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Abstract 

Kainate receptors (KARs), a subgroup of ionotropic glutamate receptors (iGluRs), are 

modulators of neuronal excitability. When co-assembled with their auxiliary subunits 

Neto2 and Neto1, KARs display slow activation and deactivation. This allows temporal 

summation of the excitatory postsynaptic currents, which may be involved in epilepsy. 

While Neto2 and Neto1 regulate KARs’ functions, their developmental expression 

profiles are unknown. KARs are also regulated by post-translational modifications 

(PTMs) that affect their surface expression and involvement in neuronal 

excitability/hyperexcitability. Palmitoylation of the GluK2 promotes KAR surface 

expression. However, it is unknown if changes to this PTM would lead to receptor 

internalisation.  

Using in situ blotting, we identified developmental changes in Neto2 and Neto1 

regional expression in the rat brain. We have also investigated epilepsy-related changes 

in iGluR expression using a lithium-low dose pilocarpine model (RISE).  

Our results established different spatio-temporal changes for individual KAR proteins 

during development. In the hippocampus, Neto2 was mainly expressed in the hilus of the 

dentate gyrus, whereas Neto1 expression was prominent in the stratum lucidum of CA3. 

While in the cerebellum Neto1 and GluK5 immunolabellings were weak, Neto2 and 

GluK2/3 were clearly identified in the granular cell layer. Neto2 and Neto1 showed 

prominent expression in the inner cortical layers, which matched with other KAR 

subunits expression profiles. This co-expression suggests a regulatory role of Neto 

proteins and region-specific changes in subunit compositions and functional properties of 

KARs throughout development. Apart from a decrease in GluN2B NMDA receptor 

subunit, no detectable changes in other iGluR proteins were detected in the RISE model 

of epilepsy. We found that non-palmitoylation of the GluK2 increased its SUMOylation 

and reduced surface expression. This mimickes kainate-induced long-term depression 

(LTD), which reduces neuronal excitability. Taken together, we revealed aspects of KAR-

Neto2 and Neto1 interplay and generated solid basis for the identification of the 

involvement of PTMs in downstream mechanisms of kainate-induced LTD. 
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1.1 Neurotransmission in health and disease 

One of the great challenges to medical and biological sciences is 

understanding the central nervous system (CNS). Many brain diseases remain 

poorly understood and the development of drugs for their treatment has been 

challenging due to the complexity and relative inaccessibility of the brain. The 

most burdensome chronic brain disorders are preceded by potentially reversible 

chemical changes (Gustavsson et al., 2011). 

Aberrant excitatory neurotransmission is a prominent pathological 

component in many neurological, psychiatric and neurodegenerative diseases 

and for this reason the majority of excitatory signalling proteins in the CNS are 

considered attractive targets for drug development (Swanson, 2009). 

Glutamate, a neurotransmitter used by the overwhelming majority of 

excitatory synapses in the brain, acts on ionotropic (ion channel-coupled) and 

metabotropic (second messenger system-coupled) receptors (Lerma and 

Marques, 2013). Glutamate and its receptors participate in synaptic 

transmission, neuronal development, learning, memory and excitotoxicity 

(Bridges and Esslinger, 2005). Consistent with this, changes in glutamatergic 

neurotransmission have been implicated in a range of neurological and 

psychiatric disorders, including epilepsy, Alzheimer’s disease, amyotrophic 

lateral sclerosis and stroke (Lerma et al., 2001). 

 

1.2 Ionotropic glutamate receptors 

Ionotropic glutamate receptors (iGluRs) (Figure 1.1) are ligand-gated 

cationic channels formed from the assembly of four subunits. They are 

subdivided into three main classes based on their sequence homology, 

electrophysiological properties, and the agonist that preferentially activates 

them (Lerma and Marques, 2013). These are α-amino-3-hydroxy-5-methyl-4-

isoxazole propionate (AMPA), N-methyl-D-aspartate (NMDA), and kainic acid 

(KA) receptors (Lerma and Marques, 2013).  
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Figure 1.1 Ionotropic glutamate receptors at an excitatory synapse. 

Ionotropic glutamate receptors are a subclass of glutamate receptors. They are 

liganed-gated ion channels permeable to Na+, K+, and Ca2+ ions. They 

subcategorized into different subtypes (KA, AMPA, and NMDA receptors) that are 

formed as tetramers from different combinations of functional subunits. They are 

activated by the neurotransmitter glutamate to mediate the majority of the CNS 

excitatory synaptic transmission. 

 

1.2.1 AMPA receptors (AMPARs) 

AMPARs are distributed abundantly throughout the CNS with the tetramer 

receptor formed from the assembly of different combinations of the four subunits 

GluA1, GluA2, GluA3, and GluA4 (Beneyto and Meador-Woodruff, 2004). The 

four subunits have approximately 70% amino acid sequence homology 

(Collingridge et al., 2004). Each subunit contributes distinctly to the properties of 

the channel kinetics, ion selectivity and receptor trafficking leading to considerable 

functional diversity by heteromerisation (Greger et al., 2017).  GluA2 is subjected 

to RNA editing very soon after birth and is almost fully edited by postnatal day 7 

in rats (Greger et al., 2003; Longone et al., 1998). This renders the ion channel of 

the edited receptors (GluA2-containing receptor) to be calcium impermeable 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245900/#B12
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245900/#B27
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245900/#B45
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(GluA2-CI). GluA2-lacking Ca2+-permeable AMPARs are expressed at various 

levels in neurons and neurological conditions and this minority of AMPARs has 

an important role in synaptic plasticity (Park et al., 2018; Cull-Candy et al., 

2006; Liu and Zukin, 2007; Luscher and Malenka, 2011; Traynelis et al., 2010). 

 AMPARs are responsible of most fast excitatory neurotransmission in the 

brain (Shi et al., 2009; Traynelis et al., 2010). This initiation of neuronal firing 

is important for information propagation. Considering their fast kinetics (on 

sub-millisecond time scale), they are responsible for the early component of the 

excitatory postsynaptic current. They also play a very important role in NMDA 

receptor-dependant synaptic plasticity through the induction of voltage-

dependant Mg2+ blockage removal from NMDA receptor channel pore (Mayer 

et al., 1984; Nowak et al., 1984). The GluA subunits have PDZ [postsynaptic 

density protein-95 (PSD-95), Drosophila disc large tumor suppressor (Dlg1), 

and zonula occludens-1 protein (zo-1)] -binding domains in their C-termini. 

These sites promote their interaction with postsynaptic density (PSD) proteins 

to regulate AMPARs surface expression and synaptic trafficking (Song and 

Huganir, 2002; Malinow and Malenka, 2002; Barry and Ziff, 2002). 

 

1.2.1.1 Transmembrane AMPAR regulatory proteins 

Native iGluRs form macromolecular complexes with scaffolding proteins, 

enzymes, or trafficking chaperone (Tomita and Castillo, 2012). These transient 

interactors are important for several aspects. For example, a chaperone assists 

protein complex assembly, and scaffolding proteins retain channel complexes 

at synapses (Yan and Tomita, 2012). Some ligand-gated ion channel interacting 

proteins are classified as ‘auxiliary subunits’ based on four key criteria (Yan 

and Tomita, 2012): 

a. They should not show any ion channel activity. 

b. They interact directly and stably associated with their partner   

receptor. 

c. They should regulate receptor channel properties and/or 

trafficking when co-expressed in heterologous cells. 
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d. They should be required for the proper receptor function in 

vivo. 

Many auxiliary subunits have been identified to associate with AMPARs and 

regulate their trafficking, pharmacology, and channel gating like the 

transmembrane AMPAR regulatory proteins (TARPs) (Nicoll et al., 2006; Osten 

and Stern-Bach, 2006; Milstein and Nicoll, 2008; Ziff, 2007; Coombs and Cull-

Candy, 2009; Sager et al., 2009). This highly increases the diversity of AMPARs 

in the brain (Jackson and Nicoll, 2011). TARPs structure (Figure 1.2) is composed 

from four transmembrane domains with both the N- and C-termini located in the 

cytoplasm (Kato et al., 2010). Between the first and second transmembrane 

domains there is a large extracellular domain (EX1), which is important for the 

receptor gating and pharmacological properties. The C-terminal domain (CTD) has 

a PDZ-binding motif (Kato et al., 2010). These auxiliary subunits regulate 

AMPARs functional properties with differential effects that depend on the TARP 

subtype (Cho et al., 2007, Milstein et al., 2007).  

 

Figure 1.2. TARP subunit topology. The subunit is composed of four 

transmembrane domains with the N-terminal domain (NTD) and the C-terminal 

domain (CTD) located intracellularly. There is a large extracellular domain (EX1) 

between the first and second transmembrane domains. The C-terminal loop has a 

PDZ-binding motif (Kato et al., 2010). 

 

 The TARP family is divided into two subtypes (1 and 2) each with subsequent 

TARP isoforms (type 1: γ-2, γ-3, γ-4, and γ-8 TARP, type 2: γ-5 and -7 TARP) 

according to similarities of amino acid sequence and functional properties (Jackson 
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and Nicoll, 2011). Type 1 TARP was further sub classified to Type 1a (γ-2, γ-

3) and type 1b (γ-4, γ-8). Type 1a slows AMPAR deactivation and 

desensitisation rate/extent and increases glutamate affinity to a lesser extent than 

type 1b. Both subtypes (1a and 1b) enhances the receptor trafficking to the 

plasma membrane through their PDZ-binding domain (Kato et al., 2010). PSD-

95 interacts with the PDZ-binding motif of TARP (Chen et al., 2000; Dakoji et 

al., 2003). In cerebellar granule cells, γ-2 TARP (also called stargazin) traffics 

AMPARs to the plasma membrane (Chen et al., 2000) and then γ-2 interacts 

with PSD-95 through its PDZ-containing domain to localise the receptor to the 

postsynaptic density (Kato et al., 2010). Absence of PSD-95 in mice (knockout) 

led to decreased hippocampal AMPAR-mediated excitatory postsynaptic 

current (EPSCAMPAR) (Beique et al., 2006). This suggests that PSD-95 stabilises 

synaptic AMPARs via its association with their auxiliary subunits TARPs 

(Martenson and Tomita, 2015). Importantly, the post-translational modification 

phosphorylation of TARP modulates the association of PSD-95 and the PDZ-

binding domain of TARP (Martenson and Tomita, 2015). Consistent with this, 

a phospho-mimic mice mutant of γ-2 enhanced cerebellar EPSCAMPAR, while a 

phospho-null mutant mice of γ-2 inhibited it (Tomita et al., 2005; Sumioka et 

al., 2010). 

 γ-7 of type 2 TARPs also slows AMPAR deactivation and desensitisation 

rate/extent and increases agonist efficacy but to a lesser extent compared to type 

1a (Kato et al., 2010). However, γ-5 subunit shows unique features. It 

accelerates specifically GluA2 channel desensitisation rate/extent and increases 

GluA2 deactivation rate by decreasing the affinity to glutamate (Kato et al., 

2007, 2010). Both subunits of type 2 TARPs have no effect on AMPAR 

trafficking to the cell surface (Kato et al., 2008). 

TARPs and their stoichiometry contribute to changes in the AMPAR 

functional properties (Greger et al., 2017). The stoichiometry of TARPs is 

variable, and it appears to depend on their expression levels (Greger et al., 

2017). From one up to four TARPs can assemble and interact independently 

with an AMPAR (Kim et al., 2010). In addition, the number of assembled 

TARPs (zero, two, or four) into a recombinant receptor was found to contribute 

to the distinct receptor functional properties (Shi et al., 2009).  
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A naturally occurring mutant was found in mice (stargazer mice), in which 

TARP-γ-2 (stargazin) was deficient, lead to absence of EPSCAPMAR at cerebellar 

mossy fibre-granule cell synapse (Chen et al., 2000, Hashimoto et al., 1999, Letts 

et al., 1998). The amplitude and decay time of excitatory currents were reduced in 

heterozygous stargazer mice compared to wild type (WT) animals indicating 

stargazin regulates AMPARs in a dose-dependent manner (Kim et al., 2010) and 

this regulation varies according to the stoichiometry of the receptor/auxiliary 

subunit complex (Shi et al., 2009). Moreover, overexpressing stargazin in WT 

granule cells resulted in a slow decay of the excitatory currents and enhanced 

agonist effect (a characteristic feature of TARP effect) indicating that TARPs were 

not saturating their associated receptors in the cerebellum (Milstein et al., 2007). 

Furthermore, it was shown that the effect of AMPAR activation by an agonist was 

halved in case of the receptor associated with two molecules of TARPs compared 

to four (Shi et al., 2009), demonstrating a readout of TARP stoichiometry. 

In hippocampal CA1 pyramidal neurons, AMPARs interact with four γ-8 

molecules [expressed preferentially in the hippocampus (Rouach et al., 2005)]. This 

depends on the expression level of γ-8, a reduction in γ-8 subunit expression leads 

to a reduction in stoichiometry (Shi et al., 2009). Furthermore, kainate efficacy of 

AMPAR and the receptor deactivation and desensitisation kinetics in CA1 

pyramidal neurons were affected by the expression levels of γ-8 subunit. In 

addition, they were in good agreement with the stoichiometry of AMPAR/TARP 

(Shi et al., 2009). 

 

1.2.2 NMDA receptors (NMDARs) 

NMDARs are tetramers, containing the obligatory GluN1 subunit in various 

combinations with GluN2A-D and GluN3A/B.  Glutamate, glycine (co-agonist), 

and membrane depolarisation are required for NMDAR to be activated, leading to 

the opening of the Na+, K+ and Ca2+ permeable channel pore. At resting membrane 

potential, the ion channel of NMDAR is blocked by a Mg2+ ion (voltage-dependent 

Mg2+ blockage; Mayer et al., 1984; Nowak et al., 1984). This can be relieved when 

there is a strong enough membrane depolarisation (sustained AMPAR activation). 

Once this happens and glutamate and glycine bind to the NMDAR, the ion channel 
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will open permitting the conductance of Ca2+ as well as Na+ and K+ ions. Ca2+ 

conductance activates a cascade of intracellular signalling pathways that lead to 

persistent long-term changes in synaptic strength (Bliss and Collingridge, 1993; 

Huganir and Nicoll, 2013; Kessels and Malinow, 2009). These changes mediate 

synaptic plasticity that underlies learning and memory. 

Like other iGluRs, NMDAR subunits are subjected to many variations 

through alternative splicing, thus, contributing to different functional and 

pharmacological properties of the various receptor subtypes (Molnar, 2008).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

 

IGluRs 

 KARs AMPARs NMDARs 

Agonist/  

(co-agonist) 

KA AMPA NMDA 

(Glycine) 

Subunits GluK1-5 GluA1-4 GluN1, GluN2A-D, 

GluN3A-B 

 Cationic channel 

selectivity and 

conductance 

Na+, K+ 

Unedited GluK1/2: Ca2+ 

Na+, K+ 

Unedited GluA2: Ca2+ 

Na+, K+, Ca2+ at depolarised 

potentials 

Function Mediate synaptic 

transmission and 

modulate presynaptic 

release 

Mediate most fast 

glutamatergic excitatory 

synaptic transmission 

Mediate synaptic plasticity 

         Table 1.1. A comparison of the three subclasses of iGluRs; KARs, AMPARs, and NMDARs. 
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1.2.3 Kainate receptors (KARs) 

KARs exhibit a complex diversity in subcellular localisation and signalling 

mechanisms that allow them to act as regulators of synaptic transmission and 

plasticity. They contribute to excitatory postsynaptic transmission at only a 

relatively restricted subset of synapses, whereas AMPA and NMDA receptors 

are responsible for most of the excitatory neurotransmission in the brain and 

induce synaptic plasticity (Straub et al., 2011a; Carta et al., 2014). In addition, 

KARs regulate excitatory and inhibitory neurotransmitters release and impact 

neuronal excitability.  

KARs and AMPARs are closely related. Their tetrameric structure forms an 

ion channel that is mainly permeable to Na+ and K+. At resting membrane 

potential and upon glutamate binding, the receptor is activated and the ion 

channel opens. The driving force of ions movement favours an inward Na+ 

current that will lead to membrane depolarisation.  

 

1.2.3.1 KAR subunits 

Various combinations of GluK1, GluK2, GluK3, GluK4, and GluK5 subunit 

proteins (formerly named as GluR5, GluR6, GluR7, KA1, and KA2, 

respectively), form the tetramer of the KAR (Jane et al., 2009; Contractor et al., 

2011; Lerma and Marques, 2013). While GluK1, GluK2, and GluK3 [low 

affinity kainate binding subunits (50-100 nM)] can assemble into both homo- 

and heteromeric receptors, GluK4 and GluK5 [high affinity kainate binding 

subunits (5-15 nM)] can just make heteromers with GluK1-3 (Pinheiro and 

Mulle, 2006; Contractor et al., 2011; Copits and Swanson, 2012). The low-

affinity subunits share 75-80% homology and the high-affinity subunits has 

68% homology. The two subclasses of KAR subunits have 45% homology 

(Pinheiro and Mulle, 2006; Lodge, 2009).  Each subunit is composed of a large 

extracellular N-terminal domain, followed by the first transmembrane domain 

(M1), a re-entrant channel pore-forming domain (M2), the third transmembrane 

domain (M3), an extracellular S2 domain, followed by M4 and the intracellular 

C-terminal domain (Figure1.3; Hollmann, 1994; Wo and Oswald, 1994). The 

ligand binding domain (LBD) is formed by two loops; the one before the first 
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transmembrane domain (S1) and the S2 extracellular domain between M3 and M4 

transmembrane domains (Contractor et al., 2011). This topology of the KAR 

subunit is similar to AMPAR and NMDAR subunits, which also form tetramers 

(Pinheiro and Mulle, 2006; Contractor, 2011). 

 

Figure 1.3. KAR subunit topology. The subunit is composed of two large 

extracellular domains [the N-terminal domain (NTD) and the ligand binding 

domain (LBD)], a transmembrane domain [three membrane-spanning helices (M1, 

M3, and M4) and a membrane re-entrant loop (M2)] which represents part of the 

ion channel pore and an intracellular C-terminal domain (CTD). The Q/R RNA 

editing site is located in the lining that form the ion channel pore of the assembled 

tetramer (Hollmann, 1994; Wo and Oswald, 1994; Pinheiro and Mulle, 2006; 

Contractor, 2011). 

 

1.2.3.2 RNA editing and alternative splicing of KARs 

KAR subunits are subjected to several modifications at the mRNA level (Figure 

1.4). The mRNA of GluK1 and GluK2 is edited by RNA deaminase in the 

membrane re-entrant loop (Figure 1.2) where a glutamine (Q) residue is substituted 

with an arginine (R) residue forming calcium (Ca2+) impermeable ion channel 

(Egebjerg and Heinemann 1993, Contractor et al., 2011). This Q/R editing is also 

responsible for the Ca2+ impermeability of the GluA2 subunit of the AMPAR 

(Burnashev et al., 1992).  As indicated on Figure 1.4, GluK1 exhibits alternative 

splice variants in its N-terminal and C-terminal, GluK2 and 3 exhibit alternative 
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splice variants only in their C-termini (Sommer et al., 1992; Gregor et al., 1993; 

Barbon et al., 2001; Schiffer et al., 1997). These alternative splice modifications 

affect KARs’ trafficking and interacting proteins (Schiffer et al., 1997; Jaskolski 

et al., 2004; Coussen et al., 2005). 

 

Figure 1.4. RNA editing and alternative splicing of KAR subunits. The 

mRNA of the KAR subunits undergoes many post-transcriptional 

modifications. GluK1 and GluK2 are subjected to mRNA editing 

[glutamine/arginine (Q/R), isoleucine/valine (I/V) and tyrosine/cysteine (Y/C)] 

which render the receptor’s channel impermeable to calcium. In addition, more 

diversity in KAR subunits is generated through alternative splicing, which in 

most cases occurs at the cytoplasmic C-termini. The transmembrane domains 

are M1, M3, and M4. The re-entrant loop is M2. (Adapted from Pinheiro and 

Mulle, 2006). 

 

1.2.3.3 KAR subunits trafficking 

KARs trafficking to the plasma membrane is influenced by the subunit 

composition, which is further diversified according to the different alternative 

splicing isoforms (Pinheiro and Mulle, 2006). GluK1c is mainly retained in the 

endoplasmic reticulum (ER) as it has an ER retention motif (RXR) in its C-

terminus (Ren et al., 2003b; Jaskolski et al., 2004). Similarly, GluK5 has an ER 

retention motif of five positively charged arginines (RRRRR) in its C-terminus 

and so is strongly prevented from trafficking to the plasma membrane and 

retained in the ER unless this polyarginine stretch is shielded by the co-assembly 

of GluK5 with one of the low-affinity subunits (GluK1-3) (Gallyas et al., 2003; 
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Hayes et al., 2003; Ren et al., 2003a). GluK2a and GluK3a isoforms have an ER 

exit motif (CQRRLKHK) that promote their trafficking to the plasma membrane as 

well as the surface expression of other subunits that have ER retention motifs 

(Jaskolski et al., 2004; Yan et al., 2004; Jaskolski et al., 2005). In addition to the 

role of the C-terminal domain of the different KAR subunit isoforms in plasma 

membrane trafficking, the N-terminal domain has also an important role (Mah et 

al., 2005; Valluru et al., 2005). It was established that non-functional receptors, 

which have mutated glutamate binding site, are retained in the ER and that an intact 

ligand binding domain is important for the forward trafficking and cell surface 

expression (Mah et al., 2005; Valluru et al., 2005). 

 

1.2.3.4 KAR subunits post-translational modifications 

Post-translational modifications have regulatory impact on many aspects of a 

receptor function like receptor subunit assembly, protein-protein interactions, 

trafficking, endocytosis, and synaptic targeting (Mao et al., 2011). Different post-

translational modifications, in particular when they occur at proximal locations, 

appear to interact with each other (Mao et al., 2011). Modifications of specific 

AMPA, KA, and NMDA receptor subunits regulate the receptor endocytosis and 

surface expression (Lavezzari et al., 2004; Lavezzari et al., 2003; Ahmadian et al., 

2004; Pickering et al., 1995; Copits and Swanson, 2013; Hayashi et al., 2005; 

Konopacki et al., 2011; Chamberlain et al., 2012; Martin et al., 2007; Naumenko 

and Ponimaskin, 2018). Such protein modifications include phosphorylation, 

palmitoylation and SUMOylation (Pahl et al., 2014). 

Phosphorylation occurs to specific amino acids (serine, threonine, and tyrosine) 

and its level is regulated by many kinases and phosphatases. Palmitoylation, the 

fatty acylation, occurs at cysteine residues. SUMOylation occurs at lysine residues. 

The dynamic and reversible nature of these modifications make them sensitive to 

synaptic inputs changes allowing them to regulate the expression and function of 

iGluRs in basal and activity-dependent manners. Post-translational modification 

malfunction contributes to the pathology of many neuropsychiatric conditions such 

as anxiety, Parkinson’s disease, and schizophrenia (Mao et al., 2011). 
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KAR phosphorylation is highly involved in their internalisation from the cell 

surface and is also connected in an independent way (so far) to each of receptor 

SUMOylation and palmitoylation (Chamberlain et al., 2012; Pickering et al., 

1995; Copits and Swanson, 2013). Under basal conditions, GluK2-containing 

KARs are expressed on the cell surface (Jaskolski et al., 2004). Upon kainate 

stimulation (Figure 1.5/I-IV), these receptor subtypes are phosphorylated by 

protein kinase C (PKC) at two cytosolic serine residues (S846 and S868) leading 

to increased GluK2 SUMOylation and receptor internalisation (Konopacki et 

al., 2011).   

Moreover, GluK2 phosphorylation antagonises the interaction with 4.1N 

protein, thus, destabilising KAR surface expression. Conversely, GluK2 

palmitoylation enhances this interaction (Figure 1.5/1-3) leading to stabilising 

KAR at the cell surface (Copits and Swanson, 2013). Interestingly, Pickering et 

al. (1995) observed a prominent increase in GluK2 phosphorylation when the 

receptor cannot be palmitoylated (mutated). Thus, these post-translational 

modifications act in concert to fine-tune neuronal transmission. 

 

Figure 1.5. A schematic diagram of GluK2 post-translational 

modifications. GluK2 palmitoylation (1) promotes 4.1N binding (2) to the 

membrane proximal domain (red box) of GluK2 C-terminus and stabilises the 

receptor on the cell surface (3). However, upon kainate stimulation (I), GluK2 
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phosphorylation is enhanced (II) leading to increase its SUMOylation (III) followed 

by endocytosis (IV) (Chamberlain et al., 2012; Konopacki et al., 2011; Copits and 

Swanson, 2013.  

 

1.2.3.5 Physiological roles of KARs and their unique properties 

Many important functional aspects of KARs remain poorly understood and 

difficult to resolve due to limited availability of KARs’ selective pharmacological 

(subunit-specific agonists and antagonists) and biochemical tools (antibodies for 

specific KAR subunits) (Jane et al., 2009; Copits and Swanson, 2012). For example, 

kainate is a mixed agonist that can also activate AMPARs (Herb et al., 1992; Lerma 

et al., 2001; Pinheiro and Mulle, 2006; Jane et al., 2009; Lerma and Marques, 2013). 

And, there are overlapping sensitivities between KARs and AMPARs to most 

competitive antagonists (Jane et al., 2009). However, with the development of 

relatively selective AMPAR antagonist, elimination of the synaptic AMPAR 

currents was possible (Paternain et al., 1995; Wilding and Huettner, 1996) and the 

contribution of KARs to postsynaptic depolarisation was detected through KAR-

mediated excitatory postsynaptic currents (EPSCs-KAR) at mossy fibre-CA3 

synapses (Castillo et al., 1997; Vignes and Collingridge, 1997). 

EPSCs-KAR have only been detected in a few central synapses. Therefore, KAR-

mediated effects are relatively restricted to specific neurons and synapses compared 

to other iGluRs. For example, they have been detected in mossy fibre to CA3 

pyramidal neurons, the synapses between Schaffer collaterals and CA1 

interneurons, at thalamocortical connections, and in the basolateral amygdala 

(Pinherio and Mulle, 2006; Contractor et al., 2011; Lerma and Marques, 2013). 

 

1.2.3.5.1 Presynaptic KARs 

In addition to their contribution to postsynaptic depolarisation, KARs have other 

physiological roles in neuronal transmission that allow them to act as modulators 

of synaptic transmission. KARs have been found presynaptically to regulate both 

excitatory and inhibitory neurotransmitters release (Chittajallu et al., 1996; Pinheiro 

and Mulle, 2008; Contractor et al., 2011).  

One of the examples of presynaptic KARs regulating excitatory 

neurotransmitters release is at mossy fibre-CA3 synapses, which contribute to the 
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complexity of KARs function at this synapse. Presynaptic KARs at these 

synapses are activated by the released glutamate following a single action 

potential and are release facilitators by enhancing Ca2+ signals (Schmitz et al., 

2001; Contractor et al., 2001; Lauri et al., 2001; Pinheiro et al., 2007). However, 

kainate as an exogenous agonist regulates the neurotransmitter release 

according to the agonist concentration and synapse type (Huettner, 2003; 

Lerma, 2006; Pinheiro and Mulle, 2008). In general, KAR-mediated synaptic 

transmission is promoted by low-moderate kainate activation and reduced by a 

strong stimulation of kainate (Schmitz et al., 2001). On CA1 pyramidal cells, 

presynaptic GluK2-containing KARs are involved in GABA release inhibition 

upon kainate stimulation (Mulle et al., 2000) and GABA release facilitation at 

inhibitory synapses on CA1 interneurons (Mulle et al., 2000; Cossart et al., 

2001). 

 The subunit composition of KARs differs between pre- and post-synaptic 

sites. GluK1-containing KARs are targeted presynapticaly (Chittajallu et al., 

1996; Vignes et al., 1998; Clarke and Collingridge, 2002) and GluK2/3 subunits 

mediate the presynaptic KAR at mossy fibres-CA3 synapses (Contractor et al., 

2001; Schmitz et al., 2003; Breustedt and Schmitz, 2004; Pinheiro et al., 2007). 

GluK2/5 KARs are targeted postsynapticaly to the dendrites of the CA3 

pyramidal neurons in the hippocampus (Isaac et al., 2004; Mulle et al., 1998). 

This differential subunit distribution implies the presence of mechanisms that 

regulate KARs trafficking and targeting in a subunit-specific manner (Figure 1. 

6; Nasu-Nishimura et al., 2010). 
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Figure 1.6. Expression and subcellular localization of KARs in 

hippocampal CA3 neurons network. The expression pattern of each subunit 

varies between different cell types. Notice the presence of postsynaptic KARs at 

synapses formed with mossy fibre inputs and their absence at distal synapses (on 

the same neuron) with associational/commissural (A/C) inputs. (Adapted from 

Pinheiro and Mulle, 2006).  

 

1.2.3.5.2 Metabotropic signalling of KARs 

In parallel to KARs ionotropic function, pre- and post-synaptic KARs signal 

through metabotropic mode of action where a second messenger is activated 

through a G–protein (Figure 1.7). This unconventional signalling pathway of an ion 

channel receptor functions in an unrelated manner to their ionotropic role.  

Postsynaptically at mossy fibres-CA3 synapses, KAR activation leads to the 

slow afterhyperpolarisation (sAHP) inhibition and hence enhanced excitability 

(Ruiz et al., 2005; Chamberlain et al., 2013). In CA1 pyramidal cells, GluK2-

containing KARs are activated by the synaptically-released glutamate and signal 

via metabotropic pathway involving a PKC-dependent mechanism to inhibit the 

sAHP current (Melyan et al., 2002). In dorsal root ganglion (DRG) neurons, which 

mainly express GluK1 and GluK5 KAR subunits and lack other iGluRs-mediated 

responses (Bettler et al., 1990; Bahn et al., 1994), high-frequency stimulation of 

KARs activates a G-protein signalling pathway that leads to PKC activation and the 
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Ca2+ release of intracellular Ca2+ stores (Rozas et al., 2003; Rivera et al., 2007). 

PKC phosphorylates serine residues in GluK1-2b subunit and triggers KAR 

internalisation. This feedback mechanism through KAR-metabotropic 

signalling works to limit neuronal overactivation by repetitive stimulation 

(Rivera et al., 2007). 

 

 

Figure 1.7. Two different pathways of KARs signalling. The ionotropic 

mechanism (a) is responsible for membrane depolarization and postsynaptic 

responses. These receptors incorporate auxiliary proteins, like Neto. The 

metabotropic signalling pathway of KARs activates G proteins (b) to stimulate 

phospholipase C and PKC in an independent way of ion flux. Neto proteins also 

regulate this function but the linker between the receptor and the G-protein is 

still unclear (Adapted from Lerma and Marques, 2013). 

 

 

1.2.3.5.3       KARs’ unique properties: slow kinetics 

The EPSC-KAR identified a unique characteristic of KARs by exhibiting a 

lower amplitude and slow decay kinetics when compared to AMPARs-mediated 

currents at the same synapse (Figure 1.8). Originally, this distinct feature of 

EPSC-KAR was identified at mossy fibre-CA3 synapses (Castillo et al., 1997; 

Vignes and Collingridge, 1997). The EPSC-KAR recording identified one of 

several conserved principles of KARs signalling, which is their exceptionally 
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slow decay kinetics making the receptor gating temporal range extended (Copits et 

al., 2011; Copits and Swanson, 2012).  

These unique properties of KARs kinetics were not matched with the fast 

kinetics of the overexpressed receptors in recombinant systems. The decay time 

constant of EPSC-KAR in most neurons is between 50-200 ms (Bannister et al., 2005; 

Castillo et al., 1997; Kidd and Isaac, 1999; Vignes and Collingridge, 1997). 

However, the values of deactivation (2-5 ms) and desensitization (5-10 ms) are 

much more reduced in the recombinant receptors, which have time constants similar 

to those of AMPARs (Dingledine et al., 1999; Erreger et al., 2004). These 

discrepancies between native and recombinant KARs formed in heterologous 

systems were solved by indicating that the receptor does not operate in isolation. 

The receptor interacts with auxiliary proteins (see below) to regulate its key 

properties as gating, pharmacology and subcellular localisation (Yan and Tomita, 

2012; Tomita and Castillo, 2012). 

 

 

Figure 1.8. Distinct kinetics of KARs. The slow EPSCs-KAR (recorded in the 

presence of AMPAR antagonist) compared to the fast EPSCs-AMPAR at mossy fibre-

CA3 synapses. (Adapted from Castillo et al., 1997).  

 

1.2.3.6 KARs-protein interactions 

KARs interact with several proteins that contribute to their targeting and 

function. They regulate the subcellular trafficking, synaptic localisation and 

channel gating of KARs. Many of these interactors are PDZ motifs and so are non-

specific to KARs and interact with other iGluRs (Pinheiro and Mulle 2006; 

Contractor et al., 2011; Copits and Swanson 2012; Lerma and Marques 2013; Phal 

et al., 2014). 
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Such PDZ-containing proteins are the PSD-95, PICK1 (protein interacting 

with C kinase-1) and GRIP (glutamate receptor interacting protein), which were 

found to affect mainly KAR trafficking. For example, when PSD-95 binds the 

PDZ-binding domain in the C-terminus of KARs, it enhances KARs clustering 

and accelerates the recovery from desensitisation (Garcia et al., 1998; Bowie et 

al., 2003). In addition, other PDZ-domain proteins (PICK1 and GRIP) associate 

with the C-terminus of GluK1 and GluK2 and preserve KAR-mediated synaptic 

transmission at mossy fibre-CA3 contacts (Hirbec et al, 2003). The kainate 

receptor interacting protein for GluK6 (KRIP6) interacts with the C-terminus of 

GluK2a and modifies its functional properties (without affecting its surface 

expression) by decreasing the amplitude of the peak current and steady-state 

desensitisation, leading to decreased KAR-mediated transmission (Laezza et al., 

2007; Contractor et al., 2011). 

 Another type of KAR-interacting proteins are the 4.1N proteins, which are 

spectrin-actin binding proteins (Copits and Swanson 2013). This interaction 

between the membrane-proximal domain in the C-termini of the KAR subunits 

and 4.1N is promoted by the post-translational modification palmitoylation of 

the KAR distal cysteine residues, preventing internalisation of the KAR (Figure 

1.5). However, the post-translational modification phosphorylation antagonises 

this interaction, leading to receptor internalisation and reduced surface 

expression. The synaptosomal-associated protein 25 (SNAP-25) interacts with 

the KARs in an activity-dependent manner that increases PKC-dependent 

phosphorylation and leads to receptor internalisation (Selak et al., 2009). 

Furthermore, the coatomer protein complex I (COPI), which has a prominent 

role in the retrograde trafficking from the Golgi apparatus to the endoplasmic 

reticulum (ER), interacts with an ER retention motif (RRRRR) in the C-

terminus of GluK5 preventing plasma membrane delivery (Vivithanaporn et al., 

2006). However, when GluK5 forms heteromeric receptor with GluK2 its 

interaction with COPI is reduced to allow for plasma membrane expression. 

Recently, the C1q-like proteins (C1ql2 and C1ql3) released by mossy fibres in 

association with the presynaptic protein neurexin 3 isoform were found to 

interact with the amino terminal domain of KAR subunits and stabilise them 

postsynaptically at hippocampal mossy fibres-CA3 synapses (Matsuda et al., 
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2016). In addition, C1ql2 and C1ql3 proteins provided by recurrent mossy fibres 

have recruited KARs in the dentate granule cells (DGCs) in a pilocarpine-based 

temporal lobe epilepsy (TLE) model (Matsuda et al., 2016).   

 

1.2.3.7 Auxiliary proteins of KARs 

Relatively new interacting proteins, neuropilin and tolloid like proteins (Neto2 

and Neto1) were identified as KAR auxiliary subunits determining key properties 

of native receptors (Figure 1.9; Tomita and Castillo, 2012). 

 

Figure 1.9. KAR auxiliary subunits (Neto2 and Neto1). Neto2 and 1 subunits 

are single-pass transmembrane proteins that have two extracellular CUB domains 

followed by a low-density lipoprotein class A (LDLa) domain, a transmembrane 

domain and an intracellular C-terminal domain (CTD) (Tomita and Castillo, 2012; 

Ng et al., 2009; Zhang et al., 2009; Michishita et al., 2003; Michishita et al., 2004). 

 

The assembly process of Neto proteins with KARs affects almost all KAR 

signalling aspects, as channel gating properties, receptor pharmacology, and 

receptor trafficking in heterologous and neuronal systems (Copits and Swanson, 

2012). Both receptor subtype and Neto isoform affect these aspects in receptor 

function (Copits et al., 2011; Straub et al., 2011a). 

The next sections summarise the current evidence in support of regulating the 

above-mentioned key properties of KARs by their auxiliary subunits including 

Table 1.2, which also summarises the available evidence of Neto proteins-mediated 

regulation of KARs signalling. 
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1.2.3.8       Channel gating properties of KARs 

Several studies observed that Neto2 protein slowed the desensitization and 

deactivation of glutamate-mediated currents from many homomeric and 

heteromeric subunit combinations (GluK1, GluK2, GluK1/5, GluK2/5) in 

heterologous systems and neurons (Figure 1.10A; Copits et al., 2011; Straub et 

al., 2011a; Straub et al., 2011b; Zhang et al., 2009). On the other hand, for 

Neto1, a bidirectional effect on receptor kinetics was obvious. Neto1 slowed the 

deactivation and desensitization of GluK2/GluK5 heteromeric receptors but, for 

GluK1 receptors speeded the entry into the desensitized state in recombinant 

systems (Figure 1.10 B) (Copits et al., 2011; Straub et al., 2011a). However, the 

rate of KARs recovery from desensitization is generally increased by both 

Neto2 and Neto1 (Copits et al., 2011; Straub et al., 2011a; Straub et al., 2011b; 

Zhang et al., 2009). 

In vivo studies showed that KARs function was decreased in Neto1 knockout 

(Neto1 KO) mice as indicated by a severe deficit in EPSC-KAR and a faster decay 

kinetics at mossy fibre-CA3 synapses compared to wild-type mice (Figure 

1.10C). However, the EPSC-KAR at mossy fibre-CA3 synapses from Neto2 

knockout (Neto2 KO) mice was indistinguishable from wild-type mice (Straub 

et al., 2011a; Tang et al., 2011). Thus, Neto1 protein is required in the molecular 

mechanisms underlying the slow kinetics of mossy fibre EPSCs-KAR, which are 

thought to promote the initiation of action potential during recurrent bursts of 

input from the dentate granule cells (Copits and Swanson, 2012). In agreement 

with this, a study (Wyeth et al., 2014) reported that in wild-type and Neto2 KO 

mice, the spontaneous EPSC-KAR (isolated by applying the AMPAR antagonist, 

GYKI-53655) at mossy fibres-CA3 synapses was detected and exhibited slow 

kinetics (means no alterations in decay kinetics by Neto2 deletion). However, 

in Neto1 KO mice and Neto1/2 double KO mice, the spontaneous EPSCs-KAR 

were undetectable and the average decay time of spontaneous EPSCs (before 

GYKI-53655) was faster, which is consistent with the loss of the slow KAR 

contribution to a subset of the spontaneous EPSCs that was present in wild-type 

and Neto2 KO cells, given that the expression of Neto1 in the CA3 pyramidal 

cell layer predominates over Neto2 (Straub et al., 2011a). Considering the in 
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vivo results, it appears that Neto1 rather than Neto2 is required for normal KARs 

signalling at mossy fibre-CA3 synapses (Straub et al., 2011a). 

 

A. 

 

B.                                  C. 

 

Figure 1.10. Neto proteins modulation of KAR kinetics. A, slowing of 

desensitization and deactivation by co-expression of GluK2 and Neto2 as identified 

by glutamate responses from cells transfected with GluK2 alone or GluK2 and 

Neto2. (Adapted from Zhang et al., 2009). B, GluK1 KAR desensitization was bi-

directionally altered by Neto proteins. (Adapted from Copits et al., 2011). C, the 

accelerated decay kinetics of mossy fibre-CA3 EPSCs-KAR in Neto1 KO mice 

(Neto1 -/-). (Adapted from Straub et al., 2011a). All amplitudes were normalised. 

 

1.2.3.9 Pharmacological properties of KARs  

The binding of [3H]kainate in the hippocampus was determined in 3-genotypes; 

these were wild-type (WT), GluK2 KO, and Neto1 KO (Straub et al., 2011a). 

Compared with WT mice signal, the hippocampus of GluK2 KO mice had a reduced 

[3H]kainate binding activity by almost 80% and Neto1 KO mice signal was 50% 
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less. This indicated the important role of Neto1 for kainate binding to its 

receptors as evidenced by the difference in KD values for kainate (48.8 nM in 

wild-type and 202.6 nM in Neto1 KO calculated from kainate-binding curve) 

without any change in KAR expression. Additionally, kainate affinity for 

recombinant GluK2 receptors was enhanced by Neto1 co-expression (Straub et 

al., 2011a). Also, the efficacy of the partial agonist kainate relative to the full 

agonist glutamate was increased when Neto2 co-expressed with GluK2 in 

oocytes as evidenced by their kainate and glutamate-evoked currents compared 

to oocytes injected with only GluK2 (Zhang et al., 2009).  

 

1.2.3.10       KAR trafficking, targeting, and localization 

In a study (Wyeth et al., 2014) using postembedding immunoelectron 

microscopy to examine GluK2/3 expression at mossy fibre-CA3 synapses in 

wild-type and Neto1/2 double KO mice, fewer mossy fibre-CA3 synapses were 

labelled in Neto-null mice which showed the importance of Neto interactions 

for GluK2/3 postsynaptic targeting. However, contradictory results were 

obtained from different studies for the regulation of KARs localization by both 

Neto isoforms (Copits et al., 2011; Straub et al., 2011a; Zhang et al., 2009; Tang 

et al., 2011).  

In Neto1 KO mice the expression of GluK2 and GluK5 was significantly 

reduced in hippocampal synapses (Tang et al., 2011). In contrast, the surface 

expression of the same subunits was not found to be significantly different 

between Neto1 KO and wild-type mice (Straub et al., 2011a). Moreover, in 

cultured hippocampal neurons the dendritic redistribution of GluK1 was not 

enhanced by the presence of Neto1 (Copits et al., 2011). On the other hand, the 

synaptic abundance of GluK2 and GluK5 was not different in the PSDs between 

Neto2 KO and wild-type mice (Tang et al., 2011). Additionally, GluK2 surface 

expression has not changed after Neto2 co-expression with GluK2 in oocytes 

(Zhang et al., 2009). However, surface expression of recombinant GluK1 was 

doubled by co-transfection with Neto2 in mammalian cells, indicating an 

enhanced trafficking of GluK1 by Neto2. Moreover, in cultured hippocampal 

neurons, co-expression of GluK1 with Neto2 not only promoted GluK1 
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localisation to the plasma membrane, but also redistributed these receptors to 

dendritic spines and sites of synaptic contact (Copits et al., 2011).   

In summary, the comparison of research results obtained from various labs that 

used different experimental protocols to identify the roles of Neto proteins on 

several aspects of KAR function is challenging. It is worthy that the effects of Neto 

proteins on all predominant KARs subtypes in the CNS be investigated under the 

same experimental conditions. Nevertheless, we can still extract some general rules 

from all these studies. Moreover, we should take into consideration some of the 

issues not addressed in previous work regarding the composition of KAR protein 

complexes and their stoichiometry:  

1. How many molecules of the Neto proteins could be included into a 

tetrameric ion channel?  

