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ABSTRACT 
Thalassaemia is one of the most prevalent inherited haemoglobin disorders with a broad 

clinical spectrum. The diversity in symptoms cannot be explained purely by patients’ genetic 

background. Several factors have been recognised to contribute to disease severity, and this 

work has set out to undertake a comprehensive study of some of these contributors in HbE/β-

thalassaemia patients from Thailand. 

Extracellular vesicles (EVs) are one factor that may indicate and/or contribute to disease 

severity. The levels of EVs observed in the plasma of thalassaemic patients are reported to 

be, on average, four times higher than in healthy controls. Moreover, it is well established 

that these EVs are associated with an increase in clinically significant procoagulant activity. 

The work presented in this thesis has investigated the EVs produced from both in vitro and in 

vivo origins derived from thalassaemic patients and the quantification and characterisation of 

their protein constituents.  

An erythroid culture system was developed for growing thalassaemic patient progenitor cells 

into reticulocytes.  Using this culture system, thalassaemic and age-matched control 

reticulocytes were produced, EVs subsequently isolated, and their proteomic profiles 

assessed using quantitative mass spectrometry. This thesis reports the first in vitro 

reticulocyte EV proteome derived from adults with β-thalassaemia.  

Furthermore, in vivo EVs isolated from plasma of thalassaemic patients were investigated 

using quantitative proteomic analysis. Amongst 21 proteins identified with significantly 

altered abundances in HbE/β-thalassaemia EVs, haptoglobin, hemopexin, and cathepsin S had 

the potential to be used as clinical biomarkers. A pilot clinical follow-up trial was designed to 

examine their application, with promising results. All three protein biomarkers had 

significantly altered levels in groups of patients with different severity of symptoms, i.e., 

patients with transfusion-dependent thalassaemia, non-transfusion dependent thalassaemia, 

thalassaemic carriers, and healthy controls. Additionally, both haptoglobin and hemopexin 

showed a significant correlation to other haemolytic blood parameters. These findings 

suggested haptoglobin and hemopexin have utility in thalassaemic patients as a tool for 

clinical monitoring and as indicators of blood transfusion requirements.  
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Therefore, in summary, the investigation and characterisation of the extracellular vesicles 

generated by HbE/β-thalassaemic patients were successfully completed, protein biomarkers 

were identified, and their potential clinical application explored. 
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1.1 Erythropoiesis 
Erythropoiesis is a dynamic process whereby stem cells differentiate into fully mature red 

blood cells (RBCs), also known as erythrocytes. The average RBC lives for 120 days (1), so the 

body must maintain erythropoiesis continually to replenish the RBC supply for an entire 

individual lifetime, producing approximately 2 million RBCs per second (2). Insufficient RBC 

production causes anaemia (3). There are two types of erythropoiesis: steady-state 

erythropoiesis and stress erythropoiesis, which only occurs during anaemia.   

 

1.1.1 Steady-state erythropoiesis 
Human RBCs comprise, on average, 84% of all the cells in the body, totalling approximately 

25 trillion cells in circulation (4). Daily, approximately 2 x 1011 new erythrocytes are generated 

in order to replace the senescent cells lost to clearance (5). This process of RBC production 

occurs in bone marrow in a stem cell niche. Starting from pluripotent haematopoietic stem 

cells (HSCs), with CD34+
 and CD90+ specific cell surface markers, these cells differentiate into 

multipotent progenitor cells (CD34+CD90-). The stem cells possess self-renewal properties and 

multi-potency to develop into all lineage precursors, i.e., erythroid, myeloid, and lymphoid 

progenitors. Depending on many factors, for example, the niche or microenvironment of the 

bone marrow, presence of erythroblastic islands composed of one or more central 

macrophages and stimulus by cell-cell interactions and growth factors, the stem cells may 

either self-renew or undergo asymmetric division to generate multipotent progenitors (6, 7). 

The multipotent progenitors will subsequently differentiate into common myeloid progenitor 

cells, and megakaryocyte/erythroid progenitor cells (CD34+CD38+CD45RA-). 

Once they are committed to the erythroid development, the progenitors then undergo the 

process of erythropoiesis. Erythropoiesis can be divided into two phases: early-stage 

erythropoiesis and terminal erythroid differentiation. Early erythropoiesis is defined as the 

process by which the multipotential progenitor cells proliferate and mature into the 

committed erythroid lineage, as seen in Figure 1.1. 

The first committed erythroid progenitor is a burst-forming unit-erythroid (BFU-E), which 

subsequently divides and differentiates into a colony-forming unit-erythroid (CFU-E). In the 

bone marrow, BFU-Es are less abundant than CFU-Es, with approximately 0.03% and 0.3% 
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cells, respectively (8, 9). Less mature BFU-Es differentiate into more mature, rapidly dividing 

CFU-Es, which can give rise to 8-49 erythroblast colonies in seven days, within three to five 

cell divisions (10, 11) (Figure 1.1). Further expansion and cell division occur, so that the 

progenitor cells subsequently develop into the proerythroblasts, the first stage of the terminal 

erythroid differentiation and the first erythroid cells recognizable by the light microscopy. In 

normal erythroid cells, haemoglobin (Hb) starts to accumulate and increase in concentration 

during the terminal differentiation stage, with the highest expression at the 

reticulocyte/erythrocyte stage (3). The cells also begin to express erythroid-specific 

membrane proteins, such as glycophorin A (3).  

 

 

Figure 1.1. Schematic of early and late erythropoiesis with associated cell-specific surface 
markers (KIT, GPA, CD71).  
During early erythropoiesis, the first identifiable committed erythroid cell is BFU-E, which can 

undergo cell division into large colonies of >500 erythroblasts; while each CFU-E can then give 

rise up to 8-49 erythroid cells in seven days. The late erythropoiesis or terminal differentiation 

begins at proerythroblast phase evolving to basophilic, polychromatophilic and 

orthochromatophilic erythroblast. Morphologic changes are characterised by a decrease in 

cell size and progressive nuclear condensation, accumulation of haemoglobin in the 

cytoplasm and erythroid-specific protein expression. Ultimately, the nucleated red cell 

undergoes enucleation, becoming a reticulocyte. Representative cells were stained with 

Leishman’s stain. (Modified from Dzierzak & Philipsen 2013 Erythropoiesis: Development and 

differentiation Cold Spring Harb Perspect Med 3(4); a011601)(5) 

 

When the progenitor cells progress into the terminal differentiation, their proliferative 

potential decreases. The cell division occurs approximately four to five times during the cell 

development from the proerythroblast to the reticulocyte (5). The whole of the terminal 

differentiation occurs in the bone marrow on the erythroblastic islands, where a central 
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macrophage can be surrounded by a between five and over 30 differentiating erythroblasts 

(see reference (12) for a review). The morphology of the cells undergoing terminal 

differentiation has been studied extensively (5, 13). In brief, the proerythroblasts are large 

cells with a high nuclear/cytoplasmic (N:C) ratio, prominent nucleoli, and deep blue cytoplasm 

(Figure 1.1). As the cells differentiate, their morphology gradually changes; they become 

smaller in size, the nucleoli disappear, and chromatin becomes more dense and clumped. The 

cytoplasm also changes from blue to greyish pink colour due to the abundance of Hb, visible 

when using cell stains such as Leishman’s or May-Grünwald Giemsa. The next three 

consecutive erythroblast stages are basophilic erythroblasts, polychromatophilic 

erythroblasts, and orthochromatic erythroblasts. During the last phase, the cells go through 

an extensive synthesis of erythroid specific proteins, such as band 3, and form recognisable 

membrane complexes (14, 15). Ultimately, the nuclei become localised to one side of the cell, 

and then enucleation occurs, forming the anucleate reticulocytes.   

The nascent reticulocytes can be categorised into R1 and R2. R1 reticulocytes are multilobular 

and confined to the bone marrow, whilst R2 reticulocytes are released into the blood 

circulation (16). The final maturation stage of erythropoiesis takes place in peripheral 

circulation when the reticulocytes lose 20% of their plasma membrane surface area and any 

remaining organelles. Their cytoskeletons, as well as transmembrane proteins, are 

remodelled, and the cells become mature erythrocytes (9, 17, 18). Recent evidence has 

suggested that a part of the reticulocyte maturation process requires autophagasomal vesicle 

release (16, 19) and this is driven by the mechanical shear experienced in the circulation in a 

process dependent on non-muscle myosin IIA activity (19). 

Regulation mechanisms of erythropoiesis are intricate and involve the combined effects of 

specific cytokines, growth factors and microenvironmental stimuli, as well as the genetic 

influence of erythroid-specific transcription factors and related genes. Some of the most 

important regulators of steady-state erythropoiesis will be discussed here. Figure 1.2 

summarises the various stages of erythropoiesis and their key regulators. 
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Figure 1.2. An overview of different stages of erythropoiesis from HSCs to reticulocytes and 
their regulators.  
The illustration summarises the regulatory factors at each stage of erythropoiesis, which 

include transcription factors, cytokines and their signal transduction pathways  (Diagram 

adapted from Xie et al. Mol Med Rep. 2019 Feb;19(2):783-791)(20)) 

 

1.1.1.1 Key transcription factors of erythropoiesis 

1.1.1.1.1 GATA Binding Proteins  

This family comprises of six members, GATA 1-6, but only GATA-1/2/3 are essential to the 

haematopoiesis (21). GATA-1 is a crucial transcription factor in erythropoiesis and a member 

of GATA transcription factor family of zinc finger (ZF) DNA binding proteins that bind to the 

(A/T)GATA(A/G) DNA sequences which are recognised as the regulatory sequences of 

erythroid-specific genes  in erythroid and other haematopoietic lineages (22, 23). In HSCs, the 

GATA-1 expression is suppressed, possibly by the process of DNA methylation of GATA1 locus, 

and this mechanism allows the binding of GATA-2 and its expression at the HSCs stage (24). 

Conversely, following the committed progenitor stage, GATA-1 expression increases over 

GATA-2 and this highlights the different roles of GATA-1 and GATA-2 in haematopoiesis. The 

primary function of GATA-2 is regulation of progenitor cell proliferation and maintenance of 
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these haematopoietic progenitors. GATA-1 is necessary for survival and terminal 

differentiation of erythroid lineage, with its peak expression level at the proerythroblast stage 

(25) and declining reciprocally to the maturation of erythroblasts. Thus, the proportion of 

GATA-1 and GATA-2 expression levels at different time points, or so-called GATA factor 

switching, orchestrates and drives the physiology of erythropoiesis (26). GATA-1 acts as a 

transcription activator or repressor towards multiple target genes. For example, GATA-1 

activates EPOR (27) and HBB (28), while suppressing GATA2 and KIT (29). Several transcription 

factors, e.g., FOG-1, KLF1, TAL1/SCL, interact with GATA-1 to regulate erythropoiesis (29, 30). 

1.1.1.1.2 Zinc Finger Protein, FOG Family Member 1  

Friend of GATA-1 (FOG-1) is a GATA specific cofactor that facilitates erythroid and 

megakaryocyte maturation (31), specifically GATA switching during erythropoiesis (32). FOG-

1 comprises nine ZF domains and interacts directly with GATA-1 for either activation or 

repression of GATA-1-dependent genes. The interaction site between GATA-1 and FOG-1 was 

identified through a study of patients with X-linked thrombocytopenia with dyserythropoietic 

anaemia who had a missense mutation in GATA1 encoding V205M amino acid change, which 

disrupted the interaction between GATA-1 and FOG-1. This location was confirmed by using 

selectively mutated GATA1 N-finger constructs in the N-terminal ZF of GATA-1 and shown to 

primarily occur through amino acids E203, V205 and H222 (33, 34). The erythroid cells 

affected by mutations failed to differentiate down the erythroid lineage (34). In terms of the 

globin switching, studies in animal models of FOG-1 with disrupted interaction with 

Nucleosome Remodelling Deacetylase (NuRD) complex indicated that GATA-1 and FOG-1 in 

conjunction with NuRD, are important for activation of adult type globin expression, but 

dispensable for silencing of the human γ-globin in vivo (35).  

1.1.1.1.3 Krüppel-like factor 1 (KLF1) transcription factor  

KLF1 is an erythroid-specific essential transcription factor responsible for the regulation of 

erythropoiesis and the adult β-like globin gene transcription. KLF1 contains three C2H2-type 

ZF domains on the C-terminus that binds to a CACCC (NCNCNCCCN) DNA consensus element 

located in the promoter area of many erythroid genes, including the HBB globin genes (36). 

The essential roles of KLF1 in erythropoiesis were demonstrated in KLF1 null mice that 

presented with failure of adult β-globin expression and died in utero (37, 38). The 

multifunctional roles of KLF1 are extensively reviewed by Siatecka and Bieker (2011) (39). 
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KLF1 is critical for β-globin expression, definitive erythropoiesis, and the globin switching from 

fetal haemoglobin (HbF) to adult haemoglobin (HbA) (40, 41). More than one mechanism of 

KLF1 regulation of gene expression through erythropoiesis has been identified; i.e., regulation 

via 3D chromatin architecture, chromatin modification and remodelling, and directly via 

interaction with transcription activators (42-45). KLF1 plays an important role in sequential 

globin expression by facilitating the interaction between cis-regulatory elements or the locus 

control region (LCR) and the particular globin gene, so only one gene is activated at any one 

time by the mechanism of 3D chromatin looping (46-48) (see 1.2.2 for Hb switching). KLF1 is 

also a key transcription factor responsible for Hb switching from γ- to β-globin by direct 

binding to BCL11A (see section 1.1.1.1.4) to suppress γ-globin and increase β-globin 

expression (49, 50). Several transcription co-activators also interact with KLF1 and are 

differentially expressed throughout erythropoiesis, e.g., GATA-1 (51), TAF9 (52), and TFIIH 

(53), which leads to the differential gene transcription activation. Additionally, KLF1 is capable 

of regulating gene transcription epigenetically by interaction with chromatin modifying and 

remodelling complexes (44, 54). For example, the interaction of KLF1 and histone H3 results 

in the acetylation of cAMP response element-binding protein (CREB) – binding protein (CBP),  

and this occurs without KLF1 binding to the DNA cognate (44).  

1.1.1.1.4 B-cell lymphoma/leukaemia 11A (BCL11A) transcription factor  

B-cell lymphoma/leukaemia 11A (BCL11A)  is a ZF transcription factor that was first identified 

as one of the quantitative trait loci (QTLs) defining HbF levels (55-57). Three main isoforms of 

BCL11A are known: BCL11A-XL, BCL11A-L, and BCL-11A-S (57). The expression of BCL11A 

depends on the developmental stage of human erythroblasts through a reverse relationship 

with the HbF expression, i.e., from HbF being absent in the primitive erythroblasts to being 

robustly expressed in adult cells (57). This interaction was reported in the knockdown of 

BCL11A in human erythroblasts resulting in the increase of HbF expression. Sankaran and 

colleagues (2008) reported the interaction of cis-regulatory elements of BCL11A with β-globin 

gene cluster by demonstrating that the full-length form of BCL11A was occupying several 

discrete sites in the β-globin cluster, including the areas necessary for γ-globin silencing (57, 

58). The BCL11A binding to a γ-globin gene promoter and its repression serve as an underlying 

mechanism of the Hb switching (59).  
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1.1.1.1.5 T-Cell Acute Lymphocytic Leukaemia Protein 1 erythroid differentiation factor or 

stem cell leukaemia (TAL-1/SCL)  

T-Cell Acute Lymphocytic Leukaemia Protein 1 (also known as stem cell leukaemia; TAL-1/SCL) 

is one of the basic helix-loop-helix transcription factors which dimerise with other members 

of a class of ubiquitous associates, the E-proteins, and E-box consensus element CANNTG (60). 

TAL-1/SCL is essential for HSCs development, as was shown through SCL-/- embryonic stem 

cells that were unable to generate haematopoietic and endothelial cells (61). The expression 

of TAL-1/SCL is similar to GATA-1, being highly expressed in erythroid cells, megakaryocytes 

and mast cells. At different stages of erythropoiesis, TAL-1/SCL forms a complex with multiple 

proteins, e.g., LMO2, Ldb1, E2A, and GATA-1, called the pentameric complex (62). The 

pentameric complex binds to a DNA motif containing an E-box, CAGGTG and a GATA binding 

sites, and they collectively promote erythroid differentiation (63). Recently, TAL-1/SCL was 

identified as a regulator of Fuse binding protein 1 (FUBP1), a transcriptional regulator for HSCs 

self-renewal and survival. Both the pentameric TAL-1 complex and the activation of FUBP1 by 

TAL-1 are important in switching from progenitor to erythroid-specific gene expression (64). 

 

1.1.1.2 Key growth factors that influence erythropoiesis 
To maintain the constant production of erythrocytes, various growth factors and cytokines 

play a pivotal role in erythropoiesis by acting on erythroid precursors during differentiation. 

They promote lineage specification, cell proliferation, prevent apoptosis and control 

maturation.  

1.1.1.2.1 Erythropoietin (EPO) 

Erythropoietin (EPO) is a cytokine, a glycoprotein with a molecular weight of 34 kDa, which is 

synthesised by the proximal tubular region of the kidney during adulthood, and by the liver 

during embryonic and fetal development. EPO regulates the haematopoiesis via a negative 

feedback control through downstream signal transduction pathways. EPO has an 

indispensable role as the lineage regulator throughout the erythropoiesis; from the late BFU-

E stage all the way to the erythrocyte stage, with the highest concentrations found in the CFU-

E stage (65). However, EPO is not a lineage commitment cytokine, since the EPO specific 

receptor (EPOR) is not detected in any stage earlier than the late BFU-E (10, 65). The EPO 

regulation of erythropoiesis is initiated from the association of EPO with EPOR, followed by 

their further association with Janus kinase 2 (JAK2) tyrosine kinase. JAK2s are then 
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phosphorylated and become activated. The activated JAK2s induce phosphorylation of EPOR 

tyrosine sites, which in turn act as docking sites of multiple signalling proteins, e.g., Signal 

transducer and activator of transcript 5 (STAT5), Phosphoinositide-3 kinase (PI3K)/AKT, and 

Sch/Ras/Mitogen-activated kinase (MAPK) (66). For example, after being phosphorylated and 

dissociated from EPOR, STAT5s then dimerise and translocate to the nucleus in order to 

activate gene transcription. The target genes of STATs include Bcl-xL, encoding an anti-

apoptotic protein which is essential for normal erythropoiesis (67), or genes encoding 

negative regulators of JAK/STAT pathway: Protein tyrosine phosphatases, suppressors of 

cytokine signalling proteins and Protein inhibitor of activated STAT (66) .  

The production of EPO is regulated by sensing oxygen in the kidney, which activates EPO 

transcription through hypoxia-inducible factors (HIFs) (68). As the name implies, hypoxia is 

the crucial regulator of the activity of HIFs through its oxygen-sensitive site, i.e., α-subunit 

(with two main homologs HIF-1α and -2α). HIF-2α transcription factor was identified as the 

primary regulator of EPO production in vivo. In the hypoxic condition, HIF-2α acts at kidney 

interstitial cells, increasing EPO mRNA transcription and stimulating EPO synthesis. Recently, 

another role of HIF-2α was discovered via the HIF-2α knock-down mice model. HIF-2α was 

shown to mediate the interaction between erythroblasts and intramedullary endothelial cells 

via Vascular adhesion molecule-1 (VCAM-1) and its ligand, VLA-4, located on the erythroid 

lineage (68, 69). HIF-2 also governs iron metabolism by regulating serum iron in the hypoxic 

conditions through a rise in iron absorption, enhanced serum iron-binding capacity, and iron 

mobilisation from storage (70).  

1.1.1.2.2 Stem cell factor and c-Kit 

C-Kit or CD117 is a member of the type III receptor tyrosine kinase family. Binding between 

the c-Kit receptor and its ligand (Stem cell factor; SCF) results in homodimerization and 

tyrosine autophosphorylation, creating docking sites for Src homology 2 domain-containing 

signal transduction molecules (71). SCF is one of the indispensable cytokines regulating 

haematopoiesis of multiple lineages. Indeed, mice with mutations that inactivate the c-Kit 

receptor or its ligand, SCF, die during the first trimester of gestation, showing a reduced 

number of erythroid progenitors in their fetal livers (72). The important erythropoietic 

signalling pathway activated by c-Kit/SCF is PI-3 Kinase/AKT and RAS/MAPK, facilitating the 

red cell survival and proliferation, respectively. Another significant role of c-Kit is the 
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cooperation with EPOR to provide a synergistic effect for BFU-E and CFU-E formation (73). 

Ratajczak and colleagues (1998) demonstrated that SCF co-stimulated the growth of BFU-E 

with EPO in a much greater degree when compared to IL-3, IL-9, and Granulocyte colony-

stimulating factor (GM-CSF) (74). This synergistic mechanism is potentially explained by c-Kit 

stimulation by SCF phosphorylated tyrosine residue in the cytoplasmic domain of EPOR, 

resulting in the activation of EPOR (72).  

1.1.1.2.3 Interleukin-3 (IL-3)  
Human IL-3 is a 15.2 kDa glycoprotein with a single polypeptide chain. In normal physiology, 

IL-3 is a multilineage potent growth factor generated by monocytes, CD4+ T cells, and stromal 

cells. In vitro studies have shown that IL-3 facilitates the expansion of early multilineage 

stages, CD34+ cells, resulting in an increase in expansion of the more mature progenitor cells 

in all haematopoietic lineages (75-77). Evidence in animal models has shown that IL-3 

combined with EPO were important for BFU-E and CFU-E formation through the JAK/STAT 

pathway (78, 79). The receptor of IL-3 (IL-3R) has specific binding subunits: α-subunit and β-

subunit. The signal transduction of the JAK/STAT pathway is induced by this later subunit; 

whereas the α-chain of IL-3R involves the activation of STAT-5 (80). Moreover, IL-3 is also 

related to the other signal transduction pathways, e.g. the Ras and PI3 kinase pathways (80). 

In the in vivo erythropoiesis setting, IL-3 appears to act as a primer to other cytokines, 

including EPO, to increase erythroid expansion (81).  

1.1.1.2.4 Insulin and insulin-like growth factor-1 (IGF-1) 

The IGFs family consists of insulin, IGF-1 and IGF-2. The receptors of insulin and IGF-1 are 

homologous in their structures, and all have downstream effects after being activated on 

multilineage haematopoiesis (82, 83). However, subsequent research found that only insulin 

receptor, not IGF-1 receptor, is detected amongst the mRNA and the expressed proteins of 

CD34+SCF+ progenitor cells (74). IGF-1 may act through the insulin receptor to enhance in vitro 

erythropoiesis. Both IGF-1 and/or insulin in the presence of EPO are required for the in vitro 

haematopoiesis to support the proliferation of early erythroid progenitors (84, 85). A study 

focusing on BFU-E colony formation from CD34+ cells, stimulated with EPO and IL-3, showed 

the highest number of colonies when insulin (10 µgml-1) was added early. However, BFU-E 

colonies stimulated with EPO and SCF still developed normally, even in the absence of insulin 

or IGF-1 (74).  
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1.1.2 Stress erythropoiesis  
As aforementioned, the steady-state erythropoiesis maintains the homeostasis of erythroid 

lineage by generating new erythrocytes in order to replace the senescent erythrocytes at a 

constant rate. Unlike the steady-state erythropoiesis, anaemic or hypoxic stress induces 

physiological responses needed to increase oxygen delivery to the peripheral tissues. The key 

component behind this adaptive response is stress erythropoiesis (86). Stress 

erythropoiesis has been studied and is best understood in the fetal liver in mice models and in 

the spleen and liver in humans (87). 

EPO has been shown to be the primary regulator of steady-state erythropoiesis. As 

physiological levels of EPO are naturally low, erythroid production depends directly on EPO 

levels. An exogenous source of EPO can moderately increase erythroid production; however, 

the main limitation of the pathway is the restriction of CFU-Es (BFU-Es are insensitive to EPO) 

to undergo only 3-5 cell divisions in their terminal state. Therefore, with such low turnover, 

the steady-state erythropoiesis is not capable of correcting anaemia in extreme conditions 

(11) and stress erythropoiesis serves as the rescue mechanism in this circumstance. As 

explained earlier, hypoxia is the crucial regulator of EPO in erythropoiesis and hypoxia leads 

to activation of physiological responses required for increased oxygen delivery to the hypoxic 

tissues. The mechanism is based on increased erythropoiesis via significantly up-regulated 

EPO production, which in turn amplifies the JAK2/STAT5 pathway (88, 89).  

Both the signals and the progenitor cells involved in stress erythropoiesis are distinct from 

the steady-state erythropoiesis (Figure 1.3). There are a number of auxiliary signalling 

proteins that are uniquely involved with the stress erythropoiesis, i.e., Bone morphogenetic 

protein (BMP4)/SMAD5 signalling, Hedgehog, SCF/c-Kit, and Glucocorticoid receptor (GR) (86, 

90, 91). Furthermore, the progenitor cells involved in stress and steady-state erythropoiesis 

are different. While the steady-state HSCs develop from the erythroid committed progenitors, 

i.e., from the megakaryocyte/erythroid progenitors (MEP), short-term reconstituting HSCs 

(CD34+Kit+ Sca1+Lin-) are the progenitor cells characteristic of stress erythropoiesis (92). These 

stress progenitor cells migrate to the spleen and once located there; they undergo an 

expansion step whilst still retaining their stem cell characteristics (see Figure 1.3). The 

transition of these cells into the committed erythroid progenitors requires only the high 

concentration of EPO, unlike the bone marrow BFU-Es that require the burst-promoting 
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activity signals (86, 93). Subsequently, the committed cells mature into the stress BFU-Es 

(CD34-Kit+Sca1+CD71+Ter119Lo) and eventually undergo terminal erythroid maturation (93, 

94). Furthermore, the stress BFU-Es are different from the steady-state bone marrow BFU-Es, 

when examined by a colony assay, as they form larger colonies at a faster rate (5 vs. 7 days) 

(86). Microenvironment plays a vital role in the progenitor cells of stress erythropoiesis. 

Growth differentiation factor 15 (GDF15), a member of the transforming growth factor-β 

(TGF-β) superfamily, is reported to be required for the in vitro model of stress erythropoiesis 

(93). GDF15 was also recently observed to act in vivo on the splenic niche of the stress BFU-

Es involved with the maintenance of the hypoxia-dependent transcription of BMP4 (see 

section 1.1.2.1.1). The knockdown Gdf15-/- mice also failed to respond to anaemic stress due 

to the defect of their splenic niche (95). Additionally, GDF15 was elevated in several 

conditions of ineffective erythropoiesis (IE) such as thalassaemia and congenital 

dyserythropoietic anaemia type I (CDAI) (96). The suppressive role of GDF15 on hepcidin, a 

key regulator of iron metabolism, is resulted in increased iron level and haemochromatosis in 

these clinical conditions (97).  

Since stress erythropoiesis has entirely distinct components to the steady-state 

erythropoiesis, including unique erythroid progenitors and their regulators, the following 

sections will introduce the essential growth factors required for the process.    

 



13 
 

 
Figure 1.3. Model of stress erythropoiesis and its regulators. 
Short-term reconstituting HSCs (CD34+Kit+Sca1+Lin-) migrate from the bone marrow to spleen. 

The stress progenitor cells are replenished in the spleen promoted by Hedgehog signalling 

pathway, BMP4, and selenium. Once encountered acute anaemia/hypoxia, the stress 

progenitor cells develop into stress burst-forming unit - erythroid (BFU-Es) and rapidly 

undergo terminal erythropoiesis via stress erythroblastic island. EBI-erythroblastic islands 

(Modified from John M. Perry et al. Blood 2009;113:911-918 and Dulmovits and Blanc. Blood 

2018;131(23):2512-3. (98, 99)) 

 

1.1.2.1 Regulators of stress erythropoiesis 

1.1.2.1.1 Bone morphogenetic protein 4 (BMP4), SMAD5 and Hedgehog signalling  

Once acute anaemia occurs, the spleen progenitor cells will respond to hypoxia through EPO, 

SCF, and BMP4 pathways. Subsequently, they will expand, differentiate rapidly and mobilise 

to compensate anaemia. BMP4 and the functional downstream signals carried through the 

intracellular mediators known as SMAD5 are the key regulators specific to the stress 

erythropoiesis, as demonstrated by means of in vitro experiments (93, 94). BMP4 has 

multiple roles during stress erythropoiesis, e.g., the expansion of the splenic progenitor cells, 

the proliferation of the stress BFU-Es, and together with the Hedgehog pathway, the 

replacement of the short-term reconstituting HSCs which migrate into the spleen (86, 91, 92, 

98).  
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Hedgehog signalling facilitates the recovery and restoration of the splenic progenitor cell 

population by altering normal marrow progenitor cells to the short-term reconstituting HSCs 

(CD34+Kit+Sca1+Lin-), which then migrate to the spleen (86). However, more recent evidence 

has suggested that stress erythropoiesis is primarily localised in the bone marrow and is only 

observed in the spleen when associated with splenomegaly when the process is both 

prominent and chronic (100).  

1.1.2.1.2 Glucocorticoid receptor (GR) 

Corticosteroids are synthetic drugs that closely resemble a naturally secreted steroid 

hormone. Glucocorticoid, for example, dexamethasone (DXM), is one of a class of 

corticosteroids that signal through the glucocorticoid receptor (GR). GR acts by inducing self-

renewal and blocking maturation of erythroid precursors. The unbound receptor is located in 

the cell cytosol, but once activated by binding of a glucocorticoid, it will translocate to the cell 

nucleus where it can influence transcription. In vivo study of GR defective (GRdim/dim) mice 

model showed the absence of stress erythropoiesis and rapid cell maturation when compared 

to the wild-type-(101, 102). In the in vitro erythropoiesis, activated GR directly promotes and 

maintains proliferation of erythroid progenitors by blocking terminal maturation (101, 103, 

104). The underlying mechanisms involve GR inhibiting activities of GATA-1, a crucial 

transcription factor or erythroid differentiation (see above), and increasing levels of other 

transcription factors, including c-Myb, c-Kit and RBTN2 (105). These generate positive 

transcriptional transactivator effects on BFU-E cells by preventing them from exhaustion and, 

therefore, resulting in increased cell division and cell numbers. DXM entirely inhibited cells 

differentiation and induced progenitor cells to undergo 15-20 cell divisions in the presence of 

SCF, EPO, and insulin (104, 106). The self-renewal of BFU-Es takes place, at least in part, 

through a downstream RNA binding protein ZFP36L2, a transcriptional target of the GR (107).   

Activated ZFP36L2 in turn binds and down-regulates highly expressed mRNAs during erythroid 

differentiation. Additionally, it has been observed that DXM added to in vitro CD34+ cultures 

together with the erythroid growth factors induced the maturation of stress-specific 

macrophages, as well as the generation of erythroblastic island-like structures to support 

erythropoiesis (108, 109). A recent study explored this finding further and identified DXM as 

a primary regulator driving differentiation of cultured monocytes into the macrophages, 

which both phenotypic (CD16+CXCR4+) and functional characteristics resembling the in vivo 

bone marrow resident macrophages (110).  
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1.1.2.1.3 Selenoproteins 

Micronutrients, especially selenium, have recently been highlighted as one of the critical 

regulators of stress erythropoiesis. Selenoproteins or selenium-containing proteins are 

essential antioxidant proteins in humans. Thioredoxin reductases and glutathione 

peroxidases are examples of the functioning forms of selenoprotein family (111). The lack of 

selenoproteins, particularly selenoprotein W, compromises stress erythropoiesis on multiple 

levels. Knock-out of selenoprotein W blocked the proliferation of stress erythroid progenitors 

both in vivo in the mice model and in vitro in the human stress erythropoiesis cell cultures 

(112). Selenium-deficient mice manifested anaemia, despite an increase of BFU-Es (113). 

When oxidative stress was introduced, these mice failed to generate new erythrocytes and 

died from severe haemolysis. Liao et al. (2018) demonstrated the impairment of the 

expansion and differentiation of the stress erythroid progenitors in the early stage of stress 

erythropoiesis. The delayed terminal maturation was also observed in selenium-deficient 

mice during the transition from proerythroblasts to basophilic erythroblasts (99, 114, 115). 

Moreover, mice with a selenium deficit had fewer red pulp macrophages (CD11blo/-Vcam-

1+F4/80+), as well as a reduced number of splenic erythroblastic islands. (114, 116). These 

findings highlighted the importance of selenium in the microenvironment for stress 

erythropoiesis.  

Taken together, erythropoiesis is an intricate process of erythrocyte generation, either 

physiologically in steady-state, or pathologically in stress erythropoiesis. Considerable studies 

of both in vitro and in vivo systems have been developed to shed light on this extremely 

complicated process. The major advantage of the in vivo systems over the in vitro ones is that 

they allow the researchers to study the effects of the environmental cues on the 

erythropoiesis from both bone marrow and splenic niches.   

 

1.1.3 Animal models of erythropoiesis 
For the better understanding of in vivo erythropoiesis and pathology of related diseases, for 

example, thalassaemia, rodent models have been developed. Transgenic mouse models have 

helped elucidate the mechanisms behind the human globin switching, signified the 

importance of the LCR region (117) and identified the CACCC DNA sequence motif as the 

binding sites for KLF1 (118). The humanised mouse model, where large segments of the 
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mouse genome were removed and replaced with equivalent human syntenic regions, was 

also developed (119). This strategy was later used to identify the upstream regulatory 

element influencing the α-globin gene expression (120). Furthermore, deletional mouse 

models of β-thalassaemia were created with the prototype of heterozygous Hbbth-3 

representing the phenotypes of severe β-thalassaemic patients (121), with reduced 

expression of hepcidin, and the rescue of Hbbth-3 mouse with the high levels of human HbA 

(122). This evidence suggested functional conservation of the β-globins between the two 

species, and with this knowledge, new technologies such as gene therapy vectors could be 

tested in mice models (123). The lentiviral vector with a functional β-globin gene that was 

successfully delivered to Hbbth-3/+ mice provided an improvement of thalassaemic symptoms 

(124, 125). However, although murine models provided important insight into the in vivo 

pathophysiology of erythropoiesis, there are several species-based differences between 

human and murine erythropoiesis. These include one-time and two-time globin switching in 

mouse and human, respectively. The expression of human γ-globin in transgenic mice occurs 

during the embryonic stage, whilst in humans, the expression commences in the fetal stage 

(123). Also, a study by An et al. (2014) focusing on terminal erythroid differentiation, explored 

transcriptomic profiles between the two species. The differences were reported in glucose 

and vitamin C metabolisms, cell membrane composition and mechanisms of stress 

erythropoiesis. The most prominent difference was a global decrease in gene expression in 

murine terminal erythropoiesis, not observed in its human counterpart. Hence, care needs to 

be taken when extrapolating  erythropoiesis findings from mice to humans, due to significant 

species differences (126). 

