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Abstract 

There are multiple instances where standard methods in evolutionary approaches to 

studying human behaviour cannot easily test causality and/or examine the effects of 

psychological mechanisms on reproductive success. For example, research into life 

history theory, where manipulation of exposures is not typically possible, has previously 

been limited to standard analytical approaches that remain vulnerable to potential 

confounding bias. Additionally, although there has been a longstanding cliff-edge 

hypothesis for the maintenance of schizophrenia, investigation has been limited due to the 

constraints of family studies and the inability to manipulate the exposure or test long 

terms outcomes such as fitness.  

Mendelian randomization combines genetic and phenotypic information to investigate 

psychological and key evolutionary traits with fitness outcomes using a causal framework 

that does not rely on manipulating the exposure. I applied Mendelian randomization and 

other related methods to these two areas of evolutionary human behaviour research. 

According to life history this theory, earlier age at menarche and age at first sexual 

intercourse can be viewed as directing effort towards reproductive goals as part of a fast 

life history strategy and therefore show causal effects on reproductive and behavioural 

outcomes. The schizophrenia paradox refers to the evolutionary conundrum for how 

schizophrenia, a heritable disorder, is maintained in the population despite being 

associated with lower reproductive success for those diagnosed. 

I find some evidence that earlier age at menarche is causally related to traits that 

characterize a fast life history strategy, such as earlier age at first and last birth and lower 

educational attainment. Additionally, it appears that increased genetic liability for 

schizophrenia does not confer a fitness advantage and therefore the disorder is likely 

maintained through other explanations than cliff-edge effects. This thesis is novel in its 

application of epidemiological methods to test evolutionary theories of human behaviour 

and demonstrates the potential for evolutionary epidemiology. 
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 Introduction 

This chapter includes sections from the publications below 

Lawn, R. B., Sallis, H. M., Wootton, R. E., Taylor, A. E., Demange, P., Fraser, A., 

Penton-Voak, I. S., & Munafò, M. R. (2019). The effects of age at menarche and first 

sexual intercourse on reproductive and behavioural outcomes: a Mendelian randomization 

study. bioRxiv; doi: https://doi.org/10.1101/423251. 

Lawn, R. B., Sallis, H. M., Taylor, A. E., Wootton, R. E., Davey Smith, G., Davies, N. 

M., …Munafò, M. R. (2019). Schizophrenia risk and reproductive success: a Mendelian 

randomization study. Royal Society Open Science, 6, 181049. 

1.1 Thesis motivation and aim 

There are multiple instances where standard methods in evolutionary approaches to 

studying human behaviour cannot easily test causality and/or examine the effects of 

psychological mechanisms on reproductive success. The ability to make stronger causal 

inference by using genetic variants as instrumental variables has resulted in the rapid 

uptake of this method, Mendelian randomization (MR), within epidemiology. For my 

doctoral work, I aimed to apply MR and other related methods to two areas of research – 

life history theory (concentrating on age at menarche and age at first sexual intercourse) 

and the schizophrenia paradox. 

To my knowledge, my work here is the first to apply MR to these evolutionary questions. 

I was therefore highly motivated by the promise that this method holds to revolutionise 

evolutionary approaches and ultimately contribute to a better understanding of the causes 

and consequences of apparently maladaptive behaviour. I came to this PhD with an 

interest in evolutionary theory and approaches to behaviour, but with limited background 

in genetics or experience of statistical analysis and epidemiological methods for handling 

large, complex datasets. Due to this, I was grateful for the opportunity to conduct mini 

projects in the first year of this PhD programme and start the steep learning trajectory in 

order to gain these skills. I have since become very interested in the field of genetic 

epidemiology and hope to continue research in this area. 

1.2 Evolutionary approaches to behaviour 

Proposed in the mid-19th century, evolutionary theory describes the process of how traits 

change over time (Darwin, 1859). The main process described is natural selection, which 
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refers to individual differences in survival and reproduction due to differences in 

observable traits, termed phenotype (Darwin, 1859). Although natural selection acts on 

the phenotype, the genetic basis of these traits is passed on intergenerationally. The 

genetic basis of traits is termed the genotype, which increases or decreases in frequency 

over generations depending on the differential reproduction of individuals. Selection 

therefore gives rise to adaptive traits when a certain phenotype leads to a reproductive 

advantage and the genotype is therefore passed onto more offspring. Requirements for 

selection include variation between individuals, that this variation is heritable (a 

proportion is explained by genotype) and that it causes differential reproductive success 

(Darwin, 1859). Reproductive success is measured by how many of an individual’s 

offspring also reproduce, although it is often proxied by the number of children that an 

individual has (Daly & Wilson, 1999). Fitness is a term also used to describe the number 

of children that an individual has. 

Evolutionary theory can explain the existence of traits, both physical and behavioural, 

and has been successful in providing a framework for many areas of study, including 

mate choice, cooperation and individual differences (see Tooby & Cosmides, 1990, or 

Daly & Wilson, 1999). I focus on human traits in this thesis. There are two main 

evolutionary approaches to studying human behaviour: evolutionary psychology (EP) and 

human behavioural ecology (HBE). There is debate between these two approaches about 

how to define and measure adaptions, mainly due to each approach adopting a different 

level of explanation (Daly & Wilson, 1999). These levels of explanations were proposed 

by Tinbergen (1963) and provide distinct but complementary investigations of behaviour. 

According to Tinbergen (1963), for an integrative understanding of behaviour, 

investigations should include both ‘proximate’ and ‘ultimate’ (sometimes referred to as 

functional) levels of explanation. Proximate explanations incorporate how an individual’s 

behaviour occurs, such as the psychological mechanisms that causes a behaviour within a 

specific immediate context (see section 1.2.2.1 for example). Ultimate explanations focus 

on why a trait has evolved, such as why a behaviour is adaptive and increases 

reproductive success (see section 1.2.1.1 for example). In order to have a complete 

understanding of behaviour, there should also be knowledge of ontogeny (proximate 

explanations over time) and phylogeny (ultimate explanations over time) of a behaviour 

rather than only investigation of individuals today (Tinbergen, 1963). See Figure 1:1 for 

an illustrative summary.  

I now discuss the EP and HBE approaches in turn, highlighting some limitations in their 

ability to test evolutionary hypotheses of human behaviour due to focusing on one level 
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of explanation and discussing whether the methods typically used in each approach allow 

for causal conclusions. I will then discuss the potential that MR may hold to overcome 

these limitations and provide a new form of evidence. 

 

Figure 1:1 Summary of introductory structure and thesis approach. 

 

1.2.1 Evolutionary psychology 

The EP approach aims to investigate psychological mechanisms underlying human 

behaviour and their evolution (Ketelaar & Ellis, 2000). This approach assumes that the 

human brain is formed of specialized mechanisms to solve specific problems, particularly 

ones encountered in stable environments over the ancestral period (Tooby & Cosmides, 

1990). These specialized mechanisms are thought of as evidence of ‘good’ design that we 

can examine today, where ‘good’ design would indicate selection for the trait through 

benefits to an individual’s reproductive success and this successful design is therefore 

termed ‘good’ (Tooby & Cosmides, 1990). From this, EP focuses on whether 

psychological mechanisms demonstrate features expected of ‘good’ design to solve a past 

problem, arguing that such evidence is adequate for determining whether a trait is 

adaptive. By considering this evidence as adequate, the approach does not actually 

measure reproductive success and regards current fitness-associations as irrelevant to 

present design, with any environmental changes considered too recent for evolution 

(Symons, 1989; Tooby & Cosmides, 1990). Overall, EP is therefore mechanistic in that it 
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focuses on proximate explanations for behaviour although it assumes ultimate 

explanations led to the evolution of any given mechanism (Tinbergen, 1963).  

1.2.1.1 Methodology 

To investigate psychological mechanisms, EP relies on experiments and observational 

studies (particularly with self-report questionnaire data). For example, one area that has 

been widely investigated in EP is attractiveness, with many experimental studies on 

attractiveness evaluating whether mechanisms are in place to recognise facial cues as a 

signal of mate quality that could lead to increased reproductive success. One such study 

manipulated the exposure of male facial stimuli to be more masculine or feminine and 

assessed whether preferences change over the menstrual cycle to reflect a psychological 

mechanism designed to promote adaptive choices (Penton-Voak & Perrett, 2000). Again, 

whether these preferences actually result in increased reproductive success is not tested in 

EP investigations. 

This narrow focus on mechanistic design characteristics as proxies for fitness is a 

limitation of the EP approach (Penton-Voak, 2011). Effects on reproductive success are 

required for selection to act and for a behaviour to be termed adaptive and the EP 

approach only assumes this. If attractiveness judgements are proposed as part of a suite of 

adaptive mechanistic behaviours that serve the ultimate goal of successful reproduction, 

possibly via health benefits, then it is important to actually empirically test the likelihood 

of a successful outcome (Penton-Voak, 2011). EP investigations do not therefore provide 

a direct test of selection.  

A further limitation of EP methodology is the lack of ecological validity in experiments, 

where experiments do not approximate the real-world that is being examined and 

therefore the extent that findings can be generalized to a real-life setting is limited. For 

example, facial stimuli in attractiveness experiments are often manipulated composites of 

faces and may therefore not be generalizable to the mating decisions of real faces outside 

of experimental settings. On the other hand, this experimental methodology is also a 

strength of the EP approach as we can be more confident that a change in the outcome is 

due to the condition or exposure and assume exchangeability, meaning that the risk of an 

outcome in one group is the same as the risk in another group had they obtained the same 

value of the exposure (Hernán, 2004). Theoretically, we can never be completely certain 

about our causal conclusions as the counterfactual is, in reality, never observed (Hernán, 

2004; Pingault et al., 2018); the counterfactual is the ‘other’ value of the exposure, that 

the individual does not experience (Hernán, 2004; Pingault et al., 2018). Randomization 
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allows for exchangeability by creating groups that are balanced for potential confounding 

factors (a common cause of the exposure and outcome that produces spurious 

associations) (Hernán, 2004). Due to this, randomized controlled experiments, as 

sometimes used in EP, are placed at the top of the evidence hierarchy for causal inference 

methodology (Davies, Holmes, & Davey Smith, 2018). Overall, it is therefore important 

to consider the ability of methods to provide causal evidence. Experiments, which are 

often used in EP, allow for causal inference but are limited in what exposures can be 

manipulated in an experimental setting and important evolutionary outcomes such as 

fitness cannot be measured. Therefore, although the experimental method tests causation, 

links between experimental evidence and evolution in this context are always indirect. 

Another type of methodology used in EP is observational studies as there are 

circumstances where it is not possible to manipulate exposures for experimental designs 

(Rohrer, 2018). For example, standard analytical approaches applied to observational data 

have been used to examine life history theory in humans where it is not possible to 

manipulate developmental environments or reproductive behaviours (discussed further 

below) (Nettle, Frankenhuis, & Rickard, 2012; Richardson, Harrison, Hemani, & Davey 

Smith, 2018). These standard analytical approaches applied to observational data are 

likely to be affected by confounding bias, undermining causal inference (Webb, Bain, & 

Page, 2017). For this reason, these methods are placed lower down the hierarchy of causal 

inference ability (Webb et al., 2017). In traditional observational methods, attempts are 

made to adjust for confounders to try and achieve exchangeability (Webb et al., 2017). 

However, this requires adjustment of all confounders, which may or may not be measured 

(Webb et al., 2017). Furthermore, if a confounder is measured it is still possible that 

measurement error is present, leading to residual confounding (and even bias 

amplification) even if the variable is adjusted for in models, thus biasing causal estimates 

(Webb et al., 2017). In some instances, it is also possible that the outcome is in fact 

influencing the exposure, termed reverse causation (Webb et al., 2017). Reverse causation 

is difficult to address with cross-sectional data in which the temporal relationship 

between the exposure and outcome is less clear than in longitudinal studies (Webb et al., 

2017). Overall, this means that EP hypotheses that cannot be tested in an experimental 

setting, and therefore use observational data instead, can be limited in the ability for 

causal conclusions. 

1.2.1.2 Genetics 

Some evolutionary psychologists argue that fitness-relevant traits will not show heritable 

variation due to the narrowing effect of selection which would remove all but the highest-
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fitness genetic variant over time (Tooby & Cosmides, 1990). Therefore, any heritable 

variation indicates no selection acting and a lack of adaptive significance (Tooby & 

Cosmides, 1990). From this, EP regards genetic influences as redundant when studying 

behaviour and focus has been on similarities across humans rather than observed 

variation (Nettle, 2006; Tooby & Cosmides, 1990). If heritable individual variation is 

discussed, such as frequency dependent selection where optimum phenotypes depend on 

the proportion of that phenotype in a population, then this is given very low significance 

(Nettle, 2006). Conversely, others argue that more weight should be given to 

interindividual variation at the genotypic level in humans as this variation is frequently 

observed (see Nettle, 2006). Behaviour geneticists have shown that many important 

fitness traits are highly heritable, demonstrating that the population contains genetic 

variation. For example mental health disorders (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014) and personality (Nettle, 2006) are heritable 

traits that do show fitness-associations (Nettle, 2006; Nettle & Clegg, 2006). 

This heritable variation can arise through multiple means, such as genetic mutations and 

cost-benefit trade-offs. For example, EP hypothesizes that facial symmetry is used as a 

cue for mate quality. Genetic mutations can cause heritable variation in symmetry and 

therefore have effects on attractiveness and subsequent fitness (Nettle, 2006). For 

personality traits investigated in EP, it is likely that heritable variation persists from trade-

offs of the costs and benefits of behaviours in certain contexts where at any point in space 

and time there is an optimum value of the trait for fitness (Nettle, 2006). These costs and 

benefits therefore have effects on reproductive success, meaning fitness-relevant traits 

can show heritable variation as optimal values differ contextually (Nettle, 2006). If there 

is no cost then selection would act to narrow heritable variation (Nettle, 2006). In this 

thesis, I leverage this heritable variation of evolutionary relevant traits to investigate 

causal effects of age at menarche, age at first sexual intercourse, schizophrenia liability 

and educational attainment on fitness (and other behavioural) outcomes.  

1.2.2 Human behavioural ecology 

Behavioural ecology combines the study of animal behaviour with evolutionary theory to 

study the fitness consequences of a behaviour (Daly & Wilson, 1999; Winterhalder & 

Smith, 2000). When applied to the study of human behaviour, the field is termed HBE 

and was introduced in the mid-1970s (Daly & Wilson, 1999; Winterhalder & Smith, 

2000). In this approach, complex decisions are broken down into a set of rules or 

conditions and individuals are construed as fitness-maximisers (Daly & Wilson, 1999; 

Tooby & Cosmides, 1990; Winterhalder & Smith, 2000). Through comparing the 
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reproductive success of individuals, this approach mainly provides ultimate level 

explanations for human behaviour (Tooby & Cosmides, 1990).  

1.2.2.1 Methodology 

HBE originated through applying models from behavioural ecology in the biological 

sciences to humans via the study of hunter-gatherer optimal foraging models for 

resources. These studies remain at the heart of the approach’s methodology (Daly & 

Wilson, 1999; Winterhalder & Smith, 2000). Contemporary hunter-gatherer societies 

offer natural ‘experimental’ settings for research to investigate how humans have evolved 

(Mulder, 2006). As an example, Mulder (1990, 2006) investigated the fitness-maximizing 

decision making of marital choices among the Kipsigis people of Kenya when 

considering prospective husbands’ resources (land ownership) and their number of 

existing wives. It was found that although women prefer bachelors over polygynists, they 

appear to incorporate a potential husbands’ resources to provide for multiple wives which 

impacts reproductive success (Mulder, 1990, 2006). Again, for an integrative 

understanding of behaviour, investigations should include both proximate and ultimate 

levels of explanation. As these studies only examine differential reproduction today, they 

therefore provide ultimate level explanations (Mulder, 2006). The proximate mechanisms 

underlying how humans reach such an adaptive strategy is often disregarded in HBE 

(Mulder, 2006).  

Through studying individuals in society via natural experiments, the HBE approach uses 

ecologically valid methods. However, by doing so, experimental control is sacrificed and 

confidence in identifying a true causal effect may be diminished compared to a 

randomized experiment. As discussed above, without randomization and manipulation of 

exposures it is difficult to conclude that confounding factors are not causing spurious 

results.  

The focus on ultimate explanations, rather than also incorporating possible mechanisms 

for an integrative understanding of behaviour (discussed in section 1.2), and the lack of 

ability for causal inference are limitations of the HBE approach that I have attempted to 

address in this thesis (Mulder, 1990, 2006). 

1.2.2.2 Genetics 

Evolutionary theory centres around genetic processes yet rarely is genetic data used to 

inform the research (Hadfield, Nutall, Osorio, & Owens, 2007). This applies to the HBE 

approach whereby focusing on measurable fitness-maximizing behaviours, and not their 
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underlying mechanisms, genetic influences are ignored (Hadfield et al., 2007; Rubin, 

2016). The HBE approach does not consider this a limitation in determining the 

evolutionary dynamics of a population (Hadfield et al., 2007; Rubin, 2016). This focus on 

the fitness of phenotypes is termed the phenotypic gambit under the assumption that 

phenotypic patterns can be used as predictors of genetic patterns (Hadfield et al., 2007; 

Rubin, 2016). Although the phenotypic gambit does simplify investigations, as 

behaviours are regulated by numerous genes as well as environmental factors and their 

interactions, this deterministic view can lead to false predictions of evolutionary 

hypotheses for human behaviour (Hadfield et al., 2007; Rubin, 2016). Recently, there has 

been increasing recognition that many traits relevant to HBE show polygenic inheritance 

that can be exploited in quantitative genetic methodology to overcome the phenotypic 

gambit and allow for causal conclusions of evidence (Hadfield et al., 2007; Rittschof & 

Robinson, 2014). 

1.3 Mendelian randomization 

Epidemiology is the study of the aetiology, distribution, and control of disease. 

Instrumental variable analysis is a method developed in economics and used within 

epidemiology. An instrument is a variable that robustly predicts the exposure of interest 

and shows no independent association with the outcome that does not act via the exposure 

(Lousdal, 2018). Recently, with the availability of genetic data, genetic variants are 

increasingly used as instruments in epidemiology to estimate causal effects of a 

phenotype of interest on an outcome, termed Mendelian randomization (Davies, Holmes, 

et al., 2018; Kaprio, 2000). The underlying principle of MR is that alleles should be 

randomly distributed within a population and if an allele is also associated with a trait of 

interest then we can look for outcomes that covary with the presence or absence of that 

allele (Conley, 2009). Therefore, by using genetic variants as instruments, MR can mimic 

a randomized experiment and allow for stronger causal inference than standard analytical 

methods by exploiting genetic information to attain reasonable approximation of the 

counterfactual scenario and estimate causal effects (Pingault et al., 2018) (Davey Smith & 

Ebrahim, 2003). It can be therefore be helpful to think of MR as ‘nature’s randomized 

controlled experiment’ in which participants are allocated to different exposure levels due 

to their genetic liability, randomized at conception.  

Genetic variants in MR can be used to instrument or proxy environmental, molecular or 

physiological traits that are affected by the genetic variant (Hemani, Zheng, et al., 2018). 

MR was developed by epidemiologists to strengthen causal inference for risks of disease 
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(Davey Smith & Ebrahim, 2003). Early applications therefore focused on health traits, 

such as C-reactive protein, however the method has more recently been used to 

investigate some psychological traits and/or reproductive behaviours as both exposures 

and outcomes (Day, Helgason, et al., 2016; Gage, Davey Smith, Ware, Flint, & Munafò, 

2016; Gage et al., 2017; Taylor et al., 2016; Wootton, Lawn, et al., 2018). Incorporating 

genetic factors into methodology through MR can also overcome some of the limitations 

discussed above for evolutionary approaches to human behaviour; as MR allows 

investigation of both psychological phenomena (proximate explanations) and fitness 

outcomes (ultimate explanations) it therefore potentially provides a direct test of 

evolutionary hypothesis by empirically testing the likelihood of increasing reproductive 

success for any given mechanism or trait. In this way, MR can help to integrate EP and 

HBE approaches and their levels of explanation for more satisfactory evolutionary 

accounts of behaviour and provide a new form of evidence (Tinbergen, 1963). Attempts 

to reconcile these approaches have been done previously (see Smith, 2000, for review) 

and there has been a growth of interest in providing ultimate explanations alongside 

proximate mechanisms in recent years (Nettle, 2006). I therefore propose that MR should 

be employed within evolutionary approaches to studying human behaviour with its 

potential to revolutionise the field. Additionally, MR overcomes issues of confounding 

and reverse causation in non-experimental designs to provide stronger causal inference 

than standard analytical approaches using observational data. A more detailed discussion 

of MR methods is provided in Chapter 2.  

1.3.1 Applying Mendelian randomization 

In this thesis, I used MR to investigate two areas of evolutionary theory relevant to 

human behaviour – life history theory and the schizophrenia paradox. 

1.3.1.1 Life history theory 

Life history theory addresses how organisms differ in allocation of limited resources to 

growth and reproductive efforts, characterizing species into those on ‘fast’ or ‘slow’ life 

history strategies (Ellis, 2004; Ellis & Bjorklund, 2012). A ‘fast’ life history strategy is 

characterised by more effort directed towards reproduction such as earlier puberty and 

sexual activity, whereas a ‘slow’ life history strategy can be described by later maturity 

and proportionally greater investment in a smaller number of children (Ellis, 2004; Ellis 

& Bjorklund, 2012). For example, rabbits undergo rapid sexual development, short 

interbirth intervals and various other traits demonstrating short-term goals that 

characterize a fast life history strategy (Figueredo et al., 2005). Conversely, elephants 

show delayed sexual development and long interbirth intervals and are considered to be 
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on a slow life history strategy (Figueredo et al., 2005). The shorter life expectancy of 

rabbits than elephants increases the adaptive benefits of taking a fast life history strategy 

(Figueredo et al., 2005). Furthermore, within-species variation in life history strategy has 

been proposed. For example, in developmental environments characterized by harsh 

conditions and high extrinsic mortality, adopting a fast life history strategy may increase 

reproductive success in comparison to a slower strategy with delayed reproduction 

(Belsky, Steinberg, & Draper, 1991; Ellis, 2004; Ellis & Bjorklund, 2012; Figueredo et 

al., 2005).  

For humans, life history theory has been applied to characterize individuals into those on 

relatively faster or slower strategies (Figueredo et al., 2005), with substantial variation 

between humans in the timing of significant reproductive life events such as age at 

menarche (the start of a woman’s sexual maturity and reproductive potential) and first 

sexual intercourse (Belsky et al., 1991; James, Ellis, Schlomer, & Garber, 2012). Life 

history theory explains this variation as an adaptive response to an individual’s 

developmental environment and adverse childhood experiences have been shown to 

associate with earlier age at menarche (Magnus et al., 2018). Adverse childhood 

environments are also associated with earlier age at first sexual intercourse 

(Lenciauskiene & Zaborskis, 2008; Richardson et al., 2018; Waldron et al., 2015). Life 

history strategies consist of a suite of adaptations and whilst adopting a fast life history 

strategy evolved due to reproductive advantages in certain conditions, it may also have 

costs to an individual in modern environments. Such costs include those associated with 

teenage pregnancy and risky behaviours like violence, criminality, and substance abuse 

(Ellis & Bjorklund, 2012; Hawes, Wellings, & Stephenson, 2010; Simpson, Griskevicius, 

Kuo, Sung, & Collins, 2012). Therefore, as well as previous research into the causes of 

earlier age at menarche and sexual intercourse (Lenciauskiene & Zaborskis, 2008; 

Magnus et al., 2018; Richardson et al., 2018; Waldron et al., 2015), it is also important to 

examine how traits within life history strategies affect each other, especially as starting 

menarche is necessary for reproduction and age at first sexual intercourse may be 

modifiable via policy and environmental changes. Previous research has framed later 

traits such as age at first birth within a life history perspective (Nettle, 2011). I address 

this in the present study by examining the effects of two reproductive traits (age at 

menarche and age at first sexual intercourse) on other reproductive and behavioural 

outcomes including age at first birth, age at last birth and educational attainment. By 

looking at these traits that occur later in life, and assuming age at menarche can 

somewhat proxy early life adversity and a fast life history strategy, I take a life course 

approach to examine causal pathways in life history theory. 
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Standard analytical approaches applied to observational data have been used to examine 

life history strategies in humans as it is not possible to manipulate developmental 

environments in experimental settings (Nettle et al., 2012; Richardson et al., 2018). 

However, as discussed above, inferring causality in studies using such approaches is 

difficult and likely to be affected by confounding bias (Davey Smith & Ebrahim, 2003). 

For example, structural equation modelling has been proposed to investigate life history 

theory. One study investigated lifetime allocation of resources to reproduction, proxied by 

number of offspring that survived to 18 years, mean inter-birth interval and age at last 

birth (Helle, 2018). Although the author stresses the benefits that an SEM framework 

provides in handling measurement error of exposure variables, the potential for 

confounding is always a concern as these methods allow for the control of measured but 

not for unmeasured confounders (Helle, 2018; Warrington, Freathy, Neale, & Evans, 

2018). Even though it is difficult to manipulate reproductive timings, particularly age at 

menarche but also age at first sexual intercourse (Helle, 2018), we can apply MR to 

investigate causal relationships between these traits and outcomes of interest. Although 

MR has been used to previously investigate age at menarche with many later life health 

outcomes (e.g., Sequeira, Lewis, Bonilla, Davey Smith, & Joinson, 2017), the study here 

will provide stronger causal inference for age at menarche and evolutionarily relevant 

outcomes. 

1.3.1.2 The schizophrenia paradox 

Schizophrenia is a severe and debilitating mental disorder that is substantially heritable 

(Van Dongen & Boomsma, 2013). The prevalence of schizophrenia remains stable over 

populations and time, and yet is associated with lower reproductive success for those 

diagnosed (Bundy, Stahl, & MacCabe, 2011; Essen‐Möller, 1959; Jablensky et al., 1992; 

Nettle & Clegg, 2006; Van Dongen & Boomsma, 2013). This creates an evolutionary 

puzzle: how is schizophrenia maintained in the population despite apparent negative 

selection? Multiple theories have been proposed to explain this paradox (Essen‐Möller, 

1959; Huxley, Mayr, Osmond, & Hoffer, 1964; Power et al., 2013; Shaner, Miller, & 

Mintz, 2004). One is mutation-selection balance, which suggests that selection against 

detrimental genetic variants is counteracted by the continuous occurrence of new 

mutations (Mullins et al., 2017; Rees, Moskvina, Owen, O’Donovan, & Kirov, 2011). 

Another is that effects over many common genetic variants are individually too weak to 

be under negative selection (Loh et al., 2015; Mullins et al., 2017; Van Dongen & 

Boomsma, 2013).  
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Another popular theory is that stabilizing selection operates. Stabilizing selection is 

where the optimum fitness level for a trait is approximately at the mean of the trait and 

fitness declines along a normal distribution on either side of this optimum (Essen‐Möller, 

1959; Huxley et al., 1964; Lewis, 1958; Nesse, 2004). Within this, ‘cliff-edge’ effects on 

fitness hypothesize that fitness increases with increased expression of the trait until a 

threshold, where increased expression then results in a steep decline in fitness for some 

individuals (Nesse, 2004; Van Dongen & Boomsma, 2013). It has been suggested that 

schizophrenia-related traits may demonstrate ‘cliff-edge’ effects on fitness (Nesse, 2004; 

Nettle, 2001; Shaner et al., 2004; Van Dongen & Boomsma, 2013). Some have suggested 

that this peak occurs at levels of symptoms that could result in a diagnosis of 

schizophrenia, with a reproductive advantage among healthy individuals with an 

increased liability for the disorder (such as genetic liability and in the absence of the 

disorder itself) compensating for the lower reproductive success of those with the 

disorder itself (Keller & Miller, 2006; Nesse, 2004; Nettle & Clegg, 2006; Van Dongen & 

Boomsma, 2013). It is suggested that this reproductive advantage is maintained by sexual 

selection and mediated via creativity and/or risky behaviour (Del Giudice, Angeleri, 

Brizio, & Elena, 2010; Nettle, 2006; Nettle & Clegg, 2006; Shaner et al., 2004; Wang et 

al., 2016). Behaviourally, it is possible that higher genetic liability for schizophrenia may 

be associated with attractive traits (e.g., creativity) and therefore also with a greater 

number of children (Del Giudice et al., 2010; Nettle & Clegg, 2006). For example, 

schizotypy, a personality measure of schizophrenia-proneness, has been shown to be 

associated with creativity, short term mating interest and mating success (Crow, 2008; 

Del Giudice et al., 2010; Nettle & Clegg, 2006). Additionally, genetic liability for 

schizophrenia is associated with increased risk of unprotected sex (Wang et al., 2016).  

Relatives of people with schizophrenia are assumed to have an intermediate level of 

genetic liability for the highly heritable disorder (Del Giudice, 2010). Studies into 

whether cliff-edge fitness maintains the prevalence of schizophrenia have therefore 

largely focused on family studies. However, despite extensive research, there is no clear 

evidence of increased fecundity in relatives of individuals with schizophrenia (Bundy et 

al., 2011; Del Giudice, 2010; Power et al., 2013). Del Giudice argued that family studies 

underestimate the reproductive benefits of schizophrenia-proneness in the general 

population (Del Giudice, 2010). He highlights that relatives not only share genetic 

liability for schizophrenia but also their environments, which may hinder fitness and 

result in apparent negative selection (Del Giudice, 2010). These family studies also 

suggest that optimum fitness could occur before the appearance of symptoms that might 

result in a diagnosis of schizophrenia and there therefore may be a peak in fitness even 
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within a non-case sample. It is therefore important to investigate a potential reproductive 

advantage of schizophrenia-proneness in the wider population, rather than relying on 

family studies alone. Moreover, it is important to investigate causal relationships between 

schizophrenia risk and reproductive success, rather than relying on observational 

methods. 

The recent developments in genetic epidemiology, discussed throughout this thesis, mean 

that it is now possible to investigate the fitness effects of genetic liability for 

schizophrenia in the wider population. Genetic variants associated with schizophrenia 

have been used to show that genetic liability for schizophrenia (using a score comprising 

of these individual genetic variants) is positively associated with creativity and risk-

taking (Power et al., 2015; Richardson et al., 2018; Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014). Evidence for associations between genetic 

liability for schizophrenia and age at first birth is mixed. Higher genetic liability for 

schizophrenia was found for those with a young age at first birth (e.g., below 20 years) 

compared to those with an intermediate age at first birth (Mehta et al., 2016; Ni, Gratten, 

Wray, Lee, & Science, 2017). Another study found no clear evidence for linear or 

quadratic associations between a genetic liability for schizophrenia and age at first birth 

(Mullins et al., 2017). Two previous studies also used schizophrenia-associated genetic 

variants to investigate whether genetic liability for schizophrenia is associated with 

number of children but results were again inconclusive, perhaps due to limited power 

(Beauchamp, 2016; Mullins et al., 2017). The studies showed estimates in the direction of 

a reproductive advantage but confidence intervals were typically wide and consistent with 

no effect (Beauchamp, 2016; Mullins et al., 2017). Nevertheless, these studies 

demonstrate how genetic liability for schizophrenia can be measured in the wider 

population. 

In this thesis (Chapter 5), I applied a range of methods with roots in genetic epidemiology 

to test part of the cliff-edge hypothesis. I examined whether increasing genetic liability 

for schizophrenia increases reproductive success in multiple population-based samples 

which are not selected on schizophrenia status and therefore include very few cases. This 

linear increase is predicted for part of cliff-edge fitness where a reproductive advantage 

among healthy individuals with higher genetic liability for the disorder compensates for 

lower reproductive success of those with the disorder itself. 
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1.4 Chapter summary 

This thesis is novel in its application of epidemiological methods to test evolutionary 

hypotheses of human behaviour. These methods, such as MR, combine genetic and 

phenotypic information to investigate psychological and key evolutionary traits with 

fitness outcomes using a causal framework. I applied such methods to understand the 

causal relationships in evolutionary theories of life history and the maintenance of 

schizophrenia in the population. Research into life history theory, where manipulation of 

exposures is not typically possible, has previously been limited to standard analytical 

approaches that include possible confounding bias. Although there has been a 

longstanding cliff-edge hypothesis for the maintenance of schizophrenia, investigation 

has been limited due to the constraints of family studies and the inability to manipulate 

the exposure or test long terms outcomes such as fitness. The genetic methodologies 

applied begin with a MR study testing the life history theory. According to this theory, 

earlier age at menarche and age at first sexual intercourse can be viewed as directing 

effort towards reproductive goals as part of a fast life history strategy and therefore show 

causal effects on reproductive and behavioural outcomes (Chapter 4). In Chapter 5 I use 

MR, Linkage disequilibrium (LD) score regression and polygenic risk score (PRS) 

analysis to investigate the schizophrenia paradox (Chapter 5). I discuss these methods in 

full in the following chapter. 
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 Genetic epidemiological methods 

This chapter includes sections from the publication below 

Lawn, R. B., Sallis, H. M., Wootton, R. E., Taylor, A. E., Demange, P., Fraser, A., 

Penton-Voak, I. S., & Munafò, M. R. (2019). The effects of age at menarche and first 

sexual intercourse on reproductive and behavioural outcomes: a Mendelian randomization 

study. bioRxiv; doi: https://doi.org/10.1101/423251 

Table 2:1 is adapted from the publication below 

Wootton, R. E., Richmond, R. C., Stuijfzand, B. G., Lawn, R. B., Sallis, H. M., Taylor, 

G. M. J., Jones, H. J., Zammit, S., Davey Smith, G., & Munafò, M. R. (2018). Causal 

effects of lifetime smoking on risk for depression and schizophrenia: Evidence from a 

Mendelian randomisation study. Psychological Medicine. E-pub ahead of print. 

2.1 Chapter overview 

As discussed in Chapter 1, this thesis addresses evolutionary questions using MR 

methods. In this chapter, I first provide a brief overview of MR. I then describe the 

assumptions, instruments and various ‘methods’ of MR in detail. Although I use the term 

‘methods’ as is usual in the field, these are simply variants of MR. Here, I have attempted 

to amalgamate the theoretical concept of MR with some practical details for carrying out 

analysis. For a full theoretical review see Davey Smith and Ebrahim (2003), for more of a 

practical guide see Davies et al. (2018) and for a full glossary of MR see Lawlor et al. 

(2019). Lastly, I briefly discuss other genetic epidemiology methods used in my research, 

such as LD score regression and PRS analyses.  

2.2 Mendelian randomization 

As discussed in Chapter 1, MR employs an instrumental variable analysis framework, 

with the instrument specifically being genetic variants known as single nucleotide 

polymorphisms (SNPs) (Davey Smith & Ebrahim, 2003). MR can be employed using any 

heritable exposure, assuming a SNP produces an outcome that could equally be produced 

by an environmental exposure (Gage, Davey Smith, et al., 2016; Hemani, Zheng, et al., 

2018). For a graphical illustration of MR see Figure 2:1. Here, Z denotes the genetic 

instrument, X the exposure of interest and Y the outcome. I further use ‘SNP-exposure’ to 

signify the Z-X relationship and ‘SNP-outcome’ to indicate the Z-Y relationship.  
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To illustrate an analysis, one example of using MR to overcome biases when 

manipulation of the exposure is not practical is the study of alcohol consumption effects 

on blood pressure and, ultimately, cardiovascular disease (previously described in Davey 

Smith & Ebrahim, 2003 and Davies et al., 2018). Individuals who consume more alcohol 

may differ from individuals who consume less alcohol for other cardiovascular risk 

factors, such as by smoking more heavily. This could therefore introduce spurious 

associations due to bias from confounding by smoking heaviness. Using SNPs associated 

with metabolite responses to alcohol consumption as an instrument for alcohol intake is 

akin to randomizing individuals into higher or lower drinking conditions and MR can 

therefore be used to estimate a causal effect of alcohol consumption (Davey Smith, 2006; 

Lawlor, 2016) (see Figure 2:2). This causal effect is obtained through calculating a Wald 

ratio where the SNP-outcome estimate is divided by SNP-exposure estimate (
𝑍𝑌

𝑍𝑋
) and 

forms the basis for all MR methods discussed below.  

For all MR methods in this thesis, the SNP-exposure and SNP-outcome associations 

should ideally be derived in distinct non-overlapping samples of participants and can be 

taken from genome-wide association studies (GWAS) estimates, termed GWAS summary 

level data, or derived from individual level cohort data (see Chapter 3) (Lawlor, 2016). 

Estimates from SNP-phenotype regressions are then considered SNP-level, rather than 

individual-level, and can also be termed ‘summary data’. It is preferable for the SNP-

exposure and SNP-outcome GWAS to be adjusted for the same standard covariates to 

minimize bias (Davies, Holmes, et al., 2018). Although I do not use the term here, MR 

with non-overlapping samples has often been called ‘two sample MR’ or ‘two sample 

summary data MR’. Using overlapping samples in the MR methods that I use can 

produce bias towards the observational association estimate, which may be biased by 

confounding (Davies, Holmes, et al., 2018; Hemani, Bowden, & Davey Smith, 2018). 

However, the SNP-exposure and SNP-outcome samples should come from the same 

underlying population (Lawlor, 2016). An additional benefit to using non-overlapping 

samples, is it allows the investigation of relationships where the exposures and outcomes 

of interest have not been measured in the same sample (Gage, Jones, et al., 2016). In 

using non-overlapping samples, data should be harmonized to ensure that the SNP-

exposure and SNP-outcome estimates correspond to the same allele with particular 

attention required for palindromic SNPs. Palindromic SNPs contain alleles represented by 

the same pair of letters on both the forward and reverse DNA strands, therefore causing 

ambiguity when aligning SNPs across samples. 
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Figure 2:1 Diagram representing a valid MR analysis based on an instrumental variable 

framework.  

 

Figure 2:2 Diagram representing a valid MR analysis for the above example 

investigating the effect of alcohol consumption on cardiovascular disease. 

 

2.2.1 Assumptions of Mendelian randomization 

MR analysis relies on three main assumptions (Lawlor, Harbord, Sterne, Timpson, & 

Davey Smith, 2008). See Figure 2:1 for a diagram illustrating a valid MR analysis in 

terms of these 3 assumptions. Assumption 1 is signified by the arrow between Z and X. 

Assumptions 2 and 3 are represented by the absence of arrows. Here, U denotes the 

combined influence of unmeasured confounders. If measured covariates are included then 

the assumptions are conditional on these (Bowden et al., 2017; Palmer et al., 2011). 
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2.2.1.1 Assumption 1: The relevance assumption: the instrument is robustly associated 

with the exposure used in analysis 

In line with this assumption, SNPs used as instrumental variables in MR are identified in 

GWAS to be significantly and independently associated with the exposure at a p-value 

less than 5×10-8 and must be found to replicate in an independent sample (or at least 

explain a significant proportion of the variance in an independent sample). This is 

discussed further in the section on instruments below. 

2.2.1.2 Assumption 2: The independence assumption: the instrument is not associated 

with confounding factors 

By using SNPs as instruments, MR exploits Mendel’s laws of segregation and 

independent assortment by which the inheritance of genetic variants is determined mostly 

independently of other genetic variants and the environment through random allocation at 

conception (Davey Smith & Ebrahim, 2003). This independence has been demonstrated 

through pairwise correlations between nongenetic variables and genetic variables, with 

genetic variants showing little association with each other and non-genetic confounders 

(Davey Smith et al., 2007). This highlights the advantages of using genetic variants as 

proxies of environmental exposure levels to overcome bias due to confounding, to which 

non-genetic observational studies are prone (Davey Smith et al., 2007). However it 

should be noted that this assumption can be affected by ancestry (Davies, Holmes, et al., 

2018) and is more likely to be violated when traits are highly polygenic, as complex 

polygenic traits can be instrumented by many SNPs which may also associate with other 

traits (see below section on instruments) (Pingault et al., 2018). Since genotype is 

determined at conception and fixed for the lifetime, the risk of reverse causality is 

removed in MR (Davey Smith & Ebrahim, 2003; Lawlor et al., 2008).  

2.2.1.3 Assumption 3: The exclusion restriction assumption: the instrument only affects 

the outcome through its effect on the exposure 

This third assumption is violated when the SNP has an effect on the outcome through 

alternative pathways, instead or in addition to, through the exposure and is termed 

horizontal pleiotropy (Bowden et al., 2017; Davey Smith & Hemani, 2014). Horizontal 

pleiotropy is tested for in analyses and can be out ruled further by functional knowledge 

of a SNP (although SNPs are most often selected on the basis of having achieved 

genome-wide significance) (Bowden et al., 2017; Davey Smith & Hemani, 2014). In 

contrast, vertical pleiotropy is used to refer to the effect of a SNP on the outcome via a 

trait that is on the pathway under investigation (Davies, Holmes, et al., 2018; Hemani, 

Bowden, et al., 2018). Vertical pleiotropy is the principle of MR, whereby one factor 
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affects a downstream outcome, and does not violate the exclusion restriction assumption 

(Davey Smith & Davies, 2016; Hemani, Bowden, et al., 2018). It is possible that this 

assumption is violated through dynastic effects whereby a parents’ genotype creates an 

environment via the parents’ phenotype that affects an individual’s outcome being 

measured, opening a pathway between instruments in the individual and their outcome 

via parental environments (Pingault et al., 2018). 

2.2.1.4 Assumption 4: Homogeneity and monotonicity 

If these assumptions are met, effects estimated using MR should be free from bias due to 

confounding and therefore the associations between ZX and ZY (i.e., SNP-exposure and 

SNP-outcome) can be used to estimate the causal effect of X on Y (Bowden et al., 2017; 

Davey Smith & Ebrahim, 2003; Lawlor, 2016). However, there is a fourth assumption of 

instrumental variable analysis that has received little attention for its application to MR 

and is an area under active research (Lawlor et al., 2019; Swanson & Hernán, 2018). This 

fourth assumption refers to homogeneity and monotonicity. For homogeneity, it is 

assumed that the instrument does not modify the causal effect of the exposure on the 

outcome between the exposed and unexposed and, by extension, that this causal effect is 

the same in all individuals (Lawlor et al., 2019; Swanson & Hernán, 2018). This can be 

relaxed so that the effect is only held constant within subgroups, such as the exposed or 

non-exposed for a binary exposure measure (Lawlor et al., 2019). Due to the strength of 

the homogeneity assumption, monotonicity is used instead. For this, it is assumed that 

there is a monotonic relationship between the instrument and exposure and it therefore 

has the same direction of effect across individuals (i.e., the instrument does not increase 

the exposure in some individuals and decrease it in others) (Lawlor et al., 2019). Again, 

the application of this assumption to MR is under active research and currently this 

assumption is rarely considered in analysis. 

2.2.1.5 Summary of assumptions 

It is clear that instrumental variable analysis such as MR relies on strong assumptions and 

unverifiable conditions (Labrecque & Swanson, 2018). Subject knowledge is the most 

common method for concluding that assumptions hold although there are multiple ways 

to further strengthen or refute these assumptions and I discuss these below, such as 

adjusting for principal components of ancestry and triangulating across multiple MR 

methods. For a full review of assessing assumptions see Labrecque and Swanson (2018). 
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2.2.2 Instruments for Mendelian randomization 

As discussed, MR uses SNPs as instruments in analysis. Humans share 99.9% of their 

genetic sequence across the 14.8 billion base pairs of the genome with SNPs contributing 

to part of the non-shared genome (Frazer, Murray, Schork, & Topol, 2009; Venter et al., 

2001). Variation in SNPs can be used in MR analyses to proxy or instrument 

environmental exposures of interest and to investigate the effect of these exposures on 

outcomes. SNPs can proxy directly measured phenotypes (e.g., body mass index (BMI)) 

and in some cases can proxy phenotypes that themselves are proxies for environmental 

exposures (e.g., cortisol for stress). Instruments might predict differing levels of the 

exposure because of direct genetic effects or because of the association with related 

environments. Either way the instrument must robustly predict the environmental 

exposure. Therefore, MR is not usually used to assess the specific effects of a genetic 

variant (Davey Smith & Ebrahim, 2003; Gage, Davey Smith, et al., 2016; Lawlor et al., 

2008). As discussed, identification of SNPs robustly associated with an exposure of 

interest, and hence appropriate for use as instruments to study a given exposure, are 

identified in GWAS. The GWAS is ideally conducted in independent samples from those 

used for the MR analyses (Gage, Davey Smith, et al., 2016). See Figure 2:3 for how 

instruments are selected.  
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Figure 2:3 Flow chart for how SNPs are selected as instruments for MR. For the 

methods used in this thesis, SNP-outcome estimates can then be taken from a publicly 

available GWAS for the outcome trait or derived from individual level data. 

