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ABSTRACT

T
his dissertation is about in-situ object recognition, meaning that specific objects
(instances) can be learned from a few training examples that depict them within

the place where such objects are commonly present or being used. Learning to recognize
objects in-situ opposes to conventional approaches in deep learning of relying on large-
scale class-level datasets of grouped instances, utilizing complex image acquisition setups
or utilizing synthetic data.

We aim for a scalable, robust, and real-time system based on Convolutional Neural
Networks (CNNs) that learn discriminative features from images depicting objects from
an egocentric point of view. We are particularly interested in learning objects from a
few examples taken directly by an agent or by a demonstrator, and where the CNN
does not need a finetuning process for learning additional instances, motivated by the
computational limitations in most autonomous platforms. We hope our approach will be
helpful for robotic tasks such as object manipulation, human-robot interaction, semantic
mapping, scene understanding, autonomous navigation, and contribute to FARSCOPE’s
vision on advancing the state-of-the-art of autonomy in robots and intelligent systems.
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1
INTRODUCTION

"Everything must be made as

simple as possible. But not

simpler"

Albert Einstein

T
his thesis develops computer vision algorithms that learn to recognize specific

objects (instances) from a small number of training examples collected and

deployed in-situ. That is, from observations from where the objects currently are, perhaps

after first encountering them, the algorithms immediately are able to recognize them

again. We refer to this methodology as in-situ learning, and it is an alternative to

the conventional methodology of using complex mechanisms, such as rotating tables or

synthetic images, that build a large-scale class-level dataset for training Convolutional

Neural Networks (CNNs). We are particularly interested in learning objects from few

examples taken directly by an agent or by a demonstrator, and where the CNN does not

need a finetuning process for learning additional objects, motivated by the computational

and energy limitations in most autonomous platforms. We depict this challenging problem

in Figure 1.1.

The motivation of this thesis is two-fold: (1) As robots are starting to be used for

solving problems in unstructured and dynamic environments, there is a need for them in

having a high level of autonomy, this is, without requiring human intervention when

they are performing their duties and when they face a novel problem to solve at hand. (2)
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Figure 1.1: An agent learning to recognize a specific object from a few data collected
in-situ, with scalable, robust, real-time performance, and onboard learning capabilities.
Learning is performed at time T and deployed within seconds (T +ǫ). The model should
generalize to an unseen condition such as changing illumination, clutter, and occlusions
subsequently encountered at (T +N). Image best viewed in the digital version.

Despite the progress in object recognition by the introduction of CNNs, designing models

that can learn generalizable representations from a few examples is still a challenge far

from being solved, and that has less attention in the computer vision community than

approaches relying on large-scale datasets.

Related to the first point, our vision to increase the level of autonomy in robots is by

giving them the capability of learning to recognize objects without the need of recurring

to complex image-acquisition systems or gathering thousands of examples from the web.

Instead, they utilize a few training examples, i.e., low hundreds of training examples per

instance, as contained in a few seconds of video data that an agent might collect when

learning a new instance. We illustrate the contrast in the images collected between these

approaches in Figure 1.2. On the in-situ scenario, an agent can record a short video clip

by manipulating the object (like in the CORe50 dataset, Figure 1.2(b)). Noticeably, the

background shows undesirable patterns such as curtains, wallpapers, bushes, etc. On

the other hand, for the T-LESS dataset (Figure 1.2(a)), the illumination and background

conditions are controlled, and a systematic acquisition process was performed, as opposed

to the patternless image in CORe50. Noticeably, we aim to learning specific objects from

a few training examples, and not learning class-level concepts using a few training

examples from a single instance. For example, we do not aim to have a model that learns

the concept of a car, by watching a single example of it. Additionally, our problem is

less restrictive than the few-shot learning problem, where only a k number of samples

2



(a) T-LESS

(b) CORe50

Figure 1.2: Examples of data acquisition methods in public object recognition datasets, a
controlled-environment as in T-LESS (a) and a more in-situ-like conditions as in Core50
(b).

(typically zero, one, or five) are used to train a model. We consider this more challenging

scenario as a future direction of our work.

Related to the second motivational aspect, it is the interest in this thesis to get an

understanding of the current limitations of CNNs for allowing them to learn to recognize

objects in the way we, humans, do: being able to generalize from few data, with very

little supervision and with the capability of learning new concepts efficiently, as well as

forgetting irrelevant events, among other attributes (Margolis, 2015; Zenke et al., 2017;

Lake et al., 2017).
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1.1 Problem Description

We now make a description of the challenges we aim to solve, which involves the learning

of generalizable visual representations from a few data, as shown in Figure 1.1. We

identify three core challenges in the in-situ learning approach:

1. Robustness: During deployment, the learner has to deal with commonly encoun-

tered perturbations such as changes in perspective, illumination, ambiguous view-

points, noise, and other nuisances.

2. Domain Generalization: The learner has to produce generalizable features from a

few data that depicts objects within a specific environment.

3. On-the-fly learning: The learner has to accommodate new instances efficiently

without forgetting the previously learned ones.

1.2 Approach

We aim for a generic instance-level object recognition approach, which does not rely

on any assumptions about object properties such as texture, color, or geometry. The

algorithms will use images from video data, depicting objects from an egocentric per-

spective at both training and deployment. For training, the images depict a single object

that can be used for extracting, learning, and localizing relevant features. As for the

stream during inference, it might depict clutter, occlusion, unseen viewpoints, and other

circumstances not showing during training. Since our algorithms are meant to be used on

robots and other mobile platforms, it is desired real-time rates during deployment (e.g.,

in the magnitude of dozens of frames per second), and without requiring an enormous

amount of computational resources such as multiple Graphical Processor Units (GPUs).

Our strategy consists of designing a discriminative model that can associate images

depicting the same objects, even when they are from different environments. This is

achieved by producing features which are close to each other for the same instance and

separated otherwise. To deal with nuisances and ambiguous viewpoints, we propose the

use of temporal filters that enforce the temporal coherence that exists in video data,

which prevents sudden changes in the predictions between neighboring video frames.
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1.3 Contributions

The contributions of this thesis are as follows:

• In Chapter 3, we propose the use of temporal filters for increasing the robustness

of CNNs against commonly encountered nuisances. The filters consist of a simple

sum rule and a machine learning approach that uses bidirectional LSTMs.

• In Chapter 4, we propose a multi-task CNN that classifies and reconstructs images

simultaneously, the incorporation of the auxiliary image reconstruction task aims

to achieve domain generalization for object recognition.

• In Chapter 5, we propose a discriminative CNN that classifies images and enforces

discriminability on the learned features. Our discriminative model allows the

learning of additional objects on-the-fly, by replacing the classification layer by the

nearest neighbors search in the embeddings space.

• In Chapter 6, we propose utilizing the nearest centroids algorithm to accelerate the

inference time, and to reduce the storage requirements. Additionally, we propose

a novel regularization term to enforce discriminability between features and cen-

troids. Furthermore, we utilize the distance between embeddings from neighboring

video frames, to dynamically decide when to apply the sum-rule filter from Chapter

3. Finally, we propose a dataset for a systematic benchmarking of in-situ learning

approaches.

1.4 Publications

A subset of the research work presented within this thesis has previously been published

in the following peer-reviewed publications:

• Lagunes Fortiz, M., Damen, D., & Mayol-Cuevas, W. (2018). Instance-level Object

Recognition Using Deep Temporal Coherence. In Advances in Visual Computing:

13th International Symposium, ISVC 2018, Las Vegas, NV, USA, November 19 – 21,

2018, Proceedings (pp. 274-285). (Lecture Notes in Computer Science; Vol. 11241).

Springer, Cham. (Chapter 4).

• Lagunes Fortiz, M., Damen, D., & Mayol-Cuevas, W. (2019). Learning Discrimina-

tive Embeddings for Object Recognition on-the-fly. IEEE International Conference
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on Robotics and Automation (ICRA) 2019, Montreal, Canada, May 19 – 21, 2019.

(Chapter 5).

1.5 Thesis Outline

The outline of the thesis is as follows:

In Chapter 2, we provide a literature review on the topics of CNNs for object recog-

nition, object detection, domain adaptation, domain generalization, few-shot learning,

and incremental learning, which present similarities to the core challenges in the in-

situ learning problem. These core challenges include having a model able to learn new

instances, without finetuning the model, from a few sequential data, and generalizing

to unseen environments. We discuss the metric learning approach (a.k.a. similarity

learning) with more detail, due to its goal of learning discriminative features. We also

discuss a related work for learning new objects without the need for retraining the model,

and its methodology to evaluate the recognition performance of a model learning objects

in such a regime.

In Chapter 3, we propose an approach to multi-view instance-level object recognition

that combines convolutional and recurrent neural networks for exploiting the temporal

coherence present in video data. We first evaluate sampling methodologies for using train-

ing data efficiently. We then present two temporal filters for exploiting the assumption

that on video data the same object remains present over a number of consecutive frames.

The temporal filters are a cumulative moving average and a machine learning approach

using bidirectional long-short term memories. We evaluated these temporal filters on

T-LESS and CORe50. We show how this way of learning can be especially useful when a

few data points are used for training. Furthermore, using training data efficiently can

accelerate the training process, which is useful for agents exploring the world in front

of them. With our temporal filters, we achieve a precision of 99.13% for CORe50 and a

mean average precision of 56.23% in T-LESS.

In Chapter 4, we address the problem of learning to recognize objects using example

data from a specific environment and generalize to unseen ones, which is a core aspect in

the learning scenario that we are after. The features learned by our model are discrimina-

tive between identities and aim to be indistinguishable between domains. Our approach

proposes a supervised residual autoencoder (S-RAE) that combines image classification

and reconstruction. We empirically evaluate our approach on eight object recognition

datasets used for robotics and computer vision recognition tasks, and achieving an aver-

6



1.5. THESIS OUTLINE

age 5.23% higher performance compared with the closest baseline and over 20% higher

performance compared with a state-of-the-art adversarial network approach. Our pro-

posed S-RAE however, assumes the availability of computational resources for learning

new instances, which can be a significant limitation for current autonomous platforms.

Therefore in the following chapter, we address the problem of learning generalizable

feature of unseen objects, that can be used to learn to recognize new instances efficiently.

In Chapter 5, we address the problem of learning to recognize new objects without

the need for retraining the backbone CNN. We propose a novel CNN architecture that

learns to generate discriminative and separable features of an object’s viewpoints by

using a supervised triplet loss. To estimate an object’s identity, we utilize a lightweight

classifier in the features embedding space. The inference time in our framework lies

in the order of milliseconds and can accommodate new instances easily. Our approach

is easier to implement than current mining techniques, and the trained model can be

applied to unseen objects. We evaluate our approach on four object recognition datasets

used for robotics and computer vision applications: Amazon Robotics Challenge 2017 by

MIT-Princeton, T-LESS, ToyBox, and CORe50 datasets. Our supervised triplets network,

had a comparable performance to the finetuned models across all datasets, it achieves

an average 4% higher performance for known objects, 5% for novel ones and 7% higher

for the general case of combined known and novel objects, compared with the closest

baseline.

In Chapter 6, we build on the findings from Chapters 3 and 5, for proposing a

model that not only generates discriminative features but also considers the temporal

consistency that must exist between neighboring video frames. We first replace the

nearest neighbors search in the embeddings space for the nearest centroids algorithm

for improving the inference time and scalability. We then propose a regularization term

for reducing the distance between centroids and features from the same objects, and

increase the separation between centroids and features from different objects. We then

propose a modified version of the cumulative moving average filter, which depending on

the distance between neighboring video frame features, it applies a weighted average

that is particularly useful to quickly react to new objects on the scene. Overall, for the

case of known objects, our model achieved an average 2.01% higher performance than the

closest baseline, the S-Triplet network from Chapter 5. For the case of novel objects, it

achieved a slight increase of 0.61%, an average of 3.21% higher recognition performance

for the general case.

In Chapter 7, we conclude by discussing open challenges for the in-situ learning setup

7
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and how this methodology has the potential to be applied to the related problems of

object localization and segmentation.
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2
LITERATURE REVIEW

2.1 Related Work

This chapter presents a comprehensive literature review on the topics of object recogni-

tion, on-line learning, domain generalization, and few-shot learning, which are related

to the idea of in-situ learning. We provide a short critical discussion at the end of each

topic and its application to in-situ learning.

Handcrafted Feature methods for Object Recognition

Instance-level object recognition, i.e., learning specific objects as opposed to object classes,

was broadly studied during the past decades through the process of extracting and

matching visual descriptors as in (Lowe, 2004; Wang et al., 2005; Bay et al., 2008;

Damen et al., 2012; Hodaň et al., 2015). While most handcrafted approaches offer the

benefit of real-time learning and inference, the design of a generic set of features and

descriptors that can be used to any object is a difficult task (Ji et al., 2013), making them

a challenging alternative for the in-situ learning of generic objects. We refer to generic

object to indicate we do not make any assumption about the visual attributes of the

objects, this is, if they are texture-less, transparent, with salient attributes, deformable

geometry, etc.

On the other hand, machine learning approaches, such as the ones using convolution

neural networks (Simonyan and Zisserman, 2015; He et al., 2016; Szegedy et al., 2016a),

9
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offer the benefit of end-to-end learning of features directly from data, at expenses of

typically requiring high amounts of it.

While there are approaches that combine hand-crafted features with CNNs (Lan et al.,

2016; Kashif et al., 2016; Nanni et al., 2017), we prefer the end-to-end nature of deep

learning models, considering their relatively straightforward implementation in robotic

platforms, as oppose to a combination of hand-crafted with machine learning approaches

which might require a more cumbersome integration. Furthermore, CNNs can be used to

learn class-concepts or instance-concepts by providing an adequate label to be used by the

cross-entropy loss. Therefore, the rest of the literature review, as well as the remaining

chapters, focuses on the use of deep learning models for learning features that are used for

recognizing generic objects.

CNNs for Object Recognition

Convolutional neural networks (a.k.a. ConvNets, CNNs, DNNs) domain as the current

approach for object recognition and detection (Huang et al., 2017b). CNNs made their

reappearance in 2012 when AlexNet (Krizhevsky et al., 2012) won the ImageNet large

scale visual recognition competition (ILSVRC-2012) by a significant margin. AlexNet

architecture builds on LeNet, proposing ReLUs for learning non-linearities, data aug-

mentation with dropout for avoiding over-fitting and trained on consumer GPUs. The

following year, ZFNet (Zeiler and Fergus, 2014) won ILSVRC, its architechture it is based

on AlexNet but proposing smaller kernel size, going from 11×11 to 7×7. At same year

VGG (Simonyan and Zisserman, 2015) was presented, proposing even a smaller 3×3

kernel with stride and padding 1, followed by 2×2 max pooling. Small 3×3 kernel became

the standard later on. The winner of ILSVRC 2014 was GoogLeNet (a.k.a. Inception Net)

(Szegedy et al., 2015a), proposing multiple parallel convolutions and stacking layers with

different kernel sizes, named inception modules for constructing the feature maps. On

2016, ResNet (He et al., 2016) was the winner model for ILSVRC, proposing residual

connections between deep layers to alleviate the gradient vanishing problem on deeper

models, proposing a CNN with 200 stacked layers. DenseNet (Huang et al., 2017a) and

(Xie et al., 2017) are extensions of the skipping-connection mechanism by connecting

blocks of layers instead of just individual layers. GoogLeNet has updated accordingly to

this skipping connection and batch normalization (Ioffe and Szegedy, 2015) which has

proved to be useful to the optimization occurring underneath (Szegedy et al., 2016b),

(Szegedy et al., 2016a). Additionally, Fully Convolutional Networks (FCN) (Shelhamer

et al., 2015) and All Convolutional Net (Springenberg et al., 2015) propose using only
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Figure 2.1: Comparison of model complexity (measured in FLOPS) of state-of-the-art

architectures for the ImageNet dataset. Image from (Bianco et al., 2018).

convolutional layers and remove the costly fully connected ones, which now is done on

most recent models.

Consistently, deeper architectures lead to higher precision on large-scale web-gathered

datasets like ImageNet (Russakovsky et al., 2015) and PASCAL (Everingham et al.,

2010), as shown in Figure 2.1, but it was unclear if such deeper architectures were

essential for less complex recognition tasks such objects in CIFAR-10 dataset, or a few

objects needed to be learned in-situ. Pioneering work on this matter is (Ba and Caruana,

2014), within which they show that a shallow architecture (student) can mimic complex

functions learned by deeper models (teacher) on the CIFAR-10 and TIMIT datasets (an
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audio dataset). However, (Urban et al., 2017) empirically demonstrates that distillation

(Hinton et al., 2015) only works if the shallow model contains a sufficient number of con-

volutional layers to learn functions comparable to deeper models and also demonstrating

that CNNs do need to be both deep and convolutional for solving complex recognition

tasks. These results are consistent with similar experiments performed by (Chatfield

et al., 2014). Another empirical studies related to CNNs architecture are (Jarrett et al.,

2009) and (Poggio et al., 2017), which focuses on the usefulness of the non-linearities

(such as ReLUs) applied after the filter banks, as well as the effect of stacking layer to

form deeper architectures. Results showed that such non-linearities and performing local

contrast normalization are the most important ingredients for achieving competitive

accuracy on object recognition benchmarks and that deeper architectures are capable of

achieving a higher generalization than their shallow counterparts.

Designing architectures is a process with a significant amount of engineering, e.g.,

deciding kernels sizes, layers to stack, depth of convolutional maps, etc. Approaches such

as NAS-Net (Zoph et al., 2018), Slim-Net (Liu et al., 2017) and Efficient-Net (Tan and

Le, 2019) uses an agent for automating such task and learning a sufficient architecture

for the dataset of interest, aiming for a more efficient model’s capacity. Nevertheless,

the task of learning an optimal architecture for a given task is still an open problem

(Wistuba et al., 2019). Interestingly, how convolutional filters are connected seems to

be a non-relevant aspect, since deep architectures with random connections are capable

of achieving state-of-the-art recognition performance, as the ones propose in (Xie et al.,

2019).

The first take on CNNs is that, although they generally achieve a higher recognition

performance than hand-crafted features, for large-scale datasets, the complexity on their

architectures and the learning process by gradient descend, make them a challenging

alternative for autonomous agents that need to learn and react as soon as possible with

constraint resources on-board.

CNNs for Object Detection

The use of CNNs for object detection builds on the aforementioned object recognition

models used for learning features maps. For detection, additional layers are added for

predicting the location, scale, and class of bounding boxes, or masks. While in this thesis,

we focus on object recognition, the following literature review for object detection helps

to see an immediate future direction of the propose solutions in Chapters 5 and 6.

12
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(a) SSD (b) Faster-RCNN

(c) R-FCN

Figure 2.2: Object detection approaches, consisting of CNNs with shared (a) and sepa-
rated tasks for bounding boxes regression and image classification, (b) and (c). Image
from (Huang et al., 2017b).

Region-based CNN (R-CNN) (Girshick et al., 2014) is a first approach that combines

a heuristic method for producing bounding boxes using selective search. These bounding

boxes are cropped and warp to a fixed-size image and feed to AlexNet for extracting the

features and classify its content. Overfeat (Sermanet et al., 2015) proposes an agnostic-

class box proposal by making use of the feature maps from AlexNet and applying an

exhaustive-pooling approach for achieving better alignment between boxes and objects.

A variant of this approach is (Erhan et al., 2014), which proposes a saliency-inspired

neural network model for producing agnostic-class bounding boxes.

Spatial Pyramid Pooling Net (SPPNet) (He et al., 2015) introduces the idea of comput-

ing feature maps only once (rather than feeding each RGB image candidates to a CNN)

and proposes an adaptive-size pooling layer, making this approach faster by two order of

magnitude compared to R-CNN, but still not fast enough for real-time applications.

Fast R-CNN (Girshick, 2015) adopts the core ideas from SPPNet about computing the

feature maps only once and having a Spatial pyramid layer of fixed size named region of

interest pooling (RoIPooling). You Only Look Once (YOLO) (Redmon et al., 2016) uses

the idea from Multibox (Szegedy et al., 2015b) for region proposals for bounding boxes,

demonstrating that CNNs performs better than heuristic methods for this task and

producing both region proposals and object classification in a one-step architecture. Its

model is formed by three output layers: a softmax layer for classification, a linear layer
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for regression the bounding boxes and a sigmoid layer for region proposals confidence.

Faster R-CNN (Ren et al., 2015) replaces the heuristic region proposal by Region

Proposal Network (RPN) which is a small three-layers CNN and combining losses for box

regression, box confidence scoring and object classification into one general loss function.

SSD (Liu et al., 2016a) proposes a one-step (also referred as a one-shot) detection model

such as YOLO, but considering feature layers with different scales and aspect ratios,

outperforming YOLO in accuracy and speed.

Region-based fully convolutional networks (R-FCN), borrows the region proposal

network from fast/faster R-CNN, but instead of cropping features from the same layer

where regions proposals are predicted, crops are taken from the last layer, and thus

sharing almost all the computations on the entered image.

YOLO was adapted to YOLO2 by following the approach of maximizing the shared

computations on the image and keeping the one-shot architecture(Redmon and Farhadi,

2016). A step beyond bounding boxes are: Mask R-CNN (He et al., 2017), which builds

on faster R-CNN for achieving pixel-wise segmentation by adding a parallel branch for

predicting object-masks and SSD approaches (Poirson et al., 2016), (Kehl et al., 2017),

(Mousavian et al., 2017) for 3D pose estimation.

Whether the bounding boxes are produced in a one or two-steps architecture, a trade-

off between accuracy, running time, and memory requirements is present as empirically

studied in (Huang et al., 2017b). While two-step approaches offer the highest accuracy,

they also require more memory and computational time. Focal loss (Lin et al., 2018) is a

first work for reducing the gap in performance between these approaches by proposing

an objective function focused on the hard examples and reducing the negative effect from

class imbalance. The selection of the image classification CNNs is part of this trade-off.

Noticeable, sharing computations between the localization and recognition tasks had

improved both accuracy and running times, but a large amount of training data is still

required for achieving good performance. The lack of training data is typically addressed

either by using large-scale datasets (Zeng et al., 2017) or data augmentation as in (Kehl

et al., 2017).

Object detection is a closely related task to our problem that deals with the localization

of objects on the image. The end-to-end nature of CNNs allows models that can perform

both object detection and object recognition with the same CNN. Furthermore, although

object detection is out of the scope in this thesis, it is possible to assume that our following

contributions can be integrated into an end-to-end in-situ object detection or segmentation

pipelines.
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CNNs for Object Recognition From Video Data

Since both training and testing data come from video data in the in-situ setup, we now

review the related work on object recognition from video data.

Due to the success of CNNs for learning visual representations from static images,

applied them to video data was a natural progression (Karpathy et al., 2014). Using 3D

Convolutions such in (Tran et al., 2014) was a pioneer approach for object classification

from video data, by using a 3D convolutional kernel over video frames on the Intel’s

egocentric recognition of handled objects (Ren and Philipose, 2009). The use of 3D

convolutions on video data became useful for video classification and action recognition

such in (Hara et al., 2017) and (Wang et al., 2018), and for crowded prediction flow like in

(Zhang et al., 2017b), with the limitations of higher memory requirements for processing

longer sequences and the need of large-scale datasets for avoid overfitting.

Fusion methods emerged for the tasks of action recognition and video classification.

Initially, raw-RGB frames were fused across the video sequence (fused in the form of

averaging, concatenation, convolutions, pooling, correlation, or point-wise multiplication

(Karpathy et al., 2014)). Since motion plays an important role for video and action

recognition, a two-stream approach is proposed in (Simonyan and Zisserman, 2014a).

In two-stream, an RGB and optical-flow streams are feed into similar or even sibling

networks, and they are fused at some point in the network into one final tensor as in

(Simonyan and Zisserman, 2014b) and (Feichtenhofer et al., 2017a).

An extension of 3D convolutions are CNNs with recurrent connections, such T-ResNet

(Feichtenhofer et al., 2017b) and recurrent ResNet (Kemaev et al., 2018), which achieve

a similar performance than two-stream approaches but only with RGB frames. While

recurrent ResNet shares the weights among all frames, keeping the network size small,

rather than incorporating temporal information by extending the convolutions over

temporal windows as in T-ResNet, they both suffer from high memory requirements for

processing long sequences. Nevertheless, it has been reported that recurrent connections

and 3D convolutions are able of capturing motion information occurring within the video

sequence, and thus they became more popular for video and action classification rather

than in object classification.

To address the problem of high memory requirements for long video sequence for

video classification, (Ng et al., 2015) proposes combining 2D CNNs for extracting feature

maps and Long-Short Term Memories (LSTMs) for processing the sequential information.

Since the variables are shared across the hidden states on LSTMs, this approach can

handle 120 frames during training as opposed to 30 frames on the 3D CNN approaches.
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To consider the motion information, they employ raw frames and optical flow as in

two-stream approaches. Since CNN-LSTM models can work with long sequences as input

and variable size sequences as output, they became useful for video description (Donahue

et al., 2017), 6-D camera re-localization (Clark et al., 2017) and object tracking (Tripathi

et al., 2016), (Ning et al., 2017). Variations of this approach are VideoLSTM which builds

on the CNN-LSTM architecture but proposing an attentional model based on motion

within the LSTM’s hidden states (Li et al., 2016) and Convolutional LSTMs (ConvLSTM)

which replaces the fully connections on the hidden states for 2D Convolutions (Shi

et al., 2015) and aiming to capture more temporal relations across sequences. While the

combination of CNNs with LSTM offer a solutions for processing long video sequences,

how to efficient jointly training them is still an open problem (Donahue et al., 2017) and

CNNs with additional LSTMs are commonly trained on two separated stages.

Top-down feedback and lateral connections as in CortexNet (Canziani and Culurciello,

2017) is another approach, where a pair of Convolutional and Decovolutional towers

are interconnected, rather than considering multiple frames at the time like in 3D

ConveNets, but processing only current and previous frames. Finally, learning features

from moving objects in a semi-supervised manner as in (Pathak et al., 2017) is another

alternative for exploiting video information and learn visual representations.

Including temporal information into a spatial visual model aids to increase the

robustness against nuisances. However, state-of-the-art approaches relies on cumbersome

3D convolutions and recurrent connections that highly increases the redundancy in CNNs,

making them not suitable for in-situ learning.

