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Abstract  

This study aims to improve laying hen welfare in multi-tier systems, particularly 

with respect to keel bone fractures, by understanding how hens move around the 

system, identifying impact hazards, and investigating modifications directed at 

mitigating identified hazards. A variety of techniques were used to investigate 

housing hazards, including the use of accelerometers, behavioural observation, 

keel bone palpation and foot pad scoring. Although the overriding aim of this 

thesis was to identify hazardous areas in a multi-tier system and modify these 

areas to reduce keel bone fractures, the effect of modifications on the overall 

health of the hens was also investigated. The main findings of this study 

indicated, through accelerometry data, that falls resulted in higher loads at the 

keel compared to non-falls, and that collisions had higher loads compared to non-

collisions. Movements around the nest box and top tier region resulted in a higher 

percentage of falls compared to other regions in the system. Dusk and dawn were 

more hazardous compared with day and night times, considering both the 

number of movements within the time point and the percentage of falls. Changes 

made to a multi-tier system aimed at reducing keel bone fracture prevalence 

either showed no clear benefit or increased prevalence. The only modification 

that made an improvement in health was the provision of ramps reducing the 

prevalence of foot pad dermatitis. On-farm studies showed a reduced keel bone 

fracture prevalence and bumblefoot prevalence with ramp access compared to 

those with no ramp access. This work has shown that it is possible to identify 

hazards associated with certain types of hen movement, specific regions within 

the system, and times of the day. Modifications to housing systems can influence 
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hazards, though not necessarily as expected, with the provision of ramps 

showing the most promise at improving welfare.
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Chapter 1 

General Introduction
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1.1. Thesis Aims 

This thesis will focus on how to improve multi-tier housing system design, 

to reduce keel bone fracture prevalence, by examining hazardous keel 

threatening transitions within multi-tier systems. When researching this topic, it is 

important to consider other factors that can influence laying hen health. Creating 

an optimal housing system with the aim to reduce keel bone fractures and 

hazardous behaviours would not be suitable unless other welfare detriments did 

not occur. Throughout this thesis, as well as keel bone damage (deviations and 

fractures), foot pad health and feather damage are referenced to give an overall 

health assessment of a flock with different internal structures. 

Chapter 2 will look at the physical characteristics in a multi-tier system for 

laying hens and will aim to look at the height and movement behaviour of hens 

using video observation and accelerometers. Chapter 3 will look at the navigation 

paths in a multi-tier system and where falls and collisions are most likely to occur 

and at what time of day falls are more likely to occur. Chapter 4 will use the results 

obtained from Chapter 2 and 3 to look at the effects of modifications in a multi-

tier system, designed to reduce keel bone fracture prevalence, on laying hen 

health and behaviour. Chapter 5 will discuss the findings from an on-farm study 

looking at the influence of genetic hybrid and ramp provision on keel bone 

fracture prevalence and other health parameters.  

 

1.2. Background of the commercial layer 

Studies have shown that the domestic laying hen is genetically of little 

difference to her wild ancestor, the red jungle fowl (Sawai et al., 2010). Laying 

hens have kept most of the behavioural characteristics of their wild counterparts 
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but time budgets for some behaviours have altered (Garnham and Løvlie, 2018). 

Indigenous communities began to breed red jungle fowl with other poultry stock, 

referred to in the literature as “village chickens” (GuÈye, 1998). However, 

selection pressure from genetic companies did not begin until the 1900’s 

(Appleby, 1992) and general production rates of all farm animals have increased 

substantially since then (Rauw et al., 1998).  

Commercial layers now produce approximately 300 eggs per year, with 

their wild counterparts (red jungle fowl) laying approximately 10-15 eggs per year 

(GuÈye, 1998; Romanov and Weigend, 2001; Besbes et al., 2007). Traditional 

breeds have produced fewer eggs in comparison to commercial breeds, but they 

have stronger, stiffer and more radio-dense bones (Hocking et al., 2003). 

Traditional breeds also have a higher volume of cortical bone present in 

tibiotarsus compared to commercial breeds (Hocking et al., 2003). This increase 

in egg production has resulted in a reduced feed conversion ratio (Schütz et al., 

2001) and possibly due to this major change in the production ability, laying hens’ 

skeletal health is affected. Furthermore, genetics have been shown to play a role 

in skeletal integrity, with bone strength being a heritable trait (Bishop et al., 2000).  

 

1.3. Skeletal health in the commercial layer 

Cortical and trabecular (or cancellous) bone provide the structural 

component of the skeleton, they are both forms of lamellar bone (Whitehead and 

Fleming, 2000) and are formed during growth and maturity. When hens reach 

sexual maturity, medullary bone (a type of non-structural woven bone) is formed 

(Whitehead and Fleming, 2000). Once formed, bone continuously remodels, 

mineralised areas of the bone are resorbed by osteoclasts and then the 
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osteoblasts provide the new bone. Remodelling takes place due to changes in 

the mechanical need of the bone as well as to repair small damages (Hadjidakis 

and Androulakis, 2007). Multiple bone signalling techniques are used to trigger 

bone remodelling involving hormones and cytokines. If a problem occurs along 

these signalling pathways then diseases of the bone can develop, such as 

osteoporosis (Proff and Römer, 2009). Woven bone deposits quickly during 

ossification and during fracture healing, this bone has loosely packed collagen 

fibres and a lower mineral density compared with lamellar bone (Gorski, 1998; 

Rath et al., 2000). The main purpose of medullary bone is to provide a source of 

calcium for egg shell formation (Whitehead and Fleming, 2000).  

At the onset of lay; production of structural bone is arrested and production 

is changed to medullary bone in order to provide the eggshell with calcium 

(Whitehead, 2004). Medullary bone is a calcified woven bone laid down in the 

medullary cavity of long bones, and is capable of rapid deposition and resorption, 

but provides little mechanical strength. Naturally (as would be seen in red jungle 

fowl), once a hen is out of the laying cycle, production of medullary bone is 

replaced by deposition of structural bone until the hen is ready to produce another 

clutch of eggs (Whitehead, 2004). Domestic laying hens, have been bred to have 

a high egg laying capability, meaning they stay in lay for a longer period of time 

(Hocking et al., 2003). Osteoclasts, the cells specialised for resorption of bone, 

release calcium into the circulation when reserves are needed for correction of 

blood calcium concentration, particularly during egg shell production (Whitehead, 

2004). It is thought that resorption of medullary bone and structural bone during 

this process leads to some collateral damage to the bone. This loss of structural 

bone can lead to weak, osteoporotic bones that have a heightened vulnerability 
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to fracture and in extreme cases lead to “cage layer fatigue” which may result in 

paralysis (Whitehead, 2004). Cage layer fatigue is an extreme form of 

osteoporosis and involves the loss of endogenous calcium in the skeleton and 

causes vertebrae weakness and collapse (Bell and Siller, 1962; Whitehead and 

Fleming, 2000). However, weakened bones are common in hens housed in cage 

systems where lack of skeletal loading exercise results greater loss of bone 

strength (Whitehead and Fleming, 2000). 

One of the most widespread skeletal problems in the laying hen industry 

is the prevalence of keel bone fractures (FAWC, 2010). The keel bone protrudes 

from the sternum and is the anchoring point for the flight muscles; due to the 

prominent position on the body, it is at the most vulnerable position for becoming 

damaged during falls and collisions (Figure 1.1). Keel bone fracture prevalence 

at the end of lay in cage systems is between 24-62% (Rodenburg et al., 2008; 

Wilkins et al., 2011; Petrik et al., 2015), the prevalence in single-tiered systems 

is  48-82%  and in multi-tiered systems the prevalence is highest at 60-100% 

(Rodenburg et al., 2008; Wilkins et al., 2011; Petrik et al., 2015; Heerkens et al., 

2016b). Prevalence of keel bone fractures increase in a system as the cumulative 

height of the perching structures increase (Wilkins et al., 2011). This suggests 

that increased complexity and height of a system increases prevalence of keel 

bone fractures (Gregory and Wilkins, 1996; Moinard et al., 2004a). It is assumed 

that as the height of a collision increases the energy absorbed by the keel would 

be greater, resulting in an increased likelihood of fracture. In experimental 

settings, it was shown that as the energy of collision at the keel increases (using 

a drop-weight), the probability of keel bone fracture increases (Toscano et al., 

2018).  
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As well as fractures due to trauma, aberrant wing flapping may be a cause. 

The keel bone could be pulled, resulting in a stress fracture or a hen can have 

an asymmetrical flight causing strain on the keel bone (Harlander-Matauschek et 

al., 2015). Although data relating to stress fractures in laying hens are not 

available, stress fracture development has been studied in humans (Knapp and 

Garrett, 1997; Warden et al., 2006). Stress fractures are common in athletes that 

run or take part in high weight-bearing activities (Knapp and Garrett, 1997)  and 

are caused by a repetitive mechanical load causing strain on the bone (Warden 

et al., 2006).  

The causes of keel bone damage are multi-factorial, meaning there are 

many other underlying causes that influence keel bone damage (Harlander-

Matauschek et al., 2015). Causes included genetics, nutrition and housing design 

and each will be discussed in detail later in this review. 

 

 

Figure 1.1: Location of the keel bone in blue 

[Image:(Toony, 2018)] 
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 Fracture development and the pain experienced from the fracture may be 

different across individuals and be a result of different fracture severities 

(Richards et al., 2011). In humans with fractures, 6 out of 27 reported that they 

felt no pain when the fracture occurred (Melzack et al., 1982). Although it is 

unknown whether a similar phenomenon occurs in hens with keel bone fractures 

it is worth noting that there may be a difference in pain perception between 

individuals. Hens with healed keel bone fractures preferentially consume food 

containing Butorphanol, an opioid analgesic often used to treat severe pain, in 

comparison to hens that did not have keel bone fractures (Nasr et al., 2013a). 

Hens with healed keel bone fractures had a reduced latency to move from a perch 

when given the same opioid analgesic (Butorphanol) compared to saline (Nasr 

et al., 2012b). However, when hens were given two different types of NSAIDS 

(non-steroidal anti-inflammatory drugs), used to treat moderate pain, there was 

no difference in the latency to land from perches when compared to those not 

given NSAIDS (Nasr et al., 2015). Keel bone fractures may cause pain, but the 

results were not conclusive across all studies. One factor that may have affected 

the results was that although all hens had keel bone fractures, the severity of the 

fracture may have been different, suggesting that the level of pain experience 

may have been different across individuals (Richards et al., 2011). The focal hens 

were aged between 35-40 weeks of age (Nasr et al., 2012b; Nasr et al., 2013a; 

Nasr et al., 2015). Due to the keel bone being flexible at about 30 weeks of age 

and continuing to ossify as the hen ages (Richards et al., 2011), and that 

ossification continuing until approximately 40 weeks of age (Buckner et al., 1948), 

it may be that older hens experience pain from keel bone fractures differently.  
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Due to some sections of the keel bone potentially being more ossified than 

others, the location of a break may affect the level of pain experienced by the 

hen. Figure 1.2 shows several types of fractured keel bone, ranging from no 

fracture (0) to extremely severe fractures (5). The fracture at stage 1 may be 

linked to the cartilaginous region of the keel compared to the area in the central 

region of the keel that develops at stage 4. The fracture at stage 4 may be a more 

ossified region of the keel and therefore, contains more nociceptors, resulting in 

a greater pain sensation (Mannion and Woolf, 2000).  

 

 

Figure 1.2: Keel bone fractures at different stages of development. Arrows 

denote areas where keel bone fractures have occurred.  

Image from: (Rufener et al., 2018) 0-5 on the graph are stages of fracture 

status 

 

Another form of keel bone damage discussed in the literature are keel 

bone deviations (Harlander-Matauschek et al., 2015; Riber et al., 2018). Few 

studies have looked at the causes of keel bone deviations, but many aetiologies 
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have been theorised. Keel bone deviations are thought to be linked to roosting 

behaviour in young pullets as well as the diet composition (Warren, 1937). They 

are thought to be caused by excessive perching and is corroborated with the 

incidence of keel bone deviations being higher in systems with access to perches 

(Tauson and Abrahamsson, 1994; Harlander-Matauschek et al., 2015). Pressure 

load and surface area on the keel bone when roosting is higher than that 

experienced on foot pads, this corroborates speculation that perching may be a 

cause of keel bone deviations (Pickel et al., 2011). Hens with access to standard, 

round metal perches are almost twice as likely to develop keel bone deviations 

compared to hens with access to soft perches (Stratmann et al., 2015b). The 

authors suggest that it is a combination of the increased diameter (due to a 

greater surface area to spread pressure throughout the keel instead of localised 

pressure) of the softer perches and the material that resulted in the reduction in 

keel bone deviation prevalence (Pickel et al., 2011; Stratmann et al., 2015b). 

There may be a link between keel bone fractures and deviations because keel 

bone deviations increase during peak lay, like keel bone fractures (Gebhardt-

Henrich and Fröhlich, 2015). At dissection, 50% of keel bone deviations were 

found with callus formation, suggesting that those keels were either deviations 

with fractures or the fracture process caused a deviation in the bone (Stratmann 

et al., 2015b). 

Looking back at fracture development, it is not only keel bone fractures 

that pose a problem for the laying hen industry, fractures of the furculum, pubis, 

tibia and humerus are also issues (Gregory and Wilkins, 1989; Knowles and 

Wilkins, 1998). However, these bone fractures tend to be more prominent and 

obvious to farmers and veterinarians and are of lower prevalence. The keel bone 
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is both structural bone and cartilage, whereas other bones in the body 

(particularly the long bones) are composed of structural bone exclusively 

(Buckner et al., 1948; Buckner et al., 1954). This suggests that the pain and 

healing process associated with long bones may be different than that of the keel 

bone.  

 

1.4. Factors contributing to keel bone damage 

1.4.1. Genetics 

1.4.1.1. Predisposition to keel bone fractures and bone properties 

Many studies have found that genetics are crucial in the prevalence of keel 

bone fractures, with some commercial hybrids having higher rates of keel bone 

fractures in comparison to others. The link between genetic hybrid (including pure 

lines) and keel bone damage will be discussed below.  

In general, brown hybrids (brown-feathered layers) have higher levels of 

keel bone fractures and stronger bones in comparison to white hybrids (white-

feathered layers) (Habig and Distl, 2013; Riber and Hinrichsen, 2016; Eusemann 

et al., 2018). However, this may be attributed to differences in body mass 

because bone strength is related to body mass (Knowles and Broom, 1990). 

Lohmann browns also have greater humerus and tibia breaking strength 

compared to Lohmann Selected Leghorn hens (white hens) (Habig and Distl, 

2013) combined with greater radius and tibia wet, dry and ash masses compared 

with white hybrids (Silversides et al., 2012).  However, bone mineral density 

(BMD) can be inconsistent, with white hybrids having greater BMD of the tibia 

compared to Lohmann browns (Silversides et al., 2012). In general, long bones 

of brown hybrids tend to be stronger than white hybrids. Due to long bone 
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(humerus and tibia) radiographic densities correlating with keel bone 

radiographic density, brown hybrids may also have denser keel bone than white 

hybrids (Hocking et al., 2003). This would suggest that brown hybrids should 

have an overall lower keel bone prevalence than white hybrids. 

Conversely, ISA brown hens have a higher percentage of keel bone 

fractures compared to white hybrids at 51 and 72 weeks of age, irrespective of 

low or high-performance capability (Eusemann et al., 2018). Previous research 

has shown that ISA brown hens have also shown a higher prevalence of keel 

bone fractures compared to Delkalb white hens but have fewer keel bone 

deviations (Heerkens et al., 2016a). The effect of hybrid is age dependent; 

Stratmann et al. (2016) found an interaction effect between the occurrence of 

keel bone damage in ISA brown hybrids and Delkalb white hybrids. Whilst ISA 

brown hens had a higher prevalence of keel bone damage at the onset of the 

laying period, Delkalb white hens had a higher prevalence of keel bone damage 

at the end of the laying period (Stratmann et al., 2016).  

An experimental white hybrid and a Dekalb white hybrid had the highest 

prevalence of fractures compared to all brown hybrids, whether pure lines or 

commercial hybrids (Candelotto et al., 2017). However, when impact tested it 

was shown that the keel from the purebred was less likely to fracture compared 

to the commercial hybrids, with the white hybrids in each instance having weaker 

bones (Candelotto et al., 2017). A brown-feathered low performing hybrid (bred 

for reduced egg production) had a lower prevalence of deviations and fractures 

compared to the high performing hybrid (bred for increased egg production) 

(Eusemann et al., 2018). This would suggest that production of eggs has a 
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detrimental effect on the skeleton of the laying hen, causing weaker bones and 

an increased fracture and deviation risk. 

Lohmann brown lite hybrids had a higher prevalence of keel bone 

fractures compared with ISA brown (Riber and Hinrichsen, 2016). However, the 

mentioned studied had extremely low levels of keel bone damage in all groups 

(up to 11.6% at end of lay) (Riber and Hinrichsen, 2016), which suggests there 

may have been false negatives in the dataset or that the farms visited were not 

a true representation of other farms where keel bone fracture prevalence is as 

high at 97% (Rodenburg et al., 2008). One study, conducted on different farms, 

found no difference between hybrids with respect to keel bone damage 

prevalence (Käppeli et al., 2011). As can be seen, a generalisation that brown-

feathered layers have more keel bone fractures compared with white-feathered 

layers is true most of the time but is not conclusive.  

A high bone strength hybrid had greater tibia breaking strength and 

stiffness compared to the low bone strength hybrid (Fleming et al., 2006). The 

hens that were used in the study were selected for “bone index” (to increase the 

strength and radiographic density of bones) over 7 generations (Bishop et al., 

2000). The high bone strength hybrid had higher radiographic densities of the 

keel and humerus but lower external and internal tibial area compared to the low 

bone strength hybrid (Fleming et al., 2006). It was shown that hybrids selected 

for high bone strength had higher BMD and fewer keel bone fractures in 

comparison to hybrids selected for low bone strength (Stratmann et al., 2016) 

and was based on the same genetic lines used in the previous study (Fleming et 

al., 2006). A commercial hybrid (LSL) was used as a comparison and keel bone 

fracture prevalence was higher in the LSL compared to the high bone strength 
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hybrid but no difference was found when compared with the low bone strength 

hybrid (Stratmann et al., 2016). The same pattern was also found for BMD. 

However, increased bone index was associated with lower egg production 

(Stratmann et al., 2016). 

In conclusion, it is possible to improve bone strength through genetic 

selection, but this selection process can have drawbacks such as a potential 

reduction in egg production. Commercial lines also differ in bone strength and 

keel bone damage, but it is not as clear as all white hybrids have lower keel bone 

fracture prevalence compared to brown hybrids.  

 

1.4.1.2. Behavioural differences 

When trying to understand keel bone fracture occurrence; it is important 

to look at laying hen behaviour due to the link between falls, perching and keel 

bone damage (Gregory and Wilkins, 1996; Moinard et al., 2004a). Behaviour of 

laying hens is influenced from as early as the rearing phase. Providing a similar 

environment during rear to that applied during lay is important so that hens’ have 

knowledge of their environment to allow them to use the behavioural repertoire 

they are familiar with (Colson et al., 2008). Hens that have not developed their 

spatial abilities and in particular those that have never experienced perches, will 

find it more difficult to navigate complex systems with elevated perches and tiers 

(Colson et al., 2008).  

 Genetic hybrids differ in  their use of a 3-dimensional space as chicks 

(Kozak et al., 2016a), which could affect their ability to navigate 3D environments 

as adult hens. Lohmann selected leghorn lite (LSL-lite) hens were observed on 

raised surfaces more frequently and performed a greater number of transitions 
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compared to the other hybrids studied (Delkalb White, Lohmann Brown and 

Hyline Brown) (Kozak et al., 2016a). Behavioural measurements using tri-axial 

accelerometers have shown that brown hybrids (Lohmann Brown and Hyline 

Brown) performed fewer low intensity movements (perching and sleeping as 

examples) compared to White hybrids (Delkalb White and LSL-lite) from 10-57 

weeks of age (Kozak et al., 2016b). This suggests further that there may be a 

genetic component of behaviour in laying hens. 

 

1.4.2. Nutrition 

As well as genetics, nutrition can influence bone health and the 

development of keel bone damage (Harlander-Matauschek et al., 2015). It is 

estimated that 2g of calcium (10% of a hen’s total calcium reserves) is needed to 

produce one egg (Taylor, 1970). Calcium is reabsorbed from the skeletal system, 

which weakens the keel bone and other bones in the body due to reduced 

skeletal strength. One way to counteract this loss in calcium is through feed 

supplementation.  

Bone ash concentration and bone ash per unit volume increases positively 

with calcium uptake, meaning that as calcium provision increases bone mineral 

content increases (Cheng and Coon, 1990). This result was further supported by 

other bone measurements (bone breaking force, bone bending moment, bone 

stress and bone breaking force/100g of body weight) showing the same 

relationship with calcium provision (Cheng and Coon, 1990). No differences in 

tibia properties (including breaking strength) at 70 weeks of age between different 

calcium diets were identified, but egg shell weights, thickness and density at 70 

weeks of age was improved as calcium levels in the diet increased (Safaa et al., 
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2008). This shows a complex relationship between dietary calcium, calcium up-

take and bone mineralisation. This could potentially affect availability of calcium 

for use in the skeleton, e.g. in the keel bone.  

Although it was previously discussed that there was no difference in tibia 

properties between diets with/without calcium, the addition of calcium into the 

diet may still have the potential to increase bone strength.. Fleming et al. (1998) 

examined the differences in caged birds and the effects of four different feed 

treatments (1. Control (with powdered calcium), 2. Control (with particle calcium), 

3. Control (with added ascorbic acid) and 4. Control (with added Vitamin K). 

Trabecular bone volume decreased with age in all treatments in the 

tarsometatarsus and the thoracic vertebra, whereas medullary bone increased 

with age (Fleming et al., 1998).  In the same study, breaking strength of the tibia 

increased with age in the control with powdered calcium and the control with 

particle calcium (Fleming et al., 1998).  

Differences persisted when comparing the other feed additive groups. In 

general, ascorbic acid (a co-factor required in collagen synthesis, an important 

stage in bone development (Rath et al., 2000)), Vitamin K and the use of particle 

calcium compared to powdered calcium all had an overall beneficial effect on 

bone health (Fleming et al., 1998). However, there are confounding factors in this 

study, as it was carried out in caged birds where there is limited space to perform 

complex behaviours, making the hens in these systems more vulnerable to 

skeletal loss (Fleming et al., 1994). Another factor is that the keel bone 

progressively ossifies and even at 70 weeks of age the keel bone will mainly be 

cartilage (personal communication, John Tarlton).   
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Omega-3 supplementation has been shown in many human and animal 

studies to improve bone health (Salari et al., 2008). By altering the diet of laying 

hens to include more omega-3, keel bone damage was reduced by 40-60% 

(Tarlton et al., 2013). The omega-3 diets also significantly reduced the severity 

of breaks and increased the breaking strength of the tibia (Tarlton et al., 2013). 

These results show that alterations to the diet can significantly increase bone 

health in laying hens but do not eliminate fractures completely (Tarlton et al., 

2013), suggesting there are limits to what diet alterations can achieve. This 

suggests that there are other underlying causes in keel bone fracture 

development. Omega-3 in large quantities can result in production losses 

(increased food and water consumption, an increase in lower quality eggs, lower 

egg weight, decreased egg production and increased mortality rates) (Toscano 

et al., 2015). The authors suggest that the source of the omega-3 diet is crucial 

and more work needs to be done to determine the best composition of omega-3 

for laying hens. 

However, there have also been studies that show the use of omega-3, and 

other dietary supplements, hinder laying hen bone health and welfare, with hens 

fed the omega-3 supplemented diets having more keel bone fractures and fewer 

hens approaching a test area in an approach test compared with control hens 

(Toscano et al., 2015). When looking at the tibia, one study found that the only 

difference seen between omega-6 and omega-3 fatty acid diets was an increase 

in cortical thickness, which was higher at the intermediate levels of omega-6 

compared to low and higher levels of omega-6 (Baird et al., 2008).  

Different diets and supplementation of the standard layer diet can 

influence keel bone fracture development. However, the outcome of the diet 
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change and supplementations are not always clear and may vary depending on 

concentration, hybrid and housing system. Therefore, it is important to consider 

diet and nutrition when trying to improve skeletal health and reduce keel bone 

fractures in layers, but other factors must be altered to harmonise these effects.  

 

1.4.3. Housing design 

Housing design is a major factor in the development of keel bone fractures 

(Harlander-Matauschek et al., 2015). Cage-free systems provide hens with the 

opportunity to express a greater range of natural behaviours (Rodenburg et al., 

2008), including osteogenic bone-loading activity, but they also expose hens to 

possibility of falls and collisions from potentially hazardous structures (Wilkins et 

al., 2011; Stratmann et al., 2015a). Cage-free systems increased in popularity 

after the EU ban on conventional cages (European Commision, 1999). 

Cage-free systems can be single-tier or multi-tier. Single-tier, or “flat-deck” 

systems, as they are commonly known, consist of an open barn with a littered 

area, slats and nest boxes (usually located above the slats but can also be in a 

separate area of the system away from the slats) (Figure 1.3). Advantages to 

these types of housing systems compared to cages are that hens are provided 

with a large litter to dustbathe as a group and this provides foraging opportunities, 

they have enough room to wing flap and they can jump and fly around the system. 

Hens from these systems sometimes have access to a winter garden or free-

range area. Single-tier systems contain perches, but they can be integrated into 

the slatted area or provided as A-frames (Figure 1.3).  
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Figure 1.3: Single-tier housing system showing A-frame perches, nest box and 

feeders 

 

Multi-tier housing systems, like single-tier systems, provide hens with 

foraging and dustbathing substrate, allow hens to jump and fly around the system 

and hens may have access to an outdoor area (Figure 1.4). However, multi-tier 

systems are usually over 2m high but measure up to 3m. Nest boxes can be 

integrated as a tier in the middle of the multi-tier system or can be separate from 

the system and the hens must navigate the multi-tier system to reach the nest 

box area (Figure 1.4). Feeders and drinkers are distributed around multi-tier 

systems, usually with the feeders and drinkers present on the lower tier and then 

on the top tier, this provides feed and water access to hens wherever they are on 

the system. Feed and water are not provided on the litter because farmers want 

to encourage hens to use the system, providing the feed and water on the system 

motivates the hens to travel up. Perches are provided around feeders so that 

hens can both feed from perches and from the tiers.  
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Figure 1.4: Diagram of a multi-tier housing system for laying hens. The 

photograph shows the lower tier, nest box and upper tier regions. 

 

Keel bone damage exists in all laying hen housing systems (Rodenburg 

et al., 2008; Sherwin et al., 2010; Wilkins et al., 2011). Conventional cages and 

enriched cages have a lower prevalence of keel bone fractures and multi-tiers 

have the highest (Rodenburg et al., 2008; Sherwin et al., 2010; Wilkins et al., 

2011). At the end of lay 17.7% of hens from conventional cages had keel bone 

fractures (Sherwin et al., 2010). This makes it difficult to attribute keel bone 

fractures to one housing element because conventional cages do not contain 

perches and both conventional cages and enriched cages do not have tiers, yet 

keel bone fractures still occur.  
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1.4.3.1 Perches  

The use of perches is important in relation to keel bone damage because 

if perches are more comfortable, and provide adequate grip, for the hens there 

may be fewer falls and collisions and a lower keel bone fracture prevalence. 

Perch comfort may also affect the amount of pressure on the keel bone, which 

can potentially lead to keel bone deviations because keel bone deviations are 

thought to be caused by prolonged roosting (Warren, 1937; Harlander-

Matauschek et al., 2015). The ancestral form of the laying hen (i.e., the red jungle 

fowl) and domestic chickens living in the wild roost on tree branches (Collias and 

Collias, 1967; Wood-Gush and Duncan, 1976). Some hens were seen perching 

as high as 10m into the trees, using intermediate branches as a way to gain 

height (Wood-Gush and Duncan, 1976). However, unlike tree branches, 

commercially available perches do not differ in width. In a single system, 

commercial perches are usually of identical length, width, diameter and material. 

This does not provide domestic laying hens with the same variety as their wild 

counterparts. It is important that research efforts focus on obtaining the optimal 

perching structure to suit the laying hens’ physical and behavioural needs 

because this is the perch they will need to use throughout their life.  

Laying hen housing systems can contain perches which are often made 

from metal or wood and are used as structures to rest during the day or roost at 

night. Legally, perches do not have to be elevated in England, meaning  that slats 

can be included as perch space (RSPCA, 2017). To be considered a perch the 

surface must be easily grasped by the hen’s foot with a recommended diameter 

of 1.5cm to allow hens to grasp comfortably and to prevent claws becoming 

trapped in the slats (RSPCA, 2017). If perches are raised they should be 20cm 
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away from the wall and a 30cm horizontal distance away from other perches 

(RSPCA, 2017). However, the definition of a perch is different in Scotland; 

perches that are integrated into the flooring or slats do not count as perching 

space (Sandilands, 2014). This is based on a different interpretation of the EU 

regulation (European Commision, 1999) and not a new law in itself. Although 

perching standards have been specified in government documents, it is important 

that perching behaviour and perching features are still studied because there is 

not yet an optimal perch type and placement that is non-hazardous as keel bone 

damage occurs to a greater extent in systems with perches (Wilkins et al., 2011). 

 

1.4.3.1.1. Perch placement at rear 

In humans, it has been shown that bone mass does not alter in athletes 

that no longer train as adults (Kontulainen et al., 1999). This suggests that the 

process of training as a young adult increased peak bone mass and was not 

affected by individuals stopping exercising. Therefore, in humans it is  important 

that exercise is conducted in the teenage and young adult years to prevent bone 

fragility and osteoporosis developing in later life (Kontulainen et al., 1999). This 

links to studies in laying hens where access to a more physically challenging 

environment as chicks, one which contains perches and other structures, leads 

to stronger bones than those with access to caged systems without access to 

perches (Casey-Trott et al., 2017). 

Ability to navigate perches and other structures in the systems are 

important to prevent falls and collisions. It has been shown that providing perches 

at an early age (from one-day old) can affect the spatial awareness and cognitive 

ability of hens (Gunnarsson et al., 2000). At 16 weeks of age, after being reared 
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either with access or without access to perches, food was placed at variable 

heights to test whether prior access to perches affects an individual’s ability to 

navigate to the food (Gunnarsson et al., 2000). There was no difference in time 

or ability to reach the food at 40cm but as the height increased the hens that were 

reared with perch access were more readily able to reach the food (Gunnarsson 

et al., 2000). The authors allude that it is the difference in spatial awareness and 

not physical ability that results in the differences seen because the hens were 

able to reach the 40cm height in a similar timeframe in both groups (Gunnarsson 

et al., 2000).  

Other early life experiences, such as having a broody hen present during 

rearing resulted in chicks accessing perches (20cm and 40cm in height) earlier 

in their life (9.8 days old) compared to those reared without broody hens (13.5 

days old) (Riber et al., 2007). One study that contradicts others is that of Habinski 

et al. (2017). They found that hens perched less on the highest perch (61cm). 

However, this could be because the observations focussed on pullets that were 

between 4-14 weeks of age and accessing a perch of 61cm may have been 

challenging for them (Habinski et al., 2017). Studies on the rearing system of 

laying hens once again showed that the system birds are exposed to as pullets 

can affect their behaviour during lay (Colson et al., 2008). Pullets that were 

reared in floor pens showed lower usage of upper perches and levels during the 

laying period compared to pullets that were reared in aviaries (Colson et al., 

2008). Additionally, those raised in floor systems had more failed transitions 

compared to those reared in aviaries (Colson et al., 2008). During the first two 

weeks upon transfer they also laid fewer eggs in the nest box and had a higher 

number of floor eggs throughout the observation period (Colson et al., 2008). 
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This would suggest that hens reared in floor housing find it more challenging to 

navigate an aviary system compared with hens that had previous experience of 

an aviary system during rear. 

 

1.4.3.1.2. Perch placement during the laying cycle 

The placement of perches within housing systems is also vital to prevent 

both falls and collisions. Providing easy to navigate movements paths by placing 

structures at angles or supplying structures made of materials that are easily 

accessed by laying hens has the potential to reduce falls (Scott et al., 1997). 

However, it is first important to understand how laying hens move through these 

systems to make educated alterations.  

Placement of perches around feeders has shown to reduce aggression, 

jostling and mortality compared to hens that were feeding from a platform 

(Sirovnik et al., 2018). There was no difference in keel bone damage between 

the groups but the result shows that perch placement can affect other aspects of 

laying hen welfare and behaviour (Sirovnik et al., 2018). Therefore, there is a lot 

to consider when choosing optimal furnishings and placement of those 

furnishings in commercial laying hen systems.  

It was shown that small horizontal distances between perches <25cm 

result in reduced perching frequency and a different pattern of perching. 

Specifically, hens would rest on neighbouring perches, in a sequential pattern 

across both perches (Liu and Xin, 2017). However, there was little difference in 

the number of times hens would visit perches depending on the horizontal 

distances, except when horizontal distances reached 60cm when the frequency 

of trips was low (Liu and Xin, 2017).  
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One study has looked at perching behaviour in broiler breeders showing 

that, similar to hens, they use perches, particularly during lights out (Gebhardt-

Henrich et al., 2018). Broiler breeders also showed a preference for the way 

perches were arranged. Birds perched more on aviary style perches, when 

perches were integrated into the tiered structure, compared to A-frames 

(Gebhardt-Henrich et al., 2018). Also, in the control pens, birds rested on the 

elevated tiers, which indicates that in the absence of perches the birds will still 

try and find a way to elevated themselves (Gebhardt-Henrich et al., 2018). 

Relating back to keel bone damage; birds that had access to elevated perches 

(in the A-frame and aviary systems) had increased levels of keel bone fractures 

compared to the control groups (Gebhardt-Henrich et al., 2018). However, broiler 

breeders are different from laying hens, in that they do not lay an egg every day, 

so keel bone strength may be different in broiler breeders than laying hens. 

Nevertheless, this shows further evidence that providing raised perches 

increases the likelihood of keel bone fracture development.  

The study by Wilkins et al. (2011) showed this relationship more 

prominently, as cumulative perch height of farm increased, the prevalence of keel 

bone fractures increased. Not all studies found a connection between keel bone 

fractures and perch height (Donaldson et al., 2012). There was also no difference 

in keel bone fractures detected when hens were housed with or without perches 

in cages but this study was done in cages so cannot directly be compared to that 

of aviary systems (Abrahamsson and Tauson, 1993).  
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1.4.3.1.3. Perch Material and Shape 

The diameter of perches may be important to allow hens to use their 

tendon-locking mechanism for roosting (Quinn and Baumel, 1990; Backus et al., 

2015). As a result of this, perch diameter may influence hen health and 

behaviour, as well as keel bone fracture prevalence making perch diameter a 

relevant avenue to consider in perch design. It has been shown that balance 

movements decreased as the diameter of the perch increased (2.7cm, 3.4cm and 

4.5cm) and there was no difference in the time spent on each of these perches 

(Pickel et al., 2010). However, hens have been shown to prefer perches of 3.0cm 

in diameter compared to 5.0cm in diameter when housed individually and as 

groups of four (Chen et al., 2014). Perch diameters of 1.5cm were preferred the 

least when compared with other perch diameters (3.0, 4.5, 6.0, 7.5, 9.0 and 10.5 

cm) (Struelens et al., 2009). There was no preference for perch width when birds 

were roosting at night (Struelens et al., 2009). The number of failed landings on 

metal perches were not affected by different perch diameters (2.7cm, 4.2cm and 

6.0cm) (Scholz et al., 2014).  

Distinguishing the effect of perch shape alone on laying hen health and 

behaviour is difficult because perch shape is often dependant on perch material. 

Metal perches can be round or mushroom-shaped, wooden perches can be 

round, rectangular, square or mushroom-shaped, and plastic perches can be 

round or mushroom-shaped. However, perches can be made of any combination 

of material and shape, but the combinations mentioned are the most popular 

commercially. Perch material is widely studied and can be important for laying 

hen health and behaviour. Due to the confounding nature of perch shape and 

material, they will be discussed separately in the next section. Perch 
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characteristics, relating to keel bone damage, have been studied since the 90’s 

when it was shown that hard wood perches covered with soft rubber did not 

decrease keel bone damage when compared to hardwood perches alone 

(Tauson and Abrahamsson, 1996). Further studies since have highlighted that 

balance movements occur more often on wooden and metal perches in 

comparison to rubber perches and birds stood less on metal perches in 

comparison to wooden or rubber perches (Pickel et al., 2010).  

When considering plastic perches for welfare and comfort; two varieties of 

soft, round polyethylene perches were compared to three commercially used 

perches (round metal, plastic mushroom and plastic flat/round perches) (Pickel 

et al., 2011). Pressure exerted on the keel bone and foot pads when perching 

was measured and in each case the polyethylene perches showed a reduced 

pressure load in comparison to the commercially available perches (Pickel et al., 

2011). This data can be used as a proxy to show that softer perches could 

potentially reduce keel bone deviations and foot pad lesions. When looking at 

differences in behaviour between different perch types (PVC and wooden 

perches), broiler chickens perched more on wooden perches (Hongchao et al., 

2014). This may potentially show that individuals preferred wooden perches 

compared with PVC perches. A similar preference for wooden perches was 

found, in this case compared with metal perches (Chen et al., 2014). However, 

this data relates to broiler chickens and would need to be replicated in laying hen 

studies to determine whether they show the same preference behaviour.  

Metal perches, coated in a softer material (like rubber), reduced the 

incidence of keel bone damage compared to standard, round, metal perches 

(Stratmann et al., 2015b). When looking at how safely hens land on perches, one 
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study examined the effects of a metal perch, a plastic mushroom perch and a 

metal perch that was coated in plastic (Scholz et al., 2014). The plastic perch had 

the highest proportion of safe landings, followed by the mushroom perch, with 

the metal resulting in the highest proportion of unsafe/failed landings (Scholz et 

al., 2014). Both these studies conclude that softer perches, like those made from 

plastic, have the potential to improve health and allow more controlled 

movements in laying hens. Although plastic perches have advantages, they are 

linked to health issues, e.g. foot pad health and bacterial contamination of newly 

arrived flocks (Sandilands et al., 2009; Stratmann et al., 2015b). One reasoning 

is that plastic is difficult to clean in comparison with metal (Sandilands et al., 2009; 

Stratmann et al., 2015b). 

As discussed previously, only wooden and metal perches were compared, 

wooden  perches were chosen by the hens more and birds performed a higher 

proportion of comfort behaviours on the wooden perches in comparison to the 

metal perches (Chen et al., 2014). Looking once more at the study by Pickel et 

al. (2011) but focussing on the perch shape aspect of their study; square perches 

resulted in reduced pressure on the keel bone and a larger area where pressure 

was applied compared to round and oval perches, indicating these perches may 

be less likely to cause keel bone deviations. When studying differences between 

round, metal perches and hexagonal, metal perches; there were no differences 

between perch use and frequency of perching behaviour (Liu et al., 2018). 

Another potential welfare concern with perch material is that metal 

perches may lead to more keel bone deviations in comparison to wooden and 

plastic perches. Therefore, it would be reasonable to propose that perching on a 

harder structure would result in an increased likelihood of developing a deviation 



 

28 

compared to roosting on softer structures. This creates greater complexity when 

designing a laying hen housing system. It is important to consider the health 

status, preference and ease of upkeep by the farmer when designing a perch for 

a system; making material an important aspect of perch design.  

 

1.4.3.1.4. Perch Height 

Perch height is important for both behaviour and welfare because hens 

prefer to roost high in the system at night (Schrader and Müller, 2009; Brendler 

and Schrader, 2016) but falls and collisions from perches may lead to keel bone 

fractures (Gregory and Wilkins, 1996; Moinard et al., 2004a; Wilkins et al., 2011; 

Stratmann et al., 2015a). Due to the potential link between falls and collisions 

and keel bone fractures, it is extremely important to incorporate this into any 

decision on optimal perch heights.  

In cages, hens preferred to perch on the highest, compared to lower 

perches (Struelens et al., 2008). When cage height was lower, and thus removing 

the highest perches, time spent on perches both during the day and at night was 

reduced. This study suggests that hens prefer high cages and perches because 

they prefer to roost high in the system. Hens prefer perches to grids (slats) and 

high structures to low ones when roosting at night (Schrader and Müller, 2009). 

However, if grids were higher than perches, then hens’ preferred the grids to 

roost at night (Schrader and Müller, 2009). This result has been repeated in 

commercial settings with a high density of birds roosting on the top level during 

night, leading to over-crowding on high perches and tiers, leaving lower perches 

and tiers empty (Campbell et al., 2016d). This highlights that hens prefer to roost 
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high in the system and will chose height over a preference for the material of the 

perching structure. 

Another recent study, found the same pattern with more hens perching at 

night compared to perching when lights were on (Liu et al., 2018). Once again in 

another study, a high proportion of hens used perches during the evening, when 

high perches were preferred over lower perches (Louton et al., 2016). Low 

perches that were located underneath a drinking trough were more frequently 

used throughout the day, but this was mainly for accessing the drinking trough 

and not for roosting behaviour (Louton et al., 2016).  

It can be seen from the evidence presented above that hens prefer higher 

perches, particularly when roosting. However, one study using accelerometers 

determined that jumps from heights of 61cm resulted in higher forces upon 

landing compared to jumps from smaller heights of 41cm (Banerjee et al., 2014). 

This shows that higher perches may be more likely to result in keel bone fractures 

because of the increased forces. Higher perches are used more frequently during 

the evening, this could potentially result in hens being more likely to be injured at 

those times of day. 

Although perches have mainly been discussed in this section as a hazard 

for laying hens; the role they have in skeletal and cognitive development cannot 

be overlooked. It is important that perches are provided because they have 

shown to improve skeletal integrity (Whitehead, 2004). As discussed earlier 

systems which lack the opportunity for skeletal loading exercise result greater 

loss of bone strength (Whitehead and Fleming, 2000). The provision of perches 

is important in the development of the laying hen cognitive function and if 
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provided during rear may increase their navigation capability as they age 

(Gunnarsson et al., 2000). 

 

1.4.3.2. Ramps  

Ramps provide a walkway for hens to travel between different structures 

within a system. They aid in the transition between tiers, providing the opportunity 

for walking instead of flying and jumping potentially reducing the incidence of falls 

and collisions, which may lead to a decreased risk of keel bone fracture 

development. The influence of ramps on laying hen health and behaviour have 

been documented both in farm studies (Pettersson et al., 2017a) and 

experimental conditions (Stratmann et al., 2015a; Heerkens et al., 2016a; Kozak 

et al., 2016a; Kozak et al., 2016b; LeBlanc et al., 2017; Pettersson et al., 2017b; 

Norman et al., 2018). An on-farm study focussed on the behaviour of hens when 

they were approaching or leaving a ramped area. This was to understand 

whether ramps facilitate movement between the litter and the lower tier 

(Pettersson et al., 2017a). Another researched area is the effect that the provision 

of ramps have during rearing in the process of bone development and behaviour 

(Kozak et al., 2016a). Keel bone fracture prevalence throughout lay is lower in 

hens with ramp access compared to those without access to ramps (Stratmann 

et al., 2015a; Heerkens et al., 2016a). 

Pullets use ramps as early as two weeks of age (Kozak et al., 2016a) and 

providing ramps during rear may allow cognitive function to develop in a similar 

way to that seen with perches (Gunnarsson et al., 2000). The provision of ramps 

at rear may have the potential to increase navigation ability during lay. This 
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understanding of how hens learn to use their environment can help improve 

system design.  