 

1.1.4 In vitro erythropoiesis  
In recent decades, there has been a drive to generate efficient in vitro cell culture systems 

that mimic essential features of the in vivo erythroid cell proliferation and maturation for 

purposes of red cell production for disease studies, diagnostic and therapeutic use. Several 

research groups have successfully produced erythroid cells in small quantities (on a laboratory 

scale) using a variety of progenitor cell sources, different cell culture conditions and media 

components. These developments were reviewed herein (127-134).  
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1.1.4.1 Sources of stem cells for in vitro erythropoiesis studies 
HSCs can be obtained and successfully cultured from a variety of cellular sources, bone 

marrow, cord blood, adult peripheral blood, embryonic pluripotent stem cells and induced 

pluripotent stem cells (iPSCs) (13, 128, 135-138). Although bone marrow sources provide the 

preferred type of precursor cells due to their high proliferation capacity, their harvesting is 

more disruptive to patients and can be clinically challenging to justify. Of the different cell 

sources that can be used for in vitro culture, adult peripheral blood and cord blood present 

the most convenient starting materials, resulting in erythroid cells with the highest 

enucleation efficiency (139). In particular, adult peripheral blood is one of the most reliable 

and accessible sources of stem cells, with a special advantage that they can be easily obtained 

from by-products of blood donations or directly from patients. One of the main drawbacks of 

this source of progenitor cells is their limited expansion capacity, unlike the immortalised 

cellular sources such as iPSCs (139). One consideration when using peripheral blood of the 

patients as a source of progenitor cells is the severity of anaemia in these patients that has to 

be taken into consideration when requesting blood samples. Several studies of 

haemoglobinopathy diseases have shown that 20 ml to 30 ml of peripheral blood is an 

adequate volume for initiating the erythroid cultures (140-143). Alternatively, cord blood 

progenitor cells are reported to have higher expansion capacity compared to the peripheral 

blood progenitors (144); however, the cells generated from cord blood predominantly 

express embryonic and fetal globins, rather than an adult, phenotype (19). Furthermore, small 

number of Bcam, semaphorin-7A, and some gaseous exchange proteins that include carbonic 

anhydrase 1 and 2 and aquaporin-1 were reported at a higher level in the adult cells than a 

cord (145).    

Although iPSC and embryonic cell lines have great potential for providing a theoretically 

inexhaustible source of progenitors, there are ethical issues associated with using embryonic 

sources (146), the cells have a fetal or embryonic phenotype, and currently these sources 

have dramatically impaired enucleation when compared to the progenitor cells derived from 

adult peripheral blood (137).   
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1.1.4.2 Culture systems 
A variety of in vitro systems for erythroid cell production has been developed over the last 

two decades. The success of the 2D liquid culture systems at efficiently producing 

reticulocytes greatly improved upon the development of recombinant essential growth 

factors, e.g., EPO (147), SCF (148), and IL-3 (149). The published in vitro erythroid culture 

systems all generally utilise the same combinations of growth factors and media, but with 

subtle differences in their use of cellular starting material, the number of culture media 

stages, growth factor concentrations, and inclusion of glucocorticoids (hydrocortisone or 

dexamethasone). 

Two-step liquid culture (with EPO-free media followed by EPO-supplemented media) was first 

used for peripheral blood mononuclear cells of β-thalassaemia patients; it resulted in the yield 

of large erythroid colonies and haemoglobinisation by day 14 (150). A different study used a 

single-step liquid culture with 10-6 M hydrocortisone in the presence of EPO, GM-CSF, and IL-

3 to grow CD34+ cells obtained from various sources: bone marrow, umbilical cord blood, and 

peripheral blood of healthy controls, sickle cell disease and thalassaemia patients. After a 21-

day culture period, enucleation efficiency was reported to be 10% to 40% (151). In 1999, a 

liquid culture with added dexamethasone was described by von Lindern and colleagues to 

increase proliferation of erythroblasts (104). Following this, Migliaccio et al. (2002) developed 

Human Massive Erythroid Amplification (HEMA) media and reported to achieve 800-fold 

erythroid expansion. HEMA culture is a two-stage liquid culture system where mononuclear 

cells were cultured with cytokines (SCF, IL-3, EPO) and addition of DXM (10-6 M) and estradiol 

(10-6 M) for the first 13 days, followed by secondary medium containing only EPO and insulin 

to promote the cell maturation (131). In 2002, Neildez-Nguyen et al. reported a successful ex 

vivo culture of erythroid cells from human cord blood used for an injection of the human CFU-

Es (from day 10 of the culture) into a NOD/SCID murine model, which resulted in good 

survival, proliferation and maturation of human erythroid cells. This provides proof of 

principle that ex vivo erythropoiesis may be a possible source of erythroid cells for clinical 

transfusion (152). After this, multiple laboratories reported the successful generation of large 

numbers of reticulocytes (128, 131, 153) – including Dr. Toye laboratory (University of Bristol, 

UK). Reticulocytes obtained from a culture of peripheral blood mononuclear cells with the 

addition of DXM were used to study erythroid membrane multiprotein complex assembly (14) 



19 
 

and the hallmark changes that occur in patients with hereditary spherocytosis and congenital 

dyserythropoietic anaemia II (154-156). 

Most recently, Giarratana et al. (2011) described a culture method that used a total of 106 

CD34+ cells as a stem cell source for an erythroid culture maintained in static flasks, producing 

3.7 x 1010 of packed reticulocytes, a mini dose sufficient for the first successful autologous 

transfusion of ex vivo generated reticulocytes into a human (132). The authors used an 

updated three-stage protocol using IMDM medium with transferrin, insulin, heparin, and 

plasma throughout their culture and included hydrocortisone. In the primary media (day0 – 

day7), 10-6 M hydrocortisone, SCF, IL-3 and EPO was used to culture CD34+cells isolated from 

peripheral blood, followed by the secondary medium supplemented with SCF and EPO (day7 

‒ day11) and the tertiary medium (day11 ‒ day18) containing only EPO. The erythroid cells 

achieved 62,000-fold expansion rate with >80% of enucleation (132).  

In 2012, Griffiths et al. reported a modified three-stage culture media following the same 

principles of changing the supplemental cytokines in each stage to mimic erythropoiesis and 

allow cells to proliferate and mature. Note that, hydrocortisone was not used in this culture 

protocol. The cell expansion achieved was >10,000-fold with enucleation rates of 55% to 95% 

(128), resulting in approximately 5 ml of packed reticulocytes. Griffiths et al. culture method 

has since been perfected further, producing approximately 10 ml of packed reticulocytes 

(139). This culture system is being used in the Blood and Transplant Research Unit based in 

Bristol, UK, to conduct a clinical trial in volunteers (http://www.bristol.ac.uk/btru/) and will 

be the basis of the erythroid culture methodology used in this thesis. 

 

1.1.4.3 In vitro erythropoiesis for the study of thalassaemia 
In vitro erythroid culture has been widely adopted in thalassaemia disease research to serve 

two notable purposes – to better understand the pathology of the disease and to explore 

therapeutic-related aims. There are two major sources of CD34+ progenitor cells that have 

been successfully used for thalassaemic cultures; bone marrow or peripheral blood. 

Circulating peripheral CD34+ cells can be obtained directly from the buffy coat. GM-CSF-

mobilised CD34+ cells originating from the bone marrow of thalassaemia patients have 

http://www.bristol.ac.uk/btru/
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typically given better yields than those obtained by the conventional collection from 

peripheral blood (157, 158).  

Since IE is one of the hallmark features of thalassaemia pathology, a study of erythropoiesis 

of thalassaemic progenitor cells can bestow a better understanding of what occurs in vivo in 

the bone marrow of the patients. Eighteen years ago, Mathias and colleagues reported the 

application of in vitro erythropoiesis to define the process of IE by culturing CD34+ cells 

obtained directly from bone marrow (158). Through their single-step liquid culture protocol 

(151), they observed the decline of polychromatophilic normoblasts in β-thalassaemia bone 

marrow cultures, thus concluding that the IE characteristic of thalassaemia can be simulated 

in vitro and that it occurs at the polychromatophilic normoblast stage (159). Lithanatudom et 

al. (2011) used 20 ml of peripheral blood as a source of thalassaemic progenitor cells and 

demonstrated increased autophagy in HbE/β-thalassaemia erythroblasts compared to normal 

erythroblasts (143). Arlet and colleagues (2014) cultured CD34+ cells of the β-thalassaemia 

major patients by using two-phase liquid culture in parallel with healthy donor samples. By 

confocal microscopy, a chaperone protein heat shock protein 70 kDa (Hsp70) was localised to 

the cytoplasm, and the low expression of GATA-1 was observed in the nucleus of the 

thalassaemic erythroid precursors (160). In normal erythropoiesis, Hsp70 protects GATA-1 

from destruction by caspase-3 cleavage in the nucleus of erythroblasts (161). In the β-

thalassaemia-derived erythroblasts, Hsp70 was sequestrated to the cytoplasm due to its 

binding to the free α-globin chains, which resulted in the cell maturation arrest and apoptosis. 

In addition to these  studies,  in vitro erythropoiesis of thalassaemic material for therapeutic 

applications have mainly concentrated on exploring responses of fetal Hb induction 

manoeuvres, both by hydroxyurea (140-142) and gene therapy (162-164).  

 

1.1.4.4 Other strategies to study in vitro erythropoiesis 

1.1.4.4.1 Human iPSCs and their benefits for therapeutic research in thalassaemia  

Human iPSCs were successfully generated by reprogramming of the somatic cells, human 

dermal fibroblasts, into the pluripotent  cells by transduction of four transcription factors: 

Oct3/4, Sox2, Klf4, and c-Myc (165). The iPSCs share their phenotypic and pluripotent 

characteristics with human embryonic stem cells which are able to differentiate into cell types 

of the three germ layers (165). Therefore, the iPSCs retain the characteristics of embryonic 



21 
 

and fetal erythroid differentiation (138, 166). Initially, several studies explored the potential 

therapeutic benefits of this cell type for haemoglobinopathy patients. Despite iPSCs’ high 

expression level of the γ-globin chain, it was observed that the globin switching had partially 

occurred after their transplantation into mice. Moreover, the rate of enucleation was 

unsatisfactory (167, 168). Thus, it is unlikely that this source of stem cell will replace the 

conventional sources like bone marrow or cord transplants at present. More research is 

needed to reduce the risk of tumorigenesis, especially the potential insertional mutagenesis 

from the use of viral vectors (169). However, these cutting-edge experiments contributed to 

the robust advancements in medicine. Patient-specific iPSCs in culture have allowed the 

evaluation of the responses of a particular patient in vitro before the actual therapeutic 

intervention (164, 170). Furthermore, a number of studies have successfully applied gene-

editing technology on the iPSCs. Ma et al. (2013) generated patient-specific iPSCs and 

corrected the thalassaemic mutation using TALEN gene editing. These gene-corrected iPSCs 

showed normal maturation and expressed normal β-globin (171). Recently, Ou et al. (2016) 

generated patient-specific iPSCs from β-thalassaemia patients, cultured them by in vitro co-

culture with stromal cell lines and used homologous recombination-based CRISPR/Cas9 gene 

editing before introducing the modified iPSCs to mice models. These genetically edited cells 

were capable of performing normal HSC function in vivo (172). Wattanapanitch and 

colleagues (2018) had also successfully applied CRISPR/Cas9 gene-editing system to correct 

HbE mutation by homology-directed repair of HbE/β-thalassaemia iPSCs (173).   

Another application of iPSCs is the creation of immortalised iPSCs lines. The establishment of 

these cell lines had contributed to a better understanding of the biology of various diseases 

and facilitated innovative therapeutic strategies. Numerous cell lines have been generated 

from somatic and peripheral blood haematopoietic cells of patients presenting with various 

diseases, e.g., neurological diseases, schizophrenia, hypertrophic cardiomyopathy (174-178) 

and thalassaemia (179-182). A study by Phanthong et al. (2017) created the iPSCs line from 

mesenchymal stromal cells of HbE/β-thalassaemia patient, then transduced the cells with a 

lentivirus carrying a modified U7 small nuclear RNA to correct a DNA splicing defect of β-

thalassaemia in order to restore the correct splicing of β-globin mRNA. Transplantation of the 

genetically corrected HSCs into the patient would potentially inhibit disease symptoms (182). 
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In addition, the iPSCs line carrying the heterozygous form of this splicing defect may also be 

employed as a model for the disease and for drug screening purposes.  

It is worth noting that during the time of this project, immortalised human erythroid 

progenitor cell lines derived from human iPSC line (HiDEP) generated from amniotic 

fibroblast-like cells and immortalised using viral transduction of TAL-1 gene at the pro-

erythroblast stage have been developed (183). Most recently, the first immortalised adult 

erythroid cell line Bristol Erythroid Line Adult (BEL-A) derived from human bone marrow was 

shown to have a higher rate of enucleation than iPSCs (184) and has been successfully gene-

edited by CRISPR/Cas9 (185).  

1.1.4.4.2 An in vitro model of β-thalassaemia major 

An artificial model of β-thalassaemia major was created by knocking-down HBB gene (HBB-

KD) in normal CD34+ cells obtained from adult peripheral blood. The cryopreserved CD34+ 

cells were cultured in a two-phase, serum-free system and were knocked down using lentiviral 

vector delivery of short hairpin RNAs. With this method, more than 90% of the β-globin mRNA 

was silenced when compared to the control. Subsequently, the thalassaemic phenotype of 

the cells and their Hb profile was assessed. Lee et al. (2013) reported the increase of apoptosis 

of the HBB-KD cells at the polychromatophilic normoblast stage, as evaluated by flow 

cytometry measuring the caspase-3 and annexin V expression. This finding was consistent 

with their previous assessment of the in vitro erythroid culture of CD34+ samples obtained 

from β-thalassaemia major patients (159). In addition, they observed a significantly increased 

marker of IE, GDF15, in the culture supernatants (see  section 1.1.2 for stress erythropoiesis) 

(186). Thus, this synthetic model was a good representation of human β-thalassaemia and 

would reduce the confounding factors between erythropoiesis in murine models and humans 

in future research.   

 

1.2 Globin genes and their regulators 
Haemoglobin is the major protein present in mature erythrocytes at approximately 270 

million molecules per individual erythrocyte (187). The expression of Hb is varied and 

chronologically dependent on the human developmental stages (Figure 1.4).  
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1.2.1 Normal haemoglobin synthesis  
The majority (>95%) of adult haemoglobin is HbA, comprised of two globin subunits with two 

α-globin and two β-globin chains (α2β2). The α-globin gene (HBA), encoding the α-globin chain, 

is located in a gene cluster on chromosome 16. This gene cluster contains, from the 5’ end, ζ 

gene and the pair of HBA genes (HBA1 and HBA2). The β-globin gene (HBB) is located on the 

short arm of chromosome 11 among five functional globin genes – ε-γA-γG-δ-β from the 5’ to 

the 3’ end (Figure 1.4). These two gene clusters are activated sequentially during 

development (188, 189). 

In humans, during the early embryonic stage when the primary site of erythropoiesis is the 

yolk sac, Hb Gower 1 (ζ2ε2) is the most abundant Hb. After approximately 4 weeks of 

gestation, Hb Gower 2 (α2ε2), and Hb Portland (ζ2γ2) are identified (188). Fetal Hb, HbF (α2γ2), 

becomes the major Hb in fetal life when the primary site of erythropoiesis transfers to the 

liver. HbF persists throughout the gestational period, then starts to decline after birth. If the 

level of HbF is still high in adulthood, this may indicate the hereditary persistence of fetal 

haemoglobin (HPFH). Besides HbA, HbA2 (α2δ2) is also detected in <3.5% of all the 

haemoglobins in an adult. The higher level of HbA2 denotes deprivation of HbA synthesis, for 

example, in β-thalassaemia disease (190).  
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Figure 1.4. β-globin gene cluster and the sequence of globin synthesis during human 
development.   
During the gestational period, embryonic globins (ζ2ε2, α2ε2) are first synthesised in the 

blood islands of the yolk sac, then the first globin switching occurs. During fetal development, 

the majority of Hb production is fetal Hb (α2γ2) from the liver and the spleen. Around the 

time of birth, the second switching from fetal Hb to adult Hb (α2β2) takes place at the β-

globin gene locus, and bone marrow becomes the primary site of erythropoiesis. LCR – locus 

control region. Line colour code: violet – ε, yellow – γ, blue – β, and orange – δ globin. (Modified 

from Weatherall DJ. Phenotype-genotype relationships in monogenic disease: Lessons from the 

thalassaemias. Nat Rev Genet. 2001 Apr;2(4):245-55. (191)) 

 

1.2.2 Haemoglobin switching 
Humans possess two distinct erythroid cell lineages – the primitive and the definitive lineage. 

The primitive lineage originates at the embryonic stage in blood islands of the yolk sac and is 

later replaced by the definitive erythroid lineage, generated in the fetal liver during the fetal 

stage and in the bone marrow of the adult. The globin switching occurs within the clonal 

population of HSCs, rather than through the direct globin replacement at the cell level (192). 

This project will be focused only on HbF switching, from γ-globin to β-globin chain activation, 

because of its impact on the severity of β-thalassaemia.  
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As stated earlier (see section 1.1.1.1, KLF1), KLF1 plays a crucial role in β-globin switching (39). 

The mechanism involves the configuration of the 3D chromatin structure. In more detail, KLF1 

facilitates the long-range DNA interactions, as well as the 3D chromatin looping, which brings 

the proximal promoter of the β-globin gene to the LCR (47, 48). The KLF1 binding regions are 

the upstream DNaseI hypersensitivity sites (HS): HS2 and HS3 within the LCR, as well as the 

adult β-globin proximal promoter. KLF1 binding to the adult β-globin proximal promoter leads 

to β-globin expression in adult erythroid cells (46). The LCR upregulates one globin gene at a 

time; therefore, the globin genes require competition for activation by the LCR. This 

mechanism explains how are the globin genes sequentially expressed in embryonic, fetal, and 

adult stages of development (193, 194). Since disruption of KLF1 binding would potentially 

result in an increase of HbF (36), this may be clinically beneficial to β-thalassaemia (195). A 

knockdown of KLF1 was once considered as a potential therapeutic target. However, the 

narrow therapeutic window (196) made it very difficult to target KLF1 with small molecule 

inhibitors (197).  

The molecular background of the HbF switching at the β-globin locus requires BCL11A working 

in synchronisation with GATA-1, FOG-1, and the NuRD complex (see section 1.1.1.1). These 

transcription regulators bind to the globin gene loci, contributing to the activation of β-globin 

production and repression of γ-globin gene expression (192, 198). Furthermore, the process 

of globin switching can also be demonstrated in the ex vivo erythroid maturation by modifying 

the levels of expression of transcription factors KLF1 and BCL11A. Trakarnsanga and 

colleagues (2014) reported that the transduction of KLF1 and BCL11A-XL successfully drove 

the globin switching from embryonic (ε)  to adult β-globin chain in HiDEP-1 cells, a human iPSC 

line derived from amniotic fibroblast-like cells and immortalised at the pro-erythroblast stage. 

They also demonstrated that transfection of erythroid cells derived from cord blood with both 

KLF1 and BCL11A-XL resulted in the increased adult β-globin expression (137). Whereas, the 

knock-down study of BCL11A observed no globin switching and an increase of γ-globin 

expression in adult erythroblasts (145, 199). All this evidence has highlighted the critical 

regulatory roles of the two transcription factors, KLF1 and BCL11A, in the process of globin 

switching.   
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1.3 Thalassaemia  
 

1.3.1 Definition 
The term “thalassaemia” is stemmed from two words, “thalassa” or sea and “haema” or 

blood, in the Greek language. It refers to inherited human conditions where globin synthesis 

is partially or entirely suppressed, resulting in imbalanced globin production (200).  

Two major types of thalassaemia are α- and β-thalassaemia, depending on which globin is 

suppressed. For example, β-thalassaemia is characterised by a quantitative reduction of β-

globin chain production without any structural changes (201) caused by genetic alterations of 

the β-globin gene (HBB). The mutations of HBB in β-thalassaemia show a whole spectrum 

from ‘mild’ missense mutations (β+-thalassaemia) to completely absent alleles (β0-

thalassaemia) (202). Similarly, mutations occurring in the α-globin gene cluster result in α-

thalassaemia.  

 

1.3.2 Epidemiology  
Haemoglobinopathies affect around 7% of the world’s population, with an estimated >50,000 

births annually being affected by the major forms of thalassaemia (203, 204). Approximately 

80 million people are carriers of β-thalassaemia globally. In high incidence regions of Sub-

Saharan Africa, Mediterranean basin, the Middle East, Indian subcontinent, Southeast Asia 

and the Pacific Islands, the frequencies of the carrier state can range from 1% to 20% (203). 

In 1949, Haldane first proposed the potential advantages presented by heterozygotes β-

thalassaemia in malaria resistance (205). Several lines of evidence support the association 

between the distribution of mutations causing thalassaemia disease and malaria protection, 

which is endemic in South East Asia region (206, 207). Other reasons explaining the high 

frequencies of Hb inherited disorders were summarised by Williams and Weatherall (2012); 

these include the high rate of consanguineous marriages and the longer life expectancy of the 

affected babies (204).  
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1.3.3 Pathophysiology  
During normal erythropoiesis, two α-globin chains bind to two β-globin chains forming the 

adult Hb (HbA), whilst in β-thalassaemia, the reduced level of β-globin chain results in a 

relative excess of α-globin chains. These unmatched α-globin chains accumulate and 

precipitate in the erythroid membrane as the α-globin inclusion bodies (α4). The inclusion 

bodies in turn associate with haemichromes, inducing oxidative species, clustering of band 3 

and subsequently generating neoantigen sites for IgG and complement binding (208). IgG and 

complement bound neoantigens to serve as a senescent signal for the reticuloendothelial (RE) 

system, i.e. macrophages, to eliminate such affected red blood cells (209). The premature 

destruction of erythrocytes in the bone marrow occurs as a part of IE.  

IE was first described in thalassaemia in 1950 in a study examining ferrokinetic parameters 

(210). Since then, this pathophysiology has been extensively studied and elaborated on. The 

process is characterised by apoptosis of the erythroid precursors due to the imbalance of 

globin chains, leading to intramedullary erythroid destruction, as well as abnormal 

differentiation and maturation of erythroid progenitors (209, 211, 212). IE is a hallmark of 

thalassaemia, and it leads to a number of sequelae, including haemolysis, progressive marrow 

expansion and extramedullary erythropoiesis correlated with the degree of anaemia (213). 

Nowadays, the understanding of IE in thalassaemia has been dramatically improved, and the 

pathophysiology of IE was recently extensively reviewed by Oikonomidou and Rivella (2018) 

(213). A number of different mechanisms contribute to the pathology of IE, e.g., increased 

apoptosis of the erythroid precursors during the maturation process (159, 211, 214), 

decreased differentiation of erythroid progenitors (215, 216), oxidative stress in 

erythropoiesis (217-219), and iron metabolism (220, 221). 

Furthermore, another significant pathomechanism of thalassaemia is the reduction of nitric 

oxide (NO) that leads to the thrombotic events in thalassaemia. In physiological conditions, 

circulating NO diffuses in and out of erythrocytes; however, in thalassaemic RBCs, NO is not 

being released from the cells because of the oxidative injury to the binding sites of the 

intracellular NO and the clustering of band 3. When NO is reduced in circulation, the 

vasodilator activity is also reduced and eventually will lead to a hypercoagulable state in 

thalassaemia (222).  
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1.3.4 Classifications of thalassaemia  
Thalassaemia can be classified in two ways – depending on either its genetic or clinical 

outlook. Genetic classification simply depends on which globin gene is affected. This category 

can be expanded further, taking into account the impact of the mutations on the globin 

products: the first group reflects an absent or suppressed globin synthesis, i.e., β-

thalassaemia or α-thalassaemia for HBB and HBA mutations, respectively. The second group 

includes the alterations of structural Hb, i.e. Hb variants such as HbE, HbC (see Table 1.1) 

(223). 

Conversely, classification into the clinically-associated categories of transfusion dependent 

thalassaemia (TDT) and non-transfusion dependent thalassaemia (NTDT) focuses on the 

clinical management of the disease, rather than the actual genotype. The key factor that 

differentiates patients between TDT and NTDT groups is the necessity of blood transfusion 

for survival. NTDT patients do not require lifelong regular transfusions for survival, whilst TDT 

patients do. Note that, NTDT comprises three clinically distinct diagnoses: β-thalassaemia 

intermedia, HbE/β-thalassaemia disease, and HbH disease (224).   
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Table 1.1. A summary of genetic classification and the phenotype diversities of thalassaemia. 
 

Type 
Affected 

gene(s) 
Genotype Phenotype 

Transfusion 

requirement 
Reference 

β-thalassaemia 

trait 

One HBB 

allele  

β+/β 

β0/β 
Asymptomatic 

Do not require 

transfusion 

(Chonat and 

Quinn, 2017) 

β-thalassaemia 

intermedia 

Two HBB 

alleles 

β+/β+ 

β+/β0 
Mild to moderate 

None to 

intermittent 

transfusion 

(Chonat and 

Quinn, 2017) 

β-thalassaemia 

major 

Two HBB 

alleles 

(complete 

absence of β-

chain 

production) 

β0/β0 Severe anaemia 
Transfusion 

dependence 

(Chonat and 

Quinn, 2017) 

α silent carrier 
One HBA 

allele 
-α/αα Asymptomatic 

Do not require 

transfusion 

(Marengo-

Rowe, 2007) 

α-thalassaemia 

trait 

Two HBA 

alleles 

αα/-- 

-α/-α 
Asymptomatic 

Do not require 

transfusion 

(Marengo-

Rowe, 2007) 

HbH disease 
Three HBA 

alleles 
-α/-- Mild to severe 

None to 

intermittent 

transfusion 

(Marengo-

Rowe, 2007) 

Hydrops fetalis 
Four HBA 

alleles 
--/-- Fatal 

Incompatible 

with life 

(Marengo-

Rowe, 2007) 

 

 

1.3.4.1 Beta-thalassaemia 
The term β-thalassaemia refers to a quantitative reduction of structurally normal β-globin 

chains usually caused by mutations affecting the HBB gene (201). These mutations are 

heterogeneous (see Table 1.2), leading to variable clinical disease severity from mild to 

severe, depending either on the degree of the β-globin chain reduction (β+) or on its complete 

absence (β0). Moreover, the co-inheritance between β-thalassaemia and other genetic 

alterations that involve globin expression could make the disease even more divergent (see 

section 1.4). However, the severity of β-thalassaemia symptoms correlates well with the 

quantity of the free α-globin chains (202). The patients with homozygous form of β-

thalassaemia (β0/β0) usually present to the medical attention in the early years of life and 

require regular transfusion due to the severe clinical features, e.g. severe microcytic anaemia, 
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hepatosplenomegaly and failure to thrive. Haematological parameters in the patients are 

typically characterised by Hb levels <7 gdl-1, MCV 50-70 fl and MCH 12-20 pg (225). Untreated 

patients could develop skeleton changes such as deformities of long bones and expansion of 

flat bones (thalassaemic facies), extramedullary haematopoiesis, and ultimately may not 

survive the first few years of life (225, 226). However, adequate blood transfusion in 

conjunction with appropriate iron chelation, has proved to suppress erythropoiesis and 

ameliorate these symptoms (227).  

Patients with β-thalassaemia intermedia usually present at a later age with milder clinical 

manifestations, and do not require a regular blood transfusion to survive. Their Hb levels 

range from 7 to 9 gdl-1 with a broad clinical spectrum. Patients with severe manifestations 

could present with delayed growth and development in later life when compared to the β-

thalassaemia major. On the other end of the spectrum, patients with mild manifestations can 

be asymptomatic. Although most β-thalassaemia intermedia patients have mutations that 

affected both β-globin loci, the result of such genetic alteration is only a partial suppression. 

Their genetic background can be either homozygosity (β+/β+ or β+/β0) or compound 

heterozygosity (HbE/β-thalassaemia) (228).  

 

1.3.4.2 Haemoglobin E (HbE) 

1.3.4.2.1 Pathophysiology of HbE 

HbE is one of the abnormal β-globin variants, caused by a single base-pair substitution at 

HBB:c.79G>A (p.Glu26Lys) (229). The underlying altered RNA processing mechanism occurs 

due to the activation of a new cryptic splice site, which competes with the regular site and 

results in a reduction of normally spliced mRNA (230). The c.79G>A mutation caused 

abnormalities in RNA processing, as was demonstrated in expression studies. The alternative 

splicing of exon 1 at the codon 26 caused the insertion of intron 1 into the transcript and 

creation of a new stop codon (230). The abnormally spliced mRNA in vitro was showed to be 

unstable and non-functional. Thus, the overall quantity of functional β-globin was reduced, 

which manifested as a mild β-thalassaemia phenotype (231). The proportion of the aberrantly 

spliced mRNA from the patients was in line with the severity of the disease. Patients with 

more severe symptoms had more of the abnormally spliced mRNA (2.9% to 6.1%); whereas 

patients with higher Hb levels had lower amounts (1.6% to 2.6%) (232). The crystallography 
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study demonstrated the aetiology of HbE instability through two proposed mechanisms: 1) 

the change of p.Glu26 to p.Lys26 leading to the loss of stability of H-bonds with p.Arg30 and 

the modification of α1β1/α2β2 interfaces and 2) the conformation change of p.His116 and 

p.His117 from HbE and HbA, respectively, affecting Hb assembly and stability (233). A study 

of interactions between variants of Hb in a model RBC membrane system showed that HbE 

induced different redox properties when compared to HbA (234). However, it was unclear 

how HbE exacerbated the increase of oxidative stress in vivo. 

There are many factors that contribute to the pathophysiology of HbE/β-thalassaemia. These 

include a globin chain imbalance caused by reduced β-chain production, IE, apoptosis and 

oxidative injury (235, 236). In the steady-state, the instability of HbE is not considered to be 

a significant contributor to the pathophysiology of the disease, except during episodes of 

fever. The effect of high temperature on the reduction of the Hb synthesis was demonstrated 

both in vitro (237) and in vivo in the patients carrying HbE allele (238).  

1.3.4.2.2 Phenotypic manifestations of HbE 

Both heterozygous, in trans with a wild-type allele, and homozygous expression of the HbE 

were shown to contribute to a mild hypochromic microcytic RBCs phenotype (239). A HbE 

heterozygote (βE/β; HbE 25-30% of total Hb) may not have any blood parameter changes, 

except for a modest number of target cells in a blood smear. A HbE homozygote (βE/βE), will 

have a similar spectrum of phenotypic severity as a heterozygous form of β-thalassaemia, 

including the presence of hypochromic microcytic red cells (mean corpuscular volume <80 fl) 

and slight anaemia (229). Such patients’ Hb typing would display HbE >80%, and they usually 

do not require any treatment or transfusion.  

However, when HbE combines with a β-thalassaemic allele, the clinical manifestations can be 

broad, ranging from severe anaemia in TDT to thalassaemia intermedia in NTDT (197, 231). 

These variations in disease severity are a reflection of the expression of globin alleles other 

than HbE, as well as other genetic factors. Some of these factors are α-thalassaemia co-

inheritance and XmnI polymorphism (HBG:c.-158C>T, rs7482144), which is a mutation in HGB 

promoter and a known modifier of HbF level (237, 240-242). The β-thalassaemia allele alone 

in trans to HbE might contribute to this heterogeneity of symptoms, but not in a consistent 

manner (243). Other than genetic factors, environmental cues also play a role in the severity 

of HbE/β-thalassaemia. Premawardhena et al. (2005) stratified HbE/β-thalassaemia patients 
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into different age groups and observed that the alteration of EPO levels due to age-related 

changes in adaptation to anaemia and malarial infection correlated with the disease severity 

(241). The interactions between HbE and β-thalassaemia in various population, including 

proportions of Hb and haematological profiles, were summarised by Gibbons et al. (239) and 

Vichinsky (244). 

 

1.3.4.3 Alpha-thalassaemia  
Normal adult Hb comprises four subunits; two β-globin chains, and two α-globin chains. Thus, 

deficiency of the α-globin chain production leads to a thalassaemic disease known as α-

thalassaemia. Alpha globin genes are members of the HBA gene cluster. Deletional mutations 

in this gene cluster are typical of α-thalassaemia: Hb Bart’s hydrops fetalis (--/--) and HbH 

disease (--/-α). Whereas, non-deletional mutations often lead to abnormality of the α-globin 

chain, e.g., Hb Constant Spring (HbCS) or Hb Paksé (245). The α-globin gene cluster spans 

approximately 30 Kb on chromosome 16 (16p13.3) and consists of seven loci, ordered from 

5’ to 3’: HBZ – HBZP1 (pseudozeta) – HBM ‒ pseudogene ‒ HBA2 ‒ HBA1 ‒ HBQ1. The HBA1 

and HBA2 genes are responsible for α-globin chain production in an adult. They share identical 

coding  sequences but have a different level of transcription, where α2 mRNA predominates 

over α1 in 70:30 ratio (246). At the protein level, HBA1 and HBA2 products are more 

comparable, with the ratio difference of 60:40 for α2:α1 (247, 248). Thus, it is implied that 

any mutations present in the HBA2 gene would have a more pronounced effect than 

mutations present in the HBA1 gene.  

Unlike in the β-globin locus, the Hb switching in the α-globin locus takes place in the prenatal 

period when the HBZ or ζ-globin expression halts and α-globin synthesis begins (249). 

Therefore, the patients diagnosed with α-thalassaemia always present at a very early stage 

of life, ranging from Hb Bart’s hydrops fetalis, the most severe form of α-thalassaemia, to HbH 

disease, a mild to severe α-thalassaemic disease. Because α-globin is a composition of all 

types of Hb present in adulthood (HbA, HbA2, HbF), it is an indispensable globin chain. A 

complete deficit of α-globin chains is seen in Bart’s hydrops fetalis when a fetus cannot 

produce any normal fetal or adult Hb. Without treatment, stillbirths and infant deaths shortly 

after birth are typical for this pathology. The severity of HbH (β4) disease is more varied than 

Bart’s hydrops, ranging from very mild to severe symptoms. Moreover, it is well established 
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that the non-deletional form of HbH disease, for instance, HbH and Constant Spring (HbH-CS) 

disease, is usually more severe than the ‘traditional’ deletional HbH disease (250, 251). Not 

only the causative genes are giving rise to thalassaemia, but the α-globin genes also serve as 

the notable genetic influencers in β-thalassaemia.  

 

1.3.5 Clinical manifestations and complications of thalassaemia 
Clinical phenotypes of thalassaemia show extreme variations, from severe manifestations in 

thalassaemia major, to slightly less severe in intermedia, through to asymptomatic forms that 

could only be identified by abnormal blood tests (191). Anaemia is the major and the first 

clinical presentation of thalassaemia that would bring a patient to a clinician. The main cause 

of anaemia in thalassaemia is premature red cell destruction by the process of IE (see section 

1.3.3) and haemolysis.   

 

1.3.5.1 Haemolysis and blood parameters associated with thalassaemia 
One of the significant features of thalassaemia that determine the severity of the disease is 

the rate of haemolysis, which can occur as intravascular (IVH) or extravascular (EVH) 

haemolysis. IE is associated with the EVH type. Generally, most of the haemolytic conditions 

have a predominant site of haemolysis, but these are not mutually exclusive. Kormoczi et al. 