 

It is assumed that a SNP that best proxies the exposure, sometimes termed a causal SNP, 

will either be genotyped, imputed, or captured through LD with another SNP included in 

the instrument. LD is defined as non-random correlations between alleles at different loci 

due to the disproportionate co-inheritance of alleles, through their proximity or 

population structure (Lawlor et al., 2019; Pingault et al., 2018). In this way, LD can be 

useful for MR analyses as instruments in MR do not have to be causally associated with 

levels of the exposure but only proxy them (Lawlor et al., 2008). This does not violate the 

assumptions of MR discussed. LD is also useful for identifying proxy SNPs if some 

instruments are unavailable in a sample. Additionally, LD is used to ensure that SNPs 
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used together as an instrument are independent of each other (see Figure 2:3 and below 

for discussion on multiple SNP instruments). 

Principal components are used in order to adjust for population structure as this can 

confound relationships between a SNP and a phenotype (Davies, Holmes, et al., 2018; 

Haworth et al., 2019; Timpson, Greenwood, Soranzo, Lawson, & Richards, 2017). 

Specifically, differences in allele frequencies across populations can generate spurious 

associations if in one population the allele is rare (e.g., minor allele frequency (MAF) 

below 1%) as any association between the SNP and outcome could be due to differences 

in ethnicity (Davies, Holmes, et al., 2018; Haworth et al., 2019; Schork, Murray, Frazer, 

& Topol, 2009; Timpson et al., 2017). Additionally, GWAS and MR studies typically 

restrict to populations of common ancestry to further address population structure 

(Davies, Holmes, et al., 2018), as I have done throughout this thesis.  

Typically, a single SNP explains very little of the observed variation in the exposure, and 

most MR studies therefore use multiple genetic variants to increase power (Davies, 

Holmes, et al., 2018; Frazer et al., 2009). These multiple genetic variants can be analysed 

individually, meta-analysed for a single causal effect, or combined into a genetic score 

and then used as a single instrument (Davies, Holmes, et al., 2018). The statistical power 

of MR can be increased further by weighting each SNP by its association with the 

exposure, taken from the GWAS (Davies, Holmes, et al., 2018). Using a single SNP 

instrument is only appropriate if the SNP plays a known and specific role in the pathway 

of interest and has a large effect on the exposure (Gage, Davey Smith, et al., 2016). 

Throughout this thesis I use multiple SNPs as instruments. 

Weak instrument bias may occur when a SNP or genetic score explains little of the 

observed variation in the exposure and/or is used in a study with a small sample size 

(Davies, Holmes, et al., 2018). In the MR methods used throughout this thesis, weak 

instrument bias attenuates results towards the null as SNP-exposure and SNP-outcome 

estimates are derived in non-overlapping samples and there is therefore no over-fitting of 

the data (Lawlor, 2016; Lawlor et al., 2019). The mean F statistic can determine the 

strength of an instrument to assess weak instrument bias, derived as the mean of the 

squared SNP-exposure association divided by the squared standard error (SE) of the SNP-

outcome association for the MR methods here. A value above 10 indicates acceptable 

levels of relative bias (<10%) (Burgess, Butterworth, & Thompson, 2013; Pierce, Ahsan, 

& Vanderweele, 2011). The power of MR analyses is determined by this strength of 

association between the instrument and exposure as well as the sample size (Davies, 
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Holmes, et al., 2018). Using multiple SNPs to instrument an exposure is therefore 

important for complex polygenic traits where the effects of many common genetic 

variants are individually weak. However, each individual SNP must be a valid 

instrumental variable, defined by the three main assumptions above, to allow for unbiased 

causal inference (Lawlor et al., 2008).  

2.2.3 Mendelian randomization methods 

I will now discuss each of the MR methods used in this thesis: the inverse variance 

weighted (IVW), MR-Egger regression, weighted median, mode-based estimator (MBE) 

and additional sensitivity analysis methods (see Table 2:1 and Figure 2:5). These 

methods are all extensions of the Wald ratio (defined above) to be used with multiple 

SNPs as instruments for the exposure. They first use the Wald ratio to estimate the causal 

effect per SNP before conducting a meta-analysis for the causal effect of an exposure on 

outcome across SNP instruments (see Bowden & Holmes (2019) for a recent review of 

meta-analyses for MR). Each method uses a varying number of the SNPs as instruments 

due to the different assumptions that each relies on. With these methods relying on 

different assumptions regarding directional horizontal pleiotropy, a consistent direction of 

effect across all methods for the same exposure and outcome relationship increases 

confidence in results, even if some SNPs are invalid instruments (Hemani, Bowden, et al., 

2018). I use a consistent direction of effect to assess the robustness of results and not a 

formal statistical threshold as some methods have limited statistical power (Bowden, Del 

Greco M, et al., 2017; Lawlor, Tilling, & Davey Smith, 2016). As the IVW has the most 

statistical power, I focus on reporting these results throughout. 

2.2.3.1 Inverse variance weighted 

The IVW method is a meta-analysis of Wald ratios across all SNP instruments to provide 

a causal effect of the exposure of the outcome. Figure 2:4 illustrates these ratio estimates 

per SNP from a fictional MR analysis where the slope is equivalent to a weighted average 

of the ratio estimates (Bowden et al., 2017; Pingault et al., 2018). As shown, an IVW 

approach is therefore similar to a weighted regression of SNP-outcome coefficients on 

SNP-exposure coefficients with the intercept constrained to zero (Burgess et al., 2013; 

Gage, Jones, et al., 2016). The gradient provides an estimate of the causal effect, 

indicating the increase in the outcome per unit increase in the exposure (Burgess et al., 

2013). This method uses the inverse SE of the SNP-outcome association estimates as 

weightings (Bowden et al., 2017). By weighting the influence of each SNP by the inverse 

variance of the SNP-outcome association, stronger SNPs make a larger contribution to the 

estimate (Hemani, Zheng, et al., 2018).  
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The IVW is typically used as the main MR analysis as it has the most statistical power, 

due to using all SNP instruments. However, it therefore assumes that all SNP instruments 

are valid (Bowden et al., 2017). An IVW estimate is biased by any violation of the 

exclusion restriction assumption, such as due to heterogeneity or directional horizontal 

pleiotropy. As the gradient for the causal effect is taken from a line of best fit for all SNPs 

with the intercept constrained to zero, any heterogeneity or directional horizontal 

pleiotropy would draw the line away from the true slope (Bowden et al., 2017). 

Heterogeneity occurs when individual SNP estimates do not converge on the same causal 

estimate and may represent pleiotropy (Pingault et al., 2018). Cochran’s Q is a measure of 

heterogeneity, derived as the weighted sum of squared differences between individual 

SNP effects and the pooled effect across SNPs, with the weights being those used in the 

MR method. The degrees of freedom are the number of SNPs minus 1. Overdispersion is 

a term used to indicate high heterogeneity and a Cochran’s Q value greater than the 

degrees of freedom is considered evidence of this (Lawlor et al., 2008; Rees, Wood, & 

Burgess, 2017). However, Cochran’s Q has very high statistical power if the number of 

SNPs is large, meaning that evidence of overdispersion is often found in MR studies, and 

therefore funnel plots are often used to assess heterogeneity and dispersion. Funnel plots 

provide an opportunity to assess if there is heterogeneity and if this heterogeneity is 

balanced across SNPs by plotting SNP estimates against the SE of their effect size 

(Hemani, Zheng, et al., 2018; Sterne et al., 2011). Even in the presence of heterogeneity 

by Cochran’s Q, if symmetry is observed in the funnel plot then pleiotropy is considered 

balanced with a zero mean. 

For an IVW meta-analysis, fixed or random effects methods can be used (Bowden et al., 

2017; Burgess et al., 2013). A fixed effects method assumes all instruments are valid 

(such that none are pleiotropic), whereas a random effects method allows balanced 

horizontal pleiotropy if independent to the SNPs effects on the exposure - termed the 

Instrument Strength Independent of Direct Effect (InSIDE) assumption. This InSIDE 

assumption is not testable. If symmetry is observed in the funnel plot, a fixed effects or 

random effects IVW meta-analysis method should produce similar results (Bowden et al., 

2017; Burgess et al., 2013). If asymmetry is observed in the funnel plot, then directional 

horizontal pleiotropy is likely present and a fixed or random effects method would 

produce different estimates. In this case, both fixed and random effect estimates would 

also differ to the other methods below which better account for directional horizontal 

pleiotropy (Bowden et al., 2017; Burgess et al., 2013).  
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Figure 2:4 Illustrative plot of SNP-outcome and SNP-exposure associations for an IVW 

approach. Solid dots represent no horizontal pleiotropy. Hollow dots represent balanced, 

as opposed to directional, horizontal pleiotropy. Both scenarios yield an unbiased IVW 

estimate. (credit Bowden et al., 2017). 

 

The IVW method further relies on the No Measurement Error (NOME) assumption where 

SNP-exposure associations are accurate to the true value and can be assessed by the mean 

F statistic value (Bowden et al., 2017).  

In summary, the IVW includes all SNP instruments in a meta-analysis of Wald ratios with 

the intercept constrained to zero and is therefore perhaps the simplest MR method. 

Another strength of the IVW is that it has the most statistical power to detect causal 

effects. However, the method is strongly reliant on the assumption of no directional 

horizontal pleiotropy.  

2.2.3.2 MR-Egger regression 

MR-Egger is an extension of the IVW that also combines Wald ratios per SNP into a 

meta-regression to provide an estimate for the causal effect of the exposure on the 

outcome using the inverse SE of the SNP-outcome association estimates as weightings 

(Bowden et al., 2017). In addition, MR-Egger regression provides the causal estimate for 

the exposure on the outcome adjusted for directional horizontal pleiotropy (Lawlor et al., 

2019). To do so, MR-Egger regression does not constrain the intercept to zero. The 
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intercept term therefore estimates the average pleiotropic effect across instrument SNPs 

and the gradient of the slope provides an estimate independent of the estimated 

directional horizontal pleiotropy (Bowden et al., 2017). This method therefore allows all 

SNPs to be invalid instruments in that they may have pleiotropic effects although 

pleiotropic effects must satisfy the InSIDE assumption (see above) (Bowden et al., 2017). 

A significant intercept term (using a p-value threshold of 0.05) suggests the presence of 

directional horizontal pleiotropy. The MR-Egger estimate and IVW estimate will 

converge if there is no directional horizontal pleiotropy as both intercepts would then be 

zero. However, if there is the presence of directional horizontal pleiotropy, then the 

slopes and causal effects will differ between these methods (see Figure 2:5).  

MR-Egger further relies on the NOME assumption and failure to meet the NOME 

assumption is most extreme for MR-Egger compared to other methods (Bowden et al., 

2017). It is possible to adjust for this dilution in MR-Egger by employing a Simulation 

Extrapolation (SIMEX) method (Bowden et al., 2017; Bowden, Fabiola Del Greco, et al., 

2016; Hemani, Bowden, et al., 2018). The SIMEX model estimates what would have 

been obtained if NOME was met using information from a series of dummy datasets with 

increasing violations of NOME. The I2
GX statistic quantifies the amount of dilution by 

dividing the true SNP-exposure associations by the variance of the SNP-exposure 

association (Bowden, Fabiola Del Greco, et al., 2016). An I2
GX value of 0.9 or above 

indicates that a SIMEX adjustment is not required as the relative bias in the estimate is 

less than or equal to 10%, which is equivalent to the assurance given by an F statistic 

above 10 in other analyses (Bowden, Fabiola Del Greco, et al., 2016).  

Overall, if InSIDE and NOME are perfectly satisfied, MR-Egger can provide an unbiased 

causal estimate with the presence of horizontal pleiotropy and this is therefore a key 

strength of the method. Whereas in a situation where InSIDE holds but NOME is 

violated, the estimate will be diluted rather than biased (Bowden, Fabiola Del Greco, et 

al., 2016). The main weakness of MR-Egger is that it suffers from the lowest power of all 

the MR methods discussed here as it requires variation between SNP-exposure estimates 

after all have been coded in the positive direction, and therefore requires a large number 

of SNP instruments (Bowden, Davey Smith, & Burgess, 2015). Additionally, it is less 

efficient than the IVW and also strongly relies on the InSIDE and NOME assumptions 

(Bowden et al., 2017).  
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2.2.3.3 Weighted median 

The weighted median estimate is obtained by first calculating the Wald ratio causal 

estimate for each SNP and then taking the estimate with the median inverse variance 

weight. Whereas in an unweighted analysis it is assumed that at least 50% of the 

instruments are valid, in a weighted analysis it is assumed that instruments forming 50% 

of the weight in the analysis are valid (Bowden, Davey Smith, Haycock, & Burgess, 

2016; Lawlor et al., 2008).  

Overall, low false discovery rates are achieved with this approach (Bowden, Davey 

Smith, et al., 2016). This approach is more robust to directional horizontal pleiotropy than 

the IVW and more robust to outliers than the IVW and MR-Egger methods (Pingault et 

al., 2018). Additionally, the statistical power to detect causal effects is close to that of the 

IVW method, it does not require the InSIDE assumption to be met, and only half of the 

SNPs need to be valid instruments for an unbiased causal estimate (Hemani, Zheng, et al., 

2018). 

2.2.3.4 Mode-based estimator 

The MBE finds the largest cluster of Wald ratios for a meta-analysis and uses inverse 

variance weightings. The simple MBE is an unweighted analysis however this thesis only 

uses the weighted MBE. The majority of instruments can be invalid providing that the 

Zero Modal Pleiotropy Assumption (ZEMPA) is satisfied. ZEMPA states that the largest 

subset of instruments with the same ratio estimate will contain valid instruments and 

therefore that invalid instruments have heterogeneous estimates. In other words, the MBE 

provides a causal estimate when the largest number of similar individual-instrument 

estimates come from valid instruments, even if the majority are invalid (Hartwig, Davey 

Smith, & Bowden, 2017). Benefits of this method is that it is more robust to directional 

horizontal pleiotropy than the IVW and more powerful than MR-Egger (Pingault et al., 

2018).  



 

47 

 

 

Figure 2:5 Illustrative plot of MR methods used.  

The IVW estimate is not biased by balanced horizontal pleiotropy. If there is directional 

horizontal pleiotropy, then the MR-Egger estimate (black line) will be unbiased under the 

InSIDE assumption and differ from the IVW which constrains the intercept to zero (grey 

line). The weighted median will be unbiased if the majority of the instruments are valid 

(black points), with some invalid instruments (grey points) even though this indicates 

directional horizontal pleiotropy which biases the IVW (grey line). The MBE clusters 

SNPs based on their estimates (grey lines) and the cluster with the largest weight (black 

line) is selected as the causal estimate and is unbiased if the black dots are valid 

instruments. (credit Hemani et al., 2018) 

 

2.2.3.5 Additional Mendelian randomization sensitivity methods 

In Chapter 4, I also conducted radial MR-Egger regression and leave-one-out analysis to 

determine if outliers were present. Although similar to MR-Egger regression, the 

intercept is estimated on a scale so that the distance from a SNP estimate to the slope is 

equal to the square root of its contribution to the overall average heterogeneity (measured 

by Cochran’s Q) after adjustment for directional horizontal pleiotropy. Therefore, radial 

MR-Egger regression can be used to assess outliers (Bowden et al., 2018).  This method 
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will only estimate a causal effect providing that the InSIDE assumption is satisfied. A 

leave-one-out analysis can aid assessment of whether the MR estimate is driven or biased 

by a single SNP, perhaps due to a large horizontal pleiotropic effect. To do so, the method 

re-estimates the causal effect after systematically dropping one SNP at a time. A dramatic 

change in the estimate when one SNP is removed can highlight the sensitivity of the 

estimate to outliers and identify outliers to be investigated further (Hemani, Zheng, et al., 

2018). 

2.2.4 Specialist software 

I use MR-Base and GitHub software within this thesis. MR-Base is an online platform 

(www.mrbase.org) that allows users to conduct the above MR methods with publicly 

available GWAS data (see Chapter 3) or with users own datasets using the R package 

(Hemani, Zheng, et al., 2018). For this thesis, I used the R package to derive some of the 

results in Chapter 5 as well as the leave-one-out analysis in Chapter 4. GitHub is another 

online platform where users can host analysis code. The analysis scripts for published 

results from this thesis are available on the MRC Integrative Epidemiology Unit’s profile 

(MRC IEU) (www.github.com/MRCIEU). 
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Table 2:1 A comparison of MR methods and their assumptions. 

     Can be 

relaxed 

MR method Description Additional assumptions Power Invalid variants allowed A2 A3 

IVW A meta-analysis of the Wald ratios for each SNP (
𝑍𝑌

𝑍𝑋
) 

weighted by the inverse of the variance of the SNP-

outcome association.  

No pleiotropy or balanced 

pleiotropy conditional on 

the InSIDE assumption. 

NOME 

Has the most 

power if the 

assumptions are 

satisfied.  

100% but assumes 0% 

 
✗ ✗ 

MR‐Egger 

regression  

An extension of the IVW that relaxes the assumption 

that any pleiotropy must be balanced. A significant 

intercept term (p<0.05) suggests bias from directional 

horizontal pleiotropy, i.e., the average pleiotropic 

effect is not zero. MR-Egger regression provides 

consistent estimates even if all genetic instrumental 

variables are invalid as long as the INSIDE assumption 

is met.  

Strong reliance on InSIDE. 

Strong reliance on NOME. 

Has the lowest 

power. 

100% ✗ ✓ 

Weighted median  The weighted median estimate is obtained by first 

calculating the Wald ratio for each SNP and then 

taking the estimate with the median inverse variance 

weight.  

Consistent when 50% of 

weight contributed by 

genetic variants is valid. 

Similar to that of 

IVW method. 

50% ✓ ✓ 

MBE  Finds the largest cluster of Wald ratios. The majority 

of the genetic instruments can be invalid providing the 

ZEMPA assumption is satisfied. In the weighted mode 

method, the mode is calculated using the inverse 

variance weights of the Wald ratios.  

ZEMPA Less powerful 

than IVW and 

weighted 

median. 

50% ✓ ✓ 

A2 = assumption 2, that all instruments (Z) must not be associated with confounders. A3 = assumption 3, that all instruments (Z) must only be associated with 

the outcome (Y) through the exposure (X). These two columns have a cross if that method requires the assumption to be met and a tick if that assumption can 

be relaxed. Throughout the table, invalid refers to instruments that do not meet the three main assumptions of MR. The various methods can be more or less 

powerful under different models of pleiotropy. 



 

 

2.3 Polygenic risk scores 

Similar to the genetic scores described above, a PRS is a variable that combines SNPs 

associated with an exposure. Each of the risk alleles that a person has for the SNP is 

weighted by effect estimates from a GWAS (Euesden, Lewis, & O’Reilly, 2015). 

However, these scores are typically derived using lower p-value thresholds for the 

association between the SNP and trait of interest than instruments in MR in order to 

capture broader liability for a trait (Euesden et al., 2015; Mullins et al., 2017). This is 

especially useful in under-powered studies where few genome-wide significant SNPs are 

available or only a small sample is used (Euesden et al., 2015). PRSice is a dedicated PRS 

software for deriving scores across multiple p-value thresholds (www.prsice.info) 

(Euesden et al., 2015). I conduct analysis using PRSice in Chapter 5.  

2.4 Linkage disequilibrium score regression 

A final method that I use in this PhD is LD score regression (Chapter 5). This method 

identifies genetic correlations and can be useful for capturing the relationship between 

broader liability for traits of interest after MR analysis, or to highlight potential causal 

relationships between complex traits for further investigation with MR (Bulik-Sullivan, 

Finucane, et al., 2015). Genetic correlations represent shared genetic aetiology of two 

phenotypes which can then be further investigated using MR to assess whether the 

association is due to pleiotropy or a causal effect (Gage, Davey Smith, et al., 2016; 

Pingault et al., 2018). An LD score estimate for a genetic correlation is equivalent to the 

gradient when the product of the GWAS estimates (z-score standardized) of each trait is 

plotted against the LD score of each SNP (the sum of each SNPs LD with all other tagged 

SNPs). A positive value indicates that genetic effects tend to be shared genome-wide. LD 

score regression can be run using GWAS summary data and is not biased by sample 

overlap (Bulik-Sullivan, Finucane, et al., 2015). Instead of focusing on genome-wide 

significant SNPs as in MR analysis or a lower p-value threshold like PRS analysis, this 

method uses genome-wide data and the effects of all SNPs. This is particularly useful for 

complex traits where many common genetic variants have a small effect and the number 

of SNPs that reach genome-wide significance is small. However, for exposures where 

genome-wide significant SNPs explain a large proportion of the variance, then analysing 

the genome-wide significant SNPs will have less noise and can be more powerful (Bulik-

Sullivan, Finucane, et al., 2015; Richardson et al., 2018). Furthermore, this method 

requires large sample sizes and a homogenous population in terms of ethnicity. 
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2.5 Chapter summary 

In this chapter, I have described the instruments, assumptions, and various methods of 

MR. If the assumptions discussed hold (with focus on the relevance, independence and 

exclusion restriction), MR allows for stronger inferences of causality for associations 

between an exposure and outcome than standard analytical approaches applied to 

observational data. This is because MR estimates can then be interpreted as free from 

confounding or reverse causation (Lawlor et al., 2008). Different variations of MR rely 

on some additional assumptions for this to be possible: IVW (all instruments are valid 

and NOME), MR-Egger (all instruments may be invalid if InSIDE assumptions holds and 

NOME), weighted median (that a subset are valid instruments) and MBE (that a subset 

are valid instruments and ZEMPA holds). I have further described LD score regression 

and types of PRS that are genetic epidemiological methods used to assess broader liability 

for a trait of interest. In the next chapter I will describe the data that I use when applying 

these methods (Chapter 3).  
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 Cohort descriptions 

3.1 Chapter overview 

This thesis uses publicly available genome wide summary level data as well as participant 

data from three cohorts: UK Biobank, The Avon Longitudinal Study of Parents and 

Children (ALSPAC), and the Norwegian Mother, Father and Child Cohort Study (MoBa). 

In this chapter, I will briefly describe the publicly available data sources and then 

describe each of the cohorts in turn. In combination, these data offer the opportunity to 

conduct MR by providing phenotypic and genetic data on a large number of participants. 

Such large sample sizes are necessary to detect the small effect sizes common in MR and 

other genetic methods (Gage, Jones, et al., 2016). 

3.2 Publicly available genome wide summary data 

GWAS data is necessary for all analyses in this thesis and I was only able to conduct this 

research because the authors of each GWAS released their data publicly. I downloaded 

the discovery data for each GWAS from the relevant website (see Table 3:1). Using 

estimates from the discovery sample is common in genetic studies as sample sizes are 

smaller for replication analysis and typically only the genome-wide significant SNP 

estimates are published from combined data. Age at menarche data are published on the 

Reproductive Genetics Consortium website. For educational attainment, number of 

children and age at first birth the data was downloaded from the Social Science Genetic 

Association Consortium (SSGAC) website. For Schizophrenia, I used data from the 

Psychiatric Genomics Consortium (PGC). Further details of these GWAS and how they 

are used in my analyses are provided in Table 3:1 and the relevant results chapter 

(Chapter 4 and Chapter 5).  



 

 

Table 3:1 Summary of GWAS used in thesis. 

Trait N Date SNPsa Website Reference Chapter 

Age at menarche 182 416 2014 123 www.reprogen.org/data_download.html (Perry et al., 2014) 4 

Age at menarche 329 345 2017 389 www.reprogen.org/data_download.html (Day et al., 2017) 4 

Age at first 

sexual 

intercourse 

125 667 2016 38 (N/A) 
(Day, Helgason, et 

al., 2016) 
4 

Schizophrenia 

36 989 cases and 

113 075 controls 

(35 123 cases and 109 657 

controls for Europeans only) 

2014 128 
www.med.unc.edu/pgc/results-and-

downloads 

(Schizophrenia 

Working Group of the 

Psychiatric Genomics 

Consortium, 2014) 

5 

Educational 

attainment 
293 793 2016 74 www.thessgac.org/data (Okbay et al., 2016) 5 

Number of 

children 
343 072 2016 

(N/A – used 

as outcome) 
www.thessgac.org/data (Barban et al., 2016) Appendix 

a SNPs that reached genome-wide significance (p<5×10-8) 



 

 

3.3 UK Biobank 

3.3.1 Overview and aim 

UK Biobank was established by the Medical Research Council and Wellcome Trust with 

the aim of identifying risk factors for human diseases in middle to older aged individuals 

(Allen, Sudlow, Peakman, & Collins, 2014; Collins, 2012). In order to do so, a wide 

range of measurements were collected, including questionnaire responses, physical 

measurements and biological samples to create this phenotypically rich data source (Allen 

et al., 2014; Collins, 2012). UK Biobank is a population-based prospective cohort and 

therefore a large sample size was needed due to low likelihood of participants developing 

a particular disease (Collins, 2012). Consequently, approximately 500 000 participants 

were recruited (Collins, 2012). Volunteers provided electronic signed consent and UK 

Biobank received ethics approval from the Research Ethics Committee (Allen et al., 

2014; Bycroft et al., 2018). UK Biobank is the largest sample used in this thesis. Further 

details and description are available on the website (www.ukbiobank.ac.uk) and in 

previous publications (Allen et al., 2012; Bycroft et al., 2018; Collins, 2012). Details of 

every available measure are provided at www.biobank.ndph.ox.ac.uk/showcase. Here I 

use the measures presented in Table 3:2, from data application number 6326. 

3.3.2 Participants 

Participants were invited if aged between 40 and 69 years during the recruitment period 

between 2006 and 2010, as well as being registered with the National Health Service and 

living within 25 miles of one of the 22 assessment centres across the UK (Allen et al., 

2014; Collins, 2012; Fry et al., 2017). UK Biobank therefore consists of mostly post-

reproductive participants within a population-based framework not selected on disease 

status. A total of 9.2 million individuals were invited with a response rate of less than 6% 

(Fry et al., 2017; Swanson, 2012).  

3.3.3 Data collection  

At the baseline assessment, participants completed a wide range of questionnaires related 

to their lifestyle, family and medical history as well as having blood samples taken (Allen 

et al., 2014). Repeat assessments for all baseline measures has been conducted on a subset 

of participants since (Allen et al., 2014). Participants also completed questionnaires using 

a computer and were allowed to click on various help prompts. In this thesis, I use data 

from the baseline assessment questionnaires, linkage to National Health Service medical 

records for schizophrenia diagnoses, and genetic data derived from blood samples. I use 

multiple measures from the baseline questionnaires and describe each in the relevant 
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results chapter (see Chapter 4 and 5 and Table 3:2). Below, I describe relevant methods 

pertaining to the genetic data that I use in this thesis. 

3.3.4 Genetic data 

Deoxyribonucleic acid (DNA) was extracted from the blood samples provided by 

participants at the baseline assessment and genotyping was conducted at the Affymetrix 

Research Services Laboratory (Bycroft et al., 2018). Genetic data for UK Biobank was 

released in two waves (May 2015 and July 2017) (Bycroft et al., 2018). The first release 

included ~150 000 participants genetic data (Bycroft et al., 2018). Of this first release, 

there were approximately 50 000 participants genotyped using the Applied Biosystems 

UK Biobank Lung Exome Variant Evaluation Axiom Array by Affymetrix array (Bycroft 

et al., 2018). The remaining participants of the first release and all participants of the 

second release were genotyped using the Applied Biosystems UK Biobank Axiom Array 

(~440 000 participants) (Bycroft et al., 2018). These arrays share 95% of markers 

(Bycroft et al., 2018). In total, the full release data contains 488 377 successfully 

genotyped samples.  

Full details of the imputation as well as the pre-imputation quality control checks are 

published elsewhere (Bycroft et al., 2018). Briefly, multiallelic SNPs or SNPs with MAF 

≤1% were removed. Imputation of genotypes was performed using a reference set of the 

UK10K haplotype and Haplotype Reference Consortium (HRC) (Howie, Marchini, & 

Stephens, 2011; Huang et al., 2015). The MRC IEU in-house team then restricted to 

autosomal variants within the HRC site list using stepwise filtering with changing 

imputation quality for different allele frequencies. This meant that rarer genetic variants 

were required to have a higher imputation info score with MAF and info scores 

recalculated within an in-house defined ‘European’ subset. The in-house ancestry 

restrictions consisted of those who self-report as ‘White British’ and who were shown to 

have similar ancestral backgrounds in a principal component analysis (PCA) (Bycroft et 

al., 2018). Estimated kinship coefficients identified 107 162 pairs of individuals (Bycroft 

et al., 2018; O’Connell et al., 2016) and in-house algorithms were applied to exclude 

individuals related to the greatest number of other individuals until no related pairs 

remain according to the algorithm. Individuals with sex-mismatch between genetic and 

reported sex or individuals with sex-chromosome aneuploidy were excluded. These in-

house quality control procedures have been described elsewhere (Mitchell, Hemani, 

Dudding, & Paternoster, 2017). 
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Table 3:2 Summary of measures used from UK Biobank data. 

Measure Question Chapter 

Age at first birth How old were you when you had your 

FIRST child? 

4, 5 

Number of sexual partners About how many sexual partners have 

you had in your lifetime? 

4, 5 

Age at last birth How old were you when you had your 

LAST child? 

4, 5 

Age when left education At what age did you complete your 

continuous full-time education? 

4 

Educational attainment in years 

(derived) 

Which of the following qualifications do 

you have? (You can select more than 

one) 

4, 5 

Alcohol intake About how often do you drink alcohol? 4 

Ever smoked Derived by UK Biobank using: Do you 

smoke tobacco now?; In the past, how 

often have you smoked tobacco? 

4, 5 

Risk-taking Would you describe yourself as someone 

who takes risks? 

4 

 

3.4 The Avon Longitudinal Study of Parents and Children (ALSPAC) 

3.4.1 Overview and aim 

ALSPAC is an ongoing population-based birth cohort that recruited 14 541 pregnancies 

in the greater Bristol area (Boyd et al., 2013; Fraser et al., 2013). An additional 

recruitment of children was later carried out, inviting those that were eligible to take part 

in the original effort, increasing the sample to 15,247 pregnancies (Boyd et al., 2013; 

Fraser et al., 2013). The aim of ALSPAC was to determine how genotype combines with 

environmental pressures to influence health and development and a wide range of 

measures has therefore been collected (Golding, Pembrey, & Jones, 2001). ALSPAC is 

described in detail in Boyd et al. (2013) and Fraser et al. (2013). These papers summarise 

the recruitment process, sample description, available data and measurement occasion. 

The ALSPAC website (www.bristol.ac.uk/alspac/), data dictionary 

(www.bristol.ac.uk/alspac/researchers/access/) and catalogue 

(www.variables.alspac.bris.ac.uk/) provide information on all available measures. 

In this thesis, I use data on both the mothers and the children of the index pregnancy. I 

will refer to the two generations as ALSPAC G0 for the mothers and ALSPAC G1 for the 

children (who are now adults). For a summary of measures used in this thesis, see Table 

3:3. Although not used here, data was also collected from the partners of ALSPAC G0 

and, more recently, the children of ALSPAC G1. Participants provided informed consent 
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and ethical approval was obtained from the ALSPAC Law and Ethics Committee and the 

Local Research Ethics committees.  

3.4.2 Participants 

Pregnant women living in Avon, United Kingdom were eligible if they were due to 

deliver between April 1, 1991, and December 31, 1992 (Boyd et al., 2013; Fraser et al., 

2013). Approximately 85% of invited women enrolled into the study (Pembrey, 2004). If 

a woman was pregnant more than once during the recruitment period, it was possible to 

participate on each occasion. 

3.4.3 Data collection 

Data has been collected through self-completed questionnaires and assessment at 

designated research clinics. Data were collected on a wide range of phenotypes including 

physical and mental health, environmental factors, demographics and biological markers. 

ALSPAC G0 completed multiple questionnaires throughout pregnancy and post-

pregnancy including information on themselves and their children and continue to do so. 

ALSPAC G1 were able to complete their own questionnaires during puberty if they 

wished to do so. Additionally, participants have attended clinics over the years where 

further assessments were carried out (see Boyd et al., 2013, and Fraser et al., 2013, for 

schedules of clinics). In this thesis, I use multiple phenotypic measures from various 

questionnaires and clinics, described in each results chapter (Chapter 4 and 5 and Table 

3:3). I further use genetic data from cord blood samples for both ALSPAC G0 and G1, as 

described below. 

3.4.4 Genetic data 

ALSPAC G0 were genotyped using the Illumina Human660W-quad array conducted at 

the Centre National de Genotypage. ALSPAC G1 were genotyped with the Illumina 

HumanHap550 quad array at the Wellcome Trust Sanger Institute, Cambridge, United 

Kingdom and the Laboratory Corporation of America, Burlington, United States. 

Centrally performed quality control procedures were conducted on the raw genome-wide 

data, similarly for ALSPAC G0 and ALSPAC G1. 

Participants were removed if there was a mismatch between genetic and reported sex, 

insufficient sample replication, minimal or excessive heterozygosity (0.34 and 0.36), 

disproportionate levels of individual missingness (>3%) or insufficient sample replication 

(identical by descent (IBD) < 0.8). Removal of SNPs was based on MAF < 0.01, SNP call 

rate < 0.95, individual call rate < 0.97, imputation info score < 0.80 and Hardy-Weinberg 
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equilibrium (HWE) p< 5x10-7 for G1 and p< 5x10-6 for G0. Cryptic relatedness was also 

measured (proportion of IBD>0.1 for G1 and >0.125 for G0). Population structure was 

assessed using multidimensional scaling of genome-wide identity by state pairwise 

distances using the four Haplotype map (HapMap) populations as a reference and 

samples showing evidence of population structure were excluded. Non-European 

individuals were removed. A total of 9048 for G0 and 9115 for G1 with 500 527 and 526 

688 SNPs passed these quality controls and were included in phasing and imputation 

(Taylor et al., 2018). Genotype data for G0 and G1 were combined and then SNPs with 

genotype missingness above 1% (11 396 SNPs) were removed due to poor quality. 

Additionally, 321 participants with ID mismatches across G0 and G1 were removed. 

From this, 17 842 participants remained. Imputation of the target data was performed 

using the 1000 genomes reference panel (Phase 1, Version 3). There was 8237 eligible 

from G1 and 8,196 eligible from G0 with available genotype data after exclusion of 

related subjects, using cryptic relatedness measures described, that remained for genetic 

analysis (Taylor et al., 2018). 

Table 3:3 Summary of measures used from ALSPAC data. 

Measure Question Assessed at 

G0   

Parity at 85 months 

post index child 

Derived using: How many times have you been 

pregnant altogether before 

this time?; Since your study child was born, 

how many times have you been 

pregnant? 

18 weeks 

gestation; 85 

months post 

index child 

Parity at 18 years post 

index child 

Derived using: How many times have you been 

pregnant altogether before 

this time?; Since your study child was born, 

how many times have you been 

pregnant?; Since your study teenager's 7th 

birthday, how many times have you been 

pregnant? 

18 weeks 

gestation; 85 

months post 

index child; 18 

years post 

index child 

Age at first pregnancy How old were you when you became pregnant 

for the very first time? 

18 weeks 

gestation 

Previous termination Have you ever had any abortions or 

terminations? 

18 weeks 

gestation 

Covariables   

Education Derived by ALSPAC using: What educational 

qualifications do you have? Please tick all that 

apply. 

32 weeks 

gestation 

Ever smoked Have you ever been a smoker? 18 weeks 

gestation 

Age at index delivery Derived by ALSPAC using date of birth  N/A 

G1   
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Number of sexual 

partners 

Altogether, in your life so far, how many 

people have you had sexual intercourse with? 

21 years old; 

23 years old 

Had child Derived using an ALSPAC measure for 

number of children in relation to: Date of birth 

of first child; Date of birth of fourth child 

21, 22 years 

and 23 years 

old 

Covariables   

Ever smoked Have you ever smoked a whole cigarette? 23 years old 

Note: ALSPAC data was only used in Chapter 5. Responses for G0 education were 1) 

certificate of secondary education, 2) vocational, 3) O level, 4) A level, 5) degree. 

 

3.5 Norwegian Mother, Father and Child Cohort Study (MoBa) 

3.5.1 Overview and aim 

MoBa is a prospective population-based pregnancy cohort study conducted by the 

Norwegian Institute of Public Health and planned in the 1990s (Magnus 2006; 2016). The 

initial aim of the study was to detect causes of disease through investigating various risk 

factors however the aims have been widened since the study’s conception (Rønningen et 

al., 2006). Recruitment for pregnant women was between 1999 and 2008 and data is still 

being collected. More than 95 200 mothers, 75 200 fathers and 114 500 children have 

participated. Throughout this thesis, I used data from the mothers only (see Table 3:4 for 

summary). Informed consent was obtained from each MoBa participant upon recruitment. 

The study was approved by The Regional Committee for Medical Research Ethics in 

South-Eastern (or other, if applicable) Norway. Full details are available in Magnus et al. 

(2016, 2006) and on the study’s website (www.fhi.no/en/studies/moba/). 

3.5.2 Participants 

There were no exclusion criteria for recruitment and all pregnant women in Norway were 

therefore eligible to participate, although the questionnaires were only available in 

Norwegian (Magnus et al., 2016, 2006). Participants were recruited from all over Norway 

and 50, out of a total of 52, hospitals with maternity units were involved by the end of the 

recruitment period. A postal invitation was sent to the mother and father prior to their 

routine ultrasound examinations at approximately 17 weeks gestation (Magnus et al., 

2016, 2006). If a woman was pregnant more than once during the recruitment period, it 

was possible to participate on each occasion. Approximately 41% of those invited then 

enrolled into the study.  
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3.5.3 Data collection 

This thesis is based on version 11 of the quality-assured data files and uses data from the 

first questionnaire sent to mothers, at 13-17 weeks gestation. This questionnaire related to 

previous pregnancies, medical history and medication, occupation, exposures in the work 

place and home, lifestyle habits and mental health (Magnus et al., 2006). As this was the 

first distributed questionnaire, there was little attrition, with 95% of mothers providing 

responses (Magnus et al., 2006).  

In addition to questionnaire data, variables are available through data linkage to 

mandatory health registries in Norway. For every birth in Norway above 16 weeks 

gestation, a medical record is sent to the Medical Birth Registry Norway (MBRN) 

(Magnus et al., 2006). All MBRN records for the participants of MoBa are available, 

regardless of the number of questionnaires completed. Data from the MBRN was used in 

this thesis. 

A blood sample was taken from participating mothers and fathers at the ultrasound 

assessment. More than 90% of fathers accompany their partner to the examination. At the 

birth, a blood sample was taken from the umbilical cord for mother and child. Blood 

samples were sent to a central biobank for genotyping (described below). Again, for this 

thesis, only the mother’s genetic data was used.  

3.5.4 Genetic data 

As part of the HARVEST project, that includes other Norwegian cohorts, 11 000 

randomly selected trios (mother, father and child) were genotyped from MoBa (Magnus 

et al., 2016). Individuals were only genotyped if they met these additional inclusion 

criteria: singletons, live births, linked with the MBRN and that mothers had completed 

the first questionnaire. Data has been deleted for participants who withdrew consent 

following genotyping. Genotyping was conducted using the Illumina Human Core Exome 

Beach Array and performed at the Norwegian University of Science of Technology 

Genotyping Core Facility. Two versions of the genotype array were used due to one 

version being discontinued during the genotyping period (termed MoBa12 and MoBa24). 

A batch effect was identified on MoBa12 (termed MoBa12-A and MoBa12-B) and I 

therefore adjust for the equivalent of 3 genotype arrays in all analysis.  

Information on the centrally performed quality checks, performed separately for each 

genotype array, are described on the MoBa website (www.fhi.no/en/op/data-access-from-

health-registries-health-studies-and-biobanks/data-from-moba/genetic-data-from-the-
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norwegian-mother-and-child-cohort-study-mobagenetics/). Here, I use individuals from 

the ‘core quality-controlled sample’ of these quality checks (around 9400 mothers). These 

were identified as high-quality and ethnically homogenous samples (the HARVEST 

dataset is primarily ethnic Norwegians with approximately 5% from other ethnic 

backgrounds). High-quality samples were identified by genotyping call rate (below 95% 

and autosomal markers below 98%), relatedness (defined by IBD above 0.01 accumulated 

and overall IBD above 10%), and detection of ethnic outliers by PCA using HapMap 

samples. Filters for the markers included: genotyping call rate, HWE (p<0.0001), MAF 

(<5%), removal of ambiguous markers (A/T and C/G), removal of regions with high LD, 

and pruning. I conducted additional quality checks on just the mother’s samples that I was 

using, ensuring that imputation quality was >0.8, MAF>0.05, SNP missingness <0.1, 

individual missingness <0.1 and HWE p>5×10-6.  

Table 3:4 Summary of measures used from MoBa data. 

Measure Question 

Age at first birth 

Age at first pregnancy 

Previous termination 

For all earlier pregnancies. Include all pregnancies that 

ended in abortion, miscarriage or stillbirth as well as 

ectopic pregnancies. State the year the pregnancy 

began, how many kilos you gained during the 

pregnancy and the number of months you breast-fed 

each baby. State whether or not you smoked during 

earlier pregnancies. 

Parity Derived by the MBRN 

Treated infertility Have you ever been treated for infertility? 

Relationship length How long have you and the baby’s father had a sexual 

relationship? 

Pregnancy planned Was this pregnancy planned? 

Contraception was used Did you become pregnant even though you or your 

partner used contraceptives? 

Covariables 
 

Age at index delivery Derived by MoBa using date of birth 

Education What education do you have? (Enter a cross indicating 

the highest level of education you have completed and 

current studies if you are still studying.) 

Ever smoked Have you ever smoked? 

Note: MoBa data was only used in Chapter 5. Responses for education were 1) 9-year 

secondary school, 2) 1-2 year high school, 3) Technical high school, 4) 3-year high 

school general studies, junior college, 5) Regional technical college, 4-year university 

degree (Bachelor’s degree, nurse, teacher, engineer), 6) University, technical college, 

more than 4 years (Master’s degree, medical doctor, PhD) 
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3.6 Chapter summary 

In this chapter, I have provided an overview of the data sources that I use in this thesis. 

These sources included publicly available genome wide summary level data as well as 

participant data from UK Biobank, ALSPAC, and MoBa. In the following two chapters, I 

will implement the methods from Chapter 2 using these data to investigate life history 

theory (Chapter 4) and the schizophrenia paradox (Chapter 5). 
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 Life History Theory: the effects of age at 

menarche and first sexual intercourse on reproductive and 

behavioural outcomes 

This chapter is based on the publication below 

Lawn, R. B., Sallis, H. M., Wootton, R. E., Taylor, A. E., Demange, P., Fraser, A., 

Penton-Voak, I. S., & Munafò, M. R. (2019). The effects of age at menarche and first 

sexual intercourse on reproductive and behavioural outcomes: a Mendelian randomization 

study. bioRxiv; doi: https://doi.org/10.1101/423251. 

4.1 Background and chapter overview 

In this chapter, I applied MR methods to investigate components of life history theory. 

Life history theory is characterized as a meta-theory and can therefore not be tested in its 

entirety but can generate testable predictions (Ketelaar & Ellis, 2000; Nettle & 

Frankenhuis, 2019). The literature on life history theory has become increasingly large 

and fragmented in recent years (Nettle & Frankenhuis, 2019). The most commonly tested 

prediction is that early life adversity is associated with earlier age at menarche and other 

reproductive traits. There is substantial variation in the timing of significant reproductive 

life events such as menarche and first sexual intercourse and life history theory explains 

this variation as an adaptive response to the developmental environment (Belsky et al., 

1991). In environments characterized by harsh conditions, adopting a fast life history 

strategy, characterized by short term goals (e.g., earlier puberty and age at first child), 

may increase fitness (Belsky et al., 1991; Simpson et al., 2012). In line with this, there is 

evidence demonstrating that greater childhood adversity is associated with earlier age at 

menarche and age at first sexual intercourse (Carlson, Mendle, & Harden, 2014; Ellis, 

2004; Henrichs et al., 2014; Magnus et al., 2018; Mishra, Cooper, Tom, & Kuh, 2009; 

Simpson et al., 2012).  

It is also important to examine how traits within life history strategies affect each other, 

especially when traits such as age at first sexual intercourse may be modifiable via policy 

and environmental changes. I therefore examine another part to life history theory, that 

early menarche and sexual intercourse (markers or results of exposure to early life 

adversity) affect reproductive strategies to increase fitness in certain environments. 