2. Can both Neto proteins be incorporated into the same KAR ion 

channel? 

3. Do Neto proteins compensate for each other in case one of them was 

absent?  

 

 

 

 

 

 

 

 

 

 



 

 

Table 1.2. A summary of the literature regarding Neto protein-mediated regulation of KAR signalling. 

Property/Neto 

isoform 

Neto2 Neto1 Reference 

Trafficking 

and 

distribution 

No effect on GluK2 and GluK5 Regulate synaptic abundance of GluK2 and 

GluK5 in hippocampal PSD (Neto1 KO mice) 
Tang et al., 2011 

Increase GluK1-2a and GluK1-2b surface 

localization in COS-7 cells 

  

Increase GluK1-2a surface and dendritic 

localization to spines in transfected rat 

hippocampal neurons 

  

Co-localise GluK1-2a with PSD-95 and 

bassoon 

No increase in GluK1-2a surface and dendritic 

localisation in transfected rat hippocampal 

neurons 

 

No co-localisation with the PSD-95 and 

bassoon 

Copits et al., 2011 

No effect on GluK2 surface expression in 

Xenopus laevis oocytes 

  

GluK2 increases Neto2 surface expression 

when co-expressed in oocytes 

  

 
Zhang et al., 2009 



 

 

Absence of GluK2 (KO) from mice cerebella, 

reduces total and surface Neto2.  

Regulate GluK2 localisation in PSD in the 

cerebellum (Neto2-null mice) 

 
Tang et al., 2012 

Increase surface expression of GluK1, 2, and 3 

in HEK293T cells 
Increase surface expression of GluK1, 2, and 3 

in HEK293T cells 
Palacios-Filardo et 

al., 2016 

Does not regulate synaptic targeting of GluK2 

in CA1 and CA3 pyramidal neurons 
Does not regulate synaptic targeting of GluK2 

in CA1 and CA3 pyramidal neurons 
Sheng et al., 2017 

Regulates the expression of synaptic GluK2/3 

and GluK5 in the medial prefrontal cortex, 

amygdala, and hippocampus (fear-related brain 

regions) 

 
Mennesson et al., 

2019 

 
No effect on hippocampal GluK2/3 & GluK5 

surface expression, synaptic localisation and 

surface GluK2 in oocytes 

  

No effect on synaptic localisation (SL of CA3 

and hippocampal PSD) of GluK2 and GluK5  

  

Reduced from mouse hippocampal PSD when 

GluK2 is knocked out 

Straub et al., 2011a 



 

 

 
Maintain normal PSD abundance (targeting or 

stability) of GluN2A-containing receptors at 

CA1 synapses 

  

No effect on PSD-95 and NMDAR subunits 

(GluN1, GluN2A, GluN2B) surface expression 

Ng et al., 2009 

Enhance postsynaptic localisation of GluK2/3 on CA3 pyramidal cell spines Wyeth et al., 2014 

(dKO study) 

Receptor 

desensitisation 

and 

deactivation 

No effect on KAR decay kinetics at MF-CA3 

synapses
  

Slow KAR decay kinetics  Tang et al., 2011 

Slow GluK1-2a and GluK1-2b desensitisation 

in HEK 293T cells 
Increase GluK1-2a desensitisation in 

HEK293T cells 
Copits et al., 2011 

Slow GluK2 desensitisation in tsA201 cells and 

co-transfected cerebellar granule cells (GluK2 

K696R + Neto2) 

  

Slow GluK2 deactivation in tsA201 cells 

  

Slow GluK1 and 3 desensitisation in HEK293T 

cells. 

  

Increase GluK1 and 3 desensitisation in 

HEK293T cells. 

  

Palacios-Filardo et 

al., 2016 



 

 

Reduce GluK2 desensitisation in HEK 293T 

cells 
Reduce GluK2 desensitisation in HEK 293T 

cells 
 

Slow GluK2/GluK5 desensitisation and 

deactivation in tsA201 cells 

  

Slow KARs decay kinetics in hippocampal 

CA3 region 

Straub et al., 2011a 

Slow GluK1, GluK1/5 and GluK2/5 

desensitisation and deactivation in tsA201 cells 

 
Straub et al., 2011b 

Slow GluK1 & GluK2 desensitisation in 

HEK293 cells 
Increase GluK1 desensitisation onset (agonist 

sites are saturated) and slow desensitisation 

onset when receptor unsaturated in HEK 293 

cells 

Fisher, 2015 

Recovery from 

desensitisation 

No effect on GluK1-2a recovery in HEK293T 

cells 
Increase GluK1-2a recovery in HEK293T cells Copits et al., 2011 

Increase GluK2 recovery in tsA201 cells 
 

Zhang et al., 2009 

Increase GluK2 recovery but not GluK1 and 3 

in HEK 293T cells 
Increase GluK1, GluK2 and GluK3 recovery in 

HEK 293T cells 
Palacios-Filardo et 

al., 2016 
 

Increase GluK2/GluK5 recovery in tsA201 

cells 
Straub et al., 2011a 



 

 

Increase Gluk1, GluK1/5 and GluK2/5 recovery 

in tsA201 cells 

 
Straub et al., 2011b 

Increase GluK2 recovery but not GluK1 in 

HEK293 cells 
Increase GluK1 and GluK2 recovery in 

HEK293 cells 
Fisher, 2015 

KAR currents No effect on EPSCs
-KAR

 at MF-CA3 synapses Enhance EPSCs
-KAR

 at MF-CA3 synapses of 

CA3 
Tang et al. 2011 

Increase GluK1-2a and GluK1-2b current peak 

amplitude in HEK293T cells 

  

Detectable EPSC-
KAR

 in transfected neurons 

with Gluk1-2a and Neto2 under conditions of 

elevated release probability 

 
Copits et al., 2011 

Enhance GluK2 kainate and glutamate-evoked 

currents in oocytes when co-expressed 

  

Reduce kainate and glutamate-evoked currents 

in hippocampal neurons when Neto2 expression 

was suppressed 

  

Increase GluK2 steady state and peak currents 

in tsA201 cells 

 
Zhang et al., 2009 



 

 

  

Enhance GluK2 (K696R) miniature EPSCs 

when both were co-transfected in cerebellar 

granule cells 

  

Slow the decay of spontaneous EPSCs when 

GluK1 was transfected in neurons 

Increase steady state currents of GluK1, 

GluK1/5 and GluK2/5 in tsA201 cells 

 
Straub et al., 2011b 

No effect on metabotropic KAR signalling Regulates ionotropic and metabotropic KAR 

signalling in CA3 pyramidal cells (reduced 

when Neto1 is absent) 

Wyeth et al., 2014 

KAR 

pharmacology 

Highly increase GluK1 glutamate affinity in 

HEK 293T cells 

  

Modestly increase GluK2 glutamate affinity in 

HEK293T cells 

Highly increase GluK1 glutamate affinity in 

HEK 293T cells 

  

Modestly increase GluK2 glutamate affinity in 

HEK293T cells 

Palacios-Filardo et 

al., 2016 

 
Increase GluK2 kainate affinity when Neto1 is 

overexpressed in HEK293T cells with GluK2 

and in hippocampal membranes compared to 

Neto1 KO mice 

  

Straub et al., 2011a 



 

 

Increase GluK2/5 glutamate affinity when 

expressed in tsA201 cells 

Increase GluK1-glutamate sensitivity in 

HEK293 cells 
Increase GluK1-glutamate sensitivity in 

HEK293 cells 
Fisher, 2015 

Regulation in 

development 

Enhance KAR modulation of DRG neuron 

processes outgrowth (regulate neurite regrowth 

in adult sensory neurons following nerve injury) 

 
Vernon and 

Swanson, 2017 

Promote axonal targeting of KAR subunits in 

mice hippocampal neurons 
Promote axonal targeting of KAR subunits in 

mice hippocampal neurons 

  

Guide the development of rodent hippocampal 

CA3-CA1 circuitry 

  

Required for GluK1 tonic suppression of 

glutamate release early postnatally 

Orav et al., 2017 

Regulate presynaptic KARs affinity to kainate 

at CCK/CB1 interneurons (reduced agonist 

sensitivity in Neto2 KO) 

Facilitate presynaptic KARs activation at 

CCK1/CB1 interneurons leading to tonically 

supressing their release 

  

Increase kainate activation of interneuronal 

somatodendritic KARs leading to inhibitory 

currents in CA3 pyramidal cells 

Wyeth et al., 2017 



 

 

No effect on the visual cortex pyramidal cells 

maturation 
No effect on the visual cortex pyramidal cells 

maturation 

  

Promote dendrites elongation of visual cortex 

interneurons through regulating GluK1 

Jack et al., 2018 
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1.2.3.11      The expression profile of KAR subunits during development 

KAR subunits expression was identified previously at the mRNA level 

(Bahn et al., 1994; Wisden and Seeburg, 1993; Ritter et al., 2001; Ritter et al., 

2002). Table 1.3. Summarises the available evidence of KAR subunits 

expression in the developing and adult brain.  

The expression of the KAR subunit transcripts starts in the embryonic brain 

and peaks around birth (late embryonic and early postnatal) (Bahn et al., 1994). 

The peak levels of GluK1 are detected in the sensory cortex, thalamus, and in 

the interneurons of the stratum oriens of hippocampal CA1 region (all in the 

perinatal period of E19 to P5) and late postnatally (P12) in the Purkinje cells of 

the cerebellum and thereafter. Other hippocampal regions (CA3 and DG) have 

a very weak signal at any age.  

The peak levels of GluK2 are found in the thalamus prenatally (E17 and 

E19) after which they decline; in the granular cerebellar cell layer at birth and 

continue thereafter; and in hippocampal CA3 and DG late postnatally (P12) till 

the adulthood (Bahn et al., 1994). Other brain regions (inner cortical layers and 

hippocampal CA1) show a weak labelling throughout development and until the 

adulthood. After a few days of birth, 50% and 80% of the GluK1 and GluK2 

mRNA, respectively, undergo Q/R editing rendering the receptor Ca2+ 

impermeable (Bernanrd et al., 1999). This is in contrast with the GluA2 subunit 

of AMPAR, which is almost completely edited after birth (Burnashev and 

Rozov, 2000). 

The expression level of GluK3 (Bahn et al., 1994) peaks prenatally (E17 and 

E19) in the thalamus and early postnatally (P5) in hippocampal DG. It shows a 

very high expression level throughout development (E17 to the adulthood) in 

the cortex (embryonic) and inner cortical layers (P0 and thereafter).  

GluK4 transcript expression (Bahn et al., 1994) is the most restricted of all 

other KAR subunits. It is expressed mainly in hippocampal CA3 and DG 

regions. It peaks in CA3 at birth and continues toward the adulthood, while it is 

weakly detected in the DG.  
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The expression of GluK5 (Bahn et al., 1994) is strongly detected all over the 

brain, especially in the cortex, caudate putamen, cerebellar granular cells, and 

hippocampus, late prenatally (E17) and continues toward the adulthood.   

 

1.2.3.12 Functional roles of KARs during CNS development 

KARs have important roles in neuronal networks maturation and developing 

synaptic connectivity (Pinheiro and Mulle, 2006; Lerma and Marques, 2013; Carta 

et al., 2014; Lauri et al., 2005; Lauri et al., 2006). Tonic activation of presynaptic 

KARs at CA3 synapses by ambient glutamate early postnatally decreases 

glutamatergic inputs to CA3 and CA1 pyramidal neurons and facilitates the release 

of glutamate on CA3 interneurons (Lauri et al., 2005; Lauri et al., 2006). This leads 

to neuronal network bursting upon high-frequency stimulation and synchronisation 

in the immature hippocampus (Lerma and Marques, 2013; Carta et al., 2014).  

Furthermore, KARs differentially regulate filopodial motility during cerebral 

development (Tashiro et al., 2003). Activation of KARs promotes filopodial 

motility in immature slices of the hippocampus while inhibiting it in mature slices. 

This activation is bidirectionally regulated according to the agonist dose. Strong 

KAR stimulation inhibits axonal growth while a weaker stimulation promotes 

filopodial motility (Tashiro et al., 2003).  Transient activation of GluK2-containing 

KARs mediates synaptic stabilisation by a fast growth cone stalling (Ibarretxe, 

2007). This could be of importance in immature neurons when short glutamate 

signals contribute to increase the expression of GluK2-containing receptors at the 

plasma membrane promoting new synapses stabilisation (Martin et al., 2008). In 

addition, in GluK2-deficient mice, the maturation of hippocampal mossy fibre-CA3 

synapses is delayed (Lanore et al., 2012), indicating the important role of KARs in 

developing neuronal connectivity (Lerma and Marques, 2013). 



 

 

 

Table 1.3. A summary of KAR subunits transcripts expression in developing and adult brains. Cx: cerebral cortex, CPu: 

caudate putamen, Cb-g: cerebellar granular cell layer, T: thalamus, HP: hippocampus CA: hippocampal cornu ammonis, DG: 

hippocampal dentate gyrus. 
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Figure 1.11. A schematic diagram of brain regions. The diagram illustrates 

the brain regions of Table 1.3. CA: hippocampal cornu ammonis, DG: hippocampal 

dentate gyrus. 

 

1.2.3.13 KARs relevance in neurological disorders: Epilepsy 

Epilepsy is a neurological disorder with spontaneous recurrent seizures and 

excessive, abnormal, and hypersynchronous neuronal activity (Crepel and Mulle, 

2015). Approximately 50 million (~1%) people worldwide are affected by this 

disorder (Vizuete et al., 2018; Becker, 2018). The temporal lobe epilepsy (TLE), 

which affects the limbic system, is the most common form of partial epilepsy and 

resistance to anticonvulsive drugs in human (Vizuete et al., 2018; Crepel and Mulle, 

2015). The term epileptogenesis summarizes the CNS mechanisms to acquire the 

capability to generate spontaneous recurrent seizures. The term addresses the 

cellular and structural mechanisms of turning a normal brain to an epileptic one 

after a transient insult. The generation of spontaneous recurrent seizures comes as 
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a result of equilibrium disruption between excitatory and inhibitory neuronal 

networks that leads to abnormal neuronal discharges (Casillas-Espinosa et al., 

2012; Fukata and Fukata, 2017). Thus, disturbances in synaptic transmission 

play a role in the pathogenesis of seizures and epilepsy. This includes any 

component of synaptic transmission, like post- and pre-synaptic receptors and 

their interacting proteins (Casillas-Espinosa et al., 2012). Among receptors are 

the KARs, which are distributed throughout the brain pre- and postsynaptically 

modulating synaptic transmission and neuronal excitability (Contractor et al., 

2011). 

KARs modulation of the neuronal networks’ activity is achieved by opposite 

direction in that, presynaptically, KARs facilitate glutamatergic transmission 

and others regulate GABAergic (γ-aminobutyric acid) transmission, whereas 

postsynaptically, glutamate excits both pyramidal cells and GABAergic 

interneurons and so the excitability is determined by the balance between the 

activation of distinct subtypes of KARs (Vincent and Mulle, 2009). 

The role of KARs activation by glutamate in the induction and propagation 

of seizures in human and animal models of TLE epilepsy is not clear (Crepel 

and Mulle, 2015; Vincent and Mulle, 2009). The hippocampus in animal models 

of chronic epilepsy and human patients displays a phenomenon called reactive 

plasticity. This means major network remodelling (Coulter et al., 2002; Noebels 

et al., 2010; Ben-Ari et al., 2008) occurs in the hippocampus. Mossy fibres 

sprout forming new synaptic connections of recurrent excitatory circuits 

between dentate granule cells and this enhances epileptiform activity (Figures 

1.12; Vincent and Mulle, 2009). The influence of mossy fibre inputs through 

these aberrant recurrent excitatory synapses onto DGCs is mostly via KARs 

(Vincent and Mulle, 2009, Peret et al., 2014).  
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Figure 1.12. Hippocampal epileptic sprouting. These are DG hippocampal 

histological sections stained with Timm histochemistry. Mossy fibres (DGCs 

axons) projections are represented by the dark staining. A, normal rat DG showing 

heavy staining in the dentate hilus (H) and CA3 regions and absence staining in the 

dentate molecular layer (ML). B, the DG of an animal following status epilepticus 

shows obvious staining in the molecular layer which demonstrate mossy fibre 

sprouting into it. (Adapted from Cavazos and Cross, 2006).  

 

Accordingly, a study investigated the role of these aberrant KARs in the 

generation of chronic and recurrent seizures in a pilocarpine model of chronic TLE 

using GluK2 KO mice and a GluK2/GluK5 receptor antagonist (UBP310; Peret et 

al., 2014). In this study, a strong reduction of both interictal and ictal activities was 

observed in the DG in GluK2 KO mice or with UBP310 use in wild-type mice, 

which demonstrated a role for GluK2-containing KARs at recurrent mossy fibre 

synapses in chronic seizures in TLE (see section 4.4.2.1 for further discussion of 

KARs role in epilepsy). 

However, as the other iGluRs (AMPARs and NMDARs) contribute to the 

majority of the fast excitatory synaptic transmission in the brain, they also have 

been implicated in the process of epileptogensis. The imbalance between calcium 

permeable to impermeable AMPARs is related to epilepsy (Casillas-Espinosa et al. 

2012). Furthermore, pharmacological targeting of AMPARs (e.g., the 

noncompetitve AMPAR antagonist perampanel) reduces seizure frequency in 

epileptic patients (Loscher and Schmidt, 2012; Rogawski and Hanada, 2013). 

NMDARs have been considered a target for developing new antiepileptic drugs as 

they have an important role in the regulation of excitatory neurotransmission in the 

brain by controlling synaptic plasticity (Casillas-Espinosa et al. 2012) (see sections 
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4.4.2.2 and 4.4.2.3 for further discussion of AMPARs and NMDARs role in 

epilepsy, respectively, and section 6.3 for the role of iGluRs). 

By using animal models of epilepsy, we can improve our understanding of 

the above complex processes of synaptic transmission regulation in health and 

disease. Thus, facilitating the development of new therapeutic approaches for 

epilepsy as a significant percentage of all epileptic patients (15-35%) fail to 

achieve long-term remission with the currently available antiepileptic drugs 

(AEDs) (Shorvon and Goodridge, 2013). Moreover, research aiming to develop 

new, more efficacious AEDs, should use animal models simulating the chronic 

brain dysfunctions leading to epilepsy for the better understanding of its basic 

mechanisms (Loscher, 2002) and to enhance the model translational potential. 

Animal models of TLE, that are used to study the process of epileptogenesis, 

include focal application of electrical stimulation (kindling) and chemical-

inductive models (Sarkisian 2001). The most commonly studied chemical-

inductive models of TLE are the kainate- and pilocarpine-induced models 

because they satisfy many of the criteria necessary for a good animal model 

including behaviours manifestations and pathological changes (Sarkisian 2001). 

In both models, status epilepticus (SE) is induced after administering the drug 

(kainate or pilocarpine) followed by a period of latency before the development 

of spontaneous recurrent seizures (SRSs, chronic epilepsy) (Sarkisian 2001). 

The hippocampus in these models displays major network remodelling (Coulter 

et al. 2002, Noebels et al. 2010) as the axons of the dentate granule cells, mossy 

fibres, sprout 2-3 weeks after SE forming new aberrant functional synaptic 

connections on the dendrites of granule cells in the inner molecular layer of the 

DG (Crepel and Mulle 2015, Karoly et al. 2015, Crepel 2013, Koyama and 

Ikegaya 2004, Ben-Ari 2001, Sarkisian 2001). This forms recurrent circuits of 

excitation between dentate granule cells, which enhance epileptiform activity 

generation (Crepel and Mulle 2015, Karoly et al. 2015, Crepel 2013, Koyama 

and Ikegaya 2004, Ben-Ari 2001, Sarkisian 2001). 
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1.3  Hippocampal neuronal circuit and connectivity 

The surface of the temporal lobe forms ~ 17% of the human cerebral cortex 

volume (Kiernan, 2012). This includes regions involved in the auditory, olfactory, 

vestibular, and visual senses, and in the perception of spoken and written language. 

The temporal lobe contains many brain regions including the hippocampal 

formation (hippocampus and subiculum), and the entorhinal cortex. The subiculum 

is a transitional area between the hippocampus and entorhinal cortex. Damage to 

the temporal lobe can be caused by infection, trauma, ischaemia, and neoplasia. 

This can stimulate or inhibit the previously mentioned functions (Kiernan, 2012). 

 The hippocampus is a three-layered cortex comprises two distinct sub-regions: 

the dentate gyrus and the hippocampus proper (consisting of CA3, CA2, and CA1) 

(Witter, 2010). These regions form two interlocked “C” shape folds of the cortical 

mantel. The curved structure of the hippocampus, macroscopically, resembles the 

ram horns, in Latin it is called cornu ammonis (CA). The name hippocampus is 

derived from Latin for sea-horse as the structure’s shape resembles that of a sea 

horse. 

The hippocampal formation is easily differentiated from the entorhinal cortex 

by the later having six layers. The hippocampus formation deepest layer has basal 

dendrites of principal cells and a mixture of afferent and efferent fibres and local 

circuitry interneurons. Superficial to this layer is the cell layer which has principal 

cells and interneurons. The most superficial layer, situated on top, has the apical 

dendrites of the neurons and the large majority of axons that provide inputs. These 

layers in the dentate gyrus are, respectively, represented as: the hilus, granular cell 

layer, and molecular layer (stratum moleculare, SM). In the CA regions, the deepest 

layer and cell layer are called stratum oriens (SO) and stratum pyramidale (SP), 

respectively. The superficial layer is sub-divided into three (CA3) or two (CA1-2) 

sub-layers. The CA3 layers are the stratum lucidum (SL) where dentate gyrus 

mossy fibres inputs synapse, the stratum radiatum (SR) which have the apical 

dendrites of the stratum pyramidale neurons, and the stratum lacunosum-

moleculare (SLM) which have the apical tufts of the apical dendrites. CA2 and CA1 

lamination is similar to CA3 except there is no stratum lucidum. In the subiculum, 

layers are the stratum oriens (the deep layer) which is very thin and usually not 

specifically differentiated from the underlying white matter of the brain, the stratum 
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pyramidale, and the molecular layer (superficial layer). The hippocampal 

formation sub-regions are connected sequentially. The dentate granule cells 

provide a massive projection of axons called mossy fibres to CA3. Mossy fibres 

terminals are unique in their large size and their correlation with complex 

postsynaptic specialisations called thorny excrescences. On their way to CA3, 

mossy fibres contact large cells in the hilus called mossy cells. In addition, they 

form many collaterals that contact interneurons in the hilus. In turn, hilar mossy 

cells project axons to the dentate inner molecular layer to provide excitatory 

inputs to the proximal dendrites of the dentate granule cells. In contrast, hilar 

interneurons provide inhibitory inputs to the outer part of the molecular layer. 

Collaterals of CA3 axons contact dendrites of interneurons and spines of CA3 

pyramidal cells which form a strong autoassociative network that characterise 

the CA3 connections. CA3 axons that project to CA1 are called Schaffer 

collaterals. They target CA1 interneurons and pyramidal cells in SR and SO. 

CA1 pyramidal cells project to the apical dendrites of the pyramidal neurons of 

the subiculum (the inner half of the molecular layer). 

Neuronal cells in cortical regions, including the hippocampus, are broadly 

divided into two main types: principle or projection neurons (~80-90% of 

neuronal population) and interneurons. Principle cells are glutamatergic, 

excitatory neurons, whereas interneurons are GABAergic, inhibitory neurons. 

Hippocampal principle cells include CA pyramidal cells, DG granule cells, and 

mossy cells of the hilus. Each type of these cells form largely homogeneous 

populations. Pyramidal cells of CA areas are characterised by a pyramidal or 

ovoid soma in the stratum pyramidale, large-calibre apical dendrites in the 

stratum radiatum (form a dendritic tuft in stratum lacunosum-moleculare), and 

a number of small-calibre basal dendrites in the stratum oriens. DG granule cells 

are densely packed in the granule cell layer with small and round or ovoid cell 

bodies. They have bipolar morphology, spiny dendrites from the upper pole of 

the soma and an axon from the base. This axon, the so –called mossy fibre, 

provides the major output of the DG to the CA3 with its unique feature of large 

boutons that contact large complex spines in stratum lucidum of CA3 and mossy 

cells in the hilus. Hilar mossy cells have large triangular or ovoid soma with 



          Chapter 1 – Introduction                                                                                              43 

 

large complex spines on proximal dendrites similar to CA3 proximal apical 

dendrites. 

GABAergic interneurons have extensive local axonal arborisation to provide 

inhibitory innervation and control the activity of large sets of local neurons. 

Interneurons are heterogeneous in their morphology, physiological properties and 

neurochemical markers. They can be sub-divided into two main classes based on 

postsynaptic targets, perisomatic and dendritic inhibitory cells. Perisomatic 

inhibitory interneurons include basket cells and axo-axonic cells. They innervate 

soma, proximal dendrites, and axon initial segment of principle cells. Dendrite-

inhibiting interneurons include many distinct types (bistratified, O-LM, and 

neurogliaform interneurons). They innervate various parts of their target cells 

dendritic tree. Different types of interneurons express a wide range of molecular 

markers. These include calcium-binding proteins (parvalbumin, calbindin, 

calretinin), neuropeptides (somatostatin, cholecystokinin, neuropeptide Y), and 

certain enzymes (nitric oxide synthase). 

The entorhinal cortex is sub-divided into a medial (mEC) and a lateral (lEC) 

part. The six entorhinal cortex layers are: the molecular layer (layer I), the stellate 

cell layer (layer II), the superficial pyramidal cell layer (layer III), a cell-sparse 

lamina dissecans (layer IV), the deep pyramidal cell layer (layer V), and a 

polymorph cell layer (layer VI).   

 

 Figure 1.13. Schematic illustration of hippocampal neuronal connectivity. A 

schematic drawing illustrating the hippocampal network. The basic neuronal circuit of 

the hippocampus is commonly called the trisynaptic circuit: the entorhinal cortex (layers 

II and III) provides the main cortical input to the hippocampus, with its strongest 

projections by the perforant pathway to the dendrites of granule cells of the dentate gyrus 
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(DG) (Synapse 1). The DG targets the apical dendrites of the pyramidal cells in CA3 

via mossy fibres (Synapse 2). CA3 pyramidale neurons contacts the apical dendrites 

of CA1 pyramidale cells via Schaffer collaterals (Synapse 3). Finally, CA1 pyramidal 

cells project back to the subiculum and entorhinal cortex (layers V and VI), 

completing the loop. Abbreviations: Cornu Ammonis (CA); Dentate Gyrus (DG); 

Entorhinal Cortex (EC); Lateral Perforant Path (LPP); Medial Perforant Path (LPP); 

Mossy Fibres (MF); Schaffer Collaterals (SC); Subiculum (S) (Adapted from Patten 

et al., 2015). 

 

The main source of input to the hippocampal formation is the entorhinal 

cortex through the perforant pathway with projections aim at all sub-regions of 

the hippocampal formation. Layer II of the entorhinal cortex provides input to 

the dentate gyrus and CA3, while layer III aims at CA1 and the subiculum. 

Inputs from layer II of the lEC terminate in the outer half of DG SM and CA3 

SLM, whereas Layer II projections from the mEC terminate deep to the lateral 

fibres. Layer III projections of the lEC target SLM of CA1 distal part which is 

closest to the subiculum and the SM of the close by subiculum proximal part. In 

contrast, mEC inputs target SLM in the proximal part of CA1 and SM of the 

subiculum distal part. The return projections from the hippocampal formation 

to the entorhinal cortex terminate in layers V and VI (Figure 1.13). 

 

1.4 Project aims 

The modulatory role of KARs in synaptic transmission offers interesting 

perspectives as fewer side effects might be presented from interfering with 

KARs than interfering with other iGluRs (Vincent and Mulle, 2009). In line 

with this appealing idea (interfering with modulators), the following two points 

should be taken into account for investigating and understanding the underlying 

mechanisms of aberrant synaptic transmission: 

1. In theory, designing compounds to modulate the auxiliary 

subunit function could enable KARs selective targeting according, for 

example, to auxiliary subunit regional expression. Thus, minimizing 

adverse effects by receptor targeting in specific areas. 

2. Leaving the synaptic transmission untouched by interfering 

specifically with the pathophysiologic mechanisms through auxiliary 
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subunits, protein-protein interactions, or post-translational modifications 

targeting, is a more suitable therapeutic goal than targeting the receptors 

themselves.   

Because the expression pattern and synaptic and cellular signalling of KARs can be 

profoundly different between mature and immature networks (Rodriguez-Moreno and 

Sihra, 2011) and the fact that they have a critical role in the development and maturation 

of neuronal networks with the underlying exact mechanisms remained undefined (Lerma 

and Marques, 2013), it is worthy to investigate the developmental dynamics in Neto 

protein expression patterns (which have not been identified yet) in the brain. This will 

allow us to establish the interplay between pore-forming and their auxiliary subunits 

aiming to understand the molecular basis that determine the variation in KAR subunit 

composition, cellular localisation and KAR function. In addition, KARs are modulators 

of neuronal excitability with distinct property of slow decay kinetics, when co-assembled 

with Neto subunits. This unique Neto-dependent characteristic of KARs allows 

maintaining longer currents and may be involved in epilepsy pathogenesis. Furthermore 

to Neto proteins, the activity of KARs is influenced by many post-translational 

modifications that affect receptor surface expression and hence may enhance/diminish 

their role in neuronal excitability/hyperexcitability. Palmitoylation of the GluK2 subunits 

promotes the receptor surface expression. However, it is unknown if changes to this PTM 

(non-palmitoylation) would lead to receptor internalisation and hence may have 

functional implications in hyperexcitable conditions like epilepsy. 

Therefore, our specific aims are concentrated on Neto proteins developmental 

expression profile, KAR (and other iGluR) subunits expression in a new epileptic 

model that mimic human TLE, and the post-translational modification 

palmitoylation of GluK2 subunit. And, these are:  

1. To identify the regional expression profiles of Neto proteins during 

brain development 

2. To identify activity-induced changes in the expression level and 

molecular composition of iGluRs during the chronic phase of epilepsy 

using a refined lithium-low dose pilocarpine model (Modebadze et al. 

2016).  
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3. To identify the effects of GluK2 non-palmitoylation on GluK2   

phosphorylation, SUMOylation and internalisation under basal and 

agonist stimulation conditions. 
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2  Materials and Methods
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2.1 Materials 

 

2.1.1 Chemicals and buffers 

The chemicals used throughout this work were purchased from Sigma-Aldrich 

(Gillingham, UK) unless otherwise mentioned. Solvents were obtained from Fisher 

Scientific (Loughborough, UK). Non-fat powdered milk was from The Co-operative 

Food Convenience Store (Bristol, UK). 

 

2.1.2 Heterologous cell line culture 

 

2.1.2.1 Cell lines 

Human Embryonic Kidney 293T (HEK293T) cells were from The European 

Collection of Authenticated Cell Cultures (ECACC). Baby Hamster Kidney-21 (BHK-

21) cells were obtained from the American Type Culture Collection (ATCC) stocks. 

Aliquots of the cells (mixed with 1% dimethyl sulfoxide (DMSO) were frozen in liquid 

nitrogen and used as our stock. 

 

2.1.2.2 Cell culture media 

Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma-Aldrich) was used to maintain 

HEK293T cells after adding 10% heat inactivated foetal bovine serum (FBS, Biosera, 

East Sussex, UK), 1% penicillin/streptomycin (Gibco, Invitrogen) and 1% Glutamine 

(Gibco, Invitrogen). 

Alpha-minimum essential medium (MEM, Gibco, Invitrogen) was used to maintain 

BHK cells after adding 5% heat inactivated foetal bovine serum and 1% 

penicillin/streptomycin. 

 

2.1.3 Histobloting 

Nitro-blue tetrazolium chloride (NBT, 34035) was from Thermo Fisher scientific 

(Newport, UK). DNase I recombinant, RNase-free (04716728001) was from Roche 
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(Mannheim, Germany). Nitrocellulose membrane (0.45 µm) was obtained from 

Thermo Scientific. 

 

2.1.4 Protein biochemistry 

Protease inhibitor tablets (Roche) and phosphatase inhibitor tablets (A32957, 

Pierce) were used in lysis buffers. Acrylamide (30% v/v, Geneflow Ltd, Lichfield, 

UK) was used for preparing SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel 

electrophoresis) gels. PVDF (polyvinylidene difluoride) immobilon membrane 

(Millipore Ltd, Watford, UK) was used for transfer. PageRuler pre-stained protein 

ladder (26616, ThermoFisher Scientific, Newport, UK) was used as the protein 

molecular weight marker. Immobilon Western Chemiluminescent HRP Substrate 

(WBKLS0500, Millipore, Watford, UK) was used for signal detection. 

 

2.1.5 Bacterial reagents 

Escherichia coli (E. coli): 

- Strain: DH5α (Thermo Fisher)      

- Genotype: supE44 Δlac u169 (φ80 lacZΔ M15) hsdR17 recA1 

endA1 gyrA96 thi-1 relA1 

 

2.1.6 Bacterial growth 

Luria-Bertani (LB) broth was obtained from the stores of the University of Bristol 

to grow E. coli during DNA cloning and amplification. 

Agar was mixed with LB broth and ampicillin then poured in plates under sterile 

conditions to culture E. coli. 

 

2.1.7 Antibiotic containing media and agar plates 

Ampicillin stock (100 mg/mL, 50% ethanol) stored at -20°C was diluted to 100 

µg/mL in LB broth or LB agar to have a positive selection during cloning and plasmid 

amplification. 
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2.1.8 Molecular biology 

2.1.8.1 Stock plasmids 

Stock plasmid Description 

Neto subunit proteins constructs for overexpression [all in pcDNA3.1(-)] 

Untagged Neto2 Rat full length Neto2  

FLAG-GFP-Neto2 Rat full length Neto2 tagged with FLAG-

GFP N-terminally after the signal peptide  

Untagged Neto1 Rat full length Neto1  

FLAG-GFP-Neto1 Rat full length Neto1 tagged with FLAG-

GFP N-terminally after the signal peptide  

shRNA plasmids: all are in a plasmid called pXLG3-GFP-100bp-stuffer 

and they were provided by Dr Kevin Wilkinson. 

sh-scrambled  Target sequence of scrambled: 

AATTCTCCGAACGTGTCAC 

sh-Neto2  Target sequence of Neto2:  

AGTGTTGCTAATAACGGTA 

sh-Neto1-a  Target sequence of Neto1-a: 

GCAAGTTTAATCATCCTCCAT 

sh-Neto1-b  Target sequence of Neto1-b: 

CGAGAATGTGTCTACATCATA 

YFP-Myc-GluK2 constructs: rat GluK2a with an N-terminal YFP and 6-

Myc tags in pcDNA3.1 

WT, K886R,  

S846A + S868A,  

and S868D constructs 

Published previously (Konopacki et al., 

2011) 

C858A + C871A mutant Made by Rumnique Hullait. 

Others 

For Sindbis viruses The previous YFP-Myc-GluK2 inserts are in 

the vector pSinRep5(nsP2S) (Kim et al., 

2004). 

FLAG-Ubc9 FLAG-tagged human Ubc9 in the vector 

pCMV-3xFLAG (Invitrogen) (Kantamneni 

et al., 2011) 

FLAG-SUMO1 Human SUMO1 in the vector pEYFP-C1 

(Clontech), obtained from Frauke Melchior 

(University of Heidelberg, Germany) 

(Pichler et al., 2002) 

                      Table 2.1. A summary of the stock plasmid constructs. 
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2.1.8.2 DNA purification kits 

The DNA purification kit GeneJETTM Plasmid Midiprep (K0481) was from    

Thermo Scientific. 

 

2.1.9 Electronic devices 

The following table summarises the used electronic devices. 

Electronic device Company 

Bench-top centrifuges Eppendorf Ltd (Stevenage, 

UK) 
 

Shaking bacterial incubators RS Biotech Laboratory 

Equipment Ltd (Ayrshire, 

UK) 
 

GBOX-Chemi-XRQ system Syngene (Cambridge, UK) 
 

Electroporation machine: Bio-Rad Gene 

Pulser II 

Bio-Rad (Kidlington, UK) 
 

Confocal microscope (University of 

Bristol Wolfson Bioimaging Facility): 

Leica SP5-II confocal laser scanning 

microscope attached to a Leica DMI 6000 

inverted epifluorescence microscope with 

the laser lines: 405, 488, and 633 nm. 
 

Leica Microsystems (Milton 

Keynes, UK) 
 

Dissection microscope 
 

Leica Microsystems Ltd 

(Milton Keynes, UK) 

              Table 2.2. A summary of the used electronic devices. 

 

2.1.10 Imaging fixation and preparation 

Paraformaldehyde (PFA) 16% (Electron Microscopy Sciences, 50-980-487, 

Hatfield, UK) was used as a stock for fixing hippocampal cells. The mounting medium 

Fluoromount-G with DAPI (e-Bioscience) was used to mount the cells at the glass 

slide. 
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2.1.11 Plasticware and glassware 

The following table summarises the used plasticware and glassware. 

Type of plasticware/glassware Company 

Plastic pipette tips (10 to 1000 µL) Starlab Ltd (Milton Keynes, UK) 

Stripettes (5-25 mL) Sterilin (Newport, UK) 

Gel loading tips Fisher (Loughborough, UK) 

Glass coverslips (25 mm) VWR International Ltd 

(Lutterworth, UK) 

Glass slides (frosted end) VWR International Ltd 

(Lutterworth, UK) 

Sterile cell culture plasticware 

(6 and 10 cm dishes, 6-well plates, 75 cm2 

and 175 cm2 flasks) 

Cellstar Ltd (Bishop Stortford, 

UK) 

0.5 and 1.5 mL tubes Eppendorf Ltd (Stevenage, UK) 

15 and 50 mL tubes Falcon (Leicestershire, UK) 

                   Table 2.3. A summary of the used plasticware and glassware. 

 

2.1.12 Antibodies 

The tables below (2.4, 2.5, and 2.6) summarise the used primary and secondary antibodies 

for histoblot, immunoblot and immunocytochemistry. Anti-GluK1 and -GluK4 primary 

antibodies were not included in our studies (chapter 3 and 4) because the commercially 

available tools were poorly performing in biochemical and histological experiments 

(Molnar’s lab unpublished data). Imaging of immunoblot was performed using Syngene 

chemiluminescence GBOX-Chemi-XRQ system (Cambridge, UK). 

 



 

 

 

Antigenic       

target 

Clonality Host Dilution Company/Reference Catalogue  

# 

 

GluA1 Polyclonal Rabbit 1:1000 Millipore 04-855  

GluA2 Polyclonal Rabbit 1:4000 Millipore AB-1768-

I 

 

GluA1-4 Polyclonal Rabbit 1:2000 Pickard et al., 2000 -  

GluK2/3 Monoclonal Rabbit 1:1000 Millipore 04-921  

GluK5 Polyclonal Rabbit 1:1000 Millipore 06-315  

GluN1 Monoclonal Rabbit 1:1000 Cell Signalling  

      (London, UK) 

D65B7  

GluN2B Polyclonal Rabbit 1:1000 Millipore 06-600  

Neto1 Polyclonal Rabbit 1:1000 Straub et al., 2011a -  

Neto2 Polyclonal Rabbit 1:1000 Zhang et al., 2009 -  

Alkaline phosphatase (AP)-conjugated secondary antibody  

Rabbit 

   IgG 

Polyclonal Goat 1:4000 Sigma A3687  

                          Table 2.4. A summary of primary and secondary antibodies used for histoblotting. 

 

 



 

 

Antigenic target Clonality Host Dilution Company/Reference Catalogue #  

Phosphoserine/threonine Monoclonal Mouse 1:1000 BD Biosciences 

(Wokingham, UK) 

612548  

Phosphoserine Monoclonal Mouse 1:1000 Sigma-Aldrich P5747  

Phosphoserine PKC 

substrate 

Polyclonal Rabbit 1:1000 Cell Signaling 2261  

FLAG Monoclonal Mouse 1:1000 Sigma-Aldrich F3165  

GFP Monoclonal Rat 1:2500 Chromotek 3H9  

GluK2/3 Monoclonal Rabbit 1:1000 Millipore 04-921  

β-Actin Monoclonal Mouse 1:10000 Sigma A5441  

Neto1 Polyclonal Rabbit 1:1000 Straub et al., 2011a -  

Neto2 Polyclonal Rabbit 1:1000 Zhang et al., 2009 -  

Horseradish peroxidase (HRP)-conjugated secondary antibodies  

Rabbit IgG Polyclonal Goat 1:10000 Jackson 

ImmunoResearch 

(Ely, UK) 

111-35-144 

 

 

Mouse IgG Polyclonal Goat 1:10000 Jackson 

ImmunoResearch 

115-35-003  

Rat IgG Polyclonal Goat 1:10000 Jackson 

ImmunoResearch 

112-35-175   

                       Table 2.5. A summary of primary and secondary antibodies used for immunoblotting. 

 



 

 

                                   

 

 

 

 

 

 

 

 

 

 

 

 

                                  Table 2.6. A summary of primary and secondary antibodies used for immunostaining. 

 

 

Antigenic 

target 

Clonality Host Dilution Company Catalogue 

# 

 

GFP Polyclonal Chicken 1:1000 Abcam Cambridge, 

UK) 

Ab13970  

Alexa Fluor® 647- conjugated secondary antibody  

Chicken Polyclonal Donkey 1:400 Jackson 

ImmunoResearch 

703-606-

155 

 

Cyanine Cy™2-conjugated secondary antibody  

Chicken Polyclonal Donkey 1:400 Jackson 

ImmunoResearch 

703-225-

155 
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2.2 Methods 

 

2.2.1 Histoblot (Chapters 3 and 4) 

The histoblot technique has the advantage of displaying proteins in their anatomical 

distribution with a reliable consistency for immunolabelling that allows the levels of 

protein expression to be compared quantitatively in various brain samples (Benke et al., 

1995; Wenzel et al., 1997; Tonnes et al., 1999; Molnar, 2016; Aguado and Luján, 2019). 

Brain samples sectioning: Unfixed frozen brain samples (obtained from our 

collaborators) were transferred from -80°C to -20°C 24 hours before sectioning. Cryostat 

sections (10 µm, from Bregma -5.6 mm to Bregma -6.1 mm) of horizontally positioned 

rat brains were layered onto uncoated glass slides and stored at -20°C until histoblotting. 

Some of the sections were mounted on gelatine-coated glass slides for Nissl staining. 

They were left for air dry for at least 24 hours before Nissl staining. 

Protein transfer, processing and blotting: Each frozen brain section was directly 

transferred onto a pre-wetted (Transfer buffer: 48 mM Trise-base, 39 mM glycine, 2% 

SDS, 20% methanol, pH 10.5) nitrocellulose membrane (0.45 µm, Thermo Scientific, 

88025)  by applying a weight for 30 s without lateral movement. Then, membranes were 

transferred into blocking solution [5% w/v skimmed milk powder in TBS-T (Tris-

buffered saline, 0.1% Tween 20)] for one hour at room temperature (20-22oC) without 

agitation. Next, the membranes were rinsed briefly (for one minute) with TBS-T and 

incubated with DNase I solution (5 units/mL) at 37°C for 20 min to remove DNA which 

could mask protein epitopes. After a series of washing steps [RIPEA 

(Radioimmunoprecipitation assay) for 20 min then TBS-T 2X 10 min at 20-22°C on 

shaker], the membranes were incubated with a strip buffer (0.1 M Tris-HCl, 2% SDS, and 

0.1 M β-mercaptoethanol, pH 7.0) at 45 °C for 1 h to remove adhering tissue residues. 

Following incubation in blocking solution (1 h at room temperature 20-22°C), the 

appropriate dilution of affinity-purified primary antibodies (Table 2.4) was applied in 

blocking solution at 4°C overnight (14-16 h). Bound primary antibodies were visualised 

using an alkaline phosphatase (AP)-conjugated anti-rabbit secondary antibody (1:4000, 

Sigma) after 90 min incubation at room temperature (20-22oC). A substrate solution 

[0.033% Nitro Blue Tetrazolium (34035) and 0.0165% 5-bromo-4-chloro-3-indolyl 
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phosphate (B6149) in AP buffer (0.1 M Tris-HCl, 0.1 M NaCl and 5 mM MgCl2, pH 

9.5)] was used to detect AP activity. 