(2006) suggested the concomitant IVH component in the predominantly EVH patients, e.g. 

patients with hereditary spherocytosis, autoimmune haemolytic anaemia, etc. These 

observations were based on the altered levels of IVH markers, i.e. reduction of haptoglobin 

and the increase of lactate dehydrogenase (LDH) (252). The detection of the IVH markers in 

these conditions could be explained by the release of Hb from macrophages following 

endocytosis of affected RBCs, or by the release of the affected RBCs from the RE system 

followed by their lyses in the circulation (252). Monitoring of haemolytic markers is an 

unbiased way to determine severity, response to treatment and concomitant complications 

of thalassaemia. Currently, there is no ‘gold standard’ marker of haemolysis. Hb serves as the 

most important indicator of haemolysis and treatment monitoring. However, in thalassaemia 

and other chronic haemolytic conditions where the patients’ disease is well tolerated, with 

some degrees of anaemia, Hb alone would not be a good marker to reflect patients’ well-
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being and transfusion requirements. Listed below are blood parameters which are used as 

indicators of the haemolytic status of both EVH and IVH in thalassaemic patients.  

1.3.5.1.1 Haemoglobin and haematocrit 

World Health Organization designates normal Hb levels for non-pregnant women at >12 gdl-

1 and for men at >13 gdl-1 (253). The Hb values below these cut-off points would be 

categorised as anaemia. Although Hb is the most significant predictive marker for acute 

haemolytic conditions such as the autoimmune haemolytic anaemia (254) or even the 

haemolytic crisis in thalassaemia, it might not represent the bona fide severity in chronic 

haemolytic diseases, for instance, in a non-haemolytic crisis of thalassaemia intermedia. In 

the latter cases, it is necessary to compare the current Hb results with the historic Hb values 

in order to interpret the clinical severity. Thus, in patients with thalassaemia intermedia, their 

baseline Hb can be decreased to 6-7 gdl-1 (or Hct of ~20%) without the need for transfusion 

or treatment (255). Hb and Hct are also the most common markers used to monitor the 

improvement of the patients, especially after a transfusion. 

1.3.5.1.2 Plasma haemoglobin and percentage of haemolysis  

Plasma haemoglobin concentration that represents ‘free Hb’ diffused in the plasma is usually 

tested to determine the presence of IVH. In the normal state, the reference ranges of total 

free Hb in plasma are 0.0-15.2 mgdl-1 (256). The level of plasma Hb is measured by 

spectrophotometry at different wavelengths and calculated based on the Harboe method 

(257). Percentage of haemolysis can also be calculated from the plasma Hb value. 

1.3.5.1.3 Reticulocytes 

One of the parameters associated with thalassaemia is reticulocytosis due to increased 

release of reticulocytes from the bone marrow into the peripheral blood. The normal 

physiological reticulocyte count is approximately 0.5% - 1.5% of RBCs. A higher number of 

reticulocytes indicates the enhanced response of the marrow to anaemia. Reticulocytes are 

also good indicators of the causes of anaemia, as their low number denotes a problem with 

erythrocyte production or bone marrow diseases.  

1.3.5.1.4 Indirect bilirubin (unconjugated bilirubin)  

When RBCs break down, the globin chains are recycled, and the iron is reused. The haem is 

degraded into bilirubin. Hb degradation contributes to 70% to 90% of the total bilirubin. The 

initial form of bilirubin is the free unconjugated bilirubin, which is bound by albumin and 
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transferred to the liver. This complex is then dissociated, and hepatocytes conjugate bilirubin 

into water-soluble form (conjugated bilirubin) which is subsequently excreted into the 

gastrointestinal tract. In EVH, the level of the unconjugated form of bilirubin is elevated 

because of the saturation of hepatocyte functional capacity to process the excess bilirubin 

(258).  In haemolysis, the conjugated bilirubin level is usually normal. Other conditions that 

might have unconjugated hyperbilirubinemia are cirrhosis/liver diseases, Gilbert’s syndrome, 

etc. This syndrome is a prevalent benign condition with a high bilirubin baseline due to the 

decrease of the conjugating enzyme (259).  

1.3.5.1.5 Lactate dehydrogenase  

Lactate dehydrogenase is an enzyme associated with the glycolysis pathway with a function 

of converting pyruvic acid to lactate. Thus, LDH is found ubiquitously in all cell types, with a 

high concentration in cardiac muscles, liver, muscles, kidneys, lungs and erythrocytes. 

Because LDH is pervasive, there are many conditions with elevated LDH (normal ranges are 

122 – 222 Ul-1 in an adult), notably where the turn-over rate of cells is increased, e.g. in 

lymphoma, several types of solid cancer, myocardial infarction, megaloblastic anaemia and 

haemolysis. LDH is known to be a good clinical parameter of IVH, but the levels of LDH can 

also be slightly elevated in EVH (260). Therefore, LDH is useful to distinguish between these 

two types of haemolysis. Additionally, LDH is also useful in treatment monitoring because its 

levels being in concordance with a degree of haemolysis (259).  

To summerise, there is no specific marker of haemolysis. In clinical practice, usually, more 

than one haemolytic parameter is monitored and taken into consideration together with the 

signs and symptoms to make an accurate diagnosis and predict the severity of the disease.  

 

1.3.5.2 Iron overload  
Transfusion iron overload is the inevitable complication of TDT patients (see section 1.3.6). 

Iron in the form of either labile cellular or non-transferrin bound iron can lead to increased 

storage in organs and tissues susceptible to iron accumulation (261). These tissues include 

vital organs, e.g., myocardium, hepatocytes and pancreatic tissue. In addition, an excess of 

labile cellular iron can mediate the formation of reactive oxygen species (ROS), particularly 

hydroxyl radicals, according to Fenton reaction (209). ROS generation worsens the organelle 

damage and can subsequently result in cell death and fibrogenesis (262). Overall, unchelated 
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transfusion iron overload is one of the leading causes of death in thalassaemic patients. 

However, NTDT patients, even those who never receive a transfusion, can develop iron 

overload as well, albeit with much slower kinetics (263). Such iron overload is related to IE, 

anaemia, and increased EPO production, which altogether suppresses hepcidin, a key enzyme 

that regulates ferroportin in intestinal cells and hepatocytes; causing a subsequent increase 

in iron absorption and release of stored iron, respectively (264). The adequacy of transfusion 

therapy can prevent and correct anaemia and inhibit this pathogenic mechanism in TDT 

patients; therefore, this type of iron overload from hepcidin suppression is more commonly 

found in NTDT patients.  

 

1.3.5.3 Extramedullary haematopoiesis 
Due to the limited areas of erythroid production in thalassaemia, thalassaemia major patients 

would develop extramedullary haematopoiesis (EH), or haematopoiesis that occurs in organs 

other than bone marrow (265). EH can cause localised symptoms if compressing on nerve 

plexus or spinal cord, leading to a disability in the patients. Adequate blood transfusion is 

reported to suppress the occurrence of this complication (225).  

 

1.3.6 Treatments of thalassaemia  
Treatments and management of thalassaemic patients are chosen according to the severity 

of the disease, and the guidelines for both TDT and NTDT patients are issued by the 

Thalassaemia International Federation (224, 225). The conventional therapies for 

thalassaemia comprise red blood cell transfusion, iron chelation, splenectomy, hydroxyurea, 

and haematopoietic stem cell transplantation, while several novel and specific treatments are 

also proposed, e.g. gene therapy, gene editing, novel medications including JAK2 inhibitor, 

activin receptor-II ligand traps, etc. Note that, a recently published report has 

comprehensively reviewed this topic (266) and in this manuscript, only the principal 

treatment, red blood cell transfusion, will be discussed together with some unsolved 

problems and non-standardised practices regarding blood transfusion therapy. 
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1.3.6.1 TDT patients  
Transfusion therapy is the mainstay of treatment of thalassaemic patients. Transfusion to this 

group of patients helps to correct anaemia, promote normal growth, and permit daily activity 

level (267).Transfusion also suppresses IE, which in turn prevents downstream complications, 

including extramedullary haematopoiesis and skeletal changes from marrow hyperplasia 

(228). A recent survey of 717 thalassaemic patients from 11 medical institutions in the US 

revealed current clinical practices compared to recommended guidelines. The threshold to 

initiate transfusion in the TDT group was Hb <7 gdl-1 on two separate occasions, or Hb >7 gdl-

1 with the presence of complications (268). All centres used pretransfusion Hb level to guide 

transfusion therapy. Target Hb varied from >8 to >10 gdl-1 (268) when the guidelines of 

management of TDT patients recommended maintaining pre-transfusion Hb at 9 to 10.5 gdl-

1, or higher in patients with a history of cardiovascular diseases (225). This survey indicated 

the gap in management between clinical practice and the ideal therapy in the TDT group and 

implied that there might be other factors to be considered in order to reach the transfusion 

decision, rather than only the pre-transfusion Hb level. These factors, for example, could be 

the quality of life or laboratory parameters that may correlate better with the disease 

pathology, rather than solely the drop of Hb. The other inconsistent practice identified in the 

survey was how much blood was required per transfusion treatment, especially in adult 

patients. The current practices in the review were varying from fixed-dose (2-3 units) to 

calculated dose based on the pre-transfusion Hb (268). While under-dosed transfusion would 

not reach the clinical goal, the over-dosed transfusion could result in unnecessary exposure 

to alloantigens and an additional risk of transfusion complications, both infection- and non-

infection related.  

 

1.3.6.2 NTDT patients 
Regarding the NTDT group, the indications of blood transfusion are less well established (255) 

when intermittent transfusion would benefit patients with known acute stress or episodes of 

anaemia (pregnancy, surgery, infections). Currently, there is no minimum threshold for this 

group of patients; therefore, the real practices can be very diverse from centre to centre. 

According to the recent survey of 11 institutes, the decision to administer transfusion to the 

patients was based on symptoms, regardless of Hb level (7 from 11 institutes). Patients were 

transfused with a minimum Hb of <6 gdl-1 (two from 11 centres), <7 gdl-1 (one centre), and <9 
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gdl-1 (one centre) (268). The research outlined in this thesis could potentially ameliorate the 

use of Hb pre-transfusion level as the only indicator of transfusion, as potential biomarkers in 

this patient group will be assessed.  

 

1.4. Genetic factors determining the severity of β-

thalassaemia 
The focus of this project is β-thalassaemia; therefore, this section will introduce the known 

genetic factors that alter the clinical severity of β-thalassaemia. The known genetic modifiers 

of β-thalassaemia can be categorized based on their origins into two groups: the HBB gene, 

and the other genes that influence phenotypic diversity among the same β-thalassaemia HBB 

genotypes. Two of these other loci are related to the co-inheritance of α-thalassaemia and 

the QTL that affect the level of the γ-globin chain expression, leading to an increase of HbF 

levels (197). These two modifiers have a direct effect on the degree of globin chain imbalance, 

the key pathophysiology of β-thalassaemia. The co-inheritance of mutations in HBA1 and 

HBA2 genes encoding α-globin chains will result in a deficit of α-globin synthesis, which would 

alleviate the clinical severity of β-thalassaemia. The QTL associated with HbF also alleviates 

the disease severity in a similar manner. While HbF levels increase, the γ-globin will bind to 

the α-globin chain, and subsequently reduce the excess unbound α-globin pool (202, 269).  

 

1.4.1. Mutations of the HBB gene  
More than 350 β-thalassaemic alleles have been reported to date (data from 

http://www.ithanet.eu/db/ithagenes). The frequencies of β-thalassaemic alleles vary in 

different geographical areas. The four most common mutations identified in Thailand are 

listed in Table 1.2. 

 

 

 

 

http://www.ithanet.eu/db/ithagenes
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Table 1.2. Frequencies of causative HBB mutations reported in Thailand.  
 

Mutations Average frequencies (%) 

HBB:c.79G>A (HbE) 44.50 

HBB:c.124_127delTTCT or 

HBB:c.126_129delCTTT  
37.26 

HBB:c.52A>T 21.99 

HBB:c.19G>A (HbC) 8.58 

Data from http://www.ithanet.eu/db/ithamaps?country=TH 

 

The mutations and mechanisms altering the expression of the β-globin gene can affect any 

stage of gene processing, from transcription, RNA processing, to translation.  

1) Transcriptional mutations  

This type of mutation can be found in the 5’ UTR promoter region of the HBB gene, 

including the critical CACCC, CCAAT, and ATAA box DNA sequences which are located 

approximately 100 bp upstream of the starting point of the transcription. Frequently, 

the transcriptional mutations cause only a mild reduction of β-globin synthesis, 

resulting in β+ or β++ thalassaemic phenotype (197). However, people with different 

chromosomal backgrounds, carrying the same transcriptional mutation, can manifest 

in extremely different forms of thalassaemia, from a very mild to transfusion-

dependent disease (270). For example, individuals from Black ethnic group 

homozygous for -29A>G have only a mild severity; whilst, the same mutation in 

Chinese people causes severe anaemia that requires a regular transfusion (270).  

2) RNA processing mutations 

In HBB, the mutations that affect mRNA processing change either RNA 

polyadenylation or RNA splicing. They usually result in various degrees of disease 

severity, except for the mutations of the GT or AG sequences in the exon-intron splice 

sites that result in β0-thalassaemia. HbE variant is one of such splice site mutations, 

affecting the RNA processing by creating a cryptic splice site at codon 26 of exon 1 of 

the HBB gene (see section 1.3.4.2.2 for HbE thalassaemia). A cryptic splice site can be 

used preferentially to the regular splice site, generating abnormal and non-functional 

mRNA (271).  

http://www.ithanet.eu/db/ithamaps?country=TH
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3) Translational mutations 

Both nonsynonymous and nonsense mutations that introduce premature stop codons 

are common amongst HBB mutations (197). Most of these nonsense mutations are 

offset by the nonsense-mediated mRNA decay, and only a few nonsense mutations 

are known to escape this surveillance mechanism, leading to a dominantly inherited 

β-thalassaemia (272).  

4) Other mutations  

Large deletions are rarely found as causes of β-thalassaemia; either deletion restricted 

to the HBB gene or extensive deletion involving the upstream β-LCR. Interestingly, HbF 

and HbA2 levels can be elevated because of certain types of deletions. The proposed 

mechanisms postulate that these deletions include the β-globin promotor (i.e., CACCC, 

CCAAT, and TATA sequences), the target of transcriptional regulation, resulting in cis 

enhancement of β-LCR with γ and δ genes (273). Moreover, trans-acting mutations 

have been reported; one such mutation that affects transcription factor is in GATA1 

sequence encoding N-finger region, which affects the DNA binding. The affected 

family presented with X-linked thrombocytopenia and mild β-thalassaemia features 

(274).  

5) The dominant form of β-thalassaemia 

Generally, β-thalassaemia is known as an autosomal recessive inherited disorder. 

However, a dominant inherited form can occur, where only one allele can cause 

clinical disease (275, 276). Patients heterozygous for causative mutations presented 

with moderate to severe β-thalassaemic symptoms and the abnormal haematology 

parameters (277). Hb analysis showed an increased level of HbA2, as seen in usual 

cases of β-thalassaemia major (277). Various types of mutations were reported to be 

causative mutations of this dominant type (278, 279), such as single nucleotide 

variations and small insertions/deletions. These mutations lead to malfunction and 

unstable β-globin chain products that are not able to form normal adult Hb with α-

globin chains. Consequently, the pathophysiology of the dominant disease mimics the 

β-thalassaemia disease with recessive inheritance. One striking difference between 

the two modes of inheritance of β-thalassaemia is that the prevalence of the dominant 

form is not aligned with the malarial pandemic areas (197).  
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1.4.2 Co-inheritance of β-thalassaemia  

1.4.2.1 Clinical features of HbE/β-thalassaemia  
The remarkable heterogeneity of clinical presentations of HbE/β-thalassaemia patients would 

require a strategy of categorising these patients based on several parameters, along with the 

long observation period, to determine the most appropriate clinical courses. The Sri Lankan 

patients in the longitudinal study by Premawardhena and colleagues (2005) were monitored 

for their clinical and laboratory parameters over the course of eight years (241, 280, 281). The 

severity of the disease was graded from 1-5, as described in the literature (241). The attempts 

to shift the management of patients from TDT into NTDT categories were reported to be 

successful in a number of cases. The phenotypic instability of HbE thalassaemia seemed to be 

improved with older age, and in those cases, less transfusion was needed (281, 282). This 

phenomenon is likely reflecting a decrease of EPO production in response to the similar level 

of Hb with ageing. Furthermore, HbF levels played a significant role in altering oxygen affinity 

in RBCs and EPO level was not correlated with the Hb oxygen saturation (283). The overall 

oxygen saturation levels of the HbE thalassaemic patients were significantly higher than of 

those suffering from other β-thalassaemia. Thus, such patients were able to adapt better to 

severe anaemia (283). Nonetheless, when focusing on HbE/β-thalassaemia patients, only 

minimal differences in Hb values (Hb 5.6 gdl-1 vs. 4.9 gdl-1) and HbF levels (1.61 gdl-1 vs. 1.31 

gdl-1) were observed in the mild and severe forms, respectively. Thus, other factors could be 

involved in the clinical presentation of these patients. 

 

1.4.2.2 Co-inheritance of α- and β-thalassaemia  
Alpha thalassaemia is one of the primary genetic modifiers of -thalassaemia, since a loss of 

α-globin synthesis, would tilt the imbalance between α-/non-α globin. The compound 

heterozygotes will have less of the redundant α-globin and thus present with less severe 

symptoms. The extent of α-gene deletion and the type of β-thalassaemia allele will determine 

the clinical manifestations (202). For example, co-inheritance of single α-globin gene deletion 

(-α/αα) with β0-thalassaemia would only slightly change the clinical severity. Individuals who 

carried only one allele of functioning α-globin gene (HbH disease) with the homozygous β-

thalassaemia could present with NTDT spectrum (197).  

 



42 
 

1.4.2.3 Cis-regulatory sequences of the β-globin locus  
After the β-globin switching, HbF levels are normally reduced to approximately 1% of total Hb 

in adulthood. In a condition where the fetal Hb silencing is incomplete, fetal HbF will be 

expressed at a high level; this condition is referred to as HPFH (284). Two forms of HPFH are 

identified: the pancellular and the heterocellular, depending on the presence of HbF in all or 

some RBCs, respectively. HPFH is caused either by large deletions of the β-globin gene cluster 

involving δ- and β-globin genes or by point mutations affecting the upstream promoter region 

of the HBG (285).  

1.4.2.3.1 Deletional type of HPFH 

Individuals with large deletions encompassing the γ- and β-globin genes express only HbF and 

are healthy (286). The deletions usually involve a loss of δ- and β-globin genes and result in 

(δβ)0-thalassaemia, together with HPFH. The diversity of these deletions was described by 

Wienert et al. (2018) (287). Interestingly, the area around the β-pseudogene is important to 

the binding of BCL11A (59, 288). The deletion of this region would disrupt the interaction 

between BCL11A, one of the critical fetal globin repressors, and the LCR of the β-globin gene 

cluster, as shown by the 3D chromosome architecture mapping (289). This observation was 

confirmed with CRISPR/Cas9 gene-editing to excise this particular region of DNA. The 

CRISPR/Cas9 edited cells expressed higher levels of HbF (286).  

1.4.2.3.2 Non-deletional type of HPFH 

Point mutations in the promoter region of the γ-globin gene, approximately c.1-115 and c.1-

200 upstream of the start of the coding region, can cause the non-deletional form of HPFH 

(288). These two DNA positions were confirmed as the binding sites of BCL11A and ZBTB7A, 

two important fetal globin gene repressors (50, 59, 290). The other regulatory single point 

mutation was revealed at c.1-175T>C upstream of the γ-globin gene. This mutation creates a 

de novo binding site of the T-cell acute leukaemia lymphocytic leukaemia protein 1 (TAL1) 

(291). Recently, Wienert and colleagues (2018) published a list of these regulatory mutations 

and the corresponding HbF levels (287). All the regulatory mutations interfere with the fetal 

globin gene repressors and γ-globin gene interactions, subsequently triggering the 

persistence of fetal Hb in affected individuals. Ultimately, enhance levels of HbF has beneficial 

effects on patients with co-inherited β-haemoglobinopathies, both in SCD and β-thalassaemia 

(269, 292, 293).  
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1.4.2.3.3 Co-inheritance of HPFH and β-thalassaemia  

As discussed above, HbF is a major type of circulating Hb in fetus and newborn. In an adult, 

HbF is restricted to only a small amount of total Hb (<1%) and confined to the F cells. However, 

various acquired and genetic disorders can cause the persistence of high HbF levels, varying 

from mild to almost 100% increased (294). These conditions include δβ-thalassaemia, β-

thalassaemia, and HPFH. Additionally, the combination of these conditions can alter disease 

severity (294). For example, Thein and Weatherall (1989) reported one Indian family with β-

thalassaemia major (β0/β0) with the unusually mild clinical manifestations. The cause of the 

mild manifestation was identified as the co-inherited non-deletional HPFH. The linkage 

analysis study of five generations of this family has shown that the genetic determinant for 

the HPFH was independent of the β-globin gene cluster (292). Regarding HbE/β-thalassaemia, 

the HbF levels can be varied, ranging from 8.9% to 66% and the increase of HbF levels is 

correlated with the increase of total Hb (242). The higher levels of HbF were also reciprocally 

correlated with the α/γ-synthesis ratio, and this could explain the greater capacity for γ-globin 

chain synthesise (242). Rees et al. (1999) described two mechanisms contributing to the 

elevated HbF levels in this group of patients: erythroid mass expansion resulting from 

increased EPO, as well as the selection of cells with more γ-globin chain production (295).  

 

1.4.2.4 Trans-acting factors of fetal Hb 
HbF was shown to be inherited as a quantitative genetic trait, in a study of a pair of twins. 

This study identified that the variance observed in HbF quantity in the individuals was 

inherited and that XmnI-HBG2 polymorphism was responsible for this variation (296). Genetic 

linkage and genetic association studies in one family identified the intergenic region HBS1L-

MYB on chromosome 6q as the second QTL (297). Subsequently, due to the advancement of 

genome-wide association studies (GWAS), the BCL11A gene was identified as responsible for 

regulating HbF levels (55), enabling a better understanding of globin switching process (57, 

298, 299). Clinical studies of co-inheritance of these three QTLs and β-thalassaemia alleles 

showed a milder disease severity (197).   

1.4.2.4.1 KLF1 and globin chains expression 

KLF1 is one of the crucial transcription factors during the erythropoiesis, first described by 

Miller and Bieker in 1993 (41) (see section 1.1.1.1, KLF1). Its mechanism of action is based on 
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three conserved KLF1 Krüppel-like zinc fingers interacting with the HBB gene promoter region, 

the CACC box (300). Studies of induced homozygous deletion of KLF1 gene in mice models 

showed fatal anaemia, which was more severe than a pure loss of HBB expression (37, 38). 

With its various erythroid gene targets, this transcription factor plays different roles at each 

stage of the erythropoiesis, from erythroid lineage determination at an early stage to globin 

switching, and finally, facilitating cell differentiation and enucleation (39, 301). Recently, 

Gnanapragasam et al. (2016) reported that KLF1-null erythroid cells (klf1-/-) were unable to 

enucleate, and the rescue procedure successfully restored the enucleation (302). The klf1-/- 

mouse models manifested clinical symptoms similar to the β-thalassaemia major disease (37, 

38). In one of its most critical roles, KLF1 is responsible for the transition from fetal Hb to adult 

Hb (HbA, α2β2) through two mechanisms. Firstly, KLF1 has a direct effect on β-globin gene 

expression by interacting with DNase 1 hypersensitive sites HS2 and HS3 of the LCR, and the 

CACCC-box consensus sequences at the proximal promoter of β-globin (48, 303). Secondly, 

the indirect suppression of γ-globin is regulated by BCL11A, a repressor of γ-globin gene 

expression (304, 305). A direct link between KLF1 and BCL11A was demonstrated when a 

knockdown of KLF1 resulted in a decrease of BCL11A levels and in an increase of γ-globin to 

the β-globin ratio in both human and mice models (49) (see Figure 1.5). KLF1 was reported as 

one of the γ-globin gene modifiers in a Maltese family with HPFH studied by genome-wide 

linkage analysis. The test identified a candidate mutation on chromosome 19p13.12-13. 

Subsequently, Sanger sequencing analysis identified the causative nonsense mutation 

encoding Lys288Ter in the KLF1 (50). A number of KLF1 mutations that alter the levels of HbF 

have been reported (36, 306). A role of KLF1 in ameliorating the severity of thalassaemia was 

also observed. In one study of targeted Sanger sequencing of KLF1 in the Chinese population 

(n=922), the frequency of the KLF1 mutations was observed to be more prevalent in Southern 

region of China where thalassaemia is known to be endemic. Moreover, all of the KLF1 

variants were observed in β-thalassaemia intermedia, but not in thalassaemia major patients 

(195). However, conversely, a recent study of KLF1 variants among HbE/β0-thalassaemia 

patients in the Thai population reported the increase of HbF levels (up to 52.3 ± 2.4%) in the 

HbE/β0-thalassaemia patients carrying the KLF1 mutations, which did not significantly 

alleviate the clinical severity (307).  
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Figure 1.5. KLF1 regulates globin switching through BCL11A and HBB genes.  
Reduced expression of KLF1 (EKLF) during the embryonic/fetal stage leads to a decrease of 

BCL11A levels and in an increase of γ-globin to β-globin ratio. Whereas, the high KLF1 

expression in the adult stage results in increase of BCL11A and the β-globin level (Modified 

from Bieker J. Nat Genet 2010; 42(9):733-4)(305). 

 

1.4.2.4.2 BCL11A as a HbF quantitative trait loci 

Since the high HbF level is a significant genetic modifier of β-thalassaemia and sickle cell 

disease, transcription factors that increase this level will also have an ameliorating effect on 

the haemoglobinopathies. The advent of GWAS disclosed the role of this gene in 

erythropoiesis as a γ-globin gene repressor implicated in HbF regulation, as described in 

section 1.1.1.1.4 (Figure 1.5) (55, 56). Full-length BCL11A will bind to many discrete regulatory 

regions of the β-globin gene cluster of the human adult erythroblasts. This interaction results 

in another role of BCL11A as an activator of the β-globin gene expression. Several studies tried 

to identify the specific binding regions of this γ-globin repressor. Primarily, the cis-acting 

elements of the BCL11A on the β-globin cluster include the HS3 of the LCR, the area upstream 

of the δ-globin gene and the intergenic area downstream of the γ-globin gene (57, 308). By 

using array comparative hybridization, a small 3.5 Kb intergenic region near the 5’end of the 

δ-globin gene was identified as one of the binding sites of the BCL11A. Chromatin 

immunoprecipitation studies revealed the other trans-acting factors binding to this site, 

including GATA-1, HDAC-1, and H3K27me3 (308). Functional studies illustrated that the 
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binding of BCL11A and its interaction with GATA-1 and SOX6 mediates re-configuration of the 

HBB locus and represses γ-globin expression (58, 309).  

The mechanisms of the γ-globin gene repression were demonstrated by a fine-mapping study 

of the variant rs1427404 in the intron 2 of BCL11A that was located in the erythroid-specific 

enhancers (57, 310). This SNV was subsequently validated by using a gene-editing 

CRISPR/cas9 method (311). Recently, the exact binding nucleotides for the ZF domain of 

BCL11A have been revealed as the distal TGACCA consensus binding motif in the promoter of 

the γ-globin gene. The overall evidence confirmed that BCL11A represses γ-globin expression 

(59, 291).  

To date, BCL11A is one of the three major HbF QTLs associated with heterocellular HPFH 

(hHPFH) (197). The hHPFH has been reported to affect the phenotypic disease severity of 

haemoglobinopathies in conjunction with both homozygous and heterozygous β-

thalassaemia (201, 269). Generally, these two forms of β-thalassaemia and SCD homozygotes 

could have high HbF level not caused directly by genetic disorders. They are more likely to be 

the result of increased erythropoiesis due to the IE, and preferential survival of the erythroid 

population that carries HbF (298).  

1.4.2.4.3 XmnI-HBG2  

The single nucleotide variation c.1-158C>T in the HBG2 promoter (HBG2:g.-158C>T) that is 

digested by the XmnI restriction enzyme (XmnI-HBG2, rs782144 SNP) was identified as one of 

the occurring mutations in HbS. Carriers of this type of mutation have a higher HbF level, and 

subsequently, milder clinical manifestation when compared to individuals who do not have 

this mutation (312). In addition, this SNV was reported to associate with hHPFH (313). XmnI-

HBG2 is one of the most commonly identified QTLs underlying quantitative trait of HbF, at a 

frequency of 0.32 - 0.35 (298). Garner and colleagues (2000) confirmed the influence of this 

SNV on adult RBSc with elevated HbF levels (F cells) through a study of healthy adult twins 

(296). However, this cis-acting XmnI-HBG2 module does not explain the entire variance of HbF 

in both the healthy population and in the haemoglobinopathy patients.  

1.4.2.4.4 HMIP-2 (rs9399137) 

Linkage analysis of one large family with β-thalassaemia and HPFH (272) and an association 

study between chromosome 6q segment and the level of F cells (314) revealed an association 

between HBS1L-MYB intergenic polymorphism (HMIP) 2 on chromosome 6q as one of the 
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QTLs for HbF levels. The SNV rs9399137 was demonstrated to affect the regulatory regions 

that interact with critical erythroid transcription factors and the MYB expression levels (315). 

1.4.2.4.5 TFIIH (SSL1 transcription factor and nucleotide excision repair) 

The important transcription factor TFIIH performs two significant roles in eukaryotes; firstly, 

in nucleotide excision repair of DNA damage, and secondly, as a basic transcription factor 

component of the RNA polymerase II (316). TFIIH consists of nine subunits, and the XPD 

helicase is one of these subunits. This subunit is encoded by the gene ERCC2/XPD. Mutations 

in this gene can result in two clinical features – xeroderma pigmentosum (XP) and 

trichothiodystrophy (TTD) (317). In 2001, Viprakasit and colleagues reported an association 

between TTD patients and mild β-thalassaemic phenotypes. The clinical findings included 

hypochromic microcytic red blood cells, mildly decreased Hb levels and increased HbA2 levels, 

the hallmark of β-thalassaemia. Moreover, the globin study identified the down-regulated 

levels of β-globin and reduced β-globin mRNA when compared to α-globin, but without any 

mutations detected in the HBB gene (317). Therefore, the general transcription factor TFIIH 

has a ‘trans’–acting effect on HBB, but not on the α-Hb genes (HBA1 and HBA2), illustrating 

different mechanisms between α and β genes initiation of transcription.   

 

1.5 Extracellular vesicles 
Cells release membrane-enclosed sacs or extracellular vesicles (EVs), both in pathological 

conditions and as a part of physiological processes. EVs can be found in circulation and have 

been an attractive target for a wide range of research, due to their unique characteristics of 

an enclosed membrane filled with biomolecules such as RNA and proteins derived from the 

cells of origin. EVs play a role in cell-to-cell communication (318) and trafficking of biological 

molecules between cells, including their immunological roles as a host defensive mechanism 

and immunogenic trigger mediator (319). Not only the constituents of EVs are important, the 

negative charge on EV surface created by the uneven distribution of lipid bilayer and the 

exposure of phosphatidylserine (PS) is also crucial to coagulation cascade and homeostasis 

(320). With all these qualities, numerous studies of EVs had been published, exploring their 

roles as diagnostic aids, prognosis predictors and therapeutic targets.  
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1.5.1 Extracellular vesicle definition 
In 2018, International Society of Extracellular Vesicles (ISEV) has declared the use of the term 

“extracellular vesicle” for a particle with enclosed lipid bilayer that does not contain a 

functional nucleus (321). EV is a generic term for a wide variety of  vesicles released from the 

cell, including apoptotic bodies, microparticles or microvesicles and exosomes (322). The 

classification relies on EV size and biogenesis. An exosome is the smallest particle with a 

diameter <150 nm, arising from multivesicular bodies in cells and fusing its membrane with 

the cell plasma membrane before releasing its content into the extracellular space. An 

apoptotic body is the largest particle (1-5 μm in size), and as its name implies, it is generated 

by shedding out of the cells when they undergo apoptosis. Microparticles or ectosomes have 

a diameter between these two extremes, i.e. ~100 to 1000 nm, and are released from the 

cells by direct blebbing from their plasma membranes, but are not uniquely linked with the 

process of apoptosis (323, 324). Due to the difference in biogenesis, the protein markers 

contained in each class of EVs are also different. Therefore, to define precisely any particular 

EV type would require the specific markers, as reviewed recently by Shah et al. (325). Note 

that, in this thesis, the term EVs will be used to refer to either exosomes or microparticles.  

Because of the wide diversity in terminology, the ISEV has established the standard guideline 

for the definition of EVs and set the criteria for the minimal requirements that would 

discriminate EVs from non-EV components (321, 322).  

 

1.5.2 Mechanisms of EV formation  
 

1.5.2.1 Physiological EV release  
In the normal physiological process, EVs are shed from activated or senescent cells. Figure 1.6 

displays the mechanism of biogenesis of EVs. Although this process can occur in any cell, this 

review will focus mainly on erythrocytes.  

1.5.2.1.1 Biogenesis of microparticles  

Microparticle (MPs) formation is distinct from the exosome biogenesis. MPs form via direct 

membrane blebbing and shedding of plasma membrane. This involves two main steps: 1) a 

cytoskeletal reorganisation such as actin filament rearrangement and 2) cell membrane 

phospholipid rearrangement with the PS exposure (326, 327). In a resting stage, PS is located 
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on the intracellular side of the RBCs phospholipid bilayer. This arrangement is maintained by 

flippase, a transmembrane lipid transporter (Figure 1.6).  When cells are activated, 

intracellular Ca2+ is increased. The increased Ca2+ triggers floppase and scramblase, which in 

turn induce loss of asymmetry of the membrane and externalise PS (327, 328). Additionally, 

when erythrocytes become aged and are fated to undergo apoptosis, band 3 molecules are 

clustered together forming neoantigens on the cell surface that are recognised by the 

immune system (329). PS exposure plays an essential role in initiating RE-mediated 

phagocytosis and clearance of apoptotic and senescent cells (330).  

1.5.2.1.2 Biogenesis of exosomes 

As previously mentioned, exosomes originate from multivesicular bodies as internal vesicles, 

inwardly budding from the endosomal membrane. The vesicles are released into extracellular 

space by fusion with the plasma membrane (331). Mankelow and colleagues (2015) observed 

the mechanisms of removal of cellular organelles via autophagy through the inside-out 

reticulocyte vesiculation, i.e., via PS-exposed autophagic vesicles (16). Their observations 

have confirmed that EVs are released from reticulocytes as a part of the physiologic red cell 

maturation process. 
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Figure 1.6. Biogenesis of exosome and microparticle from a mother cell.  
(I) Exosome originates from the multivesicular body inwardly budding from the endosomal 

membrane before fusing with the plasma membrane and releasing exosomes into the 

extracellular space. The mechanism of microparticles formation is depicted in (II).  In the 

resting stage, (IIA) Flippase maintains the arrangement of phospholipid bilayer of 

erythrocytes. Once the cell is activated, (IIB) Floppase and Scramblase are triggered and 

inhibit Flippase; consequently, loss of asymmetry of the membrane and externalisation of 

phosphatidylserine lead to microparticle formation (IIC) by cleavage of cytoskeleton and 

vesiculation of the imbalanced membrane structure. 

 

Hence, in normal physiological conditions, RBC EVs are generated in two phases: during the 

maturation of reticulocytes and at the senescent state of aged erythrocytes. In summary, 

exosomes are formed from multivesicular bodies and released only during the development 

of RBCs in the bone marrow. RBC MPs are formed during the normal cell ageing process in 

circulation by budding off directly from the plasma membrane caused by the rearrangement 

of the phospholipid bilayer and fragmentation of RBC cytoskeleton due to the complement-

mediated calcium influx (332).  