CNNs Limitations

Regardless of their biological inspiration and even surpassing Human-level performance

on visual recognition challenges such as ILSVR, CNNs are still far from human-level

learning capabilities (Lake et al., 2017). Arguably, the most significant limitation is that

CNNs does not learn the semantics of training data but only an input-to-label mapping

(Hosseini and Poovendran, 2017; Zhang et al., 2017a; Zhou et al., 2016). This input-

to-label mapping can be fairly discontinuous to a significant extent and imperceptible

perturbation can lead to misclassification (Szegedy et al., 2013; Fawzi et al., 2016)

or even one-pixel perceptible perturbations can cause the same effect (Su et al., 2017).

Capsule Networks (Sabour et al., 2017), Network In Network (Lin et al., 2013) and Graph

CNN (Bruna et al., 2014; Schlichtkrull et al., 2018), are approaches for overcoming this

limitation by using a sub-network (such a Multilayer Perceptron, a Capsule or a Graph)
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as an alternative to purely convolutional kernels and aiming to learn from data in a

more meaningful way.

Another aspect is their limited invariance to translation, mainly achieved by the

pooling operations, and the even smaller invariance to rotation. Harmonic Networks

(Worrall et al., 2017) and Rotation-invariant CNN (RICNN) (Cheng et al., 2016) are

first approaches for addressing this limitation. Harmonic Networks replaces regular

convolutional filters with circular harmonics, and RICNN proposes a regularization

constraint on the objective function plus data augmentation. Based in RICNN, a common

practice is just performing data augmentation in the form of random rotations on the

training examples at expenses of more epochs required for convergence, but with the

benefit of using the CNN filters (often from pre-trained models) without any modification.

Computational resources are another significant limitation, especially for robotic

and mobile platforms without dedicated GPUs. Mobilenets (Howard et al., 2017), a

fully Convolutional architecture with depth-wise separable convolutions and XNOR-Net

(Rastegari et al., 2017), a CNN with binary weights (as opposed to floating-point values),

are two models able to be deployed on devices with limited computational resources.

Nevertheless, they still need to be trained on dedicated (and more powerful) platforms.

Finally, the amount of labeled data for avoiding overfitting is another critical limita-

tion for deep architectures. Transfer learning as in Learning without Forgetting (LwF)

(Li and Hoiem, 2016) and the immensely popular approach of finetuning (Donahue

et al., 2014; Yosinski et al., 2014; Pasquale et al., 2016a; Wagner et al., 2013; Furnari

et al., 2017) and continuous finetuning (Käding et al., 2016) are current alternatives for

learning from small datasets.

While recent work aims to design lightweight and more efficient CNNs, learning the

parameters of neural nets with gradient descent implies that learning onboard will be

challenging for autonomous platforms, as they need to learn and react within their envi-

ronment quickly. Furthermore, current convolutional approaches struggle with changes

in scale, occlusions, clutter, training from few-data, etc. Certainly, there is still a need for

a more suitable way of learning generalizable features to be used by autonomous agents.

Recognition of Novel Objects on-the-fly

(Milan et al., 2017) and (Zeng et al., 2018) were the first approaches to deal with the

challenge of learning new objects without finetuning the model, motivated by the Amazon

Robotics Challenge 2017 (ARC-2017). During that competition, teams were asked to

learn a set of 20 objects, provided only 45 minutes before the start of trials.
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While most teams performed an improvised data collection and finetunned their deep

learning models, (Milan et al., 2017) proposes a model that learns to generate generic

masks to segment the objects in a box and a shelf. Once each object has been separated

from the others, a metric learning approach is used to compare the similarity between

a set of training images provided by Amazon which depicts the objects and the images

collected by the Cartman robot.

Similarly, the solution proposed by the MIT-Princeton team (Zeng et al., 2018),

consists of a cross-domain image matching framework for recognizing grasped objects

by matching them to product images, which uses a CNN architecture that learns novel

objects without additional re-training. Their model consists of a two-stream CNN where

one stream computes feature for product images (the images provided by Amazon), while

the other stream computes feature vectors for the images captured by their robot. They

optimize both streams so that features are more similar for images of the same object and

dissimilar otherwise. During testing, product images of both known and novel objects are

mapped onto a common feature space, where the nearest neighbors search takes places

for associating embeddings from unseen objects. Additional details of these works are

presented in the following section due to their closeness to our problem of learning novel

object without finetuning the CNN.

Authors in (Zeng et al., 2018), offers a first approach to learning objects on-the-fly, by

utilizing a discriminative model to learn features, and replacing the classification layer

by the nearest neighbors search in the embeedings space. This is a core a idea that we

refine in Chapters 5 and 6.

Domain Adaptation and Generalization

The problem of the differing train and test data distributions is present in the in-situ

learning that we are after since the environment in which the training data was collected,

might be different from the environment in which the given object is desired to be re-

detected, as depicted in Figure 2.3.

A first approach that addresses this problem is domain adaptation. There are two

variants within this approach: Unsupervised and semi-supervised domain adaptation. In

the first variant, no target domain labels are provided during training, and only source

domain labels are available. In the semi-supervised case, the model has access to domain

labels and a few target domain labels (Chopra et al., 2013). In both cases, however, the

model has access to data points from both source and target domains, a requirement

that might be too expensive to obtain for robotics and autonomous systems applications,
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(a) Dataset depicting differing training
and testing conditions.

(b) Features Space

Figure 2.3: Domain shift problem, resulted from training and testing images with
deferring distributions. The goal in this setup is to learn features which are invariant to
the domains. Image from (Saenko et al., 2010).

which motivates our work on learning from a single source domain only. Within the

aforementioned variants generative adversarial networks (GANs) (Liu et al., 2018b;

Ganin et al., 2016; Long et al., 2018; Zhang et al., 2018; Duan et al., 2009; Pinheiro, 2018;

Wulfmeier et al., 2017) posits as the state-of-the-art approaches for learning disentangled

and transferable representations. The first limitation of these approaches is that require

at least two training domains, to learn disentangled representations, which might not be

feasible in the in-situ learning set up, where only training data from a single environment

is available.

In domain generalization, there is no availability of target domains, but multiple

source domains might be available (Li et al., 2018a). Within this approach lies the case

of learning from a single source domain, which is the most related case to the in-situ

learning that we are after. In this domain generalization variant, metric learning posits

as a popular strategy for learning discriminative and generalizable features as in (Schroff

et al., 2015; Wen et al., 2016; He et al., 2018; Wang et al., 2018; Li et al., 2018b).

There is a need for learning features invariant to domains, which is a core aspect for in-

situ learning, most approaches assume that only known objects will be seen at deployment.

Making re-training necessary to learn additional objects, and therefore challenging for

in-situ learning.

Few-shot Learning

Few-shot learning is the task in which a model must be adapted to accommodate new

objects not seen in training, given only a few examples of each of these novel classes,

an extreme case of this set up is one-shot learning where a single example us used for

learning each novel class. Few-shot is related to in-situ learning since the agent (either a
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Figure 2.4: Approach for few-shot learning that consists of a trainable module that can
select the closest class to a query image, building on the concept of image similarity.
Image from (Sung et al., 2018).

human or an autonomous machine), might collect only a limited amount of training data,

as oppose to collecting thousands of examples about the object desired to be learned.

The two main considerations in this set-up are: (a) the learning of the novel categories

needs to be fast and (b) to not sacrifice any recognition accuracy on the initial categories

that the CNN was initially trained on (Gidaris and Komodakis, 2018). The availability

of only one or very few examples challenges the standard finetuning practice in deep

learning (Pasquale et al., 2016b), while data augmentation and regularization techniques

can alleviate over-fitting in such a limited-data regime, certainly they do not solve it

(Pahde et al., 2018). Regarding finetuning the model, is still a slow procedure, requiring

many weight updates using stochastic gradient descent, mostly due to the parametric

aspect of the model, in which training examples need to be slowly learned by the model

into its parameters.

A straightforward strategy for dealing with the lack of data from the new objects is to

use a generative model to generate either synthetic examples (Bucher et al., 2017; Zhu

et al., 2018) or synthetic features (Mishra et al., 2018; Schwartz et al., 2018; Xian et al.,

2018), and then finetune the model by adding the synthetic data generated. While these

approaches achieve promising results, the required finetuning step is a limitation in our

in-situ learning problem.

Following the idea of comparing features from a query image against few-shot sam-
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ples, in prototypical networks (Snell et al., 2017), authors proposes the idea that there

exists an embedding (a.k.a. prototype, examplar) in which points cluster around it for

each class, so the comparison step can be made more efficiently. To achieve this clus-

tering, authors propose a model that learns a mapping of the input into an embedding

space using a neural network and take a class’s prototype to be the mean of its support

set in the embedding space. Then, classification is performed for an embedded query

point by simply finding the nearest class prototype. In (Ren et al., 2018), authors extend

prototypical networks for semi-supervised learning where all unlabeled examples are

assumed to belong to the same set of classes as the labeled examples of the episode, as

well as the more challenging situation where examples from other distractor classes are

also provided.

Matching networks (Vinyals et al., 2016) is another example of the idea of comparing

features by proposing an attention mechanism over a learned embedding of the labeled

set of examples (a.k.a. support set) to predict classes for the query point. Matching

networks can be interpreted as a weighted nearest-neighbor classifier applied within the

features space by a LSTM.

Another successful strategy is by utilizing meta-learning, where a CNN is trained

to recognize a specific set of categories on a large-scale labeled dataset (e.g.,ImageNet),

which provides a fairly generic bottom and middle layer units and then finetuning the

top layers and including low-density separators (Wang and Hebert, 2016) or by utilizing

a relational module that compares query images against few-shot labeled sample images

(Sung et al., 2018), as illustrated in Figure 2.4. In both cases, the meta-learner need a

significant corpus of data to achieve generalization. The metric learning approaches in

Chapters 5 and 6 have the same limitation for learning generalizable representations.

The metric learning approaches in this thesis build on the same idea of comparing

the features from a query image against a set of few-shot labeled examples. However, we

propose utilizing a much simpler comparison mechanism, being Nearest Neighbors, as

opposed to a more sophisticated trainable approach that might require a large corpus of

data for achieving generalizability.

Few-shot learning approaches aim to learn class concepts from a few K-examples,

as it might be the case in some extreme cases of in-situ learning of objects. Although

state-of-the-art approaches assume the availability of other data modalities, such as text

description, to assist with the learning from a few examples. However, approaches that

use similarity learning, such as SimNet, seem a suitable strategy for in-situ learning,

as potentially can be applied to unseen objects by replacing the classification layer by a
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Figure 2.5: Learning without forgetting approach, consisting of model that can be re-
trained for new classes without compromising the previously learned ones. Image from
(Li and Hoiem, 2016).

similarity search in the features space. Furthermore, we do not consider in-situ learning

with the case of very few training examples per object (usually one, or five, in this setup),

as autonomous agents and demonstrator can easily collect hundreds of examples from an

object, and leave this challenging scenario as a future research direction.

Incremental Learning

Also known as continual and lifelong learning, incremental learning has to do with

exploiting learned information to rapidly store new memories without forgetting old

ones, attribute that it is present in the in-situ learning in this thesis.

As mentioned in the few-shot learning section, in the flied of neural networks, the

most common way of learning new objects is to finetune the network. However, as

features relevant to the new task are learned through modification of the network’s

weights, which are relevant for prior tasks might be altered, leading to deterioration in

performance referred to as catastrophic forgetting (French, 1999), Figure 2.5. Without

access to older training data due to the lack of storage space, data rights, or deployed
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nature of the agent, which are all very realistic constraints, naive finetuning is not a

viable option for incremental learning.

One the other hand, feature extraction, where the model learned for the old task is

re-used to extract features from the new data without adapting the model parameters, is

neither a desirable strategy since the model tends to be highly conservative for the old

objects and sub-optimal for the new ones (Triki Rannen et al., 2017).

Initial attempts to alleviate catastrophic forgetting relied on an episodic memory

system that stores past data, like in (Rebuffi et al., 2017; Lopez-Paz and Ranzato, 2017).

In particular, recorded examples are regularly replayed with real samples drawn from

the new objects, and the network parameters are jointly optimized. A major drawback

of the memory-based approach is that it requires large working memory to store and

replay past inputs. Moreover, such data storage and replay may not be viable in some

real-world situations (Farquhar and Gal, 2018).

A similar idea, but without requiring the actual original dataset, is the generative

model named phantom sampling (Venkatesan et al., 2017), which generates hallucinated

samples for re-training the model as if the original training set was available and

supervision from the initialized network itself using a softmax loss. A similar approach

is the performed by (Shin et al., 2017), where an adversarial network (GAN) mimics past

data. Generated data are then paired with a corresponding response from the past task

solver to represent old tasks. Called the scholar model, the generator-solver pair can

produce fake data and desired target pairs as much as needed, and when presented with

a new task, these produced pairs are interleaved with new data to update the generator

and solver networks.

An alternative strategy is Progressive Neural Networks (Rusu et al., 2016), where the

network architecture is replicated for every new dataset, with each new layer augmented

with lateral connections to corresponding older layers. The weights of the new layers are

then optimized while keeping the weights of the old layers frozen. The initial layers are

thus unchanged, while the new ones can re-use representations from the older tasks.

An unavoidable drawback of this approach is that the size of the full network keeps

increasing with the number of added objects, which might be a limitation for today’s

autonomous platforms. Expert Gating (Aljundi et al., 2017), follows the same concept

of a network of experts where objects (experts) are learned and added to the model

sequentially, building on what was learned before and leading to the same drawbacks as

progressive networks.

A more efficient approach is Learning without Forgetting (LwF), which preserves
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responses of the network on older tasks by utilizing a distillation loss, where response

targets are computed using data from the current dataset. Similarly, in (Castro et al.,

2018) uses a combination of cross-entropy and distillation loss functions, where old

training examples are stored in a memory component, which is akin to an exemplar set

for maintaining a small set of samples corresponding to the old classes. As a result, this

approach does not require the storage of older training data. However, this very strategy

of using a distillation loss can cause issues if the data for the new task belongs to a

distribution different from that of prior tasks. As more dissimilar objects are added to

the network, the performance on the prior tasks degrades rapidly.

With the idea of protecting critical parameters (Zenke et al., 2017) from being modi-

fied during the learning of novel objects, authors propose measuring and tracking the

importance at each synapse during training and representing the local contribution of

each synapse to the change in the global loss. Therefore, when new objects are required to

be learned, they consolidate the important synapses by preventing them from changing.

Thus, learning novel objects is mediated primarily by synapses that were unimportant

for past tasks and therefore avoiding catastrophic forgetting of these past objects. In (Seff

et al., 2017), authors propose a regularizer term based on elastic weight consolidation

(EWC), using a GAN, in (Nguyen et al., 2018), the authors utilize approximate bayesian

inference for computing new weights. In (Triki Rannen et al., 2017), an undercomplete

autoencoder is trained after training the task model. The autoencoder captures the most

important features for the initial set of objects, so when new objects are desired to be

learned, this autoencoder is used to ensure the preservation of those important features.

This is achieved by a loss on the reconstructions made by the autoencoder, restricting a

subset of the features to be unchanged and give the model the freedom to adapt itself to

the new task using the remaining capacity.

Utilizing non-relevant weights for learning novel objects is an attractive idea that

aims to make more efficient use of a CNN, however, since re-training of the model is still

necessary, it is not an applicable strategy for in-situ learning.

While state-of-the-art approaches focus on not catastrophically forgetting previously

learned classes, they do assume the availability of high-end computational resources

to re-train the model when new objects are learned. Similarly to the previsions cases,

this assumption makes such approaches unsuitable for onboard learning and therefore,

unsuitable for in-situ learning. However, these approaches highlight the importance of

evaluating the performance in both seen and unseen objects, which we do in Chapters 4 -

6.
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Figure 2.6: Approach for learning objects on-the-fly, consisting of an aggregation of
features extracted from a large dataset (ImageNet) and features extracted in-situ. Image
from (Göhring et al., 2014).

2.2 Critical Review on Related Approaches

(Göhring et al., 2014) is a pioneer work that addresses the problem of in-situ recogni-

tion of objects, understanding this as objects depicted within their natural or common

environments, as opposed to pictures depicting them with ideal imaging conditions. The

method consists of combining features from in-vitro datasets with features extracted

in-situ to build a large-scale real-time recognition system (Figure 2.6). As limitations,

this approach requires that the class of the desired object to be learned is present in the

ImageNet dataset to build a robust classifier.

(Zeng et al., 2018) is a deep learning approach related to our in-situ learning problem

since it addresses the challenge of learning novel objects without finetuning the model

and from a few data. This work comes from the winner of the Amazon Robotics Challenge

2017 (ARC). The competition consisted of proposing an automated solution for stowing

and picking common objects. A new challenge to the competition was dealing with unseen

categories, provided only 45 minutes prior to the start of each task.

The proposed solution, showed in Figure 2.7, consisted of a two-branched CNN for
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Figure 2.7: Supervised metric learning approach for learning object on-the-fly, consisting
of a modification of the Siamese architecture for recognizing known and novel objects.
Image extracted from (Zeng et al., 2018).

learning to associate product-images and images collected by their robot. The association

is done by the nearest neighbors search in the features space and, as depicted in the

right side of Figure 2.7, the goal was to have a discriminative model such that brings

together features from the same instance and separated otherwise.

While this work was focused on matching product-images and images taken by a

robot, authors empirically demonstrated that the nearest neighbor classifiers could

directly be constructed in the feature space for learning novel objects. Furthermore,

in Chapters 5 and 6, we pursue the same objective of having a model that produces

embeddings, and we also utilize their propose methodology for evaluating the recognition

performance when objects are learned on-the-fly.

The model in Figure 2.7 consists of a modification of the Siamese architecture (Koch

et al., 2015), where each branch has a set of specialized weights for recognizing known

objects, trained with a cross-entropy loss (K-Net), and the other branch trained to

recognize novel objects, trained with a contrastive loss (N-net). Not only the model has

to be trained in two different stages, but N-net is trained with examples chosen by a

neural network which, according to the authors, leads to an increase in the recognition

performance.

In Chapters 5 and 6, we propose a less cumbersome and easier to replicate framework,

where a single-branch CNN is trained with a modification of the triplet loss (Schroff

et al., 2015) and cross-entropy loss. Our approaches build on works like center loss (Wen

et al., 2016) (Figure 2.8), where a single CNN can be trained with a combination of

cross-entropy loss, to aid the optimization process and a metric learning loss, to make

the features more discriminative.

Particularly, in Chapter 6 we focus on improving the inference speed and storage

requirements by replacing the expensive nearest neighbors search for a more suitable

26



2.2. CRITICAL REVIEW ON RELATED APPROACHES

Figure 2.8: Center Loss approach for learning discriminative features, image from (Wen
et al., 2016).

Figure 2.9: Instead of comparing a query image against all possible candidates, SimNet
proposes comparing queries against class prototypes, taking advantage of discriminative
prototypes generated by Similarity Learning approaches . Image from (Pinheiro, 2018).

nearest centroids search in the embeddings space. This improvement was inspired by

(Pinheiro, 2018), were authors proposes a CNN that finds the most similar centroid

(a.k.a., prototype) to a given query image to achieve domain adaptation, as we show in

Figure 2.9.
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2.3 Object Recognition Datasets

In Table 2.1, we show contemporary public object recognition datasets to this thesis. We

selected CORe50, Toybox, iCub-world, BOP, ARC-MIT, and In-situ Household for our

experiments since they exhibit challenging conditions present in the in-situ learning

problem, such as generalizing to different domains, dealing with changes in perspective,

scale, motion blur, illumination, and clutter. We describe each dataset as follows:

CORe50: Originally proposed for continuous learning, this dataset shows 50 objects

across eleven environments and allows us to test the generalization capabilities not only

to unseen object’s poses but also new environments. We utilize the standard testing set

composed by scenes 3, 7, and 11. In Chapters 3 and 5, we use the remaining scenes for

training. In Chapters 4 and 6, we consider the most difficult set-up of using only scene 1

for training the model.

Toybox: It is composed of 360 toys manipulated by a person. Toybox allowed us to

evaluate how well the model scales, by learning 120 novel objects on-the-fly. We utilize

the hodgepodge videos for training and the translations and rotations across x, y, z-axis

for testing. The testing set also depicts new conditions such as changes in scale, partial

views, and occlusions.

iCub-world: This dataset contains 200 household objects shown by a demonstrator

to an iCub Robot. We selected the mixed manipulations set, taken with the left camera

for training the model and mixed manipulations set but the following day for testing.

The testing set depicts additional backgrounds, viewpoints, and scale.

BOP: It was initially proposed for 6D pose estimation and it is composed by six

datasets (Linemod, Tejani, Rutgers-APC, T-LESS, TUD-L, and TOY-L), although some

objects in this dataset were collected in-vitro, they offer the challenge of learning from

few data with clean background images and generalize over clutter and occluded envi-

ronments, which is the interest of this work.

ARC-MIT: This dataset was collected from the Amazon Robotics Challenge 2017,

consists of 60 objects collected by the MIT-Princeton robot and contains training images

from two different domains: Synthetic images provided by Amazon and real images

captured by an RGB camera showing the objects being grasped by the robot. For this

particular dataset, we use the methodology proposed by (Zeng et al., 2018) consisting of

restricting the number of instances in the embeddings space. This is, every test image is

compared against 20 possible instances, as opposed to the total of 60 instances, following

the provided competition rules.
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Table 2.1: Contemporary object recognition datasets.

Datasets Objects Description Variations Total Images

COIL-100
(Nene et al., 1996)

100

Household objects with a black
background.

RGB images collected with a turntable
and a fixed camera

n/a 7,200

SOIL-47
(Koubaroulis et al., 2002)

47

Household objects with a black
background.

RGB images collected with a camera
mounted in a robot arm

lighting conditions 1974

NORB
(LeCun et al., 2004)

50

Texture-less and color-less
toys.

RGB images collected with
a turntable and a fixed camera

jittered objects
cluttered

97,200

ALOI
(Geusebroek et al., 2005)

1000

Household objects with a black
background.

RGB images collected with
a turntable and a fixed camera

viewing angles
lighting conditions
illumination color

110,250

3D Objects
(Savarese and Li, 2007)

50

Household objects depicted
within their common environment

(a.k.a. in-situ).
RGB-D videos taken by a user

scales
viewing angles

7,000

Intel Egocentric
(Ren and Philipose, 2009)

21

Household objects manipulated by
a user.

Train images collected with a
turntable and test images with a

wearable camera

clutter
lighting conditions

70,000

BigBIRD
(Singh et al., 2014)

125
Household objects.

RGB-D images collected
with a turntable.

N/A 60,000

RGB-D
(Lai et al., 2011)

300

Household objects.
RGB-D train images collected

with a turntable and
testing images collected in-situ

by a mobile robot.

clutter
occlusions

lighting conditions
250,000

iCubWorld
(Maiettini et al., 2017)

200

Household objects manipulated
by a user,

RGB images collected by the
iCub’s camera

scale
clutter

occlusions
200,000

ARC-MIT
(Zeng et al., 2018)

61

Household objects manipulated
by a robot,

RGB images collected by the
MIT-Princeton’s robot

scale
clutter

occlusions
5,900

BOP
(Hodan et al., 2018)

89

Household and industrial
objects

RGB images collected
with a turntable

scale
clutter

occlusions
24,401

iLab-20M
(Borji et al., 2016)

718

Toy vehicles within
an emulated city,

RGB images collected
with a turntable

scales
translations

viewing angles
21,798,48

CORe50
(Lomonaco and Maltoni, 2017)

50

Household objects
manipulated by a user,

RGB images collected with a
wearable camera

unseen backgrounds
occlusions

viewing angles
lighting conditions

164,866

ToyBox
(Wang et al., 2017c)

360

Toys manipulated
by a user,

RGB image collected
with a wearable camera

scale
translations

rotations
2,300,000

In-situ household (ours, Chapter 6) 20

Household objects with training and

testing images collected in-situ.

RGB images collected with a

smartphone camera by a user.

unseen backgrounds

lighting conditions

clutter

occlusions

12,000

29
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In-situ Household: Since none of the state-of-the-art datasets allow evaluating

the more realistic situation where the training images are collected within the place

where such items are commonly used, such as TV remotes in a living room, in Chapter

6 we propose a dataset is to assist the benchmarking of in-situ learning approaches

by depicting each instance in its commonplace. The dataset is currently not publicly

available, but we plan to make it available in January 2020, current status of the dataset

can be consulted in (Lagunes-Fortiz, 2019b).

We do not use the remaining COIL-100, SOIL-47, NORB, ALOI, BigBIRD, and RGB-

D datasets since they do not present enough level of nuisances to be comparable with the

in-situ learning of objects, as shown in Appendix A. The intel-egocentric utilizes in-vitro

images for generalizing to in-situ images, and we already use the ARC-MIT and BOP

datasets to explore that case. The iLab-20M dataset was not available to download at

the time of this thesis was submitted.

2.4 Summary

In this chapter, we have provided a literature review on the topics of CNNs for object

recognition, domain adaptation, domain generalization, few-shot learning, and incremen-

tal learning. Although in these fields there is a need for learning generalizable features,

most of the propose approaches assumes availability of high-end computational resources

to re-train the model to learn new instances. Considering the challenging requirements

in the in-situ learning of having a model able to learn new instances, without finetuning

the model, from few sequential data and generalizing to unseen environments, we found

the metric learning approach particularly useful given its goal of generating features

which are close to each if they belong to the same object, even when the environments

in which are depicted are very different and apart from each other if they belong to a

different object. Therefore, the following proposed methods aim to produce discrimina-

tive features of seen and unseen objects. Additionally, in this chapter we identified the

datasets: CORe50, Toybox, iCub-world, BOP, ARC-MIT, and In-situ Household, relevant

for our experiments since they exhibit challenging conditions present in the in-situ

learning problem, such as generalizing to different domains, dealing with changes in

perspective, scale, motion blur, illumination, and clutter.
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3
INTEGRATING SPATIAL AND TEMPORAL FEATURES

In the previous chapter, we review state-of-the-art object recognition approaches based on

CNNs and their limitations for being used to in-situ learning of objects. A first flaw is their

temporal inconsistency while classifying object from video data caused by nuisances such

occlusions, changes of perspective, ambiguous viewpoints, etc. Therefore, in this chapter,

we start by proposing the use of temporal filters for addressing such lack of consistency.

While the propose machine learning filter achieves state-of-the-art results, we find the

cumulative moving average (CMA) algorithm to be of particular use for in-situ learning

since it does not require a training stage, and it can be applied to unseen objects. Due to

these properties, we revisit the CMA filter in Chapter 6.

