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ABSTRACT

B iological systems are complicated, formed of many interacting parts. Network science
is well placed to attempt to elucidate these systems, and it is important to further our
understanding to look at different biological networks across scales and applications.

For this thesis, we examined two biological systems that can be described with networks: gene
regulatory networks (GRN) and functional brain networks. We developed and analysed a novel
GRN describing pluripotent mouse embryonic stem cells (mESCs) dynamics. Pluripotency is
controlled by a complex GRN; understanding the interplay between the network elements and
factors present in the different media cultures could help define optimal culture protocols. We
expanded an existing GRN describing Nanog (a master regulator of pluripotency) dynamics to
include additional genes and both chemicals present in ground-state pluripotency media, i.e.
2i+LIF. We showed, using stochastic differential equations and bifurcation analysis, that the
experimental dynamics of Nanog result from the combination of feedback loops in the GRN
and transcriptional noise, giving rise to bistability. The functional brain network analysis we
performed was in exploring Multiple Sclerosis (MS), a demyelinating disease of the central
nervous system. This damage does not correlate with impairment, suggesting the brain can
undergo neuroplasticity to compensate. We used functional magnetic resonance imaging (a
technique to indirectly measure activity in the brain) collected in Bristol (CRICBristol) to explore
neuroplasticity. We preprocessed the scans, extracted time series from regions of interest (ROI)
and measured the functional connectivity (FC) between each ROI time series. We abstracted the
brain to a network, where nodes are different regions of the brain and edges represent the FC
between them. We measured different properties of the networks and compared them between
MS and healthy controls (HC). We found no evidence of neuroplasticity between MS and HC,
which could be because the MS cohort brains have already successfully undergone plasticity
to compensate for the damage caused. Future work for the GRN network could be in using it
to understand how chemicals known to interact with its elements could be applied to control
pluripotent behaviour of mESCs. For the functional brain networks, a dynamic causal modelling
(DCM) analysis could be done to elucidate if there are any differences in FC between MS and HC.
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INTRODUCTION

B iological systems are complex, often comprised of many intricate and interacting parts.

For example, there are approximately 20,000 genes in the human body [155]. These all

interact with each other as well as molecular pathways to create the body and maintain

the homeostatis of various organs. Another example is in the human brain which contains ap-

proximately 100 billion neurons [63] with many more connections between them, giving rise to

the control centre of the body vital for its survival.

The complexity of these systems can lend naturally to modelling them as networks, where

the nodes and edges can have distinct biological meanings. In biological systems it is important

to consider them as a whole, as well as account for temporal dynamics of the variables of interest.

With this understanding, new treatments for diseases, or protocols for in-vitro research, might be

better informed. Mathematical modelling is a useful tool, which can be used to represent biologi-

cal networks, complementing physical experiments and allowing a quantitative understanding

of the system dynamics. We studied two different biological networks. The first was a network

describing interacting genes in stem cells; we explored models of different in-vitro growing

conditions and analysed how this could change the expression of the genes being modelled and,

ultimately, stem cell phenotype. The second network involved the communications within the

brain; we investigated how network properties of these functional networks might differ between

different populations of interest.

In Chapter 2 we looked at how interactions among proteins, forming Gene Regulatory Net-

works (GRNs), can determine the fate of mouse embryonic stem cells (mESC) and their propensity

to differentiate into specialized cell types. mESCs have a property called pluripotency, meaning
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CHAPTER 1. INTRODUCTION

they can divide and give rise to other cells still able to differentiate into any cell type. These cells,

isolated from mice, can be indefinitely cultured in the lab to study development in-vitro, where

significant research effort has been put into defining optimal culture conditions for pluripotency

maintenance. The most notable pluripotency gene is Nanog [20], regarded as a master regulator of

pluripotency. Nevertheless, mESCs can respond differently to culture media and express different

concentrations of genes important for pluripotency. Cells expressing high concentrations of Nanog,

Nanog high (NH), posses greater pluripotency and therefore less propensity to differentiate. The

opposite is true for Nanog low (NL) cells. Additionally, mESCs are capable of switching between

NH and NL states due to temporal fluctuations of Nanog [4], with similar behaviour observed in

other pluripotency factors. These cells can be cultured in media [145]: Serum+LIF and 2i+LIF,

where Serum+LIF containins serum factors and leukaemia inhibitory factor (LIF) and 2i+LIF is

more recently established, replacing serum factor with two inhibitors called PD and Chiron. In

these media, mESCs of a previously proposed cell line type termed TNGA display heterogeneous

levels of Nanog in Serum+LIF, which when cultured in 2i+LIF is lost [159], replaced by an

observed pure NH distribution. This ‘ground-state’ of pluripotency has recently been challenged,

with a newer cell line type, termed ND [3], not displaying an elimination of the NL phenotype in

2i+LIF.

We focussed on the temporal dynamics of Nanog, combining modelling and experiments to un-

derstand how its heterogeneous expression and temporal dynamics depend on the culture media

and regulate both cell pluripotency and cell division. Many modelling types and mechanisms have

been put forward to explain heterogeneity of pluripotent genes. We extended an existing GRN

for pluripotency, and used stochastic differential equations (SDEs) to describe interactions of

core pluripotency genes and their dynamics. The mathematical model successfully recapitulated

the heterogeneous levels of Nanog observed experimentally, and explained them through the

combination of feedbacks in the GRN, transcriptional noise and the chemicals present in the

culture media. The work in this chapter has been published in Nature Partner Journals Systems

Biology and Applications [55].

Another biological system we looked at was based on functional brain networks in Mul-

tiple Sclerosis (MS), a demyelinating disease of the central nervous system. MS is a leading

cause of disability in young adults and a major health burden [17, 80]. We were interested in

what compensatory mechanisms the MS participants brains may undergo to limit the effects

of the demyelination, which could inform on disease progression or the effectiveness of treatments.

Chapter 3 is a systematic review, a type of literature review used in clinical settings. The re-

view focused on functional magnetic resonance imaging (fMRI) which measures oxygenated blood

flow around the brain, called the blood oxygen level dependent (BOLD) signal. This signal can be
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used as a proxy for brain activity, as more active regions of the brain require more oxygenated

blood. In particular, the review looked at studies analysing MS with resting-state fMRI, a type of

fMRI paradigm that measures basal connectivity and has the advantage of requiring no task or

paradigm that could be arbitrary or subject to bias. The review looked at what evidence in the

literature shows neuroplasticity in the brains of MS to compensate for their damage.

For Chapter 4 we carried out a study of data obtained from MS participants and healthy

controls (HC). We performed resting-state fMRI scans on all the participants, and applied network

analysis techniques to their BOLD time series. The aim was to determine if there were any differ-

ences between MS and HC which could be evidence of neuroplasticity, i.e. the brain forming new

connections to compensate for the damage. Specifically we were looking for evidence which could

explain the increased fatigue experienced by the MS cohort. This chapter outlines the process of

preprocessing applied to the fMRI data, and the measure of functional connectivity (FC) between

distinct predefined regions of the brain. FC is a statistical measure of correlation between the

BOLD signal of two regions, with higher FC inferring greater communication between them. The

brain can then be abstracted to a network, with regions of the brain being the nodes and the

edges between them being the respective FC. We make standard network measurements of these

functional brain networks like clustering coefficient, small world propensity and modularity. We

then compared the measurements between the two populations to see if any differences occurred,

signifying possible compensatory neuroplasticity.

Chapter 5 is a preliminary investigation of a tool to analyse dynamic FC in fMRI. In this

analysis we developed the application of a Kalman filter to dynamic FC in an attempt to track

and characterize the broad changes to FC over time. The filter behaved like a smoother, broadly

tracking FC over time.
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PLURIPOTENCY GENE REGULATORY NETWORKS IN MOUSE

EMBRYONIC STEM CELLS

S tem cells are a special type of cell which have the ability to turn into other types of cell,

after which they may perform specialized functions needed for an organism to survive. A

mouse embryonic stem cell (mESC) is a type of stem cell found in the developing embryos

of mice which can differentiate into all the cells needed for the embryo to develop into a body.

Significant research has been performed on mESCs to define optimal ways in which they can be

maintained in-vitro into the pluripotent state, and to identify protocols in which their differentia-

tion can be controlled. This could pave the way for future research which could use these cells for

regenerative medicines, replacing lost or damaged cells the body cannot repair by itself.

The work in this chapter was published in Nature Partner Journals Systems Biology and

Applications [55], where the results of the work I performed are in Sections 2.4.1, 2.4.2, 2.4.3,

2.4.4 and 2.4.5. The work behind the results of Section 2.4.6 were performed by collaborators.

2.1 Biology background

When a mouse egg cell is fertilized a single cell Zygote is formed. This cell continuously divides

forming a mass collection of cells after 3-5 days called a blastocyst. Figure 2.1 shows an illustration

of a single fertilized egg cell forming into a blastocyst. The blastocyst is broadly formed of two

cell types; those which form its outer wall structure, and a group of cells inside called the inner

cell mass. The inner cell mass is where mESCs are taken from.

mESCs can differentiate into almost any type of cell in the body. However once a mESC

has turned into, for example, a skin cell, it remains this new cell type. A mouse embryo needs
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CHAPTER 2. PLURIPOTENCY GENE REGULATORY NETWORKS IN MOUSE EMBRYONIC
STEM CELLS

Blastocyst: 

3-5 days after fertilization
Single cell Zygote

Inner Cell Mass

Figure 2.1: Illustration showing the formation of a blastocyst where mESCs
are taken from the Inner Cell Mass.

a plentiful supply of mESCs, and the ability to create more of them in order to form all the

necessary components of its body. To achieve this mESCs have a property called pluripotency; this

is where mESCs have the ability to turn into most other cell types. Additionally with self-renewal,

mESCs can split, not into new cell types but more mESCs, and all the mESCs under the right

conditions still retain the ability to differentiate.

In-vivo, mESCs in an embryo are pluripotent as the organism has evolved to be able retain

the right mESC behaviour and switch it on and off when necessary. Studying mESCs in-vitro

requires the correct conditions for successful growing and studying of these cell populations.

2.1.1 Culture conditions

In-vitro, mESCs are grown in culture media; culture conditions can confer different character-

istics to cell populations. Two media of interest are Serum+LIF and 2i+LIF. Serum+LIF is the

more established culture containing serum factors and the cytokine leukaemia inhibitory factor

(LIF). The more recently developed medium 2i+LIF [83] also contains LIF but with two chemical

inhibitors (2i stands for 2 inhibitor) instead of serum factors. The inhibitors are MEK inhibitor

PD0325901, hereafter named PD, and glycogen synthase kinase-3 (Gsk3) inhibitor CHIR99021,

hereafter named Chiron (also sometimes referred to as CH).

Cells grown in Serum+LIF have a flat morphology whereas in 2i+LIF the colonies grow in

more spherical, contained structures [145]. As well as the morphology of the colonies, mESCs

have a number of different characteristics between the two media. These include the differential

expression of genes involved in pluripotency, cell-cycle and cell death.

2.1.2 Pluripotency genes in different culture conditions

Genes are units of inheritance, passed down through the generations. They code for proteins

which then can perform molecular tasks within cells. When mESCs are cultured in Serum+LIF
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the population has a heterogeneous expression of genes which govern pluripotency. The most

notable of which is Nanog, a master regulator of pluripotency and development [20]. Cells ex-

pressing high concentration levels of Nanog, the Nanog high (NH) phenotype, display greater

pluripotency and less propensity to differentiate [138]. Nanog low (NL) mESCs have reduced

pluripotency, and therefore a greater propensity to differentiate [138]. Nanog and other pluripo-

tency factors display temporal fluctuations, with single cells switching in time between high

and low states. These factors are also heterogeneous, with many of them, directly or indirectly,

regulated by Nanog, including Rex1, Stella, Essrb and β-catenin [147].

mESCs need to be pluripotent when cultured in pluripotency conditions, while keeping the

ability to differentiate when differentiation stimuli are provided. For this aim, a more uniform

population would have all mESCs expressing the NH phenotype. The newer culture media,

2i+LIF, was developed with the aim of eliminating the heterogeneity observed in Serum+LIF.

An easy way to indirectly measure gene expression is by means of fluorescent proteins, tagging

the gene of interest. More specifically a green fluorescent protein (GFP) can be added to tag

Nanog, where the fluorescence is what is then measured by a special type of microscope which

images florescence. The cell line commonly used to measure Nanog expression is known as TNGA,

which was created by inserting a GFP cassette at the start codon (codons are groupings of three

nucleotides which code for an amino acid) on one Nanog allele (an allele is a variant of a gene).

TNGA mESCs show an almost complete elimination of the NL phenotype in 2i+LIF, suggesting

that 2i+LIF enables complete, or ‘ground-state’, pluripotency in-vitro [159].

Recently, other cell lines have been developed, as it has been noticed that the degradation

rates of Nanog and the GFP tagging Nanog in TNGA cells are different [39]. Due to the discrep-

ancy, this fluorescent reporter is not a good proxy for observing Nanog dynamics. Therefore a

newly developed cell line was created which uses a different fluorescent protein with comparable

degradation rate to Nanog. The new cell line is known as ND [3, 4]. ND mESCs are still heteroge-

neous in Serum+LIF, although the difference between NH and NL is smaller. However, in 2i+LIF

ND mESCs no longer show a complete elimination of the NL phenotype, with a small population

of NL cells still present. This could be considered undesirable if the aim is to keep a population of

pluripotent cells indefinitely.

Figure 2.2 shows concentrations of Nanog, measured by the fluorescent reporters, for the two

cell line types in the different media. Figure 2.2a is for TNGA cells and shows the heterogeneity

of Nanog in Serum+LIF (left panels of Figure 2.2a), which is lost in 2i+LIF (right panels of Figure

2.2a). Figure 2.2a also shows the same behaviour for Rex1, which is considered a direct target of

Nanog, and measured as a proxy for it (see model in Section 2.2.3). Figure 2.2b is for the ND cell

line which in Serum+LIF has a greater proportion of cells in a NL state than TNGA cells (Nd,
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serum/LIF in Figure 2.2b). When the ND cells are grown in 2i+LIF the heterogeneity is reduced

but still present, as shown by the small peak (Nd, 2i in Figure 2.2b, highlighted by *).

a TNGA b ND

Figure 2.2: Concentrations of Nanog and its target Rex1 in different mESC
line types. a TNGA cells, image adapted from [159]. b ND cells (VNP is venus

nanog protein), image adapted from [3]. ND cells labeled Nd, with *
highlighting persistence of NL population.

2.2 Modelling

2.2.1 Gene regulatory network (GRN) model

The central dogma of biology describes the process by which the information of a gene stored

in DNA is transformed into a physical protein able to perform specific tasks. The process is

DNA→mRNA→protein. The step from DNA to mRNA is called transcription and from mRNA to

protein is called translation. Transcription is regulated by proteins called transcription factors

(TF) which bind to certain regions of DNA, increasing or decreasing transcription. Proteins

are the final output of (protein-encoding) genes, and can act as TFs which results in genes

regulating other genes and even themselves. This forms a network of interacting genes, termed

gene regulatory network (GRN) of genes activating and inhibiting other genes. Differential

equations can be used to describe the changing protein levels, incorporating Hill equations to

describe the interaction of a gene activating or inhibiting another gene. See Section 2.2.4 for more

details on Hill equations and modelling GRNs.
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2.2.2 Other mechanisms to model Nanog dynamics

Other modelling types have been put forward to explain the dynamic differences of pluripotent

genes between the two media. A published review [86] outlined different ways of modelling Nanog

dynamics, broadly characterized into four different modelling types: GRN (as above), probabilistic,

allelic switching and protein-protein interaction networks.

GRNs describe transcriptional dynamics of interacting elements, which can involve positive

and negative feedbacks and can also include stochastic elements. These models produce good

agreement with experimental steady-state distributions and single cell dynamics.

Probabilistic models make no assumptions about underlying GRNs, thus they avoid over

fitting of parameters and do not need to introduce assumptions. They are based on probability

distribution functions and Gaussian noise. The example described in the review [78] had just one

variable, that of Nanog.

An allelic switching model abstracted mESCs into four groups, each with a different state

corresponding to altered Nanog behaviour [94]. Each group has a percentage of occupancy and

there are transitional probabilities between the states described by a Markov chain. This model

correctly recapitulated bistability in Serum+LIF, though was not used to model 2i+LIF.

A protein interaction network only considered protein-protein interactions, modelling tran-

scription by a stochastic bursting mechanism [99]. One of their models correctly matched correla-

tions between the genes Oct4 and Nanog (two of the genes considered part of the core pluripotency

network, see Section 2.2.5), and matched their mRNA distributions. However it did make some

incorrect predictions. This model was later improved by adding extra interactions making more

predictions in line with experimental results.

All these different models correctly match distributions of Nanog. However, none took into

account the newer ND mESCs with their persistent NL cells. We therefore wanted to develop a

model able to describe the persistence of NL cells in 2i+LIF, while accounting for factors present

in different culture media.

2.2.3 Reference model

We looked at a previous model of a GRN [62] describing how the concentrations of Nanog and Rex1

differ between Serum+LIF and 2i+LIF. This model was fitted to experimental data generated

using TNGA cells. Their GRN is shown in Figure 2.3a and was described mathematically by

the stochastic differential equations (SDEs) in Figure 2.3b. This network is comprised of the

genes Nanog, heterodimer Oct4-Sox2 and Rex1. Of note, Rex1 is only regulated by other factors,
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and is therefore considered as an output to the model. Included into the model were signalling

pathways of FGF4/Erk and Y/Yin (a differentiation signal we ignored as we were not interested

in differentiation dynamics). Different media conditions were simulated via the value p, set at

15 for Serum+LIF and inhibited to 0 for 2i+LIF. Interactions between network elements were

described mathematically with Hill equations, and noise added as a zero-mean Gaussian pro-

cess. For more details about modelling GRNs, Hill equations and noise see Sections 2.2.4 and 2.2.7.

a b

Figure 2.3: Reference GRN model of [62]. a Diagram of Network interactions.
Core network is within the inner grey box, composing Nanog, heterodimer

Oct4-Sox and Rex1. Respective transcription rates are denoted by Si.
Additional signalling is included; FGF4/Erk inhibiting Nanog with rate p and

a differentiation signal Y (which we ignore in this thesis). b Equations
describing the rates of genes involved in the network using Hill terms,

resulting from the GRN interactions. Si are maximum transcription rates, di
are degredation rates, 1/k is the Michaelis–Menten constant and σi are noise

amplitudes added to each network factor.

The developers of the reference GRN model simulated it 10,000 times, and recorded the

concentration of Rex1 at the end of each run. The resulting distribution of Rex1 values are shown

in Figure 2.4a and 2.4b for Serum+LIF and 2i+LIF respectively, on top of measured Rex1 data.

Their model correctly matched TNGA Rex1 tagged data, with a complete elimination of NL cells

in 2i+LIF. However it has not been fitted to distributions observed in ND cells.
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a b

Figure 2.4: Simulation results of Rex1 distributions in reference model
compared to Rex1 data. Images adapted from [62]. a Serum+LIF results. b

2i+LIF results.

2.2.4 How to model a GRN

The reference model used a GRN to describe the changing behaviour of Nanog between the two

media. Below we derive Hill equations showing how they model transcription saturations, and

we demonstrate how to incorporate them into the mathematical framework of a GRN.

Hill equation derivation

The derivation described here is based on the work in [6]. Transcription is the process by which

mRNA is produced in a cell requiring a special protein called a transcription factor (TF) to bind

to a certain region of the DNA. TFs either activate the transcription process or they inhibit it,

and as the concentration of TF increases the rate at which transcription happens saturates. Hill

equations are commonly used to describe transcription rate saturation in GRNs. A Hill term for

activation is

S · [A]n

Kn + [A]n ,(2.1)

and for inhibition is

S ·Kn

Kn + [A]n .(2.2)

Concentrations are denoted in square brackets ([ ]). S is the maximum rate, [A] is the concen-

tration of substrate of interest, n is the Hill coefficient describing cooperativity and K is the

11
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Michaelis–Menten constant which is also the concentration of substrate ([A]) required for the

Hill term to be half of its maximum value.

Deriving the Hill equation starts by considering the process of TF binding. Figure 2.5 shows

an illustration of a TF (A in diagram) and a binding site on the DNA (B in diagram) to which the

TF can attach. When the TF is attached to the binding site it forms a complex (C in diagram) and

transcription can now happen.

A (Transcription 
factor)

B (Binding site)

C (Transcription 
factor-binding site 

complex)

Figure 2.5: Illustration of a transcription factor (A) attaching to a binding site
(B), forming a binding site complex (C), allowing transcription (indicated by

bent arrow) to occur.

This process can be described in a reversible rate equation given by

A+B
k1−*)−
k2

C,(2.3)

where A is the transcription factor, B is the binding site, C is the factor-complex formed, k1 is

the rate at which the complex is formed and k2 is the rate at which the complex is broken back

into the TF and free binding site.

The law of mass action states that the rate of a reaction is linearly proportional to the

concentration of its reactants, and can be used to define differential equations describing how

the concentrations of the three reactants (TF, binding site and complex) change over time. The

differential equations for the reactants are given by

d[A]
dt

= k2[C]−k1[A][B],(2.4)
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d[B]
dt

= k2[C]−k1[A][B],(2.5)

and

d[C]
dt

= k1[A][B]−k2[C](2.6)

for TF, binding site and complex, respectively.

These differential equations can be simplified by assuming that all the reactants are in a

‘quasi steady-state’. This assumes that the process by which the TF binds and unbinds happens

so quickly that in a sense it has already happened and therefore the rate of changes can be set to

zero, given by

d[A]
dt

= d[B]
dt

= d[C]
dt

= 0 =⇒ [C]= k1

k2
[A][B].(2.7)

The rate of mRNA production is proportional to the portion of binding sites that are bound by

a TF, with added degradation. The differential equation describing the production of mRNA is

given by

d[m]
dt

= S · [C]
[B]+ [C]

−dm · [m],(2.8)

where m is mRNA concentration, S is a proportionality constant equivalent to the maximum

transcription rate and dm is the degradation rate. Substituting in the terms found from quasi

steady-state (equation (2.7)) and taking out common factors leads to

d[m]
dt

= S ·
k1
k2

[A][B]

[B]+ k1
k2

[A][B]
−dm · [m]= S ·

[B] k1
k2

[B] k1
k2

· [A]
k2
k1

+ [A]
−dm · [m].(2.9)

The final Hill equation describing how the rate of mRNA production is affected by a TF, for

the case when the TF acts as an activator is shown, with added degradation by

d[m]
dt

= S · [A]
K + [A]

−dm · [m], K = k2

k1
.(2.10)

The case when the TF acts as an inhibitor is represented in Figure 2.6. This assumes that the

gene is already in the process of transcribing before the TF binds. After binding, transcription is

stopped.
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A (Transcription 
factor)

B (Binding site)

C (Transcription 
factor-binding site 

complex)

Figure 2.6: Illustration of a transcription factor (A) attaching to a binding site
(B), forming a binding site complex (C), stopping transcription (red cross).

The case for inhibition is the same as for activation as in equations (2.3) to (2.7), except the

rate of mRNA production is now proportional to the portion of binding sites not bound by a TF

minus some degradation, as shown by

d[m]
dt

= S · [B]
[B]+ [C]

−dm · [m].(2.11)

Substituting in the terms found from quasi steady-state (equation (2.7)) and taking out

common factors leads to

d[m]
dt

= S · [B]

[B]+ k1
k2

[A][B]
−dm · [m]= S ·

[B] k1
k2

[B] k1
k2

·
k2
k1

k2
k1

+ [A]
−dm · [m].(2.12)

The final Hill equation describing how the rate of mRNA production is affected by a TF, for

the case when the TF acts as an inhibitor and with added degradation, is given by

d[m]
dt

= S ·K
K + [A]

−dm · [m], K = k2

k1
.(2.13)

We examine one more scenario, where two TFs form a homodimer and activate transcription

together as illustrated in Figure 2.7.

14



2.2. MODELLING

C (Transcription 
factor-binding site 

complex)

B (Binding site)

A (Transcription 
factor)

Figure 2.7: Illustration of two transcription factors (A) formed as a
homodimer, attaching to a binding site (B), forming a binding site complex (C),

allowing transcription (indicated by bent arrow) to occur.

This process can be described by a reversible rate equation given by

2A+B
k1−*)−
k2

C.(2.14)

Here the reaction requires two TFs, where A is a transcription factor, B is the binding site, C

is the factor-complex formed, k1 is the rate at which the complex is formed and k2 is the rate at

which the complex is broken back into TFs and free binding site. The law of mass action is again

used to describe the rate of change of concentrations of the three reactants (TF, binding site and

complex) over time and is given by

d[A]
dt

= k2[C]−k1[B][A]2,(2.15)

d[B]
dt

= k2[C]−k1[B][A]2(2.16)

and

d[C]
dt

= k1[B][A]2 −k2[C](2.17)

for TF, binding site and complex, respectively.

Assuming again that all the reactants are in a quasi steady-state leads to

d[A]
dt

= d[B]
dt

= d[C]
dt

= 0 =⇒ [C]= k1

k2
[B][A]2.(2.18)
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The rate of mRNA production is again proportional to the portion of binding sites bound by

TFs, with added degradation. The differential equation describing the production of mRNA for

the TF homodimer activating transcription is given by

d[m]
dt

= S · [C]
[B]+ [C]

−dm · [m],(2.19)

where m is mRNA concentration, S is the proportionality constant and dm is the degradation

rate. Substituting in equation (2.18) and simplifying is shown by

d[m]
dt

= S ·
k1
k2

[B][A]2

[B]+ k1
k2

[B][A]2
−dm · [m]= S ·

[B] k1
k2

[B] k1
k2

· [A]2

k2
k1

+ [A]2
−dm · [m].(2.20)

The final Hill equation describing how the rate of mRNA production is affected by two TFs,

for the case when they act cooperatively as activators and with added degradation, is given by

d[m]
dt

= S · [A]2

K2 + [A]2 −dm · [m], K =
√

k2

k1
.(2.21)

For two TFs cooperatively inhibiting transcription, mRNA rate is proportional to portion of

binding sites not bound by a TF homodimer, and is given by

d[m]
dt

= S ·K2

K2 + [A]2 −dm · [m], K =
√

k2

k1
.(2.22)

Extending this to even more TFs acting cooperatively is simply a case of increasing the

exponents of A and K . This exponent is known as the Hill coefficient. The rate of mRNA

production for a general number of TFs, n, cooperatively activating is given by

d[m]
dt

= S · [A]n

Kn + [A]n −dm · [m], K = n

√
k2

k1
,(2.23)

and for cooperatively inhibiting is given by

d[m]
dt

= S ·Kn

Kn + [A]n −dm · [m], K = n

√
k2

k1
.(2.24)

This only describes how the concentration of mRNA is affected by a TF. Describing how

the end protein concentration is affected requires one more step. Transcription dynamics can

be assumed to occur on a much faster time scale than translation, and the quasi steady-state

assumption can be made, setting the rate of change of mRNA to zero given by
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d[m]
dt

= S · [A]n

Kn + [A]n −dm · [m]= 0,(2.25)

leading to

[m]= 1
dm

· S · [A]n

Kn + [A]n .(2.26)

The rate of change of protein is assumed to be proportional to the concentration of mRNA,

minus protein degradation as given by

d[p]
dt

=α[m]−dp[p],(2.27)

where α is a proportionality constant and dp is the degradation rate of the protein. This form

ignores basal/background transcription that can occur due to random movements of the DNA

strands and other unexplained molecular mechanisms.

The final equation describing how the concentration of a gene’s protein (p) is regulated by a

TF (A) is found by substituting equation (2.26) into (2.27) and is given by

d[p]
dt

= Sp · [A]n

Kn + [A]n −dp[p], Sp = α ·S
dm

(2.28)

and

d[p]
dt

= Sp ·Kn

Kn + [A]n −dp[p], Sp = α ·S
dm

(2.29)

for activation and inhibition, respectively. Sp is the maximum protein production rate and K is

the Michaelis–Menten constant.