 

I II 
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1.5.2.2 EVs formation and release in haemoglobinopathy diseases 
Sickle cell disease and β-thalassaemia are the two most common haemoglobinopathy 

disorders worldwide. Both conditions share the abnormalities of a β-globin chain, either in 

structure or deficient production. This aberrant globin synthesis leads to pathological 

erythrocytes and is associated with EVs formation since the affected cells are fragile and have 

increased susceptibility to oxidative injury and shear stress (333). This thesis will focus mainly 

on EVs in thalassaemia disease.  

1.5.2.2.1 EVs formation and release in sickle cell disease 

EVs in SCD are mainly generated from erythrocytes, platelets, and endothelial cells, and have 

been recognised as a participant in chronic inflammation and renal vaso-occlusions in both a 

murine model (334) and in human (335). EVs contribute to the pathophysiology of SCD by 

transferring free haem to the endothelial cells; subsequently, free haem mediates oxidative 

stress, vascular dysfunction, and may ultimately trigger vaso-occlusion (336). Moreover, EVs 

can behave as a nitric oxide scavenger that reduces NO bioavailability and therefore 

aggravates the vaso-occlusion observed in SCD (337). The quantity of EVs present in the 

plasma of SCD patients is reported to be significantly increased during both a steady-state 

and also in a painful crisis of SCD patients (338, 339).  

1.5.2.2.2 EVs formation and release in thalassaemia    

Oxidative stress plays a significant role in initiating and mediating the pathophysiology of β-

thalassaemia (217). The mechanism of increased oxidative stress in β-thalassaemic RBCs is 

well-established. It is Initiated from the free 𝛼-globin chains, with their aggregation and 

precipitation occurring on the erythroid membranes. Such precipitated globin chains are 

highly unstable, and when bound to free iron, they lead to the generation of reactive oxygen 

species (ROS), as described by the Fenton reaction (see equations 1-4 below) (209). The 

resulting oxidative damage affects cells on multiple levels, causing following cellular injury 

events: PS exposure, membrane lipid peroxidation, cross-linking and clustering of band 3, 

promoted band 3 tyrosine phosphorylation, activating of the K-Cl co-transport. Subsequently, 

all these events lead to RBC membrane destabilisation and, eventually, EV release (340-343) 

(see Figure 1.7).  

For an individual with a HbE allele (see section 1.4.2.1), the instability of HbE due to the shift 

of the redox system is further aggravated by the increase of haemin, haemichromes, and 
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labile iron (234, 344). This process results in pathologic changes in erythrocytes and EV 

formation (see Figure 1.7) (343). The labile iron interacts with the membrane lipid 

peroxidation as described in equations below: in normal erythrocyte physiology, oxygenated 

Hb autoxidizes to methaemoglobin [metHb, Hb Fe(III)] at an insufficient rate, which in turn 

produces superoxide ions (O2
.-) (345), as depicted in equation 1. 

Equation 1 

𝐻𝑏 − 𝐹𝑒(𝐼𝐼)𝑂2
→

←
 𝐻𝑏 − 𝐹𝑒(𝐼𝐼𝐼)  +  𝑂2

.−  

 

This type of ROS is unstable and rapidly converts to hydrogen peroxide (H2O2) by superoxide 

dismutase (SOD) enzyme (equation 2). Subsequently, an H2O2 molecule is neutralized into 

oxygen and water by the catalase enzyme (equation 3). Another enzyme that plays a vital role 

in neutralizing peroxide is PRDX2, especially during RBCs exposure to oxidative stress 

conditions (346). If the hydrogen peroxide is not neutralized, the Fenton reaction will occur 

(equation 4). The conversion of Fe2+ in Hb into Fe3+ in metHb is another primary source of ROS 

production, where reactive hydroxyl radicals (·OH) are highly toxic to cells and cannot be 

neutralized by antioxidative enzymes. Other products of Fenton reaction are free iron and 

haem degradation products such as biliverdin.   

 

Equation 2     

2𝑂2
∙−  +  2𝐻+  →  𝑂2 +  𝐻2𝑂2 

 

Equation 3     

           𝐻2𝑂2  →  2𝐻2𝑂 +  𝑂2 

 

Equation 4 

(Fenton reaction)   𝐻2𝑂2  +  𝐹𝑒(𝐼𝐼)  → ∙ 𝑂𝐻 + 𝑂𝐻− +  𝐹𝑒(𝐼𝐼𝐼) 

Redox 

b5 reductase 

SOD 

catalase 
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Figure 1.7. Effects of oxidative stress on β-thalassaemic red cells and EVs generation.  
Oxidative stress is increased in β-thalassaemic red cells both via the Fenton reaction from 

haemichrome and from the aggregation of excess Hb in the form of Heinz bodies (α4). It 

contributes to multiple abnormalities in erythrocyte membrane perturbation. Firstly, it causes 

a loss of membrane phospholipid asymmetry and phosphatidylserine (PS) exposure and/or 

EVs production. Secondly, it enhances band 3 clustering and disturbs the band 3-ankyrin- 

complex, resulting in the formation of aberrant neoantigens recognised by IgG anti-band 3 

antibody. These two mechanisms precipitate red cell clearance by macrophages. (modified 

from De Franceschi L et al. Oxidative stress and beta-thalassaemic erythroid cells behind the molecular 

defect. Oxidative medicine and cellular longevity.2013;2013; 985210)(340))  

 

Thalassaemic EVs have been described as different from EVs released by normal individuals 

in both quantitative and qualitative terms. Westerman et al. (2008) quantified the 

thalassaemic EVs from thalassaemia intermedia patients and noted that their numbers were 

four times greater than in normal controls (347). Haemichromes were identified as the main 

content of EVs through a proteomics study of the thalassaemic EVs (348). The haemichrome 

binding sites were also reported, which were identified as the cytoplasmic domains of less 

glycosylated band 3 molecules. These band 3 molecules are more susceptible to oxidation 

and phosphorylation by Syk kinase (p72sSyk kinase). The elevation of band 3 tyrosine 

phosphorylation reduces the connection between red cells membrane and cytoskeleton 

proteins, for instance, spectrin, ankyrin, etc. (340, 349). Therefore, they can become 

uncoupled from RBCs cytoskeleton and released in EVs (348). The thalassaemic EVs are 
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related to coagulation because of the externalisation of PS and the presence of the markers 

of thrombin generation. All these changes potentiate the thrombotic risks in thalassaemic 

patients, especially splenectomised patients (333).  

 

1.5.3 Methods for EV characterisation 
Several methods have been developed to explore EV characteristics, including their size 

distribution, concentration, and comparison of constituents. The ISEV has provided the 

framework for the identification of EVs and defined the minimal requirements for their 

characterisation. Two conditions must be satisfied in order to claim the presence of EVs in an 

isolate: 

• Isolation must be from the extracellular fluid, e.g. cell culture medium, plasma, or 

body fluids.  

• The method employed to isolate EVs has to restrict the mechanical disruption of cells; 

otherwise, this could result in co-isolation of contaminant intracellular compartments 

which would interfere with the purity of EVs (322). 

Regarding the EV characterisation, the recognised EV-enriched proteins should be reported 

along with the proteins not expected to be enriched in EVs. Classification of the categories of 

proteins expected to be present in EVs and their examples are described in Table 1.3. 
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Table 1.3. Categories of proteins and their expected abundance levels in EVs. 
 

Protein categories† Examples 
Expected 

abundance 

I 
Transmembrane or 

lipid-bound proteins 

Tetraspanins (CD9, CD63, CD81), 

integrins (ITG*), 

cell adhesion molecules (CAM*), 

heterotrimeric G proteins (GNA*) 

Enriched or 

present 

II Cytosolic proteins 
Membrane binding proteins: TSG101, 

RAB, signal transduction proteins 

Enriched or 

present 

III Intracellular proteins 

Proteins derived from other cell 

compartments – endoplasmic reticulum 

(calnexin), Golgi (GM130), nucleus 

(histones family) 

Absent or 

under-

represented 

IV 
Extracellular/secreted 

proteins 

Acetylcholinesterase, serum albumin, 

extracellular matrix – fibronectin, 

collagen, cytokines, growth factors 

matrix 

Variable 

association 

with EVs 

† The quantities of one or more protein of category I, II, and III should be reported. 

* Denotes other possible genes in the same family. Modified from J Extracell Vesicles. 2014 Dec 

22; 3: 26913  

 

Characterisation of the vesicles should include their physical characteristics and constituents. 

The physical characteristics comprise morphology, concentration, and size distribution, all of 

which can be measured using various methods, for example, electron microscopy, atomic 

force microscopy, flow cytometry, imaging flow cytometry, tunable resistive pulse sensing 

(TRPS), dynamic light scattering and nanoparticle tracking analysis (NTA). The EV composition 

can be studied by mRNA transcriptomics, protein studies, e.g., Western blot analysis, mass 

spectrometry.  
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1.5.3.1 Electron microscopy  
Electron microscopy (EM) techniques are one of the long-established methods for EV 

morphology and size assessments (350, 351). With choices of various types of EM, they 

provide different levels of information. For scanning EM, EVs are fixed and dehydrated on a 

glass substrate before sputter coating with a metal such as gold, gold-palladium or platinum 

to prevent charging of the specimen and to increase signal conduction (352). This technique 

has revealed topographic data of the 3D surface of the particles. Transmission EM (TEM) 

allows detailed imaging of membrane-intact vesicles by embedding concentrated EV 

suspensions in a mixture of methylcellulose and uranyl acetate, which are then applied to the 

grid and fixed (353). Subsequently, EV pellets can be fixed and analysed as cross-sections 

(353). Moreover, TEM can also be used as immune-EM when incorporating immunoglobulins 

coupled with nanogold particles to detect specific epitopes on EVs (351). Further modification 

of the method is a cryo-EM, which analyses samples at a temperature of -100°C and enables 

the assessment of EVs in the frozen state. This avoids the impact of dehydration and/or 

distortion of samples by fixation (354). The major limitation of all types of EM is that the 

concentration of particles cannot be evaluated.  

 

1.5.3.2 Flow cytometry 
Flow cytometry is a key method used for characterising EVs by investigating their cellular 

origin and estimating the concentration of EVs suspended in fluids. However, an important 

drawback of flow cytometry is the limited sensitivity of the instruments, as conventional flow 

cytometers have a low detection threshold limit of particle size of approximately 300–400 nm 

(355). Moreover, flow cytometry analysis is subjective, relying on the operator setting the 

optimum gating strategy and interpreting the results. The technique involves a specific 

wavelength laser beam directed at the suspended particles that are arranged in a line by a 

sheath fluid. A light scattering of particles is detected and analysed to collect information 

about their size and granulation (356). This method has been used in a number of studies, 

where known quantities of the commercially available counting beads were added to each 

sample and flow cytometry was used for measuring and calculating the numbers of EVs (357, 

358). Such an EV quantifying method is accurate and reproducible (357).  
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1.5.3.3 Nanoparticle tracking analysis 
Nanoparticle tracking analysis (NTA) is one of the most accurate techniques for measuring the 

size and concentration of EVs in a liquid suspension (359, 360). NTA works on the principle 

that particles which undergo Brownian motion will scatter light emerging from a light source, 

including any intensity fluctuations. A camera records these movements for an individual 

particle, and the NTA software determines the particle sizes at a specific temperature, their 

velocity and diffusivity using the Stokes-Einstein equation. After repetitive tracking (at least 

five records), all the information is integrated and calculated to create graphs of size 

distribution and concentration of EVs (see 2.2.9, Chapter 2 for methods of operation). This 

technique requires an accurate optimization of sample dilution and standardisation of the 

camera and analysis settings (360). Whilst flow cytometry has a drawback of limited 

sensitivity, NTA is not capable of distinguishing between a mixture of EV and non-vesicular 

structures of the same size, such as protein aggregates. Therefore, the numbers of counted 

particles could potentially be higher than the exact EV numbers (361).  

 

1.5.3.4 Tunable Resistive Pulse Sensing 
Similar to NTA, the Tunable Resistive Pulse Sensing (TRPS) technology is able to detect EV 

concentration and size distribution. The principle of TRPS is the detection of transient changes 

of the electrical resistance generated when the particles travel through a size-tunable 

nanopore in a polyurethane membrane. When a particle enters the aperture, an equal 

volume of electrolyte is displaced, and this generates a voltage pulse proportional to the 

volume of the particle (362, 363). Unlike NTA, this technique is independent of the refractive 

index of a particle. The caveat of using this method to measure inhomogeneous solutions is 

the potential for clogging of the aperture by large size particles or high molecular weight 

proteins. Additionally, damaged membranes of vesicles can induce conductivity and interfere 

with the electrical output (364). TRPS was not used in this thesis for EV analysis as it was not 

available. 
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1.5.4 Proteomics studies  
Proteomics is an approach that provides information on both identification and quantification 

of protein constituents of interest in EVs. In the past, the techniques used to study protein 

expression were based on antibody-dependent methods such as Western blot analysis (365, 

366) and flow cytometry analysis (367, 368). With the advantages of high specificity and 

accessibility, these methods have a significant limitation in their inability to identify new and 

unknown proteins. This limitation can be overcome by using mass spectrometry (MS). This 

technique measures the mass-to-charge ratio (M/Z) of ions in simple or complex protein 

mixtures (369). MS-based techniques have enabled the discovery of novel proteins. In 

addition, with the application of isotope-labelling, the relative quantification is possible. Post-

translational modifications can also be monitored by this technique (370).  

Quantitative proteomics is based on the isotope-labelling approach achieved by the 

introduction of the internal standard into amino acids. The labelling techniques are varied, 

e.g., metabolic-labelling, stable isotope labelling of amino acids in cell cultures (SILAC), 

chemical-labelling, tandem mass tag (TMT), and isobaric tags for absolute and relative 

quantification (iTRAQ) (371). SILAC is an approach for in vivo incorporation of two isotopic 

labels – light or heavy form into two cell samples of interest. After an appropriate number of 

cell differentiation cycles, the isotope label will replace the ‘native’ amino acid in all 

synthesised proteins (372). However, the drawback of SILAC is that it requires special media 

to prevent the conversion of intracellular isotope-coded arginine to proline that would 

interfere with the quantitative proteomics experiments (373). Both TMT and iTRAQ targets 

are known as isobaric tags that work on the basis that peptides from differently labelled 

samples have identical mass but can be differentiated from other peptides by the different 

isotope-encoded reporter ions in the lower mass range region of tandem MS (MS/MS) (371). 

However, recently, a technique of quantitative proteomics without tagging has become a 

possibility, known as a label-free method, which is based on data comparison between signal 

intensities or the number of peptide-to-spectrum matches (PSMs) of an individual protein 

obtained from more than two independent experiments (371).  
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1.5.4.1 Proteomics studies of thalassaemia erythrocytes and plasma  
Proteomic analysis has been used as an effective tool to investigate the pathophysiology and 

information of functions and interactions of proteins in multiple diseases, including 

thalassaemia. Two studies focused on the thalassaemic erythrocytes highlighted the 

increased oxidative stress and ROS exposure of these cells. Bhattacharya and colleagues 

(2010) used of 2-DE and matrix-assisted laser desorption/ionisation (MALDI) -MS/MS-based 

study to identify several redox proteins were up-regulated in HbE/β-thalassaemia cell lysate, 

namely, peroxiredoxin-2 (PRDX2), thioredoxin, catalase, Cu-Zn SOD, carbonic anhydrase 1, 

Hsp70, and alpha haemoglobin stabilising protein (AHSP) (374). The other studied using 2-DE 

and liquid chromatography (LC)-MS/MS technique in peripheral blood-derived erythroid 

precursors between HbE/β-thalassaemia and controls observed the quite resemble set of 

protein as in Bhattacharya’s study along with a few glycolysis proteins and δ- and β-globins 

(218). Proteomic analysis is also utilised as a follow-up tool for pre-and post-treatment 

examining plasma samples of HbE/β-thalassaemic patients (375, 376).  

 

1.5.4.2 Proteomics studies of thalassaemic EVs  
The study of protein components of EVs can be conducted using the same methods and 

approaches as those used on whole cells, e.g., Western blotting, fluorescent activated cell 

sorting and MS-based technologies (377). The workflow of protein identification (known as 

bottom-up proteomics) starts from efficiently isolating the EVs, then isolating the proteins by 

1D or 2D gel electrophoresis or gel-free liquid chromatography, and then digesting the 

extracted proteins into peptides and analysing these by MS. A number of studies of EV 

proteomes have adopted the successful use of gel electrophoresis for analysis of EV protein 

composition. However, the main limitation of these studies is that only a limited number of 

proteins can be explored further; for instance, Mears et al. (2004) and Xiao et al. (2012) 

examined proteome profiles of EVs in melanoma and identified only 41 and 11 proteins, 

respectively (378, 379).  

In thalassaemia EVs, there have been two reported proteomics studies conducted prior to the 

research described in this thesis. Ferru et al. (2014) performed SDS-PAGE followed by Western 

blot analysis, then excised the protein bands and analysed them with MALDI – time of flight 

(MALDI-TOF) to identify the protein constituents of EVs isolated from thalassaemia 
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intermedia RBCs (348). A study by Chaichompoo and colleagues used 2D-gel electrophoresis 

followed by hybrid mass spectrometry (Q-TOF) MS and MS/MS analyses to successfully 

identify 29 proteins from circulating EVs derived from HbE/β-thalassaemia patients. (380). 

Both studies detected proteins involved with oxidative stress and chaperone proteins, for 

example, catalase, PRDX2, and Hsp70, all with increased abundance in the thalassaemic EVs 

compared to the controls. Table 1.4 and Table 1.5 display full lists of these proteins. (348, 

380).  

 

Table 1.4. Proteins identified in EVs isolated from thalassaemia-intermedia (TI) RBCs analysed 
by MALDI-TOF reported by Ferru and colleagues (2014). 
  

Proteins identified in EVs isolated from 
TI-RBC 

Proteins that were found only in EV from 
TI-RBC 

Band 3 Serotransferrin 

Haemoglobin chain α Ig μ chain C region 

Haemoglobin Alpha enolase 

HSP90  

HSP71  

HSP70  

Catalase  

Selenium binding protein 1  

GADPH  

Carbonic anhydrase  

Peroxiredoxin-2  
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Table 1.5. Proteins from platelet-free plasma-derived microparticles of HbE/β-thalassaemia 
patients compared to the normal controls analysed by Q-TOF MS and MS/MS analyses 
reported by Chaichompoo and colleagues (2012). 
 

Proteins increased in EVs Proteins decreased in EVs 
Proteins detected 
only in thalassaemic 
EVs 

Apolipoprotein E Apo-B100 precursor 
Biliverdin-IX beta 
reductase isozyme I 

Chain A, cyclophilin A 
complexed with dipeptide 
Gly-Pro 

ASCC3 protein  
hCG205366, isoform 
CRAα 

Chain A, the molecular basis 
for the recognition of 
phosphorylated and 
phosphoacetylated histone 
H3 by 14-3-3  

Chain A, heat shock 70kd protein, 42kd 
ATPase N-terminal domain 

Haemoglobin mu 
chain  

Chain A, X-ray structure of the 
complex between carbonic 
anhydrase I and the 
phosphonate antiviral drug 
foscarnet 

Chain A, a three-dimensional structure of 
dimeric human recombinant macrophage 
colony-stimulating factor  

Matrilin 1, cartilage 
matrix protein, 
isoform CRA_b 

Chain B, oxygen affinity 
modulation by the N-termini 
of the beta chains in human 
and bovine haemoglobin  

Fibrin beta Myosin VIIB 

Cytochrome P450, family 20, 
subfamily A, polypeptide 1, 
isoform CRA_c 

Guanine nucleotide-binding protein G(q) 
subunit alpha 

Peroxiredoxin 6 

Haemoglobin mu chain 
Immunoglobulin heavy chain variable 
region 

Protein Rei, Bence-
Jones 

Hsp90AA1 protein  Pantothenate kinase 3, isoform CRA_b 
Zinc finger protein 
233 

Immunoglobulin light chain  RNA polymerase II 140kDa subunit  

N-ethylmeleimide-sensitive 
factor attachment protein, 
alpha 

  

Trabeculin-alpha   

WWOX delta5-8   
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1.6 Project aims  
 

Thalassaemia is one of the most common monogenic disorders worldwide with the wide 

ranges of disease manifestations, especially in the case of HbE/β-thalassaemia patients. It is 

still unexplained why these two conditions, which individually are relatively benign, can 

combine into a wide range of disease severities, including a transfusion-dependent 

thalassaemia. This work will set out to utilise recent developments in ex vivo erythroid cell 

culture and proteomics techniques to explore the differences between HbE/β-thalassaemic 

patients and healthy controls, with the aim of identification of potential biomarkers for 

predicting clinical severity and transfusion requirements.  

More specifically, this work aims will: 

• Compare and monitor the ex vivo expansion and differentiation in HbE/β-thalassaemic 

cells compared to healthy controls. 

• Quantitate EVs produced by HbE/β-thalassaemic patients, both from in vitro 

(reticulocyte derived) and in vivo (plasma) origins.  

• Examine and compare the proteome of EVs derived from HbE/β-thalassaemic patients 

and healthy controls, from both in vivo and in vitro origins. 

• Evaluate the potential diagnostic applications in thalassaemia of any of the proteins 

identified using comparative proteomics. The identified proteins will be compared 

between groups of subjects with a spectrum of disease severity: transfusion-

dependent thalassaemia, non-transfusion transfusion dependent thalassaemia, 

carriers of thalassaemia, and healthy controls.  
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CHAPTER 2 

 

MATERIALS AND METHODS   



64 
 

2.1 Materials  
 

2.1.1 Ethics and consent for patient and control samples 
To initiate the patient recruitment, ethical approval was requested and granted from the 

Institutional Review Board (IRB) Committee, Siriraj Hospital, Bangkok, Thailand. Alongside 

this, a Material Transfer Agreement (MTA) regarding patient samples was authorised 

between NHS Blood and Transplant (NHSBT, Filton, Bristol, UK) and Faculty of Medicine, Siriraj 

Hospital. For the clinical follow-up trial (Chapter 5), additional ethical approval was obtained 

from the IRB Committee, Medical Service Department, Bangkok.  Following the approvals, all 

sample collections proceeded according to the Declaration of Helsinki and with the informed 

consent of all the patients and controls. To protect anonymity, all controls and patient 

samples were given individual codes, and only the Chief Investigator was able to access 

patient identities and records.  

 

2.1.1.1 Blood samples for EV characterisation  
All patient samples used in this study were collected at the Division of Haematology, 

Department of Medicine, Faculty of Medicine Siriraj Hospital, Bangkok, Thailand, between 

October 2015 and April 2016. The control samples were selected to be age and sex-matched 

to the patient samples, n=22. For patients, a total of 27 mononuclear cell (MNCs) samples 

were prepared from 24 ml EDTA blood. From the same cohort of patients, EVs were derived 

from 21 samples of EVs were derived from 3.2% sodium citrate blood, and 20 HbE/β-

thalassaemia plasma samples were collected and processed. The control samples were 

selected to be age and sex-matched to the patient samples; n=22 (five patient samples did 

not have matched controls). The patient recruitment, the type of samples taken, and their 

processing are summarised in Figure 2.1. For half of the EDTA blood samples, the MNCs 

separation was performed immediately on the day of collection in Thailand. All the MNCs 

from this cohort were frozen using 10% DMSO with 90% fetal calf serum. All cellular and 

plasma samples were frozen at -20°C and shipped frozen on dry-ice; whereas, fresh EDTA 

tubes were shipped in ambient temperature to NHSBT Filton, UK.  
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Figure 2.1. Workflow diagram of EVs characterisation.  
The chart summarises permissions requested, sample collection, types and numbers of 

samples, and the analysis conducted. IRB = International Review Board, MTA = Material 

Transfer Agreement, EVs = extracellular vesicles. 

 

2.1.1.3 Clinical trial recruitment 
All the patients and controls for the clinical follow-up trial (discussed in Chapter 5) were 

recruited between October 2017 to June 2018. The samples included 12 transfusion-

dependent thalassaemic (TDT) patients, 18 non-transfusion-dependent thalassaemic (NTDT) 

patients, eight thalassaemic carriers, and seven healthy controls. Blood samples from the TDT 

patients were collected during their regular hospital visits for transfusion. EDTA blood 

samples were taken at pre-transfusion and one-hour post-transfusion sampling points for five 

visits; therefore, ten samples were collected from an individual patient. The NTDT patients 

were invited to have their blood collected every three months for a total of three visits. The 

thalassaemic carriers and the controls had their blood collection on the day of recruitment. 

For the trial organisation and type of samples see Figure 2.2. Over the period of recruitment, 

all blood samples were successfully collected from the TDT group. However, 16 visits of 

in vitro EV 
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patients in the NTDT group were lost to follow-up. One patient was excluded from the study 

due to tuberculosis infection; others were non-compliant to follow-up.  

Figure 2.2. Scheme of blood collections of the clinical follow-up study.  
In a total of five visits every four to six weeks per patient, pre- and post-transfusion samples 

were collected from 12 TDT patients (n=120). NTDT patients (n=18) had their blood sample 

collected at three visits, but due to non-compliances, a total number of NTDT samples was 

38. Carrier and control samples were collected at the day of recruitment.  

 

2.1.1.3 Fresh CD34+ cells as control samples 
The fresh CD34+ samples used as controls in the optimisation of ex vivo cell cultures were 

derived from two sources; by-products of blood donations, and three healthy volunteers. 

Volunteers’ blood was obtained to determine the minimum volume of blood needed for 

CD34+ cell isolation in section 3.2.2, Chapter 3. EDTA blood (24 ml) from three healthy 

volunteers was collected after the written permission and consent had been obtained. All 

other fresh CD34+ samples used in this thesis were isolated from by-products of blood 

donations, either buffy coats or apheresis cones provided by Non-Clinical Issue Department 

(NCI, NHSBT Filton, Bristol, UK). 
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2.1.1.4 Genomic DNA of thalassaemic patients and healthy controls 
All the patients’ genomic DNA (gDNA) was extracted from the recruited patients and seven 

controls at the Faculty of Medicine, Siriraj Hospital, and shipped for further tests to NHSBT, 

Filton, UK. All gDNA obtained were quantified by Qubit Fluorometer® (Thermo Fisher 

Scientific, Loughborough, UK) according to the manufacturer’s instructions. All patients and 

controls provided written consent for genomic DNA work.  

 

2.1.2 Commercial chemicals and suppliers 
 

Chemicals      Suppliers 
1,2-Bis(dimethylamino)ethane (TEMED)   Sigma-Aldrich, Poole, UK 

2-Mercaptoethanol      Sigma-Aldrich 

30% Acrylamide solution    Severn Biotech Ltd, Kidderminster, UK 

Albumin for bovine serum (BSA, Fraction V)  Sigma-Aldrich 

Bradford Reagent     Sigma-Aldrich 

Bromophenol blue     VWR International Ltd, Lutterworth, UK 

Citrate-dextrose solution (ACD)   Sigma-Aldrich 

Citrate-phosphate dextrose (CPD)   Sigma-Aldrich 

Complete protease inhibitor cocktail tablet  Roach Diagnostics Ltd, Burgess Hill, UK 

Coomassie brilliant blue G     Sigma-Aldrich 

Dexamethasone     Sigma-Aldrich 

Dimethyl sulfoxide (DMSO)    Sigma-Aldrich 

Disodium phosphate (Na2HPO4)   VWR International Ltd 

Dried skimmed milk      Premier Foods, Stafford, UK 

Dulbecco’s phosphate buffered saline   Sigma-Aldrich 

Ethanol absolute (EtOH)    Fisher Scientific, Loughborough, UK 

Ethidium bromide (EtBr)    Sigma-Aldrich 

Fetal calf serum      Fisher Scientific 

Giemsa’s stain solution    VWR International Ltd 

Gel loading buffer     Sigma-Aldrich 

Glycerol       Fisher Scientific 

Glycine       Severn Biotech Ltd 
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Hank’s balanced salt solution  (HBSS)   Sigma-Aldrich 

Histopaque®-1077 Hybri-Max™   Sigma-Aldrich 

Human holotransferrin     R&D systems, Abingdon, UK 

Human serum group AB    Sigma-Aldrich 

Human serum albumin (HSA)                            Irvine Scientific, Wicklow, Ireland 

Hydrocortisone     Sigma-Aldrich 

Interleukin-3      R&D systems 

Iscove’s modified Dulbecco’s medium (IMDM) BD BioScience, Wokingham, UK 

Leishman’s eosin-methylene blue stain (Gurr®) VWR International Ltd 

May-Grunwald’s stain solution   Sigma-Aldrich 

Methanol (MeOH)     Fisher Scientific 

Penicillin/Streptomycin     Sigma-Aldrich 

Phenylmethanesulfonyl fluoride (PMSF)  Sigma-Aldrich 

Phosphate buffered saline (PBS)    Sigma-Aldrich 

Potassium bicarbonate (KHCO3)   Sigma-Aldrich 

Potassium chloride (KCl)    VWR International Ltd  

Potassium dihydrogen phosphate (KH2PO4)  VWR International Ltd 

Recombinant human insulin     Sigma-Aldrich 

Sodium chloride (NaCl)    Sigma-Aldrich 

Sodium dihydrogen phosphate (NaHPO4.7H2O) VWR International Ltd 

Sodium dodecyl sulphate (SDS)   Sigma-Aldrich 

Sodium hydrogen carbonate (NaCO3)  Fisher Scientific 

Sodium hydroxide (NaOH)    Fisher Scientific 

Stem cell factor     R&D systems 

Tris base/boric acid/EDTA (TBE) buffer  Sigma-Aldrich 

Triton-100       Sigma-Aldrich  

Trypan blue solution      Sigma-Aldrich 

Trypsin       Sigma-Aldrich 

Tween-20       Sigma-Aldrich 

Protein markers 

Magic Mark XP      Life Technologies, Warrington, UK 

Novex Sharp      Sigma-Aldrich 
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Reagent kits 

Human Cathepsin S ELISA kit (ab155427)   Abcam, Cambridge, UK 

Human Haptoglobin ELISA kit (ab108856)   Abcam 

Human Hemopexin ELISA kit (ab108859)   Abcam 

MiniMACS® Direct CD34 progenitor cell isolation Kit  Miltenyi Biotech Ltd, Woking, UK 

MiniMACS® magnetic Multi-stand    Miltenyi Biotech Ltd  

MiniMACS® MS column      Miltenyi Biotech Ltd  

MiniMACS® LS column       Miltenyi Biotech Ltd  

Western Lightning Plus-ECL     PerkinElmer, Seer Green, UK 

 

2.1.3 In-house buffers and chemicals 
 

‘310’ buffer (iso-osmotic, phosphate buffer): Na2HPO4 103 mM, NaH2PO4 155 mM, pH 7.4.  

Buffered water: diluted Sorenson buffer, 1:20 dilution in distilled water 

Lysis buffer: 1 in 20.5 dilutions of 310 buffer with water containing 1x complete protease 

inhibitor and 0.5 mM PMSF.  

MACS buffer: 5 tablets of PBS (1 tablet/100 ml H2O) dissolved in 500 ml distilled H2O + 0.6% 

citrate phosphate dextrose, pH 7.2 + 0.5% BSA (Fraction V), stored at 4°C. 

Red cell lysis buffer: 150 mM NaCl, 1 mM EDTA.2H2O and 10 mM KHCO3, pH 7.5 with NaOH, 

filtered through a polyethersulfone vacuum filtration unit (Nalgene® Labware, Thermo Fisher 

Scientific), stored at -20°C. Aliquoted buffer was thawed at 37°C in a water bath before use.  

Sorenson buffer: KH2PO4 33 mM, Na2HPO4 33 mM, pH 6.8. 

Tris-buffered saline (TBS) Tween: 25mM Tris, 0.15M NaCl, 0.02% Tween-20 (Sigma-Aldrich), 

pH 7.7. 

Trypan blue solution: 0.4% solution diluted 1:10 with 1xPBS.  
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2.1.4 Antibodies 
 

2.1.4.1 Antibodies for Western blot analysis  
Primary antibodies used in Western blotting analyses of proteins of interest are listed in Table 

2.1. 

Table 2.1. Primary antibodies used for Western blotting of selected proteins.  

2nd Ab – secondary antibody, Pos CT – positive control 

 

Secondary antibody for Western blot analysis: donkey anti-rabbit IgG (Jackson Immuno 

Research Laboratories INC., Ely, UK). 

2.1.4.2 Antibodies for flow cytometry  
FITC conjugated BRIC256 (Glycophorin A, extracellular domain/ CD235a) mouse IgG1 (IBGRL 

Research Products, NHSBT Filton, UK). 

 

2.1.5 Analysis Software 
Software     Developer 

Kaluza software    Beckman Coulter Inc, High Wycombe, UK 

SPSS v.18     IBM Analytics, New York, USA 

 

  

Protein Clone Animal Source Dilution 2
nd

 Ab Expected bands Pos CT Gel Reduced

GPA CVDP RIFP Rabbit In-house 1 in 2000 DaR 1:2500

Monomer 43 kDa 

Heterodimer 68 kDa 

Dimer 86 kDa

RBC mb 10% yes

AHSP
Rabbit 

monoclonal

A kind gift from 

Dr.Rebecca 

Griffith

1 in 500 DaR 1:2500 12 kDa
RBC 

lysate
15% yes

Catalase polyclonal Rabbit Abcam 1 in 2000 DaR 1:2500 60 kDa
RBC 

lysate
10% yes

Haptoglobin EPSISR7
Rabbit 

monoclonal
Abcam 1 in 10000 DaR 1:2500 45 kDa

RBC 

lysate
10% yes

Hemopexin polyclonal Rabbit Abcam 1 in 50-100 DaR 1:2500 52 kDa
RBC 

lysate
10% yes

Cathepsin S polyclonal Rabbit Abcam 1 in 1000 DaR 1:2500
25 kDa (predicted 37 

kDa)

Spleen 

lysate
12.50% yes
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2.2 Methods 
 

2.2.1 CD34+ isolation from adult peripheral blood 
Buffy coats provided starting material for isolation of CD34+ progenitor cells, which were to 

be used in cell culture experiments. Buffy coats (approximately 50 ml) were diluted (1:1 v/v) 

with Hank’s buffer salt solution (HBSS) with 1% citrate-dextrose solution (HBSS-C), then 

mononuclear cells (MNCs) were separated using gradient separation with Histopaque-1077. 

Mononuclear cells were then purified by washing out contaminating platelets with HBSS-C, 

as well as lysing remaining red blood cells with in-house ammonium chloride-based lysis 

buffer solution. After a 10-minute incubation, lysed red cells were removed by washing with 

HBSS-C. Subsequently, cells were washed with cold MACS buffer by centrifugation at 400g for 

5 minutes at 20°C. Cells were then resuspended with 300 μl MACS buffer, 100 μl MACS CD34+ 

magnetic beads and 100 μl MACS blocking antibody per 108 MNC cells and incubated at 4°C 

in MACS continuous spinning device for 30 minutes. Cells were washed and resuspended in 5 

ml of chilled MACS solution. Next, CD34+ cells were purified with MACS LS column with a 

sieve, attached to MiniMACS® magnetic multi-stand, by letting the unlabelled cells pass 

through the column, then washing the column with 1 ml of MACS buffer three times. The LS 

column was removed from the magnet, and the CD34+ cells were eluted with 5 ml of MACS 

buffer into a 15 ml Falcon tube (Thermo Fisher Scientific). For better purity, the separating 

steps on a magnet were repeated with MACS MS column and following three washes with 

500 µl MACS buffer, CD34+ cells were eluted into a Falcon tube with 1 ml of MACS buffer. 