3.1 Introduction

In this chapter we study the use of Convolutional Neural Networks (CNNs) for instance-

level multi-view object recognition, where training data comes from a few seconds of

video depicting the object of interest from a limited number of viewpoints and the testing

data consists of a video sequence where instances appear at different times within the

unseen and noisy video sequence, we illustrate this in Figure 3.1

This methodology for training and testing CNNs emulates sequential training data

that an autonomous agent might have collected to learn to recognize a specific object and

the testing sequence emulates an scenario where an autonomous agent sees an unknown

number of learned objects. Our approach consists of exploiting the temporal coherence
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CHAPTER 3. INTEGRATING SPATIAL AND TEMPORAL FEATURES

frame 1 frame 173frame 20 frame 40 frame 84 frame 133 frame 243

(a) Training video sequence depicting Object #10 from the CORe50 dataset

frame 1 frame 500frame 100 frame 200 frame 300 frame 400 frame 600

(b) Testing video with multiple objects across the sequence from the CORe50 dataset

Figure 3.1: Training sequences with a single object and a testing sequence with all
individual testing sequences concatenated.

present in video data, while the model can quickly react to a different object suddenly

appearing in the video sequence.

Training CNNs for object recognition and detection is commonly achieved with class-

level learning (Huang et al., 2017b). However, this approach of using large databases

might be unsuitable to the widely encountered situation for intelligent agents performing

tasks with specific objects around them. The need for a model that can be trained with a

few data motivates our work, i.e., that uses low hundreds of examples per instance. We

also aim to achieve the same level of performance as one model trained with an order of

magnitude more of training data.

First, we explore how the way of utilizing the video data influences the performance

of a CNN for learning robust representations. We investigate if sampling frames by

following a vertical-slices trajectory leads to the same level of performance of a more

systematic way, such as using a sphere with all Point-of-Views (POVs) available. We also

evaluate if frame-to-frame sampling leads to better results compared to normal-random

sampling.

We then utilize a CNN for learning and extracting features and using temporal

filters for exploiting the temporal coherency that is present on video data to increase

the robustness against nuisances, such as, changes on perspective, illumination, scale

object’s pose, occlusions, and noise. We refer to temporal coherency to the assumption

that on video data, the same object remains present over a number of consecutive frames,
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meaning that abrupt changes in the predictions between neighboring video frames is

unfeasible, as we illustrate in Figure 3.2.

We propose temporal filters which are applied to the frame-to-frame predictions

from the CNN, for enforcing temporal coherence. This methodology differs from models

with early recurrent connection as in state-of-the-art approaches such as CortexNet and

Ladder Networks, which require more training data due to the increased number of

recurrent connections.

The first filter that we propose is a simple algorithm that predicts the object’s identity

in a given frame by averaging the previous predictions over a definite number of frames.

This method already offers an improvement but requires a careful selection of the number

of frames to be considered, and avoid, as much as possible, fusing predictions containing

different objects. The second filter is a recurrent neural network trained to produce a

sequence of predictions with temporal coherence.

We evaluate our temporal filters with datasets used for instance-level object recog-

nition: T-LESS, with 30 electrical and textureless objects and CORe50, containing 50

domestic objects. We show that models trained with a few view-points, but that exploit

temporal coherence, models trained with a few data points perform with a similar per-

formance to models that used the whole dataset. We use precision and mean average

precision as the metrics for evaluating the recognition performance of each model.

3.2 Related Work

In instance-level object recognition, models learn specific objects as opposed to classes.

This setup was broadly studied during the past decades through the process of extracting

and matching descriptors as in (Lowe, 2004; Wang et al., 2005; Bay et al., 2008; Damen

et al., 2012). This approach is not necessarily a flawed approach per se, but it can

be challenging to integrate visual components. The effectiveness of end-to-end CNNs,

specifically showcased on class-level object recognition, does not present such integration

problem.

CNNs tend to propose deeper architectures for learning features at various levels

of abstraction and achieve higher generalization capabilities (Goodfellow et al., 2016).

While CNNs achieve lower error rates that hand-crafted featured methods for object

recognition, they are still prone to errors on real-world applications considering a limited

invariance to rotations (Cheng et al., 2016), occlusions (Osherov and Lindenbaum, 2017)

and noise (Zheng et al., 2016; Fawzi et al., 2016).

33



CHAPTER 3. INTEGRATING SPATIAL AND TEMPORAL FEATURES

G
ro

u
n
d
tr

u
th

T
e
s
t

s
e
q
u
e
n
c
e

Obj 4

frame 40 frame 50 frame 200 frame 410 frame 500 frame 530

Obj 4 Obj 4 Obj 43 Obj 43 Obj 43

Figure 3.2: Temporal coherence. We present the top-10 predictions of a CNN trained to
recognize the 50 instances in CORe50. We show how predictions are incoherent across
the video sequence due to changes in the background, object’s pose, illumination, etc.
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(a) CortexNet architecture, image from (Canziani and Culurciello, 2017)

(b) Recurrent Ladder Network, image from (Prémont-Schwarz et al.,
2017)

Figure 3.3: Models for combining temporal and spatial features.
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CortexNet (Canziani and Culurciello, 2017) is a pioneer approach for addressing for

exploiting the temporal consistency from video data. In CortexNet, the authors propose

a model with feed-forward and lateral connections, inspired by the cortical areas of

the visual system in humans. As depicted in Figure 3.3(a), the model architecture is

composed of discriminative and generative blocks named Dn and Gn, respectively. The

Generative blocks are fed with the superposition of top-down and bottom-up images

and provide a modulatory input to its correspondent Discriminative block, based on the

previous time step t−1 connections. A detailed representation of the discriminative and

generative blocks are shown in Figure 3.3(a), where the authors show the branching and

superposition operations happen right after the spatial projection onto the transposed

convolutional kernels.

A more recent approach is Recurrent Ladder Networks (Prémont-Schwarz et al.,

2017), which is an extension of the Ladder networks (Rasmus et al., 2015), consisting in

a conducive to iterative inference and temporal modeling. This approach is similar to

CortexNet by having the information first flowing from the bottom (the early layers in

the CNN) to the top through a stack of encoder cells (discriminative blocks in CortexNet)

and then, information flowing back from top to bottom using a stack of decoder cells

(generative blocks in CortexNet). However, what makes this approach different from

CortexNet is the way the encoder and decoder cells are using temporal information with

horizontal connections. In Recurrent Ladder Networks, the discriminative blocks are

connected between time t and t−1, while the generative blocks are connected sequentially

with discriminative ones, as illustrated in Figure 3.3(b).

Recurrent Ladder Networks utilizes recurrent neural networks such LSTMs (Hochre-

iter and Schmidhuber, 1997) or GRUs (Chung et al., 2014) cells in the encoder and

cells inspired by the original Ladder networks in the decoder. Interestingly, training the

model is done by a weighted sum of the costs at different levels of abstraction. Where

the highest abstraction level, like classification, is typically formulated at the latest

layer. Conversely, the output of the decoder cell in the bottom level is used to formulate

a low-level task, corresponding to abstractions close to the input. Low-level tasks can

be denoising, object detection, segmentation, or predictions in a temporal setting. In

Chapter 4, we show that training a CNN in a multitask setting, with tasks of different

levels of abstractions, such as prediction and image generation, will allow the model to

learn more discriminative features.

On the other hand, separating spatial and recurrent connection by having recurrent

architectures, like LSTMs and GRUs, right before the logits prediction in the CNNs
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has shown to be a useful approach for exploiting temporal information on video data

for tasks such as 6-D camera re-localization (Clark et al., 2017) and object tracking

(Tripathi et al., 2016). These approaches allows to process temporal information from

more than a previous t−1 frame at expenses of having to trained the spatial and recurrent

representations at different stages.

Our approach falls in the category of separated spatial and recurrent representations,

motivated by the benefit of processing temporal information from multiple frames and

not just the previous temporal frame. Our model operates in a less restrictive domain

compared to existing work on data association like object tracking, where the location

and identity of an objects are known in the first frame and the tracker predicts its

localization on the subsequent frames. In contrast, there is no prior information to be

required. Furthermore, it is different from video classification since we do not aim to

model the motion occurring between video frames, in contrast with methodologies used

on video and action recognition where information from middle and early layers is used

by 3D convolutions (Ji et al., 2013) or recurrent connections (Hara et al., 2017).

3.3 Proposed Method

In order to evaluate how the way of utilizing the video data influences the performance of

a CNN, with the T-LESS dataset, we first consider the case of an object’s full viewpoints

sphere, as we shown in Figure 3.4(a). We then evaluate exploration trajectories: A unique

vertical slice from the sphere, as illustrated in Figure 3.4(b), a single horizontal slice

taken at 45◦ respect to the horizon, as depicted in Figure 3.4(c) and a sinusoidal path that

travels around the sphere, and can be seen as a combination of vertical and horizontal

paths, as showed in Figure 3.4(d). Each of the paths generate a training set containing

the 10% of images compared to the full viewpoints sphere. Similarly, with the CORe50

dataset, we randomly sampled the video frames sequences to form training sets with

a total of 10% and 50% images. We considered two approaches for sampling the video

frames, being frame-to-frame and normal-sampling.

3.3.1 Architecture Design

Our approach consists of a combination of a state-of-the-art CNN, that produces features

in the image space, with an additional temporal filter, that enforces the temporal coher-

ence on the predictions generated by backbone CNN. The models are connected at the
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(a) Full Sphere (b) Vertical Slices (c) Circular Slices (d) Sinusoidal

Figure 3.4: Proposed trajectories to form a training set with a total of 10% images
compared to a full sphere (left) of Points of View.
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Figure 3.5: A continuous stream of images goes from the CNN and BLSTM for producing
temporal coherent predictions.

last dense layer in the backbone CNN, which predicts the labels ŷ at each time step.

Separating the backbone and temporal filters allow us to efficiently utilize a pre-

trained CNN to transfer learning from a large-scale dataset such as ImageNet (Rus-

sakovsky et al., 2015) into our datasets and improve the over-fitting caused by the few

training examples available. Additionally, we can efficiently increase the size of the video

frame sequence, since the BLSTM utilizes low dimensional data as input, as oppose to

having recurring connections across all the model and requiring high memory resources

to compute the gradients. The disadvantage of this approach is that each network has to

be trained in a separated stages.

The reason for requiring separated training stages is that feed-forward CNNs are

trained more efficiently when the training examples are shuffled in the mini-batch
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Figure 3.6: LSTM cell (hidden state ht), with trainable input i t, forget f t, and output ot

gates for producing temporal coherent predictions. Image from (Sak et al., 2014).

(Goodfellow et al., 2016), in the other hand, BLSTMs require sequential training data

for finding the short and long term features.

For training our framework, we first initialize our backbone CNN with a pre-trained

model with the ImageNet dataset. We fixed the weights of the convolutional layers, and

only the last fully connected layer is trained. We then trained all the parameters in the

model using stochastic gradient descent, with the same training instances and labels as

before.

The Bidirectional Long-Short Memory (BLSTM) model consists of a series of blocks

(named hidden states ht), as the one depicted in Figure 3.6. The input i t, forget f t, and

output ot gates, process the temporal information using the current image, and the

output from a previous hidden state. What makes the BLSTM unique to other recurrent

approaches, is that the model processes the data sequence in both forward (past to

future) and backward (future to past) ordering, as shown in Figure 3.5. The advantage of

using both directions, is that a current frame, can take into account information from

future frames, in Figure 3.8, we present an example where the test images contain a

high amount of clutter, and by utilizing the BLSTM filter, it is possible to utilize more

discriminative information from subsequent frames.

To train the BLSTM, we freeze the variables from the CNN. The input i, forget f and

output o gates are followed by ReLUs as non-linear activation function for each state h,

as we shown in Equation 3.1. The weights W and bias terms b are shared across all the

LSTM hidden states.
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(3.1)
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xi ŷt +WT

hiht−1 +bi)

f t =σ(WT
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We then concatenated the predictions from the forward
−→
ŷ t and backwards

←−
ŷ t states

(green block in Figure 3.5) and train a dense layer for classification, as we show on

Equation 3.2, this is for predicting the same number of instances as in the groundtruth

vector ŷ:
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ŷt +WT
−→
h
−→
o

−→
h t−1 +b−→

o

)

⊗ tanh(−→c t)

←−
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3.3.2 Loss Function for Visual and Temporal Recognition

For both networks, we utilize the standard softmax loss, which minimizes the error

between the constructed probability distribution by the CNN and the groundtruth y, as

denoted on Equations 3.3 and 3.4:

(3.3) Lsof tmax−cnn =−
∑

ylog(q(x))

(3.4) Lsof tmax−blstm =−
∑

ylog(q( ŷ))

For the backbone CNN, the input q(x) corresponds to the vector of probabilities,

normalized by the softmax function q, and for the BLSTM, the input ŷ corresponds to

the normalized predictions from the dense layer in the backbone CNN.

40



3.4. EXPERIMENTAL RESULTS

3.4 Experimental Results

3.4.1 Datasets

The first dataset we used is T-LESS (Hodaň et al., 2017) (Figures 3.7(a) and 3.7(b)).

It contains thirty industrial objects without any relevant texture or color, the objects

present symmetries and mutual similarities between them and some are sub-parts

of others. While T-LESS was collected in an in-vitro set-up by using a rotating table

and controlled background and lighting conditions, it permit us to experiment with the

viewpoints selection for training, since the full sphere of viewpoints is available. We use

the total 37,578 training images and 69,546 images for testing. Furthermore, it allows

to evaluate the generalization capability of a model trained with data containing nicely

isolated objects with a black background and testing data with an increased complexity

in clutter and occlusions.

The second dataset used is CORe50 (Lomonaco and Maltoni, 2017), which contains a

set of fifty domestic objects belonging to ten categories: plug adapters, mobile phones,

scissors, light bulbs, cans, glasses, balls, markers, cups and remote controls. The dataset

is composed by a series of video clips, with 300 frames per video, showing an object being

manipulated by a user, as we show in Figures 3.7(c) and 3.7(d). CORe50 allowed us to

evaluate the performance of the model in the presence of occlusions produced by hands,

unseen backgrounds and illumination conditions, which are well-suited for the in-situ set

up that we are after. We used 119,894 images for training and 44,972 images for testing.

For evaluating each model, we use a single video containing all the testing scene

concatenated, which means there are several objects across the video data, meaning that

the models are required to adapt to different objects but also exploiting the temporal

coherence correctly. As evaluation metric we use mean Average Precision (mAP) for

T-LESS, consisting of averaging precision per instance and then globally. We choose this

metric due to the data imbalance on the testing set. For instance, there are 8,000 images

from object #1 while only 1000 images of object #30. We use Precision (P) for CORe50,

since the testing set is balanced for all the instances. To compute the mAP, we first obtain

the Precision by every instance, and then we average the results. For computing the

Precision (P), we divide the number of correct predictions by the total number of testing

samples.
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(a) T-LESS Train set. Images were collected in a controlled environment.

(b) T-LESS Test set. Images contain a high level of occlusion and clutter.

(c) CORe50 Train set. Each training sequence depicts an object being manipulated by a user, showing
an egocentric perspective to the object.

(d) CORe50 Test set. With the same dynamics as in the training videos, the testing set includes images
collected in unseen environments with new illumination conditions and viewpoints.

Figure 3.7: T-LESS and CORe50 datasets images from (Hodaň et al., 2017) and
(Lomonaco and Maltoni, 2017) respectively. The remaining objects are shown in Ap-
pendix A.
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3.4.2 Baselines

Cumulative Moving Average: As a first baseline, we propose a simple sum-rule in

which an average summation is performed on the logits vector ŷ from the CNN, by a

window size of n frames as denoted on Equation 3.5. We empirically found the value

n with the best trade-off between producing coherent predictions and avoiding fusing

predictions from different objects. To do so, we used the Feature Extraction model, and we

report the precision using the finetuned model with the testing sequences concatenated,

emulating a stream of images that an agent might receive during inference.

(3.5) ŷt =

n
∑

i=0

ŷt−i

n

As a side comment, we acknowledge that integrating spatial and temporal features

require complex solutions, however, that does not mean that simple baselines, such as

the cumulative average, should be ignored. On the contrary, simple but strong baselines

as this one shows where the sophistication in the solutions should be focused on.

CortexNet: We utilize the original implementation from (Canziani, 2016), following

the described training methodology. As an important note, CortexNet is a shallower

model compared with Inception-ResNet-V2. Using CortexNet as baselines allow us to

show the challenges of utilizing a custom CNN for learning generalizable features from

few data.

We did not compare our model against Recurrent Ladder Networks since the authors

do not provide code, nor there is a publicly available implementation of their work.

Additionally, the model was designed to work with single-channel images of 32×32

pixels, while our datasets are full-scale RGB image size with a dimension of 299×299

pixels.

3.4.3 Implementation Details

To train our framework, we first train the backbone CNN. We utilize a pre-trained CNN

with the ImageNet dataset, we fix all the weights from the Convolutional layers and train

only the dense layer is trained. This process is commonly referred to Feature Extractor (Li

and Hoiem, 2016) and it will be useful for choosing the hyperparameters for the temporal

filters later on. Once the Feature Extraction model has converged, then a finetuning

process takes place, where we re-train all the variables in the network until reaching

convergence.
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We use Inception-Resnet-V2 (Szegedy et al., 2016a) as the backbone CNN architecture

for extracting and learning features since was the model with the highest recognition

performance in ImageNet dataset and feasible to train with our GTX-1080 Ti GPUs

with 11 GB memory. Smaller models such as MobileNets can be used for fitting more

restricted hardware requirements. The model was initially trained on the Imagenet 2012

dataset, and for both re-training phases, we used softmax loss.

As hyperparameters for the Feature Extraction model, we use a batch size of 128

images and Root Mean Square Propagation algorithm for solving the optimization

problem, as originally used in (Szegedy et al., 2016a), with the hyperparameters: weight

decay wd = 0.0004, learning rate from lr = 0.001 to lr = 0.00001, momentum m = 0.9

and ǫ= 1−10. For the finetuning phase, we selected the same optimizer but with smaller

learning rates, starting at lr = 0.0001 to lr = 0.000001.

For training the BLSTM, we use the same training data used for the backbone

CNN and similarly to (Canziani and Culurciello, 2017), all training video clips are

concatenated and presented to the network until convergence. We used the Feature

Extraction model since has a lower performance compared to the finetuned one, mainly

because the majority of its weights come from a different dataset, and thus, it produces

erroneous predictions on the training set, allowing the BLSTM to learn how to correct

such incoherent predictions.

As hyperparameters for the BLSTM, we utilized the hyperbolic tan as non-linear

activation, as it is commonly done for LSTMs (Graves et al., 2013). The weights and biases

were initialized with a normal-random distribution and similarly with the finetuning

model, we utilize root mean square propagation algorithm for solving the optimization

problem, with the hyperparameters: weight decay wd = 0.0004, learning rate from

lr = 0.0001 to lr = 0.000001, decay ρ = 0.9, momentum m = 0.9 and ǫ= 1−10. Selecting

such a small learning rate was crucial for training the BLSTM for avoiding the well-know

gradient vanishing problem on Recurrent Neural Networks.

Our code was initially developed using TensorFlow 1.5 with the slim API, train-

ing scripts are available at (Lagunes-Fortiz, 2019a), including a version updated to

TensorFlow 2.0, using the high-level API TF-Keras for using the pre-trained Inception-

Resnet-V2 model and the Bidirectional LSTM implementation. All models were trained

using a GTX-1080ti GPU and using Cuda 8.
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Table 3.1: Precision achieved with different sampling methods and amount of training
data (Without using temporal filters).

T-LESS CORe50
Trajectory (10% training data) mAP Sampling Method Precision

Vertical 43.04 10% continuous frames 87.15
Circular 31.15 10% normal-random sampled 90.62

Sinusoidal 43.26 50% continuous frames 92.11
50% normal-random sampled 94.16

100% training data 46.82 100% training data 94.32

3.4.4 Data Augmentation

In T-LESS, we deal with texture-minimal objects and differing training and testing

distributions. We initially performed the recommended data augmentation procedure in

(Donahue et al., 2014) regarding random cropping and modifications to color and contrast.

Initial results showed, however, that the recommended augmentation for textured objects

seems to produce inferior results when tested on texture-minimal objects. We thus do

not use these data augmentation approaches for the remainder of the experiments in

this and the remaining chapters. Applying random rotations on-the-fly resulted in a

more useful on T-LESS to slightly boosting the performance. On CORe50, we did not use

any data augmentation technique since the training data available shows the objects in

different poses, lighting, and background conditions.

3.4.5 Recognition Performance by Sampling Method

In this experiment, we aim to characterize the effect of the variability in the training

examples to build robust classifiers, by varying the amount of training samples and

viewpoints. T-LESS allowed us to test how training with views from different sampling

methods affect the recognition performance. The images were obtained following the

sampling methods previously described. The size of the training data from all trajectories

is 10% relative to the initial full-sphere set. For CORe50, we tested frame-to-frame

sampling versus normal-sampling from each training video clip, with a total of images

of 10% and 50% relative to the total amount of training data available. We run each

training session three times for 150 epochs.

Table 3.1 contains the results of using trajectories for collecting data versus a full-

POV sphere. For these experiments, we utilize the CNN model only, without utilizing

any of the temporal filters from Figure 3.5. We run every training session three times,

showing only the best run. As expected, results show that using more data leads to the
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best performance, however models trained with data containing high variability, such

images coming from the vertical or sinusoidal, offered close performance to a model

trained with ten times more data and allows faster convergence times for the training

the CNN.

Additionally, Table 3.1 contains the results on CORe50 when different amounts of

data are used, comparing frame-to-frame versus normal-random sampling from the video

clips. Similarly, the model trained with more data leads to the best performance and

normal-sampled slightly outperforms frame-to-frame sampling. However, interestingly

the difference between 100 and 10 percent of training is only 3.7%. These results show

that diversity of the training data is critical for training CNNs efficiently.

3.4.6 Temporal Integration

In Table 3.2, we present the mean average precision when the temporal filters are added.

We present the results when the models were trained with 100% and 10% of the available

training data. For T-LESS, the 10% of data available comes from the sinusoidal sampling

method since offered the best performance, and for CORe50, we utilize the 10% from the

random-normal sampling method since outperformed the frame-by-frame one.

For T-LESS, related to the use of Cumulative Moving Average, we show the best

performance achieved by a window with a size of 25. For the BLSTM, we show the best

performance achieved by a length of 500 cells with 300 neurons. For CORe50, we report

the best performance achieved by a CMA with a window size of 40 and a Bidirectional

LSTM with length 300 and 200 neurons. Experiments for finding these values are

presented in the next section.

As a first result, by adding the cumulative moving average (CMA) and the Bidirec-

tional LSTM (BLSTM), the models trained with a 10% of the total available training data

achieved a similar level of performance as the one trained with the 100%. On the other

hand, the performance achieved by CortexNet is considerably lower (around 20% less,

on average) than the Inception-ResNet-v2 backbone, this is in part due to the shallower

architecture of CortexNet, but also due to the fact than the model only considers the

current and previous frame to produce the predictions.

Surprisingly, the CMA performs not far from the sophisticated BLSTM (with less

than 2% inferior recognition performance), however, on a closer inspection such as

the one presented in Figures 3.8 and 3.9, this is due to the good performance from

the backbone CNN for correctly predicting the object in each scenes in the majority

of the testing sequence and producing misclassification under specif situations such
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Table 3.2: Precision achieved by CNNs and using Temporal Filters.

T-LESS CORe50

Model
100% training

data (mAP)

10 % training
data (mAP)

(sinusoidal traj.)

100% training
data (P)

10% training
data

(random sampling) (P)
CNN

(w/o temporal filter)
46.82 43.26 94.32 90.62

CortexNet
(Canziani and Culurciello, 2017)

33.25 28.11 74.41 61.35

CNN + CMA
(ours)

52.46 47.94 97.63 94.43

CNN + BLSTM

(ours)
56.23 55.04 99.13 97.92

as ambiguous viewpoints and partial occlusion, specially for the T-LESS dataset, in

which the initial frames of each testing sequence corresponds to isolated top views with

occlusions happening on the latest frames.

If we revert the order in the testing sequence, and by doing this, presenting an

occluded start followed by an isolated ending as in the first part in Figure 3.8, then the

BLSTM shows a better performance by producing correct predictions after the frames

with occlusion, while the CMA required more frames to recover due to the moving average.

We also highlight that the performance of the BLSTM on T-LESS is not very robust

against strong occlusions most likely because during the training we used the isolated

images without invariances, while for CORe50 the training and testing sets depicts

similar conditions than the BLSTM can exploit, in the sense that shows changes in the

background and occlusions, but depicts the same type of occlusions and manipulations.

In Figures 3.8 and 3.9, we present frame-to-frame predictions produced by each model

used (CNN, CortexNet, CNN + Cumulative Moving Average, and CNN + BLSTM). In

each Figure, we show images with the groundtruth and a given testing frame showing

the object pretended to be recognized. Below, we present the predictions from every

model, to maintain the plots readable, we only show the Top-10 objects detected in that

given sequence.

In Figure 3.9, we show how both filters resulted useful for correcting the erroneous

predictions from the CNN, caused by ambiguity at the given object’s pose. This is, some

views are quite similar among the five mugs (objects label 41-45), such as the top view.

The ambiguity was alleviated by using information from previous frames with more

discriminative information. The first 300 frames corresponded to the black scissors

(object 13) and represented by the blue line on the predictions plot. The rest 300 frames

corresponds to the red and green mug (object 41), represented by a red line.
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Figure 3.8: Fragment of T-LESS testing sequence showing objects 4 and 5. Highly oc-
cluded conditions resulted quite challenging for the CNN and this could not be alleviated
by the use of Temporal Filters. Please use the electronic version for a closer view and
refer to Appendix A for numbering of the instances.

48



3.4. EXPERIMENTAL RESULTS

G
ro

u
n
d
tr

u
th

T
e
s
t

s
e
q
u
e
n
c
e

Obj 41

frame 350 frame 400 frame 500frame 10 frame 50 frame 250

Obj 41 Obj 41Obj 13 Obj 13 Obj 13

Figure 3.9: Fragment of Core50 testing sequence, showing object 13 -black scissors- and
41 -red and green mug-. The temporal filters resulted useful for correcting misclassifi-
cations caused by object’s pose ambiguity. Please use the electronic version for a closer
view and refer to Appendix A for the numbering of the instances.
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In Figure 3.8, we show how the BLSTM performs slightly better than the CMA, in

this case, by recovering faster after a set of erroneous predictions from the CNN, due

to clutter and occluded conditions. Additionally, we present how neither of the filters

can compensate from a majority of incorrect predictions caused in this case by strong

occlusion from other objects. This limitation from the CNN of dealing with clutter and

occlusions is more acute for minimal-texture objects, especially when objects are parts

of other objects. We attribute this big gap in performance between the dataset to these

CNN limitations and how to overcome them, remains as an open research question.