Earlier age at menarche and age at first sexual intercourse can therefore be viewed as 

directing effort towards reproductive goals as part of a fast life history strategy. In line 

with this, I predict earlier menarche and age at first sexual intercourse to be causal 
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components of a suite of adaptations where the future is discounted relative to the present 

and effort is directed towards short-term reproductive goals and increased risky behaviour 

(Day, Helgason, et al., 2016; Ellis & Bjorklund, 2012). For example, short-term 

reproductive goals may include earlier age at first birth, earlier age at last birth, a shorter 

reproductive period, increased number of sexual partners and number of children, and 

less likelihood of being childless. Increased risky behaviour could manifest as increased 

likelihood of smoking and alcohol consumption in the modern day. On the other hand, 

investing in education, despite being evolutionarily novel, can be seen as a slow life 

history trait with delayed benefits. 

Life history theory has previously been investigated in humans using standard analytical 

approaches applied to observational data as it is not possible to manipulate developmental 

environments (Nettle et al., 2012; Richardson et al., 2018). As discussed in Chapter 1, it 

is possible to apply MR to investigate causal associations even when it is impossible to 

manipulate reproductive timings such as age at menarche and age at first sexual 

intercourse. In this chapter, I therefore applied MR to investigate whether there is a causal 

effect of variation in age at menarche and age at first sexual intercourse on outcomes 

related to reproduction, education and risky behaviour within a life history framework.  

For this, I used instruments for age at menarche (and a separate instrument for age at first 

sexual intercourse) and UK Biobank data to independently investigate the effects of age 

at menarche and age at first sexual intercourse on several evolutionary relevant outcomes 

(see Figure 4:1).  

A previous study that included a sub-sample of participants from UK Biobank showed a 

causal effect of earlier age at menarche on earlier age at first birth, earlier age at last birth, 

earlier age at leaving education, increased alcohol intake, lower likelihood of being 

childless, greater number of children (in combined sexes) and decreased likelihood of 

remaining in education after 16 years (Day, Helgason, et al., 2016). Additionally, earlier 

age at first sexual intercourse was causally related to earlier age at first birth, a greater 

number of children, increased likelihood of being an ever smoker, and decreased 

likelihood of attaining a degree. These findings suggest causal relationships between 

traits that characterize a life history strategy and support evolutionary explanations of 

variation in age at menarche and first sexual intercourse. I extend this work by using the 

full release of UK Biobank data (N = 114 883–181 255) and a suite of novel methods to 

more robustly test for horizontal pleiotropy, which would violate one of the key 

assumptions of MR (see Chapter 2 for details).  
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Figure 4:1 Diagram representing MR analyses in this chapter. An example confounder in 

this case may be socioeconomic status which could be a common cause of age at 

menarche (James-Todd, Tehranifar, Rich-Edwards, Titievsky, & Terry, 2010; Mishra et 

al., 2009) and outcomes such as smoking status (Hiscock, Bauld, Amos, Fidler, & 

Munafò, 2012). 

 

4.2 Methods 

4.2.1 Exposure instruments 

For the age at menarche instruments, I used independent SNPs associated with age at 

menarche (p<5×10-8) from two GWAS separately (Day et al., 2017; Perry et al., 2014). 

The first identified 123 SNPs and explained approximately 3% of the observed variance 

in age at menarche (N = 182 416) (Perry et al., 2014). The second identified 389 SNPs 

which explained about approximately 7% of the variance (N = 329 345) (Day et al., 

2017). I checked that there were no palindromic SNPs with MAF around 0.5 to ensure 

there were no issues with strand mismatches. I further used SNiPA (Arnold, Raffler, 

Pfeufer, Suhre, & Kastenmüller, 2015) with an LD threshold of 0.2 to check SNP 

independence. One of the 123 SNPs was removed due to high instability in its estimates. 

This resulted in 116 and 305 SNPs as instruments for age at menarche that were available 

in UK Biobank, excluding compound and tricyclic SNPs. The mean F statistic, indicating 

the strength of the instrument, was 60.98 for the 116 SNP instrument and 64.95 for the 

305 SNP instrument. Mean differences and SEs for these SNPs and age at menarche 

associations in the GWAS discovery samples were recorded for each instrument and 

these became the exposure for age at menarche (see Appendix 1 and Appendix 2).  
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For the instrument of age at first sexual intercourse, I used independent SNPs associated 

with age at first sexual intercourse (p<5×10-8) (Day, Helgason, et al., 2016) in both males 

and females. I recorded these GWAS associations, as done so for age at menarche, to be 

used as the instrument for age at first sexual intercourse (see Appendix 3). I used effect 

estimates identified in the pooled sex GWAS to increase statistical power. Of the 33 

SNPs for the instrument of age at first sexual intercourse, there were 23 SNPs available in 

UK Biobank. These 23 SNPs passed all checks described above for age at menarche. The 

mean F statistic for the instrument was 39.22. 

4.2.2 Outcomes 

The outcome measures included were: age at first birth, age at last birth, reproductive 

period, number of children, childlessness, ever smoked, educational attainment in years, 

age when left education, alcohol intake, risk-taking and number of sexual partners for 

those that indicated they had had sex. These measures were derived similarly to previous 

research (Day, Helgason, et al., 2016; Okbay et al., 2016). I re-coded data as missing if 

age at first sexual intercourse was younger than age at menarche; if age at leaving 

education was answered as having never attended school; at the 99.99th percentile for 

number of children; at the 99.99th percentile for number of sexual partners. Reproductive 

period was derived as the difference between age at last birth and age at first birth for 

those that had more than one child. To account for non-normal or categorical data, I 

included binary measures of childlessness (childlessness coded as 1). I also included a 

measure for ever smoked (coded as 1 if participants had ever smoked in questions ‘Do 

you smoke tobacco now?’ or ‘In the past, how often have you smoked tobacco?’). 

Alcohol intake was a categorical variable indicating ‘never’ (coded as 6), ‘special 

occasions only’, ‘one to three times a month’, ‘once or twice a week’, three to four times 

a week’ and ‘daily or almost daily’ (coded as 1). Risk-taking was measured as ‘yes’ 

(coded as 1) or ‘no’ responses to ‘Would you describe yourself as someone who takes 

risks?’. Only females were used for all outcome data.  

4.2.3 Data analysis 

The exposure associated SNPs described above were extracted from UK Biobank to 

derive SNP-outcome associations for the outcome data. Extraction was done using 

PLINK (v2.00) and best guess algorithms for determining alleles (further genotyping 

information in Chapter 3). Data were harmonized to ensure that the effect of the SNP on 

the exposure and the SNP on the outcome corresponded to the same allele. The age 

increasing allele was used in order to conduct MR analyses and results were then reversed 

to report the effect of earlier age at menarche and first sexual intercourse. To derive the 
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SNP-outcome associations for the outcome data, regressions were adjusted for birth year 

and the top 10 genetic principal components of population structure. In sensitivity 

analysis, I additionally adjusted SNP-outcome associations for genotype array. 

I used the 116 SNPs for age at menarche (Perry et al., 2014) for the main analysis as this 

GWAS did not include any UK Biobank data. For the 305 SNP instrument which 

includes some individuals from the UK Biobank (Day et al., 2017), I calculated SNP-

outcome associations and conducted analysis using outcome data from a UK Biobank 

sub-sample that did not overlap with the age at menarche GWAS. However, allocation 

into these sub-samples is related to smoking status (Wain et al., 2015) and division is 

therefore similar to stratifying on smoking. As smoking may be a collider (i.e., a common 

effect of the exposure and outcome) in this analysis then this stratification could introduce 

bias (see Chapter 5 for further discussion). I therefore also derived SNP-outcome 

estimates and conducted analysis for the 305 SNP age at menarche instrument using the 

full UK Biobank sample, which will suffer from bias towards the observational estimate 

due to sample overlap with the GWAS of the exposure (Burgess, Davies, & Thompson, 

2016). It is also not possible to assess the suitability of one MR method, MR-Egger, with 

sample overlap as the suitability value (the I2
GX value) cannot be reliably measured.  

The age at first sexual intercourse GWAS (Day, Helgason, et al., 2016) was conducted 

solely in a sub-sample of UK Biobank data and I therefore conducted an unweighted 

analysis due to this sample overlap, using a fixed effects meta-analysis method. I 

conducted a fixed-effects meta-analysis of the SNP-outcome estimates in the full UK 

Biobank sample in addition to MR analysis in the non-overlapping sub-sample of UK 

Biobank. This fixed effects meta-analysis was only conducted for age at first sexual 

intercourse and not also for age at menarche. This fixed-effects meta-analysis is 

equivalent to performing an unweighted allele score analysis (Gill et al., 2018) and 

suffers from less bias than a weighted analysis with overlapping samples as it reduces the 

problem of overfitting and the estimate is therefore similar to one derived from distinct 

samples (Richardson et al., 2018). The units for this fixed effect meta-analysis therefore 

differs to the other MR methods as it is per increase in the number of effect alleles.  

As discussed in Chapter 2, SNP-exposure and SNP-outcome data (i.e., SNP-exposure and 

SNP-outcome associations) were combined using IVW, weighted median, MBE and MR-

Egger regression approaches. In addition to these analyses, I conducted Radial MR and a 

leave-one-out analysis for age at first sexual intercourse which helps to identify outlier 
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SNPs (see Chapter 2 for details) (Bowden et al., 2018). For binary outcomes, all MR 

results were transformed to odds ratios (ORs) by exponentiating them.  

I calculated Cochran’s Q for these IVW analyses to examine if effects differ across 

genetic variants (Davies, Holmes, et al., 2018). I further calculated the I2
GX to assess the 

suitability of MR-Egger where above 0.9 is desired (Bowden, Fabiola Del Greco, et al., 

2016).  

Lastly, in an attempt to account for potential pleiotropic effects of age at menarche SNPs 

with BMI, age at menarche analysis using the 116 SNP instrument was repeated after 

removing SNPs associated with BMI at p<5×10-8  (Gill et al., 2018; Locke, Kahali, 

Berndt, Justice, & Pers, 2015; Sequeira et al., 2017). This resulted in 9 SNPs being 

removed: rs10938397, rs12446632, rs2947411, rs3101336, rs543874, rs7103411, 

rs7138803, rs7514705, rs8050136.  

4.3 Results 

4.3.1 Descriptives 

Mean age in the UK Biobank sample was 57 years (standard deviation (SD): 7.91). Mean 

age at menarche and first sexual intercourse were 13 years (SD: 1.60) and 19 years (SD: 

3.44), respectively. Further sample characteristics are given in Table 4:1. 
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Table 4:1 Participant characteristics of UK Biobank sample. 

  Total N Mean (SD) or N (%) 

Age at assessment, years 181 358 56.67 (7.91) 

Age at menarche, years 176 262 12.95 (1.60) 

Age at first sex, years 154 599 19.02 (3.44) 

Age first birth, years 124 093 25.39 (4.54) 

Age last birth, years 123 926 30.15 (4.80) 

Reproductive period, years 123 892 4.76 (3.65) 

Number of sexual partners 149 902 4.63 (6.99) 

Number of children 181 247 1.81 (1.15) 

Childlessness 

181 255 
 

     Yes  33 242 (18.34) 

     No 148 013 (81.66) 

Age when left education, years 124 279 16.63 (2.03) 

Educational attainment, years 179 731 13.05 (4.32) 

Alcohol intake 

181 233 

 
     Daily or almost daily 30 918 (17.06) 

     Three or four times a week 39 346 (21.71) 

     Once or twice a week 47 864 (26.41) 

     One to three times a month 23 723 (13.09) 

     Special occasions only 25 101 (13.85) 

     Never 14 281 (7.88) 

Ever smoked 

180 751 
 

    Yes 101 112 (55.94) 

     No 79 639 (44.06) 

Risk-taking 

174 718 
 

     Yes  31 973 (18.30) 

     No 142 745 (81.70) 

 

4.3.2 Age at menarche 

Further details of the instruments are provided in Table 4:2. Cochran’s Q values indicate 

that most measures show evidence for overdispersion, although the dispersion appeared 

balanced when plotted (see Appendix 4 and Appendix 5). The age at menarche 305 SNP 

instrument in Table 4:2 is for the non-overlapping UK Biobank sample. For the age at 

menarche instruments, the I2
GX values indicate that MR-Egger regression is appropriate.  
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Table 4:2 Estimates for the I2
GX and Cochran’s Q 

  Age at menarche Age at first sexual 

intercourse   116 SNPs 305 SNPs 

Unweighted I2
GX 0.9 0.9 0.6 

  Q p Q p Q p 

Reproduction       

Age first birth 323.47 <0.001 575.69 <0.001 52.01 <0.001 

Age last birth 273.22 <0.001 402.69 <0.001 41.96 0.01 

Reproductive period 139.87 0.06 347.55 0.04 33.28 0.06 

Number of sexual 

partners 
178.63 <0.001 466.96 <0.001 23.87 0.35 

Number of children 203.17 <0.001 414.35 <0.001 52.18 <0.001 

Childlessness 187.30 <0.001 413.68 <0.001 53.89 <0.001 

Education        

Age when left education 233.24 <0.001 442.82 <0.001 33.27 0.06 

Educational attainment 

in years 
259.91 <0.001 468.65 <0.001 30.53 0.11 

Risky behaviours       

Alcohol intake 268.60 <0.001 565.41 <0.001 28.07 0.17 

Ever smoked 227.40 <0.001 561.59 <0.001 67.12 <0.001 

Risk-taking 146.57 0.03 392.27 <0.001 38.48 0.02 

 

Using the 116 SNP instrument for age at menarche, there was consistent evidence of a 

causal effect of earlier age at menarche on earlier age at first birth across all MR methods. 

There was some evidence of an effect of earlier age at menarche on earlier age at last 

birth and all MR methods showed point estimates in a consistent direction. There was no 

clear evidence of an effect of age at menarche on duration of reproductive years, number 

of children, or number of sexual partners, and little evidence for an effect on likelihood of 

being childless with results showing confidence intervals consistent with the null and 

inconsistency for the direction of point estimates across MR methods. These results are 

presented in Table 4:3 and Table 4:4.  
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Table 4:3 Estimates of the causal effect of earlier age at menarche (116 SNP instrument) on life history outcomes using full UK Biobank data. 

   
IVW MR-Egger regression Weighted median 

Weighted 

MBE 

  
N  

β or OR 

(95% CI) 
p 

β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

Reproduction          

Age first birth 
115070 - 

124093 

-0.256 

(-0.342, -0.171) 
<0.001 

-0.260 

(-0.522, 0.002) 
0.05 

-0.325 

(-0.471, -0.178) 
<0.001 

-0.362 

(-0.722, -0.002) 
0.05 

Age last birth 
114916 - 

123926 

-0.235 

(-0.325, -0.144) 
<0.001 

-0.208 

(-0.487, 0.07) 
0.14 

-0.241 

(-0.391, -0.091) 
0.002 

-0.225 

(-0.515, 0.066) 
0.13 

Reproductive period 
114883 - 

123892 

0.018 

(-0.053, 0.088) 
0.62 

0.040 

(-0.175, 0.255) 
0.71 

0.015 

(-0.09, 0.12) 
0.78 

-0.076 

(-0.335, 0.184) 
0.57 

Number of sexual partners 
138920 - 

149902 

-0.052 

(-0.171, 0.067) 
0.39 

0.094 

(-0.27, 0.459) 
0.61 

-0.030 

(-0.235, 0.175) 
0.77 

-0.010 

(-0.423, 0.403) 
0.96 

Number of children 
168050 - 

181247 

-0.016 

(-0.034, 0.002) 
0.09 

0.023 

(-0.033, 0.078) 
0.42 

-0.022 

(-0.052, 0.007) 
0.14 

0.020 

(-0.042, 0.082) 
0.53 

Childlessness 
168058 - 

181255 

1.060 

(1.017, 1.105) 
0.01 

0.987 

(0.869, 1.121) 
0.84 

1.047 

(0.978, 1.121) 
0.18 

1.038 

(0.905, 1.192) 
0.59 

Education           

Age when left education 
115204 - 

124279 

-0.062 

(-0.100, -0.024) 
0.002 

-0.153 

(-0.27, -0.036) 
0.01 

-0.095 

(-0.158, -0.031) 
0.004 

-0.126 

(-0.283, 0.031) 
0.12 

Educational attainment in years 
166640 - 

179731 

-0.072 

(-0.139, -0.005) 
0.04 

-0.237 

(-0.443, -0.03) 
0.03 

-0.128 

(-0.253, -0.003) 
0.05 

-0.246 

(-0.487, -0.005) 
0.05 

Risky behaviours          

Alcohol intake 
168039 - 

181233 

0.059 

(0.035, 0.083) 
<0.001 

-0.030 

(-0.103, 0.044) 
0.43 

0.035 

(-0.007, 0.077) 
0.10 

0.007 

(-0.075, 0.089) 
0.86 
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Ever smoked 
167584 - 

180751 

1.002 

(0.970, 1.034) 
0.92 

1.015 

(0.921, 1.121) 
0.76 

0.994 

(0.942, 1.049) 
0.83 

1.035 

(0.924, 1.16) 
0.55 

Risk-taking 
161994 - 

174718 

0.989 

(0.949, 1.032) 
0.61 

1.092 

(0.96, 1.242) 
0.18 

0.984 

(0.916, 1.058) 
0.67 

0.979 

(0.832, 1.153) 
0.81 

Note: CI: confidence interval 

 

Table 4:4 MR-Egger intercept values for age at menarche (116 SNP instrument) on life history outcomes using full UK Biobank data. 

  MR-Egger intercept 

 β or OR 95% CI p  

Reproduction      
Age first birth 0.0002 -0.011, 0.012 0.98 

Age last birth -0.001 -0.013, 0.011 0.84 

Reproductive period -0.001 -0.011, 0.008 0.82 

Number of sexual partners -0.007 -0.023, 0.009 0.40 

Number of children -0.002 -0.004, 0.001 0.15 

Childlessness 1.003 0.998, 1.009 0.24 

Education      
Age when left education 0.004 -0.001, 0.009 0.11 

Educational attainment in years 0.008 -0.001, 0.017 0.10 

Risky behaviours     
Alcohol intake 0.004 0.001, 0.007 0.01 

Ever smoked 0.999 0.995, 1.004 0.77 

Risk-taking 0.995 0.990, 1.001 0.11 
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For educational outcomes, there was evidence of an effect of earlier age at menarche on 

lower educational attainment and age at leaving education across most MR methods and 

consistent point estimates for all MR methods (see Table 4:3 and Table 4:4). Alcohol 

intake appeared to decrease with earlier age at menarche, but the MR-Egger intercept 

indicated directional horizontal pleiotropy (p = 0.013), suggesting that this effect does not 

remain when horizontal pleiotropy is accounted for (see Table 4:3 and Table 4:4). No 

clear evidence was found for effects of age at menarche on having ever smoked or risk-

taking behaviour although these measures were binary and hence there was less statistical 

power to detect effects (see Table 4:3).  

After removing SNPs also associated with BMI (Gill et al., 2018; Locke et al., 2015) 

from the genetic risk score, results were broadly similar to the main analysis although 

MR-Egger regression analysis showed decreased estimates and for many outcomes the p-

values increased. This could be due to eliminating a possible pathway via BMI and/or 

reduced statistical power as a result of using fewer SNPs (see Table 4:5 and Table 4:6). 

Note that for this age at menarche instrument after removal of BMI associated SNPs, the 

I2
GX statistic was 0.9 and the mean F statistic was 61.07. 

I repeated analyses using the 305 SNP instrument for age at menarche. Results were 

broadly similar to the main analysis (using the 116 SNP instrument) (see Table 4:7, 

Table 4:8, Table 4:9, and Table 4:10). There was slight increased evidence for an effect 

on number of sexual partners, ever smoked and childlessness. This analysis suffers from 

greater bias as it is uses a sub-sample of UK Biobank (described briefly above and further 

in Chapter 5) or alternatively, when using the entire UK Biobank sample in analyses, it 

results in overlap between the exposure and outcome datasets which has shown to bias 

results towards the observational estimate (Burgess et al., 2016). 
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Table 4:5 Estimates of the causal effect of earlier age at menarche (116 SNP instrument) on life history outcomes using full UK Biobank data excluding SNPs 

associated with BMI at p<5×10-8 (9 SNPs excluded). 

  IVW MR-Egger regression Weighted median MBE 

 
N 

β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

Reproduction          

Age first birth 

115070 - 

124093 

-0.244 

(-0.333, -0.155) 
<0.001 

-0.215 

(-0.479, 0.049) 
0.11 

-0.323 

(-0.470, -0.176) 
<0.001 

-0.356 

(-0.703, -0.009) 
0.05 

Age last birth 

114916 - 

123926 

-0.225 

(-0.319, -0.130) 
<0.001 

-0.188 

(-0.469, 0.093) 
0.19 

-0.231 

(-0.394, -0.068) 
0.01 

-0.205 

(-0.500, 0.089) 
0.17 

Reproductive 

period 

114883 - 

123892 

0.015 

(-0.058, 0.087) 
0.70 

0.016 

(-0.201, 0.232) 
0.89 

0.013 

(-0.100, 0.126) 
0.82 

-0.074 

(-0.328, 0.180) 
0.57 

Number of sexual 

partners 

138920 - 

149902 

-0.084 

(-0.208, 0.039) 
0.18 

0.101 

(-0.266, 0.469) 
0.59 

-0.030 

(-0.231, 0.170)  
0.77 

0.016 

(-0.397, 0.428) 
0.94 

Number of 

children 

168050 - 

181247 

-0.019 

(-0.038, -0.0003) 
0.05 

0.016 

(-0.040, 0.072) 
0.58 

-0.023 

(-0.054, 0.008) 
0.15 

0.018 

(-0.044, 0.080) 
0.57 

Childlessness 

168058 - 

181255 

1.065 

(1.020, 1.112) 
0.004 

0.994 

(0.874, 1.130) 
0.93 

1.048 

(0.978, 1.122) 
0.19 

1.034 

(0.898, 1.189) 
0.64 

Education          

Age when left 

education 

115204 - 

124279 

-0.061 

(-0.101, -0.021) 
0.003 

-0.129 

(-0.247, -0.011) 
0.03 

-0.102 

(-0.165, -0.040) 
0.002 

-0.126 

(-0.285, 0.033) 
0.12 

Educational 

attainment  

166640 - 

179731 

-0.086 

(-0.156, -0.016) 
0.02 

-0.242 

(-0.451, -0.034) 
0.02 

-0.131 

(-0.254, -0.009) 
0.04 

-0.232 

(-0.475, 0.012) 
0.07 

Risky behaviours          

Alcohol intake 

168039 - 

181233 

0.050 

(0.025, 0.075) 
<0.001 

-0.041 

(-0.115, 0.034) 
0.28 

0.020 

(-0.022, 0.062) 
0.34 

0.006 

(-0.077, 0.089) 
0.88 

Ever smoked 

167584 - 

180751 

0.982 

(0.950, 1.015) 
0.28 

0.995 

(0.901, 1.098) 
0.91 

0.983 

(0.931, 1.037) 
0.53 

0.966 

(0.864, 1.080) 
0.54 

Risk-taking 

161994 - 

174718 

0.985 

(0.943, 1.029) 
0.49 

1.075 

(0.944, 1.225) 
0.27 

0.983 

(0.911, 1.062) 
0.66 

0.979 

(0.835, 1.149) 
0.80 
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Table 4:6 MR-Egger intercept values for age at menarche (116 SNP instrument) on life history outcomes using full UK Biobank data and excluding SNPs 

associated with BMI at p<5×10-8 (9 SNPs excluded). 

 MR-Egger intercept 

  β or OR 95% CI p 

Reproduction     
Age first birth -0.001 -0.013, 0.010 0.82 

Age last birth -0.002 -0.014, 0.011 0.78 

Reproductive period -0.0001 -0.010, 0.010 0.99 

Number of sexual partners -0.009 -0.025, 0.008 0.29 

Number of children -0.002 -0.004, 0.001 0.19 

Childlessness 1.003 0.998, 1.009 0.26 

Education     

Age when left education 0.003 -0.002, 0.008 0.23 

Educational attainment  0.007 -0.002, 0.016 0.12 

Risky behaviours     

Alcohol intake 0.004 0.001, 0.008 0.01 

Ever smoked 0.999 0.995, 1.004 0.79 

Risk-taking 0.996 0.990, 1.002 0.16 

 

  



 

76 

 

Table 4:7 Estimates of the causal effect of earlier age at menarche (305 SNP instrument) on life history outcomes using non-overlapping UK Biobank data. 

  IVW MR-Egger regression Weighted Median MBE 

  
N 

β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

Reproduction 

Age first birth 

75469 - 

90503 

-0.286 

(-0.361, -0.211) 
<0.001 

-0.342 

(-0.540, -0.144) 
0.001 

-0.320 

(-0.444, -0.195) 
<0.001 

-0.261 

(-0.607, 0.086)  
0.14 

Age last birth 

75366 - 

90382 

-0.255 

(-0.335, -0.175) 
<0.001 

-0.224 

(-0.435, -0.013) 
0.04 

-0.174 

(-0.307, -0.041) 
0.01 

-0.119 

(-0.434, 0.196) 
0.46 

Reproductive 

period 

75343 - 

90357 

0.027 

(-0.035, 0.089) 
0.39 

0.115 

(-0.047, 0.278) 
0.16 

0.030 

(-0.076, 0.136) 
0.58 

0.055 

(-0.223, 0.332) 
0.70 

Number of sexual 

partners 

90768 - 

108801 

-0.116 

(-0.218, -0.015) 
0.03 

0.110 

(-0.068, 0.467) 
0.14 

0.027 

(-0.152, 0.206) 
0.77 

0.113 

(-0.289, 0.515) 
0.58 

Number of children 

109636 - 

131506 

-0.002 

(-0.018, 0.014) 
0.77 

0.015 

(-0.027, 0.057) 
0.49 

-0.003 

(-0.029, 0.023) 
0.80 

0.067 

(-0.019, 0.154) 
0.13 

Childlessness 

109641 - 

131512 

1.036 

(0.998, 1.075) 
0.06 

1.074 

(0.974, 1.184) 
0.15 

1.028 

(0.968, 1.091) 
0.38 

0.982 

(0.841, 1.146) 
0.82 

Education           

Age when left 

education 

75041 - 

89959 

-0.051 

(-0.085, -0.017) 
0.003 

-0.012 

(-0.101, 0.077) 
0.80 

-0.074 

(-0.130, -0.018) 
0.01 

0.049 

(-0.143, 0.241) 
0.62 

Educational 

attainment  

108704 - 

130387 

-0.088 

(-0.148, -0.029) 
0.004 

-0.207 

(-0.364, -0.049) 
0.01 

-0.211 

(-0.311, -0.111) 
<0.001 

-0.283 

(-0.529, -0.037) 
0.03 

Risky behaviours          

Alcohol intake 

109615 - 

131487 

0.051 

(0.030, 0.073) 
<0.001 

0.037 

(-0.019, 0.092) 
0.20 

0.040 

(0.003, 0.077) 
0.04 

0.011 

(-0.086, 0.107) 
0.83 

Ever smoked 

109288 - 

131109 

0.970 

(0.943, 0.998) 
0.04 

1.040 

(0.964, 1.121) 
0.31 

0.963 

(0.914, 1.014) 
0.16 

0.968 

(0.861, 1.089) 
0.59 

Risk-taking 

105717 - 

126762 

0.991 

(0.955, 1.029) 
0.65 

1.057 

(0.958, 1.166) 
0.27 

0.992 

(0.929, 1.058) 
0.80 

1.035 

(0.877, 1.222) 
0.68 
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Table 4:8 MR-Egger intercept values for age at menarche (305 SNP instrument) on life 

history outcomes using non-overlapping UK Biobank data. 

 MR-Egger intercept 

  β or OR 95% CI p 

Reproduction     

Age first birth 0.002 -0.005, 0.010 0.55 

Age last birth -0.001 -0.009, 0.007 0.76 

Reproductive period -0.004 -0.010, 0.003 0.25 

Number of sexual partners -0.013 -0.023, -0.003 0.01 

Number of children -0.001 -0.002, 0.001 0.39 

Childlessness 0.999 0.995, 1.002 0.44 

Education      

Age when left education -0.002 -0.005, 0.002 0.35 

Educational attainment  0.005 -0.001, 0.011 0.11 

Risky behaviours     

Alcohol intake 0.001 -0.002, 0.003 0.57 

Ever smoked 0.997 0.994, 1.000 0.05 

Risk-taking 0.997 0.994, 1.001 0.17 
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Table 4:9 Estimates of the causal effect of earlier age at menarche (305 SNP instrument) on life history outcomes using full UK Biobank data. 

  IVW MR-Egger regression Weighted median MBE 

 
N 

β or OR 

(95% CI ) 
p 

β or OR 

(95% CI ) 
p 

β or OR 

(95% CI ) 
p 

β or OR 

(95% CI ) 
p 

Reproduction          

Age first birth 103472 - 124093 
-0.325 

(-0.390, -0.261) 
<0.001 

-0.263 

(-0.433, -0.093) 
0.003 

-0.314 

(-0.423, -0.205) 
<0.001 

-0.290 

(-0.625, 0.044) 
0.09 

Age last birth 103332 - 123926 
-0.287 

(-0.356, -0.219) 
<0.001 

-0.176  

(-0.357, 0.005) 
0.06 

-0.236 

(-0.357, -0.115) 
<0.001 

-0.116 

(-0.406, 0.175) 
0.44 

Reproductive 

period 
103302 - 123892 

0.034 

(-0.019, 0.087) 
0.21 

0.084 

(-0.056, 0.223) 
0.24 

0.025 

(-0.063, 0.112) 
0.58 

0.034 

(-0.232, 0.301) 
0.80 

Number of sexual 

partners 
125058 - 149902 

-0.089 

(-0.179, 0.001) 
0.05 

0.006 

(-0.231, 0.242) 
0.96 

-0.049 

(-0.217, 0.118) 
0.56 

0.010 

(-0.344, 0.363) 
0.96 

Number of 

children 
151104 - 181247 

-0.004 

(-0.018, 0.010) 
0.58 

-0.010 

(-0.045, 0.026) 
0.60 

-0.009 

(-0.032, 0.015) 
0.46 

0.002 

(-0.055, 0.060) 
0.94 

Childlessness 151111 - 181255 
1.032 

(1.000, 1.065) 
0.05 

1.096 

(1.009, 1.190) 
0.03 

1.056 

(1.001, 1.114) 
0.05 

1.076 

(0.944, 1.227) 
0.27 

Education          

Age when left 

education 
103643 - 124267 

-0.060 

(-0.089, -0.031) 
<0.001 

-0.065 

(-0.141, 0.012) 
0.10 

-0.068 

(-0.115, -0.020) 
0.01 

-0.022 

(-0.185, 0.141) 
0.79 

Educational 

attainment 
149833 - 179731 

-0.048 

(-0.099, 0.003) 
0.06 

-0.148 

(-0.282, -0.013) 
0.03 

-0.126 

(-0.220, -0.032) 
0.01 

-0.154 

(-0.386, 0.077) 
0.19 

Risky behaviours         

Alcohol intake 151085 - 181233 
0.052 

(0.034, 0.070) 
<0.001 

0.050 

(0.002, 0.097)  
0.04 

0.050 

(0.018, 0.083) 
0.002 

0.010 

(-0.080, 0.101) 
0.82 

Ever smoked 150677 - 180751 
0.972 

(0.949, 0.996) 
0.02 

1.027 

(0.962, 1.094)  
0.43 

0.971 

(0.929, 1.014) 
0.19 

0.976 

(0.883, 1.078) 
0.63 

Risk-taking 145713 - 174718 
0.999 

(0.967, 1.031) 
0.94 

1.080  

(0.993, 1.175) 
0.07 

0.989 

(0.933, 1.048) 
0.72 

1.000 

(0.855, 1.171) 
0.10 
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Table 4:10 MR-Egger intercept values for age at menarche (305 SNP instrument) on life history outcomes using full UK Biobank data. 

 MR-Egger intercept 

 β or OR 95% CI p 

Reproduction     

Age first birth -0.003 -0.009, 0.004 0.44 

Age last birth -0.005 -0.011, 0.002 0.19 

Reproductive period -0.002 -0.007, 0.003 0.45 

Number of sexual partners -0.004 -0.013, 0.005 0.40 

Number of children 0.0002 -0.001, 0.002 0.74 

Childlessness 0.998 0.994, 1.001 0.12 

Education      

Age when left education 0.0002 -0.003, 0.003 0.90 

Educational attainment  0.004 -0.001, 0.009 0.12 

Risky behaviours     

Alcohol intake 0.0001 -0.002, 0.002 0.92 

Ever smoked 0.998 0.995, 1.000 0.07 

Risk-taking 0.997 0.994, 1.000 0.05 
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4.3.3 Age at first sexual intercourse 

Further details of the instrument are provided in Table 4:2. Again, Cochran’s Q values 

indicate that most measures show evidence for overdispersion (see Appendix 6). The low 

I2
GX value indicates that a SIMEX adjustment for MR-Egger should be conducted. I 

therefore performed and present the results for a SIMEX adjusted unweighted MR-Egger 

regression analysis of age at first sexual intercourse. 

I conducted a fixed effects meta-analysis of the 23 SNP-outcome associations in UK 

Biobank and found evidence of relationships for earlier age at first sexual intercourse 

with earlier age at first birth, earlier age at last birth, a longer reproductive period, 

increased number of sexual partners, a greater number of children, decreased likelihood 

of being childlessness, earlier age at leaving education, lower educational attainment, 

increased likelihood of having ever smoked and increased likelihood of risk-taking 

behaviour (see Table 4:11).  

Table 4:11 Fixed effects meta-analysis of SNP-outcome associations using full UK 

Biobank and SNPs identified for age at first sexual intercourse. 

   Fixed effects meta-analysis 

 N β or OR 95% CI p 

Reproduction 

Age first birth 109 021 – 124 093 -0.061 -0.069, -0.053 <0.001 

Age last birth 108 873 – 123 926 -0.046 -0.055, -0.037 <0.001 

Reproductive period 108 842 – 123 892 0.015 0.008, 0.022 <0.001 

Number of sexual partners 131 643 – 149 902 0.019 0.007, 0.030 0.002 

Number of children 159 140 – 181 247 0.006 0.004, 0.008 <0.001 

Childlessness 159 147 – 181 255 0.986 0.982, 0.990 <0.001 

Education   

Age when left education 109 137 – 124 279 -0.011 -0.015, -0.007 <0.001 

Educational attainment in 

years 
157 817 – 179 731 -0.015 -0.022, -0.008 <0.001 

Risky behaviours  

Alcohol intake 159 137 – 181 233 0.001 -0.001, 0.003 0.409 

Ever smoked 158 702 – 180 751 1.010 1.007, 1.014 <0.001 

Risk-taking 153 432 – 174 718 1.011 1.006, 1.015 <0.001 

 

There appeared to be a consistent effect of earlier age at first sexual intercourse on earlier 

age at last birth and increased likelihood of risk-taking behaviour across MR methods 

(see Table 4:12). In this MR analysis, I took SNP-exposure associations from a GWAS 

(Day, Helgason, et al., 2016) and SNP-outcome associations in a sub-sample of UK 

Biobank, therefore likely affected by selection bias (see Chapter 5 for further discussion). 



 

81 

 

The MR-Egger intercept showed evidence of directional horizontal pleiotropy for most 

outcomes (see Table 4:13) and, as discussed, this MR analysis may suffer from bias due 

to stratifying the UK Biobank sample. Overall, results for Radial MR and a leave-one-out 

analysis suggested no strong influence of outliers. Although there appeared to be a 

consistent outlier in age at first sexual intercourse analysis (rs538498277) when plotting 

(see Appendix 7), there was no formal evidence of this using radial MR, with second 

order modified weights and a p-value of 0.01 (Bowden et al., 2018), apart from in relation 

to ever smoked as an outcome (see Appendix 8). Another SNP (rs2188151) was most 

often identified as the top outlier in Radial MR (see Appendix 8). I therefore conducted a 

leave-one-out analysis to ensure that no outliers, including rs2188151, were having a 

relatively large effect on estimates (Hemani, Zheng, et al., 2018). This showed that 

estimates with a SNP removed were all within the confidence intervals for every other 

SNP, suggesting no strong influence of outliers (see Appendix 9). 
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Table 4:12 Estimates of the causal effect of earlier age at first sexual intercourse on life history outcomes using non-overlapping UK Biobank data. 

  IVW SIMEX MR-Egger regression Weighted median MBE 

  N 
β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

β or OR 

 (95% CI) 
p 

Reproduction         

Age first birth 
79494 - 

90503 

-2.146 

(-2.524, -1.768) 
<0.001 

0.738 

(0.480, 0.996) 
<0.001 

-2.301 

(-2.864, -1.739) 
<0.001 

-2.535 

(-3.858, -1.211) 
0.001 

Age last birth 
79387 - 

90382 

-1.687 

(-2.090, -1.284) 
<0.001 

-0.611 

(-0.883, -0.339) 
<0.001 

-1.546 

(-2.143, -0.950) 
<0.001 

-1.567 

(-2.855, -0.278) 
0.03 

Reproductive 

period 

79365 - 

90357 

0.456 

(0.146, 0.767) 
0.01 

-1.371 

(-1.625, -1.118) 
<0.001 

0.341 

(-0.086, 0.768) 
0.13 

0.403 

(-0.569, 1.375) 
0.43 

Number of 

sexual partners 

95510 - 

108801 

0.327 

(-0.184, 0.838) 
0.20 

0.039 

(-0.192, 0.269) 
0.75 

-0.155 

(-0.828, 0.517) 
0.66 

-0.184 

(-1.668, 1.301) 
0.81 

Number of 

children 

115445 - 

131506 

0.223 

(0.143, 0.303) 
<0.001 

-0.167 

(-0.247, -0.086) 
0.001 

0.191 

(0.067, 0.316) 
0.006 

0.044 

(-0.276, 0.363) 
0.79 

Childlessness 
115450 - 

131512 

0.605 

(0.502, 0.728) 
<0.001 

1.021 

(0.908, 1.147) 
0.74 

0.732 

(0.557, 0.963) 
0.04 

0.905 

(0.504, 1.625) 
0.74 

Education           

Age when left 

education 

78953 - 

89959 

-0.285 

(-0.456, -0.115) 
0.002 

0.596 

(0.357, 0.835) 
<0.001 

-0.160 

(-0.401, 0.081) 
0.21 

-0.112 

(-0.648, 0.424) 
0.69 

Educational 

attainment  

114477 - 

130387 

-0.484 

(-0.784, -0.183) 
0.003 

0.109 

(-0.036, 0.255) 
0.15 

-0.247 

(-0.659, 0.164) 
0.25 

0.045 

(-0.818, 0.907) 
0.92 

Risky behaviours         

Alcohol intake 
115436 - 

131487 

0.026 

(-0.081, 0.133) 
0.62 

-0.375 

(-0.498, -0.252) 
<0.001 

0.049 

(-0.102, 0.200) 
0.53 

0.077 

(-0.256, 0.410) 
0.66 

Ever smoked 
115090 - 

131109 

1.393 

(1.206, 1.608) 
<0.001 

0.567 

(0.492, 0.653) 
<0.001 

1.391 

(1.103, 1.754) 
0.01 

1.425 

(0.751, 2.704) 
0.29 
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Risk-taking 
111292 - 

126762 

1.348 

(1.117, 1.626) 
0.003 

1.603 

(1.297, 1.982) 
<0.001 

1.527 

(1.177, 1.982) 
0.004 

1.523 

(0.813, 2.851) 
0.20 

 

Table 4:13 SIMEX unweighted MR-Egger intercept values for age at first sexual intercourse on life history outcomes using non-overlapping UK Biobank 

data. 

 MR-Egger intercept 

 β or OR 95% CI  p 

Reproduction      

Age first birth -0.082 -0.101, -0.063  <0.001 

Age last birth -0.030 -0.048, -0.013  0.002 

Reproductive period 0.052 0.036, 0.069  <0.001 

Number of sexual partners 0.009 -0.008, 0.027  0.30 

Number of children 0.011 0.006, 0.015  <0.001 

Childlessness 0.986 0.977, 0.995  0.01 

Education       

Age when left education -0.025 -0.034, -0.016  <0.001 

Educational attainment in years -0.017 -0.027, -0.006  0.01 

Risky behaviours      

Alcohol intake 0.011 0.006, 0.017  0.001 

Ever smoked 1.026 1.018, 1.035  <0.001 

Risk-taking 0.995 0.985, 1.004  0.27 
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4.4 Discussion 

4.4.1 Summary of results and previous literature 

The results suggest that earlier age at menarche is causally related to some traits that 

characterize a fast life history strategy, such as earlier age at first birth, earlier age at last 

birth, lower educational attainment, and earlier age at leaving education. This is 

consistent with previous findings (Day, Helgason, et al., 2016; Gill et al., 2017). There 

was no clear effect of age at menarche on number of children in this female only sample 

(Day, Helgason, et al., 2016). Here, applying additional MR methods to those used 

previously, the effect of age at menarche on alcohol intake is not robust (Day, Helgason, 

et al., 2016).  

Results show mixed evidence for age at first sexual intercourse on these life history traits, 

with results suggesting possible violation of the exclusion restriction assumption of no 

direct effects of the instrument on the outcome not acting through the exposure (i.e., the 

presence of directional horizontal pleiotropy) (Bowden et al., 2017; Davey Smith & 

Ebrahim, 2003). There is evidence for the presence of directional horizontal pleiotropy on 

multiple outcomes, suggesting that previous findings may have also included pleiotropic 

effects and may be questionable (Day, Helgason, et al., 2016). Results for age at first 

sexual intercourse are therefore not robust and our ability to infer causality is weakened.  

4.4.2 Life history theory 

The effects of earlier age at menarche on these reproductive and educational traits can be 

viewed as directing effort towards short-term reproductive goals and risky behaviour as 

an important part of a fast life history strategy (Ellis & Bjorklund, 2012). Variation in age 

at menarche may therefore represent an important causal component of a suite of 

adaptations (Belsky et al., 1991). Earlier age at first birth as part of a fast life history 

strategy can be considered an adaptive response to early life adversity and the present 

finding of an effect of earlier age at menarche on earlier age at first birth is therefore in 

line with this (Nettle, Coall, & Dickins, 2011). It is, however, interesting that there is an 

effect of earlier age at menarche on earlier age at last birth, with no clear effect on 

reproductive period. This suggests that individuals on a fast life history strategy are not 

just starting their reproductive life earlier but shifting their reproductive life forward in 

time. Nettle highlights that individuals in more deprived areas with short life expectancy, 

likely on a fast life history strategy, need to reproduce earlier than individuals in more 

affluent areas with higher life expectancy to be in good health for an equivalent period of 

care (Nettle, 2010). Education is a key predictor of positive later life outcomes in the UK, 
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and the present finding of a causal effect of earlier age at menarche on decreased 

educational attainment provides important information for determinants of educational 

attainment which should be independent from confounding (Gill et al., 2017). Investing in 

education can be seen as a slow life history trait with delayed benefits (Sng, Neuberg, 

Varnum, & Kenrick, 2017). The effect of age at menarche on educational attainment may 

be due to variation in cognition following variation in age at menarche and gonadal 

hormones, due to menarche, that may influence behaviour during schooling (Gill et al., 

2017; Schulz & Sisk, 2016).  

As a component of life history strategies, it is expected to see an effect of earlier age at 

menarche on increased number of children or likelihood of remaining childless, although 

access to contraception may influence this relationship. Number of sexual partners has 

previously been used as a proxy for reproductive success in a post-contraceptive 

environment, although it should be noted that contraception allows for the decoupling of 

sexual and reproductive partners (Nettle & Clegg, 2006). The present findings did not 

show a clear effect of age at menarche on number of sexual partners although female 

reproductive success is less dependent on number of sexual partners than males. It is 

further possible that the effect of age at menarche on number of children is masked by the 

detrimental effects of risky behaviours, such as substance use, on fertility in the modern 

environment (Anderson, Nisenblat, & Norman, 2010; Eggert, Theobald, & Engfeldt, 

2004). Although these results show no clear evidence for an effect of earlier age at 

menarche on increased risky behaviours and substance use, binary measures of smoking 

and risk-taking were used, resulting in less statistical power. Furthermore, the measure of 

risk-taking was a single item asking whether participants would describe themselves as 

someone who takes risks and may not capture the full extent of risk-taking behaviour. 

