in the ETS see
the yearly PHE TB report.[2] It should be noted that these statistics do not take into
account changes in population demographics which may mask underlying changes in TB
epidemiology, this is addressed in Section 4.5.

Figure 4.9: Notifications in England from 2000 to 2015 stratified by UK birth
status, sourced from the ETS system. Notifications in the non-UK born
doubled from 3329 in 2000 to 6021 in 2011, since when they have decreased
year-on-year. In the UK born notifications have remained comparable over
time, with some evidence of a decrease from 2011 until 2015. UK birth status
has become increasingly complete over time with notifications without birth
status dropping from 885 in 2000 to 121 in 2015.

4.3.2 Age distribution of notifications

Notifications in the ETS are heterogeneous distributed by age as well as by UK birth
status.[2] In the non-UK born the majority of cases occur in young adults with few cases
in young children or older adults (Figure 4.10). Over time the distribution of cases is
becoming more uniform with a reduction in the proportion of cases in young adults. In the
UK born the distribution of cases is more homogeneous, although there is some evidence of
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a higher proportion of cases in working age adults as opposed to older adults and children.
Unlike the non-UK born population there is little evidence of a change in the distribution
of cases over time. 0-4 year old UK born children make up a higher proportion of cases
than other UK born children. This spike is not observed in the non-UK born population.
These conclusions may be biased by changes in underlying population demographics, this
is addressed in Section 4.5.

Figure 4.10: Proportion of total yearly notification by 5 year age group
in the ETS system in 2005, 2010 and 2015 stratified by UK birth status.
Non-UK born cases have a higher proportion of young adult cases with
very few cases in children or in older adults. UK born cases have a more
uniform distribution of cases with some evidence of a higher proportion of
cases in young adults. In the non-UK born the proportion of cases in young
adults has decreased over time, with no evidence of a temporal trend in the
UK born. These results are not adjusted for population demographics and
therefore may be biased.

4.4 Population Demographics in England

Underlying trends in population demographics can be important factors in driving changes
in infectious disease dynamic, so it is important to understand these trends before conduct-
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ing further analysis. England has an increasing population (Figure 4.7), driven by small
increases in the UK born population, and larger increases in the non-UK born population.
The increase in the non-UK born population is mainly in young adults, with a reduction
in the proportion of the non-UK born population that are older (Figure 4.11). In the UK
born the proportion of the population that is in late middle age has increased, with the
proportion of younger adults decreasing. The proportion of those aged 75+ has remained
constant over time in both the UK born and non-UK born populations.

The changes in population demographics, for both the UK and non-UK born, from 2000 to
2015 may have directly impacted the number and age distribution of TB notifications. In
the previous section, it appeared that a higher proportion of cases were in young adults in
the non-UK born than in other age groups. Figure 4.7 indicates that this maybe due to a
higher proportion of the non-UK born population being young adults. Additionally, Figure
4.7 indicates that proportion of the non-UK born population that were young adults has
decreased over time, this mirrors the trend in the age distribution of notifications observed in
Figure 4.10 and is likely to be driving part of this trend. In the UK born the population has
become older in general, this is not clearly reflected in the age distribution of notifications
(Figure 4.10). This may indicate changes in the risk of developing TB.
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Figure 4.11: The estimate proprotion of the population in each 5 year age
group stratified by UK birth status for 2000, 2008, and 2016.

4.5 TB incidence rates

4.5.1 Motivation

As discussed in Section 4.3.2 and Section 4.4, changes in underlying population demograph-
ics may mask or bias trends in TB notifications. To account for this, incidence rates, which
indicate the incidence of TB for a standard population size, may be used. Whilst TB in-
cidence rates are available in the yearly PHE TB report,[2] they are limited in detail and
do not report age stratified, or UK born stratified incidence rates across years. Estimat-
ing these incidence rates will allow for novel analyses to be conducted later in this thesis
that explore population adjusted trends in TB. The method used to estimate incidence
rates is first outlined, then overall trends in incidence rates, stratified by UK birth status
are explored. Finally trends in incidence rates, stratified by age and UK birth status, are
investigated.
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4.5.2 Method

Age-specific incidence rates were calculated as follows:

Incidence rate (over time period, t and age, a) = Number of cases (t,a)
Population(t, a) (4.1)

Age-standardised rates were calculated using the epiR package for R,[60] using the average
age distribution of England from 2000-2015 as the standard population to allow comparison
between years. Those aged 90+ were excluded as demographic data for this population were
unreliable. The code used to calculate incidence rates is available online as an R package
(tbinenglanddataclean3; see Chapter 1).

4.5.3 Overall trends in TB incidence rates

Incidence has varied with time, increasing from 11.6 per 100,000 people (95% CI 11.3, 11.9)
in 2000 to a maximum of 15.6 per 100,000 people (95% CI 15.3, 15.9) in 2011, since when it
has decreased to a low of 10.5 per 100,000 people (95% CI 10.2, 10.8) in 2015 (Figure 4.12).
This may indicate that TB control efforts are proving effective in preventing TB outbreaks,
or may be driven by changes in the composition of those immigrating to England. It also
highlights the lack of progress in reducing TB burden in England over the previous two
decades, with little evidence of a decrease in overall incidence rates from 2000 until 2015.
In the non-UK born incidence rates increased dramatically from 2000 to 2005, since when
they have fallen consistently. This may be driven by a change in the composition of the
non-UK born population or it may be the result of increased screening of those entering
the UK. In comparison, incidence rates fell in the UK born from 2000 until 2005 and then
increased until 2012, since when they too have decreased year-on-year. This may indicate
that incidence rates in the two populations are linked, with incidence rates in the non-UK
born driving incidence rates in the UK born with some time lag. Alternatively, it may be
that incidence rates in the two populations are only weakly linked, or not linked at all. In
this scenario the TB endemic in England would actually be two nearly separate endemics,
each with different drivers. These scenarios can be differentiated using trends in age-specific
incidence rates, and with statistical (Chapter 7)) and dynamic modelling (Chapter 8).

3tbinenglanddataclean: https://github.com/seabbs/tbinenglanddataclean
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Figure 4.12: Age standardised incidence rates (by 100,000 population) for
all notified TB cases from 2000-2015. Overall incidence rates are shown,
along with incidence rates in the UK and non-UK born populations. Point
estimates are given along with 95% confidence intervals for each incidence
rate estimate. Trends over time are highlighed by linking points with a line.
Incidence rates increased over time from 2000 until 2011, since when they
have falled year-on-year. This appears to be driven by increasing incidence
rates in the non-UK born from 2000 until 2005, since when they have fallen
year-on-year. This trend was not observed in the UK born, in which in-
cidence rates fell from 2000 until 2005 and then increased from 2005 until
2012. As in the non-UK born they have since fallen year-on-year.

4.5.4 Age stratified incidence rates

Stratifying incidence rates into age groups (children (0-14), adults (15-64) and older adults
(65+)) it is clear that the trends observed in the age adjusted overall incidence rates are
not seen in all age groups (Figure 4.13). In the 65+ age group there was evidence of a
year-on-year decrease in incidence rates from 14.3 per 100,000 people (95% CI 13.5, 15.1) in
2002, to 8.7 per 100,000 people (95% CI 8.1, 9.3) in 2015. In comparison, in the 15-64 year
old age group, which represents the majority of cases, incidence rates rose year-on-year to a
maximum of 19.5 per 100,000 people (95% CI 19.0, 20.0) in 2011 and then fell year-on-year
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to 13.3 per 100,000 people (95% CI 12.9, 13.7) in 2015. In children (0-14) incidence rates
peaked earlier, with an incidence rate of 3.5 per 100,000 people (95% CI 3.1, 3.9) in 2000
which increased to 5.0 per 100,000 people (95% CI 4.5, 5.5) in 2007. Since when they have
decreased to in 2.2 per 100,000 people (95% CI 2.0, 2.6) in 2015.

Figure 4.13: Incidence rates (by 100,000 population) for all notified TB cases
from 2000-2015, stratified by age group (children (0-14), adults (15-64) and
older adults (65+)) and UK birth status. Point estimates are given along
with 95% confidence intervals for each incidence rate estimate. Trends over
time are highlighed by linking points with a line. Incidence rates declined
overall in children over time. In adults incidnce rates incrseased until 2011
and have since fallen. In older adults incidence rates consistently fell. In the
non-UK born, incidence rate also fell in childen but peaked earler in adults
and showed little evidence of a downwards trends in older adults until 2013.
In the UK born, incidence rates increased in children until 2008, since when
they havell fallen. Incidence rates also increased over time in UK born adults
until 2012 but has consistently fallen in UK born older adults.

Further stratifying incidence rates, by both age group and UK birth status, it is clear that
the contribution of the non-UK born dominates that of the UK born in adults (15-64) but
that the reverse is true in older adults (65+) and trends appear to be similar in children
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(0-14), regardless of UK birth status (Figure 4.13). In the non-UK born, incidence rates
have fallen year-on-year in children but increased from 2000 until 2005 in adults, since
when they have decreased. In non-UK born older adults there is less clear evidence of a
trend over time, although incidence rates have fallen, as in other populations, from 2011
on-wards. In the UK born, incidence rates increased in children from 2000 until 2008, since
when they too have consistently fallen. UK born adults had increasing incidence rates year-
on-year until 2012 but incidence rates have since fallen to pre 2000 levels. In older UK born
adults incidence rates have consistently fallen, more rapidly from 2000 until 2008 and since
2014.

Another approach to explore trends in age stratified incidence rates is to visualise them
across 5 year age groups, for a selected subset of years. This can be seen in Figure 4.14
stratified by UK birth status. This figure indicates that TB incidence in the non-UK born
has been driven by high incidence rates in young adults. Incidence rates in this population
increased dramatically between 2000 and 2005 and then fell in all age groups, except 20-24
years old by 2010. In 2015 there was little evidence of this peak in young adults but a
secondary spike in much older adults (75+) remained. In the UK born, incidence rates
increased with age in 2000, this trend has weakened over time, with a secondary peak
developing in young adults (with a 5 year lag when compared to the peak observed in non-
UK born adults). In 2015, incidence rates in the UK born were largely homogeneous except
for a gradual increase in much older adults (75+), and lower incidence rates in children. 0-4
year old children have remained at greater risk of TB, compared to other children across
the time period for which data is available. There is some evidence that incidence rates
fell in this group after the introduction of BCG vaccination in 2005, with incidence rates in
older children (5-9) also having fallen by 2015.
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Figure 4.14: Age-specific incidence rates (by 100,000 population) grouped
into 5 year age categories for 2000, 2005, 2010 and 2010, stratified by UK
birth status. Point estimates are given along with 95% confidence intervals
for each incidence rate estimate. Trends across age distributions are high-
lighted by linking points with a line. This Figure indicates that TB incidence
in the non-UK born has been driven by high incidence rates in young adults.
Incidence rates in this population increased dramatically between 2000 and
2005 and then fell in all age groups, except 20-24 years old by 2010. In
2015 there was little evidence of this peak in young adults but a secondary
spike in much older adults (75+) remained. In the UK born, incidence rates
increased with age in 2000, this trend has weakened over time, with a sec-
ondary peak developing in young adults (with a 5 year lag when compared
to the peak observed in non-UK born adults). In 2015, incidence rates in the
UK born were largely homogeneous except for a gradual increase in much
older adults (75+), and lower incidence rates in children. 0-4 year old chil-
dren have remained at greater risk of TB, compared to other children across
the time period for which data is avialable.

70



4.6. TB outcomes

4.5.5 Incidence rates in children (0-14 years old) as a proxy for TB trans-
mission

Trends in incidence rates in UK born young children (0-14 years old) are used as a proxy
for recent transmission and compared to the overall incidence rate in order to extrapolate
the degree of reactivation occurring in older populations.[2] Whilst this proxy approach
is limited, in that it assumes that different population groups have an equivalent risk of
TB and that TB control measures are the same across age groups, it may be combined
with other methods to derive a good understanding of TB transmission. In Figure 4.12
incidence rates in the UK born decreased from 2000 until 2006 and then increased until
2011, since when they have fallen. This trend was not seen in UK born children, in whom
incidence rates increased over time until 2008 (Figure 4.13). The trend in UK born children
diverging from that seen in the overall population may be interpreted as evidence that TB
transmission increased from 2000 to 2008, and then decreased subsequently. Unfortunately,
this conclusion is difficult to extrapolate to older populations as it is likely that UK born
children (the segment with non-UK born parents) have more interaction with non-UK born
adults than UK born adults do. Additionally, BCG vaccination of high risk UK born
children was introduced in 2005, which is likely to have depressed incidence rates since
then. More complex modelling approaches are required to explore this question in more
detail, this is explored in greater detail later in this thesis.

4.6 TB outcomes

4.6.1 Motivation

Whilst TB outcomes are tracked in detail in the yearly PHE TB reports,[2] the role of
BCG vaccination has not previously been considered. There is some evidence that BCG
vaccination may reduce all-cause mortality,[33–35] TB mortality,[28] and improve treatment
outcomes.[36] The evidence for this in the ETS will be explored in the following section for:
all-cause mortality, TB mortality, successful treatment at 12 months, and lost to follow up.
TB outcomes are also likely to vary with age and UK birth status, both of which may mask
potential variation due to BCG vaccination if not accounted for. As when identifying trends
in TB notifications, relying solely on case counts for TB outcomes gives a biased picture as
the underlying number of cases may change. For this reason in this section I explore TB
outcomes using case rates.

4.6.2 Method

Case rates were calculated as follows and confidence estimates were estimated using the
prop.test function from the stats R package:

Case rate (over time period, t and age, a) = Number of cases with outcome of interest (t,a)
Number of cases with known outcome (t, a) ×100

(4.2)

4.6.3 All-cause mortality

In 2015 fewer UK born cases died from any cause in the ETS than in 2000 but the number
of non-UK born cases dying remained stable (Figure 4.15). However, the case all-cause
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fatality rate indicates that the rate of all-cause deaths has increased over time in both the
UK and non-UK born. There is also evidence to suggest that the case all-cause fatality rate
is higher in those born in the UK than in the non-UK born and that it is higher for BCG
vaccinated versus unvaccinated cases. The highest case all-cause fatality rate, regardless of
UK birth status is observed in those missing UK birth status. In both populations the case
all-cause fatality rate increases with age (as might be expected) but also has a secondary
peak in early childhood (0-4) (Figure 4.16). The all-cause case fatality rate is higher in BCG
unvaccinated cases, compared to vaccinated cases, from early adulthood until 50 years of age
in the UK born but there is less evidence of a difference in the non-UK born. Young non-UK
born children missing BCG status are particularly at risk of death from any cause.
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Figure 4.15: a.) Cases that died from any cause by year of notification
stratified by UK birth and BCG status, b.) Case all-cause fatality rate
stratified by UK birth and BCG status. Point estimates along with 95%
confidence are shown for all estimates. All-cause mortality has reduced over
time in the UK born but remained stable in the non-UK born. This is
also reflected in the case fatality rate with the UK born having a higher
rate regardless of BCG status. The recording of BCG status has improved
over time but it appears that for years with data BCG unvaccinated cases
have a higher all-cause case fatality rate in both the UK and non-UK born.
In both populations those missing UK birth status are more likely to die
from any cause. Data is incomplete for 2015, with cases that survived being
potentially more likely to be missing than those that died. This may be the
cause of the observed increase in uncertainty and may also have resulted in
a biased mortality rate for 2015.
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Figure 4.16: Age distribution (in 5 year age groups) of the case all-cause
mortality rate presented on a square root scale. Estimates are stratified by
BCG and UK birth status. Point estimates and 95% confidence intervals are
shown. In both populaitons the case all-cause fatality rate increases with
age, and has a secondary peak in early childhood (0-4). The all-cause case
fatality rate is higher in BCG unvaccinated cases, compared to vaccinated
cases, from early adulthood until 50 years of age in the UK born. There is
less evidence of a difference in case fatality rates in the non-UK born. Case
missing BCG status are more likely to die in both populations, with young
non-UK born children being particularly at risk.

4.6.4 TB related mortality

Similarly to all-cause deaths, deaths due to TB declined in the UK born over time but
remained stable in the non-UK born (Figure 4.17). The case TB fatality rate also increased
over time in both populations, with the rate again being higher in the UK born than in
the non-UK born. There was still evidence of a higher TB related mortality rate in those
unvaccinated but the evidence for this was weaker. Comparing case TB fatality rates was
difficult due to the large amount of uncertainty (Figure 4.18). However, there is some
evidence to suggest that those missing BCG status, who were UK born, and those who
were older were more likely to die from TB.
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Figure 4.17: a.) Cases that died from TB by year of notification stratified
by UK birth and BCG status, b.) Case TB fatality rate stratified by UK
birth and BCG status. Point estimates along with 95% confidence are shown
for all estimates. TB mortality has reduced over time in the UK born but
remained stable in the non-UK born. This is also reflected in the case fatality
rate with the UK born having a higher rate regardless of BCG status. The
recording of BCG status has improved over time but it appears that for
years with data BCG unvaccinated cases have a higher TB case fatality rate
in both the UK and non-UK born. In both populations those missing UK
birth status are more likely to die from TB. Data is incomplete for 2015, with
cases that survived being potentially more likely to be missing than those
that died. This may be the cause of the observed increase in uncertainty
and may also have resulted in a biased TB fatality rate for 2015.
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Figure 4.18: Age distribution (in 5 year age groups) of the case TB mortality
rate presented on a square root scale. Estimates are stratified by BCG and
UK birth status. Point estimates and 95% confidence intervals are shown.
All estimates have a large degree of uncertainty making drawing conclusions
difficult. There is no strong evidence to suggest a difference between those
were BCG vaccinated and those that were not. Those that were missing
BCG status, were UK born and who were older appeared to be at a greater
risk than other cases of death from TB.

4.6.5 Successful treatment

Successful treatment within 12 months has increased in both populations over time in terms
of cases (Figure 4.19). The case successful treatment rate initially decreased for both UK
and non-UK born populations but since 2012 has improved in the UK born. There is little
evidence to suggest that the successful treatment rate varies by BCG status, or by UK
birth status. Successful treatment rates appear to be lowest for young adults and highest
for young children (Figure 4.20).
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Figure 4.19: a.) Cases that were treated successfully within 12 months by
year of notification stratified by UK birth and BCG status, b.) Case success-
ful treatment within 12 months rate stratified by UK birth and BCG status.
Point estimates along with 95% confidence are shown for all estimates. Suc-
cessful treatment within 12 months has increased in both populations over
time in terms of cases. The case successful treatment rate initailly decreased
for both UK and non-UK born populations but since 2012 has improved
in the UK born. There is little evidence to suggest that the case success-
ful treatment rate varies by BCG status. Data is incomplete for 2015, with
cases that were successfully treated being potentially less likely to be missing
than those that were not. This may be the cause of the observed increase
in uncertainty and may also have resulted in a biased successful treatment
rate for 2015.
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Figure 4.20: Age distribution (in 5 year age groups) of the case successful
treatment within 12 months rate presented on a square root scale. Estimates
are stratified by BCG and UK birth status. Point estimates and 95% confi-
dence intervals are shown. There is little evidence that successful treatment
rates differ greatly by BCG or UK birth status when stratified by age. Suc-
cessful treatment rates appear to be lowest for young adults and highest for
young children.

4.6.6 Lost to follow up

As for other outcomes discussed, cases lost to follow up has decreased over time in the UK
born, but increased in the non-UK born (with incomplete data for 2015) (Figure 4.21). In
all populations the case loss to follow up rate has decreased over time, although this may
be biased as cases may not have had sufficient time to be classed as lost to follow up. In
both populations there is little evidence to suggest variation by BCG status but the loss
to follow up was higher in the non-UK born than in the UK born. This was true across
all age groups, and there was again little evidence of variation due to BCG status (Figure
4.22). Young adults were the most likely to be lost follow up in both populations but this
appeared to be a particular issue in the non-UK born.
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Figure 4.21: a.) Cases that were lost to follow up stratified by UK birth
and BCG status, b.) Case lost to follow up rate stratified by UK birth and
BCG status. Point estimates along with 95% confidence are shown for all
estimates. Loss to follow up has decreased over time in the UK born, but
increased in the non-UK born (with incomplete data for 2015). The case loss
to follow up rate has decreased over time for the UK born but increased for
the non-UK born. In both populations there is little evidence that loss to
follow up varies by BCG status. Data is incomplete for 2015, with cases that
were lost to follow up being potentially less likely to be missing than those
that were not. This may be the cause of the observed increase in uncertainty
and may also have resulted in a biased lost to follow up rate for 2015.
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Figure 4.22: Age distribution (in 5 year age groups) of the case loss to
follow up rate presented on a square root scale. Estimates are stratified by
BCG and UK birth status. Point estimates and 95% confidence intervals
are shown. There is little evidence of variation by BCG status but loss to
follow up is higher in the non-UK born compared to the UK born across all
age groups. Young adults are the most likely to be lost follow up in both
populations but this is a particular issue in the non-UK born.

4.7 Discussion

In this chapter I have explored the epidemiology of TB in England using routine datasets,
with a particular focus on the impact of missing data, the mechanisms underlying that
missing date, seasonal trends, the role of age, UK birth status, and BCG status. I have
also estimated incidence rates, stratified by UK birth status and age, which I then used
to identify trends in TB incidence over time. Finally, I explored TB outcomes in England
using case rates, again stratified by BCG status and UK birth status.

In the ETS system I found a high degree of missing data for several important variables. I
also found that there is likely to be strong missing at random (MAR) mechanism underlying
this missing data for multiple variables. Several factors are strongly associated with data
being missing for many variables, including UK birth status, ethnic group, socio-economic
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status and year. These MAR mechanisms must be adjusted for in future analysis to avoid
bias. I found that date variables in particular suffered from changing data completeness
over time, which may introduce spurious temporal trends if not fully understood. I also
found that for several variables, including the date of symptom onset, there was a large
degree of recall bias when aggregating by day or month. Several variables, including date
of notification and date of starting treatment, showed a seasonal trend with a maximum
in the summer months. The date of ending treatment showed less evidence of a seasonal
trend.

As reported elsewhere, I found that TB incidence initially increased from 2000 until 2011
but has since decreased. This was mainly driven by changing incidence in the non-UK born
with a slight decrease in UK born incidence in recent years. Stratifying by age, I found that
non-UK born cases were more likely to be young adults than any other age group but that
the age distribution of the UK born was more nearly uniform. There was some evidence
that these trends in TB incidence were driven by changing population demographics, with
a large increase in the young adult non-UK born population between 2000 and 2015. In
general the population of England is ageing, except for the non-UK born population which
is still primarily made up of young adults. This is likely to impact trends in TB over time,
with more severe outcomes but potentially less TB transmission.

After estimating incidence rates, I found that TB incidence rates increased over time in
the UK born from 2000 until 2005, since when they have declined year-on-year. There
appeared to be some linkage between the UK born and the non-UK born with incidence
rates in the UK born initially decreasing until 2005, then increasing year-on-year until
2012. Since then they have decreased, in line with the decreases seen in the non-UK born.
Stratifying incidence rates by age gives insights into what may be driving these mechanisms.
In the non-UK born, incidence rates have decreased over time in children (0-14), increased
in adults (15-64) through to 2005 before again beginning to decrease year-on-year, and
remained relatively stable in older adults (65+) until 2011 since when they have also fallen.
These trends are not mirrored in the UK born with incidence rates initially increasing in
children through to 2008 before beginning to decline. Incidence rates also increased in
adults through to 2011 before again beginning to decline. Incidence rates in older adults
dramatically decreased between 2000 and 2015 with some evidence of a decline in the rate
of this decrease from 2007 on-wards. These findings indicate that current reductions in
TB incidence may not be reaching the young UK born adult population, additional control
measures may be required to reduce TB incidence in this population further. Finally, I
explored the use of incidence rates in UK born children as a proxy of TB transmission
in England. There may be issues with this method as UK born children may not be
representative of the population as a whole as they may be more likely to mix with higher
risk non-UK born adults and because the change of BCG vaccination policy may have
depressed incidence rates in children. More work is required, using both dynamic and
statistical modelling, to understand whether incidence rates in children may be reliably
used to proxy TB transmission.

Using case rates, I found that there was some evidence that cases who were not BCG
vaccinated may be more likely to suffer from negative TB outcomes with differences in all-
cause mortality and TB mortality. These differences were observable after stratifying by
UK birth status and BCG status with young adults deriving the greatest apparent benefit
from BCG vaccination. TB outcomes were also generally worse in the non-UK born, except
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for successful treatment.

Findings from this chapter are used throughout the later chapters of this thesis. In particu-
lar, Chapter 6 uses statistical modelling to exploring the impact of BCG vaccination on TB
outcomes in greater detail, Chapter 7 explores the impact of the change in BCG vaccination
policy on TB incidence rates using the incidence rate estimates from this chapter, Chapter
8 uses the understanding of the ETS gained from this chapter to parameterise a dynamic
TB transmission model, and Chapter 9 uses the insights gained into the date variables in
the ETS to fit a dynamic TB transmission model.

4.8 Summary
• In this chapter the key data sources used in this thesis have been examined in detail

with a particular focus on the role of age, UK birth status and BCG vaccination
status. The role of missing data and potential mechanisms driving it have also been
extensively explored. Data completeness was found to increase dramatically over time
for many variables, which must be accounted for in any analysis using these variables
to identify temporal trends.

• TB incidence rates stratified by age and UK birth status have been calculated, along
with case rates for TB outcomes. These estimates were then to extensively explore
trends in TB in England, identifying possible analysis questions to be addressed later
in this thesis.

• The code used in this chapter to import, clean and manipulate the data sources has
been made accessible separately as an R package (tbinenglanddataclean; see Chap-
ter 1), along with documentation of the required data sources and package functions.
If interested in reproducing this work from the raw data please see this documentation
for details.

• Findings from this chapter are used throughout the later chapters of this thesis: to
inform analysis questions (Chapter 6 and 7), identify variables for which missing data
must be imputed (Chapter 6 and 7), to parameterise a dynamic TB transmission
model (Chapter 8), and to fit a dynamic TB transmission model (Chapter 9).
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Chapter 5

Reassessing the evidence for
universal school-age BCG
vaccination in England and
Wales

5.1 Introduction

Prior to the change in BCG vaccination policy in 2005 (see Chapter 2) several studies were
carried out to assess the impact of any potential policy change. In this Chapter, I aim to
update one of these studies.

I will recreate a previous approach for estimating the impact of ending the BCG schools
scheme in England and Wales, updating the model with parameter uncertainty, and mea-
surement error. I investigate scenarios considered by the Joint Committee on Vaccination
and Immunisation (JCVI), and explore new approaches using notification data (see Chapter
4). I will estimate the number of vaccines needed to prevent a single notification, and the
average annual additional notifications caused by ending the BCG schools’ scheme. This
work was adapted from a preprint1 supervised by Hannah Christensen and Ellen Brooks-
Pollock.

5.2 Background

The Bacillus Calmette–Guérin (BCG) vaccine remains the only licensed vaccine for use
against Tuberculosis (TB), although its use globally is controversial due to evidence of
variable effectiveness,[25] and waning protection 10-15 years after vaccination.[28] Global
usage of the BCG varies between no vaccination, universal vaccination, and high-risk group
vaccination and may target either neonates or school-aged children.[5,61] The World Health
Organization (WHO) recommends vaccination for all neonates as early as possible after
birth in high burden settings, with vaccination in low burden settings being dependent on
the country specific epidemiology of TB.[39] This recommendation is based on the strong

1Preprint: https://doi.org/10.1101/624916
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evidence that the BCG is highly protective in children,[23,24] whilst its effectiveness has
been shown to vary with latitude when given later in life.[40]

In England and Wales, universal school-aged (at 13-14 years old) vaccination (hereafter
referred to as the BCG schools scheme) was introduced after a MRC trial in the 1950s
estimated BCG’s effectiveness at 78% in the ethnic White UK born population.[26] The
policy remained in place until 2005, when England and Wales changed to targeted vaccina-
tion of high-risk neonates. The 2005 change in BCG vaccination policy was motivated by
evidence of decreased transmission of TB, an increasing proportion of TB cases occurring
in the non-UK born,[2] and modelling evidence that suggested stopping the BCG schools
scheme would have minimal long term effects on incidence rates.[41] Due to the complex
nature of both TB and the BCG vaccine, the ongoing impact of this change in policy is
hard to directly estimate, with decision makers relying on expert opinion, evidence from
surveillance data, and insight from modelling studies.

In 1987, an assessment of the school-age vaccination program was carried out in England
and Wales.[41] This study was used, combined with a sensitivity analysis of notification
rates, as supporting evidence by the Joint Committee on Vaccination and Immunisation
(JCVI) BCG subgroup for the change in vaccination policy.[62,63] This chapter aims to
re-evaluate this modelling, and re-estimate the predicted impact of stopping the schools
scheme. Re-evaluating this work allows for the strength of the evidence used in decision
making to be assessed and may highlight any issues with the approach used.

5.3 Methods

5.3.1 Modelling the impact of ending the BCG schools scheme

I implemented, and updated, Sutherland et al.’s model for estimating the impact of ending
the BCG schools scheme, which is outlined briefly below.[41] This model was based on
data from TB notification surveys conducted in 1973, 1978, and 1983.[64] These were used
to estimate incidence rates, stratified by BCG vaccination status, in the ethnic White UK
born population of England and Wales aged 15-19 years old, 20-24 years old and 25-29 years
old. Future incidence rates were forecast by assuming an annual decrease in incidence rates,
which was based on historic trends.[41,65] Primary impacts from ending the schools scheme,
including the number of vaccines required to prevent a single notification, were estimated
by calculating the difference in incidence rates between the vaccinated and unvaccinated
populations. Additional notifications from TB transmission were then calculated using a
transmission chain model and combined with the primary impact estimates, to calculate
the number of annual additional notifications due to ending BCG vaccination. Based on
data availability, the model used a 5-year time step.

Original estimation of notification rates

The effectiveness of the BCG vaccine was originally estimated by an MRC trial in 1953
at 78% in the United Kingdom.[26] As a follow up to this trial members of the MRC
bio-statistics unit conducted a series of notification surveys attempting to ascertain any
change in effectiveness, as well as acting as an estimate of notification rates across different
demographics.[64] Surveys of those aged 15-24 years were carried out at 5-year intervals in
1973, 1978 and 1983 in England and Wales. For the 1983 survey records of BCG status,
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Tuberculin status and ethnicity were extracted from the records of notifying physicians
and the records of the local health and education authorities. Total notifications across
the study period were then aggregated for the following groups: Tuberculin negative and
BCG vaccinated, Tuberculin negative and BCG unvaccinated, Tuberculin positive and not
vaccinated and those who did not participate. These totals were then combined with the
population estimates for each cohort at 13 years of age to estimate the ethnic make up
of the population, and to construct notification rates for each category. Data were drawn
from a range of sources including: Office of National Statistics data; annual local authority
returns for total Tuberculin test results; BCG vaccinations in the schools scheme; and the
Labour force survey (1983).

For 1983, there were 874 notifications recorded in 15-24 year old ethnic White UK born
persons in England and Wales; survey participation was 80%. As the number of Tuber-
culin negative subjects not given BCG was unreported the number of notifications was
estimated at 1.9% of those vaccinated with the BCG.[64] See [64] for full details of the
survey and the additional assumptions used to give similar estimates for both the 1973 and
1978 surveys. The findings of these surveys were as follows: in the ethnic White population
notification rates had fallen by an annual average of 9% and BCG efficacy had remained
high.[41,65]

Evidence suggests that the BCG vaccine has a high efficacy for at least the first 15 years
after vaccination, therefore Sutherland et al. extrapolated from the data on the 20-24 cohort
to a theoretical 25-29 year old cohort. Data on the notifications in 25-29 year olds was
available for the first 6 months of the 1983 survey and this was then scaled up to a yearly
estimate using the ratio of notifications from this age group against the total number of
notifications recorded in that year. Population estimates for the 25-29 year old cohort were
based on data from the 20-24 cohort adjusted for all causes of mortality (0.34%). Migration
was ignored. The Tuberculin positive cohort had a sharp decline in the previous two age
cohorts, therefore it was assumed that this continued. Lastly, the efficacy was estimated as
being that seen in the 20-24 cohort but with the same decline in protection seen between
the last two cohorts. These assumptions allowed notification rates to be estimated for the
25-29 year old population, resulting in a complete cohort over the projected 15 years of
BCG effectiveness.

Original construction of forward estimates

Based on these estimated notification rates, Sutherland et al. then sought to quantify the
ongoing risk of developing notified TB, projected forward in time, for both the vaccinated
and unvaccinated populations. To construct these estimates several key assumptions, based
on the results seen in the previous surveys, were made. Firstly, it was assumed that efficacy
was not degrading within the ethnic White population and therefore historic estimates would
continue to apply into the future. Additionally, it was assumed that the annual decay of 9%
in notification rates, across all ethnic White populations, would continue indefinitely.

These assumptions allowed the notification rates in both the BCG vaccinated and unvac-
cinated groups to be projected forward in time. By assuming that the schools scheme is
responsible for the observed variation between vaccinated and unvaccinated rates the rate
of prevented cases can then be estimated. By scaling this against a cohort of 100,000 13
year old individuals, the number of prevented cases over a 15-year period can be projected
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for each cohort. By dividing the total number in a given cohort by the number of prevented
cases the estimated number of vaccines required to prevent a single case in the 15-year
period can then be calculated.

To estimate the total number of prevented notifications, for each cohort, in England and
Wales the total number receiving the BCG and the coverage of the schools scheme was
required. The coverage of the BCG schools scheme was estimated from annual reports of
the Department of Health and Social Security (DHSS) and was assumed to be 75% for
all years. The number of BCG vaccines given each year was estimated from the DHSS
returns for the years 1967 to 1981, it was then taken as 75% of the estimated ethnic White
population aged 13 years from 1982-1996, for each 5-year period thereafter it was assumed
to be 2.1 million.

Using the data on BCG coverage, the number of vaccines given each year, and the projected
differences between vaccinated and unvaccinated notification rates allowed the number of
prevented notifications, due to vaccination, for each age group to be found for each year.
These estimates can then be used to give the total number of prevented notifications for
those aged between 15-29 years. To understand these estimates, estimates of the projected
yearly notifications if the scheme continues were required. These totals were derived from
the vaccinated and unvaccinated rates supplemented with similar projections from the Tu-
berculin positive or otherwise ineligible sourced from the 1983 BCG survey.[64]

Original transmission chain model

Sutherland et al. defined their TB transmission model as follows:

1. The total expected number of secondary notifications (T ) arising from any single
primary notification was estimated as,

T = (1− d)z < 1 (5.1)
Where d is the percentage annual decay in notification rates, and z is the average interval
between the notification of any individual and the notification of the patient who infected
them.

2. The total expected number of secondary notifications arising from any single primary
notification (T ) is related to the number of notifications in each generation using the
relative generation size (x) with the following power series,

T = x+ x2 + x3 + .. = x

1− x (5.2)

3. The expected average interval between each primary notification and all secondary
notifications (Z) is defined to be the sum of time to all notifications, weighted by the
fraction in each generation, divided by the sum of all notifications.

Z = xz + x22z + x33z + ..

x+ x2 + x3 + ..
= z

1− x (5.3)

Both 2. and 3. are only valid when x < 1.

Updating the transmission chain model

If we assume a constant decay rate of d% per year and that the next generation of secondary
cases are notified z years after the person who infected them, then 1 notification in year 0
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will result in (1 − d)z secondary notifications z years later. This is therefore the relative
generation size (x), not the total number of secondary notifications (T ), as (incorrectly)
stated by Sutherland et al. Therefore, to correct this I revised 1. to the following,

x = (1− d)z < 1 (5.4)

The Sutherland et al. model required several additional assumptions.[41] Firstly, as inci-
dence rates for those ineligible for the BCG schools scheme are not published, I assumed
that they were equal to those in the unvaccinated population. In addition, in order to
reproduce the distribution of cases annually (rather than by generation or overall) reported
in Sutherland et al. I introduced an additional model step and parameter; the proportion
of secondary cases in the first generation that occurred in the first year (f). This modelling
step is only required to reproduce the final table from [41] and does not impact estimates
of the impact of ending the BCG schools scheme. It is included only for validation pur-
poses.