Describing a GRN with Hill equations

Hill equations can be used to describe the interactions of a GRN under a few assumptions. The

process of transcription in an individual cell is binary, it is either happening or it is not. The Hill

equation is a smooth function ranging between transcription and no transcription. Therefore

it can only be applied when considering a large of number of cells, modelling a distribution of

transcription in a population.

How to apply Hill equations to describe a GRN is described here by an example. Figure 2.8

shows two simple made up gene networks, with Figure 2.8a being a single gene, B, activated
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a

BA

b

CA

B

Figure 2.8: Two simple GRNs to demonstrate application of Hill equations to
describe gene interactions. a Simple gene network with single activation (A

activating B indicated by arrow). b Simple gene network with single activation
and single inhibition (A activating C indicated by arrow, and B inhibiting C

indicated by flat-headed arrow).

by another, A. Figure 2.8b shows a single gene, C, being regulated by two other genes; A which

activates it, and B which inhibits it. This example is to demonstrate how to describe a gene’s

affect on another gene, therefore only Gene B in Figure 2.8a and C in Figure 2.8b are considered.

The activation of A on B in Figure 2.8a can be described with a Hill equation as given by

d[B]
dt

= SA · [A]n

Kn + [A]n −dB[B].(2.30)

The regulation of A and B on C, as in Figure 2.8b, can be described as given by

d[C]
dt

= SA · [A]n

Kn + [A]n + SB ·Kn

Kn + [B]n −dC[C],(2.31)

where two Hill terms (one for activation, one for inhibition) are added together. This assumes the

regulation from TFs act as an OR gate. The Hill coefficient n, as well as the other parameters (K ,

the Michaelis–Menten parameter; di and Si, the degradation rate and maximum transcription

rate respectively of substrate i) can be chosen based on experimental data or desired system

behaviour. This method can then be extended to a larger GRN, forming differential equations for

each element of the network by summing Hill terms associated to every element which acts on it.

2.2.5 Bistability in an idealised ‘core’ GRN

Nanog, Oct4 and Sox2 are considered the core genes involved in pluripotency and cell fate in

mESCs. The behaviour of Nanog has been shown to be bistable in mESCs in Serum+LIF and

2i+LIF (bistable in 2i+LIF for ND cells not TNGA) [3, 4, 159], displaying two different stable
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levels of the gene, termed Nanog high (NH) and Nanog low (NL). The genes Oct4 and Sox2 act

together as a heterodimer [23] and its concentration levels have been shown to be stable at a

single concentration level, with little fluctuation [19, 138]. We recapitulate how the bistability of

Nanog can be derived from a simple ODE in this section, starting from the reference GRN and

simplifying it.

Figure 2.9 shows two different GRN interactions of the core genes, suggested in [23] for

Figure 2.9a and [62] for Figure 2.9b (we removed Rex1 as it is not considered a part of the core

network). Oct4-Sox2 is a heterodimer, whose process of formation and disintegration is shown

in the GRN of Figure 2.9a. Figure 2.9b simplifies the Oct4-Sox2 heterodimer interaction to a

simple auto-activation. The network in Figure 2.9b also removed the activation of Oct4 and

Sox2 by Nanog as in Figure 2.9a to simplify the network. They were not needed to explain the

main bistable behaviour of Nanog and add extra complexity and parameters to fit. We took the

simplified core network of Figure 2.9b and simplified it further to demonstrate how the bistability

of Nanog could arise from a positive feedback loop on Nanog.

a

Nanog

Oct4 Sox2

Oct4-Sox2

b

Oct4-Sox2

Nanog

Figure 2.9: Two different GRN schematics of the core genes involved in
pluripotency in mESCs. Solid lines are transcriptional interactions, dashed are
non-transcriptional. a Core pluripotency network as described by [23]. This

shows interactions between the genes Oct4, Sox2, their heterodimer Oct4-Sox2
and Nanog.b Simplified network as in [62] showing only interaction between

the Nanog and the heterodimer Oct4-Sox2. Activation of Oct4 and Sox2 by
Nanog removed as these interactions were not necessary to describe Nanog

dynamic.

The final simplification we made was assuming that the activation of Oct4-Sox2 on Nanog is

weak in comparison to Nanog’s activation of itself. As the distributions of Oct4-Sox2 concentra-

tions are also monostable, Oct4-Sox2 activation on Nanog can be assumed to be constant. This

simplifies the underlying equations of the system to a single ODE which can be easily analysed,
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given by

d[N]
dt

= SOS + SN · [N]2

K2 + [N]2 −dN · [N],(2.32)

where SOS is a small constant representing the weak activation of Nanog by Oct4-Sox2.

This focuses the analysis on the key changing gene Nanog only. Nanog has been shown to

form homodimers [98, 153], motivating a choice of Hill coefficient of 2 for this basic system. We

analysed this system graphically by splitting the RHS into two parts, f (N) and g(N), given by

d[N]
dt

= f (N)− g(N).(2.33)

The two parts f (N) and g(N) are defined as

 f (N)= SOS + SN ·[N]2

K2+[N]2

g(N)= dN · [N]
(2.34)

where f (N) is the positive contributions to the rate of change and g(N) the negative parts.

Steady-state points are defined as when the rate of change is zero, as in

d[N]
dt

= 0.(2.35)

Substituting equation (2.35) into (2.33) steady-state points are found by the simple equality

given by

f (N)= g(N).(2.36)

We find steady-state points by drawing f (N) and g(N) and seeing where the curves intersect.

Figure 2.10 shows a plot of the two functions and their three intersections, or steady-states. It

should be noted that these are not nullclines, they are graphical representations of the functions

f (N) and g(N) as stated in equation (2.34). The final consideration in this system is the stability

of the steady-states. This is done by referring back to equation (2.33), where the rate of change

is positive for f (N) > g(N) and negative for g(N) > f (N). The lower part of Figure 2.10 shows

the 1-dimensional space of the concentration [N]. Arrows indicate the direction of changing

concentration, when f (N)> g(N) the rate of change of concentration is positive and so points to

the right. When g(N)> f (N) it is to the left. Steady-states where the arrows point into them are

stable, and where they point away from are unstable. From this diagram it can be seen that two
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g(N)

f(N)>g(N) g(N)>f(N)g(N)>f(N)f(N)>g(N)

NH

NL

Figure 2.10:
Graphical representation of steady-states for the differential equation: d[N]

dt = f (N)− g(N) where
f (N) is a Hill equation and g(N) is linear degradation, see equation (2.34). Intersections of the

two curves are where the rate of change of the system is zero. Stability of these states are
determined by looking at the system flow directions either side of them. Stable steady-states are

indicated with and unstable steady-states with .

of the steady-states are stable and the middle one is unstable.

This GRN therefore exhibits bistable behaviour for Nanog, under certain parameter condi-

tions; one NL and one NH stable steady-state separated by an unstable steady-state between

them. The bistability is due to the non linear positive feedback loop on Nanog, and Nanog’s

degradation.

2.2.6 Parameter effects on bistability in the idealised ‘core’ GRN

There are four parameters in this system; SN , SOS, K and dN . The values of these parameters

change the stability behaviour of the core GRN. How these parameters affect the system can be

explored graphically. The degradation rate is kept constant throughout the following exploration,

as seen by the linear diagonal line in all the Figures. Maximum transcription rate is indicated by

a horizontal dashed black line on all the Figures. These demonstrations are qualitative and so no
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specific values are given.

The system stability when changing parameter SOS can be seen in Figure 2.11. Here the

value is increasing from left to right which effectively transposes the Hill function higher. As the

value increases the lower two intersections of the curve come closer together (Figure 2.11a) and

eventually the curves pull apart at a Saddle-node bifurcation (Figure 2.11b), leaving only a single

high stable steady-state (Figure 2.11c).

a

0

[N]

0

d
[N
]/
d
t

b

0

[N]

0

d
[N
]/
d
t

c

0

[N]

0

d
[N
]/
d
t

Figure 2.11: Graphs demonstrating change in bistability as SOS value
increases a to c. Black dots represent stable steady-states, black-outlined

white dots represent unstable states and half-filled dots represent
Saddle-node bifurcations.

The system stability when changing parameter SN can be seen in Figure 2.12. Here the value

is increasing from left to right, effectively increasing the maximum gene production rate. As

the value increases the non linearity of the Hill term bends it away from the degradation curve

(Figure 2.12a), eventually bending away enough to form a Saddle-node bifurcation (Figure 2.12b)

and then bending fully away leaving only a single high stable steady-state (Figure 2.12c).

The system stability when changing parameter K can be seen in Figure 2.13. Here the value

is decreasing from left to right, increasing the systems sensitivity to increasing TF concentrations.

As the value decreases the Hill term curves more away from the degradation curve (Figure 2.13a),

eventually forming a Saddle-node bifurcation (Figure 2.13b) and then leaving only a single high

stable steady-state (Figure 2.13c). Note the maximum rate (dashed black line) remains constant

throughout changing K .

Another parameter to consider is the Hill coefficient which has previously been set to 2 for

all the examples. The equations of the graphs being considered, this time with variable Hill

coefficient n, are
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Figure 2.12: Graphs demonstrating change in bistability as SN value
increases a to c. Black dots represent stable steady-states, black-outlined

white dots represent unstable states and half-filled dots represent
Saddle-node bifurcations.
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Figure 2.13: Graphs demonstrating change in bistability as the
Michaelis–Menten paramater K decreases a to c. Black dots represent

stable steady-states, black-outlined white dots represent unstable states and
half-filled dots represent Saddle-node bifurcations.

 f (N)= SOS + SN ·[N]n

K n+[N]n

g(N)= dN [N].
(2.37)

Figure 2.14 shows the system as the Hill coefficient is increased, Figure 2.14a to Figure 2.14c.

This coefficient is the main source of non linearity in the system, which displays more non linear

behaviour as the value is increased.
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Figure 2.14: Graphs demonstrating change of system graphs as Hill
coefficient, n, is increased a to c. Black dots represent stable steady-states

and black-outlined white dots represent unstable states.

The previous principles can be used to alter the stability of the deterministic system to a

desired level. For example if the wanted behaviour is for the steady-states to be brought closer

together as in Figure 2.15. This is achieved here by simultaneously decreasing Sn and K .
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Figure 2.15: Graphs demonstrating change in bistability as Sn and k values
simultaneously decrease a to c. Black dots represent stable steady-states

and black-outlined white dots represent unstable states.

2.2.7 Stochasticity to encompass complex molecular processes

The system shown so far is deterministic, and any simulation of a cell encompassing that GRN

will always display the same concentration of Nanog, either the NH or the NL steady-state

with no intermediate values. Real mESCs display a continuous distribution of concentration

values due to the fact that they have many more genes, with very complicated regulations and

molecular processes. With current knowledge and technologies, modelling the exact regulations
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of the huge number of processes in a cell is impossible. Therefore noise is added to the system

to approximate it. This changes the ODE from Section 2.2.5 (equation (2.32)) into a stochastic

differential equation (SDE) of the form given by

d[N]
dt

= SOS + SN · [N]2

K2 + [N]2 −dN · [N]+ζ(0,σN ) · [N].(2.38)

The noise is applied as a random variable ζ drawn from a normal distribution with mean 0

and standard deviation σN , multiplied by the concentration of the gene, i.e. [N], and added to

the RHS as in [62]. Simulating a large number of cells produces a distribution of concentration

values for Nanog. The two main ways of adding noise are multiplicative, as described here, and

additive where the noise term is added without multiplying by the gene’s concentration. We chose

to follow the multiplicative approach as in the reference model, due to it better describing the

greater variability in NH as compared to NL; i.e. NH cells are noisier than NL and additive noise

would not capture this behaviour.

2.2.8 Interplay between noise strength ‘σN ’ and maximum transcription rate
of Nanog ‘SN ’

The GRN of the reference model in Section 2.2.3 demonstrates how, in their GRN, simultaneously

changing the maximum transcription rate of Nanog, S4 equivalent to SN in equation (2.38), and

the noise strength can affect the proportion of cells in NH and NL. Increasing Nanog’s auto-

regulatory rate decreases the proportion of NL cells, whilst increasing Nanog’s transcriptional

noise increases the proportion of NL cells.

Figure 2.16: Diagram showing how the proportion of NL (and inversely NH)
cells is altered when changing transcriptional noise and Nanog’s

auto-regulatory rate, adapted from [62].
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We assume this behaviour qualitatively holds for any GRN of Nanog involving positive

feedback and multiplicative noise.

2.3 Extending the reference model

The model we developed starts with the reference model of Section 2.2.3, adding more genes

and molecular interactions to better explain the dynamics underlying pluripotency in mESCs.

The reference model only included one of the two inhibitors present in 2i+LIF, PD. Therefore we

wanted the new network to describe Chiron as well. We additionally wanted the new network to

incorporate genes related to cell-cycle and pluripotency as these have been shown to be affected

in the two media. Additionally the reference model was fitted to TNGA cell data, therefore the

new model was fitted to measured ND cell distributions. The work flow to add these extra genes

and interactions is summarized in Figure 2.17; below we explain the types of experiment used,

how additional genes and their interactions were inserted, and how the inputs present in the

different culture media were accounted for.

Differential 
expression 
CH vs. XAV 

(Zhang et al. 
2013)

1 2

Differential 
expression 
serum vs. 

2i
(Marks et 
al. 2012)

Gene 
Ontology 
Analysis

GO filter

CODEX

NIA bank and 
Literature

Acts on core 
network

+

3434

40

697

2288 34

4

3

Figure 2.17: Schematic of the process for identifying transcriptional
interactions not present in reference model. Set ‘1’ is the output from gene

ontology analysis, and set ‘2’ is the output from the CODEX analysis. Numbers
next to each item indicate the number of genes in the respective step.
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2.3.1 Types of experimental data used

We used a number of data sources to expand the GRN, each one containing results from perform-

ing different types of experiment. Three different experiment types were used by the sources;

Rna-seq, ChiP-seq and microarray. Descriptions of these different experiments are in Table 2.1.

Citations for the actual data sources used will be given in their relevant section.

Type of Ex-
periment

Description

Rna-seq Transcribed mRNA from cells are extracted and fragmented. Each
fragment is reverse transcribed into corresponding fragments of
nucleotides called complementary DNA (cDNA). The fragments
of cDNA are then sequenced and aligned to a reference genome
sequence to reconstruct which genome regions were transcribed.
Counting the number of fragments for a specific part of the genome
gives an expression level for that part.

Chip-Seq Chromatin immunoprecipitation sequencing. Protein of interest
is crosslinked (chemically bounded) to DNA of cells in-vivo with
formaldehyde, and the DNA of the cell is then isolated. DNA is
then broken into segments of around 500 base pairs using sonica-
tion. Anti-body specific to the protein of interest is added to isolate
fragments of DNA bounded by the protein, and to reverse the cross
linking, leaving only fragments of DNA previously bound by the pro-
tein. The DNA is copied using polymerase chain reaction resulting
in a sample of DNA bound by the protein. The samples are then
sequenced and mapped to the genome it came from to identify where
the protein bound. This method can only reveal whether a TF has
bound to the regulatory region of a gene, i.e. it cannot say whether
the TF activates or inhibits the transcription.

Microarray A series of microscopic pits, where each pit contains specially engi-
neered strands of DNA. Each pit produces a different target gene,
which in turn produces a fluorescent protein. A TF is added to
each pit and the change in fluorescence measured, with increasing
fluorescence corresponding to the TF increasing the target gene’s
expression and vice versa for a decrease.

Table 2.1: Table showing different types of experiments used to expand the
reference GRN.
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2.3.2 Additional genes

We re-analysed a published data set of genes differentially expressed between the two media [83],

genes expressed higher in Serum+LIF vs 2i+LIF and vice versa. This data set used Rna-seq to

compare expression levels of genes between the two media.

We performed Gene Ontology (GO) analysis using the platform DAVID [64], an online tool

for GO classification. GO is the labelling of genes by their associated biological process (BP).

For each BP, DAVID looks at the number of genes in an input list that are associated with that

BP. It also looks at the number of genes in the entire organism also associated with that BP.

DAVID then calculates the probability that a random sample from the entire genome (with equal

number of genes from the input list) has an equal or greater proportion of genes associated with

the BP. The BPs are sorted in order of significance (lowest highest p-value) along with their

associated genes. The genes differentially expressed between the two media, listed in [83], was

put into DAVID. Only genes whose BPs related to development and differentiation, proliferation,

cell-cycle, morphology or cell death were retained. In total, 3434 genes were input into DAVID

which output 2288 related to the BPs of interest (set ‘1’ in Figure 2.17).

We selected only genes which act on the core network (i.e., Oct4, Sox2 and Nanog) because only

these would be capable of affecting the dynamics of Nanog, and therefore indirectly pluripotency.

The published data set does not have information on how the genes in it regulate other genes,

therefore a different source is needed to add this information. An updated compendium of mESC

TFs was used called CODEX [85, 127] which contains what genes 40 mESC TFs regulate. CODEX

contained ChiP-seq experiment results to supply this information. From CODEX, a list of 34

genes (set ‘2’ in Figure 2.17) was generated, where each of these genes regulates at least one of

the core factors.

Genes which were both found to be involved in the BPs of interest and also to regulate one

of the core factors (intersection of set ‘1’ and set ‘2’ in Figure 2.17) were considered of interest

to add to the reference model. We identified four genes; Mycn, Rest and Chd7 expressed higher

in Serum+LIF; and Prdm14 expressed higher in 2i+LIF. Mycn, Rest and Prdm14 were found in

previous literature to significantly affect mESC pluripotency [140, 150, 164]. However Chd7 was

found to not be essential for self-renewal and pluripotency [130] and was therefore not included

into the final network.

2.3.3 Gene interaction directions

The three genes found (Mycn, Rest and Prdm14) are known to regulate one of the core factors

(Oct4, Sox2 and Nanog). However, the analysis so far cannot say whether the interactions involve

activations or inhibitions. For this, we used the NIA bank [107], which contains results from
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microarray experiments with 54 different TFs. Out of the six genes in the extended network, four

were in NIAbank: Nanog, Oct4, Sox2 and Mycn.

2.3.4 Medium signalling components and protein-protein interactions

The culture 2i+LIF contains two inhibitors; PD and Chiron. PD is, as in [62], modelled as a

signal which weakens the inhibitory effect of FGF4/Erk signalling on Nanog. However the

reference model ignored the effects of Chiron. Chiron is an inhibitor of GSK3 [7], which in

turn destabilizes β-catenin [59, 161] increasing its degradation (Chiron inhibits GSK3 which

inhibits β-catenin). In effect therefore, Chiron acts as an indirect activator of β-catenin. Two

other important non-transcriptional interactions of this pathway are β-catenin inhibiting Tcf3

and Tcf3 inhibiting the regulation of Oct4-Sox2 on Nanog [158]. Given experimental evidence

that PD alone is unable to sustain mESC clonal propagation [57, 158] and the key role of the

β-catenin pathway in pluripotency and reprogramming of somatic cells [72, 87], we explored

these additional interactions.

2.3.5 Putting it all together

Table 2.2 shows which genes of the extended network regulate each other as found in CODEX,

with a tick indicating that the TF binds to a regulatory region of the corresponding gene. Table

2.3 shows whether the TFs found in NIAbank (Nanog, Oct4, Sox2 and Mycn) activate or inhibit

genes on the full network. Interactions found in NIAbank are present as either an up arrow for

activation or a down arrow for repression.

TF Symbol Extended Network genes acted on
Nanog Oct4 Sox2 Mycn Rest Prdm14

Nanog X X X X X X
Oct4 X X X X X X
Sox2 X X X X X X
Mycn X X X
Rest X X
Prdm14 X X X X X X

Table 2.2: Table showing interactions present in CODEX, indicted by a tick if
one of the TFs of interest binds to the regulatory region of one of the genes in
the GRN. Table is read down then across. KEY: Interactions kept as in

[62]. Interactions present in CODEX but not NIA bank. Interactions
present in NIAbank but not in CODEX.

We kept the core network interactions (between Nanog, Oct4 and Sox2) the same as in the

reference GRN [62] as this has already been demonstrated to reproduce mESC dynamics. We

removed Rex1 because it is only considered an output to the system, and therefore not necessary

to describe Nanog dynamics. Interactions found in CODEX, but not NIAbank were removed as we
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TF Symbol Extended Network genes acted on
Nanog Oct4 Sox2 Mycn Rest Prdm14

Nanog ↓ ↓ ↑ ↑
Oct4 ↓ ↑ ↑ ↓
Sox2 ↓ ↓ ↓ ↓ ↓
Mycn ↓ ↑

Table 2.3: Table showing interactions and directions present in NIA bank.
Table is read down then across, with an up arrow indicating activation of a

GRN gene by a TF and down arrow indicating inhibition. KEY:
Interactions kept as in [62]. Interactions present in CODEX but not
NIA bank. Interactions present in NIAbank but not in CODEX.

do not know whether the interaction is an activation or inhibition. Conversely, interactions found

in NIAbank but not CODEX were included. In the NIAbank Oct4 was found to activate Mycn

and Rest, but Sox2 was found to inhibit them both. Taking Oct4-Sox2 together as a heterodimer,

with one half activating and the other inhibiting, there would be no resulting effect. Therefore no

interaction of Oct4-Sox2 was included on Mycn and Rest.

The additional medium signalling interactions were also added: Chiron’s activation of β-

catenin, modelled as an inhibition of its degradation; the inhibition of Tcf3 by β-catenin, modelled

as an activation of Tcf3’s degradation; and Tcf3 inhibiting the regulation of Oct4-Sox2 on Nanog.

We used a recently published data set [168] to identify interactions of β-catenin with the core

network genes and additional genes found. This data set contains microarray experiment results

finding genes differentially expressed between Chiron (β-catenin activator) and XAV (β-catenin

inhibitor). From this β-catenin was found to inhibit Mycn and Rest. Finally, we added protein

interactions from the literature for a positive feedback loop between Nanog and Rest [140], and

Prdm14 inhibition of Fgf/Erk signalling [101].
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2.3.6 Summary of final network

The complete network is represented in Figure 2.18. In summary:

• The heterodimer Oct4-Sox2 represses Prdm14. It also activates itself and Nanog, the latter

interaction being inhibited by Tcf3.

• Nanog activates itself, Prdm14 and Rest. It also inhibits Mycn.

• Mycn inhibits itself and activates Prdm14.

• Rest activates Nanog and Oct4-Sox2.

• Prdm14 inhibits FGF4/Erk inhibition of Nanog’s auto-activation.

• FGF4/Erk is activated by Oct4-Sox2 and inhibits Nanog’s positive auto-regulation.

• Chiron activates β-catenin, β-catenin inhibits Mycn, Rest and Tcf3; and Tcf3 inhibits the

activation of Nanog by Oct4-Sox2.

• PD inhibits FGF4/Erk inhibition of Nanog’s auto-activation.

Oct4-Sox2

FGF4

Erk

Nanog

Mycn

Rest

Prdm14

PD CH

β-Cat

Tcf3

p

sp2

sp1

S1,2

S3

S4
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S7

S8

S13
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S11

S12

S14

S15
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Figure 2.18: Extended GRN. Solid lines are transcriptional interactions,
dashed lines are non-transcriptional interactions. Arrows are activations, flat
headed arrows are inhibitions. Core network is made of Nanog, Oct4 and Sox2.
Mycn, Rest and Prdm14 are the genes added which are differentially expressed
between Serum+LIF and 2i+LIF. FGF4/Erk, Tcf3 and β-catenin are added as

targets of the two inhibitors present in 2i+LIF: PD and Chiron (CH).
Parameters correspond to equations (2.39) to (2.47).
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The equations describing the GRN of Figure 2.18 are given by the following:

p = sp1 · kp1

kp1 + [PR]
+ sp2 · kp2

kp2 + [PD]
,(2.39)

d[OS]
dt

= n ·
(

s1,2 · [OS]2

(k+ [OS])2 · dO · dS
+ s3 · [R]

k+ [R]
−dOS · [OS]

)
+ϕ(0,σOS) · [OS],(2.40)

d[N]
dt

= n ·
(

s4 · [N]2

k2 + [N]2 + p · [E]
+ s5 · [OS]

k+ [OS]+ [TC]
+ s6 · [R]

k+ [R]
−dN · [N]

)
+ϕ(0,σN ) · [N],(2.41)

d[M]
dt

= n ·
(

s7 · k
k+ [M]

+ s8 · k
k+ [N]

+ s9 · km

km + [B]
−dM · [M]

)
+ϕ(0,σM) · [M],(2.42)

d[PR]
dt

= n ·
(

s10 · k
k+ [OS]

+ s11 · [N]
k+ [N]

+ s12 · [M]
k+ [M]

−dPR · [PR]
)
+ϕ(0,σPR) · [PR],(2.43)

d[R]
dt

= n ·
(

s13 · [N]
k+ [N]

+ s14 · kr

kr + [B]
−dR · [R]

)
+ϕ(0,σR) · [R],(2.44)

d[E]
dt

= n ·
(

s15 · [OS]
k+ [OS]

−dE · [E]
)
,(2.45)

d[B]
dt

= n ·
(
α1 −dB ·

(
sb · kb

kb + [CH]

)
· [B]

)
+ϕ(0,σB) · [B],(2.46)

d[TC]
dt

= n ·
(
α2 −dTC ·

(
1+ st · [B]

kt + [B]

)
· [TC]

)
+ϕ(0,σT ) · [TC],(2.47)

N=Nanog; OS=Oct4-Sox2; M=Mycn; PR=Prdm14; R = Rest; E=Fgf4/Erk; B=β-catenin; TC=Tcf3.

Maximum transcription rates are denoted by Si, Michaelis–Menten constants by ki, noise amplitude by

σi (via normally distributed noise terms ϕ), degradation rates by di, constant transcription rates by αi

and a time normalization factor of n.

Parameter values for this system can be found in Table 2.6. No noise was added to Fgf/Erk

signalling (equation (2.45)) matching the reference model.

2.3.7 Parameter values and fitting

We used the principles set out in Section 2.2.6 to alter the parameters for desired system be-

haviour. Increasing a maximum transcription rate si can be compensated for by simultaneously

increasing the corresponding degradation rate di. Therefore all degradation rates were fixed to 1,

as in the reference model [62], which decreases the number of parameters that need fitting. All ki

values were fixed except where the system needed more or less sensitivity to retain a comparable

order of magnitude of changing network factors. Parameters si were chosen such that in the
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deterministic model the newly added genes have matching fold-change directions between the

two media as in [83] (see below).

A time normalization factor was included to set the system to the correct time scale. This was

chosen to match the half life of Nanog in the system equations to experimental measurements of

its degradation. We did this by considering only Nanog’s degradation with time normalization

factor n, given by

(2.48)
d[N]

dt
=−n · [N].

As the degradation terms di were all set to 1, dN is not included here. This differential equation

has a solution given by

(2.49) [N(t)]= C · e−nt,

where C is a constant. The half life is the time at which e−nt = 1
2 , which is the term

(2.50) t hal f =
ln2
n

.

We chose a value of n = 0.005 resulting in the half life of Nanog in the system being 138.63. If the

units of the system are in minutes this is equivalent to 2.31 hours, matching the measured half

life of Nanog in [3] (stated as 2.3 hours). This is applied to all the genes in the system meaning

they all have half-lives set the same as Nanog. As Nanog is the main focus of the system and

having only one time normalization factor keeps the number of parameters to a small number,

this simplification is justified.