 

1.4.3.3. Overview of housing design 

Research has suggested possible ways that laying hen housing structures 

might be improved to reduce keel bone fractures. However, in multi-tier system 

there has been no systematic analysis of the risks associated with elements 

within the system. This thesis will describe the use of accelerometers combined 

with visual observation to identify areas within a multi-tier laying hen housing 

system that are difficult for hens to navigate. Ramps, perch design and perch 

arrangement will be looked in at more detail through two on farm studies. One 

study will examine ramps specifically and another will examine modifications in a 

multi-tier housing system for laying hens using results obtained from Chapters 2 

and 3 of this thesis.  

 

1.4.4. Movement behaviour 

Due to falls and collisions with structures potentially causing keel bone 

fractures, it is important than hen flight and movement ability is understood, and 

housing designs suit the needs of the hens raised in them.  Hens are more likely 

to collide with conspecifics compared with slipping or colliding with other 

structures (Campbell et al., 2016a). There were slightly different percentages of 

falls in the two different flocks observed; flock one having 9.1% and flock twon 

having 21% of all movements representing falls (Campbell et al., 2016a), 

showing that falls can be much higher in some flocks compared with others. 

Stratmann et al. (2015a) showed that falls occur during the dusk phase in a 
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commercial aviary system and hens do collide with perches and structures. This 

shows that hens do fall in aviary systems and it is important to understand how 

these falls can affect health parameters of the birds. It also shows that collisions 

with structures and perches do happen and this can show a legitimate pathway 

for keel bone fracture development.  

 

1.5. Other health parameters to monitor when altering housing 

design 

It is important when designing housing systems for hens that the overall 

health of the hens is considered and that changes are not made based on 

reducing keel bone fractures alone. One health problem is foot pad disorders. 

There are three main types of foot pad disorders; hyperkeratosis (Weitzenbürger 

et al., 2006), foot pad dermatitis (Shepherd and Fairchild, 2010; Butterworth, 

2013) and bumble foot (Tauson et al., 2005). Systems design may improve foot 

pad problems; ramps have been shown to decrease the occurrence of foot pad 

problems (Heerkens et al., 2016a).  

Feather condition is a noticeable physical characteristic that can be 

monitored to determine whether hens are stressed in a housing system. When 

hens are stressed due to their housing system it can be manifested into feather 

pecking behaviour (El-Lethey et al., 2000). Although this thesis will mainly focus 

on the determining hazardous zones within a multi-tier system for laying hens 

and altering these zones to reduce their hazard. These zones should be changed 

after monitoring behavioural and health parameters, including keel bone fracture 

prevalence in laying hens.  
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 1.6. Accelerometers and body-worn sensing technology  

Accelerometers were first used in the 1950’s for assessment in gait 

analysis, with these studies increasing dramatically in the 1970’s because of 

advances in monitoring technologies (Yang and Hsu, 2010). Newton’s 2nd Law 

describes acceleration as being dependant on two factors; the force acting upon 

an object and the mass of that object (Yang and Hsu, 2010). Accelerometers are 

sensors that allow acceleration of objects, animals or people to be quantified 

along up to three axes; x, y or z axes (Yang and Hsu, 2010). The three most 

common types of accelerometers include; piezoresistive, piezoelectric and 

differential capacitive accelerometers (Yang and Hsu, 2010). Piezoresistive 

accelerometers work by measuring acceleration through a known load acting on 

a plate or beam. Piezoresistors inside the device are exposed to the same forces 

of the device. The electrical property changes and a difference in acceleration is 

then provided (Adams and Layton, 2010). Capacitive accelerometers measure 

the change in electrical charge due to a sensor or plate (Beliveau et al., 1999). 

Piezoelectric accelerometers work by the bending of a sensing element under 

acceleration, this causes a displacement of the seismic mass, the mass attached 

to the deforming element, resulting in an output voltage that matches the applied 

acceleration (Yang and Hsu, 2010). Accelerometry research focusses mainly on 

human health and behaviour. Although, most of the research takes place in 

humans, the main areas of focus can be applied to animal behaviour studies. 

These include; posture and movement classification, energy expenditure, fall 

detection and balance analysis (Yang and Hsu, 2010).  

Accelerometers are an increasingly popular method to monitor animal 

behaviour. The value of the body-mounted sensor industry is estimated to be 
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worth £1.96 billion in the coming 10 years (Neethirajan, 2017). Body sensors can 

be used to monitor a range of different health issues. Some examples include 

sweat analysis, microfluidics and stress detection sensors to determine the 

health status of animals (Neethirajan, 2017).  

Studies involving animals mainly focus on marine mammals and birds, 

with little focus on terrestrial mammals (Fehlmann et al., 2017). Such research 

has led to improvements resulting in small, inexpensive, long-lasting devices 

leading to research being made possible on a wider variety of species and 

sample size increases (Fehlmann et al., 2017). However, even though 

technology is advancing, an obstacle and deterrent to using accelerometers is 

the difficulty analysing collected data (Fehlmann et al., 2017). When analysing 

accelerometer data, there are three main methods (expert interpretation, 

clustering and classification) and they all depend on the amount of direct 

observations that are available to match the accelerometer outputs (Shamoun-

Baranes et al., 2012). The first method is called expert interpretation and is used 

when there are no direct observation or video recordings of animal behaviour 

available. Another is clustering, which also does not require direct observations 

or video recordings and lastly; classification, which does require knowledge about 

the behaviour being performed (Shamoun-Baranes et al., 2012). The difference 

between expert interpretation and clustering is that for the former, knowledge 

about specific behaviours must be known, then accelerometer outputs can be 

matched to these pre-determined behaviours. Whereas behaviours for clustering 

are determined after initial analysis of the accelerometry outputs (Shamoun-

Baranes et al., 2012). However, both these methods do not allow for sensitivity 

analysis because the true behaviour being performed is not known. Accuracy can 
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be determined for classification analysis, but even if this method is used, only a 

small amount of behaviours may be correctly identified; with one study only able 

to correctly identify 5/24 behaviours (Shamoun-Baranes et al., 2012). However, 

the same research group expressed the usefulness of video analysis, in that 

discrepancies between the algorithm and behaviour could be looked into with 

more detail to try and understand the intricacies of the behaviour being performed 

that may be skewing the accelerometry output (Shamoun-Baranes et al., 2012). 

This method is excellent in retrospect but would require expert knowledge and 

may not be feasible economically or timewise.  

The majority of uses of accelerometers in animal studies focus on the 

tracking of wild animals to identify mating behaviour (Whitney et al., 2010) and 

migratory sites, allocation of resources and ranging (Kays et al., 2015). One of 

the main uses of accelerometers in animal behaviour science has been to 

understand the behaviour and movements of wild, endangered species, to 

protect them (Wilson et al., 2008; Pagano et al., 2017). The field has been 

currently advancing in farm animal behaviour with multiple studies of farm 

animals (Martiskainen et al., 2009; Pastell et al., 2009; Vázquez Diosdado et al., 

2015; Zobel et al., 2015; Alvarenga et al., 2016), with some particularly focussing 

on chickens (Quwaider et al., 2010; Daigle et al., 2012; Banerjee et al., 2014; 

Kozak et al., 2016b; LeBlanc et al., 2016). Accelerometers open a new area of 

animal behaviour science, for precision livestock farming (Berckmans, 2014) and 

disease detection (Thorup et al., 2015). Focal observations and video analysis 

can be reduced with the use of accelerometers, especially when thresholds or 

algorithms to detect certain behaviours are used.  
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Falls in elderly patients is a primary use of accelerometers for human 

medicine. One study was successfully able to identify falls from normal 

movements using a threshold method, with falls occurring at greater 

accelerations compared with non-falls (Bourke et al., 2007). Even though fall 

detection was not as reliable when falls were not simulated and where real-life 

scenarios (Bagalà et al., 2012), accelerometers still appear to be an important 

tool to identify falls. Although falls and collisions are thought to cause keel bone 

fractures in laying hens (Gregory and Wilkins, 1996; Moinard et al., 2004a; 

Wilkins et al., 2011; Stratmann et al., 2015a), no one has yet attempted to use 

accelerometers to determine where in laying hen housing systems falls and 

collisions occur with accelerometers. However, due to the need for the 

accelerometers to collect data on a potentially short event (a single fall) the 

sample rate must be high and as a result battery life is compromised. This 

contrasts with other devices such as pedometers, which have a much lower 

sampling rate (Lehman, 2013).  

 

1.7 Conclusion  

Understanding the characteristics of movements and locations of falls will 

be the main aim of this thesis and will be determined using accelerometers. 

Specific areas and structures of a multi-tier housing system will then be altered 

to determine whether changes reduced the prevalence of keel bone fractures. 
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Chapter 2 

Physical characteristics of 

movement in a multi-tier system for 

laying hens
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 2.1. Introduction  

2.1.1.  Multi-tier systems for laying hens 

Complex housing systems with multiple tiers can be a source of 

enrichment allowing birds to display natural behaviours such as vertical 

movement, long distance flight and perching (Appleby and Hughes, 1991). Multi-

tier systems are those where resources are distributed on different levels of the 

system. There tends to be a littered area on the ground level and a lower tier 

equipped with feeders, drinkers and perches. Nest boxes can either be 

incorporated into the system as a second tier that can be reached from within the 

system by jumping or flying from platforms and perches, or nest boxes may be 

provided in a separate unit that is accessed through jumping or flying. The top 

tier is either above the nest box tier or above the lower tier and can contain 

feeders, drinkers and perches for roosting. Tier floors consist of metal or plastic 

grids with manure belts under each tier so that faeces can be removed 

automatically. 

To facilitate movement in multi-tier systems other structures may be 

provided in addition, or instead of perches. Platforms or extensions of tiered 

structures are commonly used. A multi-tier system with platforms and tiers 

instead of perches had fewer synchronised movements, with hens tending not to 

change their position in the system throughout the day compared with a single-

tier system with a structure containing perches on the slats (Odén et al., 2002). 

This suggests that systems containing perches may facilitate movement more 

readily or that systems containing platforms are more comfortable for hens and 

result in fewer movements.  
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Perching behaviour is shown by the red jungle fowl (Gallus gallus), the 

ancestor of the domestic hen (Gallus gallus domesticus), and is thought to be an 

anti-predatory response (Newberry et al., 2001). Laying hens have kept this 

innate behaviour and use perches for resting, preening and night time roosting 

(Olsson and Keeling, 2000; Schrader and Müller, 2009; Campbell et al., 2016d), 

restricting perch access can cause frustration behaviours to develop (Olsson and 

Keeling, 2000). Previous studies have shown that hens will perch on the highest 

structure in the system, resulting in top perches becoming overcrowded and 

lower perches empty (Campbell et al., 2016d). When hens are given the option 

of high areas with grids instead of perches or lower areas with perches, hens 

prefer the high area with the grid (Schrader and Müller 2009). This suggests that 

it is the height that is important, in terms of roosting, rather than the structure that 

the birds are roosting on.  

The location of a perch relative to other structures influences how easily 

the hen can use it. The vertical distance between perches, or other structures in 

a system, are recommended to be no more than 29 cm  (Scott et al., 1997) to 

reduce the risk of falling when attempting to pass from one structure to another. 

To aid downward movements (which are more difficult for laying hens than 

upward movements) no angles should exceed 45o. Others have reported that 

even more obtuse angles (over 30o) are difficult for birds to successfully navigate 

compared with more acute angles (Scott et al., 1997).  

Overcrowding may be a factor that contributes to poor movement around 

a system. Multi-tier systems that adhere to overall stocking density requirements 

may still become crowded during specific time points (Campbell et al., 2016c) 

and this can make movement through the system difficult. This may result in the 



 

40 
 

displacement of hens from perches or falls when perches cannot be reached. 

Some research has previously shown that it is the subordinate hens that are 

displaced by the dominant hens in these situations (Cordiner and Savory, 2001). 

Providing perches and high structures may allow hens to roost in high 

areas of the system and escape negative interactions from conspecifics. 

However, as the accumulated system height increases the prevalence of keel 

bone fractures within that system increases (Wilkins et al., 2011); presumably 

due to falls and collisions from high in the system being linked to fractures. The 

theory that height itself represents a risk is demonstrated in experimental 

conditions using a drop-weight impact tester (Toscano et al., 2018). Weights 

dropped onto the keel bone of hens from greater heights were more likely to 

result in keel bone fractures and those that were present were more severe. This 

was because as height increased, the energy when the drop-weight made an 

impact with the keel bone would also increase and lead to a greater likelihood of 

fracture (Toscano et al., 2018).  

It is important to determine areas and behaviours of hens in multi-tier 

systems that result in high impacts (increased forces during movements). Falls 

occur frequently in the dusk period and can be reduced through the addition of 

ramps between tiers (Stratmann et al., 2015a). However, the number of falls and 

whether these falls have increased acceleration at the keel compared to 

controlled movements has not been determined. The number of falls was found 

to be greater in the highest tier compared to the lower and middle tier (Stratmann 

et al., 2015a). However, no one has looked at whether these movements have 

the potential to cause more damage to the keel compared with other movements. 
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There are two possible causal relationships on the movement of hens with 

keel bone fractures; one is that hens with keel bone fractures are more likely to 

take part in dangerous activities and two, it is these hazardous movements that 

result in fractures. Another could be that having keel bone fractures make the 

individuals less able to perform an accurate transition due to the pain or lack of 

mobility experienced when trying to fly. This is highlighted in previous research 

where laying hens with fractures had taken longer moving between perch heights 

of 50 and 150cm compared to those without fractures (Nasr et al., 2015). 

Other health parameters may affect movement ability in laying hens. 

Individuals with poor foot health may find it more difficult or uncomfortable to 

move around a multi-tier system. It is thought that the poor foot condition would 

be painful due to ulceration and breaking of the skin, thus hindering movement 

due to swelling and pain (Greene et al., 1985; Tauson et al., 2005). Feather 

condition may also prevent accurate movement because reduced feather cover 

has shown to have an effect in other bird species, such as starlings where the 

flight performance is reduced during moult (Swaddle and Witter, 1997).  

 

2.1.2. Quantifying movement using accelerometers 

Body-worn sensors are a new and emerging field in animal behaviour 

science. Accelerometers, remote sensing equipment, gyroscopes, light monitors 

and many other smart technologies can give detailed information about animal 

movement and behaviour without the need for video analysis or direct 

observations (Kays et al., 2015). Accelerometers have been used over the past 

decade to monitor animal movement (Siegford et al., 2016; Williams et al., 2017). 

There has been a large amount of research into placement and validation of 
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accelerometers across a wide range of different species (Brown et al., 2013). 

However, detailed individual tracking of movement and behaviour of animals is 

an area that needs to be studied in more detail. The current body of scientific 

studies have mainly focussed on conservation and knowledge gathering of 

animals in the wild (Kays et al., 2015). It is also important to track animals that 

we keep in captive environments to understand more of how they interact with 

the environment we provide them with. 

In the current study, we evaluated whether accelerometers could be used 

to discern between different movements in a multi-tier system that either were 

controlled (successful jumps or flights) or uncontrolled (falls or collisions), with 

the latter being expected to pose a greater risk of fracture. Fall detection using 

accelerometers is a well-developed field in human medicine and can be linked to 

a smartphone to send an alert when a fall has occurred (Thammasat and 

Chaicharn, 2012; El-Bendary et al., 2013).  

To access how hens are moving in a multi-tier system and how these 

movements can potentially impact keel bone health a variety of acceleration 

outputs will be analysed. Acceleration recorded using an accelerometer is 

influenced by gravitational acceleration (g) which is 9.8m/s2 and the acceleration 

resulting from movement of an individual (Siegford et al., 2016) totalled together 

in this these to represent “g”. The maximum summed acceleration vector (AV) at 

the keel of hens will be analysed. The maximum summed AV referred to in this 

study is the summed acceleration of all 3-axes of a tri-axial accelerometer. This 

considers a change in direction and change in speed. The 3 axes of an 

accelerometer are referred to as x, y and z. Each axis represents a different type 

of movements called surge, heave or sway (Williams et al., 2017). Surge refers 
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to the backwards and forward motion, heave is up and down, and sway is side to 

side. In the current study, the summed acceleration vector was used because it 

has been shown to be reliable as a proxy when the orientation of the sensor is 

not known (Qasem et al., 2012). The orientation of the keel sensor could not be 

guaranteed because the sensor had the ability to move around within the vest. It 

is thought that the higher the maximum summed acceleration vector reading, 

potentially the more hazardous the behaviour. This may indicate that the hen is 

moving vertically or experiencing a collision, as was seen during the experiments 

using impact testers (Toscano et al., 2018).  

The readout duration was recorded because it is thought a behaviour that 

is long, in duration, may have a higher total energy and therefore a greater 

potential to cause injury than one that is shorter. As hens fly between different 

structures, they may wing flap to gain access. It has been shown that when 

landing areas are obstructed, hens flap their wings more, spend longer in the air 

and take longer to achieve balance (Moinard et al., 2005). Hens that are in pain, 

potentially those with keel bone fractures, may take longer achieving balance as 

they may be less agile than hens without keel bone fractures (Nasr et al., 

2012a).Therefore, the readout duration obtained from the accelerometer may 

indicate the difficulty of a movement. 

The average summed AV allows smoothing of the data and gives an 

indication of the continued summed AV experienced on the keel bone of the hen. 

To quantify the overall effect the acceleration may have, if the average summed 

AV is multiplied by the readout duration this will give an indication of how likely 

the behaviour that caused the acceleration readout is to be hazardous. 

Therefore, if the average AV x readout duration is high then this would indicate 
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that the movement has the potential to be more hazardous compared with an 

acceleration readout that has a low value for average AV x readout duration.   

 

2.1.3. Aims and predictions 

The main aim of the current study was to quantify and distinguish the 

acceleration at the keel bone during controlled movements, falls and collisions in 

an aviary system for laying hens using tri-axial accelerometers. The main 

predictions of this study were;  

1. Falls and collisions would result in higher maximum summed 

acceleration vectors (AV), longer readout durations, higher average summed 

AVs and greater values for readout duration x average summed AVs than 

controlled movements. 

2. Greater total movement heights would result in higher maximum 

summed AV readings, longer readout durations, higher average summed AVs 

and greater values for readout duration x average summed AVs.   

3. Individuals with keel bone fractures would have a higher maximum and 

average summed AV readings compared to those without keel bone fractures. 

Average maximum summed AVs x readout duration would be expected to be 

higher because both the average summed acceleration vector and the duration 

of the recorded movement are predicted to be higher and longer respectively. 

Hens with keel bone fractures may also have longer readout durations. 

4. Individuals with poor feather cover would have a higher maximum and 

average summed AV readings compared to those with excellent or good feather 

cover. Hens with poor feather cover are predicted to have shorter readout 

durations. 
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5. Individuals with poor foot health would have higher maximum and 

average summed AV readings and longer readout durations compared to those 

with good foot health.  

6. It was expected that heavier hens would have higher maximum 

summed and average AVs compared with lighter hens.  

7. Collisions with perches and structures would have higher maximum 

summed AV at the keel compared with the litter or a conspecific. 

8. When falls were caused by missed landings or a slip it is predicted that 

the maximum summed AV at the keel will have a higher reading. 

 

2.2. Methods 

2.2.1. Housing design  

2.2.1.1. Rearing housing  

All hens (Lohmann Selected Leghorn (LSL)) were reared with the same 

space allowance, lighting and feeding regime across 8 pens. The only difference 

during rear were that 4 pens contained a stacked, 2-tier system with chain 

feeders and round feeders on each tier (Natura 3, R. Inauen AG – Big Dutchman 

– Natura Company AG, Switzerland). The other 4 pens contained an offset 3-tier 

system with a chain feeder on the first and third tier (Harmony 3, Landmeco A/S, 

Denmark). However, all pens were 2.2 m high and provided ground-level access 

to a covered veranda from 5 weeks of age. 

 

2.2.1.2. Laying housing 

When transferred to the laying barn at 18 weeks of age, hens were 

distributed evenly from the 2 rearing systems into 20 pens, this random 
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distribution meant that it was not known what rearing system each individual was 

moved from. Flock A was populated with 200 hens per pen (a total of 4,000 hens 

split across 20 pens). Flock B was populated with 200 hens per focal pen and 

225 hens per non-focal pen (a total of 4,300 hens split across 20 pens). The 

numerical difference in flocks was out with the control of the study and was due 

to the hens being used in another study. The system was similar in design to a 

commercial unit but split into separate pens (Bolegg Terrace, Krieger AG, Ruswil, 

Switzerland, see Figure 2.1 and 2.2).  

 

Figure 2.1: Schematic of the transverse view the multi-tier system. 

All labels refer to areas of the system named later in the text. Location of feeders, 

drinkers and cameras (circles with crosses) have been indicated. Top perch and tier 

heights have been labelled within the system. Each perch is replicated at both sides of 

the system. 
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Figure 2.2: Schematic of a plan view of the multi-tier system used. Blue lines 

show perches that can be seen from the top of the pen. 

 

The multi-tier unit ran continuously down the length of the barn and was 

in the centre of each pen. The floor of each pen was covered with wood shavings, 

approximately 3cm deep and was replenished every 2 weeks. Each pen 

measured (450cm (h) x 700cm (l) x 230cm (w)) and was separated from the 

neighbouring pens using wire mesh, meaning that conspecifics were visible 

through small holes (1cm x 2cm). Hens could not move between pens, but they 

could see, hear and smell the hens in other pens. The total height of the system 

was 2.7m. Birds had 12 cm of perch space each and a stocking density of 8.3 

hens/m2 of usable area; including grids and litter. In each focal pen, there were 

12 perches, a manure belt, nipple drinkers, linear chain feeders and group nests. 

Nest boxes (located on the 2nd tier) were closed before lights off (16:00h – 

02:00h) to prevent birds from sleeping in the nest box. The Bolegg Terrace 

system was modified slightly from what can be purchased: some perches on the 

top level were lowered so that all perches were on the same level and the nipple 
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drinkers were removed from the top level. All perches were made from 

galvanised steel and measured 3.2 cm in diameter and were 230 cm long (as 

wide as the pen). Birds were given access to a veranda (area of 9.32 m2) for 

approximately seven hours per day from twenty-one weeks of age onwards. The 

veranda contained nipple drinkers, perches, wood shavings and sand.  

A combination of artificial and natural light resulted in an average light 

intensity of 8.8, 30.2, and 34.4 lux at 04:00h, 10:30hr and 15:00hr, respectively 

in the middle of the system at hen level. Artificial lights were turned on gradually 

for 10 minutes before lights were at full intensity (02:00h-02:10h) and were 

dimmed for 20 minutes at dusk (16:40-17:00) until light intensity reached 0 lux. 

The light intensity was measured in 6 directions and then averaged using a hand-

held lux reader (Gossen, Mavolux 5032C). Daylight was provided via windows 

and the curtains opened automatically at 08:00h and closed at 16:30h.  

 

2.2.3. Focal hen selection 

In flock A and B, 8 out of the 20 pens were used as observation pens. 

Within those 8 observations pens approximately 7-8 focal hens per pen per week 

were selected for health assessment and equipped with accelerometers. Each 

week approximately two pens were recorded simultaneously, then the pens were 

alternated weekly. In one week, the focal hens were equipped with the 

accelerometers for an average of four days. If a focal hen’s leg bands were 

missing and the hen could not be followed on to another age, another hen was 

selected in the pen, resulting in a new focal hen. In total, 62 focal hens were used 

from flock A (50-60 weeks of age) and 64 focal hens were used from flock B (21-

36 weeks of age).    
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2.2.4. Recording acceleration  

2.2.4.1. Accelerometer design 

Custom made tri-axial accelerometers were used to record acceleration. 

They were programmed so that a predefined acceleration threshold could be 

created. This predefined threshold allowed only events registering at or above 

this threshold to be recorded, saving battery life and making behaviours of 

interest (falls and collisions) easier to find.  

Predefined thresholds of 12-18g were chosen to make sure that 

behaviours of interest (falls and collisions) were being recorded. The output 

consisted of data for each of the 3 axes as well as the overall summed 

acceleration vector (AV) for the 3 axes, calculated as:  

 

Summed Acceleration Vector (AV) = √(X2+Y2+Z2) 

 

The numerical output of the summed acceleration vector (AV) is quantified 

using “g” and considers the gravitational acceleration (9.8m/s2) and the individuals 

movement acceleration. When the predefined threshold was reached, the 

acceleration readings along all axes and the summed acceleration vector for one 

second of data was created (500ms before and 500ms after the first time point 

the thresholds were exceeded), for both the body and keel sensor. All data were 

recorded in an Excel and Access interface. Different predefined thresholds were 

trialled because it was originally unknown what the optimal threshold for detecting 

falls would be. A balance had to be made between picking up unwanted 
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behaviours, such as preening and missing important behaviours, such as falls. 

At first, the higher threshold level was used (18g on both axis) then then over 

time this was reduced to 15g and then to 12g to make sure that no falls were 

being missed. The threshold refers to the summed AV and there was an 

individual sensor for both the keel and the body, both sensors had to be triggered 

for an output to be generated. Recording frequency was 500Hz per sensor, with 

the keel and body sensor alternating in recording capability. A time stamp was 

provided along with the acceleration output for the 3 axes and the summed AV. 

An output for the 500ms before the predefined threshold was first reached and 

after the predefined threshold was first reached was provided. The sensors 

remained inactive for 500ms following a recorded event. This data was stored on 

the device until it was removed from the hen at the end of the data collection 

period.  

The two accelerometer sensors were placed on the back of the hen and 

the on the keel bone. The location of the dual sensors can be seen in Figure 2.3. 

In a pilot study (not discussed in this thesis but performed by our research group 

at Bristol) hens were found to peck the front of the vest (around the keel sensor), 

resulting in an increase in acceleration on the keel sensor. The addition of dual 

sensors (one at the keel and one on the body) was important to filter out 

unwanted behaviours like preening behaviour. Preening and pecking directed at 

the keel produced a low acceleration readout on the body sensor and a large 

acceleration readout on the keel sensor and thus, most of these behaviours 

would be effectively filtered out, when using the dual sensors, and not recorded 

as an impact of interest. By using dual sensors on the hens, it was found that 

unwanted behaviours were removed and previously these pecking and preening 
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behaviours made the accelerometer extremely saturated with outputs. The use 

of the dual sensors eliminated this and allowed more data to be recorded 

because the battery-life was not being drained by these unwanted behaviours.  

 

 

Figure 2.3: Left: Custom made tri-axial accelerometer and vest. Middle: focal 

bird wearing numbered backpack. Right: Black arrows indicate regions of the hen 

that the accelerometer sensors were placed 

 

2.2.4.2. Attachment of the accelerometer 

The focal hens were randomly selected from a total of 200 hens per pen, 

equally from the top tier, middle tier, lower tier and litter and the accelerometer 

was attached to the birds using a custom vest (Figure 2.3). These same focal 

hens were then followed through the whole length of the trial with pens alternating 

each week.  

Birds were 50-60 weeks of age in Flock A and 21-36 weeks of age in Flock 

B. To identify individual birds with a specific (numbered) accelerometer, each bird 

had a numbered leg band and during accelerometer placement each hen and a 

numbered back tag (Figure 2.3).  
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Firstly, the accelerometer was placed inside the vest, ready for attachment 

to each focal hen. The body sensor was positioned on the back of the hen, in 

between the wings. The external keel sensor was threaded through the vest, 

passing over the shoulder region and down towards the centre of the keel. 

Depending on hen’s size, some of the sensors were lower down at the keel 

(smaller birds) compared to other (larger birds) where the sensor was located 

closer to the centre of the keel. Care was taken to make sure that the keel sensor 

was pushed as far into the vest as possible so that the sensor was as close to 

the centre of the keel as possible. The slightly elastic vest (Figure 2.3) was fitted 

so that it was loose enough to be comfortable for the bird to encourage normal 

movement and behaviour, but also tight enough to limit movement and 

displacement of the accelerometer at the keel.  

In total the equipment on each bird had a mass of 89g (back tag = 35g, 

accelerometer = 33g, fabric vest = 21g). The average body mass of the hens 

during this study was 1.71kg ± 0.16kg, therefore, the equipment weighed 

approximately 5.2% of the hens’ body weight. It has been recommended that a 

body worn device should be no more than 5% of a hen’s body weight to prevent 

changes in behaviour (Wilson and McMahon, 2006; Siegford et al., 2016). 

Therefore, all the equipment together was slightly larger than recommended. 

 

2.2.4.3. Acceleration data sorting 

Accelerometer data analysed included; the maximum summed AV at the 

keel and body, the readout duration, the average summed AV at the keel and the 

average summed AV x readout duration at the keel. Each of the outputs analysed 

are presented in Table 2.1. The summed AV data used from the accelerometers 
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was based on the first time 15g was recorded on either the keel or the body 

sensor and the last time 15g was recorded on either the keel or the body sensor 

during one event/readout.  

 

Table 2.1: Accelerometer outputs used in the analysis and their meaning. 

Accelerometer output Description 

Maximum summed acceleration 

vector (AV) 

The highest reading on the summed 

acceleration vector (AV) accelerometer 

output, representing the greatest 

force/load of the movement. 

Readout duration The length of the accelerometer output 

for a given movement, from the first 15g 

to the last 15g of the summed AV. This 

represents the length of time the 

movement is above the threshold and 

potentially hazardous.  

Average summed acceleration vector 

(AV) 

The average of all the points from the 

summed AV accelerometer output that 

fall within the readout duration. It 

represents the acceleration experience 

over time. 

Average summed AV x readout 

duration 

Represents the average summed AV 

experienced, considering the length of 

time the hen is exposed to the 

potentially hazardous movement 

(readout duration).  

 

The start and end of the readout duration (the first 15g to the last 15g) 

were found using R statistical software (R Core Team, 2017)  with R studio 

(RStudio Team, 2016) as the interface. The average summed AV was calculated 

using a macro in excel and was calculated from the summed AV points that lay 

within the readout duration (Figure 2.4). If for the same behaviour; two or more 
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data files overlapped, the total duration overlap was added to the readout 

duration. If there was any missing data, the missing time would be added to the 

readout duration and the average summed AV for the data available would be 

used. This would mean that the average summed AV would be inflated for these 

time-points. Including the missing data was important because it was usually fall 

movements that were affected by the long readout durations. In total 10.6% of 

the useable data files were affected by an overlap of some degree. This was 

done so that important behaviours, such as falls and collisions, were not removed 

from the dataset. Personal observations suggest that most of these behaviours 

were due to wing flapping, prolonging the readout duration but sometimes data 

files were not generated for every second of the behaviour. This is where the 

inflation comes from because if no file is generated this means that the threshold 

was not reached, suggesting that the average summed AV x readout duration 

was lower than the summed AVs within the files where a readout was generated. 
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Figure 2.4: Schematic showing classification of the maximum summed 

acceleration vector on both, the keel and the body accelerometer as well as the 

readout duration. 

Blue arrow represents the 15g threshold. The orange circle shows the maximum 

summed AV on the body and the purple circle shows the maximum summed AV on the 

keel. The average summed AV is the average of all the point on the keel (black line) that 

fall within the readout duration. 

 

2.2.5. Behavioural Observations 

 To match the accelerometry readout with the behaviour of focal birds, five 

IP infrared cameras (Samsung SCO-2080R, IR, Samsung Techwin CO., Korea) 

were used, with two placed at either side of the aviary to view the whole pen. 

Another two cameras were placed so that the number on the bird’s back tag could 

be seen more easily. A 5th camera was placed at the end of the veranda area so 

that most of veranda could be viewed. All data was stored on a recording unit 

0

5

10

15

20

25

30

35

1
3
6

7
1

1
0

6
1
4

1
1
7

6
2
1

1
2
4

6
2
8

1
3
1

6
3
5

1
3
8

6
4
2

1
4
5

6
4
9

1
5
2

6
5
6

1
5
9

6
6
3

1
6
6

6
7
0

1
7
3

6
7
7

1
8
0

6
8
4

1
8
7

6
9
1

1
9
4

6
9
8

1

S
u

m
m

e
d

 A
c

c
e

le
ra

ti
o

n
 V

e
c

to
r 

(g
)

Time in milliseconds (ms)

keel

bodyReadout Duration 



 

56 
 

(Multieye Hybrid Recorder Version 2.3.1.8, Artec Technologies AG, Diepholz, 

Germany), videos were then downloaded to an external hard drive for analysis. 

The computer that was used to set-up the accelerometers was synced with the 

computer used for video recording. Once accelerometry data was downloaded, 

the time stamp on the accelerometry output could be matched to the timing on 

the videos. This allowed the behaviour of the hen to be paired with an 

accelerometry output. 

For each accelerometry output and it’s time stamp, the associated 

behaviour was matched to the time of day, path (direction and area within the 

system in which the bird was moving), whether the movement was intentional 

and successful or a fall and/or a collision and what the bird collided with (Table 

2.2 and Figure 2.5).
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Table 2.2: Classifications of different behaviours, movements and definition of 

terms 

 

Class of 

behaviour/ 

movement  

Definition  

Intentional 

movement 

The head is orientated towards a destination area, sometimes 

corresponding with a pacing movement and head tilting. The hen 

jumps or flies towards this area.  

Fall The movement was not intentional; the focal bird was pushed or 

lost balance OR the movement was intentional, but the focal bird 

did not reach the desired area. 

Collision  The focal bird crashed into a conspecific, perch or other 

furnishing in the system or the litter. Collisions can occur during 

falls or controlled movements. 

Controlled A movement from one area within the system to another (change 

in start and end location), not a fall.  

Location of 

movement 

The location of the beginning and the end of a movement. May 

be written vice versa, E.g. structure – perch may mean that a 

hen moved from a perch to a structure on the system but could 

also mean that a hen moved from a structure on the system to a 

perch. 

Movement A jump or flight to a different structure within the system.  

Interaction Contact with a conspecific that can constitute; scratching, 

grabbing, climbing onto and chasing. Also refers to a panic 

reaction in the system. 

Push Focal hen knocked from the area they are currently occupying by 

a conspecific and are displaced to another location. 

Missed Focal hen shows intentional movement, indicating movement to 

a specific location, but lands in another location.  

Slip Focal hen does not intend to change position but does change 

position 
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Figure 2.5: Classification steps of behavioural analysis. 

 

2.2.6. Health recordings 

Keel bones of the focal birds were assessed using palpation to determine 

the prevalence of keel bone fractures and deviations (Wilkins et al., 2004; Casey-

Trott et al., 2015). Keel bone fractures were scored using a 3-point scale; 0=no 

break, 1=slight break and 2=severe break (Wilkins et al., 2004). Deviations were 

scored as either present or absent. The presence of deviations were any bends 

or S-shaped deformations of the keel bone (Casey-Trott et al., 2015), and scored 

separately from keel bone fractures. Body mass was recorded using scales that 

gave accuracy to 3 decimal places, hens were placed in a box to assure accuracy 

of the measurement. A feather scoring system was used from Tauson et al. 

(2005) including a score from 1-4; 4 being full feather coverage and 1 being large 

patches of feather loss. Foot health was recorded from Tauson et al. (2005) was 
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bumblefoot and foot pad dermatitis was used from Butterworth (2013). For Flock 

A feather cover and foot pad health were scored according to how they were 

described in the references. In Flock B, a visual analogue scale was attached to 

each parameter to make classification more accurate, which showed photos with 

a further breakdown of the categories. Flock A was assessed at 54, 56 and 61 

weeks of age, whereas flock B was assessed before each observation period 

(21, 23, 24, 25, 26, 27, 28, 31, 33, 35 and 36 weeks of age).  

 

2.2.7. Keel bone palpation intra-observer reliability  

To test the reliability of palpation as a tool to determine keel bone fracture 

prevalence, 13 birds were palpated in flock A at 61 weeks of age and 20 were 

palpated in flock B at 36 weeks of age. Each of the hens were palpated twice so 

that intra-observer reliability could be tested, therefore, to see the percentage 

agreement of scores of the same hens when repeated.  

 

2.2.8. Keel bone palpation accuracy 

There were 3 different time points were palpation accuracy was compared 

to an experienced palpation assessor, whose palpation accuracy had been 

validated against dissected keel bones. In April 2015 80 hens were palpated by 

an experienced assessor then again by the assessor in the current study. In May 

2015 accuracy was compared again using the same 80 hens. Palpation accuracy 

was compared again in March 2018 on 30 hens as part of a palpation training 

course. In May 2018 palpations were carried out on the same 600 hens as a 

trained assessor one week apart. Therefore, in this incidence the percentage of 
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breaks detected was recorded because after one week those hens that 

developed a fracture could not be scored.  

 

2.2.9. Statistical Analysis  

2.2.9.1. Model fit and selection 

Data was analysed using R statistical software (R Core Team, 2017) with 

R Studio (RStudio Team, 2016) as the interface. The lme4 package (Bates et al., 

2015) was used to run the models and the LmerTest package (Kuznetsova et al., 

2017b) provided p-values for the output. The lsmeans package (Lenth, 2016) 

was used to obtain least square means for the model outputs. Histograms of the 

data showed a left-skewed distribution, thus either a lognormal or gamma model 

were chosen based on the histograms, Q-Q plots of residuals and AIC of the 

models because they determine best fit of the models.  

Fixed effects included in the first model of all analyses were the 3-way 

interaction between fall (Y/N) (binary) x collision status (binary) x movement 

height (factor), 2-way interaction between collision status x direction of movement 

(binary), location at the start and end of the movement (factor), presence of keel 

bone score (binary), presence of foot pad dermatitis (binary), presence of bumble 

foot (binary), feather conditions (factor), body mass (continuous) and flock. In 

flock A the data collected closest to the time point hens were monitored were 

used. For flock B if hens had any keel bone or foot pad problems during either 

assessment, this was included. Body mass was averaged in flock B. A stepwise 

generalised mixed effect model was used with bird nested within pen as a 

random factor, meaning that individual hen was the experimental unit. 

Interactions and fixed effects were considered significant at P<0.05 and if 
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significance was not reached then the interaction or fixed effect was generally 

removed from the model. Exceptions were the body AV model, where the 

removal of the collision (Y/N) resulted in a large increase in AIC from the model, 

and because of this collision status was left in the model but was not significant 

and flock was controlled for in each model. 

Flock remained in the model even when non-significant to control for the 

difference between flocks. Age was not included in the analyses because it was 

confounded with flock. The response variables were maximum acceleration 

vector (AV) at the keel (g), readout duration (s), average acceleration vector (AV) 

at the keel (g), average AV at the keel x readout duration. Flock A ranged from 

50-61 weeks of age and flock B ranged from 21-36 weeks of age.  

 

2.2.9.2. Multiple comparisons within movement height 

When significance was detected multiple comparisons using Bonferroni 

tests in R were used with the lsmeans package in R to determine significance 

levels and lsmeans. Multiple comparisons tested in the movement height 

interaction were; 1. Differences between fall status within individual heights, 2. 

Difference between heights in yes fall group and 3. Difference between heights 

in the no fall group. 

 

2.2.9.3. Multiple comparisons between locations at the start and the end 

of the movement  

Multiple comparisons were again carried out using Bonferroni 

comparisons. Difference between heights in no fall group. All comparisons in the 

location at the start and end of the movement were compared to each other. The 
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direction of movement between the location at the start and the location at the 

end of the movement are written are interchangeable i.e. litter to tier could also 

mean tier to litter.  

 

2.2.9.4. Sub-setting – Maximum summed AV during a collision 

The data was split into a subset for part of the analysis: The effect of the 

object the bird collided with was only analysed in the group of outcomes where 

individuals had a collision and the maximum summed AV at the keel associated 

with the collision. Fixed effects included in the model were the 3-way interaction 

between fall (Y/N) (binary) x movement height (factor) x Object the hen collided 

with, location at the start and end of the movement (factor), direction of movement 

(binary), presence of keel bone fracture (binary), presence of foot pad dermatitis 

(binary), presence of bumble foot (binary), feather condition (factor), body mass 

(continuous) and flock (factor). Any non-significant interactions and effects were 

removed from the analysis using a stepwise approach until only significant 

effects, P<0.05, were left in the model. 

 

2.2.9.5. Sub-setting – Maximum summed AV and the reason for a fall 

Another subset was the reason for fall and the maximum summed AV at 

the keel associated with that. Fixed effects included in the first model of all 

analyses were the 2-way interaction between collision status (binary) x 

movement height (factor), 2-way interaction between collision status x direction 

of movement (binary), the reason for a fall (factor), location at the start and end 

of the movement (factor), presence of keel bone score (binary), presence of foot 

pad dermatitis (binary), presence of bumble foot (binary), feather condition 
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(factor), body mass (continuous) and flock.  Any non-significant interactions and 

effects were removed from the analysis using a stepwise approach until only 

significant effects, P<0.05, were left in the model. 

Means, standard errors and confidence intervals provided in the text are 

least square means produced from the final models. Interaction plots were plotted 

using the “lsmeans” and “ggplot2” (Wickham, 2009) packages in R version 3.4.3. 

When needed data were optimised using the optimx package in R (Nash, 2014) 

to correct for any convergence issues in the data. 

 

2.2.9.6. Keel bone palpation intra-observer reliability 

Intra-observer reliability of keel bone fracture palpation was tested using 

a weighted Cohen’s kappa test in R using the irr package (Gamer et al., 2012). 

Results were interpreted as: ≤ 0 no agreement, 0.01–0.20 as none to slight, 0.21–

0.40 as fair, 0.41– 0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as 

almost perfect agreement (McHugh, 2012). 

 

2.2.9.7. Keel bone palpation accuracy 

All evidence shown is descriptive and is given for the severity score and 

presence and absence of keel bone fracture.  

 

2.2.10. Ethical Statement 

All procedures carried out were approved by the Canton of Bern 

(Switzerland), the experimental number was BE-58/15.  
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2.3. Results 

All together there was 5,000 accelerometer outputs that were recorded 

that had the potentially to register a behaviour. The full useable dataset 

represented 1,766 useable accelerometer outputs. Therefore, 35.32% of all the 

potential accelerometer outputs could not be used, either because the logger 

became loose in the vest, the bird could not be seen, or the output did not meet 

the requirements of the threshold e.g. the body and the keel sensor both reaching 

a maximum summed acceleration vector of 15g. Data showing the maximum 

summed AV relating to a collision contained and 486 data points 27.52% of the 

useable dataset. Data showing the maximum summed AV and the reason for a 

fall contained 579 data points, representing 32.79% of the useable dataset.  