The annual distribution of secondary notifications (N) was modelled by first estimating
the number of secondary notifications that occurred in the current year (i) due to primary
notifications in that year (NCurrent) and then estimating how many secondary notifications
occurred 5 years later (NProjected). NCurrent was estimated using the number of primary
notifications (P ) multiplied by the number of total expected number of secondary notifica-
tions per primary notification (T ), the proportion of secondary cases in the first generation
that occurred in the first year (f), and the relative size of the first generation (x). NProjected

was then estimated by assuming that it was equal to the number of secondary notifications,
minus notifications occurring in the first year, that occurred Z (the expected average in-
terval between each primary notification and all secondary notifications) years ago. As this
used the overall number of notifications from the previous time step a decay of (1− d)5−Z

was applied. This approach can be summarised as follows,

NCurrent = PTfx (5.5)

NProjected = (PT −NCurrent)(1− d)5−Z (5.6)

Ni = NCurrent
i +NProjected

i−1 (5.7)

I fitted the proportion of secondary cases in the first generation that occurred in the first year
(f) using least squares to the original estimates of the total notifications due to ending the
scheme under several scenarios, for several years. I validated the fitted model by comparing
the results with those from the original implementation using the mean absolute percentage
error, normalised by the original estimate, as the performance metric.

5.3.2 Updating model parameter estimates and incorporating parameter
uncertainty

Incidence rates were included as point estimates in [41]; in the updated model I included un-
certainty in these rates. I did this by first estimating notifications for 1973, 1978, and 1983,
using published incidence rates and population estimates. Samples were then generated us-
ing a Poisson distribution.[41,64] These samples were then used to estimate a distribution
of incidence rates to replace the point estimates used in the original analysis. Sutherland
et al. assumed a serial interval (z) of 2 years between linked notifications. Using a newly
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available literature source I updated this assumption with an estimate of 1.44 (95% CI 1.29
to 1.63) years.[66]

I considered the original assumption of a 9% annual decrease in incidence rates as well as
three scenarios based on those considered by the JCVI BCG subgroup:[62,63] these were
a 3.9% decrease, a 1.9% decrease, and no change annual in incidence rates. Data on the
annual decrease in incidence rates in the ethnic White UK population were not available so
I used two proxy measures. The first proxy measure was the annual change in notifications
in England and Wales, which was estimated using data from Public Health England (PHE).
The standard deviation of this measure was then calculated using the prop.test function in
R.[56] The second proxy used was the annual decrease in the UK born age-specific incidence
rates in the English population. These were calculated using notification data from the
Enhanced TB surveillance system (ETS) and the June Labour Force Survey.[2] Incidence
rates were estimated using the epiR package.[60] Uncertainty was incorporated by sampling
from a normal distribution for both proxy measures. Data collection for the ETS began in
2000 and prior to this notification data was only available in years with notifications surveys
(1973, 1978, and 1983). I therefore estimated incidence rates between 1984 and 1999, and for
the years between notifications surveys (1974-1977 and 1979-1982), using locally estimated
scatter plot smoothing (LOESS) regression fitted to incidence rates published in [11] and
the estimated incidence rates from 2000 on-wards. LOESS is a local regression method
that combines multiple regression models in a k-nearest neighbours meta-model.[67] This
approach allows nonlinear trends to be fitted using a series of linear models. For years prior
to 1973 the annual decreases were assumed to be the mean of the annual decreases from
the previous 3 years. For both proxy measures the annual decreases in incidence rates post
2016 were assumed to be the average of the estimates in 2013-2015.

5.3.3 Statistical analysis

For each scenario, I ran the model for 69 years (1969-2028) with 10,000 parameter samples.
I tested the difference between scenarios using the Mann-Whitney test for the number of
vaccines needed to prevent a single case in 15 years after vaccination for a cohort aged 13-14
years old at vaccination. As in [41] a 15-year time horizon was used with 5-year intervals.
The year closest to the year of the change in vaccination policy (2005), which had model
estimates, was used as the baseline. The code for this analysis is available online2.

5.4 Results
The model produced results that were comparable with those from [41] (Table 5.1; Table
5.2). When estimating the total notifications from ending the BCG schools scheme at
different times in ethnic White UK born adults aged 15-29 years old in England and Wales
the model had a median absolute error of 2.03% (2.5, 97.5% Q: 0.00%, 3.72%) and a
maximum absolute error of 3.91% when compared to [41]. I found that the percentage of
cases in the first year was f = 0.764 when fitted to the Sutherland et al. estimates using
the least squares method.

2Code: https://github.com/seabbs/AssessBCGPolicyChange
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Table 5.1: Comparison of results published by Sutherland et al. vs. the
recreated model. This table shows the total notifications including primary
and secondary effects from ending the BCG schools scheme at various times
in ethnic White adults aged 15-29 years old in England and Wales.

1988 1993 1998

Year of
Ending
Scheme

Original Recreated Difference Original Recreated Difference Original Recreated Difference

1986 288 296 8 226 226 0 208 205 -3
1991 288 296 8 165 166 1 130 131 1
1996 288 296 8 165 166 1 90 91 1
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Table 5.2: Continued: Comparison of results published by Sutherland et al.
vs. the recreated model. This table shows the total notifications includ-
ing primary and secondary effects from ending the BCG schools scheme at
various times in ethnic White adults aged 15-29 years old in England and
Wales.

2003 2008 2013

Year of
Ending
Scheme

Original Recreated Difference Original Recreated Difference Original Recreated Difference

1986 181 175 -6 128 123 -5 80 78 -2
1991 128 126 -2 115 111 -4 80 78 -2
1996 77 76 -1 80 80 0 72 70 -2
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5.4.1 Annual change in TB incidence rates

I found that the assumption of a 9% annual decrease in incidence rates in the ethnic White
UK born was not comparable to estimates using either notification data or age-specific inci-
dence rates in the time period studied (Figure 5.1). The median annual decrease estimated
using notifications was 3.06% (2.5, 97.5% Quantiles (Q): -8.32%, 11.45%), with a maximum
of 15.14% (2.5, 97.5% Q: 14.22%, 16.03%) in 1987 and a minimum of -10.17% (2.5, 97.5%
Q: -10.82%, -9.52%) in 2005. Using age-specific incidence rates I estimated the median
annual decrease in incidence rates for 15-19 year olds was 1.65% (2.5, 97.5% Q: -40.49%,
39.97%), 3.16% (2.5, 97.5% Q: -33.95%, 38.30%) for 20-24 year olds, and 2.63% (2.5, 97.5%
Q: -36.28%, 37.17%) for 25-29 year olds. There was substantial variation between years and
a high degree of uncertainty.

Figure 5.1: Annual percentage change in ethnic White UK born incidence
rates for those aged 15-19, 20-24, and 25-29 years old under different sce-
narios. For the notification and incidence rate scenarios each line represents
the median of 10,000 parameter samples.

91



Chapter 5. Reassessing the evidence for universal school-age BCG vaccination in England
and Wales

5.5 Vaccines required to prevent a single notification
I found that incorporating uncertainty, did not alter the number of vaccines required to
prevent a single notification within 15 years in a cohort vaccinated at school-age, when the
annual decrease in incidence rates was assumed to be 9% (Figure 5.2; Table 5.3). However,
the updated estimate had a wide range (15000 (2.5, 97.5% Q: 12000, 19000) vaccines required
in 2004). As the assumed annual decrease in incidence rates was reduced the number of
vaccines required to prevent a single notification also reduced. Assuming an annual decrease
of 1.9% (one of the scenarios evaluated by the JCVI) resulted in an estimate of 1600 (2.5,
97.5% Q: 1300, 2000) vaccines required to a prevent a single notification in 2004. This
assumption was the most comparable, although not equivalent, to estimates derived using
notifications (1400 (2.5, 97.5% Q: 1100, 1700), P: 0.077) and age-specific incidence rates
(1500 (2.5, 97.5% Q: 460, 4900), P: 0.083). The estimate using incidence rates had a high
degree of uncertainty (Figure 5.2; Table 5.3). The number of vaccines required increased
slightly over time with 1800 (2.5, 97.5% Q: 1500, 2200) required in 2009, 2000 (2.5, 97.5%
Q: 1600, 2500) required in 2014, and 2200 (2.5, 97.5% Q: 1800, 2700) required in 2019 when
an annual decrease of 1.9% in incidence rates was assumed.
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Figure 5.2: Vaccines required in a cohort of those vaccinated at school-
age to prevent a single case of Tuberculosis within 15 years of vaccination
in 2004, 2009, 2014, or 2019. The years presented were dictated by the
5-year timestep of the model. The percentage annual decrease scenarios
considered were based on those considered by the JCVI BCG subgroup, with
the addition of a scenario using aggregate notification data and a scenario
using estimates of age-specific incidence rates in the UK born. Each boxplot
summarises the output of 10,000 model simulations for each scenario.
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Table 5.3: The median number (with the 2.5% and 97.5% quantiles) of
vaccines required to prevent a single case of TB within 15 years in a ethnic
White UK born adult vaccinated at 13 years old. The percentage annual
decrease scenarios considered were based on those considered by the JCVI
BCG subgroup, with the addition of a scenario using aggregate notification
data and a scenario using estimates of age-specific incidence rates in the UK
born.

Year of Vaccination 9% decrease
(original
parameters)

9% decrease 3.9% decrease 1.9% decrease 0% decrease Notifications Incidence Rates

1969 460 460 (390, 540) 460 (390, 540) 460 (390, 540) 460 (390, 540) 460 (390, 540) 460 (390, 540)
1974 940 940 (780, 1200) 880 (720, 1100) 850 (700, 1100) 830 (680, 1000) 860 (710, 1100) 860 (640, 1100)
1979 1400 1400 (1100, 1800) 1100 (910, 1400) 1000 (820, 1300) 900 (740, 1100) 1000 (860, 1300) 1100 (680, 1700)
1984 2200 2200 (1800, 2900) 1300 (1100, 1700) 1100 (900, 1400) 900 (740, 1100) 1600 (1300, 2000) 1400 (730, 2900)
1989 3600 3600 (2900, 4600) 1600 (1300, 2100) 1200 (990, 1500) 900 (740, 1100) 1800 (1500, 2200) 1700 (760, 3800)

1994 5800 5800 (4700, 7300) 2000 (1600, 2500) 1300 (1100, 1700) 900 (740, 1100) 1700 (1400, 2200) 1600 (640, 4200)
1999 9300 9200 (7600, 12000) 2500 (2000, 3100) 1500 (1200, 1900) 900 (740, 1100) 1600 (1300, 2000) 1500 (510, 4200)
2004 15000 15000 (12000, 19000) 3000 (2400, 3800) 1600 (1300, 2000) 900 (740, 1100) 1400 (1100, 1700) 1500 (460, 4900)
2009 24000 24000 (19000, 30000) 3600 (3000, 4600) 1800 (1500, 2200) 900 (740, 1100) 1200 (960, 1500) 1200 (350, 4300)
2014 38000 38000 (31000, 48000) 4500 (3600, 5600) 2000 (1600, 2500) 900 (740, 1100) 1500 (1200, 1900) 1500 (390, 6000)

2019 61000 61000 (50000, 78000) 5400 (4400, 6900) 2200 (1800, 2700) 900 (740, 1100) 2100 (1800, 2700) 2300 (470, 11000)
2024 98000 98000 (80000, 120000) 6600 (5400, 8400) 2400 (1900, 3000) 900 (740, 1100) 3200 (2600, 4100) 3300 (550, 18000)
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5.5.1 Average annual additional cases from ending the BCG schools
scheme at various dates

I found that updating parameter values, and incorporating uncertainty, did not alter the av-
erage annual primary additional notifications from stopping the BCG schools scheme when
the annual decrease was assumed to be 9%. However, when these changes were combined
with the updated transmission model we found that the impact of ending BCG vaccination
was greater than previously reported with an increase in the number of estimated cases due
to onwards transmission (Figure 5.3; Table 5.4). These estimates were uncertain with 94
(2.5, 97.5% Q: 72, 119) additional annual notifications if vaccination was stopped in 2001.
As the assumed annual decrease in incidence rates was reduced the annual number of ad-
ditional notifications increased with 6099 (2.5, 97.5% Q: 4691, 7719) notifications when the
annual decrease was assumed to be 1.9% and vaccination stopped in 2001. The number of
annual notifications reduced with time: 5314 (2.5, 97.5% Q: 4082, 6725) from ending vacci-
nation in 2006; 4327 (2.5, 97.5% Q: 3315, 5496) from ending vaccination in 2011, and 2852
(2.5, 97.5% Q: 2074, 3741) from ending vaccination in 2016 (Figure 5.3; Table 5.4).
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Figure 5.3: Annual additional (stratified into primary and secondary) notifi-
cations in 15-29 year olds from stopping the BCG schools scheme in 2006, and
2011 until 2028. The years presented were dictated by the 5-year timestep of
the model. The percentage annual decrease scenarios considered were based
on those considered by the JCVI BCG subgroup. Data based scenarios and
the JCVI 0% decrease scenario were not presented here as the updated trans-
mission model could not support these scenarios. Each boxplot summarises
the output of 10,000 model simulations for each scenario. Secondary notifi-
cations are reported assuming they occurred in the same year as the primary
notifications that caused them.
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Table 5.4: The median number (with the 2.5% and 97.5% quantiles) of
additional annual notifications due to ending the BCG schools scheme in
selected years. The percentage annual decrease scenarios considered were
based on those considered by the JCVI BCG subgroup. Data based scenarios
and the JCVI 0% decrease scenario were not presented here as the updated
transmission model could not support these scenarios.

Year Ending Scheme 9% decrease
(original
parameters)

9% decrease 3.9% decrease 1.9% decrease

1971 111 111 (88, 135) 204 (161, 249) 286 (226, 350)
1976 90 90 (71, 110) 187 (148, 229) 276 (219, 337)
1981 55 55 (44, 68) 152 (120, 185) 244 (193, 298)
1986 35 35 (28, 43) 125 (99, 152) 218 (172, 266)
1991 25 25 (19, 30) 109 (86, 133) 203 (161, 247)

1996 17 17 (13, 21) 93 (74, 114) 185 (147, 225)
2001 12 12 (9, 15) 79 (62, 96) 166 (132, 203)
2006 8 8 (6, 10) 65 (51, 79) 145 (115, 177)
2011 6 5 (4, 7) 50 (39, 62) 118 (92, 145)
2016 3 3 (2, 4) 32 (23, 40) 78 (58, 99)

2021 1 1 (1, 2) 15 (9, 21) 39 (24, 54)
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5.6 Discussion

The existing method for estimating the impact of the BCG schools scheme produced un-
certain estimates of the impact of ending the scheme in all years evaluated when parameter
uncertainty was included. The approach used to estimate additional notifications due to
transmission was found to be incorrect. Once corrected, the transmission model produced
much higher estimates of additional notifications caused by ending BCG vaccination than
previously reported. Further updating the model with the annual decrease in TB notifica-
tions based on both notifications and using age-specific incidence rates resulted in a decrease
in the number of vaccines needed to prevent a single case in all years considered. A scenario
with a 1.9% annual decrease in incidence rates was most comparable to the results based
on notifications. Using this scenario, I found that the number of TB notifications arising
from ending school age BCG vaccination was much greater than originally estimated using
the scenario considered in Sutherland et al.

In addition to identifying that the public health impact of the change in vaccine policy was
likely much larger than originally estimated, my results also provide new insights into the
uncertainty of the previously published model predictions by including parameter uncer-
tainty and measurement error and updates these predictions using newly available data.
As historical data on incidence rates in the ethnic White UK born in England and Wales
were not available, I considered two approaches to proxy them and investigated multiple
scenarios based on those explored by the JCVI BCG subgroup. The simulation approach
used here, although updated where possible, is not the most accurate method for estimating
the impact of ending the BCG schools scheme as it relies on numerous assumptions based
on the available knowledge in 1987 and does not account for the role of non-White and
non-UK born cases. However, the strength of this work is that the estimates are based
on the framework used to inform policy making. This allowed the strength of the model
used in the decision-making process to be assessed once parameter uncertainty had been
incorporated and for flaws in the model to be identified. This would not have been possible
if the impact had been assessed using only the observed data or with an alternative model.
It also allowed estimates based on updated data to be compared to historic estimates within
the same framework. This would also not have been possible if a different framework had
been used. As mentioned, a weakness of the model used in this study is that it did not
include the whole population or age groups outside those directly affected by vaccination.
Heterogeneous mixing between these groups is also likely to be an important consideration.
The exclusion of these factors means that my results are likely to underestimate the impact
of ending the BCG schools scheme. A final limitation is that this study only considers
the impact of ending the BCG schools scheme and not the impact of the introduction of
the targeted neonatal vaccination program. This should be considered when evaluating the
change in policy as a whole.

Little work has been done to assess the impact of the 2005 change in BCG vaccination policy
or to assess the quantitative evidence used in decision making. However, multiple studies
have evaluated the cost effectiveness of various BCG programs and the impact of switching
between them. A cluster-randomised trial in Brazil found that BCG vaccination of those at
school-age was cheaper than treatment and would prevent one TB case per 381 vaccinations
even with a vaccine effectiveness of only 34% (8-53%).[68] This is substantially fewer than
my estimate of 2000 (2.5, 97.5% Q: 1600, 2500) (the most comparable year from my results).
However, the same trial found that for regions close to the equator BCG effectiveness was
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low in school-age children but unchanged in neonates,[69] highlighting the importance of
considering the BCG vaccines reduced effectiveness near the equator when determining
vaccination policy.[70] There is also some research which supports universal re-vaccination
of those at school-age, in countries with high incidence and universal vaccination of neonates,
as it may be cost effective when BCG effectiveness is moderate to high.[69,71] There is some
evidence that targeted vaccination of high risk neonates maybe more cost effective than
universal vaccination of neonates.[72,73] However, a study in Sweden found that incidence
rates in Swedish-born children increased slightly after universal vaccination of neonates was
discontinued in favour of targeted vaccination.[74] In France, which switched from universal
vaccination of neonates to targeted vaccination in 2007, it has also been shown that targeted
vaccination reduced coverage in those most at risk.[75] Targeted vaccination may not be
more cost effective than universal vaccination when possible reductions in transmission are
considered. This chapter indicated that a substantial number of cases due to transmission
may be preventable if universal school-age BCG vaccination was still in place. This result is
dependent on the effectiveness of BCG vaccination when given later in life, for which there
is good evidence in the ethnic White UK born.[26] I did not consider neonatal vaccination
which would be less impacted by BCG’s effectiveness reducing when given later in life, but
may also be less likely to result in the same reductions in ongoing transmission.

This chapter indicates that some of the evidence used to justify the 2005 change in BCG
vaccination policy may have depended on a methodologically flawed model, resulting in the
impact of ending BCG vaccination being underestimated. Modelling evidence can often be
complex and difficult to reproduce, it is important that policy makers, or those who work
with them, have the skills to assess its quality. This study also highlights the importance
of including both parameter and measurement error, as excluding these sources of variation
may lead to spuriously precise results. Spurious precision is problematic for policy makers
as the worst-case scenario often needs to be considered when making policy decisions. In
addition, my exploration of the assumptions used to estimate the annual change in TB
incidence rates in the ethnic White UK born illustrates the structural impact of assuming
an annual decrease in TB incidence rates. More realistic estimates of the annual decrease
in incidence rates resulted in a greatly increased impact of ending the BCG schools scheme.
Policy makers should consider these updated estimates when assessing the role of BCG
vaccination in those at school-age. However, decisions regarding vaccine policy in the UK
require economic evaluation, which discounts costs and benefits in the future; discounting
has not been applied in this study which estimates the epidemiological impact of vaccination
only.

This chapter has reassessed some of the evidence previously used in decision making, cor-
recting the transmission model used, and updating the approach with new data. However,
as 15 years of detailed surveillance data have been collected since the ending of the BCG
schools scheme it is now possible to use regression-based approaches to estimate the direct
impact on incidence rates of ending the BCG schools scheme (see Chapter 7).[76] These
approaches could also be used to estimate the impact of vaccinating high-risk neonates,
which may outweigh any negative impacts of ending the BCG schools scheme. In addition,
the development (see Chapter 8), and use, of a transmission dynamic model would allow
the more accurate estimation of indirect effects and the forecasting of long-term impacts
(see Chapter 10).
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5.7 Summary
• This chapter reevaluates a key piece of the quantitative evidence used to motivate the

change in BCG vaccination policy in 2005, correcting a methodological flaw in the
original model.

• The inclusion of parameter uncertainty, and measurement error, allowed the uncer-
tainty in the final estimates to be presented. Previously published estimates may have
been spuriously precise.

• As this study used a historical approach the model used is not the most accurate
method for assessing the impact of ending the BCG schools scheme. However, it
provides an estimate that is based on the available data and on the framework used
to inform policy making. This allowed the strength of some the quantitative evidence
used in the decision-making process to be assessed.

• The impact of ending the BCG schools scheme was found to be greater than previously
thought when notification data were used. These results highlight the importance of
independent evaluations of modelling evidence, including uncertainty, and evaluating
multiple scenarios when forecasting the impact of changes in vaccination policy.

• The code for the analysis contained in this chapter can be found at: doi.org/10.5281/zenodo.25830563

3Alternatively available from: https://github.com/seabbs/AssessBCGPolicyChange
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Chapter 6

Exploring the effects of BCG
vaccination in patients diagnosed
with tuberculosis: observational
study using the Enhanced
Tuberculosis Surveillance system

6.1 Introduction

Bacillus Calmette–Guérin (BCG) primarily reduces the progression from infection to dis-
ease, however there is evidence that BCG may provide additional benefits. In this chapter
I aimed to investigate whether there is evidence in routinely-collected surveillance data (see
Chapter 4) that BCG vaccination impacts outcomes for tuberculosis (TB) cases in England.
Any impact on TB outcomes could add additional weight to vaccination policies with wider
population coverage, as these policies would have benefits beyond reducing TB incidence
rates.

To conduct this study, I first obtained all TB notifications for 2009-2015 in England from
the Enhanced Tuberculosis surveillance (ETS) system (see Chapter 4). I then considered
five outcomes: All-cause mortality, death due to TB (in those who died), recurrent TB,
pulmonary disease, and sputum smear status. I used logistic regression, with complete case
analysis, to investigate each outcome with BCG vaccination, years since vaccination and
age at vaccination, adjusting for potential confounders. All analyses were repeated using
multiply imputed data. This work was adapted from [77]1 (also available as a preprint2) su-
pervised by Hannah Christensen and Ellen Brooks-Pollock. Collaborators at Public Health
England including Maeve K Lalor, Dominik Zenner, Colin Campbell, and Mary E Ramsay
provided the data and commented on multiple versions of this paper.

1Paper: https://doi.org/10.1016/j.vaccine.2019.06.056
2Preprint: https://doi.org/10.1101/366476

https://doi.org/10.1016/j.vaccine.2019.06.056
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6.2 Background

Bacillus Calmette–Guérin (BCG) is one of the mostly widely-used vaccines and the only
vaccine that protects against TB disease. BCG was first used in humans in 1921 and was in-
troduced into the WHO Expanded Program on Immunization in 1974.[38] BCG vaccination
has been controversial due to its variable efficacy and possibility of causing a false positive
result with the standard skin test for TB.[5] However, the lack of a more effective vaccine
and the emergence of drug-resistant TB strains means that BCG vaccination remains an
important tool for reducing TB incidence and mortality rates.

BCG’s primary mode of action is to directly prevent the development of active, symptomatic
disease. Its efficacy in adults is context specific, with estimates ranging between 0% and 78%
(see Chapter 2).[25] It has been shown to highly efficacious in England and there is some
evidence that efficacy increases with distance from the equator. Efficacy has been shown
to be dependent on previous exposure, with unexposed individuals receiving the greatest
benefit.[69] Unlike in adults, BCG has consistently been shown to be highly protective
against TB and TB meningitis in children.[23,24] For this reason the majority of countries
that use BCG, vaccinate at birth.[27] Adult vaccination is no longer common in the UK,
where universal BCG vaccination of adolescents was stopped in 2005 in favour of a targeted
neonatal programme aimed at high risk children.

Vaccination policy has been primarily based on reducing the incidence of TB disease, and
mitigating disease severity, with little attention having been given to any additional effects
of BCG vaccination on TB outcomes.[30,31] There is some evidence that BCG vaccina-
tion induces innate immune responses which may provide non-specific protection,[32] TB
patients with BCG scars were found to respond better to treatment with earlier sputum
smear conversion,[36] and there is evidence to suggest that BCG vaccination is associated
with reduced all-cause neonatal mortality[33,34] and both reduced TB[28] and all-cause[35]
mortality in the general population. Given that the immunology behind TB immunity is
not fully understood these findings suggest that BCG may play a more important role in
improving TB outcomes than previously thought. I aimed to quantify the effects of BCG
vaccination on outcomes for individuals with notified TB in England using routinely col-
lected surveillance data (see Chapter 4) to provide evidence for appropriate public health
action and provision. Where I found an association, I additionally explored the role of years
since vaccination, and age at vaccination.

6.3 Method

6.3.1 Enhanced TB Surveillance (ETS) system

I extracted all notifications from the ETS system from January 1, 2009 to December 31,
2015 (Chapter 4). BCG vaccination status and year of vaccination have been collected
since 2008. The outcomes I considered were: all-cause mortality, death due to TB (in those
who died), recurrent TB, pulmonary disease, and sputum smear status. These outcomes
were selected based on: their availability in the ETS; evidence from the literature of prior
associations with BCG vaccination; associations with increased case infectiousness; or severe
outcomes for patients.

All-cause mortality was defined using the overall outcome recorded in ETS, this is based
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on up to 36 months of follow up starting from date of starting treatment. Follow up
ends when a case is recorded as completing treatment, with treatment status evaluated at
12, 24, and 36 months from starting treatment. Where the treatment start date was not
available the notification date was used if appropriate. The date of death was validated
against Office for National Statistics (ONS) data. Those that were lost to follow up, or
not evaluated were treated as missing. In cases with a known cause of death, death due to
TB was defined as those that died from TB, or where TB had contributed to their death.
Cause of death was recorded by case managers. TB cases who had recurrent episodes were
identified using probabilistic matching. Positive sputum smear status was given to cases
that had a sputum sample shown to contain Acid-Fast Bacilli. A positive sputum smear
status indicates that cases are more likely to be infectious. Cases were defined as having
pulmonary TB if a positive sputum smear sample was recorded, if a positive culture was
grown from a pulmonary laboratory specimen, or if they were clinically assessed as having
pulmonary TB.

6.3.2 Exposure variables relating to BCG

I included three exposure variables related to BCG: BCG status (vaccinated, yes/no), years
since vaccination and age at vaccination.

BCG status was collected and recorded in ETS by case managers. Information on BCG
vaccination status may have come from vaccination records, patient recall or the presence
of a scar. When cases are uncertain, and there is no evidence of a scar, no BCG status
is given. Year of vaccination was collected similarly. Years since BCG vaccination was
defined as year of notification minus year of vaccination and categorised into two groups
(0 to 10 and 11+ years). This was based on: evidence that the average duration of BCG
protection is at least 10-15 years;[28] increasing recall bias with time since vaccination, and
any association between years since vaccination and TB outcomes may be non-linear (see
Chapter 4).

I calculated age at vaccination as year of vaccination minus year of birth. I categorized age
at vaccination into 0 to < 1, 1 to < 12, 12 to < 16 and 16+ years because the distribution
was bimodel with modes at 0 and 12 years. This categorization captures the current UK
policy of vaccination at birth, historic policy of vaccination at 13-15 years and catch up
vaccination for high risk children.

6.3.3 Statistical Analysis

R was used for all statistical analysis.[56] The analysis was conducted in two stages. Firstly,
I calculated proportions for all demographic and outcome variables, and compared vacci-
nated and unvaccinated TB cases using the χ2 test. Secondly, I used logistic regression,
with complete case analysis, to estimate the association between exposures and outcome
variables, both with and without adjustment for confounders.

In the multivariable models, I adjusted for sex,[78–80] age,[81] Index of Multiple Deprivation
(2010) categorised into five groups for England (IMD rank),[15] ethnicity,[78,82] UK birth
status,[45,83] and year of notification. As the relationship between age and outcomes was
non-linear, I modelled age using a natural cubic spline with knots at the 25%, 50% and 75%
quantiles.

103



Chapter 6. Exploring the effects of BCG vaccination in patients diagnosed with
tuberculosis: observational study using the Enhanced Tuberculosis Surveillance system

I conducted sensitivity analyses to assess the robustness of the results, by dropping each
confounding variable in turn and assessing the effect on the adjusted Odds Ratios (aORs)
of the exposure variable. I repeated the analysis excluding duplicate recurrent cases, and
restricting the study population to those eligible for the BCG schools scheme (defined as
UK born cases that were aged 14 or over in 2004) to assess the comparability of the BCG
vaccinated and unvaccinated populations. To mitigate the impact of missing data I used
multiple imputation, with the MICE package.[51] I imputed 50 data sets (for 20 iterations)
using all outcome and explanatory variables included in the analysis as predictors along
with Public Health England centre. The model results were pooled using the small sample
method,[84] and effect sizes compared with those from the main analysis. All code for this
analysis is available online3.

6.4 Results

6.4.1 Description of the data

There were 51,645 TB notifications between 2009-2015 in England. Reporting of vaccination
status and year of vaccination improved over time: 64.9% (20865/32154) of notifications
included vaccination status for 2009 to 2012, increasing to 70% (13647/19491) from 2013 to
2015. The majority of cases that had a known vaccination status were vaccinated (70.6%,
24354/34512), and where age and year of vaccination was known, the majority of cases were
vaccinated at birth (60%, 5979/10066).

Vaccinated cases were younger than unvaccinated cases on average (median age 34 years
(IQR 26 to 45) compared to 38 years (IQR 26 to 62)). A higher proportion of non-UK born
cases were BCG vaccinated, (72.7%, 18297/25171) compared to UK born cases (65.2%,
5787/8871, P: < 0.001) and, of those vaccinated, a higher proportion of non-UK born cases
were vaccinated at birth compared to UK born cases (68%, 4691/6896 vs. 40.5%, 1253/3096
respectively, P: < 0.001). See Table 6.1 for the breakdown of outcome variables and Table
6.2 for the breakdown of confounding variables. See Chapter 4 for an extended discussion
of the epidemiology of TB in England.

3Code: https://github.com/seabbs/ExploreBCGOnOutcomes
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Table 6.1: Outcomes for individuals in England notified with TB between
2009-2015, stratified by BCG vaccination status.

BCG status

Outcome Total Vaccinated Unvaccinated Unknown vaccine status

Total, all cases 51645 24354 {47} 10158 {20} 17133 {33}
All-cause mortality 45588 (88) 21685 (89) 9061 (89) 14842 (87)
No 43024 [94] 21291 [98] 8495 [94] 13238 [89]
Yes 2564 [6] 394 [2] 566 [6] 1604 [11]

Death due to TB (in
those who died*)

1373 (3) 276 (1) 320 (3) 777 (5)

No 572 [42] 129 [47] 146 [46] 297 [38]
Yes 801 [58] 147 [53] 174 [54] 480 [62]

Recurrent TB 48497 (94) 23963 (98) 9991 (98) 14543 (85)
No 44869 [93] 22592 [94] 9256 [93] 13021 [90]
Yes 3628 [7] 1371 [6] 735 [7] 1522 [10]

Pulmonary TB 51432 (100) 24289 (100) 10121 (100) 17022 (99)
Extra-pulmonary

(EP) only
24280 [47] 12085 [50] 4573 [45] 7622 [45]

Pulmonary, with or
without EP

27152 [53] 12204 [50] 5548 [55] 9400 [55]

Sputum smear status -
positive

19551 (38) 9768 (40) 3910 (38) 5873 (34)

Negative 11060 [57] 5694 [58] 2231 [57] 3135 [53]

Positive 8491 [43] 4074 [42] 1679 [43] 2738 [47]
{% all cases}(% complete within vaccine status)[% complete within category]
* Death due to TB in those who died and where cause of death was known
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Table 6.2: Potential confounders for individuals in England notified with TB
between 2009-2015, stratified by BCG vaccination status.

BCG status

Confounder Total Vaccinated Unvaccinated Unknown vaccine status

Total, all cases 51645 24354 {47} 10158 {20} 17133 {33}
Age 51645 (100) 24354 (100) 10158 (100) 17133 (100)
Mean [SD] 40 [19] 36 [16] 44 [22] 45 [20]
Median [25%, 75%] 36 [27, 52] 34 [26, 45] 38 [26, 62] 41 [29, 59]
Sex 51535 (100) 24320 (100) 10136 (100) 17079 (100)

Female 22066 [43] 10791 [44] 4312 [43] 6963 [41]
Male 29469 [57] 13529 [56] 5824 [57] 10116 [59]

IMD rank (with 1 as
most deprived and 5
as least deprived)

43525 (84) 21240 (87) 8866 (87) 13419 (78)

1 16800 [39] 7779 [37] 3665 [41] 5356 [40]
2 13057 [30] 6836 [32] 2564 [29] 3657 [27]

3 6838 [16] 3459 [16] 1259 [14] 2120 [16]
4 4045 [9] 1893 [9] 836 [9] 1316 [10]
5 2785 [6] 1273 [6] 542 [6] 970 [7]

UK born 49820 (96) 24084 (99) 9958 (98) 15778 (92)
Non-UK Born 36988 [74] 18297 [76] 6874 [69] 11817 [75]

UK Born 12832 [26] 5787 [24] 3084 [31] 3961 [25]
Ethnic group 50416 (98) 24074 (99) 10024 (99) 16318 (95)
White 10194 [20] 3560 [15] 2695 [27] 3939 [24]
Black-Caribbean 1112 [2] 559 [2] 242 [2] 311 [2]
Black-African 8942 [18] 4620 [19] 1602 [16] 2720 [17]

Black-Other 462 [1] 261 [1] 80 [1] 121 [1]
Indian 12994 [26] 7176 [30] 2061 [21] 3757 [23]
Pakistani 8237 [16] 3512 [15] 1720 [17] 3005 [18]
Bangladeshi 2025 [4] 918 [4] 480 [5] 627 [4]
Chinese 601 [1] 289 [1] 101 [1] 211 [1]

Mixed / Other 5849 [12] 3179 [13] 1043 [10] 1627 [10]
Calendar year 51645 (100) 24354 (100) 10158 (100) 17133 (100)
{% all cases}(% complete within vaccine status)[% complete within category]
* Death due to TB in those who died and where cause of death was known

6.4.2 All-cause mortality

In the univariable analysis the odds of death from any cause were lower for BCG vaccinated
TB cases compared to unvaccinated cases, with an OR of 0.28 (95% CI 0.24 to 0.32, P:
<0.001) (Table 6.3, Table 6.4); an association remained after adjusting for confounders, but
was attenuated with an aOR of 0.76 (95% CI 0.64 to 0.89, P: 0.001). I estimate that if all
unvaccinated cases had been vaccinated there would have been on average 19 (95% CI 9 to
29) fewer deaths per year during the study period (out of 81 deaths per year on average in
unvaccinated cases). Whilst there was evidence in univariable analyses to suggest all-cause
mortality was higher in persons vaccinated more than 10 years prior to notification of TB
and that all-cause mortality increased with increasing age group, these disappeared after
adjusting for potential confounders (Table 6.5, Table 6.6).

Similar results to the multivariable analysis were found using multiply imputed data for
the association between vaccination status and all-cause mortality (aOR: 0.76 (95% CI 0.61
to 0.94), P: 0.013), but not for time since vaccination with a greatly increased risk of all-
cause mortality estimated for those vaccinated more than 10 years before case notification,
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compared to those vaccinated more recently (aOR: 12.19 (95% CI 3.48 to 42.64), (see
Table 6.5, Table 6.7)). For age at vaccination results for the multivariable analysis using
multiply imputed data were comparable to those found using complete case analysis, except
that there was some evidence that vaccination in adolescence, compared to under 1, was
associated with increased, rather than decreased, all-cause mortality (aOR: 1.57 (95% CI
1.13 to 2.19), Table 6.9).

Table 6.3: Summary of logistic regression model output with BCG vaccina-
tion as the exposure and all-cause mortality as the outcome.