Identification and quantification of immunopositive brain structures: Adjacent 

cryostat sections were stained with Nissl stain to facilitate the identification of 

different brain regions. A standard desktop scanner was used to obtain consistent 

digital greyscale images of histoblots that are treated identically for semi-quantitative 

comparisons. Matlab R2015a software (The MatWorks, Inc) was used to quantify 

grayscale images through measuring pixel densities in required brain regions. An 

adequate number of circles (with an appropriate diameter for the region of interest as 

0.08 mm) for each immunolabeled area (e.g., stratum lucidum of CA3) were used to 

measure its pixel density. Adjacent cresyl violet-stained sections are used for the 

identification of areas of interest (Figure 2.1). The average pixel density of ten circles 

of the image background was calculated and subtracted from the average pixel density 

from the area of interest. The ʺnʺ refers to the number of brains/animals analysed. 

Figure 2.1 shows the selection process of different brain regions for quantification 

using a Nissl stained brain section for illustration purposes.  

 

During the histoblotting work on the the RISE model (chapter 4), the 

undergraduate students Emma Hardy and Katie Skobelski provided some technical 

assistance. 

 

 



 

 

 

                        

   Figure 2.1. Brain regions selected for quantitative comparisons. The different regions are highlighted on Nissl-stained horizontal 

rat brain sections (A) and enlarged hippocampal (B) and cerebellar (C) regions according to the colour code. The Nissl staining highlights 

the cell body layers. For each region/sub-layer, a number of equal size circles was used to map the selected area and quantify its average 

pixel intensity except for the prefrontal and medial entorhinal cortex (mEC) where rectangles were used. Each rectangle was subdivided into 

20 equal segments to map different cortical layers. The average pixel intensity of each circle/segment was measured by the Matlab R2015a 

software (The MatWorks, Inc) and then the pixel intensities of the six cortical layers were calculated using previously established procedures 

for the prefrontal cortex (Vilagi et. al., 2009) and mEC (Ray and Brecht, 2016). Scale bars: 2 mm (A), 1 mm (B, C). 
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2.2.2 Nissl staining (chapters 3 and 4) 

For cresyl violet staining slides were immersed sequentially in each of the 

following for the indicated duration: 70% ethanol for 3-5 minutes, ddH2O for 10 

seconds, cresyl violet 0.1% for 30-45 minutes, 70% ethanol for 3-5 minutes and 100% 

ethanol for 5 minutes twice. Stain was checked, then slides were tapped-out onto a 

tissue paper to remove excess ethanol. Next, they were immersed in xylene twice for 

at least 15 minutes each time. After that, a drop of DPx mountant was placed on the 

stained section and a cover slip was placed gently over it using forceps. Air bubbles 

were removed by finger pressing down on the cover slip. Finally, slides were kept in 

the fume hood for 48 hours to dry. 

 

2.2.3 Timm’s silver sulphide staining (chapter 4) 

Unfixed horizontal brain sections (10 µm) used for histoblotting were processed 

for autometallographic silver enhancement of zinc-enriched cells (Timm’s staining; 

Jaarsma and Korf, 1990; Karoly et al., 2015). First, sections were allowed to dry at 

room temperature (20-22°C). Second, they were fixed using 0.1% sodium sulphide in 

0.1 M phosphate buffer (pH adjusted to 7.3 with concentrated acetic acid) for 20 min 

in a fume cupboard. After that sections were washed with 96% ethanol twice (quick 

rise then for 6 min) followed by 50% ethanol for 10 min. Then, three washes with 

water for 5 min each. Next, sections were treated with freshly prepared Timm’s classic 

physical developer (50% gum Arabic, 2 M citrate buffer pH 3.8, hydroquinone 5.67%, 

silver nitrate 17%) for 70-90 min with intermittent shaking in darkness. The following 

step was washing with 1% sodium acetate three times to stop the reaction. After the 

last wash, sections were placed on new glassware to prevent the subsequent gold 

solution from permanently staining the freshly silver-coated glassware. Following 

this, silver was replaced with 0.5% gold-toning solution, H[Au(Cl4)], for 10 min. 

Again, sections were washed with 1% sodium acetate followed by 5% sodium 

thiosulphate for 5 min to remove gold ions. Finally, sections were washed briefly with 

water before mounting in DPx mountant. Sections were left to dry at the room 

temperature (20-22°C) and then scanned using a standard desktop scanner at a 

resolution of 1300 dpi. The differences in Timm’s staining between the study groups 
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were assessed using one-way analysis of variance (ANOVA) at a confidence level of p < 

0.05. 

2.2.4 Cell culture (chapter 3 and 5) 

Under sterile conditions, cell culture cabinets (Holten Safe LaminAir Thermo Fisher 

Scientific) were used for cell culturing. 

 

2.2.4.1 Preparation of cell culture plates (chapters 3 and 5)  

HEK293T cells: each cell culture plate (6-well plate or 6 cm dish) was coated with 

100 µg/mL Poly-L-Lysine (PPL) for one hour. Then, plates were washed with sterile cell 

culture grade water (Hyclone, Fisher scientific) three times before adding 2-4 mL of 

complete DMEM (Plain DMEM supplemented with 1% L-glutamine, 1% 

Penicillin/Streptomycin, and 10% FBS). 

 

2.2.4.2 HEK293T and BHK-21 cells thawing, passage and maintenance 

Stored aliquots of HEK293T and BHK-21 cells in liquid nitrogen were taken out and 

placed in the cell culture water bath at 37°C to thaw. Next, cells were centrifuged at 1500 

x g for 2 minutes after adding 10 mL of complete media. After that, they were suspended 

in 10ml of media before being transferred to a cell culture dish and placed in the cell 

culture incubator at 37°C and 5% CO2. 

When the cell confluency reached ~80%, cells were passaged by first washing them 

with Phosphate Buffer Saline (PBS) before treating them with 1-1.5 mL of 0.05% trypsin-

EDTA of (Gibco) for 2-3 minutes at 37°C. Second, 9 mL of media were added using a 

pipette to dissociate cell aggregates. After that, 1 mL of this cell suspension was plated 

in a T75 flask that have 9 mL of pre-warmed (37°C) complete DMEM (HEK293T) or 

alpha-MEM (BHK-21). The remaining cell suspension was used to plate cells for 

transfection (HEK293T cells) or electroporation (BHK-21 cells). 
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2.2.5 Primary neuronal culture 

 

2.2.5.1 Preparation of cell culture plates/glass coverslips (chapters 3 and 5)  

6-well plates, 6 cm dishes or pre-treated glass coverslips (25 mm, VWR) were 

treated with 1 mg/mL PPL for overnight incubation. They were then washed with 

sterile cell culture grade water 3x before adding Neurobasal (Gibco, Invitrogen) 

plating media (supplemented with 5% Horse serum, 1% glutaMAX (Gibco, 

Invitrogen), 2% B27, and 1% penicillin/streptomycin).  

Glass coverslips were pre-treated before PLL coating with 70% nitric acid 

overnight. They were then washed 3x in ddH2O. Next, they were sterilised using 70% 

ethanol for 4 hours with gentle rotation. After that and under sterile conditions, 

coverslips were washed 3x with ddH2O and kept in water until use. One coverslip was 

placed in each well of 6-well plate and coated with PPL before plating neurons. 

 

2.2.5.2 Dissection 

Wistar pregnant rat at embryonic day 17 (E17) was sacrificed according to the 

Home Office regulations (schedule 1). Then, the embryos were taken out and placed 

in HBSS (Hank's Balanced Salt Solution) prior to removing their heads. Brains were 

removed under the dissection microscope followed by the isolation of the hindbrains. 

The hemispheres were separated following the removal of meninges. Then, the 

hippocampus was dissected from the cortex and both were placed in two labelled 35 

mm dishes filled with HBSS. Under sterile conditions, the collected hippocampi and 

cortex (after being chopped into smaller pieces of tissue using a sterile blade) were 

washed 3x in HBSS followed by adding 1 and 3 mL of trypsin-EDTA 

(Ethylenediamine tetra-acetic acid; final concentration 0.005%) to the dissected tissue 

in 9 and 30 mL of HBSS and incubated in water bath (37°C) for 9 and 15 minutes. 

Following this step, the tissue was washed again 3x with HBSS before a last wash 

with Neurobasal plating media. Next, 1 or 5 mL of plating media was used to 

dissociate the hippocampal and cortical cells using a one mL pipette. The cell 

suspension was diluted using 4 and 25 mL of plating media before cell density was 

established using trypan blue and a haemocytometer. 
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2.2.5.3 Maintaining neuronal culture 

Primary cortical neurons were plated at 600,000 cells/well of a 6-well plate coated 

with PLL and filled with pre-warmed plating media. Hippocampal neurons were plated 

at 150,000 cells/glass coverslip (25 mm) coated with PLL and placed in a well of a 6-well 

plate filled with pre-warmed plating media. The media was changed to pre-warmed 

Neurobasal feeding media (plating media without Horse serum) 24 hours after plating the 

cells. 

 

2.2.6 Biochemical methods (general) 

 

2.2.6.1 Cell lysis 

Cells (transfected HEK293T cells or virally infected cortical neurons counted using 

haemocytometer and plated at 600,000 cell/well) of a 30 mm well were lysed with 250 

µL of either 2x Laemmli sample buffer (4% SDS, 20% glycerol, 0.004% bromphenol 

blue, 0.125 M Tris-Cl (pH 6.8), and 10% β-mercaptoethanol) or a cold lysis buffer as will 

be specified. Cell lysates were kept on ice for 30 minutes prior to centrifugation (21,000 

x g, 4 °C, 30 min) to pellet cell debris. The supernatant was transferred into a new 1.5 mL 

pre-cooled tube and placed on ice for either mixing it with 2x Laemmli sample buffer or 

performing GFP-trap protocol to immunoprecipitate the protein of interest and then 

mixing the IP with 2x Laemmli sample buffer for SDS-PAGE (Sodium Dodecyl Sulfate 

Polyacrylamide Gel Electrophoresis). 

 

2.2.6.2 SDS-PAGE 

An 8%-10% SDS-PAGE running gel (375 mM Tris-HCl (pH 8.8), 8-10% acrylamide, 

0.1% SDS, 0.1% APS, and 0.01% TEMED) was prepared to separate proteins. After gel 

polymerisation, the stacking gel was prepared (125 mM Tris-HCl (pH 6.8), 5% 

acrylamide, 0.1% SDS, 0.1% APS, and 0.01 TEMED) and layered on the top of the 

polymerised resolving gel. Then, a 10-15 well comb was placed into the stacking gel until 

it polymerised (~ 30 minutes). Next, a BioRad electrophoresis tank filled with running 

buffer (25 mM Tris base, 250 mM glycine, and 0.1% SDS) was used to run the samples 

after removing the comb and washing the wells with ddH2O. Protein samples were 
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incubated at 95°C for 10 minutes after being mixed with 2x Laemmli sample buffer. 

The samples were allowed to cool to room temperature prior to being vortexed and 

centrifuged at 21,000 x g for 1 minute. After that, the samples and a pre-stained protein 

MW marker were loaded into the SDS-PAGE wells using gel loading tips.  The 

samples were run starting at 90 V for ~ 15-20 minutes (until the ladder started to 

separate by reaching the resolving gel) and then at 120 V until the dye reached the 

bottom of the gel. The gel was removed and either used for electrophoretic transfer or 

was stained with Coomassie Brilliant Blue. 

 

2.2.6.3 Immunoblotting 

Wet transfer: Proteins were transferred (400 mA for 90-120 minutes) after 

electrophoresis from the SDS-PAGE gel onto a 0.45 µm PVDF membrane. The gel 

and membrane (pre-wetted with methanol first then transfer buffer) were faced onto 

each other between extra thick blotting paper (pre-wetted with transfer buffer). This 

was assembled in the transfer cassette and the membrane was put on the positive side 

(anode) so that proteins migrated from the gel into the membrane.  

Immunoblotting: After the transfer process, the membrane was blocked in 5% non-

fat milk powder in TBS-T (1x TBS + 0.1% Tween-20) for 1 hour with gentle shaking. 

Following this step, the membrane was incubated in the primary antibody prepared in 

6% non-fat milk or BSA (Bovine Serum Albumin) in TBS-T overnight at 4°C or for 

1 hour at room temperature. Next, the membrane was washed from the primary 

antibody 6x with TBS-T, each for 5 minutes on a shaker. Then, it was incubated in 

the HRP-conjugated secondary antibody (in 6% non-fat milk powder or BSA in TBS-

T) for one hour with gentle shaking prior to three 5 min washing steps using TBS-T. 

The transferred proteins were visualised using GBOX-Chemi-XRQ system after 

exposing the membrane to an HRP chemiluminescent substrate for 1-30 minutes at 

room temperature.  

 

2.2.7 Transfecting HEK293T cells 

HEK293T cells were plated in the PLL coated wells of a 6-well plate after being 

counted using a haemocytometer at 800,000 cells/well and left in the incubator for 



          Chapter 2 – Materials and Methods                                                                             65 

 

two hours before being transfected. Forty minutes before transfection, the transfection 

mixture was prepared as follows: 

For each transfection, 200 µL of plain DMEM was aliquoted into a 1.5 mL Eppendorf. 

Then, each target DNA (see table 2.7 for specific chapter details) was added to the 

appropriately labelled tube. LipofectamineTM 2000 (Invitrogen) was added as 1.5x the 

total amount of DNA in each tube. The mixture was then briefly vortexed, centrifuged 

and left at room temperature (~22-24°C) for 30 minutes. Just before transfecting the cells, 

they were washed once in pre-warmed (37°C) plain media DMEM) and then 2 mL of pre-

warmed (37°C) transfection media (complete DMEM without penicillin/streptomycin) 

were added to each well. After that, the transfection mixture was added dropwise to each 

well and mixed by gently rotating the dish before they were replaced into the incubator 

for 36-40 hours. 

Table 2.7. A summary of target DNAs used to transfect HEK293T cells. 

 Amount of target DNA for (co)transfecting HEK293T 

cells 

Transfecting 

HEK293T cells 

Target DNA-1 Target DNA-2 Target DNA-3 

Experiments done 

for chapter 3 

0.5 µg Neto2   

0.5 µg Neto2 1 µg sh-scrambled  

0.5 µg Neto2 1 µg shNeto2  

0.5 µg Neto2 1 µg shNeto1  

0.5 µg Neto1   

0.5 µg Neto1 1 µg sh-scrambled  

0.5 µg Neto1 1 µg shNeto1  

0.5 µg Neto1 1 µg shNeto2  

0.5 µg GFP   

0.5 µg GFP 1 µg sh-scrambled  

0.5 µg GFP-Neto2  1 µg sh-scrambled  

0.5 µg GFP-Neto2 1 µg shNeto2  

0.5 µg GFP-Neto2 1 µg shNeto1  

0.5 µg GFP-Neto1 1 µg sh-scrambled  

0.5 µg GFP-Neto1 1 µg shNeto1  

0.5 µg GFP-Neto1 1 µg shNeto2  

Experiments done 

for chapter 5 

2 µg YFP 0.2 µg FLAG-

SUMO1 

0.1 µg FLAG-Ubc9 
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2 µg WT YFP-Myc-

GluK2 

0.2 µg FLAG-

SUMO1 

0.1 µg FLAG-Ubc9 

2 µg C858A, C871A 

YFP-Myc-GluK2  

0.2 µg FLAG-

SUMO1 

0.1 µg FLAG-Ubc9 

2 µg k886R YFP-

Myc-GluK2  

0.2 µg FLAG-

SUMO1 

0.1 µg FLAG-Ubc9 

2 µg S846A, S868A 

YFP-Myc-GluK2  

0.2 µg FLAG-

SUMO1 

0.1 µg FLAG-Ubc9 

2 µg S868D YFP-

Myc-GluK2 

0.2 µg FLAG-

SUMO1 

0.1 µg FLAG-Ubc9 

Experiments done 

for chapter 5 for 

mass spectrometry 

2 µg WT YFP-Myc-

GluK2 

  

2 µg C858A, C871A 

YFP-Myc-GluK2  

  

        

HEK293T cells transfected with the Neto subunit protein constructs were lysed in 

2x Laemmli sample buffer (2.2.6.1) and the samples processed as in sections 2.2.6.2 

using 10% gel and transferred for 90 minutes (2.2.6.3). The membranes were 

immunolabelled for Neto2, Neto1, and GFP using the appropriate primary and HRP-

conjugated secondary antibodies (Table 2.5). 

 

2.2.8 GFP-trap protocol of transfected HEK293T cells (chapter 5) 

GFP-trap protocol was used to immunoprecipitate GFP-fusion proteins (in this 

case YFP-tagged GluK2) from transfected HEK293T cell lysate. 36-40 hours after 

transfection, cells were checked under the fluorescent microscope for green color 

(YFP) to confirm the efficiency of the transfection. Then, medium was replaced with 

pre-warmed HBSS and the cells of each condition were treated with either a vehicle 

(water) or 100 µM kainate for 20 minutes. After kainate stimulation, cells were put 

on ice for 2-3 minutes before HBSS is aspirated. Cells were scraped after adding cold 

400 µL/well lysis buffer (20 mM Tris-HCl (pH 7.4), 137 mM NaCl, 2 mM sodium 

pyrophosphate, 2 mM Ethylenediaminetetraacetic acid (EDTA), 1% Triton-X 100, 

0.1% SDS, 25 mM β-glycerophosphate, 10% glycerol, 20 mM N-ethylmaleimide 

(NEM, freshly prepared), and 1x complete protease inhibitors) and put into 1.5 mL 

pre-labelled cold tubes. Then, five brief (~1 second) bursts of sonication (Misonix 

microson ultrasonic cell disruptor) at setting 5 were done. Cell lysate was then left on 
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ice for 20 minutes to allow for solubilisation. Next, lysate was centrifuges in a benchtop 

centrifuge at full speed (21,000 x g at 4°C for 20 minutes) to pellet cell debris. 

During centrifugation, GFP-trap beads were aliquoted (7.5 µL/pulldown) and washed 

3x with 500 µL wash buffer (lysis buffer without the protease inhibitors) at 1500 x g for 

2 minutes each and left on ice immersed in buffer to avoid drying out. After the 

centrifugation, 20 µL (5%) of supernatant was taken as the total lysate sample to a pre-

cooled fresh tube. The remaining supernatant was added to the washed GFP-trap beads 

(pulldown samples). These were rotated at 4°C for 1-2 hours. After pulling down the 

YFP-Myc-GluK2 from all conditions, the beads were pelleted by centrifugation at 1500 

x g for 2 minutes at 4°C. The beads were washed 3x by re-suspension and centrifugation 

after which 40 and 20 µL of 2x Laemmli sample buffer was added to the beads and total 

lysate samples, respectively. All samples were heated to 95°C for 10 minutes and then 

left to cool for another 10 minutes. Just before loading the samples onto 8% gels, samples 

were briefly vortexed and centrifuged at full speed (21,000 x g) for one minute to pellet 

the beads. 

GFP–trap protocol done for the ABE (acyl biotin exchange) assay and the mass 

spectrophotometry had 3 exceptions from the above protocol: 

1. No kainate pretreatment 

2. Lysis buffer for the ABE assay as in table 2.8 and for the mass spec is as above 

(2.2.8) with no NEM included. 

3. Amount of GFP-trap beads/pulldown was 20 µL as the protein was not pooled 

from one well instead from 3-5 wells (ABE assay) and 3 wells (mass spec.). 

 

2.2.8.1 Immunoblotting (chapter 5) 

Samples were loaded onto an 8% acrylamide gel and starting to run on the stacking 

gel at 90 mV until they reached the resolving gel (marker proteins started to separate). 

Then, the voltage was changed to 120 mV for around 2 hours. Wet transfer was done at 

400 mA for 90-120 minutes using PVDF membrane. Next, membranes were blocked in 

6% BSA in TBS-T for at least one hour (1-2 hours) at room temperature (22-24°C) before 

being incubated with antibodies in the following order: 

1. Mouse anti-phosphoserine (BD Biosciences 612548, 1:1000) in 6% BSA at 4°C 

overnight (~16 hours). Membranes were developed the next day with a very 
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sensitive HRP substrate (WBKLS0500, Millipore) after being washed from the 

primary antibody and incubated with anti-mouse HRP-conjugated secondary 

antibody (Sigma, 1:10000) for one hour at room temperature. 

2. Since no signal was obtained with the anti-phosphoserine antibody, there was no 

need for stripping the membrane before incubating it with the anti-FLAG primary 

antibody. Mouse anti-FLAG (F3165 Sigma, 1:1000) in 6% milk powder was used 

to detect SUMOylated proteins (in pulldowns and total) overnight at 4°C. The next 

day membranes were washed (6x, 5 minutes each) and incubated with anti-mouse 

HRP-conjugated secondary antibody (Sigma) (1:10000) for one hour at room 

temperature before developing. 

3. Membranes containing immunoprecipitated samples were stripped (Restore Plus 

Western Blot Stripping Buffer, Thermo Scientific) before re-probing with rat anti-

GFP (3H9-100 Chromotek,1:2500 in 6% milk) for one hour at room temperature 

and then anti-rat HRP-conjugated secondary antibody (Sigma, 1:10000) for one hour 

at the room temperature (22-24°C). 

 

2.2.9 Immunoprecipitation (IP) and acyl biotin exchange (ABE) assay 

(chapter 5) 

The ABE assay was performed following recombinant GluK2 pull down step 

using the previous GFP-trap protocol (2.2.8) except for lysing the cells using the lysis 

buffer in table 2.8 added to it 50 mM NEM. 

The first step (after the pulldown step) was to spin down GFP-trap beads at 1500 

x g for one minute at 4°C to pellet the beads. The supernatant was removed, and the 

beads resuspended in 600 µL of lysis buffer + 10 mM NEM (N-Ethylmaleimide). For 

each sample, 1/3 (200 µL) was taken of the resuspended beads and added to a labelled 

pre-cooled tube to serve as negative control (no hydroxylamine treatment). The 

remaining 2/3 (400 µL) was used for hydroxylamine treatment. All tubes were topped 

up with lysis buffer + 10 mM NEM to a total volume of 500 µL/tube. Samples were 

left on ice for 10 minutes and then the beads were pelleted by centrifugation at 1500 

x g for one minute at 4°C. Next, the samples were washed quickly once with stringent 

buffer (500 µL/tube) then 3x in lysis buffer pH 7.2. Following the last wash, freshly 

prepared hydroxylamine buffer (500 µL, pH 7.2) was added to each hydroxylamine-
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treated beads with a final concentration of 1 M hydroxylamine. Lysis buffer (pH 7.2) was 

added to the corresponding negative control beads. Samples were left to rotate at room 

temperature (22-24°C) for one hour. Once hydroxylamine treatment was completed, the 

beads were washed once in lysis buffer (pH 6.2) and placed on ice after removing the 

supernatant. Next, maleimide-activated, sulfhydryl-reactive biotinylation reagent 

(BMCC-Biotin, Thermo Scientific, 21900) buffer (500 µL) was added to each sample at 

a final concentration of 4 µM. Samples were left to rotate at 4°C for one hour. 

Following incubation with BMCC-Biotin, samples were washed once in lysis buffer 

(pH 6.2) and then 3x in lysis buffer (pH 7.2). After the final wash, all supernatant was 

removed and 2x Laemmli sample buffer (40-50 µL) was added to each sample and the 

protocol was completed as previously mentioned for the GFP-trap protocol except: 

1. Streptavidin-HRP antibody (Pierce 21130, 1:5000) in 0.3% BSA in 1x TBS-T at 4°C 

overnight (~16 hours). Membranes were developed the next day with a very sensitive 

HRP substrate (WBKLS0500, Millipore) after being washed from the primary 

antibody. 

2. Because no clear signal was detected for palmitoylated GluK2, there was no need for 

stripping the membrane before incubating it with rat anti-GFP primary antibody 

(chromotek 3H9-100,1:2500) and then anti-rat HRP-conjugated secondary antibody 

(Sigma, 1:10000), each for one hour at the room temperature. 

Buffer/solution Composition [Working] 

Lysis buffer (LB) 1% IGEPAL CA-630, 50 mM 

Tris-HCl pH 7.5, 150 mM 

NaCl, 10% glycerol, 1 mM 

PMSF, 1X protease inhibitor 

cocktail 

 

NEM solution NEM powder in 100% 

ethanol 

50 or 10 mM as 

indicated 

Phenylmethanesulfonyl fluoride 

(PMSF) 

Stock prepared in (Dimethyl 

sulfoxide) DMSO 

1 mM 

Protease inhibitor (PI) cocktail 

tablet 

 1x 

Stringent buffer 10 mM NEM + 0.1% SDS in 

LB 

 

Hydroxylamine buffer Stock solution in LB pH 7.2 1 M 

Biotin-BMCC solution Stock solution prepared in 

DMSO 

1-5 µM in LB pH 

6.2 

      Table 2.8. A summary of the buffers used in the IP-ABE assay. 
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2.2.10 Coomassie Brilliant Blue staining (chapter 5) 

Coomassie brilliant blue (50% (v/v) methanol, 10% (v/v) acetic acid and 0.25% 

Coomassie Brilliant Blue in ddH2O) was used to stain the immunoprecipitated (GFP-

trap protocol in 2.2.8) proteins (WT and C858A, C871A YFP-Myc-GluK2) from 

transfected HEK293T cells (table 2.7) on an 8% gel from the SDS-PAGE (as in 

section 2.2.8.1). The gel was incubated in the stain for one hour with gentle shaking. 

After that, it was de-stained with a destaining solution (50% methanol, and 10% acetic 

acid in ddH2O) 3 times to remove excess stain. Next, it was left in the destaining 

solution overnight before being sent to the University of Bristol Proteomics Facility 

[https://www.bristol.ac.uk/life-sciences/research/facilities/proteomics] for mass 

spectrophotometry. 

 

2.2.11 Transfecting neurons for live labelling and imaging (chapter 5) 

Under sterile conditions, hippocampal neurons were transfected at DIV 9-10 using 

lipofectamine 2000. YFP-Myc-GluK2 (WT and C858A, C871A, two coverslips each) 

DNA (1.5 µg/coverslip) was added to 100 µL of plain neurobasal media. In addition, 

1.5x the DNA amount of lipofectamine (3 µL) was also added to another tube of 100 

µL plain media. The tube contents were mixed and vortexed after 5 minutes of 

incubation and left for 20 minutes at the room temperature (22-24°C). The media of 

the hippocampal neurons on coverslips was removed and kept warm (37°C) for later 

on and pre-warmed (37°C) feeding media (without the antibiotic) was added to the 

cells. After 20 minutes, the transfection mixture was added gently to the cells which 

were then incubated (37°C, 5% CO2) for 90 minutes for the transfection. Lastly, the 

transfection media was removed and replaced with the original feeding media. At DIV 

14-15 cell were used for a live labelling experiment. 

 

2.2.12 Live labelling for confocal imaging (chapter 5) 

Hippocampal neurons on 25 mm coverslips were transfected with YFP-Myc-

GluK2 (WT and C858A, C871A) at DIV 9-10 as previously described. 

At DIV 14-15, media was replaced with pre-warmed HBSS treated with 2 µM 

TTX (Tetrodotoxin) and 40 µM GYKI53655 for 30 minutes to block neuronal activity 
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and AMPARs, respectively. Then half of the neurons of each condition was treated with 

10 µM kainate for 20 minutes and the other corresponding half with vehicle (water). After 

kainate stimulation, neurons were incubated with chicken anti-GFP antibody (ab13970, 

1:1000) in media for 20 minutes at 4°C. Next, neurons on cover slips were washed quickly 

in cold PBS (1x) 5x before being fixed with pre-warmed (37°C) 4% PFA for 20 minutes. 

Following fixation, neurons were washed 3x with PBS and then treated with glycine 

(0.2g/30 mL PBS, Severn Biotech) for one minute after which they were washed 3x in 

PBS. Then, 3% BSA was used for blocking for 10 minutes before the incubation with the 

Alexa 647-conjugated anti-chicken secondary antibody (1:400) in 3% BSA for one hour 

at room temperature in darkness. 

Once finished, neurons were washed 3x with PBS and then permeabilised using 3% 

BSA and 0.1% Triton-X 100 (Fisher Scientific) for 10 minutes in darkness. After that, 

cover slips were incubated with chicken anti-GFP (1:1000) again to label the total 

transfected GluK2 for one hour in darkness. The next step was to wash off any unbound 

primary antibody with PBS (3x) before the addition of cy2-conjugated anti-chicken 

secondary antibody (1:400, green) in darkness for one hour. Cover slips were then washed 

3x (each 5 minutes) before being mounted on prelabelled glass slides using Fluoromount-

G with DAPI (eBioscience). Glass slides were kept in darkness to dry out for 24-48 hours 

before being imaged. 

 

2.2.13 Neuronal imaging (chapter 5) 

Confocal imaging [Leica SP5-AOBS confocal laser scanning microscope linked to a 

Leica DMI 6000 inverted epifluorescence microscope with the laser lines: 405 (blue for 

the nucleus), 488 (green for the total), 633 (far red for the surface)] was used. The 

transfected neurons were imaged by looking for the total labelling of GluK2 (green cells). 

A 63x oil immersion lens was used for image acquisition. Each image is composed from 

5-6 stacks (0.4-0.5 µm stack interval) that were projected by maximum intensity. The 

untreated WT GluK2 condition was used to optimise the settings to avoid signal 

saturation, which remained constant throughout the same experiment. The 

immunofluorescence was quantified using ImageJ (FIJI).  
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2.2.14 Preparation of lentivirus using HEK293T cells (chapter 3) 

HEK293T cells were passaged (2.2.4.2) one day before making the virus and 

plated at 6 million cells in 100 mm dish/virus. The next day, HEK293T cells were 

transfected as follows: 

1. Preparation of DNA-DMEM mixture 

For each virus to be made (sh-scrambled, shNeto2, shNeto1-a, and shNeto1-b), 10 

μg XLG viral vector, 2.5 μg pMD2.G (expresses the VSV-G envelope protein), and 

7.5 μg p8.91 (helper vector) were added to 2.5 mL plain DMEM. 

2. Preparation of the polyethylenimine (PEI)-DMEM mixture 

For each virus to be made, 24 µL of PEI (1 mg/mL) was added to each 1 mL of 

DMEM (here each virus needed 2.5 mL of plain DMEM) before inverting the tube 

several times for mixing. Then the mixture was sterile filtered and left for 2-3 minutes 

at room temperature. 

3. Preparation of the transfection mixture 

The PEI-DMEM mixture (2.5 mL/virus) was added to each DNA-DMEM mixture 

prepared earlier and mixed by inverting the tube several times. This final mixture was 

left for 30 minutes at room temperature. 

4. Transfecting HEK293T cells 

Cells were gently washed once with prewarmed (37°C) plain DMEM prior to 

adding each transfection mixture (5 mL) to each dish with cells. Cells were kept in 

the cell culture incubator for 4 hours after which the transfection mixture was replaced 

with 7 mL/dish of warm complete DMEM and placed back in the incubator. 

After 40-48 hours, the virus-containing media was collected and centrifuged at 

1500 x g for 10 minutes to remove any dead cells. Then, the virus was aliquoted and 

stored at –80°C. 

 

2.2.15 Preparation of sindbis virus using BHK-21 cells (chapter 5) 

Sindbis virus is an RNA virus that never goes through a DNA intermediate so, the 

first step in making the virus is that RNA encoding our construct should be made in 

vitro, along with RNA encoding the ‘helper’ vectors. Then, this RNA needs to be 
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electroporated into the BHK-21 cells to produce virus. The following are the steps for 

making the sindbis virus: 

1. Preparing the cells 

Two days before electroporating the BHK-21 cells, cells were plated at 1x106 

cells/T175 flask.  

2.  Linearising templates 

 25 µg (to account for loss of DNA during procedure) of the template plasmid 

(pSinRep5) DNA [GFP and YFP-Myc-GluK2 (WT, C858A +C871A, K886R, C858A 

+C871A + K886R, C858A +C871A + S846A + S868A)] was linearised overnight at 37°C 

by mixing the following: 25 µg of each DNA, 10 µL of 10x cutsmart buffer(Biolabs, 

B7204S), 2 µL Pac I (10000 unit/mL, Biolabs, R0547L), and up to 100 µL ddH2O. The 

defective helper plasmid (pDH(26S)) was also linearised by mixing: 10 µg pDH (26S), 

10 µL of H buffer, 5 µL of Xho I (10 u/µL, Biolabs, R0146S), and up to 100 µL ddH2O.   

The next day, 4 µL of each digest was mixed with 1 µL of 6X DNA loading dye (Biolabs, 

B7024S) and run on 0.8% agarose gel (135 volte, 20 minutes) to confirm the completion 

of linearisation (one band). After that, the digest was put at -20°C for later treatment on 

the day of BHK-21 cells electroporation. 

3. Proteinase K digestion to remove trace nucleases 

To each digest, 5 µL of 10% SDS (L4522, RNase-free) and 1 µL of proteinase K 

solution (20 mg/mL, Ambion, 2546) were added and the mixture incubated at 50°C for 

30 minutes. From here every next step was done using RNase-free 1.5 mL tubes. 

4. Phenol-Chloroform extraction (to remove proteinase K) and ethanol precipitation of 

DNA 

To each digest, 200 µL of DEPC (diethyl pyrocarbonate)-treated water (Ambion, 

AM9906) and 300 µL of phenol/chloroform were added, vortexed, and centrifuged at 

21,000 x g for 1 minute. The upper aqueous layer was transferred into a fresh RNase-free 

tubes without taking the interface. After that, 300 µL of chloroform was added, vortexed, 

and centrifuged at 21,000 x g for 1 minute to remove phenol. Next, the upper aqueous 

layer phase was transferred into a fresh RNase-free tubes before adding 0.1X aqueous 

phase volume (30 µL) of 3 M sodium acetate (pH 5.2) and 2.5X aqueous phase volume 

(750 µL) of 100% ethanol. The mixture was vortexed for 30 seconds then centrifuged at 
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21,000 x g for 30 minutes. After centrifugation, the supernatant was discarded and 

750 µL of 70 % ethanol added to the small white pellet (linearised DNA) before being 

centrifuged at 21,000 x g for 5 minutes. Again, supernatant was discarded using a 

P1000 pipette and any trace 70% ethanol was removed from the bottom of the tube 

using a P20 pipette prior to allowing the pellet to air dry while the tube kept open. 

Next, 10µL of DEPC-treated water was added to dissolve the pellet by placing the 

tube on a shaker at 4°C for at least 30 minutes. Then, the concentration of DNA was 

measured at 260/280 nm absorbance ratio using NanoDrop ND-1000 (LabTech) and 

diluted to 0.5 µg/µL and the tube was left on ice. 

5.  In vitro transcription of viral RNA 

 mMESSAGE mMACHINE SP6 Large Scale In Vitro Transcription kit 

(Ambion 1340, Invitrogen) and SUPERaseIn (Ambion 2694, Invitrogen) RNAse 

inhibitor were used for in vitro transcription of viral RNA. 

For each electroporation reaction (including each gene of interest, one for the 

defective helper DNA, and one extra to account for any pipetting error), 0.55µL of 

DEPC-treated water, 2.5 µL of 2x ribonucleotide mix (2x NTP/CAP), 0.25 µL of 20 

mM GTP, 0.5 µL of 10x transcription buffer, 0.1 µL of SUPERaseIn, 0.5 µL of 10 x 

SP6 enzyme mix, and 0.6 µL of linearised DNA (0.5 µg/µL) were mixed carefully 

and then incubated at 37°C for 2-4 hours. The preparation of BHK-21 cells was started 

90 minutes before the end of this incubation period. 

6. Preparation of BHK-21 cells 

Cells (70-80% confluent) were washed with PBS (5 mL/flask) before 2-3 mL of 

trypsin-EDTA were added to each T1.75 flask. Cells were kept at room temperature 

for 1 minute prior to aspirating the Trypsin-EDTA. Then, cells were incubated at 37°C 

for 2 minutes. After that cells were collected in a 50 mL centrifuge tube by rinsing 

every two flasks with 10 mL growth medium and again another 10 mL for all flasks 

to collect any remaining cells. Next, collected cells were centrifuged at 1000 x g at 

4°C for 4 minutes. Supernatant was then removed and 10 mL of 1x PBS were added 

to suspend the cells, after which another 10 mL PBS were added to the cell suspension 

and centrifuged at 1000 x g (4°C, 4 minutes). Supernatant was aspirated before adding 

10 mL of PBS to triturate the cells, avoiding bubbles, at least 10 times. Next, cells 

were counted by mixing 100 µL of the cell suspension with 100 µL of trypan blue 
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solution (0.4% in saline, Sigma T8154) using a haemocytometer. After that, the 

suspension was centrifuged at 1000 x g (4°C, 4 minutes). During this final centrifuge step, 

7 mL of growth medium (to make the virus) was added to each 100 mm dish and kept in 

the incubator at 37°C. The supernatant was aspirated, and PBS was added to reach 20 

million cells/mL. The cell suspension was kept on ice for less than 20 minutes before 

electroporation. 

7. Preparation of RNA for electroporation 

Labelled RNase-free 1.5 mL tubes were put on ice before dispensing 5 µL of the 

Defective Helper RNA in every tube. Then, 5 µL of each gene RNA was added to the 

correctly labelled tube. The content was mixed thoroughly by triturating with P20 pipette 

and kept on ice. A Gene Pulser cuvette (Bio-Rad, 0.2 cm gap) for each virus was put on 

ice. 

8. Electroporation 

The Bio-Rad Gene Pulser II (electroporator) was set up (Voltage: 1.5 kV, capacitance: 

25 µF, pulse controller: Off (resistance = ∞, infinity), low-use: on high range, high-use: 

∞) prior to mixing 500 µL of the BHK-21 cell suspension with the RNA by pipetting up 

and down 3 times. Then, the content was transferred immediately into the ice-cooled Gene 

Pulser cuvette (Bio-Rad). The first pulse was applied as quickly as possible then (after 

flicking the cuvette), the second pulse was applied immediately (the time constant for the 

electroporation should be around 0.7-0.8 ms). The content was transferred back to the 

original labelled tube and stored on ice for 5-10 minutes. It is important to electroporate 

as quick as possible to avoid the attack of the RNA by RNases released from the cells 

once the RNA and the cells were mixed.  

9. Plating cells 

The tubes content was transferred to the 100 mm dishes and the tubes were rinsed 

with a little (0.5 mL) media to collect any more cells. The dishes were swirled to spread 

the cells evenly and incubated at 37°C with 5% CO2. 

10. Monitoring electroporation results 

Dishes were observed 24 hours after electroporation under the fluorescent microscope 

with some of the positive observations included: some cytopathic effects evident (shrunk 

cells and lots of cell debris) and most of the cells fluoresce green. 
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11. Harvesting pseudovirion 

The supernatant was collected after 48 hours from electroporation in a 15 mL 

centrifuge tube. The collected supernatant was centrifuged at 1500 x g (4°C for 10 

minutes) to pellet any cell debris. The content was transferred into a fresh 15 mL tube 

and stored at 4°C for no more than 1 week. The virus was aliquoted (~100 µL) and 

stored at –80°C. 

 

2.2.16 Infecting neurons with lenti (chapter 3) and sindbis (chapter 5) viruses 

Cortical neurons (DIV 9-10, 600,000/35 mm well) were infected with 250 µL of 

lentiviruses (sh-scrambled, sh-Neto2, sh-Neto1). Then, at DIV 14-15, media was 

aspirated and 250 µL/well of 2x Laemmli sample buffer was used for lysis. Then, the 

procedure was completed as in sections 2.2.6.2 using 10% gel and 2.2.6.3 transferred 

for 90 minutes. The membranes were blotted for Neto2 and Neto1 using primary and 

HRP-conjugated secondary antibodies in Table 2.5. 

Cortical Neurons (DIV 14, 600,000 cells/35 mm well) were infected with 20 

(GFP) and 50 (all other viruses) µL sindbis viruses [GFP, WT YFP-Myc-tagged 

GluK2, C858A+ C871A YFP-Myc-GluK2, K886R YFP-Myc-GluK2, C858A+ 

C871A + K886R YFP-Myc-GluK2, and C858A+C871A + S846A+S868A YFP-Myc-

GluK2) for 18 hours before being lysed in 250 µL/well of 2x Laemmli sample buffer. 

Then, the procedure was completed as in sections 2.2.6.2 using 8% gel and 2.2.6.3 

transferred for 110 minutes. The membranes were blotted for GFP using the primary 

and HRP-conjugated secondary antibodies in Table 2.5. 

 

2.2.17 GFP-trap from sindbis virus infected neurons (chapter 5) 

GFP-trap protocol was used to immunoprecipitate GFP-fusion proteins (in this 

case YFP-tagged GluK2) from sindbis virus (GFP and WT YFP-Myc-GluK2) 

infected cortical neurons (DIV 16, 600,000 cells/35 mm well, for each condition 

protein pooled from 3 wells) lysate. 18-20 hours after the infection, cells were checked 

under the fluorescent microscope for green color (YFP) to confirm the efficiency of 

the infection. Then, medium was replaced with pre-warmed HBSS and the cells of 

each condition were treated with either a vehicle (water) or 1 µM PMA (Phorbol 12-
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myristate 13-acetate) for 20 minutes. After PKC activation, cells were put on ice for 2-3 

minutes before HBSS is aspirated. Cells were scraped after adding cold 125 µL/well lysis 

buffer (50 mM Tris-HCl (pH 7.4), 150 mM NaCl, 2 mM sodium pyrophosphate, 2 mM 

EDTA, 1% Triton-X 100, 0.1% SDS, 25 mM β-glycerophosphate, 10% glycerol, 1x 

phosphatase inhibitors, and 1x complete protease inhibitors) and put into 1.5 mL pre-

labelled cold tubes. Cell lysate was then left on ice for 30 minutes to allow for 

solubilisation. Next, lysate was centrifuged in a benchtop centrifuge at full speed (21,000 

x g at 4°C for 20 minutes) to pellet cell debris. 

During the spin time, GFP-trap beads were aliquoted (8 µL/pulldown) and washed 3x 

with 500 µL wash buffer (lysis buffer without phosphatase and protease inhibitors) at 

1500 x g for 2 minutes each and left on ice immersed in buffer to avoid drying out. After 

centrifugation, 20 µL (~5 %) of supernatant was taken as the total lysate sample to a pre-

cooled fresh tube. The remaining supernatant was added to the washed GFP-trap beads 

(pulldown samples). These were kept and rotated at 4°C for 1-2 hours. After that, the 

beads were pelleted by centrifugation at 1500 x g for 2 minutes at 4°C. The beads were 

washed 3x after which 40 and 20 µL of 2x Laemmli sample buffer was added to the beads 

and total lysate samples, respectively. All samples were heated to 95°C for 10 minutes 

and then left to cool for another 10 minutes. Just before loading the samples into an 8% 

gel, samples were briefly vortexed and centrifuged at full speed (21,000 x g) for one 

minute to pellet the beads. 