After centrifugation, the pellet containing the cells was resuspended in IMDM medium. Cells 

were stained with trypan blue at the concentration of 1:1 (v/v) to check viability and number 

of CD34+ cells. The Neubauer chamber (NanoEnTek Inc) was used for manual cell counting. 

 

2.2.2 Three-stage erythroid culture based on Griffiths et al. (2012) 
The three-stage culture system was based on changing the supplemented medium according 

to the growth stage of erythroid cells. Principle ingredients for all stages of the cell culture 

were IMDM base medium, 30 μlml-1 3% (v/v) human, male, group AB serum, 2 mgml-1 human 

serum albumin, 10 μgml-1 recombinant human insulin, 3 Uml-1 erythropoietin and 1 Uml-1 

unfractionated heparin. In the first stage of culture, days 0 to 7, the primary medium 
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contained 1 ngml-1 IL-3, 10 ngml-1 stem cell factor, and 200 μgml-1 hHolotransferrin. The 

secondary stage medium was applied from day 8 to day 10 of erythroid expansion; from this 

stage onwards, IL-3 was omitted, and transferrin concentration was increased to 500 μgml-1. 

The tertiary stage of the culture (day 11 onwards) involved omitting SCF from the medium 

and retaining the other components until the end of the culture. Cells were seeded into 

stationary plastic tissue culture flasks at a density of 1 x 105 cellsml-1. The culture cells were 

all kept at 37°C in a humid atmosphere of 5% CO2 in the air. Cells were counted every day and 

maintained by the addition of fresh medium in the range of 1 x 105 and 2 x 105 cellsml-1 during 

the first phase, then between 3 x 105 and 5 x 105 cellsml-1 during the remaining culture period. 

Morphology of cells was monitored by cytospin slide preparations. 

 

2.2.3 Thee-stage erythroid cultures with corticosteroids 
Cells were grown following Griffiths et al. (128) culture protocol, as described in section 2.2.2, 

in an incubator with 5% CO2 and humidified air. The dosages of dexamethasone (DXM) and 

hydrocortisone (HC) used in this study were 10-6 M. Steroids were added at the start of the 

cultures and were removed from the culture medium on day 11 by washing the cells with 

HBSS and placing them into the steroid-free tertiary medium (cells were treated with steroids 

during days 0 to 11 of culture). Numbers of cells were regularly monitored on alternate days 

throughout the experiment and maintained between 1 x 105 and 2 x 105 cellsml-1 during the 

first phase, then between 3 x 105 and 5 x 105 cellsml-1 until the end of culture. Morphology of 

cells was monitored by cytospin slide preparations.  

 

2.2.4 Cell morphology monitoring 
Cell morphology and maturation were assessed by visual analysis of cytospin slides on 

alternate days of the culture. After labelling cytospin slides, the cell preparations were 

resuspended in 10% HSA at a concentration of approximately 4 x 105 cellsml-1 in a total volume 

of 300 μl and added to the cytospin slides. The slides were placed in the cytospin cassettes 

and centrifuged at 1365rpm for 5 minutes. Cells were visualised by staining, described in 

section 2.2.5, and analysed under a light microscope. 
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2.2.5 Cytospin slide staining  
Cytospin slides were air dried and dyed using either May-Grünwald Giemsa stain or 

Leishman’s stain. 

2.2.5.1 May-Grünwald Giemsa stain 

Slides were fixed with absolute methanol for 10 – 20 minutes and stained with May-

Grünwald’s stain for five minutes, followed by Giemsa’s stain for 10 – 15 minutes. Lastly, slides 

were rinsed in buffered water (pH 6.8) for one to two minutes and air-dried. 

2.2.5.2 Leishman’s stain 

Leishman’s Eosin-Methylene blue stain was used to fully cover slides for 1 minute. Buffered 

water was applied for 5 minutes. Lastly, slides were rinsed with buffered water (pH 6.8) for 1 

– 2 minutes and air-dried. 

 

2.2.6 Reticulocyte filtration 
On day 21 of the cultures, cultured cells were harvested via centrifugation at 400g for 5 

minutes. They were washed once with HBSS; then the cell suspension was loaded into a 

leukocyte reduction filter (Pall Corporation, Portsmouth, UK). HBSS was used to pre-wet the 

filter and was passed through the filter after finishing cells filtration.  

 

2.2.7 EVs isolation 
Ultracentrifugation (UC) method was used for isolation of EVs from all the in vivo sources. 

When EVs were generated in vitro, the filtration method was used for non-proteomics study 

and UC was used for EV preparation for proteomic analysis. The diagram illustrating the steps 

of EVs isolation using UC methods is depicted in Figure 2.3 (347).  
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Figure 2.3. Schematic showing the ultracentrifugation technique used to isolate extracellular 
vesicles from cell plasma or liquid media culture.  
Plasma/culture media was centrifuged to remove cellular components and debris by lighter 

spins at 2000g for 10 minutes and 3000g for 10 minutes; then the EV pellet was obtained by 

the ultracentrifugation process by Optima L-100XP centrifuge (Beckman Coulter) using fixed-

angle rotors set at 100000g at 4°C for 60 minutes.  

 

2.2.7.1 EVs isolation from in vivo sources (ultracentrifugation) 

2.2.7.1.1 EVs isolation from plasma-derived samples 

Twenty cases of HbE/β-thalassaemia patients were used in the study as plasma only samples. 

Approximately 2 ml of plasma that remained from the blood samples taken for routine 

complete blood count was collected in each case. The cell separation was undertaken as soon 

as possible to minimise ex vivo EV generation. Plasma samples were, therefore, processed at 

the Siriraj Hospital (Bangkok) for EV extraction on the day of collection. They were centrifuged 

using a series of centrifugation speeds: 500g for 5 minutes to remove cellular debris, followed 

by 2000g for 10 minutes at 4°C to get the platelet-free plasma, and then 3000g for 10 min at 

4°C. All the centrifuged plasma-derived samples were frozen at -20°C and shipped on dry ice 

to NHSBT Filton (Bristol) for further investigations. 

2.2.7.1.2 EVs isolation from 3.2% sodium citrate blood samples  

A total volume of 3 ml of 3.2% sodium citrate blood was collected at the same sampling time 

for the same study participants as the EDTA blood collection, because calcium ions are 

chelated by citrate, and this is claimed to prevent the vesiculation process, or in vitro EV 

generation related to blood sample handling and storage. Moreover, it has been shown that 

EV levels elevated in vivo remained detectable (381, 382).  The 3.2% sodium citrate samples 

were intended to represent the in vivo EV generation in thalassaemic patients and controls. 

They underwent centrifugation as described above for the plasma samples, but with an 

additional, final step where the samples underwent UC for 100000g for 60 minutes at 4°C. All 
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samples were processed within 12 hours of their collection in order to minimize iatrogenic EV 

production. The EV pellets were diluted with 100 µl PBS and frozen at -20°C before 

transporting to NHSBT, Filton. 

 

2.2.7.2 EVs isolation from in vitro sources (cultured reticulocytes) 
In vitro EV production was assessed from cultured filtered reticulocytes. At day 21 of 

erythrocyte culture, cells were filtered with a leukocyte filter, LeuKoGuard™ (Pall 

Corporation), to purify reticulocytes. After filtering, reticulocytes were washed with a fresh 

particle-free tertiary medium which had been pre-centrifuged by UC at 100000g for 1 hour to 

remove any remaining EVs from the AB serum and resuspended with this new medium at a 

concentration of 1 x 107 cellsml-1. Reticulocytes were stored at 37°C and 5% CO2 and 

humidified air for 72 to 96 hours prior to vesicle isolation. This process was designed to 

augment particles released from the reticulocytes for further experiments.  

2.2.7.2.1 Ultracentrifugation method for in vitro generated EVs 

The isolation procedure was completed, as shown in detail in Figure 2.3; samples were 

centrifuged at 2000g 10 min at 4°C, then the supernatant was removed and centrifuged again 

at 3000g. These two centrifugation steps served to remove any intact cells from the sample. 

Supernatants were decanted and used for the last UC (Optima L100 XP, Beckman Coulter) at 

100000g at 4°C for 1 hour. Supernatants were discarded, and the EV pellets were collected 

and diluted with filtered PBS in the volume appropriate for the downstream application. 

For proteomic analysis, 30 μl of PBS was added to dissolve the pellet, as well as 1 mM of PMSF 

and cOmplete™ protease inhibitor (PI) to stop the proteolytic process in the sample; then it 

was stored at -20°C, ready to quantify and analyse. 

2.2.7.2.2 Ultrafiltration method for in vitro generated EVs 

The Filtration technique by using an MF-Millipore®, 0.22 μm pore size (Merck KGaA, 

Darmstadt, Germany) was employed to enrich EVs for the non-proteomic study samples. The 

filter device was equilibrated with PBS once, and the sample was added and centrifuged at 

4000g for 30 minutes. The sample was collected, and the filter membrane was washed 

multiple times to ensure complete EV recovery.  
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2.2.8 Flow cytometry 
Flow cytometry was used to quantify EVs in samples of both in vivo and in vitro origins. 

2.2.8.1 Flow cytometry for in vivo EVs (plasma-derived samples) 
Plasma samples were thawed. A total of 4 μl of each sample was added to 40 μl of 

commercially available counting beads (Flow-Count™ Fluorospheres; Beckman Coulter Inc.) 

and then diluted with 436 μl phosphate buffer solution (PBS) in order to obtain an optimal 

dilution of 1:100. The optimal concentration of EVs was previously determined in preliminary 

experiments (data not shown). As illustrated in Figure 2.4, from the side scatter (SS) and 

forward scatter (FS) logarithmic graph, EVs were localised in “A” region. The Flow-Count 

beads were identified in the “C” area of the logarithmic graph (SS against FS) by their distinct 

size when compared to EVs. The numbers of erythrocyte vesicles were calculated from the 

formula used in a previous study (358) as follows: 

𝑅𝐵𝐶 𝑣𝑒𝑠𝑖𝑐𝑙𝑒𝑠/μl =  (
no. of antibodies positive events (A)

𝑛𝑜. 𝑜𝑓 𝑏𝑒𝑎𝑑𝑠 𝑖𝑛 𝐶 𝑟𝑒𝑔𝑖𝑜𝑛
) ×

𝐵𝑒𝑎𝑑 𝑐𝑜𝑢𝑛𝑡 𝑝𝑒𝑟 𝑡𝑒𝑠𝑡

𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (μl)
× 𝐷𝐹 

All the tests were performed with NaviosTM Flow Cytometer (Beckman Coulter Inc.). The flow 

cytometry results were analysed with the help of Kaluza® software (Beckman Coulter Inc). 

 

Figure 2.4. Example of flow cytometry analysis of the EVs derived from the thalassaemic 
plasma-derived sample.  
(a) Dot plot of forward scatter (FS) and side scatter (SS) of EVs at A region with Flow-Count 

beads represented in C region. (b) Histogram of Flow-Count beads in C region. 
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2.2.8.2 Flow cytometry for in vitro EVs (from cultured reticulocytes) 
Following UC spin, the in vitro EVs obtained from cultured reticulocytes were diluted with 200 

μl of PBS and stored at -20°C. At the time of use, these EV samples were to be thawed and 

labelled with antibodies, as well as counting beads, in the same manner as the EVs derived 

from plasma samples. For in vitro EV samples, all the tests were performed with NaviosTM 

Flow Cytometer (Beckman Coulter Inc.), and the flow cytometry results were analysed with 

the help of Kaluza® software (Beckman Coulter Inc). 

 

2.2.9 Nanoparticle tracking analysis (NTA)  
Plasma samples, the same samples used for flow cytometry testing, were prepared by 

thawing the frozen plasma and diluting it with PBS at ratio 1:1000 (v/v). An optimal 

concentration for each sample was determined by titration in a preliminary experiment (data 

not shown) for 2-10 x 108 of particlesml-1, which contained approximately 20-60 

microspheres/microscope field. The NTA instrument used for characterising EV was a 

NanoSight LM10 (Malvern Panalytical Ltd, Malvern, UK), software version 2.3. The instrument 

was standardised prior to measuring the samples with polystyrene latex microspheres, 100 

nm and 200 nm in size. The sample chamber was rinsed with PBS to remove all the remaining 

particles. The sample was infused into 1 ml syringe and then connected to the chamber. The 

content was slowly introduced to avoid creating air bubbles. After loading of the sample, the 

temperature probe was connected to the analytical box to monitor temperature during the 

analytic process. The laser beam as the source of light was switched on, and the optimal 

analysing area was identified. The best zone for analysis was the space next to the reference 

spot, the ‘thumbprint-like shape’, as illustrated in Figure 2.5. The camera level was adjusted 

to identify the proper saturation of EVs spot, and a video was captured, where the length of 

video recording was related to the concentration of particles and polydispersity of samples. 

A low concentration and low polydispersity of vesicles required shorter recording times. Five 

movies were recorded for each sample and were allocated to a single quantifying method. In 

terms of video analysis, the detection threshold was adjusted according to the concentration 

of EVs in one microscopic view. The positions of EVs in the field were identified by the 

presence of red crosses, whereas the blue crosses represented noise or too low threshold. 
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Fluid viscosity was set at 1.0, according to PBS viscosity. A total of  five movies were recorded 

per sample, and these were analysed altogether to increase the level of accuracy (360). 

Figure 2.5. An example of nanoparticle tracking analysis.  
(a) The reference point, the “thumbprint” area. Modified from Gardiner C et al. Extracellular 

vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles . 2013; 

15,2. (b) Graph of NTA analysis of plasma sample 1. It demonstrates a median particle size of 

166 nm, where each line represents one video movie with a total of 5 videos analysed for 

each sample. Details at the right lower quadrant state concentrations of particles for each 

video analysis. 

 

Size distribution of EV was measured by D-value. D-value is one of the most frequently used 

parameters describing particle size distribution in fluid suspension. The current NTA 

technique was modified from the grain size distribution (GRADISTAT) described by Blott and 

Pye in 2001 by producing an S-curve of cumulative mass (see (383) for more information). D-

values at D10, D50, and D90 are the diameter which, when particles are arranged in order of 

ascending mass (mass is equivalent to volume in spherical shape particles), divides the 

sample’s mass into 10%, 50%, and 90%. Thus, D50 represents mid-point value where 50% of 

particles have a particular size. The approximate ranges of size can be obtained from D10 and 

D90 (384).  

 

2.2.10 Protein quantitation using Bradford’s assay  
Bradford protein dye reagent was used for measuring protein concentration in the EV samples 

intended for proteomic analysis. Duplicate sample aliquots of 10 μl were added into the 

Bradford reagent (Sigma-Aldrich) at 1:10 concentrations and then incubated at room 
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temperature for 2 minutes. The Camspec M550 Double Beam SPF Scanning UV/Vis 

spectrophotometer (Spectronic Camspec Ltd, Leeds, UK) was used for light absorbance 

measurements at a wavelength of 595 nm. Subsequently, the average values for each sample 

were plotted against the standard curve created using standard bovine serum albumin at 

different concentrations of 0, 5, 10, 20, 30 and 40 μgμl-1. 

 

2.2.11 Ghost membrane preparation 
All of the buffers, centrifuge tubes and rotor (Beckman centrifuge) were chilled at 0°C to avoid 

re-sealing of membranes and Hb contamination. Cells were washed twice in cold PBS, 

followed by two washes in 310 buffer. Subsequently, cells were lysed in a large volume of the 

lysis buffer (>30 times cell volume), followed by centrifugation at 15000rpm for 10 minutes 

at 4°C. The first supernatant was collected and kept as a cytoplasmic fraction. The lysis step 

was repeated until the membrane pellet became white. The samples were stored at -20°C. 

 

2.2.12 Western blotting  
EV proteins were diluted at 1:1 (v/v) with SDS sample buffer. The samples were incubated at 

95°C for 3 minutes before being solubilized with 5% (w/v) 2-mercaptoethanol. The samples 

were separated on 10% to 12.5% polyacrylamide gels and transferred to polyvinylidene 

difluoride membranes in a semi-dry transfer system using the blotting apparatus. The 

membranes were blocked for 1 hour with 5% milk supplemented with 0.05% Tween 20 in PBS 

[PBS-T], then the primary antibodies were added and incubated at 4°C overnight. After 

sequential PBS-T washing was performed three times, the secondary antibody was added to 

each membrane and incubated for 1 hour. Chemiluminescent detection was carried out using 

ECL Plus reagent (Western Lightning; PerkinElmer) and visualised in Kodak Image Station 

4000R (Carestream Health, Inc., Rochester, NY, USA). 

 

2.2.13 Proteomic analysis: TMT labelling and high pH reversed-phase 

chromatography 
Proteomic samples were processed by the University of Bristol Proteomics Facility (Bristol, 

UK). Aliquots of 100 μg of samples per experiment were digested with trypsin (2.5 mg trypsin 



80 
 

per 100 mg of protein; 37°C, overnight), labelled with TMT reagents according to the 

manufacturer’s protocol (Thermo Fisher Scientific) and the labelled samples were pooled in 

equal ratios. An aliquot of the pooled sample was evaporated to dryness and resuspended in 

buffer A (20 mM ammonium hydroxide, pH 10) prior to fractionation by high pH reversed-

phase chromatography using an Ultimate 3000 LC system (Thermo Fisher Scientific). In brief, 

the sample was loaded onto an Xbridge BEH C18 column (130A°, 3.5 mm, 2.1 mm 3 150 mm; 

Waters) in buffer A, and peptides were eluted with an increasing gradient of buffer B (20 mM 

ammonium hydroxide in acetonitrile, pH 10) from 0% to 95% over 60 minutes. The resulting 

fractions were evaporated to dryness and resuspended in 1% formic acid prior to analysis by 

nano-LC-MS/MS using an Orbitrap Fusion Tribrid mass spectrometer (Thermo Fisher 

Scientific). 

 

2.2.14 Nano-LC mass spectrometry 
High pH reversed-phase fractions were further fractionated using an Ultimate 3000 nano 

high-performance LC system in line with an Orbitrap Fusion Tribrid mass spectrometer 

(Thermo Fisher Scientific). Peptides in 1% (v/v) formic acid were injected onto an Acclaim 

PepMap C18 nano-trap column (Thermo Fisher Scientific). After washing with 0.5% (v/v) 

acetonitrile, 0.1% (v/v) formic acid, peptides were resolved on a 250-mm 375-mm Acclaim 

PepMap C18 reversed-phase analytical column (Thermo Fisher Scientific) over a 150-minute 

organic gradient, using 7 gradient segments (1%-6% solvent B over 1 minute, 6%-15% B over 

58 minutes, 15%-32% B over 58 minutes, 32%-40%B over 5 minutes, 40%-90% B for 1 minute, 

held at 90%B for 6 minutes, and then reduced to 1% B for 1 minute) with a flow rate of 300 

nlminute-1. Solvent A was 0.1% formic acid, and solvent B was aqueous 80% acetonitrile in 

0.1% formic acid. Peptides were ionized by nanoelectrospray ionization at 2.0 kV using a 

stainless-steel emitter with an internal diameter of 30 mm (Thermo Fisher Scientific) and a 

capillary temperature of 275°C. All spectra were acquired using an Orbitrap Fusion Tribrid 

mass spectrometer controlled by Xcalibur 2.0 software (Thermo Fisher Scientific) and 

operated in data-dependent acquisition mode using a synchronous precursor selection – MS3 

workflow. Fourier transform mass analysers (FTMS)1 spectrum was collected at a resolution 

of 120000, with automatic gain control (AGC) target of 200000 and maximum injection time 

of 50 milliseconds. Precursors were filtered with an intensity threshold of 5000, according to 
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charge state (to include charge states 2-7) and with monoisotopic precursor selection. 

Previously interrogated precursors were excluded using a dynamic window (60 seconds 6 10 

ppm). The MS2 precursors were isolated with a quadrupole mass filter set to a width of 1.2 

m/z. Ion-trap tandem mass spectrometry (ITMS2) spectra were collected with an AGC target 

of 10000, the maximum injection time of 70 milliseconds, and collision-induced dissociation 

collision energy of 35%. For FTMS3 analysis, the Orbitrap was operated at 50000 resolution 

with an AGC target of 50000 and a maximum injection time of 105 milliseconds. Precursors 

were fragmented by high-energy collision dissociation at a normalized collision energy of 60% 

to ensure maximal TMT reporter ion yield. Synchronous precursor selection was enabled to 

include up to 5 MS2 fragment ions in the FTMS3 scan. 

 

2.2.15 Proteomics data analysis  
The raw data files were processed and quantified using Proteome Discoverer software v1.4 

(Thermo Fisher Scientific) and searched against the UniProt human database (385) (134,169 

sequences) using the SEQUEST algorithm. Peptide precursor mass tolerance was set at 10 

ppm, and MS/MS tolerance was set at 0.6 Da. Search criteria included oxidation of methionine 

(115.9949) as a variable modification and carbamidomethylation of cysteine (157.0214) and 

the addition of the TMT mass tag (1229.163) to peptide N termini and lysine as fixed 

modifications. Searches were performed with full tryptic digestion, and a maximum of 1 

missed cleavage was allowed. The reverse database search option was enabled, and all 

peptide data were filtered to satisfy a false discovery rate of 5%. 

 

2.2.16 Enzyme-linked immunosorbent assay (ELISA)  
All ELISA tests in the project were carried out according to the manufacturer instructions (all 

Abcam): Haptoglobin (ab108856), Hemopexin (ab108859), and Cathepsin S (ab155427). The 

ELISA plates were read with 450 nm filter using Tecan Microplate Reader (Reading, UK). Note 

that, due to the limited sensitivity of the kits, the dilutional tests were carried out to obtain 

the optimal dilution for haptoglobin and hemopexin in the TDT and NTDT groups. The optimal 

dilutions used in the project were 1:50 and 1:4 for the haptoglobin and hemopexin tests, 

respectively.  
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2.2.17 Statistical analyses  
All statistical analyses in this project were carried out using SPSS software v.18 (IBM 

Corporation). Test for normality was performed by Kolmogorov-Smirnov test for normality, 

to test whether the hypothesis of skewed samples can be rejected. 95% confidence interval 

(CI) means the probability of 0.95 to contain the true mean of the population. Statistical 

significance determines with P-value <0.05, when P-value <0.0001 designates highly statistical 

significance. 

Associations between two continuous variables were analysed by either Pearson correlation 

or Spearman’s rho correlation test for parametric or non-parametric relationships, 

respectively. The one-sided hypothesis was performed only when the correlations between 

two parameters can be predicted either increased or decreased. The bootstrapping statistic, 

i.e., resampling from the sample to estimate the sampling distribution in the real population, 

was applied to increase the confidence to represent the population. Comparisons of means 

were calculated using unpaired t-test to analyse the differences of means between the two 

independent groups and paired t-test where repeat samples from the same patients are 

analysed. If more than two samples were compared, one-way analysis of variance (ANOVA) 

was performed. For non-Gaussian distributed samples, Mann-Whitney-U and Kruskal-Wallis 

tests were applied for two independent groups and more than two groups, respectively.  
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CHAPTER 3 

 

IN VITRO ERYTHROPOIESIS STUDIES OF 

HBE/β-THALASSAEMIC PATIENTS 
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3.1 Introduction 
There are now numerous in vitro erythroid culture systems that are reported to successfully 

produce reticulocytes originating from human CD34+ progenitor cells or peripheral blood 

mononuclear cells, as discussed in Chapter 1 section 1.1.4 (105, 127, 128, 151, 386). Several 

studies have successfully used in vitro culture methods to study patient samples, for example, 

hereditary spherocytosis (14, 387, 388) and also the ineffective erythropoiesis observed in 

the haemoglobinopathy patients (143, 159, 389). Also, in vitro erythropoiesis has been used 

in clinical trials of medications for haemoglobinopathy patients (140-142). More recently, 

erythroid culture systems have been developed and optimised to generate large numbers of 

reticulocytes, enough for a mini dose to take forward for a clinical trial (128, 139, 390). These 

new bulk culture systems have yet to be utilised for the study of haemoglobinopathy patients.  

In Thailand, thalassaemic disease is one of the major national health problems due to its high 

prevalence (http://www.ithanet.eu/db/ithamaps). The molecular background of 

thalassaemia is a loss of a globin gene(s) or the presence of an abnormal globin gene(s), 

therefore causing a decrease or absence of globin chain synthesis. In β-thalassaemia, the 

excess α-globin polypeptide forms a haemichrome, which results in increased reactive oxygen 

species (ROS) and also extracellular vesicle (EV) production (340, 358). The oxidative stress 

generates EVs directly by causing a loss of membrane phospholipid asymmetry and exposure 

of phosphatidyl serine which also acts as a senescent signal attracting the reticuloendothelial 

clearance of RBCs (340). Another mechanism proposed to cause EV generation in 

thalassaemia is due to an elevation of band 3 tyrosine phosphorylation which reduces the 

connection between red cells membrane and cytoskeleton proteins, for instance, spectrin, 

ankyrin, etc. (340, 349). While substantial evidence has focused on the proteomes of 

haemoglobinopathic erythrocytes (374, 391, 392), only two studies have examined EVs shed 

from thalassaemic red cells (348, 380) (see 1.5.4.2, Chapter 1). Both studies observed  that 

proteins with altered abundance in thalassaemia intermedia samples were antioxidant 

proteins, e.g., heat shock proteins and peroxiredoxin, and α-haemoglobin (Hb) (348, 380).   

The experiments described in this chapter will set out to culture CD34+ progenitors isolated 

from peripheral blood of HbE/β-thalassaemic patients and controls, using an adapted three 
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stage in vitro erythroid culture process which is optimised to produce large numbers of 

reticulocytes (128). These cultures will be used to explore whether any alterations specific to 

HbE/β-thalassaemia can be detected in the erythroid cells during the erythroid-specific 

development and maturation, or in EV release from reticulocytes. 

 

3.2 Results 
 

3.2.1 Cold storage of whole blood has minimal effect on CD34+ 

isolation 
The control and HbE/β-thalassaemia patient blood samples used in this study were to be 

shipped from Thailand, with an anticipated transit time ranging from two to five days. To 

determine the effects of shipping of blood samples, randomly selected buffy coat (BC) 

samples (n=3) were split into EDTA tubes and either used for CD34+ isolation on the first day 

as a control (D0 sample), or stored at 4°C for three days (D3 sample) and five days (D5 sample) 

before isolation of CD34+ cells (Figure 3.1A). The isolated CD34+ cells were then cultured, as 

described in section 2.2.2 in Chapter 2. Cell expansion rates and morphology were monitored 

using cell counts and cytospin preparations on alternative days throughout the 21-day culture 

period.  

CD34+ cells were successfully isolated from all stored EDTA samples. The fresh samples 

isolated on D0 yielded the highest numbers of CD34+ cells in all buffy coat samples (n=3; mean 

± SD; 9.97 x 105 ± 6.24 x 105 cells).  The average number of CD34+ cells isolated from D3 and 

D5 samples were 3.86 x 105 ± 1.17 x 105 cells and 5.37 x 105 ± 2.23 x 105 cells, respectively. 

Once cultured, the average cumulative fold increase of D3 CD34+ isolated samples gave the 

steepest proliferative growth curve with up to 91-fold increase. D5 samples had 47-fold, and 

the control D0 samples 29-fold cumulative fold increase. Figure 3.1B illustrates the cumulative 

fold increase of the D0, D3, and D5 samples in different stages of the 21-culture period of the 

Griffiths et al. based three-stage cell culture media protocol (128). Stage I designated the 

primary stage (day 0 to 7), stage II the secondary stage (day 8 to 11), and stage III the tertiary 

stage of the culture (day 12 onwards). Figure 3.1C shows the average fold increase of the 

three samples in the three-stages.  
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Note that, two of the three samples in the D5 groups had to be terminated at day 15 of culture 

due to bacterial infection. Therefore, surprisingly, although the two controls (D0) had the 

highest initial CD34+ cell count, the expansion rates of these samples were not superior to the 

samples that had been stored cold for longer. The D3 samples tended to have the greatest 

fold increase overall. However, more repeat experiments are needed to confirm this finding.   

 

 

Figure 3.1. Storage effect on CD34+ cell isolation from buffy coats and erythroid cell 
proliferation in three-stage culture.  
(A) Three EDTA tubes were generated from three separate buffy coat samples (n=3). CD34+ cell 
isolation was then performed on day 0 (D0), day 3 (D3), and day 5 (D5) following storage at 4°C. 
(B) and (C) Cumulative fold change of three samples at different stages of culture and the average 
fold changes of each stage, respectively. Stage I, II, and III represent day 0 to 7, day 8 to 11, and 
day 12 to 21 of the 21-day culture period, respectively. The cultures were performed using Griffiths 
et al. (128) three-stage process as described in Chapter 2, and all cultures were maintained until 
day 21, except for two cultures of D5 that were terminated on day 15 due to bacterial infection.  

 

Throughout the experiment, erythroid differentiation of all of the samples was monitored by 

morphological analysis of cytospin preparations on alternate days (from day 5 of culture 
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onwards). The maturation of cells appeared normal, and reticulocytes were observed from 

day 13 of D0 sample, and day 14 of both D3 and D5 samples. Comparatively, the stored 

samples matured faster than the control (D0) in concordance with their storage time, i.e., the 

D5 sample maturated faster than D3 sample (Figure 3.2). However, further repeat 

experiments are needed to confirm this observation. It could have been concluded though, 

from these experiments, that a three-day delay of fresh blood stored on ice during shipping 

from Thailand to Bristol would not be detrimental to the CD34+ isolation and planned culture 

experiments. 

 

Figure 3.2. The average percentages (n=2) of cells at the stated morphological stage of the 
control sample (D0), 3-day stored sample (D3), and 5-day stored sample (D5).   

The samples stored at 4C were observed to mature faster than the controls, in concordance 
with their storage time. Note that at day 17 of the culture sample D5 was terminated early 
due to bacterial infection. Problast: proerythroblast, Baso: basophilic erythroblast, Poly: 
polychromatophilic erythroblast, Ortho: orthochromatophilic erythroblast, Retic: reticulocyte 

 

3.2.2 CD34+ cell yield from 24 ml of peripheral blood 
Since one of the significant features of thalassaemic patients is anaemia, the volumes of blood 

samples available from the patients were restricted to the lowest minimum threshold. 

According to previous studies in such patients, the lowest amount of whole blood used for in 

vitro erythroid culture was 20 ml; however, the numbers of progenitor cells isolated from this 

volume of blood were not reported (141). In the current project, the volume of blood 
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collected from each patient and control individual obtained from Thailand was agreed with 

the patients' clinicians to be 24 ml. To determine whether this amount of blood is sufficient 

for the CD34+ cell isolation, three UK-based volunteers were enrolled to provide 24 ml of fresh 

whole blood each. CD34+ isolation was performed (see section 2.2.1, Chapter 2), except for 

the omission of the MACS LS column (Milteny BioTec) step due to the small numbers of cells. 

The CD34+ cell numbers isolated were 4 x 104 cells, 1.56 x 104 cells, and 1.25 x 105 cells from 

volunteer 1, 2, and 3, respectively. This work provided confirmation that 24 ml blood volume 

would provide enough CD34+ for erythroid culture experiments.  

 

3.2.3 Glucocorticoids increase erythroid culture yields 
There is substantial evidence in the literature that suggests the effectiveness of 

glucocorticoids at promoting proliferation in the early stages of erythroid cell development 

(104, 390). Dexamethasone (DXM) has been used successfully in the erythroid cultures carried 

out previously at the University of Bristol (133, 184). An alternative steroid hydrocortisone 

(HC) has also been used previously in erythroid culture to produce reticulocytes (132). 

Isolated peripheral blood CD34+ cells from three donors were cultured using Griffiths et al. 

(2012) three-stage culture system as normal or with the addition of either DXM and HC  as 

described in the materials and methods (section 2.2.2, Chapter 2). Thus, the initial number of 

cells from a donor available for each arm of the experiment was 2.6 x 105, 5.6 x 105, and 6.1 x 

105 cells. The observed proliferation rates are depicted in Figure 3.3. During the primary stage 

of culture (day 0 to day 8), there was no detectable difference between the three 

experimental culture conditions. DXM and HC were removed from the cultures, and the cells 

washed on day 11 of culture. During the late stage of cultures (day 13 onwards), the 

cumulative fold increase of all of the cells cultured with steroids was dramatically higher than 

the controls, with the highest points of 3.82- and 3.35-fold greater expansion than the control 

group for HC and DXM, respectively (Figure 3.3). Both groups with corticosteroid additives 

were observed to have the highest fold expansion on day 16; whilst, the control group 

reached its proliferative peak on day 14. 
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Figure 3.3. The effects of corticosteroid treatment on in vitro erythroid culture.  
CD34+ cells were isolated from three buffy coat units; each unit was split into three 
experimental arms: control CT, HC additive (10-6 M), and DXM additive (10-6 M). Cells were 
cultured under identical conditions except for where a glucocorticoid addition is indicated. 
Steroids were removed from all the cultures on day 11 post-isolation (black arrow on the 
graph). The proliferation rates were monitored and compared across the three treatment 
arms. Standard errors are shown as error bars (CT in blue, HC in red, and DXM in green colour). 

 

Additionally, the morphology of cells in erythroid cultures was examined periodically by 

cytospin method. At the same time points on day 8, 12, and 20, in the majority of the 

glucocorticoid-treated erythroid cell populations, cell morphology was more immature 

compared to the controls in all experiments (Figure 3.4 and Figure 3.5).    
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Figure 3.4. Representatives Leishman’s stain cytospins illustrating morphology on day 8 of 
culture.  
(A) = hydrocortisone-treated (10-6 M), (B) = dexamethasone-treated (10-6 M), and (C) = 

control. At day 8, the majority of cell populations from (A) and (B) were proerythroblasts 

characterised by their large size, fine nuclear chromatin, and presence of nucleolus, whilst 

cells in (C) were more mature with the appearance of basophilic erythroblasts (smaller in size, 

with deep blue cytoplasm with perinuclear halo and coarse nuclear chromatin) and 

polychromatophilic erythroblasts (homogeneous reddish cytoplasm with coarse clumping 

nuclear chromatin). 
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Figure 3.5. Cell maturation of dexamethasone (DXM) (10-6 M), hydrocortisone (HC) (10-6 M) and 
untreated controls, analysed on the days indicated using cytospin images.  
A minimum of 200 cells was counted per sample to represent the whole population at a one-

time point, then the average numbers from the three samples were calculated. (A) day 8 of 

culture - the majority of cells in control were basophilic erythroblasts; while proerythroblasts 

were the main population for both steroid-treated samples, (B) day 13 of culture and (C) day 

20 of culture. At day 20, DXM-treatment  gave a similar number of enucleated cells (91%) as 

the control sample (96%); whereas, HC was observed to be lower (70%). 
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The data from this experiment confirmed the effectiveness of the inclusion of corticosteroids 

as erythroid lineage proliferation enhancers by delaying cell maturation. In all culture 

conditions reticulocytes were isolated  using leukofilters and the total number reticulocytes 

obtained at the end of the cultures for the three groups were 8 x 106 ± 1.5 x 105 cells for the 

control, 3.28 x 107 ± 3.9 x 106 for HC treated cells and 4.74 x 107 ± 2.1 x 107 for DXM treated. 