Univariable Multivariable

Variable Total All-cause mortality OR (95% CI) P-value aOR (95% CI) P-value

Total cases 25993 807 (3)
BCG vaccination <0.001 0.001
No 7620 473 (6) 1 1
Yes 18373 334 (2) 0.28 (0.24 to 0.32) 0.76 (0.64 to 0.89)

Age <0.001 <0.001

Sex <0.001 <0.001
Female 11502 296 (3) 1 1
Male 14491 511 (4) 1.45 (1.34 to 1.58) 1.48 (1.26 to 1.73)

IMD rank (with 1 as
most deprived and 5
as least deprived)

<0.001 0.001

1 9891 298 (3) 1 1

2 8136 219 (3) 0.85 (0.76 to 0.95) 0.86 (0.70 to 1.04)
3 4100 120 (3) 1.06 (0.93 to 1.20) 0.66 (0.52 to 0.84)
4 2341 98 (4) 1.47 (1.28 to 1.70) 0.72 (0.55 to 0.93)
5 1525 72 (5) 1.70 (1.45 to 1.99) 0.64 (0.47 to 0.85)

UK born <0.001 0.136

Non-UK Born 19115 442 (2) 1 1
UK Born 6878 365 (5) 2.62 (2.40 to 2.85) 1.25 (0.93 to 1.67)

Ethnic group <0.001 0.171
White 4699 380 (8) 1 1
Black-Caribbean 634 25 (4) 0.45 (0.35 to 0.58) 0.95 (0.59 to 1.53)

Black-African 4681 62 (1) 0.14 (0.12 to 0.17) 0.87 (0.59 to 1.29)
Black-Other 247 2 (1) 0.13 (0.06 to 0.26) 0.40 (0.10 to 1.69)
Indian 7041 168 (2) 0.28 (0.25 to 0.31) 0.80 (0.58 to 1.10)
Pakistani 4067 103 (3) 0.30 (0.27 to 0.34) 0.65 (0.46 to 0.92)
Bangladeshi 1079 18 (2) 0.21 (0.16 to 0.27) 0.69 (0.40 to 1.22)

Chinese 286 7 (2) 0.34 (0.23 to 0.51) 0.69 (0.30 to 1.62)
Mixed / Other 3259 42 (1) 0.16 (0.13 to 0.19) 0.59 (0.39 to 0.91)

Calendar year 1.06 (1.04 to 1.08) <0.001 1.10 (1.05 to 1.15) <0.001
OR (95% CI): unadjusted odds ratio with 95% confidence intervals,
aOR (95% CI): adjusted odds ratios with 95% confidence intervals

6.4.3 Deaths due to TB (in those who died)

There was little evidence of any association between BCG vaccination and deaths due to TB
(in those who died and where cause of death was known) in the univariable analysis (Table
6.4). The adjusted point estimate indicated an association between BCG vaccination and
reduced deaths due to TB (in those who died) although the confidence intervals remained
wide with a similar result found using multiply imputed data (see Table 6.7). There were
insufficient data to robustly estimate an association between deaths due to TB (in those
who died) and years since vaccination or age at vaccination (Table 6.5, Table 6.6).
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6.4.4 Recurrent TB

In both the univariable and multivariable analysis there was some evidence that BCG
vaccination was associated with reduced recurrent TB, although the strength of the evidence
was weakened after adjusting for confounders (Table 6.4). In the adjusted analysis, the odds
of recurrent TB were lower for BCG vaccinated cases compared to unvaccinated cases, with
an aOR of 0.90 (95% CI 0.81 to 1.00, P: 0.056). The strength of the evidence for this
association was comparable in the analysis using multiply imputed data (see Table 6.7).
There was little evidence in the adjusted analysis of any association between recurrent TB
and years since vaccination (Table 6.5) or age at vaccination (Table 6.6).

6.4.5 Other Outcomes

After adjusting for confounders there was little evidence for any association between BCG
vaccination and pulmonary disease or positive sputum smear status (Table 6.4); similar
results were found using multiply imputed data (see Table 6.7).
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Table 6.4: Summary of associations between BCG vaccination and all out-
comes

Univariable Multivariable

Outcome BCG
vaccinated

Cases** Cases with
outcome (%)

OR (95% CI) P-value Cases*** Cases with
outcome (%)

aOR (95% CI) P-value

All-cause
mortality

No 9061 566 (6) 1 <0.001 7620 473 (6) 1 0.001

Yes 21685 394 (2) 0.28 (0.24 to 0.32) 18373 334 (2) 0.76 (0.64 to 0.89)
Death due to
TB (in those
who died*)

No 320 174 (54) 1 0.786 270 143 (53) 1 0.177

Yes 276 147 (53) 0.96 (0.69 to 1.32) 236 126 (53) 0.76 (0.51 to 1.13)
Recurrent TB No 9991 735 (7) 1 <0.001 8502 615 (7) 1 0.056

Yes 23963 1371 (6) 0.76 (0.70 to 0.84) 20584 1177 (6) 0.90 (0.81 to 1.00)
Pulmonary TB No 10121 5548 (55) 1 <0.001 8595 4685 (55) 1 0.769

Yes 24289 12204 (50) 0.83 (0.79 to 0.87) 20784 10342 (50) 0.99 (0.94 to 1.05)
Sputum smear
status -
positive

No 3910 1679 (43) 1 0.187 3367 1435 (43) 1 0.730

Yes 9768 4074 (42) 0.95 (0.88 to 1.02) 8351 3447 (41) 1.02 (0.93 to 1.11)
OR (95% CI): unadjusted odds ratio with 95% confidence intervals
aOR (95% CI): adjusted odds ratios with 95% confidence intervals
* Death due to TB in those who died and where cause of death was known
** Univariable sample size for outcomes ordered as in table (% of all cases) = 30746 (60%), 596 (23%), 33954 (66%), 34410 (67%), 13678 (26%)
*** Multivariable sample size with outcomes ordered as in table (% of all cases) = 25993 (50%), 506 (20%), 29086 (56%), 29379 (57%), 11718 (23%)
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Table 6.5: Summary of associations between years since vaccination and
all outcomes in individuals who were vaccinated. The baseline exposure is
vaccination ≤ 10 years before diagnosis compared to vaccination 11+ years
before diagnosis. Deaths due to TB (in those who died) had insufficient data
for effect sizes to be estimated in both the univariable and multivariable
analysis

Univariable Multivariable

Outcome Years since
BCG

Cases** Cases with
outcome (%)

OR (95% CI) P-value Cases*** Cases with
outcome (%)

aOR (95% CI) P-value

All-cause
mortality

≤ 10 718 5 (1) 1 0.004 554 4 (1) 1 0.897

11+ 8106 166 (2) 2.98 (1.22 to 7.28) 7171 148 (2) 0.91 (0.24 to 3.54)
Death due to
TB (in those
who died*)

≤ 10 2 2 (100) 1 - 2 2 (100) 1 -

11+ 108 59 (55) Insufficient data 98 53 (54) Insufficient data
Recurrent TB ≤ 10 780 22 (3) 1 0.005 613 14 (2) 1 0.515

11+ 9172 451 (5) 1.78 (1.15 to 2.75) 8194 406 (5) 1.24 (0.63 to 2.44)
Pulmonary TB ≤ 10 770 480 (62) 1 <0.001 601 382 (64) 1 0.309

11+ 9248 4757 (51) 0.64 (0.55 to 0.74) 8254 4232 (51) 0.87 (0.67 to 1.14)
Sputum smear
status -
positive

≤ 10 157 81 (52) 1 0.941 122 61 (50) 1 0.920

11+ 3064 1590 (52) 1.01 (0.73 to 1.40) 2734 1405 (51) 1.02 (0.68 to 1.54)
OR (95% CI): unadjusted odds ratio with 95% confidence intervals
aOR (95% CI): adjusted odds ratios with 95% confidence intervals
* Death due to TB in those who died and where cause of death was known
** Univariable sample size for outcomes ordered as in table (% of vaccinated cases) = 8824 (36%), 110 (28%), 9952 (41%), 10018 (41%), 3221 (13%)
*** Multivariable sample size with outcomes ordered as in table (% of vaccinated cases) = 7725 (32%), 100 (25%), 8807 (36%), 8855 (36%), 2856 (12%)
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Table 6.6: Summary of associations between age at vaccination and all out-
comes in individuals who were vaccinated - the baseline exposure is vaccina-
tion at birth compared to vaccination from 1 to < 12, 12 to < 16, and 16+
years of age.

Univariable Multivariable

Outcome Age at BCG Cases** Cases with
outcome (%)

OR (95% CI) P-value Cases*** Cases with
outcome (%)

aOR (95% CI) P-value

All-cause
mortality

< 1 5234 45 (1) 1 <0.001 4626 43 (1) 1 0.127

1 to < 12 1915 58 (3) 3.60 (2.43 to 5.34) 1678 52 (3) 1.36 (0.85 to 2.16)
12 to < 16 1267 41 (3) 3.86 (2.51 to 5.91) 1094 32 (3) 0.81 (0.45 to 1.46)
≥ 16 408 27 (7) 8.17 (5.01 to 13.32) 327 25 (8) 1.41 (0.76 to 2.63)

Death due to
TB (in those
who died*)

< 1 27 20 (74) 1 0.118 27 20 (74) 1 0.543

1 to < 12 43 20 (47) 0.30 (0.11 to 0.87) 39 18 (46) 0.36 (0.08 to 1.51)
12 to < 16 23 13 (57) 0.46 (0.14 to 1.50) 17 9 (53) 0.40 (0.06 to 2.52)
≥ 16 17 8 (47) 0.31 (0.09 to 1.12) 17 8 (47) 0.35 (0.06 to 2.16)

Recurrent TB < 1 5909 284 (5) 1 0.463 5275 258 (5) 1 0.246
1 to < 12 2174 105 (5) 1.01 (0.80 to 1.26) 1928 92 (5) 0.84 (0.65 to 1.09)

12 to < 16 1421 58 (4) 0.84 (0.63 to 1.12) 1242 51 (4) 0.70 (0.48 to 1.02)
≥ 16 448 26 (6) 1.22 (0.81 to 1.85) 362 19 (5) 0.82 (0.49 to 1.37)

Pulmonary TB < 1 5946 2828 (48) 1 <0.001 5305 2510 (47) 1 0.005
1 to < 12 2194 1159 (53) 1.23 (1.12 to 1.36) 1941 1033 (53) 1.15 (1.02 to 1.29)
12 to < 16 1425 971 (68) 2.36 (2.09 to 2.67) 1245 846 (68) 1.09 (0.92 to 1.29)

≥ 16 453 279 (62) 1.77 (1.45 to 2.15) 364 225 (62) 1.47 (1.15 to 1.88)
Sputum smear
status -
positive

< 1 1753 836 (48) 1 <0.001 1557 742 (48) 1 0.862

1 to < 12 755 394 (52) 1.20 (1.01 to 1.42) 682 348 (51) 0.96 (0.79 to 1.17)
12 to < 16 556 357 (64) 1.97 (1.62 to 2.40) 486 308 (63) 1.06 (0.81 to 1.39)
≥ 16 157 84 (54) 1.26 (0.91 to 1.75) 131 68 (52) 0.93 (0.63 to 1.37)

OR (95% CI): unadjusted odds ratio with 95% confidence intervals
aOR (95% CI): adjusted odds ratios with 95% confidence intervals
* Death due to TB in those who died and where cause of death was known
** Univariable sample size for outcomes ordered as in table (% of vaccinated cases) = 8824 (36%), 110 (28%), 9952 (41%), 10018 (41%), 3221 (13%)
*** Multivariable sample size with outcomes ordered as in table (% of vaccinated cases) = 7725 (32%), 100 (25%), 8807 (36%), 8855 (36%), 2856 (12%)

111



Chapter 6. Exploring the effects of BCG vaccination in patients diagnosed with
tuberculosis: observational study using the Enhanced Tuberculosis Surveillance system

6.4.6 Sensitivity analysis of the missing data using multiple imputa-
tion

As discussed in the previous sections, I found that repeating the analysis with an imputed
data set had some effect on the results from the complete case analysis. There was a
decrease in the accuracy of effect size estimates for BCG vaccination, some increase in p-
values (Table 6.7). However, none of the estimated effects changed their direction, and
there were no detectable systematic changes in the results.

For the secondary exposure variables (years since vaccination and age at vaccination, (Table
6.8 and Table 6.9), I found a change in direction of the point estimate between years
since vaccination and all-cause mortality and recurrent TB, but similar results for age at
vaccination and outcomes.
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Table 6.7: Summary of associations between BCG vaccination and all out-
comes, using pooled imputed data.

Univariable Multivariable

Outcome OR (95% CI) P-value fmi aOR (95% CI) P-value fmi

All-cause
mortality

0.44 (0.35 to 0.56) <0.001 90 0.76 (0.61 to 0.94) 0.013 85

Death due to TB
(in those who
died*)

0.94 (0.57 to 1.56) 0.810 85 0.89 (0.52 to 1.51) 0.651 85

Recurrent TB 0.83 (0.75 to 0.92) <0.001 56 0.90 (0.81 to 1.00) 0.058 54
Pulmonary TB 0.84 (0.79 to 0.90) <0.001 70 0.99 (0.93 to 1.06) 0.814 62
Sputum smear
status - positive

0.88 (0.82 to 0.94) <0.001 65 1.01 (0.94 to 1.08) 0.886 60

OR: odds ratio with 95% confidence intervals
aOR: adjusted odds ratio with 95% confidence intervals
fmi: fraction of missing information
* Death due to TB in those who died and where cause of death was known

Table 6.8: Summary of associations between years since vaccination and
all outcomes, using pooled imputed data. There was insufficient data to
estimate an effect for deaths due to TB (in those who died)

Univariable Multivariable

Outcome OR (95% CI) P-value fmi aOR (95% CI) P-value fmi

All-cause
mortality

3.28 (1.85 to 5.79) <0.001 50 12.19 (3.48 to 42.64) <0.001 70

Death due to TB
(in those who
died*)

0.00 (0.00 to Inf) 0.974 0 0.00 (0.00 to Inf) 0.972 0

Recurrent TB 1.29 (1.00 to 1.66) 0.050 39 0.81 (0.59 to 1.11) 0.187 44
Pulmonary TB 0.58 (0.52 to 0.66) <0.001 33 0.99 (0.84 to 1.17) 0.913 40
Sputum smear
status - positive

0.99 (0.82 to 1.19) 0.891 70 0.95 (0.77 to 1.18) 0.648 60

OR: odds ratio with 95% confidence intervals
aOR: adjusted odds ratio with 95% confidence intervals
fmi: fraction of missing information
* Death due to TB in those who died and where cause of death was known
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Table 6.9: Summary of associations between age at vaccination and all out-
comes, using pooled imputed data (reference is vaccination at <1 year).

Univariable Multivariable

Outcome Age group OR (95% CI) P-value fmi aOR (95% CI) P-value fmi

All-cause mortality 1 to < 12 6.48 (4.71 to 8.91) <0.001 70 1.69 (1.18 to 2.40) 0.004 68
12 to < 16 3.33 (2.50 to 4.43) <0.001 78 1.57 (1.13 to 2.19) 0.008 79
≥ 16 3.36 (2.56 to 4.41) <0.001 69 1.01 (0.70 to 1.46) 0.948 71

Death due to TB (in
those who died*)

1 to < 12 0.45 (0.22 to 0.92) 0.028 62 0.47 (0.21 to 1.04) 0.063 62

12 to < 16 0.41 (0.22 to 0.75) 0.004 67 0.40 (0.20 to 0.78) 0.008 67

≥ 16 0.53 (0.28 to 1.00) 0.051 54 0.47 (0.20 to 1.12) 0.088 62
Recurrent TB 1 to < 12 1.39 (1.11 to 1.73) 0.004 41 1.04 (0.82 to 1.32) 0.736 41

12 to < 16 1.01 (0.88 to 1.16) 0.892 45 0.86 (0.75 to 1.00) 0.052 44
≥ 16 0.95 (0.79 to 1.15) 0.598 53 0.77 (0.61 to 0.98) 0.034 55

Pulmonary TB 1 to < 12 1.83 (1.59 to 2.10) <0.001 46 1.36 (1.17 to 1.58) <0.001 44

12 to < 16 1.28 (1.19 to 1.36) <0.001 35 1.12 (1.04 to 1.21) 0.002 36
≥ 16 2.28 (2.10 to 2.48) <0.001 34 1.10 (0.98 to 1.23) 0.107 40

Sputum smear status -
positive

1 to < 12 1.49 (1.21 to 1.84) <0.001 74 1.08 (0.85 to 1.37) 0.549 76

12 to < 16 1.29 (1.17 to 1.43) <0.001 65 1.09 (0.97 to 1.22) 0.158 67
≥ 16 2.40 (2.16 to 2.66) <0.001 58 1.20 (1.04 to 1.37) 0.011 59

OR: odds ratio with 95% confidence intervals
aOR: adjusted odds ratio with 95% confidence intervals
fmi: fraction of missing information
* Death due to TB in those who died and where cause of death was known

6.4.7 Sensitivity analysis

Dropping duplicate recurrent TB notifications increased the magnitude, and precision, of
the effect sizes for recurrent TB, all-cause mortality, and deaths due to TB (in those who
died) (see Table 6.10). Restricting the analysis to only cases that were eligible for the BCG
schools scheme reduced the sample size of the analysis (from an initial study size of 51645, of
which 12832 were UK born, to 9943 cases that would have been eligible for the BCG schools
scheme). With this reduced sample size, there was strong evidence in adjusted analyses of
an association between BCG vaccination and reduced recurrent TB, and evidence of an
association with decreased all-cause mortality (see Table 6.10).
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Table 6.10: Summary of associations between BCG vaccination and all out-
comes; cases that have no recurrent flag in the ETS (n=50407), and cases
that would have been eligible for the BCG schools scheme (n=9943). Those
defined to be eligible for the schools scheme are the UK born, that were aged
14 or over in 2004

Univariable Multivariable

Study population Outcome BCG OR (95% CI) P-value aOR (95% CI) P-value

Recurrent cases
dropped

All-cause mortality No 1 <0.001 1 <0.001
Yes 0.27 (0.23 to 0.31) 0.73 (0.61 to 0.86)

Death due to TB (in
those who died*)

No 1 0.709 1 0.147

Yes 0.94 (0.68 to 1.31) 0.74 (0.49 to 1.11)

Recurrent TB No 1 <0.001 1 <0.001
Yes 0.61 (0.55 to 0.69) 0.76 (0.66 to 0.87)

Pulmonary TB No 1 <0.001 1 0.672
Yes 0.83 (0.79 to 0.87) 0.99 (0.93 to 1.04)

Sputum smear status -
positive

No 1 0.141 1 0.871

Yes 0.94 (0.88 to 1.02) 1.01 (0.92 to 1.10)
Cases eligible for the
schools scheme

All-cause mortality No 1 <0.001 1 0.018
Yes 0.24 (0.19 to 0.29) 0.72 (0.55 to 0.95)

Death due to TB (in
those who died*)

No 1 0.893 1 0.987

Yes 0.96 (0.57 to 1.63) 0.99 (0.49 to 2.03)
Recurrent TB No 1 <0.001 1 <0.001

Yes 0.51 (0.42 to 0.61) 0.66 (0.52 to 0.84)
Pulmonary TB No 1 0.017 1 0.417

Yes 0.87 (0.78 to 0.98) 0.94 (0.82 to 1.08)

Sputum smear status -
positive

No 1 0.613 1 0.588

Yes 1.04 (0.89 to 1.22) 1.05 (0.87 to 1.27)
OR: odds ratio with 95% confidence intervals
aOR: adjusted odds ratio with 95% confidence intervals
fmi: fraction of missing information
* Death due to TB in those who died and where cause of death was known

6.5 Discussion

Using TB surveillance data collected in England I found that BCG vaccination, prior to
the development of active TB, was associated with reduced all-cause mortality and fewer
recurrent TB cases, although the evidence for this association was weaker. There was some
suggestion that the association with all-cause mortality was due to reduced deaths due to
TB (in those who died), though the study was underpowered to definitively assess this. I
did not find evidence of an association between BCG status and positive smear status or
pulmonary TB. Analysis with multiply imputed data indicated that notification 10+ years
after vaccination was associated with increased all-cause mortality compared to notification
wihtin 10 years. In separate analyses, there was some evidence that vaccination at birth,
compared to at any other age, was associated with reduced all-cause mortality, and increased
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deaths due to TB (in those who died).

This study used a large detailed dataset, with coverage across demographic groups, and stan-
dardized data collection from notifications and laboratories. The use of routine surveillance
data means that this study would be readily repeatable with new data. The surveillance
data contained multiple known risk factors, this allowed us to adjust for these confounders
in the multivariable analysis, which attenuated the evidence for an association with BCG
vaccination for all outcomes. However, there are important limitations to consider. The
study was conducted within a population of active TB cases, therefore the association with
all-cause mortality cannot be extrapolated to the general population. Additionally, vacci-
nated and unvaccinated populations may not be directly comparable because vaccination
has been targeted at high-risk neonates in the UK since 2005. I mitigated this potential
source for bias by conducting a sensitivity analysis including only those eligible for the
universal school age scheme, and whilst the strength of associations were attenuated there
remained some evidence of improved outcomes. Sensitivity analysis excluding recurrent
cases indicated their inclusion may have biased our results towards the null.

Variable data completeness changed with time, with both BCG vaccination status and year
of vaccination having a high percentage of missing data, which may not be missing com-
pletely at random. I therefore checked the robustness of our results with multiple imputation
including regional variability, however an unknown missing not at random mechanism, or
unmeasured confounding may still have introduced bias. I found a greatly increased risk
of all-cause mortality for those vaccinated more than 10 years ago in the analysis with
multiply imputed data, compared to the complete case analysis. This is likely to be driven
by a missing not at random mechanism for years since vaccination, with older cases being
both more likely to have been vaccinated more than 10 years previously and to also have
an unknown year of vaccination. The high percentage of missing data also means that I
was likely to be underpowered to detect an effect of BCG vaccination on sputum smear
status and deaths due to TB (in those who died), with years since vaccination, and age
at vaccination likely to be underpowered for all outcomes. I was not able to adjust for
either tuberculin skin test (TST) stringency, or the latitude effect, although I was able to
adjust for UK birth status.[85] However, the bias induced by these confounders is likely to
be towards the null, meaning that our effect estimates are likely to be conservative. Finally,
BCG vaccination status, and year of vaccination, may be subject to misclassification due to
recall bias; validation studies of the recording of BCG status in the ETS would be required
to assess this.

Little work has been done to assess the overall effect of BCG on outcomes for active TB cases
although the possible non-specific effects of BCG are an area of active research.[34,86,87]
Whilst multiple studies have investigated BCG’s association with all-cause mortality, it has
been difficult to assess whether the association continues beyond the first year of life.[87]
The effect size of the association I identified between BCG and all-cause mortality in active
TB cases was comparable to that found in a Danish case-cohort study in the general pop-
ulation (adjusted Hazard ratio (aHR): 0.58 (95% CI 0.39 to 0.85).[35] A recent systematic
review also found that BCG vaccination was associated with reduced all-cause mortality
in neonates, with an average relative risk of 0.70 (95% CI 0.49 to 1.01) from five clini-
cal trials and 0.47 (95% CI 0.32 to 0.69) from nine observational studies at high risk of
bias.[34] I found some weak evidence that BCG vaccination was associated with reduced
deaths due to TB (in those who died), although our point estimate had large confidence in-
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tervals. Several meta-analyses have found evidence supporting this association,[24,28] with
one meta-analysis estimating a 71% (Risk ratio (RR): 0.29 95% CI 0.16 to 0.53) reduction
in deaths due to TB in individuals vaccinated with BCG.[24] The meta-analysis performed
by Abubakar et al. also found consistent evidence for this association, with a Rate ratio
of 0.22 (95% CI 0.15 to 0.33).[28] In contrast to our study, both of these meta-analyses
estimated the protection from TB mortality in BCG vaccinated individuals rather than in
BCG vaccinated cases who had died from any cause. Additionally, neither study explored
the association between BCG vaccination and all-cause mortality or recurrent TB. This
study could not determine the possible causal pathway for the association between BCG
vaccination all-cause mortality, and recurrent TB. These are important to establish in order
to understand the effect of BCG vaccination on TB outcomes.

I found that BCG vaccination was associated with reduced all-cause mortality, with some
weaker evidence of an association with reduced recurrent TB. A plausible mechanism for
this association is that BCG vaccination improves treatment outcomes,[36] which then re-
sults in decreased mortality, and reduced recurrent TB. However, these effects may also
be independent and for all-cause mortality may not be directly related to active TB. In
this case, a possible mechanism for the association between BCG vaccination and all-cause
mortality is that BCG vaccination modulates the innate immune response, resulting in
non-specific protection.[32] For low incidence countries, where the reduction in TB cases
has been used as evidence to scale back vaccination programs,[27] these results suggest that
BCG vaccination may be more beneficial than previously thought. In countries that target
vaccination at those considered to be at high risk of TB the results from this study could be
used to help drive uptake by providing additional incentives for vaccination. The evidence I
have presented should be considered in future cost-effectiveness studies of BCG vaccination
programs.

Several Chapters (Chapter 5, Chapter 7, and Chapter 10) in this thesis assess the impact
of moving from universal school age vaccination to selective high risk neonatal vaccination.
The reduction in BCG coverage that this implies means that on top of any potential increase
in TB incidence rates there may also have been a reduction in the benefical effects from the
BCG vaccine discussed in this Chapter. However, as outlined in the previous paragraph,
the evidence of reductions in both all-cause, and TB specific mortality, is strongest in the
early years of life. This means that the move to neonatal vaccination may have led to an
increase in the non-specific benefits.

Further work is required to determine whether years since vaccination and age at vaccination
are associated with TB outcomes as this study was limited by low sample size, missing data
for year of vaccination, and the relative rarity of some TB outcomes. However, due to
the continuous collection of the surveillance data used in this analysis, this study could
be repeated once additional data have been collected. If this study were to be repeated
with a larger sample size, particular attention should be given to the functional form of
any decay in protection from negative TB outcomes. Additionally, a larger sample size
would allow investigation of the associations identified between TB outcomes and BCG
vaccination stratified by pulmonary, extrapulmonary, and disseminated TB disease. The
results from this study require validation in independent datasets and the analysis should
be reproducible in other low incidence countries that have similarly developed surveillance
systems. If validated in low incidence countries, similar studies in medium to high incidence
countries should be conducted because any effect would have a greater impact in these

117



Chapter 6. Exploring the effects of BCG vaccination in patients diagnosed with
tuberculosis: observational study using the Enhanced Tuberculosis Surveillance system

settings.

6.6 Summary
• I found evidence of an association between BCG vaccination and reduced all-cause

mortality (aOR:0.76 (95%CI 0.64 to 0.89), P:0.001) and weak evidence of an associa-
tion with reduced recurrent TB (aOR:0.90 (95%CI 0.81 to 1.00), P:0.056). Analyses
using multiple imputation suggested that the benefits of vaccination for all-cause mor-
tality were reduced after 10 years.

• There was some suggestion that the association with all-cause mortality was due to
reduced deaths due to TB (in those who died), though the study was underpowered
to definitively assess this.

• There was little evidence for other associations.

• The code for the analysis contained in this chapter can be found at: doi.org/10.
5281/zenodo.12137994

4Alternatively available from: https://github.com/seabbs/ExploreBCGOnOutcomes
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Chapter 7

Estimating the effect of the 2005
change in BCG policy in England:
A retrospective cohort study

7.1 Introduction
In 2005, England changed from universal Bacillus Calmette–Guérin (BCG) vaccination of
school-age children to targeted BCG vaccination of high-risk children at birth. In this
chapter I aimed to assess the effects of this change in vaccination policy on the populations
targeted by each vaccination scheme.

I combined notification data from the Enhanced TB Surveillance (ETS) system, with de-
mographic data from the Labour Force Survey (LFS) to construct retrospective cohorts of
individuals in England relevant to both the universal, and targeted vaccination programmes
between Jan 1, 2000 and Dec 31, 2010. For each cohort, I estimated incidence rates over a
5 year follow-up period and used Poisson and negative binomial regression models in order
to estimate the impact of the change in policy on TB. This work was adapted from [76]1
supervised by Hannah Christensen and Ellen Brooks-Pollock.[76] Nicky Welton provided
guidance on the statistical methods used.

7.2 Background
In 2005 England changed its Bacillus Calmette–Guérin (BCG) vaccination policy against
tuberculosis (TB) from a universal programme aimed at 13 and 14 year olds to a targeted
programme aimed at high-risk neonates (see Chapter 2). High risk babies are identified by
local TB incidence and by the parents’ and grandparents’ country of origin. The change in
policy was motivated by evidence of reduced TB transmission,[20,30,31] and high effective-
ness of the BCG vaccine in children,[4,23,24] and variable effectiveness in adults.[27] Little
work has been done to evaluate the impact of this change in vaccination policy.

Globally, several countries with low TB incidence have moved from universal vaccination,
1Paper: https://doi.org/10.2807/1560-7917.ES.2019.24.49.1900220 Preprint: https://doi.org/

10.1101/567511

https://doi.org/10.2807/1560-7917.ES.2019.24.49.1900220
https://doi.org/10.1101/567511
https://doi.org/10.1101/567511
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either of those at school-age or neonates, to targeted vaccination of neonates considered at
high-risk of TB (see Chapter 2).[5] In Sweden, which discontinued universal vaccination of
neonates in favour of targeted vaccination of those at high risk, incidence rates in Swedish-
born children increased slightly after the change in policy.[74] In France, which also switched
from universal vaccination of neonates to targeted vaccination of those at high-risk, a study
found that targeted vaccination of neonates may have reduced coverage in those most at
risk.[75]

The number of TB notifications in England increased from 6929 in 2004 to 8280 in 2011
but has since declined to 5137 in 2017 (see Chapter 4).[20] A recent study found that this
reduction may be linked to improved TB interventions.[88] Directly linking trends in TB
incidence to transmission is complex because after an initial infection an individual may
either develop active disease, or enter a latent stage which then may later develop into active
disease. Incidence in children is a proxy of TB transmission, because any active TB disease
in this population is attributable to recent transmission. Using this approach it is thought
that TB transmission has been falling in England for the last 5 years, a notion supported
by strain typing.[20] However, this does not take into account the change in BCG policy,
which is likely to have reduced incidence rates in children.

Although the long term effects of BCG vaccination such as reducing the reactivation of
latent cases and decreasing onwards transmission are not readily detectable over short time
scales the direct effects of vaccination on incidence rates can be estimated in vaccinated
populations, when compared to comparable unvaccinated populations.[89] Here, I aimed to
estimate the impact of the 2005 change in BCG policy on incidence rates, in both the UK
and non-UK born populations, directly affected by it.

7.3 Methods

7.3.1 Data source

Data on all notifications from the ETS system from Jan 1, 2000 to Dec 31, 2015 were
obtained from Public Health England (PHE). The ETS is maintained by PHE, and contains
demographic, clinical, and microbiological data on all notified cases in England (see Chapter
4). A descriptive analysis of TB epidemiology in England is published each year, which fully
details data collection and cleaning.[20]

I obtained yearly population estimates from the April to June LFS for 2000-2015. The
LFS is a study of the employment circumstances of the UK population, and provides the
official measures of employment and unemployment in the UK (see Chapter 4). Reporting
practices have changed with time so the appropriate variables for age, country of origin,
country of birth, and survey weight were extracted from each yearly extract, standardised,
and combined into a single data-set (see Section 4.2.2).

7.3.2 Constructing Retrospective cohorts

I constructed retrospective cohorts of TB cases and individuals using the ETS and the
LFS. Tuberculosis cases were extracted from the ETS based on date of birth and date of
TB notification.

Cohort 1: individuals aged 14 years between 2000 and 2004, who were notified with TB
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while aged between 14 and 19 years.

Comparison cohort 1: individuals aged 14 years between 2005 and 2010, who were notified
with TB while aged between 14 and 19 years.

Cohort 2: individuals born between 2005 and 2010, who were notified with TB while aged
0 to 5 years.

Comparison cohort 2: individuals born between 2000 and 2004, who were notified with TB
while aged 0 to 5 years.

Cohorts were stratified by vaccination programme using age criteria and then stratified
further by whether the scheme was in place during the time period they entered the study.
Each cohort was further stratified by UK birth status, with both non-UK born and UK
born cases assumed to have been exposed to England’s vaccination policy. Corresponding
population cohorts were calculated using the LFS population estimates, resulting in eight
population level cohorts, each with 5 years of follow-up (Table 7.1).

Table 7.1: Summary of relevance and eligibility criteria for each cohort.

Cohort Vaccination
programme

Eligible for
the pro-
gramme*

Birth
status

Age at
study entry

Year of
study entry

Cohort 1 Universal Yes UK born 14 2000-2004
Comparison
cohort 1

Universal No UK born 14 2005-2010

Cohort 1 Universal Yes Non-UK
born

14 2000-2004

Comparison
cohort 1

Universal No Non-UK
born

14 2005-2010

Comparison
cohort 2

Targeted No UK born Birth 2000-2004

Cohort 2 Targeted Yes UK born Birth 2005-2010
Comparison
cohort 2

Targeted No Non-UK
born

Birth 2000-2004

Cohort 2 Targeted Yes Non-UK
born

Birth 2005-2010

* Eligible signifies that the cohort fit the criteria for the programme
and entered the study during the time period it was in operation
not that the cohort was vaccinated by the programme.

7.4 Statistical methods overview
I estimated incidence rates (with 95% confidence intervals) by year, age and place of birth as
(number of cases) divided by (number of individuals of corresponding age) (see Chapter 4).
UK birth status was incomplete, with some evidence of a missing not at random mechanism
(MNAR). I imputed the missing data using a gradient boosting method (see Section 7.4.2).
I then used descriptive analysis to describe the observed trends in age-specific incidence
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rates over the study period, comparing incidence rates in the study populations relevant to
both vaccination programmes before and after the change in BCG policy.

I calculated Incidence Rate Ratios (IRRs) for the change in incidence rates associated with
the change in BCG vaccination policy (modelled as a binary breakpoint at the start of 2005)
for both the UK born and non-UK born populations that were relevant to the universal
programme, and for the targeted programme using a series of increasingly complex models. I
considered the following covariates: age,[20,27] incidence rates in both the UK born and non-
UK born who were not in the age group of interest,[20] and year of study entry (as a random
intercept). I first investigated a univariable Poisson model, followed by combinations of
covariates (Table 7.2). I also investigated a negative binomial model adjusting for the same
covariates as in the best fitting Poisson model. The models were estimated with a Bayesian
approach using Markov Chain Monte Carlo (MCMC), with default weakly informative priors
(see Section 7.4.3). Model fit, penalised by model complexity, was assessed using the leave
one out cross validation information criterion (LOOIC) and its standard error.[90] Models
were ranked by goodness of fit, using their LOOIC, with a smaller LOOIC indicating a
better fit to the data after adjusting for the complexity of the model. No formal threshold
for a change in the LOOIC was used, with changes in the LOOIC being evaluated in the
context of their standard error. The inclusion of the change in policy in the best fitting
model was tested by refitting the model excluding the change in policy and estimating the
improvment in the LOOIC. Once the best fitting model had been identified I estimated the
number of cases prevented, from 2005 until 2015, for each vaccination programme in the
study population relevant to that programme (see Section 7.4.4).

7.4.1 Implementation overview

R 3.5.0 was used for all analysis.[56] Reproducibility was ensured by using R package in-
frastructure2. Missing data imputation using a gradient boosting model (GBM) was imple-
mented using the h2o package (see Section 7.4.2).[91] Incidence rates, with 95% confidence
intervals, were calculated using the epiR package (see Chapter 4).[60] The brms package,[92]
and Stan,[93] was used to perform Markov Chain Monte Carlo (MCMC). Models were run
until convergence (4 chains with a burn in of 10,000, and 10,000 sampled iterations each),
with convergence being assessed using trace plots and the R hat diagnostic.[93] All numeric
confounders were centered and scaled by their standard deviation, and age was adjusted for
using single year of age categories.

7.4.2 Imputation of UK birth status

As I was imputing a single variable, I reformulated the imputation as a categorical prediction
problem. This allowed the use of more complex, high-performing models compared to
those usually used for imputation, whilst also allowing the results to be validated using
predictive modelling performance metrics. I included year of notification, sex, age, PHE
Centre (PHEC), occupation, ethnic group, Index of Multiple Deprivation (2010) categorised
into five groups for England (IMD rank), and risk factor count (risk factors considered; drug
use, homelessness, alcohol misuse/abuse and prison). However, I could not account for a
possible missing not at random mechanism not captured by these covariates. To train the
model I first split the data with complete UK birth status into a training set (80%), a

2Code: https://github.com/seabbs/DirectEffBCGPolicyChange
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Table 7.2: Complete definition of each model, ordered by increasing com-
plexity.

Model Description

Model 1 Poisson model adjusting for no fixed effects.
Model 2 Poisson model adjusting with fixed effects for the change in policy.
Model 3 Poisson model adjusting with fixed effects for the change in policy and

incidence rates in the UK born.
Model 4 Poisson model adjusting with fixed effects for the change in policy and

incidence rates in the non-UK born.
Model 5 Poisson model adjusting with fixed effects for the change in policy and

incidence rates in the UK born and non-UK born populations.