We found noise parameters σi by first finding a noise value in serum+LIF for Nanog which

gave a distribution of approximately half NH and half NL (based on Figure 2.16) and setting the

rest of the noise parameters to around half of this value to be consistent with measurements of

Nanog having greater fluctuations [4]. Nanog’s maximum transcription rate s4 was also simul-

taneously altered at this stage to output the desired distribution (based on Figure 2.16). Final

parameter values of the equations in (2.39) to (2.47) can be seen in Table 2.6. Values for PD and

Chiron (CH) are changed depending on which culture conditions are being simulated, both set

at zero for Serum+LIF and increased for 2i+LIF. Two different parameter value sets were used

for simulating 2i+LIF (see Section 2.4.2 for more details); PD and Chiron both set to 2 arbitrary

units (AU) with Nanog transcriptional noise reduced by 20% and PD and Chiron both set to 20 AU.
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The deterministic system for PD, CH=0 AU and PD, CH=2 AU is bistable (see Figures 2.19a

and 2.24a), with two steady-states corresponding to NH and NL. As Nanog is the master pluripo-

tency gene, all the other genes in the deterministic system have concentration levels tied to Nanog,

i.e. each gene has a different deterministic steady-state for NH and NL respectively. For PD,

CH=20 the deterministic system is monostable, with only one steady-state set of concentrations

corresponding to NH. The steady-state concentration values of the newly added genes for NH

and NL cell states and for each of the different PD and CH value scenarios (only NH reported for

PD, CH =20) are shown in Table 2.4.

This is only the steady-state value for a single cell. To estimate concentration levels of the

new genes in the different media, we considered the proportion of cells reported in the literature

expressing NH or NL. In Serum+LIF, around 50% of mESCs have a NL concentration and 50%

NH [3, 4]. The steady-state concentrations of the newly added genes in Serum+LIF was therefore

calculated as

(2.51) Cserum = 0.5 ·SSNH +0.5 ·SSNL,

where Cserum is the calculated concentration in Serum+LIF, SSNH is the steady-state value

corresponding to NH and SSNL is the steady-state value corresponding to NL. In 2i+LIF approx-

imately 90% of cells are in a NH state and 10% in the NL [3, 4]. Concentrations for 2i+LIF were

calculated as

(2.52) C2i = 0.9 ·SSNH +0.1 ·SSNL,

where C2i is the calculated concentration in 2i+LIF. For PD and CH=20, with no NL state, the

values from the PD and CH=2 for NL concentrations were used. Fold change between the two

media is calculated as

(2.53) log2

(
C2i

Cserum

)
.

We simulated the deterministic system, recorded the steady-state values and calculated

the fold change. This was done iteratively until the fold change directions of the deterministic

system best matched the data of [83]. Table 2.5 shows the final concentrations calculated from the

deterministic model in each of the media, and the fold changes between 2i+LIF and Serum+LIF.

The table also shows the reported experimental fold changes; although the actual values differ,

the signs (positive or negative) are the same. Qualitatively, the new genes are reported higher or

lower in Serum+LIF versus 2i+LIF in the deterministic model the same as in the data set.
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Gene NL steady-state value NH steady-state value
PD, Chiron=0

Mycn 100.5 39.3
Prdm14 15.8 33.4
Rest 14.3 14.4

PD, Chiron=2
Mycn 92.6 34.2
Prdm14 16.6 33.2
Rest 9.1 9.2

PD, Chiron=20
Mycn N/A 27.5
Prdm14 N/A 32.9
Rest N/A 2.2

Table 2.4: Table showing steady-state concentrations for newly added genes
(deterministic system only). Each gene has a seperate steady-state

corresponding to NH and NL.

Gene Serum+LIF concentration 2i+LIF concentration (PD, CH=2) 2i+LIF concentration (PD, CH=20)
Mycn 69.9 40.0 34.0
Prdm14 24.6 31.6 31.3
Rest 14.4 9.2 2.9

Fold change (PD, CH=2) Fold change (PD, CH=20) Fold change (Data [83])
Mycn -0.81 -1.04 -1.71
Prdm14 0.36 0.35 1.49
Rest -0.65 -2.31 -1.08

Table 2.5: Table showing fold change of deterministic system for newly added
genes, with comparison to fold change data values taken from [83].

2.3.8 Simulation and bifurcation analysis

Numerical solutions of the SDEs were performed using the Euler-Maruyama method implemented

using the MATLAB platform (Mathworks). A total time of 5760 equates to four days of simulation.

Step-size ∆ t of each update step was 0.01, equivalent to 0.6 seconds. Bifurcation analysis (i.e.

numerical continuation) was performed on the deterministic system (no noise) using the software

xppaut.
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sp1 30* s14 20* dM 1#
sp2 30* s15 2* dPR 1#
kp1 5* sb 50* dR 1#
kp2 15* st 20* dE 1#
s1,2 75* α1 1* dB 1#
s3 1* α1 40* dTC 1#
s4 37* k 10 σOS 0.02
s5 2* σN 0.05 (0.04 for PD=CH=2)
s6 0.01* kr 0.05 σM 0.02
s7 10* km 0.05 σPR 0.02
s8 100* kt 10 σR 0.02
s9 20* kb 1 σB 0.02
s10 15* dO 1# σT 0.02
s11 30* dS 1# snb 10*
s12 10* dOS 1# n 0.005
s13 0.1* dN 1#

(* molecules/minute; # 1/minute)

Table 2.6: Table showing parameter values for full network described in
equations (2.39) to (2.47).

2.4 New model behaviour/results

We fitted the model to the distributions of Figure 2.2b, for Serum+LIF and 2i+LIF scenarios

respectively. We altered the parameters s4 and σN such that the proportions of NH and NL

matched between the model and the data. We used a simple threshold to define NH and NL,

with any cell expressing a Nanog level lower than the threshold characterized as NL, and as NH

for greater than the threshold. The threshold value we used was 5, (equivalent to 100.6990 when

referring to simulated distribution results).

2.4.1 Serum+LIF results

For simulating Serum+LIF culture conditions we set the values of PD and Chiron (CH) to 0

AU. We explored the model with continuation analysis on the deterministic system (no noise) to

see the stability of the system. Figure 2.19a shows a continuation of the steady-state of Nanog

against its auto-regulatory rate s4. The blue part of the curve denotes stable steady-state, whilst

the red part is unstable. The points at which a blue curve meet a red curve are Saddle-node

bifurcations. The chosen value of s4 is represented by a dashed black line which intersects a

lower stable steady-state (NL steady-state) and a higher stable steady-state (NH steady-state)

separated by an unstable steady-state. The deterministic system therefore exhibits bistability.

Adding the stochastic elements to the deterministic system (resulting in the full SDE shown

in equations (2.39) to (2.47)) allows it to switch between the NL and NH stable steady-state.
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We simulated the SDE model 10,000 times to represent individual instances of mESCs and

recorded the concentration of the cells after steady-state was reached. This distribution is shown

in Figure 2.19b which shows a bistable distribution of Nanog, matching experimental results

shown in Figure 2.2b of approximately 50% of cells in NH and NL states respectively. Simulated

distribution is shown as a histogram with fitted kernal density (red line), normalized as a

probability density function. We also simulated the SDEs with Serum+LIF parameters 50 times,

each with 1000 individual cells. NH was 49.6±1.5% of the overall populations as compared to the

proportion of NH observed experimentally of 56.2±8% [3, 4].
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Figure 2.19: GRN network results for Serum+LIF parameters (PD=CH=0).
a Continuation of Nanog steady-state in the deterministic system (no noise).

Blue lines are stable steady-states, red line is unstable. The current
transcription rate s4 (black dashed line) intersects a low and a high stable
steady-state, indicating bistability. b Distribution of Nanog’s steady-state
concentration in 10,000 simulated cells, showing approximately 50% of the

cells are in the NL state and 50% in the NH state.

Flow cytometry sorting experiment results from [3] are shown in Figure 2.20b. The authors

measured the proportion of mESCs expressing NH over 4 days, with three different starting

populations: a pure NH population, a pure NL population and a mixed population (unsorted

mESCs). We simulated the SDE model for 4 days, once with starting conditions of all NH and once

with all NL (1000 simulations for each starting state). The simulations shown in Figure 2.20a

correctly match the experimental observations of both sub populations, NH and NL, restoring

bistable distributions within 4 days of culture.
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Figure 2.20: Sorting of cells in Serum+LIF. a Simulation of cells sorting
(PD=CH=0). Two simulations were carried out, one with pure NH cells and the

other with only NL. Over time the distirubtions of each of these starting
populations tended towards the steady-state of approximately 50% NH and
50% NL. b Sorting of Nanog from experimental results, adapted from [3].

VNPH and VNPL are starting populations of pure NH and NL cells respectively.
This qualitavely matches our simulation, with both populations tending

towards the same steady-state distribution.

The concentration of Nanog and Oct4-Sox2 over 15 hours is shown for four representative

single cell simulations in Figure 2.21. Nanog is observed to stochastically fluctuate, whilst Oct4-

Sox2 remains steady. Black dashed line represents threshold value used to separate NH from

NL. This matches experimental single-cell measurements of Nanog in [4], shown in Figure 2.22

(experimental time courses are for Nanog only), which show fluctuations between NH and NL

within circa 15 hours.
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Figure 2.21: Four representative time courses of Nanog and Oct4-Sox2
concentration in four cells over 15 hours for Serum+LIF parameter values (PD,
CH=0). Dashed black line is threshold we used to separate NH and NL cells.
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Figure 2.22: Experimental data (time lapse) of Nanog measured in individual
cells cultured in Serum+LIF, adapted from [4]. Individual cells swap between
NH and NL states within a cell cycle (15 hours). Blank data was from dead

cells or errors in the recording.
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2.4.2 2i+LIF results

For simulating 2i+LIF culture conditions, we considered two different parameter cases. For

the first case considered, the values of PD and Chiron were simultaneously increased until the

distributions matched the desired proportions of approximately 10% of cells expressing NL and

90% NH. The value we set both PD and Chiron to achieve this was 20 AU. Figure 2.23a shows

the continuation of Nanog’s steady-state against its auto-regulatory rate s4, with the dashed

black line denoting its value. Here the deterministic system is fully monostable, shown by the

black dashed line intersecting only the NH state. We ran the SDEs with these 2i+LIF parameter

for 10,000 cells, resulting in the distribution shown in Figure 2.23b. A small population of NL

cells is still present, even though the deterministic system no longer has a NL steady-state.

Even with the deterministic system being fully monostable, the stochasticity of the system is

enough to drive some of the cells to the NL state. Another element of the system attracting cells

towards the NL state is the ghost bottleneck, described in [141]. This is where systems close to

Saddle-node bifurcations have longer transients as the system passes underneath. We simulated

the SDEs with these 2i+LIF parameters (PD, CH=20) 50 times, each with 1000 individual cells.

NH was 87.27±0.99% of the overall populations as compared to the proportion of NH observed

experimentally of 91.1±3.1% [3, 4].
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Figure 2.23: GRN network results for 2i+LIF parameters (PD=CH=20).
a Continuation of Nanog steady-state in the deterministic system (no noise).

Blue lines are stable steady-states, red line is unstable. The current
transcription rate s4 (black dashed line) intersects only the high steady-state,

indicating a shift in the deterministic system towards monostability.
b Distribution of Nanog’s steady-state concentration in 10,000 simulated cells,

showing approximately 90% of the cells in the NH state and 10% in the NL
state.

The second 2i+LIF parameters case we explored is increasing PD and Chiron, but also

decreasing Nanog’s stochastic noise. This is more consistent with experimental results which

measured the number of mRNA molecules per cell showing that the fluctuations of Nanog are
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decreased in 2i+LIF [4]. The specific case we considered here is PD and Chiron equal to 2 and

Nanog’s noise term σN reduced by 20% from 0.05 to 0.04. The continuation of Nanog’s steady-

state against s4 for this 2i+LIF scenario can be seen in Figure 2.24a. The system is still bistable,

though the value of s4 (black dashed line) is now very close to the Saddle-node bifurcation. In

combination with reducing the noise, the SDE model can match the observed distribution of

Nanog in 2i+LIF of approximately 90% expressing NH and 10% NL (Figure 2.24b). We again

simulated the SDEs with these new 2i+LIF parameters (PD, CH=2; noise reduced by 20%) 50

times, each with 1000 individual cells. NH cells were 88.46±1% of the overall populations as

compared to the same proportion of NH observed experimentally of 91.1±3.1% [3, 4]. Therefore

both of these 2i+LIF scenarios give qualitatively the same distributions of Nanog.
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Figure 2.24: GRN network results for 2i+LIF parameters (PD=CH=2, noise
reduced 20% [4]). a Continuation of Nanog steady-state in the deterministic

system (no noise). Blue lines are stable steady-states, red line is unstable. The
current transcription rate s4 (black dashed line) intersects both the high and
low steady-state, though is close to the Saddle-node bifurcation of the low state.

The system is still bistable, though has shifted towards monostability.
b Distribution of Nanog’s steady-state concentration in 10,000 simulated cells,

showing approximately 90% of the cells in the NH state and 10% in the NL
state.

We ran flow cytometry sorting simulations for both 2i+LIF parameter sets, with the SDEs

run for four simulated days with starting populations of pure NH and NL cells (1000 realizations

for each). Figure 2.25a is for PD and Chiron equal to 20, and Figure 2.25b is for PD and Chiron

equalling 2, with Nanog noise reduced 20%. For both 2i+LIF cases the cells tend towards the

steady-state distribution of approximately 90% NH, 10% NL. However, simulated cells for the

first case tend towards this steady-state much faster. Sorting experiments in 2i+LIF have not

been performed, and could inform which case is a better representative of mESCs in 2i+LIF.

Four representative cell time courses of Nanog and Oct4-Sox2 concentration for PD=Chiron=20

scenario are shown in Figure 2.26. Oct4-Sox2 concentration remains stable over the 15 hours,
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Figure 2.25: Sorting of cells in 2i+LIF. a Simulation of cells sorting
(PD=CH=20). Two simulations were carried out, one with pure NH cells and
the other with only NL. Over time the distributions of each of these starting
populations tended towards the steady-state of approximately 90% NH and

10% NL. b Simulation of cells sorting (PD=CH=2 and noise reduced 20%). Over
time the distributions of both starting populations tends towards the stable
steady-state of approximately 90% NH and 10% NL. However they approach

this steady-state slower.

whilst Nanog concentration fluctuates. Black dashed lines represent threshold value used to

separate NH from NL.

Four representative cell time courses of Nanog and Oct4-Sox2 concentration for PD=Chiron=2

and noise reduced 20% scenario are shown in Figure 2.27. Similar to the PD, Chiron=20 case,

cells express stable concentrations of Oct4-Sox2, with fluctuating levels of Nanog. Black dashed

lines represent threshold value used to separate NH from NL. Qualitatively, simulation time

courses in Figures 2.26 and 2.27 match experimental single-cell measurements in Figure 2.28

(experimental time courses are for Nanog only).
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Figure 2.26: Four representative time courses of Nanog and Oct4-Sox2
concentration in four cells over 15 hours for 2i+LIF parameter values (PD,

CH=20). Dashed black line is threshold we used to separate NH and NL cells.
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Figure 2.27: Four representative time courses of Nanog and Oct4-Sox2
concentration in four cells over 15 hours for 2i+LIF parameter values (PD,

CH=2; noise reduced 20%). Dashed black line is threshold we used to separate
NH and NL cells.
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Figure 2.28: Time lapse of Nanog measured in individual cells cultured in
2i+LIF, adapted from [4]. Blank data was from dead cells or errors in the

recording.
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Of note, in 2i+LIF simulation results shown hereafter, the reduced noise parameters were

used. This is to more realistically represent experimental data. Furthermore, distribution plots

are now normalized as % of Max, and only kernal fitting functions are shown.

2.4.3 Gene/molecular pathway deletions

To understand how the newly added genes effect the system stability, we performed 2-parameter

continuations on the variables PD and Chiron. This was for the whole network, and under single

gene deletions. To simulate a gene’s deletion we set all terms contributing towards that gene in

the differential equation system to 0, and the initial concentration of that gene was also set to 0,

ensuring that the gene’s concentration remains at nothing for all time. Figure 2.29 shows the 2-

parameter continuations of the whole network, and upon single gene deletions. We performed this

in xppaut, continuing a Saddle-node bifurcation as found from single parameter continuations.

The area above each respective curve denotes the region of PD and Chiron concentrations for

which the deterministic system is monostable, NH only.
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Figure 2.29: 2-parameter continuations of the Saddle-node from Nanog’s
continuation against PD and Chiron; with the full network, and with gene

deletions. Each curve is a Saddle-node bifurcation, above which the system is
monostable.

For the whole network (Figure 2.29, red line) both inhibitors enable the shift of the system

towards a single NH steady-state, PD via altering Nanog’s positive feedback regulation and

Chiron via strengthening Oct4-Sox2 activation of Nanog (indirectly the same mechanism as in

Figure 2.11). Deletion of Rest (Figure 2.29, black dashed line) does not significantly affect the

systems stability, whilst for Mycn deletion a monostable NH state can only be obtained if PD and

Chiron are further increased (Figure 2.29, blue line). This is due to the indirect regulation of

Mycn on Nanog through Prdm14. The effect is much stronger upon Prdm14 deletion, requiring a
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significant increase of PD and Chiron (Figure 2.29, green line).

The results from the 2-parameter continuations prompted further exploration of the effects of

deleting the newly added genes, especially for Prdm14. We therefore simulated the SDE model,

deleting each of the genes, to see what effect this would have on the steady-state distribution

of Nanog. Upon Rest and Mycn deletion no change in the steady-state distribution of Nanog

was observed (they appear the same as in Figures 2.19b and 2.24b for Serum+LIF and 2i+LIF

parameter values respectively). This shows how important noise is in the system, as the noise is

able to maintain the distributions of Nanog, even with changing of the deterministic steady-states.

However, upon Prdm14 deletion the steady-state distribution of Nanog was significantly changed.

Figure 2.30 shows steady-state distributions of Nanog simulated in 1000 cells with Prdm14

deleted. Figure 2.30a is for Serum+LIF and shows a greater proportion of mESCs expressing

NL, implying a large reduction in pluripotency (compare to Figure 2.19b). For 2i+LIF, shown in

Figure 2.30b, Nanog heterogeneity persists (compare to Figure 2.24b). This is consistent with

experimental results showing that upon Prdm14 deletion mESCs cultured in 2i+LIF display

heterogeneous Nanog expression and defective differentiation potential [164].
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Figure 2.30: Distriubtions of Nanog upon Prdm14 deletion for a Serum+LIF
parameters and b 2i+LIF parameters. Both parameter sets show a significant
increase in the proportion of NL mESCs, indicating a reduction of pluripotency.

To explore what effect β-catenin and Tcf3 have on the stability of the system, we performed

continuations of the steady-state of Nanog against its auto-regulatory rate upon β-catenin

deletion and Tcf3 deletion. When β-catenin is deleted, the system is pushed further into the

bistable regime for both Serum+LIF (Figure 2.31a) and 2i+LIF (Figure 2.31b) as shown by the

dashed black lines; compare to Figures 2.19a and 2.24a respectively.

More pronounced effects are seen for Tcf3 deletion. For Serum+LIF parameters (Figure 2.32a)

the system has shifted entirely into a NH mono stable regime, with a further shift for 2i+LIF

parameters (Figure 2.32b) as compared to Figures 2.19a and 2.24a respectively. This is consistent
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Figure 2.31: Continuations of Nanog steady-state upon β-catenin deletion, in
the deterministic system (no noise). Blue lines are stable steady-states, red line
is unstable. a Serum+LIF parameters. The current transcription rate s4 (black

dashed line) intersects both the high and low steady-state, indicating
bistability. b 2i+LIF parameters. The current transcription rate s4 (black

dashed line) intersects both the high and low steady-state, though has moved
closer to the Saddle-node bifurcation. The system is slightly further into the

bistable regime upon β-catenin deletion.

with experimental results showing that when Tcf3 is inhibited, mESC differentiation is delayed

[165], i.e. the cells are more pluripotent.
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Figure 2.32: Continuations of Nanog steady-state upon Tcf3 deletion.
a Serum+LIF parameters. The current transcription rate s4 (black dashed

line) intersects only the high steady-state. b 2i+LIF parameters. The current
transcription rate s4 (black dashed line) intersects only the high steady-state,

though is further into the monostable regime. Both parameter sets show a
significant shift of the system into the high monostable regime upon Tcf3

deletion.
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2.4.4 Alternative network structures/modifications to the GRN

Nanog has been reported to indirectly activate β-catenin [87], inhibiting Dkk1 which inhibits β-

catenin. This interaction was reported to be important for successfully reprogramming fibroblast

cells (a type of cell that creates the structure for animal tissues) into pluripotent stem cells.

Therefore, we explored this interaction by adding it to the model. For simplicity this was modelled

as a direct activation by Nanog, ignoring the double inhibition through Dkk1. The part of the

system equations altered with this extra activation (equation (2.46)) is now given by

...
...

...
...

d[B]
dt

= n ·
(
α1 + snb · [N]

k+ [N]
−dB ·

(
sb · kb

kb + [CH]

)
· [B]

)
+ϕ(0,σB) · [B],

...
...

...
...

(2.54)

showing the addition of an snb Hill term. Parameter values are in Table 2.6.

Figure 2.33a shows the GRN interaction of the added activation, and Figure 2.33b shows

2-parameter continuations of the new system, as well as without the added interaction for

comparison. This shows that adding this interaction reduces the amount of PD and Chiron (in

the deterministic model) needed to push the system towards a monostable regime.
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Figure 2.33: Added activation of β-catenin by Nanog. a Extended GRN of
Figure 2.18 with added interaction of Nanog on β-catenin. b 2-parameter

continuations of the Saddle-node from Nanog’s continuation against PD and
Chiron; with original network, and with added activation. Each respective
curve is a Saddle-node bifurcation, above which the system is monostable.

We ran the SDE model for the original system and with the added activation shown in Figure

2.33a to compare steady-state distributions of both Nanog and β-catenin. Figure 2.34a shows

the steady-state distribution of Nanog, without Nanog activating β-catenin and for Serum+LIF
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parameter values. Figure 2.34b shows the steady-state distribution of β-catenin under the

same conditions. The steady-state of Nanog is the same as in 2.19b demonstrating Nanog’s

heterogeneity with a bimodel distribution. With no activation by Nanog, β-catenin’s steady-state

distribution is monostable.
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Figure 2.34: Distributions of Nanog (a) and β-catenin (b) with no activation
of β-catenin by Nanog and using Serum+LIF parameters. Approximately 50%
of the mESCs are in a NH state, and 50% NL. The distribution of β-catenin is

monostable.

When Nanog activating β-catenin is added the steady-state of Nanog is unchanged, as shown

in Figure 2.35a (compare to Figure 2.34a). This again demonstrates how the system can be more

sensitive to noise than to stability of the deterministic system, as the 2-parameter continuation

shows the deterministic system is affected, but this does not impact on the SDE model when noise

is added. With the added activation the steady-state distribution of β-catenin is now bimodel,

as shown in Figure 2.35b. The difference between the high β-catenin and low β-catenin state is

smaller than for Nanog, correctly matching results as reported in [87].

Figure 2.36a shows the steady-state distribution of Nanog, without Nanog activating β-

catenin and for 2i+LIF parameter values. Figure 2.36b shows the steady-state distribution of

β-catenin under the same conditions. The steady-state of Nanog is the same as in 2.24b with

approximately 90% of cells in NH and 10% in NL. With no activation by Nanog, β-catenin has

a monostable distribution and the concentration value has been increased as compared to in

Serum+LIF (compare to Figure 2.34b) due to β-catenin being directly activated by Chiron.

With 2i+LIF parameters, and now including Nanog activation on β-catenin, Nanog’s steady-

state distribution remains unaffected as shown in Figure 2.37a (compare to Figure 2.36a).

β-catenin now has a bimodel distribution, with more cells in a high β-catenin state as compared

to in Serum+LIF (Figure 2.35b).
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Figure 2.35: Distributions of Nanog (a) and β-catenin (b) with activation of
β-catenin by Nanog and using Serum+LIF parameters. Approximately 50% of

the mESCs are in a NH state, and 50% NL. The distribution of β-catenin is
now bistable with just over half of the mESCs in a β-catenin high state.
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Figure 2.36: Distributions of Nanog (a) and β-catenin (b) with no activation
of β-catenin by Nanog and using 2i+LIF parameters. Approximately 90% of the

mESCs are in a NH state, and 10% NL. The distribution of β-catenin is
monostable, and at a higher level than for Serum+LIF.
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Figure 2.37: Distributions of Nanog (a) and β-catenin (b) with activation of
β-catenin by Nanog and using 2i+LIF parameters. Approximately 90% of the
mESCs are in a NH state, and 10% NL. The distribution of β-catenin is now

bistable with approximately 90% of the cells in a β-catenin high state.
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The interaction between β-catenin and Mycn has conflicting results in different experimental

studies. The data set we used predicted β-catenin to inhibit Mycn. However a different study

reported a positive feedback loop between Mycn and β-catenin [40]. Therefore we considered both

the case of no regulation of β-catenin on Mycn, and the case of β-catenin activating Mycn. The

part of the GRN equations altered to delete β-catenin regulating Mycn (equation (2.42)) is now

given by

...
...

...
...

d[M]
dt

= n ·
(

s7 · k
k+ [M]

+ s8 · k
k+ [N]

−dM · [M]
)
+ϕ(0,σM) · [M],

...
...

...
...

(2.55)

where the s9 Hill term has been removed. Parameter values are in Table 2.6

Figure 2.38a shows a schematic for the deletion of the regulation of β-catenin on Mycn. Figure

2.38b shows a 2-parameter continuation on PD and Chiron, where the area above the curve

denotes the parameter region for which the system is monostable (NH only). Comparing to

Figure 2.29 (Original, red curve) and Figure 2.33b (Original, blue curve) no obvious difference is

observed.
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Figure 2.38: β-catenin interaction on Mycn removed. a Extended GRN of
Figure 2.18 with interaction of β-catenin on Mycn removed. b 2-parameter
continuation of the Saddle-node from Nanog’s continuation against PD and

Chiron, above the curve the system is monostable.

Continuing the steady-state of Nanog against its auto-regulatory rate s4 when deleting this

interaction resulted in no change to the stability of the deterministic system, for both medium

parameters, (compare Figure 2.39a to 2.19a for Serum+LIF and 2.40a to 2.24a for 2i+LIF). The

same lack of change is observed when simulating the full SDE, resulting in the same distributions

54



2.4. NEW MODEL BEHAVIOUR/RESULTS

of approximately half NH and NL in Serum+LIF (compare Figure 2.39b to 2.19b for Serum+LIF)

and approximately 90% NH, 10% NL in 2i+LIF (compare Figure 2.40b to 2.24b for 2i+LIF).
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Figure 2.39: β-catenin interaction on Mycn removed results for Serum+LIF
parameters. a Continuation of Nanog steady-state in the deterministic system
(no noise). Blue lines are stable steady-states, red line is unstable. The current

transcription rate s4 (black dahsed line) intersects both the NH and NL
steady-state, indicating bistability. b Distribution of Nanog’s steady-state

concentration, showing approximately 50% of the cells in the NH state and
50% in the NL state.
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Figure 2.40: β-catenin interaction on Mycn removed results for 2i+LIF
parameters. a Continuation of Nanog steady-state in the deterministic system
(no noise). Blue lines are stable steady-states, red line is unstable. The current

transcription rate s4 (black dashed line) intersects both the NH and NL
steady-state, though has shifted nearer to the Saddle-node bifurcation, and to

the NH monostable regime. b Distribution of Nanog’s steady-state
concentration, showing approximately 90% of the cells in the NH state and

10% in the NL state.
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For considering β-catenin activating Mycn, the part of the main GRN equations altered to

change the interaction to an activation (equation (2.42)) is now given by

...
...

...
...

d[M]
dt

= n ·
(

s7 · k
k+ [M]

+ s8 · k
k+ [N]

+ s9 · [B]
km + [B]

−dM · [M]
)
+ϕ(0,σM) · [M]

...
...