In Figure 3.10, we present the normalized confusion matrices between the CNN and

the BLSTM, using the 10% of the data from each dataset. The numbering used on the

matrices is consistent with the instances ID number presented in Appendix A.

T-LESS (Figures 3.10(a) and 3.10(b)), resulted in a more challenging task for the CNN

than the objects in CORe50, we believe this is explained in part by the texture-minimal

characteristic on the objects which makes them easier to be confused on cluttered,

partial and fully occluded conditions, e.g., objects like the texture-less box #27 are easily

misclassified when stronger features from other objects such as the holes from object #9

appears on the image. Additionally, training and testing present contrasting conditions,

while the training data does not contain any occlusion or different background conditions,

the testing images present strong occlusions and clutter, making generalization more

challenging to achieve.

On CORe50 (Figures 3.10(c) and 3.10(d)), we notice that misclassification occurs

mostly between objects from the same classes. For example, for the case of glasses

(objects labeled from 26-30) present the same geometry and visual information when

they are shown from the top view, then only the temples and top-bar are visible, and thus,

the model can get easily confused. This is indeed a challenging recognition situation that

was partially solved with the temporal filters.

3.4.7 Ablation Studies

Bidirectional LSTM Design

We varied the number of cells, corresponding to the number of frames seen by the BLSTM,

from 100 to 500 cells (Figure 3.12(a)) and we varied the number of neurons on the gates,

going from 100 to 500 (Figure 3.12(c)).

For T-LESS, the BLSTM with the best performance was the one with a length of 500

cells with 300 neurons. For CORe50 the highest precision was the configuration with a
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(a) CNN trained with T-LESS
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(b) Model with CNN + BLSTM with T-LESS
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(c) CNN trained with CORe50
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(d) Model with CNN + BLSTM with CORe50

Figure 3.10: Normalized confusion matrices with frame-by-frame evaluation using 100%
of training data, the instances ID numbers are consistent with Appendix A.
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Obj. 21 Obj. 21 Obj. 22

Obj. 19 Obj. 19 Obj. 21

Obj. 27 Obj. 27 Obj. 10

Obj. 15 Obj. 15 Obj. 14

Figure 3.11: Examples of misclassification in the T-LESS dataset, caused by confusion
between similar instances and the clutter. In each row, we present a test frame, the
groundtruth with blue, and the prediction of the model with red.
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(a) Selecting of the hyperparameter n in the cumulative moving average
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(b) Selecting the number of cells LSTM cells in the recurrent network.
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(c) Selecting the number of neurons in each cell block, in the recurrent network.

Figure 3.12: Ablations studies to select the best configuration for the BLSTM and the
cumulative moving average.
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length of 300 cells and 200 neurons. These results indicate that the BLSTM found that

objects are alternating every 500 frames in the testing sequence in T-LESS and every

300 frames in CORe50.

Moving Averange Tunning

For selecting the size of the averaging window with the best precision, we varied the

windows size from 1 frame to 45 frames in steps of 5 frames, as shown in Figure 3.12(a).

For the T-LESS dataset, the CMA with the highest performance was the one achieved by

a size of 25 frames. For CORe50, using 40 frames led to the best performance, which the

latter being consistent with the one reported on (Lomonaco and Maltoni, 2017).

Both temporal filters boosted the performance on the Precision (mAP on T-LESS and

AP on CORe50); related to the BLSTM, the results are consistent with works like (Zamir

et al., 2017) and (Clark et al., 2017), in which the performance gets better by using more

LSTM cells and with the number of neurons being not as relevant as the number of

cells, for both T-LESS and CORe50 selecting the longest length available lead to the best

results, while choosing a small number of neurons of around 200 worked as good a one

trained with 600.

3.5 Summary

In this chapter, we propose an approach to multi-view instance-level object recognition

that combines convolutional and recurrent neural networks for exploiting the temporal

coherence present in video data. We first evaluate sampling methodologies for using

training data efficiently, concluding that the variability in the training examples, this is,

presenting examples to the network that depicts the objects under different conditions,

allows the model to learn generalizable features efficiently, as opposed to using hundreds

of examples depicting the object under similar conditions. We then present two temporal

filters for exploiting the assumption that on video data the same object remains present

over a number of consecutive frames, consisting of a cumulative moving average and a

machine learning approach using recurrent neural networks. We evaluate these temporal

filters on T-LESS and CORe50. We show how this way of learning could be especially

useful when few data points are desired for training the models, accelerating the training

process, which is useful for agents exploring the world in front of them and when they

need to react and use these objects without delay, and achieves higher recognition

performance than state-of-the-art approaches such as CortexNet. We conclude that the
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BLSTM resulted slightly more useful for exploiting the temporal coherence (around

2%higher precision), but it does require to be trained, while the simpler CMA filter shows

itself useful, with the main disadvantage being the dimensionality of the window fusion.

Overall our methods show an improvement on the precision of state-of-the-art CNNs that

do not exploit the temporal element by its own, with a much higher performance (over

20% higher precision) than the shallower CortexNet architecture. With our temporal

filters, we achieve a precision of 99.13% for CORe50 and a mean average precision of

56.23% in T-LESS. The gap in performance is partially explained by the differing training

and testing conditions in T-LESS, and we address this limitation of CNNs in the next

chapter.
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In the previous chapter, the use of temporal filters on top of CNNs allowed near perfect

recognition for the CORe50 dataset (99.13%). However, even with temporal filtering, our

model achieved only 56.23% precision in T-LESS, primarily due to the differing training

and testing conditions on the dataset. Therefore, in this chapter we focus on learning

generizable features from a few data belonging to a single source domain, such as synthetic

images, or data collected in a specif location, and that can be used when the domain has

changed, and now depicts new imaging conditions, clutter, differing scales, etc. To do so,

we propose the used of a multi-task CNN that performs image classification and image

generation to achieved domain generalization.

4.1 Introduction

In Chapter 3, we showed how the use of temporal filters on top of state-of-the-art CNNs

help increasing the robustness against the commonly encountered changes in perspective,

scale, illumination, object’s pose and noise. However, the temporal filters were only useful

when the CNN was trained with several examples from the same instance, as in the

CORe50 dataset with training images obtained from eight different environments. In

contrast, in the in-situ learning set up that we are after, we aim to use data collected

from a single training scene. Therefore, in this chapter we propose a model that learns
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generalizable representations, using data depicting objects from a single environment

and that can be used to recognize such objects under unseen conditions.

An example between differing training and testing environments is depicted in

Figure 4.1, where the model has to learn from clean synthetic data, and it is deployed on

real images with clutter and occlusions. Additional examples of differing training and

testing environments are: data collected indoors versus outdoors, data collected from

high-resolution vs. low resolution sensors and data collected in a controlled environment

vs data from the real-world. This problem is referred as domain generalization (Li et al.,

2018a) and we consider the case of training the model with a single domain, motivated

by the expensive procedure of collecting data from multiple domains and the need of

learning from few available data in the context of robotics and autonomous systems

applications.

With this goal in mind, we propose a Supervised Residual Autoencoder (S-RAE) for

learning features that are discriminative between instances but generalizable across

domains. To do so, the model utilizes a multi-task reconstruction and classification loss.

We perform inference by utilizing k-nearest neighbors on the embeddings space, in order

to evaluate how discriminative the embeddings are, that is, data points from the same

instance should be close to each other and further away otherwise.

We evaluate our approach on datasets tailored for instance-level object recognition

with differing training and testing conditions: Linemode, Tejani, T-LESS, Toyota Light,

TU Dresden Light, ToyBox, Rutgers-APC, and CORe50.

4.2 Related Work

The problem of the differing train and test data distributions has been approached in

two variants: Domain adaptation and domain generalization (Ghifary, 2016).

For domain adaptation, it assumes access to data points from both source and target

domains (Liu et al., 2018b). In contrast, in domain generalization there is no availability

of target domains, but multiple source domains might be available (Li et al., 2018a).

Within the latter approach, we consider the case of learning from a single source do-

main, motivated by the expensive procedure of collecting data from multiple domains in

robotics and autonomous systems applications, where systems need to react based on

few observations of objects on varied and novel contexts.

Here we concentrate our review on domain generalization approaches for object recog-

nition, including metric learning and multi-task learning models, which integrate image
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(a) Training
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Figure 4.1: Problem description. The model is required to learn to recognize objects from
synthetic data with a clean background (a) and has to generate discriminative features
under unseen conditions, such as clutter and occlusions (b).

generation and classification for learning disentangled and transferable representations

as in our work.

A first approach is Metric Learning, where a model is trained to learn the concept

of similarity by minimizing the distance between embeddings from the same instance

and separating embeddings from different ones by a margin. Top performing approaches

to metric learning employ state-of-the-art CNNs (Song et al., 2017; Bellet et al., 2013).

Within the metric learning approaches, triplet loss (Schroff et al., 2015) posits as the

most widely used approach for metric learning (Zhe et al., 2018), and consist of a model

with three CNN branches that encourages a distance constraint between similar and

dissimilar images simultaneously.

More recently, center loss (Wen et al., 2016) proposes the same goal of minimizing
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the intraclass distance of the embeddings by learning a center for each instance and pe-

nalizing the distances between the embeddings and their corresponding instance centers.

In order to ovoid cumbersome sampling techniques, the centering loss is combined with

a supervised signal (cross-entropy loss) as a regularizer. Following the idea of making

embeddings more discriminative, (He et al., 2018) combines the triplet and center loss for

multi-view object retrieval, while also keeping the supervised loss as a regularizer. The

idea of clustering data points and using a supervised loss as regularizer has also been

applied successfully for few-shot learning as in Prototypical Networks (Snell et al., 2017),

indicating it is indeed a powerful technique for generating discriminative features.

Another successful strategy for generating discriminative embeddings is by incorpo-

rating additional tasks to the model. The underlying assumption for most multi-task

learning algorithms is that different tasks are related to each other and the related

tasks act as regularizers to the main one (Yin and Liu, 2018). There is a vast literature

on multi-task learning, therefore we only present approaches with image classification

as the primary task and image generation as a secondary task. While all the following

approaches report an increase in accuracy by adding the additional tasks, the caveat is

how to combine (weight) such tasks during the optimization process, since an unweighted

combination of the losses often leads to a decrease in the performance due to the high

penalization from the regularizer.

A first example is (Zhi et al., 2017), which combines object classification and orienta-

tion estimation for 3D Object Detection. In (Yin and Liu, 2018) and (Wang et al., 2017d)

the main task is person identification and pose, illumination and expression as secondary

tasks. In these approaches, a hyperparameter λ is found empirically for weighting each

loss term.

DR-GAN (Tran et al., 2017) performs both classification and image generation, being

an equivalent of our model, but using an adversarial network for image generation as

oppose to an autoencoder. It follows the concept of building a supervised and multi-task

Discriminator and, similarly to us, adding image generation as a secondary task. DR-

GAN utilizes an adversarial network for generating images, as opposed to a convolutional

autoencoder with mean squared error loss as in our work. Additionally, the authors do

not make any assumption about the number of domains used during training, in contrast

with another state-of-the-art adversarial approaches (Chopra et al., 2013).

A contemporary work to this thesis introduces Supervised Autoencoders (SAE) (Le

et al., 2018), where the authors provide a theoretical demonstration on how reconstruct-

ing images with a conventional autoencoder aids to achieve higher generalization for
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classification tasks. Although they utilize mean squared error for classification, and not

cross-entropy as in this work, we find similar results on using the image generation

as a regularizer. That is, adding the reconstruction loss does not harm the recognition

performance and can significantly improve generalization. While in this work we address

the usefulness of supervised autoencoders for learning generalizable representations

from a single domain, experiments conducted by (Le et al., 2018), show their usefulness

for learning from multiple domains.

In contrast to (Le et al., 2018), our model uses a deeper architecture with full-

scale real images, it utilizes the Nearest Neighbors search in the embeddings space for

inference, and utilizes a single residual connection between encoder and decoder.

We use image reconstruction by a conventional convolutional autoencoder, which was

initially proposed for image compression and de-noising (Du et al., 2017), since we do not

focus on achieving a high-quality reconstructed. In this regard, several regularizers have

been proposed in order to avoid over-fitting, with weigh decay and the Jacobian matrix

(Rifai et al., 2011) being popular choices.

4.3 Proposed Method

We propose a Supervised Residual Autoencoder (S-RAE) for learning generalizable

embeddings through the process of jointly learning to classify and reconstruct images.

We now explain the main components in our model and how we use it to perform object

recognition.

4.3.1 Architecture Design

Our architecture is inspired by state-of-the-art convolutional autoencoders like U-Net

(Ronneberger et al., 2015), SegNet (Vijay et al., 2017), and PointGrid (Le and Duan,

2018), in which the encoder corresponds to a state-of-the-art CNN model (VGG (Simonyan

and Zisserman, 2015) for the aforementioned works) and the decoder mirrors the Encoder

configuration, replacing downsampling operations for upsampling ones and skipping

connections across encoder and decoder .

In our model (Fig 4.2(a)), the encoder corresponds to ResNet-50 (He et al., 2016). We

flatten the last feature map from the encoder and connect it to a fully connected layer.

This dense layer is the bottleneck (code) in our deep convolutional autoencoder, and it is

shared by a fully supervised classification layer and the input to the Decoder.
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Dense layer - Softmax

Dense layer - Bottleneck

Convolution

Deconvolution

Nearest Neigh. interpolation

Convolution - downsampling

Residual connection

MaxPooling

DecoderBottleneckEncoder

(a) Training

Bottleneck

Features Embedding Space

Labeled embeddings

Vice

Monkey

Sprinkler

Encoder

Unknown

(b) Inference

Figure 4.2: S-RAE: Supervised Residual Autoencoder for learning generalizable em-
beddings. a) Architecture design. b) Deployment: We perform inference by a k-nearest
neighbors search over labeled embeddings, obtained from training images, and a query
embedding with an unknown label.
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In the Decoder, the bottleneck is connected to a fully connected layer for bringing

the dimensionality back to the one in the last convolutional block size (2048 elements

for ResNet 50). We then mirrored the convolution layers from the encoder and utilize

transpose convolutions (deconvolutions) with 1×1 kernel for upsampling the feature

maps between the residual blocks, where convolutions with stride two were used for

downsampling and nearest neighbors interpolation for upsampling the feature maps

that were obtained by max-pool or average pooling operations. After the first upsampling

operation, the one increasing the feature maps from 1×1×2048 to 7×7×2048 (height ×

width × channels), we added a skipping connection from the last convolutional feature

map in the encoder and first convolutional block in the decoder to ease the optimization

by avoiding having a feature map with a high content of zeros or repeated values. We

show in the ablation studies section that adding more skipping connections across the

encoder and decoder, leads to a decrease in performance due to the weaker learned

representation in the bottleneck.

4.3.2 A Loss Function for Learning Generalizable Embeddings

The loss function in our Supervised Residual Autoencoder (S-RAE) is defined by:

(4.1) LS-RAE =Lreconstruction +Lsof tmax

(4.2) Lreconstruction =LMSE =
1

m

m
∑

i=i

(X i − X irec
)2

(4.3) Lsof tmax =−
∑

ylog(q(x))

Where the reconstruction loss in the image space is the mean squared error between

an input image X i, with m pixels, and its reconstruction by the decoder X irec
(Equation

4.2). The softmax loss (Equation 4.3) utilizes the groundtruth labels y and features x from

the classification layer (yellow block in Figure 4.2(a)), and acts as a regulizer by imposing

a separability constraint into the embeddings. Our motivation behind this, is to ensure

that the manifolds found by the autoencoder are separable (which will be reflected in

the k-nearest neighbors search). In (Le et al., 2018), the authors utilize sums of squared

errors, as opposed to cross-entropy, to derivate their theoretical demonstration on the
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usefulness of using the reconstruction loss as a regularizer. We show in the ablation

studies that selecting cross-entropy loss leads to higher accuracy. Noticeably, there is no

weighting term for the reconstructions loss, as early experiments show no improvements

over the unweighted loss term.

4.3.3 Inference by Matching Embedding

During deployment, we use the encoder and embeddings x̂ from the bottleneck (red

dense layer in Figure 4.2(b)). Using the embeddings from the bottleneck is a critical

aspect of our work since the bottleneck was never trained with the distances between

embeddings, but by using the combination of the reconstruction and classification losses.

We project the training images into the embedding space and perform inference by

matching embeddings with known labels and a query embedding from a testing image.

That is formally expressed in Equation 4.4, where x̂i represents an embedding generated

by the bottleneck, K represents the number of neighbors to check and NK (x̂i) the index

of the K neighbors, I is an indicator function expressed in Equation 4.5.

(4.4) P(y= c|x̂i,K)=
1

K

∑

i∈NK (x̂i)
I(yi = c)

(4.5) I(e)=







1 if e is True

0 if e is False

Performing inference by matching embeddings allows us to evaluate how discriminant

the embeddings from each model are. Inference by the softmax and bottleneck layers is

also possible, as we show in the experiments section. We selected the standard version of

k-nearest neighbors (with k = 5) and not the weighted version, to produce comparable

results with (Zeng et al., 2018).

As shown in Figure 4.2(b)), we remove the decoder since in this chapter we are

interested in the recognition performance only, however, the Decoder has the potential to

be used for image segmentation as in SegNet (Vijay et al., 2017) and U-Net (Ronneberger

et al., 2015).
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4.4 Experimental Results

In order to test the usefulness of our approach for generalizing under unseen domains,

we tested our method across datasets where the training examples are obtained from a

single domain and the testing examples depicts a different one. We then describe the

datasets, baselines and ablation studies that we conducted.

4.4.1 Datasets

We used a total of eight datasets, six of them (Linemod, Tejani, RU-APC, T-LESS, TUD-L,

and TOY-L) were initially proposed for 6D pose estimation and offer the challenge of

learning from few data with clean background and controlled illumination and generalize

in environments depicting high clutter and occlusions, which is the interest of this work.

For these datasets, we used the unified format proposed by (Hodan et al., 2018), which

was designed for an easy benchmarking of these datasets. This benchmark consist of

15,563 images for training and 7,450 images for testing.

We also utilize ToyBox (Wang et al., 2017c) which contains 360 objects and allows

us to evaluate how well the model scales for learning a higher number of instances. We

selected the hodgepodge sessions for training and the x,y,z transformations for testing,

which includes changes in scale and partial occlusions. We sub-sampled the original

dataset set by selecting a 10% (with a normal random distribution) of the original dataset,

in order to fit it in our memory requirements. We denote ToyBox* as the sub-sampled

version that we used in this work. This resulted in using 2,466 images for training and

6,977 images for testing.

The remaining dataset is CORe50 (Lomonaco and Maltoni, 2017), which was proposed

for continuous/lifelong learning. It shows 50 objects across eleven environments, which

allows us to test the generalization capabilities not only to unseen objects’ conditions

but also new environments. We chose the first scenario for training and the conventional

scenarios #3, #7 and #10 for testing. This results in 14,989 images for training and 44,972

images for testing.

In Figure 4.3, we show an example between training and testing domains. In Table

4.1 we describe of the differences between training and testing environments.
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train test

(a) TU-Dresden

train test

(b) Tejani

train test

(c) ToyBox

train test

(d) Rutgers-APC

train test

(e) CORe50

train test

(f) Toyota-light

train test

(g) Linemod

train test

(h) T-LESS

Figure 4.3: Contrast between train and testing conditions for each dataset.

66



4.4. EXPERIMENTAL RESULTS

Table 4.1: Differences between train and test environments.

Datasets Objects Training Domain Testing Domain

(a) TU Dresden (Hodan et al., 2018) 3
real images were taken with a

specific background and illumination
clutter and differing lighting conditions

(b) Tejani (Tejani et al., 2014) 6 synthetic images, clean background clutter and slight occlusions
(c) Toybox* (Wang et al., 2017c) 360 real images, clean background changes in scale and mild occlusions
(d) Rutgers - APC (Rennie et al., 2016) 14 synthetic images, clean background clutter and slight occlusions

(e) CORe50 (Lomonaco and Maltoni, 2017) 50
real images were taken with a

specific background and illumination
clutter and differing object poses and

lighting conditions
(f) Toyota - Light (Hodan et al., 2018) 21 synthetic images, clean background different lighting conditions
(g) Linemode (Hinterstoisser et al., 2013) 15 synthetic images, clean background heavily cluttered and mild occlusions
(h) T-LESS (Hodaň et al., 2017) 30 real images, clean background heavily cluttered and heavy occlusions

4.4.2 Baselines

All trained models, but DR-GAN, contain the same number of parameters during deploy-

ment, consisting of ResNet-50 with an additional fully connected layer of 128 elements.

In DR-GAN, we did not add an additional layer in order to keep the model as close as

possible to the author’s implementation. We did not compare against the supervised

autoencoders proposed by (Le et al., 2018) since the model was designed for small-scale

images (32x32 images) and has much less capacity, with only two convolutional layers

compared to 50 layers in ResNet-50; however, an equivalent model with higher capacity

is presented in the ablation studies. Each baseline was implemented as follows:

ImageNet Features: As a first baseline, we explore the usefulness of utilizing the

features generated by a pre-trained ResNet-50 with the ImageNet dataset. To perform

the k-nearest neighbors search, we utilize the flattened features from the last convolution,

consisting of 2048 elements. Since ResNet50 does not have intermediate fully connected

layers, we follow the methodology proposed by (Zeng et al., 2018) which consists of

taking the feature map after the average pooling layer and flatten it to a 1-D vector

with 2048 elements (this dimension resulted from using a resolution of 224×224 pixels).

This baseline allowed us to explore if a model trained with a large dataset can produce

discriminative embeddings for multi-view object recognition.

Triplet Loss: The triplet loss is a widely effective metric for discriminative embed-

dings (Zhe et al., 2018). For training the model, we select a margin value of m = 4 as

performed by (He et al., 2018), and we performed hard mining in the form of selecting the

20% most difficult examples per mini-batch and using them in the subsequent batches.

Center Loss: This supervised loss was designed for generating discriminative em-

beddings by clustering data points to a leaned center point from each class. We selected

the hyperparameters λ= 0.1 and α= 0.005 in the loss function (Wen et al., 2016). We

utilized the PyTorch implementation from (Zhou, 2018).

DR-GAN: We replaced the original encoder, based on CASIA-Net (Yi et al., 2014), for
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ResNet-50 so the encoder’s capacity can be comparable across all models. We removed

poses prediction, since some of our datasets do not provide such information, and keep

the label prediction in the discriminator and image reconstruction in the generator. We

utilize the PyTorch implementation from (Junh, 2019).

4.4.3 Implementation Details

We initialize the transposed convolution filters using the Kaiming-normal method (He

et al., 2015), the fully connected layer with a uniform random distribution. Convolutions

in the Encoder and Decoder are initialized from a pre-trained Resnet-50 pretrained with

Imagenet. Thus, our model works with RGB images with size 224×224. All convolution

layers are followed by batch normalization and ReLU layers with a skipping connec-

tion as ResNet-50 (He et al., 2016). The transposed convolutions are followed a batch

normalization and linear activations.

We choose a dimensionality of 128 elements for the bottleneck, in order to reduce

the redundant information from the last convolutional feature map. As studied in

(Vassileios Balntas and Mikolajczyk, 2016) and (Taigman et al., 2014), a dimensionality

of 128 can offer a comparable recognition performance as a 4096 one, indicating that the

latter might containing highly redundant information.

For training our model, we used mini-batches of 55 images, as it that was the largest

batch size possible in our GTX 1080Ti GPUs with 11GB, we used stochastic gradient

descent with a learning rate of 1×10−3 and momentum 0.9. We developed our models

using PyTorch 1.0 (Paszke et al., 2017), trained on GTX 1080Ti GPUs, and utilized the

multicore k-nearest neighbors algorithm from the sci-kit learn library (Pedregosa et al.,

2011). Code with training scripts is available at (Lagunes-Fortiz, 2019a).

4.4.4 Object Recognition Accuracy

In Table 4.2 we present a comparison of each model across the eight datasets. Features

were extracted from the bottleneck, as shown in Figure 4.2(b). We utilize k-nearest

neighbors with k = 5 and trained every model three times using the same train/testing

split. We show the mean and standard error accuracy, in order to evaluate the stability

of each model.

Our S-RAE achieved an average 5.23% higher performance with respect to the center

loss, the closest baseline. It resulted particularly useful for the Linemode dataset with a

12.12% increase with respect to the ImageNet features, the closest baseline. For Tejani
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and T-LESS, it achieved a competitive performance by around 1% behind the closest

baselines, being center loss and ImageNet Features respectively.

In general, all the models struggled for T-LESS and Linemode datasets, indicating

that models trained to recognize texture-less objects from clean data and testing on

highly clutter and occluded environments, it is still a big limitation for current domain

generalization approaches. Possible solutions to mitigate this limited performance is by

including additional information such as depth and/or bounding box/masks estimation,

which can be used to enforce attention to the object’s geometry and reduce the attention

to the background’s appearance.

The model trained with center loss offered a competitive performance, with an average

5.82% behind our model; however, from Table 4.2, it is noticeable that it struggled for

generalizing its centering effect over datasets with a higher number of classes. Our

method has an additional advantage over the center loss approach, by not requiring

searching the hyperparameters that balance softmax and centering loss respectably,

since our losses can be combined linearly, nor it is necessary to compute the embeddings

distances during training.

In DR-GAN, the embeddings generated by the encoder, which is part of the generator,

were not as discriminative as our approach, with an average 22% lower performance.

The lack of discriminability on the encoder’s embedding is likely to the fact that the

classification is done by the discriminator and the image generation by the generator,

and each component is trained by a separated optimizer and not as a multi-task model

where a single optimizer is used and the second task is considered as a regularizer. Thus,

the discriminator acts as a dense layer trained purely with the cross-entropy loss as in

in conventional CNNs.

From Figure 4.5(a), we show how the embeddings generated by our method lead to a

higher recognition accuracy, compared with the embeddings generated by only utilizing

the cross-entropy or triplet loss. Overall, we can infer that our model is successful in

finding a low-dimensionality latent representation (manifold) for every object, which is

theoretically invariant to small perturbations.