Model 6 Poisson model adjusting with fixed effects for the change in policy and age.
Model 7 Poisson model adjusting with fixed effects for the change in policy, age, and

incidence rates in the UK born.
Model 7
(Negative
Binomial)

Negative binomial model adjusting with fixed effects for the change in
policy, age, and incidence rates in the UK born.

Model 8 Poisson model adjusting with fixed effects for the change in policy, age, and
incidence rates in the non-UK born.

Model 8
(Negative
Binomial)

Negative binomial model adjusting with fixed effects for the change in
policy, age, and incidence rates in the non-UK born.

Model 9 Poisson model adjusting with fixed effects for the change in policy, age, and
incidence rates in the UK born and non-UK born populations.

Model 10 Poisson model with a random intercept for year of study entry, adjusting for
no fixed effects.

Model 11 Poisson model with a random intercept for year of study entry, adjusting
with fixed effects for the change in policy.

Model 12 Poisson model with a random intercept for year of study entry, adjusting
with fixed effects for the change in policy and incidence rates in the UK
born.

Model 13 Poisson model with a random intercept for year of study entry, adjusting
with fixed effects for the change in policy and incidence rates in the non-UK
born.

Model 14 Poisson model with a random intercept for year of study entry, adjusting
with fixed effects for the change in policy and incidence rates in the UK
born and non-UK born populations.

Model 15 Poisson model with a random intercept for year of study entry, adjusting
with fixed effects for the change in policy and age.

Model 16 Poisson model with a random intercept for year of study entry, adjusting
with fixed effects for the change in policy, age, and incidence rates in the
UK born.

Model 16
(Negative
Binomial)

Negative binomial model with a random intercept for year of study entry,
adjusting with fixed effects for the change in policy, age, and incidence rates
in the UK born.

Model 17 Poisson model with a random intercept for year of study entry, adjusting
with fixed effects for the change in policy, age, and incidence rates in the
non-UK born.

Model 17
(Negative
Binomial)

Negative binomial model with a random intercept for year of study entry,
adjusting with fixed effects for the change in policy, age, and incidence rates
in the non-UK born.

Model 18 Poisson model with a random intercept for year of study entry, adjusting
with fixed effects for the change in policy, age, and incidence rates in the
UK born and non-UK born populations.

calibration set (5%), and a test set (15%). I then fit a gradient boosted machine with
10,000 trees, early stopping (at a precision of 1×10−5, with 10 stopping rounds), a learning
rate of 0.1, and a learn rate annealing of 0.99. Gradient boosted machines are a tree based
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method that can incorporate complex non-linear relationships and interactions.[91] Much
like a random forest model they work by ensembling a group of trees, but unlike a random
forest model each tree is additive aiming to reduce the residual loss from previous trees.
Once the model had been fit to the training set I performed platt scaling (fits a logistic
regression model to model predictions in order to return a probability) using the calibration
dataset. The fitted imputation model had a logloss (the negative of the log likelihood) of
0.28 on the test set, with an area under the curve (AUC) of 0.93, both of which indicate
robust performance on unseen data. I found that ethnic group was the most important
variable for predicting UK birth status, followed by age and PHEC.

Using the fitted model I predicted the birth status for notifications where this was missing,
using the F1 optimal threshold as the probability cut-off. It is common to impute missing
values multiple times, to account for within- and between imputation variability. However,
I considered this unnecessary for this analysis as the amount of missing data was small,
this analysis considered only aggregate counts, my model metrics indicated a robust level
of performance out of bag and any unaccounted for uncertainty would be outweighed by
the uncertainty in the population denominator.[88] I found that cases with imputed birth
status had a similar proportion of UK born to non-UK born cases as in the complete data
(Table 7.3).

Table 7.3: Comparison of UK birth status in cases with complete or imputed
records.

Status Birth Status Proportion of Cases (%) Cases

Complete 106765
UK Born 27.3 29096
Non-UK Born 72.7 77669

Imputed 8055
UK Born 32.7 2634

Non-UK Born 67.3 5421

Inclusion of imputed values for UK birth status should reduce bias caused by any missing
at random mechanism captured by predictors included in the model. Graphical evaluation
of UK birth status indicated that missingness has reduced over time, indicating a missing
at random mechanism (see Chapter 4). If only the complete case data had been included
in the analysis then incidence rates would have reduced over the study period due to this
mechanism, this may have biased the estimate of the impact of the change in policy.

7.4.3 Prior choice

Default weakly informative priors were used based on those provided by the brms pack-
age.[92] For the population-level effects this was an improper flat prior over the reals. For
both the standard deviations of group level effects and the group level intercepts this was a
half student-t prior with 3 degrees of freedom and a scale parameter that depended on the
standard deviation of the response after applying the link function.
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7.4.4 Estimating the magnitude of the estimated impact of the change in
BCG policy

I estimated the magnitude of the estimated impact from the change in BCG policy by
applying the IRR estimates from the best fitting model for each cohort to the observed
number of notifications from 2005 until 2015 in the study population. For the cohorts
relevant to the universal school-age vaccination scheme I estimated the number of prevented
cases by first aggregating cases (C0) and then using the following equation,

CiP = C0(1− Ii), Where i = e, l, u. (7.1)

Where CiP is the predicted number of cases prevented using the median (e), 2.5% bound
(l) and 97.5% bound (u) of the IRR estimate (Ii). For the cohorts relevant to the targeted
high-risk neonatal scheme I used a related equation,

CiP = CNE(1− Ii), Where i = e, l, u. (7.2)

Where CNE is the number of cases observed assuming that the cohort was not exposed
to targeted high-risk neonatal vaccination. As from 2005 onwards this cohort were in fact
exposed to this vaccination scheme an additional step was required. This first required
calculating the number of cases that would be expected if the cohort had not been exposed
to the scheme,

CNE = C0
Ii

(7.3)

Then combining this with the previous equation so that CiP can be estimated using observed
data (C0),

CiP = C0(1− Ii)
Ii

, Where i = e, l, u. (7.4)
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7.5 Results

7.5.1 Descriptive analysis

During the study period there were 114,820 notifications of TB in England, of which 93%
(106765/114820) had their birth status recorded. Of notifications with a known birth status
27% (29096/106765) were UK born, in comparison to 33% (2634/8055) in cases with an
imputed birth status (see Chapter 4 for details). There were 1729 UK born cases and 2797
non-UK born cases in individuals relevant to the universal schools scheme, and 1431 UK
born cases and 238 non-UK born cases relevant to the targeted neonatal scheme, who fit
the age criteria during the study period. Univariable evidence for differences between mean
incidence rates before and after the change in BCG policy in the UK born was weak. In
the non-UK born incidence rates were lower after the change in BCG policy in both the
cohort relevant to the universal school-age scheme and the cohort relevant to the targeted
neonatal scheme (Figure 7.1).

Figure 7.1: Mean incidence rates per 100,000, with 95% confidence intervals
for each retrospective cohort, stratified by the vaccination policy and UK
birth status. The top and bottom panels are on different scales in order to
highlight trends in incidence rates over time.

Trends in incidence rates varied by age group and UK birth status. From 2000 until 2012
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incidence rates in the UK born remained relatively stable but have since fallen year on year.
In comparison, incidence rates in the non-UK born increased from 2000 until 2005, since
when they have also decreased year on year (see Chapter 4). In 14-19 year old’s, who were
UK born, incidence rates remained relatively stable throughout the study period, except
for the period between 2006 to 2009 in which they increased year on year. This trend was
not observed in the non-UK born population aged 14-19, where incidence rates reached a
peak in 2003, since when they have consistently declined. In those aged 0-5, who were UK
born, incidence rates also increased year on year after the change in BCG policy, until 2008
since when they have declined. This does not match with the observed trend in incidence
rates in the non-UK born population, aged 0-5, in which incidence rates declined steeply
between 2005 and 2006, since when they have remained relatively stable (Figure 7.2).

Figure 7.2: Incidence rates (with 95% confidence intervals) per 100,000 per
year for UK born population and non-UK born population, aged 0-5 and
therefore directly affected by the targeted neonatal vaccination programme,
and aged 14-19 and therefore directly affected by the universal school-age
scheme.
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7.5.2 Adjusted estimates of the effects of the change in policy on school-
age children

In the UK born cohort relevant to universal vaccination there was some evidence, across
all models that adjusted for age, that ending the scheme was associated with a modest
increase in TB rates (Table 7.4). Using the LOOIC goodness of fit criteria the best fitting
model was found to be a negative binomial model that adjusted for the change in policy,
age, and incidence rates in the UK born (Table 7.5). In this model there was some evidence
of an assocation between the change in policy and an increase in incidence rates in those
at school-age who were UK born, with an IRR of 1.08 (95%CI 0.97, 1.19). Dropping the
change in policy from the model resulted in a small decrease in the LOOIC (0.52 (SE 2.63))
but the change was too small, with too large a standard error, to conclusively state that the
excluding the change in policy from the model improved the quality of model fit. I found
that it was important to adjust for UK born incidence rates, otherwise the impact from the
change in BCG vaccination policy was over-estimated.

For the comparable non-UK born cohort who were relevant to the universal vaccination
there was evidence, in the best fitting model, that ending the scheme was associated with
a decrease in incidence rates (IRR: 0.74 (95%CI 0.61, 0.88)). The best fitting model was a
negative binomial model which adjusted for the change in policy, age, incidence rates in the
non-UK born, and year of eligibility as a random effect (Table 7.5). I found that omitting
the change in policy from the model resulted in poorer model fit (LOOIC increase of 3.02
(SE 3.52)), suggesting that the policy change was an important factor explaining changes in
incidence rates, after adjusting for other covariates. All models that adjusted for incidence
rates in the UK born or non-UK born estimated similar IRRs (Table 7.6).
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Table 7.4: Comparison of models fitted to incidence rates for the UK born
population that were relevant to the universal vaccination programme of
those at school-age (14). Models are ordered by the goodness of fit as assessed
by LOOIC, the degrees of freedom are used as a tiebreaker.

Variable

Model IRR (CI 95%)* Policy Change Age UK born rates Non-UK born rates Year of study entry DoF** LPD*** LOOIC (se)****

Model 7 (Negative
Binomial)

1.08 (0.97, 1.19) Yes Yes Yes No No 9 -211 439 (10)

Model 7 1.08 (1.00, 1.17) Yes Yes Yes No No 8 -211 443 (14)
Model 9 1.12 (1.01, 1.25) Yes Yes Yes Yes No 9 -210 445 (14)
Model 16 1.08 (0.97, 1.21) Yes Yes Yes No Yes 20 -207 445 (14)
Model 18 1.12 (0.97, 1.28) Yes Yes Yes Yes Yes 21 -207 447 (15)

Model 8 1.16 (1.04, 1.29) Yes Yes No Yes No 8 -213 449 (17)
Model 6 1.06 (0.98, 1.15) Yes Yes No No No 7 -215 452 (17)
Model 17 1.15 (1.00, 1.32) Yes Yes No Yes Yes 20 -209 452 (17)
Model 15 1.06 (0.94, 1.20) Yes Yes No No Yes 19 -209 453 (17)
Model 1 1.00 (1.00, 1.00) No No No No No 1 -254 513 (26)

Model 2 1.06 (0.98, 1.14) Yes No No No No 2 -252 515 (25)
Model 4 1.00 (0.90, 1.10) Yes No No Yes No 3 -251 516 (25)
Model 3 1.06 (0.98, 1.15) Yes No Yes No No 3 -252 518 (26)
Model 5 0.98 (0.89, 1.09) Yes No Yes Yes No 4 -249 518 (24)
Model 13 0.94 (0.78, 1.12) Yes No No Yes Yes 15 -237 518 (27)

Model 10 1.00 (1.00, 1.00) No No No No Yes 13 -244 521 (28)
Model 11 1.06 (0.94, 1.20) Yes No No No Yes 14 -244 522 (28)
Model 14 0.93 (0.78, 1.11) Yes No Yes Yes Yes 16 -236 522 (27)
Model 12 1.06 (0.93, 1.20) Yes No Yes No Yes 15 -243 526 (28)
* Incidence Rate Ratio, with 95% credible intervals,
** Degrees of Freedom,
*** Computed log pointwise predictive density,
**** Leave one out information criterion, with standard error,
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Table 7.5: Summary table of incidence rate ratios, in the UK born and
non-UK born cohorts relevant to the targeted neonatal scheme, using the
best fitting models as determined by comparison of the LOOIC (UK born:
Negative binomial model adjusting with fixed effects for the change in policy,
age, and incidence rates in the UK born (Model 7 (Negative Binomial)), Non-
UK born: Negative binomial model with a random intercept for year of study
entry, adjusting with fixed effects for the change in policy, age, and incidence
rates in the non-UK born (Model 17 (Negative Binomial))). Model terms
which were not included in a given cohort are indicated using a hyphen (-).

IRR (95% CrI)*

Variable UK born Non-UK born

Policy change**
Pre-change Reference Reference
Post-change 1.08 (0.97, 1.19) 0.74 (0.61, 0.88)

Age
14 Reference Reference

15 1.18 (0.98, 1.42) 1.03 (0.87, 1.22)
16 1.24 (1.03, 1.50) 1.25 (1.07, 1.47)
17 1.59 (1.33, 1.91) 1.40 (1.19, 1.63)
18 1.92 (1.60, 2.30) 1.47 (1.26, 1.73)
19 1.80 (1.49, 2.17) 1.47 (1.24, 1.73)

UK born incidence rate (per standard deviation) 1.08 (1.03, 1.14) -
Non-UK born incidence rate (per standard deviation) - 1.11 (1.03, 1.19)
Year of study elibility, group level -
Intercept (standard deviation) - 1.13 (1.05, 1.26)

Year of study elibility, individual level -

2000 - 1.10 (0.96, 1.29)
2001 - 1.06 (0.93, 1.24)
2002 - 1.07 (0.94, 1.25)
2003 - 0.90 (0.76, 1.03)
2004 - 0.89 (0.75, 1.02)

2005 - 0.98 (0.85, 1.12)
2006 - 1.13 (0.99, 1.33)
2007 - 1.04 (0.91, 1.20)
2008 - 0.96 (0.83, 1.09)
2009 - 0.95 (0.81, 1.08)

2010 - 0.96 (0.82, 1.11)
* Incidence Rate Ratio (95% Credible Interval),
**There was an improvement in the LOOIC score of 0.52 (SE 2.63) from dropping the
change in policy from the model in the UK born cohort and a -3.02 (SE 3.52)
improvement in the non-UK born cohort.
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Table 7.6: Comparison of models fitted to incidence rates for the non-UK
born population that were eligible for the universal vaccination programme
of those at school-age (14). Models are ordered by the goodness of fit as
assessed by LOOIC, the degrees of freedom are used as a tiebreaker.

Variable

Model IRR (CI 95%)* Policy Change Age UK born rates Non-UK born rates Year of study entry DoF** LPD*** LOOIC (se)****

Model 17 (Negative
Binomial)

0.74 (0.61, 0.88) Yes Yes No Yes Yes 21 -228 483 (10)

Model 17 0.74 (0.62, 0.87) Yes Yes No Yes Yes 20 -223 492 (16)
Model 18 0.73 (0.61, 0.87) Yes Yes Yes Yes Yes 21 -222 493 (16)
Model 15 0.64 (0.53, 0.78) Yes Yes No No Yes 19 -224 496 (18)
Model 16 0.65 (0.54, 0.78) Yes Yes Yes No Yes 20 -223 496 (17)

Model 8 0.79 (0.73, 0.86) Yes Yes No Yes No 8 -239 507 (20)
Model 9 0.79 (0.72, 0.86) Yes Yes Yes Yes No 9 -238 511 (20)
Model 11 0.64 (0.52, 0.78) Yes No No No Yes 14 -241 522 (22)
Model 10 1.00 (1.00, 1.00) No No No No Yes 13 -241 523 (22)
Model 12 0.64 (0.53, 0.79) Yes No Yes No Yes 15 -241 525 (22)

Model 13 0.64 (0.52, 0.79) Yes No No Yes Yes 15 -241 526 (23)
Model 14 0.64 (0.52, 0.79) Yes No Yes Yes Yes 16 -241 530 (23)
Model 7 0.66 (0.62, 0.70) Yes Yes Yes No No 8 -248 532 (23)
Model 6 0.65 (0.61, 0.69) Yes Yes No No No 7 -253 539 (27)
Model 4 0.70 (0.65, 0.76) Yes No No Yes No 3 -270 556 (31)

Model 5 0.70 (0.64, 0.76) Yes No Yes Yes No 4 -270 559 (31)
Model 2 0.65 (0.61, 0.69) Yes No No No No 2 -275 561 (33)
Model 3 0.65 (0.61, 0.69) Yes No Yes No No 3 -273 561 (32)
Model 1 1.00 (1.00, 1.00) No No No No No 1 -341 692 (51)
* Incidence Rate Ratio, with 95% credible intervals,
** Degrees of Freedom,
*** Computed log pointwise predictive density,
**** Leave one out information criterion, with standard error,
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7.5.3 Adjusted estimates of the effect of the change in policy in those
relevant to the targeted neonatal programme

For the UK born cohort relevant to the targeted neonatal vaccination programme (see
Section 7.3.2) the evidence of an association between the change in policy and TB incidence
was mixed across all models and credible intervals were wide compared to models for the
UK born cohort relevant to the universal school-age vaccination programme (Table 7.7).
The best fitting model was a Poisson model which adjusted for the change in policy, age,
UK born incidence rates, and year of study entry with a random effect (Table 7.8). In this
model, there was weak evidence of an association between the change in BCG policy and an
decrease in incidence rates in UK born neonates, with an IRR of 0.96 (95%CI 0.82, 1.14).
There was weak evidence to suggest that dropping the change in policy from this model
improved the quality of the fit, with an improvement in the LOOIC score of 0.92 (SE 1.07).
This suggests that the change in policy was not an important factor for explaining incidence
rates, after adjusting for covariates. Models which also adjusted for non-UK born incidence
rates estimated that the change in policy was associated with no change in incidence rates
in the relevant cohort of neonates.

For the comparable non-UK born cohort who were relevant to the targeted neonatal vac-
cination programme there was evidence, across all models, that the change in policy was
associated with a large decrease in incidence rates (IRR: 0.62 (95%CI 0.44, 0.88)) (Table
7.8 in the best fitting model). The best fitting model was a negative binomial model that
adjusted for the change in policy, age, and non-UK born incidence rates (Table 7.8). All
models which at least adjusted for age estimated comparable effects of the change in policy
(Table 7.9).
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Table 7.7: Comparison of models fitted to incidence rates for the UK born
population that were eligible for the targeted vaccination programme of
neonates. Models are ordered by the goodness of fit as assessed by LOOIC,
the degrees of freedom are used as a tiebreaker.

Variable

Model IRR (CI 95%)* Policy Change Age UK born rates Non-UK born rates Year of study entry DoF** LPD*** LOOIC (se)****

Model 16 0.96 (0.82, 1.14) Yes Yes Yes No Yes 20 -192 415 (12)
Model 16 (Negative
Binomial)

0.96 (0.82, 1.13) Yes Yes Yes No Yes 21 -196 415 (10)

Model 18 0.99 (0.82, 1.18) Yes Yes Yes Yes Yes 21 -192 417 (13)
Model 7 0.96 (0.88, 1.05) Yes Yes Yes No No 8 -200 420 (15)
Model 9 1.00 (0.89, 1.12) Yes Yes Yes Yes No 9 -200 422 (15)

Model 8 1.02 (0.91, 1.15) Yes Yes No Yes No 8 -203 427 (16)
Model 6 0.95 (0.87, 1.03) Yes Yes No No No 7 -204 428 (16)
Model 15 0.95 (0.83, 1.09) Yes Yes No No Yes 19 -198 428 (14)
Model 17 1.02 (0.87, 1.20) Yes Yes No Yes Yes 20 -198 429 (14)
Model 14 1.10 (0.92, 1.33) Yes No Yes Yes Yes 16 -206 442 (16)

Model 5 1.08 (0.97, 1.21) Yes No Yes Yes No 4 -216 445 (18)
Model 12 0.98 (0.83, 1.15) Yes No Yes No Yes 15 -209 448 (17)
Model 4 1.12 (1.00, 1.24) Yes No No Yes No 3 -219 449 (18)
Model 3 0.97 (0.89, 1.06) Yes No Yes No No 3 -219 450 (19)
Model 13 1.14 (0.97, 1.35) Yes No No Yes Yes 15 -211 452 (16)

Model 1 1.00 (1.00, 1.00) No No No No No 1 -229 462 (21)
Model 2 0.95 (0.87, 1.03) Yes No No No No 2 -228 463 (20)
Model 10 1.00 (1.00, 1.00) No No No No Yes 13 -220 466 (19)
Model 11 0.95 (0.83, 1.09) Yes No No No Yes 14 -219 467 (19)
* Incidence Rate Ratio, with 95% credible intervals,
** Degrees of Freedom,
*** Computed log pointwise predictive density,
**** Leave one out information criterion, with standard error,
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Table 7.8: Summary table of incidence rate ratios, in the UK born and
non-UK born cohorts relevant to the targeted neonatal scheme, using the
best fitting models as determined by comparison of the LOOIC (UK born:
Poisson model with a random intercept for year of study entry, adjusting
with fixed effects for the change in policy, age, and incidence rates in the
UK born (Model 16), Non-UK born: Negative binomial model adjusting
with fixed effects for the change in policy, age, and incidence rates in the
non-UK born (Model 8 (Negative Binomial))). Model terms which were not
included in a given cohort are indicated using a hyphen (-).

IRR (95% CrI)*

Variable UK born Non-UK born

Policy change**
Pre-change Reference Reference
Post-change 0.96 (0.82, 1.14) 0.62 (0.44, 0.88)

Age
0 Reference Reference

1 1.39 (1.20, 1.61) 0.49 (0.30, 0.83)
2 1.24 (1.06, 1.44) 0.49 (0.30, 0.80)
3 1.21 (1.03, 1.41) 0.42 (0.26, 0.68)
4 0.90 (0.76, 1.06) 0.41 (0.25, 0.66)
5 0.89 (0.75, 1.06) 0.27 (0.16, 0.45)

UK born incidence rate (per standard deviation) 1.12 (1.06, 1.18) -
Non-UK born incidence rate (per standard deviation) - 1.25 (1.04, 1.51)
Year of study elibility, group level -
Intercept (standard deviation) 1.13 (1.04, 1.26) -

Year of study elibility, individual level -

2000 0.83 (0.68, 0.99) -
2001 0.93 (0.79, 1.07) -
2002 1.08 (0.95, 1.28) -
2003 1.07 (0.93, 1.26) -
2004 1.12 (0.97, 1.32) -

2005 1.02 (0.89, 1.17) -
2006 1.02 (0.89, 1.17) -
2007 0.97 (0.83, 1.11) -
2008 1.01 (0.88, 1.15) -
2009 1.01 (0.88, 1.16) -

2010 0.98 (0.85, 1.13) -
* Incidence Rate Ratio (95% Credible Interval),
**There was an improvement in the LOOIC score of 0.92 (SE 1.07) from dropping the
change in policy from the model in the UK born cohort and a -3.45 (SE 4.63)
improvement in the non-UK born cohort.
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Table 7.9: Comparison of models fitted to incidence rates for the non-UK
born population that were revelant to the targeted vaccination programme of
neonates. Models are ordered by the goodness of fit as assessed by LOOIC,
the degrees of freedom are used as a tiebreaker.

Variable

Model IRR (CI 95%)* Policy Change Age UK born rates Non-UK born rates Year of study entry DoF** LPD*** LOOIC (se)****

Model 8 (Negative
Binomial)

0.62 (0.44, 0.88) Yes Yes No Yes No 9 -138 293 (15)

Model 8 0.64 (0.47, 0.86) Yes Yes No Yes No 8 -137 295 (18)
Model 9 0.62 (0.45, 0.85) Yes Yes Yes Yes No 9 -137 297 (18)
Model 6 0.47 (0.38, 0.58) Yes Yes No No No 7 -139 298 (19)
Model 7 0.48 (0.39, 0.60) Yes Yes Yes No No 8 -139 298 (19)

Model 17 0.63 (0.44, 0.89) Yes Yes No Yes Yes 20 -135 298 (18)
Model 18 0.61 (0.42, 0.87) Yes Yes Yes Yes Yes 21 -135 300 (18)
Model 15 0.47 (0.35, 0.62) Yes Yes No No Yes 19 -136 301 (20)
Model 16 0.48 (0.36, 0.63) Yes Yes Yes No Yes 20 -136 301 (19)
Model 4 0.82 (0.61, 1.10) Yes No No Yes No 3 -147 304 (17)

Model 5 0.78 (0.58, 1.06) Yes No Yes Yes No 4 -147 306 (18)
Model 13 0.83 (0.59, 1.16) Yes No No Yes Yes 15 -145 308 (18)
Model 14 0.78 (0.55, 1.12) Yes No Yes Yes Yes 16 -144 310 (19)
Model 3 0.52 (0.42, 0.64) Yes No Yes No No 3 -152 314 (22)
Model 12 0.51 (0.38, 0.69) Yes No Yes No Yes 15 -148 317 (23)

Model 2 0.49 (0.40, 0.61) Yes No No No No 2 -156 319 (22)
Model 11 0.49 (0.37, 0.65) Yes No No No Yes 14 -152 322 (23)
Model 10 1.00 (1.00, 1.00) No No No No Yes 13 -150 330 (25)
Model 1 1.00 (1.00, 1.00) No No No No No 1 -171 346 (27)
* Incidence Rate Ratio, with 95% credible intervals,
** Degrees of Freedom,
*** Computed log pointwise predictive density,
**** Leave one out information criterion, with standard error,
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7.5.4 Magnitude of the estimated impact of the change in BCG pol-
icy

I estimate that the change in vaccination policy was associated with preventing 385 (95%CI
-105, 881) cases from 2005 until the end of the study period (2015) in the directly impacted
populations with 5 years of follow up (Table 7.10). The majority of the cases prevented
were in the non-UK born, with cases increasing slightly overall in the UK born. This was
due to cases increasing in the UK born at school-age, and decreasing in UK born neonates,
although both these estimates had large credible intervals.

Table 7.10: Estimated number of cases prevented, from 2005 until 2015,
for each vaccination programme in the study population relevant to that
programme, using the best fitting model for each cohort.

Vaccination Programme (age) Birth Status Cases Prevented (95% CI*) Notified Cases

Universal school-age (14) -291 (24, -571) 2364
UK born 76 (188, -26) 969
Non-UK born -367 (-165, -546) 1395

Targeted high-risk neonates (0) 94 (-81, 310) 906
UK born 30 (-95, 173) 800

Non-UK born 65 (14, 137) 106
Change in Policy** 385 (-105, 881) 3270

UK born -46 (-284, 199) 1769
Non-UK born 431 (179, 682) 1501

*95% CI: 95% Credible Interval,
** Estimated total number of cases prevented due to the change in vaccination policy in 2005

7.6 Discussion
In the non-UK born I found evidence of an association between the change in BCG policy
and a decrease in TB incidence rates in both those at school-age and neonates, after 5 years
of follow up. I found some evidence that the change in BCG policy was associated with
a modest increase in incidence rates in the UK born population who were relevant to the
universal school-age scheme and weaker evidence of a small decrease in incidence rates in
the UK born population relevant to the targeted neonatal scheme. Overall, I found that the
change in policy was associated with preventing 385 (95%CI -105, 881) cases in the study
population, from 2005 until 2015, with the majority of the cases prevented in the non-UK
born.

I was unable to estimate the impact of the change in BCG policy after 5 years post vac-
cination, so both the estimates of the positive and negative consequences are likely to be
underestimates of the ongoing impact. TB is a complex disease and the BCG vaccine is
known to offer imperfect protection, which has been shown to vary both spatially and with
time since vaccination (see Chapter 2).[25,28] By focusing on the impact of the change in
policy on the directly affected populations within a short period of time, and by employing
a multi-model approach I have limited the potential impact of these issues. This study was
based on a routine observational dataset (ETS), and a repeated survey (LFS) both of which
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may have introduced bias. Whilst the LFS is a robust data source, widely used in academic
studies,[45,94,95] it is susceptible to sampling errors particularly in the young, and in the
old, which may have biased the estimated incidence rates. As the ETS is routine surveillance
system some level of missing data is inevitable (see Chapter 4). However, UK birth status is
relatively complete (93% (106765/114820)) and I imputed missing values using an approach
which accounted for MAR mechanisms for the variables included in the imputation model.
I was unable to adjust for known demographic risk factors for TB, notably socio-economic
status,[15,78] and ethnicity.[15,78,82] However, this confounding is likely to be mitigated
by the use of multiple cohorts and the adjustment for incidence rates in the UK born and
non-UK born. Finally, I have assumed that the effect I have estimated for the change in
BCG policy is due to the changes in BCG vaccination policy as well as other associated
changes in TB control policy, after adjusting for hypothesised confounders. However, there
may have been additional policy changes which I have not accounted for.

Whilst little work has been done to assess the impact of the 2005 change in BCG vaccina-
tion several other studies have estimated the impact of changing BCG vaccination policy,
although typically only from universal vaccination of neonates to targeted vaccination of
high-risk neonates. A previous study in Sweden found that incidence rates in Swedish-born
children increased after high-risk neonatal vaccination was implemented in place of a univer-
sal neonatal program, this corresponds with our finding that introducing neonatal vaccina-
tion had little impact on incidence rates in UK born neonates. Theoretical approaches have
indicated that targeted vaccination of those at high-risk may be optimal in low incidence
settings.[96] Our study extends this work by also considering the age of those given BCG
vaccination, although I was unable to estimate the impact of a universal neonatal scheme
as this has never been implemented nationally in England. It has previously been shown
that targeted vaccination programmes may not reach those considered most at risk,[97] our
findings may support this view as I observed only a small decrease in incidence rates in
UK born neonates after the introduction of the targeted neonatal vaccination programme.
Alternatively, the effectiveness of the BCG in neonates, in England, may be lower than
previously thought as I only observed a small decrease in incidence rates, whilst a previous
study estimated BCG coverage at 68% (95%CI 65%, 71%) amongst those eligible for the
targeted neonatal vaccination programme.[98] Chapter 5 also found evidence that incidence
rates would increase in UK born population relevant to school-age BCG programme.

This study indicates that the change in England’s BCG vaccination policy was associated
with a modest increase in incidence in the UK born that were relevant to the school-age
vaccination programme, and with a small reduction in incidence in the UK born that were
relevant to the high-risk neonatal vaccination programme, although both these estimates
had wide credible intervals. I found stronger evidence of an association between the change
in policy and a decrease in incidence rates in the non-UK born populations relevant to
both programmes. This suggests that the change of vaccination policy to target high-risk
neonates may have resulted in an increased focus on high-risk non-UK born individuals who
may not have been the direct targets of the vaccination programme. Further validation is
required using alternative study designs, but this result should be considered when vacci-
nation policy changes are being considered. These results should be interpreted carefully,
especially in the non-UK born, as I could not fully rule out the impact of other TB control
measures that may have been changed at the same time as vaccination policy. The severity
of TB disease is known to differ across age groups with children having a higher incidence
of TB meningitis, which can be severe, compared to other age groups.[20] This variation
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should also be considered when evaluating these results.

It is well established that interventions against infectious diseases, such as TB, should be
evaluated not only for their direct effects but also for future indirect effects via ongoing
transmission. Statistical approaches such as those used in this chapter are not appropriate
for capturing these future indirect effects, and instead dynamic disease models should be
used. In Chapter 8 I develop such a dynamic disease model, Chapter 9 then fits this model
to the available data, and Chapter 10 compares the impact of continuing with the BCG
school’s scheme post 2005 to universal neonatal vaccination. In addition, this study could
not evaluate the impact of the neonatal programme on the high-risk population it targets,
due to a lack of reliable data. Improved coverage data for the BCG programme is required
to more fully evaluate its ongoing impact.

7.7 Summary
• In the non-UK born, I found evidence for an association between a reduction in

incidence rates and the change in BCG policy (school-age IRR: 0.74 (95%CI 0.61,
0.88), neonatal IRR: 0.62 (95%CI 0.44, 0.88)).

• I found some evidence that the change in BCG policy was associated with a increase in
incidence rates in the UK born school-age population (IRR: 1.08 (95%CI 0.97, 1.19))
and weaker evidence of an association with a reduction in incidence rates in UK born
neonates (IRR: 0.96 (95%CI 0.82, 1.14)).

• Overall, I found that the change in BCG policy was associated with directly preventing
385 (95% CI -105, 881) TB cases.

• Withdrawing universal vaccination at school-age and targeting BCG vaccination to-
wards high-risk neonates was associated with reduced incidence of TB in England.
This was largely driven by reductions in the non-UK born. There was a slight in-
crease in UK born school-age cases.

• The code for the analysis contained in this chapter can be found at: doi.org/10.
5281/zenodo.25830563

3Alternatively code link: https://github.com/seabbs/DirectEffBCGPolicyChange
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Chapter 8

Developing a dynamic transmission
model of Tuberculosis

8.1 Introduction

In the previous chapter (Chapter 7) I estimated the impact of the change in BCG policy on
the subset of the population who were directly impacted. Unfortunately, the time horizon
of this estimate was limited by the available data. Additionallly, if there is a non-negligible
amount of Tuberculosis (TB) transmission amongst the UK born then any change in BCG
vaccination policy will also have indirect impacts, via onwards transmission, not captured
in this estimate. Both of these limitations can be overcome using a dynamic transmission
model (see Chapter 1). This explicitly models the rate that individuals are infected using
the mass action assumption.[7,8] A dynamic transmission model also allows estimates to be
made of the long term impact of BCG policy changes, via model simulation.

This chapter presents the development and parameterisation of a dynamic model of TB
transmission, incorporating BCG vaccination, in the UK born population of England. The
key features of TB transmission, and BCG vaccination, are discussed with details of perti-
nent TB models given. An appropriate model structure for answering the study question is
then outlined, along with a justification of the choices made and details of required sensitiv-
ity analyses. The model structure is then defined mathematically and parameterised using
literature sources as well as data from the Enhanced TB Surveillance System (ETS), Labour
Force Survey (LFS) and Office for National Statistics (ONS) (see Chapter 4). The assump-
tions made during model building and parameterisation are highlighted in preparation for
evaluation during model fitting (Chapter 9).

8.2 Previously published TB models

The model presented in this chapter is not the first dynamic model of TB transmission in
England to be developed or the first model to be developed that includes BCG vaccination.
Vynnycky et al. developed a highly detailed - and rigorously parameterised - model of TB
transmission in England and Wales.[99] However, unlike the model presented in this chap-
ter, this model only included the white male population, it only modelled transmission until
1990, and it did not capture the full complexity of BCG vaccination. Harris et al. reviewed
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TB models that explored the impact of potential future vaccines.[100] They found that
model structures evolved over time, with only a few models including the variable infec-
tiousness of active disease, vaccine waning, and age stratification - all of which are included
in the model presented in this chapter. Few of the models they evaluated considered low
incidence settings, like England. The model presented in this chapter also makes use of
recent advances in TB modelling that indicate which features are key to reproducing TB
transmission dynamics.[101,102] Several previous studies have evaluated the role of BCG
vaccination and considered various vaccination scenarios.[72,103–106] However, these stud-
ies either did not consider TB transmission or made use of simple transmission models that
did not capture the full complexity of either TB transmission or BCG vaccination. Finally,
the model presented in this chapter makes use of a highly detailed routine surveillance
data set to provide setting appropriate prior distributions for key parameters that were not
available for previous models. For further details of previous modelling approaches and
their strengths and weaknesses in comparison to the model presented here please see the
discussion section of this chapter.

8.3 Choice of model structure

When developing an infectious disease dynamic model there is a trade-off between repro-
ducing reality and interpretability.[7] A model that includes all known features of a disease
may not be able to answer questions of interest as it is too complex to interpret or because
data does not exist to calibrate many of its parameters. A highly complex model, or indeed
an overly simplistic one, may also be at risk of bias. The optimal model is therefore as par-
simonious as possible, whilst still capturing the key features of a disease and making best
use of all available data.[7] In this section the key features of TB, and BCG vaccination,
that must be captured in order to produce meaningful output are discussed, as well as the
features that can be excluded for this study question. Data from the ETS (Chapter 4) is
used to support evidence from the literature. Further background information can be found
in Chapter 2 and Chapter 4.