The pens sampled each week and all the data relating to each pen is 

provided in Table 2.3 and 2.4. As can be seen from the table, week of age of the 

hens, the pen sampled, the number of focal hens used from each pen, the 

number of accelerometer outputs relating to each pen as well as a breakdown of 

health parameters per pen are provided. It is worthwhile to note that as the hens 

age (particularly in Flock B), health parameters tend to deteriorate. For example; 

more hens tend to have foot pad problems and keel bone fractures and are less 

likely to have excellent feather condition
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Table 2. 3: Descriptive data relating to hens from flock A   

Flock A 
       

Week 
of 
Age 

Pen 
Number  

Number 
of focal 
hens 

Number of 
useable 
accelerometer 
outputs 

Number 
of hens 
with keel 
bone 
fractures 

Number of 
hens with 
keel bone 
deviations 

Number 
of hens 
with 
bumble 
foot 

Number 
of hens 
with foot 
pad 
dermatitis 

Number 
of hens 
with 
excellent 
feather 
cover 

50 11 7 47 5 3 3 0 7 

51 12 7 34 4 0 1 0 1 

52 3 7 36 2 2 3 0 6 

52 6 8 29 5 5 5 0 2 

54 3 7 33 2 2 3 0 6 

54 6 8 24 5 5 5 0 2 

55 3 7 28 5 2 5 0 7 

55 6 8 42 6 5 5 0 1 

56 4 7 50 2 5 1 0 2 

56 7 8 71 8 2 2 0 2 

58 11 7 29 7 4 4 1 1 

58 18 8 34 8 4 6 5 2 

59 12 7 75 6 2 2 4 0 

59 17 8 75 8 5 2 6 1 

60 4 7 38 6 4 2 1 2 

60 17 8 25 8 5 6 6 1 

 



 

66 
 

Table 2. 4: Descriptive data relating to hens from Flock B 

Flock B 
      

Week 

of 

Age 

Pen 

Number  

Number 

of focal 

hens 

Number of 

useable 

accelerometer 

outputs 

Number 

of hens 

with keel 

bone 

fractures 

Number 

of hens 

with keel 

bone 

deviations 

Number 

of hens 

with 

bumble 

foot 

Number 

of hens 

with foot 

pad 

dermatitis 

Number 

of hens 

with 

excellent 

feather 

cover 

21 12 8 49 5 1 0 2 8 

21 16 7 30 0 0 0 1 7 

23 13 6 42 4 0 2 1 6 

23 17 7 32 3 3 0 0 6 

24 14 6 27 2 1 0 0 6 

24 18 6 28 2 1 0 0 6 

25 15 6 106 3 2 3 0 6 

25 19 6 55 3 0 0 0 6 

26 12 6 65 4 2 1 0 6 

26 16 6 86 1 0 0 0 6 

27 13 7 40 4 1 0 0 7 

27 17 7 34 5 2 0 0 7 

28 14 7 66 2 1 1 1 7 

28 18 7 32 4 1 0 0 7 

31 15 7 61 5 1 1 2 7 

31 19 7 43 4 1 1 0 7 

33 12 8 81 8 0 0 3 8 

33 16 7 81 4 1 0 0 7 

35 13 8 53 6 2 0 2 8 

35 17 7 30 6 1 1 0 7 

36 14 8 28 6 3 5 2 5 

36 18 7 27 1 2 0 2 6 
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Table 2.5 provides a breakdown of behavioural characteristics of all the 

movements shown by the hens. This data is provided to show an overview of the 

whole dataset and is not broken down into week of age or pen number. The total 

height of each movement and whether the behaviour consisted of a fall and 

collisions or both is shown.  

 

Table 2.5: Total movement height and presence of falls and collision (sample 
size) 

Total height of 

movement 

Fall and collision presence in movement 

 No fall/ no 

collision 

No fall/ yes 

collision 

Yes fall/ no 

collision 

Yes fall/ yes 

collision 

0m 11 2 1 0 

0-0.5m 250 33 61 39 

0.5-1.0m 519 19 93 81 

1.0-1.5m 27 9 11 75 

1.5-2.0m 110 47 33 85 

2.0-2.5m 9 1 22 41 

>2.5m 63 17 2 14 

 

 

2.3.1. Maximum summed acceleration vector (AV) at the keel sensor 

There was an interaction effect of fall status and movement height (F= 

4.912, P<0.0001) on the maximum AV at the keel. There was a difference in the 

maximum summed acceleration vector (AV) and whether there was a collision or 

not (F= 47.866, P<0.0001), between different start and end locations (F= 2.207, 

P=0.0399) and flock (F= 6.639, P=0.0207). However, flock was added to control 

for the design of the experiment and will not be discussed. There were no 

significant differences between different body masses, keel bone fracture 



 

68 
 

presence, foot health or feather condition and the maximum summed AV at the 

keel.  

Non-fall movements that occurred at lower heights (0m-1.0m) had higher 

maximum summed acceleration vectors (AV) at the keel compared to those 

occurring at 1.5m-2.0m (Z-ratio = 3.841; P value = 0.0060; Z-ratio = 3.292, P-

value 0.0487, respectively; Figure 2.6). This was contrary to the prediction 

movements from higher heights would result in higher maximum summed 

acceleration vectors compared to heights lower in the system. Although visual 

inspection indicated that falls from a total height >0.5 m had greater maximum 

summed AVs than controlled movements, such differences only reached 

significance for movements occurring at 1-2m (Z-ratio = -3.501, P=0.0227 and Z-

ratio= -7.157, P<0.0001) and 2.5m (Z-ratio = -4.008, P=0.0030) (Figure 2.6). 

Visual inspection of the graph indicates as total height increases the maximum 

summed AV increase for falls, but this was not statistically significant. 
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Figure 2.6: Maximum summed acceleration vector at the keel depending on fall 

status and actual height of movement (LS Mean ± SE). 

Numbers at the top of the graph are the sample sizes for falls and those at the bottom 

of the graph are sample sizes for non-falls. Differences between falls and non-falls are 

only compared within single heights. Significant differences are shown as small letters. 

Differences across heights are compared independently for falls and non-falls. 

Significant differences are shown as capital letters 

 

There was no interaction between collision presence and the height of the 

movement on the maximum summed AV. Movements that contained a collision 

(38.49g ± 2.37g) had higher maximum summed AVs at the keel compared with 

movements that did not contain a collision (29.17g ± 1.69g; Z-ratio = -6.936; 

P<0.0001). 

There was an overall effect of the location of movement and the maximum 

summed AV on the keel (F= 2.207, P=0.0399), but when comparing individual 
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locations, no differences were seen. Numerically, the structure to structure 

movement resulted in lower maximum summed AV readings on the keel 

compared to other movement locations, but it was not significant. Movements 

between a perch and a grid had the highest maximum summed AV readings on 

the keel, but this was not statistically significant (Figure 2.7). 

 

  

Figure 2.7: Maximum summed acceleration vector readings in relation to the 

location of the transition (start and end of the movement) (LS Mean ± SE). 

Numbers along the bottom refer to the sample sizes.  
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2.3.2. Readout duration 

 There was a 3-way interaction effect of fall (N/Y) x collision (N/Y) x total 

movement height (W= 11.667, P=0.0397) on the readout duration. There was a 

2-way interaction between collision (N/Y) and movement direction (up/down) (W= 

17.250, P<0.0001). There was an effect of the location of the start and the end 

of the movement and the readout duration (W= 57.399, P<0.0001). There were 

no significant differences detected between weight, keel bone fracture presence, 

foot health or feather condition and the maximum summed AV at the keel. Table 

2.5 shows the sample sizes for all the fall (N/Y), collision (N/Y) and actual height 

moved interactions. 

For the readout duration, non-fall/non-collision movements (red, Figure 

2.8) at total height 0-0.5m had longer durations compared with total movement 

heights 0.5-1.0m (Z-ratio = 3.748, P=0.015). Non-fall movements/collisions 

(green; Figure 2.8) had a longer readout at 0-0.5m compared to 0.5-1.0m (Z-

ratio= 3.959, P=0.0063). Non-fall movements/collisions (green, Figure 2.8) at 

0.5-1.0m had shorter readout durations compared to 1.5-2.0m (Z-ratio=-4.450, 

P=0.0007) and >2.5m (Z-ratio=-3.542, P=0.0334). Falls/collisions (purple; Figure 

2.8) tended to have shorter readout durations at 0-0.5m compared with 1.0-1.5m 

(Z-ratio=-3.298, P=0.0819) and had longer readout duration compared with 1.5-

2.0m (Z=-3.571, P=0.0299). Fall/collision movements (purple. Figure 2.8) at 

heights 2.0-2.5m had longer readout durations compared to fall/non-collision 

movements (blue, Figure 2.8; Z=-3.993, P=0.005). Non-fall/non-collision 

movements (red, Figure 2.8) had shorter readout durations at total movement 

heights 0-2.0m compared fall/non-collision movements (blue, Figure 2.8; [0-

0.5m; Z=-5.556, P<0.0001; 0.5-1.0m; Z-ratio=-8.743, P<0.0001; 1.0-1.5m; Z-
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ratio=-4.871, P=0.0001; 1.5-2.0m; Z-ratio=-5.488, P<0.0001]). Non-fall/collision 

movements (green; Figure 2.8)  had lower readout durations at 0.5-1.0m and 1.5-

2.0m compared to fall/collision movements (purple; Figure 2.8; Z-ratio=-8.005, 

P<0.0001 and Z-ratio=-6.343, P<0.0001) and tended to be lower than 1.0-1.5m 

(Z-ratio=-3.388, P=0.0592).  

 

 

 

Figure 2.8: Three-way interaction between fall status (Y/N), collision status (Y/N) 

and actual height of movement (LS Mean ± SE). 

 

 Non-fall/non-collision 
Non-fall/collision 
Fall/non-collision 
Fall/collision 
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For collisions, downward movements had shorter readout durations 

compared to upward movements (Z-ratio = -4.095, P=0.0002; Figure 2.9). For 

non-collisions, there was no significant difference in duration with respect to 

direction of the movement (P>0.05). Upward movements that contained a 

collision had longer durations compared with those that did not contain a collision 

(Z-ratio = -3.86, P=0.0005). There was no significant difference between 

downward movements irrespective of whether a collision occurred (P>0.05) 

(Figure 2.9).  

 

 

Figure 2.9: Interaction between the collision status (N/Y) and the direction of the 

movement (up/down) for impact duration (s) (LS Mean ± SE). 

Different letters show a statistical difference. 

 

There was an overall difference in the readout duration between different 

locations of movements (W=57.40, P<0.0001; Figure 2.10). Movements between 
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  A   A 
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a structure and the litter had longer readout durations compared with movements 

between a perch and a structure (Z-ratio=-7.344, P<0.0001), a perch and the grid 

(Z-ratio=-4.2, P=0.0005), a structure to another structure (Z-ratio=2.848, 

P=0.0925) and from a perch to another perch (Z-ratio=-2.894, P=0.08; Figure 

2.10). Movements between a perch and another structure had lower readout 

durations compared with movements between a perch and another perch (Z-

ratio=3.517, P=0.0092; Figure 2.10). 

 

 

   

Figure 2.10: Duration of impact in relation to the location of the movement (LS 

Mean ± SE).  

  A   AB 

B 

C 
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Different letters show different significance. Sample sizes are displayed at the bottom of 

the graph. 

 

2.3.3. Average summed AV at the keel 

There was a significant 3-way interaction between fall/non-fall and 

collision/non-collision and total movement height (F=4.067, P=0.0011). There 

was a 2-way interaction between collision/non-collision and direction of the 

movement (F-statistic= 5.679, P=0.0173). There was also an effect of the location 

of the movement (start and destination area) (F=8.460, P<0.0001). There were 

no significant differences detected between weight, keel bone fracture presence, 

foot health or feather condition and the maximum summed AV at the keel. 

Movements that were non-falls/collisions (green; Figure 2.11) had higher 

average summed AVs compared to non-falls/non-collisions (red; Figure 2.11; Z-

ratio=-4.252, P=0.0019). Movements that were non-falls/collisions (green; Figure 

2.11) at total height moved of 0-0.5m had lower average summed AVs compared 

to non-falls/collisions at total heights of 0.5-1m (Z-ratio=-5.572, P<0.0001). 

Movements that were non-falls/non-collisions (red; Figure 2.11) at 0-1.0m, had 

higher average summed AVs compared with falls/non-collisions (blue; Figure 

2.11) at the same height (z-ratio=3.282, P=0.0886 and Z-ratio=3.967, P=0.0064, 

respectively). Movements that were non-falls/collisions (green; Figure 2.11) at 

0.5-1.0m had higher average summed AVs compared to falls/collisions (purple; 

Figure 2.11) at the same height; Z-ratio=6.353, P<0.0001.  
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Figure 2.11: Three-way interaction between fall status, collision status and actual 

height moved (LS Mean ± SE) for the average summed acceleration. 

 

Upward movements had lower average summed AV at the keel than 

downward movements, and this difference was significant both when movements 

included a collision (Z-ratio= 4.089, P=0.0002) and when there was not a collision 

(Z-ratio= 3.95, P=0.0003) (Figure 2.12). There was no statistical difference within 

movement direction and whether there was a collision or not.  

 

Non-fall/non-collision 

Non-fall/collision 

Fall/non-collision 

Fall/collision 
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Figure 2.12: Interaction between the collision status (N/Y) and the direction of 

the movement (up/down) for the average acceleration (LS Mean ± SE). 

Capital letters denote differences between non-collisions and small letters denote 

difference between collisions. 

 

Movements from a perch to a structure resulted in higher average 

summed AV at the keel compared with movements from a perch to the litter (Z-

ratio=-3.428, P=0.0128) or between a structure and the litter (Z-ratio=6.772, 

P<0.0001) (Figure 2.13). Movements between a perch and a grid had higher 

average summed AV readings compared with movements between a structure 

and the litter (Z-ratio=4.035, P=0.0011). Average summed AVs were higher when 

moving from a perch to another perch compared with between a structure and 

the litter (Z-ratio=3.134, P=0.0362) (Figure 2.13). 
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Figure 2.13: Start and end location of movement in relation to the average AV at 

the keel (LS Mean ± SE). 

Sample sizes are displaced at the bottom of the graph. Different letters show different 

significance. 

 

2.3.4. Average summed AV x readout duration 

Overall, there was a 2-way interaction between fall status and total 

movement height (F=7.496, P<0.0001), a 2-way interaction between collision 

status and movement height (F=2.792, P=0.0162), a 2-way interaction between 

collision status and direction of movement (F=6.797, P=0.0092), with the location 

of the movement (start and destination point) (F=8.161, P<0.0001) and flock 
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(F=5.250, P=0.0368). There were no statistical differences between keel bone 

fracture presence, foot pad health and feather condition and the value of the 

average summed AV x readout duration.  

Non-falls had lower average summed AV x readout duration at total 

movements heights 0.5m-1.0m compared to those 0-0.5m (Z-ratio=3.989, 

P=0.0024) and those 1.5-2.5m. There was an increase in the average summed 

AV x readout duration during falls (blue) from 0-0.5m to 1.0-1.5m, then a 

decrease to 2.0-2.5m, and then an increase again at 2.5m. However, there was 

only one significant difference from 0-0.5m compared to those 1.0-1.5m (Z-

ratio=3.816, P=0.0049), all other differences can only be seen numerically 

(Figure 2.14). In every total height category except 2.0-2.5m, the average 

summed AV x readout duration of fall movements were statistically greater than 

those of non-falls (Figure 2.14). 
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Figure 2.14: Two-way interaction between fall (N/Y) and actual height moved in 

relation to the average summed AV x readout duration (LS Mean ± SE). 

Numbers at the top of the graph are the sample sizes for falls and those at the bottom 

of the graph are sample sizes for non-fall movements. Differences between falls and 

non-falls are only compared within single heights. Significant differences denoted by 

small letters. Differences across heights are compared independently for falls and non-

falls. Significant differences denoted by capital letters. 

 

There was no significant difference in the average summed AV x readout 

duration of movements that did not contain a collision between different total 

heights (Figure 2.15). However, when a movement did involve a collision, those 

at total heights 0.5-1.0m had lower readings compared with total heights 1.5-

2.5m. There were differences between average summed AV x readout duration 

and whether a collision was present or absent at total heights; 0-0.5m (Z=3.079, 

P=0.0749) and 1.5-2.5m. In each instance, the readings were higher when a 
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collision was present compared to those where a collision was absent (Figure 

2.15).  

 

 

Figure 2.15: Two-way interaction between collision status (Y/N) and actual 

height moved in relation to the Average summed AV (LS Mean ± SE). 

Numbers at the top of the graph are the sample sizes for falls and those at the bottom 

of the graph are sample sizes for non-fall movements. Differences between falls and 

non-falls are only compared within single heights. Differences denoted with small letters. 

Differences across heights are compared independently for falls and non-falls. 

Differences denoted with capital letters. 

 

Upward movements that included a collision tended to have higher 

average summed AV x readout duration readings compared to those that did not 

include a collision (Z-ratio=3.127, P=0.0071) (Figure 2.16). Downward 

movements that included a collision had lower average summed AV readings 
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compared with upward movements that included a collision (Z-ratio=-2.989, 

P=0.0112). 

 

  

Figure 2.16: 2-way interaction between collision status and the direction of 

movement relating to average summed AV x readout duration (LS Mean ± SE).  

Sample sizes are displaced at the bottom of the graph. Different letters show 

different significance. 

 

Movements between a structure and the litter had higher summed AV x 

readout duration compared movements between a perch and a structure (Z-

ratio=-6.849, P<0.0001), a structure and another structure (Z-ratio=3.336, 

P=0.0178), a perch and the grid (Z-ratio=-3.698, P=0.0046) and a perch and 
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another perch (Z-ratio=-3.175, P=0.0315). Movements between a perch and the 

litter had higher average summed AV x readout duration compared with 

movements between a perch and a structure (Z-ratio=3.603, P=0.0066) (Figure 

2.17).  

 

 

Figure 2.17: The start or end location of movement in relation to the average 

summed AV x readout duration (LS Mean ± SE).  

Numbers at the bottom show sample sizes. Letters above the bars represent statistical 

significance. 

 

2.3.5. Maximum summed AV during a collision 

There was an overall effect of the object that a hen collided with and the 

maximum summed AV (F=5.06, P=0.0019). Quantitively, collisions with a 
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conspecific had the lowest maximum summed AV, followed by the litter, a perch 

and lastly a structure (Figure 2.18). Statistically, collisions with conspecifics were 

lower than those with perches (Z-ratio=-3.470, P=0.0031) and structures (Z-

ratio=-3.473, P=0.0031).  

 

 

Figure 2.18: Maximum acceleration vector at the keel relating to the object that 

is collided with LS mean (±SE). 

Sample sizes for each category are displayed along the bottom. Different letters denote 

significant differences.  

 

2.3.6. Maximum summed AV and the reason for fall 

There was a significant effect of the cause of fall on the maximum summed 

AV at the keel (F=2.85, P=0.0370). Falls that were caused by missed landings 
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had higher maximum summed AVs compared with than those caused by pushes 

from conspecifics (Z-ratio=2.675, P=0.0449), (Figure 2.19). There was no 

statistical difference between a fall caused by an interaction, slip and any of the 

other categories (all terms are described in Table 2.2).  

 

 

Figure 2.19: Cause of fall relating to Maximum summed AV at the keel LS means 

(± SE) shown. 

The numbers at the bottom represent the sample size. Different letters denote significant 

differences.  

 

2.3.7. Maximum summed acceleration vector (AV) on the body 

sensor  

All other sections of the results to this point, have focussed on data from 

the sensor placed on the keel bone; this section will focus on data collected from 

the sensor placed on the body. Whether there was a fall or not (F=67.38, 
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P<0.0001), the height of the movement (F=3.93, P=0.0007; Figure 19), location 

of movements (F=8.59, P<0.0001), feather condition of the hen (F=7.7, 

P=0.0006), body mass (F=18.91, P<0.0001) and flock (F=30.82, P<0.0001) were 

all significantly different for the maximum summed AV on the body sensor. As 

body mass of hens increased, the maximum AV on the body sensor increased. 

There was no difference between keel bone fracture presence and foot pad 

health when analysing the maximum summed AV on the body.  

Falls had higher maximum summed AVs (29.21 ±1.09g) compared with 

non-falls (23.26 ± 0.95g). Movements from total heights 0-0.5m had lower 

maximum summed AV on the body compared with all total heights between 0.5-

2.0m (Z-ratio=-2.879, P=0.0848; Z-ratio=-3.011, P=0.0556; Z-ratio=-3.428, 

P=0.0131) and those >2.5m (Z-ratio=-3.914, P=0.0020). Total movements height 

2.0-2.5m had lower maximum summed AVs on the body compared with total 

heights >2.5m (Z-ratio=-3.012, P=0.0553) (Figure 2.20).   
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Figure 2.20: Total height of movement relating to maximum summed AV on the 

body present as LS means (± SE). 

Sample size is shown at the bottom. Different letters indicate significant differences. 

 

Movements between a structure and the litter has higher summed AV on 

the body sensor compared with movements between a perch and a structure (Z-

ratio= -6.577, P<0.0001), a structure and another structure (Z-ratio=4.130, 

P=0.0008), a perch and the litter (Z-ratio=-3.334, P=0.0184) and between a perch 

and another perch (Z-ratio=-3.076, P=0.0447) (Figure 2.21). 
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Figure 2.21: Location of transition (start and end) relating to the maximum AV 

on the body present as lsmeans (±SE). 

Sample sizes shown on the bottom of the graphs. Different letters show significant 

differences. 

 

Hens with poor feather condition had lower maximum summed AVs on the 

body sensor compared with those with excellent feather condition (Z-ratio=4.011, 

P=0.0002) or good feather condition (Z-ratio = 3.776, P=0.0005). There was no 

difference between those with excellent feather condition and good feather 

condition (P>0.01) (Figure 2.22). 
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Figure 2.22: Feather condition in relation to hens with excellent, good and poor 

feather condition, relating to the maximum AV on the body presented as lsmeans 

(±SE). 

Numbers at the bottom show sample size and different letters show significance. 

  

2.3.8 Keel bone palpation reliability  

The intra-observer reliability of palpation was graded as a perfect score (z 

= 4.73, Cohen’s kappa = 0.834) (McHugh, 2012).  

 

2.3.9. Keel bone palpation accuracy 

In April 2015, when comparing fracture severity with a trained assessor, 

the accuracy was 69.2%, when comparing no breaks and breaks the accuracy 

was 75.6%. In May 2015 accuracy was compared again using the same 80 hens. 

   1302                      438                           26 

  B 

  A   A 



 

90 
 

The percentage of fracture severity scores that were the same was 77% and the 

percentage of no breaks and breaks that were the same was 85.1%. Palpation 

accuracy was compared again in March 2018 on 30 hens, the severity score 

matches to the trained assessor were 83.3% and the percentage of no breaks 

and breaks detected was 93.3%. In May 2018 palpations were carried out on the 

same 600 hens as a trained assessor one week apart. Out of the 600 hens 158 

had fractures in week one (detected by the trained assessor) then in week 2 all 

the same 158 fractures were detected by the assessor of the current study, with 

a fracture detecting rate of 100%.  

 

2.4. Discussion 

This is the first study that analysed the accelerometry patterns resulting 

from transitions within a multi-tier system. The current study has shown that 

different behaviours (falls and collisions), total heights, start and destination 

areas and, in the case of the summed AV on the body, the plumage condition of 

hens, can have an impact on the forces experienced by the hen around the keel 

bone and on the body. The results show that falls, collisions and increasing 

heights have the potential to increase the energy of interactions experienced by 

laying hens in multi-tier systems.  

 

2.4.1 Maximum summed AV at the keel 

Falls and collisions have been suggested to be the cause of high levels of 

keel bone fractures in laying hens housed in non-cage systems (Gregory and 

Wilkins, 1996; Wilkins et al., 2011; Stratmann et al., 2015a). Experimental work 

using an impact tester on dead hens has shown that greater forces lead to a 
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higher proportion and more severe levels of keel bone fractures (Toscano et al., 

2018). Force was calculated using acceleration x body mass (Toscano et al., 

2018). Thus, movements that result in greater forces on the hen (i.e., those that 

result in a higher summed AV), likely pose a greater risk to the hen’s skeletal 

integrity. In the current study falls and collisions had higher summed AVs on the 

keel compared with non-fall and non-collision movements. This would suggest 

that falls and collisions increase the likelihood of fracture, compared to non-fall 

and non-collision movements, and supports prediction 1. that falls, and collisions 

would result in higher average AVs and greater average AVs x readout duration 

than controlled movements.   

Furthermore, in the current study, controlled movements (non-falls) that 

were under 1m, had higher average maximum AVs at the keel compared with 

heights over 1m. This contradicts findings from previous researchers who found 

that landing forces were higher at 61cm compared with 41cm in laying hens 

(Banerjee et al., 2014). However, the previous study did not look at the 

differences between falls less than 1m and those more than 1m, which makes 

comparisons difficult. In the current study, there was an increase in AVs again as 

the height increased to over 2.5m. This did not match prediction 2. that 

movements from higher areas in the system would result in higher AV than lower 

heights. One potential reason is that transitions under 1m may not provide the 

hen with enough time to ready herself for movement, whereas transitions from 

greater heights allow the hen to adjust their movement to minimise energy. It may 

also be that difficult transitions within the housing system i.e. moving upward 

between perches and between perches and tiers, were under 1m. In the current 

study, upward movements tended not to exceed 1m. This would mean that 
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heights under 1m include upward and downward movements whereas those over 

1m contain solely downward movements (the interaction between total height 

moved and direction of movement was not controlled for in the analysis). 

However, previous work contradicts what was shown in the current study. 

Previous work concluded that hens find downward transitions more difficult to 

navigate in comparison to upward transition (Scott et al., 1997; Moinard et al., 

2004b). Both previous studies only included heights under 1m and had no 

comparison for movement over 1m that were downward, making it difficult to 

relate directly to the current study.  

Using qualitative observation from videos, when hens moved upwards, 

they would wing flap vigorously to allow their claws to grip the area they were 

wanting to reach. Controlled downward movements, at greater heights result in 

birds using their wings to glide down, rather than vigorously wing flapping; 

potentially reduce the summed AV at the keel. Previous work on acceleration 

forces has shown that finches and doves perform twice as many wing beats 

during landing  as during take-off (Provini et al., 2014). The wing flapping that 

occurred more in upward movements compared with downward movements in 

the current study may be the reason why maximum summed AVs are high at 

lower heights because lower heights could be skewed towards upward 

movements. 

It is known that as distance increases between take-off and landing region, 

the landing becomes less accurate (Moinard et al., 2004a). The previous study 

attributed this to hens having too high wing loading for their body size (Moinard 

et al., 2004a). However, for non-fall movements, this did not match what was 

found in the current study, in that the higher the movement height, the great the 



 

93 
 

maximum summed AV at the keel. Conversely, in the current study, as the total 

height of a fall increased, the maximum summed AV on the keel increased.  

For transitions that included a fall, the maximum summed AV at the keel 

gradually increased until >2.5m. This result was expected because the higher the 

height of the fall the more turning during free fall the hen may be doing. This 

turning motion would result in substantial changes in acceleration across different 

axes, which would then result in a higher summed maximum AV. Falling from 

higher heights would also increase the force upon landing, making the height 

more likely to create a greater impact on the keel, which would correspond to the 

higher maximum summed AV on the keel in this study (Bertocci et al., 2004). 

 

2.4.2 Readout duration 

The readout duration was calculated as this gives a measure of how 

immediate an impact event occurred. In general, there was a split between falls 

and controlled movements. If the movement was controlled, hens moved 

relatively fast and when the movement was a fall the readout duration diverged 

depending on whether there was a collision or not. If there was a collision, then 

the readout duration increased as the total height of the movement increased. 

When there was no collision, the readout duration peaked at total heights of >1.0-

1.5m, then steeply declined. Movements that were upward and had collisions had 

longer readout durations compared with other types of movements. However, 

this does not match results found previously (Moinard et al., 2004b). Downward 

movements in the previous study took longer to gain balance compared to 

upward movements. One reason for this difference may be that the current study 

was in a semi-commercial environment and hens jumping/flying was influenced 
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by other hens in the system and variable structures within the system. Whereas 

the study by Moinard et al., (2004b) was carried out in a controlled environment 

with one hen being studied at a time. 

It was expected that if a hen had a fall and a collision then the readout 

duration would be lower than a hen that had a fall but did not have a collision. 

The theory behind this assumption was that if a collision occurred this would stop 

the hen’s movement, however, it appeared to be that the collision prolonged the 

readout duration. Interestingly, birds that fell from a height above 2 m but did not 

have a collision had similar readout durations to birds that did not fall. Due to the 

height of the transitions these birds were potentially able to correct their posture 

and gain a controlled landing. In line with prediction 2, movements that were 

falls/collisions resulted in higher readout durations at higher total heights 

compared with lower heights. However, for falls/non-collision movements the 

readout duration increased until 1.5m and then began to steeply decrease in 

duration as the total height moved increased to >2.5m. This may possible be a 

result of a fall with a collision ending sooner than a fall without a collision at higher 

heights because the hen will be in free fall and there is no collision interrupting 

and prolonging the fall. 

 

2.4.3 Average summed AV at the keel 

Falls had lower average summed AVs compared to controlled 

movements, contrary to prediction 1. There was a peak of average acceleration 

at a height of 0.5m-1m for non-fall/collision movements. This peak may be 

because these movements had short impact durations and the collision may have 

caused a peak in the acceleration. Therefore, a sharp momentary increase in 
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acceleration accompanied by a short duration may have led to an increased 

average AV for non-fall/collision movements at heights of 0.5m-1.0m. This result 

suggest that these movements may be potentially hazardous.  

 

2.4.4 Average summed AV x readout duration 

Falls and collisions tended to have higher average summed AV x readout 

durations compared to controlled movements and the trend stayed the same as 

the height of movement increased. The result, in line with prediction 1. was 

expected because average summed AV x readout duration increases as height 

increases. This would suggest that falls and collisions are potentially more 

hazardous than controlled movements and that the hazardous effect becomes 

stronger as the height increases.  

 

2.4.5 Maximum summed AV related to colliding object 

When looking at what hens collided with, and the effect this would have 

on the maximum summed AV, results revealed that collisions with conspecifics 

had the lowest maximum acceleration. This makes sense as other hens are more 

compliant than furnishings in the system and a conspecific can move on their 

own, which may reduce energy of the impact.  

 

2.4.6 Maximum summed AV and the reason for a fall 

A hen being pushed resulted in the lowest maximum acceleration at the 

keel. This could be because pushes were often seen to be from behind the hens, 

away from the keel sensor and may not result in the immediate peak in 

acceleration that may be associated with a collision. This result was in line with 
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prediction 8, that missed landings would have higher maximum summed AVs at 

the keel than pushes. 

 

2.4.7 Maximum summed AV on the body 

There was a relationship between the maximum summed AV on the body 

and feather condition. Hens with poor feather condition had a lower maximum 

summed AV on the body compared to those with good or excellent feather 

condition. This was contrary to prediction 4; that hens with poor feather cover 

would have higher maximum AVs compared to those with excellent feather cover. 

Hens with poor feather cover have been shown in previous studies to use the 

free-range environment less than those with good feather cover (Mahboub et al., 

2004). This suggests that potentially hens with poor feather cover are less 

adventurous and would be less likely to take part in hazardous behaviour, 

meaning there were less likely to take part in a movement that could result in a 

higher maximum summed AV on the body.  

The maximum summed AV on the body provided different results 

compared with the maximum summed AV on the keel. There was no interaction 

between total height of the movement and whether there was a fall when looking 

at results from the body sensor, whereas this interaction was present on the keel 

sensor. There was an increase in the maximum summed AV on the body as 

height increased and the maximum summed AV on the body was greater for falls 

compared with non-falls.  

This highlights the importance of attached body-mounted sensors to 

animals in locations that are closely linked to the behaviour you are wanting to 

investigate, in this case, the keel. A similar result was seen when accelerometers 
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were used on wild birds, if behaviours of interest involved the head, the 

accelerometer outputs were more accurate when the device was placed in a neck 

collar compared to a back pack (Kölzsch et al., 2016). Therefore, for general 

movements and specific behaviours, such as dustbathing, body mounted 

accelerometers may be an appropriate option. In the current study, the keel 

sensor is likely to be more relevant because the aim of the study was to detect 

falls and collisions.  

 

2.4.8 Limitations of the study 

It is important to note that all the data comes from a small number of hens 

within each pen. It is possible that due to behavioural differences, or indeed 

similarities, that the range of behaviours shown is limited. Also, even though 

individual birds were used as a nested factor within pen, it is also possible that 

the same hens may find certain navigation paths difficult. This would mean that 

high accelerations may have always originated from the same individuals. 

Therefore, future studies would benefit from looking at individual differences 

between hens. Indeed, the data generated from this study could also be used to 

look at this. This represents a future beneficial use of the data presented here. 

A limiting factor of the study was that hens had to wear vests to hold the 

accelerometers in order to record the acceleration outputs during the different 

behaviours. Attaching extra equipment may weigh the hen down and cause her 

to act differently with the equipment than without. A previous study looked at the 

behaviour of laying hens immediately after equipped with a backpack and up to 

3 days after backpack placement (Buijs et al., 2018). What they found was that 

the backpack tended to affect the hens immediately after placement but effects 
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became more subtle and had limited significance as the time after placement 

progressed (Buijs et al., 2018). Another study by Daigle et al. (2012) suggests 

that behaviour may be affected up to 48 hours after backpacks were placed on 

hens. Therefore, for future studies it would be beneficial to have a longer period 

of acclimatisation to the accelerometers or vests. However, this would only be 

possible with the improvement in battery life of these devices. If future studies 

could use more devices this would allow this to be achievable, in the current study 

there were only 15 accelerometers available meaning that they were needed 

each week, making the acclimatisation period limited. A method of remotely 

downloading the data while the hen is wearing an accelerometer would be the 

ideal situation. This would mean that checks on whether the equipment is working 

correctly could be made, otherwise, equipping hens with accelerometers, just to 

realise that they were not recording for weeks would set back experimental time.   

 

 

2.5. Conclusion 

This study shows that it is possible to use accelerometers to understand 

more about how animals interact with their environment and the technology can 

aid in improving housing design for laying hens. This is the first study that has 

shown that both falls, collisions and increasing heights result in higher maximum 

AV at the keel bone of laying hens. Previously, research has shown this in 

experimental conditions (Toscano et al., 2018) and has theorised that falls, 

collisions and increasing the heights of systems in practice would result in an 

increased energy at the keel. The current study is the first step in understanding 

the forces that may be exposed to laying hens in commercial conditions.  
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Future work should look at the change of keel bone fractures and foot pad 

health over time to determine whether an effect can be seen in those hens. It 

may be more relevant to look at how individual behaviour varies over time as they 

accumulate health issues instead of comparing differences in behaviour between 

different individuals. In particular, different individuals may have different coping 

styles (Koolhaas et al., 1999). 

A more targeted study at the causal nature of falls and collisions on 

fracture occurrence would be worthwhile. This could be achieved by directly 

monitoring hens that have a fall or a collision (when wearing an accelerometer) 

to determine whether high summed AVs do indeed cause keel bone fractures.
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Chapter 3 

Navigation paths in a multi-tier 

system: Controlled movements and 

falls
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3.1. Introduction 

Multi-tier systems give hens the choice to roost high in the system as well 

as the opportunity to jump and fly and carry out more species-specific behaviours 

such as foraging and dustbathing in comparison to cages (Tanaka and Hurnik, 

1992; Colson et al., 2007). However, due to the increased total height in the 

environment birds can fall from heights above 2m. As hens fall, they can collide 

with perches and other structures. The higher the hens are when they fall, the 

more likely they are to collide with an object through the multi-tier system as there 

are more structures to encounter (compared with falls from shorter heights). The 

higher the fall the more forceful the impact is likely to be. These collisions are 

thought to be the cause of keel bone fractures (Gregory and Wilkins, 1996), which 

may explain their increased prevalence in multi-tier systems (Wilkins et al., 2011).  

Falls occur when hens attempt to move from one structure in a system to 

another. However, falls can occur at any area within a system with more 

structures. In one aviary study, falls occurred more when hens were moving 

towards perches compared to when they were moving to the litter (Campbell et 

al., 2016c). This may be because perches have smaller landing areas compared 

with structures or the litter, so are more likely to result in falls. However, the 

previous study was only done in one commercial aviary and video recordings 

were made throughout the lights-on period, observing the whole flock. No one 

has ever looked at the locations of falls during lights off and followied individual 

hens for consecutive days.  Movements between the litter and lower tier and 

movements between a nest box rail and perches have been described as the 

most common movement (Carmichael et al., 1999). They also found that 

approximately 50% of the flock were on the structure at all times (Carmichael et 
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al., 1999). This suggests that laying hens prefer to be elevated and it is important 

that the system is designed in such a way to facilitate movement to prevent keel 

bone breaks during movement to elevated structures. However, these authors 

only observed the hens during the daytime. The dusk phase, when lighting is 

gradually dimmed, may be a particularly relevant phase to include as many hens 

will move upward into the system to roost, resulting in a high risk of falls.  

Furthermore, low light levels (anything under 10lux) (DEFRA, 2015) during 

the dimming (dusk), night and dawn phase may make it more difficult for hens to 

move through the system due to the inability to see structures. It has been shown 

that low light intensity increases an individual hens latency to jump (Taylor et al., 

2003), suggesting that navigation is more challenging during low light intensities. 

Stratmann et al. (2015a) looked at movements by hens during the dusk phase 

and whether the use of different structures within the system reduced the number 

of falls and collisions during dusk. It was found that by adding in ramps and 

platforms falls were reduced compared to the same system without the addition 

of ramps or platforms.  

The morning can also be expected to be a period with an increased risk 

of falls, as perches on the top level and (pathways leading to) nest boxes may 

become overcrowded due to behavioural synchrony as  hens lay eggs in the 

morning (Odén et al., 2002; Schrader and Müller, 2009; Collins et al., 2011; 

Brendler et al., 2014; Brendler and Schrader, 2016). This overcrowding can be 

expected to lead to obstructed take-offs and landings, which can  lead to falls  

(Moinard et al., 2005; LeBlanc et al., 2016). However, it is presently unknown if 

falls occur more near nest boxes in the morning.  
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Due to 50% of hens being on the top tier of a multi-tier system at any one 

time (Carmichael et al., 1999) and hens roosting high in the system at night 

(Brendler and Schrader, 2016), these areas can become overcrowded. The 

percentage of falls (the number of falls/total number of movements x 100) from 

the top tier has the potential to be higher compared to the middle or lower tiers in 

a system with elevated perches because of the large volume of hens that are 

often present in the top tier.  

Acute angles have the potential to cause a greater percentage of falls 

compared to wide angles. This is based on previous evidence that steep angles 

are difficult for hens to negotiate compared to other areas within the system 

(Scott et al., 1997). In addition to the angle, the direction of movement towards 

the angle may influence the percentage of falls. Downward movements would 

result in more falls compared with upward movements, based on the previous 

evidence that downward movements are more difficult for hens to navigate than 

upward movements (Moinard et al., 2004b).  

As well as the system, the health of the hen may affect the number of 

times a fall occurs. Hens with keel bone fractures may have a higher incidence 

of falls compared to those without keel bone fractures, due to the potential pain 

and increased latency to move from perches in hens with keel bone fractures 

(Nasr et al., 2012b; Nasr et al., 2013a; Nasr et al., 2015). Previous work has 

shown that hens with footpad lesions and poor feather cover move from perches 

earlier than healthy birds (LeBlanc et al., 2016), this could lead to more falls as 

movements are less planned. Hens with foot pad lesions, such as bumblefoot of 

foot pad dermatitis are likely to be in pain and this may influence how the hen 

moves (Weitzenbürger et al., 2006). However, it is possible that all these health 
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parameters have the opposite effects, in that hens with keel bone fractures, 

footpad lesions and poor feather condition are less likely to move from/to perches 

or tiers and therefore, are less likely to have a fall or a collision.  

 

3.1.1. Aims and predictions  

The main aim of this study was to identify hazardous areas within a 

commonly used multi-tier system (Bolegg Terrace). Specific predictions were 

formulated to facilitate the identification of potential improvements to such 

systems that would reduce falls. To identify hazardous pathways, the prevalence 

of falls compared to controlled movements within each pathway and frequency 

of use of each pathway are needed.  

 

The main predictions were: 

1. Navigation paths in the top tier of the system would have a higher 

prevalence of falls compared to those in the lower tier of the system.  

2. Navigation paths with steeper inclines mainly between the 2nd perch 

and the 3rd perch would result in a higher percentage of falls compared 

with more acute inclined navigation paths.  

3. Downward movements would result in more falls compared with 

upward movements. 

4. Landings and take-offs from perches would result in a greater 

percentage of falls compared with landings and take-offs from other 

structures in the system. 
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5. A greater percentage of falls compared with total movements would 

occur at dawn and dusk compared to other times of day. 

6. Keel bone fractures, footpad lesions and poor feather cover may either 

result in a higher percentage of falls compared with total movements, 

or a lower percentage of falls compared with total movements.  

 

3.2. Materials and Methods 

The results in this Chapter follow on from those discussed in Chapter 2. 

Ethical approval, animal husbandry and health recordings of all individuals were 

the same as in Chapter 2. The hens used were the same as those in Chapter 2, 

with the same protocol being used for the attachment of accelerometers because 

the data was collected from the same accelerometers that were used in Chapter 

2.   

 

3.2.1. Breakdown of data 

The data in this chapter are taken from two different methods of analysis. 

One of these is the data that was generated from focal hens that were wearing 

accelerometers and is described in the headings as: “related to accelerometry 

output – focal hens only”. The second type of data is pen level, meaning that 

video observations of movement between tiers was taken from the pen as a 

whole and not only generated from hens that were wearing accelerometers. This 

data is always refered to as: “non-accelerometry data – observations on a pen 

level”. 

The dataset used in related to accelerometry output from focal hens only 

represents 1517 data points and corresponds to certain pathways that are shown 
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by the blue arrows in Figure 3.1 and represents 85.9% of the total dataset used 

in Chapter 2 of this thesis.  

 

 

All labels refer to areas of the system named later in the text. Feeders and drinkers have 

been added and camera placement is noted using circles with crosses. Top perch and 

tier heights have been labelled within the system. Perch names labelled on the right-

hand side of the figure are also present on the left-hand side of the figure.  

 

 

2.2m 

2.7m 

= drinker 

 

= feeder 

Figure 3.1: Schematic of the side view of a Bolegg Terrace multi-tier system with the 

navigation paths used in all the analysis. 



 

107 

3.2.2. Navigation path (related to accelerometry output – focal hens 

only) 

Once an accelerometry output was recorded, the videos were analysed to 

determine what behaviours and/or movements the focal hen was doing at that 

time. This subset of data was then analysed to determine the number of falls 

compared to controlled movements in each navigation path. This resulted in a 

percentage of falls (fall/all movements x 100) that could be used to compare the 

percentage of falls between navigation paths. 

Movements between different areas of the system were classed as 

“navigation paths”. The starting area was defined as where the hen was at the 

beginning of the movement and the end was where the hen landed first. If the 

hen then moved further, this was not included in the navigation pathway. To be 

defined as a navigation path for all the analysis, the movement had to occur more 

than ten times on the accelerometer. Figures 3.1 shows all the navigation 

pathways included in the analysis. In contrast to the observer analysis of 

movements described in the next paragraph, navigation paths depended on 

direction: e.g. movements from the 3rd perch to the litter were distinguished from 

movements from the litter to the 3rd perch. This was to understand in more detail 

the navigation paths hens were using and the percentage of falls in each 

navigation path compared to total movements. 
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3.2.3. Navigation paths – Multiple comparison groupings (related to 

accelerometry output – focal hens only) 

From the video data, because the navigation path was known it was 

possible to determine: 1. The starting area of the movement (and subsequent 

height), 2. The first landing area of the movement (and subsequent height), 3. 

Whether the first part of the movement was upward or downward. Due to each 

accelerometer creating a time stamp, it was possible to match the accelerometry 

output with the time of day. 

 

3.2.4. Reason for fall (related to accelerometry output – focal hens 

only) 

When viewing the video data (to pair behaviour with an accelerometry 

event), if a bird had a fall it was split into different categories. They are discussed 

in Chapter 2 and include:  

1. Missed – The focal hen shows intentional behaviour, indication 

movement to a specific location but lands in another location 

2. Slipped - Focal hen does not intend to change position but does 

change position 

3. Pushed - Focal hen knocked from the area they are currently 

occupying by a conspecific and are displaced to another location 

4. Interaction- Contact with a conspecific that can constitute; 

scratching, grabbing, climbing onto and chasing. Also refers to a 

panic reaction in the system  

 



 

109 

3.2.5. Extrapolation of accelerometer data to represent 200 hens 

(related to accelerometry output – focal hens only) 

The total number of hours of video recorded for each time point was 

divided by the number of hens that had generated usable data from the 

accelerometers, this was 271 hens (because some hens were used more than 

once). The total number of useable hours collected from the accelerometers was 

1740 hours and 45 minutes (13 hours and 40 minutes of dawn, 21 hours and 5 

minutes of dusk, 747 hours and 5 minutes of night and 958 hours and 55 minutes 

of the day). The reason that the number was calculated from focal hen 

movements and not pen level movements was is that pen level data consisted of 

hens during a 4-hour period and included all movements in the navigation path. 