The SDS-PAGE was carried out as in 2.2.6.2 and the immunoblotting as in section 

2.2.6.3 using BSA for blocking and antibody dilution. The BD Biosciences antibody 

(612548) (Table 2.5) was used to detect phosphorylated GluK2. 

GFP–trap protocol done to validate the phosphoserine PKC substrate antibody (CS 

2261) had the following exceptions from the above protocol: 

1. WT and C858A, C868A + S846A, S868A YFP-Myc-GluK2 were 

immunoprecipitated. 

2. Protein pooled from 4 wells/pulldown 

3. No PMA pretreatment 

4. Amount of GFP-trap beads/pulldown was 20 µL. 
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2.2.18 Molecular biology 

 

2.2.18.1 Transformation and amplification of DNA 

The plasmid DNA was amplified using DH5α E. coli. First, the bacteria (10 µL) 

was thawed on ice for 10 minutes before adding the plasmid DNA (1 µL) to be 

incubated with the bacteria for 10 minutes. After that, the cells were placed at 42ºC 

for 90 seconds (heat shock) before being placed again onto ice for 2 minutes. 100 µL 

of LB Broth was added to the bacteria before spreading this mixture into a prewarmed 

(37ºC) agar plate that has the appropriate antibiotic (Ampicillin) for overnight 

incubation at 37ºC. Next day, a bacterial colony was selected and added to 100 mL of 

LB Broth (for a Midiprep) containing the appropriate antibiotic (Ampicillin 100 

µg/mL) to grow over ~18 hours at 37ºC while being shaking. 

 

2.2.18.2 Purification of DNA 

The Midiprep Kit was used to extract and purify the plasmid DNA from the E. coli 

culture. First, the bacterial cells were pelleted by centrifugation at 4000 x g (4ºC for 

20 minutes). The next steps were followed according to Thermo Scientific protocol. 

Lastly, the concentration of the purified plasmid DNA was measured by the 

NanoDrop ND-1000 (260/280 nm absorbance ratio). 

 

2.2.18.3 Ethanol precipitation 

To concentrate the extracted plasmid DNA, an ethanol precipitation protocol of 

the Midiprep DNA was carried out. First, 0.1x and 2.5x the volume of DNA of 3 M 

sodium acetate (pH 5.6) and ethanol, respectively, were added to the DNA. This 

mixture was vortexed for 1 minute before being centrifuged at 21,000 x g for 30 

minutes at 4ºC. The supernatant was removed, and the pelleted DNA was then washed 

with 70% ethanol prior to centrifugation again at 21,000 x g for 1 minute. The 

supernatant was removed, and any remaining ethanol was left to air dry for ~30 

minutes (the tube lid left open). The pelleted DNA was dissolved in ddH2O at the 

desired concentration. 
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3 Differential distribution of kainate 

receptor (KAR) pore-forming and 

auxiliary subunits in adult and 

developing rat brain 
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3.1 Background 

 

Based on the available evidence (Tang et al., 2011; Straub el al., 2011a; Straub et al., 

2011b; Copits et al., 2011; Zhang et al., 2009; Wyeth et al., 2014; Ng et al., 2009; Vernon 

and Swanson, 2017; Tang et. al., 2012; Fisher, 2015; Orav et al., 2017; Palacios-Filardo 

et al., 2016; Wyeth et al., 2017; Sheng et al., 2017; Jack et al., 2018; Mennesson et al., 

2019), one of the fine-tuning mechanisms of KAR signalling is the regulation of KAR 

function by Neto proteins. 

Neto2 and Neto1 (Figure 3.1) are single-pass transmembrane proteins that have two 

extracellular CUB domains, followed by a low-density lipoprotein class A (LDLa) 

domain, a transmembrane domain and an intracellular C-terminal domain (Copits and 

Swanson 2012). Neto proteins are not only important as auxiliary subunits of KARs, but 

also as a member of the CUB-domain containing protein family. It is a wide-spread 

domain that was first identified in the complement subcomponents C1s and C1r. Then, it 

was found in an embryonic sea urchin epidermal growth factor protein (Uegf) and later 

in bone morphogenetic proteins (Bmp 1). From these first identified proteins, the name 

CUB was proposed. Generally, CUB-domain containing proteins are involved in 

developmental processes as embryogenesis or organogenesis (Bork and Beckmann 1993). 

Neto proteins were the first of the CUB protein family to act as auxiliary subunits in 

mammals (Stohr et al. 2002). However, the developmental changes in Neto2 and Neto1 

protein expression profiles have not been established. 
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Figure 3.1. KAR auxiliary subunits (Neto2 and Neto1). As single-pass 

transmembrane proteins, both Neto subunits have two extracellular CUB domains. 

These domains are followed by a low-density lipoprotein class A (LDLa) domain, a 

transmembrane domain and an intracellular C-terminal domain. The intracellular 

sequence is the most variable part of both proteins. The highlighted Neto1 sequence 

is the part of the intracellular sequence that anti-Neto1 antibody was raised against 

(Straub et al., 2011a). 

 

Neto (Neuropilin and tolloid-like proteins) nomenclature is based on their 

sequence homology (31% amino acid identity) to the CUB motifs of neuropilins 

(transmembrane receptors for the axon guidance molecules semaphorins) (McCawley 

and Matrisian, 2001; Tashiro et al., 1993; Shaw et al., 1986) and the Drosophila 

dorsal-ventral patterning protein tolloid (Stohr et al., 2002).  

Both proteins share significant overall sequence identity (~56%) and amino acid 

similarity (~80%) and thus may also have functional similarities (Stohr et al., 2002; 

Michishita et al., 2004; Zhang et al., 2009; Straub et al., 2011a).  The specific % 

identity of each domain of the two proteins is as follows: 63% CUB1, 72% CUB2, 

84% LDLa, and 38% intracellular domains (Stohr et al., 2002; Michishita et al., 2004).  
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The most variable region between Neto proteins is their C-terminal domains (155 for 

Neto2 and 168 for Neto1 amino acids; Fisher and Mott, 2012). In addition, this region is 

not significantly similar to any other known proteins, suggesting that Neto proteins are a 

distinct subfamily (Stohr et al., 2002). Neto2 (525 amino acid residues) has a calculated 

molecular weight of ~56 kDa (after signal peptide cleavage) and an observed molecular 

weight of ~60 kDa (Zhang et al., 2009). Rat and human Neto2 share 97% of sequence 

identity (Zhang et al., 2009).  

Neto1 (533 amino acid residues) has two potential N-linked glycosylation sites within 

its N-terminal domain (Stohr et al., 2002; Michishita et al., 2003) and many potential 

cytosolic phosphorylation sites (Michishita et al., 2003). In addition, it has a PDZ-binding 

domain at the end of its C-terminus (Ng et al., 2009; Tomita and Castillo, 2012). The 

calculated molecular weight is ~60 kDa. Three different mRNA isoforms were identified 

of human Neto1. Isoform 1 form a soluble protein that have one CUB domain and lack 

the LDLa domain (Stohr et al., 2002). Isoforms 2 and 3 translate into putative different 

signal peptides and otherwise similar structure of the Neto1 protein. Only the third 

isoform is expressed in the foetal and adult brain (Stohr et al., 2002; Michishita et al., 

2003). Mouse and human Neto1 share 87% of the nucleotides and 95% of the amino acid 

identities (Stohr et al., 2002). 

Because KARs have roles in brain development and Neto proteins, their auxiliary 

subunits, are from the CUB-domain containing protein family, which is also implicated 

in developmental processes, it is important to establish their expression profiles during 

CNS development. Because many aspects of KAR signalling are regulated by Neto 

proteins, it is tempting to think the potential of modulating KAR function by Netos 

throughout brain development. As studies of KARs assembly have suggested, the diverse 

possibilities of KAR subunits combinations are based on their overlapping expression 

profiles in various brain regions (Cui and Mayer, 1999; Gallyas et al., 2003). 

Previous expression studies identifying the developmental profile of KAR pore-

forming and auxiliary subunits in the brain were at the mRNA level. Thus, identifying the 

expression profiles of Neto proteins and correlating these to the expression of other KAR 

subunits helps the identification of their spatiotemporal correlations during brain 

development. In addition, it allows comparing whether Neto proteins expression during 

CNS development matches that of KAR subunits taking into consideration that Neto 

proteins are important modulators of KAR function. 
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This is the first study correlating the expression of KAR auxiliary proteins to their 

associated pore-forming proteins in the adult and developing rat brain (Dr IK-Hyun 

Cho unpublished data). 

Here, we used the histoblot (in situ blotting) technique (Molnar, 2016) to map the 

regional expression profiles of pore-forming KAR and auxiliary Neto2 and Neto1 

subunit proteins at different stages of rat brain development from embryonic day 14 

to postnatal day 90 (E14, E17, P0, P14, P21, P28 and P90, n = 2-3) in unfixed 

horizontal brain sections (prepared previously by Dr IK-Hyun Cho). This is an easy, 

fast and direct technique that comes between immunohistochemistry and 

immunoblotting. By directly transferring proteins from unfixed brain tissue to 

immobilising membrane, the accessibility to proteins’ epitopes is improved compared 

to immunohistochemistry where fixation could impair the antibody accessibility to its 

epitope. Thus, it is reliable for quantitative comparisons of the immunochemical 

labelling. In addition, it preserves the anatomical resolution of proteins (Benke et al., 

1995; Wenzel et al., 1997; Tonnes et al., 1999; Aguado and Luján, 2019). However, 

in relation to co-expression in this study, regional does not mean cellular (Hepp et al., 

2015).  

All primary antibodies (Neto2, Neto1, GluK2/3, GluK5, GluA1-4) used here were 

validated previously in either Professors Susumu, Molnar, or Henley’s laboratory.  
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3.2 Aim and objectives 

Hypothesis: Regional and temporal patterns of Neto protein expression overlap with 

the distribution of pore-forming KAR subunits.  

Aim: To identify regional distributions of KARs’ auxiliary subunits in adult brain 

and during development.   

Objectives: 

1. To establish the regional expression profiles of Neto proteins during rat brain 

development.  

2. To correlate the protein distribution of Neto2 and Neto1 to pore-forming KAR 

subunits.  

 

3.3 Results 

First of all, we started this work by validating the primary antibodies to Neto proteins, 

which were generated in Professor Susumu Tomita (Yale School of Medicine, United 

States) laboratory and generously provided by him.   

 

3.3.1 Validation of Neto2 and Neto1 antibodies using transiently expressed 

auxiliary KAR subunit proteins in HEK293T cells 

 

3.3.1.1 Validation of Neto2 antibody in HEK293T cells 

The specificity of two different anti-Neto2 primary antibodies was evaluated by 

expressing rat Neto2 and Neto1 proteins in HEK293T cells (i) alone, or in combination 

with (ii) sh-scrambled (negative control), (iii) sh-Neto2 or (iv) sh-Neto1 constructs 

(Figure 3.2A). The anti-Neto2 labelled bands were normalised to the β-actin content of 

each sample for semi-quantitative comparisons of related samples. 

The rabbit anti-Neto2 polyclonal antibody raised against the whole C-terminus of rat 

Neto2 amino acid sequence (the C-terminal 192 amino acids; Zhang et al. 2009) labelled 

a band at ~60 kDa, which corresponds to the predicted molecular weight of Neto2 (The 

UniProt Consortium, 2019, Zhang et al, 2009). This antibody produced no detectable 
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cross-reaction with Neto1 (Figure 3.2A). Furthermore, the immunolabelling was 

reduced in samples where Neto2 was co-expressed with sh-Neto2, but not with sh-

Neto1 or sh-scrambled (negative control). These findings confirmed the Neto2 

selectivity of the antibody.  

A commercially supplied rabbit anti-Neto2 IgG (ab109288, Abcam, References: 

Vernon and Swanson, 2017; Hu et al., 2015) produced very similar labelling pattern 

(Figure 3.2B). The detected bands correspond to the predicted molecular weight of 

Neto2, and only very weak cross-reactivity was detected with Neto1. While co-

expression with sh-Neto2 markedly reduced the intensity of the immunopositive band, 

no similar changes were detected when Neto2 was expressed in the presence of sh-

scrambled or sh-Neto1 (Figure 3.2B).   

The selectivity of the Neto2 antibody (Zhang et al. 2009) was further investigated 

using GFP-FLAG-tagged Neto proteins (GFP-Neto2, GFP-Neto1) without and with 

sh-scrambled, sh-Neto2 or sh-Neto1 co-expression (Figure 3.2C). The antibody 

identified a ~100 kDa band, which is consistent with the predicted molecular weight 

of the GFP-FLAG-Neto2 construct. The cross-reaction with GFP-Neto1 was weak 

and sh-Neto2 selectively reduced the intensity of the immunopositive band compared 

to sh-scrambled and sh-Neto1 (Figure 3.2C).  

These tests confirmed that both anti-Neto2 antibodies are suitable for the 

identification of Neto2 proteins in HEK293T cells. Unless stated otherwise, we used 

the anti-Neto2 developed by Zhang et al. (2009) for our experiments. 
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Figure 3.2. Validation of Neto2 primary antibodies using wild-type (WT) and 

green fluorescent protein (GFP)-tagged Neto2 and Neto1 individually expressed in 

HEK293T cells. The specificity of the homemade (Zhang et al. 2009, A and C) and 

Abcam supplied (B) Neto2 primary antibodies was evaluated using WT (A and B) and 

GFP-FLAG-tagged (C) Neto2 and Neto1 expressed in HEK293T cells in combination 

with three rat sh-RNAs: sh-scrambled (KD negative control), sh-Neto2 or sh-Neto1 as 

indicated. Both anti-Neto2 antibodies selectively labelled bands that correspond to the 

molecular weights of WT Neto2 (~60 kDa; A and B) and GFP-Neto2 (~100 kDa; C) 

proteins. No (A) or very week (B, C) labelling was obtained with WT Neto1 or GFP-

Neto1-containing samples. Co-expression of WT or GFP-Neto2 with sh-Neto2 reduced 

the optical density of the immunopositive band to ~5-25% of the corresponding sh-

scrambled negative control. Similar reduction in Neto2 immunoreactivities were not 

detected in the presence of sh-Neto1. Neto2 immunolabelling was normalized to β-actin 

before compared to its sh-scrambled control. WT Neto2, n = 2; GFP-Neto2, n = 1.  
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3.3.1.2 Validation of Neto1 antibody in HEK293T cells 

The specificity of the rabbit anti-Neto1 polyclonal  primary antibody raised against 

the second half of the C-terminal cytoplasmic domain (Straub et al. 2011a) was 

verified using immunoblots of rat Neto2 and Neto1 proteins expressed in HEK293T 

cells (i) alone, or in combination with (ii) sh-scrambled (negative control), (iii) sh-

Neto2 or (iv) sh-Neto1 constructs (Figure 3.3) as described in 3.3.1.1. 

The anti-Neto1 antibody identified a ~60 kDa band in all samples, including the 

un-transfected HEK293T cells, which is consistent with the predicted molecular 

weight of the human Neto1 isoform. In (rat) Neto1 transfected cells, the rat isoform 

of the protein was selectively identified at ~66 kDa (Figure 3.3A). The anti-Neto1 

antibody produced no detectable cross-reaction with Neto2. Also, the intensity of the 

rat Neto1 band was reduced by co-expression with sh-Neto1 but not with sh-Neto2 or 

sh-scrambled (negative control). 

 The human Neto1 (~60 kDa) immunoreactivity somewhat increased (by ~25-

52%) in rat Neto1 transfected HEK293T cells. Similar increase was not detected in 

Neto2 transfected cells (pink bars, Figure 3.3A). 

To further characterise the anti-Neto1 antibody, the specificity tests were also 

performed using GFP-FLAG-Neto1 and GFP-FLAG-Neto2 expressed in HEK293T 

cells (i) alone, or in combination with (ii) sh-scrambled (negative control), (iii) sh-

Neto1 or (iv) sh-Neto2 constructs (Figure 3.3B). In GFP-Neto1 transfected samples 

the anti-Neto1 antibody identified a ~100 kDa band, which is consistent with the 

predicted molecular weight of GFP-FLAG--Neto1 protein. There was only very weak 

reaction with GFP-Neto2 (Figure 3.3B). Like with the WT Neto1 (Figure 3.3A), GFP-

Neto1 immunoreactivity was reduced in sh-Neto1 co-transfected samples compared 

to sh-scrambled or sh-Neto2 expressing cells. Again, the expression of endogenous 

human Neto1 appeared to be higher (~57% increase) in rat GFP-Neto1 transfected 

HEK293T cells (pink bars, Figure 3.3B). There was also a marked reduction (~53%) 

in human Neto1 expression of rat sh-Neto1 compared to sh-Neto2 and sh-scrambled.  
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Figure 3.3. Validation of Neto1 primary antibody using wild type (WT) and 

green fluorescent protein (GFP)-tagged Neto2 and Neto1 individually expressed 

in HEK293T cells. The specificity of the rabbit anti-Neto1 IgG (Straub et al. 2011, A 

and B) was evaluated using WT (A) and GFP-FLAG-tagged (B) Neto2 and Neto1 

expressed in HEK293T cells in combination with three rat sh-RNAs: sh-scrambled 

(KD negative control), sh-Neto2 or sh-Neto1 as describe in Figure 3.2. The Neto1 

antibody identified immunopositive bands at ~60 kDa in all samples, including un-

transfected HEK293T cells (A and B). Somewhat higher molecular weight bands (~66 

kDa, A) were identified in WT Neto1-transfected samples (A). (OE Neto1, also see 

the blot of a longer exposure). The anti-Neto1 antibody selectively identified a band 

in samples prepared from GFP-Neto1 transfected HEK293T cells with the expected 

molecular weight (~100 kDa, B).  Co-expression of WT or GFP-Neto1 with sh-Neto1 

reduced the optical density of the immunopositive band to ~26-29% of the 

corresponding sh-scrambled negative control. Similar reduction in Neto1 

immunoreactivities were not detected in the presence of sh-Neto2. The result (B) 

confirmed that at ~100 kDa (the green rectangle) the overexpressed GFP-tagged 

Neto1 was identified when co-expressed with either sh-scrambled or sh-Neto2 (100% 

and 115% of the KD control). However, it showed 71% reduction in its expression 

when knocked down (GFP-tagged Neto1 + sh-Neto1 compared to GFP-tagged Neto1 

+ sh-scrambled). Neto1 antibody picked up a very small percent (2% up to 13% 

compared to the GFP-tagged Neto1 + sh-scrambled) of the overexpressed GFP-tagged 

Neto2. This membrane blot was stripped and re-probed with the homemade Neto1 
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antibody after being visualised with anti-GFP antibody. All bands were normalised to 

their corresponding β-actin bands before being normalised to their control. The 

overexpressed rat Neto1 or GFP-tagged Neto1 bands were normalised to the Neto1 

expression level in Neto1 (or GFP-tagged Neto1) + sh-scrambled condition. The bands 

representing endogenous Neto1 expression were normalised to the expression level of the 

un-transfected cells.  Statistical testing could not be performed due to the small n number 

(WT Neto1, n = 2; GFP-Neto1, n = 1).  

 

3.3.1.3 Validation of Neto2 and Neto1 knockdown constructs in HEK293T 

cells. 

To evaluate the specificity of the knockdown constructs (sh-scrambled, sh-Neto2 and 

sh-Neto1), GFP-FLAG-tagged Neto2 (GFP-Neto2) and GFP-FLAG-Neto1 were co-

expressed with each one of the KD constructs in HEK293T cells. The harvested cell 

membranes were analysed using a rat anti-GFP antibody (Chromotek 3H9) to assess the 

levels of GFP-FLAG-Neto2 and GFP-FLAG-Neto1 following co-expression with sh-

scrambled, sh-Neto2 and sh-Neto1 (Figure 3.4). The GFP positive bands (just under 100 

kDa) were not reduced/unaffected when co-expressed with the KD control construct or 

the other Neto protein KD construct (233% expression level of GFP-Neto2 when co-

expressed with sh-Neto1 and 97% expression level of GFP-Neto1 when co-expressed 

with sh-Neto2, each was compared to its KD control).  Furthermore, GFP expression was 

significantly reduced (75% - 82% compared to its KD control) when co-expressed with 

its KD construct (GFP-Neto2 + sh-Neto2 and GFP-Neto1 + sh-Neto1, respectively).  

Neto2 expression seems to be highly cross-linked to Neto1 expression in HEK293T 

cells. Recombinant Neto2 expression was increased when the cells were co-transfected 

with the Neto1 KD construct (Figures 3.2 and 3.4). This Neto1-dependent increase in 

Neto2 expression in HEK293T may be due to the potential presence of endogenous Neto1 

in HEK293T cells (see Figure 3.3). This may suggest that by using sh-Neto1 (reducing 

endogenous Neto1 expression), a compensatory increase in Neto2 expression was 

observed. Or, it could be that the KD construct of Neto1 was not specific and cross-

reacted with Neto2 and showed off-target effects by increasing Neto2 expression (Figure 

3.4).The stability of the protein (Neto2) may be increased in response to a reduction in its 

mRNA levels (non-specific sh-Neto1). Furthermore, if the sh-RNA will lead to 

translation inhibition without mRNA degradation, then when the protein level will go 

down a feedback mechanism will lead to increased gene transcription. This may lead to 

increased protein level. 
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Notably, HEK293T cells were chosen as the heterologous system to overexpress 

Neto proteins because previous evidence (mice tissue distribution of Neto1 and Neto2 

mRNA and RT-PCR analysis of human Neto1) shows no expression in the kidney 

(Stoher et al., 2002; Michishita et al., 2003; Michishita et al., 2004). In addition, 

HEK293T cells have been widely used to successfully overexpress KARs. Moreover, 

in the field of studying Neto proteins as auxiliary subunits of KARs, HEK293T cells 

were largely used by many research groups for this purpose (mainly for 

electrophysiological studies and no one has used this system for expression studies 

(Table 1.2/Introduction). However, in my work to validate Neto proteins antibodies, 

it was surprising that HEK293T cells appear to express Neto1. These antibodies were 

successfully validated in Professor Susumu lab using E coli lysate expressing 

recombinant Neto proteins, Neto1 KO mice brain tissue, Neto2 transfected CHO cells, 

rat brain, and primary cerebellar mouse culture (Straub et al., 2011a; Zhang et al., 

2009). 

  

Figure 3.4. Validation of Neto2 and Neto1 sh-RNA constructs using GFP-

Neto2 and GFP-Neto1 expressed in HEK293T cells. The specificity of the 

knockdown (KD) sh-RNAs of rat Neto2 and Neto1 was evaluated using rat GFP-

FLAG-tagged Neto2 and Neto1 individually expressed in HEK 293T cells in 

combination with sh-scrambled (KD negative control), sh-Neto2 or sh-Neto1. Anti-

GFP antibody labelling identified GFP-Neto2 and GFP-Neto1 as ~100kDa 

immunopositive bands. Compare to sh-scrambled samples (100%), co-expression of 

sh-Neto2 reduced GFP-Neto2 expression (25% of sh-scrambled) without a similar 

decrease in Neto1 levels (97% of sh-scrambled).  In contrast, co-expression of sh-

Neto1 reduced GFP-Neto1 expression (18% of sh-scrambled) without a similar 

decrease in Neto2 levels (233% of sh-scrambled). β-Actin labeling was used to 

normalize anti-GFP immunopositive bands before semi-quantitative comparisons (n 

= 2). 
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3.3.2 Validation of antibodies in primary cortical cultures using knockdown 

of endogenous Neto2 and Neto1 

Vectors of lentiviruses [rat sh-Neto2 and two different rat sh-Neto1 (a and b)] were 

previously made by Dr Kevin Wilkinson and used here to knockdown endogenous 

neuronal Neto2 (n = 10) and Neto1 (n = 6). The sh-scrambled was also used as a KD 

control. The blots (A and C) and their quantification (B and D) in Figure 3.5 show the 

expression levels of neuronal Neto2 and Neto1 in different conditions compared to the 

knockdown control (sh-scrambled). Neto2 expression (Figure 3.5/A and B) was 

significantly reduced by ~98% when it was knocked down [4.2 ±0.8 vs 162.0 ±23.6, p < 

0.001]. In addition, Neto2 was reduced significantly by ~63% when Neto1 was knocked 

down (sh-Neto1-b) [60.2 ±13.3 vs 162.9 ±23.6, p < 0.001]. However, compared to the sh-

Neto2 condition this reduction was still significant [60.2 ±13.3 vs 4.2 ±0.8, p = 0.045]. 

Regarding Neto1 expression (Figure 3.5/C and D), sh-Neto1-b lentivirus significantly 

decreased Neto1 expression by ~76% compared to the KD control [31.1 ±7.1 vs 129.7 

±7.7, p < 0.001] and ~72% compared to sh-Neto2 [31.1 ±7.1 vs 112.2 ±7.1, p < 0.001]. 

In case of knocking down Neto2, Neto1 expression has not changed compared to the KD 

control [112.5 ±7.1 vs 129.7 ±7.7, p = 0.25]. The virus vector of the sh-Neto1-a construct 

was not used more than twice (n = 2) as it was shown to be not efficient in knocking down 

Neto1 (~55%). Each band was normalized to its β-actin band before being normalized to 

its control. One-way ANOVA was performed to statistically analyse the results at a 

statistically significant level of 0.05. Data expressed as mean ±SE. 

There is a ~6 kDa difference between the the observed molecular weights of both Neto 

isoforms (Neto1> Neto2) in HEK293T cells and neurons, which could be due to N-

glycosylation. A similar difference was also observed by others (Copits et al., 2011; 

Straub et al., 2011a). 
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Figure 3.5. Validation of Neto2 and Neto1 antibodies in primary cultures of 

cortical neurons using sh-Neto1 and sh-Neto2 knockdown. Lentiviral rat sh-RNA 

vectors were used to knockdown the protein expression of Neto2 (sh-Neto2) and 

Neto1 (sh-Neto1-a and sh-Neto1-b) in rat cultured cortical neurons at 14-15 DIV 

(Neto2, A and B, n = 10) and (Neto1, C and D, n = 6). The less effective sh-Neto1-a 

was included only in two initial experiments (n = 2). The Neto2 immunoblot (A) and 

its quantification (B) show that sh-Neto2 lentivirus reduced endogenous Neto2 levels 

to 2.5% of sh-scrambled controls (***p < 0.001). Interestingly, when knocking down 

Neto1 using sh-Neto1-b, Neto2 was also reduced to 37% of sh-scrambled controls 

(***p < 0.001).  The sh-Neto1-b lentivirus significantly (***p < 0.001) decreased 

Neto1 expression to 24% of sh-scrambled controls (C and D). The sh-Neto2 produced 

no significant change in Neto1 levels (p = 0.25). This demonstrates the specificity of 

the antibodies and their ability to react selectively with endogenous Neto2 and Neto1 

proteins in rat cortical neurons. In each sample, Neto2 and Neto1 immunoreactivities 

were normalized to the corresponding β-actin band for quantitative comparisons. One-

way ANOVA was used to statistically analyse the results. Error bars indicate the 

standard error (SE) and p - value is significant at 0.05. 
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3.3.3 Differential distribution of KAR auxiliary subunits in adult and 

developing rat brain 

 

3.3.3.1 Immunochemical mapping of the regional expression of Neto2 and 

Neto1 in unfixed adult rat brain 

To correlate the regional expression profile of Neto2 and Neto1 proteins in the adult 

rat brain to pore-forming KAR subunits, we performed the histoblot technique using the 

previously validated Neto antibodies (section 3.3.1 and 3.3.2). Neto2 and Neto1 proteins 

are widely expressed in the adult rat brain (3 - 8 months, n = 3) as indicated by their 

histoblot immunoreactivities (Figure 3. 6). While the overall adult expression patterns of 

Neto2 and Neto1 proteins are overlapping in the cerebral cortex and caudate putamen 

(CP), their distribution differs in the hippocampus and cerebellum where Neto2 localises 

in the hippocampal dentate gyrus and cerebellar granule cells and Neto1 is prominently 

expressed in hippocampal CA3 region and weak in the cerebellum. 

 

3.3.3.1.1 Adult Neto2 expression pattern 

Neto2 labeling is prominent in the inner cortical layers, CP, hilus (polymorphic layer) 

of hippocampal DG (Figure 3.6) and the granular cell layer of the cerebellum. It has very 

weak expression in other hippocampal sub-regions (CA1 and CA3) (Table 3.1).  

 

3.3.3.1.2 Adult Neto1 expression pattern 

The strongest Neto1 immunostaining is found in the stratum lucidum (SL) (Figure 

3.6) of the CA3 region of the hippocampus (HIP) followed by moderate levels of labeling 

in the deeper layers of the cerebral cortex and CP (Table 3.1). However, the cerebellar 

Neto1 immunopositivity is relatively weak (Table 3.1). 

 

3.3.3.1.3 Correlation of Neto2 and Neto1 expression patterns to KAR pore-

forming subunits GluK2/3 and GluK5 

The histoblot labelling patterns of Neto2 and Neto1 proteins is similar to KAR pore-

forming subunits GluK2/3 and GluK5 (Figure 3.6) in the cerebral cortex, CP and HIP 
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(just for Neto1). In the hippocampus, the immunolabelling of Neto1, GluK2/3 and 

GluK5 overlap in the SL layer of CA3 while Neto2 labels the dentate hilus (Figure 

3.6).  In contrast, the immunoreactivity obtained for GluA1-4 AMPAR subunits, 

which share a high degree of sequence homology with KAR pore-forming subunits, 

showed a clear difference compare to pore-forming and auxiliary KAR subunits. For 

example, the highest level of GluA1-4 was identified in the outer cortical layers, CA1, 

stratum molecular layer of hippocampal DG and the molecular cell layer of the 

cerebellum (Table 3.1). 
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Figure 3.6. Differential distribution of auxiliary and pore-forming subunits 

of KARs in adult rat brain. Representative histoblots showing differential 

distribution of auxiliary Neto2 and Neto1 (n = 3) and pore-forming GluK2/3 and 

GluK5 (n = 6) subunits of KARs and the closely related AMPAR subunits GluA1-4 

(n = 6) in adult (3 - 8 months) horizontal rat brain sections. All these iGluR proteins 

are widely distributed in the adult rat brain; in the cerebral cortex, caudate putamen, 

hippocampus and cerebellum. There is an overlap in Neto2 and GluK2/3 

immunoreactivities in the cerebellum and deeper cortical layers. Neto1 labelling 

overlaps with GluK2/3 and GluK5 in the hippocampal CA3 sub-layer stratum 

lucidum. The regional distribution patterns of the auxiliary and pore-forming KAR 

subunits are different from the distribution of the related GluA1-4 AMPAR subunits. 

The hippocampal regions (squares) are enlarged and sub-layers labelled. Cx: cerebral 

cortex, CPu: caudate putamen, Cb-g: cerebellar granular cell layer, Cb-m: cerebellar 

molecular layer, H: hilus (DG), SM: stratum moleculare (DG), SL: stratum lucidum 

(CA3), SO: stratum oriens (CA1), SR: stratum radiatum (CA1). Scale bars: 2 mm. 

 

 

Table 3.1. Semi-quantitative comparison of pore-forming and auxiliary 

subunit immunoreactivities in selected brain regions. Selected regions of adult rat 

brain horizontal section histoblots (Figure 3.6) were analysed: Cx: cerebral cortex, 

CA: hippocampal cornu ammonis, DG: hippocampal dentate gyrus, CPu: caudate 

putamen, Cb-g: cerebellar granular cell layer, Cb-m: cerebellar molecular layer. a: 

hilus (polymorphic layer), b: stratum molecular layer. Degree of immunoreactivity: 

++++, very strong; +++, strong; ++, moderate; +, weak; ±, very weak. 
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3.3.3.1.4 Summary of the KAR subunit protein distribution patterns in adult 

rat brains:  

The regional expression profiles of adult Neto2 and Neto1 correspond to GluK2/3 and 

GluK5 KAR subunit proteins:  

1. All 4 subunits have high immunoreactivity in the caudate putamen and 

in the inner cortical layers compared to outer layers. 

2. Neto1, GluK2/3 and GluK5 predominantly expressed in the CA3 region 

in the hippocampus.   

3. Neto2 and Gluk2/3 share a similar distribution pattern in cerebellum 

where both are highly expressed in granular cell layer.  

4. Neto1 and GluK5 weakly expressed in the cerebellum.  

5. Neto2 and Neto1 expression is overlapping in cortex and caudate 

putamen and distinct in hippocampus and cerebellum.  

 

3.3.3.2 Developmental changes in the expression of Neto2 and Neto1 proteins 

in the rat brain 

Regional developmental changes in Neto2 and Neto1 expression patterns (Figure 3.7) 

were examined and quantified (Figure 3.8) in horizontal sections (n = 2-3) of the rat brain 

from embryonic day 14 to postnatal day 90 (E14, E17, P0, P14, P21, P28, P90).  

While the developmental series provided important qualitative data regarding changes 

in the regional expression profiles of Neto2 and Neto1, statistical analysis could not be 

performed due to the small sample size (n = 2-3). 
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Figure 3.7. Regional distribution of Neto2 and Neto1 in the developing brain. 

Grayscale histoblots (left) and their corresponding colour gradients (right) illustrate the 

regional distribution of Neto2 and Neto1 immunoreactivities at various stages of rat 

embryonic and postnatal development (E14, E17, P0, P14, P21, P28, P90) in horizontal 

brain sections (n = 2-3). In general, Neto2 immunostaining peaks during the first 2-3 

weeks of life (P14 and P21), after which it starts to decline in all brain regions. In contrast, 

Neto1 immunolabelling increases with development in many regions of the rat brain 

(cerebral cortex, caudate putamen and hippocampus). Colour gradients images were 

generated by assigning the grayscale images to the RGB (red-green-blue) channels in 

Adobe Photoshop CS2. All images were treated identically. Scale bars: 2 mm. 
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Figure 3.8. Developmental changes in Neto2 and Neto1 expression in the rat 

brain. Histoblot immunoreactivities (Figure 3.7) were quantified in various regions of 

the rat brain using optical densitometry and expressed in arbitrary units (AU). Neto2 and 

Neto1 immunoreactivities were determined at E14, E17, P0, P14, P21, P28, P90 in 

hippocampal sub-regions (DG, CA1, CA3) and their layers: hilus (H), stratum moleculare 

(SM), stratum lacunosum-moleculare (SLM), stratum radiatum (SR), stratum oriens (SO) 

and stratum lucidum (SL) (top panels). Neto2 immunoreactivity is predominant in the 

hilus of hippocampal DG after birth with a peak level around P14. In contrast, Neto1 

immunostaining is prominent in the SL of hippocampal CA3 region after birth and 

continues to rise thereafter. Lower panels illustrate developmental changes in Neto2 and 

Neto1 levels in the cerebral cortex (O. Cx: outer cortex, I. Cx: inner cortex), caudate 

putamen (CPu), thalamus (T) and cerebellum (Cb-m: cerebellar moleculare layer, Cb-g: 

cerebellar granular layer). Neto2 expression peaks around P14-21 of rat brain 

development with a strong immunolabelling in the T, CPu, I.Cx and moderate in the Cb-

g. Moderate Neto1 immunoreactivities were identified in the CPu and inner cortical layers 

throughout rat brain development and weak expression in the cerebellum. Data expressed 

as the mean of pixel intensities (AU). Error bars indicate the standard error (SE). 

 

 

3.3.3.2.1 Neto2 expression during rat brain development 

In general, Neto2 labelling was detected during embryonic development (E14, E17). 

It reached peak expression around P14-P21 followed by a decline to adult levels in most 

brain regions (Figure 3.7). 

In the cerebral cortex, Neto2 immunoreactivity was detectable at E14 (Figure 3.8). 

Neto2 expression increased until P14, followed by a gradual decline until P90. The 

contrast between the inner cortical layers (layers V and VI) and the outer layers is 

noticeable from the second week after birth when the labelling intensity of the inner layers 

increased by ~30% compared to the outer layers. This difference continued to increase 

until it reached its maximum (~50%) at P90 compared to the outer layer. 

The strongest labelling of Neto2 was detected in the thalamus followed by CPu with 

peak levels of expression at P21 for both regions (Figure 3.8). In the thalamus, Neto2 

staining gradually declined toward P90 when it reached more than 50% reduction of its 

peak level (at P21). However, the reduction in the CPu staining after P21 was much less 

steep than in the thalamus around 20% decrease from P21 at P90.  

In the cerebellum (Figure 3.8), Neto2 had a similar moderate pattern of labelling 

throughout development in both cerebellar layers with a predominant staining in the 

granular layer over the molecular one. It increased gradually in the first weeks of life until 
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reaching a peak level at P28 with a maximum increase difference between the two 

layers of around 25%. Then, it underwent a steep decline to P90 (Figure 3.8).  

In the HIP (Figure 3.8), Neto2 immunopositivity was detectable at E17 and started 

to increase to moderate and high levels at P0 in all layers of the hippocampus except 

the dentate hilus which remained low. In contrast, after birth the reverse happened 

with a decrease of labelling in all layers other than the hilus toward P90 and an 

increase in the hilus staining to peak level at P14. Although the hilus staining started 

to decline after P14, it remained the predominant Neto2 labelling in the HIP and 

reached its maximum labelling difference from the other layers around 35-60% at P90 

(Figure 3.8).  

 

3.3.3.2.2 Neto1 expression during rat brain development 

Throughout rat brain development (Figure 3.7), most Neto1 immunoreactivity was 

observed in the cerebral cortex, CPu and hippocampal CA3 region with relatively low 

levels in the cerebellar layers. The expression pattern that resembles the adult pattern 

is noticeable by the end of the first weeks of life (P14). 

In the cerebral cortex (Figure 3.8), the first Neto1 labelling was weakly to 

moderately detected at E14, E17 and then at birth (P0). Clearer labelling was observed 

during the second postnatal week in the inner cortical layers (layers V and VI). 

Although the contrast of the inner layers to the outer layers is pronounced starting 

from the second week of life, the difference in labelling intensity was most prominent 

at P28 and P90. 

In the CPu (Figure 3.8), Neto1 expression started with moderate levels prenatally 

then increased during the early postnatal period and continued to reach its maximum 

increase (40% of E17) by P90. 

The staining pattern of Neto1 protein in the molecular and granular cell layers of 

the cerebellum was similar throughout development (Figure 3.8). Initially it was 

expressed moderately, followed by a decrease to low levels. 

In the HIP (Figure 3.8), the staining pattern of Neto1 was detected at moderate 

levels prenatally. Differential labelling of hippocampal layers is clearly detectable 

within the first two weeks after birth. Neto1 immunoreactivity in SL was clearly 
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dominated as increased progressively and highly toward the adult period. However, 

moderate immunoreactivity was seen in the hilus (H) and stratum molecular (SM) layers 

of DG and weak to moderate labelling in the CA1 layers (SO, SR, SLM). 

 

3.3.3.3 KAR pore-forming subunits (GluK1, GluK2/3 and GluK5) protein 

expression during development 

The expression of different KAR subunit (GluK1, GluK2/3, and GluK5) proteins (Dr 

IK-Hyun Cho unpublished findings using the same developmental series brain sections, 

Figure 3.9) starts as early as E14 and increases in all labelled brain regions till adulthood, 

except GluK1 immunoreactivity, which peaks at P28 followed by a prominent reduction 

towards adulthood. During development (till P28), GluK1 expression increases in cortical 

layers, caudate putamen, thalamus, cerebellar molecular cell layer, and hippocampal 

regions (hilus of dentate gyrus, CA1 and CA3) followed by a decline toward adulthood.  

GluK2/3 (Figure 3.9) is mainly expressed in an increasing manner (except the caudate 

putamen and dentate hilus where GluK2/3 protein expression peaks at P21) in the inner 

cortical layers, thalamus, cerebellar granular cell layer, and hippocampal CA3 stratum 

lucidum throughout brain development until adulthood.  

GluK5 (Figure 3.9) is very weakly expressed during embryonic period and in the first 

week of life. It starts to increase postnatally at P14 until P28 when it reaches a plateau 

toward the adulthood in all regions with a predominant expression levels in the inner 

cortical layer, caudate putamen, and hippocampal CA3 stratum lucidum. 
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Figure 3.9. Localisation of native KAR subunit proteins during brain 

development. Colour gradients of histoblots illustrate the regional distribution of GluK1 

(using home-made antibody), GluK2/3, and GluK5 immunoreactivities at various stages 

of rat embryonic and postnatal development (E14, E17, P0, P14, P21, P28, P90) in 

horizontal brain sections (n = 3). In general, GluK1 immunostaining peaks during the first 

month of life (P28), after which it starts to decline in all brain regions. In contrast, 

GluK2/3 immunolabelling increases with development in many regions of the rat brain 

(cerebral cortex, caudate putamen and hippocampus). GluK5 immunolabelling appears 

late postnatally (P14) and reaches a plateau at P28. Colour gradients images were 

generated by assigning the grayscale images to the RGB (red-green-blue) channels in 

Adobe Photoshop CS2. Dr IK-Hyun Cho unpublished data.  

 

3.3.3.4 Correlation of Neto2 and Neto1 expression patterns to KAR pore-

forming subunits GluK1, GluK2/3 and GluK5 

The correlation of the developmental expression pattern of pore-forming and auxiliary 

KAR subunits is as follows: 

1. The developmental profiles of Neto2 and GluK1 are similar in the caudate 

putamen and thalamus in that their immunoreactivity peaks late postnatally 

and then decline toward adulthood. 

2. The developmental profiles of Neto2 and GluK2/3 are similar in the dentate 

hilus as their immunolabelling peaks late postnatally. 

3. The developmental changes in Neto1 and GluK2/3 expression levels are 

similar in the inner cortical layers, caudate putamen and hippocampal CA3 

stratum lucidum since their immunoreactivity continues to increase 

throughout development and toward adulthood.  

 

3.3.3.4.1 Concluding remarks 

1. Neto2 and Neto1 protein expression overlaps in the deeper layers of the 

cerebral cortex and caudate putamen. 

2. Neto2 and Neto1 proteins are differentially expressed in the cerebellar 

granular cell layer and dentate hilus (Neto2) and hippocampal CA3 stratum 

lucidum (Neto1). 

3. Parallel developmental changes of pore-forming & auxiliary subunits of 

KARs as follows: 
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 Neto isoform KAR subunit Brain region 

Neto2 GluK1 CPu, T 

GluK2/3 Dentate hilus 

Neto1 GluK2/3 I.Cx, CPu, Hippocampus 

 

3.4 Discussion 

 

3.4.1 Regional distribution of Neto2 and Neto1 proteins  

In this study, we established the spatiotemporal expression profiles of Neto2 and 

Neto1 proteins and correlated them to pore-forming KAR subunits. This will help to 

understand the molecular basis that underlies the variation in KAR subunit 

composition, regional distribution and KAR function, as much previous research work 

showed that Neto2 and Neto1 proteins modulate key aspects of KAR signalling 

(Tomita and Castillo, 2012; Copits et al., 2011; Straub et al., 2011a; Zhang et al., 

2009; Straub et al., 2011b; Tang et al., 2011; Wyeth et al., 2014; Copits and Swanson, 

2012).   