In Table 4.3 we present a comparison of each model across the eight datasets with

the use of the cumulative moving average filter, like the one proposed in Chapter 3, with

a window size of 20 frames. Since the CNN is not predicting labels as in Chapter 3, we

utilize the predictions from the nearest neighbors classifier. Similarly to the previous

experiments, the features were extracted from the bottleneck, as shown in Figure 4.2(b),

we used the models from the previous table and utilizing k-nearest neighbors with k = 5.
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Table 4.2: Average accuracy and standard error.

Datasets
ImageNet
Features

Triplet
Network

Center
Loss

DR-GAN
S-RAE

(ours)

(a) TU Dresden Light 89.95 94.21 ± 0.58 99.60 ± 0.11 94.40 ± 1.5 99.82 ± 0.06

(b) Tejani 66.49 46.79 ± 4.11 95.89 ± 2.92 65.28 ± 1.61 94.75 ± 0.34
(c) ToyBox* 52.46 65.02 ± 1.49 75.49 ± 1.20 59.43 ± 0.71 80.25 ± 0.67

(d) Rutgers-APC 34.96 33.95 ± 2.71 67.72 ± 2.34 43.11 ± 1.95 74.95 ± 0.77

(e) Core50 29.91 41.22 ± 1.26 65.81 ± 3.78 53.51 ± 1.82 72.17 ± 1.52

(f) Toyota Light 50.23 15.21 ± 1.41 55.87 ± 2.98 47.62 ± 1.53 61.13 ± 0.39

(g) Linemod 38.37 39.02 ± 5.08 34.76 ± 4.28 22.10 ± 2.64 51.35 ± 2.12

(h) T-LESS 42.97 27.21 ± 1.08 39.23 ± 4.75 19.49 ± 0.88 41.79 ± 0.33
Average 50.67 45.33 ± 2.10 66.79 ± 2.80 50.61 ± 1.58 72.02 ± 1.12

Table 4.3: % Accuracy with temporal smoothing using a cumulative moving average.

Datasets
ImageNet
Features

Triplet
Network

Center
Loss

DR-GAN
S-RAE

(ours)

(a) TU Dresden Light 95.21 98.61 ± 0.68 99.80 ± 0.21 98.60 ± 0.21 99.92 ± 0.04

(b) Tejani 70.33 47.82 ± 3.87 97.89 ± 2.12 68.38 ± 1.01 96.81 ± 0.12
(c) ToyBox* 70.25 75.24 ± 1.38 84.12 ± 1.09 65.33 ± 0.64 89.16 ± 0.56

(d) Rutgers-APC 37.89 36.45 ± 2.56 70.24 ± 1.24 46.51 ± 1.24 81.63 ± 0.47

(e) Core50 33.43 51.53 ± 1.16 69.52 ± 2.58 57.91 ± 1.62 76.97 ± 1.12

(f) Toyota Light 56.43 16.51 ± 1.31 59.20 ± 2.31 53.12 ± 1.31 69.03 ± 0.32

(g) Linemod 47.12 42.02 ± 4.88 36.26 ± 3.58 24.34 ± 2.21 56.15 ± 2.08

(h) T-LESS 54.03 27.81 ± 1.02 43.10 ± 3.21 23.10 ± 0.21 46.39 ± 0.33
Average 58.08 49.49 ± 2.11 70.02 ± 2.04 54.78 ± 1.05 77.01 ± 0.63

For this experiment we did not aim for finding an optimal value for the Cumulative

Moving Average, instead, we wanted to explore how utilizing a generic temporal filter

impacts the recognition performance across all datasets.

By using the temporal filter, the recognition performance increased by an average 5%

across all the models. Indicating that temporal filters are also useful on CNNs trained

with limited data, in the form of data collected from a single domain, and trained for

manifold learning, in contrast with label prediction as in Chapter 3.

As discussed in Chapter 3, a disadvantage of the moving average is finding the

optimal value for the number of frames to be considered in the summation, which we

found by a greedy search in each dataset. In Chapter 6, we propose an alternative method

that integrates the idea of temporal modeling with manifold learning, in order to learn

discriminative features that are aware of the temporal coherence present in nearby

frames.

Results from Tables 4.2 and 4.3 indicates that our proposed Residual Supervised

Autoencoder achieves state-of-the-art performance for learning generalizable features
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from training data collected in a single domain, which is a core aspect in the in-situ

learning that we are after. The other aspect to consider in this dissertation, is the

efficiency for learning new instances, that is, learning new instances without finetuning

the model. The motivation being the desirability of a model capable of learning new

objects within the natural place where the objects are utilized, meaning that high-end

computing resources might not be available for finetune the model.

To test such capability in our model, we utilize the methodology proposed by Zeng

et al. (2018), which aims to measure the discriminability of the features generated from

seen and unseen objects. To do so, each dataset is divided into a novel and known sets,

where two-thirds of the classes composed the known set are used for training the model

and the remaining third correspond to the novel set and it is used for recognizing new

instances without finetuning the model, and performing the nearest neighbors search

in the embeddings space. The known and novel subsets are different from the typical

training/validation/test splits, since in the novel set, contain instances that were not

seen during training.

The methodology consists of utilizing the model trained with the known set and

evaluate how well the model generalizes for producing discriminative features of objects

not seen during training. For associating the embeddings between training and testing

images the nearest neighbors search, similar to the one performed in the previous

experiments, is performed in the embeddings space. The instances for novel and known

sets were randomly chosen and are stated in the Appendix A.

Noticeably, finetuning the last layer for producing labels from the objects in the novel

split, is still not a viable option for in-situ learning, since the full original training data

is required in order to avoid forgetting the previous learned instances. Furthermore,

constantly finetuning a model with an ever-growing dataset is an inefficient solution,

both in energy and time required, that motivate us for a model that does not require

access to the original training set or perform any sort of finetuning at all.

In Table 4.4, we show the performance achieved by every model when two thirds of

the dataset are used for training and the remaining third for learning objects on-the-fly.

We show the recognition performance when a query image is known to belong to a known

object (rows denoted as Known), when it belongs to a novel object (rows denoted as

Novel) and the general case where there is no prior information about the query object

and features from both known and novel object are project in the embeddings space for

performing the nearest neighbors search (rows denoted as Known & Novel).

The Triplet Network was the model with worst performance overall. Still, its
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Table 4.4: Learning novel objects on-the-fly % Accuracy top-1 recognition

Objects
ImageNet
Features

Triplet
Network

Center
Loss

DR-GAN
S-RAE
(ours)

(a) TU Dresden Light
Known 99.22 99.34 99.86 99.63 99.70
Novel 100 100 100 100 100
Known & Novel 99.00 89.95 98.19 95.01 96.66
(b) Tejani
Known 66.60 64.90 73.79 65.51 81.44

Novel 98.23 71.43 69.19 93.49 92.02
Known & Novel 66.49 49.39 57.70 52.5 59.13
(c) ToyBox*
Known 64.44 43.74 80.51 77.34 79.04

Novel 55.18 53.22 79.01 77.25 78.87
Known & Novel 52.46 43.74 69.36 72.34 74.21

(d) Rutgers-APC
Known 37.70 43.59 56.74 65.86 63.19
Novel 52.23 42.60 62.26 71.77 73.47

Known & Novel 34.96 35.81 42.84 38.41 44.65

(e) Core50
Known 59.95 33.69 91.59 93.32 92.99
Novel 66.82 41.28 94.22 95.35 96.11

Known & Novel 54.12 29.91 77.25 86.55 86.39
(f) Toyota Light
Known 56.50 35.96 54.80 61.61 56.81
Novel 69.55 43.89 44.24 63.89 54.53
Known & Novel 50.23 12.92 32.44 32.20 38.21
(g) Linemod
Known 42.68 52.60 60.54 49.46 56.01
Novel 58.45 53.40 35.37 53.68 44.71
Known & Novel 38.37 31.60 36.77 30.47 34.70
(h) T-LESS
Known 48.95 15.05 44.85 36.18 35.32
Novel 51.95 18.64 33.13 35.03 37.51
Known & Novel 42.97 12.97 28.04 28.27 27.55
Average
Known 59.05 48.61 70.34 68.61 70.56

Novel 69.05 53.05 64.67 73.80 72.15
Known & Novel 54.83 38.28 55.32 54.48 57.58
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performance is much higher than a random chance, and for the case of learning few

objects it offered competitive results, considering that is being trained by using semi-

supervised examples.

Using the ImageNet Features from the last convolution layer from a pre-trained

model with the ImageNet dataset, lead to better results for learning texture-less objects

with clean background, but cluttered and occluded testing scenarios. This was not the

case for learning objects in the texture and instance level recognition, since the pre-

trained model was trained for learning in the class level and not instances. Additionally,

the embeddings generated by the pre-trained model are 16x bigger (2048 vs 128) which

led to a slower inference time.

The DR-GAN approach generalized well when there are few objects projected in the

metric space, since the embeddings tend to be more spread due to the lack of additional

regulizers constraining the learned features. As a result of this, it has overall lower

performance when known and novel embeddings are projected in the same space.

The model trained with center loss offered a competitive performance for known

objects, however, from Table 4.4, it is noticeable that it struggled for generalizing its

centering effect over unseen examples and thus, the combined known and novel objects

embeddings lead to a lower performance.

Our Residual Supervised Autoencoder had the best performance with the biggest

datasets (Toybox and CORe50), had a similar performance for the known objects as center

loss, with the advantage of not searching the hyperparameters alpha and lambda that

balances softmax and centering loss respectably, since our losses can be combined directly.

However, it also struggled for generalizing in the texture-less datasets, as it performed

worse than utilizing the ImageNet features.

For the TLESS dataset, we attempted to alleviate the over-fitting when learning from

few and texture-less images, with two approaches: (a) freezing parts of the models and

trained only the last and deconvolution layers and (b) performing regularization in the

form of weight decay (wd = 1×10−3 to wd = 1×10−8) and dropout (p = 0.1 to p = 0.7).

However, neither of these approaches led to higher accuracies, indicating that a more

complex solution is necessary for this particular dataset.

Noticeably, all the model struggled in the case of the feature space with embeddings

from known and novel objects. As an example of this, our model, achieves an average

precision of 70.56% and 72.15% for known and novel splits respectively. However, when

the two sets are projected into the embeddings space the performance decreases to

57.58%. Similarly, the model trained with center loss achieves an average precision
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of 70.34% and 64.67% for known and novel splits respectively and a lower 55.32% for

combined known and novel splits. Thus, in Chapter 5 we propose a model that deals

better with the more general case of having embeddings from known and novel objects

in the same metric space.

In order to learn more about the limitations of our model for learning novel objects

on-the-fly we show images generated from both a known and unseen object in Figure 4.4.

We utilized a the Tejani dataset for showing a case where our model achieves a higher

and worse performance than the baselines. Figures 4.4(a) and 4.4(b) show an object

seen during training, where the model is able to reconstruct the input image similar

and during deployment ignores the clutter in the background and reconstruct only the

information regarding the object of interest. On the other hand, Figures 4.4(c) and 4.4(d)

show an object never seen during training. In this case the model is not able to fully

reconstruct the input image, omitting parts of the object from both training and testing

images, which ultimately was reflected in lower recognition performance. This indicates

that our S-RAE does not have a good generalization for unseen objects and finetuning is

the recommended strategy for learning novel objects.

4.4.5 Ablation Studies

We performed the following modifications in our model, that led to the configuration with

the best overall performance. Our ablations studies cover the use of different upsampling

operations such as transpose convolutions and nearest neighbors interpolations, and the

use of alternative loss functions, including the classification and reconstruction losses

separately:

Architechture Design: In Figure 4.5(a), we present several configurations of our

model. First, we remove the classification loss, resulting in a conventional autoencoder,

and reconstruction loss, resulting in the original ResNet-50 model for classification.

We then explore the use of upsampling operations, considering a decoder with trans-

pose convolutions as the only upsampling operation, and using interpolation operations

only. We found a combination of both led to an average 10% increase for our datasets.

We also present the effect of the skipping connection between the last convolutional

block and the first upsampling operation, using this configuration resulted in an average

1.23% increased than not using skipping connection at all and 12% increase compared to

using skipping connections across all ResNet blocks.
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(a) Object seen during training.spa The model is
able to reconstruct the shape of the input image.

(b) Boost in performance: space The reconstructed
testing image shows that the image was encoded
using the object’s appearance only and ignoring the
background.

(c) Object seen during training.spa The model is
able to reconstruct the shape of the input image.

(d) Boost in performance: space The reconstructed
testing image shows that the image was encoded
using the object’s appearance only and ignoring the
background.

Figure 4.4: Advantages and limitations of our residual supervised autoencoder for
learning novel objects on-the-fly.

We include the effect of utilizing the sum of square errors for classification, as

proposed in the supervised autoencoders by (Le et al., 2018), which led to a 20% drop in

performance compared with the cross-entropy loss.

The final version of our model, which includes a mixture of interpolations and trans-

posed convolutions, a single skipping connection, and trained with a combination of

cross-entropy and mean squared error, led to higher performance across all datasets

but Toyota-light. In this case, the model achieves a more stable performance but with a

slight decrease of 2.8% compared with one trained model without a skipping connection.

Feature Extraction and embeddings matching: Additionally, We explore if it is

possible to achieve better classification performance from earlier layers of the model.

We perform classification by utilizing the features from each ResNet block and the

classification layer used for regularized the model. For the ResNet blocks we utilize
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(b) Feature Extraction.

Figure 4.5: Ablation studies include modifications in the architecture (a) and performance
achieved by each ResNet block in the encoder and the classification layer (b).
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k-nearest neighbors with k = 5 for matching embeddings from training images. For the

classification layer we softmax the predictions and chose the prediction with the highest

score. However, a disadvantage of utilizing the k-nearest neighbors search is that the

inference time keeps increasing, as more training samples are acquired.

Every experiment was run three times. From Figure 4.5(b) we can see how extracting

features from the bottleneck resulted into an overall slightly increase of 1.3% com-

pared with the classification layer and comparable performance, with an average 0.43%

decrease from the 16x larger Block 4. Probabilities from the classification layer were

obtained by performing a softmax operation in the predicted labels.

To further verify our intuition of a successful generation of discriminative features,

we present t-SNE visualizations for Tejani (Figure 4.6), Rutgers-APC (Figure 4.7) and for

CORe50 dataset (Figure 4.8). The objects from the legends are shown in the Appendix A.

In these Figures, we can appreciate how the triplet loss, and DR-GAN, succeed

in generating discriminative embeddings in the training examples but struggled to

bring together embeddings from the same class but different domain. Center loss, and

our proposed S-RAE, were able to bring together embeddings from different domains.

Noticeably, embeddings from novel objects tend to be more spread, compared to the

embeddings from known objects. This spreading has a negative effect when embeddings

from known and novel object are present in the feature space and the proposed method

in Chapter 5 ameliorates the feature’s spreading in novel object.

4.5 Summary

In this chapter, we address the problem of learning to recognize objects using a few

example data and generalize to unseen environments, which is a core aspect in the

in-situ learning scenario that we are after. The features learned by our model are

discriminative between classes and aim to be indistinguishable between domains. Our

approach consists of a Supervised Residual Autoencoder (S-RAE) that combines image

classification and reconstruction. We empirically evaluate our approach on eight real-

world object recognition datasets used for Robotics and Computer Vision recognition

tasks and achieving an average 5.23% higher performance compared with the closest

baseline and over 20% higher performance compared with an state-of-the-art DR-GAN, an

adversarial network approach and center loss, a supervised metric learning approach for

learning discriminative features. Our proposed S-RAE however, assumes the availability

of computational resources for learning new instances, which can be a big limitation for
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Figure 4.6: t-SNE visualizations Tejani Dataset. Embeddings with plus sign(+) and
circles(o) indicates embeddings from training and testing domain respectively. Objects
are shown in Appendix A. Image better seen on the digital format.

current autonomous platform. Therefore in the following chapter we address the problem

of learning generalizable feature that can be use to learn to recognize new instances

efficiently.
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Figure 4.7: t-SNE visualizations for Rutgers-APC. Embeddings with plus sign(+) and
circles(o) indicates embeddings from training and testing domain respectively. Objects
are shown in Appendix A. Image better seen on the digital format.
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Figure 4.8: t-SNE visualizations in CORe50. Embeddings with plus sign(+) and circles(o)
indicates embeddings from training and testing domain respectively. Objects are shown
in Appendix A. Image better seen on the digital format.
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5
LEARNING DISCRIMATIVE EMBEDDINGS ON-THE-FLY

In Chapter 4, we propose a model for domain generalization which was particularly

useful for learning features from a single source domain. However, it struggles to learn

additional instances efficiently, as it needs to be retrained to achieve state-of-the-art

recognition performance. Therefore, in this chapter we propose the end-to-end learning

of discriminative features by a disentangled representation of classification and image

similarity that allows the learning on-the-fly of additional objects. Similarly to the

previous chapter, our approach can learn from limited data, e.g. data collecting within a

specific a place, and able to generalize in unseen environments and nuisances.

5.1 Introduction

In this chapter we address the problem of learning to recognize new objects on-the-fly

which is a core component in our in-situ learning problem, where a model is required to

process new objects as soon as they are being perceived. Over the past few years, the

robotics and computer vision community have adopted Convolutional Neural Networks

(CNNs) as the standard approach for addressing object recognition and localization

(Huang et al., 2017b). Despite the human-level performance in recognition accuracy,

CNNs are still very limited tools compared with the cognition capabilities of humans

(Lake et al., 2017). One of these limitations is the ability to learn new instances effi-

ciently, without catastrophically forgetting the previously learned ones and with the

capability for generalization over the commonly encountered changes in perspective,
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scale, illumination, object’s pose and noise.

When using CNNs, a typical approach for learning new objects is by finetuning

parts of the entire model. However, this approach relies on the assumption that the

original training set is still available and requires high-end computational resources

for training the ever-growing dataset efficiently, which can be unfeasible for robots with

limited hardware. Therefore, we propose an alternative to the finetuning methodology

by designing an architecture that:

1. Instead of just predicting labels, it learns to generate discriminative and separable

features (a.k.a. embeddings) of an object’s viewpoints by using a combination of a

classification and metric learning losses on the features space.

2. Infers an object’s identity efficiently by utilizing a lightweight classifier in the

embeddings space, to keep inference time in the order of milliseconds and decision

boundaries can be retrained efficiently when new objects are learned.

The primary goal in this chapter is to show that a single-branch, two-heads CNN can

be trained effortlessly to generate discriminative and separable features which can be

useful for learning new objects on-the-fly. We evaluate our approach on four real-world

images datasets used for Robotics and Computer Vision applications: Amazon Robotics

Challenge 2017 by MIT-Princeton, T-LESS, ToyBox, and CORe50 datasets.

By combining a metric and classification losses, the model learns to generate dis-

criminative and separable embeddings in the features space Rn, as depicted in Figure

5.1. In this embeddings space, a lightweight classifier such as k-nearest neighbors or a

linear support vector machine (Song et al., 2016) can be used for predicting the iden-

tity of a query image. Furthermore, new objects can be mapped to Rn using the same

learned model, and only the lightweight classifier has to be re-trained in order to get the

predictions considering all learned objects.

We evaluate our approach in four datasets used for multi-view object recognition:

T-LESS, ToyBox, Amazon Robotics Challenge 2017 by Princeton-MIT and CORe50 and

we use precision as the evaluation metric.

5.2 Related Work

The most straightforward strategy for learning from a continuous stream of data using

CNNs is to retrain the model (entirely or just a few layers) using the updated training
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Features Embedding Space

Known  Novel

Toilet brushGloves Tennis balls

Training Deployment

Figure 5.1: The problem we aim to solve is to learn new objects without re-training the
CNN. To do so, we teach a model to maximize the separability (blue arrow) and minimize
the distance of embeddings from the same instance (red arrows), in a supervised manner.
During deployment, the model can produce embeddings with these properties even for
objects not seen during training. In order to perform classification, we use a lightweight
classifier such as k-nearest neighbors for matching training and testing embeddings.

set (Jain et al., 2014; Xiao et al., 2014; Käding et al., 2016). While these approaches

offer state-of-the-art performance, it is an unfeasible approach for many autonomous

and mobile robots with limited computational resources that are required to learn new

objects efficiently. While continuous finetuning approaches have been explored (Käding

et al., 2016) it is an unfeasible approach for most autonomous robotic platforms given

three main limitations: 1 ) It assumes access to the original training set, which can easily

reach the order of Terabytes (TBs) even with the storing of low-quality images. 2) It

requires high-end dedicated computational resources for training the model efficiently

and 3) The time required for re-training increases linearly as more items are introduced.

4) The power consumption required to re-train the model every time a new object is

required to be learned, might compromise the autonomy of a mobile platform with a

limited source of energy. These limitations motivate for developing models that will not

require finetuning for learning new objects.

An alternative strategy to finetuning the model for label predictions, is the metric

learning (a.k.a. similarity learning) approach, in which instead of just predicting labels,

the model is trained to learn the concept of similarity by bringing close to each other
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features from the same instance and far apart otherwise, in a feature space Rn.

Currently, the best approaches to metric learning employ state-of-the-art CNNs (Song

et al., 2017; Bellet et al., 2013). A pioneering model is the Siamese architecture (Hadsell

et al., 2006) which utilizes the contrastive loss (Equation 5.1) defines as:

(5.1) Lcontrastive = (1−Y )
1

2
D(X1, X2)+ (Y )

1

2
[m−D(X1, X2)]+

Where X1, X2 are pairs of images, that can be from the same or different objects,

indicated in the vector Y . A CNN fθ with weights θ is used for mapping images to an

embedding space Rn (Equation 5.2), where the Euclidean distance (Equation 5.3) d is

used for computing the similarity between the two embeddings. Dot product, Mahalanobis

distance or even a trainable metric as in (Xing et al., 2002), has been proposed as

an alternatives to Equation 5.3. Finally, the [·]+ operator denotes the hinge function

equivalent to max(0, ·) function.

(5.2) D(Xa, Xb)= d( fθ(Xa), fθ(Xb))

(5.3) d(xa, xb)=
1

2
‖xa − xb‖

2
2

While the siamese architecture has been used successfully for one-shot learning

(Koch et al., 2015), dimensionality reduction (Hadsell et al., 2006), image classification

(Kumar et al., 2015), and cross-domain adaptation (Zeng et al., 2018) with competitive

results, it is unable to learn the concepts of similarity and dissimilarity at the same time,

since the pairs are either from the same or different object. We show more details about

its limitations in the experiments section.

This limitation is addressed in the triplet architecture (Schroff et al., 2015), which

encourages a relative distance constraint between similar and dissimilar images simul-

taneously in the triplet loss (Equation 5.4).

(5.4) Ltriplet =
[

D(Xa, X p)−D(Xa, Xn)+m
]

+

The triplet architecture became the most widely used approach for metric learning

(Zhe et al., 2018), with two main limitations:
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1. Sampling a useful set of the triplets in Equation. 5.4 is a non-trivial and crucial

task (Schroff et al., 2015), given that fθ quickly learns to correctly map most

trivial triplets, it leaves a large fraction of all triplets uninformative and makes

sophisticated mining of triplets a necessary step for training (Wu et al., 2017).

2. The loss is defined in terms of small groups of images in the mini-batch and does

not consider a global structure of the training set, which might lead to sub-optimal

solutions depending on the mini-batch size.

Thus, many variants of the triplet architecture aim to address these issues. Con-

cerning mini-batch formation, a first approach for hard mining triplets is the Lifted

Structure (Song et al., 2016) approach, which consists of incorporating on-line hard

negative mining by comparing each positive example against all negative examples in

the training mini-batch. The Quadruplet (Chen et al., 2017) architecture incorporates

an additional negative example in the mini-batch aiming to facilitate the clustering of

negative examples. Quintuple (Huang et al., 2016a) and N-pair (Sohn, 2016) models are

extensions of this idea.

For selecting the best triplets, (Kumar et al., 2017) proposes a smart mining trainable

module that forms triplets from a pool composed of semi-hard positive and negative

samples. Similarly, (Huang et al., 2016b) proposes a trainable module named position-

dependant deep metric (PDDM) that scores the hardest negative example within the

mini-batch, based on relative and global distances within the batch. More recently,

(Hermans et al., 2017) proposed Batch Hard forming, where the core idea is to form

batches by randomly sampling P classes (i.e., instances) and then selecting the hardest

positive and the hardest negative samples within the batch. An orthogonal approach

for speeding up the training is angular loss (Wang et al., 2017b) where authors propose

an additional angular loss term that constrains the upper bound angle in each triplet

triangle.

For addressing the lack of global structure in the metric space, (Gecer et al., 2017)

proposes to combine sample-based methods (such as triplets or softmax) with set-based

methods (such SMVs). This approach is trained with a max-margin loss, which improves

the separability of the embeddings by maximizing the possible inter-class margin by

using support vector machines (SVMs). The main limitation, having to train the model

set-based offline and the sample-based step online.

In (Kumar et al., 2015), authors propose a global loss that tries to minimize the

variance within each embedding distribution and maximize the mean value of the
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distances between non-matching pairs. The drawback of this method is requiring the

complete training set loaded in memory, in order to estimate variance and means in each

class.

An orthogonal approach to mini-batches with tuples (pairs, triplets, n-pairs, etc.)

is the Facility Location (Song et al., 2017) approach, where instead of training the

model based in the similarity between pairs or triplets, they learn directly to cluster

classes by mapping each example i to its nearest point from a chosen set of landmarks

defined beforehand. While this approach achieved state-of-the-art for image retrieval

tasks, the number and location of medoids classes has to be fixed in order to precompute

a ground facilities, which makes it an unsuitable approach for the learning of novel

objects on-the-fly.

Another approach beyond the triplets is boosting independent embeddings robustly

(BIER) (Opitz et al., 2018), where dot product is used as a comparison metric and the

embedding layer is divided into multiple non overlapping groups, which are treated as

an online gradient boosting problem. This approach is particularly beneficial for large

embedding sizes. More recently, Directional statistics (Zhe et al., 2018) proposes a more

suitable embedding representation based on L2-normalization and the Mises-Fisher

distribution. The resulting embedding is contained in a hyper-spherical embedding space,

using cosine similarity and trained with a new loss function named von Mises-Fishes

(vMF) loss.