Whereas, the focal hen data takes movements into account if they exceed the 

predetermined summed acceleration vector (AV) threshold (as discussed in 

Chapter 2). This was also done so that the number of times events were recorded 

on the accelerometers per path could be compared to the number of movements 

hens made in “real time” within the same navigation paths. The number of 

movements represents the number of movements by 200 hens. Two-hundred 

hens were chosen instead of per hen because the number per hen was extremely 

low making it difficult to interpret and there were 200 hens in each pen, so 200 

hens represent one pen.  

 

3.2.6. Movements within a 4-hour period (non-accelerometry data – 

observations on a pen level)  

To determine the use of individual navigation pathways the movement of 

all 200 hens (without accelerometers) in one pen were monitored in Observer 
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10XT (Noldus, the Netherlands). Any upward or downward transition was 

recorded, where the hen started and finished on a different structure in the 

system. Navigation pathways were not split into upward and downward 

movements, they were analysed in either direction. This means that movements 

from the lower tier to the litter were classified into one category, litter to lower tier, 

and were given a score representing how many hens used that one pathway. 

This is slightly different in how navigation path (for birds with accelerometers) in 

section 3.2.2. was analysed.   

At 33 weeks of age all hens in one pen were observed at four-time points 

between 0130-0230hr, 0600-0800hr, 1200-1400hr, 1630- 1730hr, respectively. 

The dawn period (lights gradually turning on) was from 02:00-02:10hr, Lights on 

(day) ran from 02:10-16:40hr, the dimming period (dusk) ran from 1640-1700hr 

and the light-off period (night) ran from 1700-0200hr. In the 06.00-08.00 and 

12.00-14.00 sessions, movements were recorded for five minutes and then the 

recording was skipped for five minutes. This was to try and get an even spread 

of day-time hours. In the 01.30-02.30 and 16.30-17.30 sessions movements were 

monitored continuously to capture the entire dawn and dusk period, as well as 

the time immediately before and after. This was considered important because 

more movements were predicted during the dawn and dusk periods. The reason 

this analysis was done was to get an idea of the frequency of use of each 

navigation path, that was used in analysis section 3.2.2,  
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3.2.7. Statistical and descriptive analysis  

3.2.7.1. Navigation path (related to accelerometry output – focal hens 

only) 

All statistical analysis was carried out using R (R Core Team, 2017) with 

R Studio as the interface (RStudio Team, 2016). The model contained fall 

(yes/no) as the response variable. Fixed effects included navigation path (factor), 

time of day (factor), flock (binary). Bird nested in pen was in the model as a 

random factor, with individual hen being the experimental unit. A stepwise 

regression was used to determine the significance of each factor in the model to 

determine the best fitting model. AIC was also used as an indication into the 

model fit. The model was then checked using the blmeco package (Korner-

Nievergelt et al., 2015) for overdispersion and was found to meet the parameters 

of the model. The optimx package (Nash, 2014) was used to optimise the model 

in order to deal with any convergence issues. Other parameters such as; keel 

bone fracture presence, foot pad dermatitis presence, bumblefoot presence, 

body mass and feather condition were used in the original model but removed 

from the final model due to non-significance. 

 

3.2.7.2. Multiple comparison testing 

The analysis was first done comparing all navigation paths to each other 

using Bonferroni corrections. Then comparisons between different groups of data 

were made. The comparisons were: 1. Starting area of the movement (and 

subsequent height), 2. The first landing area of the movement (and subsequent 

height), 3. Whether the first part of the movement was upward or downward. The 
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movements were grouped within R, using the lsmeans package (Lenth, 2016), 

and analysed using Bonferroni corrections.  

 

3.2.7.3. Reason for fall (related to accelerometry output – focal hens only) 

Data regarding the reason for falls was looked at but only descriptively. 

The data are presented here and shows the reasons hens had falls data collected 

from the accelerometers but has been corrected to represent per hour per 200 

birds. The falls included come from the accelerometry data and relate to the 

navigation paths discussed in this chapter.  

 

3.2.7.4 Movements within a 4-hour period (non-accelerometry data – 

observations on a pen level) 

Movements within a 4-hour period have been are shown as descriptive 

statistics only and have been corrected to show the number of movements per 

hour per 200 hens. 

 

3.3. Results 

There was a statistically significant difference between the percentage of 

falls relating to navigation path (P<0.0001), time of day (P<0.0001) and flock 

(P=0.0055). All other factors (keel bone fracture (Y/N), feather condition 

(excellent, good, poor), bumblefoot (Y/N), foot pad dermatitis (Y/N) and weight) 

were not significant (P>0.05) and were removed from the final model. 
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3.3.1. Navigation paths (related to accelerometry output – focal hens 

only) 

There was a difference in the percentage of falls between navigation paths 

(W=7.71, P=0.005; Figure 3.2). All relevant Bonferroni comparisons are shown 

in Table 3.2. Only those that reach significance are shown, due to many 

comparisons, trends are not shown.    



 

 

1
1

4
 

 

Figure 3.2 The percentage of falls relating to each navigation pathway (lsmeans ± SE). Each navigation pathway is presented in 

ranked order from least falls to most falls.  

Data presented here represent movements recorded from accelerometers only. The number of times each navigation path was recorded on the 

accelerometers are shown above each navigation pathway.
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Table 3.1: Results from Bonferroni multiple comparisons relating to the 

navigation path (from birds recording accelerometry readings).  

Comparison of navigation paths 

 

  

Z-ratio (test 

statistic) 

P value 

2nd perch to 3rd perch vs nest box grid to 2nd perch -4.382 0.0016 

2nd perch to 3rd perch vs nest box grid to 3rd perch -4.507 0.0009 

2nd perch to 3rd perch vs top perch to top tier -5.711 <.0001 

2nd perch to 3rd perch vs top tier to 3rd perch -6.048 <.0001 

2nd perch to litter vs top perch to top tier -4.445 0.0012 

2nd perch to litter vs top tier to 3rd perch -3.722 0.0268 

2nd perch to lower tier vs litter to lower tier 4.584 0.0006 

2nd perch to lower tier vs lower tier to 2nd perch 3.656 0.0349 

2nd perch to lower tier vs top perch to litter 3.852 0.0160 

3rd perch to litter vs nest box grid to 2nd perch -3.806 0.0192 

3rd perch to litter vs nest box grid to 3rd perch -3.964 0.0100 

3rd perch to litter vs litter to lower tier 4.831 0.0002 

3rd perch to litter vs top perch to top tier -5.273 <.0001 

3rd perch to litter vs top tier to 3rd perch -6.235 <.0001 

3rd perch to top tier vs litter to lower tier 4.405 0.0014 

Nest box grid to 2nd perch vs litter to lower tier 7.085 <.0001 

Nest box grid to 2nd perch vs lower tier to 2nd 

perch 

5.173 <.0001 

Nest box grid to 2nd perch vs top perch to litter 4.638 0.0005 

Nest box grid to 3rd perch vs litter to lower tier 7.459 <.0001 

Nest box grid to 3rd perch vs lower tier to 2nd perch 5.372 <.0001 

Nest box grid to 3rd perch vs top perch to litter 4.737 0.0003 

Litter to lower tier vs lower tier to 1st perch -4.552 0.0007 

Litter to lower tier vs top perch to top tier  -7.584 <.0001 

Litter to lower tier vs top tier to 3rd perch -9.964 <.0001 

Litter to lower tier vs top tier to litter  -5.042 0.0001 

Litter to lower tier vs top tier to top perch -5.727 <.0001 

Lower tier to 2nd perch vs top perch to top tier -6.194 <.0001 

Lower tier to 2nd perch vs top tier to 3rd perch -7.450 <.0001 
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Lower tier to litter vs top perch to top tier -4.275 0.0026 

Top perch to litter vs top perch to top tier -5.897 <.0001 

Top perch to litter vs top tier to 3rd perch -5.780 <.0001 

Top perch to litter vs top tier to litter -3.584 0.0460 

Top perch to top perch vs top perch to top tier -3.905 0.0128 

Top perch to top tier vs top tier to top perch 4.608 0.0006 

Top tier to 3rd perch vs top tier to top perch 4.904 0.0001 

Each location analysed can be seen in Figure 3.1. The first navigation path is always 

compared to the 2nd navigation path indicated by “vs”. A positive Z-value indicated that 

the first navigation path has a higher percentage of falls than the 2nd navigation path. A 

negative Z-value indicates that the first navigation path has a lower percentage of falls 

compared to the 2nd navigation path. Only statistically significant results are shown. 

 

Movements from the litter to the lower tier had the lowest percentage of 

falls and those from the top perch to the top tier had the highest percentage of 

falls (Figure 3.2). Movements from the 2nd to the 3rd perch represent the steepest 

angle in the system (75o) and was predicted to be the most hazardous pathway 

in the system. However, movements from the 2nd perch to the 3rd perch resulted 

in a lower percentage of falls compared to movements around the nest box and 

the top tier region (Figure 3.2). There is a large variation in the number of times 

navigation paths were recorded on the accelerometers, ranging from 14 times for 

movements from the 3rd perch to the top tier to 276 times for movements from 

the litter to the lower tier (Figure 3.2). Navigation paths that had a low number of 

accelerometer readouts associated with them, such as 3rd perch to the top tier, 

top perch to top perch and top tier to the litter appeared to show differences 

between other navigation paths graphically (Figure 3.2). However, because of 

the small sample size for these navigation paths and many multiple comparisons, 

statistical significance was not usually reached.  
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3.3.2. Navigation paths (comparing accelerometry output from focal 

hens and non-accelerometry movement at the pen level) 

The number of accelerometer readouts per hour per 200 birds was always 

lower than that found when hens were not equipped with accelerometers (Table 

3.2), because the latter represents all movements, whereas the former is a 

subset of movements. However, some of the navigation paths are consistently 

high in frequency. For instance, the litter to the lower tier occurred 0.117 times 

per hour per 200 birds when just considering movements with an accelerometry 

reading compared with 441.25 times per hour for all movements along this 

pathway. It should be noted that when hens were not wearing accelerometers 

navigation paths were recorded in both directions (litter to lower tier and lower 

tier to litter), whereas those with accelerometers were only recorded in one 

direction (litter to lower tier). This was because the accelerometry data was 

looked at in detail and was the main aim of the current study. Once accelerometry 

data was collected it was considered important to know the frequency of 

movements within each navigation path. It was considered more important to 

know how often a navigation path is used in total rather than whether the 

movements are upward or downward in that navigation path.  
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Table 3.2: Navigation paths and the number of times movements that were 

recorded both on and off accelerometers 

Path Number of times hens 

moved in this path (one 

way) /200 birds/ hour 

(accelerometer data) 

Total number of times hens 

moved in this path (both 

ways) /200 birds/ hour (non-

accelerometer data) 

litter – lower tier 0.1170 441.25 

top perch – litter 0.0407 4.25 

lower tier – 2nd perch 0.0750 47.5 

lower tier – litter 0.0114 441.25 

2nd perch – 3rd perch 0.0483 10.75 

top perch – top perch 0.0072 385.25 

2nd perch – litter 0.0148 34.5 

3rd perch – litter 0.0907 48.75 

top tier – top perch 0.0789 174.5 

lower tier – 1st perch 0.0148 91 

top tier – litter 0.0110 0.5 

grid NB – 2nd perch 0.0187 135 

3rd perch – top tier 0.0059 129.25 

grid NB – 3rd perch 0.0297 81.5 

top tier – 3rd perch 0.0538 129.25 

2nd perch – lower tier 0.0114 47.5 

top perch – top tier 0.0122 174.5 

In each of the columns, the figure shown is the number of movements per 200 hens per 

hour. Some duplicated are present in column 2 because the number of movements in 

each navigation path recorded without accelerometers was taken in either direction. 

Those from column 1 were in one direction.  

 

However, there are also times when the proportions do not match. 

Movements from 3rd perch to litter occur seldomly on the accelerometers (0.0059 

times per hour per 200 birds) but a high number of times when hens are not 
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wearing accelerometers (129.25 times per hour per 200 hens) (Table 3.2). This 

discrepancy may be explained when looking at movements from the top tier to 

the 3rd perch, which resulted in 0.0538 recordings per hour per 200 birds, this 

was the 6th highest reading for hens wearing accelerometers (Table 3.2). Hence, 

the relative proportions between the data sets are dependent on whether that 

pathway is associated with high or low accelerometer readings. 

The top perch to the top perch is an example of when the number of times 

recorded on the accelerometer is much lower (0.0072 – 2nd lowest) compared to 

the number without accelerometers (385.25 – 2nd highest) (Table 3.2). This may 

represent a navigation path of little concern (in terms of hazard) due to the 

absence of movement vigorous enough to cause an accelerometer output. Top 

perch to litter had a relatively frequent number of recordings on the 

accelerometers (0.0407 – 7th highest) but a relatively low frequency recorded 

without accelerometers (4.25 – 2nd lowest) (Table 3.2). Navigation paths like 

these may not pose much of a risk because they are either seldom used or are 

less likely to result in a high energy behaviour. The data indicate that movements 

like the top perch to the litter may often result in high energies but are seldom 

used. The pathways of greatest concern are those that are frequently used and 

demonstrate high accelerometry readings. 
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3.3.3. Navigation paths – Multiple comparison groupings (related to 

accelerometry output – focal hens only) 

3.3.3.1. Relationship with the starting area of the movement  

The percentage of falls were different depending on the starting location 

of the movements. Movements starting on the nest box grid had a higher 

percentage of falls than those starting on a tier (Z-ratio=3.735, P=0.0011), a 

perch (Z-ratio=-3.178, P=0.0089) or the litter (Z-ratio=9.065, P<0.0001) (Figure 

3.3). Compared to movements starting from the litter; those from a tier (Z-ratio=-

6.883, P<0.0001) or a perch (Z-ratio=6.548, P<0.0001) had a higher percentage 

of falls.  

 

 

Figure 3.3: Starting location and the percentage of falls (compared to all 

movements). Different letters signify statistical difference (lsmeans ± SE). 
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3.3.3.2. Relationship with starting height of the movement  

Falls were more likely to occur when the starting location of the transitions 

was over the nest box compared to below the nest box (Z-ratio=3.901, P=0.0001; 

Figure 3.4).  

 

 

 

Figure 3.4: Percentage of falls and whether the starting area of the movement 

was above or below the nest box (lsmeans ± SE). 

 

3.3.3.3.  Relationship with the landing area of the movement  

When looking at differences between the first landing destination or the 
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(Figure 3.5). This data incorporates when a hen wanted to land on a structure or 
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area could either be a result of an intentional movement or the first area the bird 

contacts after a push or a slip. 

 Landings (or attempted landings) on a tier had a higher percentage of 

falls compared to those on perches (Z-ratio=2.643, P=0.0246) and the litter (Z-

ratio=4.332, P<0.001). Landings on perches had a higher percentage of falls 

compared to those on the litter (Z-ratio=-2.845, P=0.0133).  

 

 

Figure 3.5: The first (or intended) landing area and the percentage of falls 

compared to controlled movements that correspond to that landing area (lsmeans 

± SE). 

Different letters signify the statistical difference. The grid is not included because the grid 

never appeared as a landing area in the accelerometry analysis.  
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3.3.3.4. Relationship with end height of the movement  

The end height of the movement (the height of the first landing position of 

the hen) showed a significant difference in the percentage of falls depending on 

whether the landing was above or below the nest box (Z-ratio=3.568, P=0.0004; 

Figure 3.6).  

 

Figure 3.6: Percentage of falls and whether the first contact point or the intended 

destination was above or below the nest box grid (lsmeans ± SE). 

 

3.3.3.5. Relationship with an upward or downward direction of the 

movement  

When hens were moving downwards (including intentional and non-

intentional movements) there was a significantly higher percentage of falls 

compared to upward movements (Z-ratio=-2.827, P=0.0047; Figure 3.7). 

However, upward movements only contained intentional movements because a 

fall or a push could not result in an upward movement, which may bias the data.  
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Figure 3.7: The percentage of falls that occur when the first part of the movement 

was either upward or downward (lsmeans ± SE). 

 

3.3.3.6. Relationship with time of day  

There was a significant difference between the time of day and the 

percentage of falls for a given navigation path (W=145.43, P<0.0001; Figure 3.8). 

There was a higher percentage of falls during the night compared with the day 

(Z=-10.589, P<0.0001), dawn (Z=-4.716, P<0.0001) and dusk (Z=-2.704, 

P=0.0411; Figure 3.8). There was a higher percentage of falls during dusk 

compared with the day (Z=-8.551, P<0.0001) and dawn (Z==3.022, P=0.0150). 
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dawn (P>0.05; Figure 3.8).  
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Figure 3.8: Percentage of falls in relation to the time of day (lsmeans ± SE). 

Dawn = 10 minutes after lights on, Day = lights on, Dusk= 20 minutes before lights off 

and Night = lights off. Different letters represent statistical differences.  
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in the hour after dusk, when 63.2% of the falls occurred. This indicates that dawn 

and dusk are the most active and the most hazardous periods. However, any 

movement at night has a high likelihood of becoming a fall but because the 

frequency of movement is low, the actual frequency of falling is also low.  

 

 

Figure 3.9: Movements and falls per time period per 200 birds (extrapolated from 

hens equipped with accelerometers). 

 

To allow a better understanding of how hens move around the multi-tier 

system the navigation paths were split into different times of day. This was done 

using descriptive statistics only because there was only one number per time 

point so statistical analysis was not possible. Movements from 3rd perch to litter 

and top tier to 3rd perch have the highest number of total movements and falls 

during dawn (Table 3.3). The litter to lower tier and the top tier to top perch 

0

1

2

3

4

5

6

7

Dawn Day Dusk Night

N
u
m

b
e

r 
m

o
v
e

m
e

n
ts

 a
n

d
 f

a
lls

 p
e

r 
 2

0
0

 
b

ir
d

s

Time of day

Total
movements

Falls



 

127 
 

pathway had the highest number of total movements during the day but top tier 

to top perch and top tier to 3rd perch have the highest number of falls during the 

day. Litter to lower tier and nest box grid to 3rd perch have the highest number of 

movements during dusk but nest box grid to 3rd perch and 3rd perch to litter had 

the highest number of falls during dusk. Litter to lower tier and lower tier to 2nd 

perch have the highest number of movements during the night but nest box grid 

to 3rd perch and lower tier to 2nd perch have the highest number of movements 

during the dusk (Table 3.3).  
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Table 3.3: Navigation paths relating to the total number of movements and the total number of falls during dawn, day, dusk and night 

per hour per 200 hens (related to accelerometry output – focal hens only) 

 
Total movements 

   
Falls 

   

Navigation pathway Dawn Day Dusk Night Dawn Day Dusk Night 

2nd perch → 3rd perch 0 0.077 0.46 0.00099 0 0.0069 0.14 0.00099 

2nd perch → Litter 0.11 0.021 0 0.0059 0 0.00077 0 0.0059 

2nd perch → Lower tier 0 0.0023 0.18 0.019 0 0.00077 0.18 0.018 

3rd perch → Litter 1.35 0.12 0.77 0.017 0.22 0.0092 0.67 0.017 

3rd perch → Top tier 0 0.0077 0.035 0.0030 0 0.0038 0 0.0030 

Nest box grid → 2nd perch 0 0.029 0.070 0.0040 0 0.014 0.070 0.00099 

Nest box grid → 3rd perch 0.054 0.012 0.81 0.030 0.054 0.0038 0.77 0.027 

Litter → Lower tier 0.11 0.15 1.40 0.039 0 0.015 0.21 0.011 

Lower tier → 1st perch 0 0.012 0.14 0.016 0 0.0062 0.070 0.0099 

Lower tier → 2nd perch 0 0.10 0.77 0.025 0 0.0092 0.14 0.021 

Lower tier →Litter 0 0.018 0.035 0.0020 0 0.0015 0.035 0.00099 

Top perch → Litter 0.47 0.065 0.070 0.0020 0 0.0038 0.070 0.00099 

Top perch → Top perch 0.054 0.010 0.11 0 0.054 0.0015 0 0 

Top perch → Top tier 0.16 0.013 0.25 0.00099 0.16 0.0077 0.25 0.00099 

Top tier → 3rd perch 0.54 0.084 0.14 0.0030 0.49 0.037 0.11 0.0030 

Top tier → Litter 0.054 0.018 0.035 0.0020 0.054 0.0069 0 0.0020 

Top tier → Top perch 0.054 0.12 0.63 0.0049 0 0.025 0.42 0.0020 



 

129 
 

Some movement pathways are never picked up by the accelerometers at 

certain times of day; for example, there are no movements from 2nd perch to litter 

during dusk. When movements end on the litter during dusk, they are usually falls 

(Table 3.3).  

During dusk (the dimming phase) there are some navigation paths that 

only occurred as falls and these were always downward movements; such as 

movements from the nest box grid to the 2nd perch and the lower tier to the litter 

(Table 3.3). This indicates these navigation paths were either overcrowded or 

difficult to navigation during the dusk.   

 

3.3.4. Reason for fall (related to accelerometry output – focal hens 

only) 

The greatest number of falls were caused by missed landings, followed by 

pushes, interactions with conspecifics and then slips (Table 3.4). Certain 

navigation pathways are always associated with a specific type of fall. All falls 

from 2nd perch to 3rd perch, lower tier to 1st perch and lower tier to 2nd perch were 

caused by missed landings. Most of the falls from nest box grid to 2nd perch, nest 

box grid to 3rd perch, top tier to 3rd perch, top tier to top perch and litter to lower 

tier were caused by missed landings (Table 3.4). Navigation pathways that ended 

on the litter never had a missed landing, as it was not possible to miss the litter. 

Most falls from 2nd perch to lower tier and 3rd perch to litter were caused by 

pushes (Table 3.4).  All the other pathways either had no single type of fall that 

predominated, or they had very few falls.   
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Table 3.4: Navigation paths and the type of fall from accelerometry output (total 

number of accelerometry outputs) 

 
Type of fall 

  

Navigation pathway Missed Slipped Pushed Interaction 

2nd perch → 3rd perch 14 0 0 0 

2nd perch → Litter 0 1 3 2 

2nd perch → Lower tier 2 2 20 0 

3rd perch → Litter 0 1 41 10 

3rd perch → Top tier 4 1 0 3 

Nest box grid → 2nd 

perch 

17 1 1 2 

Nest box grid → 3rd 

perch 

48 1 2 4 

Litter → Lower tier 36 0 0 1 

Lower tier → 1st perch 20 0 0 0 

Lower tier → 2nd perch 37 0 0 0 

Lower tier →Litter 0 1 3 0 

Top perch → Litter 0 1 4 0 

Top perch → Top perch 2 0 0 1 

Top perch → Top tier 2 9 6 3 

Top tier → 3rd perch 44 7 4 9 

Top tier → Litter 0 5 5 1 

Top tier → Top perch 44 0 2 1 

Total 270 30 91 37 

 

3.4. Discussion  

To our knowledge, this is the first study that looked at the navigation paths 

within a multi-tier housing system and their effect on the frequency of use and 

frequency of falls. Other studies have looked into the way that birds move around 

a multi-tier system (Stratmann et al., 2015a; Campbell et al., 2016a; Campbell et 

al., 2016c) but our study is unique in that individual laying hens were followed 
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throughout lay using accelerometers to evaluate where in a multi-tier system 

birds were travelling and falling.   

The aim of this chapter was to understand where most of the falls occur in 

a multi-tier system. It was also important to understand at what time of day there 

is a higher percentage of falls. This is because if system changes are to be made 

then it is vital that it is known whether a navigation path is difficult for hens and 

whether this is dependent on the time of day.  

A summary of the results shows that the highest percentage of falls occur 

around the nest box area and on the top area of the system. The dusk time point 

is the most hazardous time point because, although a higher percentage of falls 

occurred during the night period (82.5% of movements), few movements 

occurred during the night. This suggests that the night-time is less hazardous 

than dusk. Similarly, dawn has a high total number of movements with around 

35.7% of these being falls. 

 

3.4.1 Navigation paths 

 There was a significant effect of navigation path on the percentage of falls 

within a multi-tier system. This is the first time accelerometers have been used 

to identify areas where falls occur in a housing system for laying hens. These 

findings can be the basis for future modifications for multi-tier systems for laying 

hens.  

One of the original predictions (1) was: navigation paths high in the system 

would have a higher percentage of falls compared to those low in the system. 

Navigation paths from litter to lower tier (14.4 ± 3.0%) and lower tier to litter (28.7 
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± 13.1%) had the lowest percentage of falls compared to all other navigation 

paths. When looking at the number of movements in the system during a 4-hour 

period (using pen level, not focal bird data), litter to lower tier was high at 0.117 

times per hour per 200 hens. Therefore, these movements from the litter to the 

lower tier are highly used, but rarely result in such vigorous movement that a 

readout is generated on the accelerometer, and of these, they have the lowest 

percentage of falls compared to other navigation paths. This means that 

movements between the litter and the lower tier should not be classed as 

hazardous because hens use them a lot and they do not appear to be difficult for 

the hens to transition.  

Movements from litter to lower tier were recorded less frequently on the 

accelerometers, at 0.0114 times per hour per 200 hens. This could have two 

explanations. One could be that litter to lower tier is a pathway that is used more 

and would be more likely to have movements registered on the accelerometer. 

Another reason could be that movements from litter to lower tier are more 

vigorous compared to those from the lower tier to the litter, and therefore again 

being more likely to register on the accelerometer. It is likely to be the first reason 

in this case because moving from litter to lower tier is the main way hens enter 

the multi-tier system. A previous study has shown that re-entries into a multi-tier 

system from the litter happen throughout the day, whereas exits from the system 

are mainly focussed in the morning (Campbell et al., 2016c). Hens can also leave 

the multi-tier system, in the current study, through a variety of navigation paths, 

meaning that movements from the lower tier to the litter may be lower in number 

in general compared to movements up from the litter. 
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If we take movements from top perch to top tier (92.8 ±3.5%) and top tier 

to top perch (50.3 ± 6.0%) as an example, they have a higher percentage of falls 

compared to other navigation paths in the system. Although these movements 

were frequently seen (both ways) when monitoring movements of all hens at a 

pen level (174.5 times per hour per hen), top perch to top tier had relatively low 

frequencies on accelerometers (0.0072 times per hour per hen) and top tier to 

top perch had a higher frequency (0.0789 times per hour per hen). The higher 

frequency of movements from top tier to top perch compared to top perch to top 

tier could be because of the need for hens to roost on high perches and structures 

(Olsson and Keeling, 2000; Schrader and Müller, 2009). This potentially means 

there are a greater number of movements up towards the higher perches from 

the top tier compared to down from the perches to the top tier. This may be 

because there is a variety of alternative navigation paths that can be used to 

move down from the top perches; such as to the 3rd perch or directly to the litter. 

It was also shown in this study that movements higher than the nest box resulted 

in more falls than those lower than the nest box. This finding is supported by 

previous work that hens fall more from higher regions in multi-tier systems 

compared to lower regions in the system (Stratmann et al., 2015a). 

However, it is important to note that there may be many more movements 

occurring within each navigation pathways that are not being picked up by the 

accelerometer. The accelerometer was set to record only when the predefined 

threshold was reached on both the body and keel sensor. The threshold was set 

low enough that controlled movements were recorded and this provides some 

confidence that all falls that occurred were recorded. Movements between top 

tier and top perches (0.5m) were shorter than that between the litter to the lower 
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tier (0.73m), therefore it is possible that more controlled movements were missed 

in the top tier region than were missed between the litter and the lower tier due 

to the lower acceleration generated when moving. Moreover, movements along 

navigation paths that are less likely to result in falls are likely to be under-

represented in the subset of events linked to accelerometry outputs. However, 

this does not apply to the direct observations not linked to accelerometer outputs.  

Another prediction (2) was whether navigation paths with steep angles, 

mainly between 2nd perch and 3rd perch, would result in a higher percentage of 

falls compared with wider angled navigation pathways. This was not supported 

by the data. Movements between 2nd perch to 3rd perch resulted in a low 

percentage of falls, 29.3 ± 7.1%. These movements were recorded on the 

accelerometer 0.0483 times per hour per hen. On a pen level (without 

accelerometers), the frequency of pathway use was 10.75 times per hour per 

hen. This suggests that controlled movements between 2nd perch to 3rd perch 

may produce more overall acceleration but that falls are rare. In a previous study, 

upward movements of 60˚ were easier to negotiate than 30˚angles and there was 

no difference between downward movements of 30˚and 60˚ when the vertical 

distance between perches was 50cm (Scott et al., 1997). In the current study, the 

vertical distance between 2nd and 3rd perch was 65cm and the horizontal distance 

was 18cm. The short horizontal distance may explain why there was a lower 

failure rate than expected in transitions between the two perches (Scott et al., 

1997).  

However, there could be many reasons why movements from 2nd perch to 

3rd perch did not result in a high proportion of falls. One could be that there were 

other navigation paths that could be used, not solely the transition from 2nd perch 
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to 3rd perch. In between the 2nd perch and the 3rd perch was the nest box area. 

To access the top-level of the system, individuals could move from 2nd perch to 

grid in front of the nest box and then to the 3rd perch, thereby bypassing the steep 

angle. This was shown in the frequency of use data with movements from the 

nest box grid to the 2nd perch and the nest box grid to the 3rd perch being used 

more compared with movements from the 2nd perch to the 3rd perch. It could be 

theorised that only confident birds will attempt the steep angle, and this accounts 

for the high proportion of controlled movements (and a low proportion of falls) in 

this path. It may also be possible that a higher number of falls do occur between 

2nd perch and 3rd perch but they do not result in high acceleration outputs and 

are thus not recorded by the accelerometers. When hens fall, they may land on 

the grid in front of the nest box (a height of 0.37m from the 3rd perch). This shorter 

distance may not generate enough force to trigger the accelerometer to generate 

an output. Another reason may be that hens use 2nd perch to 3rd perch movement 

more during the day compared with movements from nest box grid to 3rd perch, 

which was used more during dusk and night. Therefore, movements from nest 

box grid to 3rd perch may be more of an issue due to poor visibility. Individuals 

may also only use movements between 2nd perch and 3rd perch when they feel 

confident about making the transition i.e. during the day. However, this does not 

change the conclusion that the movements between 2nd perch and 3rd perch 

represented a low hazard in this study. 

It is important that access to and from the nest box is made easily 

accessible to prevent falls because movements from and to the nest box lead to 

a high number of falls and are frequently used. A recent study has shown that 

hens access the nest box to the same extent regardless of litter substrate used, 
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whereas other resources in the system were used to varying degrees across litter 

substrate (Campbell et al., 2016b). This would suggest that a nesting area is a 

resource that all birds need regardless of other factors present in the system. 

Previous studies have shown that hens are highly motivated and willing to 

overcome obstacles to gain access to a nest box and will actively seek out nest 

boxes (Cooper and Appleby, 1995; 1996). The occurrence of a high proportion 

of falls compared to controlled movements near the nest box may be heightened 

in commercial systems due to laying hens tending to show a preference for 

certain nest box positions (Riber, 2010). However, it is crucial to understand 

whether the nest box is a hazardous area in commercial systems. The current 

study was carried out in a system containing 200 birds and 4 group nest boxes. 

Whether the same behaviours would be seen on a farm with 4,000 birds and 80 

group nest boxes is not known, however safe access to nest boxes is important 

in all systems.  

It may also be that areas with perches (e.g. the 3rd perch and 2nd perch) 

show up frequently because they are difficult to grip, or it is difficult for hens to 

judge the distance between them. The vision of laying hens may be poor in dim 

light conditions due to the flattened shape of the hen eye  (Prescott et al., 2004). 

Metal perches were present in the system and were dark in colour. Black perches 

have been shown to increase latency to jump in laying hens compared to wooden 

or white perches and it is possible metal perches may have a similar effect, 

particularly in dark conditions (Taylor et al., 2003). One study showed that hens 

changed perches more often at night when white perches were present, 

suggesting that white perches are more visible to the hens in the dark (Chen and 

Bao, 2012). 
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Some falls around the nest box were from pushes and interactions with 

other conspecifics. A previous study had shown that lower rank hens received 

more aggressive pecks in the hour before egg laying compared to the hour that 

followed egg laying (Freire et al., 1998). They were also uprooted from their 

chosen nest more frequently in the 30-minutes before oviposition compared with 

other hens (Freire et al., 1998). Future studies should aim to make access to the 

nest boxes easier and facilitate the smoother transition between other areas of 

the system and the nest box. 

Prediction 3 was: downward movements would result in more falls 

compared to upward movements. This was confirmed in the study and 

corroborated results found previously (Moinard et al., 2004a; Moinard et al., 

2004b). 

 

3.4.2. Reason for fall 

Different navigation pathways resulted in different types of falls; either 

misses, slips, pushes or interactions. This difference in fall behaviour suggests 

that some destinations are more difficult to reach (misses) and others result in a 

greater amount of slips or pushes. There could be several reasons why these 

areas are difficult to reach. It could be that they are associated with high numbers 

of movements and the high bird volume could lead to a higher likelihood of falls. 

It could also relate to the structure that hens are trying to reach. It is known that 

falls from perches are more frequent than falls from any other structures 

(Campbell et al., 2016a).  
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Landings on perches were expected to have a greater number of falls 

compared with landings on tiers and the litter. Although prediction 4 stated that 

landings and take-offs from perches would result in a greater percentage of falls 

was true in the instance of perch vs litter, it was not true of perch vs tier, with 

landings on tiers having a higher percentage of falls compared with landings on 

perches. One reason for this could be that landing on perches may be more 

controlled as hens ready themselves more to jump to perches compared to when 

they jump to tiers. Also, hens may have less grip on tiers than they do on perches. 

Tiers, particularly the edges, can become slippery due to faecal build up which 

means that it is more difficult for hens to grip and are therefore are more likely to 

have falls. However, this did not match previous research where the addition of 

extra tiers (platforms) reduces the number of falls compared to a system without 

platforms (Stratmann et al., 2015a). Interestingly, when movements end on the 

litter during dusk, they usually are falls. This suggests that during dusk hens do 

not usually want to move towards the litter, and when they do, it tends to be 

unintentional. This is supported by previous studies were hens move up during 

dimming to roost at night (Stratmann et al., 2015a; Brendler and Schrader, 2016). 

 

3.4.3 Time of day 

The dusk period had the highest percentage of falls (focal hen 

observations) and the highest number of falls per hour per 200 birds (pen level 

observations) as predicted (prediction 5 – that a greater percentage of falls 

compared with total movements would occur at dawn and dusk). Dawn had the 

second lowest percentage of falls (focal hen observations) but the second highest 

number of falls per 200 birds (pen level observations). This suggests that dusk 
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and dawn are the most hazardous time points of the day, due to greater general 

activity, and that night-time is not as hazardous, simply because of the very low 

number of movements that occur during the night.  

This shows that birds struggle with movements at these times. Movements 

during the dimming period have been found in previous studies to be difficult for 

birds to navigate (Tanaka and Hurnik, 1991; Taylor et al., 2003; Stratmann et al., 

2015a). The high proportion of falls could be due to the inability of the birds to 

see accurately during these times as well as the high bird traffic during dusk when 

all individuals are trying to reach the optimal roosting position on the top perches 

(Taylor et al., 2003; Brendler and Schrader, 2016). The high proportion of falls 

when lights are dimmed and during lights off would suggest that birds are unable 

adequately to see structures due to limited lighting.  

Although the data suggest that a higher proportion of falls occur during 

night and dusk compared to during the day it is important to understand that much 

more movements occurred during the daylight period compared to night and 

dusk. The night is a prolonged period and there are not many controlled 

movements at night as hens are all on the system roosting. Dusk is a short 20-

minute period and within this time there are controlled movements and falls. 

During dusk, there is a substantial number of falls within a short period. The 

dimming period that is needed for hens to successfully transition to perches at 

night has been discussed in the literature, with one study by Stratmann et al. 

(2015a) looking at the number of falls birds have during this period, within multi-

tier systems.  
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3.4.4 Health parameters 

It was thought that hens with poor health, such as increased keel bone 

fractures, poor foot pad health and poor feather condition would have a higher 

percentage of falls compared to healthy hens - prediction 6. The results 

contradicted this, as there were no differences found between any of the health 

parameters and the percentage of falls between hens. With regard to feather 

cover, one reason could be that overall cover was used in the current study and 

not wing feather cover as in the previous study (LeBlanc et al., 2016). Keel bone 

fracture scoring was performed using palpation and therefore, hens were classed 

as either having a keel bone fracture or not. Each hen may have been at different 

stages of fracture healing and this may affect the level of pain in each bird, and 

therefore influence mobility to a variable extent (Nasr et al., 2013a; Nasr et al., 

2015). Acute pain in humans is associated with nociceptive and neuropathic pain 

whereas chronic pain is usually neuropathic (McCormick and Law, 2016). 

Furthermore, calves that have been castrated show different behaviours in the 

moments after castration compared with 48-hours after castration, indicating that 

acute and chronic pain can have different behavioural effects (Molony et al., 

1995). This is like the outcome for footpad lesions, as hens were classed as either 

having foot pad dermatitis or bumblefoot or not, the effect of having severe 

lesions may be masked.  

 

3.4.5. Limitations of the study 

One of the main limitations of this work is all movements in a navigation 

path are not picked up due to the accelerometers only recording data when the 

pre-set threshold is exceeded. Movements (including falls) that occur generating 
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accelerations below the pre-determined threshold will not be available, and 

therefore the true percentage of falls in each navigation path is unknown. A 

practical limitation of this study is the need to watch individual hen behaviour 

through videos, which is very time-consuming. No algorithms or machine learning 

techniques were used to make any conclusive findings from this data.  

It should also be noted that only a small sample of focal hens was used to 

collect the data. This may be important if each hen has individual behavioural 

responses linked to personality traits and respond to pain and stressful situations 

differently (Cockrem, 2007). As in Chapter 2; individual hens were nested within 

pen in the statistical model. Therefore, it may be that the same hens are falling 

within the same navigation pathways. Even though including hen nested within 

pen in the model should solve this issue, it is still worthwhile and important to 

note that this can influence the validity of the results.   

Another important point is that when analysing the number of movements 

within the system (non-accelerometry data – observations on a pen level) it was 

only carried out in one pen at one time point. For the data to be more 

representative, it would be important to analyse data over different pens and 

across different time points. It is important to note that this was not done in the 

current study due to time restraints when watching videos. The data present here 

provides an indication of the navigation pathways that are used by hens and the 

number of times these pathways are used at different times of day, but it is 

important to remember the frequency of use may be different at different ages or 

in different pens. In the same analysis, upward and downward movements were 

grouped together. In future, it would be beneficial to separate the direction of the 

movement to understand whether different pathways are being used more for 
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upward or downward movements, again, this was not done in the current study 

due to timing restraints but it would be recommended that this be done in future 

studies.   

 

3.5. Conclusions and future work 

The current study has evaluated system specific navigation paths that 

represent hazards leading to falls. General principles of the nature of the 

navigation path and the time of the transition have been established. Due to the 

nature of the study, it was difficult to causally relate patterns of utilisation of the 

system with health parameters. However, such studies could and should be 

performed in the future.  

Studies such as this, providing data on hazards within systems, is crucial 

for the development of custom-built multi-tier systems to allow laying hens the 

optimal safe means to transition between different tiers. Further studies should 

focus on controlling lighting regimes to determine whether there are fewer falls 

when the dimming period is extended. Most falls in the night period occurred 

around one hour after lights off, which would suggest the hens find it difficult to 

obtain an optimal roosting location during the 20-minute dimming period 

provided. Modifications should be made to the housing system, particularly 

around the nest box area and the top tier to reduce falls and potentially keel bone 

fractures. 

System specific navigation pathways have been identified that represent 

hazards in leading to falls. Also, general principles of the nature of the pathway 

and the time of the transition have been established. Because of the nature of 
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this study, it was difficult to causally relate patterns of utilisation of the system 

with health parameters, however, such studies could and should be performed.
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Chapter 4 

Modifications to a multi-tier housing 

system: Effects on health and 

behaviour



 

145 
 

4.1. Introduction  

Keel bone fractures are a huge welfare problem in the laying hen industry 

with several studies indicating keel bone fractures are painful (Nasr et al., 2012b; 

Nasr et al., 2013a; Nasr et al., 2015). One study on a small sample of hens 

indicates that those with keel bone fractures consume more feed and water (Nasr 

et al., 2013b), meaning that potentially keel bone fractures can be an economic 

issue as well as a welfare one. The potential welfare and economic impacts are 

enormous due to large number of laying hens housed in commercial farms 

globally.   

Multi-tier systems were first introduced as an alternative to the cage and 

single-tiered systems. Due to the addition of elevated perches and tiers, there is 

an increased risk of falls in these systems (Gregory and Wilkins, 1996; Moinard 

et al., 2004a), which has been linked in previous studies to keel bone fractures 

(Wilkins et al., 2011). Chapter 2 in this thesis has also discussed how higher 

heights can results in higher levels of summed acceleration vectors (AVs) at the 

keel, meaning potentially they can cause higher levels, or probability, of keel 

bone fractures.  

To reach essential resources, such as food and drink, hens must navigate 

the multi-tier system using the perches and tiers provided. The complex 

movements required may be difficult for some hens, depending on previous 

experience during rearing (Gunnarsson et al., 2000). Keel bone fracture 

prevalence of over 90% has been detected in systems with elevated perches 

(Wilkins et al., 2011). However, elevated perches are provided because laying 

hens prefer to roost in high areas and preventing access to perches can cause 

frustration behaviours in hens (Olsson and Keeling, 2000; Brendler and 
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Schrader, 2016). Elevated perches in multi-tier systems are crowded at night and 

used frequently during daytime (Brendler and Schrader, 2016). Perches over 

90cm are the preferred height for roosting and the number of birds resting on 

perches with heights of 80cm or below was not different from those resting on 

the floor (Brendler et al., 2014). It has been shown that hens prefer to fill up the 

top perches and tiers when roosting at night, leaving lower levels empty 

(Schrader and Müller, 2009).  

The addition of extra perches has the potential to limit overcrowding due 

to increased space availability for the hens to perch, reducing displacement from 

perches. It has been shown that the length of time spent flying and the latency to 

balance when moving from one perch to another were both reduced when a 

landing perch had a gap of 30cm between two obstructions compared to a gap 

of 15cm (Moinard et al., 2005). This suggests that increasing perch space may 

potentially make movement easier for hens because they may have a wider area 

without any interactions with conspecifics. Although there were no clear 

differences between the number of falls and the distance between obstructions 

(Moinard et al., 2005), increasing perch space may still have the potential to 

reduce falls on-farm compared to a controlled setting. If falls resulting from 

displacement from perches are limited, this may reduce the prevalence of keel 

bone fractures because as it is thought the collisions with structures in the system 

lead to keel bone fractures due to the keel bone being in a prominent and 

vulnerable location anatomically (Gregory and Wilkins, 1996). However, the 

addition of two extra elevated perches, as well as four extra non-elevated 

perches, did not show any difference in keel bone fracture prevalence at the end 

of lay in a Bolegg Terrace multi-tier system (Stratmann et al., 2015a). 
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Nevertheless, the addition of a greater number of elevated perches, instead of 

non-elevated perches may show a significant effect at reducing keel bone 

fracture prevalence during lay and has yet to be studied.  