 

3.4.1.1 Regional distribution of Neto proteins in the adult rat brain  

Our findings of the regional distribution pattern of Neto1 protein in the adult rat 

brain is consistent with the available evidence in the literature (Ng et al., 2009; Straub 

et al., 2011a; Tang et al., 2012). In situ hybridisation for Neto1 mRNA in adult mice 

brain sections showed a wide expression profile throughout the CNS with strong 

expression in CA3 hippocampal region, cerebral cortex and caudate putamen (Ng et 

al., 2009). Moreover, Neto1 protein localisation in mouse brain was strongly revealed 

by immunohistochemistry at the hippocampal stratum lucidum where mossy fibre and 

CA3 pyramidal cells form synapses and also agrees well with the strong [3H]kainate 

binding pattern that detected the distribution of KARs in the same hippocampal layer 

(Straub et al., 2011a). However, Neto1 expression is very weak in the cerebellum 

compared to other brain regions, a finding that is supported by the results of others 

(Straub et al., 2011a). On the other hand, we found that Neto2 protein expression is 

complementary to Neto1 as the former is strongly expressed in hippocampal dentate 

hilus and the cerebellum, particularly in the granular cell layer, which was also 
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evidenced by its strong immunofluorescent staining of cerebellar sections (Tang et al., 

2012). 

   

3.4.1.1.1 Correlating Neto protein expression to KAR subunits in the adult 

rat brain   

There is a clear overlap in the regional distribution of Neto1, GluK2/3 and GluK5 

KAR subunits in the inner cortical layers, caudate putamen and hippocampal CA3 region. 

This suggests a regulatory role for Neto1 to KAR subtypes containing these subunits in 

these areas (Table 1.2). The same principal also applies to Neto2 and GluK2/3 in the inner 

cortical layers, cerebellum and dentate hilus (Table 1.2.). This regional expression match 

does not imply that the auxiliary and pore-forming subunits are co-expressed/co-

assembled in the same subcellular compartment. Therefore, it is only a circumstantial 

evidence for their association at the protein level. It is worth noting that the expression 

pattern of the closest KAR relative of the ionotropic glutamate receptor family, AMPAR, 

does not show this expression overlap using the histoblot analysis of the same brain 

samples. Furthermore, previous studies demonstrated the association of Neto proteins 

with neuronal GluK2/3 and GluK5 KAR subunits but not with AMPAR subunits to 

modify KARs functional responses to glutamate (Straub et al., 2011a; Zhang et al., 2009; 

Tang et al., 2011).         

 

3.4.1.2 Regional distribution of Neto proteins during development in the rat 

brain  

The widespread distribution of Neto proteins in the developing brain, particularly after 

birth, and their sustained expression in the adult may suggest a consistent role in the 

maturation and adult function of neuronal networks. Appropriate receptor assembly and 

clustering is critical for the establishment and preservation of excitatory synapses because 

newly formed synapses are thought to be activity dependent (Molnar et al., 2002). This 

suggests that to maintain and mature the new synapse, synaptic transmission need to be 

preserved, probably by the help of developmentally regulated proteins. For example, Neto 

proteins may enhance the maturation of excitatory synapses through promoting functional 

responses and clustering of KARs.  
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Our results on the regional distribution of Neto1 protein in the developing rat brain 

using the histoblot technique confirmed the embryonic and postnatal mice brain 

mRNA expression pattern (Michishita et al., 2004) in the caudate putamen, 

cerebellum, and hippocampus. In situ hybridization experiments (Michishita et al., 

2004) showed that Neto1 mRNA staining was weakly detected in the embryonic stage 

in the cortex, thalamus, cerebellum and hippocampus and was moderate in the caudate 

putamen. At P5 and P21, the staining was dense in the caudate putamen and CA3 

region, weak in DG and CA1 hippocampal regions, and absent from the cerebellum 

which qualitatively and quantitatively comes in good agreement with our result of 

Neto1 protein immunoreactivity in these regions. However, some discrepancies were 

found between the results of the two experimental methods in other brain regions. 

Throughout postnatal day P5 to P21, Neto1 mRNA expression was observed in the 

entire cortex but concentrated in cerebral layers V, VI and the superficial part of layers 

II/III at which it reached a plateau at P14 then gradually decreased (Michishita et al., 

2004). This could be explained by the maturation process of the excitatory 

glutamatergic synaptic transmission during early postnatal period which needs the 

increase in the number and/or strength of receptor synaptic contacts and so labelling 

was concentrated not only in deep layers but also in superficial layers. Also, 

thickening of the cortex during the third week of life might be responsible for 

dispersed staining and as a result the observed gradual decrease in expression after 

P14. These discrepancies between the protein and mRNA expression patterns might 

also be due to different sensitivities of the two methods and/or different species used 

(rat versus mouse).   

In addition, our developmental expression pattern of Neto2 in the rat brain is 

consistent qualitatively with mice brain mRNA expression in cerebral cortex, caudate 

putamen, thalamus, cerebellum (moderate in the granular layer and absent from the 

molecular layer), and hippocampal CA1 and CA3 (Michishita et al., 2004). 

Quantitatively, the expression of Neto2 mRNA in these areas was weak to moderate 

which matches our quantitative result for the molecular cerebellar layer and 

hippocampal CA1 and CA3. Again, this quantitative discrepancy could be due to 

different sensitivities of the two methods and/or different species used (rat versus 

mouse). However, the only significant difference is in the hippocampus particularly 

Neto2 expression in the dentate hilus. We found Neto2 immunolabelling predominant 
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in the hilus and moderate in CA regions after birth while Michishita et al. group found no 

Neto2 mRNA signal in the same region and moderate labelling in the CA1 and CA3. This 

could be due to differences in the area of the hilus region between the brain sections used 

in the two studies (Scharfman and Myers, 2013). Michishita et al. used sagittal sections 

where the hilus has a very small area of the DG (CA3 encompasses most of the space 

between the supra- and infra-pyramidal blades) and so, the observed mRNA signal in that 

very narrow area might be due to Neto2 and not a trace from CA3. In comparison, our 

sections were in the horizontal plane where the hilus is a large area (Figure 3.10).  

 

 

Figure 3.10. The dentate hilus area of sagittal and horizontal planes. A schematic 

representation of hippocampal DG from a sagittal brain section (A) and a horizontal plane 

(B). Neto2 protein expression in a horizontal section of the rat hippocampus at P21 (C). 

CA3: cornu ammonis 3, GCL: granular cell layer, H: hilus, 1: supra-pyramidal blade, 2: 

infra-pyramidal blade. 

 

The mRNA expression indicates the early steps of a long cellular regulatory process 

to produce a protein (Payne, 2015) making the correlation between mRNA and protein 

expression not an easy task (Payne, 2015). Thus, differences in the expression levels 
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(qualitative and quantitative) between the mRNA and the protein could also be 

attributed to several other factors including:   

1. Translation time lag from mRNA to significant protein accumulation  

2. The differences between synthesis and decay rates of both mRNA 

(lifetime is in minutes) and protein (lifetime is in hours-days).  

In addition, the clear differences between the strength of the signal labelling 

between the mRNA and its protein expression (the quantitative discrepancy) in some 

regions like Neto2 expression in the cerebral cortex for example could be explained 

by the non-straightforward relationship between mRNA and protein expressions.   

   

3.4.1.2.1 Correlating the regional distribution of Neto proteins to KAR 

subunits in CNS development 

After correlating the regional distribution of Neto proteins to KAR subunits during 

rat brain development, it is expected to observe some parallel expression profiles as 

very recent evidence (Orav et al., 2017; Jack et al., 2018, Vernon and Swanson, 2017; 

Wyeth et al., 2017) suggests an enhancement of KAR-mediated developmental 

processes by Neto proteins. However, this does not necessary mean that the Neto-

modulatory roles of KARs are restricted to such a parallel pattern. As long as both 

types of proteins show a regional co-expression pattern, this may suggest their 

regulatory roles.  

We found very similar pattern of the developmental expression of Neto2 and 

GluK1 in caudate putamen and thalamus where both subunits peak late postnatally 

(P21-28). Furthermore, there is a parallel developmental expression pattern of Neto2 

and GluK2/3 in the dentate hilus where both peaks around P14-P21. In addition, Neto1 

developmental profile is similar to GluK2/3 in most brain regions except the 

cerebellum. This may suggest a special role for Neto proteins in regulating these KAR 

subunits in a particular spatiotemporal manner. 

For example, Neto1 promotes the maturation of interneuronal dendrites in 

organotypic culture of the visual cortex (Jack et al., 2018) probably by enhancing 

GluK1 surface expression (Wyeth et al., 2017). Neto1 and GluK1 subunits have 

functional PDZ-binding motifs (the last 4 amino acids of each) that have similar 



          Chapter 3 – Differential distribution of KAR auxiliary subunits                                 113 

 

homology to type 1-PDZ-binding motif. This regulates their interaction with PSD95 for 

synaptic targeting (Sheng et al., 2018). 

 In addition, the similarity between the adult pattern of Neto1, GluK2/3, and GluK5 

subunits and their postnatal pattern may represent an important contribution of them in 

developmental plasticity. Neto1 augments kainate activation of KARs at mature 

somatodendritc interneurons, a neuronal population that express GluK1, GluK2, and 

GluK5, producing inhibitory currents in CA3 pyramidal neurons (Wyeth et al., 2017). In 

contrast, tonic suppression of inhibitory interneurons release results from Neto1 and 

Neto2 regulating the function of presynaptic KARs at a subset of mature inhibitory 

hippocampal interneurons by facilitating KARs activation and their agonist affinity 

(Wyeth et al., 2017). Moreover, early postnatally (P4-6), Neto1 is needed for GluK1-

containing KARs presynaptic tonic suppression of glutamate release at immature CA3-

CA1 synapses (Orav et al., 2017). Neto proteins are required for axonal targeting of most 

KARs subunits in immature hippocampal CA3-CA1 circuitry (Orav et al., 2017). Loss of 

Neto1 leads to loss of presynaptic KARs function and impairment in the synaptogenesis 

of this circuit. This indicates the importance of Neto proteins in the development of 

synaptic connectivity. 

 

3.5 Conclusion 

In conclusion, our findings imply Neto proteins and KAR subunits show distinct 

regional expression profiles during rat brain development toward the adulthood. In 

addition, the expression of both Neto protein isoforms is differentially regulated in adult 

brain and throughout development suggesting distinct roles. Furthermore, identifying 

their cellular and subcellular distribution could improve our understanding of neuronal 

circuit formation.  
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4.1 Background 

 

4.1.1 Normal vs epileptic hippocampal networks 

The reactive plasticity, major network reorganisation in epilepsy mainly in the 

DG, has been observed in various types of epilepsies in both human and rodents 

(Represa et al., 1986; Represa et al., 1989; Sutula et al., 1989; Houser et al., 1990; 

Gabriel et al., 2004). Figure 4.1 illustrates part of the normal hippocampal neuronal 

network (A) and its pathological reorganisation in epileptic conditions (B). 

Information from the entorhinal cortex enters the hippocampus via the perforant 

pathway after being filtered by the dentate gyrus (Henze et al., 2002; Acsady et al., 

2007). The dentate gyrus is composed of 3 main layers (Amaral et al., 2007). 

 First, the relatively cell-free molecular layer with the granule cells dendrites, 

which receive excitatory inputs from the entorhinal cortex through the perforant 

pathway.  

Second, the densely packed granule cell layer, which also contains interneurons 

(e.g. basket cells). The main projection of the granule cells is hippocampal mossy 

fibres toward the stratum lucidum of CA3 (Figure 4.1A). Thus, providing excitatory 

inputs to the CA3 pyramidal cells from the entorhinal cortex. The CA3 pyramidal 

cells make excitatory connections with CA1 pyramidal cells. Furthermore, collaterals 

of mossy fibres make excitatory synaptic connections with a) inhibitory interneurons 

such as the pyramidal basket cells in the granular cell layer and b) excitatory 

interneurons such as the mossy cells in the dentate hilus.  

Third, the dentate hilar cell layer. This area has the mossy cells and various other 

interneurons. The mossy cells project to dentate basket cells and provide excitatory 

input. In turn, basket cells provide dentate granule cells with an inhibitory feedback.  

The dentate gyrus functions as a high-resistance gate, filtering information inputs 

from the entorhinal cortex to the hippocampus (Koyama, 2016). This function is 

compromised in epilepsy, making the hippocampal formation an epileptic focus in 

TLE (Heinemann et al., 1992; Lothman et al., 1992). In epilepsy, instead of acting as 

a safety gate, the dentate gyrus amplifies the entorhinal cortex input of the epileptic 

activity through recurrent circuits of excitation and the loss of inhibitory interneurons. 
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In patients and animal models of TLE, the axons of the dentate granule cells, mossy 

fibres, branch [recurrent mossy fibres (rMF)] in the dentate hilus to form excitatory 

synapses with the dendrites of the granule cells in the inner molecular layer (Figure 4.1B). 

This reorganisation does not occur under normal conditions (Nadler, 2003; Koyama and 

Ikegaya, 2004; Sloviter et al., 2012; Buckmaster et al., 2002; Cavazos et al., 2003). In 

addition, mossy cells are damaged in human epilepsy patients (Babb et al., 1984) and 

animal models of TLE (Nadler et al., 1980; Sloviter et al., 1987). And, it was suggested 

that the sprouting of mossy fibres is a result of mossy cell death (Epsztein et al., 2005; 

Cavazos and Sutula, 1990; Houser, 1990; Houser, 1999; Babb et al., 1991). This indicates 

that the sprouting might be a mechanism to account for the loss of the glutamatergic inputs 

(of mossy cells) to the granule cells and the inhibitory basket cells (Epsztein et al., 2005; 

Koyama, 2016). 

Additionally, in patients and animal models of TLE (Houser, 1990; Lurton et al., 

1998; Riban et al., 2002; Parent and Murphy, 2008; Scharfman et al., 2007), the granule 

cells of the dentate gyrus are dispersed compared to the densely packed organisation in 

normal conditions (Houser, 1990; Lurton et al., 1998) with abnormal ectopic granule cells 

in the hilus (Scharfman et al., 2007; Figure 4.1B). These ectopic cells are stimulated by 

excitatory inputs from normal granule cells and the pyramidal cells of hippocampal CA3. 

They also form excitatory contacts with the dendrites of the granule cells in the inner 

molecular layer and CA3 pyramidal cells leading to loops of excitation that trigger 

epileptogenesis. 
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Figure 4.1. Schematic illustration of normal and pathological hippocampal 

neuronal circuits. A schematic drawing showing normal hippocampal network (A) 

and hippocampal reactive plasticity in epilepsy (B). The granule cells of DG normally 

send mossy fibre axons to CA3 region and form synaptic contacts with cells in the 

hilus of the DG, pyramidal cells of CA3 and various interneurons. In temporal lobe 

epilepsy, new collaterals [recurrent mossy fibres (rMF)] arise from the hilus, project 

to the molecular layer of DG, CA3 region, and contact with dendrites of other granule 

cells (granule cells are interconnected) forming a recurrent circuit that dentate granule 

cells excite each other which can be the focus of seizure activity (Koyama and 

Ikegaya; Epsztein et al., 2005; Koyama, 2016). 
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4.1.2 Pilocarpine-based models of epilepsy 

The cholinergic agonist pilocarpine is widely used in animal models of TLE (Curia et 

al., 2008). Pilocarpine-treated animals are useful to study epileptogenesis and are also 

used as models of multiple drug resistance to antiepileptic drugs (Vizuete et al., 2018). 

Pilocarpine acts on muscarinic receptors to activate the cholinergic system which is 

believed to be the initiating factor for triggering seizures and SE (Curia et al., 2008; 

Vezzani, 2009). Knocking out muscarinic receptors in mice prevented seizure 

development in response to pilocarpine (Curia et al., 2008). Additionally, atropine, a 

muscarinic antagonist, blocked pilocarpine-induced SE (Curia et al., 2008). Furthermore 

to direct cholinergic system activation in the brain, pilocarpine-induced seizures are also 

derived from its primary proinflammatory actions involving the periphery (Vezzani, 

2009). The peripheral proinflammatory mechanisms induced by pilocarpine lead to 

blood–brain barrier (BBB) leakage, prior to the onset of status epilepticus. This BBB 

leakage causes ionic imbalance as K+ accumulate in the extracellular space, which is 

required for pilocarpine to produce its convulsant activity (Vezzani, 2009). Changes in 

BBB permeability seem to synergistically potentiate direct CNS action of the drug leading 

to seizures (Vezzani, 2009; Marchi et al., 2007). To minimize the contribution of systemic 

cholinergic activation in favour of CNS effects, pilocarpine systemic effects are 

antagonized by pretreatment with the peripherally-acting muscarinic antagonist methyl 

scopolamine (0.5–1 mg/kg, SC) (Marchi et al., 2007; Cavalheiro et al., 2006). Methyl 

scopolamine is a quaternary amine and therefore has no effect on the CNS because it 

cannot penetrate the BBB (Dowd, 2017). However, at the used doses of pilocarpine, it is 

possible that peripheral muscarinic blockade by methyl scopolamine is insufficient 

(Vizuete et al., 2018). This is because pilocarpine dose used to induce SE is well in excess 

of that capable of fully displacing antagonist’s binding (Marchi et al., 2007). In addition, 

peripheral pilocarpine’s effects on WBC were not significantly antagonized by methyl 

scopolamine although it was useful in diminishing a number of events like salivation, 

body tremors, and diarrhea (Marchi et al., 2007). Thus, some peripheral events may take 

place in spite of methyl scopolamine pretreatment that may not be capable of fully 

counteracting all systemic pilocarpine effects (Vizuete et al., 2018; Marchi et al., 2007). 

The pilocarpine-based model of chronic epilepsy is considered one of the most 

appropriate animal models of human TLE (Curia et al., 2008). This is because many of 

the human features of the disease are reproduced in it. First, the limbic system is the main 



          Chapter 4 – Expression of iGluRs subunits in a model of chronic epilepsy               120 

 

 

location of seizure foci with the entorhinal cortex, hippocampus, and amygdala being 

the most damaged regions in TLE patients (Bartolomei et al., 2005). Second, the 

presence of an initial trigger (febrile seizure, perinatal hypoxia, head trauma, and 

infection in humans or status epilepticus in animals) before the development of TLE 

(Mathern et al., 2002). Third, the presence of a silent (normal behaviour and EEG 

activity) period after the initial precipitating injury. And fourth, reorganisation of 

hippocampal neuronal networks occurs like mossy fibres sprouting, abnormal 

proliferation of dentate granule cells into the dentate hilus, and neuronal loss in CA 

regions and dentate hilus (Wieser, 2004; Mathern et al., 1997). It worth noting that in 

the pilocarpine model of epilepsy, the neuronal damage is widely spread including the 

olfactory cortex, amygdala, thalamus, neocortex, hippocampus and substantia nigra 

(Turski et al., 1989). High-dose pilocarpine (300-400 mg/kg) produced a mortality 

rate of ~30-55 % in Wister rats (Turski et al., 1983; 1989; Cavalheiro et al., 1991; Liu 

et al., 1994; Esclapez et al., 1999; Leite et al., 1990). Adding lithium to the pilocarpine 

model increased the sensitivity to pilocarpine, hence, allowing the use of a lower dose 

(30 mg/kg) (Clifford et al., 1987; Fujikawa et al., 1999; Glien et al., 2001) with higher 

rate of status epilepticus in treated animals. However, the mortality rate remained high 

(24-45%) and was decreased (7%) by dividing the low-dose pilocarpine (Fujikawa et 

al., 1999; Glien et al., 2001) (Table 4.1). Notably, the behaviour, electrographical, and 

neuropathological changes were very similar between high-dose pilocarpine and 

lithium-low-dose pilocarpine models (Curia et al., 2008). Pilocarpine application (10 

µM) to horizontal entorhinal cortex-hippocampus brain slices induced epileptic 

activity as ictal discharges that started in the entorhinal cortex, then propagated to the 

dentate gyrus, after which they moved to the hippocampus (Nagao et al., 1996). 

 

 



          

 

 

 

SE duration 

(min) 

Lithium pre-

treatment (3 

mEq/kg) 

Pilocarpine 

(mg/kg) 

Rat strain Mortality 

rate (%) 

Reference 

90  320-360 Sprague-Dawley  17 Williams et al., 2002 

120  320-360 Wistar 55 Esclapez et al., 1999 

120  380 Sprague-Dawley 50 Biagini et al., 2006, 2008 

>120  380 Sprague-Dawley 5 Poirier et al., 2000 

>120  380 Wistar 30 Leite et al., 1990 

90 Lithium  30 (single dose) 

 

Wistar 45 Fujikawa et al., 1999  

Glien et al., 2001 

90 Lithium 30 (10 mg/30 min) Wistar 7 Glien et al., 2001 

120 Lithium  30 (10 mg/30 min) Wistar 40 Glien et al., 2001 

>120 Lithium  30 (single dose) Sprague-Dawley 24 Glien et al., 2001 

>120 Lithium  30 (single dose) Wistar 100 Fujikawa et al., 1999 

    Table 4.1. A summary of high-dose or lithium-low-dose pilocarpine models of epilepsy mortality rates.  
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4.1.3 A refined model of the lithium-low-dose pilocarpine 

As part of our collaboration with Professor Gavin Woodhall’s research group at 

Aston University [https://www2.aston.ac.uk/lhs/staff/az-index/woodhagl], we have 

investigated the regional expression patterns of kainate, AMPA, and NMDA receptor 

subunit proteins in a new epileptic animal model (Modebadze et al., 2016, Table 4.2).  

Our collaborators have developed a refined model of epilepsy to reduce animal 

usage and suffering aiming to adopt the 3Rs principle of the research ethics framework 

(Reduction, Refinement and Replacement of animals) and to improve the correlation 

of the rodent model to the human neurological condition. 

 

Animal group Age when 

killed 

Number of 

animals 

Time 

elapsed 

since SE 

Total 

number 

Control animals 

(untreated) 

8 months 2 - 6 

9 months 2 - 

12 months 2 - 

Non-epileptic animals 

(treated) 

8 months 1 3 months 4 

11 months 3 10 months 

Epileptic animals 

(treated) 

8 months 1 3 months 7 

9 months 4 8 months 

10 months 1 9 months 

11 months 1 10 months 

Table 4.2. A summary of the used RISE model animal groups. The age of the 

animals across the three study groups (untreated control, lithium-low-dose pilocarpine 

treated non-epileptic and treated epileptic animals) is comparable (8-12 months). The 

time elapsed since status epilepticus induction for the treated animals (non-epileptic 

and epileptic) is between 3 and 10 months [chronic phase of the Reduces Intensity 

Status Epilepticus (RISE) model; Modebadze et al., 2016]. 

 

The new refined chronic model of epilepsy is called the Reduces Intensity Status 

Epilepticus (RISE) model (Modebadze et al., 2016) which is based on the lithium-

low-dose pilocarpine model (Glien et al., 2001). The refinement process (Modebadze 

et al., 2016) of the standard lithium-low-dose pilocarpine model was achieved by 

minimizing the highly stressful convulsive activity during acute status epilepticus 

through the use of a muscle relaxant (2.5 mg/kg xylazine intramuscularly) and a 
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cocktail of anticonvulsant/antiepileptic (MK-801, diazepam, and MPEP). The result was 

a very low mortality rate (1%), which means fewer animals are required (the Reduction 

R), as compared to the high mortality rate of the standard lithium-low-dose pilocarpine 

model (7-40%) (Glien et al., 2001). However, this refined model also led to spontaneous 

recurrent seizures (SRS) after a latent period, which meant high epileptogenic morbidity 

(Figure 4.2).  

 

 

 

 

 



 

 

 

 

 

Figure 4.2. Timeline of the development of spontaneous recurrent seizures in the RISE model of TLE. 24 hours before 

pilocarpine treatment, rats (8-11 months) were treated with lithium. After that, pilocarpine (25 mg/kg subcutaneously) was administered 

(after pre-treatment with α-methyl scopolamine (1 mg/kg subcutaneously) to prevent pilocarpine peripheral effects). Animals were then 

closely monitored. And, when they showed bilateral forelimb clonus with rearing [seizure severity rate >3 on Racine’s scale (Racine, 

1972)], xylazine (a muscle relaxant to reduce seizure severity) was administered immediately. Animals were left in a non-convulsive 

status epilepticus (xylazine-modified SE) for one hour after which anticonvulsants and anti-epileptics (MK-801, diazepam, and MPEP) 

were administered to terminate the seizure activity. Most animals (84%) met spontaneous recurrent seizure (SRS) criteria within 12 weeks 

of status epilepticus (SE) induction in the RISE model of chronic epilepsy (Modebadze et al., 2016). 
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Indeed, RISE model reflects a close homology of the natural history of 

epileptogenesis: (i) it lacks the gross damage of the brain that was evidenced by 

examining the entorhinal cortex and hippocampus regions of the epileptic animals and 

measuring the functional state of the neuronal networks in CA3 region which showed 

spontaneous activity in vitro throughout the development of chronic epilepsy (i.e. CA3 

remained functionally intact in the acute, latent, and SRS periods). In contrast, the more 

aggressive models such as the unrefined high-dose pilocarpine model resulted in 

significant neurodegeneration of numerous brain regions (Lemos and Cavalheiro, 1995). 

(ii) It had a progressive profile of network alterations within the temporal lobe relevant 

to TLE and indicated by: 1) ictal-like events in hippocampus in the first week following 

induction, 2) normal spontaneous activity during the latent period and again 3) abnormal 

activity in the form of ictal-like events in the medial entorhinal cortex and hippocampal 

CA3 region following the development of SRS. 

 

4.2 Aim and objectives 

Aim: To identify activity-induced changes in the expression level of kainate, AMPA, 

and NMDA receptor subunit proteins using a refined lithium-low dose pilocarpine model 

of chronic epilepsy (Modebadze et al. 2016). 

Objectives: 

1. To compare the regional expression levels of GluK2/3, GluK5, GluA1-4, 

GluA1, GluA2, GluN1, and GluN2B iGluR subunit proteins in lithium-low-

dose pilocarpine treated rats (epileptic and non-epileptic) with untreated 

controls.  

2. To assess iGluR subunits levels during the SRS phase in vulnerable brain 

regions (e.g. medial entorhinal cortex (mEC) and hippocampus). 

3. To establish the presence of recurrent mossy fibre circuits in epileptic 

animals through the investigation of mossy fibre sprouting during the 

chronic phase of the RISE model. 
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4.3 Results 

Using the refined rat model of chronic epilepsy, RISE (Modebadze et al. 2016), 

we used the histoblot technique to examine changes in the regional expression pattern 

of KAR (GluK2/3 and GluK5), AMPAR (GluA1-4, GluA1 and GluA2) and NMDAR 

(GluN1 and GluN2B) subunit proteins in vulnerable brain areas (mEC and 

hippocampus) that showed ictal activity in electrophysiological studies (Modebadze 

et al. 2016). 

 

4.3.1 Comparison of KAR subunit distribution patterns and expression 

levels in control and epileptic brains 

The distribution and expression levels of GluK2/3 (Figure 4.3 and Table 4.3) and 

GluK5 (Figure 4.3 and Table 4.4) were investigated in control and low dose 

lithium/pilocarpine-treated chronically epileptic and non-epileptic rats. The GluK2/3 

and GluK5 immunolabelling patterns were very similar between the study groups in 

the mEC layers and hippocampal sub-regions (CA1, CA3, DG). No significant 

differences were identified in GluK2/3 or GluK5 expression levels in any of the brain 

regions studied in the three treatment groups. 

The GluK5 v. GluK2/3 ratios were compared to detect possible shifts in the 

subunit composition between the three study groups (Figure 4.3). There were no 

detectable changes in any of the studied brain regions.  

The immunolabelling of the studied KAR subunits in this model was prominent in 

the inner cortical layers, CPu, SL of hippocampal CA3, moderate in DG and granular 

cerebellar cell layer (GluK2/3), and weak in CA1 and the cerebellum (GluK5). 
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Figure 4.3. Comparison of GluK2/3 and GluK5 KAR subunit protein 

expression levels in control and spontaneously epileptic rats. Histoblots of 

horizontal adult (8-12 months) rat brain sections were obtained from sham treated 

(Control, n = 6) and lithium-low dose pilocarpine-treated (Modebadze et al., 2016) 

rats without (Non-epileptic, n = 4) and with spontaneous seizures (Epileptic, n = 7). 

Expression profiles of GluK2/3 and GluK5 KAR pore-forming subunits were studied 

in the following brain regions: medial entorhinal cortex (mEC) outer and inner layers 

and hippocampal sub-regions (DG, CA1, CA3) and their layers: hilus (H), stratum 

moleculare (SM), stratum lacunosum-moleculare (SLM), stratum radiatum (SR), 

stratum oriens (SO) and stratum lucidum (SL). The bar diagrams represent the pixel 

intensities of GluK2/3 and GluK5 in vulnerable brain regions (mEC and 

hippocampus) in the three study groups.  The relative expression ratios of 

GluK5:GluK2/3 are included on the bottom panel. There are no statistically 

significant differences in GluK2/3 and GluK5 expression between the three groups of 

rats.Two-way analysis of variance (ANOVA) was used for the statistical analysis at a 

minimum confidence level of p < 0.05 with Sidak post hoc test for between conditions 

analysis to assess different animals’ variations between their corresponding brain 

regions.Error bars indicate the standard error (SE). Scale bars 2 mm.  

 

Sub-

region/layer 

Group1     vs    Group2 Group2 mean SE 

of GluK2/3 

p - value 

Outer mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

29.8  0.6 

30.4  1.0 

30.6  1.0 

  

0.98 

0.94 

Non-epileptic     Epileptic   1.00 

Inner mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

37.9  1.0 

39.7  0.8 

39.1  1.0 

  

0.77 

0.87 

Non-epileptic     Epileptic   0.98 

SO Control               Control 

                           Non-epileptic 

                           Epileptic 

28.8  0.5 

26.9  1.9 

28.6  1.2 

  

0.72 

1.00 

Non-epileptic      Epileptic   0.75 

SR Control               Control 

                           Non-epileptic 

                           Epileptic 

20.6  0.5 

23.6  2.2 

24.4  0.8 

  

0.38 

0.10 

Non-epileptic      Epileptic   0.96 
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SLM Control               Control 

                           Non-epileptic 

                           Epileptic 

28.7  0.8 

28.3  1.6 

30.6  1.4 

 

0.99 

0.61  

Non-epileptic      Epileptic   0.58 

SM Control               Control 

                           Non-epileptic 

                           Epileptic 

36.5  1.1 

37.3  0.5 

38.0  1.9 

  

0.96 

0.77 

Non-epileptic      Epileptic   0.98 

H Control               Control 

                           Non-epileptic 

                           Epileptic 

38.9  0.7 

36.5  1.1 

37.4  1.8 

  

0.55 

0.76 

Non-epileptic      Epileptic   0.96 

SL Control               Control 

                           Non-epileptic 

                           Epileptic 

50.3  1.4 

49.4  1.3 

50.5  2.1 

  

0.96 

0.99 

Non-epileptic      Epileptic   0.92 

Table 4.3. Quantitative comparison of GluK2/3 immunoreactivities in different 

brain regions of control, low dose lithium/pilocarpine-treated non-epileptic and 

chronically epileptic rats. A summary of the mean pixel intensity (arbitrary numbers) of 

GluK2/3 immunolabelling in the medial entorhinal cortex and hippocampal layers in the 

three study groups alongside the p - value of each pairwise comparison. No statistically 

significant (p > 0.05) differences were identified. 

 

Sub-

region/layer 

Group1     vs    Group2 Group2 mean SE 

of GluK5 

p - value 

Outer mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

34.9  3.3 

32.5  2.1 

31.7  2.1 

  

0.98 

0.94 

Non-epileptic     Epileptic   1.00 

Inner mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

37.7  2.6 

38.2  2.2 

34.9  2.0 

  

0.77 

0.87 

Non-epileptic     Epileptic   0.98 
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SO Control               Control 

                           Non-epileptic 

                           Epileptic 

32.9  2.8 

28.7  2.9 

26.4  1.8 

  

0.72 

1.00 

Non-epileptic      Epileptic   0.75 

SR Control               Control 

                           Non-epileptic 

                           Epileptic 

23.7  2.5 

22.7  2.3 

19.7  1.6 

  

0.38 

0.10 

Non-epileptic      Epileptic   0.96 

SLM Control               Control 

                           Non-epileptic 

                           Epileptic 

21.5  2.6 

21.9  1.3 

19.7  1.7 

  

0.99 

0.61  

Non-epileptic      Epileptic   0.58 

SM Control               Control 

                           Non-epileptic 

                           Epileptic 

39.6  2.7 

39.2  2.8 

35.1  1.8 

  

0.96 

0.77 

Non-epileptic      Epileptic   0.98 

H Control               Control 

                           Non-epileptic 

                           Epileptic 

37.3  2.6 

35.5  2.1 

31.6  2.0 

  

0.55 

0.76 

Non-epileptic      Epileptic   0.96 

SL Control               Control 

                           Non-epileptic 

                           Epileptic 

64.3  2.4 

60.7  2.5 

60.9  1.7 

  

0.96 

0.99 

Non-epileptic      Epileptic   0.92 

Table 4.4. Quantitative comparison of GluK5 immunoreactivities in different 

brain regions of control, low dose lithium/pilocarpine-treated non-epileptic and 

chronically epileptic rats. A summary of the mean pixel intensities of GluK5 

immunolabelling in the medial entorhinal cortex and hippocampal layers in the three 

study groups alongside the p - value of each pairwise comparison. No statistically 

significant (p > 0.05) differences were identified. 

 

4.3.2 Comparison of GluA1-4, GluA1 and GluA2 AMPAR subunit 

distribution patterns and expression levels in control and epileptic 

brains 

The regional immunolabelling of AMPAR subunits is shown by the representative 

histoblots in Figure 4.4. The detectable histoblot differences in the immunoreactivities 

of the four AMPAR subunits (GluA1-4), expressed as mean pixel intensity (AU), was 

very similar and not statistically significant between the three study groups in the 

chronic phase of epilepsy (Figure 4.4 and Table 4.5). The GluA1-4 immunostaining 

of the mEC and hippocampal regions was predominant in CA1 and SM layer of DG 
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and moderate in cortex, CPu, cerebellar molecular layer, dentate hilus, and CA3. When 

examining individual AMPAR subunits, GluA1 (Figure 4.4 and Table 4.6) and GluA2 

(Figure 4.4 and Table 4.7), there was no change in the labelling between the three study 

groups. These two subunits had a different expression pattern for their hippocampal 

distribution in horizontal brain sections. GluA1 labelled all hippocampal layers 

moderately, while GluA2 has similar hippocampal staining to GluA1-4 except a moderate 

labelling of dentate SM layer. 

For AMPAR subunits ratios (Figure 4.4), we found no detectable change in the two 

individual subunits (GluA1 and GluA2) labelling relative to the total labelling of all 

subunits (GluA1-4), and in GluA2 staining to GluA1. 
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Figure 4.4. Comparison of GluA1-4, GluA1 and GluA2 AMPAR subunit protein 

expression levels in control and spontaneously epileptic rats. Histoblots of horizontal 

adult (8-12 months) rat brain sections were obtained from sham treated (Control, n = 6) 

and lithium-low dose pilocarpine-treated (Modebadze et al., 2016) rats without (Non-

epileptic, n = 4) and with spontaneous seizures (Epileptic, n = 7). Expression profiles of 

GluA1-4, GluA1 and GluA2 AMPAR pore-forming subunits were analysed in the 

following brain regions: medial entorhinal cortex (mEC) outer and inner layers and 

hippocampal sub-regions (DG, CA1, CA3) and their layers: hilus (H), stratum moleculare 

(SM), stratum lacunosum-moleculare (SLM), stratum radiatum (SR), stratum oriens (SO) 

and stratum lucidum (SL). The bar diagrams represent the pixel intensities of GluA1-4, 

GluA1 and GluA2 in vulnerable brain regions (mEC and hippocampus) in the three study 

groups. The relative expression ratios of GluA1/GluA1-4, GluA2/GluA1-4 and 

GluA2/GluA1 are also included as indicated. There are no statistically significant 

differences in GluA1-4, GluA1 or GluA2 expression levels between the three groups of 

rats. Two-way ANOVA was used for the statistical analysis at a minimum confidence 

level of p < 0.05 with Sidak post hoc test for between conditions analysis to assess 

different animals’ variations between their corresponding brain regions. Error bars 

indicate the standard error (SE). Scale bars 2 mm.
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Sub-

region/layer 

Group1     vs    Group2 Group2 mean SE 

of GluA1-4 

p - value 

Outer mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

50.3  3.4 

43.9  4.0 

45.9  2.1 

  

0.47 

0.64 

Non-epileptic     Epileptic   0.96 

Inner mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

50.5  3.3 

46.8  3.8 

48.2  2.1 

  

0.79 

0.91 

Non-epileptic     Epileptic   0.98 

SO Control               Control 

                           Non-epileptic 

                           Epileptic 

87.3  3.1 

87.0  2.2 

86.7  2.0 

  

1.00 

0.99 

Non-epileptic      Epileptic   1.00 

SR Control               Control 

                           Non-epileptic 

                           Epileptic 

79.8  2.7 

79.3  2.9 

79.0  1.6 

  

0.99 

0.99 

Non-epileptic      Epileptic   1.00 

SLM Control               Control 

                           Non-epileptic 

                           Epileptic 

83.8  3.2 

83.9  1.8 

83.5  2.2 

  

1.00 

0.99  

Non-epileptic      Epileptic   0.99 

SM Control               Control 

                           Non-epileptic 

                           Epileptic 

77.0  3.6 

78.3  2.9 

77.9  2.5 

  

0.99 

0.99 

Non-epileptic      Epileptic   1.00 

H Control               Control 

                           Non-epileptic 

                           Epileptic 

66.2  3.3 

64.6  2.6 

63.7  2.1 

  

0.97 

0.87 

Non-epileptic      Epileptic   0.99 

SL Control               Control 

                           Non-epileptic 

                           Epileptic 

67.9  4.2 

69.5  1.9 

69.6  2.5 

  

0.98 

0.97 

Non-epileptic      Epileptic   1.00 

Table 4.5. Quantitative comparison of GluA1-4 immunoreactivities in 

different brain regions of control, low dose lithium/pilocarpine-treated non-

epileptic and chronically epileptic rats. A summary of the mean pixel intensity and 

its standard error of GluA1-4 immunolabelling in the medial entorhinal cortex and 

hippocampal layers in the three study groups alongside the p - value of each pairwise 

comparison. None of the pairwise comparisons has reached the statistically significant 

level (p > 0.05). 
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Sub-

region/layer 

Group1     vs    Group2 Group2 mean SE 

of GluA1 

p - value 

Outer mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

21.9  1.9 

27.2  2.1 

28.9  2.5 

  

0.67 

0.38 

Non-epileptic     Epileptic   0.42 

Inner mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

19.1  2.0 

24.3  1.9 

25.3  2.7 

  

0.89 

0.08 

Non-epileptic     Epileptic   0.40 

SO Control               Control 

                           Non-epileptic 

                           Epileptic 

32.7  1.0 

36.9  2.2 

38.4  2.7 

  

0.57 

0.21 

Non-epileptic      Epileptic   0.96 

SR Control               Control 

                           Non-epileptic 

                           Epileptic 

33.8  1.2 

38.4  1.4 

40.0  2.7 

  

0.49 

0.15 

Non-epileptic      Epileptic   0.95 

SLM Control               Control 

                           Non-epileptic 

                           Epileptic 

34.4  1.6 

37.7  1.3 

40.4  2.9 

  

0.76 

0.22  

Non-epileptic      Epileptic   0.85 

SM Control               Control 

                           Non-epileptic 

                           Epileptic 

33.9  1.2 

37.0  1.5 

39.3  2.9 

  

0.80 

0.28 

Non-epileptic      Epileptic   0.88 

H Control               Control 

                           Non-epileptic 

                           Epileptic 

33.6  1.4 

37.6  1.7 

38.4  2.5 

  

0.58 

0.32 

Non-epileptic      Epileptic   0.99 

SL Control               Control 

                           Non-epileptic 

                           Epileptic 

34.9  0.7 

36.7  2.3 

38.4  1.8 

  

0.89 

0.38 

Non-epileptic      Epileptic   0.87 

Table 4.6. Quantitative comparison of GluA1 immunoreactivities in different 

brain regions of control, low dose lithium/pilocarpine-treated non-epileptic and 

chronically epileptic rats. A summary of the mean pixel intensity and its standard error 

of GluA1 immunolabelling in the medial entorhinal cortex and hippocampal layers in the 

three study groups alongside the p - value of each pairwise comparison. None of the 

pairwise comparisons has reached the statistically significant level (p > 0.05). 
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Sub-

region/layer 

Group1     vs    Group2 Group2 mean SE 

of GluA2 

p - value 

Outer mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

33.3  1.4) 

32.1  3.8 

36.4  2.4 

  

0.98 

0.75 

Non-epileptic     Epileptic   0.61 

Inner mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

26.0  1.1 

25.5  4.0 

33.9  3.0 

  

0.98 

0.26 

Non-epileptic     Epileptic   0.21 

SO Control               Control 

                           Non-epileptic 

                           Epileptic 

49.0  3.6 

48.8  6.6 

50.9  3.6 

  

1.00 

0.98 

Non-epileptic      Epileptic   0.98 

SR Control               Control 

                           Non-epileptic 

                           Epileptic 

55.7  4.4 

55.0  7.8 

55.6  3.8 

  

1.00 

1.00 

Non-epileptic      Epileptic   1.00 

SLM Control               Control 

                           Non-epileptic 

                           Epileptic 

51.3  4.3 

49.4  7.0 

52.9  3.1 

  

0.99 

0.99  

Non-epileptic      Epileptic   0.94 

SM Control               Control 

                           Non-epileptic 

                           Epileptic 

47.3  3.1 

45.3  6.2 

47.8  3.2 

  

0.98 

1.00 

Non-epileptic      Epileptic   0.96 

H Control               Control 

                           Non-epileptic 

                           Epileptic 

41.5  2.5 

40.1  6.0 

43.4  3.8 

  

0.99 

0.97 

Non-epileptic      Epileptic   0.92 

SL Control               Control 

                           Non-epileptic 

                           Epileptic 

43.3  2.8 

41.9  6.1 

45.4  3.0 

  

0.99 

0.96 

Non-epileptic      Epileptic   0.89 

Table 4.7. Quantitative comparison of GluA2 immunoreactivities in different 

brain regions of control, low dose lithium/pilocarpine-treated non-epileptic and 

chronically epileptic rats. A summary of the mean pixel intensity and its standard 

error of GluA2 immunolabelling in the medial entorhinal cortex and hippocampal 

layers in the three study groups alongside the p - value of each pairwise comparison. 

None of the pairwise comparisons revealed statistically significant differences. 
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4.3.3 Comparison of GluN1 and GluN2B NMDAR subunit distribution 

patterns and expression levels in control and epileptic brains.  