More recently, center loss (Wen et al., 2016) proposes a model with the same goal of

minimizing the intra-class distance of the embeddings, by learning a center for each class

and penalizing the distances between the embeddings and their corresponding class

centers. However, instead of recurring to cumbersome sampling techniques, it utilizes

the cross-entropy loss to aid the optimization process. In the search for a model with

higher discriminable embeddings in the features space, (He et al., 2018) combines the

triplet and center loss for multi-view 3D object retrieval.

Our Supervised Triplet Network (s-triplet) follows the same idea from center loss, by

training a CNN with triplets of images and using a soft margin triplet loss, and utilizing

the softmax loss computed from each image and its label.

The representations in the embedding space has been used for person re-identification

(Schroff et al., 2015; Hermans et al., 2017), clustering and retrieval (Song et al., 2016,

2017; Opitz et al., 2018; Sohn, 2016; He et al., 2018) and object recognition (Koch et al.,

2015; Milan et al., 2017; Zeng et al., 2018). To do so, a classifier can directly be constructed

in the feature space, being k-nearest neighbors and support vector machines, the most
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Figure 5.2: Proposed Object Recognition on-the-fly framework. Our Supervised Triplet
Network (s-triplet) (a). For performing classification, the model will project an image’s em-
bedding close to the most similar labeled embeddings, for which a light-weight classifier,
such as k-nearest neighbors, can be used to estimate the unknown object.
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popular options.

5.3 Proposed Method

Our approach consists of dividing the recognition problem into two stages: Embeddings

generation and classification in the embeddings space. We use a CNN to generate

separable and discriminant features from an object’s viewpoints in a generic fashion,

this is, the embeddings generated does not contain information about the identity of the

object. This allows for the model to be applied to unseen objects. With separable and

discriminant features projected in an embedding space, a lightweight classifier such as

the k-nearest neighbors or a linear support vector machine, are used for computing the

predictions given a query image. When a new object is needed to be learned, only the

lightweight classifier is re-trained in order to update its decision boundaries.

5.3.1 A Loss Function for Learning Discriminative Embeddings

Thus, we propose a framework that combines the benefits of metric learning and label

prediction approaches by utilizing the softmax loss in combination with the triplet loss

as regularizer, as shown in Fig. 5.2(a). The loss function in our s-triplet is defined by:

(5.5) Lstriplet =Lsof tmax +λ ·Ltriplet

(5.4) Ltriplet =
[

d(x̂a, x̂p)−d(x̂a, x̂n)+m
]

+

(5.6) Lsof tmax =−
∑

ylog(q(x))

Each loss term works as follows:

As studied in (Wen et al., 2016) and (He et al., 2018), using a fully supervised loss such

as the softmax loss can be beneficial in metric learning models, where sampling relevant

examples into the mini-batches is still an open research problem. The idea behind of

using the softmax loss with the logits x from each training example, is to generating

earlier manifolds efficiently, this is, by utilizing all the images in the mini-batch as

oppose to the very expensive time required by triplets (Song et al., 2017).
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For the triplet loss, the mini-batches consist of a combination of images Xai
selected

randomly which are used in the softmax loss and triplets with the anchors images Xai

as the previously objects selected randomly. The positive X p and negative Xn examples

of the anchor images are selected randomly. We then compute the Euclidean distance d,

between the embeddings from anchor, and positive and negative examples.

Similar to center loss (Wen et al., 2016), it is possible to learn a more discriminative

visual representations when the softmax loss is constrained by penalizing the similarity

of the features in the embeddings space Rn. To do so, we use Euclidean distance for

comparing the similarity of two embeddings. As oppose to (Wen et al., 2016), we use

the triplet loss, which brings embeddings from the same instance together and away

otherwise without the need of computing centroids from every instance, in every training

step.

As studied by (He et al., 2018), the metric loss has to be attenuated by a factor λ in

order to give priority to the manifolds generated by the softmax loss, this is the only

additional hyperparameter in our model respect to the Triplet Network (Schroff et al.,

2015).

In Figure 5.2, we indicate how the softmax and triplet losses uses the features from

the last convolutional layer in the backbone CNN. Additionally each of this representa-

tions are separated in order to reduce the bias from the known object in the embeddings

generation, as shown in detail in the ablation studies.

So far, the CNN model can produce cluster-like embeddings from an object’s view-

points, which can be applied to objects not seen during training. However, an additional

classifier is required in order to compute the prediction probabilities considering all the

objects learned. Linear support vector machines and the k-nearest neighbors search are

common choices for image retrieval, face identification and object recognition.

5.3.2 Feature Extraction and Embeddings Matching

We follow the methodology for projecting images into a common features embeddings

space and computing the prediction probabilities presented in Chaper 4, consisting of:

1. First, the model is compacted as shown in Figure 5.2(b). Since all the weights in

the model are shared, we can remove the two additional siblings and leave the

model with a single branch. Additionally, we also remove the fully connected layer

that was used for the softmax loss.
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Figure 5.3: Object Recognition Datasets. In T-LESS (Hodaň et al., 2017), the model has
to recognize unseen viewpoints. In Toybox (Wang et al., 2017c) we used the hodgepodge
videos for training and translations across the three axes for testing. We use ARC as in
(Zeng et al., 2018). We use training and testing scenes as proposed by (Lomonaco and
Maltoni, 2017)

2. For learning a new object, we project the training images to the feature embeddings

space Rn and associate each data point with its respective label.

3. We retrain the lightweight classifier for making predictions by taking into account

the added embeddings in R
n.

4. For recognizing the object, we project a query image to Rn, and the classifier will

compute the prediction probabilities.

The training examples are stored as embeddings, so there is no need for saving

image files. Any CNN architecture can be trained with Equation 5.5 for producing the

embeddings. Similarly, any classifier can be used for predicting the decision boundaries

and probabilities in Rn. In the next section, we describe how the selection of the classifiers

affects performance and computing times.
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5.4 Experimental Results

5.4.1 Datasets

We selected four datasets that depict objects from an egocentric view, as would be seen

from a robot’s perspective for most mobile robots and manipulators. We show an example

of each dataset in Figure 5.3 and the remaining objects in Appendix A. Apart from the

Amazon Robotics Challenges by Princeton-MIT, where an actual robot took images, we

selected other datasets that present challenging recognition scenarios that a robot might

face in real conditions. The selected datasets are :

T-LESS (Hodaň et al., 2017): This datasets contains 30 objects with no relevant

texture, objects are part from other. For this chapter, we randomly sampled the 10%

from the training set, to be used as the new training set and we use the remaining 90%

as testing set. The motivation behind is to evaluate how well the model can infer if an

unknown viewpoint belongs to a given instance. This results in 348 images for training

and 37,027 images for testing.

ToyBox (Wang et al., 2017c): It is composed by 360 toys manipulated by a person.

Toybox allowed us to evaluate how well the model scales by learning 120 novel objects

on-the-fly. We utilize the hodpodge videos for training and the translations and rotations

across x,y,z axis for testing. The testing set also depicts new conditions such as changes in

scale, partial views and occlusions by different hands. We use 24,667 images for training

and 69,777 test images as in the previous chapter.

Amazon Robotics Challenge (Zeng et al., 2018): This dataset was collected from

the Amazon Robotics Challenge 2017, consists of 60 objects collected by the MIT-Princeton

robot and contains training images from two different domains: Synthetic images pro-

vided by Amazon and real images captured by an RGB camera showing the objects being

grasped by the robot. For this particular dataset, we use the methodology proposed by

(Zeng et al., 2018) consisting of restricting the number of instances in the embeddings

space. This is, every testing image is compared against 20 possible instances, as opposed

to the total of 60 instances. This is part of the rules of the competitions and we followed

them in order to make our results comparable with the ones from (Zeng et al., 2018). In

the next chapter we consider the general case of comparing a query image against all

possible objects. We use the total 10,042 images for training and 562 images for testing.

CORe50 (Lomonaco and Maltoni, 2017): Originally proposed for continuous learning,

this dataset shows 50 objects across eleven environments and allows us to test the

generalization capabilities not only to unseen object’s poses but also new environments.
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We utilize the standard testing set composed by scene 3,7 and 11, and the remaining

scenes for training the model. This results in using 119,894 images for training and

44,972 images for testing.

5.4.2 Baselines

As the first baseline, we selected ResNet-50 trained with ImageNet, for generating

embeddings. Since ResNet-50 does not have intermediate fully connected layers, we

follow the methodology proposed by (Zeng et al., 2018) which consists of taking the

feature map after the average pooling layer and flatten it to a 1-D vector with 2048

elements (this dimension resulted from using a resolution of 224×224 pixels). This

baseline allowed us to explore if a model trained with a large dataset can produce

discriminative embeddings for multi-view object recognition.

As the second baseline we selected the Siamese Network since it exhibited usefulness

in (Zeng et al., 2018) for recognizing novel object on-the-fly. We applied hard-negative

mining as proposed in (Schroff et al., 2015) and (Song et al., 2016). The hard-negative

mining consisted of taking the 20% more difficult examples in the mini-batch and feeding

them in the next mini-bath. The sibling CNNs were pre-trained with ImageNet as we

are using a few examples per object.

Our last baseline is the center loss, since it utilizes a supervised loss for generating

discriminative embeddings as in our method. We selected the hyperparameters λ =

0.1 and α = 0.005 in the loss function (Wen et al., 2016) and utilized the PyTorch

implementation from (Zhou, 2018).

For the siamese and s-triplet (our approach) we used a soft margin, this is m = 0

in Equation 5.4, as recommended by (Hermans et al., 2017). For the Amazon Robotics

Challenge dataset, we also compared our model against the winning team (Zeng et al.,

2018) and their baseline Siamese Network (Hadsell et al., 2006). We did not select (Zeng

et al., 2018) as a baseline for the other datasets as it is not detailed by the authors how to

select the image pairs from a single or multiple (more than two) cross-domain datasets.

5.4.3 Implementation Details

We selected ResNet-50 (He et al., 2016) as the backbone CNN for generating features and

k-nearest neighbors with k = 5 as the classifier in order to make our model comparable

with the Amazon Robotics Challenge 2017 winner (Zeng et al., 2018), who uses the

same backbone CNN. As we show in Figure 5.2(b) ,a fully connected layer generates the

92



5.4. EXPERIMENTAL RESULTS

embeddings with a dimension of 128 elements. Selecting the embedding size has been

studied by (Schroff et al., 2015) and (Vassileios Balntas and Mikolajczyk, 2016) in the

context of face recognition and image retrieval, choosing a dimension of 128 elements led

to both faster inference and comparable accuracy compared to higher dimensions. We

developed our models using PyTorch 1.0, trained with GTX 1080Ti GPUs with 11GB,

code is available in (Lagunes-Fortiz, 2019a).

5.4.4 k-Nearest Neighbors vs Label Prediction

We first compare the recognition performance from a model trained with a metric learning

loss against a label predictions approach. While all the models uses the same amount

of training examples, only the CNN (trained only with a softmax loss) and s-triplet

(ours) utilizes the labels information, in the siamese network a vector indicates if two

images corresponds to the same or different object, in the triplet network a similar and a

negative images are included in each mini-batch.

The predictions for the CNN (trained purely with the softmax loss) model were

obtained from the fully connected layer which was trained to do so, for the rest of the

model, the predictions were obtained by a k-nearest neighbors search, with k = 5.

From Table 5.1, there is an evident gap in performance between the CNN (trained

only with a softmax loss) model and the metric learning approaches trained similarity

loss. The gap is more significant in domain-adaptation scenarios such as ARC and

CORe50. This decrease in performance is an inherent drawback in current metric

learning approaches based purely on image similarity since testing images depicting

objects in a different background and illumination conditions are not similar enough to

the training examples which led to a wrong mapping into the correct instance manifold.

On the other hand, a CNN trained with a fully supervised loss dealt better with the

domain generalization scenario.

Our model achieved a consistent higher performance compared to the CNN trained

with softmax loss by around 3% in average, as we show in the t-SNE visualizations in

the following section, this slight increase in performance is partially explained due to

the higher discriminability in the features produced by the model.

5.4.5 Recognizing Novel Objects

Here we test the capabilities of each model for recognizing novel objects on-the-fly, that is,

without re-training or finetuning the backbone CNN model. We followed the methodology
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Table 5.1: Models trained for label prediction vs. metric learning approaches % Accuracy
top-1 recognition

Method TLESS ToyBox ARC CORe50
CNN (Softmax loss) 97.31 ± 0.17 74.96 ± 0.08 92.31 ± 0.13 92.61 ± 0.26
CNN (ImageNet) 34.81 10.13 27.2 24.89
Siamese CNN 52.21 ± 2.34 38.31 ± 3.41 49.23 ± 3.56 39.22 ± 3.56
Triplet CNN 93.65 ± 1.49 56.98 ± 1.32 75.17 ± 1.49 74.14 ± 1.83
S-Triplet (ours) 98.59 ± 0.42 76.58 ± 0.79 96.09 ± 0.21 94.06 ± 0.41

proposed by (Zeng et al., 2018) which consists of splitting each dataset into a novel and

known sets, two-thirds of the objects are used for training the model and the remaining

third is used for recognition of new instances. The objects are selected randomly, for the

ARC dataset, we used the same splits as in (Zeng et al., 2018), for T-LESS, CORe50 and

ToyBox the splits are located in Appendix A. Every model was trained three times, using

the same train/test split and we show the mean and standard error to show the variance

of each model. Results are shown in Table 5.2.

For the T-LESS dataset, we can infer that all approaches, but the siamese network,

were able to map correctly unseen viewpoints of each object since training and testing

images have the same background and illumination conditions. The center loss was the

model with the closest performance to our approach, with a higher recognition perfor-

mance for T-LESS but struggling in the remaining datasets with increased complexity.

Our approach achieved an average 4% higher performance for known objects, 5% for

novel ones and 7% higher for the general case of combined known and novel objects,

compared with the center loss.

In Table 5.2 we also include the comparison of our results with the Amazon Robotics

Challenge 2017 winner team (Zeng et al., 2018), our model has a comparable performance,

only 1% less for the cases of novel and combined sets, and 3% higher for recognizing

known object. Compared to (Zeng et al., 2018), our model utilizes only one CNN, which

translates in half of the parameters to be trained and saved. Additionally, our approach

does not require a careful selection of the examples for learning the concept of similarity,

since it learns such a concept in combination with a softmax loss, which is trained

efficiently for generating manifolds. Efficient optimization means that our model does

not require any cumbersome mining technique nor distance metrics, which makes

implementation easier across current recognition datasets.
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Table 5.2: Learning novel objects on-the-fly % Accuracy top-1 recognition

Objects
ImageNet
Features

Contrastive Loss
(Hadsell et al., 2006)

Center
Loss

K-net + N-net
(Zeng et al., 2018)

Supervised Triplet

Loss (ours)

(h) T-LESS
Known 72.93 45.23 ± 3.41 99.38 ± 0.79 - 99.41 ± 0.71

Novel 85.45 38.91 ± 2.65 99.71 ± 0.84 - 97.51 ± 0.59
Known & Novel 75.81 32.19 ± 3.17 96.54 ± 0.66 - 96.26 ± 0.79
(c) ToyBox*
Known 48.83 45.31 ± 2.58 74.76 ± 0.43 - 81.52 ± 1.32

Novel 51.18 39.76 ± 3.12 76.48 ± 0.59 - 80.52 ± 1.25

Known & Novel 49.46 32.56 ± 3.43 67.67 ± 0.46 - 73.23 ± 1.29

(d) ARC-MIT
Known 27.20 42.23 ± 2.30 86.74 ± 0.53 93.6 96.09 ± 0.88

Novel 52.61 52.31 ± 2.23 64.21 ± 0.89 77.5 74.21 ± 0.71
Known & Novel 35.01 44.12 ± 3.12 69.54 ± 0.77 88.6 87.53 ± 0.62
(e) Core50
Known 59.95 38.41 ± 2.18 93.36 ± 0.69 - 95.31 ± 1.32

Novel 66.82 17.65 ± 2.43 84.55 ± 0.73 - 89.03 ± 1.26

Known & Novel 54.12 32.29 ± 2.87 83.83 ± 0.68 - 87.23 ± 1.25

Average
Known 52.22 42.80 ± 2.61 88.56 ± 0.61 - 93.08 ± 1.05

Novel 64.02 37.15 ± 2.60 81.23 ± 0.76 - 85.31 ± 0.95

Known & Novel 53.06 35.29 ± 3.14 79.40 ± 0.68 - 86.06 ± 0.98

5.4.6 Ablation Studies

As ablation studies, we first evaluated the performance in two variants of the combined

triplet and softmax losses. The first variant consist of a sequential combination of the

losses as shown in Figure 5.4(a). This single-branch configuration is inspired by the

center loss, where first, features are constricted by the metric loss and then the softmax

loss is utilized and the end of the CNN. We evaluated a second approach, where the

representations from the metric and softmax losses are separated. This second approach,

which we refer as the two-branch model (Figure 5.4(b)), aims to reduce the bias from

the features learned from the softmax loss and have more general representation in the

embeddings.

We also evaluated the performance when the model is purely trained with a softmax

loss, as it is commonly performed in CNNs and also a model purely train with the triplet

Loss. We performed the recommended semi-hard mining for selecting relevant triplets

as performed in (Schroff et al., 2015).

The results are presented in Figures 5.4(c) - 5.5(e). We show how the variant with

separated layers for the metric and softmax losses, achieves a better performance for

novel and combines known/novel objects recognition, at expenses of a slight reduction in

performance (around 2%) for the detecting known objects. Additionally, we show how the

combination of the two losses leads to a higher recognition performance than the models
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with separated losses.

In Figure 5.5(f) we showed the effect of different lambda values, which balances the

effect of the triplet loss. We followed the methodology proposed by (He et al., 2018) for

combining deep metric and supervised losses, consisting of relaxing the triplet loss by a

factor of λ and varying the value from 1×10−4 to 1, in steps of one order of magnitude.

We use the 80% training set for finding the best λ and evaluating on the remaining 20%.

We then use the best λ with full training splits for the rest of the experiments (Figure

5.5(f)).

Finally, in Figure 5.5(g) we explore how the performance is affected by utilizing

logistic regression, a linear support vector machine (SVM) and k-nearest neighbors in

the features produced by our model We found that the SVM and logistic regression

achieve a faster inferences times and a consistent slight recognition performance than

k-nearest neighbors with k = 5, at expenses of a slightly higher computational times for

training the classifiers.

Finally, to further verify our intuition of a successful generation of discriminative

features for both known and novel objects, we present t-SNE visualizations for T-LESS

(Figure 5.6) and CORe50 dataset (Figure 5.8). The objects from the legends are shown in

the Appendix A.

5.5 Summary

In this chapter we address the problem of learning to recognize new objects without the

need of re-training the backbone CNN. We propose a new architecture that: 1) Instead of

predicting labels, it learns to generate discriminative and separable embeddings of an

object’s viewpoints by using a supervised triplet loss, which is easier to implement than

current smart mining techniques and the trained model can be applied to unseen objects.

2) Infers an object’s identity efficiently by utilizing a lightweight classifier in the features

embedding space, this keeps the inference time in the order of milliseconds and can be

retrained efficiently when new objects are learned. We evaluate our approach on four

real-world images datasets used for robotics and computer vision applications: Amazon

Robotics Challenge 2017 by MIT-Princeton, T-LESS, ToyBoX, and CORe50 datasets. Our

s-triplet, has a much closer performance to the finetuned models across all datasets,

it achieves an average 4% higher performance for known objects, 5% for known ones

and 7% higher for the general case of combined known and novel objects, compared

with center loss, the closest baseline, and a much higher performance compared to semi-

96



5.5. SUMMARY

anchor

positive 

negative

Triplets Supervised Triplet 
(Single Branch)

*all weights are shared

softmax 
loss

triplet loss

Resnet-50

Resnet-50

Resnet-50

(a) Single - Branch

anchor

positive 

negative

Triplets Supervised Triplet 
(Two Branches)

*all weights are shared

softmax 
loss

triplet lossResnet-50

Resnet-50

Resnet-50

(b) Two - Branches

T-LESS ToyBox ARC
MIT-Princeton

Core50 Average

Datasets

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Softmax loss only - known
Triplet loss only - known

Single Branch - known
Final model - known

(c) Known

T-LESS ToyBox ARC
MIT-Princeton

Core50 Average

Datasets

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

Softmax loss only - novel
Triplet loss only - novel

Single Branch - novel
Final model - novel

(d) Novel

Figure 5.4: Ablation studies

97



CHAPTER 5. LEARNING DISCRIMATIVE EMBEDDINGS ON-THE-FLY

T-LESS ToyBox ARC
MIT-Princeton

Core50 Average

Datasets

40

50

60

70

80

90

100
Ac

cu
ra

cy
 (%

)

Softmax loss only - K & N
Triplet loss only - K & N

Single Branch - K & N
Final model - K & N

(e) Know and Novel

1 0.1 0.01 0.001 0.0001

Selection of λ

65

70

75

80

85

90

95

100

P
re

c
is

io
n
 (

%
)

TLESS ToyBox ARC CORe50

(f) Lambda Selection

TLESS ToyBox ARC CORe50
0

10

20

30

40

50

60

70

80

90

100

P
re

c
is

io
n
 (

%
)

0

10

20

30

40

50

60

70

80

T
im

e
 (

s
e
c
s
)

SVM K-NN Log Reg Train Time

(g) Classifiers

Figure 5.4: Ablation studies (continued)

supervised approaches such as the triplet and contrastive losses. This suggests that the

strategy of combining a fully supervised and metric learning losses resulted in a model

that generates embeddings for learning new objects on-the-fly. Combining these losses

involved choosing a factor λ which, starting with a value of 0.1 and decreasing to values

with one order of magnitude less resulted in a useful strategy across all datasets.
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CENTROIDS TRIPLET NETWORK AND

TEMPORALLY-CONSISTENT EMBEDDINGS FOR IN-SITU

OBJECT RECOGNITION

This chapter aims to bring the learnings from previous chapters towards a system that

does in-situ learning and deployment. We specially built on the findings from Chapters

3 and 5, for proposing a model that generates discriminative features on-the-fly, and a

temporal filter that considers the consistency that must exist between neighboring video

frames. The temporal consistency refers to embeddings from neighboring video frames

need be close to each other in the features space, as oppose with big separations that might

lead to misclassification. Additionally, we present a dataset that presents training and

testing images collected in a truly in-situ scenario, and allows a systematic benchmarking

of in-situ learning.

6.1 Introduction

This chapter addresses the in-situ learning of objects, characterized by a learner that

can process new objects on-the-fly, using a few examples collected within the natural

or common environment where objects are used or placed, and that can generalize to

unseen environments.

In Chapter 5, we propose the Supervised Triplet Network (S-Triplet), a model that

produces discriminative features of unseen objects, which utilizes a combined metric
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Figure 6.1: Euclidean distance between adjacent video frames, produced by our S-Triplet
CNN, on the CORe50 dataset.

learning and classification losses, allowing the learning of novel objects without the

need for retraining the model. While the S-Triplet model generates discriminative

embeddings and achieves state-of-the-art recognition performance, it exhibits the same

sudden changes between adjacent video frames as studied in Chapter 3.

We show an illustration of this behavior in Figure 6.1, where we compute the Eu-

clidean distance of embeddings between adjacent frames, using the testing sequence

in the CORe50 dataset. The features are produced by our S-Triplet model, using the

methodology described in the previous chapter. We notice how there are abrupt changes
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every 300 frames, which are explained by the change in the object and the background.

However, there are also abrupt changes caused by ambiguous viewpoints, as illustrated

in the frames 450-500, where the user rotates the bulb showing only the bottom part of

it, which is identical in the other bulbs. Other examples of abrupt changes are the ones

occurring in frame 900 onwards, where an American football is manipulated, and lateral

views depict the football as a circular object, leading to being confused by top viewpoints

of mugs and cans.

Discriminative features and robustness had been linked before in (Rozsa et al., 2017),

where the authors highlight a capability in deeper models to learn representations

that make features more separable and therefore, with higher accuracy and robustness.

However, as we show in Figure 6.1, even models that are trained to be discriminative

does not produce temporally consistent embeddings. Therefore, in this chapter, we aim to

increase the robustness of the CNN by decreasing the distance between the embeddings

of neighboring video frames, using a temporal filter that considers the distance from a

previous video frame.

We propose the Centroids Triplet Network (CTN) for generating discriminative

features by minimizing the distance between embeddings from available video frames,

but also minimizing the distance respect to their instance centroid (a.k.a. prototype).

Additionally, we speed up the inference stage by comparing a query embeddings against

the centroids of each object manifold, as opposed to the nearest neighbors search in the

embeddings space. We aim for a scalable real-time recognition system that can process

in-situ data, as we argue that is a more straightforward approach of data collection

compared to using complex data-acquisition setups, such as rotating tables, for obtaining

pictures depicting them with ideal imaging conditions (in-vitro). Additionally, we aim for

a robust recognition system that can deal with the commonly encountered changes in

illumination, perspective, scale, backgrounds, and occlusions.

We evaluate our approach on datasets tailored for in-situ object recognition, which

are characterized by presenting the objects with differing real-world training and test-

ing conditions. We compare our approach against state-of-the-art methods for learning

discriminative features and approaches that generate stable predictions in CNNs.

6.2 Literature Review

(Merler et al., 2007; Göhring et al., 2014) are pioneer works that address the problem of

in-situ recognition of objects, understanding this as objects depicted within their natural
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or common environments, as opposed to in-vitro pictures. (Merler et al., 2007) focuses on

achieving domain generalization from in-vitro to in-situ data and (Göhring et al., 2014)

combines features from in-vitro datasets with features extracted in-situ in order to build

a large-scale real-time recognition system. As limitations, (Merler et al., 2007) requires

in-vitro examples to extract clean descriptors and concluding that collecting in-situ data

for training would be an impractical practice. On the other hand, (Göhring et al., 2014)

requires that the class of the desired object to be learned is present in the ImageNet

dataset to build a robust classifier.

More recently, the Amazon Robotics Challenge (ARC) 2017 presented the new re-

quirement of learning novel objects efficiently by providing a set of unseen objects two

hours before the competition. Since Amazon provided in-vitro images from such objects,

winning teams (Zeng et al., 2018; Milan et al., 2017) proposed metric learning techniques

to achieve domain adaptation between the images captured by the robot in-situ and the

provided in-vitro images.