The number of reticulocytes generated using corticosteroid was sufficient for use in EV 

isolation as approximately 1 x 107 reticulocytes are needed to form a visible EV pellet after 

centrifugation procedure (personal communication; Dr.Tosti Mankelow, NHSBT Filton, 2015). 

DXM was selected for use in all future experiments as this produced a higher number of 

reticulocytes. 

 

3.2.4 Effects of corticosteroids on extracellular vesicles isolated from 

the cultured reticulocytes 
To determine whether the inclusion of corticosteroids in the culture system affects the 

composition of in vitro EVs released from day 21 cultured reticulocytes, the DXM and control 

reticulocyte samples were washed as described (see section 2.2.7, Chapter 2) and then 

incubated in EV-free tertiary stage media (see section 2.2.7.2, Chapter 2) for 72-96 hours at 

37°C. The samples were then processed for isolation of EVs by ultracentrifugation technique 

as described in Figure 2.3, Chapter 2. Pellets of EVs were harvested and prepared for 

proteomics study (see 2.2.13, Chapter 2). The protein content of the EVs was measured using 

Bradford assay (see 2.2.10, Chapter 2) and then normalised to 100 μg per sample.  

Subsequently, the control and DXM treated reticulocyte derived EV samples were processed 

for TMT labelling at the University of Bristol Proteomics Facility (as described Chapter 2, 

2.2.13 section) and samples were run on an Obitrap Fusion Tribid machine (Thermo Fisher 

Scientific). A total of 2,956 proteins was detected from EV samples derived from standard 

cultured reticulocytes and reticulocytes cultured with DXM for the first 11 days of culture. 

The results were filtered at high stringency for proteins that contained two or more unique 

peptides, and as a result, 1,406 proteins with altered expression were detected in EVs from 

the two samples. Analysis using the String Database (http://string-db.org/; v10.5; 14 May 

2017) identified 523 proteins, of these 310 proteins (59.27%) were classified as extracellular 

vesicle proteins (GO:1903561). According to cellular component ontology (GO) by the String 

http://string-db.org/
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Database, the majority of the identified proteins were membrane-bound organelle 

(GO:0043227; 390, 74.57%) and organelle (GO:0043226; 383, 73.23%).  

To assess the differences between control and DXM exposed cultures, a cut-off ratio 

difference was set as <0.5 and >2, where a protein difference was judged to be significantly 

changed between the samples. The bioinformatics data was analysed with PANTHER software 

(http://www.pantherdb.org/; v13.1; Feb 2018) and WebGestalt software 

(http://www.webgestalt.org/option.php; Jan 2013). Only nine proteins were identified when 

the cut-point ratio differences were applied. These are listed in Table 3.1 and include; c-Kit 

(accession P10721), alpha-2 antiplasmin (P08697), myosin, and zinc finger protein 512 

(B4DES6). These results suggest that the addition of DXM into the in vitro erythroid culture 

process had a minimal effect on the EV protein content, and therefore does not preclude its 

use. This experiment has also demonstrated the feasibility of isolating EVs from in vitro 

cultured reticulocytes. 

Table 3.1. Nine up-regulated proteins in the EVs derived from DXM-treated samples when 
compared to the control samples.   
 

Accession Protein name 
Unique 

Peptide 

Ratio  

HC/CT 

Ratio 

DXM/CT 

F5H810 Noelin (Fragment)  2 3.188 2.397 

J3KT17 Galectin  2 3.116 3.805 

A2NYU8 Heavy chain Fab (Fragment)  2 2.976 2.454 

P10721 Mast/stem cell growth factor receptor Kit  11 2.682 2.033 

B4DES6 cDNA FLJ52441, highly similar to Zinc finger 

protein 512  
3 2.578 2.442 

Q9UL88 Myosin-reactive immunoglobulin heavy 

chain variable region (Fragment)  
2 2.533 2.518 

B4DUJ8 cDNA FLJ54160, highly similar to Carbonic 

anhydrase 3 (EC 4.2.1.1)  
2 2.361 2.295 

P08697 Alpha-2-antiplasmin 17 2.113 2.115 

B1N7B6 Cryocrystalglobulin CC1 heavy chain 

variable region (Fragment) 
2 2.059 2.514 

 
 

http://www.pantherdb.org/
http://www.webgestalt.org/option.php
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3.2.5 Ex vivo erythropoiesis of thalassaemic cells compared to the 

matched controls  
Ineffective erythropoiesis is one of the most important pathophysiologies in thalassaemic 

patients. This process occurs mainly in the bone marrow resulting in the destruction of the 

erythroid lineage (See Chapter 1, section 1.3.3). To monitor the process in vitro, three samples 

(n=3) of CD34+ cells from HbE/β-thalassaemia patients were cultured alongside CD34+ cells 

from normal healthy age-and gender-matched individuals. This part of the study focused on 

comparing features of the in vitro erythropoiesis of HbE/β-thalassaemia patient erythroblasts 

(proliferation, maturation, and viability of cells) to the age-and gender-matched control cells.  

The three pairs of HbE/β-thalassaemia patient (PT1, PT2, PT3; see Table 3.2 for patients’ 

demographic and laboratory data) and the age- and gender-matched control samples (CT1. 

CT2, CT3) were cultured in parallel from isolated CD34+ cells.  
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Table 3.2. Characteristics and clinical parameters of five non-transfusion dependent HbE/β-thalassaemia patients enrolled in the ex vivo 
erythropoiesis experiment.  

*Patient 5 had complications of hypersplenism & haemochromatosis: primary hypothyroidism, secondary hypogonadism. N – neutrophils,  N/A 

– not available

No. Sex Age Diagnosis Splenic Status 
Transfusion 

History 
Hb Analysis 

Hb 
(gl-1) 

Hct 
(%) 

MCV (fl) 
(82-97) 

Platelet Count 
(x103 μl-1) 
(157-420) 

WBC 
(x103 μl-1) 
(5.3-10) 

N (%) 
(59-69) 

Ferritin 
(ngml-1) 

1 M 24 β0/βE Intact Intermittently 
6.3%A2 

54.8%E 38.9%F 
80 26 53 123 7.4 64.4 595.5 

2 M 52 β0/βE Intact Never 
12.5%A2 

55.6%E 31.9%F 
86 25.5 68 325 5.6 57.5 N/A 

3 F 33 β/βE Intact Intermittently N/A 66 19.9 60 204 6.05 47.6 392 

4 F 21 β0/βE Intact 
2 years ago 
(Pregnancy) 

10.2%A2 
35.5%E 54.3%F 

89 26.9 58 227 8.8 59.7 310 

5 M 19 β0/βE* Intact 1 year ago 60.9%E, 28%F 4.9 18.5 57 49 7.16 40.2 335 
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Each progenitor cell sample, in both patients and controls, was derived from ~24 ml of 

peripheral blood. The starting numbers of CD34+ cells are summarised in Table 3.3. 

Table 3.3. Numbers of CD34+ cells extracted from 24 ml of peripheral blood in thalassaemic 
patient (PT) and control (CT) samples. 
  

Sample pair Patient (cells) Control (cells) 

PT1/CT1 2.0 x 105 1.5 x 105 

PT2/CT2 1.2 x 105 1.1 x 105 

PT3/CT3 9.0 x 104 1.8 x 105 

 

During erythroid cell culture (see section 2.2.3, Chapter 2) two of the three patient samples 

exhibited higher proliferation rates when compared to their age and sex-matched controls; 

11500- (PT1) vs. 488-fold increase (CT1) and 3122- (PT3) vs. 63-fold increase (CT3). However, 

this pattern was not observed in the third pair of patient and control samples, with 618- and 

731-fold increases for PT2 and CT2 samples, respectively (Figure 3.6). Cell viability was 

measured daily by trypan blue staining and manual cell counting. The cell death (average 

values and standard errors, n=3) in both groups was calculated. Due to the limited number of 

cells in the samples, only one method of cell viability measurement was performed 

throughout. There was no significant difference in cell viability observed between these two 

groups (Figure 3.7). 
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Figure 3.6. Cell expansion of CD34+ derived control and HbE/β-thalassaemia patient 
erythroblasts shown as cumulative fold increase. 
CD34+ cells were isolated from 24 ml of peripheral blood of three thalassaemic patients (PT1, 

PT2, PT3; solid colour lines) and their matched controls (CT1, CT2, CT3; dash lines). All cells 

were cultured using the Griffiths et al. (128) three-stage media with DXM added on D0 to D11 

(10-6 M). DXM was removed from the culture system on D11 (black arrow); the cells were 

washed and moved to the fresh tertiary media. PT1 and PT3 showed better proliferation 

compared to their matched controls CT1 and CT3; however, the same trend was not observed 

in the PT2 and CT2 samples, which exhibited similar proliferation rates.  
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Figure 3.7. Cell death as a measure of cell viability of HbE/β-thalassaemia patients (n=3) and 
controls (n=3) erythroblasts during culture.  
Dead cells were manually counted daily using trypan blue and displayed as a percentage of 

the total counted cells as (A) average value with SD and (B) an individual sample. There was 

no distinct difference in cell viability between patients and controls. In particular, no increase 

of the cell mortality rate was observed during the polychromatophilic stage (day12 to day17).  

 

B 

A 
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Regarding maturation, the thalassaemic cells were found to have a faster rate of 

differentiation, particularly in the early stage of the culture between day 7 and day 9 (Figure 

3.8). This trend was observed to alter in the later stages, where between day 12 and day 17 

the majority of thalassaemic cells were at the polychromatophilic stage (Figure 3.9), whilst 

more of the control cells had matured to reticulocytes (23% vs. 42% of reticulocytes on day 

17). At the end of the culture, on day 21, enucleation rates were lower in thalassaemic 

samples when compared to the matched controls in all three samples – 34% vs. 75% (PT1 vs. 

CT1), 75.5% vs. 81% (PT2 vs. CT2), and 46% vs. 82% (PT3 vs. CT3).  
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Figure 3.8. Erythroid differentiation of CD34+-derived erythroblasts from three thalassaemia 
patients compared to their matched controls.  
The cultured cells were derived from three HbE/β-thalassaemia patients, and three matched 

control samples. Cell morphology was assessed using cytospin technique stained with 

Leishman’s stain at different time points of the culture (day 7, 9, 12, 15, 17, 21), except for 

sample PT2 where the cell count at day 7 was too low to perform the analysis. In a differential 

count, 200 to 500 cells were counted per sample to represent the total cell population. The 

thalassaemic cells, when compared to the controls, were observed to have a faster rate of 

differentiation  in the early stages of the culture (day 7 to day 9), but then remained longer at 

the polychromatophilic stage (during day 12 to day 17) when the control cells were regularly 

matured to reticulocytes. In the tertiary stage (day 12 to day 21), cell maturation of two 

thalassaemic samples was slower than the controls (PT1 and PT3). Enucleation rates were 

also lower in these thalassaemic samples (PT1 and PT3) when compared to their matched 

controls. The PT2 sample did not show a different rate of maturation and had equivalent 

enucleation rate to the control (CT2) at day 21.   
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Figure 3.9. Cell morphologies of in vitro cultured thalassaemic and control erythroid cells.  
(A and B) and their matched controls (C and D) observed at different time points during ex 

vivo erythropoiesis – day 12 (A and C), and day 15 (B and D). The thalassaemic patient cells 

appear to be delayed at the polychromatophilic stage, suggesting the maturation is hindered 

or disturbed. Slides were prepared by cytospin technique and stained with Leishman’s stain. 

Arrows indicate cells in their polychromatophilic stage. 

 

Two additional pairs of HbE/β-thalassaemia patients (PT4, PT5) (see Table 3.2 for clinical 

details) and matched controls (CT4, CT5) were also cultured. The cell proliferation, viability 

rates, and maturation rates for PT4/CT4 and PT5/CT5 were comparable to the initial three 

sample pairs. The PT4 sample proliferated particularly well, exceeding the age-matched 

control (514 vs. 23; 22.3-fold difference) and the PT5 sample and control (583 vs. 12.8; 45.5-

fold difference), as shown in Figure 3.10. Enucleation rates on day 21 of the culture of these 

samples were 53.5% (PT4), 70% (CT4), 55% (PT5), and 79% (CT5). 
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Figure 3.10. Cumulative fold change of two erythroid cultures of thalassaemic samples (PT4 
and PT5) and their matched controls (CT4 and CT5).  
MNCs were isolated in Thailand from 24 ml of peripheral blood, frozen at -20°C and 

transferred to Bristol, UK. CD34+ cells were isolated from the thawed cells and grown in 

Griffiths et al. (128) three-stage liquid media with DXM additive (10-6 M) during the primary 

and secondary stages of the culture; a black arrow indicates the day of steroid removal (day 

11). Both PT4 and PT5 cells (solid lines) proliferated better than their matched controls CT4 

and CT5 (dash lines).  

 

3.2.6 Comparative analysis of proteome between red blood cell 

membranes of thalassaemic samples and the matched controls  
To explore the effects of thalassaemic pathology on in vitro thalassaemic reticulocytes, in vitro 

generated membrane preparations of three sets of patient reticulocytes (from PT1, PT2, PT3) 

and their matched controls (CT1, CT2, CT3) on day 21 were prepared as outlined in Chapter 2 

(section 2.2.11). The white membranes obtained were collected and measured for protein 

concentration using Bradford’s assay (see section 2.2.10, Chapter 2). Membrane samples 

were normalised to 100 μg of the total protein before quantitative proteomics analysis was 

performed. The proteomic analysis using TMT nano-LC-MS/MS analysis initially identified 

4,620 proteins, with 2,539 proteins identified when filtered for two or more unique peptides. 

When using a cut-off ratio of >2 or <0.5 to determine a significant change between patient 

and control samples, a total of 2,510 proteins were shared across all three samples. There 

were no proteins detected that were observed to be unique to thalassaemic samples. When 
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these observed proteins were categorized with regard to cellular component origins using 

WebGestalt (http://www.webgestalt.org/; Mar 2013), approximately two-thirds (69%) of 

proteins were membrane-bounded organelle (GO:0043227), 40% were extracellular vesicle 

(GO:1903561), and 34.5% were macromolecular complex (GO:0032991) proteins. There were 

70 up-regulated proteins found across all patient samples when compared to controls (Figure 

3.11A). These could be categorised, based on a biological process and protein class, into 

proteins involved in the binding, catalytic proteins, signal transducers, structural molecular, 

and translation regulator activities. The biological processes associated with these identified 

proteins were classified as follows: chaperone binding proteins such as AHSP, prefoldins, Von 

Hippel-Lindau binding protein 1; microtubule motor function proteins which facilitate dynein, 

tubulin, and myosin activities; RNA binding proteins or spliceosome proteins; and inhibitor 

factors of protein synthesis, e.g., eukaryotic translation inhibitor factor 3. In addition, proteins 

involved with iron metabolism were also increased in their abundance in patients’ red cell 

membrane samples, e.g., ferritin light chain, ferritin heavy chain, and transferrin receptor. 

Interestingly, nucleolar proteins, i.e., proteins found in the nucleus that binds to nucleic acids, 

for example, nucleophosmin 1, nucleolin and nucleoporin, were detected. This suggests that 

the red cell membranes could have been contaminated with nucleated erythroblasts, 

therefore reflecting the limitations of the filtering process or these were residual proteins 

leftover after enucleation. Examination of the post-filter cytospins confirmed the presence of 

a small number of contaminating nucleated cells (Figure 3.12). There were 51 proteins that 

exhibited reduced abundance in the patient samples relative to the controls. The majority of 

these were annotated as protein binding (35 proteins), transporter (12 proteins), and 

nucleotide-binding categories (11 proteins) (Figure 3.11B). Also found in this group were 

proteins with molecular function involved in ion channel and ATPase activity, e.g., ABCB6, 

ATPase family and stomatin. Additionally, various β-globin fragments were less abundant in 

the three patients’ samples, potentially because the control erythroid cells contained more 

normal β-globin chains than the patients. Haptoglobin and hemopexin, the critical free Hb 

and haem scavengers, were found to be less abundant in the patients. Haptoglobin was 

decreased in two out of three samples (ratio 0.056, 0.652, and 0.306 for PT1/CT1, PT2/CT2, 

and PT3/CT3, respectively); while, hemopexin was reduced in only one sample below the 0.5 

cut-off level (ratio 0.38, 0.79, and 0.82 for PT1/CT1, PT2/CT2, and PT3/CT3, respectively). 

http://www.webgestalt.org/option.php
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Figure 3.11. Proteins with altered abundance in thalassaemia patients’ ex vivo reticulocyte 
membranes compared to control reticulocyte membranes.  
The proteomic data using Webgestalt software analysis, (A) 70 functional classes of proteins 

with increased abundance in the patient reticulocyte membrane samples were observed 

when compared to matched controls. The proteins were categorised according to their 

biological process, cellular component, and molecular function. (B) 51 functional classes of 

proteins with reduced abundance in thalassaemic reticulocyte membranes relative to 

matched controls.  
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Figure 3.12. Cytospin images of pre-and post-filtered cultured reticulocytes from HbE/β-
thalassaemia patients.  
Cytospins were made on day 21 of cultures from (A) pre-filtered reticulocytes and (B) post-

filtered reticulocytes, with contaminating nucleated red blood cells visible in image B. 

 
 

3.2.7 Quantification of in vitro EVs released  from cultured 

reticulocytes  
In the previous report, the number of plasma-derived EVs of β-thalassaemic patients was four 

times higher than controls (347). One potential source of this increased EVs is from the 

patient’s reticulocytes. Therefore, the quantitative difference between the EVs isolated from 

the in vitro reticulocytes of thalassaemic patients and controls was examined next. EVs were 

isolated as described in section 2.2.7.2 in Chapter 2 and prepared by ultrafiltration (MF-

Millipore®, 0.22 μm pore size) using the process described in section 2.2.7.2.2, Chapter 2. The 

EVs obtained from cultured reticulocytes were quantified using flow cytometry and 

nanoparticle tracking analysis (NTA) (see methods described in section 2.2.8 and 2.2.9 of 

Chapter 2 for flow cytometry and NTA, respectively). 

EV concentrations of four thalassaemic samples and their matched controls are presented in 

Table 3.4. The average numbers of EVs detected by both flow cytometry and NTA were 

comparable between the patient (1.06 x 108 particlesμl-1) and control samples (1.03 x 108 

particlesμl-1). The NTA method was more sensitive than flow cytometry for detection of EVs 

in both thalassaemia and the control samples (Table 3.4), in keeping with the method’s 

superior ability to detect small-sized particles. In summary, there was no quantitative 
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difference of EVs derived from cultured reticulocytes of HbE/β-thalassaemic patients and the 

healthy controls.  

  

Table 3.4. Numbers of in vitro derived reticulocyte EVs from thalassaemic patients (PT sample) 
and matched controls (CT sample), determined by flow cytometry and NTA analyses. 
 

PT sample 
FC 

(particlesμl-1) 

NTA 

(particlesμl-1) 
CT sample 

FC 

(particlesμl-1) 

NTA 

(particlesμl-1) 

PT1 1.40 x 105 8.24 x 107 CT1 3.06 x 104 6.18 x 107 

PT2 5.30 x 104 6.66 x 107 CT2 7.26 x 104 5.16 x 107 

PT3 8.64 x 105 6.70 x 107 CT3 2.00 x 105 N/A 

PT4 3.15 x 105 2.10 x 108 CT4 2.20 x 105 1.95 x 108 

Mean (𝒙̅) 3.43 x 105 1.06 x 108 Mean (𝒙̅) 1.31 x 105 1.03 x 108* 

FC – flow cytometry, NTA – nanoparticle tracking analysis; N/A – no available result;  

* average was calculated from three samples 

 

 

3.2.8 Quantitative analysis of the proteome of EVs released from 

cultured thalassaemic reticulocytes and the matched controls 
The proteomic composition was assessed of in vitro generated EVs from leuko-filtered 

cultured reticulocytes of the PT1, PT2, PT3 and their matched controls CT1, CT2, and CT3 

obtained as described in section 3.2.5 above using methods described in Chapter 2, section 

2.2.7. Each sample was normalised to 100 μg of total protein before being subjected to 

quantitative proteomics analysis at Proteomics Facility Unit, University of Bristol. The TMT 

and MS/MS analysis was performed by Orbitarp nano-LC-MS/MS (Thermo Fisher Scientific).  

A total of 1707 proteins were identified in this quantitative proteomics experiment. There 

were no proteins identified that were unique to thalassaemic samples. When filtered for 

proteins containing >2 unique peptides, the number of detected proteins was reduced to 655. 

Of these, 286 proteins were common to both thalassaemic and control samples, and when 

subjected to Webgestalt (http://www.webgestalt.org/option.php; Mar 2013), 193 (72%) of 

these were identified as known constituents of extracellular vesicles (Gene Ontology 

(GO):1903561).  Based on the GO molecular function, the majority of the identified proteins 

http://www.webgestalt.org/option.php
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were involved in the catalytic (42%) and the binding (32.7%) activity (see Figure 3.13). Relative 

quantifications of proteins in the patients were compared to control samples with a cut-off 

values of >2 or <0.5-fold difference. 

 

Figure 3.13. Functional classification (Gene Ontology; GO) of 286 proteins/genes mutually 
found in the EV constituents derived from three ex vivo cultured three pairs of thalassaemic 
and control reticulocyte samples.  
Cultured reticulocytes were filtered, washed, and then incubated for 72-96 hours before the 

EV isolation. EV proteins were normalised to 100 μg protein concentrations using Bradford’s 

assay, and then EV proteome was investigated by TMT and MS/MS analysis. The analysis by 

Webgestalt and Panther-db software was performed to identify and compare the proteome 

of the EVs derived from reticulocytes of thalassaemic patients and healthy controls. The pie 

chart shows similarity analysis of observed proteins to GO function classes using Panther-db 

software. 

 

Two out of three patient EV samples (PT1 and PT3) had eight commonly shared proteins with 

greater abundance than the control samples (Table 3.5). The categorization of these proteins 

in terms of the cellular component, molecular function, and biological process is depicted in 

Figure 3.14. 
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Table 3.5. Eight proteins observed to be up-regulated in the two EV samples derived from in vitro reticulocytes of HbE/β-thalassaemia patient 
(n=3), compared to the matched controls (n=3).    
  

Protein Accession 
Unique 

peptide 
PT1/CT1 PT2/CT2 PT3/CT3 

Function/ 

Contribution 
Reference 

Lamin B2 Q03252 2 8.423 0.056 17.024 
Dynein binding 

Maturation & enucleation 
JW Shin et al., 2013 (393) 

T-complex protein 1-α P17987 5 2.302 0.869 2.401 
Chaperone 

Maturation & enucleation 
Ozdemir et al., 2016 (394) 

TRIM58 Q8NG06 3 2.001 0.252 3.823 
Dynein binding 

Maturation & enucleation 
Thom et al., 2014 (395) 

Rac GTPase activating 

protein 1 
B2RE34 6 2.490 0.611 10.035 

Tubulin binding 

Maturation & enucleation 

Kalfa and Zheng, 2014 

(396) 

LIS1 (PAFHA1B1) P43034 2 2.139 0.566 4.922 
Tubulin binding 

Maturation & enucleation 
Zimdahl et al., 2014 (397) 

Catalase P04040 22 2.047 0.278 4.764 Antioxidant enzyme Ghaffari S, 2008 (398) 

SBP1 (HSP56) Q13228 7 2.278 0.670 3.161 Antioxidant enzyme 
Leecharoenkiat et al., 2011 

(218) 

ALAD B7Z3I9 4 2.286 0.255 3.534 Haem synthesis 
Ponka and Schulman, 1993 

(399) 
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Five out of the eight proteins identified were known to be involved in the process of erythroid 

maturation and enucleation, namely lamin B2, t-complex protein 1, tripartite motif containing 

58 (TRIM58), Rac GTPase activating protein 1 and platelet-activating factor acetylhydrolase 

1b, regulatory subunit 1 (Lis1). Another two proteins found to be increased in the patients 

were catalase and selenium binding protein 1 (SBP1), which were categorised as antioxidant 

proteins. A protein involved in haem synthesis, namely delta-aminolevulinic acid dehydratase 

(ALAD), was also more abundant in the patient compared to the control reticulocytes derived 

EV samples.  

There were also 90 proteins observed with reduced abundance in the patients’ EVs when 

compared to EVs from the control group. These proteins were involved in DNA replication, 

ribosomal proteins, complement activation proteins, i.e., C4a, C4b, C5, and coagulation 

pathways such as alpha-2 antiplasmin, protein S, apolipoprotein, etc. (Figure 3.14B) 
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Figure 3.14. Proteins with altered abundance in HbE/β-thalassaemia patients’ EVs derived from 
in vitro reticulocytes compared to the matched-control EVs.  
(A) Eight proteins had increased abundance in patient samples when compared to matched 

controls. Here the eight proteins are categorised according to their biological process, cellular 

component, and molecular function. (B) 90 proteins were detected with reduced abundance 

in thalassaemic EVs relative to healthy controls, categorised according to their biological 

process, cellular component, and molecular function. Charts were prepared from functional 

enrichment analysis using Webgestalt 2013 web tool.  
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In an additional experiment, two further pairs of thalassaemic and control samples (PT4 vs. 

CT4 and PT5 vs. CT5) isolated from reticulocytes produced in the previous in vitro 

erythropoiesis experiment (section 3.2.5) were compared by their proteome profiles using 

the tandem mass tag (TMT) and mass spectrometry (MS/MS).  

A total of 3094 proteins were initially identified in EVs released from the in vitro reticulocytes, 

cultured over 21 days of erythroid culture course. When data were filtered for proteins that 

contained two or more unique peptides, the number was reduced to 1,490 proteins. Sample 

PT4 had 970 proteins of higher abundance than the matched control, with 21 proteins that 

were found only in PT4 sample. These included seven of the eight previously identified 

proteins of interest that were observed in the previous patients EV comparison (only lamin 

B2 was absent in PT4). However, for PT5 sample, there were no proteins observed in higher 

quantity than in control, in fact, there were 1148 proteins present in lower levels than its 

control, suggesting a possible problem with this sample or the control used.  

Other significant proteins that were found with an increased level in patients were Hb delta 

chain, mutant β-globin (fragment), and peroxiredoxin-2 (PRDX2). Hb delta chain, which binds 

to α-globin chain to form HbA2, was observed to be increased in two patient samples (PT3 

and PT4); while, the mutant β-globin, representing an aberrant HbE was more abundant in 

the three patient samples (PT1, PT3, and PT4) than in their matched controls. PRDX2, one of 

the critical redox proteins, was found to be significantly increased in two of five patient 

samples (PT3 and PT4).   

 

3.2.9 Comparison of the proteomic profiles between the in vitro 

generated EVs and reticulocyte membrane 
The degree of similarity between proteomes of EVs released from the in vitro reticulocytes of 

samples PT1, PT2, and PT3 (section 3.2.8), and the proteomes of their reticulocyte 

membranes (section 3.2.6) were explored. The number of proteins mutually shared between 

the membrane and EV proteomes is shown in Table 3.6. A total of 162 common proteins were 

found across all three samples in both their in vitro erythroid membrane and EV preparations 

from the same patients (n=3) (Figure 3.15A). 
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Table 3.6. The total number of proteins (>2 unique peptides) identified from the three samples 
(PT1, PT2, and PT3) from the in vitro erythrocyte membrane preparation and from the in vitro 
reticulocyte EVs. 
  

 

 

 

 

 

 

 

 

A number of the commonly shared proteins between the red cell membrane and EVs in PT1, 

PT2 and PT3 was 173, 178, and 166 proteins, respectively, of which 162 proteins were shared 

between all three samples (Figure 3.15A).  

Sample 
Membrane 

proteins 
EV proteins Mutual proteins 

PT1 2522 632 173 

PT2 2531 651 178 

PT3 2518 616 166 
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Figure 3.15. Proteins shared between the erythroid membrane and EV preparations from in 
vitro thalassaemic patient (n=3) and matched controls (n=3).  
(A) Venn diagram of 162 common proteins found across both erythroid membrane and EV 

groups from the same in vitro patients (n=3) and matched control samples (n=3); (B) Three 

categories of GO (biological process, cellular component, and molecular function) depicting 

the 162 shared proteins. 

 

The 162 common proteins shared between reticulocyte membranes and EVs were analysed 

using Webgestalt software (http://www.webgestalt.org/) (see Figure 3.15B). Based on their 

cellular component, the samples contained 117 out of 162 (72%) of known EV constituents, 

whilst 101 (62%) of the total 162 proteins were of vesicular origin. The majority of these were 

protein binding (GO:0005488, 75%), whilst 126 proteins (GO:0044237, 77%) were found to be 
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involved with the metabolic process. Also detected were proteins that can be annotated as 

ribosomal proteins, proteins with antioxidant activity, for example, catalase, SBP1, PRDX2, 

PRDX6, and Hb subunit mu, Hb subunit delta, proteins in the coagulation cascade and platelet 

activation, e.g., serpin, fibronectin, coagulation factor V, plasminogen, etc. Moreover, 

haptoglobin and hemopexin were also present, including other high prevalence erythroid 

proteins as defined by Bryk et al. (2017), such as AHSP, PRDX2, biliverdin reductase B, 

transferrin receptor, TRIM58, and lamin B2 (400).  

 

3.3 Discussion 
 

This chapter describes the successful in vitro culture and investigation of the proteomic 

profiles of in vitro generated HbE/β-thalassaemia erythroid membranes and extracellular 

vesicles. A collaboration was initiated between the Siriraj Medical Research Center, Bangkok, 

Thailand, and NHSBT, Bristol, UK, whereby patient and control blood samples were shipped 

from Bangkok to Bristol for the purposes of this project. Sample handling and the transport 

process were evaluated, and experiments were designed to optimise erythroid cell culture 

conditions for low sample volumes. Since the goal of the experiments was to generate as 

many reticulocytes from anaemic patients as possible, the erythroid culture method 

described by Griffiths et al. (128) was successfully optimised further by the inclusion of DXM 

to generate the maximum number of reticulocytes from as minimal patient sample possible. 

Using this method, a peripheral blood sample of 24 ml was shown to be sufficient to provide 

CD34+ HSCs for in vitro erythroid culture.   

 

3.3.1 Effects of delaying CD34+ cells isolation on in vitro erythroid 

culture 
Due to the potential delay in CD34+ isolation because of the need to ship fresh blood samples 

from Thailand to Bristol, the work described in this chapter explored the effects of storage 

time on CD34+ cell yield and viability. It was observed that the numbers of isolated HSCs were 

not significantly different when blood samples were stored before CD34+ isolation. This was 

in agreement with the observations of Moroff et al. (2004), in which CD34+ blood progenitor 
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cells were successfully harvested after up to 72 hours of storage at 1-6°C (401). These findings 

were also consistent with other reports, where the storage time of blood (up to 5 days) did 

not have a significant effect on the numbers of CD34+ cells obtained (401, 402). The only 

difference observed between the CD34+ isolation from fresh and stored blood was a potential 

impact on cell maturation. The D5 and D3 samples maturation rates were slightly higher than 

D0 samples, as observed in Figure 3.2, but more samples should be tested to confirm this 

finding. In this project, the overall time delay experienced for delivery of fresh blood samples 

from Thailand to Bristol was three days. Therefore, the transportation process was within the 

acceptable range and was not anticipated to have a detrimental impact on the erythroid 

cultures.  

In addition, to further mitigate the possibility that storage could affect the cells, peripheral 

blood mononuclear cells were also shipped frozen and similar results were observed using 

these cells. There are multiple reports in the literature that have studied the freeze-thaw 

process of cord blood as a source of progenitor cells (403-405). In the study most relevant to 

this work, Martinson et al. (1997) compared fresh apheresis samples with samples stored in 

liquid nitrogen (n=7) and found no difference between CD34+ cell numbers isolated and more 

importantly, no significant difference between fresh and frozen/thawed samples regarding 

the progenitor cells obtained, including their ability to proliferate and mature during erythroid 

culture (402). 

 

3.3.2 Glucocorticoids increase the yield of erythroid cells and have 

minimal effects on reticulocyte derived extracellular vesicles 

composition. 
As discussed in Chapter 1, section 1.1.2, there is considerable evidence in the literature 

suggesting the effectiveness of glucocorticoids in promoting proliferation in the early stages 

of erythroid cell development (101, 103, 104). The glucocorticoids DXM or HC were added to 

the Griffiths et al. (128) three-stage culture system (see the protocol in section 2.2.3, Chapter 

2) between day 0 and day 11 and this was shown to improve erythroid progenitor 

proliferation (2.81 ± 0.78 fold for HC and 2.49 ± 1.24 for DXM compared to the controls), with 

total reticulocytes obtained at the end of the cultures for three groups being 8 x 106 ± 1.5 x 

105  cells, 3.28 x 107 ± 3.9 x 106 cells, and 4.74 x 107 ± 2.1 x 107 cells for CT, HC, and DXM, 
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respectively. A delay in terminal differentiation in the culture incorporating DXM or HC was 

also evident, as previously reported (104, 406).   

Proteomics studies were carried out on the EV samples isolated from in vitro cultured 

reticulocytes filtered at the end of culture period of control and the DXM stimulated cultures. 

This experiment confirmed that the steroid addition did not significantly alter the EV 

proteome profiles and could, therefore, be applied to the cultures without significantly 

affecting the interpretation of the proteomics data. Nine proteins with increased expression 

were observed to be released in EVs isolated from in vitro cultured reticulocytes in both 

steroid treatment arms (DXM and HC). Of these nine identified proteins, c-Kit has been 

reported to have its role in haematopoiesis, not only promoting proliferation but also delaying 

differentiation (72, 104). This protein acts as a cell-surface receptor to the cytokine Kit ligand 

(KITL)/stem cell factor (SCF) and its downstream effect results in cell proliferation and cell 

survival regulation (73, 407). The results of our study were in agreement with a published 

study of DXM treatment resulting in the maintained expression of c-Kit (104). Varricchio et al. 

(2012) demonstrated the synergistic effects of KITL/SCF increasing the proliferation of 

erythroblasts in the presence of DXM which was postulated that KITL/SCF triggers 

glucocorticoid receptor expression via ERK pathway (90).  

Among the nine identified proteins (as listed in Table 3.1) was ZNF512, which carries four 

putative zinc finger motifs necessary to transcription regulation and alpha-2-antiplasmin 

protein which inactivates plasmin in the process of fibrinolysis (408), a known EV constituent 

protein (GO:0072562). Overall, other than the alteration in the proteins highlighted above, 

there was a minimal qualitative difference in EV proteomes between control and steroid-

treated cultured cells, suggesting that DXM treatment does not influence the composition of 

the EVs, although it does increase the cell proliferation, justifying its use in our experiments. 