There was no clear effect of age at menarche on alcohol intake, another form of substance 

use which has also been shown to be associated with decreased fertility (Anderson et al., 

2010; Eggert et al., 2004). Further research should examine the mediating causal 

relationships between age at menarche and fertility in the modern environment using 

more detailed measures of substance use and larger samples. 

4.4.3 Strengths 

This study highlights how MR can be applied to test predictions within life history theory 

to provide evidence of causality and increase our understanding of health and social 

behaviour. A strength of the present study is the use of multiple MR methods. This 

allowed for extending upon the findings of previous research (Day, Helgason, et al., 

2016) and for triangulation across methods, each with varying and orthogonal 
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assumptions, to provide greater confidence in results (Lawlor, Tilling, & Davey Smith, 

2016). I was further able to compare evidence using two instruments for age at menarche. 

Additionally, I used a large population-based sample for the analysis to help identify the 

small effects common in genetic studies (Gage, Jones, et al., 2016), although I 

acknowledge that for binary outcomes power was more limited.  

4.4.4 Limitations 

There are also a number of limitations to consider. Most importantly, as there are 

currently no appropriate instruments for early life stress to be used within MR and it is 

therefore not possible to investigate early life stress using MR, I examined the effects of 

two intermediate reproductive traits (age at menarche and age at first sexual intercourse) 

on further reproductive and behavioural outcomes. Taking this life course approach to the 

causal pathways in life history theory by assuming earlier menarche is a proxy for early 

life adversity has limitations. Namely, early menarche is associated with both good 

condition and early life adversity, likely with different developmental pathways. I did not 

stratify analysis on any measure of adversity, or a proxy for adversity such as 

socioeconomic status. There has been a secular trend of decreasing age at menarche in 

recent times, perhaps due to obesity or improved living conditions (Ellis, 2004). This 

trend therefore also includes individuals that are assumed to be on a slow life history 

strategy. The present study therefore cannot fully disentangle those on a fast or slow life 

history strategy although it is assumed that earlier menarche and age at first sexual 

intercourse is a proxy for early life adversity and therefore an indicator of a fast life 

history strategy. I attempted to account for the possibility of effects of age at menarche 

acting via BMI in sensitivity analyses. The multiple possible interpretations of early age 

at menarche and age at first sexual intercourse are a strong limitation of this work 

however it is still important to examine all components of the life history theory 

framework, rather than to focus only on the effects of early life adversity on reproductive 

traits such as age at menarche.  

Second, the age at first sexual intercourse GWAS was conducted in a sub-sample of UK 

Biobank data and I therefore conducted an unweighted analysis due to this sample 

overlap, using a fixed effects meta-analysis method. I additionally conducted MR by 

dividing the outcome sample to avoid overlap of participants, however this may have 

introduced bias as sub-division is related to smoking status and therefore akin to 

stratifying on smoking, which may be affected by the exposure and outcome (see Chapter 

5 for further discussion) (Wain et al., 2015).  
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Third, I used SNPs for age at first sexual intercourse, and their associations, identified in 

a pooled sex GWAS, due to reductions in power of using SNPs identified in females 

only, and the exposure and outcome data therefore consist of different populations (not 

advised for MR studies) (Lawlor, 2016). Although most genetic variants showed sex-

concordant associations in the GWAS, six genetic variants in the instrument for age at 

first sexual intercourse showed some evidence of sex-discordant associations (Day, 

Helgason, et al., 2016). The unweighted analysis for age at first sexual intercourse did not 

use GWAS estimates (Burgess & Thompson, 2013; Gill et al., 2018).  

Fourth, UK Biobank data is unrepresentative of the population, with a 5% response rate, 

and therefore suffers from selection bias which may generate spurious associations (see 

Chapter 5 for further discussion) (Allen et al., 2014; Davey Smith & Davies, 2016; 

Munafò, Tilling, Taylor, Evans, & Davey Smith, 2018). Finally, genetic variants are non-

specific and we cannot fully remove population structure, which can induce spurious 

associations through confounding, even within a sample of European ancestry and 

adjusting for principal components of population structure as done so here (Haworth et 

al., 2019). 

4.4.5 Conclusions 

I found some evidence that age at menarche is causally related to other life history traits 

and outcomes. Age at first sexual intercourse was also related to many life history 

outcomes, although there was evidence of directional horizontal pleiotropy which violates 

the exclusion restriction assumption of MR and results should therefore be treated with 

caution (Bowden et al., 2017; Davey Smith & Hemani, 2014). This study highlights how 

analyses techniques from genetic epidemiology can be used to answer how life history 

traits are related within life history strategies, and to better understand determinants of 

reproductive and social behaviour.  

4.5 Chapter summary 

In this chapter, I applied MR methods to investigate life history theory using instruments 

for age at menarche and age at first sexual intercourse and UK Biobank data. The results 

suggest that earlier age at menarche affects some traits that characterize life history 

strategies including earlier age at first and last birth, decreased educational attainment, 

and decreased age at leaving education. Unfortunately, due to evidence of directional 

horizontal pleiotropy, which violates an assumption of MR, the results for age at first 

sexual intercourse are less clear. An upcoming GWAS of age at first sexual intercourse 
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using multiple data sources will allow for this analysis to be conducted without stratifying 

UK Biobank data and introducing selection bias. Studies using this data will be better 

able to inform interventions on this potentially modifiable trait. 

Overall, this study demonstrates how MR can be applied to test predictions of life history 

theory by providing an example of using MR within an evolutionary research field to 

better understand determinants of reproductive and social behaviour. There is an 

increasing number of GWAS being conducted on evolutionary relevant traits and future 

research could apply these MR techniques to further test predictions of life history theory, 

such as whether age at menarche is a mechanism between early life adversity and these 

evolutionary outcomes (Burgess et al., 2017).  
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 The Schizophrenia Paradox: schizophrenia risk 

and reproductive success 

This chapter is based on the publications below 

Lawn, R. B., Sallis, H. M., Taylor, A. E., Wootton, R. E., Davey Smith, G., Davies, N. 

M., …Munafò, M. R. (2019). Schizophrenia risk and reproductive success: a Mendelian 

randomization study. Royal Society Open Science, 6, 181049. 

Lawn, R. B., Sallis, H. M., Taylor, A. E., Wootton, R. E., Davey Smith, G., Davies, N. 

M., …Munafò, M. R. (2019). Comment on the relationship between common variant 

schizophrenia liability and number of offspring in the UK Biobank. American Journal of 

Psychiatry, 176(7), 573-574. 

5.1 Background and chapter overview 

In this chapter, I applied a range of methods rooted in genetic epidemiology (MR, LD 

score regression and PRS analysis) to investigate the schizophrenia paradox. 

Schizophrenia is a debilitating and heritable mental disorder associated with lower 

reproductive success (Bundy et al., 2011; Essen‐Möller, 1959; Jablensky et al., 1992; 

Nettle & Clegg, 2006; Van Dongen & Boomsma, 2013). However, the prevalence of 

schizophrenia is stable over populations and time, resulting in an evolutionary puzzle: 

how is schizophrenia maintained in the population given its apparent fitness costs (Essen‐

Möller, 1959; Huxley et al., 1964; Power et al., 2013; Shaner et al., 2004)? One 

possibility is that increased genetic liability for schizophrenia, in the absence of the 

disorder itself, may confer some reproductive advantage (Essen‐Möller, 1959; Huxley et 

al., 1964; Lewis, 1958; Nesse, 2004; Nettle, 2001; Shaner et al., 2004). A reproductive 

advantage among healthy individuals with higher genetic liability for the disorder may 

compensate for lower reproductive success of those with the disorder itself, termed cliff-

edge fitness (see Figure 5:1) (Nesse, 2004; Van Dongen & Boomsma, 2013). It is 

suggested that this reproductive advantage is maintained by sexual selection and mediated 

via creativity and/or risky behaviour (Del Giudice et al., 2010; Nettle, 2006; Nettle & 

Clegg, 2006; Shaner et al., 2004; Wang et al., 2016). Genetic variants that have been 

associated with schizophrenia have also been associated with creativity and risk-taking 

(Power et al., 2015; Richardson et al., 2018; Strawbridge et al., 2018). In this chapter, I 

assess the correlation and causal effect of genetic liability for schizophrenia with a range 

of reproductive outcomes (such as number of children) in multiple population-based 
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samples which are not selected on schizophrenia status and therefore include very few 

cases. 

 

Figure 5:1 Illustration of a cliff-edge fitness function where fitness increases with 

increasing levels of the trait until a peak followed by a steep decline. For schizophrenia 

this peak is estimated at diagnosis and a somewhat linear relationship is assumed up 

until this point (indicated by the grey arrow). (credit Nesse, 2004) 

 

In all main analyses of this paradox, I use genetic variants associated with schizophrenia 

within a MR framework to estimate the causal effect of genetic liability for schizophrenia 

on measures of reproductive success, overcoming some limitations of observational 

studies previously used to investigate this evolutionary paradox by reducing bias from 

confounding and reverse causation. To capture broader genetic liability, I additionally 

conduct LD score regression in UK Biobank and PRS analyses using varying p-value 

thresholds for genetic liability in MoBa and ALSPAC G0. As discussed in Chapter 2, 

these methods capture various aspects of genetic liability and can be used to gain a fuller 

understanding of the evolutionary processes involved. Cliff-edge fitness in those without 

a diagnosis of schizophrenia would predict a linear relationship (see Figure 5:1). 

However, given suggestions from family studies that there may be a fitness decline of 

healthy individuals with high genetic liability for the disorder, I conducted sensitivity 

analyses to investigate possible non-linear relationships where at very high levels of 

genetic score for schizophrenia liability there is decreased reproductive success in 

absence of schizophrenia itself (Bundy et al., 2011; Del Giudice, 2010; Power et al., 

2013).  
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The principal measure of fitness in this chapter is number of children or parity. However, 

both earlier age at first birth and increased numbers of sexual partners have previously 

been used as indicators of reproductive success, particularly in developed populations in 

which contraception is commonly used to control family size (Mullins et al., 2017; Nettle 

& Clegg, 2006; Tropf, Stulp, et al., 2015; Westendorp & Kirkwood, 1998). Earlier age at 

first birth likely results in a longer reproductive period whereas number of sexual partners 

captures mating success and hence potential reproductive success (Nettle & Clegg, 2006). 

Additionally, earlier age at first pregnancy also captures potential reproductive success, 

similarly to age at first birth, in developed populations where terminations are available. 

Here, I use a range of these measures proxying reproductive success depending on data 

availability in the sample. Results in this chapter are presented in aggregate, by measure 

of reproductive success, however analyses using UK Biobank data was conducted first. 

Following this, I conducted analyses in MoBa and then ALSPAC data (both in ALSPAC 

G0 and ALSPAC G1).  

5.2 Positive control 

As the present studies applied MR in a novel context to this evolutionary paradox, I also 

included a positive control where the estimated relationship is known and I could 

therefore validate the approach to then conduct the analysis on genetic liability for 

schizophrenia. For this positive control, I estimated the effect of genetically predicted 

educational attainment on number of children and age at first birth in UK Biobank. 

Higher genetically predicted education is known to be associated with fewer children and 

delayed age at first birth (Barban et al., 2016; Beauchamp, 2016; Courtiol, Tropf, & 

Mills, 2016; Kong et al., 2017; Sanjak, Sidorenko, Robinson, Thornton, & Visscher, 

2017). I therefore included educational attainment as an exposure with these two 

outcomes (using the same outcome datasets used for the schizophrenia analysis in UK 

Biobank) as a positive control. This positive control was only conducted in UK Biobank 

as UK Biobank was the first analysis that I conducted and therefore the point in time that 

I wanted to validate the approach, as well as having the largest sample size. As I aimed to 

conduct LD score regression in UK Biobank for genetic liability for schizophrenia, I also 

included LD score regression for educational attainment. 

5.2.1 Positive control methods 

5.2.1.1 Exposure instrument 

SNPs associated with educational attainment (p<5×10-8) from a recent GWAS by the 

SSGAC were used (Okbay et al., 2016). As the GWAS conducted a replication in UK 
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Biobank, effect estimates from the pooled sex analysis of the discovery sample were used 

to avoid sample overlap. Sixty-seven SNPs were available in UK Biobank data and were 

eligible for inclusion. For exclusion criteria, I checked that there were no palindromic 

SNPs with MAF around 0.5 to ensure there were no issues with strand mismatches. I 

further used SNiPA (Arnold et al., 2015) with an LD threshold of 0.2 to check SNP 

independence. Of the 69 available SNPs in UK Biobank data, 2 palindromic SNPs with 

MAF close to 0.5 were excluded due to strand ambiguities. Effect estimates used for the 

remaining 67 educational attainment SNPs are listed in Appendix 10 and showed a mean 

F statistic of 33.23.  

5.2.1.2 Outcomes 

Participants were either asked how many children they had given birth to or how many 

children they had fathered. I also derived a binary variable to indicate if participants were 

childless or not (childlessness coded as 1). Age at first birth was only measured in 

females in UK Biobank, with participants asked: "How old were you when you had your 

first child?". Although no age restrictions were applied in analyses, the nature of UK 

Biobank data meant that participants were aged towards the end of their reproductive 

lives. 

5.2.1.3 Data analysis 

I used LD score regression (Bulik-Sullivan, Finucane, et al., 2015; Bulik-Sullivan, Loh, et 

al., 2015) to calculate the genome-wide genetic correlation (rg) between predicted 

educational attainment and number of children and age at first birth. Genome-wide 

associations were conducted for these outcomes using linear regression, implemented in 

PLINK v2.00 through the MRC IEU GWAS pipeline. In this, I adjusted for the top 10 

principal components of population structure. For number of children, age and sex were 

also included as covariates. I then filtered results on MAF (>0.01) and imputation quality 

(>0.8) separately.  

The exposure associated SNPs described above were extracted from UK Biobank to 

derive SNP-outcome associations for the outcome data. Extraction was done using 

PLINK (v2.00) and best guess algorithms for determining alleles (full genotyping 

information in Chapter 3). In MR analyses, data were harmonized to ensure that the effect 

of the SNP on the exposure and the SNP on the outcome corresponded to the same allele. 

The increasing allele for the exposure was used. Associations for exposure SNPs and all 

outcome measures were then calculated in R, fitting the same covariates as listed above. 

Effect sizes for number of children and age at first birth that were used in analysis are 
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listed in Appendix 10. As discussed in Chapter 2, SNP-exposure and SNP-outcome data 

(i.e., SNP-exposure and SNP-outcome associations) were combined using IVW, weighted 

median, MBE and MR-Egger regression. MR results of education on childlessness were 

converted to ORs by exponentiating log ORs. I calculated Cochran’s Q and I2
GX statistics 

to assess the suitability of an IVW and MR-Egger regression (see Chapter 2 for a 

description of these) (Bowden, Fabiola Del Greco, et al., 2016). All analysis was also 

conducted with SNP-outcome associations additionally adjusted for genotype array. 

5.2.2 Positive control results 

For sample descriptives see Table 5:2 below. There was a modest negative genetic 

correlation between educational attainment and number of children (rg = -0.35, p<0.001) 

and a strong positive genetic correlation between educational attainment and age at first 

birth (rg = 0.81, p<0.001). There was a total of 1 117 154 SNPs included in this analysis. 

Cochran’s Q for an IVW approach of educational attainment and number of children was 

199.54 (p<0.001), and 144.88 (p<0.001) for age at first birth, suggesting overdispersion 

although this appeared balanced (see Appendix 11 for plot). Educational attainment had a 

negative effect on number of children (mean difference: -0.16, 95% CI: -0.21 to -0.12, 

p<0.001 per year increase in educational attainment) and a positive effect on age at first 

birth (mean difference 2.68, 95% CI: 2.40 to 2.95, p<0.001) per year increase in 

educational attainment (Table 5:1). There was also an effect of increased education on 

increased likelihood of being childless (OR: 1.60, 95% CI: 1.47 to 1.75, p<0.001 per year 

increase in educational attainment). Results for all educational attainment analysis with 

genotype array included as a covariate for outcome summary statistics are presented in 

Appendix 12 and Appendix 13. It should be noted that the I2
GX statistic for an 

unweighted MR-Egger regression was 0.3, which is deemed too low to conduct a SIMEX 

adjustment, and MR-Egger was therefore not appropriate to conduct (Bowden, Fabiola 

Del Greco, et al., 2016). 
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Table 5:1 Estimates of the causal effect of genetically predicted educational attainment 

on number of children and age at first birth using IVW, MBE and weighted median MR 

methods. 

 No. of childrena Age at first birthb Childlessnessc 

Method (67 SNPsd) β (95% CI), p OR (95% CI), p 

IVW 
-0.162 (-0.206, -0.118), 

<0.001 

2.677 (2.401, 2.952), 

<0.001 

1.589 (1.446, 1.746), 

<0.001 

Weighted median 
-0.206 (-0.276, -0.135), 

<0.001 

2.828 (2.387, 3.270), 

<0.001 

1.567 (1.343, 1.829), 

<0.001 

MBE 
-0.249 (-0.478, -0.020), 

0.04 

1.649 (0.303, 2.995), 

<0.001 

1.513 (0.952, 2.404), 

0.09 

a Number of children data from UK Biobank (N = 268 658 – 335 758). b Age at first birth 

data from UK Biobank (N = 99 317 – 124 093). c Childlessness data from UK Biobank (N 

= 268 658 – 335 758). d Educational attainment from the SSGAC GWAS (N = 283 723). 

 

5.2.3 Positive control conclusion 

Results of these positive control analyses were as expected and in line with previous 

genetic research, suggesting that educational attainment is under negative selection 

(Barban et al., 2016; Beauchamp, 2016; Courtiol et al., 2016; Kong et al., 2017; Sanjak et 

al., 2017). Finding results in a positive control analysis that are expected and in line with 

previous research suggests that the overall approach is valid, and I therefore carried 

forward these methods to test genetic liability for schizophrenia with the same outcome 

measures of reproductive success. 

5.3 Methods 

I will first outline methods that were common across all studies of genetic liability for 

schizophrenia using UK Biobank, MoBa and ALSPAC data. For example, the GWAS 

used, the MR methods applied and the non-linear analysis that I conducted. I will then 

outline any methods specific to each study in the order of UK Biobank, MoBa, ALSPAC 

G0 and ALSPAC G1.  

For outcomes, number of children (or parity) was measured in UK Biobank, MoBa and 

ALSPAC G0. A binary measure of whether participants had had a child yet was used for 

ALSPAC G1. Number of sexual partners was included in UK Biobank and ALSPAC G1 

analyses. For age at first pregnancy, data was available in MoBa and ALSPAC G0. Age 

at first birth was measured in UK Biobank and MoBa. Additionally, MoBa included 

multiple secondary outcomes such as whether the pregnancy was planned. Lastly, 

whether participants had previously had a pregnancy termination was available in MoBa 

and ALSPAC G0. 
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5.3.1 Across all studies 

5.3.1.1 Schizophrenia GWAS 

In all analyses, I used the PGC GWAS (N = 35 123 cases and 109 657 controls for 

Europeans) (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014). In all MR analyses, independent SNPs associated with schizophrenia (p<5×10-8) 

were used. The 128 originally identified SNPs that reached this genome-wide 

significance threshold explained approximately 3.4% of the observed variance in 

schizophrenia risk. Estimates, on the log-odds scale, and SEs for the SNP and 

schizophrenia associations were recorded using GWAS data (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014). Again, for exclusion criteria, I 

checked that there were no palindromic SNPs with MAF around 0.5 to ensure there were 

no issues with strand mismatches. I further used SNiPA (Arnold et al., 2015) with an LD 

threshold of 0.2 to check SNP independence. If proxy SNPs were used when any 

originally identified GWAS SNPs were not available, I used a LD r2 of 0.8 or above to 

search for proxies on SNiPA (Arnold et al., 2015) or proxies previously used (Gage et al., 

2017).  

5.3.1.2 MR methods used 

I first conducted regressions between a genetic score for schizophrenia liability, including 

only genome-wide significant SNPs, and each outcome. This can provide evidence as to 

whether there is a causal effect but not the magnitude of this effect (Davies, Holmes, et 

al., 2018) and may suffer from some bias (Richardson et al., 2018). I therefore next 

conducted all MR methods described in Chapter 2 (IVW, weighted median, MBE and 

MR-Egger regression).  

I created additive genetic scores for schizophrenia liability. Apart from in UK Biobank, 

weighted additive genetic scores were created using Plink (version 1.90 in MoBa and 

version 2.0 in ALSPAC) and then standardized. For this, I replaced any missing SNP data 

with the mean for that SNP across individuals in Plink. Due to the format of UK Biobank 

data, I created an unweighted genetic score in R with the same mean imputation for 

missing data. All scores counted the increasing allele. In sum, the Plink scores represent 

the per SD increase in liability for schizophrenia and the R score in UK Biobank 

represents the per allele increase in liability for schizophrenia. These scores are 

comparable and will differ only slightly, with minor increased power for the weighted 

scores (Burgess & Thompson, 2013). The units for the scores to outcome will therefore 

differ between UK Biobank and the remaining studies however the units for the main 

analysis, discussed below, are the same.  
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For all studies in this chapter, the I2
GX statistic for an unweighted MR-Egger regression 

was below 0.5 which is deemed too low to conduct a SIMEX adjustment, and MR-Egger 

regression was therefore not appropriate to conduct (see Chapter 2) (Bowden, Fabiola Del 

Greco, et al., 2016). The IVW, weighted median and MBE were conducted and results 

were multiplied by 0.693 to represent the causal estimate per doubling in odds of 

schizophrenia risk (Burgess & Labrecque, 2018). For binary outcomes, MR results were 

multiplied by 0.693 on the log-odds scale, and then exponentiated. The reported estimates 

therefore indicate the effect of doubling the odds of schizophrenia on the odds of the 

binary outcome category that is coded as 1. In addition to the I2
GX values, Cochran’s Q 

and mean F statistics were calculated for all analyses. Acceptable mean F statistics (above 

10) were obtained in all studies (see Chapter 2). 

I included adjustment for the top 10 principal components of population structure and sex 

(in combined sex analysis). Genotype array and a measure of age were included where 

relevant. Some sex stratified analysis was conducted where data for both sexes were 

available. Results are presented per phenotype and a summary figure for the IVW results 

is presented at the end of each phenotype section. 

5.3.1.3 Non-linear analysis 

As an illustration of shape of the schizophrenia liability-reproductive success relationship, 

I plotted the relationship between the genetic score described above and each primary 

continuous outcome. For this, I divided the score into quintiles and plotted outcomes 

across these categories of the genetic score. Similarly, to further investigate a possible 

peak in reproductive success at intermediate-high genetic liability for schizophrenia, I 

conducted quadratic regression analysis of the genetic score for schizophrenia liability 

and outcomes (adjusted for the top 10 principal components of population structure and 

additionally adjusted for sex, genotype array and a measure of age where appropriate). 

Where a standardized genetic score for schizophrenia liability was used in analysis, the 

unstandardized score was used for the quadratic term. I repeated this quadratic analysis 

separately for each sex in data where data for both sexes were available. Lastly, I plotted 

the unadjusted quadratic regressions.  

5.3.1.4 Covariables 

There is a well-established association between smoking and schizophrenia liability 

(Wootton, Richmond, et al., 2018). I therefore regressed the genetic score in each sample 

with a binary measure for whether participants had ever smoked (‘yes’ coded as 1). This 

analysis was adjusted for the top 10 principal components of population structure and 
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genotype array if appropriate. In UK Biobank, ever smokers were identified from items 

asked at baseline assessment on whether participants were currently smoking tobacco 

most days or occasionally, had previously smoked tobacco most days or occasionally, or 

had tried smoking tobacco once or twice. In MoBa and ALSPAC G0, participants were 

asked whether they had ever smoked via questionnaire at approximately 18 weeks 

gestation. For ALSPAC G1, I used an item asked at approximately 23 years old on 

whether participants had ever smoked a whole cigarette.  

5.3.2 UK Biobank 

5.3.2.1 Exposure instrument 

For genetic liability for schizophrenia, 75 of the 128 SNPs were not available in UK 

Biobank. I found proxies for 48 SNPs. After checking that all SNPs were eligible in 

regard to exclusion criteria, discussed above, a total of 101 SNPs remained. The final 101 

SNPs and effect estimates are listed in Appendix 14. The mean F statistic for 

schizophrenia genetic liability was 35.15. 

5.3.2.2 Outcomes 

Number of children, childlessness and age at first birth were derived as they were in the 

positive control analysis for educational attainment. A measure of number of sexual 

partners was also included. If participants indicated that they had had sexual intercourse, 

they were asked “About how many sexual partners have you had in your lifetime?". 

Participants were given the information that “Sexual intercourse includes vaginal, oral or 

anal intercourse” if they activated the help button. I coded responses to missing if above 

the 99th percentile. I then derived a binary measure indicating if participants were in 

approximately the top 10th percentile for the highest number of sexual partners (equal to 

or above 12 partners coded as 1). 

5.3.2.3 Data analysis 

Data analysis for genetic liability for schizophrenia in UK Biobank followed the same 

processes as for the positive control. I used LD score regression (Bulik-Sullivan, 

Finucane, et al., 2015; Bulik-Sullivan, Loh, et al., 2015) to calculate the genome-wide 

genetic correlation between schizophrenia liability and number of children and age at first 

birth and number of sexual partners. For this, I used the same genome-wide associations 

that were calculated for number of children and age at first birth for positive control 

analyses. Genome-wide associations were also calculated for number of sexual partners 

using the same methods. For number of sexual partners analysis, the top 10 principal 
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components of population structure, age and sex were included as covariates, as done so 

for number of children.  

I first regressed the genetic score for schizophrenia with the continuous outcomes. Effect 

sizes used in MR analysis for number of children, age at first birth, and number of sexual 

partners analysis are listed in Appendix 14. These regressions and the SNP-outcome 

associations for MR used the same models as the positive control and LD score 

regression above. The I2
GX statistic for an unweighted MR-Egger regression was 0.2 for 

genetic liability of schizophrenia (Bowden, Fabiola Del Greco, et al., 2016). As done in 

the positive control, LD score regression and MR analysis was also conducted with SNP-

outcome associations additionally adjusted for genotype array. 

As well as the non-linearity plots discussed above, I additionally plotted the same 

relationships using deciles of the genetic score and with reproductive success on the x-

axis. As further sensitivity analysis to assess if there was any decline in reproductive 

success within the sample at very high levels of genetic liability, I conducted a series of 

regressions between this genetic score for schizophrenia liability and outcomes, 

systematically removing cumulative centiles from the maximum. These regressions 

included adjustment for the top 10 principal components of population structure. 

Quadratic regression was adjusted for the top 10 principal components of population 

structure. Adjustment for age was also included for number of children and number of 

sexual partners. Lastly, sex was included as a covariate in combined sex analysis. 

As there was an available measure on whether participants in UK Biobank had had a 

schizophrenia diagnosis, I repeated analysis after removing the few schizophrenia cases 

in the sample (maximum N = 207).  

5.3.3 MoBa  

5.3.3.1 Exposure instrument 

There were 107 SNPs available in MoBa data and proxies were found for an additional 8 

SNPs. A total of 10 SNPs did not meet additional quality checks and were therefore 

excluded (see Chapter 2 for details). I therefore included 105 SNPs in MoBa analysis (see 

Appendix 15). The mean F statistic for schizophrenia genetic liability was 36.36. 

5.3.3.2 Outcomes 

Primary outcomes in Moba were parity, age at first pregnancy and age at first birth. Parity 

was taken from the MBRN and represented parity to date (2018). Due to MoBa being a 
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pregnancy cohort, no binary measure of childlessness was derived. Age at first pregnancy 

was derived from age at pregnancy for the index child (taken from the MBRN) and 

questionnaire data for the earliest year of previous pregnancies. Age at first birth was 

similarly derived but restricted to pregnancies resulting in live births. As mentioned in 

Chapter 3, all questionnaire data was taken from the first questionnaire which was sent to 

mothers between 13 and 17 weeks gestation. 

I also included a range of secondary outcomes. Whether the index pregnancy was planned 

was taken from questionnaire data. Mothers were also asked whether they had conceived 

the index pregnancy even though them or their partner used contraceptives. An item 

indicating if mothers had ever been treated for infertility was also taken from 

questionnaire data. These secondary outcomes were binary with ‘yes’ coded as 1. An 

additional secondary measure for the length of sexual relationship the mother had had 

with the index child’s father was derived (coded as a continuous measure in months). I 

also included a binary measure of whether any previous pregnancy resulted in a 

termination (‘yes’ coded as 1). 

5.3.3.3 Data analysis 

There was no available measure for whether participants had been diagnosed with 

schizophrenia and therefore no exclusions were made for this. For regressions between 

the genetic score for schizophrenia liability and outcomes, I included covariates for the 

top 10 principal components of population structure and genotype array. I then further 

adjusted for birth year. I additionally included adjustment for age at delivery of the index 

child in analysis of whether any previous pregnancy had resulted in a termination. For all 

primary outcomes, I conducted MR analysis and used MR-Base to do so (Hemani, Zheng, 

et al., 2018). For this, I used Plink to calculate SNP-outcome associations (see Appendix 

15), adjusted for the top 10 principal components of population structure, genotype array 

and birth year. The SNP-outcome associations were then taken into MR-Base, where they 

were harmonized with exposure SNPs to ensure that the effect of the SNP on the 

exposure and the SNP on the outcome corresponded to the same, increasing, allele. The 

I2
GX value for this data was 0.2. 

As additional sensitivity analyses, I assessed if there were associations between liability 

for schizophrenia and outcomes using genetic scores including SNPs with lower p-value 

thresholds from the schizophrenia GWAS (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014). These scores were derived using PRSice 

software (Euesden et al., 2015) for schizophrenia-associated genetic variants using the 
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following p-value thresholds: 1×10-5, 0.005, 0.05, 0.1, 0.5, 1. Of these, the threshold of 

0.05 has been shown to be the best predictor of schizophrenia (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014) however I examined evidence 

across all included thresholds. Scores were weighted according to the association 

magnitude of each SNP in the GWAS (Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014) and then averaged across SNPs to provide a score per 

individual. I standardized scores and then regressed each with the outcomes using the 

same models as for the regressions using the score with only genome-wide significant 

SNPs. For quadratic regression, genotype array, the top 10 principal components of 

population structure and additional adjustment for birth year were included. 

5.3.4 ALSPAC G0 

5.3.4.1 Exposure instrument 

There was a total of 115 SNPs available in ALSPAC data (see Appendix 16). There were 

no available proxies for any missing genome-wide significant SNPs in ALSPAC. These 

115 SNPs were eligible in regard to exclusion criteria. The mean F statistic for 

schizophrenia genetic liability was 37.16. 

5.3.4.2 Outcomes 

The primary measures in ALSPAC G0 were parity at 85 months post index child, parity 

at 18 years post index child, and age at first pregnancy. Parity measures were derived 

using questionnaire data for parity at 18 weeks gestation and any additional pregnancies 

reported until 85 months or 18 years later. As ALSPAC was also a pregnancy cohort, no 

binary measure of parity was derived. Age at first pregnancy was derived using 

questionnaire data for ALSPAC G0 age at first pregnancy, asked at approximately 18 

weeks gestation, or the age at index pregnancy if they reported no previous pregnancies. I 

also included a secondary binary measure of whether any previous pregnancy resulted in 

a termination (‘yes’ coded as 1) from questionnaire data at 18 weeks gestation. 

5.3.4.3 Data analysis 

After conducting analysis with and without schizophrenia cases in UK Biobank, I decided 

to remove the few schizophrenia cases in ALSPAC G0 before analyses (maximum N = 

7). For regression between the genetic score for schizophrenia liability and outcomes, I 

included covariates for the top 10 principal components of population structure and then 

further adjusted for birth year. I additionally included adjustment for age at delivery of 

the index child with whether any previous pregnancy had resulted in a termination. 
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I used Plink to calculate SNP-outcome associations for MR analyses (see Appendix 16), 

adjusted for birth year and the top 10 principal components of population structure. I then 

took these SNP-outcome associations into MR-Base and harmonized the data with 

exposure SNPs to ensure that the effect of the SNP on the exposure and the SNP on the 

outcome corresponded to the same, increasing, allele. The I2
GX value for this data was 0.5. 

I included the same additional sensitivity analyses in ALSPAC G0 as done so in MoBa 

data, regressing scores of the same varying p-value thresholds for liability to 

schizophrenia (derived using PRSice) on outcomes. These regressions used the same 

models as above with genome-wide significant SNPs. For quadratic regression, the top 10 

principal components of population structure and birth year were included as covariates. 

5.3.5 ALSPAC G1 

5.3.5.1 Exposure instrument 

As ALSPAC genetic data is similarly quality checked for ALSPAC G0 and ALSPAC G1, 

the SNPs available and those that passed exclusion criteria were the same. I therefore 

included the same 115 SNP list as for ALSPAC G0, with effect estimates for these listed 

in Appendix 17. The mean F statistic for schizophrenia genetic liability was 37.16. 

5.3.5.2 Outcomes 

I derived number of sexual partners using questionnaire data. The main measure was 

taken at 23 years old, and I replaced to missing if responses were above the 99.9th 

percentile. I additionally included a measure where I replaced any missing responses for 

the 23-year questionnaire with data from the same question asked at 21 years old if 

available. A binary measure indicating whether participants were in the top 10th percentile 

for number of sexual partners or not was derived from both the continuous measure of 23-

year data and the continuous measure of 23-year plus 21-year data. Additionally, I 

included a binary measure of whether participants had had a child yet. This was coded as 

1 if participants indicated that they had 1 child or more to questionnaires distributed at 

approximately 21, 22 and 23 years. 

5.3.5.3 Data analysis 

I firstly removed the one schizophrenia case. I then regressed the genetic score for 

schizophrenia liability against each outcome, adjusting for the top 10 principal 

components of population structure, sex and then additionally adjusting for age. For 

having ever had a child, I adjusted for at responding to the latest questionnaire, around 23 
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years. For number of sexual partners, I adjusted for age at answering the question that the 

data referred to.  

I used Plink to calculate SNP-outcome associations for MR analyses (see Appendix 17) 

by regressing each measure of reproductive success on each SNP, adjusted for the top 10 

principal components of population structure and age as above. For the binary measure of 

being in the highest number of sexual partners (plus 21-year data), the SNP rs1023500 

could not be used to create a reliable association due to the rare outcome with one allele 

and was dropped from this analysis. The SNP-outcome associations were then taken into 

MR-Base (Hemani, Zheng, et al., 2018), where they were harmonized with exposure 

SNPs to ensure that the effect of the SNP on the exposure and the SNP on the outcome 

corresponded to the same, increasing, allele. Note that, again, the I2
GX statistic for an 

unweighted MR-Egger regression was 0.5 for genetic liability of schizophrenia and MR-

Egger regression was therefore not appropriate (Bowden, Fabiola Del Greco, et al., 2016). 

For quadratic regression, the top 10 principal components of population structure, age and 

sex (in combines sex analysis) were included as covariates. 

5.4 Results 

5.4.1 Descriptives 

In the sample from UK Biobank, there were more females than males, a majority had 

children, and a minority had college or university degree qualifications. The mean age 

was 56.9 years (SD: 8.0) and the mean years of education was 13.3 (SD: 4.4). For the 

outcomes, the mean number of children was 1.8 (SD: 1.2), mean number of sexual 

partners was 5.8 (SD: 8.6) and the mean age at first birth was 25.4 years (SD: 4.5). See 

Table 5:2 for all UK Biobank descriptives.  

The mean age at delivery of the index child was 29.9 (SD: 4.4) in MoBa and 28.5 years 

(SD: 4.5) in ALSPAC G0. In MoBa, the mean age at first pregnancy was 25.8 years (SD: 

4.7) and 25.5 years (SD: 4.9) in ALSPAC G0. Mean parity was 1.59 (SD: 0.9) in MoBa, 

2.4 (0.9) at 85 months post index child in ALSPAC G0 and 2.5 (SD:4.9) at 18 years post 

index child in ALSPAC G0. In MoBa, mean age at first birth was 26.9 years (SD: 4.4).  

These descriptives are shown in Table 5:3. 
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Table 5:2 Participant characteristics in UK Biobank sample. 

 Total N Mean (SD) or N (%) 

Sex   

Females 
337 104 

181 362 (53.80) 

Males 155 742 (46.20) 

Age at assessment, years 337 104 56.87 (8.00) 

Educational attainment, years 333 975 13.34 (4.44) 

College   

No 
333 975 

251 951 (75.44) 

Yes 82 024 (24.56) 

Number of children 335 758 1.79 (1.20) 

Childless   

No 
335 758 

270 084 (80.44) 

Yes 65 674 (19.56) 

Age at first birth, years 124 093 25.39 (4.54) 

Number of sexual partners 275 700 5.76 (8.63) 

Highest number of sexual partners   

No 
275 700 

244 132 (88.55) 

Yes 31 568 (11.45) 

 



 

104 

 

Table 5:3 Participant characteristics in MoBa and ALSPAC G0 samples. 

  MoBa ALSPAC G0 

  

Total 

N 

Mean (SD) or 

N(%) 

Total 

N 

Mean (SD) or 

N(%) 

Age at index delivery 9444 29.94 (4.42) 7515 28.49 (4.76) 

Age at first birth 9444 26.85 (4.41) - - 

Age at first pregnancy 9444 25.80 (4.71) 7037 25.54 (4.89) 

Parity 9444 1.59 (0.89) - - 

Parity at 85 months post 

index child 
- - 4977 2.41 (0.89) 

Parity at 18 years post index 

child 
- - 2562 2.54 (1.01) 

Education 8940 4.57 (1.21) 6947 3.14 (1.26) 

Ever smoked     

     Yes 
9360 

4569 (48.81) 
7188 

3706 (51.56) 

     No 4791 (51.19) 43482 (8.44) 

Infertility     

     Yes 
9354 

769 (8.22) - - 

     No 8585 (91.78) - - 

Relationship 9444 75.83 (48.88)   

Pregnancy planned     

     Yes 
9350 

7800 (83.42) - - 

     No 1550 (16.58) - - 

Contraception was used     

     Yes 
9132 

396 (4.34) - - 

     No 8736 (95.66) - - 

Previous termination     

     Yes 
9444 

8161 (86.41) 
7136 

1008 (14.13) 

     No 1283 (13.59) 6128 (85.87) 

 

In ALSPAC G1, the mean number of sexual partners was 8.6 (SD: 10.4) for 23-year data 

and 8.6 (SD: 10.7) for 23-year plus 21-year data. Approximately 11.5% of participants 

had had a child (see Table 5:4).  

Table 5:4 Participant characteristics in ALSPAC G1 sample. 

 Total N Mean (SD) or N(%) 

Sex   

     Female 7749 3772 (48.68) 

     Male  3977 (51.32) 

Age answering 23-year questionnaire 2743 23.86 (0.51) 

Number of partners 2543 8.55 (10.41) 

Number of partners plus 21 years 3032 8.62 (10.69) 

Had child   

     Yes 2546 292 (11.47) 

     No  2254 (88.53) 
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5.4.2 Ever smoked 

Results for associations between the genetic scores for schizophrenia liability and 

whether participants had ever smoked are presented in Appendix 18. As expected, all 

ORs indicated an increased likelihood of having ever smoked with increased genetic 

liability for schizophrenia. There was clear evidence of an association when using 

genome-wide significant SNPs in UK Biobank and weak evidence in ALSPAC G1. For 

MoBa and ALSPAC G0, evidence became stronger with lower p-value thresholds for 

genetic liability than when using the genome-wide significant SNPs. 

5.4.3 Number of children or parity 

5.4.3.1 UK Biobank 

Using LD score regression, I found little evidence of a genetic correlation between 

schizophrenia liability and number of children (rg = 0.002, p = 0.84). The analysis 

included 1 114 456 SNPs. Results for these analyses with genotype array included as a 

covariate in generating outcome summary statistics are presented in Appendix 19. 

There was little evidence of associations between the genetic score for schizophrenia 

liability and outcomes in regression analyses (see Table 5:5). Cochran’s Q was 156.48 

(p<0.001) for genetic liability of schizophrenia and number of children, suggesting 

overdispersion although this appeared balanced (see Appendix 20). Cochran’s Q was 

172.79 (p<0.001) for genetic liability of schizophrenia and childlessness with a similar 

pattern. There was little evidence that higher genetic liability for schizophrenia increased 

number of children (mean difference: 0.003 increase in number of children per doubling 

in the natural log OR of schizophrenia liability, 95% CI: -0.003 to 0.009, p = 0.39). I 

further tested childlessness as an outcome and found no strong evidence of an effect of 

genetic liability for schizophrenia on childlessness (see Table 5:6). When I repeated the 

MR analysis after removing the few schizophrenia cases in the sample, there was no clear 

change in results (see Appendix 21). Results for these analyses with genotype array 

included as a covariate in the outcome summary statistics are presented in Appendix 22. 

Table 5:5 Estimates of the association between the genetic score for schizophrenia 

liability and number of children in UK Biobank data. 

Genetic score for schizophrenia liability 
Number of children 

N β (95% CI), p 

Combined sexes  335 758 0.0002 (-0.0004, 0.0008), 0.53 

Females 181 255 0.0006 (-0.0002, 0.0014), 0.16 

Males 154 503 -0.0003 (-0.0012, 0.0007), 0.60 
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Table 5:6 Estimates of the causal effect of genetic liability for schizophrenia on number 

of children and childlessness using IVW, MBE and weighted median MR methods. 

 No. of childrenb Childlessnessc 

Method (101 SNPsa) β (95% CI), p OR (95% CI), p 

IVW 0.003 (-0.003, 0.009), 0.39 0.998 (0.985, 1.012), 0.79 

Weighted median 0.006 (-0.004, 0.015), 0.23 0.995 (0.975, 1.016), 0.65 

MBE 0.020 (-0.012, 0.052), 0.22 0.992 (0.924, 1.065), 0.83 

a Schizophrenia genetic data from the PGC GWAS (N= 35 123 cases and 109 657 

controls); b Number of children data from UK Biobank (N = 318 921 – 335 758). c 

Childlessness data from UK Biobank (N = 318 921 – 335 758). 

 

Sensitivity analysis investigating a possible non-linear relationship is presented in Figure 

5:2, showing the mean number of children for quintiles of an unweighted additive genetic 

score for schizophrenia liability. As shown, there is little evidence of heterogeneity across 

values of the schizophrenia score. Similar patterns are seen across deciles of the genetic 

score for schizophrenia liability and when plotting these measures of reproductive success 

on the x-axis (see Appendix 23 and Appendix 24). A series of regressions between the 

genetic score and number of children, systematically removing cumulative centiles, 

showed that estimates became slightly stronger although there was little statistical support 

(see Table 5:7). This analysis was repeated after removing the few schizophrenia cases, 

which did not alter results (see Appendix 25). Regression of the genetic score for 

schizophrenia liability and number of children further showed no clear evidence when 

including a quadratic term for genetic liability for schizophrenia and when stratified by 

sex (see Table 5:8). This quadratic relationship suggested a slight peak in fitness at 

intermediate levels of genetic liability, particularly for females, but again with little 

statistical support (see Appendix 26-28).  
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Figure 5:2 Genetic score for schizophrenia liability (in quintiles) and mean number of 

children in UK Biobank data showing little evidence of heterogeneity across values of the 

score. 

 

Table 5:7 Estimates of the association between the genetic score for schizophrenia 

liability and number of children removing cumulative deciles of the genetic score.  

Genetic score for schizophrenia liability 
Number of children 

N β (95% CI), p 

Highest 10% removed 302 190 0.0005 (-0.0003, 0.0013), 0.19 

Highest 20% removed 268 604 0.0002 (-0.0007, 0.0011), 0.70 

Highest 30% removed 235 030 0.0005 (-0.0006, 0.0016), 0.35 

Highest 40% removed 208 433 0.0006 (-0.0006, 0.0019), 0.30 

Highest 50% removed 167 860 0.0008 (-0.0006, 0.0023), 0.27 

 

Table 5:8 Quadratic regression of the genetic score for schizophrenia liability with 

number of children in UK Biobank data.  

Genetic score for schizophrenia liability  

(including quadratic term for the score) 

Number of children 

N β (95% CI), p 

Combined sexes  335 758 0.0025 (-0.0108, 0.0157), 0.72 

Females 181 255 -0.0001 (-0.0174, 0.0172), 0.99 

Males 154 503 0.0055 (-0.0149, 0.0259), 0.60 

 

5.4.3.2 MoBa 

There was a positive relationship between genetic liability for schizophrenia and parity 

using a genetic score consisting of genome-wide significant SNPs (see Table 5:9). 