While (Zeng et al., 2018; Milan et al., 2017) were design for domain adaptation

between in-vitro and in-situ, they empirically demonstrated that a CNN can be used

to learn new objects without having to retrain the model by performing the nearest

neighbors search in the features space, where data points from the same object are close

to each other and separated otherwise. (Lagunes-Fortiz et al., 2018) builds on the same

idea of utilizing a discriminative CNN and simplifies the model into a single branch that

uses a combination of softmax and triplet loss for achieving state-of-the-art recognition

performance for learning objects on-the-fly. We follow this research direction of utilizing

discriminative networks for learning new objects efficiently, and therefore, we focus

this literature review on supervised approaches that learn discriminative and robust

features.

Regardless of the architectural design, it is now broadly studied that the commonly

used combination of cross-entropy loss and the softmax function in the last fully con-

nected layer, a.k.a. softmax loss, does not explicitly optimize the feature embedding to

enforce higher similarity for intra-class samples and diversity for inter-class samples

(Zheng et al., 2016; Liu et al., 2016b; Wen et al., 2016; Wang et al., 2017a; Lagunes-Fortiz

et al., 2018; Wang et al., 2018; Deng et al., 2019; Eilertsen et al., 2019).

In this regard, the main approach for learning discriminable features consists of

combining the softmax loss with regularizers that enforce the intra-class clustering and

inter-class separation. These regularizes can be divided into Euclidean regularizers and

angular-margin loss functions.
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The state-of-the-art of Euclidean regularizers is center loss (Wen et al., 2016), where

the CNN learns centers and the clustering of data points around those ones; triplet

center loss (He et al., 2018), originally proposed for 3D object retrieval, proposes the

incorporation of the triplet loss with center loss in order to enforce inter-class separability

of clusters; Similarly, (Lagunes-Fortiz et al., 2018) combines the triplet loss with the

softmax loss where the features for each loss are separated into two different heads, in

order to improve the performance for recognizing novel objects. In all these approaches,

an hyperparameter is used to balance the supervision signals.

On the other hand, CosFace (Wang et al., 2018), SphereFace (Wang et al., 2017a) and

ArcFace (Deng et al., 2019) posits as the state-of-the-art angular-margin approaches and

build on the findings from Large-margin Softmax (L-Softmax) (Liu et al., 2016b), which

proposes a margin in the cosine product between the weights w and features x in the fully

connected layer used for classification. As their name suggest, these approaches come

from the facial recognition community and consist of angular constraints applied into

the cosine version of the softmax loss. Additionally, for performing person identification,

the authors utilize cosine similarity to compare a query feature, against the features in

the database.

Producing stable predictions is also the focus of this work. Related to this regard,

Stability Training (Zheng et al., 2016) and Single-Frame Regularization (Eilertsen et al.,

2019) are the closest approaches to our goal. In Stability Training, the authors propose

reducing the dissimilarity in the embeddings between an image X and a variant of it

with a small perturbation T(X ) = X +∆X , where the perturbation ∆X is described as

per-pixel independent normal distributed noise ∆X ∼ N(0,
∑

), with
∑

=σ2I. In (Eilertsen

et al., 2019), where the goal is to achieve consistency for image-to-image translation, the

authors proposes reducing the Euclidean between embeddings produced by an image

X , where an affine transformation T has been applied before and after the translation:

Ltrans−inv = ‖ f (T(X ))−T( f (X ))‖2.

As explored in Chapter 3, and studied by (Eilertsen et al., 2019), methods for enforcing

temporal consistency in image processing are mostly based on estimating dense motion,

optical flow, or using recurrent neural networks. While these approaches have shown

usefulness, they all suffer from one or more of the following problems: 1) Training a CNN

and a RNN are commonly separated training stages since one requires shuffled examples

and the other sequential ones. 2) high complexity and application-specific architectural

modifications, 3) a significantly increase in computational complexity for training and

inference, 4) failure in situations where motion estimation is difficult, such as image
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regions with occlusion or lack of texture. Since these limitations make the approaches

above unsuitable for in-situ learning, we aim to achieve robustness using an external

temporal filter that uses the embeddings produced by the CNN.

As detailed in section 6.4, our method utilizes instance centroids (a.k.a. prototypes) for

speeding up the inference time and reduce the memory requirements during deployment.

Prototypical Networks (Snell et al., 2017) and SimNet (Pinheiro, 2018) are related works

that also utilizes centroids as embeddings to describe an object class. However, our

work differs from Prototypical Networks by utilizing all training examples to compute

the centroids, as opposed to a number of supporting examples per class (either one for

one-shot learning, or five, for five-shot learning), additionally, we compute the centroids

every number of epochs N, as opposed to calculate centroids at every training mini-

batch. Similarly, our work differs from SimNet by comparing each data point against its

corresponding centroid and a centroid from a negative example, and not all the possible

centroids, which can be infeasible to compute in a dataset with hundreds of objects.

Additionally, both methods utilize a trainable module to estimate the closest centroid

given a query data point, while we propose an equivalent to the nearest neighbors search

algorithm, which can be applied to new objects on-the-fly.

6.3 In-Situ Household Dataset

We collected a dataset consisting of 20 objects to test our approach in a genuinely in-situ

scenario. The training and testing environments correspond to a kitchen, living room

and bathroom, where we captured images of everyday household objects, without hands

presence, and with varying imaging conditions between training and testing data.

6.3.1 Dataset Collection

We selected 20 objects, as the initial stage of our dataset, intending to add more places

and objects in the future. We chose a kitchen, a living room and a bathroom. Within the

kitchen we selected two cups, a milk carton, a knife, a honey bottle, a can opener, a cereal

bag, an oil bottle, a soy sauce bottle, and a toaster; within the living room, we selected a

pair of TV remotes, a duct tape, a potted plant and a toy; in the bathroom we chose a

toothpaste, a toilet brush, a cleaning bottle, and a pair of shampoo bottles.

For collecting the images, within each environment, we choose a place with a clean

background, to avoid learning features in the background or other objects, but at the
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same time avoiding the use of complex data acquisition devices. To do so, we used the

top part of a bookshelf, the kitchen counter, and a sofa.

We utilize an Android 10 - Pixel 2 phone for taking the pictures with the OpenCamera

App to take PNG images with a resolution of 1,200×1,200 pixels, we then reduced the

resolution to 480x480 since most state-of-the-art CNNs uses a resolution of 224×244.

In Figure 6.2, we show an example of each object, as well as the training and testing

conditions.

1 Can Opener 2 Cereal 3 Cleaning toilet 4 Cup 1

5 Cup 2 6 Honey 7 Knife 8 Milk

9 Oil Bottle 10 Potted Plant 11 Soy bottle 12 Shampoo 1

13 Shampoo 2 14 Tape 15 Toaster 16 Toilet Brush

17 Toothpaste 18 Toy 19 TV remote 1 20 TV remote 2

Figure 6.2: Objects collected for the In-Situ Household dataset.
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6.4 Proposed Method

Our work builds on the findings from Chapter 5 for learning object on-the-fly. However, to

make the scalable real-time recognition system that we are after we propose the following

contributions. First, we replace the costly k nearest neighbors search as in (Zeng et al.,

2018; Lagunes-Fortiz et al., 2018) by the normalized nearest centroids search in the

features space. Secondly, we propose an additional distance constraint that enforces

discriminability between embeddings and their instance centroids. Third, to exploit the

temporal consistency in the video frames, we propose a temporal filter that takes into

account predictions from previous frames as well as the distance between them. We now

explain each of these contributions:

6.4.1 Learning Discriminative Features On-the-fly

As studied in (Zheng et al., 2016), unstable learners can classify neighboring video

frames inconsistently due to visual perturbations such as noise. In this chapter, we aim

to empirically demonstrate that in these unstable classifiers, there is a direct relation

between inconsistent predictions and dissimilar embeddings. Furthermore, by enforcing

the similarity between neighboring video frame embeddings, it is possible to make CNNs

more robust against such nuisances.

Since we are performing the nearest centroids search during deployment, we first

propose a regularization term for minimizing the Euclidean distance between an anchor

embedding and its corresponding centroid (d(x̂a,µa)) and the Euclidean distance respect

to a centroid taken from another objects d(x̂a,µn), as show in the following equation:

(6.1) LTriplet−Centroids =
[

d(x̂a,µa)−d(x̂a,µn)
]

+

This formulation is fundamentally different from the Stability Training (Zheng

et al., 2016) and Single-Frame Regularization (Eilertsen et al., 2019) approaches, where

artificial perturbations are obtained by injecting Gaussian noise X ′, as well as applying

affine transformations T into a given image X , and then minimizing the euclidean

distance between the embeddings.

The final loss function that we propose to learn discriminative features is the follow-

ing:

(6.2) LCTN =LClassi f ication +α ·LSimilarity +β ·LTriplet−Centroids
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Figure 6.3: Proposed object recognition framework for in-situ learning. Our Centroid
Triplet Network (a). Classification is performed by the nearest centroids search in the
features space (b).
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(6.3) LClassi f ication =LSof tmax =−
∑

ylog(q(x))

(6.4) LSimilarity =LTriplet =
[

d(x̂a, x̂p)−d(x̂a, x̂n)
]

+

(6.5) LTriplet−Centroids =
[

d(x̂a,µa)−d(xa,µn)
]

+

To train our approach efficiently, we compute all the centroids every number of epochs

n, as oppose to every mini-batch iteration. Furthermore, we utilize only a negative

centroid per example to compare, as oppose to compare each embedding against all

possible centroids. We show this in Figure 6.3.

6.4.2 Accelerating Inference Time

During deployment, we use the embeddings produced by the dense layer in purple

from Figure 6.3. We first compute the centroids µ̂l by utilizing the labeled examples

(x̂1, y1), (x̂2, y2), ...(x̂n, yn). We them sum all the embeddings belonging to the same object

i, and then normalize the resulting vector as indicated in the equation:

(6.6) µ̂l =
1

‖
∑

i(x̂i)‖

∑

i

(x̂i)

To estimate the identity ŷ from a given embedding x̂, of a query image, we selected

the identity of the closest center µ̂ found:

(6.7) ŷ= argminl∈Y ‖µ̂l − x̂‖

6.4.3 Temporally-Consistent Embeddings

To exploit the temporal information during deployment, we propose a temporal filter

that enforces temporal consistency on embeddings from neighboring video frames. To do

so, we propose a weighted average between the current and previous embeddings. The

temporal filter is applied if the Euclidean distance d between the current and previous
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video frame embeddings is lower than a threshold δ. A sudden large Euclidean distance d,

defined by the hyperparameter δ, suggests a different object on the scene, and therefore,

we give priority to the current representation. We describe the temporal filter in the

following equation:

(6.8) ŷt =







argminl∈Y ‖µ̂l − x̂t‖, if d(xt, xt−1)≥ δ

(1−γ) ·argminl∈Y ‖µ̂l − x̂t‖+γ · ŷt−1, otherwise

Where the values γ and δ are to be found empirically.

6.5 Experimental Results

6.5.1 Datasets

We selected four datasets that depict objects from an egocentric view, as would be seen

from a robot’s perspective for most mobile robots and manipulators. We show an example

of each dataset in Figure 6.4 and the remaining objects in Appendix A. Apart from the

iCub dataset, where an actual robot took images, we selected datasets that present

recognition scenarios that emulate the in-situ learning that we are after:

CORe50 (Lomonaco and Maltoni, 2017): Originally proposed for continuous learning,

this dataset shows 50 objects across eleven environments and allows us to test the

generalization capabilities not only to unseen object poses but also new environments.

We utilize the standard testing set composed by scene 3, 7 and 11, and only the scene

1 for training the model. This results in 14,989 images training and 44,972 images for

testing.

ToyBox (Wang et al., 2017c): It is composed of 360 toys manipulated by a person.

Toybox allowed us to evaluate how well the model scales, by learning 120 novel objects on-

the-fly. We utilize the hodgepodge videos for training and the translations and rotations

across x,y,z-axis for testing. The testing set also depicts new conditions such as changes

in scale, partial views, and occlusions. We use 24,667 images for training and 69,777

images for testing.

iCub transformations (Maiettini et al., 2017): This dataset contains 200 household

objects shown by a demonstrator to an iCub robot. We selected the mixed manipulations

set, taken with the left camera for training the model and mixed manipulations set but

the following day for testing. The testing set depicts additional backgrounds, viewpoints,

and scale. This results in 65,761 images for training and 34,312 images for testing.

113



CHAPTER 6. CENTROIDS TRIPLET NETWORK AND TEMPORALLY-CONSISTENT
EMBEDDINGS FOR IN-SITU OBJECT RECOGNITION

T
r
a
in

T
e
s
t

(a) CORe50

T
r
a
in

T
e
s
t

(b) ToyBox

T
r
a
in

T
e
s
t

(c) iCub

T
r
a
in

T
e
s
t

(d) Household in-situ

Figure 6.4: Object Recognition Datasets
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In-situ household: This is the dataset proposed in this chapter, consisting of 20 ob-

jects with deferring training and testing conditions, without hand presence but depicting

a variety of viewpoints, scales, clutter, occlusions, and illumination conditions. We use

the total 5,957 images for training and 6,125 images for testing.

6.5.2 Baselines

To evaluate the effectiveness of our method, we selected state-of-the-art approaches for

learning discriminative features, as it is relevant when learning objects on-the-fly, as

well as approaches that aim for robust and temporally consistent predictions without

the use of recurrent connections. All the backbone CNN in the following models consist

of ResNet-50, with an additional Dense Layer with a dimension of 512 elements which is

used as an embedding. We initialized all the models with weights learned from ImageNet,

and we use stochastic gradient descent as optimizer with a learning rate of lr = 1×10−3

and momentum µ= 0.9. We selected the following hyperparameters for each baseline,

each of them are explained in their corresponding citation:

Stability Training (Zheng et al., 2016): We utilize α = 0.01, and for generating

random noise, we use a standard deviation of σ= 0.04.

Invariance Regularization (Eilertsen et al., 2019): We utilize α = 0.95 and the

affine transformations described in (Eilertsen et al., 2019).

Center Loss (Wen et al., 2016): We selected the hyperparameters λ= 0.1 and α=

0.005 in the loss function (Wen et al., 2016) and utilized the PyTorch implementation

from (Zhou, 2018).

S-Triplet (Lagunes-Fortiz et al., 2018): We selected the hyperparameters λ= 0.0001

in the loss function (Wen et al., 2016) and utilized the PyTorch implementation from

(Lagunes-Fortiz, 2019a).

Angular-margin approaches: CosFace (Wang et al., 2018), SphereFace (Wang

et al., 2017a) and ArcFace (Deng et al., 2019) posit as the state-of-the-art angular-margin

approaches for learning discriminative features. We utilize the generalized loss function

presented in Equation 6.9, where the parameters m1, m2, and m3 represents the con-

straint proposed in CosFace, SphereFace and ArcFace, respectively. As hyperparameters,

we selected m1 = 0.35, m2 = 0.5, m3 = 4, and s = 30. We utilize each margin at the time,

leaving the remaining two equals to zero. As in their original implementations, we utilize

cosine distance to measure the similarity between embeddings.
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(6.9) Lsof tmax =− log
( eWyi

xi

∑

j eWji
xi

)

=−
1

N

N
∑

i=1
log

( es(cos(m1θy,i+m2)−m3)

es(cos(m1θy,i+m2)−m3) ∑
j=1, j 6=yi

escos(θ j)

)

Softmax Loss: We utilize the most commonly used loss function for classification,

consisting of a combination of cross-entropy loss with a softmax operation.

6.5.3 Implementation Details

We initialize the backbone CNN from a pre-trained model with Imagenet. Thus, our

model works with RGB images with size 224×224. For training our model, we use

mini-batches of 64 images, we use stochastic gradient descent with a learning rate of

lr = 1×10−3, momentum µ= 0.9 and weight decay regularization of wd = 1×10−4. Code

with training scripts is available at (Lagunes-Fortiz, 2019a).

We trained every model three times using the same train/testing split. We show the

mean and standard error accuracy, in order to evaluate the stability of each model.

6.5.4 Recognizing Known and Novel Objects On-the-fly

To get an understanding of the usefulness of our proposed model, we show in Tables

6.1 - 6.3 the recognition performance for three different situations: (a) Only using

known objects, (b) only using novel object and (c), a general case where there is no

assumption about the object to test, and embeddings of known and novel objects are used

for estimating the identity of a query object.

Adding the centroids triplet loss on the Supervised Triplet was particularly beneficial

for the ToyBox dataset, gaining 4.9%, 3.9% and 3.3% for the known, novel and combined

cases respectively. For the Core50 dataset, it showed a slight but consistent increase of

0.1%, 1.4% and 0.7% for each corresponding known, novel and combined cases. Similarly,

for the iCub dataset, it show a slight but consistent performance of 0.8%, 1.9% and 1.6%

cases. Finally, using our proposed dataset, we achieved an increase of 2.5% and 8.9% for

the known and combined cases but a decrease of 4.9% for the case of recognizing only

novel objects.

Overall, for the case of known objects, our model achieved an average 2.0% higher

performance than the closest baseline, the S-Triplet model. For the case of novel objects,

it achieved an average increased of 0.6%, and it achieved an average 3.6% higher

recognition performance for the general case.
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Table 6.1: Recognizing known objects % Accuracy top-1 recognition

Core50 ToyBox iCub in-situ household Average
Cross-Entropy Loss 69.50 ± 0.95 71.73 ± 0.91 93.57 ± 1.11 64.95 ± 1.12 74.93 ± 1.02
Stability Training
(Zheng et al., 2016)

71.73 ± 0.87 71.91 ± 0.85 90.53 ± 0.85 79.14 ± 1.15 78.33 ± 0.93

Invariance Regularization
(Eilertsen et al., 2019)

74.86 ± 0.7 72.52 ± 0.98 92.81 ± 0.98 82.05 ± 1.17 80.56 ± 0.95

CosFace
(Wang et al., 2018)

59.83 ± 1.14 86.11 ± 1.31 92.85 ± 1.02 66.46 ± 1.23 76.31 ± 1.18

SphereFace
(Wang et al., 2017a)

66.58 ± 1.34 83.72 ± 0.94 91.64 ± 1.13 67.37 ± 1.01 77.32 ± 1.11

ArcFace
(Deng et al., 2019)

63.30 ± 1.01 85.91 ± 1.32 92.28 ± 1.34 66.18 ± 1.13 76.91 ± 1.2

Center Loss
(Wen et al., 2016)

57.58 ± 0.95 76.86 ± 1.11 89.19 ± 1.07 78.02 ± 1.13 75.41 ± 1.07

S-Triplet
(Lagunes-Fortiz et al., 2018)

74.47 ± 1.15 80.26 ± 1.12 92.68 ± 1.11 77.39 ± 1.19 81.21 ± 1.14

CTN

(ours)
74.53 ± 1.06 85.13 ± 1.03 93.42 ± 1.01 79.82 ± 1.16 83.23 ± 1.18

Table 6.2: Recognizing novel objects on-the-fly % Accuracy top-1 recognition

Core50 ToyBox iCub in-situ household Average
Cross-Entropy Loss 59.93 ± 1.13 69.73 ± 0.95 79.18 ± 1.03 72.98 ± 1.29 70.46 ± 1.01
Stability Training
(Zheng et al., 2016)

60.13 ± 0.98 75.02 ± 0.72 79.09 ± 1.02 80.20 ± 1.25 73.61 ± 0.99

Invariance Regularization
(Eilertsen et al., 2019)

56.92 ± 0.87 73.77 ± 0.91 80.37 ± 1.09 79.31 ± 1.15 72.60 ± 1.00

CosFace
(Wang et al., 2018)

59.83 ± 1.24 82.32 ± 1.41 80.86 ± 1.27 95.01 ± 1.13 79.51 ± 1.26

SphereFace
(Wang et al., 2017a)

62.53 ± 1.19 81.11 ± 1.34 79.09 ± 1.33 90.08 ± 1.11 78.20 ± 1.24

ArcFace
(Deng et al., 2019)

61.93 ± 1.11 80.89 ± 1.28 77.40 ± 1.13 94.76 ± 1.02 78.75 ± 1.13

Center Loss
(Wen et al., 2016)

57.58 ± 1.01 51.96 ± 1.09 49.87 ± 1.04 81.30 ± 1.11 60.18 ± 1.06

S-Triplet
(Lagunes-Fortiz et al., 2018)

64.67 ± 1.15 77.30 ± 1.05 82.36 ± 1.11 90.40 ± 1.51 79.18 ± 1.21

CTN

(ours)
66.11 ± 1.09 81.23 ± 1.05 84.11 ± 1.64 85.49 ± 1.21 79.23 ± 1.18

The temporal filter that uses the embeddings distances resulted consistently useful

for increasing the performance for all the approaches, as we show in Table 6.4. For our

model, there was an average increase of 7.33% higher performance for the general case

of known and novel objects combined. With the model still making mistakes when there

are ambiguous viewpoints from the very beginning of a testing sequence.
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Table 6.3: Recognizing known and novel objects on-the-fly % Accuracy top-1 recognition

Core50 ToyBox iCub in-situ household Average
Cross-Entropy Loss 52.84 ± 1.14 62.73 ± 0.85 81.66 ± 1.02 50.14 ± 1.19 61.84 ± 1.05
Stability Training
(Zheng et al., 2016)

53.73 ± 1.19 71.96 ± 0.98 79.85 ± 1.02 71.96 ± 1.13 69.38 ± 1.08

Invariance Regularization
(Eilertsen et al., 2019)

52.62 ± 1.05 72.52 ± 0.93 82.05 ± 1.11 72.52 ± 1.15 69.93 ± 1.06

CosFace
(Wang et al., 2018)

49.61 ± 1.02 80.53 ± 1.51 81.57 ± 1.14 66.05 ± 1.21 69.44 ± 1.22

SphereFace
(Wang et al., 2017a)

53.06 ± 1.13 78.12 ± 1.24 80.59 ± 1.23 63.17 ± 1.17 68.74 ± 1.20

ArcFace
(Deng et al., 2019)

50.71 ± 1.04 79.65 ± 1.21 79.96 ± 1.35 64.16 ± 1.01 68.62 ± 1.15

Center Loss
(Wen et al., 2016)

44.92 ± 1.21 59.76 ± 1.08 63.30 ± 1.01 58.80 ± 1.12 56.69 ± 1.10

S-Triplet
(Lagunes-Fortiz et al., 2018)

55.61 ± 1.05 78.26 ± 1.12 82.82 ± 1.02 64.37 ± 1.32 70.26 ± 1.13

CTN

ours
56.31 ± 1.14 81.55 ± 1.02 84.32 ± 1.16 73.25 ± 0.97 73.85 ± 1.09

Table 6.4: Recognizing known and novel objects on-the-fly with Temporal Filtering
highlighted % Accuracy top-1 recognition

Core50
α= 0.95,δ= 4

ToyBox
α= 0.95,δ= 4

iCub
α= 0.95,δ= 5

in-situ household
α= 0.98,δ= 4

Average

Cross-Entropy Loss 59.19 ± 1.14 64.37 ± 0.85 85.21 ± 1.02 55.14 ± 1.19 65.94 ± 1.05
Stability Training
(Zheng et al., 2016)

66.52 ± 1.19 76.27 ± 0.98 84.31 ± 1.02 77.01 ± 1.13 76.03 ± 1.08

Invariance Regularization
(Eilertsen et al., 2019)

66.81 ± 1.05 78.10 ± 0.93 86.05 ± 1.11 79.29 ± 1.15 77.56 ± 1.06

CosFace
(Wang et al., 2018)

63.75 ± 1.02 86.87 ± 1.51 88.97 ± 1.14 73.21 ± 1.21 77.56 ± 1.22

SphereFace
(Wang et al., 2017a)

66.08 ± 1.13 83.45 ± 1.24 85.31 ± 1.23 71.17 ± 1.17 76.50 ± 1.20

ArcFace
(Deng et al., 2019)

62.33 ± 1.04 82.64 ± 1.21 86.22 ± 1.35 69.13 ± 1.01 75.08 ± 1.15

Center Loss
(Wen et al., 2016)

61.47 ± 1.21 72.32 ± 1.08 68.30 ± 1.01 65.21 ± 1.12 66.82 ± 1.10

S-Triplet
(Lagunes-Fortiz et al., 2018)

67.51 ± 1.05 83.12 ± 1.12 88.74 ± 1.02 77.98 ± 1.32 79.48 ± 1.13

CTN

ours
68.05 ± 1.14 87.01 ± 1.02 92.30 ± 1.16 81.25 ± 0.97 82.14 ± 1.09
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6.5.5 Scalability and Real-Time Inference

In Figure 6.5 we present the improvement in storage required and inference time between

the commonly used k-nearest neighbors (k = 5, (Zeng et al., 2018; Lagunes-Fortiz et al.,

2018)) search and the proposed normalized version of the nearest centroids algorithm.

For each dataset, we considered the general case of testing known and novel objects

(Table 6.3). We compare the recognition performance, the wall-clock time taken for

evaluating all testing images and the storage required for saving all training embeddings

and the instance centroids.

From Figure 6.5, we noticed a consistent decrease recognition performance of around

2% in each dataset of our normalized-nearest centroids algorithm against k-nearest

neighbors. However, there is a considerably reduction in storage required and the in-

ference time. For all the datasets, storing only the centroids represented less than 1%

of storage required, compared to storing all training embeddings required in k-nearest

neighbors. Related to the inference time, the nearest centers algorithm is two order of

magnitude faster than k-nearest neighbors, making it an overall more suitable approach

for a scalable and real-time object recognition system.

6.5.6 Hyperparameters Searching

In order to find a suitable value for the controlling α and β hyperparameters in Equation

6.2, we perform a grid search, ranging values from 1×10−1 to 1×10−5 by decreasing

an order of magnitude each step for both hyperparameters. We started by finding the

best value for α by setting β= 0. With the best overall value of α= 1×10−3, we found

β = 1×10−2 to be the best overall value. In general, α and β with values grater than

1×10−2 causes a degradation in precision, and choosing values ranging 1×10−3 to

1×10−4 resulted in the best recognition performance. Therefore, we recommend choosing

α= 1×10−3 and β= 1×10−3 as starting points in other object recognition datasets.

6.5.7 Ablation Studies

As ablation studies, we first explore similarity metrics for comparing embeddings from

neighboring video frames. We considered Manhattan distance, cosine similarity, and

Euclidean distance. To evaluate the usefulness of the additional triplet-centroids loss,

we compare our proposed model against the S-Triplet, a model trained with softmax

loss and a model trained with the softmax and triplet-centroid loss. We found that using

Euclidean distance resulted in the highest overall performance, as shown in Figure 6.7(a).
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Figure 6.5: Comparison between k-nearest neighbors and the proposed nearest centroids
algorithm. We compare precision, evaluation time, and storage required.