GluN1 and GluN2B NMDAR subunit immunoreactivities were analysed in different 

brain regions on histoblots (Figure 4.5). GluN1 labelling (Figure 4.5 and Table 4.8) was 

comparable between control and treated brains in all selected brain regions (mEC, CA1, 

CA3 and DG). GluN1 immunoreactivity was high in SO and SR layers of CA1 and 

dentate SM, moderate in CPu, CA3 and mEC layers and weak in cerebellum. In addition, 

GluN2B staining (Figure 4.5 and Table 4.9) showed no change in immunolabelling 

between the different groups in almost all selected brain regions except a significant 

change (14.1%) in the SL, where epileptic animals had a lower immunoreactivity 

compared to the control [57.7  0.4 vs 67.2  2.3, p = 0.03]. Also, the reduced 

immunolabelling of the epileptic animals in SO and SM was statistically significant 

compared to the non-epileptic group [68.7  1.3 vs 78.3  4.0, p = 0.03 and 79.6  1.6 vs 

90.3  4.3, p = 0.04, respectively]. The regional immunoreactivity of GluN2B was like 

GluN1. 

To identify if there was a shift in the subunit composition of the NMDAR, the relative 

comparison of GluN2B to GluN1 labelling (Figure 4.5) was performed and was not 

different between control and treated animals in all regions.  
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Figure 4.5. Comparison of GluN1 and GluN2B NMDAR subunit protein 

expression levels in control and spontaneously epileptic rats. Histoblots of horizontal 

adult (8-12 months) rat brain sections were obtained from sham treated (Control, n = 6) 

and lithium-low dose pilocarpine-treated (Modebadze et al., 2016) rats without (Non-

epileptic, n = 4) and with spontaneous seizures (Epileptic, n = 7). Expression profiles of 

GluN1 and GluN2B NMDAR pore-forming subunits were analysed in the following brain 

regions: medial entorhinal cortex (mEC) outer and inner layers and hippocampal sub-

regions (DG, CA1, CA3) and their layers: hilus (H), stratum moleculare (SM), stratum 

lacunosum-moleculare (SLM), stratum radiatum (SR), stratum oriens (SO) and stratum 

lucidum (SL). The bar diagrams represent the pixel intensities of GluN1 and GluN2B in 

vulnerable brain regions (mEC and hippocampus) in the three study groups. The relative 

expression ratios of GluN2B/GluN1 are included on the bottom panel. No statistically 

significant differences were detected in the intensity of GluN1 labelling or 

GluN2B/GluN1 ratio between the three groups of rats. However, the immunostaining of 

GluN2B was significantly reduced in the epileptic animals compared to the treated but 

non-epileptic group in SO and SM (p = 0.03 and p = 0.04, respectively) and relative to 

the untreated animals in the SL hippocampal sublayer (p = 0.03). Two-way ANOVA was 

used for the statistical analysis at a minimum confidence level of p < 0.05 with Sidak post 

hoc test for between conditions analysis to assess different animals’ variations between 

their corresponding brain regions. Error bars indicate the standard error (SE). Scale bars 

2 mm. 

 

Sub-

region/layer 

Group1     vs    Group2 Group2 mean SE 

of GluN1 

p - value 

Outer mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

22.4  1.7 

26.9  2.9 

22.5  1.4 

  

0.39 

1.00 

Non-epileptic     Epileptic   0.36 

Inner mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

21.4  2.4 

26.2  2.9 

20.5  1.0 

  

0.35 

0.98 

Non-epileptic     Epileptic   0.18 

SO Control               Control 

                           Non-epileptic 

                           Epileptic 

33.9  2.6 

37.8  2.8 

33.5  2.4 

  

0.74 

0.99 

Non-epileptic      Epileptic   0.64 

SR Control               Control 

                           Non-epileptic 

                           Epileptic 

36.0  3.3 

36.1  2.8 

33.1  2.2 

  

1.00 

0.84 

Non-epileptic      Epileptic   0.86 

SLM Control               Control 

                           Non-epileptic 

                           Epileptic 

28.2  1.6 

31.5  2.3 

28.3  2.0 

  

0.68 

1.00  

Non-epileptic      Epileptic   0.65 
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SM Control               Control 

                           Non-epileptic 

                           Epileptic 

32.9  2.3 

35.5  3.2 

33.6  2.2 

  

0.88 

0.99 

Non-epileptic      Epileptic   0.93 

H Control               Control 

                           Non-epileptic 

                           Epileptic 

18.8  1.9 

21.9  2.2 

19.0  1.5 

  

0.66 

1.00 

Non-epileptic      Epileptic   0.66 

SL Control               Control 

                           Non-epileptic 

                           Epileptic 

27.7  3.6 

28.3  2.0 

24.1  1.3 

  

0.99 

0.63 

Non-epileptic      Epileptic   0.57 

Table 4.8. Quantitative comparison of GluN1 immunoreactivities in different 

brain regions of control, low dose lithium/pilocarpine-treated non-epileptic and 

chronically epileptic rats. Potential changes in GluN1 immunolabelling were 

investigated in the medial entorhinal cortex and hippocampal layers in the three study 

groups. None of the pairwise comparisons revealed statistically significant 

differences. 

 

Sub-

region/layer 

Group1     vs    Group2 Group2 mean SE 

of GluN2B 

p - value 

Outer mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

58.9  2.8 

58.5  5.7 

53.4  2.1 

  

1.00 

0.56 

Non-epileptic     Epileptic   0.69 

Inner mEC Control              Control 

                          Non-epileptic 

                          Epileptic 

59.1  3.0 

56.7  5.9 

55.2  2.7 

  

0.96 

0.82 

Non-epileptic     Epileptic   0.99 

SO Control               Control 

                           Non-epileptic 

                           Epileptic 

75.7  1.5 

78.3  4.0 

68.7  1.3 

  

0.81 

0.09 

Non-epileptic      Epileptic   0.03* 

SR Control               Control 

                           Non-epileptic 

                           Epileptic 

78.4  2.2 

82.9  4.7 

74.4  1.6 

  

0.63 

0.61 

Non-epileptic      Epileptic   0.14 

SLM Control               Control 

                           Non-epileptic 

                           Epileptic 

74.5  2.2 

79.2  5.7 

72.3  1.3 

  

0.67 

0.92  

Non-epileptic      Epileptic   0.36 



          Chapter 4 – Expression of iGluRs subunits in a model of chronic epilepsy               141 

 

 

SM Control               Control 

                           Non-epileptic 

                           Epileptic 

85.0  2.0 

90.3  4.3 

79.6  1.6 

  

0.45 

0.34 

Non-epileptic      Epileptic   0.04* 

H Control               Control 

                           Non-epileptic 

                           Epileptic 

58.0  1.9 

59.6  5.4 

53.0  1.6 

  

0.98 

0.62 

Non-epileptic      Epileptic   0.49 

SL Control               Control 

                           Non-epileptic 

                           Epileptic 

67.2  2.3 

66.4  4.3 

57.7  0.4 

  

0.99 

0.03* 

Non-epileptic      Epileptic   0.08 

Table 4.9. Quantitative comparison of GluN2B immunoreactivities in different 

brain regions of control, low dose lithium/pilocarpine-treated non-epileptic and 

chronically epileptic rats. GluN2B immunolabelling intensities were compared in the 

medial entorhinal cortex and hippocampal layers in the three study groups. There is a 

statistically significant reduction in GluN2B immunoreactivity in the epileptic animals 

compared to the non-epileptic control group in hippocampal sublayers SO (CA1) and SM 

(DG) (p - values = 0.03 and 0.04, respectively). In addition, the SL sublayer of 

hippocampal CA3 region has reduced GluN2B immunostaining in the epileptic group 

compared to untreated animals (p = 0.03). However, the immunoreactivites in the other 

hippocampal layers (SR, SLM, H) and mEC layers had not changed between the study 

groups.  

 

4.3.4 Detection of mossy fibres sprouting using Timm’s silver sulphide 

staining  

The morphological evidence of mossy fibres sprouting is the simple and well-accepted 

method of Timm’s silver sulphide staining of zinc rich neurons like mossy fibre terminals 

(Karoly et al., 2015; Koyama and Ikegaya, 2004; Ben-Ari, 2001). This histochemical 

technique was performed aiming to detect mossy fibre sprouting in the rat hippocampus 

of the RISE model. 

The representative images of Timm’s stained brain sections (Figure 4.6A) show 

Timm’s positive hippocampal sub-regions (enlarged panels). Their quantification (Figure 

4.6B) represented as the mean product of Timm’s positive area (CA3 and DG) by its pixel 

intensity [area (cm2) x pixel intensity (AU)] was not statistically significant between 

control (n = 4), low dose lithium-pilocarpine-treated non-epileptic (n = 3) and epileptic 

animals (n = 4). One-way ANOVA was used for the statistical analysis. Data represented 

as mean  SEM. 



 

 

 

 

Figure 4.6. Mossy fibre inputs as 

shown by Timm’s staining. Timm’s silver 

sulphide staining (A) of horizontal adult (9-

12 months) rat brain sections were obtained 

from sham treated (Control, n = 4) and 

lithium-low dose pilocarpine-treated 

(Modebadze et al., 2016) rats without (Non-

epileptic, n = 3) and with spontaneous 

seizures (Epileptic, n = 4). The quantification 

(B) of Timm’s positive hippocampal regions 

(DG and CA3) is presented as positive area x 

pixel intensity (arbitrary unit). There are no 

statistically significant differences in 

Timm’s labelling between the three groups 

of rats using one-way ANOVA. Error bars 

represent the standard error (SE). Scale bars: 

2 mm (main panel) and 0.5 mm (insert). 
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4.3.5 Concluding remarks 

Our results from the chronic epileptic phase have showed the following: 

1. There was no detectable region- and receptor type-specific changes in most 

iGluR subunits expression between the three study groups. 

2. GluN2B expression is reduced in CA3 SL in epileptic animals compared to 

untreated rats. 

3. GluN2B expression is reduced in CA1 SO and dentate SM in epileptic animals 

compared to treated non-epileptic ones. 

4. There is no indication of mossy fibre sprouting in the RISE model of epilepsy. 

 

4.4 Discussion 

This study examined possible activity-induced changes in the expression levels of 

different iGluR subunits (GluK2/3, GluK5, GluA1-4, GluA1, GluA2, GluN1, and 

GluN2B) in different regions of the rat brain.  The results indicate no detectable 

differences between the three study groups during the chronic phase of epilepsy except 

for a reduction in hippocampal GluN2B immunoreactivity in epileptic animals compared 

to non-epileptic rats (treated and untreated). In addition, there was no statistically 

significant difference in the Timm’s staining between untreated, treated non-epileptic, 

and treated epileptic animals in hippocampal CA3 and DG.   

 

4.4.1 Potential explanations of the results 

There are some potential explanations of these results. First, the RISE model has the 

advantage of lacking significant neurodegeneration compared to other pilocarpine 

treatment-based models (Modebadze et al., 2016). It is an animal model of epilepsy 

induction of moderate severity (Modebadze et al. 2016) that caused less harm and cell 

death. Potentially, SRSs were generated through subtle and local network changes that 

would not be adequately detectable using the low-resolution method of in situ blotting. 

Although the used technique provides the anatomical resolution of brain regions, is 

reliable for quantitative comparisons, allows lesser usage of animals compared to 

immunoblotting (which requires greater number of animals to blot for each dissected 
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brain region), and is relatively cheap, it can just identify the total regional protein 

expression pattern and so subtle changes in the balance between calcium permeable 

and impermeable subunits and surface to total protein expression could not be 

detected. Moreover, the lack of standardized approach to the pilocarpine model 

(different dosage, pretreatment procedures, animal strain, duration of SE and drugs 

employed to terminate it) contributes to the variable iGluR results obtained from 

various research groups (Curia et al., 2008) (see below).  

Second, this could not be explained without taking into account the widely 

connected network. For example, rearrangement of auxiliary subunits and interacting 

proteins or GABAergic transmission or both could be involved in the process. Third, 

activity-induced changes might be represented in channel gating properties not 

receptor expression. Forth, taking into consideration the general agreement by most 

researchers that mossy fibre sprouting is a prerequisite for SRSs (Karoly et al., 2015), 

Timm’s staining that indicates sprouting of mossy fibres is seen in the IML of the DG 

(Karoly et al., 2015) which is a thin layer that could not be recognised in our 

unperfused brain sections. On the other hand, there might be no detectable mossy fibre 

sprouting in the gentle RISE model because it has no widespread neuronal damage 

like death of mossy cells (which is thought to result in sprouting) in the dentate hilus 

(Koyama and Ikegaya, 2004). 

 

4.4.2 Role of iGluRs in epilepsy  

In this study, we have expected to detect some changes in iGluR subunits 

expression either in the mEC and hippocampal CA3 regions or/and the dentate 

molecular layer (where mossy fibre sprouting is expected to occur) based on the 

following available evidence of their involvement in the process of epileptogenesis. 

 

4.4.2.1 Role of KARs in epilepsy 

In normal situations, the firing property of the dentate granule cells, which mainly 

operate via AMPARs demonstrating fast EPSCAMPAR (Epsztein et al., 2005), is sparse 

(Jung and Mcnaughton, 1993). This is because of the narrow time window for afferent 

inputs integration as the excitatory synaptic events have fast kinetics (Schmidt-Hieber 

et al., 2007). However, in epileptic conditions, the granule cells express KARs in 
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addition to AMPARs, which change the sparse firing to become sustained and rhythmic 

as the slow kinetics of EPSC-KAR lead to wide time window for input integration and 

prolonged depolarisation (Crepel, 2013).   

 The absence of GluK2 (GluK2 KO mice) protects against epileptic seizures evoked 

by kainate in the kainate model of TLE (Mulle et al., 1998; Fisahn, 2005; Fisahn et al., 

2004). This suggests a main role for GluK2-containing KARs in seizure generation and a 

possible therapeutic effect of GluK2 antagonists by reducing the activity of the excitatory 

feedback network of mossy fibre sprouting as these aberrant synapses operate via KARs 

(Vincent and Mulle, 2009; Epsztein et al., 2005). However, in another study using GluK2 

KO mice, low kainate doses resulted in only high threshold to EEG seizures but not 

behaviour seizure signs, while higher doses of kainate triggered seizures (Fritsch et al., 

2014). This suggests the presence of other mechanisms/proteins that contribute to seizure 

generation by kainate (Fritsch et al., 2014). On the other hand, lack of GluK1 (GluK1 KO 

mice) increases epileptiform activity in the kainate model of TLE (Fisahn et al., 2004) 

and the GluK1 agonist, ATPA, inhibits seizure propagation (Khalilov et al., 2002). This 

suggests a protective role for GluK1-containing KARs by enhancing the inhibitory drive 

(Fisahn et al., 2004; Khalilov et al., 2002) as GluK1 subunit is the major KAR subunit in 

the GABAergic interneurons (Bureau et al., 1999). Interneuronal GluK1-containing 

receptors facilitate the release of GABA leading to downregulating synaptic transmission 

(Wu et al., 2007). However, in the pilocarpine model of TLE, antagonising GluK1 

protects from epileptiform activity in hippocampal slices (Smolders et al., 2002). 

Furthermore, the selective GluK1 agonist, ATPA, triggered seizures in mice (Kaminski 

et al., 2004). Taken together, this indicates that different mechanisms of epileptogenesis 

are involved in the various animal models. 

Mutations generated at the GluK2 Q/R editing site to prevent this post-transcriptional 

modification in mice render the animal more susceptible to kainate-induced seizures 

(Vissel et al., 2001). Additionally, following seizures, the Q/R editing of the GluK2 

mRNA is upregulated in human and rat (Grigorenko et al., 1998; Bernard et al., 1999) 

suggesting a possibility to reduce susceptibility to seizures (Grigorenko et al., 1998; 

Bernard et al., 1999; Kortenbruck et al., 2001). Consistent with this, the developmental 

upregulation of GluK2 Q/R editing maybe the reason for spontaneous childhood seizure 

syndrome remission (Sillanpaa et al., 1998). 
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4.4.2.2 Role of AMPARs in epilepsy 

AMPARs have a key role in epilepsy (Rogawski, 2013). In various animal models 

of seizures, AMPAR antagonists reduced the severity of seizures (Durmuller et al., 

1994; Namba et al., 1994) or inhibited their development (Turski et al., 1992; Barton 

et al., 2003). NBQX is a selective AMPAR antagonist that has anticonvulsant activity 

in many animal models of seizure (Chapman et al., 1991; Taylor and Vartanian, 1992; 

Yamaguchi et al., 1993; Namba et al., 1994). Status epilepticus was terminated, and 

neuronal degeneration was reduced in many status epilepticus models after the use of 

various AMPAR antagonists (Rajasekaran et al., 2012; Fritsch et al., 2010; Langer et 

al., 2011; Pitkanen et al., 2007).  

In addition, AMPAR inhibition prevented interictal-like activity from slices of 

TLE patients (Graebenitz et al., 2011) with evidence of increased AMPAR density in 

slices of epileptic patients (Graebenitz et al., 2011; Hosford et al., 1991). Moreover, 

perampanel is a non-competitive AMPAR antagonist that demonstrated clinical 

efficacy in epileptic patients (French et al., 2012; French et al., 2013; Krauss et al., 

2012). In epileptic patients, GluA1 AMPAR subunit expression was increased in the 

hippocampus indicating high levels of GluA1-containing receptors, which 

demonstrate high channel conductance compared to GluA2-containing receptors 

(Ca2+-impermeable) (Ying et al., 1998; Swanson et al., 1997).  

A small number of AMPARs have the unedited Ca2+-permeable GluA2 subunit 

expressed at the embryonic stage. However, > 99% of GluA2 subunits become edited 

and Ca2+-impermeable soon after birth (Burnashev-Rozov, 2000). It has been reported 

that GluA2 expression level was reduced and Ca2+ -permeable AMPARs were 

increased in various brain regions (hippocampus, inferior colliculus, piriform cortex) 

in many animal models of epilepsy (kainate, audiogenic kindling, amygdala-kindling) 

(Sommer et al., 2001; Li et al., 2003; Prince et al., 2000). GluA2 levels were also 

reduced during rat brain development of hypoxic-induced seizures with an increase in 

Ca2+- permeable AMPAR ratio (Sanchez et al., 2001). Furthermore, the expression 

levels of GluA2-lacking Ca2+-permeable receptors were increased in hypoxic neonatal 

seizures (Talos et al., 2006a).  
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4.4.2.3 Role of NMDARs in epilepsy 

Several studies indicated the involvement of NMDARs in epilepsy (Endele et al., 

2010; Ding et al., 2010; Mathern et al., 1998). In addition, several NMDAR antagonists 

have been developed and showed antiepileptic effects (Sachdeo et al., 1992; Palmer et 

al., 1991). 

The mRNA of the obligatory subunit of the NMDAR, GluN1, is highly expressed 

throughout the brain pre- and postnatally (Monyer et al., 1994; Watanabe, 1997). Early 

postnatally, NMDARs are composed mainly from GluN1 and GluN2B subunits. During 

development GluN2A subunit starts to be incorporated in the NMDAR toward the third 

to fourth week of rodent postnatal development (Monyer et al., 1994; Watanabe, 1997). 

Reaching the adulthood, NMDAR is composed now from GluN1/GluN2B/GluN2A in 

the neocortex and hippocampus (Hawkins et al., 1999; Chazot and Stephenson, 1997). 

The GluN2B subunit has slow deactivation kinetics compared to the fast deactivation 

kinetics of GluN2A leading to longer EPSC-NMDAR duration in younger animals (more 

GluN2B) (Cull-Candy et al., 2001). Furthermore, EPSC-NMDAR became larger and longer 

with a prominently enhanced LTP and learning scores in adult mice overexpressing the 

GluN2B subunit compared to normal animals (Tang et al., 1999). Taking this into 

consideration, it is unclear from our study if the detected reduction of GluN2B 

immunoreactivity indicates a protective mechanism from sustained activation by 

NMDAR or if this reduction could mean an impairment in new synapses formation. This 

is because GluN2B subunit is prominently expressed in early life as it has an important 

role in the maturation process of neuronal circuits. And, its deletion caused deficits in 

neuronal circuits assembly during development (Kutsuwada et al., 1996; Kelsch et al., 

2012; Kelsch et al., 2014). 

In animal models of epilepsy, GluN1 mRNA level was reduced in the dentate gyrus 

and CA1 and CA3 pyramidal cells of a pilocarpine and kainate (CA1 and CA3) models 

in rats (Lason et al., 1997a; Mathern et al., 1998). GluN2B mRNA level was increased in 

the dentate gyrus in the latent epileptic phase and reduced in the subiculum in the chronic 

phase of the pilocarpine model (Ghasemi and Schachter, 2011). GluN2A mRNA level 

was decreased in dentate gyrus cells in a kindling model in rats (Pratt et al., 1993) and 

unchanged in CA3 pyramidal cells (Kraus et al., 1994). 
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In human chronic TLE, NMDAR inhibition reduces dentate granule cells 

hyperexcitability where mossy fibres sprouting occurs but not in non-sprouted mossy 

fibres (Franck et al., 1995; Isokawa and Levesque, 1991; Masukawa et al., 1991). 

Additionally, patients of TLE had increased levels of GluN2A and GluN2B mRNA 

in dentate granule cells (Mathern et al., 1996). In patients with non-hippocampal 

sclerosis TLE, the hippocampus had increased levels of GluN1 and GluN2B mRNA 

in CA3 pyramidal cells (Ghasemi and Schachter, 2011). However, hippocampal 

sclerosis patients had decreased mRNA levels of GluN2A in CA3 pyramidal cells.  

 

4.4.3 Detection of mossy fibre sprouting 

Zinc is present in the synaptic vesicles of the dentate granule cells axons and axon 

terminals (Paolethi et al., 2009; Seress et al., 2001). Timm’s staining is a 

histochemical technique used to label their zinc content (Danscher and Zimmer, 1978; 

Henze et al., 2000). This indicates that Timm’s staining is not considered a marker of 

just mossy fibres terminals (Karoly et al., 2011). In epilepsy, mossy fibres terminate 

in the dentate hilus, stratum lucidum of hippocampal CA3, and the inner molecular 

layer of the dentate gyrus (Karoly et al., 2011). In a TLE model in rat, mossy fibres 

sprouting appeared after the development of spontaneous recurrent seizures (Nissinen 

et al., 2001) suggesting that it contributes to the chronicity of the disorder and seizure 

intensification (Koyama, 2016; Karoly et al., 2011). In the pilocarpine-induced 

chronic model of epilepsy, mossy fibres sprouting was identified in the inner 

molecular and granular cell layers of the dentate gyrus (Epsztein et al., 2005). 

However, in our study, there was no detected difference in Timm’s staining between 

the three studied conditions suggesting no mossy fibre sprouting in the RISE model 

that lack the generalised neuronal damage observed in other comparable models. This 

could be explained by the fact that the brain sections used in our study were not 

perfused for fixation but fixed by immersion after sectioning. This could limit the 

exposure of the tissue to the fixative. This means that the inner molecular layer of the 

DG, where mossy fibres sprouting happens (Karoly et al., 2015), could not be 

identified clearly. In addition, in a 10 µm thick section the superimposition of the 

mossy fibres varicosities is large. Sections must be thin enough to avoid 

superimposition of various tissue components (typically 5 μm thick) (Schoen and 

Mitchell, 2013).  
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In our Timm’s stained sections, the optical density of the well-stained synaptic area 

of the mossy fibres was already high in the control animals. Little, but significant increase 

in the numbers of mossy fibres varicosities might be missed due to the superimposition 

problem and only dramatic changes could be detected.On the other hand, mossy cell loss 

in the DG correlates with mossy fibre sprouting in epileptic pateints and pilocarpine-

treated rats (Buckmaster, 2012). Thus, it is probable in the RISE model, which lacks 

neuronal damage compared to other related models, not to have mossy fibre sprouting. 

Or, to have mild level of sprouting as a result of forming recurrent aberrant synapses onto 

only a subset of granule cell dendrites in the inner molecular layer. Therefore, the used 

staining technique, in addition to the used tissue (method of fixation and thickness), was 

insensitive to detect any sprouting.  

 

4.5 Conclusion 

In conclusion, further investigations are needed to examine other potentially involved 

receptors and subunits (glutamatergic vs GABAergic), post-translational modifications, 

unedited (Ca2+-permeable)/edited (Ca2+-impermeable) subunits, surface protein to total 

ratio, and channel properties. 
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and SUMOylation of GluK2 in 

regulating KAR internalisation 
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5.1 Background 

 

5.1.1 GluK2 palmitoylation and phosphorylation 

Palmitoylation is the reversible process of modifying a protein by covalently 

attaching palmitic acid, a 16-carbon saturated fatty acyl chain, to a cysteine residue 

by a thioester bond (Pickering et al., 1995; Hayashi et al., 2005; Aicart-Ramos et al., 

2011; Globa and Bamji, 2017; Shipston, 2011). This modification is in dynamic 

regulation by the activity of two families of enzymes, palmitoyl acyltransferases 

(transmembrane proteins) and thioesterases, responsible for palmitoylation and 

depalmitoylation, respectively (Aicart-Ramos et al., 2011; Globa and Bamji, 2017; 

Shipston, 2011). Palmitoylation occurs at the cytosol, endoplasmic reticulum, Golgi 

compartment, and the cell membrane (Hancock et al., 1989; Berger and Schmidt, 

1985; Olson and Spizz, 1986; Dolci and Palade, 1985; El-Husseini et al., 2002). 

Apparently, there is no required precise amino acid consensus for palmitoylation, but 

usually basic and hydrophobic amino acids surround the modified cysteine residues 

(Bijlmakers and Marsh, 2003; El-Husseini and Bredt, 2002; Gauthier-Campbell et al., 

2004).  

The palmitoylation of proteins increases their hydrophobicity, which promote their 

interaction with the membrane lipid bilayers. Hence, targeting proteins to cell 

membranes is the primary function of this post-translational modification (El-

Husseini and Bredt, 2002). In addition, it has many other important roles including 

the regulation of neuronal development (Hess et al., 1993; Pepinsky, 1998; Chamoun, 

2001), neurotransmitter release from synaptic vesicles (Hess et al., 1992; 

Washbourne, 2001), signal transduction of ion channels and neurotransmitter 

receptors (Dunphy and Linder, 1998; Bizzozero, 1997), the receptor-clustering 

function of synaptic scaffolding proteins, and the structural conformation of proteins 

(Topinka and Bredt, 1998; Gray, 1998; DeSouza et al., 2002).  

Dysregulation in protein palmitoylation has been observed in many neurological 

disorders including Alzheimer’s, Huntington’s, schizophrenia, and mental retardation 

(Cho and Park, 2016; Sanders and Hayden, 2015). In addition, many palmitoyl 

acyltransferases have been implicated in these neurological diseases (Fromer et al., 

2014; Bhattacharyya et al., 2013; Mizumaru et al., 2009; Korycka et al., 2012; 
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Hornemann, 2015). More than 40% of synaptic proteins are identified as substrates for 

palmitoylation (Sanders et al., 2015) with many neurotransmitter receptors were known 

to be palmitoylated including serotonin, dopamine, GABAA, NMDA, AMPA and kainate 

receptors (Naumenko and Ponimaskin, 2018).  

The kainate receptor subunit GluK2 is a substrate for protein palmitoylation at two 

distal cytosolic cysteine residues (C858 and C871) that are conserved in all KAR subunits 

except GluK1 (Pickering et al., 1995; Copits and Swanson, 2013). They are considered 

the major sites of GluK2 palmitoylation and are surrounded by many positively charged 

amino acid residues (Pickering et al., 1995; Copits and Swanson, 2013). Their 

palmitoylation was confirmed by overexpressing GluK2 in heterologous systems, where 

metabolic labelling assays using [3H]-palmitate were used (Pickering et al., 1995; Copits 

and Swanson, 2013). 

GluK2 has also two serine residues in the intracellular C-terminal domain (S846 and 

S868) that are substrates for PKC-dependent phosphorylation (Nasu-Nishimura et al., 

2010). These are the predominant C-terminal  phosphorylation sites as the GluK2 double 

non-phosphorylatable mutant (S846A, S868A) showed an 87% reduction in PKC-

mediated phosphorylation (Nasu-Nishimura et al., 2010). The first serine (S846) is 

located proximal to the plasma membrane and the other one (S868) exists distally close 

to the second cysteine residue (two amino acids away from the second palmitoylated 

cysteine residue; C871) (Figure 1.5). 

Recently, the protein 4.1 family, which function as cytoskeletal adaptor proteins 

(Bennett, 1989), has been found to interact with kainate and AMPA receptors to 

coordinate their surface expression and stabilisation. 4.1N isoform associates with a 

region within the membrane-proximal domain of both receptors to promote their forward 

trafficking (Copits and Swanson, 2013). KARs association with 4.1N maintains an 

extrasynaptic pool of receptors on dendritic shafts (Copits and Swanson, 2013). This 

ready-to-use pool could contribute to synaptic plasticity once needed in a way similar to 

AMPARs (Heine et al., 2008; Petrini et al., 2009). Notably, the 4.1N isoform association 

with kainate and AMPA receptors is regulated by palmitoylation and phosphorylation 

(Figure 1.5) of the receptors’ subunits in an opposing direction (Copits and Swanson, 

2013) (see the discussion section 5.4.1). 
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5.1.2 GluK2 SUMOylation and phosphorylation 

SUMOylation is the dynamic reversible process of the covalent protein 

modification at a lysine residue by the Small Ubiquitin-like Modifier protein (SUMO) 

(Martin et al., 2007; Coelho-Silva et al., 2017). The best-defined SUMO isoforms to 

date are SUMO1, 2, and 3 (Coelho-Silva et al., 2017).  SUMO proteins have diverse 

cellular functions like regulating nuclear transport, transcription, DNA repair, protein-

protein interaction, subcellular localisation, and protein conformational structure 

(Johnson, 2004; Geiss-Friedlander and Melchior, 2007; Dohmen, 2004; Wilkinson 

and Henley, 2010). SUMO isoforms are conjugated to their substrates via three 

sequential enzymatic reactions of an E1 activating enzyme, an E2 conjugating enzyme 

(ubiquitin-conjugating 9 or Ubc9), and an E3 protein ligation enzyme (Wilkinson and 

Henley, 2010). Ubc9 is capable of conjugating SUMO to its substrate in an E3 ligase-

dependent and –independent way (Coelho-Silva et al., 2017). Alterations in the 

SUMOylation process of proteins has been implicated in some neurological disorders 

like Alzheimer, Parkinson, and epilepsy (Anderson et al., 2017).  The kainate receptor 

subunit GluK2 has a distal lysine residue (K886) that is subjected to SUMO1 

modification in an activity-dependent manner. GluK2 SUMOylation at this cytosolic 

residue occurs rapidly at the surface upon kainate binding promoting receptor 

endocytosis and EPSC-KAR reduction (Martin et al., 2007).   

Phosphorylation of GluK2 C-terminus regulates the trafficking of KARs. The 

PKC-mediated phosphorylation of S846 or S868 prevents GluK2 surface expression 

(Nasu-Nishimura et al., 2010; Copits and Swanson, 2013) by enhancing its 

endoplasmic reticulum retention and so, retarding its forward trafficking in neurons 

(Nasu-Nishimura et al., 2010). Notably, phosphorylation of only S846 promotes 

constitutive surface GluK2 endocytosis (Nasu-Nishimura et al., 2010) and it was 

found to have a major impact on the reduction of neuronal GluK2 surface expression 

compared with the modest effect of S868 phosphorylation (Copits and Swanson, 

2013).  

Phosphorylation and SUMOylation of KARs and their interplay have been studied 

by many research groups (Konopacki et al., 2011; Martin et al., 2007; Chamberlain et 

al., 2012). Phosphorylation of S846 does not enhance GluK2 SUMOylation at K886 

(Konopacki et al., 2011) whereas S868 phosphorylation facilitates it (Martin et al., 

2007; Konopacki et al., 2011; Chamberlain et al., 2012). Interestingly, PKC-mediated 
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phosphorylation of GluK2 at S868 has shown to have two opposing effects on KAR 

localisation depending on the presence or absence of SUMOylation (Chamberlain et al., 

2012). The equilibrium between the two determines the net result (Chamberlain et al., 

2012). Phosphorylation of S868 can increase GluK2 SUMOylation which lead to 

endocytosis (Figure 1.5) and reduced surface expression or, in the absence of 

SUMOylation, it can increase the receptor recycling back to the neuronal plasma 

membrane (Chamberlain et al., 2012).  

 

5.1.3 GluK2 palmitoylation, phosphorylation and SUMOylation interplay  

As discussed, the interplay between palmitoylation and phosphorylation and 

phosphorylation and SUMOylation of the GluK2 subunit have been studied individually. 

However, any possible crosstalk between palmitoylation and SUMOylation has not been 

investigated. And here is a clarification on why such a possibility could be happening. 

SUMOylation of GluK2 is required for kainate-induced endocytosis but the exact 

mechanism on how the activation of GluK2-containing KAR increases receptor 

SUMOylation is not fully characterised (Martin et al., 2007). Since the removal of 

palmitate from GluK2 promotes its PKC-mediated phosphorylation (Pickering et al., 

1995) and considering that agonist-induced endocytosis of GluK2 depends on PKC 

activity (Martin and Henley, 2004; Nasu-Nishimura et al., 2010), it worth studying if 

GluK2 non-palmitoylation is required for SUMO1-dependent KAR endocytosis and 

whether phosphorylation regulates this process. In other words, is GluK2 

depalmitoylation a prerequisite for subsequent downstream PKC-dependent 

phosphorylation, SUMO1 conjugation and GluK2 internalisation? 

 

5.2 Aim and objectives 

 Hypothesis: GluK2 depalmitoylation is an upstream post-translational modification 

of phosphorylation and subsequent SUMOylation for LTD (Figure 5.1). 

Aim: To identify the effects of GluK2 non-palmitoylation on GluK2 

phosphorylation, SUMOylation and internalisation under basal and agonist stimulation 

conditions. 
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Objectives: 

1. To determine the recombinant GluK2 SUMOylation levels in WT and 

mutants (non-palmitoylated, phosphor-null, phosphor-mimetic) under 

basal and kainate-stimulated conditions in HEK293T cells. 

2. To identify the effect of the WT GluK2 and non-palmitoylated mutant on 

neuronal surface expression under basal and kainate-stimulated conditions. 

 

 

Figure 5.1. A schematic model of the effect of GluK2 depalmitoylation on a 

series of downstream post-translational modifications and receptor 

internalisation. The C-terminus of the KAR subunit GluK2 has many sites for post-

translational modifications (PTMs). It has two cysteine residues (C858 and C871) that 

considered substrates for palmitoylation. A series (1-4) of events relating other PTMs 

(phosphorylation and SUMOylation) to KAR internalization (Konopacki et al 2011, 

Chamberlain et al 2012) are shown. Very close to the palmitoylation sites, there are 

two serine residues (S846 and S868), which are substrates for PKC phosphorylation 

upon agonist stimulation (1 and 2). This will lead to SUMO1 conjugation of the lysine 

residue (K886) at the end of the C-terminus (3) and receptor endocytosis (4). 

However, based on evidence of increased PKC phosphorylation of non-palmitoylated 

GluK2 (Pickering et al., 1995), it is not clear if depalmitoylation of the cysteine 

residues leads to downstream phosphorylation, SUMOylation and then KAR 

internalisation upon kainate stimulation. 
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5.3 Results 

 

5.3.1 Effects of targeted mutation of phosphorylation and palmitoylation 

sites on ct-GluK2 on SUMOylation 

To define the roles of possible cross-talk between post-translational modifications of 

GluK2 we investigated a series of point mutants (Table 5.1) with key residues substituted 

to prevent or mimic specific modifications. We first transfected HEK293T cells with 

FLAG-SUMO1 and FLAG-Ubc9 alongside YFP (negative control) or one of several 

YFP-Myc-tagged GluK2 DNA constructs [WT, C858A, C871A (non-palmitoylated), 

K886R (non-SUMOylated), S846A, S868A (phospho-null), and S868D (phospho-

mimetic)]. After 36–48 hours, the effect of 20 minutes of 100 µM Kainate on GluK2 

phosphorylation and SUMOylation in the different conditions was assessed using pull-

down assays (GFP-trap protocol).  

 

YFP-Myc-GluK2 point mutants 

Non-palmitoylated C858A, C871A 

Non-SUMOylated K886R 

Phospho-null S846A, S868A 

Phospho-mimetic S868D 

Table 5.1. A summary of GluK2 point mutants. The table summarises the point 

mutants of YFP-Myc-tagged GluK2 used to study their effects on GluK2 SUMOylation. 

The double cysteines (C858 and C871) were mutated to alanine to prevent GluK2 C-

terminal palmitoylation. The distal lysine residue (K886) was converted to an arginine to 

prevent SUMOylation. A proximal (S846) and distal (S868) serine residues were changed 

to alanine to block their PKC-mediated phosphorylation. The distal serine (S868) was 

mutated to aspartate to mimic the phosphorylation status. 
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Figure 5.2. Non-palmitoylation of GluK2 mimics agonist-induced 

SUMOylation. HEK293T cells were transfected with yellow fluorescent protein 

(YFP) DNA (negative control) and five different constructs of YFP-Myc-tagged 

GluK2: 1) WT, 2) C858A, C871A (non-palmitoylated), 3) K886R (non-

SUMOylated), 4) S846A, S868A (phospho-null) and, 5) S868D (phospho-mimetic) 

along with FLAG-tagged SUMO1 and FLAG-tagged Ubc9. Kainate (100 µM) for 20 

minutes was used to stimulate the expressed KAR. A, represents the crude 

SUMOylated proteins (recognised by an anti-FLAG antibody) in the total cell lysate 

(5 % of all cell lysate). GluK2 was immunoprecipitated (IP) using GFP-trap protocol 

(B) and the levels of SUMOylated GluK2 were detected in the different conditions 

using anti-FLAG antibody. The immunolabelling of the SUMOylated GluK2 was first 

normalised to the GFP expression (C) before being normalised to the untreated WT 
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expression for comparison. The quantification (D) of the IP samples (n = 6) shows the 

non-palmitoylated GluK2 was SUMOylated more than the WT under basal conditions (p 

= 0.0025). However, under agonist stimulation the level of SUMOylated GluK2 was not 

different between the WT and the double cysteine mutant (p = 0.11). The non-

SUMOylated GluK2 had very low levels of SUMOylation (p < 0.0001 compared to WT). 

The phospho-null mutant was SUMOylated almost like the WT (p = 0.09) under basal 

and stimulatory conditions. In contrast, the phospho-mimetic GluK2 SUMOylation was 

noticeably higher than the WT (p = 0.008 for basal conditions and < 0.0001 upon KA 

stimulation). The only statistically significant result between basal and KA stimulatory 

conditions was for the WT (p = 0.03) when its SUMOylation had increased with kainate 

treatment. All bands were normalised to the GluK2 expression level (GFP) and then 

represented as a percent of the untreated WT. To compare the different mutants (untreated 

and treated) with the WT (untreated and treated), Student t-test with four comparisons 

correction was applied (p-value significant at 0.05/4= 0.0125, *: p-value < 0.0125, **: p-

value < 0.001, ***: p-value < 0.0001). To compare each treated condition with its 

untreated counterpart, Student t-test was applied (p - value significant at 0.05). Error bars 

represent the standard error (SE). 

 

The blots in Figure 5.2 show the results of: 1) the crude total cell lysate (5% of the 

total) of the SUMOylated proteins in the cell (membrane probed with anti-FLAG) (Figure 

5.2 A); 2) the SUMOylated fraction of the immunoprecipitated GluK2 that runs at 170 

kDa (membrane probed with anti-FLAG) with no corresponding band for the negative 

control (YFP alone) (Figure 5.2B), and 3) the expression level of the transfected YFP-

Myc-tagged GluK2 at 150 kDa with no corresponding band for the negative control (YFP 

alone) (membrane probed with anti-GFP) (Figure 5.2C).  

It worth noting that the expected molecular weight of the SUMOylated YFP-Myc-

GluK2 is ~ 150 kDa [the predicted molecular weights for the following proteins/peptides 

in kDa are: 11.55 for SUMO1 (The UniProt Consortium, 2019), 28.13 for YFP (The 

UniProt Consortium, 2019), 7.2 (1.20 x 6) for six tags of Myc (c-Myc tag peptide 

(EQKLISEEDL) [online] Available at: http:// www.mblintl.com/products/3300-205 

[Accessed February 2019]), and 102.47 for GluK2 (The UniProt Consortium, 2019). 

However, the difference between the expected and the observed molecular weights might 

be due to a possible series of SUMO conjugation or to other unknown protein interactors 

or the fact that SUMOylated proteins run higher than predicted.  

The quantification (Figure 5.2D) of the immunoprecipitated GluK2 bands shown in B 

(SUMOylated GluK2) revealed a significant increase of the WT GluK2 SUMOylation 

level upon kainate stimulation (100.0 vs 138.8 ± 14.8, p = 0.03). This was also mimicked 

in the non-palmitoylated mutant (C858A, C871A) compared to the untreated WT (100.0 
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vs 150.8 ± 11.0, p = 0.002). However, in the double cysteine mutant kainate treatment 

has not affected the level of SUMOylation compared to the treated WT (138.8 ± 14.8 

vs 177.8 ± 17.4, p = 0.11).  

As expected (Konopacki et al., 2011), the non-SUMOylated mutant (K886R) has 

a very profound reduction in SUMOylation compared to the WT (untreated: 100.0 vs 

7.1 ± 2.2, p < 0.0001 and treated: 138.8 ± 14.8 vs 7.6 ± 2.0, p < 0.0001). 

The phospho-null GluK2 showed a similar SUMOylation level to the WT 

(untreated: 100.0 vs 163.2 ± 25.7, p = 0.09 and treated: 138.8 ± 14.8 vs 167.5 ± 16.5, 

p = 0.26). Lastly, the phospho-mimetic GluK2 (S868D) was highly SUMOylated 

compared to the WT (untreated: 100.0 vs 426.4 ± 66.6, p = 0.008 and treated: 138.8 

± 14.8 vs 516.0 ±59.7, p < 0.0001). 

It is worth noting that the detection of GluK2 phosphorylation in the 

immunoprecipitate was tried first using an anti-phosphoserine (BD Biosciences 

612548) before detecting SUMOylated levels aiming to connect the three post-

translational modifications but all attempts showed no bands at all and membranes 

were then reprobed with anti-FLAG to identify GluK2 SUMOylation. 

 

5.3.2 The surface expression of non-palmitoylatable GluK2 in neuronal 

cultures  

We next used confocal imaging approaches to explore the distribution of non-

palmitoylatable GluK2 in neurons. Cultured hippocampal neurons (DIV 9-10) were 

transfected with DNA constructs of YFP-Myc-tagged GluK2 (WT or C858A, 

C871A). At DIV 14-15, neurons were treated with 2 µM tetrodotoxin (TTX, to inhibit 

the activity-dependent release of glutamate) and 40 µM GYKI53655 (to block 

AMPARs) for 30 min and then with either vehicle (water) or 10 µM kainate (Martin 

and Henley, 2004; Martin et al., 2008; Konopacki et al, 2011) for 20 min before being 

live labelled for surface YFP expression followed later with staining of the total YFP 

expression. 

Figure 5.3 shows representative confocal images of the transfected neurons.  Red 

shows surface and green shows total YFP-tagged GluK2 localisation. The blue 

staining (DAPI) in the overlay image shows the nucleus. The magnification panel is 

a close up of one of the dendrites. Note the relatively strong red immunofluorescence 
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of the untreated WT compared to all other conditions which signifies that the WT GluK2 

is expressed on the cell surface more than the non-palmitoylated receptor.  This is also 

illustrated by the relatively prominent yellow colour (overlap between red and green) in 

the overlay image compared to the dim yellow in the other conditions.  