 

3.3.3 Ex vivo erythropoiesis of thalassaemic erythroid cells compared 

to the matched controls 
The erythroid cell proliferation and differentiation were monitored in ex vivo erythroid 

cultures of HbE/β-thalassaemia patients and healthy matched controls sourced from 

Thailand. Previously, reports have observed that cultured erythroid cells of HbE/β-
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thalassaemia patients showed a 2.5-fold greater expansion rate than normal controls on day 

7 of culture (409). In our study, the proliferation of HbE/β-thalassaemia patients illustrated 

greater fold increase of cell proliferation in four of the five separate cultures, relative to the 

matched controls (Figure 3.6 and Figure 3.10).  

This finding was also consistent with a study by Leecharoenkiat et al. (2011) where in vitro 

erythroid culture of HbE/β0-thalassaemia erythroblasts (n=3) was shown to have a greater 

expansion rate than the normal control erythroblasts (218). However, our results were in 

contrast with Mathias et  al. (2000), who reported cell proliferation from thalassaemia major 

(β0/β0) patients being significantly lower than the control (159). The key explanation of the 

discrepancy between the studies could be the presence of SCF in our culture system (410).  

Regarding cell maturation, thalassaemic erythroblasts differentiated faster than their 

matched controls in the early stage of erythropoiesis (day 7 to day 9); whilst, the cells 

remained at the polychromatophilic stage from day 12 to day 17 (Figure 3.8 and Figure 3.9). 

This finding was in agreement with other studies of β-thalassaemic erythroblast cultures (159, 

218). However, it was difficult to fully compare these data to other studies, due to their use 

of different culture systems and different types of β-thalassaemia. 

Among the tested thalassaemic samples of this study, PT2 matured faster than the other 

samples and had the lowest pronormoblast population on day 9 of the culture (29%). The 

short period of the early phase of erythropoiesis of this sample probably explained why PT2 

had the lowest proliferative fold change, given that no increased number of dead cells was 

observed. Our work showed similarities with Mathias et al. who observed a slightly faster 

maturation of β0/β0 thalassaemic cells during the early stage of erythropoiesis up to day 7, 

i.e., an increase in the proportion of basophilic normoblasts over pronormoblasts between 

day 4 and day 7 of the culture (159). In later stages, the delay of erythroid maturation was 

observed in both this study (Figure 3.8) and the study by Mathias et al. When considering the 

patient’s clinical parameters, PT2 had the highest Hb (Hb 8.6 gdl-1; Table 3.2) than the other 

two (PT1 & PT3) samples. However, neither the greatest proliferation rate (Figure 3.6) nor the 

slowest differentiation rate (Figure 3.8) was observed in PT3 sample who had the lowest Hb 

level (Hb 6.6 gdl-1) in this study. Altogether, there was no apparent relationship between in 

vitro erythroid proliferation rates and severity of anaemia in the HbE/β-thalassaemia patients 
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identified in this study. Note that, statistical analysis was not performed due to the small 

sample size.  

When focusing on the cell death rates, in our project, they were comparable between patients 

and controls at the polychromatophilic cell stage, which would otherwise have indicated IE 

(159, 236). At the stage of the culture when polychromatophilic normoblasts were prominent  

in patients’ cells (day 12, Figure 3.9), the death rate did not increase (Figure 3.7). We 

hypothesise that the three-stage culture system used here and/or the addition of 

corticosteroids to the culture ameliorate the effect of ROS towards HbE/β-thalassaemic 

erythroid cells in a yet undetermined way. One possible explanation is that the inclusion of 

SCF in the growth medium could be one of the factors reducing apoptotic rates in 

thalassaemic cells in our culture system. In support of this supposition, a published study of 

culture system with SCF additive with or without DXM showed that SCF could reduce the 

apoptotic rates of β-thalassaemia erythroblasts to the level comparable to the control cells 

(410). According to this study by Gabbianelli et al. (2008), cultured thalassaemic erythroid 

cells were able to successfully differentiate and complete the terminal maturation. Other 

studies of the in vitro erythropoiesis of β-thalassaemia, such as a study by Leecharoenkiat and 

colleagues (2011) which used the culture protocol containing SCF, reported that there was no 

increase in apoptotic cells during and after the polychromatophilic normoblast stage of the 

cultured HbE/β-thalassaemia erythroblast compared to the normal controls (218). Mathias et 

al. (2000) did observe a higher death rate at the same stage of maturation, indicating the 

occurrence of ineffective erythropoiesis in their study of β-thalassaemia major erythroblasts 

(159) but the culture protocol of the latter work was a one-stage culture system previously 

described by Malik et al. (1998) that used hydrocortisone but did not contain SCF (151).  

To date, there was no available data comparing the proliferation rate between β-thalassaemia 

patients with their clinical data. In the current study, when considering the patients’ clinical 

parameters (Table 3.2), neither the Hb nor the HbF levels were consistent with the 

proliferative fold change. However, the decreased of apoptotic rates of β-thalassaemia major 

and β-thalassaemia intermedia observed in the work of Gabbianelli et al. (2008) was in 

concordance with the higher levels of HbF directly measured in the in vitro erythropoiesis 

system (410). This suggests that there may be other factors that influence the in vitro 
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synthesis of HbF, and the in vivo HbF levels or the severity of the patients do not associate 

with the proliferation rate or survival of in vitro erythroblasts.  

In conclusion, our experiments have demonstrated an increased proliferative fold change of 

ex vivo erythropoiesis of HbE/β-thalassaemic erythroblasts using this specific culture system 

with a slightly faster maturation rate in the early stage of erythropoiesis when compared to 

the matched controls. However, the extent of cell proliferation did not relate to the clinical 

parameters of the patients. There was no observed increase in a dead cell proportion in 

thalassaemic samples but at delayed differentiation from the polychromatic stage was 

observed. This may be explained by the optimal three-staged culture system that we used for 

the patient culture and potentially by the presence of SCF, which has been suggested to 

reduce apoptosis in thalassaemia samples (410).  

 

3.3.4 Proteomic comparison of in vitro reticulocyte membranes 

between patient and control 
Numerous proteomic studies of reticulocytes and erythrocytes have been published, 

endeavouring to determine the underlying mechanisms of erythroid maturation process (19, 

145, 400, 411, 412). This body of work revealed the composition of the reticulocyte 

membrane (prepared from reticulocytes at day 21 of the in vitro erythropoiesis, section 

2.2.11, Chapter 2), comprising over 2,000 proteins, through top-down proteomics analysis 

(145, 400). The proteins identified in our project within reticulocyte membranes were in 

agreement with those reported in the previous studies. Of these proteins, the thalassaemic 

membranes, when compared to control reticulocyte membranes, had increased amounts of 

protein markers known to be lost during reticulocyte maturation. The reported proteins 

included the transferrin receptor (CD71), β-tubulin, myosin-9, and myosin-10 (19, 411). The 

composition of proteins we have observed provided further evidence that the cultured 

thalassaemic reticulocytes may be more immature than the normal control reticulocytes, 

which also agreed with the delay in maturation observed in the patient cultures compared to 

controls (as in section 3.2.5; Figure 3.8). 

Most previous proteomics studies conducted on β-thalassaemic erythroid cells used in vivo 

source of erythrocytes (348, 374). Only one published report has studied proteome of in vitro 



121 
 

cultured erythroid cells of HbE/β0-thalassaemia disease, and this study identified 18 proteins 

with altered abundance between thalassaemic erythroblasts and controls on day 7 and day 

10 of the culture (218). Leecharoenkiat et al. (2011) carried out 2-DE gel electrophoresis, 

followed by quantitative proteomics analysis with MS/MS. This report observed that proteins 

involved with the metabolic state (11 out of 18) were up-regulated in HbE/β0-thalassaemia 

when compared to normal erythroblasts. The up-regulated proteins were, for example, flavin 

reductase, enolase 1 alpha, aldolase, glucosidase, carbonic anhydrase 1, triosephosphate 

isomerase, GAPDH, and PRDX2 (218). Our study was in accordance with this finding, where 

the majority of proteins with increased expression in thalassaemic reticulocytes were proteins 

involved with the biological and metabolic process, unlike proteins identified from in vivo 

produced erythrocyte membranes where most of the proteins are involved in oxidative injury 

(374). The authors postulated that thalassaemic erythroblasts had higher active metabolic 

state than controls and measured the changing ratio of NADH/NAD+ to confirm this 

hypothesis (218). There are several important differences between the study by 

Leecharoenkiat et al. and our project. Firstly, our study used TMT nano-LC-MS/MS, a highly 

sensitive technology for proteomics analysis, which had the power to identify more than 

2,000 proteins. Secondly, Leecharoenkiat et al. focused on erythroblasts on day 7, 10, and 14 

of erythroid culture, whilst our source of erythroid membranes was filtered reticulocytes on 

day 21 of the culture. This is one of the most important differences between the two studies, 

as a comparison at different stages of cell maturation would naturally result in diverse types 

of proteins detected (19, 411). Lastly, culture protocols used were different; no steroid was 

added to the Leecharoenkiat’s culture system.  

 

3.3.5 Proteomic comparison of in vitro EVs derived from cultured 

reticulocytes of HbE/β-thalassaemia patients. 
While substantial evidence has focused on the proteomes of haemoglobinopathic 

erythrocytes (374, 391, 392), only two studies have examined EVs shed from in vivo 

thalassaemic red cells (348, 380). Both studies observed that proteins with altered abundance 

in thalassaemia intermedia samples were antioxidant proteins, e.g., heat shock proteins and 

peroxiredoxin, and α-globin (348, 380). To our knowledge, this work is the first to explore 

proteomic profiles focusing on EVs derived from in vitro pathological adult reticulocytes. 
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When compared between in vitro EVs of thalassaemic and control reticulocytes, the 

proteomic results did not identify proteins associated with increased oxidative stress. Most 

of the proteins were known constituents of EVs that are involved in the maturation of 

reticulocytes and the enucleation process (see Table 3.5). Only two antioxidant proteins were 

more abundant in the patient over control EVs – namely, catalase and selenium binding 

protein 1. In addition, the PT2 sample did not show the increased abundance of these eight 

proteins (as listed in Table 3.5) over the matched control. This finding is in agreement with 

the proliferative growth of this sample, which was not greater than its matched control (see 

Figure 3.3). Therefore, we could potentially conclude that the proteomics of in vitro 

thalassaemic EVs derived from cultured reticulocytes did not provide substantial evidence of 

increased oxidative injury or increased apoptosis, but only illustrated the slower maturation 

of thalassaemic cells when compared to the normal controls. Importantly, this result agreed 

with the previous culture data (presented in section 3.2.5), where maturation was delayed, 

and IE was not detected in the in vitro erythropoiesis of the patients' thalassaemic cells.  

One recent study reported 367 unique proteins identified from exosomes derived from in 

vitro cultured cord blood reticulocytes (413). This number of proteins was comparable to the 

286 proteins identified in EV samples in our study. A comparison of the composition of the 

EVs from cord blood reticulocytes identified a similar number of the membrane and cytosolic 

proteins. Membrane proteins identified by Diaz-Varela et al. (2018) include transferrin 

receptor, transporter proteins (Na+/K+ transporting ATPase, glucose transporters, neutral 

amino acid transporters), integrin alpha and beta, CD44, CD59 glycoproteins, etc., while 

common exosome proteins were not observed in either study – i.e. flotillin, stomatin, CD55, 

and acetylcholinesterase. Several histone proteins, LDH, GADPH, 6-phosphogluconate 

dehydrogenase,  S100, Rab GTPase, and galectin were key cytosolic proteins identified; our 

finding was in agreement with these observations (413). 

 

3.3.6 Proteomic profiles of reticulocytes membrane and their 

derived EVs 
Regarding our proteomic findings, the proteins with altered levels, observed either in in vitro 

cell membranes or in reticulocyte EVs, were proteins contributing to the physiological 

mechanisms such as binding activity, metabolic activity, or even enucleation process, and not 
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the proteins known to respond to stress or stimuli (See Figure 3.11B and Figure 3.14B). The 

anticipated alterations in antioxidant proteins and ROS pathways reported previously was not 

observed. This may mean that the cells experience less ROS stress in our culture system or 

that the cells are losing these proteins when the membranes were prepared. The follow-up 

study with the whole cell lysate would elucidate this finding.  Therefore, the proteome profiles 

of in vitro reticulocyte membranes and EVs obtained here were similar in the patient and the 

control samples. However, the proteome of whole-cell lysates of patients and matched 

controls would be needed to fully validate that such cultured reticulocytes are genuinely 

similar to each other. Notably, the subtle differences detectable among the proteomes could 

be explained by the differences in the maturation stage between individual samples.  

 

3.4 Chapter summary 
 

In summary, the addition of DXM to the Griffiths et al. (2012) three-stage culture media was 

shown to be an effective way to enhance the proliferation of in vitro thalassaemic erythroid 

cells, even when using a low starting number of CD34+ progenitor cells isolated from small 

blood. The numbers of filtered reticulocytes obtained by this cell culturing methodology were 

sufficient for pelleting and enrichment of EVs used in experiments further described in this 

chapter. In addition, the ex vivo erythropoiesis of thalassaemic cells did not exhibit the 

ineffective erythropoiesis observed by Mathias et al. (159), but this more consistent with 

other reports (216, 218, 409, 410).  

The experiments described in this chapter have generated the in vitro reticulocyte membrane 

and EV proteome from thalassaemic patients and matched controls for the first time. 

Surprisingly, the proteomics of both EVs and in vitro reticulocyte membranes from patients 

and controls were very similar, and we did not observe any prominent increased in 

antioxidant proteins expression in the patient samples, as we had originally anticipated. The 

proteomics findings corroborated the in vitro erythropoiesis experiment of culturing 

thalassaemic cells, where IE was not observed in the patients’ samples or was masked due to 

the culture methodology used. These results led us next to explore the proteomic profiles of 

in vivo sources of extracellular vesicles in thalassaemic patients, discussed in the next chapter.  



124 
 

CHAPTER 4 

 

CHARACTERISATION AND 

PROTEOMICS ANALYSIS OF THE IN 

VIVO GENERATED EXTRACELLULAR 

VESICLES   
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4.1 Introduction 
 

The observed heterogeneity of clinical presentation of Haemoglobin E (HbE)/β-thalassaemia 

patients cannot be explained entirely by the patients’ genetic background. Several factors 

play a role in this heterogeneity, such as incomplete (β+) or complete (β0) loss of the β-globin 

chain, association with hereditary persistence of fetal haemoglobin, the degree of disparity 

between α- and non–α-globin chains, the starting onset and requirement for blood 

transfusion therapy (as reviewed in Chapter 1) (189). There is emerging evidence suggesting 

that extracellular vesicle (EV) generation may contribute to the variation of clinical 

manifestations of thalassaemic patients (340, 414). As discussed in Chapter 1 section 1.5, the 

protein composition of EVs can mirror the ongoing pathology of the cells of origin, and even 

indicate the severity and prognosis of the disease (323), as in vivo generated EVs originate 

from various cell sources, e.g., erythrocytes, endothelial cells, and platelets. EVs can also 

contribute to disease pathology or complications and are widely observed in many RBC 

diseases, e.g., red cell membrane disorders (415), sickle cell anaemia (16, 416), and 

thalassaemia (348, 358, 380). For example, EVs of platelet origin were observed to associate 

with the hypercoagulable state in transfusion-dependent β-thalassaemia major patients 

(417), whilst the red blood cells-derived EVs from thalassaemia intermedia patients contain 

an enzyme that involved in redox maintenance (348). This accumulating evidence suggests 

that the further study of in vivo generated EVs may inform our understanding of the 

pathophysiology of thalassaemia. Therefore, the work described in this chapter will set out to 

investigate the in vivo EVs derived from plasma of HbE/β-thalassaemic patients with the aim 

of determining whether there are any detectable EV properties that may be useful in the 

clinical management of thalassaemic patients.  

To be able to undertake this study successfully, firstly the best method for EVs isolation and 

quantification from plasma needed to be determined prior to the qualitative study of the EVs 

present in thalassemic patients. 
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4.2 Results 
 

4.2.1 Isolation of extracellular vesicles 
In order to assess the best methodology for EV isolation from plasma, both UC and filtration 

methods were explored (see Chapter 2 section 2.2.7.1 for methods used). The NTA technique 

(see Chapter 1 section 1.5) was used to assess the effectiveness and recovery yield of EVs 

obtained by these two different isolation methods.  

Two thalassaemic plasma samples, collected in 3 ml citrate tubes, were centrifuged at 2000g 

for 10 minutes in order to separate and discard all the cellular components. They were then 

frozen at -20°C and transported on dry ice from Thailand to NHSBT Filton, UK. The samples 

were divided into two aliquots each and processed for UC or filtration as described. The first 

aliquot was used for UC isolation method; the pellet was resuspended with PBS and diluted 

for testing by NTA, according to the sample preparation protocol for NTA described in section 

2.2.9 in Chapter 2. The remaining supernatant was centrifuged with UC for the second time 

using the identical settings; a sample was taken and then repeated UC once more (three times 

in total). Vesicle size and enrichment were evaluated after each centrifugation step by NTA.   

The second plasma aliquots were filtered by using a MF-Millipore®, 0.22 μm pore size filter 

(Merck, Darmstadt, Germany) as described in (section 2.2.7.1 in Chapter 2). Size distribution 

and concentration of the isolated EVs were measured using NTA, and then a comparison was 

made between the two isolation methods.  

As anticipated, the concentrations of plasma derived EVs were observed to be lower in the 

original primary plasma samples when compared to concentrated plasma following either 

sequential centrifugations or filtration, confirming that both methods successfully enriched 

the original plasma. The concentrations of EVs obtained after three UC (mean ± SE; 8.91 x 108 

± 3.82 x 106 particlesml-1) were slightly lower than those obtained after only one 

ultracentrifugation (9.88 x 108 ± 1.68 x 107 particlesml-1). The overall differences in yield were 

within 15% between the 1st UC and the 3rd UC (Figure 4.1A); while in both samples, the EV 

sizes after three UC (161.2 ± 0.74 nm) were lower than after one UC (213.1 ± 3.39 nm) (Figure 

4.1B). This suggests that repeated UC can affect the integrity of EVs, and therefore, all the 

experiments in this project used only a one-time UC protocol for EV isolation by the 

differential centrifugation technique.  



127 
 

The differences in EV density between the two enrichment methods, one-time UC and 

filtration were 9.88 x 108 ± 1.68 x 107 particlesml-1 and 8.87 x 108 ± 3.82 x 106 particlesml-1, 

respectively; as shown in Figure 4.1C. The concentration of EVs after three-time UC (8.91 x 

108 ± 3.82 x 106 particlesml-1) and the post-filtration were comparable (Figure 4.1C). Regarding 

the distribution of particle size, the filtration technique provided a more homogeneous 

particle population, and particle enrichment (Table 4.2, Figure 4.1B and D) attained a 

satisfactory range (i.e. <220 nm, which correlated to the filter pore size).  

 

 

Figure 4.1. Comparison of different EV enrichment methods from plasma.  
Two thalassaemic plasma samples tested. Bar graphs depict (A) individual and (C) average 

concentrations of EVs obtained from the primary plasma, platelet-free plasma (PFP), plasma 

following one (UC1), two (UC2), or three (UC3) time(s) ultracentrifugation, and plasma 

following filtration. Size distribution (SD50) of EVs is shown in (B) for individual samples and 

(D) for average values. SD50 in particle size distribution designates distribution value (D-

value) which is the intercept for 50% (D50) or midpoint of the cumulative mass of particles in 

a particular sample, according to an arrangement of particle diameters. Note that, in order to 

determine size ranges, D10 and D90 are also required (383). All parameters were measured 

by nanoparticle tracking analysis (NTA; NanoSight Ltd; Malvern Panalytical) following the 

protocol described in section 2.2.9 in Chapter 2. 
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4.2.2 Quantitative measurements of EVs derived from plasma of 

HbE/β-thalassaemia patients 
Plasma samples of four thalassaemic patients (Table 4.1) were centrifuged to separate cellular 

components and then were frozen for transportation and storage. Although the 

freezing/thawing process is known not to affect the numbers of vesicles in cell-free plasma 

(352), this process was kept to a minimum. At the point of testing, the samples were thawed 

and aliquoted. Average EV concentrations of 1.38 x 107 ± 4.65 x 106 particlesµl-1 for plasma 

sample 1, 2, 3, and 4 were measured by flow cytometry using commercial counting beads (see 

section 2.2.8 in Chapter 2); whereas the average concentrations of EVs from the same set of 

samples identified by NTA (see section 2.2.9, Chapter 2) were 7.65 x 108 ± 1.13 x 108 

particlesµl-1 for sample 1 to 4. The individual vesicle numbers obtained using these two 

methods are summarized in Table 4.2. When considered alongside clinical parameters of 

these patients (Table 4.1), the splenic status of the patients did not show any statistical 

association with the numbers of circulating plasma EVs measured by either method (data not 

shown).   

Table 4.1. Clinical information of the HbE/β-thalassaemia patients enrolled in this experiment. 
 

Patient Hb (gdl-1) Splenic status Transfusion history 

P1 8.9 intact 
Last transfusion 2 years ago 

(during pregnancy) 

P2 7.0 intact 
Intermittently 

(last transfusion 4 weeks ago) 

P3 7.2 Post-splenectomy Last transfusion over 5 years ago 

P4 5.8 Post-splenectomy Intermittently 
Hb – haemoglobin  
 

Table 4.2. Quantification of in vivo sourced EVs from the plasma of HbE/β-thalassaemia 
patients. Comparison of NTA and flow cytometry techniques. 
 

Sample 
NTA 

(particlesµl-1) 

FC 
(particlesµl-1) 

Size distribution 
(nm) 

Splenic 
status 

Plasma 1 7.07x108 ± 5.12x107 1.20 x 107 178±20.6 Intact 

Plasma 2 4.77x108 ± 1.33x108 2.13 x 107 175±29.5 Intact 

Plasma 3 8.77x108 ± 3.48x107 2.05 x 107 181±30.4 Splenectomy 

Plasma 4 1.00x109 ± 5.0x108 1.36 x 106 189±37 Splenectomy 

NTA was displayed as an average of five video recordings per sample in a format mean±SE. NTA – 

nanoparticle tracking analysis, FC – flow cytometry 
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The size distribution of the EV samples obtained by NTA as D50 values (see definition of D50 

in section 2.2.9, Chapter 2) was 178, 175, 181, and 189 nm for sample 1, 2, 3, and 4, 

respectively (see Table 4.2). Therefore, the quantities of EVs detected by NTA technology 

were higher than those obtained by flow cytometry. This result is consistent with the known 

limitations of flow cytometry, as this methodology cannot detect particles of less than 400 

nm.  

 

4.2.3 Exploring the relationship between in vivo EV generation and 

clinical manifestations of HbE/β-thalassaemia patients using NTA  
Plasma samples of the non-transfusion dependent HbE/β-thalassaemia patients (n=16) and 

age- and gender-matched controls (n=13) were analysed for their EV concentrations using 

NTA. Clinical information of the patients was taken into account when exploring the 

relationship with the numbers of vesicles. Table 4.3 depicts numbers of EVs of the patients 

and controls, their haemoglobin (Hb) levels, platelet counts, and the splenic status. The 

statistical significance was defined as P-value <0.05.  

In the HbE/β-thalassaemia patient group, the Hb levels ranged from mild to severe anaemia 

with a mean Hb of 7.57 ± 1.50 gdl-1 (mean ± SD) for the whole group. Individually, the levels 

were 8.48 ± 1.24 gdl-1 for the non-splenectomised (n=8), and 6.66 ± 1.19 gdl-1 for the 

splenectomised groups (n=8). This difference between the groups was statistically significant 

(unpaired t-test; P-value = 0.0096), indicating that the clinical background of the 

splenectomised patients was more severe than the non-splenectomised ones. Average EV 

abundance detected in the patients, measured through NTA, was slightly higher than in the 

controls, but the difference was not statistically significant (8.39 x 107 ± 4.65 x 107 particlesµl-

1 vs 7.87 x 107 ± 4.02 x 107 particlesµl-1, respectively; unpaired t-test; p-value = 0.753). Also, 

the numbers of EVs in patient samples did not correlate with a degree of anaemia (Hb level). 

The EV levels were increased in splenectomised patients when compared to the patients who 

have the intact spleen; but this result was not statistically significant (Mann-Whitney-U test; 

p-value = 0.059). However, as previously observed (418), there was a significant correlation 

between platelet counts and the number of EVs in the patient group (Spearman’s rho r = 0.62; 

p-value = 0.01, two-tailed).  
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Table 4.3. The concentration of EVs from circulating plasma vesicles derived from HbE/β-
thalassaemia patients (n=16) with recorded splenic status and controls (n=13).  

Patient 
Concentration 

 (particlesµl-1) 

Hb 

(gdl-1) 

Platelet 

count 

(x103/µl) 

Splenic status Control 
Concentration 

 (particlesµl-1) 

P1 3.49 x 107 7.3 195 intact C1 3.28 x 107 

P2 6.8 x 107 6.7 717 splenectomised C2 6.69 x 107 

P3 4.49 x 107 8.6 325 intact C3 7.52 x 107 

P4 8.24 x 107 8.9 227 intact C4 6.18 x 107 

P5 6.66 x 107 7.0 134 intact C5 5.16 x 107 

P6 3.41 x 107 8.2 164 intact C6 3.51 x 107 

P7 9.07 x 107 7.5 755 splenectomised C7 7.02 x 107 

P8 9.01 x 107 7.9 858 splenectomised C8 6.86 x 107 

P9 5.36 x 107 7.7 301 intact C9 8.11 x 107 

P10 7.53 x 107 10.9 251 intact C10 6.5 x 107 

P11 2.09 x 108 5.8 733 splenectomised C11 1.95 x 108 

P12 1.11 x 108 9.2 398 intact C12 1.11 x 108 

P13 8.46 x 107 5.7 946 splenectomised C13 1.09 x 108 

P14 1.78 x 108 7.9 795 splenectomised 
 

 

P15 6.7 x 107 7.2 765 splenectomised 
 

 

P16 5.22 x 107 4.6 698 splenectomised 

 
 

Mean 

(𝒙̅) 
8.39 x 107 

   Mean 

(𝒙̅) 
7.87 x 107 

SD 4.65 x 107    SD 4.02 x 107 
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4.2.4 Proteomic profiles of in vivo circulating EVs 
 

4.2.4.1 Comparison of proteome profiles of the in vivo circulating EVs derived 

from plasma of HbE/β-thalassaemia patients and normal healthy individuals 
Fifteen HbE/β-thalassaemia patients and 15 healthy controls were recruited in order to 

explore the proteomics of EVs in this study (see  Table 4.4 for their clinical parameters). The 

circulating EVs were isolated from plasma of HbE/β-thalassaemia patients and control 

samples as outlined in Chapter 2, by using UC technique. To reduce biological variation 

between individuals, quantitative proteomics of the circulating EVs were carried out across 

three separate sets of pooled-patient (n =5) and pooled matched control samples (n=5), as 

detailed in Chapter 2, section 2.2.1.4. Schematic representation of the samples used in these 

experiments is displayed in Figure 4.2. 

 

 
Figure 4.2. Schematic of HbE/β-thalassaemia patients and control samples used for the 
proteomic analysis of the in vivo generated EVs.  
Three sets of pooled HbE/β-thalassaemia samples comprising a total of 15 individual samples 
were used for Nano-LC Tandem Mass Tag (TMT) with mass spectrometry analysis (MS/MS). 
Furthermore, six unrelated individual thalassaemic samples were also used for proteomic 
comparisons. All thalassaemic samples were compared to their matched controls. 
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 Table 4.4.  Clinical parameters of 15 patients enrolled for the EV proteomics. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N/A – not available

PT Sex 
Splenectomy 

status 
Hb 

Analysis 
Hb 

(gdl1) 
Hct (%) 

MCV (fl) 
(82-97) 

Nucleated 
RBC (/100 

WBC) 

Platelet Count 
(x103/ul) 
(157-420) 

WBC 
(x103/ul) 
(5.3-10) 

Neutrophil 
(%) (59-69) 

Lymphocyte 
(%) (34-42) 

Ferritin 
(ngml-1) 

1 M Intact 
6.3%A2 
54.8%E 
38.9%F 

80 26 53 7 123 7.4 64.4 29.4 595.5 

2 M Intact 
55.6%E 
31.9%F 

86 25.5 68 N/A 325 5.6 57.5 36 N/A 

3 F Intact N/A 66 19.9 60 N/A 204 6.05 47.6 45.3 392 

4 F Intact 
35.5%E 
54.3%F 

89 26.9 58 N/A 227 8.8 59.7 30.9 310 

5 F Intact N/A 70 22.2 69 N/A 134 10.5 59.2 35.2 1101 

6 M Intact 
60.9%E2

8%F 
49 18.5 57 34 49 7.16 36.8 57.4 334.7 

7 M Yes 
34.5%E 
65.5%F 

79 27.4 65 229 858 14.9 34.3 56.3 387 

8 M Yes N/A 79 26.5 81 274 795 17.51 42.6 40.8 1263 

9 F Yes 

41.3%A 
5.6%A2 
14.4%F 
38.7%E 

67 21.5 75 151 717 20.7 36.5 48.6 5328 

10 F Yes 
0.3%A 

3.1%A2 
94.9%F 

46 16 79 490 698 39.9 62 28 766 

11 M Intact 
44.1%E 
55%F 

68 23.4 58 N/A 221 7.1 64.4 29.5 336.7 

12 F Intact N/A 77 23.8 56 N/A 301 8.6 54.6 35.1 N/A 

13 F Yes N/A 72 24.2 71 258.4 765 17.7 41.1 49 N/A 

14 F Yes N/A 58 20.4 72 534.3 733 8.6 26.1 65.5 N/A 

15 F Intact N/A 92 28 60 2 398 8.06 67.1 26.8 645 
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When filtered for proteins with >2 unique peptides, a total of 685, 1127, and 859 unique 

proteins were identified in each of the three individual experiments. Approximately 80% of 

the proteins detected in each experiment were known constituents of EVs, matching the 

Gene Ontology system (GO:1903561) from the AmiGO v1.8 database (Figure 4.3A). There was 

a total of 212 proteins detected that were common across all experiments (Figure 4.3B). The 

isolated EVs contained proteins from a mixture of cellular sources, including platelet proteins. 

The list of all proteins detected in this experiment is available as the supplemental data of the 

published article by Kittivorapart et al. (2018) (419). Table 4.5 lists 19 proteins in the EV 

samples that were identified to be consistently more abundant in the HbE/β-thalassaemia 

patient samples than the controls, across all three experiments. There were only two proteins 

detected with differentially reduced abundance in the patient samples (Table 4.6). The 

classification of these proteins is shown in Figure 4.4 using STRING: Functional protein 

association network (www.string-db.org). 

Figure 4.3. Gene Ontology analysis of cellular components on three sets of pooled thalassaemic 
plasma EV samples.  
(A) Bar graphs show the cellular composition of the samples detected, with the majority of 

the identified proteins being EVs constituents (81.78%, 82.49%, and 80.29% from the sample 

set 1, 2, and 3, respectively). (B) Venn diagram of the total number of EV proteins identified, 

which was 645 proteins, with 212 proteins shared across all three experiments (419).  
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Table 4.5. Proteins with increased abundance in EVs of HbE/β-thalassaemia patients compared 
to controls across three separate experiments. 
 

Accession 
Gene 

ID 
Description 

1
st

 experiment 2
nd

 experiment 3
rd

 experiment 

Unique 
peptides 

Patient/Control 
ratio 

Unique 
peptides 

Patient/Control 
ratio 

Unique 
peptides 

Patient/Control 
ratio 

Chaperone proteins             
Q9NZD4 51327 Alpha 

hemoglobin 
stabilizing 
protein  

6 47.40 4 43.46 5 31.70 

P11142 3312 Heat shock 
cognate 71kDa 
protein 

17 2.56 29 7.44 21 4.53 

P0DMV9 3303 
or 

3304 

Heat shock 
70kDa protein 
1A or 1B 

17 10.65 27 13.41 24 14.02 

P07900 3320 Heat shock 
90kDa protein 
alpha family 
class A 
member1 

12 4.03 21 13.54 16 4.77 

P17987 6950 T-complex 
protein1 
subunit alpha  

2 3.78 10 5.79 2 2.49 

B3KX11 7203 T-complex 
protein1 
subunit 
gamma 

2 2.47 12 8.70 4 2.37 

Iron metabolism               
P02792 2512 Ferritin light 

chain 
3 15.59 5 13.59 3 11.44 

P02786 7037 Transferrin 
receptor 
protein 

3 13.03 2 6.52 41 20.25 

Antioxidant               
P04040 847 Catalase 14 2.69 26 6.35 17 3.80 
P00441 6647 Superoxide 

dismutase  
6 2.47 9 9.72 6 2.21 

P32119 7001 Peroxiredoxin 
2 

8 2.40 11 8.45 7 6.88 

Haemoglobin               
P02042 3045 Hemoglobin 

subunit delta 
6 7.22 6 14.51 6 9.62 

RBC cytoskeleton               
P02549 6708 Spectrin alpha 

chain, 
erythrocytic 1  

16 2.70 98 3.80 61 2.97 

P16157 286 Ankyrin-1  25 2.43 53 3.39 28 3.05 
Other proteins               

P25774 1520 Cathepsin S 2 3.47 4 3.89 3 3.01 
P00915 759 Carbonic 

anhydrase 1 
8 5.66 6 13.76 8 6.37 

P30043 645 Flavin 
reductase 
(NADPH)  

8 4.63 6 9.51 7 5.64 

P37837 6888 Transaldolase  6 2.08 11 6.99 6 2.47 

P26641 1937 Elongation 
factor1-
gamma 

5 2.89 12 6.39 9 4.98 
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Table 4.6. Proteins identified using TMT mass spectrometry as consistently reduced in 
abundance across three separate experiments in extracellular vesicles of HbE/β-thalassaemia 
patients compared to controls. 
 

Accession  
Gene 

ID 
Description  

1
st

 experiment 2
nd

 experiment 3
rd

 experiment 

Unique 
peptides 

Patient/Control 
ratio 

Unique 
peptides 

Patient/Control 
ratio 

Unique 
peptides 

Patient/Control 
ratio 

Haemoglobin and haem scavenger       
P02790 3263 Hemopexin 26 0.04 29 0.08 31 0.05 
P00738 3240 Haptoglobin 19 0.05 24 0.09 19 0.14 

 

 

 
Figure 4.4. Functional classification of 21 proteins exhibiting an altered abundance according to 
their functions using STRING:  
1- haem and haemoglobin scavengers, 2- chaperone proteins, 3- antioxidants, 4- iron 

metabolism and 5- cytoskeleton proteins. Network image was created from String-db.org. 

The group 1 haem and haemoglobin scavenger proteins were the only proteins detected as 

downregulated. 