...
...

(2.56)

showing that the s9 Hill term has been changed to an activation. Parameter values are in Table

2.6. This interaction is shown schematically in Figure 2.41a. Figure 2.41b shows a 2-parameter

continuation on PD and Chiron, where the area above the curve again denotes the values of PD

and Chiron for which the system is monostable (NH only). Comparing to Figure 2.29 (Original,

red curve) and Figure 2.33b (Original, blue curve) again shows no difference.
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Figure 2.41: β-catenin interaction on Mycn changed from inhibition to
activation. a Extended GRN of Figure 2.18 with interaction of β-catenin on
Mycn changed to activation. b 2-parameter continuation of the Saddle-node

from Nanog’s continuation against PD and Chiron. Above the curve the system
is monostable.

Continuations of Nanog’s steady-state against its auto-regulatory rate s4 and simulations of

the SDEs show no effect from the change of this interaction to an activation. Figure 2.42a and

2.43a look the same as to the original network shown in Figure 2.19a and 2.24a (for Serum+LIF

and 2i+LIF respectively) and Figure 2.42b and 2.43b show the same distributions of Nanog at

steady-state in Serum+LIF and 2i+LIF (compare to Figures 2.19b and 2.24b).

Therefore this interaction has been demonstrated to be unimportant for the pluripotency of

the simulated system, and was kept as originally found in the database of [168].
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Figure 2.42: β-catenin interaction on Mycn changed to activation results for
Serum+LIF parameters. a Continuation of Nanog steady-state in the

deterministic system (no noise). Blue lines are stable steady-states, red line is
unstable. The current transcription rate s4 (black dashed line) intersects both
the NH and NL steady-state, indicating bistability. b Distribution of Nanog’s
steady-state concentration, showing approximately 50% of the cells in the NH

state and 50% in the NL state.
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Figure 2.43: β-catenin interaction on Mycn changed to activation results for
2i+LIF parameters. a Continuation of Nanog steady-state in the deterministic
system (no noise). Blue lines are stable steady-states, red line is unstable. The
current transcription rate s4 (black dashed line) intersects both the NH and

NL steady-state, though has shifted nearer to the Saddle-node bifurcation, and
to the NH monostable regime. b Distribution of Nanog’s steady-state

concentration, showing approximately 90% of the cells in the NH state and
10% in the NL state.
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2.4.5 Alternative simpler networks capable of reproducing bistability in
Nanog

The deterministic (no noise) bistability of Nanog is caused by an activation feedback (positive

auto-regulatory loop), as shown in Section 2.2.5. Reduced networks which keep a positive feedback

loop can still recapitulate bistability, even if not directly Nanog activating itself. We wanted to

explore which are the key interactions and feedbacks that cause bistability by looking at three

different simplified networks with different positive feedback loops established within them. Only

continuations of Nanog’s steady-state were performed as they are sufficient to show that the

respective system is capable of bistable behaviour. The first simplified network we considered is

illustrated in Figure 2.44, comprised of the core factors Nanog, Oct4 and Sox2 with an Fgf4/Erk

module and β-catenin Tcf3 regulations along with the two inhibitors PD and Chiron.
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Figure 2.44: Simplified GRN retaining Nanog auto-activation. Solid lines are
transcriptional interactions, dashed lines are non-transcriptional interactions.

Arrows are activations, flat headed arrows are inhibitions. Core network is
made of Nanog, Oct4 and Sox2. FGF4/Erk, Tcf3 and β-catenin are added as

targets of the two inhibitors present in 2i+LIF: PD and Chiron (CH).
Parameters correspond to equations (2.57) to (2.62).

The equations for the first simplified case of Figure 2.44 are given by
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p = sp · kp

kp + [PD]
,(2.57)

d[OS]
dt

= n ·
(

s1,2 · [OS]2

(k+ [OS])2 · dO · dS
−dOS · [OS]

)
,(2.58)

d[N]
dt

= n ·
(

s4 · [N]2

k2 + [N]2 + p · [E]
+ s3 · [OS]

k+ [OS]+ [TC]
−dN · [N]

)
,(2.59)

d[E]
dt

= n ·
(

s5 · [OS]
k+ [OS]

−dE · [E]
)
,(2.60)

d[B]
dt

= n ·
(
α1 −dB ·

(
sb · kb

kb + [CH]

)
· [B]

)
,(2.61)

d[TC]
dt

= n ·
(
α2 −dTC ·

(
1+ st · [B]

kt + [B]

)
· [TC]

)
,(2.62)

N=Nanog; OS=Oct4-Sox2; E=Fgf4/Erk; B=β-catenin; TC=Tcf3. Maximum transcription rates are denoted

by Si, Michaelis–Menten constants by ki, degradation rates by di, constant transcription rates by αi and

a time normalization factor of n.

Parameter values for this system can be found in Table 2.7.

sp 35* α2 40* dPR 1#
kp 25 k 10 dR 1#
s1,2 75* kt 10 dE 1#
s3 2* kb 1 dB 1#
s4 37* dO 1# dTC 1#
s5 2* dS 1# n 0.005
sb 50* dOS 1#
st 20* dN 1#
α1 1* dm 1#

(* molecules/minute; # 1/minute)

Table 2.7: Table showing parameter values for GRN of Figure 2.44, described
by equations (2.57) to (2.62).

Continuations of the steady-state of Nanog against its auto-regulatory rate s4 can be seen in

Figure 2.45. When simulating the Serum+LIF scenario (PD, CH=0) as shown in Figure 2.45a, the

current value of s4 (black dashed line) intersects through the NL steady-state, the NH steady-

state and the unstable steady-state separating them. For 2i+LIF (PD, CH=2) the continuation

curve in Figure 2.45b has shifted such that the current value of s4 (black dashed line) is right

on top of the Saddle-node bifurcation. This suggests that Nanog auto-activation is sufficient to
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explain the bistable behaviour of Nanog in mESCs, and inclusion of inhibitors is able to alter the

stability of the system.
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Figure 2.45: Continuation results for GRN of Figure 2.44. Continuation is of
Nanog steady-state; blue lines are stable steady-states, red line is unstable.

a Serum+LIF. The current transcription rate s4 (black dashed line) intersects
both the NH and NL steady-state, indicating bistability. b 2i+LIF. The current

transcription rate s4 (black dashed line) intersects both the NH and NL
steady-state, though has shifted nearer to the Saddle-node bifurcation, and to

the NH monostable regime.

The NIA bank analysis we performed when building the extended network showed Nanog to

be a direct inhibitor of its own transcription (see Table 2.3). This result is also reported in two

independent studies [45, 102]. We therefore explored whether other interactions present in the

network could give rise to positive feedback loops capable of reproducing bistability in the steady-

state of Nanog, even when changing Nanog’s auto-activation into an auto-inhibition. Figure 2.46

shows a GRN for the core factors, with Nanog’s auto-activation changed to an inhibition. We

additionally added an extra interaction of Nanog activating β-catenin, as in Figure 2.33a. An

indirect positive feedback loop is established through β-catenin and Tcf3.

The equations for this system are shown in (2.63) to (2.68) with parameter values in Table

2.8;
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Figure 2.46: Simplified GRN with Nanog auto-inhibition and activation of
β-catenin by Nanog. Solid lines are transcriptional interactions, dashed lines
are non-transcriptional interactions. Arrows are activations, flat headed arrows

are inhibitions. Core network is made of Nanog, Oct4 and Sox2. FGF4/Erk,
Tcf3 and β-catenin are added as targets of the two inhibitors present in 2i+LIF:

PD and Chiron (CH). Parameters correspond to equations (2.63) to (2.68).

p = sp · kp

kp + [PD]
,(2.63)

d[OS]
dt

= n ·
(

s1,2 · [OS]2

(k+ [OS])2 · dO · dS
−dOS · [OS]

)
,(2.64)

d[N]
dt

= n ·
(

s4 · k
k+ [N]

+ s3 · [OS]
k+ [OS]+ [TC]2 + p · [E]

−dN · [N]
)
,(2.65)

d[E]
dt

= n ·
(

s5 · [OS]
k+ [OS]

−dE · [E]
)
,(2.66)

d[B]
dt

= n ·
(
α1 + snb · [N]3

k3 + [N]3 −dB ·
(

sb · kb

kb + [CH]

)
· [B]

)
,(2.67)

d[TC]
dt

= n ·
(
α2 −dTC ·

(
1+ st · [B]3

k3
t + [B]3

)
· [TC]

)
,(2.68)

N=Nanog; OS=Oct4-Sox2; M=Mycn; PR=Prdm14; R = Rest; E=Fgf4/Erk; B=β-catenin; TC=Tcf3.

Maximum transcription rates are denoted by Si, Michaelis–Menten constants by ki, degradation rates by

di, constant transcription rates by αi and a time normalization factor of n.

Continuations of Nanog’s steady-state against its auto-inhibitory rate s4 can be seen in Figure

2.47. In Serum+LIF (PD, CH=0) the system is bistable, with the black dashed line in Figure

2.47a intersecting two stable steady-states. Increasing the values of the inhibitors for 2i+LIF (PD,
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sp 35* α1 1* dM 1#
kp 5 α2 40 dPR 1#
s1,2 75* k 10 dR 1#
s3 35* kt 0.15 dE 1#
s4 5* kb 250 dB 1#
s5 2* dO 1# dTC 1#
sb 50* dS 1# n 0.005
st 15* dOS 1#
snb 10* dN 1#

(* molecules/minute; # 1/minute)

Table 2.8: Table showing parameter values for GRN of Figure 2.46, described
by equations (2.63) to (2.68).

CH=2) shifts the system further towards the NH state, as in 2.47b. For this system to exhibit

bistability the non linearity of the system had to be increased (Hill coefficients of 3 for both snb

and st Hill terms) and the sensitivity to changing levels of β-catenin had to be increased by

having a low Michaelis–Menten constant for its respective Hill term (kt in st Hill term). This

shows that even when considering Nanog’s auto-regulation as an inhibition, an indirect positive

feedback loop through β-catenin is able to produce bistability.
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Figure 2.47: Continuation results for GRN of Figure 2.46. Continuation is of
Nanog steady-state; blue lines are stable steady-states, red line is unstable.

a Serum+LIF. The current transcription rate s4 (black dashed line) intersects
both the NH and NL steady-state, indicating bistbility. b 2i+LIF. The current

transcription rate s4 (black dashed line) intersects both the NH and NL
steady-state, though has shifted nearer to the Saddle-node bifurcation, and to

the NH monostable regime.

The final simplified network we looked at also took Nanog’s auto regulation as an inhibition

but neglected Nanog’s activation of β-catenin. A different positive feedback loop is established

through an interaction present in the extended network: Nanog activating Rest, reciprocally
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activating Nanog back. The simplified network considered can be seen in Figure 2.48, described

by the equations in (2.69) to (2.75).

Oct4-Sox2

FGF4
Erk

Nanog
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β-Cat

Tcf3
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Rest

S1,2

S6 S7
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S4
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Figure 2.48: Simplified GRN with Nanog auto-inhibition and activation of an
additional gene ("A", E.g. Rest) by Nanog, which in turn activates Nanog back.

Solid lines are transcriptional interactions, dashed lines are
non-transcriptional interactions. Arrows are activations, flat headed arrows
are inhibitions. Core network is made of Nanog, Oct4 and Sox2. FGF4/Erk,

Tcf3 and β-catenin are added as targets of the two inhibitors present in 2i+LIF:
PD and Chiron (CH). Parameters correspond to equations (2.69) to (2.75).

The interactions of this network are modelled by:
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p = sp · kp

kp + [PD]
,(2.69)

d[OS]
dt

= n ·
(

s1,2 · [OS]2

(k+ [OS])2 · dO · dS
−dOS · [OS]

)
,(2.70)

d[N]
dt

= n ·
(

s4 · k
k+ [N]

+ s3 · [OS]
k+ [OS]+ [TC]+ p · [E]

+ s6 · [R]2

kn
2 + [R]2

−dN · [N]
)
,(2.71)

d[R]
dt

= n ·
(

s7 · [N]2

k2 + [N]2 −dR · [R]
)
,(2.72)

d[E]
dt

= n ·
(

s5 · [OS]
k+ [OS]

−dE · [E]
)
,(2.73)

d[B]
dt

= n ·
(
α1 −dB ·

(
sb · kb

kb + [CH]

)
· [B]

)
,(2.74)

d[TC]
dt

= n ·
(
α2 −dTC ·

(
1+ st · [B]

kt + [B]

)
· [TC]

)
,(2.75)

N=Nanog; OS=Oct4-Sox2; R = Rest; E=Fgf4/Erk; B=β-catenin; TC=Tcf3. Maximum transcription rates

are denoted by Si, Michaelis–Menten constants by ki, degradation rates by di, constant transcription

rates by αi and a time normalization factor of n.

Parameter values for this system can be found in Table 2.9.

sp 35* st 20* dOS 1#
kp 10 α1 1* dN 1#
s1,2 75* α2 40* dM 1#
s3 6* k 10 dPR 1#
s4 1* kn 45 dR 1#
s5 2* kt 6 dE 1#
s6 48* kb 1 dB 1#
s7 50* dO 1# dTC 1#
sb 50* dS 1# n 0.005

(* molecules/minute; # 1/minute)

Table 2.9: Table showing parameter values for GRN of Figure 2.48, described
by equations (2.69) to (2.75).

Continuations of Nanog’s steady-state against the activation rate of Rest on Nanog, s6, are

shown in Figure 2.49. In Serum+LIF the deterministic system is bistable, with the chosen value

of s6 (dashed black line) intersecting both the NH and NL steady-states. When PD and Chiron

are introduced into the system, the 2i+LIF results show the system shifted further to the NH

steady-state with the value of s6 (dashed black line) much closer to the Saddle-node bifurcation.
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Figure 2.49: Continuation results for GRN of Figure 2.48. Continuation is of
Nanog steady-state; blue lines are stable steady-states, red line is unstable.

a Serum+LIF. The current transcription rate s4 (black dashed line) intersects
both the NH and NL steady-state, indicating bistbility. b 2i+LIF. The current

transcription rate s4 (black dashed line) intersects both the NH and NL
steady-state, though has shifted nearer to the Saddle-node bifurcation, and to

the NH monostable regime.

2.4.6 Agent-based model

All analysis in this section was performed by the following collaborators: Daniel Ward and Martin

Homer from the Department of Engineering Mathematics in Bristol; Elisa Pedone from Engi-

neering Mathematics and the school of Cellular and Molecular Medicine in Bristol; Alexander G.

Fletcher from the School of Mathematics and Statistics and the Bateson centre in the University

of Sheffield; and Lucia Marucci from the Department of Engineering Mathematics, the School of

Cellular and Molecular Medicine and BrisSynBio of the University of Bristol.

All the previous modelling and analysis ignored physical cell to cell interactions and the

cell-cycle. The cell-cycle is composed of different phases, namely G1, S and G2, through which a

cell progresses before dividing. More succinctly, the length of the cell-cycle is the time it takes for

a cell to divide. Three studies disagreed in their results of how 2i+LIF and Serum+LIF affect the

cell-cycle. One [26] reported a quicker cell-cycle time in 2i+LIF, another [71] reported a slower

cell-cycle time in 2i+LIF, and a third [145] reported no difference between the two media. We

therefore performed our own culturing of mESCs in Serum+LIF and 2i+LIF, measuring how the

rate of proliferation varies between the two media. We found a significantly slower proliferation

rate in 2i+LIF as compared to Serum+LIF, as shown in Figure 2.50.

An agent based model was developed to match the progression of the cell-cycle within the

two media. The was created in the Chaste modelling framework [93, 110], an extensive library
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in C++ which contains tools for agent based modelling of cell/tissue cultures. Each cell agent

contains its own realization of the GRN, upon which gene concentration levels within affect

cell-cycle and cell states. The cell-cycle time, derived from the GRN, is then fed into the model

that describes physical interactions between neighbouring cells (see Figure 2.55 for snapshot

of physical agent system). Two different genes within the GRN are candidates from which the

cell-cycle can be based on, Nanog and Mycn. Nanog levels have been shown to correlate positively

with proliferation rate (at least in Serum+LIF) [61]. The Myc family of TFs (includes Myc and

Mycn) has been shown to positively regulate cell growth proliferation in various cell types [30].

When using Nanog to define a mESCs cell-cycle time, cells are classified as either Nanog high

(NH) or Nanog low (NL), using a threshold level to separate them. The same approach is used

when using Mycn for the cell-cycle, except mESCs are classified as Mycn high (MH) or Mycn

low (ML). A mESC classified as NH will progress through the cell-cycle faster than for NL and

will therefore have a shorter cell-cycle duration, with the same behaviour for MH cells versus

ML cells. Distributions of cell-cycle times were created for NH, NL, MH and ML, where the

time it takes for an agent to divide would be a variable randomly drawn from the distribution

corresponding to its state (e.g. NH state). The cell-cycle distributions were altered to match the

proliferation rate of the simulated cell agents with that of the real world mESCs we measured

experimentally.

We first used Nanog to couple gene expression and cell-cycle duration as in [61], where

simulated mESC agents had their cell-cycle times altered to match the proliferation we measured

in Serum+LIF. With the allocated cell-cycle times (CCNH = 8.5±1h and CCNL = 13.5±1h, where

CCNH and CCNL are cell-cycle times for NH and NL cells respectively), the simulated Serum+LIF

proliferation rate had a root-mean squared error (RMSE) of 2.35 compared to the data, as shown

in Figure 2.50a (blue line). Distributions of Nanog concentration in the population of cells showed

approximately 50% in NL and 50% in NH, consistent with the SDE model and experimental data

(compare Figure 2.51a to 2.19b and 2.2b). Using the cell-cycle times fitted to Serum+LIF but with

2i+LIF parameters (PD=2, CH=2, Nanog noise reduced 20%) resulted in a distribution of Nanog

concentrations consistent with the SDE model and experimental data of approximately 90% NH

and 10% NL (compare Figure 2.51b to 2.24b and 2.2b). However, the proliferation rate of mESCs

in the agent model was increased in 2i+LIF, in direct contrast to experiment (red line in Figure

2.50a) with a RMSE of 22.59.

We then fitted cell-cycle times to the 2i+LIF experimental rates by increasing the cell-cycle

times (CCNH = 13.175±1h and CCNL = 20.925±1h) resulting in a RMSE of 1.07 between the

model and 2i+LIF data shown in Figure 2.50b (red line). However these times were poor at

predicting the growth rate in Serum+LIF (blue line in Figure 2.50b) with a RMSE of 11.01. This

shows that coupling the cell-cycle to Nanog is unable to reproduce the experimental proliferation

rates observed between the two media.
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Figure 2.50: Comparison of experimental and model simulated fold change in
proliferation dynamics of mESCs in the two different media. In the model, the
cell-cycle is coupled to Nanog levels. a Serum+LIF data were fitted, and 2i+LIF
behaviour predicted by the model. b 2i+LIF data were fitted, and Serum+LIF

behaviour predicted by the model.
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Figure 2.51: Nanog steady-state distribution, with cell-cycle coupled to Nanog
concentration. a Serum+LIF parameters; approximately 50% of the mESCs
are in a NH state and 50% in the NL. b 2i+LIF; approximately 90% of the

mESCs are in a NH state and 10% in the NL.

The same procedure was carried out again, coupling cell-cycle to Mycn instead of Nanog.

Proliferation was fitted to the measured rate in Serum+LIF, with the cell-cycle time distributions

(CCMH = 8.5±1h and CCML = 15±1h, where CCMH and CCML are cell-cycle times for MH

and ML cells respectively) giving a RMSE of 2.02. The distribution of Nanog concentration

within the cell population again matched the SDE model of around 50% NH and 50% NL cells

(compare Figure 2.53a to 2.19b and 2.2b). Using these cell-cycle times, but simulating 2i+LIF

gave a distribution of Nanog matching the SDE model and experimental data of approximately
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90% NH, 10% NL (Compare Figure 2.53b to 2.24b and 2.2b). The proliferation profile using the

Serum+LIF fitted cell-cycle times with 2i+LIF medium parameters gave a much better fit to the

measured rate in 2i+LIF (red line in Figure 2.52a) with a RMSE of 3.08 (compared to 22.59 with

the Nanog cell-cycle). The growth rate was then fitted to the 2i+LIF proliferation data with the

fitted cell-cycle times (CCMH = 9.5±1h and CCML = 16±1h) resulting in a RMSE of 1.33 (red

line in Figure 2.52b). Using these times with Serum+LIF parameters gave a better fit than before

(RMSE of 4.41 compared to 11.01), and the qualitatively correct change in proliferation of mESCs

dividing faster in Serum+LIF than in 2i+LIF (blue line in Figure 2.52b).
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Figure 2.52: Comparison of experimental and model simulated fold change in
proliferation dynamics of mESCs in the two different media. In the model, the
cell-cycle is coupled to Mycn levels. a Serum+LIF data were fitted, and 2i+LIF
behaviour predicted by the model. b 2i+LIF data were fitted, and Serum+LIF

behaviour predicted by the model.
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Figure 2.53: Nanog steady-state distribution, with cell-cycle coupled to Mycn
concentration. a Serum+LIF; approximately 50% of the mESCs are in a NH

state and 50% in the NL. b 2i+LIF; approximately 90% of the mESCs are in a
NH state and 10% in the NL.

Sorting experiments were simulated with the agent model for the Mycn dependant cell-cycle

model, as shown in Figure 2.54. The agent based model shows the same cell dynamics upon

sorting as the SDE model, comparing Figure 2.54a to 2.20a for Serum+LIF and 2.54b to 2.25b for

2i+LIF.

a

0 1 2 3 4

Timeg(days)

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
ng

of
gN

H
gc

el
ls

NHgStartinggPopulation
NLgStartinggPopulation

b

0 1 2 3 4

Timeg(days)

0

0.2

0.4

0.6

0.8

1

P
ro

po
rt

io
ng

of
gN

H
gc

el
ls

NHgStartinggPopulation
NLgStartinggPopulation

Figure 2.54: Agents sorted by Nanog concentration into NH and NL,
re-establishing steady-state concentrations (Mycn dependent cell-cycle).

Shaded areas represent standard error. a Sorting with Serum+LIF parameters,
with agents tending towards a population with approximately 50% NH and

50% NL. b Sorting with 2i+LIF parameters, agents tend towards
approximately 90% NH and 10% NL.

Snapshot of agents used to model mESCs can be seen in Figure 2.55. Starting agent config-

urations are in Figures 2.55a and 2.55c for Nanog and Mycn respectively, and snapshots after
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a few cell divisions are shown in Figures 2.55b and 2.55d for Nanog and Mycn concentrations

respectively.

a Invisible

Nanog Level

b Invisible

Nanog Level

c Invisible

Mycn Level

d Invisible

Mycn Level

Figure 2.55: Snapshot of cell agents with colour representing gene
concentration. a,c Start of simulation for Nanog and Mycn respectively.

b,d Mid way through simulation for Nanog and Mycn respectively.

2.5 Discussion

We derived a new GRN, describing the interactions between genes governing mESC pluripotency

behaviour. We performed both deterministic and stochastic simulations of our GRN, and were

able to reproduce experimental data. Furthermore, an agent based extension to the GRN was

developed to account for mESC cell-cycle.

Our network reproduced distributions of the key pluripotency gene Nanog, and how the

distribution changes when cultured in serum+LIF compared to in 2i+LIF. We correctly repro-

duce ND cell distributions with our model, showing greater heterogeneity in Serum+LIF, and a

persistent sub-population of NL cells in 2i+LIF. The GRN reproduces sorting data as obtained

from flow cytometry sorting and individual cell time courses of Nanog match observed time

courses, stochastically fluctuating between high and low states within a single cell-cycle. Our

numerical continuation analysis on PD and Chiron show that both contribute to the regulation of
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the stability and dynamics of the system. Furthermore, our gene deletion simulations correctly

predict a reduction in pluripotency upon Prdm14 and increase in pluripotency for Tcf3 deletion.

We demonstrated via the simpler topologies results that the newly added genes to the network,

Mycn, Prdm14 and Rest, were not necessary to reproduce Nanog dynamics. However, these newly

added genes were each found to have a key role within the GRN. Prdm14 maintains the correct

proportion of NH and NL mESCs via its interaction through the FGF4/Erk pathway, as shown

with the Prdm14 deletion results. Rest is a candidate that can supply a positive feedback on

Nanog, even in the case of Nanog’s direct regulation being an inhibition, as shown by the reduced

network results. The agent based model results indicate Mycn as a key gene regulating mESC

proliferation, as we show that it was not possible to account for mESC proliferation dynamics

when coupling Nanog to the cell-cycle, as suggested by a previous model [61].

The two main features of our GRN giving rise to a heterogeneous distribution of Nanog are;

a positive feedback loop on Nanog giving it deterministic bistability, and noise which allows

individual cells to switch between the two steady-states. We show there is an interplay between

noise and determinism, and that the system can be very robust to changes in the deterministic

model. Many of our results show changes to the deterministic model make little observable

difference to the full SDE realization with those parameters.

Experimental evidence, and our own NIA analysis, suggests that Nanog’s direct auto regula-

tion is an inhibition not an activation. We show that other indirect positive feedback loops can

be generated within our GRN, even in the case of considering Nanog’s direct regulation as an

inhibition. If these indirect positive feedbacks are not considered, another alternative mechanism

that could explain the heterogeneity of Nanog, would be a negative feedback on Nanog giving

rise to a limit cycle alternating between the two steady-states. However, a published model

incorporating a negative feedback loop on Nanog resulting in a limit cycle [52] was not consistent

with recent experimental results based on mESC single-cell resolution data [139]. Therefore, with

the current evidence, a positive feedback with added transcriptional noise is the better modelling

approach.

The main limitation of our model is the complexity of these GRNs; there are thousands of

genes and molecular substrates all interacting with each other and we only look at a handful of

factors. Another limitation is that many of the parameters of the system were not fitted to data,

only qualitatively reproducing behaviour, and could be considered arbitrary. Even with these

limitations, our analysis still provides useful insights into the stability and dynamic behaviour of

the GRN governing pluripotency in mESCs.
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BACKGROUND OF FMRI ANALYSIS: A SYSTEMATIC REVIEW OF

RESTING-STATE STUDIES IN MULTIPLE SCLEROSIS

This chapter gives the background and motivation for the work carried out in Chapter

4 in the form of a systematic review. A systematic review is a type of literature review

generally used for clinical practise, in which one follows explicit and transparent methods

in order to minimise bias. The process was written up prior to the review in a protocol which is

publicly published [54]. The review follows a standard set of stages set out in the protocol, and as

such it is repeatable and transparent. Two reviewers were mainly involved in this review; myself

as main reviewer and Christelle van Anterwerpen of CRICBristol as second reviewer.

3.1 Introduction

Multiple Sclerosis (MS) is characterised as an inflammatory demyelinating disease of the central

nervous system (CNS), which results in widespread plaques in the brain and spinal cord and

results in demyelination of the axons. MS is a common neurological disorder and leading cause of

disability in young adults. It has considerable negative impact on quality of life and its prevalence

around the world is increasing [17]. MS represents a significant health burden both financially

and socially. Mackenzie et al. 2013 [80] estimated that the cost of MS in the UK in 2010 alone

was approximately 3.8 billion euros. In 2010 the prevalence of MS was 258.8 per 100,000 in

women and 113.3 per 100,000 in men [80]. The pathology of MS is diverse with both physical and

neuropsychiatric symptoms [44]. Two of the most common symptoms are fatigue and cognitive

dysfunction, with over 92% of patients reporting fatigue as one of the most debilitating effects of

the disease [16], and 45-65% presenting with cognitive deficits on clinical assessments [34].
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Early studies suggested that cognitive impairments were directly related to neurological

changes [144]. However more recent research suggests only a weak relationship between the

changes in the brain and cognitive impairments in MS [81]. One possible explanation for these

results may be due to neuroplasticity, i.e., the ability to reorganise and form new connections

in the brain. Neuroplasticity may allow individuals with MS to maintain normal performance

despite the accumulating tissue damage. Understanding the mechanisms as to how the brain

compensates and reacts to this damage is an important first step for future clinical applications.