The quantification of the images immunofluorescence (Figure 5.4) revealed a 

statistically significant reduction in the dendritic immunoreactivity of the total, surface 

and surface/total ratio of the WT GluK2 upon kainate stimulation (Total: 1.00 ± 0.14 vs 

0.67 ± 0.01, p = 0.04, Surface: 1.00 ± 0.14 vs 0.61 ± 0.01, p = 0.02, Surface/total: 1.00 ± 

0.005 vs 0.89 ± 0.017, p < 0.001) (Table 5.2). 

Importantly, the dendritic surface/total immunofluorescence of the non-palmitoylated 

GluK2 mutant was significantly reduced compared to the WT under basal conditions 

(0.91 ± 0.007 vs 1.00 ± 0.005, p = 0.001) mimicking GluK2 (WT) upon kainate 

stimulation (0.89 ± 0.017 vs 1.00 ± 0.005, p < 0.001). Moreover, in direct contrast to 

GluK2 (WT), the proportion of surface expressed GluK2 (C858A, C871A) was not 

altered in kainate-stimulated conditions (0.91 ± 0.007 vs 0.91 ± 0.018, p = 0.87) (Table 

5.2).  

Interestingly, there were no significant changes in the soma. Specifically, total, 

surface and surface/total ratio reduction in the soma immunofluorescence within the WT 

basal and stimulated conditions and between the WT and the double cysteine mutant (data 

summarised in Table 5.3). 
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Figure 5.3. The effect of GluK2 non-palmitoylation on its surface expression 

using confocal imaging. Representative images of hippocampal neurons that were 

transfected with YFP-Myc-tagged GluK2 (WT or C858A, C871A) at DIV 9. At DIV 

14 neurons were pre-treated with 2 µM tetrodotoxin (TTX) and 40 µM GYKI53655 

for 30 min before being treated with 10 µM kainate (as indicated) for 20 min. Live 

labelling (using anti-GFP antibody followed by Alexa 647) was used to label the 

overexpressed surface GluK2 receptors (red). The total receptors were immunostained 
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by anti-GFP followed by Cy2 (green) after the red staining of the surface receptors as 

described in the methods. 5-15 cells per condition per experiment (a total of 3 independent 

experiments) were analysed using ImageJ Fiji software. Compared to the untreated WT, 

the surface expressed GluK2 (red channel) was noticeably decreased with agonist 

stimulation and in the non-palmitoylated condition. 

 

 

Figure 5.4. Quantification of the fluorescence imaging data. Immunofluorescence 

data were quantified from 5-15 cells/condition/experiment from 3 independent 

experiments. The results are presented as total, surface and surface/total ratio of GluK2 

expression expressed as a ratio of the untreated WT in both the dendrites and soma. In 

the dendrites, there was a statistically significant (p = 0.001) reduction in the surface/total 

ratio of the non-palmitoylated GluK2 expression compared to the untreated control. This 

reduction mimics the treated WT surface/total expression ratio reduction (p < 0.001) 

compared to the untreated condition. However, there was no difference in the expression 



          Chapter 5 – Interplay between GluK2 palmitoylation and SUMOylation                164 

 

 

of GluK2 between the different conditions in the soma as the somatic quantification 

result has more variability compared to the dendrites. Data presented as a percent of 

the untreated WT. Two-way ANOVA was used to analyse the results with Bonferroni 

(within a condition) and Sidak (between conditions) post hoc tests. p - Value 

significant at < 0.05. Error bars indicate the standard error. Scale bars: 20 µm (main 

panel) and 5 µm (magnification panel). 

 

Total 
 

WT C858A, 

C871A 

p - value 

No kainate 1.00 ± 0.14 0.82 ± 0.06 0.24 

Kainate 0.67 ± 0.01 0.59 ± 0.13 0.63 

p - value 0.04 * 0.15 
 

Surface  
WT C858A, 

C871A 

p - value 

No kainate 1.00 ± 0.14 0.75 ± 0.04 0.11 

Kainate 0.61 ± 0.01 0.55 ± 0.14 0.69 

p - value 0.02 * 0.19 
 

Surface/total  
WT C858A, 

C871A 

p - value 

No kainate 1.00 ± 0.005 0.91 ± 0.007 0.001 ** 

Kainate 0.89 ± 0.017 0.91 ± 0.018 0.25 

p - value < 0.001 *** 0.87 
 

Table 5.2. The dendritic expression of the recombinant GluK2. A summary 

table of the neuronal dendritic total, surface and surface/total ratio of GluK2 

immunofluorescence. Comparing the WT GluK2 to C858A, C871A GluK2 ± 10 µM 

kainate treatment, the total, surface, surface/total GluK2 is significantly reduced after 

kainate stimulation. In addition, the non-palmitoylated GluK2 surface/total basal 

expression is significantly reduced compared to its counterpart WT. Data are 

expressed as a ratio of the untreated WT ± SE. p - Value significant at < 0.05. 

 

Total 
 

WT C858A, 

C871A 

p - value 

No kainate 1.00 ± 0.17 0.74 ± 0.10 0.14 

Kainate 0.78 ± 0.02 0.68 ± 0.04 0.58 

p - value 0.20 0.73 
 

Surface  
WT C858A, 

C871A 

p - value 

No kainate 1.00 ± 0.17 0.72 ± 0.12 0.16 



          Chapter 5 – Interplay between GluK2 palmitoylation and SUMOylation                165 

 

 

Kainate 0.65 ± 0.07 0.66 ± 0.09 0.96 

p - value 0.092 0.76 
 

Surface/total  
WT C858A, 

C871A 

p - value 

No kainate 1.00 ± 0.02 0.97 ± 0.04 0.81 

Kainate 0.84 ± 0.10 0.96 ± 0.07 0.33 

p - value 0.096 0.89 
 

Table 5.3. The somatic expression of the recombinant GluK2. A summary table of 

the neuronal soma total, surface and surface/total ratio of GluK2 immunofluorescence. 

Comparing the WT GluK2 to C858A, C871A GluK2, no statistically significant result 

was found. Data are expressed as a ratio of the untreated WT ± SE. p - Value significant 

at < 0.05. 

 

5.3.3 Detection of GluK2 palmitoylated state 

 

5.3.3.1 The Acyl-Biotin Exchange (ABE) assay 

In an attempt to directly examine the palmitoylation state of GluK2, we used 

immunoprecipitation and then the acyl-biotin exchange assay (Brigidi and Bamji, 2013), 

summarised in Figure 5.5. These assays allow the immunoprecipitation of the protein of 

interest, then the specific detection of the palmitoylated form. As indicated by the 

representative blots of the several ABE attempts on the immunoprecipitated YFP-Myc-

GluK2 (WT and double cysteine mutant) from HEK293T cells (Figure 5.6), the 

palmitoylated state of GluK2 was not robustly detected (very weak band for the 

hydroxylamine-treated WT around 150 kDa and no corresponding bands in the other 

conditions, red rectangle in Figure 5.6A). During the several experimental attempts (n = 

3), the hydroxylamine was changed to a fresh product and the protein content was 

increased in the subsequent experiments (from protein pooled from 3 wells up to 5 wells) 

as the level of palmitoylated GluK2 might be low for detection. The weak signal 

(overexposed band of Figure 5.6A magnification) was only obtained in the third attempt 

when the protein content was increased the most of all attempts. In addition, there were 

strong bands detected between 55 and 70 kDa (A) in the hydroxylamine-treated WT 

condition of the GluK2-transfected HEK cell lysate. The membrane was stripped and then 

re-probed with anti-GFP [to confirm that transfected GluK2 (WT or mutant) was 

expressed] and again with anti-GluK2/3 antibodies (to test if the bands between 55 and 

70 kDa are due to GluK2 being degraded from the hydroxylamine treatment) (Figure 5.6B 
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and C, respectively). The result shows a strong expression level of the GluK2 WT and 

C858A, C871A mutant in all conditions around 150 kDa. Note the red circle (Figure 

5.6C), which indicates no evidence of GluK2 degradation products in the 

hydroxylamine-treated WT. This indicates that the detectable bands are not related to 

GluK2 degradation.  

It worth noting that the NEM and biotin-BMCC were tested for being working 

using total HEK293T cells lysate that is either treated or untreated with NEM and 

without the hydroxylamine. The result showed a strong smear of crude palmitoylated 

HEK293T cells proteins without NEM treatment (available free thiols were not 

blocked) and almost nothing when the lysate was treated with NEM (free thiols were 

blocked and so did not react with biotin-BMCC).  

There are more measures can be done to further optimise the protocol. Such 

measures can be increasing the biotin concentration [although the used concentration 

(4 µM) was already on the higher side of the recommended range (1-5 µM)] to 

increase the sensitivity of detecting the palmitoylated form which could be very low 

amount. In addition, the protein content could be increased more (use larger cell 

culture dishes and/or increase the DNA amount) as the very weak signal in the 

hydroxylamine-treated WT GluK2 sample can result from non-sufficient protein 

content to account for hydroxylamine-mediated protein degradation. 
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Figure 5.5. A schematic diagram of the acyl-biotin exchange (ABE) assay. The 

ABE assay is a multistep protocol that has been used to detect palmitoylated proteins 

(A). The first step aims to block the free thiols using N-ethylmaleimide (NEM) in the 

protein lysate prior to immunoprecipitation with either GluK2 antibody followed with 

protein A-sepharose beads (for endogenous GluK2 from hippocampal neurons) or 

GFP-beads (for recombinant protein from HEK293T cells). The second step uses 

hydroxylamine (NH2OH) to cleave the thioester bond of the palmitoylated cysteine 

residue to release palmitic acid leaving a free thiol group at the site of palmitoylation. 

Thirdly, a sulfhydryl-reactive biotinylation reagent (Biotin-BMCC) is used to 

biotinylate the newly formed free thiol. Finally, using SDS-PAGE the protein is 

immunoblotted with streptavidin antibody. A parallel sample (B) is treated identically 

except the hydroxylamine treatment step is omitted so no free thiol group should be 

available to bind biotin. C, represents an example of the expected immunoblot result 

after probing for streptavidin. 

 

 

Figure 5.6. Using the acyl-biotin exchange (ABE) assay to detect GluK2 

palmitoylated state. Both WT and C858A, C871A of YFP-Myc-tagged GluK2 were 

immunoprecipitated (GFP-trap protocol) from cell lysate of transfected HEK293T 

cells and then the ABE assay was performed. The blots represent the result of the last 

attempt of the assay (n = 3) when protein was pooled from 5 wells instead of 3 wells 

in the previous experiments.  The first blot (A) shows very weak band at the expected 

molecular weight (~150 kDa) of YFP-Myc-GluK2 in the WT condition when treated 

with hydroxylamine to detect the palmitoylated state of the protein (see the close-up 

panel with the overexposed blot). Notably, GluK2 was overexpressed in all conditions 

(B) when the blot was re-probed for GFP. To investigate the bands (between 55 and 

70 kDa) of the hydroxylamine-treated WT on blot A for being possible degradation 

products of GluK2 (the hydroxylamine increases protein degradation), the membrane 

was re-probed for GluK2. The result (C) shows no degradation products of GluK2 at 

the corresponding molecular weights of the bands shown in A.  
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5.3.3.2 The liquid chromatogrphy-mass spectrometry (LCMS) analysis of 

GluK2 palmitoylation 

Since the result of the ABE assay to detect palmitoylated GluK2 was not robust and 

to enhance the sensitivity of detecting the palmitoylated form, we next attempted to 

identify palmitoylated GluK2 by mass spectrometry. After consultation with and advice 

from Dr Kate Heesom, (Director of the Bristol Proteomics Facility), we 

immunoprecipitated recombinant YFP-Myc- tagged GluK2 (WT and C858A, C871A) as 

shown by the coomassie brilliant blue stain of the IP gel (Figure 5.7A). The gel was then 

processed and analysed using LCMS for possible palmitoyl (cysteine residues, + 238.2 

Da) peptide modifications. As expected, the results from the mass-spec indicated GluK2 

was the top hit in each sample (See Appendix 8.2). In addition, the analysis showed the 

identified peptide fragments (highlighted in green) of the GluK2 protein sequence (Figure 

5.7B and C for the WT and the double cysteine mutant bands, respectively) and their 

detectable modifications as indicated by the letter (C: carbamidomethyl, O: oxidation) 

above each fragment.  

No palmitoylated peptides were identified in WT or mutant bands. The first cysteine 

residue (C858) of the GluK2 C-terminus (located within the tryptic peptide 

FSCSAMVEELR) was identified as being carbamidomethylated in the WT sample and 

converted to alanine in the mutant (see the red arrow heads). This modification occurs as 

a result of the incubation with iodoacetamide which is part of the standard sample 

processing.  The other potential site (C871) is within a tryptic fragment which is too small 

to be detected (peptide CQR) and so to focus on this site we would need to digest the 

protein bands using an alternative endopeptidase enzyme to the standard trypsin. 

 We cannot rule out the possibility that palmitoylated forms also exits, but perhaps do 

not fragment as well in the mass-spec and remain undetected. Another consideration is 

the stability of the palmitoylation modification. It is possible that it could be displaced by 

the carbamidomethylation reaction. It is worthy to repeat the analysis without including 

the iodoacetamide incubation to assess this possibility. 
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Figure 5.7. Using LCMS analysis to detect GluK2 palmitoylated state. The 

coomassie brilliant blue stained gel (A) shows the immunoprecipitated (GFP-trap 

protocol) bands of both WT and C858A, C871A of YFP-Myc-tagged GluK2 from cell 

lysate of transfected HEK293T cells. These bands were cut and sent for LCMS to detect 

palmitoylation as a possible peptide modification. The GluK2 protein was found to be the 

top hit in each band (see appendix 8.2). B and C show the sequence coverage maps for 

the two bands (WT and C858A, C871A). These show where the identified peptides 

(highlighted with green) of the LCMS map on to the GluK2 protein sequence. The letters 

(C and O) above each identified peptide fragment indicate the identified peptide 

modifications (C: carbamidomethyl which result from the routine sample processing with 

iodoacetamide, O: oxidation) of the amino acid residue beneath it. The red arrow heads 

indicate the two expected palmitoylated cysteine residues (C858 and C871) in the WT 

GluK2 C-terminus (B) and their corresponding two alanine (C858A and C871A) in the 

mutant sequence (C). The analysis result indicates that the first cysteine residue (C858) 

was identified as being carbamidomethylated while the other cysteine residue (C871) of 

the WT C-terminus was within a tryptic fragment that was too small to be detected. 

 

5.3.4 Preparing and testing tools for future work 

 

5.3.4.1 Overexpressing GluK2 in neurons 

To extend and further augment the findings from HEK293T cells on GluK2 

SUMOylation to neurons, the various GluK2 constructs were used to prepare sindbis 

virus vectors.  Six different sindbis viruses were made to overexpress GFP and five 

different YFP-Myc-tagged GluK2 (1. WT, 2. C858A, C871A, 3. K886R, 4. C858A, 

C871A + K886R, and 5. C858A, C871A + S846A, S868A) in neurons. The initial results 

(Figure 5.8) indicate that these viruses effectively overexpress these proteins after 18 

hours in cortical neurons. Two separate batches of viruses were prepared (shown on 

separate blots). Importantly, each YFP-Myc-GluK2 construct from each batch expresses 

at comparable levels so direct comparisons can be made. But, further expression 

validation of all the different sindbis viruses should be done to ensure comparable 

expression levels between all conditions.  
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Figure 5.8. Using sindbis virus to overexpress YFP-Myc-GluK2. Sindbis virus 

was used for neuronal overexpression of GFP and several YFP-Myc-tagged GluK2 

[WT, C858A, C871A GluK2 (non-palmitoylated), K886R GluK2 (non-

SUMOylated), C858A, C871A + K886R GluK2 (non-palmitoylated and non-

SUMOylated) and C858A, C871A + S846A, S868A GluK2 (non-palmitoylated and 

non-phosphorylated)]. The blots were probed for GFP and they show the expression 

level of these proteins at the expected molecular weights when sindbis virus (20 µL 

for GFP and 50 µL for the other viruses) was used for 18 hours at DIV14 cortical 

neurons.  

 

5.3.4.2 Detecting PKC-phosphorylated GluK2 and testing a phosphoserine 

PKC substrate antibody 

As previous trials of detecting PKC-mediated phosphorylation of GluK2 before 

detecting its SUMOylation levels were unsuccessful, we tried to facilitate this process 

by using the PKC activator phorbol 12-myristate 13-acetate (PMA) aiming to bring 

phosphorylated levels to detectable ranges. Cortical neurons at DIV 16 were treated 

with sindbis viruses for 20 hours to overexpress either WT YFP-Myc-GluK2 or GFP 

(negative control) (n = 3). Half of them were then treated with 1 µM PMA for 20 

minutes before being lysed with a lysis buffer containing phosphatase inhibitors 

cocktail. Protein of interest was immunoprecipitated using GFP-trap protocol and 

membranes were probed for total and immunoprecipitated proteins using two anti-

phosphoserine antibodies (BD Biosciences 612548 and Sigma-Aldrich P5747) before 

re-probing the immunoprecipitated proteins for GFP expression. The result (Figure 
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5.9) indicates that despite the successful overexpression of GluK2, phosphorylated levels 

(using BD Biosciences antibody) were not robustly detectable even in the presence of 

PMA. During the several attempts of this experiments, fresh PMA was used, and protein 

was pooled from 2-4 wells working towards detecting phosphorylated GluK2. No bands 

were obtained using Sigma-Aldrich anti-phosphoserine antibody (P5747).  

In an attempt to study the level of PKC-mediated phosphorylation of S868 when 

GluK2 is non-palmitoylated, a specific anti-phosphoserine antibody was evaluated. The 

phosphoserine PKC substrate antibody [Cell Signaling (CS) 2261] is active toward a 

specific motif [(R/K)X(S*)(Hyd)(R/K)] that is similar to the S868 in the GluK2 C-

terminus [(R)(M)(S*)(L)(K)]. The site-specific antibody was tested by using sindbis virus 

and immunoprecipitating the neuronal overexpressed GluK2 (WT and the available 

phosphor-null mutant: S846A, S868A + C858A, C871A). The result (Figure 5.10) 

indicated that the GluK2 was successfully overexpressed in both conditions (WT and the 

phosphor-null mutant). Unfortunately, however, the anti-phosphoserine antibody did not 

identify the expected band of the phosphorylated WT GluK2 around 150 kDa. 
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Figure 5.9. Detection of PKC-dependent phosphorylated GluK2 in neurons. 

YFP-Myc-tagged GluK2 (WT) and GFP were overexpressed in cortical neurons at 

DIV 16 using sindbis virus (n = 3). PKC-mediated protein phosphorylation was 

promoted by treating the cells with 1 µM PMA for 20 minutes. The proteins were 

immunoprecipitated (via the GFP-trap) in the presence of phosphatase inhibitors and 

the resulting membrane blots (total lysate and immunoprecipitated proteins) was 

probed for a phosphoserine/threonine residue using the previously validated 

(Konopacki et al., 2011) BD Biosciences antibody (612548). There were no robust 

bands at the expected molecular weight (~ 150 kDa) for phosphoserine. Membrane of 

immunoprecipitation was re-probed for GluK2 and GFP expression using anti-GFP 

antibody and both proteins were found to be overexpressed at the expected molecular 

weight. 

 

 

Figure 5.10. Using sindbis virus to validate the phosphoserine PKC substrate 

antibody. YFP-Myc-tagged GluK2 (WT and C858A, C868A + S846A, S868A) were 

overexpressed in cortical neurons at DIV 14 using sindbis virus. The proteins were 

immunoprecipitated (via the GFP-trap) and the resulting membrane blot was probed 

for a phosphoserine residue that is phosphorylated by PKC at serine residues 

surrounded by Arg or Lys at the -2 and +2 positions and a hydrophobic residue at the 

+1 position [motif: (R/K)X(S*)(Hyd)(R/K)] using Cell Signaling antibody 2261. This 

motif is equivalent to the S868 residue [(R)(M)(S*)(L)(K)] in the C-terminus of 

GluK2. There are no bands at the expected molecular weight (~ 150 kDa) for 

phosphoserine in the WT condition. Membrane was re-probed for GluK2 expression 

using anti-GFP antibody and both WT and the mutant proteins were found to be 

overexpressed. 
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5.3.5 Concluding remarks 

1. GluK2 SUMOylation is enhanced when GluK2 cannot be palmitoylated, 

which is similar to the kainate effect on the WT. 

2. Basal SUMOylation level of GluK2 remained unchanged in the phosphor-

null mutant, but highly increased in the phosphor-mimetic condition 

compared to the WT. 

3. Dendritic GluK2 surface expression is reduced in the non-palmitoylated 

receptor compared to the WT and is similar to kainate effect on the WT 

GluK2. 

 

5.4 Discussion 

The diversity of KARs trafficking, synaptic targeting and subcellular localisation is 

regulated by three determining factors (Copits and Swanson, 2013): 

1. the intrinsic trafficking attributes of each subunit, 

2. the interaction with a diverse pool of interacting proteins and 

3. the interplay between different post-translational modifications. 

In addition, the fine balance of several subcellular processes (protein’s biosynthesis, 

forward trafficking, internalisation, recycling, and degradation) determines the cell 

surface expression of proteins (Shipston, 2011). 

Here, we found that there is a cross-talk between two post-translational modifications 

of GluK2 that was not identified previously. The palmitoylation state of GluK2 C-

terminus has shown to be important to its SUMOylation state and neuronal cell surface 

expression. However, we were unable to identify the effect of GluK2 palmitoylation state 

on GluK2 phosphorylated levels but my findings regarding the effects of the phospho 

mutants on GluK2 SUMOylation confirmed previous observations (Konopacki et al., 

2011; Chamberlain et al., 2011). PKC-dependent phosphorylation of GluK2 C-terminus 

facilitates but is not required for its SUMOylation. 
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5.4.1 Palmitoylation- and phosphorylation-dependent enhancement of 

GluK2 SUMOylation 

The non-palmitoylation state of GluK2, represented by the double cysteine mutant 

(C858A, C871A), has shown to have high SUMOylation levels in heterologous 

systems similar to the effect of agonist stimulation on the WT GluK2. This suggests 

that depalmitoylating GluK2 might increase the receptor SUMOylation. But, whether 

phosphorylation of GluK2 contributes as an intermediate process between 

depalmitoylation and SUMOylation is still unknown. The GluK2 SUMOylation level 

when it loses its main PKC-phosphorylated C-terminal sites (S846 and S868) is 

similar to the WT under basal conditions. This suggests that GluK2 SUMOylation can 

occur in an independent manner of PKC-mediated phosphorylation. However, GluK2 

SUMOylation is highly promoted and increased in the phosphor-mimetic condition. 

Although HEK293T cells have all the required SUMO machinery (Zhao et al., 

2004), we were unable to detect GluK2 SUMOylation without co-transfecting 

HEK293T cells with Ubc9 (data not shown; empty blots). It seems that the 

endogenous SUMO machinery in HEK293T cells is insufficient or fails to 

SUMOylate recombinant proteins in a way similar to other heterologous systems 

(Langereis et al., 2007). Ubc9, the SUMO conjugating enzyme, was used here to 

promote recombinant GluK2 SUMOylation in HEK293T cells. Thus, there is a 

possibility that this might have contributed to our positive findings. However, this 

possibility is unfavourable considering that after co-transfecting HEK293T cells with 

0.1 µg Ubc9 significant changes in SUMOylation levels could still be identified. In 

addition, 0.1 µg of Ubc9 was reached after several starting attempts of using higher 

amounts (1, 0.7, and 0.5 µg) of transfected Ubc9 that saturated the system and 

differences in protein SUMOylation levels between the different conditions could not 

be identified. Moreover, recombinant Ubc9 was used previously (Konopacki et al., 

2011) to facilitate SUMOylation of recombinant GluK2 in heterologous systems.    

Palmitoylation can decrease or increase phosphorylation depending on the protein 

substrate. Palmitoylation of the GluK2 (Pickering et al., 1995) and GluA1 (Lin et al., 

2009) subunits inhibits the PKC-mediated phosphorylation of these proteins leading 

to inhibiting or promoting receptor internalisation, respectively. However, the 

palmitoylation of the NMDAR subunits GluN2A and GluN2B at the cysteine clusters 

in the membrane-proximal region increases the subunits tyrosine phosphorylation 
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which inhibits the receptor internalisation and stabilises its cell surface expression 

(Hayashi et al., 2009). 

The interplay between palmitoylation and phosphorylation differentially regulates the 

surface expression of both AMPA and kainate receptors through their interactions with 

the neuronal scaffolding 4.1N protein (Copits and Swanson, 2013). 4.1N protein interacts 

with the GluA1-containing AMPARs to regulate their synaptic localisation into the cell 

surface (Shen et al., 2000; Coleman et al., 2003; Lin et al., 2009) by the possible coupling 

of the receptor to actin cytoskeleton (Shen et al., 2000). On the one hand, GluA1 

palmitoylation reduces 4.1N association with the AMPAR resulting in a less stable and 

more susceptible receptor to agonist-induced endocytosis (Lin et al., 2009; Hayashi et al., 

2005). On the other hand, proximal PKC-mediated phosphorylation of GluA1 enhances 

4.1N interaction and hence promote AMPAR plasma membrane expression.  

AMPAR subunits can be palmitoylated at two sites, both surrounded by basic and 

hydrophobic residues, to regulate receptor trafficking and localisation (Aicart-Ramos et 

al., 2011; Hayashi et al., 2005). The first cysteine residue is located three amino acid 

residues away from the Q/R editing site in the second transmembrane domain where its 

palmitoylation inhibits the receptor trafficking to the plasma membrane from the Golgi 

apparatus. The second cysteine residue is present in the C-terminus in a close proximity 

to the cell membrane and to the 4.1N protein binding location. This location may suggest 

the enhancement of attaching a palmitate via a cell membrane-bound palmitoyl 

acyltransferase and also promoting the binding of the adjacent basic residues to the acidic 

heads of the membrane phospholipids (El-Husseini and Bredt, 2002) stabilising cell 

membrane interaction.  However, its palmitoylation/de-palmitoylation 

decreases/enhances the interaction with 4.1N protein leading to endocytosis/surface 

stabilisation in an agonist-induced manner (Shen et al., 2000; Hayashi et al., 2005; 

Coleman et al., 2003). This finding may suggest that the 4.1N protein interaction seems 

to be the key to receptor cell surface stabilisation and when interrupted by the nearby 

palmitoylation, likely due to steric hindrance, leads to receptor cell surface 

destabilisation.  

 In addition, the control of receptors trafficking and localisation is complicated by the 

fact that many of the iGluRs interacting proteins are substrates for palmitoylation 

(Hayashi et al., 2005) with the alternative splices of these proteins differentially 

regulating their palmitoylation (El-Husseini and Bredt, 2002). For example, the PSD-95 
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protein, in particular the PDS-96α isoform from the alternative splicing (Chetkovich, 

2002) can be palmitoylated leading to forming a complex with stargazin via its C-

terminal PDZ-binding domain. This association enhances AMPAR synaptic targeting 

and clustering by stargazin (El-Husseini et al., 2000a; El-Husseini et al., 2002; Tomita 

et al., 2003; Tomita et al., 2004; Vandenberghe et al., 2005). The synaptic clustering 

of AMPARs, regulated by palmitoylation, may suggest that palmitoylation may adjust 

synaptic strength and contribute to synaptic plasticity (El-Husseini and Bredt, 2002). 

Furthermore, changes in synaptic activity affect PSD-95 palmitoylation turnover as 

prolonged synaptic activity increases the rate of PSD-95 depalmitoylation which lead 

to receptor endocytosis representing a homeostatic feedback mechanism (El-Husseini 

and Bredt, 2002). 

The membrane-proximal domain of GluK2 C-terminus also interacts with 4.1N 

protein to coordinate KAR synaptic targeting and endocytosis (Copits and Swanson, 

2013). When KARs are associated with 4.1N, their forward trafficking to the neuronal 

cell surface is enhanced and their surface expression is stabilised by reducing their 

constitutive internalisation. In addition, 4.1N association preferentially localises 

KARs to the extrasynaptic sites on the dendritic shafts (Copits and Swanson, 2013). 

Similar to AMPARs, the interaction between the 4.1N and GluK2 KAR subunit is 

mediated by both palmitoylation and phosphorylation. However, in this case, 

palmitoylation occurs distally to the membrane-proximal domain enhancing 4.1N 

association and hence KAR surface expression while PKC phosphorylation 

antagonises it and induces endocytosis (Copits and Swanson, 2013). It is mainly the 

proximal PKC-mediated phosphorylation at S846 that was shown to prominently 

reduce the neuronal cell surface expression of GluK2 through 4.1N dissociation 

(Copits and Swanson, 2013). Thus, it is tempting to speculate that the proximity of 

the post-translational modification to the 4.1N binding site has an important role in 

regulating the receptor association with 4.1N protein but other factors like interacting 

proteins and other 4.1 protein isoforms can also play a role in regulating receptor 

surface stabilisation. A proposed explanation of this reciprocal relationship between 

palmitoylation and phosphorylation suggests palmitoylation of a positively charged 

region of cytosolic GluK2 interferes with the PKC activity by bringing the C-terminal 

tail close to the plasma membrane masking the serine residues for phosphorylation 

(Copits and Swanson, 2013). The same idea of adding a negatively charged phosphate 
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group might be responsible for concealing the cysteine residues from palmitoyl 

acyltransferases. In agreement with this, metabolic labelling (using [32P]-ATP) of PKC-

mediated phosphorylation of recombinant GluK2 was shown to be significantly increased 

in the non-palmitoylated mutant (C858A, C871A) compared to the wild-type GluK2 

(Pickering et al., 1995).      

Taking into account the interplay between palmitoylation and phosphorylation in 

regulating 4.1N protein interaction, and the interplay between each one of these individual 

post-translational modifications with SUMOylation (including our initial finding of a 

cross-talk between palmitoylation and SUMOylation), a link between 4.1N protein 

interaction and SUMOylation is plausible. The process of losing 4.1N interaction upon 

GluK2 phosphorylation and the subsequent increased SUMOylation-dependent 

endocytosis might act in concert to coordinate KARs expression and localisation and 

regulating neuronal excitability (Copits and Swanson, 2013).  

Considering the previous evidence of the reciprocal relationship between 

palmitoylation and phosphorylation and the positive link between phosphorylation and 

SUMOylation, we aimed to investigate a cascade of downstream post-translational 

modifications with PKC-mediated phosphorylation being the common process that has 

been studied previously in relation to the other up- and down- stream events. However, 

despite the fact that we tried three different anti-phosphoserine antibodies to detect the 

phosphorylated levels of GluK2 both in HEK293T cells and neurons, we could not 

identify any GluK2 phosphorylated signal under basal conditions or following 20 minutes 

of kainate stimulation (transfected HEK293T cells) and 20 minutes of PMA (sindbis virus 

infected neurons). In addition, one of the used antibodies was validated and used 

previously for the same purpose with acceptable results (Konopacki et al., 2011). In this 

elegant study, the detectable phosphorylated levels of virally expressed GluK2 in neurons 

were observed at low levels under basal conditions and were significantly increased after 

5 minutes of kainate stimulation. However, in this same study the detectable increase in 

GluK2 SUMOylation was observed after 20 minutes of kainate or PMA stimulation and 

this increase was not cumulative by both drugs suggesting a common pathway of action. 

This is very interesting as it might be resembling the “SUMO enigma1” (Hay, 2005; 

Martin et al., 2007) and may suggest that once PKC phosphorylates its substrate, it 

 
1 SUMO enigma: SUMOylation-mediated effects persist after the removal of SUMO. 
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initiates a signalling pathway to increase SUMOylation and this effect continues after 

phosphorylation rapid turnover by phosphatases. This also could explain why we 

could not detect phosphorylated GluK2 after 20 minutes of kainate or PMA 

stimulation as this duration might be too long for this very dynamic process. And, we 

were able to reproduce the SUMOylation changes after 20 minutes of kainate 

stimulation similar to Konopacki et al. findings. 

In addition to the diversity of the SUMOylation machinery to control the temporal 

and spatial specificity of SUMOylation, the post-translational modifications as 

phosphorylation of targeted proteins contribute to the process (Wilkinson and Henley, 

2010; Bossis and Melchior, 2006; Konopacki et al., 2011). One suggested mechanism 

that clarifies how phosphorylation mediates SUMOylation is that Ubc9, which has a 

cognate basic patch, is recruited to the close by SUMOylation motif by the phosphate 

group negative charge (Hietakangas et al., 2006; Mohideen et al., 2009). And although 

phosphorylation facilitates SUMOylation, it is not the only mechanism through which 

SUMOylation can occur (Konopacki et al., 2011). This was evident by detecting some 

SUMOylation in the GluK2 WT and phospho-null mutants (S846A and 868A) 

(Konopacki et al., 2011).  

 

5.4.2 Palmitoylation-dependent reduced GluK2 cell surface expression in 

dendrites 

In this study, we found that the non-palmitoylated GluK2 has lower dendritic 

surface expression compared to the normal situation under basal conditions. This may 

suggest that palmitoylated forms are mainly expressed at the cell surface as palmitate 

attachment enhances cell membrane and 4.1N protein interactions. Hence, the reduced 

surface expression when the receptor cannot be palmitoylated. Moreover, the effect 

of GluK2 non-palmitoylation on dendritic surface expression is similar to the effect 

of kainate on the WT, an observation that may suggest a possible involvement of this 

post-translational modification in activity-dependent regulation of receptor surface 

expression especially in the light of our new finding linking palmitoylation to 

SUMOylation which is also activity-dependent. Notably in the WT condition, not only 

the surface but also the total GluK2 expression is reduced upon kainate stimulation 
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which suggest that the main reduction of the surface expressed receptors is due to 

degradation. 

  Neuronal activity dynamics regulate the addition and removal of palmitate from 

various neuronal proteins (Kang et al., 2008) leading to differential subcellular 

localisation and protein-protein interactions (Noritake et al., 2009). The pamitoyl 

acyltransferase protein family includes 23 members containing the conserved catalytic 

motif “Aspartate-Histidine-Histidine-Cysteine” within a zinc finger-like domain 

(zDHHC) (Globa and Bamji, 2017). Synaptic activity regulates protein palmitoylation by 

modulating the trafficking of the palmitoyl acyltransferase enzymes and their subcellular 

localisation, their interactions with other proteins, and their post-translational 

modifications (Globa and Bamji, 2017). As an example, synaptic activity leads to the 

internalisation of zDHHC5, one of the 23 isoforms, from dendritic spines to shafts to 

palmitate the soluble protein δ-catenin which is abundant in dendritic shafts (Brigidi et 

al., 2014; Brigidi et al., 2015). Then, the palmitoylated δ-catenin is recruited to 

postsynaptic spines to stabilise AMPARs, thus contributing to synaptic connections 

strengthening. Moreover, the palmitoyl acyltransferase zDHHC2 is recruited to 

postsynaptic density after prolonged TTX treatment (activity-dependent movement from 

shafts to spines after activity blockade) to palmitate PSD-95. Hence, increasing AMPARs 

clustering at synapses (Noritake et al., 2009). Likewise, the palmitoylation of the AMPAR 

auxiliary subunit synapse differentiation-induced gene 1 (SynDIG1), which enhances 

AMPARs localisation at synapses (Kalashnikova et al., 2010), is enhanced by TTX-

mediated block of synaptic activity (Kaur et al., 2016). This recruits SynDIG1 to 

postsynaptic spines and increases its stability and clustering at spines (Kaur et al., 2016) 

which may result as well in increasing postsynaptic AMPARs adding to homeostatic 

plasticity (Globa and Bamji, 2017).  

Some of the palmitoyl acyltransferases are expressed throughout the brain but others 

show a distinct specific expression pattern like zDHHC2 and zDHHC7, which are highly 

expressed in the CA1 hippocampal pyramidal neurons (Zhang et al., 2014) and they 

localise to the dendrites (Woolfrey et al., 2015) and somatic Golgi (Thomas et al., 2012), 

respectively. Taking this into consideration and that the properties of hippocampal 

cultured neurons are similar to CA1 pyramidal cells (Martin and Henley, 2004), could 

zDHHC2 and zDHHC7 have a prominent role in the dynamic process of GluK2 

palmitoylation to regulate its subcellular localisation in response to synaptic stimulation? 
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Importantly, although the specific zDHHC isoforms responsible for palmitoylating 

GluK2 have not been identied yet, Copits and Swanson (2013) have demonstrated a 

prominent increase in GluK2 palmitoylation in a [3H]-palmitate metabolic labelling 

assay upon treating cells with zDHHC2, 3 and 7. Here, we found that the surface 

expression of the dendritic non-palmitoylated GluK2 was reduced similar to that of 

WT GluK2 in response to 20 minutes of kainate stimulation. This may suggest that 

changes in palmitoylation dynamics may be responsible for the agonist-induced 

internalisation of KARs.  However, the somatic surface expression reduction in the 

non-palmitoylated form and upon 20 minutes of kainate stimulation was not 

significant. Rapid change in the palmitoylation status of a protein is likely mediated 

upon synaptic activity to regulate local subcellular protein localisation (Brigidi et al., 

2014; Brigidi et al., 2015; Woolfrey et al., 2015; Thomas et al., 2012; El-Husseini et 

al., 2002). Apparently, the palmitoylation/depalmitoylation machinery responsible for 

the rapid processes would be in close proximity to their target proteins (Globa and 

Bamji, 2017). Thus, our significant findings of reduced dendritic surface GluK2 upon 

kainate stimulation may indicate a rapid response of internalising specific 

transmembrane palmitoyl acyltransferase like zDHHC2 leading to preventing the 

dynamic palmitoylation of cell membrane GluK2 or interacting proteins like PSD-95 

and making them more susceptible to depalmitoylation. However, a slower change in 

protein palmitoylation happens for long-term static cellular events like targeting 

substrates to the cell membrane (Kang et al., 2004) using machinery in somatic Golgi 

(Kang et al., 2004; Ponimaskin et al., 2008; Lievens et al., 2016; Greaves et al., 2010). 

This may explain why the somatic surface expression of GluK2 was not significantly 

altered by kainate as enzymes mainly localised in somatic Golgi (like zDHHC3 and 

zDHHC7) might not be affected by the synaptic activity and that trafficking from the 

somatic Golgi to the cell membrane occurs within 20 minutes.  

Activity-induced changes in the palmitoylation state of many receptors 

(Dopamine, β2-adrenergic, transferrin) have been identified previously (Ng et al., 

1994; O’Dowd et al., 1989; Alvarez et al., 1990). However, this was not the same for 

KARs, in particular GluK2 overexpressed by baculovirus in Spodoptera frugiperda 

(Sf9) insect cells (Pickering et al., 1995). The activity-induced palmitate turnover 

(identified during the last 5 and 30 minutes of the 4-hours [3H]-palmitate metabolic 

labelling assay in the presence of 100 µM kainate) was similar to the non-stimulated 
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cells. An interesting question arises from the used model in this study; can Sf9 cells 

efficiently palmitate/depalmitate recombinant proteins? In this study two cell types were 

used to overexpress GluK2 (Sf9 infected with baculovirus or transfected HEK293 cells). 

As indicated from Pickering et al. (1995) findings, uninfected Sf9 cells with baculovirus 

have very low levels of palmitoylated proteins compared to un-transfected HEK293 cells 

total lysate in a metabolic labelling assay. Based on this observation, to which degree the 

palmitoylation/depalmitoylation machinery in Sf9 cells is adequate for a palmitate 

turnover in response to agonist stimulation? Another important consideration regarding 

Pickering et al. finding of absent activity-induced changes in GluK2 palmitoylation state 

is whether the specificity of the palmitoylation turnover machinery exists for both 

cysteine residues or one or for none of them. The process of the palmitoylation 

modification in Sf9 cells could resemble that of SUMOylation in Sf9 cells as these cells 

have SUMOylation machinery that fail to alter recombinant proteins expressed by 

baculoviruses infection (Langereis et al., 2007).  

It is worthy to note that the statistically significant result obtained for the proportion 

of the surface expressed GluK2 (lower in the non-palmitoylated form compared to the 

WT) in our study is a result of three independent experiments. This is not powerful 

enough to assure that the “normal distribution of data” assumption in the applied 

parametric statistical test (Two-way ANOVA) has been met. Thus, the significant 

statistical result cannot be considered robust. In addition, a counterpart non-parametric 

test (to account for the possible non normality of data) is useless to perform in the case of 

an “n” less than 6 as it will never reach the 5% statistical significance.  

So far, there is a large diversity of proteins that can be palmitoylated by a large family 

of palmitoyl acyltransferases. The specific characteristics of these enzymes are not fully 

defined and the specific enzymes that are responsible for palmitoylating and 

depalmitoylating the GluK2 subunit are still unknown. Identifying them and their 

contribution to activity-induced changes in the palmitoyltion dynamics of GluK2 and 

probably other related interacting proteins are key determinants to understand the 

molecular mechanisms that regulate these processes and identify potential targets for 

therapeutic interventions.  
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5.4.3 Optimising the ABE assay 

The ABE assay (Brigidi and Bamji, 2013; Shipston, 2011) was used to detect the 

thioester bond as an indication of protein S-linked acylation (fatty acid bound to 

cysteine’s thiol group via a thioester bound). Thus, it detects all S-acylations in 

proteins (Sobocinske et al., 2018). S-acylation is usually referred to S-palmitoylation 

because palmitate is the most common fatty acid in S-acylated proteins (palmitoleate, 

stearate, and oleate) (Tabaczar et al., 2017). In the ABE protocol, NEM is used to 

irreversibly block all reactive cysteines (and leaving palmitoylated cysteines), thus 

avoiding any false positive labelling. The Hydroxylamine (at neutral pH) cleaves the 

thioester bond between the cysteine and palmitoyl, and the newly formed free cysteine 

thiol will be reactive to a sulfhydryl-reactive biotinylation reagent (Biotin-BMCC). 

Thus, S-palmitoylation of proteins is specifically marked with biotin for identification.  

Other less frequent types of palmitoylation like N-linked (palmitate attached to the 

glycine, cysteine, or lysine amine group) or O-linked (palmitate attached to the serine 

or threonine hydroxyl group) palmitoylation are distinguishable by the ABE assay 

because they are insensitive to the hydroxylamine cleavage (Sobocinska et al., 2018; 

Shipston, 2011). 

Here, the very weak signal in the hydroxylamine-treated WT GluK2 may indicate 

the palmitoylated form especially that it was absent from the untreated WT and the 

non-palmitoylated samples. This may also indicate that the palmitoylated form of 

GluK2 is very little as this weak potential signal was identified only after pooling the 

amount of protein from 5 wells of a 6-well dish (instead of 3 wells). In addition, the 

turnover of palmitoylated GluK2 might be very rapid in which the thioester bond is 

lost early (before the hydroxylamine step) during the lengthy ABE assay contributing 

to the low levels. The non-specific bands observed in the immunoprecipitate could be 

due to other forms of S-acylation for proteins that are more abundant than GluK2 as 

the detection in this method depends on the sensitivity of the thioester bond in general 

and not specifically to S-palmitoylation. However, these bands were detected in all 

conditions (strongly in the hydroxylamine-treated WT sample and to a lesser extent 

in the other conditions). This could be a result of the used biotin-BMCC concentration 

which might be high enough to cause non-specific binding.  
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Other research groups were able clearly and specifically to detect the palmitoylated 

form of recombinant GluK2 in heterologous cells (Pickering et al., 1995; Copits and 

Swanson, 2013). Both have detected palmitoylated GluK2 by using [3H]-palmitate in a 

metabolic labelling assay. This is a very sensitive assay which allow better detection of 

low amounts and of just palmitoylated proteins compared to the ABE method.  