8.3.1 TB disease

The key features of TB transmission in England which must be captured in order to develop
a methodologically sound model, are as follows:

1. Latency - after an initial infection 5-10% of individuals develop symptomatic TB
within 1-2 years. The majority of individuals enter a latent state in which they pas-
sively carry TB mycobacteria but are not symptomatic. Reactivation of the bacilli can
then occur many years later due to a lose of immune control.[12] Simplistically latent
TB may be modelled with a single latent compartment[107], more commonly an addi-
tional transition rate between the susceptible and active disease states is added.[108]
This represents rapid progression to active disease, and slower progression via a low
risk latent stage. Both of these model structures have been shown to not fit activa-
tion data well.[101,108] More complex structures that are commonly used incorporate
either parallel or serial latency (Figure 8.1). Both of these structures incorporate
both slow and fast latent periods and have been shown to produce identical activation
dynamics.[101] This is unfortunate as they represent two disparate biological mecha-
nisms, with the serial assumption representing decreasing risk over time for individuals
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and the parallel assumption suggesting that a subset of individuals are at a greater
risk of developing active TB disease. For models that seek to investigate interventions
targeted at latent cases this structural uncertainty is problematic. However, as BCG
vaccination occurs prior to infection both structures will produce comparable results
for study questions evaluating this intervention. The model presented here uses a
serial latent structure. This is commonly used in the literature; simplifies modelling
other aspects of TB; and has a plausible biological underpinning.[101]
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Figure 8.1: Flow diagrams of a.) the serial latency assumption and b.)
the parallel latency assumption. The flow diagrams contain the following
compartments; Susceptible (S), high risk latent (H), low risk latent (L),
and infected (I). Solid arrows represent transition rates. Note that in both
models repeated transmission to low risk latents is possible. This allows low
risk latent cases to become high risk latent cases. For some varients of the
parallel latency assumption, where it is assumed being high risk is inherent
to individuals, this may not be appropriate.

1. Pulmonary/Extra-Pulmonary TB - active TB disease can be defined as any symp-
tomatic TB infection but it may present with a range of diverse individual states.
Commonly, TB cases are stratified into pulmonary and extra-pulmonary TB cases,
with pulmonary cases being individuals who present with TB present in the lungs, and
extra-pulmonary TB cases being cases that present with TB symptoms that do not in-
volve the lungs (Chapter 2). Often pulmonary cases also present with extra-pulmonary
symptoms. It is thought that pulmonary TB cases make up for the vast majority of
TB transmission,[13,109] as TB is primarily spread by aerosol transmission, but that
extra-pulmonary cases have worse outcomes. The proportion of pulmonary to extra-
pulmonary cases has increased over time from 26.2% (1944/7410) in 1982 to 45.8%
(2634/5748) in 2016. This may be attributed to the age distribution of TB cases
changing, as different age-groups are more likely to progress to pulmonary TB than
other age-groups.[110] It may also be related to the increase of non-UK born cases, as
a higher proportion of non-UK born cases have extra-pulmonary disease only (51.4%,
2,103/4,089, in 2016), compared to UK born cases (31.9%, 467/1,465, in 2016).[2] The
model presented here includes both pulmonary and extra-pulmonary cases, with only
pulmonary cases contributing to onwards transmission. Extra-pulmonary cases are
included so that the full impacts of any intervention can be correctly estimated.

2. Smear status - microscopic analysis of sputum smear samples for acid-fast bacilli
is widely used as a means of diagnosis for TB. There is evidence that smear positive
cases are responsible for the majority of transmission,[111] with smear negative cases
contributing approximately 76% (95% CI 70%, 80%) less to transmission than smear
positive cases.[112] The proportion of smear positive cases varies with age,[113] with
30.2% (95% CI 26.3%, 33.7%) in 0-14 year-olds, 65.2% (95% CI 64.2%, 66.2%) in 15-
59 year-olds and 53.6% (95% CI 51.9%, 55.3%) in 60-89 year-olds in the ETS between
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2000 and 2015. the model presented here includes sputum status via the force of
infection.[7,8]

3. Re-infection - individuals with latent TB, or who have recovered from active TB,
may be at risk of re-infection. It is thought that latent individuals gain some partial
protection from prior infection but estimates for the magnitude of this protection vary
widely.[114] A review of prospective cohort studies of persons exposed to individuals
with infectious TB that was published prior to the widespread treatment of latent TB
found that prior TB infection provided partial protection of 79% (70%, 86%).[115]
This is included in the model presented below via a the force of infection.

4. Re-activation/Re-infection of recovered cases - individuals who have recovered
from active TB disease are at risk of both re-infection and re-activation. As in many
dynamic transmission models, this has been modelled here by treating recovered cases
as having low risk latent TB.[116,117] This provides recovered cases with the same
protection against re-infection as low risk latent cases. However, this means that
vaccinated cases receive the benefits of BCG protection even after they have recovered
from active TB disease.This may not be realistic but due to the low burden of TB in
England is unlikely to lead to significant bias.

5. TB treatment - standard treatment consists of a 6 month course of multiple an-
tibiotics, usually consisting of isoniazid, rifampicin, pyrazinamide and ethambutol.
If treatment is unsuccessful using these first line drugs, second line drugs are then
proscribed which have more severe side effects and a longer treatment regime (12-24
months).[2,18] Individuals on treatment may be considered non-infectious but are still
at risk of negative outcomes including death. 4.9% (4847/98124) of cases in the ETS
were lost to follow up within the first year of starting treatment between 2000 and
2014. A treatment term has been included in the model presented here along with po-
tential treatment failure. Multi-stage treatment has not been modelled as this would
add complexity but would not improve the models performance in other areas.

6. TB related mortality - within the first 12 months of starting treatment 6%
(5884/98124) of cases, with complete data and who were evaluated, died in the ETS
between 2000 and 2014. Of these 60.5% (1984/3290) had TB as a cause of death or
had a cause of death that was related to active TB. The rate of TB mortality varies
with age, with the very old and the very young at the greatest risk. Age-stratified TB
mortality is important to include in any policy relevant model of TB transmission as
reducing mortality is a major public health goal. There is little data on the rate of
TB mortality in those untreated for TB, so all TB mortality will be modelled using
a single, age stratified, term.

7. Age related presentation of TB - there is evidence to suggest that the risk of TB
activation varies by age,[101] as does the proportion of cases that develop pulmonary
TB,[110], the proportion of cases that are smear positive, and the risk of TB mortality.
It may also be the case that the transmission probability varies by age, after accounting
for the proportion of cases that are pulmonary and the proportion of cases that are
smear positive. In the model presented here age has been included by stratifying the
population into age-groups.

8. Demographic changes - TB dynamics develop over a long timespan, because of the
potential for cases to develop active TB disease many years after infection. Over these
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long timespans population demographics can play an important role. An approach to
include demographics is to link birth and death rates so that the modelled population
is static over time. This has the advantage of making it easier to identify changes
that are linked to the disease dynamics. In the model presented here birth and death
processes have been incorporated based on available, age-specific, data. For years
with available data this has the advantage of producing demographics which match
those observed in the study population, allowing for policy relevant forecasts to be
made. However, for years with limited data assumptions must be made about the
likely birth and death rates (see 8.5.2).

9. Non-UK born TB Cases - TB incidence in England is highly heterogeneous with
over 70% of cases occurring in the non-UK born population.[2] The age distribution
of cases in the UK born and non-UK born populations differ, with the UK born
population having a relatively uniform distribution. Meanwhile, the non-UK born
have higher incidence rates in those aged 80 years and older (69.3 per 100,000 in
2016), those aged 75-79 years old (62.9 per 100,000 in 2016) and those aged 25-29
years old (61.6 per 100,000 in 2016).[2] Exposure to England’s BCG vaccination policy
is difficult to assess for the non-UK born as is the degree of transmission occurring in
the UK as opposed to cases being imported from abroad, or acquired from trips to
cases countries of origin. For this reason the model presented here does not explicitly
include non-UK born cases. Instead it imports non-UK born cases into the force of
infection with a mixing parameter that controls the degree of contact between non-UK
born cases and those born in the UK.[7,8]

8.3.2 BCG vaccination

The key features of the BCG vaccine that must be considered in order to forecast the
impacts of vaccine policy are:

1. Protection from active disease - the BCG vaccine has been shown to primarily
protect against the progression from latent to active TB disease (Chapter 2). It has
been shown to be highly protective in children[4,23,24] but to have variable protection
in adults ranging from 0-80%.[27] This variation in protection is thought to be linked
to the equator with the vaccine becoming increasing effective at higher, and lower
latitudes. In England, an MRC trial in the 1950s found that the BCG vaccine was
highly effective.[26] There is little evidence to suggest that this has changed in the
UK born population.

2. Duration of protection - BCG protection wanes with time, with the greatest pro-
tection shortly after vaccination. There is good evidence to suggest that the effective-
ness of BCG vaccination lasts up to 15 years,[28] and a recent study suggests that
this protection may last later into adulthood in the UK born.[29]

3. Protection from initial infection - there is evidence that the BCG vaccine provides
partial protection against initial infection.[4] This may impact transmission dynamics.
Not including it would lead to a higher proportion of latent cases in those vaccinated
with BCG. One complicating factor is that the majority of the estimates of the protec-
tion offered by BCG vaccination from active TB disease include the protection from
initial infection.
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4. Age structure - BCG vaccination has previously been targeted at those at school-
age and is currently targeted at neonates. There is also evidence that the effectiveness
of BCG vaccination varies with age,[23,25] although there is little evidence of this in
England. In order to answer questions relevant to BCG vaccination, TB disease must
be modelled in young children and young adults. To capture the waning of BCG
protection age structure must be modelled beyond these age groups.[28]

5. Non-UK born TB Cases - the majority of cases that occur in the non-UK born
would not have been exposed to England’s BCG vaccination. In the majority of high
incidence countries BCG vaccination is common, with most countries vaccinating
young children as early in life as possible.[5] Based on this it could be assumed that
all non-UK born cases were vaccinated at birth. However, this high level of coverage
is unlikely. As the BCG vaccine has not been shown to decrease the likelihood of
transmission from vaccinated TB cases assuming that all non-UK born cases are
unvaccinated does not impact the dynamics in the modelled UK born population.

6. Additional benefits of BCG vaccination - there is some evidence that the BCG
vaccine may reduce all-cause mortality both in the general population and specifically
for TB cases (Chapter 6). There is weaker evidence that this reduction in all-cause
mortality for TB cases may be associated with a reduction in TB specific mortality.
This was not included in the model presented here as the evidence was not conclusive.
This means the benefits of the BCG vaccine may have been underestimated.

8.4 A dynamic model of TB transmission

8.4.1 Model outline

The dynamic model of TB implemented here may be considered as 3 nested model these are:
a TB transmission model; a demographic processes model; and a BCG vaccination model.
For an overview of the model structure see the flow diagram (Figure 8.2) and for full details
see the model equations (Section 8.4.2). Model parameters are discussed in detail in Section
8.5.2.

Disease model

The model includes the following compartments: Susceptible (S), high risk latent (H),
low risk latent (L), active TB cases with pulmonary TB (P ), active TB cases with extra-
pulmonary TB disease only (E), pulmonary cases on treatment (TP ), and extra-pulmonary
case on treatment (TE). Cases that were previously infected and considered at low risk of
developing active disease may be reinfected, although their latent infection provides partial
protection. Treatment is assumed to be the only pathway to recovery for active TB disease,
with a single rate used to model the heterogeneity of treatment times. A fraction of those on
treatment are assumed to be lost to follow up, with these cases returned to active pulmonary
or extra-pulmonary disease. Cases that start treatment immediately stop being infectious
and upon treatment completion are treated as if they have low risk latent TB disease.
TB mortality is included for both active TB cases on, and off, treatment. TB mortality is
stratified by disease type and age. TB transmission is assumed to act under the mass action
assumption.[7,8] Non-UK born cases are included into the force of infection.[7,8]
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Demographic model

The model is stratified into 11 age groups with 5 year age groups from 0 to 49, a single
age group from 50-69, and a single age group from 70 to 89. Older adults were grouped
into larger age groups as they are thought to be responsible for a small amount of TB
transmission and because fine scale BCG mechanisms do not need to be modelled in these
age groups. Adults aged 90+ were not modelled due to large amounts of uncertainty in
the demographic data and because cases in this population represent a small fraction of
total TB cases (see Chapter 4). The number of births in a given year is incorporated as a
time varying parameter. The natural mortality rate is also allowed to vary with time and is
stratified by age. Immigration and emigration were not included in the demographic model
as reliable age stratified data were unavailable and it is unlikely that either immigration or
emigration of the UK born population is a significant driver of overall population size, or
structure.

Vaccination model

The vaccination model is nested into the demographic process model and therefore vaccina-
tion is possible upon entry to each modelled age group. The target age group can be varied
to represent changing BCG vaccination policy. The vaccinated population is then modelled
explicitly throughout all disease compartments. The primary action of the BCG vaccine is
to prevent the transition from latent to active disease, this is included for both high and low
risk latent cases. Waning vaccination effectiveness has been included by stratifying vaccine
effectiveness by age group. The partial protection offered by BCG vaccination against initial
infection has been included as a modifier on the protection from latent to active disease and
as a modifier on the proportion of cases that are initially infected. This allows estimates
of the effectiveness of BCG vaccination at preventing active TB disease in the susceptible
population to be used, as these estimates have the most robust data sources. It is assumed
that latently infected individuals do not gain additional protection from re-infection from
the BCG vaccine. The BCG vaccine has been modelled as being partially protective for all
individuals rather than as a “take” vaccine (i.e all or nothing protection). This assumption
simplifies the model and will not impact the dynamics of TB transmission, assuming that
protected and unprotected BCG vaccinated individuals obey the mass action assumption
(See Chapter 1 and [7,8]).
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8.4. A dynamic model of TB transmission

Figure 8.2: Flow diagram for the dynamic TB disease model with demo-
graphics and vaccination described. The TB model contains the following
compartments; Susceptible (S), high risk latent (H), low risk latent (L), ac-
tive cases with pulmonary TB (P ), active TB cases with extra-pulmonary TB
only (E), pulmonary cases on treatment (TP ), and extra-pulmonary cases
on treatment (TE). The vaccinated (v) and unvaccinated (u) populations
are represented by k, such that k = u, v. Age stratification is represented
by a (where a = 1, 2, ..., 11) in the disease model and the 0, 1, 2, 3 subscripts
in the demographic model. Each age groups spans 5 years (i.e 0− 4, 5− 9,
10 − 14, ...) up to 49 years old, with a single age group for those aged
50-69 years old and those aged 70-89 years old. Individuals aged 90+ are
not explicitly modelled. In the demographic and vaccination model the A
compartment represents the demographic processes modelled in all popula-
tion compartments except for the vaccinated and unvaccinated susceptible
populations. Solid arrows represent transition rates within the modelled
populations and dashed arrows represent transition rates into, or out of the
modelled populations (i.e birth and death processes).
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8.4.2 Model equations

In order to simplify the model equations the disease (d) and demographic and vaccination
models (p) have been separated such that (where C = S, H, L, P, E, TP , TE),

dC

dt
= Jd + Jp (8.1)

The disease model (Jd) is then defined as,

dSkda
dt

= −(1− χka)λaSka (8.2)

dHkd
a

dt
= (1− χka)λaSka + (1− δ)λaLka − (1− αka)εaHHk

a − κaHk
a (8.3)

dLkda
dt

= κaH
k
a − (1− δ)λaLka − (1− αka)εaLLka + φa(T kPa + T kEa) (8.4)

dP kda
dt

= Υa(1− αka)(εaHHk
a + εaLL

k
a) + ζaT

k
Pa − νPa P ka − µPa P ka (8.5)

dEkda
dt

= (1−Υa)(1− αka)(εaHHk
a + εaLL

k
a) + ζaT

k
Ea − νEa Eka − µEa Eka (8.6)

dT kdPa
dt

= νPa P
k
a − ζaT kPa − µPa T kPa − φaT kPa (8.7)

dT kdEa
dt

= νEa E
k
a − ζaT kEa − µEa T kEa − φaT kEa (8.8)

Where the unvaccinated (u) and vaccinated (v) populations are represented by k = u, v
and age groups are represented by a = 0, 1, 2, 3, ...11. The disease model parameters are
defined as follows: λa is the force of infection; εa is the rate of activation from each latent
population; κa is the rate of transition into the low risk latent population; νa is the rate of
starting treatment; δ is the protection from re-infection conferred by prior latent infection;
Υa is the proportion of cases that develop pulmonary TB, with or without extra-pulmonary
TB; µP,Ea is the mortality from active pulmonary (P ) and extra-pulmonary (E) TB; ζa is
the rate of treatment failure; φa is the rate of successful treatment; αa is the effectiveness
of the BCG vaccine at preventing active TB disease; and χka is the protection inferred due
to vaccination from initial infection. In the unvaccinated population (when k = u) αua = 0
and χua = 0. Parameters with an a subscript, or superscript, are age-stratified.

The demographic and vaccination model (Jp) is then defined as (A = H, L, P, E, TP , TE),

dSupa
dt

= (1− sgn(a))(1− γa)ω(t) + sgn(a)(1− γa)θa−1S
u
a−1 − θaSua − µa(t)Sua (8.9)

dSvpa
dt

= (1− sgn(a))γaω(t) + sgn(a)γaθa−1S
u
a−1 − θaSva − µa(t)Sva (8.10)

dAkpa
dt

= sgn(a)θa−1A
k
a−1 − θaAka − µa(t)Aka (8.11)

Where ω(t) is the time varying number of births, γa is the age-specific proportion that
are vaccinated, θa is the rate of ageing, and µa(t) is the time varying natural mortality
rate.
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The signum function used above is defined as follows;

sgn(x) :=
{

0 if x = 0,
1 if x > 0.

(8.12)

Code for this model is available online.1

8.4.3 Force of infection

The force of infection (λka) is the rate at which susceptible individuals are infected. Here
it is defined using the law of mass action which assumes that infectious cases and suscep-
tible cases randomly mix with the rate of mixing being determined by the fraction of the
population that are susceptible, the transmission probability, and the contact rate.[7,8] It is
age stratified (a, A = max(a)) by contact rates, by the proportion of cases that are smear
positive in a given age group, by the transmission probability of each case, and by the rate
of starting treatment. Stratification by vaccine status (k) is introduced by the number of
current pulmonary TB cases. It can be defined as follows,

λa = βa
Na

A∑
i=1

ρiCai

Miιi
νPi

+
∑
j=u,v

P ji

 (8.13)

Where ιi is the age stratified number of non-UK born pulmonary cases notified in a given
year, P u,vi is the number of vaccinated, and unvaccinated, pulmonary TB cases, ρi is the
age-specific proportion of cases that are smear positive, νPi is the age-specific rate of starting
treatment for active pulmonary TB, Cai is the age-stratified contact matrix (Section 8.5.2),
βa is the age-stratified transmission probability, Na is the number of people in age group a,
andMi is the age-stratified mixing rate between the UK born and non-UK born population.
Non-UK born cases pulmonary cases (ιi) are included in the the force of infection, along
with their own mixing rate (Mi), and the duration of time spent infectious ( 1

νPi
) so that

their external forcing on UK born cases is modelled (Section 8.3). A separate mixing rate
(Mi) is used as the extent of this forcing is not known. Both UK born and non-UK born
pulmonary TB cases are multiplied by the proportion of cases that are smear positive (ρi)
as it is thought that these cases are responsible for the majority of onwards transmission
(Section 8.3).

8.5 Parameterisation and data synthesis

Parameters distributions were either estimated from the available data, assumed based on
common values found in the literature, or based on expert opinion. Parameter distribu-
tions were assumed to be normal unless otherwise stated. Where no comparable estimates
were found in the literature, and data was not available, a largely uninformative distri-
bution was used, informed where possible by expert opinion. Normal distributions were
extrapolated based on published confidence/credible intervals for prior distributions based
on literature sources. All prior distributions were truncated to be greater than or equal to
0 with proportions further truncated to be less than or equal to 1. Prior distributions are

1Model code: https://github.com/seabbs/ModelTBBCGEngland/blob/master/inst/bi/
BaseLineModel.bi
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Chapter 8. Developing a dynamic transmission model of Tuberculosis

first summarised in tables stratified by submodel, with additional details on their derivation
given in the subsequent sections. Code for all prior derivations is available online2. The
data sources used to estimate model parameters have been detailed although for the ETS
and the LFS more detail is provided elsewhere (Chapter 4).

8.5.1 Data sources

Enhanced TB Surveillance System

Model parameters were estimated using the ETS system where possible, with data on all
notified cases in England from Jan 1, 2000 to Dec 31, 2015. The ETS is a robust national
surveillance network that collects demographic, clinical, and microbiological data; a yearly
report is published detailing data collection, cleaning, and trends in TB incidence (Chapter
4).[2]

Labour Force Survey

Yearly population estimates, stratified by age and UK birth status, were extracted from
the April to June LFS from 2000 to 2015. As detailed previously (Chapter 4) the LFS
is a study of the employment circumstances of the UK population, providing the official
measures of employment and unemployment in the UK. As the LFS is based on a sample
the population estimates are subject to sampling errors.

8.5.2 Model Parameters

Disease model parameters

Details of the prior distributions used for each disease model parameter are given in Table
8.1. Table 8.2 contains details of the sources used to parameterise the model. More detail
is given in the following sub-sections.

2https://github.com/seabbs/ModelTBBCGEngland/tree/master/data-raw
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Table 8.1: Dynamic disease model parameters, descriptions, prior distribu-
tions, units, method used to derive the prior distribution and the type (i.e
data derived, literature, assumption). All data based parameters are in-
cluded. All prior distributions were truncated to be greater than or equal
to 0 with proportions further truncated to be less than or equal to 1. Addi-
tional detail for each prior derivation can be found in the following sections.
P = pulmonary TB, E = extra-pulmonary TB, v = vaccinated, i = age at
vaccination, U = Uniform, N = Normal

Parameter Description Distribution Units Method Type

Ceff The assumed effective number
of contacts per infectious TB
case.

N (1, 1) - Estimated using a dynamic model of TB
transmission in England which found an
effective contact rate of 1 in 1990. A
conservative interval has then been applied.

Vynnycky
et al.

Chist
eff The assumed historic effective

number of contacts per
infectious TB case.

U(Ceff, 20) - Estimated using a dynamic model of TB
transmission in England which found an
effective contact rate of 1 in 1990 and 20 in
1901. A conservative interval has been chosen
to represent the parameter uncertainty. It has
been assumed that the historic contact rate is
bounded below by the current contact rate.

Vynnycky
et al.

Chalf-life
eff It is assumed that the historic

effective contact rate decays
from 1935 to 1980 with a rate
of Chalf-life

eff .

N (5, 5) - The prior distribution is informed by historic
TB notifications.

Assumption

βyoung-adult This parameter modifies the
effective contact rate in
scenarios when the
transmission probability is
modified for young adults
(15-24).

U(0, 10) - An uninformative prior has been used
bounded above to restrict the transmission
probability in young adults to be no greater
than 10 times that in other age-groups.

Assumption

Υ The age-specific proportion of
cases that have pulmonary TB

Υ0−14 = N (0.629, 0.00101),
Υ15−59 = N (0.706, 0.00411),
Υ60−89 = N (0.750, 0.00569)

Proportion Estimated using the age-specific proportion of
cases that had pulmonary TB in the ETS.

ETS

ρ The age-specific proportion of
pulmonary TB cases that are
smear positive

ρ0−14 = N (0.302, 0.0189),
ρ15−59 = N (0.652, 0.00518),
ρ60−89 = N (0.536, 0.00845)

Proportion Estimated using the age-specific proportion of
pulmonary TB cases that were smear postive
in the ETS.

ETS
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Table 8.1: Dynamic disease model parameters, descriptions, prior distribu-
tions, units, method used to derive the prior distribution and the type (i.e
data derived, literature, assumption). All data based parameters are in-
cluded. All prior distributions were truncated to be greater than or equal
to 0 with proportions further truncated to be less than or equal to 1. Addi-
tional detail for each prior derivation can be found in the following sections.
P = pulmonary TB, E = extra-pulmonary TB, v = vaccinated, i = age at
vaccination, U = Uniform, N = Normal (continued)

Parameter Description Distribution Units Method Type

C Matrix of contact rates
between each age group

- Non-
unique
yearly
contacts.

For each parameter sample a contact matrix
was bootstrapped from the POLYMOD
survey data, standardised using the UK born
population in 2005, and then averaged to
provided a symmetric contact matrix.

Mossong et
al.

ι(t) The age-specific number of
non-UK born pulmonary TB
cases in England each year

- Cases The number of pulmonary non-UK born
cases for each year were extracted from the
ETS and grouped by age.

ETS

ιscale Scaling parameter for the
importation of non-UK born
cases between 1960 and 2000.

U(0, 200) - This largely uninformative prior range was
chosen so that non-UK born scaling can vary
between approximately linear to
approximately constant.

Assumption

M The proportion of mixing
between the UK born and
non-UK born population.

N (1, 1) Proportion Any degree of mixing is allowed as there is
little data on which to base this estimate.
Mixing greater than 1 is allowed as this is
used to represent non-UK born cases being in
some way more infectious than non-UK born
cases.

Assumption

Myoung-adult This parameter modifies the
non-UK born mixing rate in
scenarios when M is modified
for young adults (15-24).

U(0, 10) - An uninformative prior has been used
bounded above to restrict non-UK born
mixing in young adults to be no greater than
10 times that in other age-groups.

Assumption

χ Age-specific protection from
infection with TB due to BCG
vaccination

χvi = N (0.185, 0.0536), where i is the age
group vaccinated.

Proportion A meta-analysis of the protection from
infection due to BCG vaccinatiion in children.
It has been assumed that there is no
reduction in protection in UK born adults.
Distribution derived by the assumption of a
normal distribution based on published 95%
confidence intervals.

Roy et al.
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Table 8.1: Dynamic disease model parameters, descriptions, prior distribu-
tions, units, method used to derive the prior distribution and the type (i.e
data derived, literature, assumption). All data based parameters are in-
cluded. All prior distributions were truncated to be greater than or equal
to 0 with proportions further truncated to be less than or equal to 1. Addi-
tional detail for each prior derivation can be found in the following sections.
P = pulmonary TB, E = extra-pulmonary TB, v = vaccinated, i = age at
vaccination, U = Uniform, N = Normal (continued)

Parameter Description Distribution Units Method Type

εH The age-specific rate of
transition to active disease
during high risk latent period.

ε0−4
H = N (0.00695, 0.00130),
ε5−14
H = N (0.0028, 0.000561),
ε15−89
H = N (0.000335, 0.0000893)

days−1 From fitting a similar model to contact data
in Australia, and Holland. Distribution
derived by the assumption of a normal
distribution based on published 95% credible
intervals.

Ragonnet
et al.

κ The reciprocal of the
age-specific average high risk
latent period.

κ0−4 = N (0.0133, 0.00242),
κ5−14 = N (0.0120, 0.00207),
κ15−89 = N (0.00725, 0.00191)

days−1 From fitting a similar model to contact data
in Australia, and Holland. Distribution
derived by the assumption of a normal
distribution based on published 95% credible
intervals.

Ragonnet
et al.

εL The reciprocal of the
age-specific average low risk
latent period.

ε0−4
L = N (8.00e−6, 4.08e−6),
ε5−14
L = N (9.84e−6, 4.67e−6),
ε15−89
L = N (5.95e−6, 2.07e−6)

days−1 From fitting a similar model to contact data
in Australia, and Holland. Distribution
derived by the assumption of a normal
distribution based on published 95% credible
intervals.

Ragonnet
et al.

εolder-adultL This parameter modifies the
activation rate of low risk
latent cases who are 70+ and
reduces the activaton rate for
other adults so that the mean
activation rate is ε15−89

L

N (2, 0.5) - Evidence suggests that activation risk
increases when individuals enter old age. A
largely uninformative prior has been used
centred around an increase in risk of double
the average rate.

Horsburgh,
Jr. et al.
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Table 8.1: Dynamic disease model parameters, descriptions, prior distribu-
tions, units, method used to derive the prior distribution and the type (i.e
data derived, literature, assumption). All data based parameters are in-
cluded. All prior distributions were truncated to be greater than or equal
to 0 with proportions further truncated to be less than or equal to 1. Addi-
tional detail for each prior derivation can be found in the following sections.
P = pulmonary TB, E = extra-pulmonary TB, v = vaccinated, i = age at
vaccination, U = Uniform, N = Normal (continued)

Parameter Description Distribution Units Method Type

αTi The BCG vaccine effectiveness
at preventing the development
of active TB disease in a TB
free population

αTj = 1− eα
ln(T )
j , where

α
ln(T )
j=i = N (−1.86, 0.22),
α
ln(T )
j=i+5 = N (−1.19, 0.24),
α
ln(T )
j=i+10 = N (−0.84, 0.22),
α
ln(T )
j=i+15 = N (−0.84, 0.2),
α
ln(T )
j=i+20 = N (−0.28, 0.19),
α
ln(T )
j=i+25 = N (−0.23, 0.29)) and i is the age

group vaccinated

Proportion Poisson regression used to calculate Risk
Ratios from literature values. A distribution
is then found using the log normal
approximation. Effectiveness estimates are
caculated using 1 minus the exponentiated
log normal distribution.

Hart et al.
and
Mangtani
et al.

δ Reduction in susceptibilty to
infection for low risk latent
cases.

N (0.78, 0.0408) Proportion A review of prospective cohort studies of
persons exposed to individuals with infectious
tuberculosis that was published prior to the
widespread treatment of latent tuberculosis.
Distribution derived by the assumption of a
normal distribution based on published 95%
confidence intervals.

Andrews et
al.

νP,E The reciprocal of the average
infectious period

νP0−14 = N (0.181, 0.310)−1,
νP15−89 = N (0.328, 0.447)−1,
νE0−14 = N (0.306, 0.602)−1,
νE15−89 = N (0.480, 0.866)−1

years−1 Estimated based on the time from initial
symptoms to starting treatment.

ETS

φ The reciprocal of the time to
successful treatment
completion

φ0−14 = N (0.606, 0.237)−1,
φ15−69 = N (0.645, 0.290)−1,
φ70−89 = N (0.616, 0.265)−1

years−1 Estimated based on the time from starting
treatment to treatment completion.

ETS

µ Rate of age-specific
pulmonary/extra-pulmonary
TB mortality

µ0−14 = N (0.0039, 0.018),
µ15−59 = N (0.0226, 0.00787),
µ60−89 = N (0.117, 0.0165)

years−1 Estimated based on outcomes at 12 months
where cause of death was known, including
all-cause deaths in the denominator.

ETS
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Table 8.1: Dynamic disease model parameters, descriptions, prior distribu-
tions, units, method used to derive the prior distribution and the type (i.e
data derived, literature, assumption). All data based parameters are in-
cluded. All prior distributions were truncated to be greater than or equal
to 0 with proportions further truncated to be less than or equal to 1. Addi-
tional detail for each prior derivation can be found in the following sections.
P = pulmonary TB, E = extra-pulmonary TB, v = vaccinated, i = age at
vaccination, U = Uniform, N = Normal (continued)

Parameter Description Distribution Units Method Type

ζ Rate of loss to follow up ζ0−14 = N (0.00976, 0.0179),
ζ15−59 = N (0.0304, 0.00764),
ζ60−89 = N (0.00614, 0.0159)

years−1 Estimated based on outcomes at 12 months
for TB cases

ETS
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Table 8.2: Sources used to parameterise the disease and demographic mod-
els. Parameters that use the source are given, as well as the study type,
setting, year/years studied and a description of the study/data source.

Parameters
Study
Type Setting Year Description Source

ι(t), µ, νP,E , φ,
ρ, Υ, ζ

- England 2000-
2015

The Enhanced Tuberculosis
Surveillance System (ETS)
is a robust national data
collection system that

collects demographic and
microbiological data on all
notified cases in England.

ETS

µall-cause(t), ω(t) - England - The Office for National
Statistics (ONS) compiles

demographic, health,
enconomic, and social data
for the United Kingdom

ONS

Ceff, Chist
eff Dynamic

mod-
elling
study

England Up to
1990

Used a dynamic model of
tuberculosis, robustly
parameterised to the
available evidence and

including realistic
population demographics to

estimate the effective
contact rate of TB over

time until the 1990’s in the
UK born white male

population.

[118]

C Contact
survey

Europe
- in-
clud-
ing
the

United
Kingdom

2005 Conducted contact surveys,
based on a contact diary, in

multiple European
countries. Contacts were
stratified by age and type
of contact. In the United
Kingdom over a thousand
people were surveyed.

[119]
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Parameters
Study
Type Setting Year Description Source

χ Systematic
review
and
meta-
analysis

Global Up to
2014

A meta-analysis; conducted
with the aim of determining
whether BCG vaccination

protects against
tuberculosis infection as
assessed by interferon γ
release assays (IGRA) in
children. Estimated both
protection from initial

latent infection and active
TB disease.

[4]

εH , εL, κ Systematic
review

Global Up to
2017

Aimed to determine which
dynamic TB model

structure best captured the
observed activation

dynamics of TB. Identified
6 different commonly used

model structures and
compared them by fitting
to activation data from the
Netherlands and Australia.

[101]

αTi Clinical
trial

England 1950-
1965

Investigated the
effectiveness of the BCG
vaccine at preventing TB
disease when given at what
as then school-leaving age.
Followed the cohort over 15
years and estimated the
effectiveness of the BCG

vaccine in 2.5 year intervals
from vaccination.

[26]

αTi Population
based
case-
control
study

England 2002-
2014

Recruited UK-born White
subjects with TB and

randomly sampled White
community controls. Cox
regression was used to
adjusted for known
confounders and the

effectiveness of the BCG
vaccine was estimated from
10 years after vaccination

until 30 years after
vaccinaton.

[29]
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Parameters
Study
Type Setting Year Description Source

δ Systematic
review
and
meta-
analysis

Global Up to
2012

Reviewed prospective
cohort studies of persons

exposed to individuals with
infectious TB. Only

included studies that were
published before the

widespread treatment of
latent TB. Aimed to

estimate the reduction in
re-infection for latent TB

cases.

[115]

βyoung-adult, γ,
Myoung-adult, M

- England - Where data, or literature,
sources were not available
assumed values were used
based on expert opinion

Assumption

Non-UK born pulmonary cases Non-UK born pulmonary cases was estimated using
the ETS for each age-group included in the model from 2000 until 2015. Prior to 2000,
incidence in the non-UK born are unavailable and the relationship to transmission in UK-
born cases is unknown. To account for this, importation of non-UK born cases in the model
begins in 1960 and then is scaled up through to 2000. As the form of this relationship is
unknown the following functional form was used to scale cases based on those observed in
2000,

Non UK-born cases (time = t) =

exp
(

t−1960
ln(2)(−1)ιscale

)
− 1

exp
(

2000−1960
ln(2)(−1)ιscale

)
− 1

Non UK-born cases (t = 2000)

(8.14)
This functional form was chosen as it is flexible enough to represent exponential growth,
bounded growth and near linear growth depending on the choice of ιscale. This allows the
scale up of non-UK born cases to be fitted to the available data during the model fitting
stage (Chapter 9). To incorperate the uncertainty in the number of observed non-UK born
cases a normal distribution was used, with the standard deviation and mean determined
using parameters from the observation model (Chapter 9).

Probability of transmission The probability of transmission can be defined as the
probability that a single contact between an infectious active TB case and a susceptible
individual will lead to TB infection. The probability of transmission (βa) can be rede-
fined in terms of effective contacts (the number of contacts that are infected from each
infected case; Ceff), historic effective contacts (Chist

eff ), actual average yearly total contacts
(Cactual), the average period of time infectious ( 1

νPavg
), and the average mortality rate (µavg)

as follows,

βa =
(νPavg + µavg)Cscaled

eff
Cactual

(8.15)
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Cscaled
eff =


Chist
eff if t < 1935,

Ceff +
(
Chist
eff − Ceff

)(
t−1935
Chalf-life
eff

)1/2
if 1935 ≤ t ≤ 1980,

Ceff if t > 1980.