Understanding the neuroplasticity may provide insights into the neural mechanisms in MS,

and may even lead to an objective measurement to determine the effectiveness of treatments or

therapies.

MS is comprised of several phenotypes. Approximately 80% of patients manifest a relapse-

remitting course, relapse-remitting MS (RRMS), which after several years can be succeeded by a

secondary progressive phase, secondary progressive MS (SPMS). In a minority of patients the

relapse-remitting stage does not manifest and the progressive stage occurs at onset, primary

progressive MS (PPMS) [15, 74]. Early studies of MS suggested that it was a disease related

to white matter atrophy and that grey matter lesions were rarely seen [117]. More recent stud-

ies have established that brain atrophy affects both the white matter and grey matter in MS

[73, 111, 121, 169]. However, structural imaging studies are not able to investigate how this

damage affects the function of the brain. An indirect measure of brain activity is functional

magnetic resonance imaging (fMRI). This is a non-invasive method of measuring brain activity,

focusing on blood flow through the brain via the blood oxygen level dependent (BOLD) signal.

The BOLD signal of a region is an indirect measure of neuronal activity in that region, as a more

active region of the brain requires more oxygenated blood. fMRI is most commonly used to see

which regions of the brain are activated by a certain task or stimuli. In MS specifically, multiple

studies have used fMRI to investigate cognitive impairment in domains such as memory and

attention [14, 81, 123, 156] as well as establish possible neural correlates of fatigue [82]. Recently,

there has been a growing interest into applying fMRI at rest, termed resting-state fMRI (rs-fRMI)

[119]. This technique measures spontaneous fluctuations of the BOLD signal and an associated

measure of the baseline functional organisation of the brain called functional connectivity (FC).

Changes in measured FC between MS and healthy controls (HC) can be used as evidence for

neuroplasticity in MS.

The main focus of this review was to investigate the evidence of neuroplasticity in MS from

rs-fMRI data. Further aims were to evaluate the different data analysis techniques and methods

applied to rs-fMRI, to assess the advantages and disadvantages of the individual analysis

techniques and to understand the implications of MS on FC and neuroplasticity.
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3.2 Materials and methods

We searched Embase, Medline, PsychINFO and Scopus from the first year of successful fMRI

(1991) up until the start date of the review (21 March 2017). Search terms were grouped into four

categories: MS terms, fMRI terms, resting-state terms and neuroplasticity terms. Multiple words

were searched for in each category and the union of studies found under a specific term formed a

group. See Table 3.1 for the search words used. Articles of interest were in the intersection of all

four of these groups as shown in Figure 3.1.

MS

fMRI
Resting 

state

Neuro-
plasticity Candidate 

articles

Figure 3.1: Schematic of search term groups. Terms related to a group were
searched for, and the union of results formed the respective group.

MS terms fMRI terms Resting-state terms Neuroplasticity terms

ms fmri resting state neuroplasticity
multiple sclerosis f mri functional connectivity neuro plasticity
rrms functional mri functional connectivity network neural plasticity
rr ms functional mr imaging resting state network brain plasticity
relapsing remitting ms functional magnetic resonance imaging resting state functional connectivity neuro reorganisation
relapsing remitting multiple sclerosis bold resting state connectivity neural reorganisation
spms blood oxygen level dependent resting state fmri brain reorganisation
sp ms rs fmri neuro reorganization
secondary progressive ms rsfmri neural reorganization
secondary progressive multiple sclerosis default mode network brain reorganization
ppms dmn neuro compensation
pp ms rsn neural compensation
primary progressive ms brain compensation
primary progressive multiple sclerosis neuro compensatory
cis neural compensatory
clinically isolated syndrome brain compensatory

Table 3.1: Search terms used, in their respective term group.

Inclusion criteria were: resting-state fMRI studies of MS patients, where MS is defined as

per National Institute for Health and Care Excellence (NICE) guidelines [2], Centers for Disease
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Control and Prevention (CDC) criteria [108], World Health Organisation [17] or the McDonald

criteria [89, 115, 116]. Additional inclusion criteria were resting-state fMRI studies of MS alone,

or MS in comparison to healthy or other clinical populations. Exclusion criteria were: studies

older than the first published paper defining the BOLD mechanism in 1991 and after the start

date of review, 21 March 2017, and task-based fMRI, i.e. studies with no pure resting-state

acquisition.

Two reviewers (SG, CVA) independently assessed the articles of interest for eligibility using

the tool Covidence [1], where disagreements were resolved via discussion and consensus. We

assessed the quality of studies in terms of risk of bias using seven criteria (Table 3.9): research

objective, recruitment procedure, inclusion/exclusion criteria, population demographics, imaging

protocol, comparison group and preprocessing protocol [105].

3.3 Results

We found 106 candidate articles from searching the mentioned databases.

Any review articles among the 106 articles were read and any papers they cited relating to

MS, resting-state and fMRI were manually included into the title and abstract screening. We

found 23 additional papers cited in the reviews, resulting in a total of 129 candidate articles. Of

these, 60 were excluded at the title and abstract screening stage. Reasons for exclusion were

studies of patients without MS, no resting-state, no fMRI (e.g. Diffusion Tensor Imaging (DTI)

only) and not original research studies (i.e. reviews). At the full text screening stage, 41 studies

were excluded. Reasons for exclusion were repeated papers, studies not in English, no diagnostic

criteria given, abstract only for poster/oral presentation, and no pure resting-state (i.e. time

slices from different periods of rest in-between tasks, concatenated together). In total, of the 129

articles 28 met the inclusion criteria. See Figure 3.2 for a breakdown of the article numbers in

each stage of the review.

3.3.1 Quality assessment

The number of studies found investigating pure resting-state fMRI is low, however (in terms of

how much a study fulfilled our criteria) the quality of these studies is high. Only four studies did

not fulfil all the criteria; see Table 3.9 for quality assessment results.

When MS participants were compared to HC participants the two groups were well matched

in nearly all the studies, the majority matching for age, sex and education level. This is good

study design as these variables have been shown to affect FC [32], and not matching them could

lead to erroneous results.
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Literature search
N=106

Title and Abstract 
screening

N=129

Excluded articles
N=60

Full Text screening
N=69

Excluded articles
N=41

Final articles
N=28

Papers manually 
extracted from reviews

N=23

Figure 3.2: Diagram of review steps.

3.3.2 MS phenotypes and diagnostic criteria

All the articles used either the McDonald criteria [89], 2005 revisions to the McDonald critera

[116] or 2010 revisions to the McDonald criteria [115].

The phenotype of MS in participants was Relapsing Remitting MS (RRMS) in 19 studies; of

which two [146, 157] used the original McDonald criteria, nine [12, 13, 50, 68, 75, 76, 114, 122,

171] used the 2005 revision to the McDonald criteria and eight [28, 29, 31, 41–43, 170, 172] the

2010 revision. A combination of RRMS and Clinically Isolated Syndrome (CIS) was used in two

studies; one [124] using the 2005 revision and one [51] the 2010 revision. Another study used

a combination of RRMS and CIS but also included unspecified MS type participants [60]. This

study used the original McDonald criteria. A combination of RRMS and Secondary Progressive

MS (SPMS) was included in three studies; two [35, 133] using the 2005 revision and one [65]

the 2010 revision. Finally, three studies used a combination of RRMS, Primary Progressive MS

(PPMS) and SPMS; two [131, 135] using the 2005 revision and one [132] using the 2010 revision

of the McDonald criteria.
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3.3.3 Study aims and size

Main study aims varied: for four studies [75, 76, 170, 172] the aim was to determine differences

between MS and HC; another study [171] also compared MS and HC though their main aim

was exploring how FC measurements were correlated with clinical neurological scales. For two

studies the main aim [12, 28] was comparing cognitively preserved with cognitively impaired MS

patients. Two studies [13, 31] examined the impact of a computer rehabilitation program. One

study [29] focused on the impact of fatigue. Six studies [35, 41, 42, 68, 131, 132] investigated the

impact of disability on FC. Four studies [60, 65, 146, 157] focused on cognition, one of which [65]

focused on memory performance, and two [146, 157] examined both cognition and disability. Four

studies [43, 51, 114, 124] explored changes in FC evidenced in early MS (i.e. CIS or early RRMS).

One study [50] explored changes in FC due to optic neurosis. One study [133] focused on how

gender affects FC and cognition. One study [135] looked at how pain affected FC, and one unique

study [122] described a classifier they developed, based on a random forest scheme, to classify

participants’ fMRI data into either MS or HC.

The maximum number of MS participants in a study was 157, with the minimum number

being 13. For studies that included HC participants the maximum and minimum number of HCs

were 50 and 11 respectively. Overall, the number of MS participants in the studies were 40±32

(mean ± std) and for HC was 24±11 (mean ± std) (for studies that included HCs). See Table 3.8

for full study demographic details.

3.3.4 Data acquisition and analysis methods

Two-thirds of the studies [12, 13, 28, 29, 31, 50, 68, 75, 76, 114, 122, 131, 132, 135, 146, 157, 170–

172] had scan length times of 9 minutes or less (9±4 minutes, mean ± std); 85% [12, 13, 28, 29,

31, 41–43, 50, 65, 68, 75, 76, 114, 124, 131–133, 135, 146, 157, 170–172] had 300 volumes or less

(241±109 volumes, mean ± std); 85% [28, 29, 31, 35, 41–43, 51, 60, 65, 68, 75, 76, 114, 124, 131–

133, 135, 146, 157, 170–172] had a time to repetition (TR) of greater than or equal to 2 seconds

(2344±653 milliseconds, mean ± std).

Various methods were used to explore neuroplasticity in MS, which we split into six cate-

gories: independent component analysis (ICA), seed to voxel, region of interest (ROI), automated

anatomical labelling (AAL) network measures, amplitude of low frequency fluctuations (ALFF)

and voxel to voxel. Below we describe how each method defines locations within the brain and

how they calculate FC.

ICA measures coherent fluctuations between groups of voxels and was used in 13 studies:

10 exclusively [12, 13, 28, 41, 43, 50, 68, 114, 124, 135], one [29] in combination with a seed

based analysis, one [35] in combination with a ROI based analysis and one [170] used ICA to
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define their own ROI locations. A Seed to voxel technique correlates every voxel in the brains

BOLD signal separately with a chosen seed locations (usually averaged) BOLD signal. Groups of

voxels with significant correlation values are then tested with multiple comparison and cluster

size statistical tests. Voxel clusters passing these tests are then reported to be affected. Six

studies were identified as using a seed to voxel analysis: five exclusively [31, 75, 131, 146, 157]

and one in combination with ICA [29]. The study which used it in combination with ICA used

Pearson’s correlation coefficient to measure FC whilst all the other studies did not specify how

they calculated it. A ROI analysis method looks at multiple regions of averaged BOLD signal

voxels and compares them to each other, rather than comparing at a voxel level. Four studies

used a ROI analysis in their papers. Two used the AAL atlas to define ROIs, focusing on thalami

ROIs in one study [133] or adding custom hippocampal ROIs to focus on in another [65]. Both

these studies measured FC using synchronization likelihood (SL). Another study [170] used ICA

to define ROI locations, measuring FC between them using Pearson’s correlation coefficient. One

study [35] used ICA on a ROI defined by a previous activation study.

The AAL atlas is a brain segmentation based on anatomy. Six studies were identified as

using an AAL atlas analysis; two [65, 133] to define ROIs in a ROI analysis, three [42, 51, 132]

to measure network properties and one [122] using the AAL atlas to build a classifier. Of the

studies that measured network properties one [42] did not specify how they measured FC, one

[51] used Pearson’s correlation coefficient and the other [132] used SL. The study which built

a classifier [122] used Pearson’s correlation coefficient to measure FC. Two studies [76, 171]

used Amplitude of low Frequency Fluctuations (ALFF) which measures intrinsic oscillation

amplitude. Two studies performed a voxel to voxel analysis (Table 6), one [60] between 40,000

voxels spanning the cortex using Pearson’s correlation coefficient, and the other [172] measuring

Pearson’s correlation coefficient between all the voxels in a sensorimotor network mask.

3.3.5 Neuroplasticity in MS

The studies found in this review demonstrated possible neuroplasticity in MS either in terms of

anatomy (i.e. a physical part of the brain), in terms of a resting-state functional network (which

can involve many distinct regions of the brain) or as a network measure.

ICA

Thirteen studies used ICA [12, 13, 28, 29, 35, 41, 43, 50, 68, 114, 124, 135, 170]. See Table 3.2 for

results.

The default mode network (DMN) was found to be effected in seven of these [12, 13, 28, 43,

124, 135, 170]. Two studies showed increased DMN FC in MS compared to HC [41, 65], one study

[12] found both increased and decreased FC in specific regions within the DMN, one [28] study

showed a decrease in FC in the DMN in cognitively impaired patients only compared to HCs,
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one study [124] indicated an increase in FC in DMN in CIS compared to RRMS, one study [135]

showed increased FC in no-pain patients versus patients who experienced pain and one study [13]

observed an increase in DMN FC after a computer-based cognitive rehabilitation program. Motor

networks were found to be affected in four studies [35, 41, 68, 124]. One study [35] only showed

a correlation between EDSS score and FC between motor resting-state network and dorsal

pre-motor cortex (PMd). One study [41] observed an increase in motor network FC which also

correlated with the activation level of an area activated during a separate task. Another study

[124] demonstrated an increase in CIS participants only and one study [68] found a decrease

in FC in MS compared to HCs, which was also negatively correlated with disease severity. The

frontoparietal network (FPN) was shown to be affected in four studies [28, 43, 114, 124]. One

study [28] found decreased FC in the FPN in MS compared to HCs, another study [43] indicated

increased FC, one study [114] showed an increase in FC in the FPN in MS participants who had

undertaken a repetitive thumb flexions (RTF) exercise and another study [124] demonstrated an

increase in FC in CIS patients compared to RRMS. Visual resting-state networks were affected in

four studies [43, 50, 68, 114]. Two studies [43, 114] showed an increase in FC in visual networks

in MS compared to HC and two studies [50, 68] found a decrease. One study [50] demonstrated

increased FC between the visual resting-state network and extrastriate cortex in patients with

previous optic neuritis and another study [68] showed disease severity to be positively correlated

with medial visual network FC. The sensorimotor network (SMN) was affected in three studies

[29, 43, 124]. All three studies found increased FC in this network in MS compared to HCs,

though one of them [29] observed an increase in non-fatigued patients only and another study

[124] indicated an increase in CIS patients only.

The executive function network was affected in two studies [114, 124]. One [114] found

increased FC in this network after RTF exercises. Another study [124] showed FC in this network

increased in MS compared to HC in CIS patients only. Auditory networks were found to be

affected in one study [114] which demonstrated increased FC in MS compared to HC, and also

showed FC to be increased post RTF compared to before RTF. The prefrontal insular resting-state

network was observed to be increased in MS compared to HC in one study [43] which also

found MS functional composite measure (MSFC) scores to negatively correlate with the FC of

this network. The attention network had increased FC in MS compared to HC in one study

[124], although this was for CIS only. CIS patients also expressed increased FC in this network

compared to RRMS patients. The attention network was affected in two studies [114, 124]. One

[124] found increased FC in MS compared to HC, though this was for CIS only. The same study

also observed increased FC in this network in CIS compared to RRMS patients. The other study

[114] demonstrated that this network only had increased FC in post RTF compared to before

RTF. The cerebellar network (CBN) had increased FC in RRMS compared to HC in one study

[114] which also showed an increase in FC in this network in post RTF compared to before RTF.
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The control network was found to be affected in one study [68] which demonstrated a negative

correlation between FC in this network and disease severity.

Seed to voxel

Six studies used a seed to voxel analysis [29, 31, 75, 131, 146, 157]; see Table 3.3 for results.

The thalamus displayed significantly altered FC with different voxel clusters of the brain in

MS compared to HC in four studies [31, 75, 131, 146]. One study [31] found only clusters with

decreased FC located in the cerebellum, frontal and occipital cortices and the caudate nucleus.

Another study [131] observed only increased clusters located in the sensorimotor cortex and

ventral stream. Two studies [75, 146] showed clusters with both increased and decreased FC to

the thalamus. Clusters with increased FC were located in the thalamus for one of the two studies

[75] and in the cerebellum, basal ganglia, hippocampus, cingulum, bilateral temporal-occipital

cortices, bilateral insular cortices, bilateral dorsal-frontal cortices and parietal cortex in the other

study [146]. Clusters with decreased FC were found in the right middle frontal gyrus, right

parahippocampal gyrus and left inferior parietal lobule for one study [75] and in the thalamus,

cerebellum, cingulum, bilateral prefrontal cortices and bilateral parietal-occipital cortices in the

other study [146]. A study [31] that compared participants who undertook a rehabilitation pro-

gram (intervention group) to those who did not (control group) found clusters with both increased

and decreased FC to the thalamus in the intervention group compared to the wait group. Disease

duration was found to be negatively correlated with between-thalami FC in another study [75].

Expanded disability status scale (EDSS) score was negatively correlated with thalami eigenvector

centrality mapping (ECM) values in one study [131]. In the other study [146] PASAT scores were

negatively correlated with thalami FC.

The primary motor cortex (PMC) had significantly decreased FC with the left primary so-

matosensory cortex in MS compared to HC in one study [29]. Fatigue severity status scores

were also negatively correlated with the FC between the PMC and supplementary motor area

(SMA). One study [131] found clusters with both increased and decreased FC with a sensorimotor

seed, increased clusters were located in the thalamus and decreased clusters in the ventral

stream. The same study [131] showed both increased and decreased FC also with a ventral

stream seed. Increased FC was observed in the thalamus and decreased FC in the sensorimotor

cortex. The ECM values of a central stream seed were correlated with cognition in one study

[146]. A posterior cingulate cortex (PCC) seed in MS compared to HC had decreased FC with

other voxel clusters located in the anterior cingulate cortex (ACC) and right inferior frontal

gyrus [157]. FC between a ventral medial pre frontal cortex (vmPFC) seed and a left frontal pole

region was correlated with more stable performance on a semantic search reaction time test [157].
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ROI analysis

Four studies used a region of interest (ROI) based analysis [35, 65, 132, 170]; see Table 3.4 for

results. Expanded disability status scale was correlated with the connectivity between a dorsal

premotor cortex (PMd) ROI and bilateral motor resting-state network signals in a study [35].

This correlation was only significant in RRMS, not SPMS. In another study [65], hippocampal

ROIs (one left and one right) were correlated with AAL atlas time series ROIs, and they found

increased FC in both hippocampi with the AAL in MS compared to HC. Memory performance

was also correlated with increased FC of the left hippocampus. In another study [132], thalami

ROIs were correlated with the AAL atlas time series where they found increased FC in MS with

the thalami compared to inferior frontal gyrus, middle cingulate gyrus and inferior temporal lobe.

Thalamic weighted degree was also increased in cognitively impaired versus cognitively preserved

MS participants. Another study [170] used ICA to define DMN ROIs. These were based in the

medial prefrontal cortex (MPFC), the left and the right inferior parietal lobules (IPL), the left

and the right medial temporal lobes (mTL) and the posterior cingulate/precuneus (PCC/PCUN).

All these ROIs showed increased FC, and none of them showed decreased FC. Paced auditory

serial addition test (PASAT) scores were negatively correlated with the FC between the right

mTL and PCC/PCUN.

AAL Atlas network measures

Two studies [65, 132] used the AAL as ROIs, which have been interpreted as ROI analysis rather

than AAL analysis; see ROI analysis (Section 3.3.5). Of the studies that focused on the AAL all

but one used the atlas to calculate different network measures. The one study that did not instead

used it as part of a tool to classify fMRI data into either MS or HC [122]. Network measures found

to be increased in MS compared to HC were nodal efficiency [42], local efficiency [42], connectivity

index [42] and modularity [51]. Network efficiency and connectivity of 26 regions (in male MS vs

male HC only) was found to be decreased in one study [133]. See Table 3.5 for results.

ALFF

ALFF was used in two studies [76, 171]. The bilateral thalami showed increased ALFF in both

these studies with one of the studies [171] observing a correlation between PASAT and thalami

ALFF and between mean fractional anisotropy and left thalami ALFF. Two other regions found

to have increased ALFF in MS compared to HC were the right insula and the right superior

temporal gyrus [76]. EDSS correlated with the ALFF of both these regions. See Table 3.6 for

results.
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Voxel to voxel

Voxel to voxel analysis was used in two studies. The first study [60] found increased FC in the

DMN and control network. This study also found that cognitively efficient MS participants had

greater FC in the control network and reduced FC in the DMN. The other study [172] found

regions with both increased and decreased degree centrality and eigenvector centrality. See Table

3.7 for results.

3.3.6 Early MS

In three studies, neuroplasticity was found to be more prominent early on in disease progression.

Roosendall et al. 2010 [124] found an increase of FC only in CIS which disappeared with disease

progression. Liu et al. 2015 [75] found a negative correlation between disease duration and

inter-thalamic FC. Gomboa et al. 2014 [51] and Faivre et al. 2012 [43] looked solely at early MS.

All three studies suggest that functional reorganisation of the brain occurs predominately at an

early stage of the disease. The reorganisation is a possible initial attempt by the brain to limit its

functional atrophy.

3.3.7 Comparing MS to HC

Three studies did not have a comparison group, i.e. healthy controls; instead they compared MS

patients before and after a cognitive task [13] or compared MS’ FC with their clinical disability

[35] or compared participants with chronic pain to those without [135]. Other studies whose main

interest was not in comparing MS to HC still included HCs for extra comparison. For example,

exploring how FC is altered by fatigue [29], how FC is altered by a cognitive rehabilitation

program [31], how FC is altered by previous optic neuritis [50] or how FC in MS differs between

genders [133]. The remaining studies all found differences between MS and HC, though their

main aims were usually to explore how a clinical marker(s) of their choice is reflected through

changes in FC.

3.3.8 Correlations with clinical markers

Conclusions about adaptive mechanisms in the brain were usually drawn by correlating a FC

measure with a clinical marker. For example, Liu et al. 2015 [75] found a negative correlation

between disease duration and between-thalami seed connectivity. They also found the between-

thalami FC significantly greater in MS than HC. The authors concluded that their results suggests

an adaptive role of the thalamus that is gradually lost as the disease progresses. Another example

is the study by Dogonowski et al. 2013 [35] who demonstrate a positive correlation between EDSS

score and FC between the motor resting-state network and the dorsal pre-motor cortex (PMd).

This correlation was only present in RRMS, not SPMS, evidencing beneficial cortical adaptation

with the integration of the PMd into the motor resting-state network.
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3.4 Discussion

The most robust differences in FC between MS and HC groups were observed in the DMN, motor,

visual and FPN networks as well as the thalamus. The DMN is one of the major networks associ-

ated with resting brain activity and is thought to represent internal cognition. The activation

of the DMN is negatively associated with cognitive performance [135]. However, the findings

from the studies included in the current review are inconsistent. Some studies show increased

FC [41, 65], some show decreased FC [12] and some show both increases and decreases in FC

[28] in the DMN for the MS groups compared to controls. Decreased FC may suggest disruption

to the DMN, which is associated with cognitive impairment [12, 13, 28]. Increased FC, on the

other hand, may suggest a form of compensation facilitated by neuroplasticity. However, the

inconsistent findings across the literature make interpretations difficult. This inconsistency

may be due to the heterogeneity in MS. MS is heterogeneous in terms of aetiology, pathology,

symptomology and cognition. Further research using larger sample sizes are required to increase

the reliability and validity of results. However, it may be possible that due to the heterogeneity

there may be subtle differences in the neuroplasticity between MS populations, and that this

process occurs on an individual level. I.e. the differences could cancel out when looking at a group

level.

The findings of altered FC in visual and motor networks in MS is in line with the visual

and motor disturbances associated with MS. This is further evidenced by the FC in these net-

works being correlated with disability. However, even in these networks the finding of FC is

inconsistent, with some studies showing increases [41, 43, 114] and other studies decreases in

FC [50, 68]. This inconsistency provides further evidence for the heterogeneity in MS, and it has

some implications for the implementation of FC analysis. As even in well-defined networks, the

results are inconsistent. This pattern of inconsistency has also been observed in the FPN network.

This network is proposed as a key network for memory and cognition, where the parietal lobe

integrates sensory information and then relays this to higher cognitive regions in the frontal lobe

and is therefore particularly vulnerable to cognitive impairments [28]. Together the results do

show neuroplasticity in MS. However the exact nature of the plasticity is inconsistent across the

different studies and may adapt to the individuals’ brain, thereby leading to inconsistent results

in the literature.

The thalamus has multiple projections throughout the brain, through which it acts as a

relay centre for a multitude of functions including motor [88, 137, 162], sensory [137, 162], and

higher order cognitive functions such as memory [151] and attention [96, 113, 142, 143]. Fur-

thermore, the thalamus is involved in other functions such as regulation of arousal in sleep

and wakefulness [27, 129], where damage to the thalamus may result in a coma [10]. Given its

widespread function, the thalamus’ connectivity is important. However, the findings of FC in the
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thalamus of the MS brains are inconsistent between studies. Some studies showed increased

FC [75, 131, 146], whereas other studies showed decreased FC [31, 75, 146]. The inconsistency

may be due to the large amount of heterogeneity in MS, where some participants are able to

compensate for neuronal damage via neuroplasticity, whereas other participants are not. It may

even be that the neuroplasticity adapts to the individuals’ brain, leading to inconsistency across

studies. Furthermore, due to its multiple connections it is difficult to determine whether the

thalamus is directly involved in the pathological process, or whether it is susceptible to pathology

from regions to which it is connected [92].

Even the most robust finding of FC changes in the DMN was only demonstrated in seven of

the twenty-eight studies. This may be due to the fact that very few studies examine whole-brain

connectivity, but rather choose specific regions on which to focus, based on previous studies. Each

method has its advantages and disadvantages. Although a region-specific analysis may lead to

more power despite smaller sample sizes, it may also miss key changes in the brain. Specifically

in a group as heterogeneous as MS, where there is little consensus in the research, choosing

regions based on previous studies seems ineffective. Whole-brain analyses can overcome this,

however they often require much larger samples and therefore greater resources. The recent

development of whole-brain topology measures [18] overcomes this limitation to some extent, by

characterising local and global measures of a chosen network. However this again requires ROIs

to be determined prior to the analysis.

Similarly, each analysis method has advantages and disadvantages and often the analysis

technique employed relies upon the aim and hypotheses of a particular study. ICA is predomi-

nantly used as an exploratory tool, where there is no hypothesis to test. An advantage of ICA

is that it is multivariate, needing no choice of region to explore; as a choice of region could be

arbitrary or open to bias. ICA also requires no temporal model (i.e. the General Linear Model).

Disadvantages are that it requires previous knowledge about functional brain networks to in-

terpret the results. In fMRI, ICA is essentially on a voxel level, therefore care also has to be

taken when looking for statistically different connectivity patterns between groups, for example

multiple comparison and cluster size testing.

Seed and ROI based analysis have the advantage that their results are easier to interpret,

because the selected seed/ROIs can be directly shown to be affected by MS. It also has a much

lower dimensionality because the focus is on only a few seeds or at most a few hundred ROIs.

This type of analysis is also spatially specific and able to provide information about how the

connectivity between different regions of the brain compares between populations. However, it

requires previous knowledge/expertise to select what regions to analyse, which is often difficult

in a heterogeneous population as in MS. This is especially so for seed based analysis, which in
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general focus on a lower (often singular) number of regions.