Subsequently, MR results indicated a positive effect on parity with increasing genetic 

liability for schizophrenia in the IVW approach. The weighted median approach was also 
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in the positive direction although the MBE resulted in a small negative point estimate. 

The Cochran’s Q for this IVW analysis was 79.74 (p = 0.96) (see Appendix 29).  

Conversely, associations did not remain in sensitivity analysis looking across p-value 

thresholds for genetic liability for schizophrenia although most point estimates were in 

the positive direction (see Table 5:11). 

Table 5:9 Estimates of the association between the genetic score for schizophrenia 

liability and number of children in MoBa data. 

 
Parity 

(N = 9439) 

Genetic score for schizophrenia liability β (95% CI), p 

Model 1 0.021 (0.003, 0.039), 0.02 

Model 2 0.021 (0.003, 0.039), 0.02 

Model 1 is adjusted for the top 10 principal components of population structure and 

genotype array. Model 2 is additionally adjusted for mothers’ birth year. 

 

Table 5:10 Estimates of the causal effect of genetic liability for schizophrenia on parity 

using IVW, MBE and weighted median MR methods. 

 Parityb 

Method (105 SNPsa) β (95% CI), p 

IVW 0.031 (0.005, 0.057), 0.02 

Weighted median 0.012 (-0.025, 0.049), 0.54 

MBE -0.001 (-0.093, 0.092), 0.98 

a Schizophrenia genetic data from the PGC GWAS (N= 35 123 cases and 109 657 

controls); b Parity data from MoBa (N = 9439). 

  



 

109 

 

Table 5:11 Estimates for associations between genetic scores with varying p-value 

thresholds and parity in MoBa data. 

 Parity 

(N = 9439) 

 β (95% CI), p 

Genetic score for schizophrenia liability 

Model 1    

p<1x10-5 0.010 (-0.008, 0.028), 0.29 

p<0.0005 -0.0001 (-0.018, 0.018), 0.99 

p<0.005 0.008 (-0.011, 0.027), 0.43 

p<0.05 0.006 (-0.012, 0.024), 0.53 

p<0.1 0.005 (-0.014, 0.024), 0.63 

p<0.5 0.003 (-0.016, 0.022), 0.74 

p<1 0.004 (-0.016, 0.023), 0.72 

Model 2    

p<1x10-5 0.010 (-0.008, 0.027), 0.29 

p<0.0005 0.00004 (-0.018, 0.018), 0.99 

p<0.005 0.007 (-0.011, 0.026), 0.44 

p<0.05 0.006 (-0.013, 0.024), 0.55 

p<0.1 0.004 (-0.015, 0.023), 0.65 

p<0.5 0.003 (-0.016, 0.022), 0.77 

p<1 0.003 (-0.016, 0.023), 0.75 

Model 1 is adjusted for the top 10 principal components of population structure and 

genotype array. Model 2 is additionally adjusted for mothers’ birth year. 

 

As shown in Figure 5:3, the relationship between the genetic score for schizophrenia 

liability (using genome-wide significant SNPs) and parity suggests a somewhat linear 

relationship. In line with this, there was no clear statistical evidence for a relationship 

between genetic liability for schizophrenia and parity when including a quadratic term for 

the genetic score although the unadjusted quadratic plot suggested a possible J-shaped 

relationship (see Table 5:12 and Appendix 30).  
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Figure 5:3 Genetic score for schizophrenia liability (in quintiles) and mean parity in 

MoBa data showing a slight linear trend across values of the score. 

 

Table 5:12 Quadratic regression of the genetic score for schizophrenia liability with 

parity in MoBa data. 

 

Parity 

(N = 9439) 

 β (95% CI), p 

Genetic score for schizophrenia liability  

(including quadratic term for the unstandardized score) 

Model 1  -0.232 (-0.650, 0.185), 0.28 

Model 2 -0.231 (-0.649, 0.187), 0.28 

Model 1 is adjusted for the top 10 principal components of population structure and 

genotype array. Model 2 is additionally adjusted for mothers’ birth year. 

 

5.4.3.3 ALSPAC G0 

There was no clear evidence for associations between liability for schizophrenia and 

parity using a genetic score consisting of genome-wide significant SNPs (see Table 

5:13). In line with this, there was no clear effects across all MR methods (see Table 

5:14). In sensitivity analyses using varying p-value thresholds for genetic liability, there 

was no clear evidence of associations with parity at 85 months or 18 years post index 

child (see Table 5:15). Cochran’s Q for an IVW method for parity at 85 months post 

index child was 97.77 (p = 0.86) and 91.72 (p = 0.94) for parity at 18 years post index 

child (see Appendix 31). 
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Table 5:13 Estimates of the association between the genetic score for schizophrenia 

liability and parity in ALSPAC G0 data. 

 Parity 85m post index child Parity 18y post index child 

 (N = 4977) (N = 2562) 

 β (95% CI), p 

Genetic score for schizophrenia liability 

Model 1 0.008 (-0.016, 0.033), 0.51 0.003 (-0.035, 0.042), 0.86 

Model 2 0.008 (-0.017, 0.032), 0.55 0.006 (-0.033, 0.044), 0.77 

Model 1 is adjusted for the top 10 principal components of population structure. Model 2 

is additionally adjusted for ALSPAC G0 birth year. 

 

Table 5:14 Estimates of the causal effect of genetic liability for schizophrenia on parity 

using IVW, MBE and weighted median MR methods 

 Parity at 85 monthsb Parity at 18 yearsc 

Method (115 SNPsa) β (95% CI), p 

IVW 0.011 (-0.023, 0.045), 0.53 0.008 (-0.046, 0.062), 0.78 

Weighted median -0.004 (-0.054, 0.046), 0.86 0.012 (-0.064, 0.087), 0.76 

MBE -0.045 (-0.168, 0.078), 0.47 0.039 (-0.152, 0.230), 0.69 

a Schizophrenia genetic data from the PGC GWAS (N = 35 123 cases and 109 657 

controls); b Parity at 85 months post index child from ALSPAC G0 (N = 4977). c Parity at 

18 years post index child from ALSPAC G0 (N = 2562). 

 

Table 5:15 Estimates for associations between genetic scores with varying p-value 

thresholds and parity in ALSPAC G0 data. 

 Parity at 85 months 

(N = 4977) 

Parity at 18 years 

(N = 2562) 

 β (95% CI), p 

Genetic score for schizophrenia liability 

Model 1       

p<1x10-5 0.010 (-0.014, 0.034), 0.42 0.025 (-0.014, 0.064), 0.21 

p<0.0005 0.004 (-0.020, 0.029), 0.74 0.033 (-0.006, 0.073), 0.10 

p<0.005 0.013 (-0.012, 0.037), 0.32 0.035 (-0.004, 0.075), 0.08 

p<0.05 0.022 (-0.003, 0.047), 0.08 0.033 (-0.007, 0.073), 0.11 

p<0.1 0.018 (-0.007, 0.043), 0.15 0.025 (-0.015, 0.065), 0.21 

p<0.5 0.012 (-0.013, 0.037), 0.36 0.025 (-0.015, 0.065), 0.22 

p<1 0.011 (-0.014, 0.036), 0.40 0.019 (-0.020, 0.059), 0.34 

Model 2       

p<1x10-5 0.008 (-0.016, 0.033), 0.50 0.028 (-0.011, 0.068), 0.15 

p<0.0005 0.002 (-0.022, 0.027), 0.84 0.036 (-0.004, 0.075), 0.08 

p<0.005 0.012 (-0.013, 0.036), 0.35 0.035 (-0.004, 0.075), 0.08 

p<0.05 0.021 (-0.004, 0.045), 0.10 0.035 (-0.005, 0.074), 0.09 

p<0.1 0.017 (-0.008, 0.042), 0.19 0.028 (-0.012, 0.068), 0.17 

p<0.5 0.010 (-0.015, 0.035), 0.42 0.027 (-0.013, 0.066), 0.19 

p<1 0.009 (-0.015, 0.034), 0.46 0.021 (-0.018, 0.061), 0.29 

Model 1 is adjusted for the top 10 principal components of population structure. Model 2 

is additionally adjusted for ALSPAC G0 birth year. 
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There was little evidence of heterogeneity of mean parity across quintiles of the genetic 

score for schizophrenia liability when investigating the possibility of a non-linear 

relationship (see Figure 5:4 and Figure 5:5). Although an unadjusted quadratic plot 

suggested a non-linear relationship for each measure of parity, there was no clear 

statistical support for these (see Appendix 32 and Appendix 33 and Table 5:16).  

 

Figure 5:4 Genetic score for schizophrenia liability (in quintiles) and mean parity at 85 

months post index child in ALSPAC G0 data showing little evidence of heterogeneity 

across values of the score. 

 

 

Figure 5:5 Genetic score for schizophrenia liability (in quintiles) and mean parity at 18 

years post index child in ALSPAC G0 data showing little evidence of heterogeneity across 

values of the score. 
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Table 5:16 Quadratic regression of the genetic score for schizophrenia liability with 

parity in ALSPAC G0.  

 Parity 85m post index child Parity 18y post index child 

 (N = 4977) (N = 2562) 

 β (95% CI), p 

Genetic score for schizophrenia liability (including quadratic term for the 

unstandardized score) 

Model 1 -0.337 (-0.985, 0.312), 0.31 0.628 (-0.384, 1.639), 0.22 

Model 2 -0.341 (-0.988, 0.307), 0.30 0.598 (-0.410, 1.607), 0.25 

Model 1 is adjusted for the top 10 principal components of population structure. Model 2 

is additionally adjusted for ALSPAC G0 birth year. 

 

5.4.3.4 ALSPAC G1 

As shown in Table 5:17, there was evidence of an effect in the positive direction for 

increasing genetic liability for schizophrenia on the likelihood of having had a child in 

females. However, in combined sexes or males only, there was no clear evidence of such 

an effect (see Table 5:17 and Table 5:18). Cochran’s Q values for the IVW method 

indicated only weak evidence for overdispersion (138.38, p = 0.06) (see Appendix 34). 

Table 5:17 Estimates of associations between the genetic score for schizophrenia liability 

and whether participants had had a child yet in ALSPAC G1 data. 

  Had child 

Genetic score for schizophrenia liability N OR (95% CI), p 

Combined sexes 1956 1.123 (0.970, 1.301), 0.12 

Females 1299 1.214 (1.027, 1.434), 0.02 

Males 657 0.872 (0.639, 1.189), 0.39 

 

Table 5:18 Estimates of the causal effect of genetic liability for schizophrenia on whether 

participants had had a child yet using IVW, MBE and weighted median MR methods. 

  Had childb 

Methods (115 SNPsa) OR (95% CI), P 

IVW 1.173 (0.948, 1.451), 0.14 

Weighted Median 1.172 (0.875, 1.569), 0.29 

MBE 0.937 (0.467, 1.881), 0.28 

a Schizophrenia genetic data from the PGC GWAS (N= 35 123 cases and 109 657 

controls); b Whether participants had had a child yet data from ALSPAC G1 (N = 1956). 
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5.4.3.5 Summary across all studies 

All IVW point estimates for the effect of genetic liability for schizophrenia on number of 

children or parity were in the positive direction. There was statistical support for an effect 

in MoBa, whereas confidence intervals for the other studies included the null. For 

childlessness, there was no clear evidence in either UK Biobank or ALSPAC G1 and the 

point estimate for UK Biobank was very close to the null value, possibly due lower 

statistical power with using binary measures.  

 

 

Figure 5:6 IVW estimates for genetic liability for schizophrenia on number of children or 

parity across studies. 

 

Figure 5:7 IVW estimates for genetic liability for schizophrenia on likelihood of being 

childless across studies. ALSPAC G1 estimates are for the reverse coding of having had a 

child in the above analysis. 
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5.4.4 Number of sexual partners 

5.4.4.1 UK Biobank 

There was no clear evidence of a genetic correlation between schizophrenia liability and 

number of sexual partners (rg = 0.007, p = 0.42). Again, the analysis included 1 114 456 

SNPs. Results for these analyses with genotype array included as a covariate in the 

outcome summary statistics are presented in Appendix 19. 

There was clear evidence of a positive association between genetic liability for 

schizophrenia and number of sexual partners (see Table 5:19). Cochran’s Q was 301.88 

(p<0.001) for genetic liability of schizophrenia and number of sexual partner and 250.33 

(p<0.001) for genetic liability of schizophrenia and being in the highest number of sexual 

partners for IVW analysis, again suggesting overdispersion although this also appeared 

balanced (see Appendix 20 for an example). I found that higher genetic liability for 

schizophrenia had a positive effect on number of sexual partners (mean difference: 0.165 

increase in number of sexual partners per doubling in the natural log OR of schizophrenia 

liability, 95% CI: 0.117 to 0.212, p<0.001) (see Table 5:20). A positive effect was also 

seen in analysis of the binary measure for the highest number of sexual partners (see 

Table 5:20). No clear change in results was seen when analysis was repeated without the 

few schizophrenia cases (shown in Appendix 21). Results for these analyses with 

genotype array included as a covariate in the outcome summary statistics are presented in 

Appendix 22. 

Table 5:19 Estimates of the association between the genetic score for schizophrenia 

liability and number of sexual partners in UK Biobank data. 

Genetic score for schizophrenia liability 
Number of sexual partners 

N β (95% CI), p 

Combined sexes  275 700 0.016 (0.011, 0.021), <0.001 

Females 148 630 0.005 (0.002, 0.009), 0.004 

Males 127 070 0.029 (0.019, 0.038), <0.001 
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Table 5:20 Estimates of the causal effect of genetic liability for schizophrenia on number 

of sexual partners and a binary measure of this using IVW, MBE and weighted median 

MR methods. 

 Number of sexual 

partnersb 

Highest number of 

sexual partnersc 

Method (101 SNPsa) β (95% CI), p OR (95% CI), p 

IVW 
0.165 (0.117, 0.212), 

<0.001 

1.057 (1.038, 1.077), 

<0.001 

Weighted median 
0.172 (0.092, 0.230), 

<0.001 

1.034 (1.003, 1.066), 

0.03 

MBE 
0.389 (-0.032, 0.810), 

0.07 

1.010 (0.884, 1.154), 

0.88 

a Schizophrenia genetic data from the PGC GWAS (N = 35 123 cases and 109 657 

controls); b Number of sexual partners data from UK Biobank (N = 261 931- 275 700); c 

Highest number of sexual partners data from UK Biobank (N = 261 931- 275 700). 

 

In sensitivity analysis, the relationship between the genetic score for schizophrenia 

liability and number of sexual partners appears linear (see Figure 5:8). Similar patterns 

are seen across deciles of the genetic score for schizophrenia liability and when plotting 

these measures of reproductive success on the x-axis (see Appendix 35 and Appendix 

36). Furthermore, a relationship was consistently shown when removing cumulative 

deciles from the maximum of the genetic score (see Table 5:21 and Appendix 25). 

Furthermore, there was no clear evidence for a relationship between genetic liability for 

schizophrenia and number of sexual partners when including a quadratic term, again 

suggesting the relationship is linear (see Table 5:22 and Appendix 37-39). 

 

Figure 5:8 Genetic score for schizophrenia liability (in quintiles) and mean number of 

sexual partners in UK Biobank data suggesting a linear relationship.  
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Table 5:21 Estimates of the association between the genetic score for schizophrenia 

liability and number of sexual partners removing cumulative deciles of the genetic score. 

 Genetic score for schizophrenia liability 
Number of sexual partners 

N β (95% CI), p 

Highest 10% removed 248 251 0.011 (0.005, 0.017), <0.001 

Highest 20% removed 220 847 0.012 (0.005, 0.020), <0.001 

Highest 30% removed 193 353 0.017 (0.008, 0.025), <0.001 

Highest 40% removed 171 567 0.015 (0.006, 0.025), <0.001 

Highest 50% removed 138 280 0.012 (0.001, 0.024), 0.04 

 

Table 5:22 Quadratic regression of the genetic score for schizophrenia liability with 

number of sexual partners in UK Biobank data. 

Genetic score for schizophrenia liability 

(including quadratic term for genetic score) 

Number of sexual partners 

N β (95% CI), p 

Combined sexes  275 700 -0.046 (-0.148, 0.056), 0.38 

Females 148 630 -0.017 (-0.092, 0.057), 0.65 

Males 127 070 -0.085 (-0.289, 0.118), 0.41 

 

5.4.4.2 ALSPAC G1 

There was little evidence of associations between the genetic score for schizophrenia 

liability and outcomes in regression analyses (see Table 5:23). Cochran’s Q values 

indicated little evidence for overdispersion across IVW analyses (see Table 5:24 and 

Appendix 34 for example plot). As shown in Table 5:25, there was little evidence for a 

causal effect of increasing genetic liability of schizophrenia on number of sexual partners 

across MR methods. 

Table 5:23 Estimates of the association between the genetic score for schizophrenia 

liability and number of sexual partners in ALSPAC G1 data. 

 Number of sexual partners 
Number of sexual partners (plus 21-

year data) 

 N β (95% CI), p N β (95% CI), p 

Combined sexes 2474 0.203 ( -0.206, 0.613), 0.33 2963 0.219 (-0.169, 0.607), 0.27 

Females only 1623 -0.050 (-0.443, 0.344), 0.81 1911 -0.064 (-0.433, 0.305), 0.73 

Males only 851 0.636 (-0.285, 1.556), 0.18 1052 0.664 (-0.195, 1.524), 0.13 
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Table 5:24 Cochran’s Q values for an IVW approach. 

  
Schizophrenia liability 

  

Outcome Q p 

Number of sexual partners 130.14 0.14 

Number of sexual partners (plus 21-year data) 122.33 0.28 

Highest number of sexual partners 126.28 0.19 

Highest number of sexual partners (plus 21-year data) 131.87 0.12 

 

Table 5:25 Estimates of the causal effect of genetic liability for schizophrenia on number 

of sexual partners and a binary measure of this using IVW, MBE and weighted median 

MR methods. 

  

Number of 

sexual 

partnersb 

Number of 

sexual 

partners 

(plus 21-year 

data)c 

Highest number 

of sexual 

partnersb 

Highest number 

of sexual 

partners (plus 

21-year data)c 

Method 

(115 

SNPsa) 

β (95% CI), p OR (95% CI), p 

IVW 
0.293 (-0.301, 

0.888), 0.33 

0.313 (-0.231, 

0.856), 0.26 

1.066 (0.877, 

1.296), 0.52 

1.055 (0.888, 

1.254), 0.54 

Weighted 

Median 

0.121 (-0.744, 

1.278), 0.78 

0.279 (-0.520, 

1.077), 0.50 

1.116 (0.849, 

1.468), 0.43 

1.017 (0.790, 

1.307), 0.90 

MBE 
-0.382 (-2.238, 

1.523), 0.40 

0.343 (-1.374, 

2.060), 0.70 

1.216 (0.668, 

2.204), 0.52 

1.112 (0.655, 

1.887), 0.92 

a Schizophrenia genetic data from the PGC GWAS (N= 35 123 cases and 109 657 

controls); b Number of sexual partners data from ALSPAC G0 (N = 2474); c Number of 

sexual partners (plus 21-year data) from ALSPAC G0 (N = 2963). The number of SNPs 

for c is 114. 

 

In Figure 5:9 and Figure 5:10, there is some suggestion of a peak in number of sexual 

partners even in this general population sample. Results from regression analysis 

including a quadratic term for the genetic score supported this peak, particularly in 

females (see Table 5:26 and Appendix 40-33). 
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Figure 5:9 Genetic score for schizophrenia liability (in quintiles) and mean number of 

sexual partners in ALSPAC G1 data suggesting a possible non-linear relationship. 

 

 

Figure 5:10 Genetic score for schizophrenia liability (in quintiles) and mean number of 

sexual partners (plus 21-year data) in ALSPAC G1 data suggesting a possible non-linear 

relationship. 
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Table 5:26 Quadratic regression of the genetic score for schizophrenia liability with 

number of sexual partners in ALSPAC G1 data. 

Genetic score for 

schizophrenia liability  

(including quadratic term 

for the unstandardized 

score) 

Number of sexual partners 
Number of sexual partners 

(plus 21-year data) 

N β (95% CI), p N β (95% CI), p 

Combined sexes 2474 6.264 (-3.852, 16.380), 

0.23 

2963 9.479 (-0.137, 19.094), 

0.05 

Females only 1623 10.824 (0.724, 20.924), 

0.04 

1911 9.983 (0.498, 19.468), 

0.04 

Males only 851 -3.171 (-24.57, 18.23), 

0.77 

1052 6.977 (-13.142, 27.096), 

0.50 

 

5.4.4.3 Summary across all studies 

All IVW point estimates for the effect of genetic liability for schizophrenia on number of 

sexual partners were in the positive direction. There was a clear effect in UK Biobank, 

whereas confidence intervals for ALSPAC G1 results were wide and consistent with the 

null. It is likely that the smaller sample sizes for ALSPAC G1 data resulted in reduced 

power to clearly detect an effect, although sensitivity analysis also suggested a possible 

non-linear relationship (see above). 

 

Figure 5:11 IVW estimates for genetic liability for schizophrenia on number of sexual 

partners across studies. 
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Figure 5:12 IVW estimates for genetic liability for schizophrenia on a binary measure of 

number of sexual partners across studies. 

 

5.4.5 Age at first pregnancy and age at first birth 

5.4.5.1 UK Biobank 

Using LD score regression, there was little evidence of a genetic correlation between 

schizophrenia liability and age at first birth (rg = -0.007, p = 0.45). Again, there were 1 

114 456 SNPs included in this analysis. Results for these analyses with genotype array 

included as a covariate in the outcome summary statistics are presented in Appendix 19. 

Regression of the genetic score for schizophrenia liability on age at first birth showed no 

clear evidence of an association (mean difference: -0.001 decrease in age at first birth per 

allele increase in genetic liability for schizophrenia, CI: -0.005 to 0.003, p = 0.54, N = 

124 093). Cochran’s Q was 286.64 for genetic liability of schizophrenia and age at first 

birth (p<0.001) which again suggests the presence of overdispersion although this did 

appear balanced (see Appendix 20 for example). There was little evidence that higher 

genetic liability for schizophrenia decreased age at first birth (mean difference: -0.004 

years lower age at first birth per doubling in the natural log OR of schizophrenia liability, 

95% CI: -0.043 to 0.034, p = 0.82) (see Table 5:27). After removing the few 

schizophrenia cases in the sample, there was no clear change in results (as shown in 

Appendix 21). For results of these analyses with genotype array included as a covariate 

in outcome summary statistics, see Appendix 22. 
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Table 5:27 Estimates of the causal effect of genetic liability for schizophrenia on age at 

first birth using IVW, MBE and weighted median MR methods. 

 Age at first birthb 

Method (101 SNPsa) β (95% CI), p 

IVW -0.004 (-0.043, 0.034), 0.82 

Weighted median 0.023 (-0.042, 0.089), 0.49 

MBE 0.060 (-0.175, 0.294), 0.62 

a Schizophrenia genetic data from the PGC GWAS (N= 35 123 cases and 109 657 

controls); b Age at first birth data from UK Biobank (N = 117 844 – 124 093). 

 

Sensitivity analysis investigating a possible non-linear relationship is presented in Figure 

5:13 and Appendix 46, showing the mean age at first birth for quintiles of an unweighted 

additive genetic score for schizophrenia liability. Although these figures are somewhat 

suggestive of a non-linear relationship between the genetic score for schizophrenia 

liability and mean age at first birth, there is little evidence of heterogeneity across values 

of the schizophrenia score. A series of regressions between the genetic score and age at 

first birth, systematically removing cumulative centiles from the maximum, suggests that 

the relationship is strongest at intermediate levels (see Table 5:28). This analysis was 

repeated after removing the few schizophrenia cases, which did not alter these results (see 

Appendix 25). There was a weak association when including a quadratic term for the 

genetic score, suggesting the lowest age at first birth was seen at intermediate levels of 

genetic liability (mean difference: -0.088 decrease in age at first birth per allele increase 

in genetic liability for schizophrenia, CI: -0.171 to -0.004, p = 0.54, N = 124,093) (also 

see Appendix 47). 
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Figure 5:13 Genetic score for schizophrenia liability (in quintiles) and mean age at first 

birth in women from UK Biobank data showing some evidence of a non-linear trend. 

 

Table 5:28 Associations of the genetic score for schizophrenia liability and age at first 

birth removing cumulative deciles of the score.  

  

Genetic score for schizophrenia liability 

 Age at first birth 

N β (95% CI), p 

Highest 10% removed 111 632 -0.004 (-0.009, 0.001), 0.15 

Highest 20% removed 99 134 -0.005 (-0.010, 0.001), 0.11 

Highest 30% removed 86 620 -0.008 (-0.014, -0.001), 0.03 

Highest 40% removed 76 833 -0.009 (-0.016, -0.001), 0.02 

Highest 50% removed 61 822 -0.008 (-0.018, 0.001), 0.08 

 

5.4.5.2 MoBa 

No clear associations were seen between genetic liability for schizophrenia and age at 

first pregnancy or age at first birth (see Table 5:29). Furthermore, there were no clear 

effects of genetic liability for schizophrenia on age at first pregnancy or age at first birth 

across MR methods (see Table 5:30). The Cochran’s Q was 98.79 (p = 0.63) for age at 

first pregnancy and 89.67 (p = 0.84) for age at first birth (see Appendix 29 for an 

example).  

In sensitivity analysis varying the p-value threshold for genetic liability to schizophrenia, 

there was evidence of negative associations with age at first pregnancy (see Table 5:31). 

Point estimates were in a consistent negative direction although varying strengths of 

25.15

25.2

25.25

25.3

25.35

25.4

25.45

25.5

25.55

1 2 3 4 5

M
ea

n
 a

g
e 

at
 f

ir
st

 b
ir

th
 (

9
5
%

 C
I)

Quintiles of genetic score for schizophrenia liability



 

124 

 

evidence was seen. Evidence for age at first birth was weaker however results for a p-

value threshold of 0.05 suggested a relationship when including adjustment for birth year. 

Table 5:29 Estimates of the association between the genetic score for schizophrenia 

liability and age at first pregnancy and age at first birth in MoBa data. 

 
Age at first pregnancy 

(N = 9444) 

Age at first birth 

(N = 9444) 

Genetic score for schizophrenia 

liability 
β (95% CI), p 

Model 1 0.029 (-0.067, 0.124), 0.55 0.022 (-0.066, 0.111), 0.62 

Model 2 0.006 (-0.079, 0.092), 0.88 -0.004 (-0.078, 0.071), 0.93 

Model 1 is adjusted for the top 10 principal components of population structure and 

genotype array. Model 2 is additionally adjusted for mothers’ birth year. 

 

Table 5:30 Estimates of the causal effect of genetic liability for schizophrenia on age at 

first pregnancy and age at first birth using IVW, MBE and weighted median MR methods. 

 Age at first pregnancyb Age at first birthc 

Method (105 SNPsa) β (95% CI), p 

IVW 0.010 (-0.114, 0.133), 0.88 -0.006 (-0.114, 0.103), 0.92 

Weighted median -0.028 (-0.209, 0.155), 0.77 0.092 (-0.061, 0.245), 0.24 

MBE -0.067 (-0.610, 0.476), 0.81 0.202 (-0.171, 0.577), 0.29 

a Schizophrenia genetic data from the PGC GWAS (N= 35 123 cases and 109 657 

controls); b Age at first pregnancy data from MoBa (N = 9444); c Age at first birth data 

from MoBa (N = 9444). 
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Table 5:31 Estimates for associations between genetic scores with varying p-value 

thresholds and age at first pregnancy and age at first birth in MoBa data. 

 Age at first pregnancy 

(N=9444) 

Age at first birth 

(N = 9444) 

 β (95% CI), p β (95% CI), p 

Schizophrenia       

Model 1       

p<1x10-5 -0.085 (-0.181, 0.010), 0.08 -0.060 (-0.149, 0.029), 0.19 

p<0.0005 -0.107 (-0.203, -0.011), 0.03 -0.045 (-0.134, 0.045), 0.33 

p<0.005 -0.126 (-0.225, -0.028), 0.01 -0.035 (-0.127, 0.057), 0.46 

p<0.05 -0.145 (-2.45, -0.045), 0.004 -0.053 (-0.146, 0.040), 0.27 

p<0.1 -0.156 (-0.258, -0.053), 0.003 -0.062 (-0.158, 0.034), 0.21 

p<0.5 -0.132 (-0.234, -0.031), 0.01 -0.032 (-0.127, 0.063), 0.51 

p<1 -0.125 (-0.229, -0.022), 0.02 -0.023 (-0.119, 0.074), 0.65 

Model 2       

p<1x10-5 -0.086 (-0.172, -0.001) 0.05 -0.060 (-0.135, 0.015), 0.11 

p<0.0005 -0.098 (-0.184, -0.012), 0.03 -0.034 (-0.110, 0.041), 0.37 

p<0.005 -0.140 (-0.228, -0.052), 0.002 -0.051 (-0.128, 0.027), 0.20 

p<0.05 -0.184 (-0.274, -0.095), <0.001 -0.098 (-0.176, -0.019), 0.02 

p<0.1 -0.187 (-0.279, -0.095), <0.001 -0.099 (-0.179, -0.018), 0.02 

p<0.5 -0.171 (-0.262, -0.080), <0.001 -0.077 (-0.156, 0.003), 0.60 

p<1 -0.170 (-0.262, -0.077), <0.001 -0.074 (-0.155, 0.008), 0.08 

Model 1 is adjusted for the top 10 principal components of population structure and 

genotype array. Model 2 is additionally adjusted for mothers’ birth year. 

 

There appeared to be little evidence of heterogeneity for mean age at first pregnancy 

across quintiles of the genetic score for schizophrenia liability (see Figure 5:14) whereas 

a possible peak was observed for age at first birth (see Figure 5:15). Quadratic regression 

results showed no support for non-linearity (see Table 5:32, Appendix 48 and Appendix 

49).  
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Figure 5:14 Genetic score for schizophrenia liability (in quintiles) and mean age at first 

pregnancy in MoBa data showing little heterogeneity across values of the score. 

 

Figure 5:15 Genetic score for schizophrenia liability (in quintiles) and mean age at first 

birth in MoBa data showing little heterogeneity across values of the score. 
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Table 5:32 Quadratic regression of the genetic score for schizophrenia liability with age 

at first pregnancy and age at first birth in MoBa. 

 

Age at first pregnancy 

(N = 9444) 

Age at first birth 

(N = 9444) 

 β (95% CI), p 

Genetic score for schizophrenia liability  

(including quadratic term for the unstandardized score) 

Model 1  0.183 (-2.042, 2.408), 0.87 1.192 (-0.888, 3.273), 0.26 

Model 2 0.342 (-1.658, 2.342), 0.74 1.375 (-0.376, 3.127), 0.12 

Model 1 is adjusted for the top 10 principal components of population structure. Model 2 

is additionally adjusted for mothers’ birth year. 

 

5.4.5.3 ALSPAC G0 

There was no clear evidence for associations between liability for schizophrenia and age 

at first pregnancy using a genetic score consisting of genome-wide significant SNPs (see 

Table 5:33). Cochran’s Q for this IVW analysis was 125.14 (p = 0.22) (see Appendix 31 

for an example). There was weak evidence for a negative effect of increasing liability for 

schizophrenia on age at first pregnancy using a weighted median approach (see Table 

5:34).  

Table 5:33 Estimates of the association between the genetic score for schizophrenia 

liability and age at first pregnancy in ALSPAC G0 data. 

Genetic score for 

schizophrenia liability 

Age at first pregnancy 

(N = 7036) 

β (95% CI), p 

Model 1 0.033 (-0.081, 0.147), 0.57 

Model 2 -0.028 (-0.117, 0.060), 0.53 

Model 1 is adjusted for the top 10 principal components of population structure. Model 2 

is additionally adjusted for ALSPAC G0 birth year. 

 

Table 5:34 Estimates of the causal effect of genetic liability for schizophrenia on age at 

first pregnancy using IVW, MBE and weighted median MR methods. 

  Age at first pregnancyb 

Methods (115 SNPsa) β (95% CI), p 

IVW -0.040 (-0.169, 0.089), 0.54 

Weighted median -0.184 (-0.373, 0.006), 0.06 

MBE -0.254 (-0.667, 0.159), 0.23 

a Schizophrenia genetic data from the PGC GWAS (N= 35 123 cases and 109 657 

controls); b  Age at first pregnancy data from ALSPAC G0 (N = 7036). 
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In sensitivity analyses using a p-value threshold of below 0.05 for genetic liability, I 

found weak evidence for a negative association between liability for schizophrenia and 

age at first pregnancy. Results showed congruent direction of point estimates and varying 

strengths of evidence for this negative association across the varying p-value thresholds 

for genetic liability for schizophrenia (see Table 5:35).  

Table 5:35 Estimates for associations between genetic scores with varying p-value 

thresholds and age at first pregnancy in ALSPAC G0 data. 

 Age at first pregnancy 

(N = 7036) 

 β (95% CI), p 

Genetic score for schizophrenia liability 

Model 1    

p<1x10-5 -0.045 (-0.158, 0.068), 0.44 

p<0.0005 -0.038 (-0.152, 0.076), 0.51 

p<0.005 -0.111 (-0.226, 0.003), 0.06 

p<0.05 -0.099 (-0.214, 0.015), 0.09 

p<0.1 -0.082 (-0.197, 0.032), 0.16 

p<0.5 -0.084 (-0.199, 0.030), 0.15 

p<1 -0.103 (-0.217, 0.012), 0.08 

Model 2    

p<1x10-5 -0.099 (-0.188, 0.011), 0.03 

p<0.0005 -0.073 (-0.162, 0.016), 0.11 

p<0.005 -0.107 (-0.196, -0.018), 0.02 

p<0.05 -0.143 (-0.232, -0.053), 0.002 

p<0.1 -0.138 (-0.228, -0.049), 0.002 

p<0.5 -0.132 (-0.221, -0.043), 0.004 

p<1 -0.142 (-0.232, -0.053), 0.002 

Model 1 is adjusted for the top 10 principal components of population structure. Model 2 

is additionally adjusted for ALSPAC G0 birth year. 

 

Sensitivity analysis investigating a possible non-linear relationship between genetic 

liability for schizophrenia and age at first pregnancy showed little evidence when plotting 

the mean age across quintiles of the genetic score or in regression analysis including a 

quadratic term (see Figure 5:16, Table 5:36 and Appendix 50).  
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Figure 5:16 Genetic score for schizophrenia liability (in quintiles) and mean age at first 

pregnancy in ALSPAC G0 data showing little heterogeneity across values of the score. 

 

Table 5:36 Quadratic regression of the genetic score for schizophrenia liability with age 

at first pregnancy in ALSPAC G0.  

 Age at first pregnancy 

(N = 7036) 

 β (95% CI), p 

Genetic score for schizophrenia liability 

(including quadratic term for the score) 

Model 1 2.081 (-0.934, 5.096), 0.18 

Model 2 1.398 (-0.952, 3.749), 0.24 

Model 1 is adjusted for the top 10 principal components of population structure. Model 2 

is additionally adjusted for ALSPAC G0 birth year. 

 

5.4.5.4 Summary across all studies 

Across all studies, the IVW results for a causal effect of genetic liability for schizophrenia 

on age at first pregnancy and age at first birth obtained confidence intervals consistent 

with the null (see Figure 5:17). For UK Biobank and ALSPAC G0 data, point estimates 

were in the negative direction. 
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Figure 5:17 IVW estimates for genetic liability for schizophrenia on age at first 

pregnancy and age at first birth across studies. 

 

5.4.6 Secondary measures of reproductive success in MoBa 

When using a genetic score that included only genome-wide significant SNPs for 

schizophrenia liability, there was no clear evidence of associations between liability and 

any secondary outcome (whether the index pregnancy was planned, whether mothers had 

conceived the index pregnancy even though them or their partner used contraceptives, if 

mothers had ever been treated for infertility, and length of sexual relationship the mother 

had had with the index child’s father) (see Table 5:37). However, there was evidence of 

an increased likelihood of having conceived the index pregnancy whilst them of their 

partner used contraceptives with increasing liability for schizophrenia across varying p-

value thresholds for the SNPs included in the score (see Table 5:37). There was further 

weak evidence for a decrease in relationship length with the index pregnancies father with 

increasing genetic liability for the disorder using p-value thresholds of 0.005 and 0.1 with 

adjustment for birth year. There was no clear evidence that participants were less likely to 

be treated for infertility with increasing genetic liability for schizophrenia.  
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Table 5:37 Estimates for associations between genetic scores with varying p-value thresholds and secondary measures of reproductive success in MoBa data. 

  
Pregnancy planned Contraception was used Treated infertility 

Length of relationship with 

father 

(N = 9350) (N = 9132) (N = 9354) (N = 7134) 
 OR (95% CI), p β (95% CI), p 

Genetic score for schizophrenia liability 

Model 1 - adjusted for the top 10 principal components of population structure and genotype array  

Plink score 

p<5×10-8 0.980 (0.928, 1.036), 0.48 0.979 (0.885, 1.083), 0.68 0.971 (0.902, 1.046), 0.44 0.123 (-0.873, 1.120), 0.81 

PRSice scores 

p<1x10-5 0.996 (0.943, 1.052), 0.88 1.013 (0.915, 1.121), 0.81 0.957 (0.889, 1.031), 0.25 -0.650 (-1.647, 0.348), 0.20 

p<0.0005 0.959 (0.907, 1.013), 0.14 1.074 (0.969, 1.190), 0.18 0.986 (0.915, 1.063), 0.72 -0.748 (-1.754, 0.258), 0.15 

p<0.005 0.949 (0.898, 1.005), 0.07 1.129 (1.016, 1.255), 0.02 1.017 (0.942, 1.098), 0.67 -0.819 (-1.852, 0.214), 0.12 

p<0.05 0.968 (0.914, 1.025), 0.26 1.104 (0.993, 1.228), 0.07 0.989 (0.915, 1.068), 0.77 -0.482 (-1.529, 0.565), 0.37 

p<0.1 0.974 (0.918, 1.033), 0.38 1.142 (1.023, 1.274), 0.02 0.989 (0.913, 1.071), 0.79 -0.653 (-1.730, 0.424), 0.24 

p<0.5 0.972 (0.917, 1.031), 0.34 1.118 (1.004, 1.247), 0.04 0.996 (0.920, 1.078), 0.92 -0.456 (-1.521, 0.609), 0.40 

p<1 0.978 (0.921, 1.037), 0.45 1.116 (0.100, 1.246), 0.05 0.998 (0.921, 1.082), 0.97 -0.457 (-1.541, 0.627), 0.41 

Model 2 - additionally adjusted for mothers’ birth year 

Plink score 

p<5×10-8 0.976 (0.924, 1.031), 0.39 0.983 (0.888, 1.088), 0.74 0.963 (0.894, 1.038), 0.33 -0.832 (-1.023, 0.856), 0.86 

PRSice scores 

p<1x10-5 0.996 (0.943, 1,053), 0.89 1.009 (0.911, 1.118), 0.86 0.953 (0.884, 1.026), 0.20 -0.700 (-1.641, 0.240), 0.14 

p<0.0005 0.961 (0.909, 1.016), 0.158 1.068 (0.963, 1.184), 0.22 0.983 (0.912, 1.060), 0.65 -0.754 (-1.702, 0.195), 0.12 

p<0.005 0.947 (0.894, 1.003), 0.07 1.130 (1.015, 1.258), 0.03 1.007 (0.932, 1.088), 0.86 -1.015 (-1.989, -0.042), 0.04 

p<0.05 0.963 (0.909, 1.020), 0.20 1.110 (0.997, 1.236), 0.06 0.972 (0.899, 1.051), 0.48 -0.859 (-1.846, 0.128), 0.09 

p<0.1 0.971 (0.914, 1.030), 0.33 1.145 (1.025, 1.278), 0.02 0.974 (0.898, 1.055), 0.52 -0.969 (-1.984, 0.047), 0.06 

p<0.5 0.968 (0.912, 1.027), 0.28 1.122 (1.006, 1.252), 0.04 0.979 (0.904, 1.060), 0.60 -0.825 (-1.829, 0.179), 0.11 

p<1 0.973 (0.916, 1.033), 0.36 1.121 (1.004, 1.253), 0.04 0.980 (0.903, 1.062), 0.62 -0.867 (-1.888, 0.155), 0.10 
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5.4.7 Previous pregnancy termination 

In analysis of MoBa data using a genetic score of only genome-wide significant SNPs for 

schizophrenia liability, there was no clear statistical support for an increased likelihood of 

having had a previous termination, although estimates were in this direction (Table 5:38). 

In ALSPAC G0, there was weak evidence of an increased likelihood of having previously 

had a termination with increasing genetic liability for schizophrenia using genome-wide 

significant hits (see Table 5:38). In sensitivity analyses, clear associations for an 

increased likelihood of having had a previous termination with increasing genetic liability 

for schizophrenia were seen across all p-value thresholds for genetic liability in both 

studies apart from a threshold of p<1 in MoBa (see Table 5:38).   

Table 5:38 Estimates for associations between genetic scores with varying p-value 

thresholds and having ever had a previous termination. 

 Previously had termination 

 MoBa  

(N = 9444) 

ALSPAC G0 

(N = 7134) 

 OR (95% CI), p OR (95% CI), p 

Genetic score for schizophrenia liability 

Model 1       

Plink score       

p<5×10-8 1.023 (0.965, 1.086), 0.44 1.064 (0.996, 1.138), 0.07 

PRSice scores       

p<1x10-5 1.105 (1.041, 1.173), 0.001 1.098 (1.026, 1.176), 0.01 

p<0.0005 1.138 (1.069, 1.212), <0.001 1.081 (1.011, 1.157), 0.02 

p<0.005 1.137 (1.070, 1.209), <0.001 1.139 (1.065, 1.219), <0.001 

p<0.05 1.144 (1.074, 1.218), <0.001 1.148 (1.074, 1.228), <0.001 

p<0.1 1.146 (1.076, 1.220), <0.001 1.164 (1.088, 1.245), <0.001 

p<0.5 1.151 (1.079, 1.228), <0.001 1.180 (1.104, 1.262), <0.001 

p<1 1.054 (0.993, 1.119), 0.08 1.190 (1.114, 1.272), <0.001 

Model 2       

Plink score       

p<5×10-8 1.021 (0.963, 1.083), 0.49 1.062 (0.994, 1.136), 0.08 

PRSice scores       

p<1x10-5 1.106 (1.042, 1.174), <0.001 1.096 (1.023, 1.173), 0.01 

p<0.0005 1.136 (1.067, 1.210), <0.001 1.080 (1.009, 1.155), 0.03 

p<0.005 1.134 (1.067, 1.205), <0.001 1.139 (1.065, 1.219), <0.001 

p<0.05 1.141 (1.072, 1.215), <0.001 1.147 (1.072, 1.227), <0.001 

p<0.1 1.143 (1.073, 1.217), <0.001 1.161 (1.086, 1.242), <0.001 

p<0.5 1.147 (1.075, 1.224), <0.001 1.178 (1.102, 1.260), <0.001 

p<1 1.054 (0.993, 1.119), 0.09 1.189 (1.112, 1.271), <0.001 

Model 1 is adjusted for the top 10 principal components of population structure (and 

genotype array in MoBa). Model 2 is additionally adjusted for mothers’ birth year. 
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Discussion 

5.4.8 Summary of results and previous literature 

I find some evidence that genetic liability for schizophrenia increases parity in MoBa 

using the IVW method, and further evidence of an association for increased likelihood of 

having had a child in ALSPAC G1 females. In UK Biobank, ALSPAC G0 and ALSPAC 

G1 (both sexes), results do not indicate a linear causal effect on number of children using 

MR techniques. In UK Biobank, results also do not indicate a genetic correlation between 

liability for schizophrenia and number of children using LD score regression. The 

majority of results are therefore inconsistent with cliff edge-fitness maintaining 

schizophrenia in the population, which would predict an increase in fitness with increased 

genetic liability in the general population. These results support previous research 

suggesting no strong evidence of a relationship between genetic liability for 

schizophrenia and number of children (Beauchamp, 2016; Mullins et al., 2017). In 

sensitivity analyses in UK Biobank, I found some suggestion of a possible peak in fitness 

at intermediate to high levels of genetic liability, but there was no statistical evidence for 

this, suggesting that if this non-linear association exists it is very weak, and not reliably 

detectable even in a large study such as UK Biobank. Hints of a non-linear relationship 

was seen across the datasets used here with no statistical support. A previous study also 

showed little evidence of quadratic associations between genetic liability for 

schizophrenia and number of children (Mullins et al., 2017).  