As well as the addition of perches on the top tier, placement of perches 

around essential resources, such as nest boxes, may help to reduce 

overcrowding; reducing falls, collisions and keel bone fractures. Results from 

Chapter 3 of this thesis indicate that there are a high proportion of falls compared 

to controlled movements around the nest box in a Bolegg Terrace multi-tier 

system. Therefore, providing an extra perch around the nest box may facilitate a 

new movement path, potentially reducing falls and subsequently keel bone 

fractures. However, a potential problem when adding extra perches into a system 

is the possibility of an increased prevalence of keel bone deviations because 

deviations are thought to be caused by pressure on the keel bone (Warren, 1937; 

Harlander-Matauschek et al., 2015).   

As well as the addition of perches, and placing perches around essential 

resources, perch cross-sectional shape can affect perching ability (Scholz et al., 

2014). Round, metal perches are the most common perch design in a multi-tier 

system, but round perches have been shown to have fewer safe landings 

compared with mushroom-shaped perches (Scholz et al., 2014). Provision of 

mushroom perches in a commercial system may reduce the incidence of falls 

and collisions, potentially reducing keel bone fracture prevalence. Previous 

studies have looked at mushroom-shaped perches and have found that the 

contact area of the keel bone is greater compared with round perches (Pickel et 

al., 2011). However, the mushroom-shaped perches used had a greater width 

compared with the round perches and round perches of greater widths were not 
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compared. Therefore, it cannot be concluded with certainty whether the increase 

contact area was due to the perch shape or width. The addition of mushroom-

shaped perches may potentially decrease keel bone deviations by having a larger 

surface area for a more even pressure distribution (Pickel et al., 2011). In the 

same study, standing hens generally had lower peak forces on their foot pads on 

mushroom-shaped perches compared with round perches (Pickel et al., 2011).  

Other furnishings within multi-tier systems have been studied in previous 

research such as platforms and ramps (Stratmann et al., 2015a; Heerkens et al., 

2016a). Ramps allow hens to walk instead of jump or fly between tiers, this can 

reduce the likelihood of falls within the system (Stratmann et al., 2015a). Previous 

studies have looked at movements from the lower tier to the litter in the absence 

and presence of ramps (Pettersson et al., 2017a), and falls and collisions during 

dusk with ramps compared to no ramps (Stratmann et al., 2015a). One study 

examined general movements within a multi-tier system between the system (tier 

and perches) and litter (Campbell et al., 2016c). Ramps have been shown to 

reduce keel bone fracture prevalence throughout lay (Stratmann et al., 2015a; 

Heerkens et al., 2016a) and have been shown to improve foot pad health 

(Heerkens et al., 2016a). It is hypothesised that the addition of ramps to a 

commercial farm will improve keel bone fracture prevalence and foot pad 

disorders. Ramps may also help improve movements within the system by 

allowing hens to escape negative interactions more readily, potentially reducing 

falls and allow less confident hens to walk within the system instead of jumping 

or flying. 

Other health parameters; foot pad health, weight and feather condition 

were also monitored because it is important when making alterations that not only 
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keel bone damage is assessed but the whole health of the hen so that 

conclusions can be drawn regarding the suitability of these modifications to laying 

hens. It is particularly important to test footpad lesions because the addition of 

perches can be detrimental to footpad health and footpad lesions can be painful 

(Gwatkin, 1940; Wang et al., 1998; Gentle et al., 2001; Shepherd and Fairchild, 

2010; Heerkens et al., 2016b). As the addition of extra furnishings and ramps can 

affect overall activity, it is important to determine whether bone strength 

increased in the treatments because exercise in hens improves bone strength 

(Casey-Trott et al., 2017).  

 

4.1.1. Aims and predictions 

The main aim of the current study was to modify a standard multi-tier 

system to examine the affect in reducing keel bone fractures prevalence. 

Modifications were based on results obtained in Chapter 2 and 3 and using 

information from previously published studies on structures that allow hens to 

move more readily or gain more controlled movements. The treatments used are;  

1. C - standard multi-tier system (control) 

2. EP – all standard perches are replaced by mushroom-shaped perches 

and there are extra mushroom-shaped perches on the top tier 

3. M – all standard perches replaced with mushroom-shaped perches 

4. NBP - an extra standard perch around the nest box 

5. R - a ramp that runs transverse once in every two multi-tier units in the 

system. 

 

There were multiple predictions of the study and they are listed below:  
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1. The main prediction is that all modifications will result in a decrease in 

keel bone fracture prevalence.  

2. It is also predicted that the addition of mushroom perches would 

reduce footpad lesions.  

3. The addition of extra perches on the top tier of the system will increase 

perching on the top tier of the system, summed acceleration vectors 

(AVs) on the keel and body would be higher in the non-modified multi-

tier system compared to the modified systems.  

4. Bone strength will increase in all modified treatments, apart from 

treatment 3 with standard perches replaced by mushroom-shaped 

perches.  

 

4.2. Methods 

4.2.1. Animals and husbandry 

The study was carried out on a commercial Rondeel® laying hen farm. 

There was a total of 36,000 Lohmann brown Lite laying hens and they were 

divided into sub-flocks of 3,600 hens. Each sub-flock represented an individual 

pen for data collection. Figure 4.1 shows the layout of the pens. All animals were 

housed on the same farm and they experienced the same management 

conditions. The indoor area comprises a Bolegg Terrace aviary system and the 

outdoor area has an artificial grass area with raised platforms (winter garden) that 

leads onto a smaller woodchipped (outside) area. The Bolegg Terrace has a 

central belt system, whereby the manure belt and nest boxes are in the centre of 

the system. Stocking density was 7 hens/m2 and this included the inside area 

and the winter garden but did not include the outside area. Food and water were 
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provided within the system and water was also provided in the outside area. 

Standard layer mash was provided, and corn was scattered in all pens once per 

day. The average light reading on the litter in the centre of the system was 545 

lux at the outer-facing side of the system and 6 lux at the inside of the system. 

The outer-facing side of the system was very bright due to the large pop-holes 

providing a stream of natural light. Mortality at end-of-lay was 6%. Natural 

ventilation in the system was provided via curtains that would open and close 

automatically depending on weather conditions. Hens were reared as pullets in 

a system with access to perches and raised structures and transported to the 

Rondeel® at 19 weeks. Rondeel® eggs have been awarded highest star rating 

in the Netherlands through Beter Leven “better living” but the eggs are sold as 

barn eggs as the outdoor area does not meet the requirements needed to be 

called free-range.  

 

 

 

Figure 4.1: Schematic of Rondeel® split into 10 different compartments 

operated by Vencomatic, the Netherlands 

 

4.2.2. Treatment groups 

Four treatment groups and a control were used in the study (Figure 4.2).  
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1. The control (C) (section 5 and 6; Figure 4.2)  

2. Extra mushroom-shaped perches on the top level of the system and 

perches in the system changed from standard round perches to 

mushroom-shaped perches (EP) (sections 1 and 8). A cross-section of the 

mushroom-shaped perch design used can be seen in Figure 4.3.  

3. Mushroom-shaped perches (M) in place of standard round perches 

(sections 2 and 7; Figure 4.3) 

4. Extra perch in front of the nest box area (NBP) (sections 3 and 9; Figure 

4.2) 

5. Ramps (R) that run the height of the system, beginning on the lower tier 

and moving towards the top tier. Ramp angle was transverse to the system 

(45˚and 20cm wide. (Sections 4 and 10; Figure 4.2). A photograph of the 

ramp used can be seen in Figure 4.3.  

 

All perches and ramps were made of metal and all other furnishings in the 

system were the same. In the current study, we were limited to an n=2 for each 

treatment group because the CASE industrial partner had experimental 

requirements beyond our control and wanted to maximise the number of 

treatments in our groups, hence the reasons for the small replicate number. All 

modifications were installed before pullets were placed into the pens. The 

mushroom-shaped perches were used in the study and the addition of ramps and 

an extra perch around the nest box were added because of the results from 

Chapter 2 and 3.   
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Figure 4.2: Schematics taken from a transverse view of the modification pens. 

1, 3, 5 = C, M and R groups. 2 = EP group and 4 = NBP group (see figure 4.1). Blue 

circles represent perches, Orange rectangles represent drinkers and grey rectangles 

represent feeders. The ramp treatment group has a ramp running transverse to the 

system. 

C = Control, EP = Extra perches, M = Mushroom perch, NBP = Nest box perch, R = 

Ramp 

 

1, 3, 5 2 
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Figure 4.3: Cross-section and measurements of mushroom-shaped perch (left). 

Photograph showing the way the ramp was placed in the system 

 

4.2.3. Keel bone damage assessment 

One-hundred and fifty birds were palpated per pen, except at 83 weeks of 

age when only 50 birds were palpated per pen due to time constraints beyond 

our control. Different birds were caught and scored at each time-point because it 

would not have been feasible to re-capture the same hens at each time point. 

The same individuals were used for foot scoring and weighing because a sample 

of hens from each treatment were already caught and catching new hens was 

not needed. Keel bone damage was assessed by palpation, where the thumb 

and forefinger are moved along the sternum of the hen feeling for any deviations 

(bends of the bone) and fractures (protrusions, callus formation and sharp edges) 

(Wilkins et al., 2004; Casey-Trott et al., 2015). There were 5 palpation time points 

- when placed into pens at 19 weeks of age (150 birds per treatment), 25 weeks 

(150 birds per treatment), 33 weeks (150 birds per treatment), 48 weeks (150 

45mm 

45mm 
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birds per treatment) and 83 weeks (50 birds per treatment) of age. The lights 

were dimmed, and birds were caught from all levels of the system in the morning. 

Once captured, birds were placed into crates and taken out of each pen for 

palpation. It was only possible at 25 weeks to be blinded to treatment group due 

to limitations from other data being collected at the same time (video and 

accelerometry data), it was important not to disturb the hens in these groups in a 

way that could potentially affect the validity of the results collected. Palpations on 

birds at 19 weeks of age were not blinded because hens were being placed into 

the pens and were palpated directly from the transport crates. Fractures were 

recorded using a severity scale 0= no fracture, 1= small fracture and 2= large 

fracture (Wilkins et al., 2004), deviations were given scores 0= no deviation, 1= 

slight deviation (<0.5cm curvature from straight plane) and 2= severe deviation 

(>0.5cm curvature from straight plane) (Heerkens et al., 2016b). In each instance, 

the deviation only included a bend in one direction from the straight plane of the 

keel bone.  

 

4.2.4. Foot scoring 

Foot pads were scored for dermatitis, bumblefoot and hyperkeratosis in 

the same hens selected for palpation and was carried out at 33 (150 per pen; 

dermatitis and bumblefoot only), 48 (150 per pen) and 83 (50 per pen) weeks of 

age. Hens were not foot scored at 19 weeks of age as time was limited because 

hens were being removed from the transport crates and keel bone fractures 

prevalence determination was the main aim of this study. Due to timing issues, 

hens were not able to be foot scored at 25 weeks of age. Foot pads were scored 

for footpad dermatitis (FPD) using a scale ranging from 0 = no FPD to 4 = severe 
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FPD, a visual scale was used to score FPD (Figure 4.4) (Butterworth, 2013). 

Bumblefoot was scored at 33, 48 and 83 weeks of age using a scale ranging from 

0 = no bumblefoot to 3 = severe bumblefoot, adapted from the visual scale by 

(Kjaer et al., 2006). and hyperkeratosis (proliferation of the skin on the foot pad) 

(Weitzenbürger et al., 2006) was only scored at 48 and 83 weeks of age.   

 

 

4.2.5. Plumage scoring 

Feathers were scored at 25, 33 and 48 weeks of age. One-hundred and 

fifty birds from each pen were individually feather-scored by walking through each 

pen and comparing with photographs of different body parts from laying hens 

sourced from Tauson et al., 2005. Birds were not handled during feather scoring. 

The feather scoring system was: 1 = severe feather damage, 2 = moderate 

feather damage and 3 = mild feather damage and 4 = almost perfect feather 

coverage. Only the neck, back, wings and tail were scored as these are the 

sections of the bird that was easy to score when walking through the pen without 

disturbing the birds’ normal behaviour. A previous study has found this process 

to be similar in accuracy to feather scoring individual birds by handling them 

(Kjaer et al., 2011).  

 

Figure 4.4: Schematic of foot pad dermatitis. Left to right (0-4), no FPD to severe 
dermatitis. 
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4.2.6. Body mass 

The same 150 hens used for keel bone assessment and foot pad scoring 

were weighed at 33 and 48 weeks of age. Hens were weighed with a weighing 

scales, where they were suspended upside down. Each hen was in the weighing 

scales for approximately 5 seconds. The scales were accurate to 3 decimal 

places (0.001kg).  

 

4.2.6. Litter deterioration 

At 33 and 48 weeks of age, litter quality was scored according to the 

quality of the litter at the time. Litter was scored at 6 different locations within 

each pen at 33 weeks and 7 locations at 48 weeks of age. Score 0 = dry and 

sand-like textured litter, score 1 = <10% damaged litter (wet, hard or clumped 

together), score 2 = 10-50% litter damage and score of 3 = >50% damaged (wet, 

hard or clumped together). The litter scoring system was one which was 

developed by the industrial partner, Vencomatic, and is commonly used in 

practice.  

 

4.2.7. Perching behaviour 

Due to only one measurement per time point being created, the data were 

not statistically analysed. At five different time points throughout the day, with 

observations starting between 0600-0700hr, 0900-1000hr, 1200-1300hr, 1700-

1800hr and 2200-2300hr birds were counted on perches in each of the pens by 

two observers. Counts were carried out between 30-35 weeks of age and 45-50 

weeks of age, twice for each of these time points. The method of counting birds 

was planned, discussed and practised between both observers beforehand for 
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consistency. Birds were counted along perches in 3 sections in each pen. The 

1st, 6th and 12th section in each pen was chosen. The 1st section was the first 

when entering the pen from the walkway, the 6th section was in the middle of the 

pen and the 12th section was a section closest to the rear of the pen. Birds were 

counted first along the outer edge, near the pop-hole and then the observer 

moved around the pen and counted the birds on perches on the inside of the pen. 

Top tier perches were any perch above the nest box, the middle perches were 

any perch at the level of the nest box and the lower perches were any perch 

below the nest box level. The number of hens on the top tier during the night 

(2200-2300hr) may be underestimated due to not all perches being visible when 

counting and due to the large number of birds on the top level during the night. 

 

4.2.8. Accelerometer placement  

At time point 30-35 weeks of age (8 hens per pen) and 45-50 weeks of 

age (7 hens per pen) focal hens were selected to wear accelerometers. The 

same type of vest was used as those described in Chapter 2 and 3 (brown in 

colour for this study). Hens were caught from the litter and on each level of the 

system. Only hens with no or minor (score of 1) keel bone fractures, slight 

deviations, small or no foot pad lesions, perfect or near perfect feather condition 

(score 3 or 4) were chosen and with as close to average weights as possible (1.7-

2.1kg). This was so that focal hens were as similar as possible and that they 

would not be uncomfortable wearing the vest. Sixteen (at time point 1) or fourteen 

(at time point 2) hens were attached with accelerometers at one-time point. If the 

accelerometer fell out of the vest or the vest shifted under the wing the data were 

not used, to make up the number more hens were fitted with accelerometers.  
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Accelerometers were programmed to produce an output when a pre-set 

threshold of 12g-force (g) on the keel and body sensor were reached. Attached 

to the body sensor was a location device (Tile®) using electrical tape. A Tile® is 

advertised as a device to allow you to accurately locate your keys, bag or any 

other personal item. The Tile® can be activated from a smartphone or tablet and 

a map appears, using Bluetooth. Once connected to the Tile®, Bluetooth will 

show the last place the Tile® was and then update to the current location of the 

Tile®. This reduces the time needed to catch the focal birds. All birds were 

recorded for approximately one week. For analysis 3.5 days were used to allow 

comparisons to be made between groups because the accelerometers were on 

the hens in different pens for slightly different lengths of times. Therefore, it was 

important that the same length of time for each pen was compared. Due to 

problems with the vest and the accelerometer, Pen 5 (control) only has data for 

7 hens at time point 1.  

 

4.2.9. Tibia radiological and biomechanical analysis 

Twenty hens per pen (200 hens in total) were culled at the end-of-lay (83 

weeks) and their left and right tibias were removed by dissection, with only the 

left tibias being used in the analysis. Tibias were used as a surrogate for overall 

bone strength due to their relatively uniform shape and cross section. The close 

relationship between keel and tibia properties has been shown previously 

(Toscano et al., 2013). Hens were weighed, keel bones were checked for 

fractures through palpation and footpads were checked for abnormalities before 

dissection. Bones were then frozen at -20˚C until analysis.  
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Before analysis, the bones were defrosted at room temperature and a HB 

pencil was used to mark the centre line of the bone. Three tibiae at once were 

placed in a dual X-ray absorptiometry (DEXA) machine (Lunar PIXImus 

densitometer, Lunar Corp) and a metal wire was used to indicate the central line 

of the bone that was previously marked. Data were automatically generated from 

the machine, with bone mineral density (mg/cm2), bone mineral content (mg/cm) 

and the area being recorded (mm). 

The same bones used for DEXA measurements underwent biomechanical 

testing under three-point bending for their breaking strength using an Instron 

mechanical testing frame (Instron 6022, Instron, UK), fitted with a 10kN load cell. 

Before analysis, the horizontal and vertical diameters at the centre line of each 

bone were measured using callipers. The length of the tibia was measured to the 

closest mm. The midpoint of the tibia was marked previously with a HB pencil to 

ensure that the same point of the tibia was measured in all tibias. The tibia was 

placed on the machine with a supporting bridge gap of 4cm and the impactor at 

the midline perpendicular to the bone. The bone was tested to failure, and a 

load/deformation curve was generated, with maximum (breaking) load, extension 

at maximum load, and elastic modulus recorded. Following removal from the 

apparatus, the inner diameters of the bone were measured using callipers. The 

inner thickness of the cortical bone was measured at the top and bottom (parallel 

to the direction of load), with the average calculated, and the left and right 

(perpendicular to the direction of load) with the average calculated, to get the 

cortical bone thickness in both the vertical and horizontal direction. This was to 

determine the thickness of the structural bone bone “cylinder” (the medullary 

bone is non-structural) so that the values could be entered into the computer and 
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the outputs of material properties, stress, strain and Young’s modulus, could be 

generated automatically.  

Data collected was the maximum load (N), which was the force needed to 

break the bone; the energy at maximum load (KJ), which was the energy needed 

to break the bone; and the stress (MPa), which had considered the material 

property of the bone and the force needed to break the bone having accounted 

for the bones size and dimensions. Stress was measured using the following 

equation:  

Stress = (load*span*external RA/2) / 4(π(external RA3 *external RB)-(internal                                                                                                                                                                    

RA3*internal RB)) 

 

Where:  

• external A is the outer radius of the bone in the direction of load,  

• internal A is the inner radius of the bone in the direction of load,  

• external B is the outer radius of the bone perpendicular to the direction 

of load 

• internal B is the inner radius of the bone perpendicular to the direction of 

load. 

 

4.2.10. Statistical analysis 

Statistical analysis was carried out in R using R studio as the interface 

(RStudio Team, 2016; R Core Team, 2017). Health parameters (keel bone 

fractures and deviations, footpad dermatitis, bumblefoot, hyperkeratosis) scores 

were pooled to represent either presence or absence of deformity. The data were 

then analysed using a generalised linear model with family specified as binomial. 
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Treatment (factor) and age (factor) were included as fixed effects and when 

significant (P>0.05) the interaction between treatment x age was included in the 

model. The pen was included as a random factor, with pen as the experimental 

unit. For keel bone fractures and deviations, the average (of the score between 

0 and 1 for 150 hens placed at 19 weeks of age) keel bone fracture and keel 

bone deviation presence were used in the respective model as a baseline. This 

was not done for any of the other measurements because of timing issues 

making it only possible to test keel bone fracture prevalence (the main factor 

being studied) because hens were being removed from transport containers at 

the time measurements were taken. 

Body mass (kg) was analysed using a linear mixed effect model with 

treatment and age as fixed effects and pen as a random factor. Pen was the 

experimental unit.  

All parameters from the tibia analysis were measured using generalised 

linear models with treatment (factor), keel bone fractures status (0,1,2: factor) 

and keel bone deviation status (0,1,2: factor) as fixed effects. Body mass of hens 

was kept in the model as a covariate. If keel bone fracture or keel bone deviation 

prevalence reached a tendency (P<0.1), they were left in the model. The data 

were checked for normality and when it did not fit normality, the data were log 

transformation before analysis. Feather cover was analysed as either perfect or 

not using a generalised model with a binomial distribution. Treatment (factor) and 

age (factor) were in the model, with pen as a random factor (making pen the 

experimental unit).  

For analysis of the accelerometer data, the average of all the maximum 

summed acceleration vectors (AVs) on the keel and body for each bird was 
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generated to give one point per bird per age (2 ages). For both sensors; treatment 

(factor), age (factor), body mass (continuous) and the number of accelerometer 

outputs recorded (continuous) from each hen were included as fixed effects and 

pen was included as a random effect (pen was the experimental unit). Data were 

first log transformed and analysed using a generalised linear model in R. 

In all cases, when modelling optimisation was needed, the optimx package 

was used to deal with any convergence issues in the dataset. Data are presented 

as lsmeans ± SE unless otherwise stated  (Lenth, 2016). In all models an 

ANOVA, using the car package  (Fox and Weisberg, 2011), was used to test the 

significant effects of all effects in the model. Dunnett’s post-hoc test in the 

multcomp package in R (Hothorn et al., 2008) was used to test for significance 

between each treatment group (EP, M, NBP, R) and the control (C). When using 

multiple comparisons to test the age x treatment effect, the lsmeans package 

specifying multivariate comparison, “mvt” was used as it is specifically designed 

to be used with multivariate models and be less conservative than the Bonferroni 

method (Lenth, 2016). For binomial models, overdispersion was checked using 

the blmeco package (Korner-Nievergelt et al., 2015). In all linear models, model 

fit, and normality was determined using histograms and QQ-plots of the residuals. 

Perching behaviour is shown as descriptive statistics only with means ± 

standard deviations presented. An average for each pen per time point was 

created and then the average of both time points was calculated with the degree 

of variation taken as the difference between the two-time points (called the 

standard deviation here). To calculate the number of hens per perch; the number 

of hens that were seen were divided by the number of perches on each level of 

the system.  
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4.2.11. Ethical statement  

The study was approved by the University of Bristol Animal Welfare Ethics 

Review Body: UB/16/075. 

 

4.3. Results  

All health parameter results can be found in Table 4.1 with results showing 

the prevalence associated with each age and treatment category, as well as 

whether any age x treatment interaction was present.  
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Table 4.1: Least square means of weeks of age effects and treatment effects for each health parameter, the test statistics and p 

values are also given. 

Health 
parameter 

Week of age 
  

Treatment 
   

Test statistic and 
P values 

  

 
25 33 48 83 C EP M NBP R Treatment 

x age 
Treatmen
t 

Age 

Keel bone 
fracture 

14.9 
± 0.9 

30.5 ± 
1.2 

64.0 ± 
1.2 

87.5 ± 
1.5 

44.0 ± 
2.2 

51.3 ± 
2.0 

53.8 ± 
2.2 

49.7 ± 
2.1 

49.8 ± 
2.0 

NS W=9.91, 
P=0.0420 

W=10,23.34
, P<0.0001 

Keel bone 
deviation 

7.0 ± 
0.7 

11.6 ± 
0.8 

13.9 ± 
0.9 

16.8 ± 
1.7 

11.0 ± 
1.0 

10.6 ± 
1.0 

11.3 ± 
1.0 

15.3 ± 
1.3 

11.3 ± 
1.0 

NS W=10.64, 
P=0.0310 

W=50.66, 
P<0.0001 

Foot pad 
dermatitis 

NA 27.6 ± 
1.4 

30.7 ± 
1.4 

23.3 ± 
2.0 

26.0 ± 
2.3 

41.4 ± 
2.8 

33.4 ± 
2.6 

22.3 ± 
2.1 

16.4 ± 
1.8 

NS W=67.83, 
P<0.0001 

W=10.48, 
P=0.0053 

Bumble foot NA 3.6 ± 
0.5 

10.1 ± 
1.0 

4.2 ± 
1.0 

4.0 ± 
1.0 

10.3 ± 
1.9 

5.9 ± 
1.4 

4.5 ± 
1.2 

4.1 ± 
1.2 

W=19.15, 
P=0.0141 

W=2.80, 
P=0.5921 

W=2.00, 
P=0.3671 

Hyperkeratosi
s 

NA NA 67.6 ± 
1.5 

61.4 ± 
2.4 

59.2 ± 
3.6 

61.8 ± 
3.5 

60.5 ± 
3.6 

68.0 ± 
3.3 

72.6 ± 
3.2 

W=13.88, 
P=0.0077 

W=10.40, 
P=0.0343 

W=4.55, 
P=0.0329 

Plumage 
condition (% 
with perfect 
feather score) 

98.2 
± 0.4 

97.9 ± 
0.5 

79.5 ± 
1.1 

NA 96.0 96.3 94.0 93.6 94.4 NS W=16.09, 
P=0.0029 

W=299.47, 
P<0.0001 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, NBP = Extra nest box perch and R = Ramp 

NA = data were not collected for this parameter
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4.3.1. Keel bone fractures 

There was an effect of treatment on keel bone fracture prevalence 

(W=9.91, P=0.0420) (Figure 4.5). Overall keel bone fracture prevalence was 

lower in the standard multi-tier systems (C) compared to the mushroom-shaped 

perch treatment (M) (Z-value=2.974, P=0.0102), extra mushroom-shaped perch 

(EP) (Z-value=2.489, P=0.0425) and there was a tendency with the extra nestbox 

perch (NBP) (Z-value=2.162, P=0.0963). Keel bone fracture prevalence 

increased with age (Wald=1023.24, P<0.0001). If the baseline level were to be 

removed from the model (percentage of fractures upon placement into the 

system at 19 weeks of age), there was no significant difference in keel bone 

fracture prevalence and treatment. When looking at the raw data for overall 

fracture prevalence, EP pens (45.0% and 39.3%) the M pens (41.1% and 44.7%), 

and the NBP pens (41.5% and 43.6%) always had a higher keel bone fracture 

prevalence compared with the C pens (38.6% and 39.2%). However, the raw 

results only showed a slight difference.  
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Figure 4.5: The average prevalence (%) of keel bone fractures across treatment 

groups. Data are presented as lsmeans (± SE). 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, 

NBP = Extra nest box perch and R = Ramp  

*** = P<0.0001, **=P<0.01, *=P<0.05, . =P<0.1: different from the control 

 

4.3.2. Keel bone deviations 

There was not an interaction effect between treatment x age on keel bone 

deviations. There was an overall effect of treatment of the prevalence of 

deviations (W=10.64, P=0.0310). The NBP treatment had higher levels of keel 

bone deviations compared with the control group (Z-value=, P=0.041) (Figure 

4.6). The raw results show that the NBP treatment deviation prevalence per pen 

was higher (14.6% and 12.8%) compared to the C group (10.6% and 12.2%). If 

the baseline level (percentage of deviations upon placement into the system at 

19 weeks of age), were to be removed from the model, there was no significant 

* 
* . 
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difference in keel bone deviation prevalence. and treatment. Keel bone 

deviations increased with age (W=50.66, P<0.0001). 

 

Figure 4.6: The average prevalence (%) of keel bone deviations across 

treatment groups. Data are presented as lsmeans (± SE). 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, 

NBP = Extra nest box perch and R = Ramp  

*** = P<0.001, **=P<0.01, *=P<0.05, . =P<0.1: different from the control 

 

4.3.3. Footpad health 

There was an interaction effect of age x treatment (W=19.15, P = 0.041) 

(Figure 4.7) on bumblefoot prevalence. Bumblefoot prevalence was lower in the 

C treatment at 48 weeks of age compared to the extra perch treatment (EP) at 

48 weeks of age (Z-value=-4.543, P=0.0001; Figure 4.7). When looking at the 

raw results for 48 weeks of age; bumble foot prevalence across pens in the EP 

treatment (26.7% and 17.9%) was always higher than across the C pens (6.7% 

* 
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and 4%). Bumblefoot prevalence was lower in the EP treatment at 33 weeks of 

age compared to 48 weeks of age (Z-value=-6.061, P < 0.0001) and 83 weeks 

of age (Z-value=-3.598, P = 0.0075). In the extra nestbox perch (NBP) treatment, 

bumblefoot prevalence was lower at 33 weeks of age compared to 48 weeks of 

age (Z-value=-3.826, P=0.0031) (Figure 4.7).   

 

 

Figure 4.7: Bumble foot prevalence across treatment groups over different ages. 

Different capital letters denote differences between treatment groups and control within 

ages. Different lowercase letters denote differences between ages within treatment 

groups. 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, 

NBP = Extra nest box perch and R = Ramp  

 

A 

B 
b 

ab 

c 

a 
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There was an overall effect of treatment on the prevalence of foot pad 

dermatitis (W=67.83, P<0.0001) (Figure 4.8). The EP treatment group had a 

higher prevalence of foot pad dermatitis compared with the control (Z-

value=4.275, P<0.0001). The R treatment group had a lower prevalence of foot 

pad dermatitis compared with the control (Z-value=-3.313, P=0.0035). When 

looking at the raw results, the prevalence of overall foot pad dermatitis in the EP 

pens (38.6% and 47.3%) was higher compared with C pens (28.3% and 26.3%) 

and was always lower in R pens (13.4% and 21.4%). There was an overall effect 

of age on the prevalence of foot pad dermatitis (W=10.48, P=0.0053). Prevalence 

of foot pad dermatitis was higher at 48 weeks of age (30.7 ± 1.4%) compared to 

83 weeks of age (23.3 ± 2.0%) (Z-value=3.130, P=0.0047), with no difference at 

33 weeks of age (27.6 ± 1.4%). 

 

 

Figure 4.8: Prevalence of foot pad dermatitis ( %) across treatment groups. Data 

are presented as lsmeans (± SE). 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, 

NBP = Extra nest box perch and R = Ramp  

*** = P<0.001, **=P<0.01, *=P<0.05, . =P<0.1: different from the control 

*** 

** 
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There was an overall interaction effect of treatment x age (W=13.88, 

P=0.008) (Figure 4.9) on the prevalence of hyperkeratosis. The control group at 

83 weeks of age had a lower prevalence of hyperkeratosis compared with the 

ramp treatment group at 83 weeks of age (Z-value=-2.959, P=0.0355). When 

looking at the raw results, the R pens always had a higher prevalence of 

hyperkeratosis at 83 weeks of age (72% and 78%) compared with the C pens 

(38% and 68%). However, the C pens had a high variation with 30% difference 

between pens and may have been due to only 50 hens being sampled at 83 

weeks of age instead of 150 hens, as at all the other ages. Hyperkeratosis 

prevalence was higher at 48 weeks of age for the mushroom perch treatment 

compared to 83 weeks of age in the mushroom perch treatment (Z-value=3.091, 

P=0.0236).
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Figure 4.9: Prevalence of hyperkeratosis across different age and treatment 

groups. Data are presented as lsmeans (±SE). 

Different capital letters denote differences between treatment groups and control within 

ages. Different lowercase letters denote differences within treatment groups. 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, 

NBP = Extra nest box perch and R = Ramp  

 

4.3.4. Feather cover 

There was an overall effect of treatment on the percentage of hens with 

perfect feather cover (W=16.09, P=0.003) (Figure 4.10). The NBP had a lower 

percentage of hens with perfect feather cover compared to the control group (Z-

value=-2.723, P=0.0223) and there was a tendency for a lower percentage of 

perfect feather cover in the M treatment (Z-value=-2.325, P=0.0653).  

A 

B 

a 

b 
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Figure 4.10: Difference in plumage condition between the control and all 

treatment groups. Error bars show lsmeans (± SE) 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, 

NBP = Extra nest box perch and R = Ramp  

*** = P<0.001, **=P<0.01, *=P<0.05, . =P<0.1: different from the control 

 

4.3.5. Body mass 

There was no interaction between treatment x age on the body mass of 

hens (P>0.05). There was an effect of treatment (F=6.79, P=0.0297) and age 

(F=9.477, P=0.0021) on the body mass of hens. Hens from the NBP treatment 

(1.944 ± 0.006kg) weighed less than hens from the C treatment (1.978 ± 0.006kg; 

Z-value=-3.853; P<0.0001). Hens at 48 weeks of age (1.977 ± 0.004kg) weighed 

more than those at 33 weeks of age (1.962 ± 0.004kg; Z-ratio=-3.078, P=0.0021).  

 

* 
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4.3.6 Litter deterioration   

There was an overall effect of treatment on litter quality (W=11.28, 

P=0.0236). There was a difference between the C treatment and the NBP 

treatment (Z-value=2.889, P=0.0138) (Figure 4.11).  

 

Figure 4.11: Difference in litter quality between the control and all treatment 

groups. 0=no litter damage, 1=<10% damaged litter, 2=10-50% damaged litter 

and 3=>50% damaged litter. Data show is lsmeans (±SE) 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, 

NBP = Extra nest box perch and R = Ramp 

*** = P<0.001, **=P<0.01, *=P<0.05, . =P<0.1: different from the control 

 

4.3.7. Tibia radiological and biomechanical analysis 

Table 4.2 shows the bone quality parameters and their significance levels. 

There was no effect of treatment on the radiological and biomechanical 

properties of the tibia, except for the vertical diameter of the outer tibia (mm). 

There was no overall effect of the treatment on the vertical diameter (mm) of the 

* 
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tibia but the NBP treatment tended to have a larger outer vertical diameter 

compared to the control in the post-hoc analysis (Z-ratio=2.262, P=0.0782). Keel 

bone deviation score was removed from all models because it never reached a 

tendency. Keel bone fracture score was removed if it did not reach a tendency. 

For all parameters body mass was significant and all parameters increased as 

weight increased (Table 4.2). There was a tendency for the bone mineral density 

(BMD) (Z-ratio=2.237, P=0.0624) and bone mineral content (BMC) (Z-

ratio=2.184, P=0.0709) to be higher in hens without fractures (score 0) compared 

to those with severe fractures (score 2). The length of the tibia was significantly 

higher in hens without fractures (score 0) than those with fractures (score 2) (Z-

ratio=-2.782, P=0.0142) (Table 4.2). The maximum load (N) was higher in hens 

without keel bone fracture compared to those with score 1 (Z-ratio=2.213, 

P=0.0662) and score 2 (Z-ratio=2.929, P=0.0091) respectively (Table 4.2). The 

energy at maximum load (KJ) was higher in hens with no keel bone fracture 

compared to those with a keel bone fracture score 1 (Z-ratio=2.202, P=0.0681) 

and score 2 (Z-ratio=2.594, P=0.0245). There was no difference between score 

1 and 2. The flexure stress (Z-ratio=2.55, P=0.0277) was significantly higher in 

hens without keel bone fractures compared to those with severe keel bone 

fractures (score 2) (Table 4.2).   
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Table 4.2: Bone quality measurements in relation to treatment and keel bone fracture status of hens at 83 weeks of age 

Bone quality 
parameter 

Treatment     Keel bone fracture score      

 
C EP M NBP R 0  

(n=22) 
1  
(n=90) 

2 
(n=88) 

Treatment Keel 
fracture 

Body 
mass 

BMD (mg/cm2) 317.1 ± 
11.1 

303.6 
± 
10.6 

304.2 
± 10.5 

312.5 ± 
10.9 

309.3 
± 10.6 

321.8 
± 10.2a 

307.4 ± 
5.7 

299 ± 
5.6b 

F=0.29, 
P=0.883 

F=2.73, 
P=0.065 

F=29.94, 
P<0.0001 

BMC (mg/cm) 55.1 ± 1.2 54.8 
± 1.2 

53.8 ± 
1.2 

54.3 ± 
1.2 

53.8 ± 
1.1 

56.5 ± 
1.6a 

54 ± 0.7 52.7 ± 
0.7b 

F=0.26, 
P=0.89 

F=5.05, 
P=0.08 

W=66.57, 
P<0.0001 

Length (mm) 121.8 ± 
0.6 

121.6 
± 0.6 

121.8 
± 0.6 

122.1 ± 
0.6 

120.8 
± 0.6 

120.6 
± 0.6a 

121.8 ± 
0.3 

122.5 
± 0.3b 

F=0.69, 
P=0.6275 

F=4.22, 
P=0.0162 

F=83.5, 
P<0.0001 

Horizontal 
outer diameter 
(mm) 

7.8 ± 0.1 7.8 ± 
0.1 

7.8 ± 
0.1 

7.9 ± 
0.1 

7.8 ± 
0.1 

NA NA NA F=0.35, 
P=0.834 

NA F=30.69, 
P<0.0001 

Vertical outer 
diameter (mm) 

6.7 ± 0.05a 6.8 ± 
0.05  

6.8 ± 
0.05 

6.9 ± 
0.05b  

6.8 ± 
0.05  

NA NA NA F=1.6, 
P=0.3077 

NA F=26.51, 
P<0.0001 

Cortical bone 
thickness (mm) 

0.795 ± 
0.031 

0.781 
± 
0.031 

0.761 
± 0.03 

0.760 ± 
0.031 

0.761 
± 
0.031 

NA NA NA F=0.027, 
P=0.8869 

NA F=26.3, 
P<0.0001 

Max load (N) 259.8 ± 
13.5 

254.5 
± 
13.1 

250.8 
± 13.0 

253.1 ± 
13.1 

255.0 
± 13.0 

275.4 
± 12.3a 

248.7 ± 
6.8b 

241.0 
± 6.6b 

F=0.07, 
P=0.9897 

F=4.29, 
P=0.0151 

F=48.08, 
P<0.0001 

Energy at 
maximum load 
(KJ) 

209.8 ± 
8.2 

207.8 
± 8.2 

196.7 
± 8.2 

211.4 ± 
8.2 

203.3 
± 8.0 

224.1 
± 10.3a 

198.8 ± 
5.1b 

194.4 
± 5.2b 

F=0.59, 
P=0.6859 

F=3.32, 
P=0.0382 

F=48.83, 
P<0.0001 

Stress (MPa) 62.3 ± 3.2 58.9 
± 3.2 

58.2 ± 
3.2 

61 ± 3.2 60.8 ± 
3.2 

64.6 ± 
2.9a 

59.3 ± 
1.7 

56.8 ± 
1.7b 

F=0.28, 
P=0.8765 

F=3.38, 
P=0.036 

F=4.8, 
P=0.0297 

Different subscripts mean there was a different significant difference between the control and treatment or between severity scores.
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4.3.8. Perching behaviour 

The data has been presented as both the mean total number of birds 

perching on elevated perches (Figure 4.12) and the number of birds per elevated 

perch (Figure 4.13). Although only mean values have been presented to show 

the general trend of the data, it can be seen in Figure 4.12 that the number of 

hens perching is numerically higher during the night compared to other time 

points. The absolute number of hens on elevated perches is generally higher in 

the EP treatment group compared with the other treatments and the control. At 

night there are more hens on the middle perches in the NBP treatment. This trend 

does not continue for the other time points, where the M treatment tends to have 

the highest number of hens perching in the middle region. In all instances, the 

number of hens perching on elevated perches on the lower tier is fewer than 

those on the middle or top tier. 

However, when looking at the number of hens per perch, the M treatment 

appears to have the highest number of hens per perch in the middle and top tier 

of the system. The lower tier perches are more variable, with the R treatment 

having one of the highest levels of perching per perch (Figure 4.13).  
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Figure 4.12: The total number of hens perching on elevated perches for one multi-tier section across different times of day  
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Figure 4.13: The number of hens per elevated perch for one multi-tier section across different times of day 
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4.3.9. Maximum summed acceleration vector (AV) 

For the maximum acceleration AV on the keel, there was no overall effect 

of treatment (F=2.29, P=0.196) but there was an effect of the multiple 

comparisons when comparing each treatment to the control (Figure 4.14). The 

EP treatment group had a lower maximum summed AV on the keel compared 

with the C treatment (Z-value=-2.785, P=0.0193). The M treatment tended to 

have a lower maximum summed AV on the keel (Z-value=-2.247, P=0.0812). 

There was an effect on the number of outputs recorded on the accelerometer 

(F=10.52, P=0.0015) and the body mass of the hens (F=4.28, P=0.0404). As the 

number of outputs from the accelerometer increases, the maximum summed AV 

on the keel decreases and heavier hens had higher maximum summed AVs 

compared to lighter hens.   

 

Figure 4.14: Maximum summed AV on the keel 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, 

NBP = Extra nestbox perch and R = Ramp  

*** = P<0.001, **=P<0.01, *=P<0.05, . =P<0.1: different from the control 

* 

. 
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There were no overall differences between the treatment and the 

maximum summed AV on the body (F=0.82, P=0.5667) and there were no 

differences in the multiple comparison analysis (Figure 4.15). There was a 

difference in the number of outputs recorded on the accelerometer (F=13.11, 

P=0.0004), as the number of counts increase, the average maximum summed 

AV calculated from all the outputs on the body decreases.  

 

 

Figure 4.15: Average maximum summed AV on the body 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, 

NBP = Extra nestbox perch and R = Ramp  

*** = P<0.001, **=P<0.01, *=P<0.05, . =P<0.1: different from the control 

 

The number of accelerometer readouts per hen per hour is shown in 

Figure 4.16. There are more accelerometer readouts in the control groups 
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between 1400hr and 1900hr compared with all the other treatments. The general 

trend shows that readouts are not generated until 0500hr and tend to stop after 

2100hr.  
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Figure 4.16: The number of accelerometer readouts per hen per hour. 

C = control, EP = Extra mushroom-shaped perches, M = Mushroom-shaped perches, NBP = Extra nest box perch and R = Ramp  
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4.4. Discussion 

4.4.1. Keel bone damage  

The extra mushroom-shaped perch treatment (EP), the mushroom-

shaped perch treatment (M) and the extra nestbox perch treatment (NBP) all had 

higher levels of keel bone damage compared with the control treatment (C). 

Although it was predicted that additional treatments would reduce the prevalence 

of keel bone fractures in comparison to the control (prediction 1), this was not the 

result that was found.  

The addition of extra perches around the nest box may have led to an 

additional hazard, causing hens to collide with the extra structure instead of the 

perch providing an added region for transitions to occur. The mushroom-shaped 

perches were also hypothesised to reduce keel bone fracture prevalence by 

reducing the number of falls and collisions, compared with standard metal 

perches by providing improved grip (Scholz et al., 2014). However, mushroom-

shaped perches did not reduce keel bone fracture prevalence. This may be due 

to an increased surface area compared with standard metal perches meaning 

that hens may be more likely to collide with these perches or that there is a larger 

contact area on the keel (Pickel et al., 2011), which may lead to increased keel 

deformity. Another possible reason for the increase in keel bone fractures could 

be the greater use of elevated perches. The presence of elevated perches has 

been linked to increased keel bone fracture prevalence previously (Wilkins et al., 

2011). In the current study, there were more hens perching in both the 

mushroom-shaped perch treatments (EP and M) compared to the other 

treatments. This may mean that hens are moving to perches more frequently, 
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which can increase the likelihood of having a fall or a collision and thus increasing 

keel bone fracture prevalence.  

The addition of extra perches on the top level of the system led to an 

increased prevalence of keel bone fractures in the current study. Another study 

found that the addition of extra perches on the top tier increased keel bone 

fracture prevalence compared with a control treatment (Stratmann et al., 2015a), 

which was in line with the results found in the current study. However, it was 

thought by adding in 4 extra perches instead of 2 (as in the study by Stratmann 

et al. (2015a), keel bone fracture prevalence would decrease due to reduced risk 

of displacement by conspecifics.  