Network analysis using the AAL atlas has similar advantages and disadvantages to ROI

based analysis, because the AAL atlas is essentially a segmentation of the brain into ROIs based

on anatomy. The studies found in the review used the AAL almost exclusively for calculating

network measures. These measures generally do not give spatial information but do highlight

effects to the functional network topology of the brain. This is not a disadvantage to the AAL

atlas itself, but to the type of analysis we found to be commonly deployed with it.

ALFF has the advantage of being a relatively simple metric to calculate and it gives signal

information about a specific region. However, it does not elucidate the functional connectivity

between different regions.

Finally, voxel to voxel correlation has the advantage of being multivariate, able to give infor-

mation about connectivity between many regions and not requiring a priori information. However,

it is computationally expensive with a large number of correlation values to calculate, and again

care has to be taken when looking for statistically different connectivity patterns between groups.

Scan length has been shown to be an important variable for reliability of rs-fMRI results,

with scan lengths of 9-13 minutes or longer greatly improving the technique [11]. The majority of

studies found in this review do not meet this threshold. Therefore future studies should increase

the total scanning time and volume number of their resting-state scans to increase the reliability

of results. Furthermore, some studies claim to conduct rs-fMRI, however they only concatenate

periods of rest between task-based fMRI [77].

Over 90% of individuals with MS experience fatigue [16]. Despite its subjective nature, it

has a widespread impact on employment [48, 69], quality of life [67] and has significant cost

implications [70]. However, only one study identified in this review focused on fatigue as their

main aim, with the majority of studies focusing more on disability or cognitive function. Despite

the widespread impact of fatigue there is a significant lack of research in this area. More research

into the neural substrates of MS fatigue is required to improve our understanding and assessment

of potential treatments to have real world benefit.

Most of the studies were cross-sectional and therefore do not take into account that MS

participants have a degenerative disease and that their brains activity cannot be assumed to

stay the same. More longitudinal studies could give helpful information as to how, and the rate at

which, a MS patients’ brain reorganises in response to the disease. Studies specifically following

participants from onset of the disease could shed light on the effect of disease progression of MS
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and expand the early MS results brought up in this review.

Due to the low number of studies, and large variety of focus of the studies, conclusions

about their results are limited due to the lack of reproducibility. A benefit would be for future

studies to try and replicate some previous findings, following the same methods but with a

larger sample size of participants. This would give more validity and reliability to the results. A

further, more practical, recommendation for future studies would be to include more detail of

their preprocessing, stating more specifically what the steps were, rather than saying they just

followed a standard protocol. The preprocessing protocol can have a major effect on the results of

a study [136], affecting reliability and group discriminability. Inclusion of a detailed protocol, or

even a template batch script, would greatly help in assessing the results from a given study.

3.5 Conclusion

Pure resting-state fMRI studies, observing neuroplasticity in MS were low in number and high

in quality. The type of study, and methods used for analysis varied making a comparison of

results difficult. This review identified six different methods used to assess neuroplasticity in

the MS brains, each of which has specific advantages and disadvantages and were chosen based

on the aims and hypotheses of the study. These various techniques display a range of different

forms of evidence demonstrating alterations to the brain’s functional organisation. The results

showed evidence of neuroplasticity predominantly in the default mode network (DMN), motor

network, visual network, frontal parietal network (FPN) and the thalamus. Although there

are inconsistencies in whether this results in increased or decreased FC. The inconsistencies

may be due to the heterogeneity in MS. It is recommended that studies with larger sample

size are conducted to overcome the problem of heterogeneity and increase the reliability and

reproducibility of the results.
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Table 3.2: Summary of studies which used ICA to find evidence of
neuroplasticity in MS versus HC.

Study Increased FC in
MS vs HC

Decreased FC in
MS vs HC

Other
comparisons

with/within MS

Resting-state
fMRI protocol

[12] DMN DMN CP>CI: DMN

CP<CI: DMN

240 volumes,

TR=1508ms, voxel

size=4x4x4mm

[13] N/A N/A Increase after cCR:

Between DMN and:

PCC, Bilateral IPC

Increase after aCT:

No difference

240 volumes,

TR=1508ms, voxel

size=4x4x4mm

[29] SMN (NF only) None found NF>F: SMN 270 volumes,

TR=2000ms,

voxel size=

3.5x3.5x4.02mm

[28] None found DMN (CI), Left

FPN(CP,CI)

CP>CI: DMN,

salience network.

Global cognitive

z-score correlated

with Right-FPN

(CP), salience (CP)

FC

270 volumes,

TR=2000ms,

voxel size=

3.5x3.5x4.02mm
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[35] N/A N/A EDSS correlated

with FC between

bilateral motor

resting-state net-

work and PMd.

Correlation still

significant in

RRMS, not in

SPMS

480 volumes,

TR=2490ms, voxel

size= 3x3x3mm

[43] Mean connectivity

of non-dominant

motor network

None found Mean connectivity

of non-dominant

motor network

significantly corre-

lated with activa-

tion of area (right

VLPC) recruited

during separate

task paradigm

250 volumes,

TR=3600ms, voxel

size= 2x2x2.5mm

89



CHAPTER 3. BACKGROUND OF FMRI ANALYSIS: A SYSTEMATIC REVIEW OF
RESTING-STATE STUDIES IN MULTIPLE SCLEROSIS

[41] Visual processing

network, DMN, dor-

sal frontoparietal,

prefronto-insular,

right ventral fron-

toparietal, right

sensorimotor

None found Semantic flu-

ency negatively

correlated with

posterior DMN FC.

PASAT negatively

correlated with dor-

sal frontoparietal

and ventral fron-

toparietal FC.

Left nine-hole peg

test negatively cor-

related with left

dorsal frontopari-

etal network FC.

MSFC score neg-

atively correlated

with dorsal fron-

toparietal, right

ventral fron-

toparietal and

prefrontoinsular

network FC

250 volumes,

TR=3600ms, voxel

size= 2x2x2.5mm

[50] None found Visual-RSN Previous optic

neuritis: Greater

FC between visual-

RSN and extrastri-

ate cortex

240 volumes,

TR=1508ms, voxel

size= 4x4x4mm
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[68] None found Motor network, me-

dial visual network,

lateral visual net-

work

Disease severity

negatively corre-

lated with motor

network and ex-

ecutive control

network FC.

Disease severity

positively corre-

lated with medial

visual network FC

180 volumes,

TR=2000ms, voxel

size=3.44x3.44x

3.44mm

[114] Auditory RSN, Vi-

sual RSN

None found Post RTF >Pre

RFT: SMN, CBN,

auditory, right and

left frontoparietal,

ventral-dorsal at-

tention, executive

function network

Increase in CBN

significantly

greater in RRMS

vs HC

140 volumes,

TR=3000ms, voxel

size=not specified

[124] Executive func-

tion network (CIS

only), attention

system (CIS only),

sensorimotor func-

tion network (CIS

only), left premotor

cortex (CIS only),

supplementary

motor area (CIS

only)

None found CIS >RRMS: Atten-

tion system, DMN,

left and right FPN

200 volumes,

TR=2850ms, voxel

size=3.3x3.3x3.3mm
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[135] N/A N/A No-pain >pain:

DMN

100 volumes,

TR=3000ms, voxel

size=3x3x3mm

[170] DMN (ICA used to

define ROIs)

None found PASAT negatively

correlated with

DMN ROIs FC

240 volumes,

TR=2000ms, voxel

size=3.125x3.125x

4mm

FC: Functional connectivity, DMN: Default mode network, CBN: cerebellar network, CP: Cognitively preserved, CI: Cognitively impaired, cCR:
Computer-based cognitive rehabilitation, aCT: Aspecific cognitive rehabilitation, PCC: Posterior cingulate cortex, IPC: Inferior cingulate cortex, SMN:
Sensorimotor cortex, F: Fatigued, NF: Not Fatigued, FPN: Fronto parietal network, EDSS: Expanded disability status scale, PMd: Dorsal pre-motor
cortex, RRMS: Relasping Remitting MS, SPMS: Secondary Progressive MS, VLPC: Ventrolateral prefrontal cortex, PASAT: Paced auditory serial
addition test, MSFC: Multiple sclerosis functional composite measure, RSN: Resting-state network, RTF: Repetitive thumb flexions, CIS: Clinically
isolated syndrome

Table 3.3: Summary of studies which used a seed to voxel analysis to find
evidence of neuroplasticity in MS versus HC.

Name Seed(s) with in-
creased FC clus-
ters in MS vs HC

Seed(s) with de-
creased FC clus-
ters in MS vs HC

Other com-
parisons
with/within
MS

Resting-state
fMRI protocol

[28] None found Left PMC seed:
left primary so-

matosensory cortex

FSS scores nega-

tively correlated

with FC between

PMC and SMA

270 volumes,

TR=2000ms,

voxel size =

3.5x3.5x4.02mm
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[31] None found Thalamus seed:
cerebellum, frontal

and occipital cor-

tices, caudate

nucleus, thalamus

Thalamus seed
(Intervention
group>control
group): cingu-

lum, precuneus,

bilateral parietal

cortex

Thalamus seed
(control group
>Intervention
group): cerebel-

lum, left prefrontal

cortex

250 volumes,

TR=3600ms, voxel

size=2x2x2.5mm

[157] Left thalamus
seed: right tha-

lami

Right thalamus
seed: left thalami

Left thalamus
seed: right middle

frontal gyrus

Right thala-
mus seed: right

parahippocampal

gyrus, left inferior

parietal lobule

Disease duration

negatively cor-

related with FC

between thalami

229 volumes,

TR=2000ms,

voxel size=

1.875x1.875x5mm

[131] Thalamus seed:
sensorimotor cor-

tex, ventral stream

Ventral stream
seed: thalamus

Sensorimotor
seed: thalamus

Ventral stream
seed: sensorimotor

cortex

Sensorimotor
seed: ventral

stream

EDSS negatively

correlated with

thalamus ECM.

Cognition corre-

lated with central

stream ECM

202 volumes,

TR=2200ms, voxel

size= 3.3x3.3x3mm
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[146] Thalamus seed:
cerebellum, basal

ganglia, hippocam-

pus, cingulum,

bilateral temporo-

occipital cortices,

bilateral insular

cortices, bilateral

dorsal-frontal cor-

tices, right parietal

cortex

Thalamus seed:
thalamus, cere-

bellum, cingulum,

bilateral insular,

bilateral pre-

frontal, bilateral

parieto-occipital

PASAT at 3 sec-

onds negatively

correlated with

FC between tha-
lamus seed and:

thalamus, cere-

bellum, right

hippocampus, corti-

cal areas in frontal,

temporal, parietal

and occipital lobes

bilaterally

PASAT at 2 sec-

onds negatively

correlated with

FC between tha-
lamus seed and:

all regions for

3 seconds plus

cingulum and left

hippocampus

120 volumes,

TR=3000ms, voxel

size=not specified

[157] None found PCC seed: ACC,

right inferior

frontal gyrus

More stable per-

formance on SSRT

subtest correlated

with greater FC be-

tween vmPFC seed

and left frontal pole

150 volumes,

TR=2000ms, voxel

size=3.75x3.75x5mm

PMC: Primary motor cortex, FSS: Fatigue severity scale, SMA: Supplementary motor area, EDSS: Expanded disability status scale, PMd: Dorsal
pre-motor cortex, PASAT: Paced auditory serial addition test, ACC: Anterior cingulate cortex, PCC: Posterior cingulate cortex, SSRT: Semantic search
reaction time, vmPFC: Ventral medial prefrontal cortex

Table 3.4: Summary of studies which used a ROI analysis to find evidence of
neuroplasticity in MS versus HC.
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Name ROIs with in-
creased FC in
MS vs HC

ROIs with de-
creased FC in
MS vs HC

Other com-
parisons
with/within
MS

Resting-state
fMRI protocol

[35] N/A N/A EDSS correlated

with FC between

bilateral motor

resting-state net-

work and PMd.

Correlation still

significant in

RRMS, not in

SPMS

480 volumes,

TR=2490ms, voxel

size= 3x3x3mm

[65] Left hippocampus,

Right hippocampus

None found Memory perfor-

mance correlated

with increased FC

of left hippocampus

200 volumes,

TR=2850ms, voxel

size=3x3.3x3.3mm

[132] Thalamus with: in-

ferior frontal gyrus,

middle cingulate

gyrus, inferior

temporal lobe

None found CI>CP: thalamic

weighted degree

202 volumes,

TR=2200ms, voxel

size= 3.3x3.3x3mm

[170] MPFC, Left-IPL,

Right-IPL, Left-

mTL, Right-mTL,

PCC/PCUN

None found PASAT nega-

tively correlated

with FC between

PCC/PCUN and

right mTL

240 volumes,

TR=2000ms,

voxel size=

3.125x3.125x4mm

MPFC: Medial pre-frontal cortex, IPL: Inferior parietal lobules, mTL: Medial temporal lobe, PCC/PCUN: Posterior cingulate cortex/precuneus, PASAT:
Paced auditory serial addition test, CI: Cognitively impaired, CP: Cognitively preserved

Table 3.5: Summary of studies which performed a network analysis with AAL
ROIs to find evidence of neuroplasticity in MS versus HC.
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Name Increased FC in
MS vs HC

Decreased FC in
MS vs HC

Other com-
parisons
with/within
MS

Resting-state
fMRI protocol

[42] Nodal efficiency,

local efficiency,

connectivity index

(mean degree)

None found During follow up:

Increase in EDSS

negatively corre-

lated with decrease

in connectivity

index. Decrease of

MSFC values cor-

related with nodal

efficiency. Increase

of EDSS correlated

with connectivity

index. Increase in

T2-LL correlated

with mean local

efficiency. Increase

in T2-LL nega-

tively correlated

with mean nodal

efficiency

208 volumes,

TR=3310ms, voxel

size=3.5x3.5x3.5mm

[51] Modularity values None found Dual task perfor-

mance negatively

correlated with

modularity

305 volumes,

TR=2080ms, voxel

size=3x3x2mm
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[122] N/A N/A Variation of ran-

dom forest scheme

used for classifying

correlation matri-

ces into either MS

or HC. Correctly

classified 18/22 MS

and 12/14 HC. Mis-

classified MS had

low legion load and

low number of at-

tacks

450 volumes,

TR=1100ms,

voxel size=

3.75x3.75x5.63mm

[133] None found Network efficiency,

connectivity of 26

regions (male MS

vs. male HC only)

Male HC>female

HC: 51 regions. Fe-

male HC>male HC:

Increased network

efficiency. Male

MS: Mean synchro-

nisation likelihood

correlated with vi-

suospatial memory

performance

200 volumes,

TR=2850ms,

voxel size=

3.3x3.3x3.3mm

[132] Used AAL as ROIs with additional thalamus ROIs. See ROI table (Table 3.4).

[65] Used AAL as ROIs with additional hippocampal ROIs. See ROI table (Table 3.4).

EDSS: Expanded disability status scale, MSFC: Multiple sclerosis functional composite, T2-LL: T2-Lesion load, CI: Cognitively impaired, CP: Cogni-
tively preserved

Table 3.6: Summary of studies which used a ALFF analysis to find evidence of
neuroplasticity in MS versus HC.

Name Increased FC in
MS vs HC

Decreased FC in
MS vs HC

Other com-
parisons
with/within
MS

Resting-state
fMRI protocol
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[76] Bilateral thalami,

right insula, right

superior temporal

gyrus

None found EDSS correlated

with ALFF in right

insular and right

superior temporal

gyrus region

170 volumes,

TR=2000ms,

voxel size=

1.875x1.875x5mm

[171] Bilateral thalami None found PASAT correlated

with left and right

thalami ALFF.

Mean fractional

anisotropy cor-

related with left

thalami ALFF

240 volumes,

TR=2000ms,

voxel size=

3.125x3.125x3mm

EDSS: Expanded disability status scale, ALFF: Amplitude of Low Frequency Fluctuations, PASAT: Paced auditory serial addition test

Table 3.7: Summary of studies which used a voxel to voxel analysis to find
evidence of neuroplasticity in MS versus HC.

Name Increased FC in
MS vs HC

Decreased FC in
MS vs HC

Other com-
parisons
with/within
MS

Resting-state
fMRI protocol

[60] DMN, Control net-

work

None found Greater FC in

DMN in cognitively

less-efficient par-

ticipants. Greater

FC in control net-

work in cognitively

efficient MS

606 volumes,

TR=2000ms, voxel

size=2x2x2mm
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[172] Regions with in-

creased degree

centrality and

eigenvector central-

ity (See paper)

Regions with de-

creased degree

centrality and

eigenvector central-

ity (See paper)

EDSS negatively

correlated with

decreased degree

centrality in bi-

lateral M1/S1

(relapsing phase).

TWMLL nega-

tively correlated

with decreased

degree centrality

in bilateral M1/S1

(relapsing phase).

BPF correlated

with decreased

DC in left OP,

left insular, SMA

(remitting phase).

EDSS correlated

with increased DC

in right M1 (remit-

ting phase). EDSS

correlated with

decreased EC in

left IPL (remitting

phase)

240 volumes,

TR=2000ms,

voxel size=

3.125x3.125x4mm

DMN: Default mode network, EDSS: Expanded disability status scale, M1: Primary motor cortex, S1: Primary somatosensory cortex, TWMLL: To-
tal white matter lesion load, BPF: Brain parenchymal fraction, DC: Degree centrality, EC: Eigenvector centrality, OP: Operculum parietal, SMA:
Supplementary motor area, IPL: Inferior parietal lobule

Table 3.8: Summary of participant demographics in the studies.

Study Number of MS partici-
pants

Number of HC
participants

Other details

[12] 36 RRMS 18 Matched for sex, age and educa-

tion

[13] 32 RRMS 0 RRMS split into two groups, one

receiving cognitive rehabilitation,

the other not
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[29] 60 RRMS 18 RRMS classified as fatigued

(n=32) and not fatigued (n=28)

[28] 60 RRMS 18 RRMS classified as cognitively

impaired (n=30) and cognitively

preserved (n=30). HC all right

handed

[31] 24 RRMS 11

[35] 27 RRMS 0

[41] 13 early RRMS 14 Matched for sex and age

[43] 13 early RRMS 14 Matched for sex, age and educa-

tion

[42] 38 RRMS 24

[50] 30 RRMS 15 RRMS classified as with optic neu-

ritis (n=14) and without optic neu-

ritis (n=16)

[51] 8 RRMS, 8 CIS 20 7 RRMS and 8 CIS for session 3

[60] 12 RRMS, 2 CIS, 2 MS 16 Matched for sex, age and educa-

tion

[65] 40 RRMS, 17 SPMS 28 Matched for sex, age and educa-

tion

[68] 28 RRMS 28 Matched for sex, age and educa-

tion

[75] 35 RRMS 35 Matched for sex and age

[76] 35 RRMS 35 Matched for sex and age

[114] 20 RRMS 14 Matched for sex and age. RRMS

all right handed

[122] 22 RRMS 14

[124] 31 RRMS, 14 CIS 41 Matched for sex and age

[131] 112 RRMS, 7 PPMS, 9 SPMS 50 Matched for sex, age and educa-

tion

[132] 133 RRMS, 15 PPMS, 9

SPMS

47
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[133] 30 CDMS 30 Matched for age, education and

pre morbid IQ. Male and Female

MS (12 male RRMS, 3 male SPMS,

14 female RRMS, 1 female SPMS)

matched for disease duration, dis-

ability and lesion load

[135] 14 RRMS, 8 SPMS, 1 PPMS 0 12 MS with chronic pain (7 RRMS,

4 SPMS, 1 PPMS) and 11 with-

out (7 RRMS, 4 SPMS, 0 PPMS)

matched for sex, age, disease du-

ration and EDSS

[146] 55 RRMS 24

[157] 18 RRMS 16 All female, matched for age and

education

[170] 24 RRMS 24 Matched for sex, age and educa-

tion

[171] 23 RRMS 23 Matched for sex and age

[172] 34 RRMS 34 Matched for sex, age and educa-

tion

RRMS: Relapsing-remitting MS, PPMS: Primary-progressive MS, SPMS: Secondary-progressive MS, CDMS: Clinically definite MS, CIS: Clinically
isolated syndrome, EDSS: Expanded disability status scale
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Table 3.9: Quality Assessment.

Study Research
Objective

Recruitment
Procedure

Inclusion/
exclusion

Population
demo-
graphics

Imaging
protocol

Comparison
group

Pre process-
ing protocol

[12] Y Y Y Y Y Y N
[13] Y Y Y Y Y N N
[29] Y Y Y Y Y Y Y
[28] Y Y Y Y Y Y Y
[31] Y Y Y Y Y Y Y
[35] Y Y Y Y Y N Y
[41] Y Y Y Y Y Y Y
[43] Y Y Y Y Y Y Y
[42] Y Y Y Y Y Y Y
[50] Y Y Y Y Y Y Y(W)
[51] Y Y Y Y Y Y Y
[60] Y(W) Y Y Y Y Y Y
[65] Y Y Y Y Y Y Y
[68] Y Y Y Y Y Y Y
[75] Y Y Y(W) Y Y Y Y
[76] Y Y Y(W) Y Y Y Y
[114] Y Y Y Y Y Y Y
[122] Y Y Y Y Y Y Y
[124] Y Y Y(W) Y Y Y Y
[131] Y Y Y Y Y Y Y
[132] Y Y Y(W) Y Y Y Y
[133] Y Y Y Y Y Y Y(W)
[135] Y Y Y Y Y(W) N Y
[146] Y Y Y Y Y Y Y
[157] Y Y Y Y Y Y Y
[170] Y Y Y Y Y Y Y
[171] Y Y Y Y Y Y Y
[172] Y Y Y Y Y Y Y

Y: Criteria included, N: Criteria not included, Y(W): Criteria included though weakly explained
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4
ANALYSING LARGE SCALE FUNCTIONAL NETWORKS IN MULTIPLE

SCLEROSIS

The brain is widely regarded as one of the most complex objects known, with many inter-

acting components. Due to this complexity, our understanding of how the brain works

and how it can be affected is limited. As the brain is composed of many interconnected

parts, viewing the brain as a network is a natural way in which it can be analysed to further our

understanding [46].

Many disorders affect the brain, one of particular interest is Multiple Sclerosis (MS), a de-

myelinating disease of the central nervous system. MS is a leading cause of disability in young

adults and its prevalence around the world is increasing [17]. Using functional magnetic reso-

nance imaging (fMRI), an indirect measure of activity within the brain, we can create functional

networks and see if properties of these networks differ between MS and Healthy control (HC)

participants. This could elucidate how the disease progresses and inform on the effectiveness of

treatments.

fMRI is a method which uses MRI to indirectly measure activity within the brain. Oxygenated

blood behaves differently under a magnetic field than de-oxygenated blood, and an MRI scanner

can use this to measure blood flow around the brain, recording a blood oxygen level dependent

(BOLD) signal. As brain cells require oxygen to function, and when more active require more

oxygen, the BOLD signal is an indirect measure of activity within the brain.

Traditionally, fMRI has been used to see which areas of the brain are more active during

a task. More recently there has been a growing interest in resting-state fMRI [119], a way of
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measuring the intrinsic connectivity between parts of the brain, termed functional connectivity

(FC), in its basal state. Alterations in FC between MS and HC participants could be evidence

of neuroplasticity in the MS brains, functioning as a compensatory mechanism. The review of

Chapter 3 describes studies we found which looked at evidence of neuroplasticity in MS from

resting-state fMRI studies. The main conclusions from this review are that MS is highly hetero-

geneous, reflected in the conflicting results reported, and that there is a lack of research into one

of the main effects from the disease, fatigue.

There is a prevalence of fatigue in MS [16], and this is the main reason the study of this

chapter was carried out. The analysis we performed can be broadly split into two parts; hypothesis

driven and exploratory. The hypothesis is there is disruption to the basal ganglia caused by MS;

the basal ganglia is a subcortical structure of the brain whose disruption has been assiciated

with fatigue [22]. One of the symptoms of this disruption may be the fatigue experienced by

the MS participants. The exploratory analysis we carried out was looking at different global

network measures of the FC between regions of the brain. We looked at a number of different

measures with no prior expectation of exactly how they might differ between the two populations.

Disruption to a network measure could be evidence of compensatory neuroplasticity, which

could indirectly explain the MS participants fatigue, as a different FC structure may use more

metabolic energy.

4.1 Background of study

Participants were recruited by CRICBristol, who recruited 40 HC and 38 MS participants. They

all performed a number of tests whilst inside the scanner, i.e. task-based fMRI, but also spent

a period of the scanning at rest, i.e. resting-state fMRI. The analysis in this chapter is looking

solely at the resting-state fMRI. Resting-state designs require no engagement from participants,

require no experimental design and are an increasingly popular way of investigating basal brain

activity. The resting-state scan we used had a time to repetition (TR) of 906ms (i.e. a sampling

frequency of 1
0.906 ) and recorded 300 volumes, with a total resting-state scanning time of 4.53

minutes. This is shorter than the recommended 9-13 minutes or longer as highlighted in the

review of Chapter 3. The main reason for this was the study paradigm performed by CRICBristol

involved tasks and a period of resting-state, and time constraints in the scanner resulted in a

compromise between the two.

The reason CRICBristol performed this study was because of the aforementioned prevalence

of fatigue in MS, and differences found between HC and MS could explain what may be causing

this fatigue. We used a network analysis, abstracting regions of the brain as nodes of a network,

and the correlation between the regions activity as the edges of the network. We measured
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different properties of these networks and compared them between the two populations to test

for a difference in the functional workings of the MS populations brains.

4.2 Study participants

CRICBristol initially recruited 40 female participants (aged 32-67, mean 49.8) with a clinical

diagnosis of MS, from The Brain Centre at Southmead Hospital, North Bristol Foundation Trust,

UK. Diagnosis were made according to the McDonald criteria [89, 115, 116]. The 40 female HC

participants (aged 31-68, mean 49.5) were matched for age (and gender). A technical problem on

the computer system used to store the study data resulted in two of the MS participants data

being corrupted; resulting in the final 38 MS participants (aged 32-67, mean 49.9).

Of the 38 MS participants, 25 were diagnosed with relapsing-remitting MS (RRMS), 4 with

primary progressive MS (PPMS) and 9 with secondary progressive MS (SPMS) See Table 4.1 for

MS participant demographics (diagnosis, age and disease duration).

Diagnosis Number of partici-
pants

Age (Years) Disease duration
(Years)

Relapsing-remitting
MS (RRMS)

25 46.8 (32-67) 8.96 (1-29)

Primary progressive
MS (PPMS)

4 57 (52-59) 9.25 (6-14)

Secondary progressive
MS (SPMS)

9 55.2 (40-65) 23.6 (12-36)

Table 4.1: Table detailing breakdown of MS particpants by diagnosis, age and
disease duration. Mean (Range).

4.3 Preprocessing

Before any comparison between groups can be made, the images acquired need to be cleaned up

and prepared for analysis in a process called preprocessing. This is because fMRI is inherently

noisy and participants do not keep perfectly still during the scanning, among other reasons

discussed in Sections 4.3.1 and 4.3.2. Preprocessing was performed in SPM12 [112] (see below)

within MATLAB and further preprocessing was performed using custom code in MATLAB.

4.3.1 SPM preprocessing

Statistical parametric mapping (SPM) is a MATLAB toolbox developed by members and collabo-

rators of the Wellcome Centre for Human Neuroimaging. SPM12 was the version we used for
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preprocessing and analysis of the fMRI data, though it is also capable of analysing data from

PET, SPECT, EEG and MEG as well. We only used the preprocessing parts of SPM12, performing

further preprocessing and analysis separately in MATLAB. During the scanning a structural

image is acquired in addition to the BOLD functional scans, this is used by SPM as part of the

preprocessing.

The first step is realignment, which uses a least squares approach to a rigid body 6-parameter

spatial transformation to calculate the head movement of the participant. Figure 4.1 shows

the calculated movement parameters of a HC participant, Figure 4.1a showing the x, y and z

translation motions, and Figure 4.1b showing the pitch, roll and yaw rotation motions. Scans are

then adjusted, using these calculated movement parameters, to realign them with the first image

in the series.
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Figure 4.1: Calculated movement parameters of a single HC participant. a
Translation movement. b Rotation movement.