(8.16)

Vynnycky et al. found that the effective contact rate for TB was approximately 22 in 1900
and fell to approximately 1 in 1990.[118] Incidence rates have increased since the early 1980s
and it is unclear what impact this has had on the effective contact rate. I have assumed that
the effective contact rate is normally distributed with a mean of 1 and a standard deviation
of 0.5. For the historic effective contact rate I have assumed a uniform distribution with
a lower bound of the current effective contact rate and an upper bound of 20. I have
also assumed that the historic contact rate declines over time, starting in 1935, reducing
to the current effective contact rate in 1980. The speed of this decay is set by defining a
decay parameter (Chalf-life

eff ). The prior for the decay parameter is assumed to be normally
distributed with a mean of 5 years and a standard deviation of 5 (truncated to be greater
than 0). This prior is based on the observed trend in notifications. Age stratification of βa
is explored by including modifiers for certain age-groups. The baseline scenario is that no
modification is required, with variation explored for young adults (15-29; βyoung adult) as a
scenario. The prior for this modifier was assumed to be uniform, bounded by 0 and 10. The
contact rate is estimated by averaging the total age-specific contact rates estimated from
POLYMOD data (Section 8.5.2) on an annual basis.

Rate of recovery from active disease The rate of recovery from active TB disease
was estimated as the reciprocal of the time with active, untreated, disease from the ETS
with UK born cases from 2000 until 2012. Cases with a period of time symptomatic that
was less than 0 days were removed as these are likely to be spurious. Figure 8.3 indi-
cates that the distribution of time to treatment differs between children and adults and by
pulmonary/extra-pulmonary TB status. There was little evidence that time to treatment
differed between adults and older adults. A normal distribution was used for each age group,
truncated to be greater than 0 months. Prior to 1952, and the introduction of isoniazid,
I have assumed that the time to recovery from active TB disease is 2 years, representing
natural recovery or other removal from the infectious population. From 1952 to 1990 the
time with active TB is assumed to decrease linearly.
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Figure 8.3: Distribution of time to treatment (days) from the date of re-
ported symptom onset until the date started treatment for the UK born,
stratified by age group and pulmonary/extra-pulmonary TB status in the
ETS system for notifications between 2000 and 2012. Age is stratified into
three groups; children (0-14), adults (15-69) older adults (70-89). The time
from symptom onset to starting treatment is shorter for cases with pul-
monary TB cases across age groups, with younger cases starting treatment
more rapidly than older cases. Vertical lines indicate the 2.5%, 25%, 50%,
75%, and 97.5% quantiles.

Rate of successful treatment The rate successful treatment was estimated as the re-
ciprocal of the period of time on treatment using the ETS with UK born cases between 2000
and 2012. Cases with a treatment time less than 1 month were removed as TB treatment is
standardised and should take at least several months. There was little evidence that time to
treatment completion differed between pulmonary and extra-pulmonary TB cases but there
was some evidence that older TB cases were more likely to be on treatment for longer than
younger cases (Figure 8.4). A normal distribution was used for children, adults and older
adults, with each truncated to be greater than 4 months. This truncation was introduced
as a faster treatment time than this was considered implausible.
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Figure 8.4: Distribution of time to treatment completion in the UK born
successfully treated (days), stratified by age group and pulmonary/extra-
pulmonary TB status in the ETS for notifications between 2000 and 2012.
Age is stratified into three groups;children (0-14), adults (15-69) older adults
(70-89). There is little evidence that the time to successful treatment differs
between pulmonary and extra-pulmonary cases only but older cases appear
to have a high likelihood of longer treatment times. Vertical lines indicate
the 2.5%, 25%, 50%, 75%, and 97.5% quantiles.

Age-stratified contact matrix The previously defined age-stratified contact matrix
has 72 free parameters, assuming that the contact matrix is symmetric. Whilst these
parameters could conceivably be fitted to the available age-stratified incidence data it is
likely that doing so would result in over-fitting and potentially obscure other age related
differences. An alternative is to specify the contact matrix using available data sources. This
is commonly achieved using survey data on the number of self reported contacts between
individuals.[119]

The POLYMOD contact survey The POLYMOD survey,[119] which was conducted
between May 2005 and September 2006, asked 7,290 participants across eight European
countries (Belgium, Germany, Finland, Great Britain, Italy, Luxembourg, the Netherlands,
and Poland) about the number of unique contacts on a randomly assigned day of the
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week. Survey participants were recruited to be broadly representative of the population
in terms of geographical spread, age, and sex. Children and adolescents were deliberately
over-sampled due to the important role they typically play in the transmission of infectious
diseases. Contacts were defined as either physical (skin-to-skin contact) or as nonphysical
(two-way conversation of 3 or more words in the presence of an individual but without
physical contact). The age and gender of contacts was recorded as was the duration and
location of the contact event. The locations were stratified into: home; school; work;
transport; leisure; and other. In total 97,904 contacts were recorded, with both physical
and nonphysical contacts showing large amounts of assortativity by age.

In the model presented here unstratified social (nonphysical) contacts are used to generate
an age-stratified contact matrix. There are several reasons for this. Firstly, stratifying
by home, school, work, transport or leisure contacts, whilst initially appealing as doing so
may lead to insights as to the nature of the type of contacts required for TB transmission,
may lead to over-fitting without a strong a priori hypothesis. In high and medium burden
countries it has been shown that within household transmission is not a major driver of
overall transmission.[109] Until recently it has been thought that household transmission
plays a more dominated role in low burden settings, such as England, which would indicate
that home contacts should be considered. However, it has recently been found that 7.7%
(1849/24,060) of cases in England between 2010 and 2012 lived in a household with another
case.[120] The same study estimated that overall only 3.9% of cases were due to recent
household transmission, and there was no evidence that cases within households were more
likely to transmit within the household than outside of it. There is little evidence to suggest
that school, work, transport or leisure contacts are more likely to transmit TB in England
than any other contact. The choice of contact type is disease dependent; for TB it is likely
that closer contacts result in a greater likelihood of transmission.[109] Unfortunately the
physical contacts recorded in the POLYMOD survey represent a poor proxy to closeness of
contacts as physical contact can be a little as a handshake and because TB is a respiratory
disease physical contact is not required. For this reason physical contacts have not been
further evaluated. Instead, the uncertainty in age-dependent transmission rates has been
explored by allowing for scenarios in which the transmission probability varies across age
groups.

Generation of the symmetric contact matrix As the POLYMOD contact data was
collected using a survey there is likely to be measurement error and missing data for the
number of contacts reported and the age that contacts were reported to be. Some partici-
pants also recorded contacts with an estimated age range rather than with a point estimate.
In addition, as the survey had a relatively low sample size (1,011) in the UK, the estimated
contact matrices contain considerable uncertainty. These considerations are often not con-
sidered in modelling studies but may introduce significant bias. Here the socialmixr R
package3 is used to generate 1000 bootstrapped contact matrix samples using the following
steps,

1. Missing or estimated ages are sampled from the appropriate ranges.

2. Using data on the participants of the POLYMOD study, and the contacts that they
recorded, participants are randomly sampled (with replacement) and the mean num-

3socialmixr: https://github.com/sbfnk/socialmixr
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ber of contacts is then calculated from each age group (using 5 year age groups from
0-5 to 49, 50-69, and then 70+).

3. Each sampled contact matrix is then averaged to be symmetric, as logically contacts
should be mutual. This can be represented mathematically as follows,

CijNi = CjiNj (8.17)

Where Ni is the number of people in age group i, Nj is the number of people in age group
j, Cij is the number of contacts between members of group i with group j and Cji is the
number of contacts between members of group j with group i. In the POLYMOD survey
this relationship does not hold exactly due to random variation. A symmetric contact
matrix (C ′ij) can be derived by averaging the contacts between the i and j groups and the
j and i groups for all age groups using the following equation,

C ′ij = CijNi + CjiNj

Ni +Nj
(8.18)

The above equation requires data on the population in which the survey was undertaken in
order to create a symmetric contact matrix. Here we use the 2005 population of the UK as
it is most representative of the POLYMOD study population.

This results in 1000 bootstrapped symmetric contact matrices based on the reported social
contacts in the POLYMOD survey for the UK. In order to be used in the model the mean
and standard deviation are calculated for the number of contacts between each age group,
the data is also scaled to represent non-unique yearly contacts by multiplying by 365.25.
Contacts are then modelled noisily using a normal distribution around the mean number of
contacts with the standard deviation as calculated above.

The final mean contact matrix is visualised in Figure 8.5, along with the normalised standard
deviation. It is clear that the POLYMOD mixing is highly assortative with the majority of
contacts occurring between those close to the same age.[119] The highest number of contacts
were between children and young adults (between 5 and 20), with the number of within age
groups contacts reducing as age increased. There was some outside age group mixing for
all age groups with a large amount of mixing between children and middle aged adults (i.e
parents and children). There was some uncertainty for all contact rates with the minimum
normalised standard deviation being 10% of mean contact rates. Contact rates between
older adults and children were highly uncertain and contact rates for older adults were also
generally more uncertain.
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Figure 8.5: a.) Mean contacts (non-unique social contacts per year) and
the b.) normalised standard deviation (%) of 1000 boostrapped samples of
social contacts from the POLYMOD social contact survey using 5 year age
groups up 49 years old and then a single group for 50-69 year olds. Mixing
is highly assortative by age with children and young adults representing the
majority of contacts. There is also evidence of mixing between children and
middle age adults with older children mixing with progressivly older adults.
Contact rates in older adults are highly uncertain, with the most uncertainty
in mixing between older adults and young children.
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Vaccination model parameters

An overview of the vacination model parameters can be found in Table 8.1 for parameters
that impact the natural history of TB, Table 8.4 for parameters that impact the population
level distribution of BCG vaccination, and Table 8.2 for an overview of the sources used to
generate prior distributions. More detail is given in the following section.

Effectiveness of the BCG vaccine at preventing active TB The effectiveness of the
BCG vaccine is usually estimated using its effectiveness at reducing the incidence of active
TB cases in a susceptible population. In the model outlined in this chapter the action of the
BCG vaccine has been split into its main effect of reducing the rate of latent TB cases de-
veloping active disease and its secondary effect of reducing the likelihood of initial infection.
There are few estimates of the effectiveness of the BCG vaccine at preventing active TB
in cases that are already latently infected and where these estimates do exist they are not
stratified by time since vaccination, or age at vaccination.[4] The overall effectiveness (αTa )
of the BCG vaccine can be estimated from the combined effectiveness at preventing initial
infection (χva) and the effectiveness at preventing activation in latently infected individuals
(αva) using the following equation,

αTa = χva + (1− χva)αva (8.19)

The effectiveness of the BCG vaccine at preventing active TB in those latently infected can
then be found via rearrangement as follows,

αva = αTa − χva
1− χva

(8.20)

There is strong evidence that the overall effectiveness of the BCG vaccine reduces over
time.[28,29] For this reason the effectiveness of the BCG vaccination overall (αTa ) has been
stratified by the time since vaccination (by 5 year age groups). This step-wise approach
has been chosen as the majority of studies report estimates for these groups and the precise
functional form of the reduction in protection is unknown. For 0-4, and 5-9, years since
vaccination estimates of the effectiveness of the BCG vaccine were extracted from the MRC
trial.[26] Using published data, Poisson regression was used to estimate rate ratios and
95% confidence intervals. For 10-29 years after vaccination rate ratio estimates from a more
recent case control cohort study in the UK born vaccinated at school-age have been used.[29]
Table 8.3 details the estimated effectiveness for each five yearly band after initial vaccination
from these data sources. I have assumed that the BCG vaccine is equally effective regardless
of the age at vaccination as there is no evidence that protection reduces when given to older
age groups in England. Using the literature derived estimates for the Risk Ratio (RR)
of the BCG vaccine at different periods after vaccination, the log normal approximation
for the distribution of Risk Ratios, and the relationship between vaccination effectiveness
and the Risk Ratio (Effectiveness = 1 - Risk Ratio) I derived a prior distribution - which
can be sampled from - for the overall effectiveness of the BCG vaccine (αTa ). This can be
summarised by the following equation,

αTa ∼ 1− e(N (ln(RRtv ),SEtv )) (8.21)

Where RRtv is logged risk ratio and the SEtv is the standard error of the logged Risk Ratio
with both being dependent on the time since vaccination (tv). The transformed values used
as the prior distribution are detailed in Table 8.1.
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Table 8.3: Estimates of the effectiveness of the BCG vaccine at preventing
active TB disease stratified by years since vaccination. For 0-9 years since
vaccination estimates were derived using Poisson regression from the MRC
BCG trial and for 10-29 years since vaccination estimates were extracted
from a more recent case control cohort study in the UK born vaccinated at
school-age.

Time since vaccination (years) Effectiveness (%)

0-4 84 (76, 90)
5-9 69 (51, 81)
10-14 56 (33, 72)
15-19 57 (36, 71)
20-24 25 (-10, 48)

25-29 21 (-39, 55)

Effectiveness of the BCG vaccine at preventing initial infection Roy et al. pub-
lished a meta-analysis that estimated the effectiveness of the BCG vaccine at preventing
initial infection in children.[4] This has been used as the primary source for this parameter,
with the assumption being made that the effectiveness is the same in adults as it is in chil-
dren. This is reasonable to assume as there is little evidence that the overall effectiveness
of the BCG vaccines reduces with the age it is given in England. Unfortunately the meta-
analysis by Roy et al. did not include an estimate of the effectiveness of the BCG vaccine at
preventing initial TB infection stratified by time since vaccination. This is problematic as
there is a large amount of evidence that the overall effectiveness of the BCG vaccine wanes
with time,[28,29] and if the protection from initial infection does not also reduce over time
then as overall effectiveness decreases the contribution from the prevention of initial infec-
tion will increase. For this reason I have assumed that the protection from initial infection
(χj) reduces over time with the same functional form as for the overall effectiveness of BCG
vaccination (αTj ). This relation can be formalised using the following equation,

χvj =
αTj χ

v
i

αTi
(8.22)

Where i is the age at vaccination and j is any subsequent age group.

Demographic model parameters

The demographic model parameters are outlined in Table 8.4, additional details are given
in the following section. Table 8.2 contains details of the sources used to parameterise
the demographic model, again more detail is given in the following section for complex
parameters.
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Table 8.4: Demographic model parameters, descriptions, prior distributions,
units, method used to derive the prior distribution and the type (i.e data
derived, literature, assumption). All prior distributions were truncated to
be greater than or equal to 0 with proportions further truncated to be less
than or equal to 1. Additional detail for each prior derivation can be found
in the following sections. N = Normal and i = age at vaccination.

Parameter Description Distribution Units Method Type

ω(t) Time varying births - - The dataset contains the estimated number
of births from 1929-2015 in England. From
2016 onwards the numbers of births are
projections as published by ONS.

ONS

γ BCG vaccination coverage γi = N (0.75, 0.05) Where i is the age group
vaccinated.

Proportion England has a robust national health service
and an established system for providing BCG
vaccination.

Assumption

θ Rate of ageing - years−1 Defined as the reciprocal of the width of the
modelled age groups.

Model
defined

µall-cause(t) Time varying all-cause
age-specific mortality rate

- years−1 Age specific mortality averaged across age
group from 1981-2015. From 2016 onwards,
and prior to 1981, mortality rates are
modelled using a exponential model fit to
data from 1981 until 2015.

ONS
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Age-stratified population estimates Age-stratified and UK birth stratified population
estimates for England were estimated using the LFS (Section 4.5). Figure 8.6 indicates that
the age distribution of the UK born population changed over the study period (2000 to 2015)
with an increase in those in late middle age (45-49 years old) and older and a decrease in
those in early middle age. The proportion of young adults and young children also increased.
This may have impacted TB incidence as young adults are thought to be responsible for
the majority of transmission. Data from the 1931 census was also used to estimate the
population of England in 1931 stratified into the modelled age groups.

Figure 8.6: Distribution of the UK born population of England in 2000,
2004, 2008, and 2012. Age is grouped into 5 year age groups from 0 to 49,
from 50-69, and from 70 to 89. Those aged 90+ are excluded due to low
quality data. The age groups used here represent those used in the model.
The figure indicates that the population has skewed older overall over the
last two decades, although the proportion of young children has increased in
the last 10 years.

Observed and projected births The number of births is incorporated into the demo-
graphic model as a time varying, noisy, parameter (ω(t)). It is parameterised from the data
published by the Office for National Statistics (ONS), with the available data covering all
years modelled. The ONS publishes the recorded number of births in England each year
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starting from 1929 through to 2015, with projections avaiable through to 2101 (Figure 8.7).
As there is some uncertainty as to the number of births in each year I included normally
distributed noise with a standard deviation of 5% of annual births.

Figure 8.7: Estimated and projected live births in England from 1929 until
2101. The red line indicates estimated data and the blue line indicates
projected data. Data is sourced from the ONS.

Age-specific mortality rates The time varying, age-specific, noisy, all-cause mortality
rates (µall-causea (t)) included in the demographic model are sourced from Office for National
Statistics (ONS) estimates from 1981 until 2015. For years outside of the available data I
forecast rates using an age-stratified exponential model (Figure 8.8). This model was used
as it constrains mortality rates above zero and decreases yearly changes in mortality rates
over time. To model the uncertainty in the estimate of the annual number of deaths a
normally distributed noise term was introduced with a standard deviation of 5%. In order
to calculate the all-cause dynamic mortality rate (µa(t)), excluding deaths from, or related
to, TB the following equation was used,

µa(t) = µall−causea (t)−
(
µPa (Pa + TPa) + µEa (Ea + TEa)

Na

)
(8.23)
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Where µa(t) is constrained to be greater than or equal to zero, µPa and µEa are the age
stratified deaths rates in pulmonary (Pa) and extra-pulmonary TB cases (Ea), and Na is
the age stratified population.

Figure 8.8: Three year rolling average expected remaining lifespan stratified
by age group in England from 2000 to 2014. Age is grouped into 5 year age
groups from 0 to 49, from 50-69, and from 70 to 89. Those aged 90+ are
excluded due to low quality data. The age groups used here represent those
used in the model. Data from this figure was sourced from the ONS age-
specific mortality rate estimates with projections based on an age-stratified
exponential model.

8.6 Initialisation

Dynamics transmission models are affected by the conditions under which they are ini-
tialised.[7] For models of endemic disease this can be problematic as the full disease out-
break can often not be modelled, due to a lack of data and the changing nature of the
endemic over time. A common approach to minimise this issue is to initialise the model
with an uninformative set of initial conditions and then run the model for a period of time,
known as the burn-in period, until steady state dynamics have developed.[7] Models that
include demographic processes are more complex to burn-in as demographic data is typi-

170



8.7. Scenarios

cally required to initialise the model so that it has the demographics observed during the
period of time modelled.

8.6.1 Starting simulation date, initial population and changes over
time.

Model simulations are initiated in 1931 due to the availability of population data from the
1931 census and because data on live births is only available from 1929. The demographic
model is initialised using the age grouped 1931 census data with the assumption that the
entirety of the population is UK born. Initially it is assumed that there is no BCG vaccina-
tion and recovery from active TB takes 2 years. TB treatment is assumed to begin in 1952
with the discovery of isoniazid and BCG vaccination begins at school-age (15 years old) in
1953. BCG vaccination coverage is assumed to vary randomly over the time horizon of the
model but to have the same distribution at all time points. The assumed distribution is
normal with a mean of 75% and a standard deviation of 5%. The duration with active TB
is assumed to decrease from the introduction of treatment in 1952 through to 1990 when it
is assumed that detection rates were equivalent to those seen today.

8.6.2 Initial disease distribution

The model is initialised with the number of pulmonary and extra-pulmonary cases reported
in 1931. The high risk latent population is initialised by scaling the number of observed
cases in 1931 by the proportion of high risk latent cases that develop active TB, the duration
that these cases are high risk and then dividing by the infectious period. The low risk latent
population is then initialised by scaling the high risk latent population by the cumulative
sum of the age distribution of UK born cases in 2000, reduced by 50% to account for
mortality (approximately 5% of the population). Finally, the initial susceptible population
is based on the population estimate from the 1931 census minus the assumed initial latent
cases.

All initial disease compartments, excepting the low risk latent compartment, are distributed
based on the age distribution of observed UK born cases in 2000. To account for possible
measurement error a normal distribution is sampled around the assumed population in each
compartment with a standard deviation of 5% of the reported cases.

8.7 Scenarios

All dynamic transmission models require a series of assumptions to be made. These as-
sumptions fall into two categories: structural assumptions and parameter assumptions.[121]
Structural assumptions, such as the choice of serial latency in the model presented here,
maybe difficult to test as they require the development of a parallel model structure. In the
model presented here I have chosen to base the model structure on the known epidemiology
of TB in England and the effects of the BCG vaccine. Structural assumptions have been
discussed as have their potential impacts but a full scenario analysis of all potential model
structures is beyond the scope of this work. Instead, I have focused on parameter assump-
tions which are more likely to directly impact the evaluation of BCG vaccination.

During model fitting, I will consider the evidence for modifying the transmission proba-
bility, and non-UK born mixing, by age using three distinct scenarios (Table 8.5). These
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Table 8.5: Summary of planned scenario analyses to be carried out in the
next chapter as part of model fitting by comparision of the goodness of fit
to the data.

Parameter Scenario

βa - transmission
probability

Constant across all age groups

Variable in young adults (15-29)
M - Non-UK born
mixing

Constant across all age groups

Variable in young adults (15-29)

scenarios aim to test some of the key modelling assumptions made here. Identifying if the
transmission probablity, or non-UK born mixing, varies with age is important as it may
alter the distribution and number of TB cases. This would impact the observed effects of
the BCG vaccine and is therefore of primary importance.

8.8 Discussion
In this chapter, I have outlined the requirements for a dynamic transmission model of TB
in order for it to be able to answer policy relevant questions relating to BCG vaccination in
England. I then outlined, and gave the equations for, a model that met these requirements
and made use of the data available. I defined prior distributions for each model parameter
and initialisation conditions. I then detailed the data sources used for parameterisation,
approximations required to make best use of the available data, and the scenario analyses
needed to explore model, parameterisation and initialisation assumptions.

This chapter has outlined a realistic dynamic transmission model of TB that includes the
key features required to investigate BCG vaccination policy and is robustly parameterised
from an extensive, and previously unused in a TB model, routine surveillance dataset.
Transformations, and approximations, of parameters have been used to make the best use
of available data. However, there are several key limitations. Firstly, the model presented
here does not explicitly model TB transmission in the non-UK born. This means that
in order to initialise the model assumptions must be made about the historic number of
non-UK born cases and the future incidence in the non-UK born must also be assumed in
order to produce projections of future TB incidence. However, this simplification allows
many complexities of TB in the non-UK born to be discounted, such as the rate of case
importation, heterogeneity amongst the non-UK born from different countries, and mixing
within the non-UK born. Secondly, the model presented here does not include high and low
risk stratification within the UK born. Individuals that are from countries with incidence
above 40 per 100,000, or that have parents/grandparents from countries with incidence
above 40 per 100,000, are considered at higher risk of TB.[47] In addition, individuals living
in areas of the UK with incidence above this threshold are also considered at higher risk.
Current BCG vaccination policy targets high risk neonates for vaccination, with low risk
neonates not being vaccinated. Ideally, this high/low risk stratification would be included
as it would allow the evaluation of the current BCG vaccination policy. This has not been
possible as there is little data from which to extrapolate either the number of high risk
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notifications in the ETS,[21] or the size of the high risk population. There is also little
evidence to suggest the degree of mixing between the non-UK born, the high risk UK
born population and the low risk non-UK born population. It is likely that introducing
this structure into the model, without the data outlined above, would lead to the model
being poorly specified and therefore failing to fit to the observed data. Instead, in the final
chapter in this thesis, the high risk neonatal programme will be proxied by a universal
neonatal programme. This will allow for a comparison to be made between school-age and
neonatal vaccination but does not allow for the impact of targeting high risk individuals to
be evaluated. Finally, the model presented here does not include the full complexity of TB
epidemiology. Drug resistant TB may have more severe outcomes, standard TB treatment
may fail resulting in a longer period on treatment, and TB outcomes may vary by risk
group.[2] However, drug resistant TB cases are known to make up a small fraction of TB
cases in England in the UK born, and variable treatment times have been included in the
prior distribution of treatment times and TB outcomes. Model parameters have also been
stratified by pulmonary status and age group where appropriate. Additionally, complexity
has been included for the action of the BCG vaccine, with realistic waning in effectiveness.
Observed age-specific mortality rates and the number of live births has also been included,
allowing for realistic population demographics. This means that estimates of the impact of
the change in vaccination policy are likely to be more accurate, whereas a more complex
model of the epidemiology of TB would likely have little impact on these results.

There are several key differences between the model presented here and others that have
been previously been published that modelled TB transmission in low incidence settings
or evaluated BCG vaccination policy. These are: the inclusion of dynamic TB transmis-
sion; robust parameterisation from an extensive surveillance dataset; realistic population
demographics; and detailed modelling of the action of the BCG vaccine. Several previous
studies have evaluated the role of BCG vaccination at a population level and estimated the
impact of targeting different age groups and populations. Manissero et al. estimated the
impact of various BCG vaccination strategies in low-intermediate incidence settings using
an annual risk of infection model based on an approach previously published by Trunz et
al. [103,104] This approach estimates the number of new cases generated by a single smear
positive case per year in a birth cohort. Only a single year of data was used to parameterise
the model and age structure, the duration of protection from BCG vaccination and the
different types of protection conferred by BCG vaccination were not considered. Rahman
et al. compared the cost effectiveness of universal BCG vaccination to no vaccination using
a cohort model of Japanese infants.[105] Their model did not include TB transmission and
used an estimated duration of protection from BCG of 10 years. Similarly Usher et al. used
a decision analytical model to follow a birth cohort to compare universal, selective or no
BCG vaccination.[72] As in the previous study, TB transmission was not included. The
model I have presented here includes TB transmission and uses more recent estimates of
the effectiveness of the BCG vaccine to capture the full benefits of vaccination.

Several studies have made use of dynamic TB transmission models to evaluate BCG vaccina-
tion or future vaccines.[100,106,122] In general, these studies used less detailed models than
the one presented here, typically because they were modelling TB in a more generic setting
or because more information about TB epidemiology, TB natural history, and the BCG
vaccine has become available over time. In addition, no dynamic model of TB, including
BCG vaccination, has currently been published that includes both protection from initial
infection and protection from active TB due to BCG vaccination. There have also been no
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studies that use the current best estimates for the duration of BCG protection in developed
countries away from the equator. Harris et al. reviewed mathematical models that explored
the epidemiological impacts of future TB vaccines. They found that vaccines targeted at
all-ages or at adolescents/adults were more effective at eradicating TB than neonatal pro-
grammes when vaccine effectiveness was not assumed to degrade with age. The majority of
studies included in their review used deterministic, compartmental, dynamic models. Model
structures were found to have evolved over time as TB natural history and epidemiology is
better understood, with the majority of models having at least susceptible, latent, active
disease, and recovered states. Treatment status, variable infectiousness of active disease,
vaccine waning, and age stratification were included in some of the models evaluated.[100]
Recently it has been shown that only models that include at least two latent compartments
are able to reproduce the observed activation dynamics of TB.[101] The model presented
here is based on the serial latency archetype identified in this study. It has also been shown
that realistic age structure and population demographics, included in the model presented
in this chapter, are critical for reproducing TB epidemiology.[102] Egbetade et al. presented
a dynamic model of TB that included BCG vaccination but did not include age structure.
They found that universal vaccination increased the stability of the disease free equilibrium
in countries with high TB burden. However the model presented was not rigorously pa-
rameterised with data and only a single latent TB compartment was used.[122] Bhunu et
al. developed a dynamic transmission model of TB that in order to investigate the effects of
pre- and post-exposure vaccines for TB control. Again their model did not include multiple
latent compartments or age structure unlike the model presented here.[106]

Vynnycky et al. modelled the long term dynamics of pulmonary TB, in England and Wales,
in the white male population using a deterministic TB transmission model that included;
high and low risk latent periods, reinfection, BCG vaccination, TB specific and all-cause
mortality.[99] Whilst this is a highly detailed and well parameterised modelling study more
recent developments such as survey derived age stratified contact matrices, evidence that
BCG provides protection against initial infection as well as active TB disease and parameter
estimates for TB activation stratified by age are included in the model presented here. In
addition, their study only modelled TB transmission until 1990, allowing them to ignore the
contribution of non-UK born cases. The model presented in this chapter includes non-UK
born cases, via the force of infection, as they are now thought to be a key driver of TB
transmission in England.

Dowdy et al. presented a data wish list for evidence base decision making using TB models,
which may be used to assess the usefulness of a TB model for policy makers. The data
requirements included: the rate of TB transmission; probability of developing active disease
after an initial infection; the rate of activation amongst cases with risk factors; protection
afforded by latent TB infection; the duration of infectiousness; treatment success; and the
rate of spontaneous recovery. The model presented here fulfills the majority of these criteria.
The rate of TB transmission is parameterised using previously published estimates of the
effective contact rate in England,[118] this parameterisation will be refined in the following
chapter using incidence data from the ETS. The probability of developing active TB has
been sourced from recently published modelling work that fit a model of TB transmission
to contact data in low incidence countries,[101] and is stratified by age as considered im-
portant by Dowdy et al. The rate of activation amongst cases with risk factors has not been
included as it has been assumed that the proportion of UK born cases in the ETS with
risk factors such as HIV is low. The duration of infectiousness, and treatment success have
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been parameterised using the ETS, although this approach is limited by possible reporting
biases in the data available. The rate of spontaneous recovery has not been modelled as it
is assumed that individuals are likely to be notified before clearing TB and are also likely to
rapidly be started on TB treatment. This assumptions is likely to be valid as England has
a robust national health service and a strong notification framework for TB. The protection
afforded by latent TB infection has been included using the most recent literature sources
available. All other parameters have been parameterised using the ETS where possible and
otherwise from the most robust literature sources available. In particular the effectiveness
of the BCG vaccine has been parameterised using data from studies that took place in Eng-
land, where available, and both the protection from initial infection and the protection from
developing active disease in those latently infected has been included along with estimates
of the reduction in protection over time.

The transmission dynamic model of TB transmission and BCG vaccination presented in
this chapter provides a detailed overview of the features required to reproduce the observed
epidemiology of TB in England. The model was robustly parameterised using routine
surveillance data where available and otherwise using literature sources. The assumptions
required by the model can be explored by fitting the model to observed data and assessing
the goodness of fit. This is the focus of the next chapter. In addition the model may also
be used to explore the impact of current and historic BCG vaccination policy, both in the
observed data and projected into the future. Both of these scenarios are explored in the
final chapter of this thesis.

8.9 Summary
• This chapter presents a transmission dynamic model of TB transmission and BCG

vaccination. The model includes; age structure, pulmonary and extra-pulmonary TB,
re-infection and re-activation, serial latency, TB treatment, treatment failure, TB
mortality, non-UK born cases and details of the historic TB endemic. Code for this
model is available online.4

• The model has been robustly parameterised to a rich routine surveillance data set,
which has allowed more complex features to be modelled than in previously published
models. Parameter transformation and approximations, that make the best use of the
available data, have been detailed.

• The assumptions required by the model have been explored in detail, with the required
sensitivity analyses listed. These sensitivity analyses will be explored in the following
chapter by comparing the goodness of fit of the model to the available data.

• The strengths and weaknesses of the model have been discussed as well as its context
within the literature. It appears that few models are parameterised to a comparably
rich surveillance data source, that few models capture the full complexity of BCG
vaccination and that few models include realistic population demographics to the
same extent as included in the model presented in this chapter.

• Chapter 5 used a simple simulation model to estimate the impact of the 2005 change in
BCG vaccination policy and Chapter 7 used Poisson and Negative Binomial multilevel

4Model code: https://github.com/seabbs/ModelTBBCGEngland/blob/master/inst/bi/
BaseLineModel.bi
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models to estimate the observed impact of the change in policy on incidence rates
in the directly effected populations. Whilst these approaches are valid they cannot
estimate the indirect effects of policy changes, nor can they predict the future impacts
of BCG vaccination policy. For this a transmission dynamic model, as presented here,
is required. In the following chapter this model will be fit to available TB data and
the impact of various BCG vaccination policies will be explored.
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Chapter 9

Fitting a dynamic transmission
model of Tuberculosis

9.1 Introduction

In the previous chapter I outlined a mechanistic model of Tuberculosis (TB) transmission.
Whilst this model made use of the best available evidence there remains a large degree of
uncertainty regarding it’s structure and parameterisation. The majority of this uncertainty
relates to the amount of TB transmission occurring in England. In order to use this model to
understand TB transmission, and the impact of different BCG vaccination policies (Chapter
10) this uncertainty needs to be reduced and the parameter space tightened to reflect
more realistic ranges. An approach to deal with this uncertainty is to fit the model to
available observed data. Model fitting involves optimising over the available parameter
space to return parameter sets that fit the data in some quantitative way “better” than
other parameter sets. An alternative to model fitting is using a model parameterised with
expert knowledge only for inference. This approach is not appropriate here due to the large
amount of uncertainty for many of the model parameters. Any inference based on just the
parametisation from the previous chapter would have large credible intervals, reflect reality
poorly, and likely be biased in multiple areas.

This chapter details an approach to fitting a infectious disease model to data using the
state-space model formulation and Bayesian model fitting techniques. It first outlines the
infectious disease model discussed in the previous chapter as a state-space model, as well
as detailing the data used for fitting the model, the parameters that are fitted, and the
parameters that are modelled stochastically. It then outlines the theoretical, and practical,
justification for the model fitting pipeline used to calibrate and fit this state space model.
Finally it discusses the quality of the model fit, ad hoc techniques used to improve model
fit, strengths and limitations of the approach, and areas for further work.

9.2 Formulation as a state-space models

State space models (SSMs) may be used to model dynamic systems that are partially ob-
served (such as all but the most contained infectious disease outbreak or endemic). They
consist of a set of parameters, a latent continuous/discrete time state process and an ob-
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served continuous/discrete time process.[123] The model developed in the previous section
represents the state process of the SSM, with the parameters estimated for the model rep-
resenting the model initial conditions and parameter set. To complete the mapping to an
SSM an observational model is required. This observational model takes the latent estimates
from the dynamic model and forecasts the observed data. I specify such an observational
model in Section 9.2.2.

9.2.1 Observed data

The primary data source for the model is the reported, age-stratified, UK born TB notifi-
cations from 2000 to 2004 as recorded in the Enhanced TB Surveillance (ETS) system (see
Chapter 4). 2000 to 2004 are the years for which notifications are stratified by UK birth
status with universal school-age BCG vaccination. Data were grouped using the age groups
present in the dynamic model (5 year age groups up to 49 and then a group from 50-69
and a 70+ group). Using age-stratified incidence data, versus aggregated data, allows for
more complex trends to be identified. Non-UK born TB notifications were extracted from
the same source for use as an input to the models force of infection (Chapter 8).

Additional datasets were considered during initial model fitting and during later model
calibration. These were a condensed version of the age stratified data discussed above with
a reduced number of age groups (children (aged 0-14 years old), adults (15-69 years old),
and older adults (70-89 years old)) and a dataset of historic pulmonary TB notifications.
The advantage of condensing age groups was that the number of notifications in each group
increased. This reduced the impact of stochastic noise, making fitting the model easier
as trends in the data are more consistent. Secondly, reducing the number of data points,
whilst still capturing the important age dynamics, reduces the compute requirements of the
model (see Section 9.3.1). As will be discussed in Section 9.3 this was a major consideration
as the model fitting approach used was highly compute intensive. The downside of this
approach is that potentially important information may be lost when data is condensed
into fewer groups. Historic pulmonary TB notifications (including both UK born and non-
UK born cases) from 1990, 1994, and 1998 were considered as using data from the decade
prior to the time period of interest allows the long term trends to be fitted to. A subset of
the available data was used as this limited the impact on the compute time of the fitting
pipeline. These data were originally collected in the Statutory Notifications of Infectious
Diseases (NOIDS) dataset with notifications from 1913 to 1999. These data were sourced
from Public Health England,[2] and made available in R using tbinenglanddataclean1.
Downsides of using these data are that reporting standards may have changed over time so
a single measurement model may not be appropriate and non-UK born cases are included
in these data making fitting to this data dependent on the number of non-UK born cases
pre 2000 which are themselves estimated during model fitting.

9.2.2 Observational model

There are three major considerations to account for when developing an observed disease
notification model (i.e a reporting model). These are: systematic reporting error over time;
systematic changes in reporting error over time; and reporting noise. I assumed that all

1Historic TB notification data via tbinenglanddataclean: https://www.samabbott.co.uk/
tbinenglanddataclean/
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reporting errors are Gaussian and that there are no time variable reporting errors. This
model was used for all data fitted to. The reporting model can be defined as follows,

O = N (EsystA,EnoiseA)

Where O are the observed notifications, A are the incident cases of disease as forecast by the
disease transmission model, Esyst is the systematic reporting error, Enoise is the reporting
noise, and N represents the Gaussian (normal) distribution. The priors for the model are
defined in Table 9.1. The prior for systematic reporting error is based on the assumption
that underreporting is more likely than over-reporting. The prior for the reporting noise is
based on the observed variation between years. This observation model is also used when
incorporating non-UK born incidence rates into the models force of infection (Chapter
8). This allows the uncertainty in these observations to be properly accounted for in the
incidence estimates produced by the fitted model.