For number of sexual partners, I find an effect of increasing genetic liability for 

schizophrenia on increasing number of sexual partners in UK Biobank, suggesting 

liability for the disorder increases mating success in the wider population and could 

reflect potential reproductive success (Nettle & Clegg, 2006). Although confidence 

intervals in ALSPAC G1 were consistent with the null, the IVW point estimate was also 

in the positive direction. Sensitivity analyses further suggest that the relationship between 

genetic liability for schizophrenia and number of sexual partners is linear in healthy 

populations although some evidence of non-linearity, particularly in females, was seen for 

ALSPAC G1. 

Also consistent with previous research, I found no clear evidence for a linear association 

between genetic liability for schizophrenia and age at first birth (Mullins et al., 2017) and 

weak evidence of a non-linear association in UK Biobank (Ni et al., 2017). There was 

some evidence of a negative effect of increasing genetic liability for schizophrenia on age 

at first pregnancy in ALSPAC G0 using a weighted median MR approach. In sensitivity 
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analyses using MoBa and ALSPAC G0 data with lower p-value thresholds for genetic 

liability, there was evidence for associations between increasing liability and decreasing 

age at first pregnancy. The evidence was weaker for age at first birth in MoBa in this 

sensitivity analysis. 

Sensitivity analysis results for secondary measures (in MoBa) further suggest that 

increased genetic liability for schizophrenia is associated with increased risky sexual 

behaviour indicated by the index pregnancy being more likely conceived on contraception 

and some evidence of a shorter length of relationship with the index pregnancy’s father. 

Additionally, there was evidence for a positive effect of liability to the disorder and 

likelihood of having ever had a previous termination (in MoBa and ALSPAC G0). This 

may indicate potential reproductive success that is not captured by other measures and 

support previous suggestions of increased risky sexual behaviour, as well as help to 

explain stronger evidence for age at first pregnancy than age at first birth in MoBa. 

5.4.9 Cliff-edge fitness 

Cliff-edge fitness suggests that schizophrenia prevalence is sustained because the 

negative reproductive effects in those with an underlying genetic liability and the disorder 

are offset by a reproductive advantage to those who have an underlying genetic liability 

but do not develop the disorder (Mullins et al., 2017). This reproductive advantage may 

act via creativity or risky behaviour, with schizotypy in healthy adults predicting interest 

in short-term mating (Del Giudice et al., 2010) and overlapping genetic factors between 

schizophrenia and HIV infection, which are related to risky sexual behaviour (Wang et 

al., 2016). To note, I only examined part of the cliff-edge hypothesis as I use data that 

likely includes very few cases, and therefore I only investigate whether there is a linear 

effect on reproductive success with increasing genetic liability that could compensate for 

the negative reproductive effects in those with an underlying genetic liability and the 

disorder (Keller & Miller, 2006; Nesse, 2004; Nettle & Clegg, 2006; Van Dongen & 

Boomsma, 2013). I do not investigate these negative reproductive effects in those with 

the disorder. Although it is hard to estimate the size of effect on fecundity necessary to 

sustain the prevalence of schizophrenia (or indeed whether this effect size may fall within 

the confidence intervals of estimates across studies), these results overall provide little 

support for a cliff edge fitness effect maintaining schizophrenia prevalence with only an 

effect on parity found in one dataset using the IVW method. However, in the modern 

environment (with available contraception), there are limits to the conclusions we can 

make about historical evolutionary forces on schizophrenia-associated alleles from these 

present-day fitness associations. I do find evidence of increased mating success with 
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increasing genetic liability for schizophrenia in UK Biobank, and congruent estimates in 

ALSPAC G1. Mating success may proxy reproductive success in past environments and 

partly explain how the disorder has been maintained in the population. In both UK 

Biobank and ALSPAC G1, there was stronger evidence for a positive association between 

genetic liability for schizophrenia and number of sexual partners in males than females, in 

line with sex differences in reproductive strategies (Nettle & Clegg, 2006). As variance in 

reproductive success is higher in males than in females, it has been argued that males 

obtain higher reproductive benefits from additional mating’s than females (Trivers, 

1972). It has been suggested that creative displays are a form of sexual competition that 

reflect these evolutionary pressures (Miller, 1999; Nettle & Clegg, 2006). It is possible 

that the associations seen in females here are a by-product of male reproductive behaviour 

although there are of course also benefits to females of attracting additional mates, such 

as higher mate quality (Mullins et al., 2017). I assume that, on average, increasing 

numbers of sexual partners is a reasonable proxy for fitness however number of sexual 

partners has likely also undergone changes since the introduction of contraception, which 

has allowed for decoupling of sexual and reproductive partners. It therefore cannot be 

concluded that cliff-edge fitness has sustained the prevalence of schizophrenia within the 

population without clear effects on fecundity, for which I provide no clear evidence for a 

cliff edge effect on current fitness.  

Two phenotypes colocalize in a genetic region when it contains variants that associate 

with both phenotypes, and can reflect causality (i.e., the SNP effect on one phenotype is 

mediated by its effect on the second phenotype), pleiotropy (the same SNP independently 

affects both phenotypes), or LD (two or more SNPs in LD affect different phenotypes) 

(Pingault et al., 2018). The sensitivity analysis lowering the p-value threshold for genetic 

liability can increase the power to detect small effects common in genetic analyses (Gage, 

Jones, et al., 2016). However, lowering the p-value threshold can also introduce 

horizontal pleiotropic effects, when genetic variants have an effect on the outcome 

through alternative pathways, instead or in addition to, through the exposure (Bowden et 

al., 2017; Davey Smith & Hemani, 2014). Using genome-wide significant SNPs as 

instruments is therefore the most suitable for causal inference whereas more lenient 

thresholds increase false discovery rates (Richardson et al., 2018). This has been 

demonstrated in recent simulations for liability for schizophrenia on multiple outcomes 

using the same schizophrenia GWAS as done so here (Richardson et al., 2018). Cliff-

edge fitness maintaining the prevalence of schizophrenia suggests that an increased 

reproductive advantage is obtained through sexual selection, acting via creativity and/or 

risky behaviour (Nettle & Clegg, 2006; Shaner et al., 2004; Wang et al., 2016). Although 
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I find a trend for evidence of risky sexual behaviour, for sexual selection I argue that we 

should expect an effect specific to schizophrenia liability (Keller & Miller, 2006; Shaner 

et al., 2004) and relaxing the p-value threshold may therefore capture other forms of 

selection. A recent comment by Escott-Price and colleagues argue that a specific causal 

effect is not required when assessing whether schizophrenia is maintained through a 

reproductive advantage (Escott-Price et al., 2019b). 

5.4.10 Alternative theories 

This leaves two further main theories for how schizophrenia prevalence is maintained. 

One is that as schizophrenia is a highly heterogenous disorder and exhibits a highly 

polygenic architecture, with effects of genetic variants being individually too weak to be 

under negative selection (Loh et al., 2015; Mullins et al., 2017; Van Dongen & 

Boomsma, 2013). The present results are consistent with this possibility and suggest that 

identified schizophrenia genetic risk variants are not under strong selection in the general 

population. Another explanation is that mutation-selection balance maintains the 

prevalence of schizophrenia; rare recurrent DNA copy number variants which are also 

risk factors for schizophrenia are filtered out of the population by selection and 

replenished by de novo mutations (Rees et al., 2011). Rare copy number genetic variants 

conferring risk to psychiatric illness are under strong negative selection (Mullins et al., 

2017; Rees et al., 2011), with most persisting in the population for only two generations 

(Rees et al., 2011). I used results from GWAS, which mainly detect common alleles and 

therefore cannot determine whether mutation-selection balance sustains the prevalence of 

schizophrenia through rare genetic variants, although schizophrenia-associated rare 

genetic variants have been shown to associate with number of children (Mullins et al., 

2017; Van Dongen & Boomsma, 2013). Other explanations could include an increased 

likelihood of symptom diagnosis, changes in the environment (Gage et al., 2017; 

Weinstein et al., 2018) and/or selection bias (discussed below).  

5.4.11 Strengths 

The use of MR here can provide stronger evidence of causality than observational studies 

(Davey Smith & Ebrahim, 2003; Gage, Munafò, & Davey Smith, 2016). Firstly, I 

included a positive control analysis to confirm that this approach was valid. I evaluated 

results between various MR methods that rely on differing assumptions for agreement 

between methods providing greater confidence in the robustness of the results (Lawlor et 

al., 2016). Furthermore, I conducted multiple sensitivity analyses to capture broader 

genetic liability and investigate possible non-linearity in relationships. Additionally, this 

research offers large sample sizes which are necessary for investigating small effect sizes 
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common in such genetic analysis and I have conducted analysis across multiple cohort 

studies to compare results (Gage, Jones, et al., 2016). 

5.4.12 Limitations 

There are also some limitations that should be considered with the current evidence. First, 

MR relies on genetic variants naturally randomizing an exposure, and therefore inferring 

causality from genetic liability for schizophrenia as the exposure requires careful 

interpretation. The outcome sample was not selected on schizophrenia status, so it 

contained only few cases of diagnosed schizophrenia. Therefore, I assume that 

schizophrenia SNPs are associated with sub-diagnostic schizophrenia traits that could 

cause a reproductive advantage within the wider population (Crow, 2008; Del Giudice et 

al., 2010; Nettle & Clegg, 2006). Although debated (Van Os, Linscott, Myin-Germeys, 

Delespaul, & Krabbendam, 2009; Zammit et al., 2013), schizophrenia symptoms have 

been suggested to exist on a continuum, and this assumption could therefore be met 

(Kendler et al., 1993; Poulton et al., 2000; Taylor et al., 2016; Van Os et al., 2009). 

Within this, I assume that the instrumental variable assumptions are satisfied for this 

continuous liability to provide a valid test of causality using the binary exposure (Burgess 

& Labrecque, 2018). Second, as genetic variants are non-specific, it is difficult to fully 

remove population structure which can induce spurious associations through 

confounding, even within a sample of European ancestry and adjusting for principal 

components of population structure as I have done (Curtis, 2018; Haworth et al., 2019). 

Third, the exposure and outcome samples were each quality controlled for relatedness 

however it is not possible to determine whether participants had relatives across the 

samples due to using summary level GWAS data for our exposures. 

Fourth, age at first birth was only measured in females in all studies, and therefore 

consists of a different population to the exposure data (which includes data from both 

females and males). However, the correlation between male and female estimates for age 

at first birth in a recent GWAS was high (Barban et al., 2016). Similarly, the 

schizophrenia-associated genetic variants used in the sex stratified analyses were 

identified from a mixed sex population although in UK Biobank I used an unweighted 

genetic score which would also help to minimize any bias. Lastly, the present study uses 

data from the mothers of two pregnancy cohorts, therefore including only females that 

have also been pregnant which may affect the generalizability of findings to the wider 

population.  
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5.4.13 Selection bias and UK Biobank 

As discussed in Chapter 3, genetic data for UK Biobank was released in two waves (May 

2015 and July 2017). The first wave comprised ~150,000 participants in total, and was 

selected based on smoking behaviour (Wain et al., 2015). As previously demonstrated 

(Day, Loh, Scott, Ong, & Perry, 2016; Gkatzionis & Burgess, 2018; Hughes, Davies, 

Davey Smith, & Tilling, 2018; Munafò et al., 2018), this can yield biased estimates in 

analyses through collider bias. Collider bias occurs when a variable (termed the collider) 

is caused by each the exposure and the outcome and therefore controlling for the variable 

induces a spurious association between the exposure and outcome. Escott-Price and 

colleagues (2019) report an association between genetic liability for schizophrenia and 

number of children in UK Biobank. They interpret this as consistent with sexual 

selection. They used the most recent GWAS for schizophrenia, but the reported sample 

size suggests that only data from the first release was used. Further previous research also 

found evidence of an association between genetic liability for schizophrenia and age at 

first birth using the first release of data (Ni et al., 2017).  

Initially, when using the first release of UK Biobank, I found results similar to those 

reported by Escott-Price and colleagues – a weak positive relationship between genetic 

liability for schizophrenia and number of children. However, given concerns about 

conditioning on this sub-sample (with well-established associations between smoking and 

both schizophrenia risk and fertility) (Wootton, Richmond, et al., 2018), I repeated the 

analyses in the full release. Strikingly, these results were quite different, with no clear 

evidence of a relationship between genetic liability for schizophrenia and number of 

children. The results for the two waves of UK Biobank data, and the full release as 

presented in the main results section, are shown in Table 5:39. Similarly, I did not 

support previous evidence for a relationship between genetic liability for schizophrenia 

and age at first birth in the full release (shown in the main results section Table 5:27). I 

also previously used GWAS summary data for number of children to conduct this 

analysis (methods and results are in Appendix 51, and tables are presented in Appendix 

52). This data contained a substantial proportion of the first wave of UK Biobank data as 

well as some overlap between data in the schizophrenia and number of children GWAS, 

which biases the result towards the observational association (Burgess, Scott, Timpson, 

Davey Smith, & Thompson, 2015). Overall, it appeared that these results therefore 

supported balancing selection sustaining the prevalence of schizophrenia, likely due to 

bias (Courtiol et al., 2016; Huxley et al., 1964).   
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Table 5:39 Estimates of the causal effect of genetic liability for schizophrenia on number 

of children using an IVW MR approach. 

  Number of Children 

  N β (95% CI), p 

Genetic liability for schizophreniaa   

First release 90 058 to 94 792 0.012 (0.00003, 0.023), 0.05 

Second release 228 863 to 240 966 -0.001 (-0.008, 0.006), 0.81 

Full UK Biobank data (as above) 318 921 to 335 758 0.003 (-0.003, 0.009), 0.39 

a Schizophrenia genetic data from the PGC GWAS (N = 35 123 cases and 109 657 

controls; 101 SNP instrument). 

 

It is possible that discrepancy between results are due to differences in the methodology, 

MR or a PRS analysis with varying p-value thresholds for genetic liability (discussed 

above), or an artefact of conditioning on the first, selective, release of UK Biobank data. 

A recent response by Escott-Price and colleagues suggests that their results differ due to 

using a lower p-value threshold (Escott-Price et al., 2019a, 2019b). It is still possible that 

the differences in Table 5:39 are due to conditioning on the first, selective, release of UK 

Biobank data. On the other hand, UK Biobank data as a whole is unrepresentative of the 

population, given a response rate of approximately 5%, which may introduce selection 

bias in itself (Allen et al., 2014; Fry et al., 2017). This can generate spurious results in 

genotypic associations when selection is based on phenotypes associated with the genetic 

variants and could attenuate associations towards the null in the full release if 

schizophrenia-proneness and increased number of children reduced participation (Conde 

et al., 2017; Munafò et al., 2018; Taylor et al., 2018). Previous studies have found that 

higher genetic liability for schizophrenia is associated with lower participation in cohort 

studies which could bias estimates between genetic liability and traits that lead to 

nonparticipation in genetic associations and MR (Martin et al., 2016; Taylor et al., 2018). 

Therefore, it is possible that results in the first wave that is enriched for smokers are more 

representative of the general population.  

It is therefore important that I conducted this study across multiple datasets. Although a 

smaller sample, MoBa had a response rate of 41% and this study used the first distributed 

questionnaire where 95% of mothers provided responses (Magnus et al., 2006). 

Moreover, all MBRN records for the participants of MoBa are available, regardless of the 

number of questionnaire data that was completed. This high response rate and mandatory 

health registries therefore mean that you can somewhat avoid the loss to follow up 

selection bias for some analyses (Magnus et al., 2016). ALSPAC also had a high response 
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rate (Fraser et al., 2013), although there was attrition for the measures used in the present 

study, particularly for parity measured 18 years post-recruitment for ALSPAC G0. Age at 

first pregnancy was derived from data collected at recruitment and 18 weeks gestation, 

leading to a much larger sample size, and one possibility for why I found more 

associations for age at first pregnancy than parity measures in ALSPAC G0. Data for 

ALSPAC G1 was asked at the last assessment (approximately 23 years) and therefore 

suffered attrition. Nevertheless, some argue that valid assessment of exposure-outcome 

relationships may be widely generalizable even if data is not representative of the 

population at large and these results are strengthened by assessing multiple datasets (Fry 

et al., 2017). 

5.4.14 Conclusions 

Whether genetic risk for psychiatric disorders is associated with a reproductive advantage 

is an important question, as it may explain the persistence of these disorders despite 

deleterious effects. The present study highlights the continued importance of investigating 

differential fertility and contributes to understanding the maintenance of schizophrenia, 

and educational attainment, in the population (Essen‐Möller, 1959; Lewontin, 2016; 

Polanczyk, Willcutt, Salum, Kieling, & Rohde, 2014; Tropf, Stulp, et al., 2015). It is 

important to consider that, in the modern environment, we can make limited conclusions 

about historical evolutionary forces on these schizophrenia-associated alleles from these 

present-day fitness associations. This is further highlighted by the present findings for 

increased liability to each disorder and increased likelihood of having had a termination. 

Educational attainment has previously been shown to predict human longevity (Marioni 

et al., 2016) and this work highlights how even traits with a positive effect on longevity 

can be maladaptive, although other influences on educational attainment in the population 

are also acknowledged (Sanjak et al., 2017). This work additionally demonstrates how 

epidemiological methods can be repurposed to study evolutionary theories. Future 

research should investigate causal methods for estimating non-linear relationships as well 

as other explanations for this evolutionary paradox, such as mutation-selection balance. 

5.5 Chapter summary 

In this chapter, I aimed to apply a range of methods with roots in genetic epidemiology 

(MR, LD score regression and PRS analysis) to investigate the schizophrenia paradox. I 

assessed the correlation and causal effect of genetic liability for schizophrenia with a 

range of reproductive outcomes, such as number of children, in multiple population-based 

samples which are not selected on schizophrenia status and therefore include very few 
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cases. MR indicated no robust evidence of a causal effect of genetic liability for 

schizophrenia on number of children across all but one cohort study. I find some evidence 

of a positive effect of genetic liability for schizophrenia on other measures of potential 

reproductive success such as number of sexual partners. These results suggest that, 

overall, increased genetic liability for schizophrenia does not confer a fitness advantage 

but does increase mating success and risky sexual behaviour. Results therefore suggest 

that schizophrenia may be being sustained in the population through other explanations 

than cliff-edge effects on fitness.  
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 Discussion 

This thesis explored the application of MR and other related methods to two areas of 

evolutionary human behaviour research – life history theory and the schizophrenia 

paradox. Previous research has been limited as standard methods in evolutionary 

approaches to behaviour cannot easily test causality and examine both psychological 

mechanisms and reproductive success (which are required for a direct test of evolutionary 

hypotheses). I have demonstrated how epidemiological methods can be repurposed to 

study evolutionary theories and provide a new form of evidence. Specifically, MR 

combines genetic and phenotypic information to investigate psychological and key 

evolutionary traits with fitness outcomes using a causal framework that does not rely on 

manipulating the exposure. Genetic information has largely been ignored in tests of 

evolutionary hypotheses, through the phenotypic gambit and/or the assumption that 

fitness associated traits will not show heritable variation (Hadfield et al., 2007; Mills & 

Tropf, 2015; Nettle, 2006; Rubin, 2016). This thesis is novel in its application of 

epidemiological methods that support strong causal inference to test these hypotheses, 

and highlights the potential that incorporating genetic information and such methods has 

for evolutionary epidemiology (Pelletier et al., 2017). I believe that an integrative 

research approach from the fields of genetics and social sciences is important for 

predicting reproductive and other evolutionarily relevant outcomes. 

As each results chapter included a discussion, here I summarise the main findings from 

this thesis before more broadly evaluating the potential for MR to test evolutionary 

hypotheses. Following this, I discuss the future for evolutionary epidemiology. 

6.1.1 Summary of findings and implications 

6.1.1.1 Life history theory 

I applied MR to test for causal effects within a life history theory framework in Chapter 4. 

There are currently no appropriate instruments for early life adversity that can be used 

within an MR framework and hence it is not possible to investigate early life stress using 

MR. I therefore examined the effects of two intermediate reproductive traits (age at 

menarche and age at first sexual intercourse) on later reproductive and behavioural 

outcomes. Taking this life course approach to the causal pathways in life history theory 

by assuming that earlier menarche is a proxy for adversity has limitations. Namely, early 

menarche is associated with both markers that are associated with good phenotypic 

condition in many species (e.g., weight, size) and early life adversity with different 

developmental pathways, making interpreting the results more difficult. 
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Results showed that earlier age at menarche is causally related to some traits that 

characterize a fast life history strategy, such as earlier age at first birth, earlier age at last 

birth, lower educational attainment, and earlier age at leaving education. The effects of 

earlier age at menarche on these reproductive and educational traits can be viewed as 

directing effort towards short-term reproductive goals and risky behaviour as an 

important part of a fast life history strategy (Ellis & Bjorklund, 2012). There was no clear 

effect of age at menarche on number of children or alcohol intake. For age at first sexual 

intercourse, results were mixed and suggested violation of the exclusion restriction 

assumption of no direct effects of the instrument on the outcome not acting through the 

exposure (i.e., the presence of horizontal pleiotropy) (Bowden et al., 2017; Davey Smith 

& Ebrahim, 2003). Results for age at first sexual intercourse must therefore be treated 

with caution and causal inference is weakened. 

This study highlights how analyses techniques from genetic epidemiology can be used to 

answer how life history traits are related within life history strategies, and to better 

understand determinants of health and social behaviour. Life history theory has 

implications for how we view apparently negative and assumingly maladaptive 

behaviour, such as decreased educational attainment. For example, the present finding of 

a causal effect of earlier age at menarche on decreased educational attainment suggests 

that decreased educational attainment may be considered a consequence of a suite of 

adaptive behaviours as part of a fast life history strategy. This finding therefore provides 

important information for determinants of educational attainment today, which is a key 

predictor of positive later life outcomes in the UK (Gill et al., 2017). The implications of 

a causal effect of earlier age at menarche on decreased educational attainment is 

particularly important due to secular trends of age at menarche decreasing in recent years 

(Ellis, 2004).  

There have also been recent shifts in the timing of first birth in females to later ages with 

advanced age at first birth associated with health consequences for mother and offspring 

(Barban et al., 2016; Fall et al., 2015; Mills, Rindfuss, McDonald, & te Velde, 2011). The 

present finding of an effect of later age at menarche on later age at first birth and later age 

at last birth is therefore important for improving understanding of the causes in this 

reproductive delay in recent years (Mills et al., 2011; Pelletier et al., 2017).  

6.1.1.2 The schizophrenia paradox 

In Chapter 5, I applied a range of methods rooted in genetic epidemiology (MR, LD score 

regression and PRS analysis) to investigate the schizophrenia paradox. In assessing the 
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correlation and causal effect of genetic liability for schizophrenia on a range of 

reproductive outcomes in multiple population-based samples, I found no clear robust 

association or effect of genetic liability for schizophrenia on number of children. There 

was evidence of a positive causal effect of genetic liability for schizophrenia on other 

measures of potential reproductive success such as number of sexual partners. These 

results suggest that, overall, increased genetic liability for schizophrenia does not have a 

clear effect on fitness but does increase mating success and risky sexual behaviour. As 

discussed in Chapter 5, it is difficult to quantify the size of effect on fitness necessary to 

sustain the prevalence of schizophrenia and it is also possible that mating success may 

proxy reproductive success in past environments (pre-contraception) and partly explain 

how the disorder has been maintained in the population. However, number of sexual 

partners has likely also undergone changes since the introduction of contraception as 

sexual partners do not have to equate to reproductive partners. It is therefore difficult to 

conclude that cliff-edge fitness has sustained the prevalence of schizophrenia within the 

population without clear effects on fitness. Therefore, these findings suggest that it is 

possible that schizophrenia is sustained in the population through other explanations than 

cliff-edge effects on fitness (e.g., mutation-selection balance), which future research 

should focus on.  

This research highlights the continued importance of investigating differential fertility. As 

schizophrenia is such a debilitating disorder, it is important to investigate how the 

prevalence is sustained (Essen‐Möller, 1959; Lewontin, 2016; Polanczyk et al., 2014; 

Tropf, Barban, Mills, Snieder, & Mandemakers, 2015). The present results for 

educational attainment showing a negative effect on number of children (Chapter 5) also 

re-frame perceptions of maladaptive behaviour. Educational attainment has previously 

been shown to predict human longevity and is considered a predictor of positive later life 

outcomes in the UK (Gill et al., 2017; Marioni et al., 2016). This work therefore shows 

how even desirable traits with a positive effect on longevity can be maladaptive by 

having a negative effect on fitness (Sanjak et al., 2017). 

6.2 Mendelian randomization to test evolutionary hypotheses 

As discussed, I have attempted research within a novel field of evolutionary 

epidemiology for these hypotheses within life history theory (that earlier age at menarche 

and age at first sexual intercourse can be viewed as directing effort towards reproductive 

goals as part of a fast life history strategy and therefore show causal effects on 

reproductive and behavioural outcomes) and the schizophrenia paradox (schizophrenia, a 
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heritable disorder, is maintained in the population despite being associated with lower 

reproductive success for those diagnosed). Broadly, there are strengths and weaknesses to 

doing so. As MR was developed to test modifiable risk factors for disease outcomes, 

issues can arise when applying the method to social and psychological traits to test 

evolutionary questions. Here I will summarise the strengths of the method before 

discussing potential limitations of MR for testing evolutionary theories of human 

behaviour.  

6.2.1 Strengths 

MR allows investigation of psychological, behavioural and other trait and fitness 

outcomes. It therefore integrates both ultimate and proximate explanations and potentially 

provides a direct test of evolutionary hypotheses. Through using observational data, the 

method allows investigation of traits that cannot be manipulated, for ethical and other 

reasons, such as reproductive timing or measures of early life adversity. Even so, by using 

genetic variants that are fixed and randomized at conception, the ability to make causal 

inference is stronger than when applying standard analytical methods to observational 

data. Using genetic variants also allows investigation of genetic liability for a 

psychological trait in the wider population rather than only within families, in relation to 

fitness outcomes (as done so in Chapter 5). Furthermore, the availability of GWAS for 

evolutionary relevant traits is increasing, meaning that this method can be applied to test 

further hypotheses and possible mediating pathways. Online platforms such as MR-Base 

have also recently been introduced that make it easier to conduct these analyses 

(www.mrbase.org) (Hemani, Zheng, et al., 2018). 

6.2.2 Weaknesses 

As with most methods, it is first worth noting the strong assumptions underlying MR 

(discussed in detail in Chapter 2). If these assumptions do not hold, then confounding can 

be present and causal inference is weakened. MR is therefore plagued by the same biases 

as standard analytical approaches applied to observational data when assumptions break 

down. It is more difficult to meet the assumptions of MR with complex traits as complex 

traits are typically highly polygenic, and it is therefore possible that some of the genetic 

variants are pleiotropic (Pingault et al., 2018). Additionally, the biological pathways are 

not always known for complex social traits meaning it is more difficult to assess if 

assumptions are met (Conley, 2009). However, complex social traits such as educational 

attainment (which may proxy social status) are what evolutionary researchers are 

interested in investigating within an MR framework, particularly because they are not 

easy to intervene on for experimental designs. It is therefore important to have a well-
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defined model and subsequent predictions, with knowledge of the genetic function and 

developmental pathways (Pingault et al., 2018). For the schizophrenia studies here, the 

biological function of the genetic variants has been thoroughly investigated and the model 

is well-defined (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014). However, for age at first sexual intercourse the biological basis is less well known. 

Additionally, as discussed above, the age at menarche model is more difficult to interpret 

as early menarche is associated with both good condition and early life adversity. Overall, 

MR is therefore only as good as the likelihood of satisfying the assumptions, the 

instruments available and whether these instruments lead to strong models and 

predictions. Within this thesis, the work on schizophrenia meets the requirements and 

interpretations more easily.  

Second, it is common that genetic instruments explain only a small proportion of variance 

in the exposure (Gage, Davey Smith, et al., 2016). This is particularly common for 

psychological traits such as schizophrenia used here, where only 3.4% of the variance 

was explained by genome-wide significant SNPs (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014). Without very large sample sizes as used in this 

thesis, which can be hard to obtain, this leads to low powered studies and makes it hard to 

assess whether a null result might reflect low power (Davey Smith & Ebrahim, 2004; 

Gage, Davey Smith, et al., 2016). 

Third, genetic variants are randomized conditional on parental genotype. Therefore, 

assortative mating can violate the MR method (Hartwig, Davies, & Davey Smith, 2018). 

Assortative mating occurs when partners are chosen based on particular characteristics 

rather than at random (Lawlor et al., 2019). Assortative mating can be on the same trait 

(termed single trait) or when individuals with higher value for one trait mate with 

individuals that are higher (or lower) on another trait (termed cross-trait assortative 

mating) (Lawlor et al., 2019). Assortative mating on traits used within MR can lead to a 

spurious genetic correlation and subsequent bias (Lawlor et al., 2019). Hartwig and 

colleagues (2018) conducted simulations to estimate the bias in MR studies due to 

assortative mating. They found that assortative mating lead to bias that accumulated over 

generations, even for methods robust to horizontal pleiotropy (Hartwig et al., 2018). 

However, these simulations also showed that data from mother–father–offspring trios 

could be used to correct for this bias (Hartwig et al., 2018). It is likely that assortative 

mating is more of a problem for social traits that are evolutionarily relevant than for 

certain health traits which MR was originally developed for (e.g., C-reactive protein) and 

the application of MR to evolutionary hypotheses without trio data is therefore restricted 
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(Hartwig et al., 2018). For this thesis, considerable partner resemblances have been found 

for psychiatric disorders however no clear patterns of assortative mating has been seen for 

schizophrenia and any assortative mating is unlikely to balance the impact of reduced 

fecundity of patients with psychiatric disorders in the long term (Goddard et al., 2018; 

Peyrot, Robinson, Penninx, & Wray, 2016). Educational attainment does show evidence 

of assortative mating although it appears to be stable over generations (Conley et al., 

2016; Goddard et al., 2018). For other evolutionary relevant traits, it is important to 

consider the potential for assortative mating and to use data from trios to account for this, 

although datasets with genetic data on trios are limited.  

Fourth, population structure is a similar, although distinct issue in MR which can also 

lead to spurious associations and bias (discussed in Chapter 2) (Goddard et al., 2018). For 

testing evolutionary hypotheses, population structure becomes an issue when 

investigating traits that are associated with migration and selection into a dataset 

(Haworth et al., 2019). Selection on traits is more likely to occur for social traits than 

biological traits. In ALSPAC, for example, Haworth and colleagues (2019) found higher 

educational attainment in more geographically distant lineages to the study catchment 

area. They suggest that educational attainment of people who migrate for economic 

reasons likely differs from people who do not and this creates effects of ancestry even in 

a geographically and ethnically homogeneous sample (Haworth et al., 2019). In UK 

Biobank, genetic variants are associated with birth location and, given regional 

differences in traits, this can again cause covariance between genotypes and traits that can 

bias analyses (Haworth et al., 2019). The increasing sample sizes in GWAS increases the 

power to detect genetic instruments for MR studies however it also increases 

susceptibility to bias due to subtle population structure (Lawson et al., 2019). Adjusting 

for principal components may not be adequate for fully removing population structure 

(see Chapter 2) (Lawson et al., 2019). Studies typically also restrict to individuals of 

European ancestry to further address this, which can limit the study of evolutionary 

theories to human behaviour by restricting cross-cultural studies (Davey Smith & 

Hemani, 2014). The issue of population structure is highly topical and methods are being 

developed to overcome the biases, such as trans-ethnic modelling and chromosome 

painting which provide greater understanding of the traits-population structure 

relationship (Lawson et al., 2019). 

Fifth, many GWAS are conducted in mixed sex samples to increase sample sizes. In MR, 

the SNP-exposure and SNP-outcome associations should be derived in similar underlying 

populations (see Chapter 2). Therefore, if the SNP-exposure relationships are taken from 
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a mixed sex GWAS this can limit the ability for sex stratified analysis. For many traits, 

the genetic correlation between sexes is likely high and therefore the instrument and SNP-

exposure associations can be used for sex stratified analysis without much concern. 

However, investigating sex differences is a key aspect of many evolutionary hypotheses 

and that GWAS, and subsequently MR, are not always easily set up to do so is a 

limitation. 

Sixth, MR relies on an instrumental variable framework which was developed to estimate 

the effect of an exposure at a point in time (Labrecque & Swanson, 2019). As MR utilises 

genetic variants that are fixed at conception it is said to estimate the ‘lifetime effect’, 

defined as the average change in outcome at time t when the entire exposure trajectory 

from conception to time t is shifted by 1 unit (Labrecque & Swanson, 2019). However, 

MR only estimates this ‘lifetime effect’ when the effect of the genetic variants on the 

exposure does not change over time such as when the trait is fixed over the life course 

(e.g., eye colour) (Labrecque & Swanson, 2019; Lawlor, 2016). Otherwise the 

denominator in the Wald ratio to derive a causal estimate varies depending on the 

timepoint measured and there is the potential for pleiotropy to occur via the exposure trait 

at another timepoint (Labrecque & Swanson, 2019). This becomes more complicated as 

GWAS studies often conduct meta-analysis over multiple samples with varying ages. 

This has implications for using MR to test evolutionary theories of human behaviour 

where exposure traits are unlikely to be fixed over the life course. Although this is said to 

affect the validity of findings, methods to overcome this issue are still under development 

and MR can still be used to provide a valid test of the null hypothesis with time-varying 

exposures.  

Lastly, MR methods are typically designed to test linear relationships, as done so 

throughout this thesis, with continuous exposures. As discussed in Chapter 5, when using 

a binary exposure (e.g., schizophrenia status), the instrumental variable assumptions need 

to be satisfied for an underlying continuous liability (Burgess & Labrecque, 2018). As 

many psychological traits are binary measures in GWAS (e.g., diagnosis of a psychiatric 

disorder), then these additional assumptions will often have to be considered when testing 

evolutionary hypotheses that integrate psychological exposures with fitness outcomes. 

6.3 The future of evolutionary epidemiology 

Methods from genetic epidemiology, particularly MR, have great potential for testing 

evolutionary theories of human behaviour, health, and disease. Many evolutionary 
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relevant traits show heritable genetic variation and genetic variants can therefore be used 

to mimic these traits in analyses (Conley, 2009; Gage, Davey Smith, et al., 2016; Nettle, 

2006). Here, I have successfully applied MR and related methods to test hypotheses 

within life history theory and the schizophrenia paradox. Recently, the number of 

evolutionary relevant traits that GWAS studies are being conducted on has increased 

exponentially (Gage, Davey Smith, et al., 2016). As examples, GWAS have now been 

conducted on risk-taking and personality measures which could be used to test 

evolutionary hypotheses of human behaviour (Karlsson Linnér et al., 2019; Nagel et al., 

2018). The rapid increase in GWAS studies is in part due to the decreasing cost of 

genotyping and, subsequently, the availability of large datasets (Conley, 2009). However, 

GWAS on social traits must be well thought out for the results to be carried into MR 

analyses, such as knowledge of the possible biological pathways to the trait of interest 

(Conley, 2009). Moreover, phenotyping of social traits is often less precise as the traits 

are more difficult to measure and this measurement error can lead to noise in GWAS 

analyses (Karlsson Linnér et al., 2019; Tropf et al., 2017).  

As discussed, MR was developed for health traits and there are additional considerations 

to be made when applying the method to social and evolutionarily relevant traits. 

However, new methods are under development to assess the potential bias of doing so 

(Brumpton et al., 2019; Hartwig et al., 2018; Labrecque & Swanson, 2019). 

Unfortunately, many of these methods require genetic data on mother-father-offspring 

trios which is less easily available (Hartwig et al., 2018). For example, family data is 

required to overcome bias from assortative mating or dynastic effects (when parental 

genotypes directly affect offspring phenotypes) (Brumpton et al., 2019; Hartwig et al., 

2018; Kong et al., 2018; Pingault et al., 2018). For most cohorts with this trio data, such 

as MoBa, the offspring are still too young to investigate reproductive outcomes such as 

complete fitness and therefore many evolutionary hypotheses are not yet possible to test. 

However, when this data does become available, the wealth of prospective measures on 

these individuals during key developmental stages will be very valuable. As discussed in 

Chapter 5, it will still be important to think carefully about the representativeness and 

possible selection bias of the data, as well as the assumptions discussed above for MR 

analyses. In general, genetic research is in a period of rapid change with increasing data 

availability and methodological developments. Although this can make it challenging to 

keep up to date with these advances, it also means that it is an exciting time for a potential 

new field such as evolutionary epidemiology. 
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With the advances of many genetic epidemiological methods, it is crucial to again 

highlight that a single method for causal inference in observational settings will not 

provide a definitive causal effect (Pingault et al., 2018). Instead, genetic epidemiological 

methods, such as MR, can improve the strength of evidence on a continuum from 

association to causal effect and triangulation across multiple methods can increase 

confidence in these results (Lawlor et al., 2016; Pingault et al., 2018). For example, 

Davies et al. (2018) employed an MR framework for educational attainment alongside 

regression discordant analysis with a non-genetic instrument of policy change in age at 

leaving school to triangulate across results, tying together policy and genetics. 

6.3.1 Conclusion 

Causal inference using genetically informed designs has undergone rapid and exciting 

developments in recent years with potential for evolutionary approaches to human 

behaviour to reap these benefits (Pingault et al., 2018). The findings from this thesis 

suggest that MR can be applied to directly test evolutionary hypotheses of human 

behaviour by combining proximate and ultimate level explanations in a causal framework 

without the need to manipulate an exposure experimentally. There is some indication that 

earlier age at menarche is causally related to traits that characterize a fast life history 

strategy, such as earlier age at first birth, earlier age at last birth, lower educational 

attainment, and earlier age at leaving education. Additionally, it appears that increased 

genetic liability for schizophrenia does not confer a fitness advantage and therefore the 

disorder is likely sustained in the population through other explanations than cliff-edge 

effects. However, with additional considerations that need to be made when applying MR 

to evolutionary relevant social traits and the current lack of large samples with trio data 

on relevant measures to overcome some biases, the field of evolutionary epidemiology 

remains in infancy. Nevertheless, there is great potential for the application of MR within 

evolutionary research and it is an exciting time to be in such a fast-moving field. 
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Appendices 

Appendix 1 List of SNPs (p<5×10-8) used in the 116 SNP analysis and their associations 

with age at menarche. 

 Age at menarche 

SNP β SE 

rs10144321 0.04 0.006 

rs1038903 0.04 0.006 

rs10423674 0.04 0.005 

rs10453225 0.09 0.005 

rs10739221 0.08 0.006 

rs10789181 0.03 0.005 

rs1079866 0.07 0.007 

rs10816359 0.04 0.008 

rs10895140 0.04 0.005 

rs10938397 0.04 0.005 

rs10980854 0.06 0.011 

rs10980921 0.09 0.009 

rs11022756 0.05 0.006 

rs11165924 0.03 0.006 

rs11215400 0.04 0.006 

rs1129700 0.03 0.005 

rs11578152 0.03 0.005 

rs11715566 0.05 0.005 

rs11767400 0.04 0.006 

rs11792861 0.04 0.005 

rs12148769 0.05 0.008 

rs12446632 0.04 0.007 

rs12472911 0.04 0.006 

rs1254337 0.04 0.005 

rs12571664 0.04 0.006 

rs12607903 0.04 0.005 

rs12915845 0.03 0.005 

rs13053505 0.04 0.007 

rs13067731 0.04 0.007 

rs13179411 0.06 0.007 

rs13196561 0.04 0.006 

rs1324913 0.03 0.005 

rs1364063 0.05 0.005 

rs1400974 0.05 0.005 

rs1461503 0.05 0.005 

rs1469039 0.05 0.007 

rs1532331 0.03 0.005 

rs16860328 0.04 0.005 

rs16896742 0.04 0.005 

rs16918254 0.05 0.009 

rs16918636 0.03 0.006 



 

167 

 

rs17086188 0.07 0.013 

rs17171818 0.04 0.006 

rs17233066 0.09 0.014 

rs17236969 0.05 0.008 

rs17266097 0.04 0.005 

rs1915146 0.03 0.005 

rs1958560 0.03 0.005 

rs2063730 0.05 0.007 

rs2137289 0.05 0.005 

rs2153127 0.08 0.005 

rs2274465 0.03 0.005 

rs239198 0.03 0.005 

rs244293 0.03 0.005 

rs246185 0.04 0.006 

rs2479724 0.03 0.005 

rs251130 0.04 0.006 

rs2600959 0.04 0.005 

rs268067 0.04 0.006 

rs2687729 0.04 0.006 

rs2688325 0.03 0.006 

rs2947411 0.06 0.007 

rs3101336 0.04 0.005 

rs3733631 0.05 0.007 

rs3743266 0.04 0.005 

rs4369815 0.06 0.01 

rs466639 0.08 0.007 

rs4840086 0.04 0.005 

rs4895808 0.03 0.005 

rs543874 0.05 0.006 

rs6009583 0.03 0.006 

rs6427782 0.03 0.005 

rs652260 0.03 0.005 

rs6555855 0.04 0.006 

rs6563739 0.03 0.005 

rs6747380 0.07 0.007 

rs6758290 0.04 0.005 

rs6762477 0.04 0.006 

rs6770162 0.04 0.005 

rs6933660 0.03 0.005 

rs6938574 0.04 0.007 

rs6964833 0.04 0.006 

rs7037266 0.03 0.005 

rs7103411 0.04 0.006 

rs7104764 0.03 0.006 

rs7138803 0.04 0.005 

rs7141210 0.03 0.005 

rs7215990 0.04 0.006 

rs7463166 0.03 0.005 
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rs7514705 0.04 0.005 

rs7642134 0.04 0.005 

rs7647973 0.05 0.006 

rs7701886 0.03 0.005 

rs7759938 0.12 0.005 

rs7821178 0.04 0.005 

rs7828501 0.04 0.005 

rs7853970 0.03 0.005 

rs7865468 0.03 0.005 

rs7955374 0.04 0.008 

rs8032675 0.04 0.005 

rs8050136 0.04 0.005 

rs852069 0.04 0.005 

rs889122 0.04 0.006 

rs900400 0.03 0.005 

rs913588 0.03 0.005 

rs929843 0.04 0.006 

rs9321659 0.06 0.008 

rs939317 0.04 0.006 

rs9447700 0.03 0.005 

rs9475752 0.04 0.006 

rs951366 0.03 0.005 

rs9560113 0.05 0.006 

rs9635759 0.05 0.005 

rs9647570 0.05 0.007 

rs9849248 0.04 0.007 

rs988913 0.04 0.005 
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Appendix 2 List of SNPs (p<5×10-8) used in the 305 SNP analysis and their associations 

with age at menarche. 