The next step is corregistration. This procedure uses the structural scan as a reference

image fixing it in place, whilst jiggling the mean of the functional scans such that the mutual

information between the two is maximized. The rest of the functional scans are altered the same

as their mean, bringing all the functional images in alignment with the structural image. After

this, segmentation is performed on the structural image. An original structural image is shown

in Figure 4.2a, with grey matter (GM) segmented shown in Figure 4.2b, white matter (WM) in

Figure 4.2c and cerebral spinal fluid (CSF) in Figure 4.2d.

Everyone’s brain is different, normalization is the process by which the images are deformed

such that they all fit a standard template. Fitting everyone’s brain to a template ensures compa-

rable anatomical structures in the brain match up between participants.

The template chosen is the Montreal Neurological Institute (MNI) space. All the BOLD

images were normalized, along with the segmented GM, WM and CSF images. Bounding box
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Figure 4.2: SPM segmentation of the HC participant. a Structural image. b
Segmented grey matter image. c Segmented white matter image. d Segmented

cerebral spinal fluid image.

settings were changed from defaults to match the AAL template (See Section 4.4 for AAL details).

The final process we used SPM for before exporting into 4D matrices for use within Matlab is

smoothing. The previous steps above are not perfect, and so smoothing is used to increase the

overlap areas of the brain and ensure a better match of anatomical regions between participants.

This uses a 3D Gaussian kernel with a full width at half maximum size of 8x8x8 mm3. This is

performed on all the normalized functional images. Figure 4.4 shows a smoothed BOLD image

(compare to the unsmoothed normalized image in Figure 4.3b).

107



CHAPTER 4. ANALYSING LARGE SCALE FUNCTIONAL NETWORKS IN MULTIPLE
SCLEROSIS

a

x y

z

y

b
x y

z

y

c
x y

z

y

d
x y

z

y

Figure 4.3: SPM normalization of the HC participant. a Realigned BOLD
image. b Normalised BOLD image. c Segmented GM image. d Normalized

segmented GM image.
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Figure 4.4: Smoothed BOLD image of the HC participant.
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4.3.2 Further preprocessing in MATLAB

We converted all the smoothed functional images into a single 4D matrix for each participant.

Time series for predefined regions of interest (ROI) were extracted by averaging the BOLD

signals from all the voxels that fall within the ROI. See Section 4.4 for details on selection of

ROIs. Certain signals affect the measurement of the BOLD signal and need to be accounted for.

These signals are the movement of the participant, the BOLD signal from white matter regions

and the BOLD signal from CSF regions. The movement signals used were obtained from SPMs

realignment step (See Figure 4.1 for an example of movement signals). White matter signal was

obtained from averaging all the BOLD signals from the voxels that fall within the segmented

white matter image (see Figure 4.2c for an example of a (pre-normalized) white matter mask)

and similarly for the CSF signal (Figure 4.2d shows an example of a (pre-normalized) CSF mask).

These nuisance signals were removed using linear regression, see Section 4.3.3 for details of this.

The final preprocessing step is bandpass filtering. In the Systematic Review of Chapter 3,

we found 22/28 of the studies used a bandpass filter, with half of these using only a highpass

filter (11/22 of the studies). This removes low frequency noise attributed to properties of the

MRI scanner (termed scanner drift). However it does not remove high frequency noise attributed

to physiological signals like breathing and blood pulse, and it has been demonstrated that

connectivity is predominantly characterized by frequencies lower than these [25]. We therefore

chose the most popular bandpass range which included a highpass and a lowpass cut-off of

0.01-0.08 Hz (6/22 of the studies). The remaining studies from the review (5/22) each chose

different bandpass filter values, with varying highpass and lowpass thresholds. Figure 4.5 shows

two examples of extracted BOLD time series for two different ROIs, and those respective time

series after bandpass filtering.

110



4.3. PREPROCESSING

a

0 100 200 300

Time (TR)

-30

-20

-10

0

10

20

30
B

O
LD

 v
al

ue

b

0 100 200 300

Time (TR)

-30

-20

-10

0

10

20

30

B
O

LD
 v

al
ue

c

0 100 200 300

Time (TR)

-30

-20

-10

0

10

20

30

B
O

LD
 v

al
ue

d

0 100 200 300

Time (TR)

-30

-20

-10

0

10

20

30

B
O

LD
 v

al
ue

Figure 4.5: Example of bandpass filter applied to extracted time series from
AAL ROIs for the single HC participant demonstrated in Section 4.3.1. a

Extracted time series of AAL region 1 (left precentral gyrus). c AAL region 71
(left Caudate). b, d Series bandpassed filtered respectively, with filter range of

0.01-0.08 Hz.

4.3.3 Equivalence of linear regression and time series extraction ordering

The standard way of nuisance regression in the brain imaging community is to perform nuisance

regression on each voxel of the brain individually and then extract time series of averages of

the voxels that fall within a ROI [100]. As there are approximately O(106) voxels in a fMRI

brain image this is a potentially computationally heavy procedure. If later on in the analysis it is

decided to use different or modified nuisance signals, performing the regression multiple times

could take a long time. Extracting the time series from voxels and then performing the regression

on the extracted time series would greatly reduce computational load, as there is a maximum of

264, O(102), ROIs. It would also be more flexible, as the time series are already extracted, ready

for analysing.

The regression used is linear, which suggests that swapping the order of regression and

extraction would have no effect. However it is not immediately clear this is the case. Therefore,

we re-derived the linear nuisance regression in terms of how it is used on the fMRI data and
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prove mathematically that it is equivalent to extract ROIs and then regress nuisance signals

from those, rather than nuisance regression on every voxel first. The form of the linear regression

is given by

(4.1)


b(t = 1)

b(t = 2)
...

b(t = T)

=


N1(t = 1) N2(t = 1) · · · Nn(t = 1)

N1(t = 2) N2(t = 2) · · · Nn(t = 2)
...

...
...

...

N1(t = T) N2(t = T) · · · Nn(t = T)

 ·


w1

w2
...

wn

+


ε(t = 1)

ε(t = 2)
...

ε(t = T)



where the column vector on the left represents the BOLD time signal for a single voxel or ROI

after initial preprocessing, with the value b(t) being its BOLD signal value measured at time t.

The matrix of regressor signals is composed of column vectors Ni, i ∈ [1,n], where each column

vector is the time series of nuisance signal i, with there being n nuisance regressors in total.

This regressor matrix multiplies by its weighting column vector, composed of the weightings

wi, i ∈ [1,n] determined by least squares. The final column vector is the error column vector. This

error vector is the signal we are interested in, as it is what is left of the signal after removing the

nuisance signals. The linear regression equation in a more compact form is given by

(4.2) b=Nw+ε.

The aim of the linear regression is to minimise the error ε. The most common method, and

the one used here, is by using least-squares. The derivation starts with rearranging Equation

(4.2) to make the error the subject,

(4.3) ε=b−Nw.

We sum the square of the errors and simplify,

S=
T∑
i
ε2 = ε>ε= (b−Nw)>(b−Nw)= (b>−w>N>)(b−Nw)==

=b>b−w>N>b−b>Nw+w>N>Nw

(4.4) =b>b−2b>Nw+w>N>Nw.

By differentiating equation 4.4 with respect to w, we obtain

(4.5)
∂S
∂w

=−2N>b+2N>Nw,

112



4.3. PREPROCESSING

which we set to 0 to find the minimum, i.e.

(4.6) min S is where
∂S
∂w

= 0.

This results in the following expression:

(4.7) N>Nw=N>b.

A visual representation of this can be found by abstracting the multidimensional column

space N onto a plane. Minimising the error in this case means finding w such that the error, ε, is

perpendicular to the N column space plane, i.e. N>ε= 0. This can thought of as taking multiple

simultaneous vector dot products of ε with all the components of N and is illustrated in Figure

4.6.

N-column-space

b

Nw

ɛ 

Figure 4.6: Column space representation of least squares regression. With
BOLD signal vector b, nuisance signals N, weighting vector w and error vector

ε.

Using the column-space representation (Figure 4.6) we obtain an expression to solve,

(4.8) N>ε= 0.

Substituting the error from equation (4.3) results in

(4.9) N>(b−Nw)= 0.

Multiply the brackets

(4.10) N>b−N>Nw= 0,

and simplify, resulting in an equivalent expression to finding the minimum of the error;

(4.11) N>Nw=N>b.
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Now to define the error vector in terms of the measured signal, b, and the Nuisance regressor

matrix, N. Multiply both sides of equation (4.7) (and equivalently equation (4.11)) by the inverse

of N>N as shown by

(4.12) (N>N)−1N>Nw= (N>N)−1N>b

which simplifies to

(4.13) w= (N>N)−1N>b.

By substituting this w from equation (4.13) into equation (4.3) we obtain

(4.14) ε=b−N(N>N)−1N>b,

which simplifies to

(4.15) ε= (I−N(N>N)−1N>)b.

We next define K= (I−N(N>N)−1N>). Then, we obtain

(4.16) ε=Kb,

where the matrix K is a constant, defined by the nuisance regressor matrix.

We want to show that regressing every voxel and then extracting signals from them is

equivalent to first extracting signals and then regressing the extracted signals. We do this by

considering voxels we want to extract and regress, and term them bm where m ranges from

1 to M. The first case considered is regressing each voxel separately, and then extracting the

average of them. Each voxel is regressed separately and is given by εm =Kbm. The average of

the regressed voxels is given by

(4.17) BROI =
1
M

M∑
1
εm = 1

M

M∑
1

Kbm = K
M

M∑
1

bm.

The second case is where the average of the voxels is taken and then regressed. The average

of the voxels is given by 1
M

∑M
1 bm, and regressing these given by

(4.18) BROI =K · 1
M

M∑
1

bm = K
M

M∑
1

bm.

Equations (4.17) and (4.18) are mathematically equivalent. Therefore it is more computation-

ally efficient to first extract ROI time series, and then to perform nuisance regression. We apply

nuisance regression to our analysis in the more efficient way described here.
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4.4 Regions of interest (time series extraction)

We used a region of interest (ROI) analysis to explore neuroplasticity via functional connectivity

(FC) with three different sets of ROIs considered, termed Fair, Cole and AAL. All three system

of ROIs encompass the whole brain, enabling the exploratory analysis of large scale network

disruption. The AAL contains ROIs belonging to the basal ganglia, enabling the testing of the

disrupted basal ganglia hypothesis.

Fair and Cole base their ROIs inspired by a large collation of evidence which suggests the

brain can be subdivided into functional networks, shown to be involved in distinct processes

within the brain [90]. For Fair and Cole we define their ROIs as spheres located as stated in their

studies, with radii of 4mm. We extracted time series as the mean of all the voxel BOLD time

series that fall within each respective ROI sphere.

Fair based their networks on previous studies, manually collating positions for all the nodes

from their networks of interest. They define 30 ROIs belonging to 3 distinct networks: the fronto-

parietal network (FPN), the cingulo-opercular network (CON) and the default mode network

(DMN). The FPN and CON are involved in task control [37, 38], where the FPN supports top-down

(in the moment) maintenance of task performance whilst the CON primes and sustains the brain

in a task state [36]. The DMN is comprised of regions consistently shown to be correlated at rest

in adults, and is reported to be involved in autobiographical, self-monitoring value judgements

and other self-referential mental activity [56, 90, 119].

Cole [24] is similar to Fair, i.e. based on resting-state functional networks, except it defines

location of its nodes differently, and has more of them. Cole based the locations of their ROIs on a

previous study [118] which performed an analysis on a large fMRI dataset to identify voxels that

significantly changed when certain behaviours or stimuli were presented. The study combined

this with a mapping process which treated the cortex of the brain as a 2D sheet, and identifies

areas where patterns in the BOLD signal rapidly change. These areas represent boundaries

between different functional networks. Cole define 264 ROIs belonging to 11 distinct functional

networks: the auditory network, CON, dorsal attention network (DAN), DMN, FPN, the salience

network (SAN), the somatosensory network (SMN), a subcortical network, an uncertain network,

the ventral attention network (VAN) and visual network. The FPN, CON and DMN are defined

by both Fair and Cole, although Cole report more ROIs belonging to each of them. The function

of these have been discussed above. The SMN is involved in multiple senses including pain,

temperature, touch and limb position [9]. The SAN is involved in identifying what signals in the

brain are most relevant for further processing and focus [91, 134]. The DAN and VAN are in-

volved in attention, mediating voluntary focus on locations or features and detecting unexplained

stimuli [152]. Auditory and visual networks are, as their names suggest, involved in listening
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and vision. The subcortical network was a coherent functional network structure found within

the subcortical areas of the brain, and the unknown network was a network their analysis found

which could not be identified as any previous known functional network.

In contrast to Fair and Cole, the automated anatomical labelling (AAL) atlas [149] is a system

of ROIs based solely on anatomy, not function, comprised of 116 regions. Figure 4.7 shows a mid

sectional slice of the AAL atlas, where each colour represents a different anatomical region. We

extracted time series for each region as the mean of all the voxel BOLD time series that fall

within each region.

L

R

Posterior Anterior

Figure 4.7: Axial slice of the AAL atlas produced from AAL mask in MATLAB;
different colours represent different anatomical regions.

4.5 Network analysis methods

Functional connectivity (FC) is a statistical measure of how correlated the BOLD signal of two

regions is, with a higher FC inferring greater communication. We measured FC using Pearson’s

correlation coefficient, pairwise for every ROI, resulting in a connectivity matrix for each partici-

pant. This matrix can be analysed as an adjacency matrix, describing a functional brain network.

We kept the weightings of the network, rather than applying a threshold and transforming it

into a binary network, because choosing a threshold has been shown to be ambiguous [33, 66].

One way to visualize how Pearson’s correlation captures FC is to plot the BOLD values of one

time series against another. Figure 4.8 shows four BOLD against BOLD plots along with their

corresponding Pearson correlation coefficients, demonstrating different FC.
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Figure 4.8: Visual representation of Pearson’s correlation between a selection
of different AAL ROIs. This is for the HC participant with a scanning time of

4.53 minutes, i.e. 300 volumes.

We applied the Fisher transform to the matrix to improve normality, defined as

(4.19) z = 1
2

ln
(

1+ r
1− r

)
= arctanh(r),

where r is the input correlation coefficient and z is the transformed value. Correlation coefficients

are bound between −1 and 1; if a number of sample correlations are near these bounds their

distribution would be skewed. Applying the Fisher transformation removes these bounds and

preserves variance across the correlation coefficient range; resulting in approximately more

normal values.

Correlation coefficients can be both positive and negative. However, in fMRI there is little

consensus as to the interpretation and how to handle negative FC weights [58]. This review
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additionally searched resting-state studies and found a mixture of how they handled negative

weights; with 57% reporting no or insufficient information on what they did, 21% discarded

negative weights, 9% took the absolute value, 8% kept them and 5% did some other transformation.

Due to this uncertainty we take the absolute value of the correlation as the FC measure, and

argue that two strongly negatively correlated regions are still strongly functionally connected. Of

note, for one part of our network analysis we do look at negative weights; see Modularity prior in

Section 4.5.1.

4.5.1 Network measures

We looked at the following network properties to compare between the two populations. These

network measures were part of the exploratory analysis; apart from basal ganglia connectivity,

which was hypothesis driven.

Clustering coefficient

If two strongly connected neighbours of a node are themselves likely to be strongly connected

to each other, the network is said to have a high clustering coefficient. This coefficient, C, is

calculated as the average of all the local clustering coefficients, ci, across all N nodes given by

(4.20) C = 1
N

∑
i

ci.

Defining the local clustering coefficient, ci, is straightforward in binary networks, defined

as the fraction of immediate neighbours also connected. Three extensions to weighted networks

were explored by [97], with three differently defined local clustering coefficients. Onnela [109]

define their local clustering coefficient as

(4.21) ci,O = 1
ki(ki −1)

∑
j,k

(
ŵi jŵ jkŵik

) 1
3 .

The coefficient defined by Barrat [8] is

(4.22)

ci,B = 1
si(ki −1)

∑
j,k

wi j +wik

2
ai ja jkaik,

si =
∑

j
wi j,

and the formulation by Zhang [167] is given by

(4.23) ci,Z =
∑

j,k ŵi jŵ jkŵik(∑
k ŵik

)2 −∑
k
(
ŵik

2) ,
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where wi j is the strength of the connection between nodes i and j, ŵi j = wi j/max(w), ki is the

number of edges connected to node i, and ai j = 1 if there is a connection between nodes i and j,

otherwise it is 0. We only used Onnela’s clustering coefficient because Barrat’s one is used for

networks which are not fully connected which is not the case with our network and Zhang’s was

developed in the context of gene expression networks, not functional brain networks.

Characteristic path length

The path length is defined as the ability for information to flow, directly or indirectly, between

any two nodes; with shorter path lengths meaning flow is easier. The characteristic path length

of a network is the average of all the path lengths in the network. The distance of a path between

two regions should be short if the two nodes are more functionally connected. Since higher FC

implies greater connectivity, distance was defined as the inverse of the connection strength, i.e.

(4.24) di j = 1
wi j

,

where wi j is the FC between nodes i and j and di j is the new defined path length between them.

Characteristic path length is the average of all the pair-wise distances, given by

(4.25) L = 1
N(N −1)

∑
i 6= j

di j.

Weighted small-world propensity

A network which displays small world properties simultaneously has large clustering coefficient

and short characteristic path length [154]. However this formulation is for binary, unweighted

networks. We used an extension to weighted networks [97], which calculates the weighted small-

world propensity (w-SWP) by seeing how an input network deviates from two null models with

equal weighting distribution and number of nodes. The null models are a lattice network, which

have the highest clustering coefficients; and a random network, which have the shortest charac-

teristic path lengths.

The fractional deviation of the clustering coefficient and characteristic path length from the

null models are given respectively by

(4.26) ∆C = Clatt −Cobs

Clatt −Crand

and
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(4.27) ∆L = Lobs −Lrand

Llatt −Lrand
,

where Clatt and Llatt are the clustering coefficient and average path length of the lattice network

respectively, Crand and Lrand are for the random network and Cobs and Lobs are for the input

network of interest. The w-SWP is calculated from these as given by

(4.28) σ= 1−
√

(∆C)2 + (∆L)2

2
.

Some networks can sometimes exceed lattice and random networks for the clustering coefficient

and characteristic path length respectively. Therefore these fractional deviations (∆C and ∆L)

are capped between 0 and 1.

Modularity

The modularity quantifies the extent to which a network can be subdivided into densely connected

regions called communities [47]. By construction, the FC within communities tends to be large

and that between different communities small. We looked at two different modularity measures;

one which finds the modularity of an optimized segregation of the whole network, and another

which measures the modularity of the network already subdivided, based on prior labelling into

distinct functional groups. These will be referred to as modularity optimized and modularity

prior respectively. We calculated modularity optimized using code from the Brain Connectivity

Toolbox [125], whose modularity optimized algorithm is based on prior work from [103, 104, 120].

Modularity prior was based on algorithms developed by [126], whose focus was on network

measurements specifically for weighted functional brain networks. Modularity prior is given by

(4.29) Q = 1
v

∑
i j

(wi j − e i j)δMi M j

where v = ∑
i j wi j, e i j = si s j

v , si = ∑
j wi j and s j = ∑

i wi j. For these calculations wi j is the FC

value between ROIs i and j and δMi M j is equal to 1 if ROIs i and j belong in the same module,

otherwise it is 0.

An alteration to this modularity measure takes into account negative weights as well [126]. A

high modularity for this measurements means a network displays high positive within module

connectivity and high negative between module connectivity. Their reasoning is that positive FC

values represent similar activation patterns, hence warranting placement in the same module
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and negative FC values represent distinct, antiphase coupling, hence placement in different

modules. The calculation for the modularity from positive weight contributions is given by

(4.30) Q+ = 1
v+

∑
i j

(w+
i j − e+i j)δMi M j

where v+ = ∑
i j w+

i j, e+i j =
s+i s+j
v+ , s+i = ∑

j w+
i j and s+j =

∑
i w+

i j. Here w+
i j = |wi j| if wi j > 0 otherwise

w+
i j = 0. Similarly, for the negative weights contributions the modularity is calculated as

(4.31) Q− =− 1
v−

∑
i j

(w−
i j − e−i j)δMi M j

where v− = ∑
i j w−

i j, e−i j =
s−i s−j
v− , s−i = ∑

j w−
i j and s+j =

∑
i w+

i j. Here w−
i j = |wi j| if wi j < 0 otherwise

w−
i j = 0. The total modularity, taking into account positive and negative weights and based on

prior module labelling, is calculated as

(4.32) Q∗ =Q++ v−

v++v−
Q−.

Basal ganglia connectivity

The basal ganglia, as defined in the AAL, is comprised of six regions. The left and right Caudate,

left and right Putamen, and left and right Pallidum. We define the basal inner connectivity as

the average FC over the 15 region pairs within the basal ganglia. Basal outer connectivity was

defined as the FC between a basal ganglia region and a region outside the basal ganglia, averaged

over 6×110= 660 such region pairs. We defined outer-outer connectivity as the average of the FC

over the remaining 5,995 region pairs outside the basal ganglia.

4.5.2 Individual basal ganglia region analysis and single threshold
permutation correction

We performed t-tests of the FC on each of the 15 region-region pairs within the basal ganglia

separately, i.e. FC between left Putamen and right Putamen, FC between left Putamen and Left

Pallidum etc.

With the individual basal ganglia connectivity analysis there is now a multiple comparisons

problem, as it is comprised of 15 simultaneous statistical tests. Therefore, some form of multiple

comparisons correction is needed. The multiple comparison correction we used is based on a

permutation procedure [106], set out below. Rather than the p-value, the correction uses the

t-statistic from each test, which is a standardized measure of the difference of means between
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two populations. We performed this particular correction because it is non-parametric (so no

parameters need fitting or altering) and it does not over-zealously correct every positive test (i.e.

it is more ‘forgiving’).

The procedure is as follows:

1: From the MS labels and HC labels, randomly assign them to each participant, effectively

shuffling who is labelled as MS or HC, whilst keeping the size of the two groups the same.

2: Perform basal ganglia analysis, measuring t-statistic for each region-region pair. A positive

t-statistic means the FC between those two regions is greater in HC than MS. A negative

t-statistic is the inverse (i.e. MS > HC).

3: Across all the region-region pair test results (total of 15) record the highest value (labelled

Tmax) and the lowest value (labelled Tmin).

4: Re-shuffle the participant labels as in the first step, and repeat the analysis. This results in

distributions of the maximum and minimum t-statistics across random shuffling of labels.

5: Corrected p-value of a region-region pair for HC>MS is the proportion of values in the

permuted Tmax distribution greater than the actual t-statistic for that region-region pair.

For MS>HC it is the proportion of values in the permuted Tmin distribution less than the

actual t-statistic.

4.6 Network analysis results

In summary, the network measures we looked at were:

• Clustering Coefficient.

• Characteristic Path Length.

• Weighted small-world propensity (w-SWP).

• Modularity Prior - Absolute Weights (Fair and Cole only).

• Modularity Prior - Positive and negative Weights (Fair and Cole only).

• Modularity Optimized.

• Number of modules found from Modularity Optimize.

• Basal Inner. (AAL only).
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• Basal Outer. (AAL only).

• Outer-outer. (AAL only).

We measured each network property for each participant and compared the properties

between HC and MS using un-paired t-tests. This results in a p-value for each network property,

representing similarity between the two groups. Table 4.2 shows the p-values for each network

property, and for each relevant system of ROIs they fall within. Using a significance level of 0.05

we found only one significant result across all the systems of ROIs and network measures, that of

basal inner mean connectivity with a p-value of 0.0177 (HC > MS).

ROIs
Network Measure Fair Cole AAL
Clustering Coefficient 0.876 0.388 0.506
Characteristic Path Length 0.894 0.543 0.928
Weighted Small-world propensity 0.592 0.842 0.967
Modularity Prior (Absolute) 0.0964 0.934 -
Modularity Prior (Positive and Negative) 0.179 0.729 -
Modularity Optimise 0.914 0.329 0.493
Number of optimised Modules Found 0.566 0.324 0.476
Basal Inner Mean connectivity - - 0.0177
Basal Outer Mean connectivity - - 0.850
Outer-Outer Mean connectivity - - 0.961

Table 4.2: P-values from unpaired t-tests for different network measures, and
different systems of ROIs, between MS and HC populations (0.01-0.08 Hz

bandpass filter). Network measure not being applicable to the system of ROIs
is indicated by a dash (-).

4.6.1 Individual basal ganglia region results

The average inner FC within the basal ganglia was found to be significantly different between HC

and MS participants, prompting a more detailed investigation. Therefore we performed region by

region FC analysis within the basal ganglia. Figure 4.9 shows a heatmap of p-values for each

of the respective pairs, Figure 4.9a is all the p-values for which the FC of the region pairs was

found greater in HC than MS, and vice versa for Figure 4.9b (i.e. MS greater than HC).

Only one region-regions pair’s FC was found to be greater in MS than in HC, that between the

left and the right Caudate. However this was not significant with a p-value close to one. For HC

greater than MS four of the p-values were below 0.05: between left Putamen and right Putamen,

left Putamen and right Pallidum, right Putamen and right Pallidum, and between left Pallidum

and right Pallidum.
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Figure 4.9: Individual Basal Ganglia regions FC t-test colourmap. KEY: 1.
Left Caudate, 2. Right Caudate, 3. Left Putamen, 4. Right Putamen, 5. Left

Pallidum, 6. Right Pallidum.

Significant results were found within the basal ganglia, but with 15 simultaneous statistical

tests a multiple comparisons correction is needed. We performed the correction as set out in

Section 4.5.2. Figure 4.10 shows results of the multiple corrections, displaying the distributions

of the randomly shuffled Tmax and Tmin values in blue, along with the actual t-statistic values

as red flags. Figure 4.10a shows the distribution of Tmax values, significant region-region pairs

would have their actual value (red flag in figure) greater than the distribution (i.e. to the right).

Most of the actual values are firmly within the distribution, with the two furthest to the right

having corrected p-values of 0.0639 and 0.0767. Figure 4.10b shows the distribution of Tmin

values, where significant region-region pairs would be to the left of the distribution. No value

here is remotely significant, with the lowest corrected p-value being 0.941.
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Figure 4.10: Distributions of random permutations of participant labelling
used for multiple corrections. Distribution values are the maximum (a) or
minimum (b) t-statistic measured across all 15 basal ganglia statistical

comparisons for each permutation. Red flags plotted on top are the actual
t-statistic values measured.

4.7 Correlations with clinical markers

The systematic review of Chapter 3 highlighted how a majority of the studies found performed

correlations of a FC metric and some form of clinical marker, i.e. a test score (see Section 3.3.8).

Our collaborators measured a number of test scores and clinical markers which we used to

correlate with our network measures. A significant correlation between a network measure and

one of the test scores or clinical markers could show evidence of compensatory neuroplasticity,

even though none of the network measures themselves were significantly different between MS

and HC. We performed this analysis using Pearson’s correlation coefficient of each score against

each network measure, for MS and HC separately. This results in a coefficient value and a p-value

for each correlation.

The Clinical markers measured were: Age, CSF, D2 Error, D2 Speed, FSS, GM, Interference,

Naming, T2, T2 RT, T3, T3 RT, Trail A, Trail B, WM and Words; a total of 16 markers.

CSF, GM and WM are cerebral spinal fluid, grey matter and white matter volume respectively.