We also explored different sizes for the embeddings, as we show in Figure 6.7(b). We

observe that larger sizes sizes achieve an overall higher precision, with an approximate

increase of 2% by doubling the embedding dimension. Noticeably, for the household

dataset, there was a decrease in precision when using a dimension of 1024, indicating

that additional regularization might be required.
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Figure 6.5: Comparison between k-nearest neighbors and the proposed nearest centroids
algorithm. We compare precision, evaluation time, and storage required.

6.5.8 Discussion

As shown in Table 6.3, adding the triplet-centroids loss led to an average increase of

3.6% in precision. This increase in performance suggests that, with the in-situ datasets

used, the features produced by the S-Triplet did not distributed as a Gaussian hyper-

sphere around its centroid, as suggested by related work (Wang et al., 2017a, 2018; Deng

et al., 2019), meaning that there were features closer to other instance centroid than
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Figure 6.6: Hyperparameters tuning.

its corresponding one, this was more notorious in the proposed household and iCub

dataset, and less critical for the CORe50 dataset. In this regard, there is still more

to be known about the properties of the manifolds generated in the in-situ learning

scenario and we leave that as future research direction. Replacing the nearest neighbors

search by the nearest centroids algorithm resulted in a highly beneficial approach for

the onboard learning capabilities that we are after, since using this algorithm allowed a

faster inference time by up-to two orders of magnitude, and a storage space of only 1.8
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Figure 6.7: Ablation Studies. Image best viewed in the digital version.

KB of memory per object, using an embedding size of 512 elements with numpy 1.17 and

using Python 3.7.

Respect to the proposed weighted average used as a temporal filter, while adding

the embeddings separation helped to quickly react when new objects appear on the

scene and gaining a further average increase of 7% in precision, there are cases where

using a static threshold δ was not sufficient. Examples of this, are the misclassifications

between known and novel objects, as shown in Figure 6.8. Where the Euclidean distance
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(a) Unseen adapter 1 misclassified as the known adapter 2.

(b) Known airplane 1 misclassified as the unseen truck 9.

Figure 6.8: Misclassification cases ocurring between a known and a novel object. Despite
applying the temporal filtering, the Euclidean distance between these neighboring
embeddings is higher than the threshold δ, and thus allowing a misclassification. Image
best view in the digital version.

between neighboring video frame exceeded the threshold δ, giving preference to the

current estimation and ignoring the previous temporal information. This limitation calls

for a temporal filter that can adjust their beliefs in a dynamic way, as new evidence is

available about the object at hand. We leave the developments of this temporal filter as

future work.
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(c) Unseen bodycream 10 misclassified as the known bodycream 9.

(d) Unseen can opener misclassified as the known toaster.

Figure 6.8: Misclassification cases ocurring between a known and a novel object. Despite
applying the temporal filtering, the Euclidean distance between these neighboring
embeddings is higher than the threshold δ, and thus allowing a misclassification. Image
best view in the digital version.

6.6 Summary

In this chapter, we focus on the in-situ learning of objects, consisting of learning general-

izable embeddings from few training examples collected within the natural environment

where the objects are normally used or placed. We built on the findings from Chapters

3 and 5, for proposing a model that not only generates discriminative features but will

also consider the temporal consistency that must exist between nearby frames. Overall,

for the case of known objects, our model achieves an average 2.01% higher performance

than the closest baseline, the S-Triplet model. Furthermore, achieves higher precision

compared to state-of-the-art approaches such as ArcFace and Stability Training ap-
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proaches. For the case of novel objects, it achieves a slight increased of 0.61%, this is

explained by the 5% decrease in performance in the household dataset, and it achieves an

average of 3.21% higher recognition performance for the general case. Furthermore, by

replacing the nearest neighbors search for the nearest centroids algorithm, we improve

the inference time by up to two orders of magnitude and the data storage to less than

a MB per dataset. Finally, we further increase the robustness against nuisances with

an average increase of 7% for the known and novel cases, by proposing a temporal filter

that uses the distance between neighbor embeddings to decide weather or not to apply

the filtering condition.
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CONCLUSIONS

This chapter concludes the thesis by discussing the advantages and limitations of our

proposed models for in-situ object recognition, as well as proposing possible research

directions.

7.1 Contributions

In this thesis, we consider the problem of in-situ learning, consisting of a learner able

to recognize objects from a few examples. As a core aspect, the training examples are

collected within the environment where such objects are usually used, as opposed to

using complex image capturing set-ups or synthetic images. Furthermore, we aim for a

learner that can learn additional instances onboard, that can generalize under unseen

environments, that is scalable and can operate in real-time conditions.

We empirically study the performance and limitations of state-of-the-art CNNs for

multiview object recognition and identify the following flaws that prevent the use of

off-the-shelf CNNs for in-situ learning:

1. Inconsistency in the predictions between neighboring video-frames.

2. Need for vastly training examples for achieving generalization.

3. Need for finetuning when learning additional objects.
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Based on the findings of the research presented in this thesis, our contributions are

the following:

• In Chapter 3, we propose the use of temporal filters on top of CNNs for address-

ing the lack of consistency in the predictions from neighboring video-frames. As

the main advantage, the temporal filters are particularly useful for correcting

misclassifications caused by sudden ambiguous viewpoints, such top-view in mugs,

which are similar across all instances. On the other hand, temporal filters do not

help week classifiers to improve performance, since they utilize the predictions

from the CNNs to estimate predictions with temporal consistency. We find the

cumulative moving average algorithm more suitable for in-situ learning since it

does not require a training stage. In Chapter 3, we propose a generic version of

it, consisting of a sum rule, and in Chapter 6, we propose a weighted sum that

takes into account features separation between neighboring video-frames, which is

beneficial for an agent that needs to react to changing objects in the scene. With

our temporal filters, we achieve a precision of 99.13% for CORe50 and a mean

average precision of 56.23% in T-LESS.

• In Chapter 4, we propose the use of a multi-task CNN that performs image clas-

sification and image generation to achieved domain generalization. Our approach

results particularly useful for learning discriminative features, utilizing training

examples drawn from a single domain, and generalize to an unseen one. For ex-

ample, generalizes to in-situ images from in-vitro images. As a disadvantage, the

multi-task CNN struggled to represent unseen objects and requires a fine-tuning

stage for learning additional objects. We empirically evaluate our approach on

eight object recognition datasets used for robotics and computer vision recognition

tasks, and achieving an average 5.23% higher performance compared with the

closest baseline and over 20% higher performance compared with a state-of-the-art

adversarial network approach.

• In Chapter 3, we propose a discriminative CNN that classifies images and enforces

discriminability on the learned features by utilizing a combined cross-entropy and

triplet losses. Each of these tasks is perform by a separated dense layer. The layer

trained with the triplet loss learned features that can generalize better to unseen

objects, compared with the layer used for classification. Our discriminative model

allows the learning of additional objects on-the-fly, by replacing the classification

layer by the nearest neighbors search in the embeddings space. As a disadvantage,
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the inference time and storage required can be compromised, as more training

examples and instances are acquired, and used for the nearest neighbors search.

Our supervised triplets network, had a comparable performance to the fine-tuned

models across all datasets, it achieves an average 4% higher performance for known

objects, 5% for novel ones and 7% higher for the general case of combined known

and novel objects, compared with the closest baseline.

• In Chapter 6, we propose replacing the expensive nearest neighbors search for

the nearest centroids algorithm to accelerate the inference time, and to reduce

the storage requirements. Based on the nearest centroid algorithm, we propose a

regularization term to enforce discriminability between features and their centroids.

We propose utilizing the distance between embeddings from neighboring video-

frames, to dynamically decide when to apply the sum-rule filter from Chapter 3.

Finally, we propose a dataset for a systematic benchmarking of in-situ learning

approaches. Overall, for the case of known objects, our model achieves an average

2.01% higher performance than the closest baseline, the S-Triplet network from

Chapter 5. For the case of novel objects, it achieves a slight increase of 0.61%, an

average of 3.21% higher recognition performance for the general case.

• Our final model for in-situ learning consists of a CNN that produces discriminative

features by using a supervised triplet and triplet-centroids losses, that uses the

nearest centroids algorithm, and the temporally-consistent embeddings filter at

inference time, to achieve robustness against nuisances, keep scalability, and real-

time performance. Using a device with a 6th generation Core i7 CPU, 16 GB RAM,

a GTX-1060 GPU card, and using ResNet-50 as the backbone CNN, our model

predicts the identity of an object in 1.15 ms, utilizes 1.08 KB of memory per object,

it learns a new instance by computing and storing the centroid of a set of training

images, which takes an estimate of 1.2 s when hundreds of training images are

used, (such as the 300 images in the CORe50 and Household datasets).

7.2 Limitations

While our approaches achieve state-of-the-art recognition performance, the following

aspects require further research:

Temporal filtering: The cumulative moving average, proposed in Chapter 3, results

into a robust strategy for dealing with nuisances, but requires a careful selection of the
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number of frames to be fused, and has a slow response for objects suddenly appearing on

the scene. The weighted embeddings-filter from Chapter 6, has the benefit of quickly react

to objects appearing on the scene but is less robust in cases where an object disappears,

or is strongly occluded. Therefore, there is still room to improve the temporal filtering,

with a model that can both react quickly to new objects on the scene, and that can handle

strong nuisances.

Multi-task classification and image generation: The multi-task model from

Chapter 4 utilizes a conventional autoencoder for generating images and would be inter-

esting to explore if more modern approaches, such as generative adversarial networks,

lead to an increase in recognition performance when they are used in combination with

image classification.

Generating discriminant features on-the-fly: A challenging scenario is to learn

similar instances on-the-fly, as we show in the failure cases in Chapter 6, as their features

tends to be close to each other in the metric space, leading to misclassification. Although

we enforce similar instances to have discriminative features during training, it was

difficult to replicate such behavior for similar unseen instances during deployment.

Therefore, while using a larger corpus of training data might help to achieve better

generalization, it is still an open research question on how to generate discriminative

features for unseen and similar instances.

7.3 Future Research Directions

We identified the following scenarios as further research directions.

Learning an unequivocal embeddings representation from a few data: A

key challenge in multiview object recognition is that training a model without the full

sphere of viewpoints can lead to a weak recognition performance, especially when the

missing views are similar to the ones of other instances. While human intelligence

offers the flexibility for efficiently updating its beliefs in the presence of new evidence

as well as being able to extrapolate missing information, it is a challenge achieving

this behavior in CNNs. While data augmentation in the features space like (Liu et al.,

2018a; Yin et al., 2019) has shown usefulness when learning from canonical views, the

recognition performance is still considerably lower compared to using the full sphere of

views. Furthermore, there is more to be understood about the distribution of the features

in the embedding space generated by the CNNs.

Dealing with ambiguous viewpoints: For similar instances, the proposed models
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in this thesis tended to estimate with a high probability score the identity of the object,

ignoring the presence of ambiguous viewpoints. Examples of ambiguous viewpoints are

the images depicting the brass base only in the bulbs from the CORe50 dataset, where

such metallic part is identical in all instances. Bayesian Deep Learning approaches

such (Hall et al., 2018; Miller et al., 2019) aim to model the concept of aleatoric and

epistemic uncertainty, which could be helpful for estimating the ambiguity in a given

image. Furthermore, if an agent is aware of this ambiguity, a research question arises

about what action should take to acquire more certain information.

In-situ object detection and segmentation: While object recognition can be used

to solve a variety of challenges, it requires that object candidates occupy the majority

of the image. Furthermore, it assumes there is only one object of interest in the image.

A prior and correct object location is a strong assumption that limits our approach to

be used into more challenging problems such as object manipulation or surveillance.

Therefore, an immediate research direction is to learn to localize and segment objects

in-situ. (Pinheiro et al., 2015) is a pioneer work for instance segmentation for unseen

objects and (Wang et al., 2019) aims for an object detector that can work in any domain,

giving some insights that both object detection and segmentation could be learned in-situ.

With systems capable of learning discriminative features of objects using a few

examples, that can generalize in unseen environments and efficiently deal with nuisances.

We will be able to move away from the conventional and static training or finetuning of

CNNs for learning to recognize objects into more autonomous and human-like learning

of objects.

Most importantly, we will be closer to developing autonomous systems that exhibit the

generality and adaptability of human intelligence. That can efficiently learn and re-learn

the concept of an object, making them more suitable to be used in our unstructured and

uncertain world. It is my hope that the research question and framework presented in

this thesis will lay the foundations for more contributions to the exciting field of in-situ

learning.
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A.1 Known and Novel Instances in Datasets

In this section we show the object in each dataset. The numbering is consistent with the

confusion matrices from Chapter 3 and for Chapters 4, 5, and 6, we denote the objects

belonging to the known set with blue and to the novel set with orange.

A.1.1 T-LESS

1 Obj 1 2 Obj 2 3 Obj 3 4 Obj 4 5 Obj 5

Figure A.1: TLESS
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6 Obj 6 7 Obj 7 8 Obj 8 9 Obj 9 10 Obj 10

11 Obj 11 12 Obj 12 13 Obj 13 14 Obj 14 15 Obj 15

16 Obj 16 17 Obj 17 18 Obj 18 19 Obj 19 20 Obj 20

21 Obj 21 22 Obj 22 23 Obj 23 24 Obj 24 25 Obj 25

26 Obj 26 27 Obj 27 28 Obj 28 29 Obj 29 30 Obj 30

Figure A.1: TLESS
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A.1.2 CORe50

1 Connector 1 2 Connector 2 3 Connector 3 4 Connector 4 5 Connector 5

6 Phone 1 7 Phone 2 8 Phone 3 9 Phone 4 10 Phone 5

11 Scissors 1 12 Scissors 2 13 Scissors 3 14 Scissors 4 15 Scissors 5

16 Bulb 1 17 Bulb 2 18 Bulb 3 19 Bulb 4 20 Bulb 5

21 Can 1 22 Can 2 23 Can 3 24 Can 4 25 Can 5

Figure A.2: Objects in CORe50.
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1 Glasses 1 2 Glasses 2 3 Glasses 3 4 Glasses 4 5 Glasses 5

6 Ball 1 7 Ball 2 8 Ball 3 9 Ball 4 10 Ball 5

46 Marker 1 47 Marker 2 48 Marker 3 49 Marker 4 50 Marker 5

51 Cup 1 52 Cup 2 53 Cup 3 54 Cup 4 55 Cup 5

56 Remote 1 57 Remote 2 58 Remote 3 59 Remote 4 60 Remote 5

Figure A.2: Objects in CORe50. (continuation)
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A.1.3 ToyBox

1 airplane 1 2 airplane 2 3 airplane 3 4 airplane 4 5 airplane 5

6 airplane 6 7 airplane 7 8 airplane 8 9 airplane 9 10 airplane 10

11 airplane 11 12 airplane 12 13 airplane 13 14 airplane 14 15 airplane 15

16 airplane 16 17 airplane 17 18 airplane 18 19 airplane 19 20 airplane 20

21 airplane 21 22 airplane 22 23 airplane 23 24 airplane 24 25 airplane 25

Figure A.3: Objects in ToyBox.
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26 airplane 26 27 airplane 27 28 airplane 28 29 airplane 29 30 airplane 30

31 ball 1 32 ball 2 33 ball 3 34 ball 4 35 Ball 5

36 ball 6 37 ball 7 38 ball 8 39 ball 9 40 ball 10

41 ball 11 42 ball 12 43 ball 13 44 ball 14 45 ball 15

46 ball 16 47 ball 17 48 ball 18 49 ball 19 50 ball 20

51 ball 21 52 ball 22 53 ball 23 54 ball 24 55 ball 25

56 ball 26 57 ball 27 58 ball 28 59 ball 29 60 ball 30

Figure A.3: Objects in ToyBox. (continuation)
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61 car 1 62 car 2 63 car 3 64 car 4 65 car 5

66 car 6 67 car 7 68 car 8 69 car 9 70 car 10

71 car 11 72 car 12 73 car 13 74 car 14 75 car 15

76 car 16 77 car 17 78 car 18 79 car 19 80 car 20

81 car 21 82 car 22 83 car 23 84 car 24 85 car 25

86 car 26 87 car 27 88 car 28 89 car 29 90 car 30

Figure A.3: Objects in ToyBox. (continuation)
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91 cat 1 92 cat 2 93 cat 3 94 cat 4 95 cat 5

96 cat 6 97 cat 7 98 cat 8 99 cat 9 100 cat 10

101 cat 11 102 cat 12 103 cat 13 104 cat 14 105 cat 15

106 cat 16 107 cat 17 108 cat 18 109 cat 19 110 cat 20

111 cat 21 112 cat 22 113 cat 23 114 cat 24 115 cat 25

116 cat 26 117 cat 27 118 cat 28 119 cat 29 120 cat 30

Figure A.3: Objects in ToyBox. (continuation)
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121 cup 1 122 cup 2 123 cup 3 124 cup 4 125 cup 5

126 cup 6 127 Can 7 128 cup 8 129 cup 9 130 cup 10

131 cup 11 132 cup 12 133 cup 13 134 cup 14 135 cup 15

136 cup 16 137 cup 17 138 cup 18 139 cup 19 140 cup 20

141 cup 21 142 cup 22 143 cup 23 144 cup 24 145 cup 25

146 cup 26 147 cup 27 148 cup 28 149 cup 29 150 cup 30

Figure A.3: Objects in ToyBox. (continuation)
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151 duck 1 152 duck 2 153 duck 3 154 duck 4 155 duck 5

156 duck 6 157 duck 7 158 duck 8 159 duck 9 160 duck 10

161 duck 11 162 duck 12 163 duck 13 164 duck 14 165 duck 15

166 duck 16 167 duck 17 168 duck 18 169 duck 19 170 duck 20

171 duck 21 172 duck 22 173 duck 23 174 duck 24 175 duck 25

176 duck 26 177 duck 27 178 duck 28 179 duck 29 180 duck 30

Figure A.3: Objects in ToyBox. (continuation)
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181 giraffe 1 182 giraffe 2 183 giraffe 3 184 giraffe 4 185 giraffe 5

186 giraffe 6 187 giraffe 7 188 giraffe 8 189 giraffe 9 190 giraffe 10

191 giraffe 11 192 giraffe 12 193 giraffe 13 194 giraffe 14 195 giraffe 15

196 giraffe 16 197 giraffe 17 198 giraffe 18 199 giraffe 19 200 giraffe 20

201 giraffe 21 202 giraffe 22 203 giraffe 23 204 giraffe 24 205 giraffe 25

206 giraffe 26 207 giraffe 27 208 giraffe 28 209 giraffe 29 210 giraffe 30

Figure A.3: Objects in ToyBox. (continuation)
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211 helicopter

1

212 helicopter

2

213 helicopter

3

214 helicopter

4

215 helicopter

5

216 helicopter

6

217 helicopter

7

218 helicopter

8

219 helicopter

9

220 helicopter

10

221 helicopter

11

222 helicopter

12

223 helicopter

13

224 helicopter

14

225 helicopter

15

226 helicopter

16

227 helicopter

17

228 helicopter

18

229 helicopter

19

230 helicopter

20

231 helicopter

21

232 helicopter

22

233 helicopter

23

234 helicopter

24

235 helicopter

25

236 helicopter

26

237 helicopter

27

238 helicopter

28

239 helicopter

29

240 helicopter

30

Figure A.3: Objects in ToyBox dataset. (continuation)
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241 horse 1 242 horse 2 243 horse 3 244 horse 4 245 horse 5

246 horse 6 247 horse 7 248 horse 8 249 horse 9 250 horse 10

251 horse 11 252 horse 12 253 horse 13 254 horse 14 255 horse 15

256 horse 16 257 horse 17 258 horse 18 259 horse 19 260 horse 20

261 horse 21 262 horse 22 263 horse 23 264 horse 24 265 horse 25

266 horse 26 267 horse 27 268 horse 28 269 horse 29 270 horse 30

Figure A.3: Objects in ToyBox. (continuation)
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271 mug 1 272 mug 2 273 mug 3 274 mug 4 275 mug 5

276 mug 6 277 mug 7 278 mug 8 279 mug 9 280 mug 10

281 mug 11 282 mug 12 283 mug 13 284 mug 14 285 mug 15

286 mug 16 287 mug 17 288 mug 18 289 mug 19 290 mug 20

291 mug 21 292 mug 22 293 mug 23 294 mug 24 295 mug 25

296 mug 26 297 mug 27 298 mug 28 299 mug 29 300 mug 30

Figure A.3: Objects in ToyBox. (continuation)
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301 spoon 1 302 spoon 2 303 spoon 3 304 spoon 4 305 spoon 5

306 spoon 6 307 spoon 7 308 spoon 8 309 spoon 9 310 spoon 10

311 spoon 11 312 spoon 12 313 spoon 13 314 spoon 14 315 spoon 15

316 spoon 16 317 spoon 17 318 spoon 18 319 spoon 19 320 spoon 20

321 spoon 21 322 spoon 22 323 spoon 23 324 spoon 24 325 spoon 25

326 spoon 26 327 spoon 27 328 spoon 28 329 spoon 29 330 spoon 30

Figure A.3: Objects in ToyBox. (continuation)
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331 truck 1 332 truck 2 333 truck 3 334 truck 4 335 truck 5

336 truck 6 337 truck 7 338 truck 8 339 truck 9 340 truck 10

341 truck 11 342 truck 12 343 truck 13 344 truck 14 345 truck 15

346 truck 16 347 truck 17 348 truck 18 349 truck 19 350 truck 20

351 truck 21 352 truck 22 353 truck 23 354 truck 24 355 truck 25

356 truck 26 357 truck 27 358 truck 28 359 truck 29 360 truck 30

Figure A.3: Objects in ToyBox. (continuation)
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A.1.4 APC-Rutgers

1 Spark plug 2 Snacks box 3 Crayolas 4 Glue 5 Eraser

6 Cat treats 7 Glasses 8 Chalk 9 Sticky notes 10 Tennis ball

11 Rubber

duck

12 Oreo 13 Pens 14 Screw

driver

Figure A.4: Rutgers-APC Objects
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A.1.5 ARC-MIT/Princeton

1 Avery

Binder

2 Balloons

Bottom

3 Band Aid

Tape

4 Bath

Sponge

5 Black Fash-

ion Gloves

6 Burts Bees

Baby Wipes

7 Cherokee

Easy Tee Shirt

8 Cloud B

Plush Bear

9 Colgate

Toothbrush

4PK

10 Composi-

tion Book

11 Cool Shot

Glue Sticks

12 Crayons 13 Creativ-

ity Chenille

Stems

14 Dove

Beauty Bar

15 Bottle

Brush

16 Duct Tape 17 Turtle Cup 18 Elmers

Glue

19 Epsom

Salts

20 Expo

Eraser

Figure A.5: APC-MIT/Princeton
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A.1. KNOWN AND NOVEL INSTANCES IN DATASETS

1 Fiskars Scis-

sors

2 Flashlight 3 Folgers Cof-

fee

4 Glue Sticks 5 Hand

Weight

6 Hanes

Socks

7 Index Cards 8 I Am A

Bunny Book

9 Ice Cube

Tray

10 Irish

Spring Soap

11 Jane Eyre

Dvd

12 Squeakin

Eggs

13 Laugh Out

Loud Jokes

14 Marbles 15 Measuring

Spoons

51 Mesh Cup 52 Mouse

Traps

53 Tooth-

brush Red

54 Shower

Curtain

55 Pie Plates

56 Plastic

Wine Glass

57 Platinum

Dog Bowl

58 Spring Wa-

ter

59 Rawlings

Baseball

60 Reynolds

Wrap

Figure A.5: ARC (continuation)
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1 Robots DVD 2 Robots Ev-

erywhere

3 Scotch Bub-

ble Mailer

4 Scotch

Sponges

5 Speed Stick

6 Staples

Cards

7 Table Cloth 8 Tennis Ball

Container

9 Ticon-

deroga Pen-

cils

10 Tissue Box

11 Toilet

Brush

12 Up Glucose

Bottle

13 White Face-

cloth

14 Windex 15 Woods Ex-

tension Cord

Figure A.5: ARC (continuation)
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A.1. KNOWN AND NOVEL INSTANCES IN DATASETS

A.1.6 Linemode

1 gorilla 2 vise 3 bowl 4 camera 5 sprinkler 5

6 cat 7 mug 8 drill 9 duck 10 eggs

11 oil bottle 12 Hole-punch 13 iron 14 lamp 15 phone

Figure A.6: Objects in Linemode, enumeration is consistent with legend in Figure 4.6

A.1.7 TU-Dresden Light

1 dragon 2 frog 3 sprinkler

Figure A.7: TU-Dresden
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A.1.8 Toyota-Light

1 mug 1 2 can 1 3 sandals 4 mug 2 5 cereal box

6 mug 3 7 mug 4 8 plate 1 9 bottle 1 10 can 2

11 plate 2 12 plate 3 13 food con-

tainer

14 tv remote 15 mug 5

16 basket 17 maga-

zine

18 plate 4 19 milk 20 mug 6 21 mug 7

Figure A.8: Objects in Toyota-Light, enumeration is consistent with legend in Figure 4.6

A.1.9 Tejani

1 Camera 2 Coffee cup 3 Joystick 4 Juice 5 Milk 6 Shampoo

Figure A.9: Objects in Tejani, enumeration is consistent with legend in Figure 4.6
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A.1. KNOWN AND NOVEL INSTANCES IN DATASETS

A.1.10 In-Situ Household

1 Bottle Cook-

ing Oil

2 Brush 3 Can Opener 4 Cleaning

toilet liquid

5 Cereal

11 Cup 1 12 Cup 2 13 Honey 14 Knife 15 Milk

16 Potted

plant

17 Sauce Bot-

tle

18 Shampoo

Green

19 Shampoo

Blue

20 Tape

21 Toaster 22 Toothpaste 23 Toy 24 TV remote

1

25 TV remote

2

Figure A.10: In-situ Dataset
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A.2 Training and Testing Conditions in Common

Object Recognition Datasets

(a) Coil-100 (b) Big Bird

(c) Norb train (d) Norb Test

(e) ALOI Train

Figure A.11: Datasets
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(k) iCub Train (l) iCub test

(m) CORe50 Train (n) CORe50 Test

(o) in-situ train (p) in-situ test

Figure A.11: Datasets (continuation)



APPENDIX A. APPENDIX A

(a) ALOI Test

(b) Intel-ego train (c) Intel-ego test

Figure A.11: Datasets (continuation)
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