 Age at menarche 

SNP β SE 

rs10136330 -0.06 0.010 

rs10138913 0.06 0.004 

rs10143972 -0.04 0.005 

rs10145469 -0.06 0.009 

rs10156597 0.10 0.004 

rs10175423 -0.02 0.004 

rs10205969 -0.04 0.005 

rs10237306 0.03 0.004 

rs1023955 -0.03 0.004 

rs10268051 0.02 0.005 

rs1030015 -0.02 0.004 

rs1032682 0.02 0.004 

rs10400136 -0.03 0.004 

rs10422323 0.04 0.006 

rs10521021 -0.02 0.004 

rs1054442 0.04 0.004 

rs10750766 -0.03 0.004 

rs10782777 -0.03 0.004 

rs1079866 -0.07 0.006 

rs10832021 -0.05 0.004 

rs10885077 0.02 0.004 

rs10906395 -0.02 0.004 

rs10931831 -0.05 0.004 

rs10933 -0.02 0.004 

rs10934420 -0.05 0.004 

rs10959016 -0.03 0.005 

rs10959552 -0.04 0.006 

rs10978641 -0.03 0.005 

rs10992769 0.03 0.004 

rs11031040 -0.04 0.005 

rs11065822 0.03 0.004 

rs11079810 0.04 0.006 

rs11165924 0.03 0.004 

rs11209331 0.02 0.004 

rs11209943 0.04 0.004 

rs11210871 0.04 0.004 

rs11240695 -0.03 0.004 

rs112991346 -0.04 0.006 

rs113388806 -0.06 0.010 

rs1148006 -0.03 0.004 

rs115260227 -0.16 0.024 

rs11534296 -0.04 0.004 

rs115435316 0.11 0.011 

rs11556924 0.02 0.004 
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rs11606190 0.04 0.006 

rs11619721 -0.04 0.007 

rs11668587 -0.03 0.004 

rs11711674 0.02 0.004 

rs117143374 -0.05 0.006 

rs1172955 -0.04 0.004 

rs117530880 -0.07 0.012 

rs11756746 0.02 0.005 

rs11767400 0.03 0.004 

rs11786868 0.03 0.005 

rs11792861 0.03 0.004 

rs11852771 0.02 0.004 

rs11873906 -0.05 0.004 

rs12040029 -0.04 0.006 

rs12125335 -0.05 0.006 

rs12200565 0.03 0.004 

rs12460047 -0.03 0.004 

rs12467441 -0.04 0.006 

rs12571664 0.04 0.005 

rs12603280 -0.04 0.005 

rs12663002 0.04 0.006 

rs12894936 -0.05 0.004 

rs12915845 -0.04 0.004 

rs12937034 -0.03 0.004 

rs13023912 -0.05 0.004 

rs13043968 -0.04 0.006 

rs13120031 0.03 0.004 

rs13199764 0.04 0.005 

rs13233916 -0.05 0.008 

rs13278754 -0.03 0.004 

rs13283567 -0.04 0.006 

rs1329767 -0.03 0.004 

rs13322435 0.04 0.004 

rs1414186 -0.04 0.005 

rs141847393 0.04 0.007 

rs142058842 -0.07 0.005 

rs142643995 0.06 0.012 

rs1428120 0.03 0.004 

rs1435753 -0.03 0.004 

rs1449543 0.02 0.004 

rs145438026 -0.07 0.008 

rs1456031 0.02 0.004 

rs150821390 0.07 0.012 

rs1512238 -0.05 0.004 

rs151680 0.03 0.004 

rs1535252 -0.03 0.004 

rs153793 -0.02 0.004 

rs1539310 0.02 0.005 
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rs1566385 0.06 0.008 

rs15671 -0.02 0.004 

rs1571536 0.03 0.004 

rs157877 -0.08 0.006 

rs1601615 -0.03 0.004 

rs16841867 0.05 0.006 

rs169080 -0.03 0.004 

rs16917237 0.04 0.005 

rs16918378 0.05 0.006 

rs16937956 -0.04 0.004 

rs17035311 0.04 0.005 

rs1704528 -0.05 0.004 

rs17171852 -0.04 0.005 

rs17390720 0.03 0.004 

rs17563472 -0.06 0.011 

rs17564430 -0.04 0.004 

rs1815811 -0.03 0.004 

rs184033703 -0.05 0.009 

rs1885740 -0.03 0.005 

rs1925047 -0.03 0.004 

rs1971554 0.03 0.004 

rs1984870 0.04 0.004 

rs2066323 -0.02 0.004 

rs2108753 0.03 0.004 

rs222440 -0.03 0.005 

rs2267812 0.04 0.005 

rs2271758 -0.02 0.004 

rs2295094 0.04 0.005 

rs2300922 0.04 0.004 

rs2312205 0.03 0.005 

rs2343507 0.02 0.004 

rs2378100 -0.02 0.004 

rs2461794 0.03 0.004 

rs247520 0.04 0.005 

rs2546959 0.03 0.005 

rs2558101 -0.02 0.004 

rs256350 -0.02 0.004 

rs2604265 0.04 0.004 

rs2659007 -0.03 0.004 

rs2661339 0.05 0.009 

rs2679894 0.05 0.004 

rs2688326 -0.04 0.004 

rs2723065 -0.02 0.004 

rs2724961 -0.05 0.004 

rs2770957 0.03 0.005 

rs2780243 -0.02 0.004 

rs28757192 -0.06 0.011 

rs2889128 0.02 0.004 
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rs29941 0.03 0.004 

rs3021057 0.02 0.004 

rs3113862 -0.04 0.004 

rs34437050 0.24 0.020 

rs34513772 0.02 0.004 

rs35436838 -0.07 0.011 

rs35485457 -0.04 0.004 

rs35935052 0.04 0.005 

rs360495 0.04 0.007 

rs36093651 0.04 0.005 

rs3733632 -0.05 0.005 

rs3743266 0.04 0.004 

rs3746037 0.04 0.005 

rs3746619 0.05 0.007 

rs3764002 -0.03 0.005 

rs3782120 0.03 0.004 

rs3809624 -0.03 0.004 

rs3815212 0.03 0.005 

rs395962 0.13 0.004 

rs4303811 -0.04 0.006 

rs4327718 -0.03 0.005 

rs4340786 0.04 0.004 

rs4359170 0.03 0.004 

rs437836 0.04 0.005 

rs443252 0.06 0.009 

rs4448948 -0.04 0.008 

rs446745 -0.03 0.005 

rs4487799 0.02 0.004 

rs4561063 0.03 0.004 

rs4588499 -0.02 0.004 

rs467379 0.02 0.004 

rs4701140 0.02 0.004 

rs474463 -0.03 0.005 

rs4746113 -0.02 0.004 

rs4751614 0.03 0.005 

rs4778356 0.04 0.006 

rs4801809 -0.04 0.007 

rs4804025 -0.04 0.004 

rs4813429 0.03 0.005 

rs4836984 0.03 0.004 

rs484353 0.03 0.004 

rs4845364 0.02 0.004 

rs4859001 0.04 0.006 

rs4875424 -0.03 0.004 

rs4877387 0.02 0.004 

rs4886140 0.03 0.004 

rs4945266 -0.04 0.005 

rs4951261 0.03 0.004 
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rs4970598 0.06 0.011 

rs4976623 0.03 0.005 

rs506589 0.07 0.005 

rs552491 -0.03 0.004 

rs55680968 -0.05 0.008 

rs55784701 0.03 0.005 

rs56367141 -0.04 0.006 

rs56409371 -0.03 0.005 

rs5742915 -0.02 0.004 

rs5753377 -0.03 0.004 

rs582780 0.03 0.004 

rs59246405 0.03 0.004 

rs59543819 -0.03 0.004 

rs59652033 -0.03 0.004 

rs61817552 -0.03 0.005 

rs61828391 -0.03 0.006 

rs61846901 -0.03 0.004 

rs6185 -0.03 0.004 

rs62104180 0.11 0.010 

rs62229372 0.05 0.006 

rs62316795 0.04 0.005 

rs62342064 0.06 0.007 

rs62361685 0.05 0.009 

rs62379978 -0.06 0.005 

rs62391851 -0.06 0.009 

rs6415872 0.02 0.004 

rs6434162 -0.04 0.005 

rs643428 -0.02 0.004 

rs6439371 -0.03 0.004 

rs6439713 0.03 0.004 

rs6445624 0.04 0.006 

rs6575806 -0.03 0.006 

rs6590889 -0.04 0.004 

rs660549 -0.02 0.004 

rs66508321 -0.03 0.004 

rs6661100 0.05 0.007 

rs6678140 -0.03 0.004 

rs6735626 0.02 0.004 

rs68002803 0.03 0.004 

rs6803264 0.03 0.005 

rs6864818 0.04 0.005 

rs6878910 0.04 0.006 

rs6911407 0.03 0.004 

rs6911527 0.03 0.005 

rs6927679 0.03 0.004 

rs6931884 0.06 0.006 

rs6933660 -0.03 0.004 

rs7072571 0.03 0.006 
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rs7077302 0.05 0.007 

rs709488 -0.02 0.004 

rs7108556 0.03 0.005 

rs7115444 0.03 0.005 

rs7132908 -0.04 0.004 

rs7178532 0.04 0.004 

rs7218751 0.03 0.005 

rs7239114 -0.02 0.004 

rs72756954 0.06 0.008 

rs72787511 0.06 0.011 

rs72842141 -0.06 0.009 

rs73035994 -0.09 0.012 

rs73187215 -0.04 0.007 

rs73435048 -0.04 0.008 

rs7359336 -0.05 0.004 

rs73820560 -0.03 0.006 

rs7426534 -0.02 0.004 

rs7431217 0.02 0.004 

rs74499585 0.06 0.008 

rs7516763 0.02 0.004 

rs7542538 0.03 0.005 

rs7576624 -0.07 0.005 

rs758747 -0.03 0.004 

rs7587651 -0.02 0.004 

rs7649124 0.03 0.005 

rs7712046 -0.03 0.004 

rs77530428 -0.12 0.017 

rs77532868 0.06 0.010 

rs7753896 0.03 0.004 

rs7757654 -0.03 0.004 

rs77955256 -0.04 0.006 

rs7826872 0.03 0.004 

rs7849973 0.02 0.004 

rs7852169 -0.10 0.007 

rs7853970 0.04 0.004 

rs78928932 -0.06 0.009 

rs7907759 0.04 0.004 

rs79084266 -0.04 0.007 

rs7912468 -0.02 0.004 

rs79541760 0.04 0.005 

rs7971408 0.05 0.006 

rs7979001 0.02 0.004 

rs80170948 -0.07 0.011 

rs8040272 0.04 0.006 

rs8051833 -0.04 0.004 

rs813301 0.03 0.004 

rs8136272 0.04 0.004 

rs842567 -0.03 0.005 
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rs852061 -0.04 0.004 

rs910425 -0.02 0.004 

rs913588 -0.03 0.004 

rs9330454 -0.03 0.004 

rs9349203 -0.04 0.004 

rs9382676 0.04 0.005 

rs9403051 0.04 0.004 

rs941520 -0.02 0.004 

rs9427116 0.02 0.004 

rs953230 0.03 0.004 

rs9548873 -0.03 0.004 

rs9568123 -0.03 0.005 

rs9614460 -0.02 0.004 

rs9635759 0.06 0.004 

rs9647570 -0.04 0.006 

rs970179 0.02 0.004 

rs975642 -0.02 0.004 

rs9758500 -0.05 0.004 

rs9834893 -0.05 0.007 

rs9972653 -0.05 0.004 

rs999885 0.02 0.004 
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Appendix 3 List of SNPs (p<5×10-8) used in analysis and their associations with age at 

first sexual intercourse. 

 

Age at first sexual 

intercourse 

SNP β SE 

rs10800813 0.02 0.004 

rs115552537 0.03 0.005 

rs12522910 0.04 0.005 

rs1264194 0.03 0.004 

rs12714592 0.03 0.004 

rs1344293 0.03 0.004 

rs2188151 0.03 0.004 

rs2248699 0.02 0.004 

rs341521 0.03 0.004 

rs369230 0.03 0.004 

rs4129322 0.04 0.007 

rs4324362 0.03 0.004 

rs4443996 0.02 0.004 

rs4702 0.02 0.004 

rs4840367 0.03 0.004 

rs538498277 0.31 0.051 

rs58749137 0.02 0.004 

rs6058613 0.03 0.005 

rs6549665 0.03 0.005 

rs658385 0.02 0.004 

rs726281 0.03 0.004 

rs76513770 0.03 0.006 

rs9516776 0.02 0.004 
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Appendix 4 Funnel plot for Cochran's Q values using the age at menarche 116 SNP 

instrument. Here shown with number of children as an outcome for illustration. 
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Appendix 5 Funnel plot for Cochran's Q values using the age at menarche 305 SNP 

instrument. Here shown with number of children as an outcome for illustration, using 

non-overlapping UK Biobank data. 
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Appendix 6 Funnel plot for Cochran's Q values using the age at first sexual intercourse 

instrument. Here shown with number of children as an outcome for illustration. 

 

  



 

180 

 

Appendix 7 MR Plot illustrating rs538498277 as a potential outlier in analyses of age at 

first sexual intercourse. Here shown for increasing age at first sexual intercourse on age 

at first birth. 

 

  



 

181 

 

Appendix 8 Radial MR plot identifies rs2188151 as the strongest potential outlier. Here 

shown for increasing age at first sexual intercourse on age at first birth. 
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Appendix 9 Leave-one-out analysis indicates that all estimates were within the 

confidence intervals of all other estimates. Here shown for increasing age at first sexual 

intercourse on age at first birth. 
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Appendix 10 List of SNPs associated with educational attainment (p<5×10-8), number of 

children and age at first birth for UK Biobank analyses. 

SNP 
Educational attainmenta Number of childrenb Age at first birthc 

β SE β SE β SE 

rs10061788 0.021 0.004 -0.002 0.004 0.033 0.025 

rs1008078 -0.016 0.003 0.006 0.003 -0.077 0.019 

rs1043209 0.018 0.003 0.008 0.003 0.052 0.019 

rs10496091 -0.018 0.003 -0.003 0.003 -0.066 0.020 

rs11191193 0.018 0.003 0.005 0.003 0.063 0.019 

rs11210860 0.017 0.003 0.001 0.003 0.065 0.019 

rs112634398 0.036 0.007 -0.013 0.007 0.069 0.046 

rs113520408 0.017 0.003 0.000 0.003 0.023 0.020 

rs11588857 0.020 0.003 0.011 0.004 0.034 0.022 

rs11689269 0.016 0.003 -0.003 0.003 0.061 0.019 

rs11690172 0.015 0.003 -0.004 0.003 0.027 0.019 

rs11712056 0.024 0.003 -0.013 0.003 0.138 0.018 

rs11768238 -0.017 0.003 -0.002 0.003 -0.010 0.020 

rs12531458 0.014 0.003 -0.003 0.003 0.014 0.018 

rs12646808 0.016 0.003 0.001 0.003 0.054 0.020 

rs12671937 0.016 0.003 -0.003 0.003 0.034 0.018 

rs12772375 -0.015 0.003 -0.003 0.003 0.006 0.019 

rs12969294 -0.016 0.003 0.011 0.003 -0.063 0.019 

rs12987662 0.027 0.003 -0.007 0.003 0.069 0.019 

rs13294439 -0.023 0.003 0.010 0.003 -0.090 0.018 

rs13402908 -0.018 0.003 0.002 0.003 -0.037 0.018 

rs1402025 0.017 0.003 0.004 0.003 0.028 0.022 

rs1606974 0.022 0.004 -0.008 0.004 0.091 0.028 

rs165633 -0.018 0.003 0.000 0.004 0.004 0.022 

rs16845580 0.016 0.003 -0.006 0.003 0.039 0.019 

rs17119973 -0.019 0.003 0.005 0.003 -0.054 0.021 

rs17167170 0.020 0.003 -0.005 0.004 0.073 0.023 

rs1777827 0.015 0.003 -0.004 0.003 0.032 0.019 

rs17824247 -0.016 0.003 0.007 0.003 -0.057 0.019 

rs1871109 -0.016 0.003 0.000 0.003 -0.019 0.018 

rs2245901 -0.016 0.003 0.000 0.003 -0.052 0.019 

rs2431108 0.016 0.003 0.006 0.003 0.024 0.019 

rs2456973 -0.020 0.003 0.010 0.003 -0.096 0.019 

rs2457660 -0.017 0.003 0.002 0.003 -0.061 0.019 

rs2568955 -0.017 0.003 0.009 0.004 -0.022 0.024 

rs2610986 -0.016 0.003 -0.007 0.003 -0.014 0.020 

rs2615691 -0.037 0.007 0.019 0.008 0.095 0.050 

rs2837992 0.015 0.003 -0.006 0.003 0.050 0.019 

rs2964197 0.015 0.003 -0.007 0.003 0.032 0.018 

rs2992632 0.017 0.003 -0.005 0.003 0.047 0.020 
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rs301800 0.019 0.003 -0.004 0.004 0.058 0.024 

rs3101246 -0.015 0.003 0.004 0.003 -0.024 0.019 

rs324886 -0.015 0.003 0.009 0.003 -0.056 0.019 

rs34072092 0.024 0.004 -0.007 0.005 0.074 0.029 

rs34305371 0.035 0.005 -0.006 0.005 0.073 0.030 

rs35761247 0.034 0.006 -0.020 0.006 0.197 0.039 

rs4493682 0.019 0.004 -0.010 0.004 0.082 0.024 

rs4500960 -0.016 0.003 0.001 0.003 0.021 0.018 

rs4851251 -0.017 0.003 0.004 0.003 -0.067 0.021 

rs4863692 0.018 0.003 0.001 0.003 0.090 0.019 

rs55830725 -0.022 0.004 -0.011 0.004 -0.006 0.024 

rs56231335 -0.017 0.003 0.001 0.003 -0.047 0.019 

rs572016 0.014 0.003 0.005 0.003 0.042 0.018 

rs61160187 -0.017 0.003 -0.002 0.003 -0.060 0.019 

rs62259535 0.048 0.008 -0.011 0.008 0.251 0.049 

rs62263923 -0.016 0.003 0.021 0.003 -0.052 0.019 

rs62379838 0.016 0.003 -0.004 0.003 -0.007 0.020 

rs6739979 -0.015 0.003 0.001 0.003 -0.048 0.019 

rs7131944 0.015 0.003 -0.001 0.003 -0.015 0.019 

rs7306755 0.023 0.003 0.004 0.004 0.039 0.023 

rs76076331 0.020 0.004 -0.001 0.004 0.092 0.028 

rs7767938 0.017 0.003 0.000 0.003 0.024 0.021 

rs7854982 -0.015 0.003 0.000 0.003 -0.019 0.018 

rs7945718 0.015 0.003 -0.003 0.003 0.021 0.019 

rs7955289 0.017 0.003 -0.006 0.003 0.027 0.019 

rs895606 0.015 0.003 0.002 0.003 0.075 0.018 

rs9537821 0.024 0.003 -0.006 0.003 0.073 0.020 

a Educational attainment from the SSGAC GWAS; b Number of children data from UK 

Biobank; c Age at first birth data from UK Biobank. 
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Appendix 11 Funnel plot for Cochran's Q values for genetically predicted educational 

attainment in UK Biobank. Here shown with number of children as an outcome for 

illustration. 
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Appendix 12 Genetic correlations of genetically predicted educational attainment and 

number of children and age at first birth using LD score regression with outcome 

summary statistics also adjusted for genotype array (UK Biobank analyses). 

  No. of childrena Age at first birthb 

  rg SE p rg SE p 

Genetically predicted educational attainmentc -0.35 0.03 <0.001 0.81 0.02 <0.001 

a Number of children data from UK Biobank (N = 333 628); b Age at first birth data from 

UK Biobank (N = 123 310); c Educational attainment from the SSGAC GWAS (N = 283 

723).  
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Appendix 13 Estimates of the causal effect of genetically predicted educational 

attainment on outcomes using IVW, MBE and weighted median MR methods with 

outcome summary statistics also adjusted for genotype array (UK Biobank analyses). 

 No. of childrena Age at first birthb Childlessnessc 

Method 

(67 SNPsd) 
β (95% CI), p OR (95% CI), p 

IVW 
-0.162 (-0.206, -0.118), 

<0.001 

2.663 (2.388, 2.938), 

<0.001 

1.590 (1.447, 1.747), 

<0.001 

Weighted 

Median 

-0.206 (-0.278, -0.134), 

<0.001 

2.842 (2.378, 3.306), 

<0.001 

1.570 (1.349, 1.828), 

<0.001 

MBE 
-0.249 (-0.477, -0.021), 

0.04 

1.621 (0.260, 2.981), 

<0.001 

1.520 (0.964, 2.399), 

0.08 

a Number of children data from UK Biobank (N = 268 658 – 335 758). b Age at first birth 

data from UK Biobank (N = 99 317 – 124 093). c Childlessness data from UK Biobank (N 

= 268 658 – 335 758). Childlessness was coded as 1. Results were converted to ORs by 

exponentiating log ORs; d Educational attainment from the SSGAC GWAS (N = 283 723). 
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Appendix 14 List of SNPs associated with schizophrenia (p<5×10-8) and associations with number of children, age at first birth and number of sexual 

partners for UK Biobank analyses. 

SNP 
Original SNP if 

proxy used 

r2 for 

proxy 

Schizophreniaa 
Number of 

childrenb 

Age at first 

birthc 

Number of 

sexual partners 

ln(OR) SE β SE β SE β SE 

rs1009080 rs1498232 0.99 -0.071 0.012 0.004 0.003 -0.018 0.020 -0.021 0.024 

rs1023500   0.076 0.014 0.002 0.004 -0.024 0.023 -0.025 0.028 

rs10412446 rs56873913 0.97 0.057 0.013 0.001 0.003 0.040 0.022 0.021 0.027 

rs10503253   0.072 0.013 0.004 0.004 0.008 0.023 -0.030 0.028 

rs10504857 rs7819570 1.00 -0.074 0.014 0.002 0.004 -0.018 0.024 -0.026 0.030 

rs10520163   0.058 0.011 -0.004 0.003 0.007 0.018 0.019 0.022 

rs10779702 chr1_8424984_D 0.97 0.063 0.011 0.002 0.003 -0.049 0.019 -0.021 0.023 

rs10791097   0.077 0.011 0.007 0.003 -0.024 0.018 0.009 0.022 

rs10803138   -0.072 0.013 0.006 0.003 -0.053 0.021 -0.086 0.026 

rs10860964   0.063 0.011 0.005 0.003 -0.035 0.019 0.026 0.023 

rs10900851 rs10043984 0.99 -0.064 0.012 0.008 0.003 -0.052 0.021 0.023 0.026 

rs10933068 rs11685299 1.00 -0.063 0.012 -0.008 0.003 0.015 0.020 -0.083 0.024 

rs11027857   0.064 0.011 0.005 0.003 0.007 0.018 -0.002 0.022 

rs1106568   -0.069 0.013 -0.005 0.003 0.070 0.021 0.020 0.026 

rs11139497   0.066 0.012 -0.005 0.003 -0.050 0.019 0.032 0.024 

rs11210892   -0.068 0.012 -0.001 0.003 0.084 0.019 -0.083 0.024 

rs1160682 rs12129573 1.00 -0.068 0.011 -0.003 0.003 0.053 0.019 -0.003 0.023 

rs11632947 rs12903146 0.99 0.066 0.011 0.001 0.003 0.012 0.018 0.023 0.022 

rs11682175   -0.073 0.011 0.002 0.003 -0.076 0.018 0.043 0.022 

rs11683083 chr2_146436222_I 1.00 -0.078 0.014 0.007 0.004 -0.039 0.024 -0.043 0.029 

rs12063329 rs140505938 1.00 0.088 0.015 -0.001 0.004 0.014 0.024 0.036 0.030 

rs12148337   0.057 0.011 0.002 0.003 0.001 0.018 -0.028 0.022 

rs12325245   -0.086 0.016 -0.001 0.004 -0.058 0.026 -0.019 0.032 

rs12421382   -0.065 0.012 -0.004 0.003 -0.024 0.020 -0.029 0.024 

rs12522290   0.082 0.015 0.008 0.004 -0.025 0.024 0.020 0.029 
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rs12619354 rs59979824 0.87 0.059 0.012 -0.004 0.003 0.040 0.019 0.062 0.024 

rs12654855 rs79212538 0.95 -0.128 0.025 -0.010 0.007 0.023 0.043 -0.083 0.053 

rs12659129 chr5_140143664_I 1.00 0.052 0.011 -0.002 0.003 -0.019 0.018 -0.037 0.022 

rs12716972 rs12691307 0.98 0.063 0.011 -0.002 0.003 -0.0004 0.018 -0.014 0.023 

rs13074054 chr3_180594593_I 0.99 0.077 0.014 0.008 0.004 -0.008 0.022 -0.041 0.027 

rs13107325 rs35518360 0.85 0.152 0.022 0.001 0.006 -0.038 0.035 -0.134 0.043 

rs1501357   -0.069 0.014 -0.002 0.004 0.050 0.024 -0.065 0.029 

rs16867576   0.096 0.017 -0.009 0.004 -0.028 0.027 0.149 0.033 

rs17049247 rs75575209 0.97 -0.103 0.019 0.008 0.005 -0.091 0.032 0.024 0.039 

rs17149781 chr7_24747494_D 0.91 -0.086 0.017 0.004 0.005 -0.083 0.029 0.007 0.036 

rs17194490   0.097 0.015 -0.003 0.004 0.034 0.025 0.048 0.030 

rs17273111 rs4330281 1.00 0.056 0.011 -0.001 0.003 -0.025 0.018 0.020 0.022 

rs17594526 rs78322266 1.00 0.169 0.031 -0.003 0.009 0.053 0.056 0.169 0.069 

rs17602354 rs72934570 0.92 0.141 0.021 -0.001 0.005 0.010 0.033 0.188 0.040 

rs1782810 rs1702294 0.99 0.118 0.014 0.003 0.004 0.004 0.023 0.000 0.029 

rs2007044   -0.092 0.011 0.002 0.003 -0.015 0.019 -0.007 0.023 

rs2053079   -0.072 0.013 0.004 0.003 -0.037 0.021 0.058 0.026 

rs2057070 rs9607782 0.81 -0.068 0.012 0.006 0.003 -0.051 0.020 0.029 0.025 

rs2068012   -0.070 0.013 -0.002 0.003 0.048 0.022 -0.007 0.027 

rs211829   0.054 0.011 -0.005 0.003 0.001 0.019 0.022 0.023 

rs215411   0.069 0.012 -0.002 0.003 0.003 0.020 0.017 0.024 

rs2239063   0.069 0.012 -0.0002 0.003 0.003 0.020 0.053 0.025 

rs2296569 rs55833108 0.83 -0.068 0.014 0.001 0.004 -0.007 0.023 0.074 0.028 

rs2514218   -0.072 0.012 -0.0004 0.003 0.027 0.019 0.005 0.024 

rs2535627   0.070 0.011 -0.0004 0.003 -0.019 0.018 -0.019 0.023 

rs2693698   -0.062 0.011 0.001 0.003 0.025 0.018 -0.006 0.023 

rs2796275 rs7523273 0.98 0.053 0.012 0.001 0.003 -0.002 0.019 0.037 0.024 

rs2851447   -0.084 0.012 -0.002 0.003 -0.035 0.021 -0.048 0.026 

rs2955357 rs8082590 1.00 0.064 0.012 -0.001 0.003 0.031 0.020 -0.038 0.024 

rs2965180 rs2905426 0.97 0.063 0.011 0.009 0.003 -0.068 0.019 -0.006 0.023 
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rs2973161 rs2973155 0.97 -0.069 0.011 -0.006 0.003 0.006 0.019 -0.033 0.023 

rs324015 rs324017 0.81 -0.069 0.013 0.003 0.003 0.005 0.021 -0.016 0.026 

rs3802924 rs75059851 0.95 0.088 0.014 -0.0003 0.004 -0.041 0.023 0.005 0.029 

rs3849046   0.062 0.011 -0.008 0.003 0.010 0.019 0.005 0.023 

rs4128242 chr18_52749216_D 1.00 0.067 0.011 0.003 0.003 -0.024 0.019 0.021 0.023 

rs4129585   0.079 0.011 0.003 0.003 -0.035 0.018 0.036 0.022 

rs4240748   -0.057 0.011 0.009 0.003 0.030 0.019 -0.027 0.023 

rs436124 rs679087 1.00 0.061 0.011 0.002 0.003 0.012 0.019 0.034 0.023 

rs4388249   0.067 0.014 0.001 0.004 -0.037 0.025 0.104 0.031 

rs4391122   -0.078 0.011 -0.001 0.003 0.068 0.018 0.027 0.023 

rs4518583 rs3735025 1.00 0.061 0.011 -0.004 0.003 0.061 0.019 0.035 0.023 

rs4523957   0.070 0.012 -0.005 0.003 -0.007 0.019 0.055 0.024 

rs4648845   0.067 0.012 0.002 0.003 0.015 0.018 -0.010 0.023 

rs4664442 rs2909457 0.98 0.059 0.011 0.002 0.003 0.029 0.018 0.017 0.022 

rs4702   -0.081 0.012 -0.006 0.003 0.026 0.018 -0.132 0.022 

rs6065094   -0.075 0.012 -0.003 0.003 -0.008 0.019 -0.062 0.024 

rs6461049 chr7_2025096_I 0.93 0.080 0.011 0.006 0.003 0.033 0.018 0.077 0.023 

rs6466056 rs6466055 1.00 0.068 0.011 -0.0005 0.003 -0.052 0.019 0.062 0.023 

rs6579959 rs111294930 0.96 -0.067 0.012 -0.003 0.003 -0.018 0.020 -0.103 0.025 

rs6670165   0.074 0.014 -0.001 0.004 0.004 0.023 0.066 0.029 

rs6704641   0.075 0.015 0.006 0.004 0.008 0.023 -0.071 0.029 

rs6704768   -0.077 0.011 -0.003 0.003 -0.051 0.018 -0.007 0.023 

rs7085104 rs11191419 0.99 0.098 0.011 0.002 0.003 -0.001 0.019 -0.067 0.024 

rs7140568 rs12887734 1.00 0.085 0.012 0.002 0.003 -0.004 0.020 0.036 0.025 

rs715170   -0.067 0.012 -0.001 0.003 0.025 0.021 -0.061 0.025 

rs7267348   -0.066 0.013 0.003 0.003 -0.003 0.021 -0.005 0.026 

rs7432375   -0.071 0.011 -0.004 0.003 0.017 0.019 -0.006 0.023 

rs7499750 rs7405404 1.00 0.077 0.013 -0.005 0.003 0.018 0.022 0.069 0.027 

rs7730110 rs11740474 0.81 -0.059 0.011 0.002 0.003 0.021 0.019 -0.014 0.024 

rs7801375   -0.083 0.015 0.0003 0.004 0.018 0.025 0.009 0.031 

rs7815859 rs36068923 1.00 0.083 0.013 0.002 0.004 0.049 0.023 0.013 0.028 
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rs787983 rs6434928 0.98 -0.073 0.012 -0.004 0.003 -0.014 0.019 -0.019 0.024 

rs7893279   0.112 0.018 0.008 0.005 0.083 0.029 0.106 0.035 

rs7927176 rs77502336 0.96 -0.059 0.012 0.00001 0.003 0.017 0.019 0.053 0.024 

rs8042374   0.090 0.013 -0.009 0.003 -0.005 0.022 -0.049 0.027 

rs8044995   0.077 0.014 0.002 0.004 -0.022 0.025 0.017 0.030 

rs832187   -0.070 0.011 0.0002 0.003 -0.037 0.019 0.021 0.023 

rs867743 rs6984242 1.00 -0.062 0.011 -0.003 0.003 -0.029 0.019 0.020 0.023 

rs884808 rs14403 0.86 -0.054 0.013 0.003 0.004 0.040 0.022 -0.058 0.027 

rs9420   0.058 0.011 -0.002 0.003 -0.007 0.019 0.024 0.024 

rs950169   -0.079 0.012 -0.003 0.003 0.038 0.021 -0.023 0.025 

rs9636107   -0.080 0.011 -0.003 0.003 0.063 0.018 -0.034 0.023 

rs982256 rs13240464 0.98 0.078 0.012 -0.001 0.003 0.030 0.019 -0.043 0.024 

rs9841616   -0.074 0.015 -0.001 0.004 -0.021 0.024 -0.051 0.030 

rs9876421 rs75968099 0.93 0.079 0.011 -0.007 0.003 0.021 0.019 0.043 0.024 

rs9922678     0.068 0.012 -0.001 0.003 0.008 0.020 -0.008 0.025 

a Schizophrenia genetic data from the PGC GWAS; b Number of children data from UK Biobank; c Age at first birth data from UK Biobank; d Number of 

sexual partners data from UK Biobank. 
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Appendix 15 List of SNPs associated with schizophrenia (p<5×10-8) and associations with number of children, age at first birth and number of sexual 

partners for MoBa mothers analyses. 

       Schizophreniaa Parityb Age at first pregnancyc Age at first birthd 

SNP Proxy for Effect allele Other allele ln(OR) SE β SE β SE β SE 

rs10043984  T C 0.064 0.012 -0.003 0.013 0.070 0.073 -0.046 0.064 

rs1023500  T C 0.076 0.014 -0.015 0.015 0.063 0.080 0.147 0.070 

rs10503253  A C 0.072 0.013 0.024 0.014 -0.068 0.075 -0.056 0.066 

rs10520163  T C 0.058 0.011 0.010 0.011 -0.015 0.061 -0.030 0.053 

rs10777339 rs4240748 A G 0.056 0.011 0.030 0.012 0.017 0.064 -0.133 0.056 

rs10779702  A G 0.063 0.011 0.005 0.012 0.005 0.063 -0.009 0.055 

rs10791097  T G 0.077 0.011 -0.003 0.011 -0.083 0.062 -0.038 0.054 

rs10803138  A G -0.072 0.013 0.009 0.013 -0.130 0.072 -0.147 0.063 

rs10860964  T C 0.063 0.011 0.009 0.012 -0.066 0.064 -0.021 0.056 

rs11027857  A G 0.064 0.011 0.015 0.011 -0.080 0.061 -0.051 0.054 

rs1106568  A G -0.069 0.013 -0.008 0.013 0.028 0.070 0.053 0.061 

rs111294930  A G 0.088 0.014 -0.005 0.012 -0.008 0.067 0.024 0.059 

rs11139497  A T 0.066 0.012 -0.002 0.012 0.079 0.067 0.073 0.058 

rs11191419  A T -0.102 0.012 -0.001 0.012 -0.074 0.065 -0.048 0.057 

rs11210892  A G -0.068 0.012 -0.019 0.012 0.040 0.066 0.031 0.058 

rs11682175  T C -0.073 0.011 0.005 0.011 0.027 0.062 0.009 0.054 

rs11683083  A G -0.078 0.014 0.016 0.014 -0.047 0.078 -0.066 0.068 

rs11693094  T C -0.074 0.011 0.023 0.011 -0.074 0.062 -0.055 0.054 

rs12129573  A C 0.069 0.011 0.014 0.012 -0.134 0.064 -0.142 0.056 

rs12148337  T C 0.057 0.011 0.004 0.011 -0.042 0.062 -0.048 0.054 

rs12325245  A T -0.086 0.016 0.002 0.017 -0.040 0.092 0.023 0.080 

rs12421382  T C -0.065 0.012 0.021 0.012 -0.079 0.064 -0.078 0.056 

rs12522290  C G 0.082 0.015 -0.008 0.015 0.119 0.082 0.047 0.072 
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rs12691307  A G 0.072 0.011 -0.020 0.011 0.108 0.061 0.042 0.054 

rs12704290  A G -0.106 0.017 0.026 0.017 0.025 0.095 -0.029 0.083 

rs12826178  T G -0.168 0.024 -0.025 0.022 -0.202 0.122 -0.168 0.107 

rs12903146  A G 0.067 0.011 -0.011 0.011 0.079 0.062 0.016 0.054 

rs13074054  A G 0.077 0.014 0.028 0.015 -0.058 0.080 -0.078 0.070 

rs13240464  T C 0.081 0.012 0.002 0.012 -0.020 0.065 -0.042 0.057 

rs1416544 rs1339227 A G -0.063 0.011 -0.003 0.012 0.055 0.063 0.002 0.055 

rs14403  T C -0.067 0.013 0.0003 0.013 0.060 0.073 -0.007 0.064 

rs1498232  T C 0.072 0.012 -0.020 0.012 0.047 0.066 0.038 0.058 

rs1501357  T C -0.069 0.014 0.008 0.015 -0.054 0.082 -0.009 0.072 

rs16867576  A G 0.096 0.017 -0.017 0.016 0.035 0.085 0.038 0.074 

rs1702294  T C -0.118 0.014 -0.007 0.014 -0.116 0.076 -0.051 0.067 

rs17149781  A G -0.086 0.017 -0.030 0.017 0.014 0.091 -0.026 0.080 

rs17194490  T G 0.097 0.015 -0.022 0.016 0.079 0.085 0.072 0.075 

rs2007044  A G -0.092 0.011 -0.012 0.012 0.068 0.063 0.016 0.056 

rs2053079  A G -0.072 0.013 0.007 0.013 -0.054 0.072 0.007 0.063 

rs211829  T C 0.054 0.011 0.006 0.012 0.051 0.064 -0.042 0.056 

rs215411  A T 0.069 0.012 0.005 0.012 -0.023 0.064 0.020 0.056 

rs2239063  A C 0.069 0.012 -0.014 0.013 0.145 0.068 0.096 0.060 

rs2514218  T C -0.072 0.012 -0.010 0.012 0.110 0.066 0.050 0.058 

rs2535627  T C 0.070 0.011 -0.003 0.011 -0.053 0.062 0.049 0.054 

rs2851447  C G -0.084 0.012 -0.022 0.013 -0.007 0.072 0.052 0.063 

rs2905426  T G -0.068 0.012 0.0001 0.012 -0.018 0.064 -0.017 0.056 

rs2909457  A G -0.060 0.011 -0.017 0.011 0.046 0.062 -0.0005 0.054 

rs2973161 rs2973155 A C -0.069 0.011 -0.022 0.012 0.100 0.064 0.097 0.056 

rs324017  A C -0.064 0.012 -0.010 0.013 -0.030 0.069 0.021 0.061 

rs35518360  A T -0.145 0.020 -0.004 0.025 -0.037 0.138 -0.072 0.121 
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rs35672725 rs7819570 T C 0.074 0.014 -0.022 0.016 0.103 0.086 0.089 0.075 

rs36068923  A G -0.084 0.013 -0.002 0.014 0.101 0.074 0.045 0.065 

rs3735025  T C 0.063 0.011 -0.009 0.012 -0.024 0.065 -0.006 0.057 

rs3768644  A G -0.094 0.018 0.013 0.019 -0.023 0.103 0.015 0.090 

rs3845840 rs11685299 A G -0.062 0.012 -0.020 0.012 0.107 0.065 0.082 0.057 

rs3849046  T C 0.062 0.011 0.015 0.011 -0.032 0.062 -0.077 0.054 

rs4128242  T C 0.067 0.011 0.003 0.011 -0.006 0.062 0.023 0.055 

rs4129585  A C 0.079 0.011 -0.001 0.011 0.013 0.062 0.012 0.054 

rs4330281  T C -0.058 0.011 0.006 0.011 0.049 0.062 -0.004 0.055 

rs4388249  T C 0.067 0.014 -0.018 0.015 0.010 0.081 0.017 0.071 

rs4391122  A G -0.078 0.011 -0.008 0.011 0.049 0.062 0.034 0.054 

rs4523957  T G 0.070 0.012 -0.005 0.012 -0.006 0.063 -0.050 0.055 

rs4648845  T C 0.067 0.012 -0.008 0.011 0.043 0.061 0.025 0.054 

rs4702  A G -0.081 0.012 -0.013 0.011 0.081 0.062 0.032 0.054 

rs4766428  T C 0.069 0.011 0.002 0.011 0.017 0.062 0.041 0.054 

rs55661361  A G -0.079 0.012 0.004 0.012 -0.119 0.065 -0.089 0.057 

rs55833108  T G 0.074 0.014 0.005 0.013 0.009 0.073 -0.005 0.064 

rs56205728  A G 0.066 0.013 -0.001 0.013 0.070 0.068 0.042 0.060 

rs59979824  A C -0.071 0.012 -0.002 0.012 -0.011 0.064 -0.008 0.056 

rs6002655  T C 0.069 0.011 0.007 0.011 0.059 0.062 0.058 0.054 

rs6065094  A G -0.075 0.012 0.00009 0.012 0.001 0.067 0.009 0.059 

rs6434928  A G -0.079 0.012 0.003 0.012 0.012 0.066 -0.014 0.057 

rs6461049  T C 0.080 0.011 -0.012 0.011 -0.017 0.062 0.041 0.055 

rs6466055  A C 0.069 0.011 -0.002 0.012 -0.011 0.066 -0.014 0.058 

rs6670165  T C 0.074 0.014 -0.009 0.015 0.075 0.082 0.011 0.071 

rs6704641  A G 0.075 0.015 0.013 0.016 -0.137 0.086 -0.102 0.076 

rs6704768  A G -0.077 0.011 -0.011 0.011 0.003 0.062 0.022 0.054 
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rs679087  A C -0.064 0.012 0.011 0.012 -0.131 0.063 -0.017 0.055 

rs6984242  A G -0.062 0.011 -0.006 0.012 -0.005 0.063 0.032 0.055 

rs715170  T C -0.067 0.012 -0.011 0.013 -0.079 0.069 -0.030 0.060 

rs7267348  T C -0.066 0.013 0.0004 0.013 -0.048 0.072 -0.017 0.063 

rs72934570  T C -0.145 0.021 0.006 0.020 0.098 0.108 -0.045 0.095 

rs73229090  A C -0.099 0.018 -0.012 0.018 0.119 0.096 0.083 0.084 

rs7405404  T C 0.077 0.013 0.013 0.014 0.089 0.076 0.091 0.067 

rs7432375  A G -0.071 0.011 -0.009 0.012 -0.020 0.063 0.059 0.055 

rs75059851  A G 0.091 0.014 0.014 0.013 -0.095 0.072 -0.092 0.063 

rs7523273  A G 0.060 0.012 -0.001 0.012 0.026 0.063 -0.032 0.055 

rs75968099  T C 0.080 0.011 0.003 0.012 0.023 0.065 0.017 0.057 

rs7730110  T C -0.059 0.011 -0.007 0.012 0.085 0.063 0.061 0.055 

rs77447799 rs75575209 T G 0.106 0.019 -0.002 0.020 -0.057 0.107 0.059 0.094 

rs77502336  C G 0.062 0.012 -0.001 0.012 -0.003 0.067 0.003 0.059 

rs7801375  A G -0.083 0.015 0.011 0.016 -0.073 0.085 -0.071 0.075 

rs7893279  T G 0.112 0.018 -0.008 0.018 -0.120 0.098 0.007 0.086 

rs79212538  T G 0.141 0.026 -0.003 0.024 -0.019 0.133 -0.118 0.116 

rs8042374  A G 0.090 0.013 -0.003 0.014 0.057 0.075 0.030 0.065 

rs8044995  A G 0.077 0.014 -0.004 0.015 -0.123 0.082 -0.058 0.072 

rs8082590  A G -0.066 0.012 -0.006 0.012 0.036 0.067 0.084 0.059 

rs8113357 rs56873913 T C 0.062 0.013 -0.004 0.013 -0.058 0.073 -0.009 0.064 

rs832187  T C -0.070 0.011 -0.0002 0.012 -0.082 0.065 -0.038 0.057 

rs9420  A G 0.058 0.011 0.019 0.012 -0.072 0.065 -0.072 0.057 

rs950169  T C -0.079 0.012 0.017 0.013 0.034 0.070 -0.033 0.061 

rs9607782  A T 0.089 0.013 0.001 0.013 0.069 0.071 0.052 0.062 

rs9636107  A G -0.080 0.011 -0.004 0.011 0.027 0.062 -0.015 0.054 

rs9841616  A T -0.074 0.015 -0.006 0.016 0.074 0.085 0.157 0.074 
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rs9922678  A G 0.068 0.012 0.005 0.012 -0.116 0.068 -0.093 0.059 

a Schizophrenia genetic data from the PGC GWAS; b Parity data from MoBa; c Age at first pregnancy data from MoBa; d Age at first birth data from MoBa.  
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 Appendix 16 List of SNPs associated with schizophrenia (p<5×10-8) and associations with number of children, age at first birth and number of sexual 

partners for ALSPAC G0 analyses. 