 

5.5 Conclusions and future work 

In conclusion, this is the first finding of linking GluK2 palmitoylation state to its 

SUMOylation levels. The significance of this observation, if confirmed, augmented and 

further extended by the future work, will shed a light on new molecular mechanisms to 

regulate KARs trafficking and expression in response to neuronal activity. This means 

modulating new pathways to control neuronal excitability to prevent and treat 

hyperexcitable conditions. 

To extend these findings, the following steps are recommended for future studies:  

1. Overexpressing the complete set of mutated GluK2 proteins (in particular the 

C858A, C871A + K886R and C858A, 871A + S846A, S868A) to study the 

interplay between all three post-translational modifications (palmitoylation, 

phosphorylation and SUMOylation). 

2. Using sindbis virus overexpression system, GluK2 phosphorylation then 

SUMOylation, and surface expression should be identified under basal and 

agonist-stimulated conditions in neurons (via GFP-trap and cell surface 

biotinylaition assays).  

3. Antibody feeding assay should be applied to monitor GluK2 internalisation in 

response to agonist stimulation of the various mutated GluK2 proteins.  

4. Identifying the palmitoylated form of GluK2 as discussed for the ABE and mass-

spec methods. 
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We started this research project with three main aims. (i) To identify the regional 

expression profile of Neto subunit proteins during rat brain development and correlate 

changes to pore-forming KAR subunits. (ii) To establish TLE-related changes in 

iGluR subunits using a novel rat model. (iii) To establish the effect of GluK2 non-

palmitoylation on KAR SUMOylation and surface expression. Our findings have 

highlighted some aspects of the interplay between KARs and their auxiliary subunits. 

In addition, they shed light on a new potential downstream mechanism 

(depalmitoylation of GluK2) for kainate-induced long-term depression. 

 

6.1 Putative effects of Neto proteins on KARs 

Neto proteins have a characteristic developmental expression profile. The 

expression patterns of the two Neto isoforms show distinct distributions with marked 

spatial- and temporal stage-specific differences in their expression. In addition, they 

also have an overlapping protein distribution profile. However, the precise 

stoichiometry of Neto2 and Neto1 proteins associated with KARs has not been 

identified making their overlapping expression a possibility for the assembly of both 

Neto proteins with the same KAR in the same brain region. Furthermore, in a study 

of the modulatory effects of Neto proteins on KAR function, the ratio of KAR:Neto 

transfected DNA plasmids had an increased effect when the ratio changed from 1:2 to 

1:4 (Fisher and Mott, 2012) suggesting the possibility of different effects according 

to different stoichiometry. This has also proved to be true for the close related 

AMPAR/TARP complexes (Introduction, section 1.2.1.1.).  

One of the explanations of KAR currents continue after agonist removal (rebound 

currents) is that the agonist is released from the low-affinity sites first but is still bound 

to the high-affinity sites leading to an activated and non-desensitised receptor (Mott 

et al., 2010). These low- and high-affinity sites can be the result of either different 

subunits combinations or association with Neto proteins (Mott et al., 2010). This 

means that Neto proteins may contribute to different activation and deactivation 

profiles through increased agonist sensitivity and affinity. This is further supported by 

the functional properties of homomeric GluK1 and GluK2 KARs that are similar when 

Neto proteins are absent and demonstrate a low glutamate sensitivity and rapid and 

complete desensitisation with a slow recovery (Sommer et al., 1992; Heckmann et al., 
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1996; Paternain et al., 1998; Fisher and Fisher, 2014). This may be important in case of 

low ambient glutamate concentration (as for extrasynaptic receptors), where the 

association with Neto proteins increases KAR’s agonist affinity and slows their 

desensitisation rate (Perrais et al., 2009). 

Furthermore, in the initial work done to examine the distribution of KARs based on 

high-affinity kainate binding sites distribution and identifying their KD for kainate (Miller 

et al., 1990; Coyle, 1983; Hampson et al., 1987; Bettler et al., 1992; Herb et al., 1992), 

there was a big discrepancy between the observed KD (in general < 10 nM in the postnatal 

and adult time points) and the expected KD (based on the predicted KAR subtype in each 

examined brain region depending on the mRNA distribution of subunits, usually > 50 nM 

as low-affinity subunits are incorporated). For example, in hippocampal CA3 region the 

expected KD for kainate would be between 50 and 100 nM based on the expressed 

subunits mRNA in this region (GluK2, GluK5). However, the observed KD was 7.8 nM 

at P14 and 5.8 nM in the adult brain (Miller et al., 1990). These observations could be 

explained by the modulating effects of Neto proteins, which were not discovered at that 

time, on KARs.  

The metabotropic signalling pathway of low-affinity subunits KAR, independently of 

their ionotropic function, is suggested to enhance the developmental outgrowth of neurite 

(Valbuena and Lerma, 2016). In the early developmental stages, KARs are mainly formed 

from low-affinity subunits [this is also supported by Dr. Ik-Hyun Cho’s findings (Figure 

3.9) of low- and high-affinity KAR subunit protein expression during development] and 

as the expression of high-affinity subunits (GluK4 and GluK5) increases with 

development KARs become heterotetramer of low- and high-affinity subunits (Fernandes 

et al., 2009). This renders the receptor to have strong ionotropic function (high channel 

conductance and delayed desensitisation onset) relative to early developmental stages 

when the receptors have low sensitivity to glutamate and channel conductance, fast 

desensitisation, and slow desensitisation recovery (Fisher and Mott, 2011; Paternain et 

al., 1998; Barberis et al., 2008). Thus, no further neurite outgrowth (Joseph et al., 2011; 

Ibarretxe et al., 2007; Tashiro et al., 2003) compared to early developmental stages as 

KARs signalling cascade switches from metabotropic to ionotropic (Marques et al., 

2013). This may suggest that when Neto proteins interact with KARs (i.e. changing the 

receptor activation kinetics); they can control KARs signalling pathway (metabotropic vs 

ionotropic). 
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The differential variation in Neto and KAR subunits distribution in the different 

brain regions during rat brain development might reflect the various maturation 

profiles. Periods of increased plasticity could be due to transient increase in the 

expression of iGluR subunits (Arai et al., 1997), similar to the one that was observed 

for Neto2 at P14 and GluK1 at P28 (see section 3.3.3.2.1/Figure 3.8 and section 

3.3.3.3/Figure 3.9, respectively). The change in the subunit protein expression 

(qualitative or quantitative) during development may reflect a change in the receptor 

complex subunit composition leading to different functional properties (Ritter et al., 

2002), similar to the decline in Neto2 expression following birth in hippocampal CA 

regions and a parallel increase of Neto1 in the same region at the same time (see Figure 

3.8). In addition, this may also suggest different functional properties arising from the 

various possible stoichiometry although the applied experimental method (histoblot 

technique) does not provide direct information about stoichiometry, assembly, or 

subunit composition of KARs. The decline seen in the expression of Neto2 and GluK1 

during development may result from either gene downregulation or the death of their 

expressing cells due to KAR excitotoxic effects (Bahn et al., 1994). A similar 

circumstance of excitotoxic cell death was observed when GluK2 subunit was 

overexpressed in hippocampal CA3 neurons (Bergold et al., 1993).  

KARs are expressed in hippocampal pyramidal cells and interneurons. However, 

activation of the network-wide KARs results in the prominent feature of increasing 

inhibitory drive onto hippocampal principle cells by the local interneuronal circuits 

(Christensen et al., 2004; Cossart et al., 1998; Cossart et al., 2001; Fisahn et al., 2004; 

Frerking et al., 1999; Jiang et al., 2001; Maingret et al., 2005; Mulle et al., 2000; 

Semyanov and Kullmann, 2001; Wondolowski and Frerking, 2009). The majority of 

hippocampal interneurons consists of different groups of GABAergic interneurons 

that regulate inhibitory transmission. All of these express GluK1, GluK2, GluK5, 

Neto1, and Neto2 (Wyeth et al., 2017). Because KARs are modulators of synaptic 

transmission, they are considered attractive therapeutic targets to control neuronal 

excitability without disrupting the ongoing synaptic transmission (Contractor et al., 

2011; Jane et al., 2009). Thus, interneuronal KARs are suggested to be important 

targets (neuronal circuit’s control key) in excitation/inhibition imbalance disorders 

(Christensen et al., 2004; Frerking and Nicoll, 2000; Khalilov et al., 2002).  
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6.2 The role of Neto2 in inhibitory neurotransmission 

The main inhibitory neurotransmitter in the mature CNS is γ-amino-butyric acid 

(GABA). However, during the early postnatal period GABAergic neurotransmission is 

excitatory (Khazipov et al., 1997; Mueller et al., 1984; Reichling et al., 1994; Wang et 

al., 1994; Leinekugel et al., 1995; Yuste and Katz, 1991; Chen et al., 1996; Owens et al., 

1996; Luhmann and Prince, 1991; Obrietan and van den Pol, 1995). GABAergic 

excitation (depolarization) versus GABAergic inhibition (hyperpolarization) is controlled 

by the electrochemical gradient of chloride ions (Cl-) which are the main conductors of 

GABAA receptors. The chloride electrochemical gradient determines GABAergic 

currents reversal potential (EGABA
2).  During development, there is a shift in EGABA to a 

hyperpolarised potential leading to the GABAergic transmission switch. This change in 

EGABA happens because of the developmental intracellular Cl- concentration ([Cl-]i) 

reduction (Chen et al., 1996; Cherubini et al., 1990; Owens et al., 1996; Luhmann and 

Prince, 1991). Notably, this coincides with an increase in the mRNA expression of the 

neuronal potassium-coupled chloride co-transporter 2 (KCC2) (Lu et al., 1999; Rivera et 

al., 1999; Vu et al., 2000), which increases Cl- extrusion and reduces [Cl-]i (Jarolimek et 

al., 1999; Rivera et al., 1999; Kakazu et al., 1999).  

The developmental shifts in chloride homeostasis (from high to low [Cl-]i) is regulated 

by the upregulation in KCC2 expression (Watanabe and Fukuda, 2015; Ludwig et al., 

2003). Generally, the maturation schedule for neurogenesis shows a sequential pattern in 

which earlier brain structures develop mature chloride haemostasis in advance of later 

structures (Watanabe and Fukuda, 2015). The earliest strong upregulation of KCC2 

expression occurs at P15 in the rat neocortex, pyramidal cells of hippocampal CA regions, 

and the DG granular cell layers and continues toward adulthood (Watanabe and Fukuda, 

2015). This timing parallels the same duration when Neto2 subunit protein expression 

peaks in the developing brain (my finding/Figure 3.8). It was demonstrated that Neto2 

associates with KCC2 (Ivakine et al., 2013) to maintain its normal activity, thus maintain 

synaptic inhibition. Loss of Neto2 causes reduction in the abundance of KCC2, its 

phosphorylated levels and its Cl- extrusion efficacy, and subsequently depolarise EGABA 

in neurons (Ivakine et al., 2013; Mahadevan et al., 2015). In addition, absence of Neto2 

has led to a reduction in the latency of seizure induction, an increase in seizure severity, 

 
2 EGABA: the membrane potential that GABAergic currents change their direction at. 
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a reduction in hippocampal CA1 GABAergic transmission (spontaneous inhibitory 

postsynaptic currents), and a depolarised hippocampal CA1 EGABA in mice 

(Mahadevan et al., 2015). All of this may indicate the possibility of reduced GABA 

release from presynaptic terminals due to loss of presynaptic interneuron GluK1 

regulation by Neto2 (Mahadevan et al., 2015, Copits et al., 2011). 

 Moreover, KCC2 is localised at excitatory synapses where it is regulated by 

proteins of excitatory synaptic transmission (Pressey et al., 2017). GluK2 individually 

and in synergy with Neto2 increases KCC2 surface expression and PKC-dependent 

phosphorylation of GluK2 at S844 and S868 also enhances this effect further (Pressey 

et al., 2017). Thus, mechanism of synaptic inhibition and excitation acts in concert.  

Decreased KCC2 levels and function leading to impaired synaptic inhibition is 

implicated in many neurological conditions as chronic pain, spasticity, and epileptic 

seizures (Coull et al., 2003; Huberfeld et al., 2007; Boulenguez et al., 2010; Puskarjov 

et al., 2012; Gagnon et al., 2013). However, it is noteworthy to highlight the role of 

NKCC1 (Na+-K+-2Cl- cotransporter 1), which generally show an opposite expression 

pattern to KCC2 (highly expressed in the embryonic and first few days after birth) in 

maintaining a high [Cl-]i in the immature CNS. The differential expression of KCC2 

and NKCC1 regulates the chloride haemostasis ontogeny. During rat P6-12, [Cl-]i is 

high and GABA is excitatory while at P21-23 there is low [Cl-]i and GABA is 

inhibitory (Li and Xu, 2008). Notably, recurrent epileptic seizures increase NKCC1 

activity and internalises KCC2, thus, increasing chloride concentration intracellularly 

(Ben-Ari et al., 2007). Furthermore, many observations indicate that epileptic seizures 

inhibit the shift in GABAergic transmission from excitation to inhibition (Khalilov et 

al., 2003; Khazipov et al., 2004; Cohen et al., 2002). In the pilocarpine-induced 

temporal lobe epilepsy, the rat hippocampal protein expression of NKCC1 was 

increased (Eftekhari et al., 2014) promoting a depolarising GABAergic neuronal 

transmission. 

Furthermore, KCC2 has an important role, apart from its chloride conductance 

activity, in promoting the maturation of cortical neuros, dendritic spines, and 

excitatory synapses (Li et al., 2007). In addition, the developmental upregulation of 

KCC2 parallels spinogenesis (Rivera et al., 1999; Yuste and Bonhoeffer, 2004). This 

regulation of neuronal maturation processes by KCC2 is done through its interaction 

with the cytoskeleton-associated protein 4.1N (Li et al., 2007). Thus, there is a good 



          Chapter 6 – General discussion                                                                                  195 

 

 

correlation between KCC2 and 4.1N expressions and the excitatory synapses maturation 

(Ludwig et al., 2003; Walensky et al., 1999). Moreover, there is a role for 4.1N in the 

plasma membrane stabilisation of KCC2 (Medina et al., 2014) as disrupting their 

interaction leads to KCC2 lateral diffusion from excitatory synapses (Chamma et al., 

2013). Taken together, proteins of excitatory and inhibitory neurotransmission are closely 

interconnected to keep the balance between excitation and inhibition in physiological 

conditions. 

 

6.3 iGluRs in hyperexcitable conditions 

Induction of seizures appears to involve a structural network of many brain regions 

including the hippocampus (Spencer and Spencer, 1994; Bragin et al., 2000; Bartolomei 

et al., 2008; Fabo et al., 2008). In addition, the site of seizure onset in patients (Lieb et 

al., 1976; Spencer et al., 1990; Spencer and Spencer, 1994; Spencer, 1998, 2002) and 

rodent models (Bertram, 1997; Bertram et al., 2001; Levesque et al., 2012) of TLE varies 

from one seizure to another. Moreover, epileptic activity can be driven from afferent 

inputs and also generated intrinsically (Fujita et al., 2014) by neuronal circuits of recurrent 

activities that are utilised for pathological synchronisation and seizure propagation 

(Vismer et al., 2015). Hence, the bidirectional communication (reciprocal) between the 

entorhinal cortex and hippocampus amplifies neuronal signals and propagates seizures 

(Vismer et al., 2015). The entorhinal cortex is a gate for neuronal inputs to the structures 

in the temporal lobe (Vismer et al., 2015) and it is a key brain region for TLE development 

(Beed et al., 2009). In particular, the medial entorhinal cortex, is one of the first brain 

areas to show severe neuronal death following epilepsy development (Beed et al., 2009). 

Cell loss and region atrophy of the entorhinal cortex enhances the propagation of seizures 

discharges. And so, the balance between neuronal excitation and inhibition maybe shifted 

by neuronal cell loss, inflammation, and changes in gene expression (Vismer et al., 2015). 

The presence of GluA2 subunit, which is nearly all Q/R edited in the mature brain 

(Michaelis, 1998; Molnar and Isaac, 2002), protects from Ca2+ toxicity and 

hyperexcitation of neurons (Borbely et al., 2015). In addition, its downregulation 

enhances Ca2+ influx (increases GluA1/GluA2 ratio), thus, could contribute to 

neurodegeneration (Pellegrini-Giampietro et al., 1997). In kainate- and pilocarpine-

induced epileptic seizures, GluA2 expression was down regulated in hippocampal CA3 
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region (Friedman et al., 1994; Friedman and Veliskova, 1998; Lason et al., 1997b; 

Rajasekaran et al., 2012) leading to enhancement of AMPAR Ca2+ permeability 

(Rajasekaran et al., 2012). 

Similarly, interfering with GluK2 Q/R editing process (more Ca2+-permeable 

receptors) demonstrated long-term potentiation at contacts of the entorhinal cortex-

dentate gyrus and lowered the threshold to seizures (Vissel et al., 2001). GluK2 

(mostly Q/R edited) is responsible for the KAR current of medial entorhinal cortex 

pyramidal neurons generated after kainate stimulation in the presence of AMPAR 

antagonist (GYKI 53655) (Beed et al., 2009). This indicates the importance of 

up/down regulation of the edited/unedited GluK2-containing KARs, which represent 

80% and 20%, respectively, in the adult brain (Seeburg et al., 1998; Seeburg and 

Hartner, 2003; Sprengel et al., 1998), in regulating hyperexcitability (Beed et al., 

2009). 

Mechanisms of neuroprotection or neuronal cell loss and degradation could be 

developed and initiated following brain hyperexcitability (Vilagi et al., 2009). 

AMPARs undergo internalisation as a neuroprotection mechanism following strong 

activation and the release of high amount of glutamate during seizures (Vilagi et al., 

2009). Synaptic adaptation and reorganisation as processes of neuroprotection were 

also showed by a reduction in somatosensory cortex general excitability and AMPAR 

and NMDAR subunits rearrangements following repeated seizures induced by 4-

aminopyridine (Vilagi et al., 2009). However, in the hippocampus, acute seizures 

induced by repeated doses of 4-aminopyridine led to an increase in GluA1 and a 

reduction in GluA2 expressions in CA1 and dentate gyrus regions alongside an 

increase in neuronal Ca2+ influx in these two hippocampal regions (Borbely et al., 

2009). This suggests a shift toward the formation of GluA2-lacking Ca2+-permeable 

AMPARs after acute seizures (Borbely et al., 2009). In addition, the use of GYKI 

52466 AMPAR antagonist demonstrated reduced sensitivity (less effective compared 

to control animals) as this drug shows more potency toward GluA2-containing 

AMPARs compared with GluA1 homomeric receptors (Johansen et al., 1995; 

Bleakman et al., 1996). Furthermore, GluA2 expression was reduced in the entorhinal 

cortex following 4-aminopyridine-induced seizures (Borbely et al., 2015), which 

again suggests a favourable increase in forming Ca2+-permeable receptors and hyper-

excitability. 
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Developmental processes like synaptogenesis and neuronal networks maturation are 

dependent on neuronal activity, which is characterised by excitatory neurotransmission 

outweighing inhibitory neurotransmission in the immature brain. This state of 

hyperexcitability has a distinct expression profile of neurotransmitter receptor subunits. 

In addition, this profile is recapitulated in other hyperexcitability states like epilepsy 

(Rakhade and Jensen, 2009; Sanchez and Jensen, 2001). From the proteins that have been 

shown to have similar expression profile in the immature brain and epileptic conditions 

are AMPARs, NMDARs, NKCC1 and KCC2. The expression ratios of GluA1/GluA2, 

GluN2B/GluN2A, and NKCC1/KCC2 are increased to facilitate developmental processes 

and the hyperexcitation state (Brooks-Kayal and Pritchett, 1993; Kumar et al., 2002, 

Monyer et al., 1994; Talos et al., 2006a; Talos et al., 2006b; Wong et al., 2002; Dunning 

et al., 1999). Thus, the subunit composition of iGluRs affects the neuronal network 

synaptic efficacy and seizure susceptibility (Jane et al., 2009).  

 

6.4 Auxiliary subunits as potential therapeutic targets in epilepsy 

As an example of a brain region-specific pharmacological targeting through 

neurotransmitter auxiliary subunits that have distinct expression profile is AMPAR-

TARP-γ-8 complex (Maher et al., 2016; Kato et al., 2016). The auxiliary subunit of 

AMPAR TARP-γ-8, which is particularly expressed in the hippocampus to coordinate 

AMPARs pharmacology, gating, and trafficking (Straub and Tomita, 2012; Tomita et al., 

2003), regulates hippocampal AMPAR effects of kainate-induced neurotoxicity (Tomita 

et al., 2007). Two unique amino acid residues in γ-8 contribute to the selectivity of two 

AMPAR antagonists [JNJ-55511118 (Maher et al., 2016) and LY3130481 (Kato et al., 

2016)] to receptors associated with γ-8 but no other subtypes of TARPs. These compounds 

demonstrated antiepileptic activity in rodents (Maher et al., 2016; Kato et al., 2016). 

Another example of the functional regulatory effects of iGluR auxiliary subunits on 

their associated receptors is demonstrated in that a gene mutation in the AMPAR auxiliary 

subunit stargazing (TARP-γ-2), leads to a reduction in AMPARs in inhibitory neurons 

(Menuz and Nicoll, 2008) and the generation of seizures similar to human absence 

epilepsy (Rogawski, 2013). Thus, disinhibition of neuronal networks could be caused by 

reducing the function/expression of iGluRs in inhibitory interneurons through the specific 

targeting of the receptors’ auxiliary subunits. 
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6.5 Palmitoylation as a potential therapeutic approach for 

hyperexcitable conditions 

Our finding of the crosstalk between GluK2 palmitoylation and SUMOylation and 

its resemblance of the activity-dependent effect is tempting to speculate that by 

interfering with this series of post-translational modifications, one could control the 

function of GluK2 in conditions of hyperexcitability like epilepsy. This could be 

achieved by fine-tuning excitation/inhibition balance since enhancement of GluK2-

containing KARs SUMOylation leads to their reduced surface expression, which may 

contribute to reducing neuronal excitability in epilepsy (Martin et al., 2007). 

The surface delivery of iGluRs is important for their normal synaptic functioning 

as well as impacting their pathological roles (Sohn and Park, 2019). For example, 

GluA1 palmitoylation-deficient mice (C811S) (Itoh et al., 2018) demonstrated an 

increase in seizure susceptibility, an increase in GluA1 phosphorylation (S831), and 

an upregulation of GluA1 expression. This indicates that AMPAR palmitoylation, 

which is a key modification to regulate AMPAR trafficking to and from postsynaptic 

sites, is implicated in hyperexcitable conditions and the excitation/inhibition 

imbalance and suggest that GluA1 depalmitoylation leads to hyperexcitability and 

epileptic seizures (Itoh et al., 2018). Furthermore, the efficacy of the clinically used 

anticonvulsants was reduced in the GluA1 palmitoylation-deficient animals following 

induction of seizures (Itoh et al., 2018). These findings are consistent with the 

previously described (see section 5.4.1) relationship between GluA1 C811 

palmitoylation residue and 4.1N protein. This is the second cysteine (C811) residue 

that is located in the plasma membrane proximal domain of GluA1 C-terminus. It 

regulates activity-dependent endocytosis and its palmitoylation inhibits GluA1 

association with 4.1N protein (Hayashi et al., 2005).  These findings also confirm the 

reciprocal relationship between palmitoylation and phosphorylation as GluA1 

phosphorylation (S831) increased in the GluA1 palmitoylation-deficient mice 

(C811S) (Itoh et al., 2018).  

In addition, the post-translational modification phosphorylation of two serine 

residues (S831 and S845) in GluA1 was enhanced in neonatal seizures and seizures 

in immature rats (Rakhade et al., 2012) leading to enhanced AMPAR activity. 

However, blocking this phosphorylation (transgenic mice at GluA1 S831 and S845 to 
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S831A and S845A) led to preventing seizures in later life suggesting a role of GluA1-

AMPARs phosphorylation in the neuronal hyper-excitable state in later life (Hanada, 

2014). 

 In another recent study, palmitoyl transferase (zDHHC8) expression was increased 

in the brains of TLE patients and chronic animal models of epilepsy (kainate and 

pilocarpine; Yang et al., 2018). In addition, absence of zDHHC8 delayed and reduced 

spontaneous recurrent seizures in in vivo kainate and pilocarpine models, decreased 

epileptiform-like discharges in an in vitro model of seizures, and decreased GluA1 

expression (Yang et al., 2018). The zDHHC8 overexpression resulted in increased 

spontaneous recurrent seizures, ictal-like discharges, and GluA1 expression. In the 

zDHHC8 knocked down mice, GluA1 expression was reduced at the cell surface and 

increased intracellularly which suggest zDHHC8 regulates the trafficking of GluA1 to 

the postsynaptic membrane resulting in hyperexcitation and seizure generation (Yang et 

al., 2018).  

 AMPAR palmitoylation is one of the mechanisms that dynamically regulate the 

receptor trafficking to the plasma membrane for its synaptic functioning (Sohn and Park, 

2019). Therefore, unmasking how iGluRs trafficking is regulated by specific 

palmitoylating and depalmitoylating enzymes in physiological and pathological 

conditions may help in the pharmacological targeting of specific pathways related to 

neurological disorders.  

There are still many uncertainties, when it comes to protein palmitoylation, which 

need to be resolved in future studies: 

1. Whether palmitoyl transferases are specific for an amino acid sequence, the 

position of cysteine residues (spacing between cysteines and nearby amino acid 

residues), a specific subcellular substrate location, or acylation like myristoylation 

or prenylation near the cysteine residue to be palmitoylated (how palmitoyl 

transferases recognise their substrate). 

2. The exact subcellular localisation of the enzyme machinery (palmitoyl transferases 

and thioesterases) responsible for the dynamic modification of protein 

palmitoylation and, their relationships in terms of their temporal activity. 
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3. The variable effects of attaching one or two palmitates, or one plus another lipid 

(dual lipidation or multiple palmitate/lipids) to a substrate on its membrane 

stability. 

4. The possibility of a preferential selection by the palmitoylation machinery for 

efficient versus inefficient palmitoylation (close proximity to the transmembrane 

domain, other lipid modification, or hydrophobic residues).  

5. The presence of potential multiple mechanisms for regulating zDHHC activity like 

having potential sites for post-translational modification (phosphorylation, 

palmitoylation) and/or protein interaction domains.   
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8.1 Roles of Neto subunit proteins in agonist-induced internalisation 

and stability of GluK2/3-containing KARs 

 

8.1.1 Background 

To extend our research group’s unpublished study (Dr Garry Whitehead findings), we 

investigated the effects of Neto proteins on the cell surface stability, internalisation and 

degradation rates of GluK2/3-containg KARs upon kainate stimulation. Dr Whitehead 

found that Neto2 regulates the endocytosis and surface degradation of recombinant GluK2 

receptors in HEK293T cells following kainate stimulation. Co-expression of Neto2, but not 

Neto1, with GluK2 in HEK293T cells led to a significant reduction in GluK2 internalisation 

after 15 and 30 minutes of kainate treatment indicating that Neto2 stabilises cell surface 

GluK2 receptors. Parallel to this reduction in internalised GluK2, there was an increase in 

internalised Neto2 at the same time points. This may suggest that Neto2/GluK2 receptor 

association is altered in an activity-dependent manner favouring their dissociation and 

stabilising the receptor surface expression. In addition, Dr Whitehead also demonstrated 

that co-expression of Neto2 with GluK2 in HEK293T cells increased the half-life of surface 

GluK2 suggesting that Neto2 also stabilises surface GluK2 receptors under basal 

conditions. 

 Taking into consideration that the literature has controversial evidence for the role of 

Neto proteins on KARs’ surface expression and that this effect has not been studied using 

endogenous receptors in active neurons, we hypothesized and aimed the following:  

 

8.1.2 Aims 

Hypothesis: Neto subunit proteins may stabilise neuronal KARs on the cell surface 

and alter their internalisation and degradation rate. 

Aims 

1) To establish the roles of Neto subunit proteins in agonist-mediated 

internalisation of neuronal GluK2/3-containing KARs. 

2) To examine the impact of Neto2 auxiliary subunit protein on the degradation 

rate of GluK2/3-containing KARs in neurons. 
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8.1.3 Results 

8.1.3.1 Role of Neto subunit proteins in agonist-mediated internalisation of 

neuronal GluK2/3-containing KARs. 
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Figure 1. The effect of Neto proteins on kainate-induced internalisation of 

GluK2/3-containing KARs. Cortical neurons at DIV 9-10 were treated with sh-

scrambled, sh-Neto2 or sh-Neto1 lentiviruses. At DIV 14-15, neurons were pre-treated 

with 2 µM TTX (to block neuronal activity) then, with 20 µM kainate for 30 minutes as 

indicated. Cell surface biotinylation (n = 5) was performed to establish the effect of Neto 

proteins on agonist-mediated KAR internalisation. The first two blots and their 

quantification (A, 1 and 2) show the results of two independent experiments where the 

positive controls (internalisation of KARs upon kainate stimulation) worked (see grey 

and blue arrows for surface GluK2/3 expression without and with treatment, 

respectively). However, this positive control in the other next 3 independent experiments 

(B, 3, 4, and 5 blots and next to them their quantification) failed to confirm the 

responsiveness of the neurons. Therefore, the GluK2/3 data could not be combined nor 

could statistical analysis be performed for an ‘n’ of two. Nonetheless, the knockdown of 

Neto subunit proteins was efficient as indicated by the intensity of the bands on the blots 

(A). 
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Figure 2. Effect of Neto proteins on the surface expression of GluK2/3-

containing receptors. The bar graphs combine data from cell surface biotinylation 

experiments without kainate treatment. The ratio of GluK2/3 surface/total expression 

(n = 10) was found to be dependent on Neto1. It was significantly reduced when 

Neto1, but not Neto2, is knocked down compared to the scrambled [(66.5 ± 6.8, p = 

0.002 and 100.4 ± 5.8, p = 0.99) vs sh-scrambled 100.8 ± 5.7, respectively]. Knocking 

down Neto2 (n = 10) significantly reduced its total expression compared to both the 

scrambled (~ 95% Neto2 KD efficiency) and sh-Neto1 [4.1 ± 0.7 vs (161.9 ± 23.5, p 

< 0.001 and 60.2 ± 13.3, p = 0.045), respectively]. There was significant reduction in 

the total Neto2 expression when Neto1 was reduced (60.2 ± 13.3 vs 161.9 ± 23.5, p < 

0.001). In contrast, total Neto1 expression was not affected by knocking down Neto2 

(129.7 ± 7.7 vs 112.4 ± 7.0, p = 0.25). The total Neto1 expression (n = 6) was 

significantly reduced when it was knocked down compared to the scrambled (70% 

Neto1 KD efficiency) and sh-Neto2 [31.0 ± 7.0 vs (129.7 ± 7.7 and 112.4 ± 7.0) 

respectively, both p < 0.001]. One-way ANOVA was used for the statistical analysis 

at a minimum confidence level of p < 0.05 with Tukey post hoc test. Data are 

represented as % of the control. Error bars indicate the standard error (SE). 
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8.1.3.2 The impact Neto2 auxiliary subunit protein on the degradation rate 

of GluK2/3-containing KARs in neurons. 

 

 

Figure 3. The impact of Neto2 subunit protein on the degradation rate of 

GluK2/3-containing KARs. Cortical neurons were treated with one of 2 different 

shRNA lentiviruses (sh-scrambled and sh-Neto2) at DIV 9-10. They were then (at DIV 

14-15) treated with 25 µg/mL cycloheximide and the amount of two proteins (GluK2/3 

and Neto2) was identified at 4 time-points (0, 6, 12 and 24 hours) (A). Pixel intensity 

quantification (arbitrary unit) of the protein bands (B) is shown on the line chart (next to 

it is the chart of the line of best fit). GluK2/3 bands were normalised to their counterpart 

β-actin bands and then to the Zero time-point. Knocking down Neto2 did not change the 

remaining percent of GluK2/3 in any time point compared to the control except at 24 

hours of cycloheximide treatment (B).After 24 hours, the remaining amount of GluK2/3 

was increased by ~ 33% when Neto2 subunit protein was knocked down (50.5 ± 4.6 vs 

76.0 ± 4.0, p = 0.009). Student t-test was used for the statistical analysis (n = 4) at a 

minimum confidence level of p < 0.05. Error bars indicate the standard error. 
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GluK2/3 

Group % of zero time-point ±SE p - value 

6 hours of CHI 

sh-scrambled vs 

sh-Neto2 

85.4 ± 12.7 vs 

94.9 ± 13.8 

0.63 

12 hours of CHI 

sh-scrambled vs 

sh-Neto2 

83.5 ± 3.4 vs 

101.4 ± 12.1 

0.21  

24 hours of CHI 

sh-scrambled vs 

sh-Neto2 

50.5 ± 4.6 vs 

76.0 ± 4.0 

0.009 * 

    Table 1. A summary of the remaining percent of GluK2/3 after 

cycloheximide treatment. The data represent the remaining percent of GluK2/3 from 

the zero time-point of cycloheximide when Neto2 protein was knocked down (sh-

Neto2) compared to the knockdown control (sh-scrambled). The result of GluK2/3 

reduction over time was not statistically significant between the knockdown control 

(sh-scrambled) and sh-Neto2 at each time point except at 24 hours after cycloheximide 

treatment. Removal of Neto2 increases GluK2/3 by ~ 33%. 

 

Condition GluK2/3 t1/2 (hours) 

sh-scrambled 25.5 

sh-Neto2 56.0 

Table 2. An estimation of GluK2/3 half-life. The data represent the calculated 

half-lifeof GluK2/3 under different conditions (sh-scrambled, sh-Neto2). GluK2/3 

half-life (25.5 hr) was doubled (56.0 hrs) in the absence of Neto2 (sh-Neto2) 

indicating that GluK2/3 degradation rate slows down by 2x without Neto2 subunit 

protein.  
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8.1.4 Interpretation 

Evidence from the literature (Martin and Henley, 2004; Martin et al., 2007; Martin et 

al., 2008; Konopacki et al., 2011; Copits and Swanson, 2013) demonstrated that GluK2-

containg KARs are subjected to internalisation upon kainate stimulation. However, this 

positive control failed to confirm the responsiveness of the neurons in our experiments. 

Even the observed reduction (~20%) in the first two experiments (Figure 1A) did not 

reach the ~40% reduction reported in the literature (Martin and Henley, 2004; Martin et 

al., 2007; Martin et al., 2008; Konopacki et al., 2011; Copits and Swanson, 2013). This 

could be due to differences in the sensitivities and/or quality of primary dissociated 

neuronal cultures. While different batches of kainate were used, the pharmacological 

efficacy of this agonist has not been verified in other systems therefore its inactivity 

cannot be ruled out. In addition, the evidence from the literature was obtained from 

recombinant GluK2 expressed in neuronal cultures while in our experiments we 

investigated changes in the level of endogenous GluK2/3 KAR subunits. 

It would be interesting to establish if agonist stimulation can alter the Neto-dependent 

modulatory effects of KARs trafficking in a similar way to TARPs/AMPARs. Following 

glutamate binding to AMPARs, TARPs dissociate from their interacting receptor 

providing a mechanism for the inhibition of excitotoxicity (Tomita et al., 2004; 

Morimoto-Tomita et al., 2009), which could have functional significance. 

 

 

 

 

 

 

 

 

 



 

 

8.2 Mass spectrometry result of WT GluK2 and C858A, C71A 

Description Score Coverage 
# 

Proteins 
MW [kDa] 

GluK2 WT 2818.71 59.97 1 140.3 

Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 - [CLH1_HUMAN] 63.67 20.84 2 191.5 

Albumin (Fragment) OS=Homo sapiens PE=2 SV=1 - [F6KPG5_HUMAN] 53.18 12.65 5 66.5 

Keratin 1 OS=Homo sapiens GN=KRT1 PE=3 SV=1 - [H6VRF8_HUMAN] 50.75 30.28 5 66.0 

Coatomer subunit alpha OS=Homo sapiens GN=COPA PE=1 SV=2 - [COPA_HUMAN] 36.09 14.46 1 138.3 

Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3 - [FAS_HUMAN] 30.81 6.93 1 273.3 

Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 - [K1C10_HUMAN] 23.34 18.15 1 58.8 

Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 - [K1C9_HUMAN] 19.91 16.05 1 62.0 

Clustered mitochondria protein homolog (Fragment) OS=Homo sapiens GN=CLUH PE=1 SV=2 - 

[K7EIG1_HUMAN] 

19.90 10.15 1 140.5 

Bifunctional glutamate/proline--tRNA ligase OS=Homo sapiens GN=EPRS PE=1 SV=5 - [SYEP_HUMAN] 19.77 8.80 1 170.5 

Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2 - [K22E_HUMAN] 16.81 12.21 1 65.4 

Polyubiquitin-C (Fragment) OS=Homo sapiens GN=UBC PE=1 SV=1 - [F5H265_HUMAN] 16.43 63.09 31 16.8 

TBC1 domain family, member 4, isoform CRA_b OS=Homo sapiens GN=TBC1D4 PE=4 SV=1 - 

[A0A024R637_HUMAN] 

12.74 5.62 2 146.5 

Insulin receptor substrate 4 OS=Homo sapiens GN=IRS4 PE=1 SV=1 - [IRS4_HUMAN] 12.43 6.28 1 133.7 

Probable 28S rRNA (cytosine(4447)-C(5))-methyltransferase OS=Homo sapiens GN=NOP2 PE=1 SV=2 - 

[NOP2_HUMAN] 

11.17 7.27 1 89.2 

ATP-dependent RNA helicase A OS=Homo sapiens GN=DHX9 PE=1 SV=4 - [DHX9_HUMAN] 11.10 5.91 1 140.9 

High density lipoprotein binding protein (Vigilin), isoform CRA_a OS=Homo sapiens GN=HDLBP PE=1 SV=1 - 

[A0A024R4E5_HUMAN] 

10.97 4.89 2 141.4 

Keratin, type I cuticular Ha3-I OS=Homo sapiens GN=KRT33A PE=2 SV=2 - [KT33A_HUMAN] 8.62 9.90 2 45.9 

cDNA FLJ14021 fis, clone HEMBA1002513, highly similar to Histone deacetylase 6 (Fragment) OS=Homo 

sapiens PE=2 SV=1 - [B3KNA1_HUMAN] 

7.07 3.79 5 89.7 

Nuclear autoantigenic sperm protein (Fragment) OS=Homo sapiens GN=NASP PE=1 SV=8 - [E9PPR5_HUMAN] 5.77 13.29 5 34.2 

GEMIN5 protein OS=Homo sapiens GN=GEMIN5 PE=2 SV=1 - [B7ZLC9_HUMAN] 4.50 2.12 2 168.3 

IARS protein OS=Homo sapiens GN=IARS PE=2 SV=1 - [Q6P0M4_HUMAN] 3.96 2.09 7 120.6 

Enhancer of mRNA-decapping protein 4 OS=Homo sapiens GN=EDC4 PE=1 SV=1 - [EDC4_HUMAN] 3.89 1.71 1 151.6 

Diaphanous homolog 1 (Drosophila) OS=Homo sapiens PE=2 SV=1 - [Q7KZJ7_HUMAN] 2.49 4.46 10 46.3 



 

 

 

Description Score Coverage 
# 

Proteins 
MW [kDa] 

GluK2 Mutant (C858A, C871A) 3103.39 65.94 1 140.3 

Polyubiquitin-C (Fragment) OS=Homo sapiens GN=UBC PE=1 SV=8 - [F5H6Q2_HUMAN] 37.98 72.13 27 13.7 

Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 - [CLH1_HUMAN] 35.33 14.45 2 191.5 

Serum albumin (Fragment) OS=Homo sapiens GN=ALB PE=1 SV=1 - [H0YA55_HUMAN] 32.65 11.01 8 51.5 

Keratin 1 OS=Homo sapiens GN=KRT1 PE=3 SV=1 - [H6VRG2_HUMAN] 29.39 24.22 1 66.0 

Keratin, type I cytoskeletal 10 OS=Homo sapiens GN=KRT10 PE=1 SV=6 - [K1C10_HUMAN] 26.97 21.58 1 58.8 

Coatomer subunit alpha OS=Homo sapiens GN=COPA PE=1 SV=2 - [COPA_HUMAN] 25.38 11.19 1 138.3 

Fatty acid synthase OS=Homo sapiens GN=FASN PE=1 SV=3 - [FAS_HUMAN] 23.76 4.62 1 273.3 

Isoleucine--tRNA ligase, cytoplasmic OS=Homo sapiens GN=IARS PE=1 SV=1 - [J3KR24_HUMAN] 19.56 10.07 4 131.7 

ATP-dependent RNA helicase A OS=Homo sapiens GN=DHX9 PE=1 SV=4 - [DHX9_HUMAN] 18.97 6.77 1 140.9 

Keratin, type II cytoskeletal 2 epidermal OS=Homo sapiens GN=KRT2 PE=1 SV=2 - [K22E_HUMAN] 17.32 14.08 1 65.4 

Bifunctional glutamate/proline--tRNA ligase OS=Homo sapiens GN=EPRS PE=1 SV=5 - [SYEP_HUMAN] 12.72 8.33 1 170.5 

Clustered mitochondria protein homolog (Fragment) OS=Homo sapiens GN=CLUH PE=1 SV=2 - 

[I3L2B0_HUMAN] 

9.72 4.61 3 138.1 

TBC1 domain family, member 4, isoform CRA_b OS=Homo sapiens GN=TBC1D4 PE=4 SV=1 - 

[A0A024R637_HUMAN] 

9.15 3.39 2 146.5 

Insulin receptor substrate 4 OS=Homo sapiens GN=IRS4 PE=1 SV=1 - [IRS4_HUMAN] 7.63 4.93 1 133.7 

Keratin, type I cytoskeletal 9 OS=Homo sapiens GN=KRT9 PE=1 SV=3 - [K1C9_HUMAN] 7.60 6.90 1 62.0 

cDNA FLJ14021 fis, clone HEMBA1002513, highly similar to Histone deacetylase 6 (Fragment) OS=Homo 

sapiens PE=2 SV=1 - [B3KNA1_HUMAN] 

5.65 2.69 5 89.7 

cDNA FLJ53176, highly similar to Nuclear autoantigenic sperm protein OS=Homo sapiens PE=2 SV=1 - 

[B4DS57_HUMAN] 

5.54 5.38 3 74.8 

Vigilin (Fragment) OS=Homo sapiens GN=HDLBP PE=1 SV=2 - [C9JT62_HUMAN] 5.05 32.29 11 10.6 

Desmoglein-2 OS=Homo sapiens GN=DSG2 PE=1 SV=2 - [DSG2_HUMAN] 5.02 2.68 1 122.2 

Phosphoinositide phospholipase C (Fragment) OS=Homo sapiens GN=DKFZp434N101 PE=2 SV=1 - 

[Q9UFY1_HUMAN] 

3.99 3.82 4 71.3 

Enhancer of mRNA-decapping protein 4 OS=Homo sapiens GN=EDC4 PE=1 SV=1 - [EDC4_HUMAN] 3.41 1.71 1 151.6 

Keratin, type I cytoskeletal 14 OS=Homo sapiens GN=KRT14 PE=1 SV=4 - [K1C14_HUMAN] 2.73 7.84 1 51.5 

 