A potential limitation of this model is that reporting of TB cases is likely to have improved
over time. This is especially true of notifications reported prior to the introduction of
the ETS in 2000. A potential improvement to this model would be to introduce separate
systematic reporting errors for notifications pre- and post- the introduction of the ETS.
However, this may result in over-fitting and so has not been implemented here.
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Table 9.1: Measurement model parameters, descriptions, prior distributions,
units, method used to derive the prior distribution and the type (i.e data
derived, literature, assumption). U = Uniform

Parameter Description Distribution Units Method Type

Esyst Systematic reporting error of
incident TB cases

N (0.9, 0.05) truncated to be greater than 0.8
and lower than 1.

Proportion Assumption is that underreporting of TB
cases is likely with no overreporting.

Assumption

Enoise Magnitude of reporting noise
for incidence TB cases.

U(0, 0.025). Proportion It is likely that reporting accuracy varies each
year. An upper bound of 2.5
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9.2.3 Fitted parameters

The model outlined in Chapter 8 has a large number of free parameters for which prior
distributions have been specified based on the observed data, the literature, and expert
knowledge. In theory the model fitting pipeline outlined below could be used to produce
posterior distributions for all these parameters. However, in practice this is not feasible as
the data discussed in Section 9.2.1 only covers notifications and therefore does not contain
sufficient information. If every parameter was allowed to update based on the data then
it is likely that the resulting posterior distributions would not match with alternative data
sources and the literature. Another potential issue is that by allowing all parameters to
be fitted the meaningful transmission related information in the observed data may be lost
due to over-fitting from other variables.

For this reason in the model fitting pipeline outlined here I have only allowed parameters
relating to TB transmission, and measurement model parameters, to have their posterior
distributions updated by the model fitting pipeline. All other parameters have posterior
distributions that match their prior distributions. Parameters that have updated posterior
distributions based on the data are,

• Mixing rate between UK born and non-UK born (M).
• Scaling on non-UK born cases (ιscale).
• Effective contact rate (ceff).
• Historic effective contact rate (chisteff ).
• Half life of the effective contact rate (chisthalf).
• Low risk latent activation rate modifier for older adults (70+) (εolder-adultL ).
• Systematic reporting error (Esyst).
• Reporting noise (Enoise).

In addition for scenarios with age variable transmission probabilities or non-UK born mixing
the following parameters may also be fitted to,

• Transmission probability modifier for young adults (βyoung adult).
• Non-UK born mixing modifier for young adults (Myoung adult).

9.2.4 Stochastic parameters

Several key data inputs such as incidence in the non-UK born population, coverage of the
BCG vaccination program, births, deaths and the contact rate are not perfectly observed,
or recorded, and may vary across time. For these reasons, these parameters are included in
the model developed in the last chapter as noise terms. This means that they are resampled
for each timestep and so vary stochastically over time. This results in a model that is semi-
stochastic rather than being fully deterministic (Chapter 1). A semi-stochastic model can
be defined as a deterministic model that incorporates stochastic elements but that is still
solved as a deterministic system within a given timestep. It is a modelling approach that has
been used previously in the literature when key parameters are uncertain and potentially
time-varying.[9] For further details of the stochastic parameters included in the model see
Chapter 8.
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9.3 Model fitting pipeline

Fitting dynamic transmission models is complex and requires the use of specialist statistical
techniques. There are a variety of these tools available. Ranging from tried and tested to
cutting edge. Historically many modellers have used maximum likelihood methods to fit
deterministic models. More recently Bayesian methods have become popular. These have
numerous benefits including: explicit inclusion of prior knowledge via prior distributions
for all parameters; ability to handle complex stochastic models; and provide parameter
distributions (posterior distribution) of best fitting parameters rather than single point
estimates (or interval estimates).[123] Unfortunately, many of these methods also require
tuning prior to use. This section outlines the theoretical justification, and implementation
details, of an automated model fitting pipeline used to fit the previously detailed state space
model.

LibBi was used for all model fitting.[123] LibBi is a software package for state-space mod-
elling and Bayesian inference. It uses a domain specific language for model specification,
which is then optimised and compiled to provide highly efficient model code. It focuses
on full information model fitting approaches including: particle Markov chain Monte Carlo
(PMCMC), and SMC-SMC methods for parameter estimation. All fitting algorithms are
highly efficient and scalable across multiple CPUs or GPUs. The rbi and rbi.helpers
packages were used to interface with LibBi from R.[124,125] rbi.helpers was also used
to optimise the model fitting pipeline as detailed in the calibration section. As model
fitting using LibBi is compute intensive a workstation was built, and overclocked (using
CPU voltage manipulation), with these compute requirements in mind2. Whilst a cluster
was theoretically available, in practise the hardware available was limited, installing LibBi
was challenging, and run times were constrained by fair access. All model fitting code is
available on GitHub as an R package3.

9.3.1 The particle filter

In order to fit a model to data it is necessary to estimate, or calculate, the marginal
likelihood. Mathematically, the marginal likelihood is the plausibility that a parameter
set, given the specified statistical model and the initial conditions, describes the observed
data. For complex state space models, such as that discussed in the previous chapter,
calculating the marginal likelihood is not possible.[123] The particle filter provides a model-
agnostic approach, based on importance sampling, to estimate the marginal likelihood. The
variant used in this thesis, the bootstrap particle filter, is described below. See [123] for a
more technical discussion of the bootstrap particle filter.

1. Sampling: For a given parameter set, the particle filter is initialised by drawing a
number of random samples (state particles) from the initial conditions of the model
under consideration. These samples are then given a uniform weighting.

2. Sequentially for the each observed data point, the particle filter is then advanced
through a series of propagation, weighting, and re-sampling steps.

2See these blog posts for details: https://www.samabbott.co.uk/post/building-an-rstats-
workstation/, https://www.samabbott.co.uk/post/benchmarking-workstation-xgboost/, https://
www.samabbott.co.uk/post/benchmarking-workstation-benchmarkme/

3Model fitting pipeline R package: https://github.com/seabbs/ModelTBBCGEngland
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• Propagation: For each particle the model is simulated, producing a forecast of the
observed data point.

• Weighting: The likelihood of the new observation, given the predicted state, is then
computed for each state particle. State particles are then weighted based on this
likelihood.

• Re-sampling: The particle stocke is restorted to equal weights by re-sampling particles,
with replacement, with the probability of each sample being drawn being proportional
to it’s weight.

3. The marginal likelihood (likelihood of the observed data given the parameter set,
marginalised across the initial conditions) can then be estimated by taking the product
of the mean likelihood at each observed data point. A sample trajectory can also be
calculated using the estimated weights from each time point.

9.3.2 Sequential Monte Carlo

The particle filter approach outlined above, is a member of a family of sequential Monte
Carlo (SMC) methods. These methods all initialise particles and then follow the same
propagation, weighting, and re-sampling steps as previously detailed. SMC may also be
used to sample from the posterior distribution of a given set of priors and a specified model.
This works as follows,

1. Initially a number of samples (parameter particles) is taken from the prior distribution
of the parameters and assigned a uniform weighting.

2. These parameter particles are then iterated sequentially over each observed data point,
undergoing the same propagation, weighting, and re-sampling steps as in the particle
filter, as well as an additional rejuvenation step.

• Propagation: The model is simulated to the next observed data point.

• Weighting: Parameter particles are weighted using the marginal likelihood. In
principle this could be computed exactly, but is most commonly estimated using
a nested particle filter for each state particle (i.e as outlined in the previous
section). For a subset of models, a Kalman filter may be used instead.[123]
The marginal likelihood may also be estimated using other partial information
techniques such as approximate Bayesian computation. In the case where a
particle filter is used the full algorithm is known as Sequential Monte Carlo -
Sequential Monte Carlo (SMC-SMC).[123] This algorithm is used for all dynamic
model fitting in this thesis.

• Re-sampling: The parameter particle stock is restored to equal weights by re-
sampling particles, with replacement, with the probability of each sample being
drawn being proportional to it’s weight.

• Rejuvenation: Re-sampling of the parameter particles at each time point leads
to a reduction in the number of unique values present. For state particles (when
estimating the marginal likelihood using a particle filter) particles are diversi-
fied with each propagation but as parameters do not change in time parame-
ter particles cannot diversify in this way. To account for this the rejuvenation
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step is inserted after the re-sampling of parameter particles at each time point.
The rejuvenation step is a single, or multiple depending on the acceptance rate,
Metropolis-Hastings step for each parameter particle. This step aims to preserve
the distribution of the parameter particles, whilst increasing their diversity. To
minimize unnecessary rejuvenation an effective sample size threshold can be used.
This only triggers rejuvenation when particle diversity has decreased below the
target effective sample size threshold.

Marginal Metropolis-Hastings

The Metropolis-Hasting step may be used as a model fitting approach in it’s own right
(MCMC) when repeated sequentially. It works by proposing a new value from the proposal
distribution, estimating the marginal likelihood using the attached particle filter (or using
any other exact or inexact method), and then accepting or rejecting the move based on the
acceptance probability.[123] Where the acceptance probability is given by,

min
(

1, p(y(t1:T )|θ′)p(θ′)q(θ|θ′)
p(y(t1:T )|θ)p(θ)q(θ′|θ)

)

Where y is the observed data, θ is the current parameter set, θ′ is some proposed parameter
set sampled from some proposal distribution q(θ′|θ).[123] By construction, samples drawn
using this rule are ergodic to the posterior distribution. This means that after convergence,
samples drawn using this rule may be considered as samples from the posterior distribu-
tion.

9.3.3 Calibration

Particle calibration

The accuracy of the marginal likelihood estimate returned by the particle filter is dependent
on the number of particles used, the number of observed data points, the parameter sample,
and the complexity of the model. As the number of particles tends towards infinity the
likelihood estimate provided by the particle filter should tend towards the exact solution.
This suggests that choosing a very high number of particles may be the most efficient
solution in terms of accuracy. Unfortunately, each particle requires a full model simulation,
which for complex models can be computationally costly. This means that using very large
numbers of particles is not tractable. For this reason it is necessary to determine an optimal
number of particles that both provides an adequately accurate estimate of the likelihood
whilst being computationally tractable.

The rbi.helpers R package attempts to solve this issue by adopting the following strat-
egy.[125] First, the approximate mean of the posterior distribution is obtained, as accurate
likelihood estimates near the posterior mean are of the most interest. Repeated model sim-
ulations are then run using the same set of parameters, with the marginal likelihood being
estimated each time using a given number of particles. The variance of these log-likelihood
estimates is then calculated. This process is then repeated for increasing numbers of parti-
cles until the log-likelihood variance is below some target threshold, commonly 1.[125]

I have implemented this as a two step process for each fitted scenario. Firstly, I used the
Nelder-Mead simplex method, via LibBi,[123] to find a parameter set that optimised the
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maximum likelihood. I then initialised a 1000 step PMCMC chain with this parameter set,
using 1024 particles in the particle filter. I then used rbi.helpers,[125] as outlined above,
to estimate the number of particles required to produce a log-likelihood variance of less than
1 for this sample of the posterior distribution, using 250 samples per step and starting with
16 particles. I initially planned to repeat this process for multiple draws from the posterior
distribution but this proved to be in-feasible given the compute available. A target of 5
for the log-likelihood variance was chosen as a smaller target could not be feasibly achieved
given the compute resources available. Additionally 1024 was specified as the maximum
number of feasible particles to use in the particle filter.

Proposal calibration

When using an MCMC algorithm a proposal distribution is required to provide new pa-
rameter samples to evaluate. For SMC-SMC a proposal distribution is required to inform
the MCMC sampler that is run during the rejuvenation step. By default if no proposal
distribution is provided LibBi uses the prior distribution.[123] The prior distribution can
be an inefficient proposal distribution as it is likely to have a low acceptance rate (from the
MCMC sampler).[123] Having a low acceptance rates means that many more MCMC steps
are required to generate a successful parameter sample. This results in slow mixing and
computationally expensive MCMC steps may make model fitting intractable.

A more efficient approach is to specify a proposal distribution that draws parameter samples
that are closer to the current state of the MCMC chain than the overall prior distribution.
There is an extensive literature examining how to optimise the proposal distribution to
achieve an good acceptance rate. In practice it has been shown that a rate of between
10% and 20% is optimal for upwards of 5 parameters.[123] This strikes a balance between
allowing the chain to fully explore the posterior distribution whilst still being as efficient as
possible.

A simple approach to setting the proposal is to run a series of MCMC steps and then
calculate the acceptance rate. Based on the acceptance rate the width of the proposal
distributions can then be adapted. By repeating these steps multiple times a proposal
distribution which gives an acceptance rate within the desired bounds can be arrived at.
This adaption can either be independent for each parameter or dependent (taking into
account empirical correlations). The adapt_proposal function, from the rbi.helpers R
package,[125] implements this approach and is used in this model fitting pipeline. In many
models, parameters are likely to have strong correlations (i.e between UK and Non-UK
born mixing rate and effective contact rate). In these scenarios, it is likely that a dependent
strategy for adapting the proposal distribution will more efficiently explore the posterior
distribution. However, the downside of adapting the proposal distribution using dependent
methods is that the resulting proposal is highly complex, is computationally expensive to
compute and may breakdown in some areas of the posterior distribution.

In this model fitting pipeline I have used a maximum of 5 iterations of, manual, independent
proposal adaption, drawing 250 samples in each iteration, starting with Gaussian distribu-
tions for each parameter, truncated by the range of the prior, with the mean based on the
current parameter value. The standard deviation for each parameter was assumed to be
the standard deviation of the prior if it was Gaussian and otherwise assumed to be the
range of the prior if it was uniform. For each iteration I halved the size of the standard
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deviation of each parameter. As for the particle calibration, I initially used a maximum
likelihood method to provide a point estimate of the best fitting parameter set, followed
by 1000 PMCMC steps, using a 1024 particle filter. This means that the proposal dis-
tribution is adapted near to the posterior mean rather than in the tails of the posterior
distribution.

I chose to use manual independent proposal adaption methods for several reasons. Firstly,
when developing this pipeline the approaches implemented in rbi.helpers produced multi-
ple transient errors in other rbi and rbi.helpers code. Secondly, the resulting dependent
proposal distribution was highly complex, slow to compute, and difficult to debug. Finally,
for SMC-SMC efficient exploration of the proposal distribution is less important than when
using MCMC alone as SMC-SMC is initialised with multiple samples from the prior distri-
bution. This means that multiple local maximas can be efficiently explored regardless of the
proposal distribution used. The MCMC rejuvenation step then serves to provide additional
samples from these local maximas. Proposal adaption was only carried out for the main
model scenario with all other scenarios using this proposal distribution.

9.3.4 Model comparison

In the previous chapter multiple scenarios were outlined, each of which could be valid based
on theoretical considerations. The observed data can be used to identify which of these
scenarios best reflects reality. This can be done using the deviance information criterion
(DIC). The DIC is a hierarchical modeling generalization of the Akaike information criterion
(AIC) and can be used to compare nested models.[126]

Smaller DIC values should indicate a better fit to data than larger DIC values. The DIC is
composed of the deviance, which favours a good fit, and the effective number of parameters,
which penalises over-fitting.[126] Unlike the AIC the DIC can be estimated using samples
from the posterior distribution and so is more readily calculated for models estimated using
Bayesian methods. It can be defined as,

DIC = D(θ̄) + 2pD

Where θ̄ is the expectation of θ, with θ being defined as the unknown parameters of the
model. pD is the effective number of parameters in the model and is used to penalise more
complex models. It can be estimated as follows,[126]

pD = pV = 1
2v̂ar (D(θ)) .

Finally the deviance is defined as,

D(θ) = −2 log(p(y|θ)) + C

Where y are the data, p(y|θ) is the likelihood function and C is a constant. C cancels out
when comparing different models and therefore does not need to be calculated.

The DIC has two limitations. The first of these is that in it’s derivation it is assumed that
the model that generates future observations encompasses the true model. This assumption
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may not hold in all circumstances. The second limitations is that the observed data is used
to construct both the posterior distribution and to estimate the DIC. This means that the
DIC tends to select for over-fitted models.[126]

In this chapter I have used the DIC, as estimated by the DIC function from
rbi.helpers,[125] to evaluate the various model structures outlined in the previous
chapter.

9.3.5 Parameter sensitivity

Understanding the impact of parameter variation can help when interpreting findings from
a model, targeting interventions, and identifying parameters for which improved estimates
are needed. Often parameter sensitivity is assessed using single-parameter or local sensi-
tivity analyses. Unfortunately, these techniques do not accurately capture uncertainty or
sensitivity in the system as they hold all other parameters fixed.[127] Multiple techniques
exist that can globally study a multi-dimensional parameter space but the partial rank
correlation coefficient method (PRCC) that I will discuss, and implement, here has been
shown to be both reliable and efficient.[127]

PRCC is a sampling based approach which can be computed with minimal computational
cost from a sample of the prior or posterior distributions of a model. It estimates the degree
of correlation between a given parameter input and an output after adjusting (using a linear
model) for variation in other inputs. It is an extension of more simplistic sampling tech-
niques, the most basic of which, is simply examining scatter plots of a sampled parameter
set against the outcome of interest. PRCC is required as these more simplistic techniques
become intractable with higher dimensionality as they do not account for between param-
eter correlation or are just difficult to interpret with multiple dimensions.[127] PRCC can
be understod by first outlining the individual steps. These are:

1. Correlation: Provides a measure of the strength of a linear association between an
input and and output (scaled from -1 to 1). It is calculated as follows,

ρX,Y = cov(X,Y )
σXσY

Where cov is the covariance, σX is the standard deviation of X, and σY is the standard
deviation of Y . Where X is the input and Y is the output.

2. Rank Correlation: This is defined as for correlation but with the data being rank
transformed. Rank transformation reorders inputs and outputs in magnitude order.
Unlike non-rank transformed correlation it can handle non-linear relationships but
still requires monotonicity.

3. Partial Rank Correlation: Inputs and outputs are first rank transformed as above.
Linear models are then built which adjust for the effects of the other inputs on Y , and
on the current input Xi. Correlation is the calculated as above using the residuals
from these models.

A limitation of PRCC is that it whilst it can capture non-linear relationships between
outputs and inputs these relationships must be monotonic.[127] For relationships that are
non-monotic methods that rely on the decomposition of model output variance, such as
the extended Fourier amplitude sensitivity test,[127] are more appropriate. However, these
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approaches are computationally demanding as they typically require multiple iterations of
model simulation. Additionally, they cannot be used on a previous parameter samples, in-
stead needing to sample and simulate the model within the parameter sensitivity algorithm.
This means that they cannot be used for “free” (i.e with negligible additional compute cost),
unlike PRCC which can be estimated using a sample from the posterior distribution. For
this reason these approaches have not been further explored in this thesis.

I have implemented PRCC using the epiR R package4,[60] using the samples from the
posterior distribution of the model calculated during the SMC-SMC step. Parameter sen-
sitivity measures such as PRCC must be calculated separately for each output time point.
I calculated the PRCC for each fitted parameter, at the final time point with fitted data
(2004), for overall TB incidence rates. These results are then summarised by plotting the
absolute PRCC values, indicating the direction of correlation using colour5.

9.3.6 Pipeline overview

The full model fitting pipeline can be summarised as follows6:

1. Model initialisation using minimal error checking and single precision computation.
Implemented using the disable-assert and enable-single flags in LibBi.[123] Out-
puts are only given for times with observed data and a subset of parameters are
recorded for final reporting7.

2. 1000 parameter sets were taken from the prior distribution and the model was then
simulated for each one.

3. Maximum likelihood optimisation with 100 steps, using the Nelder-Mead simplex
method, via LibBi.[123] This approximates the mean of the posterior distribution.

4. 1000 PMCMC steps, with 1024 particles used in the particle filter. This provides a
better estimate of the mean of the posterior distribution.

5. Particle adaption via rbi.helpers at the approximate mean of the posterior distri-
bution.[125] A minimum of 64 particles and a maximum of 1024 particles are assessed
with the target of a log-likelihood variance of less than 5. 250 PMCMC steps were
used at each stage to estimate the log-likelihood variance.

6. Manual independent proposal adaption at the approximate mean of the posterior
distribution. It is assumed that the proposal for each parameter is Gaussian, truncated
by the range of the prior with the mean based on the current parameter value. The
standard deviation of the proposal distribution is halved each iteration, with at most
5 iterations of adaption. The minimum target acceptance rate specified was 10% and
the maximum was 20%. 250 PMCMC samples were used each time to estimate the
acceptance rate. Proposal adaption was only carried out for the main model scenario,
with other scenarios using this proposal.

4Sensitivity code: https://github.com/seabbs/ModelTBBCGEngland/blob/master/R/test_
sensitivity.R

5Sensitivity plotting code: https://github.com/seabbs/ModelTBBCGEngland/blob/master/R/plot_
sensitivity.R

6Model fitting code: https://github.com/seabbs/ModelTBBCGEngland/blob/master/R/fit_model.R
7Model code: https://github.com/seabbs/ModelTBBCGEngland/blob/master/inst/bi/

BaseLineModel.bi
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7. SMC-SMC model fitting with 1000 initial parameter particles. Particle rejuvenation
was set to trigger when the effective sample size decreased below 25%, with 10 MCMC
steps used each time.

8. For each sample from the posterior distribution the model was then simulated for all
time points.

9. The model DIC was computed using rbi.helpers.[125] This gives a model agnostic
approach to evaluate the fit to the observed data.

10. Parameter sensitivity was estimated by calculating the partial rank correlation coef-
ficient (PRCC) for each model parameter, for the final time point fitted to (2004),
for overall TB incidence rates. Results were then plotted in order of the absolute
magnitude of the correlation, with the direction of the correlation determined using
colour. The epiR package was used to compute the PRCC.[60]

9.4 Results

The pipeline outlined above resulted in a poor fit to the observed data. The SMC-SMC
algorithm had a low effective sample size for each iteration, and a low acceptance rate
for particle rejuvenation steps in all scenarios evaluated. This resulted in spuriously tight
posterior distributions. Ad hoc calibration (detailed in the following section) failed to
improve the quality of this fit or find a subset of the model - or parameters - that fit
the observed data to an acceptable degree whilst remaining computationally feasible. All
results presented in the following section are based on posterior distributions produced by
the model fitting pipeline using the prior distributions specified in the previous chapter.
The results are preliminary and indicative only.

9.4.1 Ad hoc calibration

Minor alterations to the model fitting pipeline had little impact on the quality of the fit. To
attempt to improve the quality of the model fit I used a combination of ad hoc approaches.
As a first step I introduced a calibration model with variation allowed only in the fitted
parameters with all other parameters using point estimates. This allowed a reduced number
of particles to be used to estimate the marginal likelihood and hence dramatically decreased
compute cost and run-times. This reduced model was then used for the following tests:

• Increasing the number of particles used in the outer SMC loop at the expense of
reducing the number of particles used for marginal likelihood estimation.

• Increasing the number of particles used for marginal likelihood estimation.
• Sequentially decreasing model complexity by fixing fitted parameters to manually

tuned point estimates.
• Increasing the number of parameters fitted to rather than used as fixed distributions.
• Varying the size of the proposal distribution, rejuvenation threshold, number of par-

ticles and rejuvenation steps.
• Varying the fitted observed data. This took 3 main forms:

– Aggregation: fitting to overall incidence only; fitting to incidence grouped by
large age groups (i.e children, adults, older adults); fitting to only age groups of
interest (i.e children).
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– Reducing the time-span of the fitted data. This included simplifying down to a
single year of data but also included using various combinations of time points.

– Exploring additional observed data. This included attempting to fit to observed
pulmonary TB case from 1980 on-wards. This approach sought to constrain the
parameter space to give a more realistic age distribution of cases.

• Changing the functional form for the decay in the historic contact rate. This involved
exploring linear decay with the decay gradient dictated by the year that the current
contact rate takes effect and the year that the historic contact rate began to decay.

• Exploring using time dependent modifiers on the transmission probability and non-UK
born mixing.

• Exploring using modifiers for children, adults, and older adults for both the transmis-
sion probability and non-UK born mixing. This was essentially an extension of the
original scenarios considered using the model fitting pipeline.

• Exploring widening and narrowing the prior distributions of fitted parameters beyond
realistic ranges.

• Exploring varying the size of the initial high, and low risk latent populations. This
included starting with no latent cases, starting with a reduced proportion of latent
cases and starting with a much larger latent population to simulate a historically more
widespread disease.

None of these approaches dramatically improved model fit to the point that more robust
inference could be drawn. Reducing the number of parameters, and time points, fitted to
decreased the computational cost of the pipeline and improved acceptance rates. However,
model fits remained poor until a single time-point and aggregated incidence were fitted to
using a single varying parameter (effective contact rate) with all others manually tuned.
Unfortunately, this simplified the model to the extent that it could not be used to generate
meaningful results. The introduction of multiple time-points led to poor model fits regard-
less of the observational data used. This effect may be attributed to particle degradation
but was not resolved by the addition of more particles in either the marginal likelihood
estimation or the outer SMC step.[123] The use of pre-ETS pulmonary TB data worsened
the quality of the model fit. This may be attributed to the data including UK born cases
and therefore making the model fit more sensitive to the assumption used for the number
of non-UK born notifications prior to 2000. Using manual prior tuning, transmission and
mixing modifiers allowed a relatively close fit to the observed data but additional parame-
ters, beyond those specified in the model fitting pipeline did little to improve on this. The
quality of the model fit using the model fitting pipeline was poor regardless of the number
of modifier parameters used. Varying the initial latent populations resulted in higher than
previously estimated historic effective contacts but again did little to improve the quality
of the model fit.

Murray et al. suggests that increasing the number of particles used in SMC may improve
the quality of the model fit.[123] Unfortunately as LibBi stores SMC particle paths in
Random access memory (RAM) the number of particles was restricted. An additional
limitation is that the current rejuvenation step also need to be stored in RAM. Attempts
to increase the amount of available RAM (64 GB) using a 500GB SWAP (virtual memory)
drive increased the upper limit on the number of particles but gains from this were restricted
due to thrashing8. Thrashing occurs when to much data is written to SWAP memory in a

8Thrashing: https://en.wikipedia.org/wiki/Thrashing_(computer_science)
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short period of time and usually results in a system crash. A major cause of the high RAM
requirements of the model was that LibBi stores all parameters defined as initial conditions
across every time point in the model, regardless of the settings used. Attempting to reduce
the RAM footprint by fitting a greater number of parameters allowed for a greater number
of particles to be used but also increased the model degrees of freedom and hence upped
the required number of particles required by a greater amount than provided by fitting
the parameter. Reducing the number of particles used to estimate the marginal likelihood
allowed a greater number of particles to be used in the outer SMC step but this resulted in
highly inaccurate estimates of the likelihood. These highly inaccurate likelihood estimates
resulted in the SMC-SMC algorithm focusing on parameter sets that had a low likelihood
estimate yet fit the data poorly - ultimately leading to poorer model fits.

Varying the proposal size, rejuvenation threshold, and number of rejuvenation steps showed
some promise at improving the quality of the model fit but ultimately computational con-
straints limited how much progress could be made using this approach. It is possible that a
much longer run time could result in an improved fit to data with no other model changes.
Alternatively these results may be driven by the model being too complex for an SMC-SMC
approach to be viable.

9.4.2 Particle and proposal calibration

After development of the model fitting pipeline but before results could be produced both
the optimise (from rbi) and adapt_particle (from rbi.helpers) began to error with
multiple, transient, LibBi error messages. This meant that steps 3-5 of the model fitting
pipeline could not be used with the final model. As a work around the maximum permitted
number of particles (1024) was used for all model fitting (increasing the number of particles
was also explored as detailed in the previous section).

As discussed, there were multiple issues with fitting the final model and this made it difficult
to determine what the mean of posterior distribution was. This made manually tuning the
proposal distribution challenging and so instead a standard deviation of 1% was used. This
value was chosen as it increased the acceptance rate by limiting each rejuvenation step to
a relatively small subset of the prior distribution whilst not preventing the exploration of
new parameter space in scenarios when model fits from the initial particle sample were
poor.

9.4.3 Model comparison

Whilst none of the scenarios fitted the data well, scenarios that included variable trans-
mission probability in young adults fitted the data much better than those that did not
(Table 9.2). When considered on it’s own, allowing non-UK born mixing to vary for young
adults had only a small impact on the quality of the model fit in comparison to allowing the
transmission probability to vary. However, the scenario that allowed both the transmission
probability and non-UK born mixing to vary fit the data much better than any other sce-
nario considered (Table 9.2). In the following sections only the results from this scenario
will be discussed.
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Table 9.2: DIC values for each scenario evaluated during model fitting -
arranged from best to worst model fit. Using 1000 samples from the posterior
distribution of the fitted model for each scenario.

Scenario DIC

Transmission variable in young adults (15-29) and non-UK
born mixing variable in young adults (15-29)

4559

Transmission variable in young adults (15-29) 6170
Non-UK born mixing variable in young adults (15-29) 20464
Baseline 20693

9.4.4 Model Fit to TB incidence from the ETS

The fitted model consistently under-predicted overall TB cases for all years with data (Table
9.3). It also failed to capture the overall trend in TB incidence with the forecast incidence
increasing year-on-year in comparison to the observed data which showed greater variation.
Stratifying by age shows that the model also failed to captured the age distribution of TB
incidence (Figure 9.1. Whilst the model under predicted TB incidence in all age-groups it
was more accurate for older adults, implying that even if the magnitude of cases had been
better predicted the distribution would still not match the observed data.

Table 9.3: Observed versus predicted overall TB cases for years that the
model was fitted to. (95% CrI): 95% credible interval estimated using the
2.5% quantile and the 97.5% quantile. Using 1000 samples from the posterior
distribution of the fitted model for the scenario with variability in both
transmission and non-UK born mixing.

Year Observed Cases Predicted Cases (95% CrI)

2000 1803 716 (270, 1427)
2001 1866 713 (272, 1397)
2002 1833 724 (283, 1373)
2003 1685 742 (314, 1376)
2004 1776 747 (321, 1369)
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Figure 9.1: Observed and predicted annaul TB incidence stratified by model
age group (0-11). 0-9 refers to 5 year age groups from 0-4 years old to 45-49
years old. 10 refers to those aged between 50 and 69 and 11 refers to those
aged 70+. The darker ribbon identifies the interquartile range, whilst the
lighter ribbon indicates the 2.5% and 97.5% quantiles. The line represents
the median. Using 1000 samples from the posterior distribution of the fitted
model for the scenario with variability in both transmission and non-UK
born mixing.
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9.4.5 Posterior parameter distributions

The fitted model had a low effective sample size manifesting in spuriously tight posterior
distributions (Figure 9.2; Table 9.4). This indicates that model fitting did not allow for a
full exploration of the parameter space. Given that a relatively tight proposal distribution
was used this may indicate that an independent proposal is insufficient. It is likely that the
key factor behind the model’s consistent under-prediction is the selection of a low value for
the current effective contact rate and the historic effective contact rate. It is difficult to
interpret these findings further due the low quality of the posterior distribution.

Table 9.4: Prior and posterior medians for fitted model parameters. (95%
CrI): 95% credible interval estimated using the 2.5% quantile and the 97.5%
quantile. Using 1000 samples from the posterior distribution of the fitted
model for the scenario with variability in both transmission and non-UK
born mixing.

Parameter Prior (95%CrI) Posterior (95%CrI)

βyoung adult 5.03 (0.21, 9.68) 7.58 (7.58, 7.58)
ceff 1.11 (0.08, 3.04) 0.53 (0.53, 0.53)
chisteff 10.46 (1.47, 19.41) 1.86 (1.86, 1.86)
chisthalf 6.06 (0.48, 15.41) 6.61 (6.61, 6.61)
M 1.19 (0.09, 3.02) 0.39 (0.39, 0.39)

Myoung adult 5.41 (0.33, 9.77) 8.98 (8.98, 8.98)
Esyst 0.90 (0.82, 0.98) 0.83 (0.83, 0.83)
Enoise 0.01 (0.00, 0.02) 0.02 (0.02, 0.02)
ιscale 99.37 (5.55, 194.43) 80.13 (80.13, 80.13)
εolder-adultL 2.01 (1.14, 2.99) 2.11 (2.11, 2.11)
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Figure 9.2: Prior and posterior distributions for fitted model parameters. Pa-
rameter names in figure are in their coded form. They can be interpreted as
the following parameters: βyoung adult,ceff, chisteff , chisthalf, M , Myoung adult, Esyst,
Enoise, ιscale, and εolder-adultL . Using 1000 samples from the posterior distribu-
tion of the fitted model for the scenario with variability in both transmission
and non-UK born mixing.

9.4.6 Parameter Sensitivity

Figure 9.3 shows the partial rank correlation coefficients for each parameter that was fitted
to. It indicates that variation in the effective contact rate and non-UK born mixing lead
to the greatest variation in TB incidence. Based on the model structure this makes sense
as these paremeters are directly linked to modern day transmission. The parameters that
modify TB transmission and non-UK born mixing in young adults also lead to significant
variation in TB incidence. This corresponds to the findings from the scenario analysis
discussed above in which the introduction of these parameters resulted in a greatly improved
model fit. The lack of diversity in the posterior distribution seen above means that these
findings are indicative only.
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Figure 9.3: Partial rank correlation coefficients for each parameter fitted too.
Parameter names in figure are in their coded form. They can be interpreted
as the following parameters: βyoung adult, ceff, chisteff , chisthalf, M , Myoung adult,
Esyst, Enoise, ιscale, and εolder-adultL . Using 1000 samples from the posterior
distribution of the fitted model for the scenario with variability in both
transmission and non-UK born mixing.
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9.5 Discussion

In this chapter I have formulated the disease transmission model developed in the previous
chapter as a state-space model, developed a model fitting pipeline to fit this model to ob-
served data, discussed the approaches taken to try and improve the quality of the model
fit, and presented preliminary results from the model fitting pipeline. The model fit the
observed data poorly using the approach layed out here. Whilst multiple ad hoc approaches
were used to try and improve the quality of the model fit these did little to improve it. The
model consistently under-predicted overall TB incidence and also failed to reproduce the
observed age distribution. There was little evidence of a good fit to trends over time in
the observed data. Model comparison showed that models that included modifying param-
eters for the transmission probability, and non-UK born mixing in young adults fitted the
observed data better than those that did not. The estimated posterior distributions for
all parameters were spuriously tight in comparison to the prior distributions. This may
be evidence of poor mixing meaning that any conclusions drawn about the parameter sets
selected may be incorrect. Parameters that contributed to recent TB transmission domi-
nated those that contributed across the time-span of the model in the parameter sensitivity
analysis.

As discussed earlier in this chapter, SMC-SMC was used for all model fitting. This uses
an external SMC step to estimate the posterior distribution as well as an internal SMC
step to estimate the marginal likelihood. In general, Bayesian model fitting approaches
are beneficial as they allow prior information to be fully incorporated into model fitting
and they produce posterior distribution estimates rather than point estimates.[123,128]
There are two main families of approaches, SMC and MCMC. Using SMC to estimate
the posterior distribution has numerous advantages over MCMC. The first of these is that
MCMC approaches are sensitive to their initial conditions. If a model has multiple local best
fits MCMC may only converge to a single minima rather than fully exploring the posterior
distribution. Multiple MCMC chains may be used to try and account for this but as each
chain must be independently run to convergence only a few concurrent chains are likely
to be practical. SMC on the other hand is initialised with a large sample from the prior
distribution, meaning that local minimas are more likely to be explored. Parameter particle
weighting and re-sampling then balances the contribution to the posterior distribution of
these local minimas based on their fit to the observed data. Additionally, MCMC approaches
are by definition sequential,[123] although if they make use of particle filters these can be
run in parallel. Increasing the number of particles in a filter may lead to an increase in the
chain mixing rate of the MCMC chain but as particles numbers are increased any returns
will decrease. To account for this multiple chains are often used, but as outlined above the
burn-in required for each chain limits the potential speed-up. In comparison, each SMC
parameter particle can have it’s marginal likelihood computed separately. Although the re-
sampling step remains a bottleneck as it can only be completed once all marginal likelihoods
have been computed. On the other hand SMC is less interactive than MCMC meaning that
model fitting is harder to inspect when it is in progress. This is because SMC cannot
be inspected sequentually, unlike an MCMC run for which each draw can be inspected
as it is computed. Similarly, as SMC is not a sequential technique multiple runs cannot
be combined. This means that model fitting must be done in a single run using a priori
knowledge to judge the number of MCMC rejuvenation steps required, and the expected
total run time. SMC will also have a variable run time based on the effective sample
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size as rejuvenation only happens when parameter particles have been depleted beyond a
certain point. An additional benefit of SMC approaches are that they can theoretically be
extended to model selection as well as parameter posterior estimation - effectively estimating
posteriors for candidate model structures.[128] Beyond SMC and MCMC there are multiple
other model fitting algorithms that each have their own strengths and benefits - discussion
of these is outside the scope of this thesis.