Previous studies have found that ramps reduce keel bone fractures 

prevalence throughout lay (Stratmann et al., 2015a; Heerkens et al., 2016a) but 

this was not found in the current study. Both previous studies used ramps that 

were orientated towards tiers or perches, whereas in the current study transverse 

ramps were used that connected the lower tier to the top tier through the nest 

box area. The previous studies were conducted in small experimental units 

(Stratmann et al 2015a: 225 birds/pen and Heerkens et al 2016a: 25 birds/pen) 

where ramps were present in all areas of the system (Stratmann et al., 2015a; 

Heerkens et al., 2016a). In the current study, ramps were placed intermittently 

(once in every two aviary units), transversely across the system, in commercial 

conditions (3,600 birds per pen). These results suggest that ramp orientation and 

the percentage of the house equipped with ramps may be important in the 

development of keel bone fractures. Another reason for the difference could be 

that 150 birds were palpated in each pen during the current study and only 6 and 
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20 birds per pen were palpated previously (Stratmann et al., 2015a; Heerkens et 

al., 2016a). 

The NBP treatment had a higher prevalence of keel bone deviations in 

comparison to the C treatment. This may be because the additional round perch 

provides an additional area for more hens to rest and potentially bend their keel. 

Round, metal perches have been shown to be the perch with the highest 

pressure and mushroom-shaped perches had a lower pressure at the keel (Pickel 

et al., 2011). This suggests that although hens perched more on the mushroom-

shaped perches, in the current study, the pressure was lower compared with 

round perches, which may have led to lower levels of keel bone deviations. One 

study by Heerkens et al., 2016a found that birds housed with ramps had a lower 

prevalence of mild keel bone deviations compared to birds that were not housed 

with ramps. There was a tendency for severe deviations to show the same pattern 

(Heerkens et al., 2016a). There was no decrease in the prevalence of keel bone 

deviations in the ramp treatment group in the current study, corroborating the 

study by Stratmann et al., 2015a that showed no difference in keel bone deviation 

prevalence across treatments (those provided with ramps, extra perches and 

platforms compared to a standard Bolegg terrace system). 

It is important to note that future studies should aim at replacing existing 

structures instead of adding to the complexity of the environment. It may be that 

adding structures makes the environment more difficult for hens to navigate and 

provides extra structures for collisions to occur.  
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4.4.2. Footpad problems 

In the current study, at 48 weeks of age, bumblefoot prevalence was 

higher in the EP treatment (extra mushroom perches on the top tier of the system) 

compared to the C treatment. This is contrary to prediction 2, but in line with a 

previous study in which plastic mushroom-shaped perches increased the 

incidence of bumblefoot compared to wooden rectangular perches (Tauson and 

Abrahamsson, 1994). However, in that study, it is not known whether it is the 

mushroom shape or the plastic material that increases bumblefoot presence 

(Tauson and Abrahamsson, 1994). Nevertheless, in conjunction with the current 

study, there is a stronger likelihood that mushroom-shaped perches may be 

deleterious for foot pad health. In the current study, there was no difference 

between the C treatment and the M treatment, suggesting that the mushroom-

shaped perches were only a problem for bumblefoot as the number of perches 

increased.  

The results suggest that footpad dermatitis (FPD) was more prevalent in 

the EP treatment compared to the C treatment. This is also contrary to our 

prediction 2, that mushroom-shaped perches should reduce foot pad problems. 

Previous research stated that the force exerted on the foot pad was potentially 

more damaging from a commercial round, metal perch compared mushroom 

perches (Pickel et al., 2011) and thus better FPD scores were expected in the 

EP treatment. Previous research has stated that FPD can be aggravated by wet 

litter (Wang et al., 1998). However, the litter quality in the EP treatment was not 

markedly different from the control group, and as such was likely not to be the 

cause for the observed differences in FPD. One reason for the increase in FPD 

in the EP treatment may be that the mushroom-shaped perches had small 
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grooves along the surface (where the birds’ rested their foot pads). However, 

there was no difference in FPD and the M treatment (in which standard perches 

were replaced by mushroom-shaped perches) compared to the C group. The 

reason for this may be the same as that for bumblefoot. Mushroom-shaped 

perches may only pose a health risk as the number increases, potentially due to 

the increased number of hens perching as the availability of mushroom-shaped 

perches increase. However, the same issue presents itself in that we do not know 

whether it is the increase in the number of perches that is the problem or the fact 

that the perches are mushroom-shaped.  

Nevertheless, the grooves on the mushroom-shaped perches 

accumulated faecal matter (personal observation). This would correspond to 

previous research stating that FPD prevalence was higher in treatment groups 

with perches made wet by submersion compared with dry perches (Wang et al., 

1998). It is important to determine if the removal of grooves from the mushroom-

shaped perches (making the surface smooth) or changing the profile of the 

grooves, would reduce FPD.  

If litter quality in the current study were to be the main causal factor for 

poor foot pad health, it would be expected that footpad problems would be more 

prevalent in the NBP treatment. Litter deterioration was more advanced in the 

NBP treatment than the control and poor litter quality is a risk factor for poor foot 

health (Wang et al., 1998). But this was not the case, showing that other factors 

must be involved in foot pad health. It was expected that the NBP treatment would 

have poor litter quality compared to other treatments because the extra nestbox 

perch extended over the litter, leading to a faecal build up on the litter directly 

beneath the perches.  
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There was a decreased prevalence of FPD in the R treatment compared 

to the C treatment. This was similar to what has been found previously (Heerkens 

et al., 2016a). One reason for this may be that as hens walk, any faecal build-up 

or dirt on their feet may be scraped off as they move along the ramp. 

Hyperkeratosis was higher in the R treatment compared to the control. 

This may be an artefact due to hens in the R treatment having a lower prevalence 

of both bumble foot and FPD, making it easier to distinguish hyperkeratosis. It 

may also be that hens walk on the ramps losing litter from their feet and making 

their feet drier compared to hens in the control. Hyperkeratosis is thought to be 

caused by an increased pressure on wire flooring, in particular, sloping wire floors 

have been suggested as the problem (Abrahamsson and Tauson, 1995; Tauson, 

2002; Weitzenbürger et al., 2006), the ramps in the current study were made from 

metal and could have caused increased compression on the foot pads. However, 

hyperkeratosis is not thought to be as great a welfare issue as bumble foot or 

FPD as it is thought to be less painful due to lack of inflammation (Tauson, 2002). 

Overall, foot pad health was worse in the EP and M groups, one reason 

this may be that the increased levels of perching in the EP and M groups may 

prolong the time that individual bird’s foot pads are in contact with faecal matter. 

Further work on mushroom-shaped perch design would be advantageous 

because it appears that mushroom-shaped perches are preferred over standard 

round perch, which is indicated by more birds perching in the M group compared 

to the C group in the current study.  
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4.4.3 Feather condition 

The reason for poorer feather condition in NBP treatment compared to the 

control may be that the proximity of the additional perches to the nest box results 

in a high incidence of feather pecking behaviour. Previous work has shown that 

severe feather pecking is high around the nest box (Nicol et al., 1999). The 

closeness to the nest box could potentially result in hens pecking feathers of 

other hens. However, it is important to note that the feather condition of hens was 

very good, and the data were analysed as perfect or not perfect. Thus, most hens 

had perfect feather condition and it is most likely not a welfare issue if few hens 

have marginally less than perfect feather condition. 

 

4.4.3. Body mass 

Hens from the NBP treatment had lower average weights, even though 

the result was significant, the absolute difference was very slight and is not likely 

to be a welfare issue. It was not possible in the current study to determine if there 

was a correlation between hens with poor feather cover and their body mass 

because different hens were weighed, and feather scored. However, previous 

work on broiler breeders indicates that as body mass increases, feather condition 

improves (Renema et al., 2007). Hens that were aggressively feather pecked 

(leading to an increased incidence of feather damage) had lower body weights 

than conspecifics that had a lower incidence of aggressive feather pecking 

directed towards them (Bilcik and Keeling, 1999). However, the link between 

body mass and feather condition in the current study can only be speculated 

because the same individuals were not scored for both parameters.    
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4.4.5. Tibia bone analysis 

Prediction 4 stated that the addition of extra perches would result in 

increased bone strength due to an increase in loading on the bones through 

exercise when jumping onto perches (Knowles and Broom, 1990; Casey-Trott et 

al., 2017). However, there was no difference between the treatments for any of 

the bone properties. This could be because the hens were all reared in aviary 

systems with the ability to fly and jump around the system and potentially the 

treatment groups were not different enough to influence bone health.  

There was an effect of keel bone fracture presence on tibia bone 

properties but only as tendencies for bone mineral density, bone mineral content, 

length, maximum load, custom flexure stress and maximum load. The data 

suggests that hens without fractures have stronger bones and this was shown 

previously (Toscano et al., 2013). However, the opposite relationship was shown 

in another study as the prevalence of keel bone fractures increased on a farm, 

the strength of the tibia also increased (Wilkins et al., 2011). It has been shown 

previously that the keel bones of hens with no fractures or slight deviations had 

a higher mineral content and calcium content within the keel bone compared to 

those with fractures (Gebhardt-Henrich et al., 2017). However, hens were not 

checked to determine if they were still egg laying. Cessation of egg-laying would 

affect bone strength by limiting the release of oestrogen, allowing the structural 

cortical bone volume to increase and non-structural medullary bone to decrease 

(Whitehead, 2004). The number of hens with no keel bone fractures was low in 

the current study compared to those with fractures. Therefore, future studies 

investigating more hens with no keel bone fractures would be advantageous. 

Humeri were not analysed in the current study due to their non-uniform shape, 
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but it may be worthwhile looking at differences in the humeri of hens when 

exposed to different housing environments because differences were seen when 

comparing different cage designs in the strength of the humerus but not the tibia 

(Vits et al., 2005).  

 

4.4.6. Perching Behaviour  

Perching behaviour was not analysed statistically and any differences that 

are mentioned are done numerically. The mushroom perches appear to be 

utilised more for perching, this may be due to the mushroom-shaped perches 

being more comfortable compared with standard, round perches because it has 

been shown that peak forces on the feet of hens are lower when standing on 

mushroom perches (Pickel et al., 2011). It is important to note that it is unclear 

whether the hens in the current study perch more on the mushroom-shaped 

perches because they are more comfortable, or because they are in more pain 

due to the increase in levels of keel bone fractures and footpad lesions. Due to it 

being difficult to collect accurate perching data at night, prediction 3 cannot be 

corroborated definitively in the current study but the mushroom-shaped perches 

did result in more hens perching overall. 

 

4.4.7. Maximum summed acceleration vector (AV) 

Both treatments with mushroom-shaped perches had lower levels of 

maximum summed acceleration vector (AVs) at the keel compared to the C 

group. This suggests that hens were potentially performing less hazardous 

activities (falls and collisions; from Chapter 2), as was stated in prediction 3. 

However, video analysis was not paired with accelerometer output in the current 
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study, so the actual behaviours hens were performing are unknown. 

Nonetheless, lower maximum summed AV were seen in the mushroom-shaped 

treatments suggesting movements were more controlled because results from 

Chapter 2 have shown that falls have higher maximum AV at the keel compared 

with controlled movements. However, this did not reflect in a decrease in keel 

bone fracture rates, on the contrary, there was an increase in keel bone fracture 

prevalence in the mushroom-shaped perch treatments.  

However, there were limited differences, and this may be because of only 

a very small percentage of the total flock equipped with accelerometers. 

Seven/eight birds were used per flock and these hens were picked to match 

average weight for the breed of the hens used and to have limited keel bone, foot 

and feather condition problems. In comparison to Chapter 1 and 2 the 

accelerometer data was analysed slightly different here. This is partly due to the 

reduced sample size in the current study making it difficult to incorporate all the 

individual bird health characteristics. Also, the outputs for each hen were 

summed over the week for the current study. This created less variation in the 

data, meaning that if the data were not summed, no differences may have been 

detected due to the large variation.  

 

4.5. Limitations 

The main limitation of the study is that only two replicates per treatment 

were used. However, in all cases of keel bone damage (fractures and deviations) 

and footpad lesions (bumblefoot, dermatitis and hyperkeratosis) that were 

significant, the raw data also showed either an increase or a decrease in 
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prevalence, matching the statistical model. This increases the likelihood that the 

results were true findings and not pen effects.  

Another limitation is the inability to tag and re-catch the same hens at each 

time point to score for all health parameters. As well as this, 150 hens are 

approximately 4% of each pen. This is a low number to give a true estimate of a 

population, when using a free sample size calculator available at: 

(www.surveymonkey.com/mp/sample-size-calculator/). To obtain a 95% 

confidence interval with a margin of error of 10%, only 94 hens out of a sample 

of 3,600 hens would need to be palpated. However, if a 5% error is needed then 

the sample size rises to 348 hens for a flock of 3,600 hens. Due to the small 

difference was seen between pens and the prevalence of keel bone fractures in 

this study, it suggests that a sample size greater than 150 would be more 

accurate at determining the true prevalence of keel bone fractures. However, 

other studies looking at keel bone prevalence on the farm used a sample size of 

100 hens per farm (Käppeli et al., 2011; Wilkins et al., 2011), whereas only 50 

hens were scored in another study (Heerkens et al., 2016b). Only one study 

reported flock sizes and they ranged from 12,000-120,000 hens (Käppeli et al., 

2011).  

Although mentioned in the introduction and discussion; movements (falls 

and collisions) were not analysed in this chapter. Video data were collected 

during this study but was not fully analysed so is not presented here. All pens 

were video recorded for eight days in total across two-time points between 30-35 

weeks of age and 45-50 weeks of age. Treatment groups were always recorded 

together with a control group. Video footage from the top tier to the litter on both 

sides of the systems (x2 days) and the top level of the system (x2 days). It would 

http://www.surveymonkey.com/mp/sample-size-calculator/
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be optimal if future studies assessed the movement of hens in this system 

through the video data already collected or in any further studies in this area 

consider incorporating this type of behavioural analyses into their study design.  

As in Chapter 2 and 3 a relatively small sample of hens from the total 

population were equipped with accelerometers. In future studies it would be 

beneficial to use more hens so that a wider range of behaviours and outputs 

could be shown.  

 

4.6. Conclusion 

In conclusion, the modifications made to the standard Bolegg terrace 

system did not improve laying hen health. Keel bone fracture prevalence 

increased in the M, NBP and R treatments. Bumblefoot and foot pad dermatitis 

prevalence increased in the EP treatment and hyperkeratosis increased in the R 

treatment. However, foot pad dermatitis decreased in the R treatment. This 

suggests that the addition of ramps may be a modification that warrants further 

study to aid in reducing painful footpad lesions in laying hens, but more is needed 

to be done to tackle reduction in keel bone fractures. Another avenue for future 

study would be altering existing structures instead of adding more structures to a 

system, this was explored in the current study by installing mushroom-shaped 

perches in the M treatment compared to the round perches in the C treatment. 

Other alterations could be providing softer perch material, outer movements on 

the system provided by ledges instead of perches, with perches still being 

provided in the system and on the top tier and possibly reducing the overall height 

of the multi-tier system. 
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Chapter 5 

Effect of ramps on keel bone 

damage, related health parameters and 

behaviour of hens in commercial multi-

tier systems
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5.1. Introduction 

Keel bone damage (fractures and deviations) and foot pad disorders are 

major welfare issues as they can cause pain (Gentle, 2011; Nasr et al., 2012b; 

Kalaiselvi et al., 2014; Malik and Valentine, 2018; Riber et al., 2018). Keel bone 

fracture aetiology is multifactorial and includes; nutrition, genetics, environment, 

rearing conditions and bone strength (Harlander-Matauschek et al., 2015). 

Whereas, keel bone deviations are thought to be caused by prolonged resting on 

perches and are not thought to be caused by the same factors as keel bone 

fractures (Scholz et al., 2008).  

Due to the EU ban on conventional cages (European Commision, 1999) 

alternative systems are being used and include a high proportion of multi-tier 

systems (Stadig et al., 2016). However, raising the height and number of perches 

in systems leads to increased keel bone fracture prevalence due to an increased 

likelihood of having a fall or collision with a structure (Gregory and Wilkins, 1996; 

Moinard et al., 2004a).  

 

5.1.1. Keel bone damage 

Addition of extra structures within systems, such as ramps, can give hens 

the option to walk between tiers instead of flying, which can prevent falls and 

collisions (Stratmann et al., 2015a). Poultry companies now provide ramps to 

customers both at rearing and during lay for hens. Ramps provide a surface for 

hens to transition between different levels of a multi-tier system. Previous work 

by Heerkens et al. (2016a) showed that the provision of ramps can reduce keel 

bone fracture prevalence. The previous study was experimental and used small 

groups of birds, 16 pens housing 25 birds in each pen. However, results from this 
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study have not yet been extrapolated to on-farm settings. Another study showed 

that the presence of ramps throughout lay reduced the prevalence of keel bone 

fractures (Stratmann et al., 2015a). However, the Stratmann et al. (2015a) study 

was also experimental but with a larger number of birds. Farm-level studies are 

needed to understand how furnishings influence keel bone fracture prevalence 

and other issues because hens may move differently in larger groups compared 

to small groups. A review by Rodenburg and Koene (2007) looked at multiple 

studies and the effect of housing poultry in large and small groups. The main 

conclusion was that large groups show more fear, stress and feather damaging 

behaviour (Rodenburg and Koene, 2007). Therefore, it is possible that hens from 

controlled studies may act differently than those from commercial studies.  

Hybrid differences in keel bone damage prevalence are well documented 

and multiple studies have been conducted examining the keel bone damage 

(fractures and deviations) prevalence in different laying hen hybrids (Stratmann 

et al., 2015b; Heerkens et al., 2016a; Candelotto et al., 2017). Heerkens et al. 

(2016a) found that Delkalb White hybrid had more keel bone damage (fractures 

and deviations) in comparison to the ISA brown hybrid. Candelotto et al. (2017) 

found that White hybrids (Delkalb White hybrids and experimental white hybrids) 

had a higher prevalence of keel bone fractures in comparison to brown hybrids 

(Bovan Brown, ISA Dual Brown and an experimental Brown hybrid). However, a 

study by Stratmann et al. (2015b) found that ISA brown hybrids had a higher 

prevalence of keel bone fractures compared to Delkalb White hybrids. These 

rather contradictory studies were carried out in experimental conditions, and 

future studies should determine how hybrid influences keel damage in a 

commercial setting. The reason that hybrid could affect keel bone fractures and 
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deviations may be the differences in their behaviour. Delkalb white hens have 

been shown to have lower levels of serotonin and are more fearful of a stationary 

person compared with ISA brown hybrids (de Haas et al., 2013) and are more 

fearful and active compared to brown hybrids that tend to be more docile and 

perform fewer active behaviours. These differences have never been looked at 

regarding how hens more around a housing system. 

Prevalence of medial fractures compared to caudal fractures was also 

investigated in the current study because caudal fractures (those at the tip of the 

keel bone) often occur dorsally on the keel and it is has been discussed whether 

caudal fractures are of less concern than medial fractures (Casey-Trott et al., 

2015). This study will only look at the prevalence of medial fractures as a total of 

all fractures, the welfare concerns of medial fractures will not be studied in this 

thesis. 

 

5.1.2. Footpad disorders 

Another problem that is related to use of perches and other housing 

conditions and structures is footpad health (Wang et al., 1998; Shepherd and 

Fairchild, 2010; Heerkens et al., 2016b). Footpad lesions are well studied in 

broiler chickens showing that nociceptors are present in the scaly skin of their 

feet giving them the potential to feel pain (Gentle et al., 2001). Hyperkeratosis, 

footpad dermatitis and bumblefoot are the three main foot pad disorders in laying 

hens. Hyperkeratosis is the presence of dry, scaly feet where the underlying 

dermis becomes exposed with the likely risk factors being wire flooring and 

perching (Weitzenburger et al., 2006). Footpad dermatitis is the presence of 

ulcers and dead tissue on the plantar surface of the foot and is thought to be 
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caused by warm, wet conditions (Wang et al., 1998). Footpad dermatitis can 

develop into bumblefoot, which is a severe swelling of the base of the foot and is 

caused by Staphylococcal bacterial infection (Gwatkin, 1940). 

Previous work has shown that footpad dermatitis and bumblefoot were 

both higher in the ramp treatment groups compared to the non-ramp treatment 

groups at 29, 39 and 49 weeks of age (Heerkens et al., 2016a). The prevalence 

of hyperkeratosis was higher in only 49-week-old hens in the ramp treatment 

group compared to the non-ramp treatment groups (Heerkens et al., 2016a). The 

accumulation of these results indicate that ramps have the potential to improve 

foot pad health and potentially welfare. 

Different hybrids have been shown to have different levels of foot pad 

lesions prevalence; with ISA brown hybrids having fewer food pad problems 

compared to Delkalb white hybrids (Heerkens et al., 2016a). Footpad dermatitis 

was higher in the Delkalb white compared to the ISA brown and bumblefoot was 

only present in white hybrids and was absent in the brown hybrids. However, 

hyperkeratosis prevalence was higher in the brown hybrids compared to the 

white hybrids (Heerkens et al., 2016a). This suggests that when on-farm studies 

into the prevalence of foot pad lesions are carried out, it is important to 

acknowledge that brown vs white hybrids may have different levels of foot pad 

lesion prevalence. 

 

5.1.3. Other health parameters  

Feather condition, wound presence and comb health may be important 

factors when determining whether a modification, such as the inclusion of ramps, 

have the potential to improve or decrease the welfare of hens in the system. 
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Different hybrids may have predispositions to different health problems, and it 

may be important to include this in any analysis when looking into the costs and 

benefits of housing systems.  

 

5.1.4. Behaviour differences 

Chapter 3 shows that a higher proportion of falls occurred during the 

dimming period (dusk) compared to during the day, it also shows that the number 

of movements in general is higher during dusk compared with during the day. 

White hybrids have shown in previous studies to have longer durations of tonic 

immobility compared to brown hybrids (Fraisse and Cockrem, 2006). This may 

indicate that white hybrids are more fearful and may potentially move more 

compared to brown hybrids. 

 

5.1.4. Aims and predictions 

The main aim of the study was to determine whether ramp provision and 

genetic hybrid influenced the prevalence of keel bone damage (deviations and 

fractures) and/or footpad problems (hyperkeratosis, footpad dermatitis and 

bumblefoot) on farms with multi-tier systems. The current study also looked at 

the general health parameters of hens on-farm (feather condition, comb health 

and wound presence). It was important to look at differences in other health 

parameters between different hybrids and between farms with and without 

ramps. Different hybrids and ramp access (or lack of access) may lead to other 

health detriments, other than keel bone damage, and it is important to 

acknowledge these (Blokhuis et al., 2007).  
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Behavioural observations were important to determine the effect of ramp 

presence and hybrid on how hens moved around the system because 

movements in complex housing systems may increase keel bone fracture 

prevalence within a flock (Wilkins et al., 2011; Stratmann et al., 2015b). The 

behavioural movements in this study focused on the number of times hens 

fly/jump upwards, downwards and uncontrolled movements (falls and collisions) 

within the system.  

 

The main predictions are:  

1. Ramp provision will reduce keel bone fracture prevalence.  

2. White hybrids will have a higher prevalence of keel bone fractures 

compared to brown hybrids.  

3. Ramp provision will reduce the presence of all types foot pad lesions.  

4. White hybrids will have a higher prevalence of foot pad lesions 

compared to brown hybrids.  

5. White hybrids will have a larger number of movements compared with 

brown hybrids. 

6. There will be more movements during dimming compared to during the 

day. 

 

 

5.2. Methods 

A total of 18 aviary farms were visited across Belgium and the Netherlands 

(Table 5.1). One farm per day was visited and the order of visit is shown in Table 

5.1. Farmers were asked by phone and/or email if they would like to take part in 
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the study. Questionnaires (as part of a project contributing to a master’s thesis) 

were provided to farmers about personal preference of ramps as well as details 

about their farm. Selection criteria for farms were that hens had to be over 40 

weeks of age and under 100 weeks of age. Hens between 42-85 weeks of age 

were used in the study. 
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Table 5.1: All 18 farms used in the study along with a breakdown of data for each farm (table continues overleaf) 

Visit 
order 

Hybrid Ramp Aviary System Flock 
Size 

Week of Age 
at time of 
visit 

Outdoor 
Access 

The maximum 
height of the 
system 

Dimming 
period 
(minutes) 

1 Lohmann 
Classic Brown 

No Jansen Comfort 18,000 56 Yes 2.7m 45 

2 Bovan Brown No Jansen Comfort 17,000 65 No 2.5m 10 

3 Lohmann 
Classic Brown 

No Venocomatic 
RED-L 

40,000 55 Wintergarden 2.9m 45 

4 Lohmann 
Classic Brown 

No Vencomatic 
Bollegg Terrace 

18,000 44 Wintergarden 2.7m 30 

7 Lohmann 
Classic Brown 

No Vencomatic 
Bollegg Terrace 

48,000 58 Yes 2.7m 35 

14 Lohmann 
Classic Brown 

No Vencomatic 
Bollegg Terrace 

9,000 62 Yes 2.8m 45 

16 Bovan Brown No Vencomatic 
Bollegg Terrace 

29,000 67 No 2.8m 30 

6 Lohmann 
Classic Brown 

Yes Vencomatic 
Bollegg Terrace 

36,000 71 No 3.2m 40 

8 ISA Brown Yes Vencomatic 
Bollegg Terrace 

19,500 85 No 2.7m 45 

10 ISA Brown Yes Jansen Comfort 19,500 85 No 2.7m 60 

11 Bovan Brown Yes Jansen Comfort 29,800 69 Wintergarden 2.6m 50 

12 Lohmann 
Classic Brown 

Yes Big Dutchman 
Natura 

30,000 67 Wintergarden 2.7m 20 

13 NOVOgen 
Brown Classic 

Yes Jansen Comfort 42,000 42 No 2.7m 15 

15 NOVOgen 
Brown Classic 

Yes Jansen Comfort 42,000 43 No 2.7m 15 

9 Lohmann LSL 
Classic White 

No Venocomatic 
RED-L 

40,900 47 No 3.4m 10 
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5 Dekalb White No Big Dutchman 
Natura 

41,000 72 No 2.7m 30 

17 Dekalb White No Vencomatic 
Bollegg Terrace 

20,000 54 No 2.9m 90 

18 Dekalb White No Vencomatic 
Bollegg Terrace 
 

29,000 67 No 2.8m 60 
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5.2.1. Individual bird scoring 

Approximately 70 birds per farm were randomly selected and scored by 

the same one observer for each parameter, except Farm 1 where 100 birds were 

scored for keel bone fractures and deviations, 50 birds were scored for footpad 

lesions and 10 were scored for all other health parameters. This was due to a 

time restriction on that one farm. Hens were selected in a stratified manner from 

each tier and equally from each section on the farm. Hens were selected during 

the dark period when pop-holes were closed. Head torches were used to locate 

hens. Due to the limited time on farm, no measures were taken for reliability of 

health parameters. However, the same observer scored all hens, limiting any bias 

between observers. The observer was not blinded to treatment (brown vs white 

or ramp presence/absence) due to having scored behavioural measures.  

Keel bone fractures were scored as 0 = no break, 1 = slight break, 2 = 

severe break (Wilkins et al., 2004). The region of the keel where the break was 

detected was also recorded and scored as either caudal or medial (anything that 

was not caudal). The bottom 1cm of the keel bone was classed as caudal. 

Deviations were also scored as present or absent. Deviations were only scored 

when an obvious (>0.5cm) bend in the bone was present. This bend was a 

deviation from the straight plane of the keel, smaller bends were not summed, 

therefore, one >0.5cm had to be present to be classed as a deviation (Heerkens 

et al., 2016a). If there was also a fracture present at both ends of the deviation, 

only the fracture was scored due to uncertainty into whether the deviations were 

caused by the break. Dermatitis (0= no dermatitis to 4 = severe dermatitis) 

(Butterworth, 2013), hyperkeratosis (none, slight and severe) and bumblefoot (0 

= no bumblefoot to 3 = severe bumble foot) were all scored (Tauson et al., 2005). 
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The bumblefoot score was like that of Tauson et al (2005) except there were two 

intermediate bumblefoot scores; 0=no bumblefoot, 1=slight swelling of the foot, 

2=moderate swelling of the foot and 3=severe swelling of the foot.  

Feather condition (neck, tail and back) and presence of  wounds were 

scored (Tauson et al., 2005). Only these regions were scored because they were 

visibly easy to identify when the hen was held. The feather scoring system was: 

1= severe feather damage, 2 = moderate feather damage and 3 = mild feather 

damage and 4 = almost perfect feather coverage. Comb condition was also 

recorded, whether the comb was red or anemic (pale comb), this was scored 

visually with the headlamp as the source of light. Photographs were provided by 

Heerkens, J. and used as a reference.  

 

5.2.2. Behaviour scoring 

The number of hens present in all visible areas of the system (perches, 

tiers, litter) within a middle 2m section was recorded. A 2m section was chosen 

because it was used as a reference  in another study looking at behaviours 

(Pettersson et al., 2017a) and 2m is similar to the length of one aviary unit on 

most farms. The 2m section was measured and then masking tape was used to 

mark the start and end of the section. Recordings were carried out by 2 

observers, with one near the wall and the other in the central area of the system. 

Counts were carried out during the day and when the lights began to dim. All 

farms had dimming periods (Table 5.1) but the dimming periods varied in length 

and start time. Beginning of the dimming period was monitored closely with a lux 

meter and using the timing specifications provided by the farmer during the visit. 

Therefore, the beginning of the dimming period was chosen to begin behavioural 
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monitoring. Then, the number of transitions (upward and downward flights/jumps, 

falls and collisions) by all birds in the same section was recorded during a 15-

minute period at both time points. On farms with ramps, a section of the system 

containing a ramp was chosen. This was because some farms had a ramp in 

every section of the system. Ramp use (walking up and down or sitting on the 

ramp) was scored separately from upward and downward transitions and was 

not included in the analysis of transitions. 

A movement was considered a fall when the bird intended to move but 

missed the landing area, was pushed by a conspecific or had slipped. A 

behaviour was classed as a collision when there was a visible crash into a 

structure or another bird in the system. Stopwatches and tally counters were used 

to assist the two observers to time the observation period and count the number 

of movements. Before going onto farm the protocol was discussed between both 

observers and while on the first farm, practice runs were carried out to make sure 

that behaviours could be detected by both observers. On last two farms the same 

2m section was scored for 15 minutes by both observers. The similarity of 

controlled movements was 91% ((total number of controlled movements observer 

1/total number of controlled movements observer 2) x 100). The exact time each 

behaviour occurred was not noted, meaning it was not possible to compare the 

exact timings of the movements between observers. On the first farm used to test 

reliability, one scorer determined a collision while the other did not see a collision 

and on the second farm checked for reliability, one scorer determined two 

collisions while the other determined none. This may be due to the angle of each 

observer being slightly different and collisions being instantaneous, making them 

difficult to detect. The lack of reliability may also be because the number of 
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occurrences was very low. No fall was detected by either of the observers on 

either of the farms used to check for reliability.  

To calculate the number of movements per hen in the system the number 

of movements was divided by the number of hens counted in each 2m section of 

the system that was observed (2 x day and 2 x night per farm). This number was 

used in the statistical analysis. 

 

5.2.3. Statistical analysis  

To analyse the prevalence of each health parameter, the data were 

analysed as either present or absent, thus all the severity scores were pooled 

together to represent a binary presence of the condition. Keel bone fractures, 

keel bone deviations, footpad dermatitis, bumblefoot, hyperkeratosis, 

anaemic/red comb colour and wound presence/absence were all analysed using 

generalized linear mixed models in R with a binomial distribution (R Core Team, 

2017). In each model farm was used as a random factor (farm was the 

experimental unit) and hybrid (brown vs white), ramp (presence vs absence) and 

age (continuous and as a covariate) were used in the model. Feather condition 

was split into good (scores 3-4) and poor (scored 1-2) and was analysed in the 

same way.  

When analysing severity scores only hens that did have the condition e.g. 

those with keel bone fractures, were used to determine the prevalence of medial 

fractures compared with caudal fractures. Those with foot pad dermatitis were 

split into scores 1-2 (slight problem) and scores 3-4 (severe problem). Hens with 

score 1-2 bumble foot were classed as slight and those with score 3 were classed 

as severe. Hens with hyperkeratosis were split into slight and severe. All were 

analysed again as a generalized linear model in R with a binomial distribution. In 
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each model, farm was used as a random factor and hybrid (brown vs white), ramp 

(presence vs absence) and age (continuous and as a covariate) were used in the 

model. Age was used as a covariate because it was important to consider the 

difference in age across flocks as it is known age has an effect on health 

parameters; particularly keel bone prevalence (Petrik et al., 2015) and feather 

condition (Chapter 4). The LmerTest was used so that p-values were generated 

(Kuznetsova et al., 2017a) and when needed, models were optimized to account 

for any convergence issues using the optimx package (Nash, 2014).  

The total feather score (all feather scores were added together) was 

square root transformed and the same random factors and fixed effects were 

used as before. 

In all cases of behaviour, the number of movements was divided by the 

number of birds in the 2m section. This gave an approximation of the number of 

times each hen moved, allowing the data to be analyzed using linear mixed effect 

models because the Poisson regression model was overdispersed. All responses 

were subjected to a square root transformation before analysis to select the best 

fitting model. In each case Q-Q plots and histograms of the residuals and the AIC 

were determined to check the model fit, non-transformed data models were also 

run, and the square root transformed model was a better fit.  When analysing the 

behaviour data a linear mixed-effect model was used for upward, downward and 

uncontrolled movements (falls and collisions grouped together). In each model, 

farm was used as a random factor (farm was the experimental unit) and hybrid 

(brown vs white), ramp presence/absence, time of day (daylight or dimming) and 

age (continuous and as a covariate) were used.  
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5.2.4. Ethical Statement 

All experimental procedures were approved by the University of Bristol’s 

Animal Welfare Research Board: UIN: UB/17/001. 

 

5.3. Results 

5.3.1 Health Parameters 

All data are presented as least square means with standard errors. For 

the health parameter data, it was not possible to add in interaction terms because 

there were not enough observations in the dataset. All data for health parameters 

is displayed in Table 5.2. 
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Table 5.2: Prevalence and significance of health parameters in flocks with/without ramps and either white/brown hybrids. 

Health parameter Prevalence 
(%) 

   
Test statistic 
and P values 

 
 

 
Ramp (N) Ramp 

(Y) 
Brown White Ramp Hybrid Age 

Total keel bone fractures  72.9 ± 3a 63.7 ± 
5.4b 

65.8 ± 2.8 71 ± 5.6 Z= -1.648, 
P=0.099 

Z= 0.812, 
P=0.417 

Z= 1.895, 
P=0.058 

Medial keel bone fractures 64.4 ± 3.7a 52.9 ± 
6.3b 

61.3 ± 3.2 56.1 ± 7 Z= -1.695, 
P=0.090 

Z= -0.684, 
P=0.494 

Z= 0.794, 
P=0.427 

Severe keel bone fractures  33.6 ± 3.6 24.6 ± 
4.8 

32.1 ± 3 25.9 ± 5.5 Z= -1.542, 
P=0.123 

Z= -0.963, 
P=0.336 

Z= 1.343, 
P=0.179 

Keel bone deviations 30.5 ± 2.7 31.9 ± 
4.4 

28.6 ± 2.2 33.9 ± 5.1 Z= 0.291, 
P=0.771 

Z= 0.996, 
P=0.319 

Z= 2.047, 
P=0.041 

Foot pad dermatitis 29.1 ± 4 25.4 ± 
5.9 

19.8 ± 
2.7a 

36.1 ± 8b Z= -0.541, 
P=0.589 

Z= 2.158, 
P=0.031 

Z= -2.957, 
P=0.003 

Severe foot pad dermatitis 17.1 ± 2.7 7.3 ± 3.7 6 ± 1.7a 20.2 ± 
5.9b 

Z= -1.574, 
P=0.116 

Z= 3.622, 
P<0.001 

Z= -1.411, 
P=0.158 

Bumble foot 13.1 ± 2.6a 4.9 ± 1.9b 6 ± 1.3 10.8 ± 4 Z= -2.408, 
P=0.016 

Z= 1.421, 
P=0.156 

Z= 1.725, 
P=0.085 

Severe bumble foot 42.8 ± 4.9 25.8 ± 
10.7 

32 ± 6.5 35.7 ± 9.4 Z= -1.300, 
P=0.194 

Z= 0.421, 
P=0.674 

Z= -1.182, 
P=0.237 

Hyperkeratosis 60.8 ± 8.1 61.6 ± 
12.7 

67.5 ± 6.3 54.6 ± 15 Z= 0.057, 
P=0.954 

Z= 0.811, 
P=0.417 

Z= 0.319, 
P=0.750 

Severe hyperkeratosis 11.2 ± 3.3 5.4 ± 2.8 6.5 ± 1.8 9.3 ± 5 Z=-1.272, 
P=0.203 

Z= 0.591, 
P=0.555 

Z= 2.409, 
P=0.016 

Anaemic comb 7 ± 2.9 3.7 ± 
23.8 

10.3 ± 
3.3a 

2.4 ± 1.9b Z=-930, 
P=0.352 

Z= 1.752, 
P=0.080 

Z= 1.703, 
P=0.089 

Wounds 2.9 ± 1.3 0.9 ± 0.7 2.6 ± 1 1 ± 0.9 Z= -1.448, 
P=0.147 

Z= -1.052, 
P=0.293 

Z= 2.000, 
P=0.045 

Severe feather damage (back) 5.7 ± 4 2 ± 2.2 12.2 ± 
6.4a 

0.9 ± 1.2b Z= -0.907, 
P=0.365 

Z= -1.925, 
P=0.054 

Z= 3.576, 
P<0.001 
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Severe feather damage (neck) 6.7 ± 4.2 1.2 ± 1.4 2.6 ± 1 1 ± 0.9 Z= -2.055, 
P=0.150 

Z= -1.962, 
P=0.168 

Z= 3.815, 
P=0.005 

Severe feather damage (tail) 13 ± 7.4a 1.1 ± 1.3b 12.8 ± 
6.5a 

1.1 ± 1.4b Z= -1.441, 
P=0.040 

Z= -1.380, 
P=0.050 

Z= 2.809, 
P<0.001 

Total feather condition 9.0 ± 0.4 10.2 ±0.7 8.7 ± 0.4a 10.5 ±0.8b T=1.501, 
P=0.133 

T= 2.104, 
P=0.035 

T= -4.307, 
P<0.001 

Data are presented as lsmeans (± SE). Any tendencies or significant differences within the ramp treatment or hybrid have been denote with 

different letters
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5.3.1.1. Keel bone damage 

Keel bone fracture prevalence tended to be higher in flocks without access 

to ramps, compared to those with access to ramps (P=0.099; Table 2; Figure 

5.1). Of hens with keel bone fractures, those without ramp access tended to have 

a higher prevalence of medial fractures (64.4% ± 3.7%) compared to those with 

ramp access (52.9% ± 6.3%; P=0.090; Table 5.2). However, this does not 

consider the overall higher fracture prevalence in the non-ramp treatment group. 

There was no significant difference between hybrids and prevalence of keel bone 

fractures. Keel bone fracture prevalence tended to increase with age (possibly 

due to an accumulation of old fractures) (P=0.058; Table 5.2). There were no 

significant differences between keel bone deviation prevalence and the presence 

of ramps or hybrid. Keel bone deviations increased with flock age (P=0.041; 

Table 5.2).  
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Figure 5.1: Prevalence of keel bone fractures and whether farms had ramp 

access (presented as lsmeans ± SE) 

 

5.3.1.2. Foot pad disorders  

There was no significant difference in footpad dermatitis prevalence and 

the presence of ramps. Prevalence of foot pad dermatitis, within flocks, was 

higher in white flocks (36.1% ± 8%) compared with brown flocks (19.8% ± 2.7%; 

P=0.031) and decreased with age (P=0.003; Table 5.2). Of hens with footpad 

dermatitis, white hens were more likely to have severe dermatitis (20.2% ± 5.9%) 

compared with brown hens (6% ± 1.7%; P<0.001; Table 5.2). However, this does 

not consider the increased total prevalence of foot pad dermatitis in white hybrids.  

Prevalence of bumblefoot decreased was higher in flocks without ramp 

access compared to flocks with ramp access (P=0.016, Figure 5.2; Table 5.2). 
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There was no difference between the prevalence of bumblefoot and hybrid. 

Bumblefoot prevalence tended to increase with age (P=0.085; Table 5.2). 

 

Figure 5.2: Prevalence of bumblefoot and whether farms had ramp access 

(presented as lsmeans ± SE) 

 

There was no difference between the prevalence of hyperkeratosis and 

the presence or absence of ramps and white or brown hybrids. Hyperkeratosis 

prevalence did not change with age. Of hens that had hyperkeratosis, there was 

no different in ramp presence or hybrid in the prevalence of severe cases of 

bumblefoot. The prevalence of severe cases of hyperkeratosis increased with 

age (P=0.016; Table 5.2).  

 

5.3.1.3. Other health parameters 

The prevalence of anaemic combs was not affected by ramp presence, 

but brown flocks tended to have a higher prevalence (10.3% ± 3.3%) than white 
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flocks (2.4% ± 1.9%; P=0.080; Table 5.2). Anaemic comb prevalence tended to 

increase with age (P=0.089; Table 5.2). The prevalence of wounds was not 

affected by the presence of ramps or hybrid. As age increased, the prevalence 

of wounds increased (P=0.045; Table 5.2). There was no difference in severe 

feather damage on the back of hens and ramp access. Severe feather damage 

on the back of hens tended to be higher in brown hen flocks (12.2% ± 6.4%) 

compared to white flocks (0.9% ± 1.2%; P=0.045; Table 5.2). Severe feather 

damage to the tail was higher in flocks without ramps compared to those with 

ramps (P=0.040, Figure 5.3; Table 5.2) and tended to be higher in brown hybrids 

(12.8% ± 6.5%) compared to white hybrids (1.1% ± 1.4%; P=0.050; Table 5.2). 

There was no difference in the prevalence of severe feather damage on the neck 

on farms with or without ramp access or on farms with brown or white hybrids. In 

all cases of feather damage (back, neck and tail), as flock age increased, the 

prevalence of severe feather damage increased (P<0.001, P=0.005 and P<0.001 

respectively; Table 5.2). 
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Figure 5.3: Prevalence of feather damage to the tail and whether farms had 

ramp access (presented as lsmeans ± SE) 

 

5.4.1. Behavioural Parameters 

All data are presented as least square means with standard errors with 

test statistics and significance levels in Table 5.3. All data are shown as the 

number of times moved per hen (number of times moved/ number of hens in a 

section). 
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Table 5.3: Prevalence and significance of movement behaviour in flocks with/without ramps, with white/brown hybrids and during the 
day or dimming period. 