FSS is the fatigue severity scale, a questionnaire to evaluate the impact of fatigue. T2 and T3

are the tasks carried out in the scanner as part of the task based portion of the study; where T2

RT and T3 RT are the their respective reaction times. T2 was measuring intrinsic alertness and

T3 was extrinsic. D2 Error and D2 Speed are part of a cognitive test called D2, measuring their

error and speed performing this respectively. Naming, Interference and Words are part of the

125



CHAPTER 4. ANALYSING LARGE SCALE FUNCTIONAL NETWORKS IN MULTIPLE
SCLEROSIS

Stroop test, used to assess cognitive interference, and can be used to measure other multiple

cognitive functions [128]. Trail A and Trail B are hand written attention tests. These later tests

(D2, Stroop, Trail A, Trial B) were carried out before and after the scan.

All this analysis was carried out in an exploratory manner; apart from correlations with the

FSS, which is part of the hypothesis involving fatigue. Of note, other clinical measures displaying

significant correlation with FC could still be interrupted back to fatigue, though it would be a

weaker, indirect relationship.

For HC with Fair ROIs; out of 112 correlations (16 markers multiplied by 7 network measures),

5 had p-values less than 0.05, with the lowest value being 0.0147. With Cole ROIs 9 out of 112

(16 markers multiplied by 7 network measures) had a p-value less than 0.05, with the lowest

being 0.00432, and for AAL ROIs 12 out of 128 correlations (16 markers multiplied by 8 network

measures) passed the significance threshold, the lowest being 0.000117. For MS with Fair ROIs

10 out of 112 correlations passed significance, the lowest value being 0.0102; with Cole ROIs 6

out of 112 were lower than 0.05, the lowest being 0.0136. Finally, with AAL ROIs 7 out of 128

were significant, the lowest being 0.00897. CRICBristol recruited MS participants because of

their fatigue. However none of the significant correlations were with FSS scores. We observed

no clear tendency in these results, though some were lower than 0.05. However, none of these

correlations are likely to pass multiple comparisons corrections, and those that did would require

further interpretation to infer what physiological meaning they may have.

4.8 Preprocessing protocol alterations

The preprocessing protocol can affect group discrimination, as well as signal-noise separation and

test-retest reliability [136]. This inspired us to look at how altering some of the preprocessing

used might affect the significance of any differences found in network properties between the

two populations. We looked at altering the nuisance regression signals and at the bandpass filter

threshold values.

4.8.1 Nuisance regression alteration

Two of the studies found in the systematic review of Chapter 3 [60, 170] included the first time

derivative of the nuisance signals in their regression. We did the same, with the results in Table

4.3. Comparing to the results with no first time derivative included, Table 4.2, no non-significant

previous value has turned significant. However the single previous significant difference found,

that of the basal inner, has had its p-value increase from 0.0177 to 0.0799, which is now considered

non-significant.
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ROIs
Network Measure Fair Cole AAL
Clustering Coefficient 0.904 0.426 0.909
Characterstic Path Length 0.777 0.801 0.788
Weighted Small-world propensity 0.133 0.622 0.828
Modularity Prior (Absolute) 0.0901 0.974 -
Modularity Prior (Positive and Negative) 0.0996 0.505 -
Modularity Optimise 0.904 0.325 0.708
Number of optimised Modules Found 0.285 0.683 0.628
Basal Inner Mean connectivity - - 0.0799
Basal Outer Mean connectivity - - 0.769
Outer-Outer Mean connectivity - - 0.878

Table 4.3: P-values from unpaired t-tests for different network measures, and
different systems of ROIs, between MS and HC populations (0.01-0.08 Hz

bandpass filter). Including 1st time derivative of nuisance signals to regressors
(compare to results in Table 4.2). Network measure not being applicable to the

system of ROIs is indicated by a dash (-).

4.8.2 Bandpass parameter space

For all the previous analysis (results in Section 4.6) we used a fixed bandpass filter of 0.01-0.08

Hz. Previous studies have looked at how different frequencies contribute to FC [25, 160]. We

therefore looked at how bandpass filter values affect the significance of differences between HC

and MS over all the previous network metrics. We repeated the analysis using different values for

the bandpass filter thresholds and recorded the p-value for each respective value. We used a range

of no highpass to 0.05 Hz for the high pass cut off, and 0.06 to no low-pass for the low-pass cut off

value. This resulted in a heat-map of p-values over the bandpass parameter space, representing

significance of difference between HC and MS. The darker blue values represent there being

a greater significance of difference between the populations, and lighter yellow values are for

less significant differences. This shows significance, but not whether the measure is showing

the value being greater in MS, or in HC. We plotted the p-values against their corresponding

difference of the mean in measurement (mean HC minus mean MS) to check against a scenario

in which a majority of the bandpass space is significant (i.e. mostly blue with majority of values

less than 0.05), but a mix of significant values being MS greater than HC and vice versa.

Figure 4.11 shows the results of the bandpass space analysis for the clustering coefficient.

Figure 4.11a is for Fair ROIs and shows that a majority of the p-values over the parameter space

are large (mostly yellow). The red dots superimposed on this image are the different bandpass

parameter values we found from the review in Chapter 3. Two of the values were outside the

range we explored and are placed outside at approximately the location they correspond to. One

of these (top right) was for a study designing a classifier and the other (bottom left) was focusing
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on low frequency signals. These values are the same for all the bandpass space figures, and are

only shown in this particular case for reference. Figure 4.11c is for Cole ROIs and Figure 4.11e

for AAL ROIs; for both of these systems of ROIs there is a mix of significance across the bandpass

space, though no areas are significantly dark. Figures 4.11b, 4.11d and 4.11f all show an even

spread of p-values for MS greater than HC and vice versa for Fair, Cole and AAL respectively.

This signifies no significant difference of this measure between HC and MS.
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Figure 4.11: Bandpass parameter space results for the clustering coefficient.
a,c,e Heatmap of p-values over a bandpass parameter set of values for Fair,

Cole and AAL respectively. Red dots of a are parameter values found from the
review in Chapter 3. b,d,f All points in heatmaps p-values plotted against the
difference of mean that produced the respective p-value, for Fair, Cole and AAL

respectively.
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Figure 4.12 is the bandpass space analysis results for weighted small-world propensity. Figure

4.12a for Fair ROIs shows significance varies greatly. Figure 4.12b shows that a portion of the

values are significant and that all significant bandpass values show w-SWP being greater in MS

than in HC. When referring back to Figure 4.12a all the significant values (dark blues) are from

the top right of the bandpass space, not a region commonly used (as found from the systematic

review). Figure 4.12c is for Cole ROIs and shows the significance between HC and MS varies

greatly over the bandpass parameter space, with some parts (slice across the middle) falling

below 0.05. Figure 4.12d shows all the significant values show the MS having greater w-SWP

than HC. However, large parts of the space are still non-significant reducing confidence in this

being a significant result. For AAL ROIs, Figure 4.12e shows varying significance across the

parameter space, with the greatest significance at the top left corner. Figure 4.12f shows all the

highly significant values all show MS having greater w-SWP than HC. However it also shows

that most of the values are still not significant.
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Figure 4.12: Bandpass parameter space results for the weighted small-world
propensity. a,c,e Heatmap of p-values over a bandpass parameter set of
values for Fair, Cole and AAL respectively. b,d,f All points in heatmaps

p-values plotted against the difference of mean that produced the respective
p-value, for Fair, Cole and AAL respectively.
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Figure 4.13 is for basal inner, with Figure 4.13a showing the whole bandpass space to be

dark blue, implying significance. Figure 4.13b shows that all the values are showing HC having

greater basal inner connectivity than MS, with all the values clustered at the bottom right. This

figure indicates that, although not all the values are below 0.05, a large proportion are.
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Figure 4.13: Bandpass parameter space of basal inner measurement (AAL). a
Heatmap of p-values over a bandpass parameter set of values. b All points in
heatmaps p-values plotted against the difference of mean that produced the

respective p-value.

We explained the results of the bandpass space analysis for the clustering coefficient, weighted

small-world propensity and basal inner only. All the other networks measures resulted in no

significant results, and qualitatively looked the same as for the clustering coefficient, i.e. mostly

insignificant p-values corresponding to a mix of MS greater than HC and vice versa.

4.9 Discussion

We found no significant difference between MS and HC with any of the network measures we

looked at. This could be because the cohort of MS brains studied have already successfully

undergone neuroplasticity to compensate for the damage caused.

Disruption to the basal ganglia has been widely reported to cause fatigue, which the MS

participants recruited report as a common symptom of theirs. We found the average of all the

basal ganglia’s inner FC connections to be significantly different between HC and MS participants.

This initially appears as good evidence as to a possible cause of the MS participants fatigue.

However this significance was not preserved when analysing the individual connections and

correcting for multiple comparisons. Additionally the mean inner FC of the basal ganglia was not

significantly different when adding the first time derivative of the nuisance signals to regress,
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reducing the confidence that there is a disruption to this part of the brain in the MS participants.

A better ROI parcellation of the basal ganglia, representing a finer more course grain volume

definition, may elucidate if there is any disruption. A further analysis we could perform to help

validate these results is dynamic causal modelling (DCM) [49]. DCM is a method used to estimate

directed adjacency matrices, i.e. whether a region directly influences another region. This method

is suited for analysing a small number of regions, ideal for the six of the basal ganglia. A model

is hypothesized describing how regions directly affect other regions, and DCM calculates how

well the data fits the model. For the case here, based on our knowledge of what links we believe

to be affected by MS, we could put forward two models of how the basal ganglia connects. One

would be how the basal ganglia is thought to work in healthy populations, i.e. a “healthy model”,

and the other how we believe the connectivity of the basal ganglia may have been affected by

MS, i.e. a “disrupted model”. These models would both be run with HC and MS participants

and if it is shown that the HC population fits the “healthy model” better than MS, and the MS

population fits the “disrupted model” better than HC then this could be evidence of disruption to

those particular links. This would require the models to be formulated before the DCM analysis

could be run.

At the frequency band we chose, 0.01-0.08 Hz, Small-world propensity did not significantly

differ between HC and MS. A study showed Small-world features in fMRI data to be most salient

at lower frequencies (0.03-0.06 Hz) [5]. However when looking at the bandpass space results none

of the system of ROIs showed significance of w-SWP at these frequencies, though they did at other

frequencies; with Fair ROIs we showed significant differences at approximately 0.05-0.09 Hz,

with Cole ROIs at 0.025-0.09 Hz and with AAL ROIs at around 0.05-0.065 Hz. The discrepancies

in these values, and the fact that w-SWP for most of the bandpass space was still not significant

reduces the confidence in there being any difference between the function of the brains of HC and

MS in terms of small world saliency.

We chose to use Pearson’s correlation coefficient to measure FC. This is an arbitrary choice

and other measures do exist such as Spearman’s correlation or mutual information, as found in

the review of Chapter 3. However, the different measurements qualitatively measure the same

thing: correlation between time series. Another possible way to measure FC would be by using

partial correlation, measuring the correlation between two ROI time series whilst controlling for

the correlation between all the rest of the ROIs.

The time series of each ROI are the average of the time series of a group of voxels, which are

themselves the average measure of the BOLD signal of many brain cells. Each ROI time series

could have a different variance depending on the voxels they were sampled from, especially for

the AAL atlas whose different anatomical regions are different sizes and therefore comprised of a
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different number of voxels. Analysing the variance of each time series could shape a different

interpretation of any results that may be produced.

We found no evidence for what may be causing the reported fatigue of the MS participants,

and with no network measure significantly differing between MS and HC, no mechanism can be

put forward to its possible cause. Furthermore none of the measures significantly correlated with

the fatigue severity scale.
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A METHOD OF CHARACTERIZING DYNAMIC FUNCTIONAL

CONNECTIVITY IN FMRI

As discussed in Chapters 3 and 4, functional connectivity (FC) is a statistical measure of

correlation between two regions of the brain, with higher FC inferring greater communi-

cation between the regions. When previously calculating the FC between two BOLD time

series we used the Pearson’s correlation coefficient over the entire time series. This is termed

static FC and is an average of the FC between two regions over that time. The brain is dynamic

and averaging over the whole time series could miss out important dynamics [21].

In this chapter we are interested in how the FC between two regions changes over time,

rather than what its FC over that whole time period is. This measurement is called dynamic

FC (rather than static FC) and there are different methods to calculate dynamic FC, with a

recent review [163] outlining seven of them. Instead of outputting a single FC value, as for static

FC, dynamic FC returns a time series of the changing FC over time. This presents a problem

in terms of how to analyse and characterize the connectivity, which although lots of methods

exist to analyse time series [79] these measures are not immediately applicable to dynamic FC.

We wanted to investigate dynamic FC, using the Kalman filter as a potential tool for future

research. We chose the Kalman filter because they are ideally suited to infer underlying trends or

properties in noisy data, ideal for fMRI. Kalman filters are predict and update algorithms used

for smoothing and estimation of parameters in many diverse fields [166].

We are aware of of one study which used a Kalman filter for magnetoencephalography (MEG)

data [148]. However, to our knowledge no such analysis has been performed on dynamic func-

tional connectivity with fMRI.
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IN FMRI

5.1 Methods

The Kalman filter works by combining the output of an underlying model at a certain state

with external data measured at that state. This process is carried out sequentially with each

subsequent state. Figure 5.1 demonstrates how the Kalman filter works, where a state (red circle)

is updated via its underlying model (to a blue circle), and combined with data (fuzzy circle) at

that state to output a better estimate for that state. This new state can then be updated and

combined with further data, and the process repeats.

State i
State i 
update

Data i

State i+1 
update

Data i+1

State i+1 
(state i filtered 

with data i)

State i+2 
(state i+1 filtered 

with data i+1)

Figure 5.1: Representation overview of how a Kalman filter works. States (red
circles) are updated via an underlying model (to a blue circle) and combined

with data (fuzzy pink circles) for a better estimate of the state.

We apply the Kalman filter to fMRI via calculating dynamic FC, where the FC between two

regions is the state. The system we are analysing here is 1-dimensional, that dimension being FC.

We assume a simple underlying model where there is no change from one state to the next. This

assumption is used because the data is from resting-state, i.e. no external influences, and this

chapter is preliminary work. These methods could be extended to task based fMRI data, where

the underlying model update would be correlated with the task.

We used a simple moving window method to calculate dynamic FC, as the Kalman Filter

proposed here should be able to be applied to different methods of calculating dynamic FC.

Figure 5.2 shows how the moving window method works in calculating dynamic FC. Figure

5.2a shows two BOLD time series (blue) with a moving window (red). The two series are extracted

from the Left Caudate and Right Caudate from a HC participant. The width of the window in

this demonstration is 15 time to repetition (TR) units; TR is the sampling rate of fMRI, used as

the time scale here. Pearson’s correlation is performed between all the BOLD values within this

window, and Fisher transformed. The window is moved along one time step and the calculation is
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repeated. Figure 5.2b shows the resulting dynamic FC as the window is moved along, displaying

how the connectivity between these two regions is dynamic over time.

a Two BOLD time series
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Figure 5.2: Moving window method for calculating dynamic FC. Moving
window (red bar) moves left to right. a Two example time series to calculate
dynamic FC of. Pearsons correlation is calculated within the moving window
and Fisher z-transformed, with value recorded down as correlation at time
halfway in the window. b Snapshot of Dynamic FC between example BOLD

time series up to the moving window.

The Kalman filter is applied to the dynamic FC between two ROIs time series, for a single

participant. Each moving window correlation value is the new data on which the filter updates.

The filter starts with an initial guess of the FC, and with each iteration (as the time window

scans across) updates this guess using each subsequent value from the dynamic correlation. The

starting prior could be anything, and future work would need to be carried out to explore how this

effects its performance. As we are neglecting the underlying model in this analysis, the Kalman

update process demonstrated below is simpler than it would have been including an underlying

model.

The Kalman filter updates using a Bayesian method, assuming all the data is normally

distributed. Figure 5.3 shows a schematic to illustrate how the distributions of data and prior

update to the posterior, displaying a distribution for an initial guess (prior in red), along with

distributions for the data (blue) and the updated measurement for the value (posterior in yellow).

After the measurement estimate has been updated with a step of the Kalman process, and since

we have neglected the underlying model, the posterior distribution then becomes the prior of the

next iteration.

The update of these distributions is done by looking at the means and variances of all

the distributions involved. The mean and variance of the update measurement (posterior) is

calculated using the Kalman gain:
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Figure 5.3: Graphical representation of Bayesian update of normal
distributions.

(5.1) K= σ2
P

σ2
P +σ2

D
,

which is used to define the posterior mean:

(5.2) µN =µP +K(µD −µP ),

and the posterior variance:

(5.3) σ2
N = (1−K)2 σ2

P +K2 σ2
D ,

where K is the Kalman gain; µN and σN are the updated mean (posterior mean) and updated

standard deviation (posterior s.d), respectively; µP and σP are the starting mean (prior mean) and

starting standard deviation (prior s.d), respectively; and µD and σD are the mean and standard

deviation of the incoming information (data mean and data s.d), respectively.

The Kalman gain, K, works such that if a new measurement has a very small variance there

is greater certainty in its value, which draws the posterior mean µN closer to it. The inverse is

true for a high variance, which has greater uncertainty and therefore the posterior mean µN will

remain closer to the prior. As for the updated variance, each update qualitatively averages the

variance of the prior and the data such that as long as both σD and σP are sufficiently small the
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new variance σP will become smaller with each update.

Each subsequent measurement of the FC within each time window was measured using

Pearson’s correlation coefficient. This value is bound between −1 and 1 and is not normally

distributed. This is why Fisher’s z-transform was applied to each correlation measurement, which

normalizes Pearson’s correlation coefficient. The new Fisher z-transformed value becomes the

mean of the data distribution. For its variance, Fisher’s transform has the property that when

applied to a bivariate normal distribution the standard error is simply a function of the number

of data points used to calculate the correlation: 1p
N−3

, where N is the number of data points

within each window. Figure 5.4 shows distributions of the BOLD values for two example ROIs,

which appear normally distributed. This demonstrates that the correlation coefficient comes from

a bivariate normal distribution, and that we are justified in assuming that the BOLD values are

normally distributed. We therefore use Fisher’s standard error as the value of σD in each update.
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Figure 5.4: Distributions of the BOLD values for the two example ROI time
series respectively.

5.2 Results

The Kalman filter applied to the FC between the same two example ROIs as before (i.e. left and

right Caudate of a HC participant) is shown in Figure 5.5, displaying the dynamic correlation

(blue) with the Kalman filtered correlation (red) along with the static correlation (dotted black

line). This result was produced with a time window size of 10 TRs.
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Figure 5.5: Dynamic correlation (blue) and Kalman output (red) with a
window size of 10 TRs. Black dotted line is original FC calculation of entire

time series at once.

The results for four different sizes of time window are shown in Figure 5.6. As for with a

window size of 10 TR the filter works as a smoother, tracking the broad changes in FC over time.
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Figure 5.6: Dynamic correlation (blue) and Kalman output (red) plots with
varying window size. Black dotted lines are original FC calculation of entire
time series at once. Starting prior mean and variance (i.e. at Time 0) is the

mean and variance of every point in the dynamic FC (blue line). Future work
will be in exploring different starting values.

We tested the filter by measuring the value at the end of the Kalman process, i.e. the value

produced by the Kalman filter at the end of the time series. We chose the end value as a statistic

to explore because it has taken all the information over the course of the time series and may

output possible insights into the filters performance. We explored how the window size affects

the Kalman filter results, over a greater range of window sizes, by recording the mean and

variance at the end of the Kalman process and plotting it against the window size which produced

it. Figure 5.7a shows how the end mean is affected by varying window size, and Figure 5.7b

shows how it affects the end variance. This shows how faster transient dynamics can affect

the correlation measured, as seen with the decrease in the end FC with smaller time windows

(valley around 0-50 TRs wide in Figure 5.7a). As for the variance, with greater window size

there are less measurements, and so the Kalman filter has less information on which to converge.
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However with smaller window sizes each measurement has more uncertainty even if there are

more measurements. Figure 5.7b shows this interplay between having less measurements each

with smaller variance and more measurements each with greater variance, reaching a minimum

end variance with a window sizes of approximately half the full time series length. A desired

behaviour may be to find an output value with the least uncertainty. Using the end Kalman value

as an output would require using a window size half the entire time series length to minimize its

variance. However this would not necessarily be the best choice as it could miss out on the faster

transient dynamics.
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Figure 5.7: How the end of the Kalman process is affected by window size.
Same single participant and ROIs as all other results in this chapter. a How
mean of final Kalman estimate of the FC is affected by changing window size.

b How the variance of the final Kalman estimate of the FC is affected by
changing window size.

5.3 Discussion

This chapter has presented preliminary work on investigating conceptual tools to analyse dy-

namic FC via a Kalman Filter. It has not been used yet in analysing real world data and this

chapter gives only an example between two time series. We show that the filter can track the

broad changes in dynamic FC over time, and that considering faster dynamics with smaller

window sizes can affect the results. Generalizing to other ROIs could throw up unpredictable

behaviours that would require adjustments to the filter.

Future work on this would be to investigate how the starting mean and starting variance

affect this Kalman process. Another area of research would be a more rigorous justification for

choice of window size, as well as how a different window shape could affect the outcome. These

questions have been researched in a recently published paper [95] applied to dynamic FC (though
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not Kalman filters), and applying their findings to how the Kalman filter has been implemented

here could be interesting.

Using a cumulative average of the dynamic FC would in this case have given very similar

results. However the Kalman filter may out perform these in the case of when a signal is changing,

as is the case in dynamic FC. Furthermore, for the example ROIs shown the Kalman filter acts

qualitatively as a low-pass frequency filter. Moving averages and low-pass filters are an estimate

of a measure part way to the current time, i.e. in the past. The Kalman filter would be an estimate

at the current time, i.e. a live estimate, which may be a quality that means it could outperform a

moving average. Future research could find the cases in which the Kalman filter proposed here

can outperform simple cumulative or moving averages, and as the filter is a well established

analysis technique plenty of tools exist that could be used to further analyse its results.

As Kalman Filters can be used for tracking of variables, one possible use of it in this case

could be in real time estimation of FC, if MRI technology improved such that the time to capture

BOLD images and process them was faster. For the same reason, the Kalman filter could be

applied to fMRI measured when a participant is performing a task, rather than resting-state

data. This is because a task happens in time, meaning the filter could better track the changing

FC as a task progresses.

A key feature of the Kalman filter is the underlying model, which we have neglected. An

underlying model with the Kalman filter could be used on task based studies, where the model

follows the task. For resting-state data, the underlying model is not so clear; but one based on

physiology could greatly improve its performance. Furthermore, with an underlying model, and

more thorough development of the filter, new predictive methods could be established as this is a

common use of the Kalman filter.
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6
FINAL CONCLUSIONS

The work in this thesis shows the breadth of areas applicable to network analysis. The two

specific examples we explored were to a gene regulatory network (GRN) and to large scale

functional brain networks. We showed that by abstracting complex biological systems

into networks we can study simplified elements of them and produce useful insights into their

workings.

Our aim for Chapter 2 was to modify a previously proposed GRN, describing interactions

regulating pluripotency of mouse embryonic stem cells (mESCs), to include genes shown exper-

imentally to be differentially expressed between two different culture media, Serum+LIF and

2i+LIF. Also, as all previous computational models of pluripotency GRNs only considered one of

the inhibitors present in 2i+LIF (i.e. PD), we also aimed at including as a GRN input the other

inhibitor Chiron. A new GRN was derived using published sequencing data, and a stochastic

differential equation model derived to describe the dynamics of genes involved in response to the

two drugs. Previous models were fitted to data generated with a tagged cell line recently shown to

cause an incorrect measurement of the of the key pluripotency gene Nanog, due to high stability

of the fluorescent tag. Instead, we fitted our model on data generated with a new and more

reliable mESC line. We achieved our aims and demonstrated, combining numerical simulations

of the model and bifurcation analysis, that both inhibitors can affect the GRN dynamics and,

ultimately, mESC pluripotency. We also showed that, although not essential to describe Nanog

dynamics, each of the newly added genes and interactions in the GRN can significantly alter the

system dynamics. Limitations of our model are that some of the parameters could not be directly

fitted to data, thus some of the chosen values could be considered arbitrary. The results still bring

useful insights into the broad qualitative, culture media dependent behaviour of pluripotency
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genes in mESCs.

Future work could include performing further network analysis to predict different culture

media protocols to achieve pluripotency maintenance, for example by activating/repressing other

genes in the GRN, and extending the network to include genes and chemicals important for cell

differentiation.

Chapter 3 was a systematic review, carried out to scope the existing literature on the kind

of analysis used to find evidence of neuroplasticity in the brains of participants with multiple

sclerosis (MS). We found that pure resting-state functional magnetic resonance imaging (fMRI)

studies in MS were low in number, though high in quality. We identified six different methods

used to report evidence of neuroplasticity in MS from resting-state fMRI, each having different

advantages and disadvantages. All the studies in the review of Chapter 3 reported some evidence

of neuroplasticity. However, the results were inconsistent between studies, possibly due to the

heterogeneity of MS.

In Chapter 4 we recruited MS and healthy control (HC) participants to have a resting-state

fMRI scan, with the aim of finding evidence of neuroplasticity in MS. We used network analysis

techniques, comparing network properties between MS and HC. Only the average connectivity

within the basal ganglia was found to be significantly different between MS and HC, being

greater in HC. However, after looking at individual pairwise connections within the basal ganglia

and performing a multiple comparisons correction, this significance disappeared. We found no

evidence of neuroplasticity in our cohort of MS, maybe signifying that the MS participants have

already undergone successful neural reorganization. It may be the case that the compensatory

changes in the MS brains are too subtle to be picked up with fMRI, and it may also be that as MS

is a highly heterogeneous disease [44], differences across individuals average out when one looks

at the larger cohort.

Limitations to the work of this chapter are the length of the resting-state scans measured.

Scanning times of 9-13 minutes or longer have been shown to greatly improve the reliability

of fMRI results [11], which is greater than our study which scanned for 4.53 minutes. Another

limitation is in the fMRI technology itself. It can only indirectly measure neuronal activity via the

flow of oxygenated blood, called the blood oxygen level dependent (BOLD) signal. When a region

is more active and requires more oxygenated blood, the BOLD signal does not instantly react.

This delay is the BOLD response, and has a width of approximately 3 seconds, although clever

techniques can make inferences in the 100ms time scale [53]. However, this is still an order of

magnitude greater than the underlying process of neuronal activity, which takes place on a time

scale of approximately 10ms [84]. Furthermore, each voxel that fMRI measures the BOLD signal
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of can comprise thousands of individual neurons. Therefore, although fMRI’s spatial resolution

is greater than other brain imaging methods, it is still not high enough to resolve individual

neuronal activity.

Future work would be to apply the analysis pipeline developed here to other existing data

which already shows evidence of neuroplasticity. This would verify the analysis pipeline or high-

light possible issues with it. Using a different analysis technique, as highlighted in the systematic

review of Chapter 3, could elucidate neuroplasticity in the MS brains. For example, using ICA

or a voxel based analysis. However, more compelling differences would ideally show up over a

variety of methods, i.e. invariant across different analysis techniques. Another analysis technique

we could use is dynamic causal modelling (DCM) [49]. This method infers directed adjacency

matrices, i.e. what region causally influences another region, and is suited to a small number of

regions. This would be ideal for the basal ganglia, being comprised of only six regions, and could

inform on any causal differences in the basal ganglia between the brains of MS and HC.

The work carried out in Chapter 5 was in investigating the application of a Kalman filter

to dynamic functional connectivity (FC). We demonstrate that our filter can track the broad

changes of FC over time, acting qualitatively as a smoother. The filter was only applied to one

case example, generalizing to others could result in unpredictable behaviours. Some details of

the filter still need exploring, such as how the starting parameters (mean and variance) effect it.

Additionally, the Kalman filter demonstrated here effectively neglected any underlying model.

With the addition of this the filter could be used to track and estimate live FC between regions

of the brain. Further work is required on how the filter could be meaningfully implemented in

studies.
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