The particle filter has been shown to provide an unbiased estimate of the likelihood for ar-
bitrary state-space models.[123] As a full information technique the particle filter provides a
more accurate estimate of the likelihood than other approximate techniques with relatively
little tuning or user interaction.[123] The major downside of the particle filter is the high
compute requirements, with each particle requiring a full model simulation. For highly com-
plex models, the particle filter approach may not be tractable or a reduced level of accuracy
of the marginal likelihood estimate must be accepted. In addition, the bootstrap particle
filter may become depleted (i.e variance between particles is reduce to such an extent that
the effective sample size becomes small) when the model being fitted is a poor fit for the
observed data.[123] Whilst this can be resolved using additional particles, or rejuvenation
steps, this may not be computationally tractable. There are several alternative particle
filters that seek to mitigate these issues but many of them are highly complex and do not
significantly reduce the required compute - see [123] for a detailed discussion of some of
these alternatives. An alternative approach to the particle filter is to use an approximate
technique, such as approximate Bayesian computation (ABC). ABC can be used to avoid
having to estimate the likelihood by comparing observed and simulated data.[128] This
dramatically reduces the required compute as multiple model simulations per parameter
set are no longer required. The comparison between the observed and simulated data is
facilitated using a distance function with parameter sets being accepted if they are within
some threshold distance. This threshold can be be tuned to produce a good estimate of
the posterior distribution. Developing a distance function for all of the observed data can
often be challenging so instead the distance is often calculated using a set of summary fea-
tures.[128] In principle, ABC can be used with a wide variety of algorithms (including a
simple rejection approach, MCMC, and SMC) to estimate the posterior distribution but in
practice it has been shown that ABC-SMC generally performs better than alternative ABC
approaches.[128] The two major limitations of ABC compared to the use of a particle filter
is that in most cases summary statistics must be used rather than calculating the distance
from the observed data and a function for calculating the distance must be chosen.[128,129]
Whilst some techniques exist for evaluating summary statistics the choice is often sub-
jective, relying on domain knowledge.[129] Chosen summary statistics rarely capture the
information contained in the observed data fully and can inflate posterior distribution and
in the worst cases introduce bias to the estimates.[130] The choice of distance function may
also influence the estimates of the posterior distribution.[129]

This chapter showcased the use of LibBi, rbi, and rbi.helpers for fitting a complex trans-
mission model. Unfortunately, the quality of the model fit was poor and the complexity of
LibBi makes understanding the root cause difficult. It is possible that the model developed
in the last chapter is too complex to be fitted using this approach - at least without the
use of several orders of magnitude greater compute resources (or compute time) than avail-
able.[123] However, it is also possible that even with these resources this pipeline may not
have produced a high quality model fit as the model developed in the previous chapter was
clearly much more complex than those envisioned by the developers of the software.[123]
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Alternatively, the model itself may not be identifiable with the available data.[129] LibBi,
rbi and rbi.helpers have great potential as a standardised toolbox for modellers. How-
ever, in their current state they are difficult to use beyond relatively simple use cases. This
difficulty is compounded by sporadic, inconsistent, documentation of both the underlying
software and it’s R interface. On top of this, both LibBi itself and the R libraries that
support it have multiple apparent bugs that can be frustrating to debug due to the layered
nature of the software. rbi and rbi.helpers are under development and it is likely that
many of these issues will be dealt with over time. However, LibBi itself has not had a ma-
jor release since 2016, the community around it is largely inactive, and it’s complex nature
makes it difficult for newcomers to contribute towards it’s development. It is possible that
the fitting issues outlined here may be due to errors in the code used to implement the
model from the previous chapter. This is unlikely as manual prior tuning has shown that a
relatively good fit to the observed data can be achieved with the current model but these
results could not be reproduced using the model fitting pipeline. However, this does not
mean that the modelling code is bug free. Model bugs, if present, would bias results from
the fitted model rather than preventing a good fit to the data or would prevent the model
from being manually tuned to fit the data.

There are many other tools available within the R ecosystem for fitting infectious disease
models and detailing them all is beyond the scope of this thesis. However, LibBi, rbi, and
rbi.helpers represent an attempt to provide a complete modelling framework rather than
being a simple toolbox for model fitting. The pomp package has a similar aim making a
comparison worthwhile.[10] pomp defines models using a similar structure to that presented
here and used within LiBbi. However, rather than using it’s own modelling language it
relies on the use of either R or C code. This has several advantages in that pomp models
can more easily be generalized, can be understood and implemented by users new to the
package and can make use of packages from the wider R and C ecosystem. The downside
to this approach is that for complex models the use of C is essentially a requirement for
efficiency reasons and implementing complex models in C can be an error prone and time
consuming process. pomp offers support for PMCMC, iterated filtering, and ABC-MCMC
but does not support SMC based approaches (such as SMC-SMC and ABC-SMC).[10] In
developing the work presented here, and in the previous chapter, a simpler model was
developed using pomp9. This work was not included in this thesis as it was not sufficiently
developed. However, it highlight similar issues with the pomp package to those observed
when using LibBi. Whilst pomp’s documentation, stability, and testing were much improved
over LibBi it had similar limitations when it came too complex models. This was to such an
extent that I developed numerous helper functions to deal with both the input and output
of pomp models10. pomp’s documentation also has a heavy focus on iterated filtering over
other model fitting techniques.

Whilst the results presented here are not encouraging it may be the case that with a greatly
extended run-time a better fitting model may be found. The first step to testing this is
to rerun the pipeline using several orders of magnitude more rejuvenation steps - as these
have no RAM overhead. Even if the resulting model fits are still poor this may indicate
areas for improvement - in either the model fitting pipeline or the model itself. Reducing
model complexity may also help via decreasing the computational burden, allowing more

9pomp modle code: https://gist.github.com/seabbs/f08a8a46b1342b8649df963ac015ea31
10idmodelr: https://github.com/seabbs/idmodelr
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particles to be used, and also reducing the size of the potential parameter space. Possible
simplifications are to remove features, such as the treatment population, that do little to
alter the dynamics but are present due to use case concerns or switch from a continous
framework to a discrete one. An alternative option is to re-code the model developed in the
last chapter into a more generic form (i.e C) and to attempt to fit the model using other
techniques that are less compute intensive and more robust - such as SMC-ABC. Another
option would be to re-implement the model in the form required by another modelling
package - such as pomp. However, this would mean running the risk of again getting stuck
within a framework that is difficult to debug and may not be working as expected. A final
option would be to reduce the complexity of the model and potentially fit to less complex
data. This may be the only solution if the current model is not identifiable.

The model fitting pipeline developed here was theoretically robust, and highly reproducible,
but in practice did not produce a high quality model fit. It is difficult to determine whether
this was caused by the complexity of the model combined with the high compute require-
ments of SMC-SMC or if the software implementation itself was at fault. However, LibBi’s
high barrier to entry and difficulty of use made both implementing the model, and assessing
whether the model fitting was working as expected more difficult. It is likely that a more
generic model implementation coupled with a less compute intensive fitting approach would
produce more useful results. This work does still have some merit as it pushed both LibBi
and SMC-SMC to it’s limits helping to define what the limitations of this approach, and
specialised modelling packages more generally, may be. It is possible that with an extended
run-time model fits may become more reliable and hence more usable.

9.6 Summary
• Defined the disease transmission model from the previous chapter as a state-space

model, outlined the available data to be used for fitting it, and detailed a measurement
model to link the observed data with the dynamic TB model.

• Developed a model fitting pipeline based on SMC-SMC to fit the previously defined
state-space model to TB notification data. The theoretical background for this ap-
proach was outlined as well as the key steps for implementing it in practise.

• As the quality of model fit achieved was poor ad hoc calibration approaches, and the
results they gave, were discussed.

• The scenarios outlined in the previous chapter were evaluated using DIC and the
implications of the findings were discussed.

• Model forecasts from the best fitting scenario, as established using the DIC, were
compared to observed data. Posterior distributions from this model fit were then
contrasted with the prior distributions. Finally, parameter sensitivity was estimated
using the posterior distributions.

• Discussed the strengths and limitations of the work presented here, as well as outlining
potential further work.
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Chapter 10

Investigating the impact of the
2005 change in BCG vaccination
policy using a fitted dynamic
transmission model of TB

10.1 Introduction

In the previous chapter I outlined a model fitting pipeline and discussed the results from
using it on the model developed in Chapter 8. Whilst this fitted model may be used to
explore the epidemiology of tuberculosis (TB) in the early 2000’s it does not - as currently
stands - explore the impact of the 2005 change in BCG vaccination policy (Chapter 2).
Models are useful in this context as dynamic model forecasts can be derived for multiple
scenarios that may only exist on paper and so have little to no data to support them.
These forecasts may then be used by policy makers as indicators of the likely impact of
these scenarios.

This chapter details the approach used to extrapolate 1000 samples from the posterior
distribution of the fitted model from the previous chapter (for the best fitting scenario
with variability in both transmission and non-UK born mixing) beyond the change in BCG
policy in 2005 and into the future. It first outlines the scenarios considered, then details
the assumptions used to expand the time horizon of the model. Finally the impact of each
scenario is explored over multiple time horizons. As discussed in the previous chapter these
findings are preliminary in nature, meaning quantitative conclusions cannot be drawn and
qualitative conclusions must be appropriately caveated.

10.2 Methods

10.2.1 Scenarios considered

I considered three scenarios from 2005 on-wards. These were:

• Universal BCG vaccination of those at school-age continued with the same coverage
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as previously.
• Universal BCG vaccination of those at school-age was phased out in 2005 and replaced

with universal BCG vaccination of neonates with the same coverage levels as assumed
for the BCG schools scheme.

• Universal BCG vaccination of those at school-age was phased out in 2005 (i.e no
vaccination post 2004).

The BCG policy change in 2005 was from universal school-age BCG vaccination to targeted
vaccination of high risk neonates. However, here universal vaccination of neonates is used
as a proxy for targeted vaccination of high risk neonates. This was necessary because the
high risk population was not modelled in the model developed in Chapter 8 due to the lack
of data on which to base key assumptions. No vaccination was used as a baseline in order
to explore the absolute impact of vaccination. Vaccination coverage was assumed to be
constant across all scenarios as there was little data on which to base between assumption
variation. Regardless of the scenario considered it was assumed that school-age vaccination
was in place from 1953 through to 2004.

10.2.2 Forecasting assumptions

Data on non-UK born cases, which were imported into the model via the force of infection
(Chapter 8), were not available beyond 2015. To account for this an, age and year adjusted,
Poisson regression model was used to forecast future TB incidence in the non-UK born with
age treated as a categorical variable. As for years with data, uncertainty was introduced
into these forecasts by assuming that non-UK born incidence rates were scaled using the
fitted measurement error and normally distributed with a standard distribution based on
the fitted measurement standard error (Chapter 9).

As outlined in Chapter 8, births from 2015 on-wards were based on projections from the
Office for National Statistics (ONS). Age-specific mortality rates were estimated for 2016
on-wards using ONS estimates from 1981-2015, and an exponential model (Chapter 8).
Both births and age-specific mortality rates were assumed to have a normal distribution
with a standard deviation of 5% of the predicted value. It was assumed that all other
parameters were unchanged from the values estimated for 2000-2004 (Chapter 9).

10.2.3 Analytical methods

Estimated age-stratified, and aggregated, TB incidence, and mortality were compared both
visually and numerically from 2005 through to 2040 for each scenario. Multiple time hori-
zons were evaluated across this timespan as initially the impact of any policy change may
be masked by the large reservoir of vaccinated individuals in the population and because of
the impact of the assumed decrease in non-UK born cases over time.

10.3 Results

All results presented in the following section are based on 1000 samples from the posterior
distribution of the fitted model from the previous chapter (for the best fitting scenario with
variability in both transmission and non-UK born mixing) extended beyond the change in
BCG policy in 2005 using the assumptions detailed in the previous section. These results
should be considered preliminary because of the low quality of fit achieved in Chapter 9.
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This means that quantitative estimates are unlikely to be accurate. However, the underlying
changes in dynamics caused by vaccination may be used for insight into the likely impact
of each scenario and therefore there is still some value in exploring these results.

10.3.1 Forecasting the long-term impact of each vaccination sce-
nario.

Continuing with school-age vaccination resulted in the fewest number of cases regardless of
the time-span considered (Table 10.1). However, the difference between vaccination scenar-
ios was consistently small when compared to the overall number of cases. In all scenarios
TB incidence was forecast to decrease over time in line with the decreases assumed in non-
UK born TB incidence. The lower bounds for each scenario were relatively comparable,
with the upper bounds being being higher for both neonatal BCG vaccination and no BCG
vaccination when compared to school-age BCG vaccination.

Table 10.1: Forecast of overall TB incidence for each scenario evaluated from
2005 to 2040. For brevity only 5 year intervals are shown. (95% CrI): 95%
credible interval estimated using the 2.5% quantile and the 97.5% quantile.
Using 1000 samples from the posterior distribution of the fitted model for
the scenario with variability in both transmission and non-UK born mixing.

Year School-age BCG (95% CrI) Neonatal BCG (95% CrI) No BCG (95% CrI)

2005 766 (347, 1419) 757 (321, 1420) 757 (326, 1552)
2010 735 (344, 1369) 856 (376, 1516) 908 (415, 1729)
2015 649 (283, 1234) 757 (311, 1379) 800 (343, 1547)
2020 594 (239, 1124) 691 (277, 1260) 737 (297, 1425)
2025 537 (203, 995) 614 (236, 1144) 659 (250, 1268)

2030 488 (178, 925) 554 (198, 1029) 594 (213, 1171)
2035 442 (155, 845) 501 (157, 926) 538 (177, 1034)
2040 403 (135, 775) 453 (134, 849) 486 (155, 961)

As expected neonatal vaccination resulted in a rapid decline in TB incidence in 0-4 year
olds and a smaller but still large reduction in 5-9 year olds (Figure 10.1). There was a
slight reduction in 10-15 year olds. School-age vaccination resulted in lower incidence in
all adult populations when compared to any other scenario, except in adults over 45 where
all scenarios were comparable. Neonatal vaccination resulted in a slight decrease in TB
incidence rates when compared to no vaccination in young adults.
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Figure 10.1: Forecast of TB incidence for each scenario evaluated from 2005
to 2040, stratified by age group (0-11). 0-9 refers to 5 year age groups from
0-4 years old to 45-49 years old. 10 refers to those aged between 50 and 69
and 11 refers to those aged 70+. Scenarios are differentiated by colour. The
darker ribbon for each colour identifies the interquartile range, whilst the
lighter ribbon indicates the 2.5% and 97.5% quantiles. The line represents
the median. Using 1000 samples from the posterior distribution of the fitted
model for the scenario with variability in both transmission and non-UK
born mixing.
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As estimates of TB mortality were low (significantly lower than estimated using the ob-
served data) the impact of any vaccination scenario was minimal (Table 10.2; Figure 10.2).
Continuing school-age BCG vaccination resulted in a very small reduction in TB mortality
compared to any other scenario (Table 10.2). The age distributed impact of each scenario
on TB mortality was comparable to that observed for TB incidence (Figure 10.2).

Table 10.2: Forecast of overall TB mortality for each scenario evaluated from
2005 to 2040. For brevity only 5 year intervals are shown.(95% CrI): 95%
credible interval estimated using the 2.5% quantile and the 97.5% quantile.
Using 1000 samples from the posterior distribution of the fitted model for
the scenario with variability in both transmission and non-UK born mixing.

Year School-age BCG (95% CrI) Neonatal BCG (95% CrI) No BCG (95% CrI)

2005 51 (16, 119) 51 (14, 128) 50 (15, 136)
2010 48 (15, 110) 52 (16, 130) 53 (17, 146)
2015 43 (13, 101) 47 (13, 119) 48 (15, 133)
2020 39 (11, 92) 43 (12, 107) 43 (13, 120)
2025 35 (10, 84) 39 (10, 96) 39 (11, 108)

2030 32 (9, 79) 35 (9, 89) 36 (9, 99)
2035 30 (8, 74) 33 (8, 82) 33 (8, 90)
2040 28 (8, 70) 31 (8, 76) 31 (7, 83)
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Figure 10.2: Forecast of TB mortality for each scenario evaluated from 2005
to 2040, stratified by age group (0-11). 0-9 refers to 5 year age groups from
0-4 years old to 45-49 years old. 10 refers to those aged between 50 and 69
and 11 refers to those aged 70+. Scenarios are differentiated by colour. The
darker ribbon for each colour identifies the interquartile range, whilst the
lighter ribbon indicates the 2.5% and 97.5% quantiles. The line represents
the median. Using 1000 samples from the posterior distribution of the fitted
model for the scenario with variability in both transmission and non-UK
born mixing.
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10.4 Discussion

In this chapter I outlined 3 vaccination scenarios to explore: continuing school-age BCG
vaccination; universal neonatal vaccination; and no further vaccination. For each scenario I
forecast TB incidence and TB mortality from 2005 through to 2040 assuming that non-UK
born incidence rates would follow the same age stratified trends observed between 2010
and 2015. Although the results presented here are only preliminary, due to the quality of
the model fit, it appears that continuing school-age BCG vaccination would have resulted
in slightly reduced TB incidence across all time-points considered compared to any other
scenario. Neonatal BCG vaccination resulted in reduced TB incidence and mortality in
young children but had little impact later in life with a comparable effect to no vaccination.
School-age vaccination had no impact on young children but did reduce TB incidence and
mortality for all adults up to 45 years old. Beyond 45 years old no scenario impacted TB
incidence or mortality.

The model developed in Chapter 8 was motivated by existing theory and robustly pa-
rameterised to the available data. It represents the only (known) open-source model of
TB transmission and BCG vaccination. However, the model fitting pipeline developed in
Chapter 9 did not produce a good fit to the observed data. Ad-hoc model calibration (as
discussed in Chapter 9) failed to significantly improve on this fit. This means that the
findings presented in this chapter can be considered as indicative only. However, these find-
ings still represent the only modelling study of TB dynamics after a large scale change in
BCG vaccination policy. The lack of data to support modelling the high-risk TB population
population meant that targeted vaccination of high-risk neonates could not be considered
as a scenario. This means that the results presented in this chapter do not contain the
vaccination policy that is currently in place and so findings from the model cannot be di-
rectly compared to observed incidence data. However, only considering scenarios that alter
the age of those vaccinated, rather than both the age of those vaccinated and the targeting
of the vaccine, make understanding the impact of changes in vaccination policy easier to
determine. The forecasts presented in this chapter are highly sensitive to the forecasted
number of non-UK born TB cases. Whilst the regression method outlined in this chapter
extrapolates based on current age-stratified trends it may be the case that this extrapolation
breaks down over the long - or short - term. To a lesser extent the forecasts presented here
are sensitive to the projected number of births and mortality rates. This is particularly the
case for incidence rates in neonates and in older adults.

To my knowledge, there are no other dynamic modelling studies evaluating the use of the
BCG vaccine in low burden settings that include a comparable level of detail and that
are robustly parameterised based on the latest evidence. Harris et al. recently reviewed
mathematical models that explored the epidemiological impacts of future TB vaccines.[100]
They found that vaccines targeted at all-ages or at adolescents/adults were more effective
at eradicating TB than neonatal programmes when vaccine effectiveness was not assumed
to degrade with age. These findings agree with those presented in this Chapter, with
fewer overall cases observed when vaccination continued in those at school-age, compared
to neonatal vaccination. However vaccination in neonates did lead to a decrease in incidence
in children both over the long - and short term - in comparison to vaccination at school-
age.

The results presented in this chapter generally agree with other findings from this thesis.
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In Chapter 7, which estimated the impact of the change in vaccination policy in those
directly impacted by it, there was some evidence that changing to neonatal vaccination was
associated with a small increase in incidence rates in those who were school-age. There was
less evidence of a reduction in incidence rates in UK born neonates. The first of these results
matches the findings presented here. However, this chapter estimated a rapid reduction in
TB incidence in young children which was not seen in the previous work. Chapter 5, which
recreated a previously published transmission chain model estimated an initial impact from
ending school-age BCG vaccination but that this impact would decline with time. The
results presented here agree with this findings as long as it is assumed that non-UK born
incidence will decrease over time. However, here the impact of the scheme was estimated
to continue beyond the 15 year time horizon estimated in Chapter 5. In Chapter 6 I
found some evidence that BCG vaccination may decrease all-cause mortality in TB cases
and some evidence that indicated that this may be related to reduced TB mortality. If
either of these associations were causal then they would increase the benefit of vaccination
scenarios compared to no vaccination but would not alter the trade-offs between neonatal
and school-age vaccination.

Further work is need to improve the fit of the model to observed data (Chapter 9). This
will result in improved forecasts and more reliable results. In addition, other vaccination
coverage scenarios could be considered that explored the impact of vaccinating a reduced
proportion of both those at school-age and neonates. If additional data becomes available,
or if the appropriate assumptions are used, the inclusion of the high-risk population into the
model would allow the evaluation of targeted high-risk neonatal vaccination in comparison
to the other scenarios considered here. The extrapolation of the trend in non-UK born cases
is a limitation of this model and as such should be further explored using other assumptions
such as constant non-UK born cases, incidence rates based on expert opinion and estimates
based on other global modelling studies.

The results presented here indicate that changing from a school-age BCG vaccination pro-
gramme to a neonatal BCG programme lead to an overall increase in TB incidence, with
increases concentrated in the young adults, and to a lesser degree, in older adults. Neona-
tal vaccination led to a decrease in TB incidence in children both in the short - and long
term. This indicates that direct vaccination provides the best protection for children rather
than indirect protection via reduced transmission. This finding is likely to be dependent
on the degree of background transmission and so further modelling studies are needed in
diverse settings before conclusions can be generalised. No vaccination was shown to lead
to increased incidence in all age-groups when compared to school-age vaccination and in
children only when compared to neonatal vaccination. The impact of any vaccination pro-
gramme on older adults was small. These results are preliminary in nature as the model on
which they are based fitted poorly to the observed data. However, they do indicate some
of the trade-offs involved in setting BCG policy. If reducing childhood incidence was a goal
of the 2005 policy change then these results indicate a clear success. On the other hand
if reducing overall TB incidence was the goal then stopping shool-age vaccination has not
been a success.
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10.5 Summary
• Continuing school-age vaccination results in lower overall incidence rates compared to

both neonatal vaccination, and no vaccination.
• Neonatal vaccination resulted in low incidence in children compared to any other

scenario.
• No vaccination led to higher incidence in all age groups when compared to school-age

vaccination and in children only when compared to neonatal vaccination.
• The impact of any vaccination on cases in older adults (50+) was small.
• These results are indicative only due to poor quality of model fit achieved in the

previous chapter (Chapter 9).
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Chapter 11

Discussion

This thesis has assessed the impact of the 2005 change in BCG vaccination policy in some
detail. The aim of this chapter is to provide an overview of the principle findings of this
thesis; interpret these findings; discuss the overall strengths and weaknesses of this thesis;
outline the potential implications; explore the opportunities for public engagement that
this work allowed; and describe potential future research. Each results chapter contains a
detailed discussion of the approach used, the results, and the strengths and weaknesses of
the findings, for that chapter. Consequently, the aim of this chapter is to summarise and
discuss the findings from this thesis as a whole.

11.1 Principal findings
In Chapter 4, I explored TB epidemiology in England with a focus on BCG vaccination and
data completeness. I found that there was some evidence that negative outcomes were more
frequent in Tuberculosis (TB) cases not BCG vaccinated than in those that were. I also
found that missingness in routine surveillance sources of TB data was associated with mul-
tiple risk factors. In Chapter 6, I used logistic regression to estimate associations between
BCG vaccination and TB outcomes. I found supporting evidence that BCG vaccination
was associated with reduced all-cause morality with some evidence that this may have been
due to reduced TB mortality. I found little evidence for any other association with TB
outcomes, after adjusting for confounding. In Chapter 5, I explored some of the modelling
evidence that was used by policy makers to assess the impact of ending school-age universal
BCG vaccination. I found that the previous approach was methodologically flawed and had
underestimated the amount of uncertainty surrounding the effect estimates. Using newly
available data, I also found that ending universal school-age BCG vaccination was projected
to result in greater number of notifications in the UK born than previously thought. These
findings were confirmed in Chapter 7, where I evaluated the evidence in the surveillance
data that the change in policy had impacted TB incidence rates in the target populations,
using Possion and negative binomial models. However, in this chapter, I found that any
increase in TB notifications in the UK born was likely far outweighed by reductions in the
number of notifications in the non-UK born. Using this approach, I was unable to rule
out an unrelated policy change as the cause of this reduction. Finally, in Chapter 10, I
forecast the impact of various vaccination scenarios using a dynamic TB model that was
developed and fitted in Chapter 8 and Chapter 9. I found that the BCG schools scheme was
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projected to reduce UK born TB incidence compared to both neonatal and no vaccination
over a range of time horizons. However, neonatal vaccination reduced incidence in children
compared to any other scenario, although it had little impact in any other age group. No
vaccination programme evaluated had an impact on incidence in older adults. The results
from Chapter 10 are preliminary as the model on which they were based was a very poor
fit to the observed data (Chapter 9).

11.2 Strengths and limitations

This thesis has used multiple methods, and data sources, to explore the impact of the
2005 change in BCG policy. This multi-method approach allows for more certainty in the
findings than if only a single approach had been used. A limitation of the work in this thesis
is that all results were based on a single surveillance dataset. Surveillance data is subject
to multiple bias issues (see Chapter 4 for details). Ideally, multiple different data types
would have been used to more effectively triangulate the impact of the change in policy.
Datasets that would have added value include: notification data from other countries that
also changed BCG policy, regional datasets with more reliable data on BCG status and
year of BCG, and data on BCG coverage and eligibility. However, to my knowledge, no
similarly thorough use of an equivalent data source exists for TB. Another limitation of the
work in this thesis is the very poor fit of the dynamic model, developed in Chapter 8, to
the observed data. This made drawing conclusions from it difficult. On the other hand, the
model fitting presented in Chapter 9 represented one of the only open source examples of
fitting a very complex model to data using robust bayesian, plug and play, approaches. The
lack of success is itself a useful result from which much can be learned about the usability
of the fitting tools and the upper limits on model complexity. A major strength of the work
in this thesis is the attention that has been paid to make it both open and reproducible.
Hopefully, this will allow these findings to be more easily validated, and built upon, by
others. Finally, the work in this thesis generated several tools as a by-product of the main
research question.

11.3 Implications for policy makers

This thesis has highlighted the trade-off between vaccinating those at school-age and
neonates in a setting where the waning of BCG effectiveness when given later in life is
minimal. Whilst policy makers were previously aware of this trade-off, their was little
quantitative evidence exploring it explicitly. Globally, BCG policy does not account for
areas where the BCG vaccine may be equally effective regardless of when it is given.[3]
Future BCG policy should consider these factors. In addition, new TB vaccines are in
development that may be less susceptible to waning effectiveness when given later in life
over a greater geographic area.[22] The findings from this thesis may be applicable to
these new vaccines in areas where the BCG vaccine is currently known to be ineffective
when given later in life. This may mean that these newly developed vaccines may be
better targeted at those at school-age, rather than neonates, depending on the duration of
protection that they provide. The work from Chapter 8 and Chapter 9 may be particularly
suitable to adaption for this use case. This thesis has also explored the potential benefits
of BCG vaccination on TB outcomes. The evidence of a reduction in all-cause mortality
in TB cases may add additional weight to the argument that wider vaccination maybe
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more cost effective than previously thought in low incidence countries. These findings may
also be used to drive vaccine uptake as they provide additional incentives for vaccination.
Finally, this thesis has shown that the impact of the BCG policy has varied depending on
UK birth status. This may strengthen the case for varying vaccination policies depending
on the country of origin of the target of vaccination policy, and their immediate families
country of origin.

Policy makers in the UK should consider the implications of the results from this thesis
for BCG vaccination policy. Of particular importance is the finding that the previously
published approach for estimating the impact of ending BCG vaccination in the UK was
methodologically flawed, spuriously precise, and, when updated with newly available data,
produced much larger estimates of the impact of ending BCG vaccination than previously
thought. This finding highlights the importance of independent validation of modelling
studies by subject area experts. To counterbalance this, the finding that overall the change
in BCG vaccination policy was associated with decreased incidence rates indicate that the
change in policy may have been justified. However, the benefit of the policy change was
focussed on the non-UK born population who may have been impacted by other policy
changes. Considering UK born cases alone, this thesis provides evidence that TB cases
increased, with cases decreasing in young children. The modelling evidence, although pre-
liminary, supported the finding that the change in policy would lead to increased overall
incidence rates in the UK born population but reduce incidence rates in young children
compared to school-age vaccination. On top of these specific findings, the points made in
the previous paragraph also apply to the UK.

Unfortunately, definite recommendations cannot be made to UK policy makers based on
the findings from this thesis. This is due to several limitations of the evidence and due to
the inherent complexity of both TB and the BCG vaccine. A particular limitation is the
difficulty in identifying who - post the change in BCG vaccination policy - should have been
vaccinated and who should not have been. This meant that targeted high-risk neonatal
vaccination could not be modelled and therefore could not be compared to school-age BCG
vaccination. It also meant that population-level studies had to be used when studying the
impact of change in policy. As the impact of the targeted scheme was likely focussed on the
groups it targeted this may have diluted the impact of this policy. An additional issue is that
whilst a trade-off was identified between reducing the number of TB cases in young children
at the cost of a larger number of adult TB cases the impact of TB symptoms on children
compared to adults was not considered. To be able to make more precise recommendations
additional data sources are required. The first of these is a measure of the impact of TB on
individuals at various ages, such as a quality-adjusted life-year (QALY). This would ideally
be arrived at by assessing expert opinion and could then be used to identify what level of
trade-off between childhood and adult TB cases results in the lowest overall QALY burden.
Finally, data is required on who should have been vaccinated under the targeted high-risk
neonatal vaccination scheme and of these individuals how many of them then went on to
develop TB. This data would allow more precise statistical estimates to be made of the
overall impact of the change in policy and would also enable targeted high-risk neonatal
vaccination to be included in the dynamic TB model. Inclusion in the dynamic model would
then allow the impact of various targeted vaccination scenarios to be considered over an
extended time-frame and compared to universal vaccination scenarios.
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11.4 Open reproducible research
Open reproducible research has been a primary focus of this thesis. A version controlled
archive of this thesis is available from GitHub1, with a formatted version available on my
personal site2. This thesis relies on data from the Enhanced TB Surveillance system and the
Labour Force Survey. The cleaning and munging of this data has been standardised as an R
package, tbinenglanddataclean3, and is available for download. All chapters that contain
analysis are linked to their own GitHub repositories, each of which is fully reproducible
(discounting the raw data which cannot be released due confidentiality reasons). Literate
coding was used to link analysis code with documentation using the R tool chain. An
R package, prettypublisher4, was developed to augment these tools. Where possible
open source tooling has been used to provide a working analytical environment for each
chapter. All chapters that have been peer reviewed, or are undergoing peer review, have
been preprinted. The model developed in Chapter 8 has been released as an R package
along with the fitting pipeline developed in Chapter 9. Tools used to develop the figures in
Chapter 2, using World Health Organization data, were expanded into an R package (see
Chapter 3). Tooling developed alongside this thesis follows open source best practices. See
Chapter 1 for details of the open source projects developed as part of this thesis.

11.5 Public engagement
Public engagement has been a constant theme throughout my doctoral work. This is closely
linked with the previous aim of open and reproducible research. Effort has been taken so that
all peer reviewed content is available for the wider public with Twitter used to disseminate
findings. Where appropriate, interactive applications have been developed that seek to
explore some of the key findings of this thesis, as well as teaching more theoretical concepts
used throughout (see Chapter 1). Numerous case studies have also been produced that
outline these theoretical concepts using some of the open source tools developed alongside
this thesis5. These tools were themselves developed to lower the barrier of entry to infectious
disease research. One of these tools, idmodelr, has been released to CRAN. Finally, in 2017
I spent a week at the Green Man Festival exploring the mathematics of vaccination with
the general public. This made use of several simple games, as well as an interactive online
tool6.

11.6 Future research
The finding that BCG vaccination may reduce mortality in TB cases from Chapter 6 require
validation in other data sources and settings. A larger sample size may be required in order
to unpick the association between BCG vaccination and the cause of mortality. These
findings could also be included in a cost effectiveness study of the BCG vaccine. The
dynamic model developed in Chapter 8 and fitted in 9 did not fit the observed data well.
Additional compute time is needed to diagnosis whether this is a limitation of the fitting

1Thesis GitHub: https://github.com/seabbs/thesis
2Thesis website: https://www.samabbott.co.uk/thesis
3tbinenglanddataclean: https://www.samabbott.co.uk/tbinenglanddataclean/
4prettypublisher: https://github.com/seabbs/prettypublisher
5See my personal site: https://www.samabbott.co.uk
6Available here: https://github.com/seabbs/pebblegame
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technique used, if the model itself was a poor fit for the data, or if the model was overly
complex. Additional strategies for exploring this issue are discussed in Chapter 9. In
addition this model does not currently include targeted vaccination of neonates and is only
fitted to data up to 2004. In order to be able to more accurately explore current, and future,
vaccination policy the extension of the model to the present data would be required. This
would potentially be of great use for policy makers. An alternative would be to develop a
comparable model in different settings. This would allow the generalisability of the findings
to be explored. The dynamic model could also be further generalised to include hypothetical
future vaccines with differing characteristics. This would allow vaccine characteristics and
optimal deployment strategies to be explored, via simulations, ahead of further development.
Both getTBinR and idmodelr have active user bases and further developments are planned.
This includes: additional tooling, documentation, and case studies. Further development
of several of the interactive tools discussed in Chapter 1 is also planned.

11.7 Conclusions
This thesis has provided new evidence regarding the use of BCG vaccination in England. A
simulation study that was used as part of the quantitative evidence for the change in policy
was recreated, corrected, and updated. The results from this updated model suggested
that the change in policy was likely to have a greater impact on the UK born, at school-
age, than previously thought. This finding was supported by a regression modelling study
on the impact on TB incidence rates from the policy change. However, this study also
found that the change in policy was associated with some benefits in UK born neonates
and a much larger reduction in TB incidence rates in both non-UK born neonates and
those at school-age. An additional regression study looking at the possible link between
BCG vaccination and improved TB outcomes found some evidence that BCG vaccination
was associated with reduced all-cause mortality, with little evidence of any other benefits.
This result strengthens the case for wider vaccination. Additionally, a dynamic model of
TB transmission was developed to provide a more detailed tool for evaluating the impact
of the change in policy. Although this model was a poor fit to the observed data there
was some evidence that continuing school-age vaccination would have resulted in fewer UK
born TB cases but that neonatal vaccination reduced TB incidence in UK born children
compared to continuing school-age vaccination. There was also some evidence that none of
the vaccination strategies evaluated impacted incidence rates in older adults. These findings
suggest a stronger case for the use of the BCG vaccine in school-age populations; in areas
with an equivalent level of TB transmission to England; and where the effectiveness of the
BCG vaccine has been shown to not reduce with age. They also indicate that a future
vaccine, without the reduced effectiveness observed in some geographic areas, may be more
effectively targeted at those at school-age than at neonates. However, this depends on the
potential duration of protection conferred by vaccination. In addition, they highlight the
trade-off between neonatal and school-age vaccination with school-age vaccination reducing
overall TB incidence but neonatal vaccination reducing incidence in young children where
more severe outcomes are more common. The findings from this thesis may be of use to
policy-makers to inform vaccine usage both in the UK and globally. As a by-product of the
work conducted in this thesis several open source tools have been developed. These tools
maybe used as learning resources, for public engagement, and as part of other research
projects.
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