Movement 
Behaviour 

Prevalence  
     

Test statistics and 
P values 

   

 
Ramp 
(N) 

Ramp 
(Y) 

Brown White Day Dimming Ramp Hybrid Age Time Age x 
Time 

Upward 
transitions 

1.70 ± 
0.25 

1.61 ± 
0.39 

1.35 ± 
0.19 

1.99 ± 
0.49 

1.31 ± 
0.24a 

2.04 ± 
0.30b 

T= -0.209, 
P=0.834 

T= 
1.316, 
P=0.188 

T= -
1.414, 
P=0.157 

T= 
3.499, 
P<0.001 

- 

Downward 
transitions 

1.00 ± 
0.14 

0.91 ± 
0.21 

0.61 ± 
0.09a 

1.38 ± 
0.30b 

0.97 ± 
0.16 

0.93 ± 
0.15 

T= -0.384, 
P=0.701 

T= 
2.818, 
P=0.005 

T= -
0.961, 
P=0.337 

T= -
0.268, 
P=0.789 

- 

Total 
transitions 

2.74 ± 
0.37 

2.58 ± 
0.57 

1.99 ± 
0.27a 

3.43 ± 
0.75b 

2.30 ± 
0.37a 

3.05 ± 
0.42b 

T= -0.243, 
P=0.807 

T= 
1.973, 
P=0.049 

T= -
1.399, 
P=0.162 

T= 
2.549, 
P=0.011 

- 

Uncontrolled 
transitions 

0.035 
± 0.09 

0.036 ± 
0.014 

0.034 ± 
0.007 

0.037 ± 
0.016 

0.017 
± 
0.007a 

0.061 ± 
0.013b 

T= 0.065, 
P=0.948 

T= 
0.134, 
P=0.893 

T= 
0.253, 
P=0.800 

T= 
3.219, 
P=0.001 

T= -
2.443, 
P=0.015 

Data are presented as lsmeans (± SE).  Any tendencies and significant differences within the ramp treatment, hybrid or the time of day have 

been denote with different letter 
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There was no difference between ramp access, hybrid or age on the 

number of upward transitions per bird. There were more upward transitions 

during the dimming period (2.04 ± 0.30) compared with during the day (1.31 ± 

0.24; P<0.001; Table 5.3). There was no difference between ramp access and 

the number of downward transitions per hen. White birds performed more 

downward transitions (1.38 ± 0.30) compared with brown birds (0.61 ± 0.09; 

P=0.005; Table 5.3). However, there was no difference in age of the flock or time 

of day on the number of downward movements per hen. There was no significant 

difference between the total number of movements and whether hens had access 

to ramps. Overall, white birds tended to perform more transitions (3.43 ± 0.75) 

compared with brown birds (1.99 ± 0.27; P=0.049; Table 5.3). Flock age had no 

effect on the total number of movements per hen. A greater number of total 

movements occurred during the dimming period (3.05 ± 0.42) compared to during 

the day (2.30 ± 0.37; P=0.011; Table 5.3). There was no effect of ramp access 

and hybrid on the number of uncontrolled movements. For uncontrolled 

movements (falls and collisions together) there was an interaction effect between 

age x time: during daylight (P=0.015; Table 5.3). There was a consistent number 

of uncontrolled movements as flock age increased but uncontrolled movements 

within the dimming period decreased with age. Descriptive statistics for the 

overall ramp use were: 0.79 ± 0.16 times per hen. 
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5.4. Discussion 

5.4.1. Keel bone damage 

Flocks with ramp access tended to have a lower prevalence of keel bone 

fractures compared to those without access to ramps. However, these treatment 

differences are not as strong as in other studies (Stratmann et al., 2015a; 

Heerkens et al., 2016a). Stratmann et al. (2015a) found the prevalence of keel 

bone fractures in the ramp group at 60 weeks of age to be 29% compared to the 

control group being 52.6%, while Heerkens et al. (2016a) found a prevalence of 

approximately 82% in the ramp treatment at 29 weeks ad 97% in the control. The 

current study found that a 64% prevalence on farms with ramp access and 73% 

in farms with no ramp access. One reason for the smaller difference may be that 

the current study was conducted over various ages. Keel bone fractures and 

deviations increased with age in the current study and this finding concurs with 

other research (Petrik et al., 2015; Stratmann et al., 2015a; Heerkens et al., 

2016a). 

There was no difference between white vs brown flocks with respect to 

keel bone fracture prevalence. The reason that no statistical difference was seen 

may be due to sample size (n=4 farms with white birds). The lack of significant 

difference could be because there is no difference but can also be due to the 

variability on farms. In previous experimental studies, all treatment groups were 

housed in the same conditions with the only alteration being the factor that was 

being studied (Stratmann et al., 2015a; Heerkens et al., 2016a). For example 

hens were either housed with or without ramps (Stratmann et al., 2015a) or a  

factorial design: white hybrids with/without ramps and brown hybrids with/without 

ramps (Heerkens et al., 2016a). 
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Deviations are thought to be caused by compression on the keel when 

resting on perches and other structures (Scholz et al., 2008; Harlander-

Matauschek et al., 2015). Due to all systems monitored containing perches, 

hybrid (brown vs white) and ramp access, this would potentially have limited 

influence on the prevalence of keel bone deviations. Some farmers did not know 

what system their hens were reared and therefore, it was not possible to analyse 

the effect of rearing condition on the presence of deviations. It can be assumed 

that if hens are exposed to perches at a young age, they would be more likely to 

have keel bone deviations due to pressure on the keel before full ossification 

(Riber et al., 2018).  

 

5.4.2. Foot pad disorders 

Unlike the Heerkens et al. (2016a) study there was no difference in the 

prevalence of foot pad dermatitis on farms with and without ramps in the current 

study. The lack of statistical significance could be due to the large variation in 

age in the current study. As hens age, they may be exposed to wet litter for a 

longer period of time, which is linked to footpad lesions (Wang et al., 1998). In 

the current study, litter quality checks were not carried out so the direct effect of 

litter on footpad lesions could not be measured. Flocks with access to ramps had 

a lower prevalence of bumblefoot compared to flocks that did not have ramp 

access. This confirms what was found by Heerkens et al. (2016a). The lower 

prevalence of bumblefoot on farms with ramp access may be explained by hens 

walking on the ramps and any excess faeces being scraped off the feet of the 

hens as they walk. Ramps in the current study where either plastic or metal grids. 



 

223 
 

This would result in a decreased contact time with faeces or wet litter and any 

open wounds present on the feet of hens. 

White birds had a higher prevalence of foot pad dermatitis compared to 

brown birds. Previous studies have also drawn the same conclusions 

(Abrahamsson and Tauson, 1995; Heerkens et al., 2016a). There was no 

difference in the prevalence of hens with hyperkeratosis. However, the 

prevalence of hyperkeratosis increased as the age of the flock increased. 

Hyperkeratosis can be a result of continued localised pressure on the foot pads 

of laying hens, potentially from metal wires or perches (Weitzenbürger et al., 

2006; Ronchen et al., 2008). There was no difference detected in the current 

study and this may be due to all farms having perches and wired gridded areas. 

Some of the ramps present on the farms were also made from wire mesh. The 

increased prevalence of severe hyperkeratosis at older ages in this study may 

be due to prolonged use of perches and wire gridded areas. 

 

5.4.3. Other health parameters 

In the current study, all other health parameters (wounds, comb health, 

feather condition) deteriorate with age. This suggests that irrespective of ramp 

provision and hybrid the overall health of hens will diminish over time. Feather 

damage in hens has shown to increase with age due to an increase in feather 

pecking behaviour (Bilcik and Keeling, 1999). In the current study, the increase 

in wounds on the body would also corroborate that feather pecking behaviour 

increases with age, although feather pecking behaviour was not monitored 

directly in this study.  
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White hens tended to have a lower prevalence of anaemic combs and 

better feather condition in comparison to brown hens. However, it must be noted 

that comb health was assessed with reference to photographs on farms when 

lights were off or dimmed. Reduced lighting may have hindered the ability to 

detect pale combs. Also, the combs of white hens may have appeared a deeper 

red due to the white pigment of their feathers. Therefore, comparison of comb 

health between white and brown hens may be slightly bias. Hens with access to 

ramps had better feather condition on their tails compared to those without ramps 

access. This may be caused by hens being able to escape conspecifics more 

easily when ramps are present, leading to less tail feather pecking. Previous work 

has shown that hens show less hesitancy behaviour in the presence of ramps 

(Pettersson et al., 2017a). However, there is no significant difference in feather 

condition on any other body part. 

 

5.4.4. Behaviour 

To our knowledge this is the first-time movements between tiers within 

commercial aviary systems have been studied with the aim to determine whether 

having access to ramps or genetic hybrid affects movement (but not the 

interaction of the two). However, hybrid was confounded within ramp treatment, 

with no white hybrids having ramp access, meaning that the interaction between 

ramp access and hybrid could not be analysed. One study has looked at the 

movement of laying hens around a multi-tier system but this was only on one 

farm and therefore did not take into account any differences in genetic hybrid or 

ramp presence (Campbell et al., 2016c). This means that although ramps only 

tended to reduce keel bone fractures in the current study and did not reduce 
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uncontrolled movements, they may allow hens to perform fewer hesitancy 

behaviours when transitioning tiers (Pettersson et al., 2017a). This is something 

that could be looked at in more detail because allowing hens to move more 

confidently in a system may result in increased welfare. 

In the current study, differences were found mainly between white vs 

brown hybrids and time of day. White birds moved more in general compared to 

brown birds. Total movements and upward movements increased in frequency 

during the dimming period compared to during the day. This finding has been 

mirrored in other studies that suggest hens move more during dimming because 

they are trying to roost on the top level (Schrader and Müller, 2009; Stratmann et 

al., 2015a). Due to there being no difference in downward movements but a 

difference in total movements and upward movements, this suggests hens are 

moving to perches and tiers higher in the systems. When looking at hybrid, white 

hybrid chicks tended to use higher structures than brown hybrid chicks (Kozak et 

al., 2016a). 

Through personal observation, the white hybrids appeared to move further 

from the observer initially during behavioural observations, which may have 

resulted in the increased movement in white hybrids. Although there was a 5-

minute waiting time before beginning the observations, white hybrids may need 

more time than this to adjust to the presence of an observer. Previous work has 

shown that white hybrids have longer durations during a tonic immobility test 

compared with brown hybrids, suggesting that white hybrids are potentially more 

fearful (Fraisse and Cockrem, 2006). Uncontrolled movements were difficult to 

assess accurately because they occurred rarely making an accurate reliability 

assessment difficult. To encourage the normal behaviour of hens and increase 
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the reliability of results, future studies would benefit from video recording 

behaviours and ramp use on-farm instead of relying on live observations.  

 

5.4.5. Limitations  

Due to the high variability of ramp design within and between farms, it is 

difficult to produce sound conclusions from the study. Future studies, on-farm 

should focus on separating different ramp types to make conditions more 

homogenous. A previous study found hens preferred a grid ramp compared to a 

ladder ramp (Pettersson et al., 2017b). Birds had a higher proportion of failed 

landings from the ladder ramp (Pettersson et al., 2017b) and the same pattern 

may be seen on-farm. It would also be beneficial to look at different types of ramp 

in a controlled environment between different hybrids and then use the findings 

on farm. The variation in the number, placement and design of ramps could 

influence how the birds on each farm moved.  

Future studies would benefit from understanding the way that white laying 

hens interact with ramps. In the current study farms with white hybrids and ramps 

were not visited because no farms could be recruited. The reason for this may 

be three-fold; either there are not many farms in Belgium and the Netherlands 

that house white hybrids with ramps together, there aren’t many farms with white 

hybrids or there aren’t many farms with ramps. 

Farms were only visited once during the study due to time restraints, but 

future studies would benefit from visiting farms across different ages. One benefit 

of this would be to filter out any unwanted effects of the specific day. It was 

unknown whether an event occurred on the farms that specific day that may 

influence hen behaviour and therefore, potentially skew the results. 
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Another point is that movements were only monitored for a short period of 

time (15 minutes at each time point), very few falls and collisions occurred within 

this time, indicating that 15 minutes may not be long enough to observe these 

behaviours. Reliability between the 2 observers when detecting collisions and 

falls was very low and may increase if the number of falls and collisions observed 

within the observation period increased. These results should be interpreted with 

caution due to the low reliability between observers.  

 The number of locations that behavioural recordings were carried may 

not be representative of the whole farm. Although two locations in the middle of 

the system (e.g. away from walls and fences) and then another two locations that 

was close to walls and fences were chosen, this may not be representative of 

each farm. Some of the farms contained tens of thousands of hens and these 

farms were split into areas separated by fences, effectively creating a separate 

pen. Therefore, the hens in each section may behave differently from hens 

located in another section. Also, although the hens were given time to acclimatise 

the presence of humans, they still may not be carrying out their normal 

behaviours. One way to prevent this behavioural change would be to set up video 

recording equipment throughout the farm. 

 

 

5.5. Conclusion 

By confirming that ramps tend to reduce keel bone fracture prevalence, 

reduce bumble foot prevalence and improve tail feather condition it can be 

confirmed that ramps have the potential to improve laying hen welfare. Genetic 

hybrid may influence a variety of health parameters. In the current study, foot pad 
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dermatitis was worse in white hybrids. Whereas, feather condition on the back of 

hens, total feather condition score and comb health was better in white hybrids. 

However, the addition of ramps did not reduce the welfare of laying hens at all. 

Therefore, it should be recommended that ramps are provided on farms.   
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Chapter 6 

General discussion
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6.1. Aim 

The main aim of this PhD was to understand the characteristics of 

movements within a multi-tier system and to define and mitigate hazards in this 

system to reduce keel bone fracture prevalence. This information would be used 

to alter the design of a multi-tier housing system. To determine whether any 

region of a Bolegg terrace multi-tier system (a common system used for laying 

hens) was hazardous, accelerometer outputs and behavioural analysis were first 

used (Chapter 2 and 3). Then the results from the first set of experiments were 

used as a starting point for another study where modifications of a standard 

Bolegg terrace system were monitored, again using accelerometer output and 

behavioural analysis, but also keel bone fracture and deviation prevalence, 

footpad lesion prevalence, feather condition and tibia bone mechanics (Chapter 

4). The next study was conducted on-farm looking at health parameters but only 

focussing on the presence or absence of ramps (Chapter 5).  

 

6.2. Topics of investigation 

6.2.1. Accelerometry output in a multi-tier system 

The maximum summed acceleration vector (AV) at the keel, the average 

summed AV at keel, the readout duration at the keel, the average AV x readout 

duration at the keel and the maximum summed AV at the body were all analysed. 

The maximum summed AV represents the mechanical hazard of a movement 

with a higher value representing a more hazardous movement compared to a 

movement with a lower summed AV. The average summed AV represents the 

total energy associated with a movement and therefore it is postulated that as 

the average summed AV increases so does the hazard and possible likelihood 
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of fracture from that movement. The readout duration is the time, within the same 

movement, that the 15g threshold was reached on the accelerometer. The longer 

the readout duration, it was hypothesised that the behaviour would be more 

hazardous and would have a greater likelihood of leading to fracture because of 

the prolonged exposure to a high acceleration vector. If multiplying the maximum 

summed AV by the readout duration results in a high value output, this can either 

indicate that the maximum acceleration was extremely high, or the readout 

duration is long. However, if the value is low then either the maximum 

acceleration and/or the readout duration was short. A high numerical value for 

the maximum AV x readout duration is likely to be more hazardous and lead to 

greater risk of a keel bone fracture compared to a movement with a low numerical 

value. However, all these factors were used as proxies and have not been directly 

linked to fracture occurrence.  

It could be argued that the potential for keel bone fractures to occur 

increases with access to higher perching structures (Gregory and Wilkins, 1996). 

This is corroborated by the increased prevalence of keel bone fractures in multi-

tier systems compared to single tier and cage systems (Rodenburg et al., 2008; 

Wilkins et al., 2011; Petrik et al., 2015). The most important finding, in Chapter 

2, was that falls have higher summed AV at the keel compared to non-falls. 

Chapter 2 also showed that maximum summed AV readings increase as the total 

height (vertical distance) of a fall increases, although not statistically significant 

in the post-hoc analysis. Therefore, it can be speculated that maximum summed 

AVs can be used as a proxy for the likelihood of a system to cause keel bone 

fractures, as greater impact increases the likelihood of sustaining a keel bone 

fracture (Toscano et al., 2018).  
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The data presented in this thesis is particularly important because it shows 

maximum summed AVs that relate directly to the keel bone of laying hens. One 

of the accelerometer sensors was placed directly over the keel bone and 

collected data relating to acceleration exposure specific to the keel bone. This is 

a novel methodology as previous studies have mainly looked at attaching devices 

onto the back of laying hens (Quwaider et al., 2010; Daigle et al., 2012; Banerjee 

et al., 2014). The placement of accelerometers on the back of hens can be 

informative, particularly if looking at behaviours involving the whole body. 

However, if the behaviours of interest are falls or collisions, it may be more 

accurate to use a sensor on the keel bone of a hen because this is the outermost 

point of the hen and is the most likely region to meet a structure upon collision 

(Gregory and Wilkins, 1996). It was shown in Chapter 2 that when looking at the 

maximum AV, the keel sensor was more appropriate than the body sensor for 

picking up differences between fall and non-fall events and collisions and non-

collisions events, with respect to the maximum summed AV reading. The keel 

sensor showed an interaction effect between the total height of the movement 

and whether the hen had a fall or not, with falls always having higher values than 

non-falls. The maximum AV of falls also increases as the total height increases 

but non-falls showed a decrease from 0-1m to 1.5-2.0m. Collisions had higher 

maximum summed AVs compared to non-collisions on the keel sensor. Falls had 

higher maximum AVs on the body accelerometer but there was no effect of 

collision. This may be because collisions can occur directly on the keel bone, 

such that extreme values of AVs may be easier to distinguish on the keel 

accelerometer than the body accelerometer.  
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It was found in Chapter 2 that readout durations of accelerometry data 

were longer for behaviours that were falls compared to those that were non-falls. 

This may indicate that there are other behaviours happening that are prolonging 

the accelerometry readout. One possible behaviour is wing flapping; hens that 

fall tend to show wing flapping behaviour to aid them in recovering control 

(observation from video data). Hens try to grab a perch or tier with their claws to 

prevent them from falling further. Due to the placement of the accelerometry 

sensors on the back and on the keel bone of laying hens, the wing flapping may 

produce an increase in summed AV on both sensors. This is because 

accelerometers were placed in a vest and as the hen flaps her wings the vest 

may move vigorously. Therefore, if the hen was falling and wing flapping was 

prolonged, when trying stop the fall by landing on a structure, this could lead to 

the readout duration for a fall being longer than that of a non-fall.  

There was a three-way interaction between fall presence (Y/N), collision 

presence (Y/N) and the total height of the movement on the readout duration. 

Movements that were non-falls/non-collisions had the shortest readout durations, 

these were controlled movements and suggest that these movements were 

easily executed by the hens. This was followed by non-fall/ collision movements. 

Non-falls resulted in lower readout-durations than falls, more than likely because 

the movement was controlled and was not difficult for the hen to execute. This 

was followed by falls/non-collisions with the overall second longest readout 

durations and falls/ collisions having the longest readout durations. These were 

the most uncontrolled types of movements and falls/collisions probably represent 

uncontrolled movements that the hens could not recover from and this made the 

readout duration longer because of continued efforts to recover (e.g. a prolonged 
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duration of wing flapping). Readout durations for total heights >1.5m were longer 

for all behaviours except falls/non-collisions, which peaked at 1.0-1.5m. Again, 

this may be because hens try to recover from falls at heights 1.0-1.5m but as the 

height of the falls increase, recovery may be easier and there may be less wing 

flapping, resulting in a decrease in the readout duration.  

The average summed AV is more difficult to interpret, in part due to the 

way it was calculated, as some instances are possibly exaggerated. This was 

because there were sometimes missing data files when the movements lasted 

longer than one second. In these instances, the missing average summed AVs 

were not known. This means that the average summed AVs in the missing data 

files was most likely lower than in the files that were present because the files 

that were present produced a readout (meaning that the pre-set threshold was 

reached). As is like the readout duration, there was a three-way interaction 

between the fall presence (Y/N), collision presence (Y/N) and the total height 

moved. Movements that were non-fall/ collisions between 0.5-1m had an 

immediate peak in average summed AV compared with other movement types. 

This may be due to the small sample size of non-fall/ collisions in the dataset. In 

comparison to the readout duration, non-falls tended to have higher average 

summed AVs compared to falls. One reason for this may be that as readout 

duration decreased, the number of acceleration outputs in the readout 

decreased, and this decrease would result in an increase in the average summed 

AV. This will particularly be the case if there is a high maximum summed AV 

because the readout duration being short will inflate the average summed AV. 

There appeared to be an inverse relationship between the readout duration and 

the average summed AV, values that were high for one were low in other.  
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When the average summed AV was multiplied by the readout duration 

values were higher for falls and collisions, this was expected but was mainly 

because falls and collisions had longer readout durations whereas there was 

limited difference in the average summed AV (Chapter 2).  

 

6.1.2. Falls within a multi-tier system 

Falls occur in different regions of the Bolegg terrace multi-tier system. The 

regions of importance were determined by how often a navigation path was used 

and the percentage of falls compared with total movements in that navigation 

path. This is the first time that navigation paths were looked at in such detail with 

the aim to pinpoint hazardous navigation paths with the aim to alter them to 

become less hazardous. The top tier and nest box regions were found to have 

the highest percentage of falls of the data generated from hens wearing 

accelerometers. This may be due to them being highly used areas. As high 

percentage of falls in the top tier of the system may be due to hens being 

motivated to roost high in the system causing overcrowding (Olsson and Keeling, 

2000; Schrader and Müller, 2009). There was also a higher percentage of falls 

around the nest box area compared to other areas in the system. This may be 

due to overcrowding, as nest boxes are a highly used resource, and they are in 

the centre of the multi-tier system, meaning the hens must move past them to 

move up the system. Hens may use the same nest box and enter the nest boxes 

at the same time of day (Riber, 2010), which would heighten the problems around 

the nest box. However, most falls occurred around the nest box during dusk, 

which suggests it is the movement to the top of the system and overcrowding that 

causes most of the falls.  



 

236 
 

It was also found that specific navigation paths were more hazardous than 

others (they resulted in a higher percentage of falls) (Chapter 3). For example, 

when hens had a missed landing, it is the movement from the starting region to 

the intended landing region that is difficult. Most of the missed landings happened 

when moving to or from a perch (Chapter 3). Perches have been shown in 

previous work to result in a high proportion of falls (Campbell et al., 2016a). Slips 

occurred most frequently when moving from the top perch to the top tier (Chapter 

3) and may be a result of overcrowding on the top perches. Previous work has 

shown that the time required to achieve balance increased as the landing area 

between obstructions decreased (Moinard et al., 2005), suggesting slips may be 

more likely when perches are full. A push may suggest that the starting area is 

hazardous. A push tends to suggest that the fall is occurring in a region with a 

high bird volume. A small number of falls around the nest box were from pushes 

and interactions with other conspecifics (Chapter 3) and may be due to 

aggression from conspecifics around the nest box (Freire et al., 1998). Most 

pushes occurred from the 3rd perch to litter and 2nd perch to lower tier (Chapter 

3). This suggests that hens are being displaced as conspecifics move to these 

regions. This may indicate that other ways to navigate these regions are needed. 

It is important to note that the 2nd perch and 3rd perch are those perches 

surrounding the nest box. 

There was also a link between time of day, with a greater percentage of 

falls during the night compared to other times of the day. However, what was also 

found was that the actual number of total movements and falls per hour was 

higher during the dusk-phase compared to all other phases (Chapter 3). The 

absolute number of movements were low at night but the percentage of falls 
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during the night was high. This result suggested that it is important to look at the 

number of times movements occur and not just what the percentage of falls are 

in each time of day or navigation path. Hazard within a system is a function of the 

frequency of use of a given pathway, as well as the risk of injury on any one 

occasion. Dusk has been considered a hazardous time of day because of the 

high proportion of bird movement and the high number of falls (Stratmann et al., 

2015a). Hens are highly motivated to perch at night (Olsson and Keeling, 2002) 

and prefer high roosting locations (Schrader and Müller, 2009), so the increase 

in the percentage of falls at this time of day is most likely linked to the competition 

to perch high at night. 

 

6.1.3. Modifications to multi-tier systems  

Modifications in Chapter 4 were based on results from Chapter 2 and 3.  

The addition of mushroom-shaped perches in the place of standard perches was 

used with the expectation that mushroom-shaped perches would provide better 

grip compared to standard round, metal perches (Pickel et al., 2011). Round 

perches have been shown to cause unstable movements while feeding 

compared to rectangular perches and platforms (Duncan et al., 1992; Sirovnik et 

al., 2018). One aim in Chapter 4 was to reduce falls from perches because 

movements from perches tended to have higher maximum and average summed 

AVs on at the keel (Chapter 2). Another predicted outcome of mushroom-shaped 

perches was that they would provide better grip when hens were pushed (pushes 

from perches occurred more that pushes from any other structure; Chapter 3). It 

was thought that these alterations would reduce keel bone fracture prevalence. 

However, keel bone fracture prevalence increased in the mushroom-shaped 
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perch treatments (Chapter 4). More hens perched in the treatments with 

mushroom-shaped perches, which may explain the increased keel bone fracture 

prevalence. Hens may move more to access the perches and it is known that 

systems that provide greater movements often have increased prevalence of keel 

bone fractures (Rodenburg et al., 2008; Wilkins et al., 2011; Petrik et al., 2015). 

Hens in Chapter 4 were perching more in the mushroom shaped perch 

treatments compared to the control and were therefore potentially moving more. 

Keel bone deviation prevalence was not reduced in the mushroom-shaped 

perch treatments, despite what was postulated to be a more favourable profile, 

and the prevalence of bumblefoot and foot pad dermatitis increased in the extra 

mushroom-shaped perch treatment on the top tier of the system compared with 

the control (Chapter 4). This may be because of the extra perching in the 

mushroom-shaped treatments that may have counteracted the effects of the 

more favourable profile (increased surface area) of perches expected to reduce 

keel bone deviations. Food pad dermatitis and bumblefoot may have increased 

because of the grooves on the surface of the mushroom-shaped perches and 

this would lead to prolonged contact with faecal matter.  

The addition of an extra round perch in the nest box perch (NBP) treatment 

increased keel bone deviations (Chapter 4). Round perches were found in a 

previous study to have the highest pressure on the keel bone (Pickel et al., 2011), 

which may explain the increase in deviation prevalence because hens perched 

more in the middle tier of the system in the NBP treatment. However, it is unlikely 

that the addition of one perch was the only reason for the increase in keel bone 

deviations in the NBP treatment. It is important to note that hens were only 

counted on the perches and the length of time perching was not recorded, so it 
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is unknown whether hens’ perch for longer in the NBP treatment compared to the 

control. It is also worth noting that the addition of an extra perch around the nest 

box did not lead to an increase in footpad lesions compared to the control, even 

though there was slightly more perching in the NBP treatment compared to the 

control. There was also a slightly decreased percentage of perfect feather cover 

and a slight decrease in body mass in the NBP treatment compared to the control, 

which may be explained by the close proximity of the extra perch to the nest box 

(Nicol et al., 1999) (Chapter 4). There was deterioration of the litter quality in the 

NBP treatment, suggesting that an extra perch in this region should not be 

recommended on-farm for hygiene reasons. There was an increase in perching 

behaviour in the NBP treatment compared to the control (Chapter 4). This 

suggests that the extra perches would be used by laying hens, but the placement 

of these perches would need some further investigation to determine optimal 

usage and increased benefit to hens.  

Some of the results in this thesis are contradictory, such as in Chapter 4 

ramps did not affect the prevalence of keel bone fractures, whereas farms with 

ramps tended to have a lower prevalence of keel bone fractures in Chapter 5. 

One reason for this difference between studies could be that ramps in Chapter 4 

were transverse across the system and they ran from the top tier to the lower tier. 

Different ramp arrangements were present both within and between farms in 

Chapter 5. Ramps were both transverse to the system, acting as a pathway 

directly onto the system, either leading from the litter to the lower tier or from the 

lower tier to the nest box (as examples). It may be that different ramps affect 

movement in different ways, with some leading to better quality transitions than 

others, and perhaps some ramp configurations contributing to a more “cluttered” 
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environment. Previous work has shown that grid ramps were easier for pullets to 

transition compared with rung ramps (Pettersson et al., 2017b). Metal grid ramps 

were used in Chapter 4. Additionally, it could be that certain hybrids react to 

ramps differently, with some more readily using them or it may be that their 

previous experience of ramps affects transition ability as adults (Norman et al., 

2018).  

A possible solution may be that ramps need to be localised to the areas 

within the system with the highest percentage of falls. From Chapter 3, a high 

proportion of falls occurred along the top tier of the system and the nest box area. 

Ramps were transverse across the whole system in Chapter 4 but ramps may 

have a greater impact on bird health if they are placed inwards towards the 

system, similar in design to previous work (Stratmann et al., 2015a). As stated 

above, ramp placement was different between farms in Chapter 5, with some 

being transverse and others orientated towards the systems, with some farms 

having more than one type of ramp placement. Transverse ramps may not be the 

optimal orientation for ramp placement and a study comparing different ramp 

materials and placement is needed.  

Chapter 4 showed that ramps increased the prevalence of hyperkeratosis, 

but the same result was not found in Chapter 5. The reason for this finding is 

unknown but may be due to hyperkeratosis being scored at multiple time points 

(ages) in Chapter 4, but only at one-time point (with variable ages) in Chapter 5. 

It is known that footpad dermatitis increases in the presence of wet litter, which 

in turn is affected by the time of year (Wang et al., 1998). Chapter 5 was carried 

out for 5 weeks during the summer, whereas foot scoring in Chapter 4 was carried 

out through the autumn and spring, giving two different weather conditions. This 
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may suggest that the colder weather can increase hyperkeratosis prevalence. 

Therefore, age and/or weather could be contributing factors affecting footpad 

lesions development.  

The ramp treatment had a slight improvement in tail feather score in 

Chapter 5. The percentage of hens with perfect feather cover was not statistically 

lower in the ramp treatment compared to the control but it was numerically lower 

(Chapter 4). However, feather cover was accumulated over three separate body 

areas and most of the hens had perfect feather condition, making it difficult to 

make meaningful comparisons between different body areas (Chapter 4). The 

way that information on feather cover was collected was also variable. In Chapter 

4, feather cover was scored without handling the hens, only walking through each 

pen. Whereas in Chapter 5, each hen was held and scored during handling. The 

difference in data collection may make it difficult to compare the two studies.  

 

6.2. Limitations  

One of the limitations of the study was that Chapter 2 and 3 were only 

conducted in a single multi-tier design, meaning the results cannot be directly 

extrapolated to represent other multi-tier systems. Hence, the modifications in 

Chapter 4 were only directly relevant to the Bolegg terrace multi-tier system, 

though this is a commonly used multi-tier system. However, the aim was to 

assess elements common between systems, and it is possible, therefore, that 

this study can aid in determining the starting points for improving other multi-tier 

systems. It would be sensible to begin studies of modifications at the nest box 

and top tier area in other multi-tier systems.  
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Another limitation is that the accelerometry output from the falls and 

collisions detected in Chapter 2 could not be linked to a precise event or 

behaviour. For example, it is not known whether a hen falling and then colliding 

with a perch generated the maximum summed AV at the point of collision or from 

the fall preceding the collision. This is partly due to the sampling rate of the 

accelerometers used being high (500HZ on each sensor), meaning that there are 

500 readouts per second on each sensor. This level of accuracy makes it difficult 

to exactly match behaviours to video outputs, where the video recorded at fewer 

frames per second than the accelerometers. However, if a reduced sampling 

frequency was used on the accelerometers it is likely many events may have 

been missed.  

Another limitation of the accelerometer analysis is that the data generated 

and used in Chapter 2 always corresponded to the acceleration vector (this is the 

sum of all 3-axis).  If all the axes were looked at separately, this would have only 

been appropriate for the body sensor as the orientation was known. For the keel 

sensor it was not possible to determine the orientation of the sensor once fitted 

to the hen because it was able to move somewhat within the vest. However, the 

body sensor was always orientated in a known direction. The body sensor could 

have indicated whether the movement was a transition between tiers and 

perches or whether the output was generated when the hen was not moving 

(such as preening and dustbathing). Different levels of classification accuracy 

were found between different axes from cows (Watanabe et al., 2008) and 

different axes were important when classifying behaviours of badgers (Graf et al., 

2015). Future work would benefit from analysing each axis in turn to classify 

behaviour. 
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One of the greatest limitations in this PhD thesis was the sample size in 

Chapter 4 (n=2 per treatment). This has already been discussed in Chapter 4, 

but it is important to reiterate that further research into mushroom-shaped 

perches would be needed before a conclusive decision is made about their 

suitability for use in laying hen housing systems. Another study could look at the 

use of mushroom-shaped perches but remove the grooves that were present on 

the surface, reducing faecal build-up and possibly reducing the prevalence of foot 

pad lesions.  

 

6.3. Implications of the results 

Research within this thesis was conducted in several countries within 

Europe (Switzerland, the Netherlands and Belgium) and the results obtained are 

important for the future development of laying hen multi-tier systems. Although 

the studies in Chapter 2, 3 and 4 were solely focussed on the Bolegg terrace 

multi-tier, the results indicate that ramps may have a benefit to reducing keel 

bone fracture prevalence (Chapter 5 only) and reduce footpad dermatitis and 

bumblefoot prevalence (Chapter 4 and 5).  

This was the first body of evidence that the greater the total height hens 

are moving within a system the more likely they are to have high maximum 

summed AV at their keel bone. This adds to the body of evidence that falls and 

collisions in multi-tier systems are the cause of the increased levels of keel bone 

fractures compared with cages and single-tier systems (Gregory and Wilkins, 

1996; Moinard et al., 2004a; Wilkins et al., 2011). Up until now, experimental 

studies have shown that increased forces on the keel of euthanised hens are 

more likely to result in keel bone fractures and that fractures were more severe, 



 

244 
 

compared to lower forces (Toscano et al., 2018). However, this is the first time 

this data has been quantified on living hens. 

This was also the first in-depth study into areas within a multi-tier system 

that result in the highest and lowest percentage of falls. The body of research 

presented in this thesis shows the first possible step in identifying these key areas 

where falls and collisions occur and customising these areas to improve the 

mobility of laying hens; potentially reducing falls, collisions and keel bone 

fractures.  

One of the advantages of this study is that there is a rich dataset of 

accelerometry outputs that are linked to a coded behaviour. Algorithms and 

machine learning tools can potentially link an accelerometry output to a 

behaviour. It may be possible to use this dataset to teach a machine learning 

algorithm what is a non-fall/ non-collision, non-fall/ collision, fall/ non-collision and 

a fall/ collision. This tool could then be used on farms equipped with multi-tier 

systems to determine the number of falls and collisions that are occurring on a 

farm. Once the data are collected from farms, it may then be possible to create 

bespoke modifications for that farm; either remove or adding in additional 

furnishings or recommending different rearing conditions that provide a more 

challenging environment to aid pullets in developing navigational skills for a multi-

tier farm as adults.  

Future avenue of study should be the direct monitoring of behaviours 

using wavelet analysis (Preece et al., 2009) or machine learning techniques 

(Mannini and Sabatini, 2010). This study went some way in developing these 

techniques, but not to the extent that could be reported in this thesis. Algorithms 

have been developed for humans to identify falls and collisions (Chaudhuri et al., 
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2014) and developing the data in the current study further would be beneficial to 

laying hen welfare because it may be possible to determine how many falls occur 

in housing systems and make a comparison between different systems. With the 

right data inputs and analysis, it may even be possible to distinguish detailed 

behaviours. Although, this data would have been incredibly useful, much more 

time and preparation of the data set was needed. Training was also needed to 

learn how to properly use the software and analyse the data. Future work should 

collaborate with computational experts to develop this data further. 

Accelerometer outputs were looked at in excel and it could be seen that 

patterns could potentially be identified in the data between non-falls and falls as 

well as non-collisions and collisions. With the help of collaborators, (Andrew 

Dowsey; Figure 6.1 and Piotr Slowinski; Figure 6.2) preliminary analysis using a 

machine learning and wavelet transform were attempted. Figures below were 

created used R statistical software (machine learning) and Matlab (Mathworks, 

2014) using a package described in previous work (Grinsted et al., 2004). The 

data is Figure 6.1 is categorising falls and non-falls movements and the data from 

Figure 6.2 is using both a combination of Fourier transform and wavelet analysis 

to generate differences between collisions and non-collisions.  
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Figure 6.1: Machine learning output showing classification of falls (red) and non-

falls (black). 

 

 

Figure 6.2: Wavelet analysis of a collision (left) and a non-collision (right) 

 

This thesis was also partly funded by industry, so the results can 

potentially be developed by the industrial partner and used in the designing of 

future systems. The results should aid industry and researchers in the future 

when selecting housing design aspects to focus on for improving laying hen 

welfare. It is crucial that the effects of the mushroom-shaped perches, perch 

placement and ramps are investigated in more detail, with a focus on different 
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designs (e.g. smoothing the surface of mushroom-shaped perches) and 

materials (e.g. plastic vs metal for perches and ramps).  

 

6.4. Conclusions 

Overall, the thesis adds to the existing body of knowledge about multi-tier 

systems for laying hens and how hens interact with their environment. The main 

results conclude that falls and collisions have higher loads at the keel and 

therefore pose a threat to keel bone health. The top tier area and the region 

around the nest box lead to more falls compared to other areas within the system 

and ramps have the potential to improve keel bone fracture prevalence and foot 

pad health.



 

248 
 

6.5 References 

Abrahamsson, P., Tauson, R., 1993. Effect of Perches at Different 

Positions in Conventional Cages for Laying Hens of 2 Different Strains. Acta Agr 

Scand a-An 43(4), 228-235. 

Abrahamsson, P., Tauson, R., 1995. Aviary Systems and Conventional 

Cages for Laying Hens - Effects on Production, Egg Quality, Health and Bird 

Location in 3 Hybrids. Acta Agr Scand a-An 45(3), 191-203. 

Adams, T.M., Layton, R.A., 2010. Piezoresistive transducers, Introductory 

MEMS: Fabrication and Applications, Springer US, Boston, MA, pp. 211-230. 

Alvarenga, F.A.P., Borges, I., Palkovič, L., Rodina, J., Oddy, V.H., Dobos, 

R.C., 2016. Using a three-axis accelerometer to identify and classify sheep 

behaviour at pasture. Applied animal behaviour science 181, 91-99. 

Appleby, M.C., 1992. Poultry production systems : behaviour, 

management and welfare / Michael C. Appleby, Barry O. Hughes, H. Arnold 

Elson. Wallingford : C.A.B International, Wallingford. 

Appleby, M.C., Hughes, B.O., 1991. Welfare of laying hens in cages and 

alternative systems: environmental, physical and behavioural aspects. World's 

Poultry Science Journal 47(2), 109-128. 

Backus, S.B., Sustaita, D., Odhner, L.U., Dollar, A.M., 2015. Mechanical 

analysis of avian feet: multiarticular muscles in grasping and perching. Royal 

Society Open Science 2(2). 

Bagalà, F., Becker, C., Cappello, A., Chiari, L., Aminian, K., Hausdorff, 

J.M., Zijlstra, W., Klenk, J., 2012. Evaluation of Accelerometer-Based Fall 

Detection Algorithms on Real-World Falls. PloS one 7(5), e37062. 

Baird, H.T., Eggett, D.L., Fullmer, S., 2008. Varying Ratios of Omega-

6:Omega-3 Fatty Acids on the Pre-and Postmortem Bone Mineral Density, Bone 

Ash, and Bone Breaking Strength of Laying Chickens. Poultry Sci 87(2), 323-

328. 

Banerjee, D., Daigle, C.L., Dong, B., Wurtz, K., Newberry, R.C., Siegford, 

J.M., Biswas, S., 2014. Detection of jumping and landing force in laying hens 

using wireless wearable sensors. Poultry Sci 93(11), 2724-2733. 

Bates, D., Maechler, M., Bolker, B., Walker, S., 2015. Fitting Linear Mixed-

Effects Models  Using lme4, Journal of Statistical Software. 



 

249 
 

Beliveau, A., Spencer, G.T., Thomas, K.A., Roberson, S.L., 1999. 

Evaluation of MEMS capacitive accelerometers. IEEE Design & Test of 

Computers 16(4), 48-56. 

Bell, D.J., Siller, W.G., 1962. Cage layer fatigue in Brown Leghorns. 

Research in Veterinary Science 3, 219-230. 

Berckmans, D., 2014. Precision livestock farming technologies for welfare 

management in intensive livestock systems. 

Bertocci, G.E., Pierce, M.C., Deemer, E., Aguel, F., Janosky, J.E., 

Vogeley, E., 2004. Influence of fall height and impact surface on biomechanics 

of feet-first free falls in children. Injury 35(4), 417-424. 

Besbes, B., Tixier-Boichard, M., Hoffmann, I., L Jain, G., 2007. Future 

trends for poultry genetic resources. 

Bilcik, B., Keeling, L.J., 1999. Changes in feather condition in relation to 

feather pecking and aggressive behaviour in laying hens. British poultry science 

40(4), 444-451. 

Bishop, S.C., Fleming, R.H., McCormack, H.A., Flock, D.K., Whitehead, 

C.C., 2000. Inheritance of bone characteristics affecting osteoporosis in laying 

hens. British poultry science 41(1), 33-40. 

Blokhuis, H.J., Van Niekerk, T.F., Bessei, W., Elson, A., Guemene, D., 

Kjaer, J.B., Levrino, G.A.M., Nicol, C.J., Tauson, R., Weeks, C.A., Van de Weerd, 

H.A., 2007. The LayWel project: welfare implications of changes in production 

systems for laying hens. World Poultry Sci J 63(1), 101-114. 

Bourke, A.K., O’Brien, J.V., Lyons, G.M., 2007. Evaluation of a threshold-

based tri-axial accelerometer fall detection algorithm. Gait & Posture 26(2), 194-

199. 

Brendler, C., Kipper, S., Schrader, L., 2014. Vigilance and roosting 

behaviour of laying hens on different perch heights. Applied animal behaviour 

science 157, 93-99. 

Brendler, C., Schrader, L., 2016. Perch use by laying hens in aviary 

systems. Applied animal behaviour science 182, 9-14. 

Brown, D., Kays, R., Mikelski, M., Wilson, R., Klimley, P., 2013. Observing 

the unwatchable through acceleration logging of animal behavior. Animal 

Biotelemetry 1(20). 



 

250 
 

Buckner, G.D., Insko, J.W.M., Henry, A.H., Wachs, E.F., 1948. Rate of 

Growth and Calcification of the Sternum of Male and Female New Hampshire 

Chickens. Poultry Sci 27(4), 430-433. 

Buckner, G.D., Insko, J.W.M., Henry, A.H., Wachs, E.F., 1954. The 

Comparative Rates of Growth and Ossification of the Femur, Tibia and 

Metatarsus Bones of the Male and Female New Hampshire Chickens Having 

Crooked Keels*. Poultry Science 33(2), 397-400. 

Buijs, S., Booth, F., Richards, G., McGaughey, L., Nicol, C.J., Edgar, J., 

Tarlton, J.F., 2018. Behavioural and physiological responses of laying hens to 

automated monitoring equipment. Applied animal behaviour science 199, 17-23. 

Butterworth, A., 2013. On-farm broiler welfare assessment and associated 

training. Revista Brasileira de Ciência Avícola 15, 71-77. 

Campbell, D.L.M., Goodwin, S.L., Makagon, M.M., Swanson, J.C., 

Siegford, J.M., 2016a. Failed landings after laying hen flight in a commercial 

aviary over two flock cycles1. Poultry Sci 95(1), 188-197. 

Campbell, D.L.M., Karcher, D.M., Siegford, J.M., 2016b. Location tracking 

of individual laying hens housed in aviaries with different litter substrates. Applied 

animal behaviour science 184, 74-79. 

Campbell, D.L.M., Makagon, M.M., Swanson, J.C., Siegford, J.M., 2016c. 