      Schizophreniaa Parity at 85 monthsb Parity at 18 yearsc Age at first pregnancyd 

SNP Effect allele Other allele ln(OR) SE β SE β SE β SE 

rs10043984 T C 0.064 0.012 0.0003 0.021 0.025 0.033 0.114 0.075 

rs1023500 T C 0.076 0.014 -0.027 0.022 -0.002 0.036 -0.004 0.082 

rs10503253 A C 0.072 0.013 -0.004 0.023 0.010 0.036 0.030 0.081 

rs10520163 T C 0.058 0.011 0.051 0.018 0.056 0.029 -0.024 0.064 

rs10779702 A G 0.063 0.011 -0.017 0.019 0.001 0.030 0.049 0.068 

rs10791097 T G 0.077 0.011 -0.023 0.018 0.007 0.028 -0.046 0.064 

rs10803138 A G -0.072 0.013 0.025 0.020 0.036 0.032 -0.067 0.074 

rs10860964 T C 0.063 0.011 0.011 0.019 0.0005 0.029 -0.039 0.067 

rs11027857 A G 0.064 0.011 0.018 0.018 0.038 0.028 -0.106 0.064 

rs1106568 A G -0.069 0.013 -0.025 0.021 0.054 0.033 0.061 0.074 

rs111294930 A G 0.088 0.014 -0.004 0.024 -0.020 0.037 0.035 0.085 

rs11139497 A T 0.066 0.012 0.017 0.019 0.022 0.031 -0.084 0.070 

rs11191419 A T -0.102 0.012 -0.012 0.019 -0.001 0.031 0.122 0.070 

rs11210892 A G -0.068 0.012 -0.029 0.019 -0.063 0.030 0.074 0.068 

rs115329265 A G 0.196 0.016 0.030 0.023 0.038 0.038 -0.055 0.085 

rs11682175 T C -0.073 0.011 -0.015 0.018 -0.014 0.028 0.074 0.066 

rs11683083 A G -0.078 0.014 0.010 0.023 0.004 0.037 -0.056 0.084 

rs11685299 A C -0.066 0.012 0.006 0.019 0.003 0.030 -0.013 0.068 

rs11693094 T C -0.074 0.011 0.011 0.018 0.013 0.028 -0.076 0.065 

rs117074560 T C -0.157 0.028 -0.006 0.046 -0.057 0.075 -0.052 0.166 

rs12129573 A C 0.069 0.011 0.017 0.019 0.016 0.030 -0.094 0.067 

rs12148337 T C 0.057 0.011 0.025 0.018 -0.007 0.028 -0.051 0.065 
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rs12325245 A T -0.086 0.016 -0.002 0.026 -0.014 0.043 -0.130 0.094 

rs12421382 T C -0.065 0.012 0.012 0.019 -0.022 0.030 0.089 0.069 

rs12522290 C G 0.082 0.015 -0.025 0.023 -0.034 0.037 -0.032 0.085 

rs12659129 T C 0.052 0.011 0.024 0.018 -0.010 0.028 0.043 0.065 

rs12691307 A G 0.072 0.011 -0.014 0.018 -0.015 0.029 0.203 0.066 

rs12704290 A G -0.106 0.017 -0.027 0.028 -0.059 0.044 0.127 0.102 

rs12887734 T G 0.088 0.012 0.017 0.020 -0.038 0.032 -0.079 0.073 

rs12903146 A G 0.067 0.011 0.022 0.018 0.052 0.029 -0.048 0.064 

rs13074054 A G 0.077 0.014 -0.033 0.022 -0.062 0.035 0.088 0.079 

rs13240464 T C 0.081 0.012 0.021 0.019 0.001 0.030 0.004 0.068 

rs1339227 T C -0.063 0.011 0.002 0.019 -0.013 0.030 -0.019 0.068 

rs140505938 T C -0.090 0.015 0.036 0.024 -0.035 0.038 -0.047 0.086 

rs14403 T C -0.067 0.013 -0.012 0.022 -0.013 0.034 -0.035 0.079 

rs1498232 T C 0.072 0.012 -0.013 0.020 0.005 0.031 0.005 0.071 

rs1501357 T C -0.069 0.014 0.001 0.023 0.022 0.037 -0.025 0.082 

rs16867576 A G 0.096 0.017 -0.033 0.026 -0.017 0.042 -0.098 0.096 

rs1702294 T C -0.118 0.014 0.011 0.023 0.067 0.037 0.004 0.084 

rs17149781 A G -0.086 0.017 -0.028 0.028 0.027 0.045 -0.152 0.102 

rs17194490 T G 0.097 0.015 -0.023 0.024 -0.014 0.038 0.070 0.088 

rs190065944 A G 0.077 0.014 -0.016 0.019 0.001 0.031 0.043 0.069 

rs2007044 A G -0.092 0.011 0.001 0.018 0.006 0.030 0.003 0.067 

rs2053079 A G -0.072 0.013 -0.008 0.021 0.067 0.034 0.135 0.076 

rs2068012 T C -0.070 0.013 -0.042 0.021 -0.043 0.032 0.096 0.076 

rs211829 T C 0.054 0.011 -0.015 0.019 0.003 0.029 0.065 0.067 

rs215411 A T 0.069 0.012 0.016 0.019 -0.002 0.030 -0.036 0.069 

rs2239063 A C 0.069 0.012 -0.024 0.020 -0.033 0.032 -0.005 0.072 
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rs2332700 C G 0.077 0.013 0.003 0.020 -0.017 0.032 0.053 0.074 

rs2514218 T C -0.072 0.012 -0.016 0.019 -0.003 0.030 0.104 0.069 

rs2535627 T C 0.070 0.011 -0.006 0.018 -0.025 0.028 -0.029 0.064 

rs2693698 A G -0.062 0.011 0.008 0.018 0.019 0.028 -0.042 0.064 

rs2851447 C G -0.084 0.012 0.046 0.021 0.026 0.033 -0.162 0.075 

rs2905426 T G -0.068 0.012 0.014 0.019 0.029 0.030 0.092 0.069 

rs2909457 A G -0.060 0.011 0.006 0.018 0.016 0.028 -0.059 0.064 

rs2973155 T C -0.067 0.011 0.014 0.018 0.026 0.029 0.027 0.067 

rs324017 A C -0.064 0.012 0.008 0.019 -0.007 0.032 0.032 0.071 

rs35518360 A T -0.145 0.020 -0.023 0.037 -0.051 0.058 -0.077 0.132 

rs36068923 A G -0.084 0.013 -0.008 0.022 -0.055 0.035 0.041 0.079 

rs3735025 T C 0.063 0.011 -0.001 0.019 -0.019 0.030 -0.072 0.067 

rs3768644 A G -0.094 0.018 0.023 0.028 0.098 0.045 0.005 0.102 

rs3849046 T C 0.062 0.011 -0.007 0.018 -0.017 0.028 0.025 0.064 

rs4128242 T C 0.067 0.011 0.029 0.018 0.031 0.029 -0.079 0.066 

rs4129585 A C 0.079 0.011 -0.009 0.018 -0.011 0.028 0.034 0.065 

rs4240748 C G -0.057 0.011 -0.028 0.018 -0.051 0.029 0.033 0.066 

rs4330281 T C -0.058 0.011 0.003 0.018 0.019 0.028 0.015 0.064 

rs4388249 T C 0.067 0.014 0.018 0.025 0.011 0.040 0.168 0.089 

rs4391122 A G -0.078 0.011 0.020 0.018 0.056 0.029 0.033 0.066 

rs4523957 T G 0.070 0.012 0.006 0.019 -0.023 0.030 -0.095 0.069 

rs4648845 T C 0.067 0.012 0.003 0.019 0.030 0.031 -0.095 0.070 

rs4702 A G -0.081 0.012 -0.018 0.018 -0.031 0.029 0.130 0.065 

rs4766428 T C 0.069 0.011 0.001 0.019 0.048 0.030 -0.072 0.070 

rs55661361 A G -0.079 0.012 0.001 0.019 -0.023 0.030 -0.140 0.069 

rs55833108 T G 0.074 0.014 -0.005 0.021 -0.037 0.034 -0.091 0.077 
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rs56205728 A G 0.066 0.013 0.026 0.022 -0.043 0.034 0.072 0.078 

rs56873913 T G 0.066 0.013 0.003 0.022 -0.032 0.035 -0.007 0.079 

rs59979824 A C -0.071 0.012 -0.023 0.020 -0.002 0.031 0.027 0.070 

rs6002655 T C 0.069 0.011 -0.022 0.019 0.016 0.029 0.064 0.067 

rs6065094 A G -0.075 0.012 -0.0004 0.019 -0.013 0.030 0.001 0.069 

rs6434928 A G -0.079 0.012 -0.012 0.019 -0.026 0.030 -0.103 0.069 

rs6461049 T C 0.080 0.011 -0.012 0.018 -0.005 0.029 0.120 0.065 

rs6466055 A C 0.069 0.011 0.009 0.019 0.030 0.030 0.005 0.067 

rs6670165 T C 0.074 0.014 0.024 0.023 0.019 0.036 -0.042 0.083 

rs6704641 A G 0.075 0.015 -0.024 0.024 -0.003 0.038 0.177 0.086 

rs6704768 A G -0.077 0.011 0.010 0.018 -0.015 0.028 0.054 0.065 

rs679087 A C -0.064 0.012 -0.018 0.019 -0.012 0.031 -0.061 0.070 

rs6984242 A G -0.062 0.011 0.021 0.018 0.008 0.029 -0.133 0.066 

rs715170 T C -0.067 0.012 -0.015 0.020 0.011 0.032 0.041 0.072 

rs7267348 T C -0.066 0.013 -0.002 0.021 -0.009 0.034 0.026 0.076 

rs72934570 T C -0.145 0.021 -0.031 0.032 -0.040 0.051 0.070 0.117 

rs73229090 A C -0.099 0.018 0.024 0.028 0.013 0.045 0.014 0.101 

rs7405404 T C 0.077 0.013 0.001 0.021 0.009 0.034 -0.112 0.076 

rs7432375 A G -0.071 0.011 0.010 0.018 0.023 0.030 0.034 0.066 

rs75059851 A G 0.091 0.014 -0.015 0.023 -0.034 0.036 0.198 0.083 

rs7523273 A G 0.060 0.012 0.0003 0.019 -0.041 0.030 0.019 0.069 

rs75575209 A T -0.112 0.019 0.030 0.032 0.019 0.050 0.030 0.115 

rs75968099 T C 0.080 0.011 -0.006 0.019 -0.018 0.029 0.065 0.068 

rs7730110 T C -0.059 0.011 0.029 0.019 -0.004 0.030 -0.043 0.069 

rs77502336 C G 0.062 0.012 -0.011 0.019 -0.018 0.030 0.144 0.070 

rs7801375 A G -0.083 0.015 0.003 0.024 -0.023 0.039 0.088 0.087 
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rs7819570 T G 0.076 0.014 0.032 0.025 -0.002 0.039 0.037 0.089 

rs78322266 T G 0.177 0.031 0.079 0.061 0.054 0.090 -0.032 0.217 

rs7893279 T G 0.112 0.018 -0.020 0.028 0.005 0.045 -0.027 0.100 

rs7907645 T G 0.144 0.022 -0.052 0.041 -0.030 0.063 -0.134 0.146 

rs79212538 T G 0.141 0.026 -0.016 0.045 0.062 0.071 -0.128 0.163 

rs8042374 A G 0.090 0.013 0.030 0.021 0.064 0.034 -0.027 0.076 

rs8044995 A G 0.077 0.014 0.018 0.024 0.009 0.037 -0.093 0.086 

rs8082590 A G -0.066 0.012 0.0001 0.019 -0.007 0.031 0.130 0.070 

rs832187 T C -0.070 0.011 0.001 0.019 0.006 0.030 0.040 0.068 

rs9420 A G 0.058 0.011 0.019 0.019 0.008 0.030 0.001 0.069 

rs950169 T C -0.079 0.012 -0.014 0.020 -0.031 0.032 0.073 0.073 

rs9607782 A T 0.089 0.013 0.006 0.021 -0.004 0.034 0.043 0.076 

rs9636107 A G -0.080 0.011 -0.029 0.018 -0.048 0.029 0.046 0.065 

rs9841616 A T -0.074 0.015 0.030 0.023 0.049 0.037 -0.069 0.084 

rs9922678 A G 0.068 0.012 -0.002 0.019 0.002 0.030 0.033 0.070 

a Schizophrenia genetic data from the PGC GWAS; b Parity at 85 months post index child data from ALSPAC G0; c Parity at 18 years post index child data 

from ALSPAC G0; d Age at first pregnancy data from ALSPAC G0. 
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Appendix 17 List of SNPs associated with schizophrenia (p<5×10-8) and associations with number of number of sexual partners and having had a child yet in 

ALSPAC G1 data. 

      Schizophreniaa 
No. of sexual 

partnersb 

No. of sexual 

partners with 21-

year datac 

Had childd 

SNP 
Effect 

allele 

Other 

allele 
ln(OR) SE β SE β SE ln(OR) SE 

rs10043984 T C 0.064 0.012 -0.132 0.337 0.123 0.317 0.107 0.115 

rs1023500 T C 0.076 0.014 -0.534 0.365 -0.509 0.345 0.143 0.131 

rs10503253 A C 0.072 0.013 0.194 0.368 0.081 0.348 -0.297 0.142 

rs10520163 T C 0.058 0.011 -0.209 0.292 0.145 0.275 0.229 0.101 

rs10779702 A G 0.063 0.011 0.183 0.302 0.180 0.286 -0.208 0.108 

rs10791097 T G 0.077 0.011 -0.123 0.290 0.035 0.274 0.025 0.100 

rs10803138 A G -0.072 0.013 -0.199 0.334 -0.026 0.316 -0.020 0.114 

rs10860964 T C 0.063 0.011 -0.098 0.307 -0.267 0.287 0.071 0.109 

rs11027857 A G 0.064 0.011 0.018 0.294 0.033 0.276 0.092 0.102 

rs1106568 A G -0.069 0.013 0.292 0.338 0.283 0.319 0.130 0.120 

rs111294930 A G 0.088 0.014 -0.264 0.403 -0.537 0.372 -0.050 0.136 

rs11139497 A T 0.066 0.012 -0.063 0.315 0.215 0.298 -0.072 0.111 

rs11191419 A T -0.102 0.012 -0.220 0.313 0.000 0.300 -0.029 0.109 

rs11210892 A G -0.068 0.012 -0.117 0.312 0.048 0.294 0.139 0.111 

rs115329265 A G 0.196 0.016 -0.233 0.379 -0.012 0.357 -0.111 0.127 

rs11682175 T C -0.074 0.011 -0.491 0.296 -0.336 0.279 -0.039 0.104 

rs11683083 A G -0.078 0.014 -0.369 0.380 -0.208 0.357 -0.209 0.127 

rs11685299 A C -0.066 0.012 -0.328 0.316 -0.243 0.297 -0.039 0.108 

rs11693094 T C -0.074 0.011 -0.045 0.293 -0.190 0.277 0.103 0.102 

rs117074560 T C -0.157 0.028 -0.824 0.723 -1.081 0.679 0.240 0.235 
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rs12129573 A C 0.069 0.011 -0.141 0.305 -0.226 0.285 0.143 0.105 

rs12148337 T C 0.057 0.011 -0.081 0.294 -0.235 0.276 0.054 0.102 

rs12325245 A T -0.086 0.016 0.216 0.434 0.046 0.407 0.136 0.155 

rs12421382 T C -0.065 0.012 -0.014 0.322 0.154 0.304 -0.076 0.111 

rs12522290 C G 0.082 0.015 0.041 0.378 0.048 0.356 -0.008 0.133 

rs12659129 T C 0.052 0.011 -0.023 0.294 -0.220 0.276 0.160 0.102 

rs12691307 A G 0.072 0.011 -0.045 0.296 -0.043 0.281 -0.056 0.106 

rs12704290 A G -0.106 0.017 -0.755 0.451 -0.562 0.427 0.259 0.147 

rs12887734 T G 0.088 0.012 0.282 0.327 0.146 0.306 0.320 0.110 

rs12903146 A G 0.067 0.011 0.057 0.290 0.093 0.274 0.171 0.103 

rs13074054 A G 0.077 0.014 0.005 0.354 -0.064 0.336 0.046 0.123 

rs13240464 T C 0.081 0.012 -0.064 0.312 0.142 0.295 0.005 0.109 

rs1339227 T C -0.063 0.011 -0.410 0.305 -0.220 0.286 -0.107 0.108 

rs140505938 T C -0.090 0.015 -0.050 0.392 0.348 0.366 0.129 0.133 

rs14403 T C -0.067 0.013 0.175 0.355 0.356 0.332 0.032 0.124 

rs1498232 T C 0.072 0.012 -0.352 0.319 -0.556 0.301 0.123 0.110 

rs1501357 T C -0.069 0.014 0.500 0.382 0.515 0.359 -0.018 0.132 

rs16867576 A G 0.096 0.017 -0.212 0.430 -0.305 0.402 -0.119 0.145 

rs1702294 T C -0.118 0.014 0.098 0.379 0.100 0.361 0.029 0.130 

rs17149781 A G -0.086 0.017 0.396 0.474 0.268 0.448 0.108 0.172 

rs17194490 T G 0.097 0.015 -0.549 0.395 -0.799 0.375 0.276 0.133 

rs190065944 A G 0.077 0.014 0.358 0.309 0.464 0.293 -0.103 0.110 

rs2007044 A G -0.093 0.011 -0.084 0.304 -0.066 0.289 -0.190 0.102 

rs2053079 A G -0.072 0.013 0.456 0.343 0.268 0.322 -0.150 0.116 

rs2068012 T C -0.070 0.013 0.276 0.356 0.415 0.335 -0.069 0.121 

rs211829 T C 0.054 0.011 -0.580 0.299 -0.526 0.282 0.112 0.107 

rs215411 A T 0.069 0.012 -0.040 0.311 0.030 0.291 0.103 0.106 
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rs2239063 A C 0.069 0.012 0.307 0.328 0.343 0.308 0.001 0.113 

rs2332700 C G 0.077 0.013 -0.177 0.338 -0.116 0.319 -0.014 0.118 

rs2514218 T C -0.072 0.012 -0.241 0.315 -0.231 0.296 -0.149 0.111 

rs2535627 T C 0.070 0.011 -0.260 0.295 -0.183 0.279 -0.096 0.103 

rs2693698 A G -0.062 0.011 0.086 0.290 -0.114 0.273 -0.084 0.102 

rs2851447 C G -0.084 0.012 0.373 0.340 0.475 0.320 -0.055 0.118 

rs2905426 T G -0.068 0.012 0.453 0.313 0.403 0.295 -0.245 0.107 

rs2909457 A G -0.060 0.011 -0.561 0.292 -0.547 0.275 -0.037 0.102 

rs2973155 T C -0.067 0.011 -0.146 0.299 -0.244 0.283 0.107 0.104 

rs324017 A C -0.064 0.012 0.068 0.328 -0.045 0.306 0.206 0.110 

rs35518360 A T -0.145 0.020 -0.165 0.578 0.097 0.555 -0.052 0.205 

rs36068923 A G -0.084 0.013 0.552 0.362 0.420 0.339 0.017 0.125 

rs3735025 T C 0.063 0.011 0.073 0.300 0.216 0.284 0.119 0.106 

rs3768644 A G -0.094 0.018 -0.616 0.472 -0.258 0.441 -0.219 0.175 

rs3849046 T C 0.062 0.011 0.253 0.296 0.303 0.277 0.122 0.104 

rs4128242 T C 0.067 0.011 -0.061 0.297 0.092 0.280 0.105 0.104 

rs4129585 A C 0.079 0.011 -0.345 0.294 -0.180 0.276 -0.072 0.102 

rs4240748 C G -0.057 0.011 -0.256 0.299 -0.340 0.282 0.030 0.103 

rs4330281 T C -0.058 0.011 0.234 0.290 0.204 0.274 -0.039 0.101 

rs4388249 T C 0.067 0.014 -0.539 0.401 -0.412 0.381 -0.037 0.141 

rs4391122 A G -0.078 0.011 -0.524 0.299 -0.345 0.285 0.011 0.107 

rs4523957 T G 0.070 0.012 -0.868 0.316 -0.622 0.298 0.126 0.111 

rs4648845 T C 0.067 0.012 0.723 0.309 0.712 0.288 -0.071 0.114 

rs4702 A G -0.081 0.012 -0.290 0.297 -0.292 0.279 -0.056 0.104 

rs4766428 T C 0.069 0.011 0.727 0.314 0.440 0.300 0.026 0.111 

rs55661361 A G -0.079 0.012 0.159 0.313 0.205 0.293 0.007 0.110 

rs55833108 T G 0.074 0.014 -0.100 0.352 -0.161 0.334 0.112 0.120 
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rs56205728 A G 0.066 0.013 0.948 0.376 0.728 0.354 0.050 0.126 

rs56873913 T G 0.066 0.013 -0.075 0.351 0.157 0.330 -0.011 0.122 

rs59979824 A C -0.071 0.012 0.227 0.323 0.255 0.302 -0.063 0.112 

rs6002655 T C 0.069 0.011 0.080 0.314 0.177 0.296 -0.023 0.109 

rs6065094 A G -0.075 0.012 0.665 0.305 0.575 0.290 0.180 0.105 

rs6434928 A G -0.079 0.012 0.100 0.311 -0.021 0.295 0.078 0.111 

rs6461049 T C 0.080 0.011 0.026 0.304 0.028 0.286 -0.085 0.106 

rs6466055 A C 0.069 0.011 0.328 0.305 0.476 0.288 0.228 0.106 

rs6670165 T C 0.074 0.014 0.837 0.365 0.632 0.349 -0.086 0.132 

rs6704641 A G 0.075 0.015 -0.693 0.393 -0.560 0.372 -0.039 0.135 

rs6704768 A G -0.077 0.011 -0.125 0.295 -0.225 0.276 0.096 0.103 

rs679087 A C -0.064 0.012 0.159 0.311 0.079 0.296 -0.105 0.110 

rs6984242 A G -0.062 0.011 0.134 0.297 0.026 0.280 0.035 0.104 

rs715170 T C -0.067 0.012 -0.293 0.329 -0.321 0.310 -0.072 0.119 

rs7267348 T C -0.066 0.013 -0.330 0.338 0.110 0.316 0.047 0.116 

rs72934570 T C -0.145 0.021 -0.194 0.521 -0.515 0.496 -0.123 0.185 

rs73229090 A C -0.100 0.018 -0.352 0.454 -0.426 0.426 -0.151 0.162 

rs7405404 T C 0.077 0.013 0.774 0.349 0.559 0.329 0.013 0.121 

rs7432375 A G -0.071 0.011 -0.042 0.299 -0.109 0.281 -0.191 0.109 

rs75059851 A G 0.091 0.014 -0.618 0.376 -0.397 0.354 0.061 0.135 

rs7523273 A G 0.060 0.012 -0.095 0.307 -0.290 0.291 -0.086 0.105 

rs75575209 A T -0.112 0.019 -0.706 0.519 -0.584 0.487 -0.452 0.161 

rs75968099 T C 0.080 0.011 -0.044 0.309 0.154 0.291 0.032 0.106 

rs7730110 T C -0.059 0.011 -0.519 0.310 -0.349 0.293 -0.286 0.105 

rs77502336 C G 0.062 0.012 -0.036 0.319 -0.226 0.301 -0.139 0.111 

rs7801375 A G -0.083 0.015 0.733 0.395 0.384 0.376 0.211 0.132 

rs7819570 T G 0.076 0.014 -0.007 0.402 0.425 0.379 0.077 0.143 
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rs78322266 T G 0.177 0.031 -0.790 0.921 -0.927 0.870 -0.127 0.342 

rs7893279 T G 0.112 0.018 0.370 0.448 0.665 0.424 -0.114 0.149 

rs7907645 T G 0.144 0.022 0.400 0.637 -0.332 0.609 0.095 0.235 

rs79212538 T G 0.141 0.026 0.124 0.788 -0.140 0.729 0.126 0.251 

rs8042374 A G 0.090 0.013 0.335 0.342 0.399 0.320 -0.147 0.116 

rs8044995 A G 0.077 0.014 0.187 0.387 -0.045 0.365 -0.304 0.148 

rs8082590 A G -0.066 0.012 -0.803 0.318 -0.670 0.298 -0.166 0.109 

rs832187 T C -0.070 0.011 -0.439 0.303 -0.200 0.287 0.090 0.106 

rs9420 A G 0.058 0.011 0.237 0.310 0.340 0.292 -0.076 0.111 

rs950169 T C -0.079 0.012 -0.259 0.335 -0.261 0.312 0.113 0.114 

rs9607782 A T 0.089 0.013 0.476 0.340 0.577 0.322 0.169 0.117 

rs9636107 A G -0.080 0.011 0.043 0.291 0.091 0.276 -0.056 0.103 

rs9841616 A T -0.074 0.015 -0.126 0.394 -0.041 0.371 0.142 0.134 

rs9922678 A G 0.068 0.012 -0.435 0.324 -0.088 0.306 -0.190 0.117 

a Schizophrenia genetic data from the PGC GWAS; b Number of sexual partners data from ALSPAC G1; c Number of sexual partners with 21-year data from 

ALSPAC G1; d Had child data from ALSPAC G1. 
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Appendix 18 Estimates for associations between genetic scores with varying p-value thresholds and whether participants had ever smoked. 

 
UK Biobank 

(N = 335 957) 

ALSPAC G0 

(N = 7188) 

MoBa 

(N = 9360) 

ALSPAC G1 

(N = 2760) 

Genetic score for 

schizophrenia liability 
OR (95% CI), p 

Plink score     

p<5×10-8 1.002 (1.001, 1.003), 0.002 1.004 (0.958, 1.051), 0.87 1.011 (0.971, 1.053), 0.60 1.076 (0.995, 1.164), 0.07 

PRSice score     

p<1×10-5 - 1.061 (1.013, 1.111), 0.01 1.025 (0.984, 1.068), 0.24 - 

p<0.0005 - 1.069 (1.021, 1.120), 0.005 1.048 (1.006, 1.092), 0.03 - 

p<0.005 - 1.086 (1.037, 1.137), 0.001 1.059 (1.015, 1.104), 0.01 - 

p<0.05 - 1.107 (1.056, 1.159), <0.001 1.084 (1.039, 1.131), <0.001 - 

p<0.1 - 1.106 (1.056, 1.159), <0.001 1.100 (1.053, 1.15), <0.001 - 

p<0.5 - 1.113 (1.062, 1.166), <0.001 1.097 (1.05, 1.146), <0.001 - 

p<1 - 1.104 (1.054, 1.157), <0.001 1.098 (1.05, 1.148), <0.001 - 
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 Appendix 19 Genetic correlations of genetic liability for schizophrenia and number of 

children, age at first birth and number of sexual partners using LD score regression with 

outcome summary statistics also adjusted for genotype array (UK Biobank analyses). 

  No. of childrena Age at first birthb Number of sexual partnersc 

  rg SE p rg SE p rg SE p 

Genetic liability for 

schizophreniad 0.002 0.01 0.84 -0.007 0.01 0.44 0.007 0.01 0.43 

a Number of children data from UK Biobank (N = 333,628); b Age at first birth data from 

UK Biobank (N = 123 310); c Number of sexual partners data from UK Biobank (N = 

273 970); d Schizophrenia data from the PGC GWAS (N= 35 123 cases and 109 657 

controls). 
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Appendix 20 Funnel plot for Cochran's Q values for genetic liability for schizophrenia in 

UK Biobank. Here shown with number of children as an outcome for illustration. 
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Appendix 21 Estimates of the causal effect of genetic liability for schizophrenia on 

outcomes using IVW, MBE and weighted median MR methods with cases of 

schizophrenia removed (UK Biobank analyses). 

 No. of childrenb Age at first birthc Number of sexual partnersd 

Method (101 

SNPsa) 
β (95% CI), p 

IVW 0.003 (-0.003, 0.009), 0.33 -0.004 (-0.043, 0.035), 0.83 0.166 (0.118, 0.213), <0.001 

Weighted 

Median 
0.006 (-0.004, 0.016), 0.23 0.027 (-0.036, 0.090), 0.41 0.179 (0.099, 0.258), <0.001 

MBE 0.021 (-0.011, 0.053), 0.21 0.063 (-0.169, 0.295), 0.60 0.261 (-0.024. 0.546), 0.08 

a Schizophrenia genetic data from the PGC GWAS (N= 35 123 cases and 109 657 

controls); b Number of children data from UK Biobank (N = 318 735 - 335 562). c Age at 

first birth data from UK Biobank (N = 117 822 - 124 069). d Number of sexual partners 

data from UK Biobank (N = 261 931 - 275 586). 

  



 

211 

 

 Appendix 22 Estimates of the causal effect of genetic liability for schizophrenia on outcomes using IVW, MBE and weighted median MR methods with 

outcome summary statistics also adjusted for genotype array (UK Biobank analyses). 

 No. of childrenb Age at first birthc Number of sexual partnersd Childlessnesse 
Highest number of sexual 

partnersf 

Method (101 

SNPsa) 
β (95% CI), p OR (95% CI), p 

IVW 0.003 (-0.003, 0.009), 0.39 -0.004 (-0.043, 0.035), 0.84 0.165 (0.117, 0.212), <0.001 0.998 (0.985, 1.012), 0.79 1.057 (1.038, 1.077), <0.001 

Weighted 

Median 
0.006 (-0.003, 0.015), 0.22 0.018 (-0.047, 0.083), 0.59 0.171 (0.091, 0.250), <0.001 0.996 (0.975, 1.017), 0.68 1.035 (1.003, 1.068), 0.04 

MBE 0.020 (-0.011, 0.052), 0.21 0.050 (-0.175, 0.275), 0.66 0.385 (-0.034. 0.805), 0.08 0.993 (0.924, 1.068), 0.85 1.011 (0.884, 1.155), 0.88 

a Schizophrenia genetic data from the PGC GWAS (N= 35 123 cases and 109 657 controls); b Number of children data from UK Biobank (N = 318 921 – 335 

758). c Age at first birth data from UK Biobank (N = 117 844 – 124 093). d Number of sexual partners data from UK Biobank (N = 261 931- 275 700); e 

Childlessness data from UK Biobank (N = 318 921 – 335 758); f Highest number of sexual partners data from UK Biobank (N = 261 931- 275 700). 
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Appendix 23 Genetic score for schizophrenia liability (in deciles) and mean number of 

children in UK Biobank data. 
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Appendix 24 Number of children and mean genetic score for schizophrenia liability in 

UK Biobank data. 
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Appendix 25 Associations of the score for genetic liability for schizophrenia and outcomes removing cumulative deciles of the score, with cases of 

schizophrenia removed in UK Biobank data. 

  Number of children Age at first birth Number of sexual partners 

Schizophrenia 

genetic score 
β (95% CI), p 

Highest 10% 

removed 

0.0005 (-0.0002, 0.0013), 0.18 

N = 302 011 

-0.004 (-0.008, 0.001), 0.15 

N = 111 599 

0.011 (0.005, 0.017), <0.001 

N = 248 143 

Highest 20% 

removed 

0.0002 (-0.0007, 0.0011), 0.69 

N = 268 439 

-0.005 (-0.010, 0.001), 0.15 

N = 99 106 

0.012 (0.005, 0.019), <0.001 

N = 220 745 

Highest 30% 

removed 

0.0005 (-0.0006, 0.0016), 0.37 

N = 234 886 

-0.008 (-0.014, -0.001), 0.03 

N = 86 593 

0.017 (0.008, 0.025), <0.001 

N = 193 259 

Highest 40% 

removed 

0.0006 (-0.0006, 0.0019), 0.32 

N = 208 339  

-0.009 (-0.016, -0.001), 0.02 

N = 76 821 

0.015 (0.006, 0.025), <0.001 

N = 171 511 

Highest 50% 

removed 

0.0008 (-0.0006, 0.0023), 0.29 

N = 167 780 

-0.008 (-0.018, 0.001). 0.08 

N = 61 811 

0.012 (0.001, 0.024), 0.03 

N = 138 230 
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Appendix 26 Curve for prediction for fitness from a linear regression of a genetic score 

for schizophrenia liability on number of children and a squared genetic score for 

schizophrenia liability in both sexes in UK Biobank data. 
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Appendix 27 Curve for prediction for fitness from a linear regression of a genetic score 

for schizophrenia liability on number of children and a squared genetic score for 

schizophrenia liability in females in UK Biobank data. 

  



 

217 

 

Appendix 28 Curve for prediction for fitness from a linear regression of a genetic score 

for schizophrenia liability on number of children and a squared genetic score for 

schizophrenia liability in males in UK Biobank data. 
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Appendix 29 Funnel plot for Cochran's Q values for genetic liability for schizophrenia in 

MoBa. Here shown with parity as an outcome for illustration. 
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Appendix 30 Curve for prediction for fitness from a linear regression of a genetic score 

for schizophrenia liability on parity and a squared genetic score for schizophrenia 

liability in MoBa data. 
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Appendix 31 Funnel plot for Cochran's Q values for genetic liability for schizophrenia in 

ALSPAC G0. Here shown with parity at 85 months post index child as an outcome for 

illustration. 

 

  



 

221 

 

Appendix 32 Curve for prediction for fitness from a linear regression of a genetic score 

for schizophrenia liability on parity at 85 months post index child and a squared genetic 

score for schizophrenia liability in ALSPAC G0 data. 
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Appendix 33 Curve for prediction for fitness from a linear regression of a genetic score 

for schizophrenia liability on parity at 18 years post index child and a squared genetic 

score for schizophrenia liability in ALSPAC G0 data. 
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Appendix 34 Funnel plot for Cochran's Q values for genetic liability for schizophrenia in 

ALSPAC G1. Here shown with whether participants had had a child as an outcome for 

illustration. 
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Appendix 35 Genetic score for schizophrenia liability (in deciles) and mean number of 

sexual partners in UK Biobank data. 
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Appendix 36 Whether individuals had the highest number of sexual partners and mean 

genetic score for schizophrenia liability in UK Biobank data. 
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Appendix 37 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on number of sexual partners and a squared genetic score for 

schizophrenia liability in both sexes in UK Biobank data. 
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Appendix 38 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on number of sexual partners and a squared genetic score for 

schizophrenia liability in females in UK Biobank data. 
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Appendix 39 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on number of sexual partners and a squared genetic score for 

schizophrenia liability in males in UK Biobank data. 
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Appendix 40 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on number of sexual partners and a squared genetic score for 

schizophrenia liability in ALSPAC G1 data. 
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Appendix 41 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on number of sexual partners and a squared genetic score for 

schizophrenia liability in females in ALSPAC G1 data. 
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Appendix 42 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on number of sexual partners and a squared genetic score for 

schizophrenia liability in males in ALSPAC G1 data. 
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Appendix 43 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on number of sexual partners (plus 21-year data) and a squared 

genetic score for schizophrenia liability in ALSPAC G1 data. 
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Appendix 44 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on number of sexual partners (plus 21-year data) and a squared 

genetic score for schizophrenia liability in females in ALSPAC G1 data. 
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Appendix 45 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on number of sexual partners (plus 21-year data) and a squared 

genetic score for schizophrenia liability in males in ALSPAC G1 data. 
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Appendix 46 Genetic score for schizophrenia liability (in deciles) and mean age at first 

birth in women from UK Biobank data. 
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Appendix 47 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on age at first birth and a squared genetic score for schizophrenia 

liability in females in UK Biobank data. 
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Appendix 48 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on age at first pregnancy and a squared genetic score for 

schizophrenia liability in MoBa data. 
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Appendix 49 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on age at first birth and a squared genetic score for schizophrenia 

liability in MoBa data. 
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Appendix 50 Curve for prediction from a linear regression of a genetic score for 

schizophrenia liability on age at first pregnancy and a squared genetic score for 

schizophrenia liability in ALSPAC G0 data. 
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Appendix 51 Analyses using publicly available GWAS outcome data. 

Genetic liability for schizophrenia 

I used MR analyses of summary level results from GWAS to assess causal associations 

between genetic liability for schizophrenia and number of children. Here, I used SNPs 

associated with schizophrenia (p<5×10-8) from the PGC GWAS (Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014) and extracted the SNPs, or 

available proxy SNPs for them, from the SSGAC meta-analysis GWAS for number ever 

born (i.e., number of children) in combined sexes (N= 279 161 to 343 033) (Barban et al., 

2016). This analysis used GWAS estimates that were not restricted to the European 

sample for schizophrenia. Seventy-four SNPs were not available in the number of 

children data. Of these, I found proxies for 48 unavailable SNPs, using a LD r2 of 0.8 or 

above, through SNiPA or proxies used previously (Arnold et al., 2015; Gage et al., 2017). 

Where palindromic SNPs were used, the MAF was checked to ensure there were no 

issues with strand mismatches. There were no palindromic SNPs with MAF around 0.5. 

The final 102 SNPs and effect sizes for the schizophrenia risk and number of children 

analysis are listed in Appendix 52. These associations for SNP-number of children were 

recorded, taking the standardized beta coefficients and the corresponding SEs. The SEs 

for number of children were based on MAF and phenotypic variance (Barban et al., 

2016). Data were harmonized to ensure that effect of SNP on the exposure and the SNP 

on the outcome corresponded to the same allele. SNP-exposure and SNP-outcome data 

were combined using an IVW, MBE and weighted median regression to give causal 

estimates.  

Results 

There was some evidence that higher genetic liability for schizophrenia increased number 

of children (mean difference: 0.008 SD increase in number of children per doubling in the 

natural log OR of schizophrenia liability, 95% CI: 0.001 to 0.015) using an IVW 

approach. The Cochran’s Q for this analysis was 160.36 (p<0.001). Weighted median 

estimates were consistent with the main findings. An MBE approach showed no effect of 

risk of schizophrenia on number of children, although again estimates were in the 

direction of a reproductive advantage (see Appendix 53). It must be noted that the I2
GX 

statistic for an unweighted MR-Egger regression in schizophrenia risk and number of 

children analysis was 0.2 and MR-Egger regression could not be conducted (Bowden, 

Fabiola Del Greco, et al., 2016). The mean F statistic for MR-Egger regression of 

schizophrenia risk and number of children was 36.13.   
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Appendix 52 List of SNPs associated with schizophrenia (p<5×10−8) and proxies where 

used for GWAS summary data outcome analysis. 

SNP 
Original SNP if 

proxy used 
r2 for proxy 

Schizophrenia 
Number of 

children 

β SE β SE 

rs1009080 rs1498232 0.99 -0.069 0.012 0.006 0.004 

rs1023500   0.074 0.014 0.000 0.004 

rs10503253   0.071 0.013 -0.006 0.004 

rs10504857 rs7819570 1.00 -0.075 0.014 0.003 0.005 

rs10520163   0.061 0.011 0.000 0.003 

rs10779702 chr1_8424984_D 0.97 0.064 0.011 0.002 0.004 

rs10791097   0.074 0.011 0.007 0.003 

rs10803138   -0.071 0.013 0.002 0.004 

rs10860964   0.059 0.011 -0.001 0.004 

rs10900851 rs10043984 0.99 -0.067 0.012 0.002 0.004 

rs10933068 rs11685299 1.00 -0.062 0.011 -0.007 0.004 

rs11027857   0.063 0.011 0.007 0.003 

rs1106568   -0.069 0.012 -0.010 0.004 

rs11139497   0.068 0.012 -0.008 0.004 

rs11210892   -0.070 0.011 -0.006 0.004 

rs1160682 rs12129573 1.00 -0.069 0.011 -0.005 0.004 

rs11632947 rs12903146 0.99 0.065 0.011 0.004 0.003 

rs11682175   -0.074 0.011 0.000 0.003 

rs11683083 chr2_146436222_I 1.00 -0.079 0.014 0.004 0.005 

rs12063329 rs140505938 1.00 0.088 0.015 -0.004 0.005 

rs12148337   0.057 0.011 0.000 0.003 

rs12325245   -0.087 0.015 -0.001 0.005 

rs12421382   -0.059 0.011 0.000 0.004 

rs12522290   0.082 0.015 0.009 0.005 

rs12619354 rs59979824 0.87 0.056 0.011 -0.001 0.004 

rs12654855 rs79212538 0.95 -0.112 0.024 -0.020 0.008 

rs12659129 chr5_140143664_I 1.00 0.052 0.011 0.003 0.003 

rs12716972 rs12691307 0.98 0.062 0.011 -0.002 0.003 

rs13074054 chr3_180594593_I 0.99 0.081 0.013 0.004 0.004 

rs13107325 rs35518360 0.85 0.152 0.022 0.004 0.007 

rs1339227   -0.060 0.011 -0.001 0.004 

rs1501357   -0.077 0.013 -0.001 0.005 

rs16867576   0.096 0.017 -0.009 0.005 

rs17049247 rs75575209 0.97 -0.103 0.019 0.009 0.006 

rs17149781 chr7_24747494_D 0.91 -0.081 0.017 0.001 0.005 
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rs17194490   0.097 0.015 -0.006 0.005 

rs17273111 rs4330281 1.00 0.057 0.011 -0.004 0.003 

rs17594526 rs78322266 1.00 0.169 0.031 0.013 0.010 

rs17602354 rs72934570 0.92 0.141 0.021 -0.001 0.006 

rs1782810 rs1702294 0.99 0.115 0.014 0.008 0.004 

rs2007044   -0.092 0.011 0.004 0.004 

rs2053079   -0.073 0.012 -0.003 0.004 

rs2057070 rs9607782 0.81 -0.066 0.012 0.002 0.004 

rs2068012   -0.069 0.013 0.005 0.004 

rs211829   0.055 0.011 0.003 0.004 

rs215411   0.065 0.011 -0.009 0.004 

rs2239063   0.069 0.012 0.006 0.004 

rs2514218   -0.072 0.012 -0.001 0.004 

rs2535627   0.070 0.011 0.007 0.003 

rs2693698   -0.063 0.011 -0.004 0.004 

rs2796275 rs7523273 0.98 0.054 0.012 -0.002 0.004 

rs2851447   -0.091 0.012 0.001 0.004 

rs2965180 rs2905426 0.97 0.061 0.011 0.000 0.004 

rs2973161 rs2973155 0.97 -0.065 0.011 -0.008 0.004 

rs324015 rs324017 0.81 -0.064 0.012 0.001 0.004 

rs3802924 rs75059851 0.95 0.089 0.013 0.006 0.004 

rs3849046   0.063 0.011 0.000 0.003 

rs4128242 chr18_52749216_D 1.00 0.070 0.011 -0.001 0.004 

rs4129585   0.078 0.011 -0.005 0.003 

rs4240748   -0.059 0.011 0.002 0.004 

rs436124 rs679087 1.00 0.059 0.011 -0.002 0.004 

rs4388249   0.072 0.014 -0.009 0.005 

rs4391122   -0.079 0.011 -0.002 0.003 

rs4518583 rs3735025 1.00 0.061 0.011 -0.005 0.004 

rs4523957   0.068 0.011 -0.004 0.004 

rs4648845   0.069 0.012 0.009 0.004 

rs4702   -0.078 0.011 -0.002 0.004 

rs6065094   -0.074 0.011 -0.002 0.004 

rs6461049 chr7_2025096_I 0.93 0.078 0.011 0.003 0.004 

rs6466056 rs6466055 1.00 0.066 0.011 0.003 0.004 

rs6670165   0.071 0.014 0.004 0.004 

rs6704641   0.076 0.014 0.005 0.005 

rs6704768   -0.074 0.011 -0.001 0.004 

rs7085104 rs11191419 0.99 0.094 0.011 0.003 0.004 

rs7140568 rs12887734 1.00 0.083 0.012 0.009 0.004 
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rs715170   -0.066 0.012 0.002 0.004 

rs7267348   -0.064 0.012 0.006 0.004 

rs7432375   -0.071 0.011 -0.001 0.004 

rs7499750 rs7405404 1.00 0.078 0.013 -0.005 0.004 

rs7730110 rs11740474 0.81 -0.057 0.011 -0.003 0.004 

rs7801375   -0.083 0.015 -0.001 0.005 

rs7815859 rs36068923 1.00 0.084 0.013 -0.001 0.004 

rs7893279   0.113 0.017 -0.005 0.005 

rs7927176 rs77502336 0.96 -0.064 0.011 0.000 0.004 

rs8042374   0.087 0.012 -0.004 0.004 

rs8044995   0.078 0.014 -0.005 0.005 

rs832187   -0.061 0.011 -0.003 0.004 

rs867743 rs6984242 1.00 -0.064 0.011 -0.003 0.004 

rs884808 rs14403 0.86 -0.052 0.013 0.002 0.004 

rs9420   0.061 0.011 -0.004 0.004 

rs950169   -0.079 0.012 -0.009 0.004 

rs9636107   -0.076 0.011 -0.010 0.003 

rs982256 rs13240464 0.98 0.077 0.011 0.000 0.004 

rs9841616   -0.081 0.014 -0.009 0.005 

rs9876421 rs75968099 0.93 0.078 0.011 -0.013 0.004 

rs9922678   0.067 0.012 0.004 0.004 

rs6579959 rs111294930 0.96 -0.064 0.012 0.000 0.004 

rs4664442 rs2909457 0.98 0.058 0.011 0.000 0.003 

rs2296569 rs55833108 0.83 -0.068 0.014 0.001 0.004 

rs10412446 rs56873913 0.97 0.056 0.013 0.001 0.004 

rs787983 rs6434928 0.98 -0.072 0.011 -0.012 0.004 

rs2955357 rs8082590 1.00 0.064 0.011 0.004 0.004 
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Appendix 53 Estimates of the causal effect of genetic liability for schizophrenia on 

number of children using IVW, MBE and weighted median MR methods in combined 

sexes. 

Method β 95% CI p 

Number of children: 102 SNPs    

IVW 0.008 0.001, 0.015 0.03 

Weighted median 0.008 -0.003, 0.020 0.14 

MBE 0.008 -0.036, 0.051 0.99 

 