Laying hen movement in a commercial aviary: Enclosure to floor and back 

again1. Poultry Sci 95(1), 176-187. 

Campbell, D.L.M., Makagon, M.M., Swanson, J.C., Siegford, J.M., 2016d. 

Perch use by laying hens in a commercial aviary. Poultry Sci 95(8), 1736-1742. 

Candelotto, L., Stratmann, A., Gebhardt-Henrich, S.G., Rufener, C., van 

de Braak, T., Toscano, M.J., 2017. Susceptibility to keel bone fractures in laying 

hens and the role of genetic variation. Poultry Science 96(10), 3517-3528. 

Carmichael, N.L., Walker, W., Hughes, B.O., 1999. Laying hens in large 

flocks in a perchery system: Influence of stocking density on location, use of 

resources and behaviour. British Poultry Science 40(2), 165-176. 

Casey-Trott, T., Heerkens, J.L.T., Petrik, M., Regmi, P., Schrader, L., 

Toscano, M.J., Widowski, T., 2015. Methods for assessment of keel bone 

damage in poultry. Poultry Sci 94(10), 2339-2350. 

Casey-Trott, T.M., Korver, D.R., Guerin, M.T., Sandilands, V., Torrey, S., 

Widowski, T.M., 2017. Opportunities for exercise during pullet rearing, Part II: 



 

251 
 

Long-term effects on bone characteristics of adult laying hens at the end-of-lay. 

Poultry Sci 96(8), 2518-2527. 

Chaudhuri, S., Thompson, H., Demiris, G., 2014. Fall detection devices 

and their use with older adults: a systematic review. Journal of geriatric physical 

therapy (2001) 37(4), 178-196. 

Chen, D.-h., Bao, J., Meng, F.-y., Wei, C.-b., 2014. Choice of perch 

characteristics by laying hens in cages with different group size and perching 

behaviours. Applied animal behaviour science 150(0), 37-43. 

Chen, D.H., Bao, J., 2012. General Behaviors and Perching Behaviors of 

Laying Hens in Cages with Different Colored Perches. Asian Austral J Anim 

25(5), 717-724. 

Cheng, T.K., Coon, C.N., 1990. Sensitivity of Various Bone Parameters of 

Laying Hens to Different Daily Calcium Intakes1. Poultry Sci 69(12), 2209-2213. 

Cockrem, J.F., 2007. Stress, corticosterone responses and avian 

personalities. Journal of Ornithology 148(2), 169-178. 

Collias, N.E., Collias, E.C., 1967. A Field Study of the Red Jungle Fowl in 

North-Central India. The Condor 69(4), 360-386. 

Collins, L.M., Asher, L., Pfeiffer, D.U., Browne, W.J., Nicol, C.J., 2011. 

Clustering and synchrony in laying hens: The effect of environmental resources 

on social dynamics. Applied animal behaviour science 129(1), 43-53. 

Colson, S., Arnould, C., Michel, V., 2007. Motivation to dust-bathe of 

laying hens housed in cages and in aviaries. animal 1(3), 433-437. 

Colson, S., Arnould, C., Michel, V., 2008. Influence of rearing conditions 

of pullets on space use and performance of hens placed in aviaries at the 

beginning of the laying period. Applied Animal Behaviour Science 111(3–4), 286-

300. 

Cooper, J.J., Appleby, M.C., 1995. Nesting behaviour of hens: Effects of 

experience on motivation. Applied animal behaviour science 42(4), 283-295. 

Cooper, J.J., Appleby, M.C., 1996. Demand for nest boxes in laying hens. 

Behavioural processes 36(2), 171-182. 

Cordiner, L.S., Savory, C.J., 2001. Use of perches and nestboxes by 

laying hens in relation to social status, based on examination of consistency of 

ranking orders and frequency of interaction. Applied animal behaviour science 

71(4), 305-317. 



 

252 
 

Daigle, C.L., Banerjee, D., Biswas, S., Siegford, J.M., 2012. Noncaged 

laying hens remain unflappable while wearing body-mounted sensors: Levels of 

agonistic behaviors remain unchanged and resource use is not reduced after 

habituation. Poultry Sci 91(10), 2415-2423. 

de Haas, E.N., Kemp, B., Bolhuis, J.E., Groothuis, T., Rodenburg, T.B., 

2013. Fear, stress, and feather pecking in commercial white and brown laying 

hen parent-stock flocks and their relationships with production parameters. 

Poultry Sci 92(9), 2259-2269. 

De Knibber, S., 2018. Loopplankjes om hoogteverschillen te overbruggen 

in volieresystemen: enn praktijkonderzoek naar de opinie van de 

leghennenhouder en naar het dierenwelzijn, Favulteit Diergeneeskunde, 

Universiteit Gent. 

DEFRA, 2015. United Kingdom Poultry and Poultry Meat Statistics - March 

2015, 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/4

23075/poultry-statsnotice-23apr15.pdf. 

Donaldson, C.J., Ball, M.E.E., O'Connell, N.E., 2012. Aerial perches and 

free-range laying hens: The effect of access to aerial perches and of individual 

bird parameters on keel bone injuries in commercial free-range laying hens. 

Poultry Sci 91(2), 304-315. 

Duncan, E.T., Appleby, M.C., Hughes, B.O., 1992. Effect of perches in 

laying cages on welfare and production of hens. British poultry science 33(1), 25-

35. 

El-Bendary, N., Tan, Q., Pivot, F., Lam, A., 2013. Fall detection and 

prevention for the elderly: A review of trends and challenges. 

El-Lethey, H., Aerni, V., Jungi, T.W., Wechsler, B., 2000. Stress and 

feather pecking in laying hens in relation to housing conditions. British poultry 

science 41(1), 22-28. 

European Commision, 1999. Council Directive 1999/74/EC of 19 July 

1999 laying down minimum standards for the protection of laying hens. Official 

Journal of the European Communities L203/53. 

Eusemann, B.K., Baulain, U., Schrader, L., Thöne-Reineke, C., Patt, A., 

Petow, S., 2018. Radiographic examination of keel bone damage in living laying 

hens of different strains kept in two housing systems. PloS one 13(5), e0194974. 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/423075/poultry-statsnotice-23apr15.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/423075/poultry-statsnotice-23apr15.pdf


 

253 
 

FAWC, 2010. (Farm Animal Welfare Council) Opinion on osteoporosis and 

bone fractures in laying hens. 

Fehlmann, G., O’Riain, M.J., Hopkins, P.W., O’Sullivan, J., Holton, M.D., 

Shepard, E.L.C., King, A.J., 2017. Identification of behaviours from 

accelerometer data in a wild social primate. Animal Biotelemetry 5(1), 6. 

Fleming, R.H., Mccormack, H.A., Mcteir, L., Whitehead, C.C., 2006. 

Relationships between genetic, environmental and nutritional factors influencing 

osteoporosis in laying hens. British poultry science 47(6), 742-755. 

Fleming, R.H., McCormack, H.A., Whitehead, C.C., 1998. Bone structure 

and strength at different ages in laying hens and effects of dietary particulate 

limestone, vitamin K and ascorbic acid. British Poultry Science 39(3), 434-440. 

Fleming, R.H., Whitehead, C.C., Alvey, D., Gregory, N.G., Wilkins, L.J., 

1994. Bone structure and breaking strength in laying hens housed in different 

husbandry systems. British poultry science 35(5), 651-662. 

Fox, J., Weisberg, S., 2011. An R Companion to Applied Regression. 2nd 

ed. Sage, Thousand Oaks, CA. 

Fraisse, F., Cockrem, J.F., 2006. Corticosterone and fear behaviour in 

white and brown caged laying hens. British poultry science 47(2), 110-119. 

Freire, R., Appleby, M.C., Hughes, B.O., 1998. Effects of social 

interactions on pre-laying behaviour in hens. Applied animal behaviour science 

56(1), 47-57. 

Gamer, M., Lemon, J., Singh, I., 2012. irr: Various Coefficients of Interrater 

Reliability and Agreement. Version 0.84. 

Garnham, L., Løvlie, H., 2018. Sophisticated Fowl: The Complex 

Behaviour and Cognitive Skills of Chickens and Red Junglefowl. Behavioral 

Sciences 8(1), 13. 

Gebhardt-Henrich, S.G., Fröhlich, E.K.F., 2015. Early Onset of Laying and 

Bumblefoot Favor Keel Bone Fractures. Animals : an open access journal from 

MDPI 5(4), 1192-1206. 

Gebhardt-Henrich, S.G., Pfulg, A., Fröhlich, E.K.F., Käppeli, S., 

Guggisberg, D., Liesegang, A., Stoffel, M.H., 2017. Limited Associations 

between Keel Bone Damage and Bone Properties Measured with Computer 

Tomography, Three-Point Bending Test, and Analysis of Minerals in Swiss 

Laying Hens. Frontiers in Veterinary Science 4, 128. 



 

254 
 

Gebhardt-Henrich, S.G., Toscano, M.J., Würbel, H., 2018. Use of aerial 

perches and perches on aviary tiers by broiler breeders. Applied animal 

behaviour science 203, 24-33. 

Gentle, M.J., 2011. Pain issues in poultry. Applied animal behaviour 

science 135(3), 252-258. 

Gentle, M.J., Tilston, V., McKeegan, D.E.F., 2001. Mechanothermal 

nociceptors in the scaly skin of the chicken leg. Neuroscience 106(3), 643-652. 

Gorski, J.P., 1998. Is All Bone the Same? Distinctive Distributions and 

Properties of Non-Collagenous Matrix Proteins in Lamellar Vs. Woven Bone 

Imply the Existence of Different Underlying Osteogenic Mechanisms. Critical 

Reviews in Oral Biology & Medicine 9(2), 201-223. 

Graf, P.M., Wilson, R.P., Qasem, L., Hackländer, K., Rosell, F., 2015. The 

Use of Acceleration to Code for Animal Behaviours; A Case Study in Free-

Ranging Eurasian Beavers Castor fiber. PLoS ONE 10(8), e0136751. 

Greene, J.A., McCracken, R.M., Evans, R.T., 1985. A contact dermatitis 

of broilers ‐clinical and pathological findings. Avian Pathology 14(1), 23-38. 

Gregory, N.G., Wilkins, L.J., 1989. Broken bones in domestic fowl: 

Handling and processing damage in end‐of‐lay battery hens. British poultry 

science 30(3), 555-562. 

Gregory, N.G., Wilkins, L.J., 1996. Effect of age on bone strength and the 

prevalence of broken bones in perchery laying hens. New Zeal Vet J 44(1), 31-

32. 

Grinsted, A., Moore, J.C., Jevrejeva, S., 2004. Crosswavelet and Wavelet 

Coherence, National Oceanography Centre, NERC, University of 

Southhampton:http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence. 

GuÈye, E.H.F., 1998. Village egg and fowl meat production in Africa. 

World's Poultry Science Journal 54(1), 73-86. 

Gunnarsson, S., Yngvesson, J., Keeling, L.J., Forkman, B., 2000. Rearing 

without early access to perches impairs the spatial skills of laying hens. Applied 

animal behaviour science 67(3), 217-228. 

Gwatkin, R., 1940. Staphylococcal Infection in Poultry. Canadian Journal 

of Comparative Medicine and Veterinary Science 4(10), 294-297. 

http://noc.ac.uk/using-science/crosswavelet-wavelet-coherence


 

255 
 

Habig, C., Distl, O., 2013. Evaluation of bone strength, keel bone status, 

plumage condition and egg quality of two layer lines kept in small group housing 

systems. British poultry science 54(4), 413-424. 

Habinski, A.M., Caston, L.J., Casey-Trott, T.M., Hunniford, M.E., 

Widowski, T.M., 2017. Development of perching behavior in 3 strains of pullets 

reared in furnished cages. Poultry Sci 96(3), 519-529. 

Hadjidakis, D.J., Androulakis, I.I., 2007. Bone Remodeling. Annals of the 

New York Academy of Sciences 1092(1), 385-396. 

Harlander-Matauschek, A., Rodenburg, T.B., Sandilands, V., Tobalske, 

B.W., Toscano, M.J., 2015. Causes of keel bone damage and their solutions in 

laying hens. World's Poultry Science Journal 71(3), 461-472. 

Heerkens, J.L., Delezie, E., Ampe, B., Rodenburg, T.B., Tuyttens, F.A., 

2016a. Ramps and hybrid effects on keel bone and foot pad disorders in modified 

aviaries for laying hens. Poult Sci 95(11), 2479-2488. 

Heerkens, J.L.T., Delezie, E., Rodenburg, T.B., Kempen, I., Zoons, J., 

Ampe, B., Tuyttens, F.A.M., 2016b. Risk factors associated with keel bone and 

foot pad disorders in laying hens housed in aviary systems. Poultry Science 

95(3), 482-488. 

Hocking, P.M., Bain, M., Channing, C.E., Fleming, R., Wilson, S., 2003. 

Genetic variation for egg production, egg quality and bone strength in selected 

and traditional breeds of laying fowl. British poultry science 44(3), 365-373. 

Hongchao, J., Jiang, Y., Song, Z., Zhao, J., Wang, X., Lin, H., 2014. Effect 

of perch type and stocking density on the behaviour and growth of broilers. 

Animal Production Science 54(7), 930-941. 

Hothorn, T., Bretz, F., Westfall, P., 2008. Simultaneous Inference in 

General Parametric Models. Biometrical Journal 50(3), 346-363. 

Kalaiselvi, G., Chandran, N.D.J., Vidhya, M., 2014. Bumble foot in hen: a 

case report. North-East Veterinarian 14(2), 18. 

Käppeli, S., Gebhardt-Henrich, S.G., Fröhlich, E., Pfulg, A., Stoffel, M.H., 

2011. Prevalence of keel bone deformities in Swiss laying hens. British poultry 

science 52(5), 531-536. 

Kays, R., Crofoot, M.C., Jetz, W., Wikelski, M., 2015. Terrestrial animal 

tracking as an eye on life and planet. Science 348(6240). 



 

256 
 

Kjaer, J., Maria Levrino, G., Cepero, R., 2006. Applied Scoring of 

Integument and Health in Laying Hens. 

Kjaer, J.B., Glawatz, H., Scholz, B., Rettenbacher, S., Tauson, R., 2011. 

Reducing stress during welfare inspection: validation of a non-intrusive version 

of the LayWel plumage scoring system for laying hens. British poultry science 

52(2), 149-154. 

Knapp, T.P., Garrett, W.E., Jr., 1997. Stress Fractures: General concepts. 

Clinics in Sports Medicine 16(2), 339-356. 

Knowles, T.G., Broom, D.M., 1990. Limb bone strength and movement in 

laying hens from different housing systems. Veterinary Record 126(15), 354. 

Knowles, T.G., Wilkins, L.J., 1998. The problem of broken bones during 

the handling of laying hens--a review. Poultry Sci 77(12), 1798-1802. 

Kölzsch, A., Neefjes, M., Barkway, J., Müskens, G.J.D.M., van 

Langevelde, F., de Boer, W.F., Prins, H.H.T., Cresswell, B.H., Nolet, B.A.J.A.B., 

2016. Neckband or backpack? Differences in tag design and their effects on 

GPS/accelerometer tracking results in large waterbirds.  4(1), 13. 

Kontulainen, S., Kannus, P., Haapasalo, H., Heinonen, A., Sievänen, H., 

Vuori, I., 1999. Changes in bone mineral content with decreased training in 

competitive young adult tennis players and controls: a prospective 4-yr follow-up. 

Medicine & Science in Sports & Exercise 31(5), 646-652. 

Koolhaas, J.M., Korte, S.M., De Boer, S.F., Van Der Vegt, B.J., Van 

Reenen, C.G., Hopster, H., De Jong, I.C., Ruis, M.A.W., Blokhuis, H.J., 1999. 

Coping styles in animals: current status in behavior and stress-physiology. 

Neuroscience & Biobehavioral Reviews 23(7), 925-935. 

Korner-Nievergelt, Roth, von Felten, Guelat, Almasi, Korner-Nievergelt, 

2015. Bayesian Data Analysis in Ecology using Linear Models with R, BUGS and 

Stan. Elsevier. 

Kozak, M., Tobalske, B., Martins, C., Bowley, S., Wuerbel, H., Harlander-

Matauschek, A., 2016a. Use of space by domestic chicks housed in complex 

aviaries. Applied animal behaviour science 181, 115-121. 

Kozak, M., Tobalske, B., Springthorpe, D., Szkotnicki, B., Harlander-

Matauschek, A., 2016b. Development of physical activity levels in laying hens in 

three-dimensional aviaries. Applied animal behaviour science 185, 66-72. 



 

257 
 

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H., 2017a. lmerTest: 

Tests in Linear Mixed Effects Models, Journal of Statistical Software. 

Kuznetsova, A., Brockhoff, P.B., Christensen, R.H., 2017b. lmerTest: 

Tests in Linear Mixed Effects Models. 

LeBlanc, C., Tobalske, B., Bowley, S., Harlander-Matauschek, A., 2017. 

Development of locomotion over inclined surfaces in laying hens. animal, 1-12. 

LeBlanc, S., Tobalske, B., Quinton, M., Springthorpe, D., Szkotnicki, B., 

Wuerbel, H., Harlander-Matauschek, A., 2016. Physical Health Problems and 

Environmental Challenges Influence Balancing Behaviour in Laying Hens. PloS 

one 11(4), e0153477. 

Lehman, D., 2013. Low-Power Pedometer Using an MSP430™ MCU. 

Texas Instrument: Applcation Report. 

Lenth, R.V., 2016. Least-Squares Means: The R Package lsmeans., 

Journal of Statistical Software. 

Liu, K., Xin, H., 2017. Effects of horizontal distance between perches on 

perching behaviors of Lohmann Hens. Applied animal behaviour science 194, 

54-61. 

Liu, K., Xin, H., Shepherd, T., Zhao, Y., 2018. Perch-shape preference 

and perching behaviors of young laying hens. Applied animal behaviour science 

203, 34-41. 

Louton, H., E, R., Reese, S., Erhard, M., Bergmann, S., 2016. Effect of 

Perch Height and Position on the Usage in Enriched Colony Housing Systems 

for Laying Hens. 

Mahboub, H.D., Müller, J., von Borell, E., 2004. Outdoor use, tonic 

immobility, heterophil/lymphocyte ratio and feather condition in free-range laying 

hens of different genotype. Br Poult Sci 45(6), 738-744. 

Malik, A., Valentine, A., 2018. Pain in birds: a review for veterinary nurses. 

Veterinary Nursing Journal 33(1), 11-25. 

Mannini, A., Sabatini, A.M., 2010. Machine Learning Methods for 

Classifying Human Physical Activity from On-Body Accelerometers.  10(2), 1154. 

Mannion, R.J., Woolf, C.J., 2000. Pain Mechanisms and Management: A 

Central Perspective.  16(3), S144-S156. 

Martiskainen, P., Järvinen, M., Skön, J.-P., Tiirikainen, J., Kolehmainen, 

M., Mononen, J., 2009. Cow behaviour pattern recognition using a three-



 

258 
 

dimensional accelerometer and support vector machines. Applied Animal 

Behaviour Science 119(1–2), 32-38. 

Mathworks, N., MA, USA, 2014. MATLAB 2014b. 

McCormick, T., Law, S., 2016. Assessment of acute and chronic pain. 

Anaesthesia & Intensive Care Medicine 17(9), 421-424. 

McHugh, M.L., 2012. Interrater reliability: the kappa statistic. Biochemia 

Medica 22(3), 276-282. 

Melzack, R., Wall, P.D., Ty, T.C., 1982. Acute pain in an emergency clinic: 

Latency of onset and descriptor patterns related to different injuries. Pain 14(1), 

33-43. 

Moinard, C., Rutherford, K.M.D., Haskell, M.J., McCorquodale, C., Jones, 

R.B., Green, P.R., 2005. Effects of obstructed take-off and landing perches on 

the flight accuracy of laying hens. Applied animal behaviour science 93(1–2), 81-

95. 

Moinard, C., Statham, P., Green, P.R., 2004a. Control of landing flight by 

laying hens: implications for the design of extensive housing systems. British 

poultry science 45(5), 578-584. 

Moinard, C., Statham, P., Haskell, M.J., McCorquodale, C., Jones, R.B., 

Green, P.R., 2004b. Accuracy of laying hens in jumping upwards and downwards 

between perches in different light environments. Applied animal behaviour 

science 85(1–2), 77-92. 

Molony, V., Kent, J.E., Robertson, I.S., 1995. Assessment of acute and 

chronic pain after different methods of castration of calves. Applied Animal 

Behaviour Science 46(1), 33-48. 

Nash, J.C., 2014. On Best Practice Optimization Methods in R. 2014 

60(2), 14. 

Nasr, M.A.F., Browne, W.J., Caplen, G., Hothersall, B., Murrell, J.C., Nicol, 

C.J., 2013a. Positive affective state induced by opioid analgesia in laying hens 

with bone fractures. Applied animal behaviour science 147(1-2), 127-131. 

Nasr, M.A.F., Murrell, J., Nicol, C.J., 2013b. The effect of keel fractures on 

egg production, feed and water consumption in individual laying hens. British 

poultry science 54(2), 165-170. 



 

259 
 

Nasr, M.A.F., Murrell, J., Wilkins, L.J., Nicol, C.J., 2012a. The effect of 

keel fractures on egg-production parameters, mobility and behaviour in individual 

laying hens. Anim Welfare 21(1), 127-135. 

Nasr, M.A.F., Nicol, C.J., Murrell, J.C., 2012b. Do Laying Hens with Keel 

Bone Fractures Experience Pain? PloS one 7(8). 

Nasr, M.A.F., Nicol, C.J., Wilkins, L., Murrell, J.C., 2015. The effects of 

two non-steroidal anti-inflammatory drugs on the mobility of laying hens with keel 

bone fractures. Veterinary anaesthesia and analgesia 42(2), 197-204. 

Neethirajan, S., 2017. Recent advances in wearable sensors for animal 

health management. Sensing and Bio-Sensing Research 12, 15-29. 

Newberry, R.C., Estevez, I., Keeling, L.J., 2001. Group size and perching 

behaviour in young domestic fowl. Appl Anim Behav Sci 73(2), 117-129. 

Nicol, C.J., Gregory, N.G., Knowles, T.G., Parkman, I.D., Wilkins, L.J., 

1999. Differential effects of increased stocking density, mediated by increased 

flock size, on feather pecking and aggression in laying hens. Applied animal 

behaviour science 65(2), 137-152. 

Norman, K.I., Weeks, C.A., Pettersson, I.C., Nicol, C.J., 2018. The effect 

of experience of ramps at rear on the subsequent ability of layer pullets to 

negotiate a ramp transition. Applied animal behaviour science 208, 92-99. 

Odén, K., Keeling, L.J., Algers, B., 2002. Behaviour of laying hens in two 

types of aviary systems on 25 commercial farms in Sweden. British Poultry 

Science 43(2), 169-181. 

Olsson, I.A.S., Keeling, L.J., 2000. Night-time roosting in laying hens and 

the effect of thwarting access to perches. Applied animal behaviour science 

68(3), 243-256. 

Olsson, I.A.S., Keeling, L.J., 2002. The Push-Door for Measuring 

Motivation in Hens: Laying Hens are Motivated to Perch at Night. Animal Welfare 

11(1), 11-19. 

Pagano, A.M., Rode, K.D., Cutting, A., Owen, M.A., Jensen, S., Ware, 

J.V., Robbins, C.T., Durner, G.M., Atwood, T.C., Obbard, M.E., Middel, K.R., 

Thiemann, G.W., Williams, T.M., 2017. Using tri-axial accelerometers to identify 

wild polar bear behaviors. Endangered Species Research 32, 19-33. 



 

260 
 

Pastell, M., Tiusanen, J., Hakojärvi, M., Hänninen, L., 2009. A wireless 

accelerometer system with wavelet analysis for assessing lameness in cattle. 

Biosystems Engineering 104(4), 545-551. 

Petrik, M.T., Guerin, M.T., Widowski, T.M., 2015. On-farm comparison of 

keel fracture prevalence and other welfare indicators in conventional cage and 

floor-housed laying hens in Ontario, Canada. Poultry Sci 94(4), 579-585. 

Pettersson, I.C., Weeks, C.A., Nicol, C.J., 2017a. The effect of ramp 

provision on the accessibility of the litter in single and multi-tier laying hen 

housing. Applied animal behaviour science 186, 35-40. 

Pettersson, I.C., Weeks, C.A., Norman, K.I., Nicol, C.J., 2017b. The ability 

of laying pullets to negotiate two ramp designs as measured by bird preference 

and behaviour. PeerJ 5, e4069. 

Pickel, T., Scholz, B., Schrader, L., 2010. Perch material and diameter 

affects particular perching behaviours in laying hens. Applied animal behaviour 

science 127(1-2), 37-42. 

Pickel, T., Schrader, L., Scholz, B., 2011. Pressure load on keel bone and 

foot pads in perching laying hens in relation to perch design. Poultry Sci 90(4), 

715-724. 

Preece, S.J., Goulermas, J.Y., Kenney, L.P.J., Howard, D., 2009. A 

Comparison of Feature Extraction Methods for the Classification of Dynamic 

Activities From Accelerometer Data. IEEE Transactions on Biomedical 

Engineering 56(3), 871-879. 

Prescott, N.B., Jarvis, J.R., Wathes, C.M., 2004. Vision in the laying hen, 

in: G.C., P. (Ed.), Poult Sci S, CABI Publishing, Wallingford, Oxfordshire, pp. 155-

164. 

Proff, P., Römer, P., 2009. The molecular mechanism behind bone 

remodelling: a review. Clinical Oral Investigations 13(4), 355-362. 

Provini, P., Tobalske, B.W., Crandell, K.E., Abourachid, A., 2014. 

Transition from wing to leg forces during landing in birds. The Journal of 

Experimental Biology 217(15), 2659-2666. 

Qasem, L., Cardew, A., Wilson, A., Griffiths, I., Halsey, L.G., Shepard, 

E.L.C., Gleiss, A.C., Wilson, R., 2012. Tri-Axial Dynamic Acceleration as a Proxy 

for Animal Energy Expenditure; Should We Be Summing Values or Calculating 

the Vector? PloS one 7(2), e31187. 



 

261 
 

Quinn, T.H., Baumel, J.J., 1990. The digital tendon locking mechanism of 

the avian foot (Aves). Zoomorphology 109(5), 281-293. 

Quwaider, M., L. Daigle, C., K. Biswas, S., M. Siegford, J., C. Swanson, 

J., 2010. Development of a Wireless Body-Mounted Sensor to Monitor Location 

and Activity of Laying Hens in a Non-Cage Housing System. Transactions of the 

ASABE 53(5), 1705-1713. 

R Core Team, 2017. R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, Vienna, Austria. 

Rath, N.C., Huff, G.R., Huff, W.E., Balog, J.M., 2000. Factors Regulating 

Bone Maturity and Strength in Poultry. Poultry Sci 79(7), 1024-1032. 

Rauw, W.M., Kanis, E., Noordhuizen-Stassen, E.N., Grommers, F.J., 

1998. Undesirable side effects of selection for high production efficiency in farm 

animals: a review. Livestock Production Science 56(1), 15-33. 

Renema, R.A., Robinson, F.E., Beliveau, R.M., Davis, H.C., Lindquist, 

E.A., 2007. Relationships of Body Weight, Feathering, and Footpad Condition 

with Reproductive and Carcass Morphology of End-of-Season Commercial 

Broiler Breeder Hens. The Journal of Applied Poultry Research 16(1), 27-38. 

Riber, A.B., 2010. Development with age of nest box use and gregarious 

nesting in laying hens. Applied animal behaviour science 123(1–2), 24-31. 

Riber, A.B., Casey-Trott, T.M., Herskin, M.S., 2018. The Influence of Keel 

Bone Damage on Welfare of Laying Hens. Frontiers in Veterinary Science 5(6), 

1-12. 

Riber, A.B., Hinrichsen, L.K., 2016. Keel-bone damage and foot injuries in 

commercial laying hens in Denmark. Animal Welfare 25(2), 179-184. 

Riber, A.B., Wichman, A., Braastad, B.O., Forkman, B., 2007. Effects of 

broody hens on perch use, ground pecking, feather pecking and cannibalism in 

domestic fowl (Gallus gallus domesticus). Applied animal behaviour science 

106(1–3), 39-51. 

Richards, G.J., Nasr, M.A., Brown, S.N., Szamocki, E.M.G., Murrell, J., 

Barr, F., Wilkins, L.J., 2011. Use of radiography to identify keel bone fractures in 

laying hens and assess healing in live birds. Veterinary Record 169(11), 279. 

Rodenburg, T.B., Koene, P., 2007. The impact of group size on damaging 

behaviours, aggression, fear and stress in farm animals. Applied animal 

behaviour science 103(3), 205-214. 



 

262 
 

Rodenburg, T.B., Tuyttens, F.A.M., de Reu, K., Herman, L., Zoons, J., 

Sonck, B., 2008. Welfare assessment of laying hens in furnished cages and non-

cage systems: an on-farm comparison. Anim Welfare 17(4), 363-373. 

Romanov, M.N., Weigend, S., 2001. Analysis of Genetic Relationships 

Between Various Populations of Domestic and Jungle Fowl Using Microsatellite 

Markers. Poultry Sci 80(8), 1057-1063. 

Ronchen, S., Scholz, B., Hewicker-Trautwein, M., Hamann, H., Distl, O., 

2008. Foot pad health in Lohmann Selected Leghorn and Lohmann Brown laying 

hens kept in different housing systems with modified perch designs. Arch 

Geflugelkd 72(3), 97-105. 

RSPCA, 2017. RSPCA Welfare standards for laying hens, UK. 

RStudio Team, 2016. RStudio: Integrated Development for R., RStudio, 

Inc., Boston, MA. 

Rufener, C., Baur, S., Stratmann, A., Toscano, M.J., 2018. A Reliable 

Method to Assess Keel Bone Fractures in Laying Hens From Radiographs Using 

a Tagged Visual Analogue Scale. Front Vet Sci 5, 124. 

Safaa, H.M., Serrano, M.P., Valencia, D.G., Frikha, M., Jiménez-Moreno, 

E., Mateos, G.G., 2008. Productive Performance and Egg Quality of Brown Egg-

Laying Hens in the Late Phase of Production as Influenced by Level and Source 

of Calcium in the Diet. Poultry Sci 87(10), 2043-2051. 

Salari, Rezaie, Larijani, Abdollahi, 2008. A systematic review of the impact 

of n-3 fatty acids in bone health and osteoporosis. Medical Science Monitor 14(3), 

37-44. 

Sandilands, V., 2014. Laying hens: Supplement to the codes of practice. 

Technical Note TN662. 

Sandilands, V., Moinard, C., Sparks, N.H.C., 2009. Providing laying hens 

with perches: fulfilling behavioural needs but causing injury? British poultry 

science 50(4), 395-406. 

Sawai, H., Kim, H.L., Kuno, K., Suzuki, S., Gotoh, H., Takada, M., 

Takahata, N., Satta, Y., Akishinonomiya, F., 2010. The Origin and Genetic 

Variation of Domestic Chickens with Special Reference to Junglefowls Gallus g. 

gallus and G. varius. PloS one 5(5), e10639. 



 

263 
 

Scholz, B., Kjaer, J.B., Schrader, L., 2014. Analysis of landing behaviour 

of three layer lines on different perch designs. British poultry science 55(4), 419-

426. 

Scholz, B., Ronchen, S., Hamann, H., Hewicker-Trautwein, M., Distl, O., 

2008. Keel bone condition in laying hens: a histological evaluation of 

macroscopically assessed keel bones. Berl Munch Tierarztl 121(3-4), 89-94. 

Schrader, L., Müller, B., 2009. Night-time roosting in the domestic fowl: 

The height matters. Applied animal behaviour science 121(3–4), 179-183. 

Schütz, K.E., Forkman, B., Jensen, P., 2001. Domestication effects on 

foraging strategy, social behaviour and different fear responses: a comparison 

between the red junglefowl (Gallus gallus) and a modern layer strain. Applied 

animal behaviour science 74(1), 1-14. 

Scott, G.B., Lambe, N.R., Hitchcock, D., 1997. Ability of laying hens to 

negotiate horizontal perches at different heights, separated by different angles. 

British poultry science 38(1), 48-54. 

Shamoun-Baranes, J., Bom, R., van Loon, E.E., Ens, B.J., Oosterbeek, 

K., Bouten, W., 2012. From Sensor Data to Animal Behaviour: An Oystercatcher 

Example. PloS one 7(5), e37997. 

Shepherd, E.M., Fairchild, B.D., 2010. Footpad dermatitis in poultry. 

Poultry Science 89(10), 2043-2051. 

Sherwin, C.M., Richards, G.J., Nicol, C.J., 2010. Comparison of the 

welfare of layer hens in 4 housing systems in the UK. British poultry science 

51(4), 488-499. 

Siegford, J.M., Berezowski, J., Biswas, S.K., Daigle, C.L., Gebhardt-

Henrich, S.G., Hernandez, C.E., Thurner, S., Toscano, M.J., 2016. Assessing 

Activity and Location of Individual Laying Hens in Large Groups Using Modern 

Technology. Animals 6(2), 10. 

Silversides, F.G., Singh, R., Cheng, K.M., Korver, D.R., 2012. Comparison 

of bones of 4 strains of laying hens kept in conventional cages and floor pens. 

Poultry Sci 91(1), 1-7. 

Sirovnik, J., Stratmann, A., Gebhardt-Henrich, S.G., Würbel, H., Toscano, 

M.J., 2018. Feeding from perches in an aviary system reduces aggression and 

mortality in laying hens. Applied animal behaviour science 202, 53-62. 



 

264 
 

Stadig, L.M., Ampe, B.A., Van Gansbeke, S., Van den Bogaert, T., 

D'Haenens, E., Heerkens, J.L.T., Tuyttens, F.A.M., 2016. Survey of egg farmers 

regarding the ban on conventional cages in the EU and their opinion of alternative 

layer housing systems in Flanders, Belgium. Poultry Sci 95(3), 715-725. 

Stratmann, A., Fröhlich, E.K.F., Gebhardt-Henrich, S.G., Harlander-

Matauschek, A., Würbel, H., Toscano, M.J., 2015a. Modification of aviary design 

reduces incidence of falls, collisions and keel bone damage in laying hens. 

Applied animal behaviour science 165, 112-123. 

Stratmann, A., Fröhlich, E.K.F., Gebhardt-Henrich, S.G., Harlander-

Matauschek, A., Würbel, H., Toscano, M.J., 2016. Genetic selection to increase 

bone strength affects prevalence of keel bone damage and egg parameters in 

commercially housed laying hens. Poultry Sci 95(5), 975-984. 

Stratmann, A., Fröhlich, E.K.F., Harlander-Matauschek, A., Schrader, L., 

Toscano, M.J., Würbel, H., Gebhardt-Henrich, S.G., 2015b. Soft Perches in an 

Aviary System Reduce Incidence of Keel Bone Damage in Laying Hens. PloS 

one 10(3), e0122568. 

Struelens, E., Tuyttens, F.A.M., Ampe, B., Ödberg, F., Sonck, B., 

Duchateau, L., 2009. Perch width preferences of laying hens. British poultry 

science 50(4), 418-423. 

Struelens, E., Tuyttens, F.A.M., Duchateau, L., Leroy, T., Cox, M., 

Vranken, E., Buyse, J., Zoons, J., Berckmans, D., Ödberg, F., Sonck, B., 2008. 

Perching behaviour and perch height preference of laying hens in furnished 

cages varying in height. British poultry science 49(4), 381-389. 

Swaddle, J.P., Witter, M.S., 1997. The effects of molt on the flight 

performance, body mass, and behavior of European starlings (Sturnus vulgaris): 

an experimental approach. Canadian Journal of Zoology 75(7), 1135-1146. 

Tanaka, T., Hurnik, J., 1991. Behavioural responses of hens to simulated 

dawn and dusk periods. Poultry Sci 70(3), 483-488. 

Tanaka, T., Hurnik, J.F., 1992. Comparison of Behavior and Performance 

of Laying Hens Housed in Battery Cages and an Aviary. Poultry Science 71(2), 

235-243. 

Tarlton, J.F., Wilkins, L.J., Toscano, M.J., Avery, N.C., Knott, L., 2013. 

Reduced bone breakage and increased bone strength in free range laying hens 



 

265 
 

fed omega-3 polyunsaturated fatty acid supplemented diets. Bone 52(2), 578-

586. 

Tauson, R., 2002. Furnished cages and aviaries: production and health. 

World's Poultry Science Journal 58(1), 49-63. 

Tauson, R., Abrahamsson, P., 1994. Foot and Skeletal Disorders in 

Laying Hens: Effects of Perch Design, Hybrid, Housing System and Stocking 

Density. Acta Agriculturae Scandinavica, Section A — Animal Science 44(2), 

110-119. 

Tauson, R., Abrahamsson, P., 1996. Foot and Keel Bone Disorders in 

Laying Hens: Effects of Artificial Perch Material and Hybrid. Acta Agriculturae 

Scandinavica, Section A — Animal Science 46(4), 239-246. 

Tauson, R., Kjaer, J., Maria, G., Cepero, R., Holm, K.E., 2005. Applied 

scoring of integument and health in laying hens. Animal Science Papers and 

Reports, Proceedings of the 7th European Symposium on Poultry Welfare, 

Lublin, Poland, 15-19 June, 2005 23, 153-159. 

Taylor, P.E., Scott, G.B., Rose, P., 2003. The ability of domestic hens to 

jump between horizontal perches: effects of light intensity and perch colour. 

Applied animal behaviour science 83(2), 99-108. 

Taylor, T.G., 1970. How an Eggshell Is Made. Scientific American 222(3), 

88-97. 

Thammasat, E., Chaicharn, J., 2012. A simply fall-detection algorithm 

using accelerometers on a smartphone, The 5th 2012 Biomedical Engineering 

International Conference, pp. 1-4. 

Thorup, V.M., Munksgaard, L., Robert, P.E., Erhard, H.W., Thomsen, P.T., 

Friggens, N.C., 2015. Lameness detection via leg-mounted accelerometers on 

dairy cows on four commercial farms. Animal 9(10), 1704-1712. 

Toony, I., 2018. Keel (bird anatomy), Wikipedia, Wikipedia. 

Toscano, M., Booth, F., Richards, G., Brown, S., Karcher, D., Tarlton, J., 

2018. Modeling collisions in laying hens as a tool to identify causative factors for 

keel bone fractures and means to reduce their occurrence and severity. PloS one 

13 (7)(7), e0200025. 

Toscano, M.J., Booth, F., Wilkins, L.J., Avery, N.C., Brown, S.B., 

Richards, G., Tarlton, J.F., 2015. The effects of long (C20/22) and short (C18) 



 

266 
 

chain omega-3 fatty acids on keel bone fractures, bone biomechanics, behavior, 

and egg production in free-range laying hens. Poultry Sci 94(5), 823-835. 

Toscano, M.J., Wilkins, L.J., Millburn, G., Thorpe, K., Tarlton, J.F., 2013. 

Development of an Ex Vivo Protocol to Model Bone Fracture in Laying Hens 

Resulting from Collisions. PloS one 8(6). 

Vázquez Diosdado, J.A., Barker, Z.E., Hodges, H.R., Amory, J.R., Croft, 

D.P., Bell, N.J., Codling, E.A., 2015. Classification of behaviour in housed dairy 

cows using an accelerometer-based activity monitoring system. Animal 

Biotelemetry 3(1), 15. 

Vits, A., Weitzenburger, D., Hamann, H., Distl, O., 2005. Production, egg 

quality, bone strength, claw length, and keel bone deformities of laying hens 

housed in furnished cages with different group sizes. Poultry Science 84(10), 

1511-1519. 

Wang, G., Ekstrand, C., Svedberg, J., 1998. Wet litter and perches as risk 

factors for the development of foot pad dermatitis in floor-housed hens. British 

poultry science 39(2), 191-197. 

Warden, S.J., Burr, D.B., Brukner, P.D., 2006. Stress fractures: 

Pathophysiology, epidemiology, and risk factors. Current Osteoporosis Reports 

4(3), 103-109. 

Warren, D.E., 1937. Physiological and genetic studies of crooked keels in 

chickens. Kansas Agricultural Experiment Station Technical Bulletin 44, 1-31. 

Watanabe, N., Sakanoue, S., Kawamura, K., Kozakai, T., 2008. 

Development of an automatic classification system for eating, ruminating and 

resting behavior of cattle using an accelerometer. Grassland Science 54(4), 231-

237. 

Weitzenburger, D., Vits, A., Hamann, H., Distl, O., 2006. Evaluation of 

small group housing systems and furnished cages concerning keel bone 

deformities, plumage condition, claw length und body weight in layer strains 

Lohmann Selected Leghorn and Lohmann Brown. Arch Tierzucht 49(1), 89-102. 

Weitzenbürger, D., Vits, A., Hamann, H., Hewicker-Trautwein, M., Distl, 

O., 2006. Macroscopic and histopathological alterations of foot pads of laying 

hens kept in small group housing systems and furnished cages. British poultry 

science 47(5), 533-543. 



 

267 
 

Whitehead, C.C., 2004. Overview of bone biology in the egg-laying hen. 

Poultry Sci 83(2), 193-199. 

Whitehead, C.C., Fleming, R.H., 2000. Osteoporosis in cage layers. 

Poultry Sci 79(7), 1033-1041. 

Whitney, N.M., Pratt, H.L., Jr., Pratt, T.C., Carrier, J.C., 2010. Identifying 

shark mating behaviour using three-dimensional acceleration loggers. 

Endangered Species Research 10, 71-82. 

Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. 

Springer-Verlang New York. 

Wilkins, L.J., Brown, S.N., Zimmerman, P.H., Leeb, C., Nicol, C.J., 2004. 

Investigation of palpation as a method for determining the prevalence of keel and 

furculum damage in laying hens. Veterinary Record 155(18), 547-549. 

Wilkins, L.J., McKinstry, J.L., Avery, N.C., Knowles, T.G., Brown, S.N., 

Tarlton, J., Nicol, C.J., 2011. Influence of housing system and design on bone 

strength and keel bone fractures in laying hens. Veterinary Record 169(16), 414. 

Williams, H.J., Holton, M.D., Shepard, E.L.C., Largey, N., Norman, B., 

Ryan, P.G., Duriez, O., Scantlebury, M., Quintana, F., Magowan, E.A., Marks, 

N.J., Alagaili, A.N., Bennett, N.C., Wilson, R.P., 2017. Identification of animal 

movement patterns using tri-axial magnetometry. Movement Ecology 5(6), 1-14. 

Wilson, R., McMahon, R., 2006. Measuring devices on wild animals: what 

constitutes acceptable practice? Frontiers in Ecology and the Environment 4(3), 

147-154. 

Wilson, R.P., Shepard, E.L.C., Liebsch, N., 2008. Prying into the intimate 

details of animal lives: use of a daily diary on animals. Endangered Species 

Research 4 (1)(1-2), 123-137. 

Wood-Gush, D.G.M., Duncan, I.J.H., 1976. Some behavioural 

observations on domestic fowl in the wild. Applied Animal Ethology 2(3), 255-

260. 

Yang, C.-C., Hsu, Y.-L., 2010. A Review of Accelerometry-Based 

Wearable Motion Detectors for Physical Activity Monitoring. Sensors 10(8), 7772-

7788. 

Zobel, G., Weary, D.M., Leslie, K., Chapinal, N., von Keyserlingk, M.A.G., 

2015. Technical note: Validation of data loggers for recording lying behavior in 

dairy goats. Journal of Dairy Science 98(2), 1082-1089. 



 

268 
 

 