 

Proteins with increased abundance in the HbE/β-thalassaemia patient over control samples 

could be categorised according to their molecular functions as chaperone proteins, proteins 

involved with iron metabolism, antioxidant proteins, and erythrocyte-specific proteins (Table 

4.5). Among these, the protein with the highest ratio difference between patients and 
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controls was alpha haemoglobin stabilising protein (AHSP), a red blood cell-specific protein 

that prevents α-globin precipitation (420), which exhibited between 31- and 47-fold increase 

in thalassaemic EVs. Other chaperone proteins identified were Hsp70, Hsp90, and T-complex 

protein 1 subunit α and γ. Three antioxidant proteins that were increased in thalassaemic EVs 

were catalase, superoxide dismutase (SOD1), and peroxiredoxin-2 (PRDX2). Flavin reductase, 

a broad specificity oxidoreductase that catalyses the nicotinamide adenine dinucleotide 

phosphate (NADPH) reduction contributing to haem catabolism and provides reducing power 

for the release of ferritin-bound iron, was increased. Proteins involved in iron metabolism 

were also increased (ferritin and transferrin), alongside carbonic anhydrase-1, transaldolase 

(a pentose phosphate pathway enzyme) and the erythrocyte cytoskeleton proteins spectrin 

and ankyrin. These data strengthened the hypothesis that the circulating plasma EVs are 

derived in part from erythrocyte lysis (374). Finally, an increase in the quantity of cathepsin 

S, a potent elastolytic protease, was detected in thalassaemic EVs, which may have, therefore, 

originated from activated myeloid cells (421).  

Only two proteins, hemopexin and haptoglobin, were consistently and significantly reduced 

(12.5- to 25-fold and 7.1- to 20-fold reduction, respectively) in the HbE/β-thalassaemia 

patients compared with control EV samples across the three experiments (see Table 4.6). The 

data were consistent with the pathophysiology of thalassaemia, with the haemolysis causing 

a dramatic decrease in these Hb/haem scavengers. In addition to the pooled samples, where 

a sufficient amount of EV protein sample was isolated, individual patient samples were also 

included within the same TMT MS experiments.  

Proteomics analysis of six HbE/β-thalassaemia patients’ individual samples across two 

separate experiments corroborated the pooled results. All of the proteins identified as having 

increased quantity in the pooled patient EVs had increased abundance in each individual 

sample, namely, AHSP, Hsp70, HspA8, Hsp90, TCP1 subunit α and γ, flavin reductase (NADPH), 

SOD1, catalase, PRDX2, and ferritin (see details in Table 4.7). Moreover, the fold increase of 

EV proteins in the individual samples correlated well with the severity of anaemia of the 

HbE/β-thalassaemia patients. Levels of Hb were used as an indicator of anaemia in the 

patients. Ratios of the antioxidant proteins, AHSP, Hsp70, and TCP1-α showed statistically 

significant reverse correlation with Hb levels, summarised in Table 4.8. The results of these 

experiments were published in Kittivorapart et al. (2018) (419).  
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Table 4.7. Haemoglobin levels and the ratio of alteration of the proteins of interest in EVs from six individual HbE/β-thalassaemia patients 
measured by TMT.  
 

Hb - haemoglobin, AHSP – alpha haemoglobin stabilising protein, Hsp – heat shock protein, TCP – T-complex protein, CTSS – cathepsin S, SOD1- superoxide dismutase, PRDX2 – 

peroxiredoxin 2, Ferritin LC- ferritin light chain   

 

Patient 
Sample 
Number 

Hb 
(gdl-1) 

AHSP Hsp70 Hsp71 Hsp90 TCP1-α TCP1-γ 
Flavin 

reductase 
CTSS SOD1 Catalase PRDX2 Ferritin Haptoglobin Hemopexin 

1 8.0 31.29 9.52 1.89 2.56 1.76 1.82 3.63 3.57 1.48 2.19 1.50 7.14 0.04 0.04 

3 6.6 100.00 22.82 5.99 13.14 11.81 3.57 19.43 5.54 8.01 7.63 7.83 76.76 0.14 0.08 

4 8.9 19.44 6.93 1.90 2.90 2.19 1.79 3.73 2.44 1.26 1.64 1.16 7.31 0.09 0.04 

5 7.0 39.91 8.65 2.13 3.57 4.19 3.39 5.58 2.81 1.59 2.80 1.99 7.90 0.05 0.06 

8 7.9 47.54 15.98 11.99 15.42 6.02 6.40 6.53 4.98 7.51 5.56 5.27 14.50 0.11 0.14 

9 6.7 91.82 20.73 11.61 25.87 14.27 18.42 23.19 2.96 23.95 15.65 21.87 5.79 0.08 0.15 
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Table 4.8. Statistical correlations between altered ratios of proteins of interest and 
haemoglobin levels of six individual HbE/β-thalassaemia patients. 

Negative correlation coefficients denote negative correlations.*P<0.05 represents statistical significance of 

>95%. **P<0.01 represents statistical significance of >99%. 

 

4.2.4.2 Immunoblotting to validate the proteomic study 
The alterations in abundance of catalase, AHSP, hemopexin, and haptoglobin from these 

plasma-derived EVs were also confirmed in individual samples by Western blot analysis, 

following a method described in section 2.2.12, Chapter 2. Two pairs of patients and age- and 

sex-matched controls were tested to represent proteins in the EVs of the patient and control 

groups (as demonstrated in Figure 4.5). The upregulation of AHSP and catalase was 

demonstrated in patient samples when compared with their matched controls. Haptoglobin 

and hemopexin were markedly decreased in both patients (Table 4.6). 

  Correlation coefficient P-value, 2-tailed 

Chaperone proteins 

AHSP -0.943 0.005** 

Hsp70 -0.829 0.042* 

HspA8 -0.543 0.266 

Hsp90 -0.657 0.156 

TCP1-alpha -0.829 0.042* 

TCP1-gamma -0.714 0.111 

Antioxidants 

Catalase -0.886 0.019* 

SOD1 -0.886 0.019* 

PRDX2 -0.886 0.019* 

Flavin reductase -0.829 0.042* 

Haem scavengers 

Haptoglobin 0.371 0.468 

Hemopexin  0.714 0.111 

Other protein 

Cathepsin S -0.543 0.266 
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Figure 4.5. Western blot analysis of EV samples of two patients.  
EV samples of two patients (PT1 and PT2) and EVs of two age-and sex-matched controls (CT1 

and CT2) immunostained with antibodies to the indicated proteins. In concordance with 

proteomics results, the patients’ EVs had an increase in abundance of AHSP and catalase 

when compared with control samples, and markedly decreased haptoglobin and hemopexin 

protein levels. An example of Coomassie-stained gel is shown to demonstrate the accuracy of 

loading. 

 

4.2.4.3 Thalassaemic EV plasma adsorption test 
The depletion of both hemopexin and haptoglobin from the EVs observed in this study may 

be an indicator of their continual clearance from patient’s plasma, which was in turn reflected 

in the low amount of these proteins associated with EVs. To test this hypothesis, thalassaemic 

patients’ EV pellets were washed and then incubated for 72 hours with EV-depleted normal 

fresh plasma. Using Western blotting, we observed that incubation of normal plasma caused 

the restoration of haptoglobin and hemopexin levels in patients’ EVs (Figure 4.6). 
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Figure 4.6. Western blot of EVs from patient and control immunostained with anti-hemopexin, 
demonstrating the expression of hemopexin. 
(A) washed patient’s EV (B) washed matched control’s EV (C) patient’s EV after incubated with 

normal fresh plasma (D) EV of the donor of fresh plasma.  

 
 

4.2.4.4 Comparative analysis of the proteomic profiles of in vivo and in vitro 

sourced EVs  
The proteomic results of the constituents of EV samples derived from the in vitro reticulocytes 

(from section 3.2.8, Chapter 3) were then compared to the results of the proteomic studies 

of the EVs isolated from the plasma of thalassaemic patients and normal matched-controls. 

The primary objective of the analysis was to determine whether the EVs released by 

reticulocytes are responsible for some of the EV content detected in the plasma. As 

aforementioned, approximately 70% (section 3.2.8, Chapter 3) and over  80% (Figure 4.3, this 

Chapter) of the proteins from in vitro and in vivo sources, respectively, were known EV protein 

constituents (GO:1903561) from the AmiGO v1.8 database. The source of both in vitro and in 

vivo EV proteins analysed in this project were therefore confirmed to be derived from EVs. 

Moreover, many proteins are known to be in reticulocytes or erythrocytes, for instance, Hb, 

AHSP, transferrin receptor, and cytoskeleton proteins (e.g., ankyrin, β-tubulin, spectrin, 

myosin 9), etc., were shared by both types of EVs.  

Regarding EVs from the in vitro reticulocyte source, the majority of the more abundant 

proteins were involved in the enucleation process (Chapter 3, Table 3.5). Whereas, up-

regulated proteins from the in vivo patients’ EVs were associated with the stress-response 

mechanisms of the thalassaemic erythrocytes, as shown in Table 4.5.  

Less abundant proteins in the EVs from in vitro reticulocyte origin in the patient samples did 

not exemplify the pathophysiology of thalassaemia (e.g., metabolic proteins, ribosomal 

proteins, complement activation proteins, etc.), unlike the less abundant proteins identified 

in EVs, derived from circulating patient plasma. EVs from the latter group showed evidence 
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of haemolysis when compared to EVs from healthy controls, indicated by the decreased 

quantity of haptoglobin and hemopexin. It should be noted that the EVs from circulating 

plasma of the patients would have originated from multiple cellular sources, i.e., erythrocytes 

and platelets, whereas the in vitro EVs were exclusively derived from the cultured 

reticulocytes. Overall, these findings indicated that the mechanism of EV generation between 

the in vitro and in vivo erythropoiesis was different.  

 

4.3 Discussion 
 

This chapter has focused on the analysis of HbE/β-thalassaemia EV samples for their 

characteristics in terms of quantities, sizes distribution, and protein constituents, to 

determine if EVs are one of the factors that can possibly contribute to the severity of the 

disease or help disease management.   

 

4.3.1 Determination of the optimised method for EV isolation and 

quantification  
According to the results displayed in Figure 4.1, the overall EV yields by the chosen isolation 

methods were slightly different. The EV sizes after three UC (161.2 ± 0.74 nm) were lower 

than after one UC (213.1 ± 3.39 nm); therefore, the one-time UC was deemed better than the 

three-time UC, for this method does not affect the integrity of EVs. Hence, one-time UC was 

the method of choice used to isolate EV for the proteomic work in this project. UC method 

was preferable because the EV obtained from the filtration technique may be contaminated 

with proteins aggregates (377, 422). When time and labour were compared between one-

time UC and filtration techniques, the latter proved to be a good alternative method for EV 

enrichment, when EVs were not used for the proteomic study.  

Regarding the EV quantification technique, there are several methods available for 

investigation and characterisation of EVs. The benefits and limitations of each technique were 

briefly reviewed in Chapter 1. In this chapter, two of the most frequently used methods of 

quantifying EVs – flow cytometry and NTA, were compared. The higher concentrations of EVs 

were observed with the use of NTA over flow cytometry in both  EVs generated  in vivo (Table 
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4.2) and in vitro (see Table 3.4, Chapter 3). These observed results were consistent with the 

known sensitivities of the techniques used (423, 424).  

Although the NTA has superior sensitivity when compared to conventional flow cytometry, 

this methodology does have limitations. For NTA that uses the refractive index and tracks 

individual particle scattering to determine the size and concentration of particles in a solution, 

which makes it difficult to accurately assess the actual number of particles in non-

homogeneous samples. EVs are naturally highly polydisperse in character; thus, large EVs can 

obscure the smaller size EVs in the samples and lead to inaccurate measurements (360). 

However, to date, NTA is one of the methods of choice to quantify and assess size 

distributions of the EV samples (425) due to its superior sensitivity and, therefore, was the 

main method used in this thesis to quantify EVs in the tested samples. 

   

4.3.2 The relationship of in vivo EV generation and clinical 

parameters of HbE/β-thalassaemia patients  
In this project, the enrolled patients were all thalassaemia intermedia or non-transfusion 

dependent patients (NTDT) with average Hb baseline of 7.6 gdl-1; ranging from 4.6 to 10.9 gdl-

1 (see Table 4.3). The concentrations of the in vivo EVs between the patient and control groups 

did not show a significant difference. This may be explained by the fact that the majority of 

the previous publications that assessed the numbers of EVs in thalassaemic patients used 

conventional flow cytometry, which as discussed above has size limitation (347, 358, 380). 

This observation was in disagreement with the previous studies, which reported a greater 

number of EVs in splenectomised patients using conventional flow cytometry method (347, 

358). However, Levin et al. (2018) carried out an analysis of 35 severe β-thalassaemia patients 

(TDT patients) using NTA, showing a significant increase (p <0.05) in EV concentration in 

patients over controls (426). Another explanation of the discrepancy is that the specific type 

of thalassaemia patient explored here (HbE/β-thalassaemia) is responsible for the observed 

differences.  

Levin et al. (2018) reported that the numbers of EVs in subgroups of patients that underwent 

splenectomy and patients with the intact spleen were not statistically significant, which was 

in line with observations made in this thesis (426). This evidence indicated that the severity 

of the disease, but not the splenic status, potentially influences vesicle production. Whereas, 

platelet counts of the patients had a strong correlation with the number of EVs (Table 4.2); 
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thus, this relationship confirmed the suggestion that a substantial quantity of circulating 

plasma EVs of the thalassaemic patients have likely originated from the platelets (418).   

Although flow cytometry was examined as a method of choice, utilising this method would 

have affected the identification of different subgroups of EVs due to the lower sensitivity of 

the method and its inability to detect particles <300 - 400 nm. From literature, there is 

evidence of the use of diverse EV enrichment methods in different studies. For example, 

Pattanapanyasat and colleagues (2004) did not isolate EVs from plasma, but had directly 

stained the fixed plasma (with 1% paraformaldehyde to limit the number of newly generated 

in vitro EVs) with glycophorin A (GPA) antibody and analysed it by flow cytometry (358). This 

approach would potentially include other sources of GPA+ particles in the analysis, e.g., 

products of red cell lysis, debris and apoptotic bodies, leading to false-positive results.  

Ultimately, there were likely to be other influential factors involved in the formation of 

thalassaemic EVs, other than their quantity, for example, the EV composition that would 

reflect anaemic levels in HbE/β-thalassaemia patients. Thus, the proteome profile of 

thalassaemic EVs was investigated as a next step.  

 

4.3.3 Proteomic analysis of the in vivo EV produced from HbE/β-

thalassaemia patients  
We observed that antioxidant proteins, chaperone proteins, proteins involving in iron 

metabolism, haemoglobin subunit δ, cathepsin S (an inflammatory marker), and erythroid 

proteins were consistently increased in quantity in HbE/β-thalassaemic patients across all 

three pooled samples (Table 4.5), and this was also observed in six individual samples (Table 

4.7). Taken together, the observed alterations in protein content in the thalassaemic EVs are 

consistent with the known increase in oxidative burden due to peripheral haemolysis 

reported in previous studies (348, 374, 375) and this study has substantially extended the 

number of known proteins with an altered concentration in HbE/β-thalassaemic patients’ EVs. 

The increased abundance of antioxidant and chaperone proteins in thalassaemic EVs was also 

observed by Ferru et al. (2014), who detected alterations of Hsp70, PRDX2, and catalase (348). 

In our study, we detected these proteins with at least two-fold greater abundance in 

thalassaemic EVs when compared with EVs from control individuals. The presence of these 

antioxidant proteins likely reflects the stress response mechanism in thalassaemic 
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erythrocytes, and we propose this could be a result of either EVs shedding from the viable 

erythrocytes or being generated from red cell lysis. This is also consistent with the detection 

of red blood cell-specific proteins in EVs here by us and by other studies (427).  

Chaperones are another group of proteins that exhibited an increased abundance in the 

patients’ EVs. These proteins facilitate the refolding of damaged proteins resulting from 

oxidative stress in erythrocytes (428). AHSP, a specific erythroid chaperone significant in 

erythropoiesis and exclusively binding to the α-Hb chain, has the greatest fold differences in 

patients’ EVs, consistent with the known disturbance in β-globin in thalassaemic erythrocytes. 

Several genotype-phenotype studies exploring the association between the AHSP gene and 

severity of thalassaemia could not identify any correlation (429-431). However, Bhattacharya 

et al. (2010) reported an increase of AHSP expression in thalassaemic erythrocytes, which 

likely reflects the original source of AHSP in EVs (374).  

The proteomics also identified a higher quantity of ferritin and transferrin receptor in EVs, 

two crucial iron-binding molecules. Transferrin receptor is known to be lost during 

reticulocyte maturation (9), suggesting that these may also be a source of EVs and raised 

ferritin correlates with the increased iron status of the patients (Table 4.1). Our study focused 

on NTDT patients who develop iron overload due to increased iron absorption and 

acceleration of iron released from the reticuloendothelial system (432). The mean serum 

ferritin in our study is 1035 ngml-1 (normal value 300 ngml-1, from 10 of 15 patients) with 

some patients requiring chelation. The heightened iron level observed in these patients 

represents an important source of oxidative stress in thalassaemic erythrocytes, which may 

explain why EVs from thalassaemic patients have more iron-binding substances and 

antioxidant proteins in the plasma than healthy individuals. 

Haptoglobin and hemopexin were decreased in our patient EV samples, and both are free Hb 

and free-haem scavenging plasma proteins, respectively. Free Hb and haemin, ferric Hb, can 

unleash an oxidative catastrophe to the vascular endothelium and parenchymal tissue (433). 

These proteins bind the toxic substances and transport them to the reticuloendothelial tissue 

to be eliminated (433, 434). Importantly, we demonstrated that circulating plasma EVs 

flexibly adsorb haptoglobin and hemopexin (Figure 4.6), thus indirectly reflecting the 

availability and concentration of these proteins in the plasma. 
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Overall, this report has undertaken the most detailed proteomic study to date, describing the 

constituents of circulating EVs of HbE/β-thalassaemic patients, and providing quantitative 

differences of protein expression in EVs in comparison with age- and sex-matched healthy 

individuals. When compared with the pathophysiology of the disease, the observed 

proteomic changes typify the protective mechanisms used by the thalassaemic patients. 

Antioxidants, iron sequestering proteins, and chaperones were the predominant proteins 

that exhibited an increased abundance in thalassaemic EVs. We also report for the first time 

that the quantity of haptoglobin and hemopexin, the free Hb and haem-eliminating proteins, 

are reduced in thalassaemic patients’ EVs. Furthermore, the alterations of an abundance of 

these proteins correlated with Hb levels of the patients (Table 4.7 and Table 4.8). As far as we 

are aware, these plasma proteins are not routinely tested for in the plasma of thalassaemic 

patients. Similar reductions in haptoglobin and hemopexin were reported recently in the 

plasma of paediatric patients with sickle cell disease (435) and were proposed as potential 

biomarkers of clinical severity of haemolysis in these patients. Thus, we have shown that 

these plasma markers are also applicable for HbE/β-thalassaemic patients, where a deficit in 

haptoglobin and hemopexin availability reflects the severity of systemic haemolysis. Finally, 

we have also detected the altered levels of cathepsin S, a potent elastolytic protease that 

could be useful as an inflammatory plasma marker to monitor the degree of inflammation in 

thalassaemia (421). Furture studies to evaluate the clinical application of these plasma 

biomarkers for monitoring the severity of thalassaemia and transfusion requirements were 

carried out and are described in the following chapter. 
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4.4 Chapter summary 
 

In summary, the work described in Chapter 4 has demonstrated that the circulating plasma 

derived EVs of HbE/β-thalassaemia patients can be successfully isolated using the UC 

technique, and quantified by the NTA method. The association between the concentrations 

of EVs in non-transfusion dependent β-thalassaemia patients and the severity of their clinical 

manifestations was investigated, and it was shown that there was no statistical correlation 

between Hb levels, splenic status and the concentration of EVs. There was a significant 

correlation between the numbers of detected circulatory EVs and the numbers of platelets in 

these patients.  

Importantly, we have successfully identified the differences in protein constituents between 

the EVs of HbE/β-thalassaemia patients and healthy controls. When compared with the 

pathophysiology of the disease, the observed proteomic changes typified the protective 

mechanisms used by the thalassaemic patients. Antioxidants, iron sequestering proteins, and 

chaperones were the predominant proteins that exhibited an increased abundance in 

thalassaemic EVs. We have also reported for the first time that the quantity of haptoglobin 

and hemopexin, the free Hb and haem-eliminating proteins, was reduced in thalassaemic 

patients’ EVs. Furthermore, the alteration of levels of these proteins correlated with Hb levels 

of the patients. Similar reductions in haptoglobin and hemopexin were reported recently in 

the plasma of pediatric patients with sickle cell disease (435), where these proteins were 

proposed as potential biomarkers of clinical severity of haemolysis in these patients. Thus, we 

have shown that these plasma markers could also be applicable to the HbE/β-thalassaemia 

patients, where a deficit in haptoglobin and hemopexin availability reflects the severity of 

systemic haemolysis. Finally, we have detected the altered levels of cathepsin S, a potent 

elastolytic protease that could be useful as an inflammatory plasma marker to monitor the 

degree of inflammation in thalassaemia. In the next chapter, we will assess the clinical 

applications potential of these plasma biomarkers for monitoring the severity of thalassaemia 

and/or determining the transfusion requirements in the different clinical severity of 

thalassaemic patients.  
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CHAPTER 5 

 

CLINICAL STUDY OF HAPTOGLOBIN, 

HEMOPEXIN, AND CATHEPSIN S IN 

THALASSAEMIA 
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5.1 Introduction 
 

5.1.1 Overview of haemolysis and biomarkers in thalassaemic 

patients 
According to the pathophysiology of thalassaemia (see section 1.3.3, Chapter 1), the 

haemolytic process in this disease is predominantly extravascular haemolysis (EVH), owing to 

the occurrence of substantial ineffective erythropoiesis (IE) in this disease (209). There is very 

limited evidence of intravascular haemolysis (IVH) in thalassaemia, unlike that observed in 

sickle cell disease (SCD), where one-third of the total haemolysis is intravascular due to the 

irreversibly sickled cells and oxidative damage that occurs within the erythroid membrane 

(436).  

Currently, there is no ‘gold standard’ or a specific marker of haemolysis. Only Hb serves as the 

most important indicator of haemolysis and treatment monitoring. However, unlike in the 

acute anaemia situation, monitoring Hb only has a limitation in chronic haemolytic diseases, 

such as thalassaemias, where the patients can tolerate a degree of anaemia. Thus, low Hb 

does not always directly reflect the well-being and the transfusion requirement in such 

patients. In clinical practice, usually, more than one parameter is monitored and interpreted 

together with the patient’s signs and symptoms to make a precise diagnosis and to predict 

the severity of the disease. Several markers have been proposed as potential severity 

predictors in haemoglobinopathy diseases, for instance, soluble CD163 in SCD patients (437, 

438), LDH levels associated with complications of SCD (260, 439) and also Hsp70 levels in β-

thalassaemic disease (426).  

In Chapter 4, haptoglobin, hemopexin and several other proteins were shown to have 

significantly altered abundance in thalassaemic patient plasma EVs (Chapter 4, Table 4.5). 

Haptoglobin and hemopexin are known plasma proteins and free Hb and haemin scavengers. 

They are one of the clinical indicators of IVH (433). These two proteins have been reported as 

reduced in SCD (433, 435, 440). Although there is general medical knowledge that 

haptoglobin is decreased in thalassaemia, hitherto, only a few studies have clinically 

evaluated both markers in thalassaemic patients (441-443). In 1969, researchers observed 

the absence of haptoglobin from 26 of the 35 thalassaemia major cases and seven of 42 

thalassaemic trait cases using starch-gel electrophoresis technique. The absence of the 
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haptoglobin bands was not associated with the patients’ HbF levels (441) . A study by Vinchi 

et al. (2016) reported the decreased levels of haptoglobin and hemopexin in β-thalassaemia 

major and intermedia patients, but no exact levels were stated (443). Furthermore, no studies 

have assessed the relationship, if any, between the two proteins and the other indicators of 

haemolysis. There are currently no reports that would have explored the effects of blood 

transfusion on the levels of these proteins in haemoglobinopathy patients, probably due to 

the lack of recognition of IVH component in the thalassaemic patients.  

In this chapter, the alterations of haptoglobin, hemopexin and cathepsin S (CTSS) blood levels 

were examined in a cohort of thalassaemic patients of varying clinical severity, with the 

ultimate aim of assessing the use of these proteins as biomarkers of thalassaemia severity 

and for potentially tailoring blood transfusion requirements to individual patients.   

 

5.1.2 Haemolytic markers and their clinical applications  
The expansion of erythron mass in thalassaemia occurs simultaneously with ineffective 

erythropoiesis (IE) and haemolysis. Several blood parameters have been used as haemolytic 

markers in general practice (see section 1.3.5.1, Chapter 1 and Table 5.1), not only facilitating 

the diagnosis and the severity of a disease prediction but usually also designating the type of 

haemolysis occurring in the patients, i.e., EVH or IVH. These markers include soluble 

transferrin receptor (sTfR), haematocrit (Hct) and erythropoietin levels; when used together, 

they can determine the erythropoietic status of a patient (444, 445). Anaemia, as measured 

by the decrease of Hb and Hct levels, would stimulate EPO production in kidneys and lead to 

the elevated serum EPO. STfR is a circulating transferrin receptor, consisting of two transferrin 

receptor monomers which bind one transferrin molecule. The concentration of sTfR can be  

measured by an immunoassay (446). Increased sTfR levels are an indicator of haemolysis and 

IE, as shown in both α-and β-thalassaemia (211, 447).    
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Table 5.1. Blood parameters observed in this study, including indications and associated site of 
haemolysis.  
 

Parameters Site of haemolysis Indications 

Haemoglobin (Hb) n/a Severity of anaemia, 

monitoring response after treatment Haematocrit (Hct) n/a 

Plasma haemoglobin Intravascular Diagnosis/severity of IVH 

Not routinely tested Percent of haemolysis Intravascular 

Corrected reticulocyte 

count 
n/a 

Differentiate causes of anaemia, the 

response of bone marrow 

Indirect bilirubin (IDB) Extravascular Severity of EVH 

Lactate dehydrogenase 

(LDH) 

Predominantly 

intravascular 

Diagnosis, monitoring response to 

therapy 

Haptoglobin 
Predominantly 

intravascular 
Severity of haemolysis 

Hemopexin Intravascular Not routinely tested 

Cathepsin S n/a Not routinely tested 

n/a – not applicable; data were derived from Kormoczi et al. Eur J Clin Invest. 2006; 36(3): 2029.(252) 

 

5.1.2.1 Haptoglobin testing 
Haptoglobin is a plasma protein synthesised by hepatocytes and encoded by the HP gene. 

Two allelic variations (HP1 and HP2) lead to three haptoglobin isoforms, namely, Hp1-1, Hp1-

2 and Hp2-2 (448). Each protein isoform has unique properties, such as the affinity towards 

Hb, binding capacity and a difference in molecular weight that can be assessed by gel 

electrophoresis (448). Haptoglobin binds to free Hb in the circulation after RBCs lysis. 

Generally, haptoglobin has a half-life of five days when unbound; however, its half-life is 

shortened to only a few minutes after forming the complex with Hb (449). Macrophages and  

the cells in the reticuloendothelial system rapidly remove this complex from the circulation 

(252), and thus, the level of haptoglobin is almost instantly depleted after the occurrence of 

haemolysis (usually in <1 hour) (450). Once depleted, it takes approximately 14 days for 

haptoglobin to be restored to the normal physiological level (449).  
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There are several methods for testing haptoglobin levels, for example, spectrophotometry 

which measures the changes of light absorption after haptoglobin forms complexes with Hb, 

immunoreactive methods such as nephelometry, or the enzyme-linked immunosorbent assay 

(ELISA) (451). The latter method is relatively quick and easy to perform, very sensitive and 

accurate, but requires specific antibodies (451). Additionally, false positive results indicating 

reduced haptoglobin level, albeit without haemolysis, could be detected in certain situations, 

for instance, liver impairment, ahaptoglobinemia, haemodilution and some types of solid 

cancer (451, 452). Since there is no ‘gold standard’ test for a definitive diagnosis of 

haemolysis, it is difficult to validate the accuracy of haptoglobin tests. One study using 

nephelometry reported 83% sensitivity and 96% specificity of the test when detecting the IVH 

if the haptoglobin level was less than 25 mgdl-1 (452).  

In our study, haptoglobin levels of all the patients were measured by using two separate 

methods, nephelometry and ELISA. The nephelometry technique was performed in Thailand, 

while the ELISA test was carried out at NHSBT Filton, Bristol, UK. ELISA was selected for testing 

due to the high sensitivity and high-throughput qualities of the method. The results of both 

techniques were compared individually for each patient and each sampling time.  

However, it should be noted that there are limitations to using the haptoglobin level alone as 

a measurement of haemolysis or a diagnostic tool because as the acute phase reactant agent, 

haptoglobin would be present in a high level in inflammatory and infectious conditions (252). 

We also have to be mindful of the restrictions of the haptoglobin-Hb complex clearance, 

which is dependent on the quantity of available unbound specific receptor molecules on 

macrophages (CD163+) that can also be targeted by monoclonal antibodies or drug-

conjugates (449).  

 

5.1.2.2 Hemopexin testing 
Hemopexin is one of the abundant plasma proteins and the protein with the highest affinity 

for haem binding. It is encoded by the HPX gene located on chromosome 11 and comprised 

of 10 exons. Hemopexin protein is produced in hepatic parenchymal cells (453). Unlike 

haptoglobin, hemopexin is not considered to be an acute phase reactant protein, and thus, 

its physiological levels are more constant than the haptoglobin levels. The half-life of 
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hemopexin is approximately seven days; whereas, when formed into a complex with free 

haem, its half-life is reduced to seven hours (453). Hemopexin assay is not routinely used as 

a test for haemolysis, but it can indicate the degree of IVH. Muller-Eberhard et al. (1968) 

reported the decrease of hemopexin level after haptoglobin was ‘used up’ in mild to 

moderate haemolysis associated with haemolytic diseases such as AIHA and paroxysmal 

nocturnal haemoglobinuria (PNH), i.e., hemopexin levels were moderately reduced when 

haptoglobin levels were low (440). The plasma of patients with a more severe degree of 

anaemia associated with thalassaemia major, HbE/β-thalassaemia disease and sickle cell 

disease was depleted of both haptoglobin and hemopexin (440). Similar to haptoglobin, 

hemopexin can be tested with nephelometry and turbidimetry techniques. The specific 

hemopexin antisera for nephelometry is available commercially (453). However, since 

nephelometry is not one of the routine assays performed in Thailand, in our project, 

hemopexin levels were measured using the ELISA technique only. Normal ranges of 

hemopexin in an adult are 0.2 – 1.5 mgml-1 (449). 

Careful interpretation of hemopexin results is required because, besides haemolysis, 

hypohemopexinemia is observed in certain other conditions, for instance, liver cirrhosis due 

to impaired production of hemopexin (454), fulminant rhabdomyolysis with high myoglobin 

concentrations and acute intermittent porphyria, where hemopexin binds to porphyrins 

(455). Importantly, the level of plasma haptoglobin can help to differentiate the causes of low 

hemopexin, for example, in porphyria and rhabdomyolysis, only hemopexin is decreased 

while the haptoglobin level is normal (453). On the other hand, when only haptoglobin is 

decreased, and hemopexin levels are normal, the cause can be either mild IVH that does not 

consume hemopexin or congenital ahaptoglobinemia (453).  

 

5.1.2.3 Cathepsin S testing  
Whilst the haptoglobin and hemopexin were the only two proteins found to be less abundant 

in thalassaemic in vivo EVs, cathepsin S (CTSS) was one of the more abundant proteins 

(Chapter 4, Table 4.5) in these patients. It is a member of a family of cysteine peptidases found 

predominantly in lymph nodes and spleen (456). Macrophages and other antigen-presenting 

cells hold CTSS activity, where CTSS regulates autophagy (421, 457). This type of cathepsin 

can typically work in both weak acidic (optimum pH 6.5) and in neutral conditions (pH 7.5), 
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while other cathepsin members are able to work only in acidic environments (456, 458). The 

protein is encoded by the CTSS gene located on chromosome 1q21.3. The assay normally used 

to measure the CTSS level is the ELISA method, with the minimum detectable dose of 4 pgml-

1. The increased level of CTSS denotes the inflammation reactions and myeloid stimulation 

such as in rheumatoid arthritis (421, 459). Since CTSS was identified in the proteomics study 

to be increased in the thalassaemic in vivo EVs compared to the controls (see Chapter 4), we 

proposed to monitor CTSS as a potential marker of inflammation in patients with different 

severity of thalassaemia compared to the healthy controls.  

 

5.1.3 Evaluation of haptoglobin, hemopexin and CTSS as predictive 

parameters of disease severity  
For this clinical longitudinal study, patients presenting with different severities of 

thalassaemia were recruited to repeatedly test their levels of haptoglobin, hemopexin and 

CTSS and alongside haemolysis parameters. The patients recruited were a collection of 

transfusion dependent thalassaemia (TDT), non-transfusion dependent thalassaemia patients 

(NTDT), thalassaemia traits (carriers) and healthy controls. The aspects of enrolment and the 

patient classification are shown in detail in section 2.1.1.3 and Figure 2.2 in Chapter 2. Briefly, 

the patients were stratified based on clinical severity (section 1.3.5, Chapter 1) after providing 

full informed consent. The first group was TDT patients (n = 12), whose pre-transfusion and 

one-hour post-transfusion blood tests were collected over five visits to the haematology 

clinic, and thus, the number of individual tests conducted in this patient group was 120. The 

NTDT patient group (n = 18) provided samples over three visits with three-monthly intervals 

between the visits. However, some of these patients missed the follow-up testing, and the 

total number of tests conducted for this group was 38. The numbers of individuals in 

thalassaemic trait and healthy control groups were eight (n = 8) and seven (n = 7), respectively 

(see Figure 2.2, Chapter 2). Note that, utilising in-house Sanger sequencing methods (PCR and 

sequencing primers are detailed in Appendix II), we performed genetic testing of all the 

enrolled patients in the TDT and NTDT groups in order to confirm the diagnosis of these 

patients. The results are listed in Appendix III. 

The blood samples from each research participant were investigated for a complete blood 

count (CBC), reticulocyte counts, LDH, indirect bilirubin (IDB), haptoglobin level (by 
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nephelometry technique) and plasma Hb. Subsequently, plasma was separated by 

centrifugation and frozen before the transfer to NHSBT Filton, UK, for further investigations. 

Haptoglobin, hemopexin and CTSS ELISA tests were optimised and used to measure the levels 

of haptoglobin, hemopexin and CTSS according to the manufacturer’s protocols (Abcam).  

 

5.1.4 Optimisation of the ELISA assays to detect the very low levels 

of proteins 
Initially, the ELISA methodology had to be optimised to enable the measurements of the low 

concentrations of haptoglobin and hemopexin proteins encountered in thalassaemic 

patients. Firstly, samples were diluted with provided diluents according to the manufacturer’s 

protocols, i.e., 1: 1000 for haptoglobin and 1: 400 for hemopexin and were tested according 

to the original protocols. As anticipated, due to the low levels of haptoglobin and hemopexin, 

most of the tests resulted in the out of range values as described by the manufacturer. Note 

that, according to the manufacturer’s protocols, the minimum detectable dose (i.e., 

sensitivity) of haptoglobin and hemopexin levels are 0.07 and 0.03 μgml-1, respectively. 

Following the optimising of the methods using serial dilutions, the optimal dilution of 

haptoglobin was determined as 1:100 for all the TDT and NTDT samples; while, the assay for 

hemopexin on patient plasma performed the best at 1:4 dilution. The samples prepared using 

these dilutions gave results within the detectable ranges of the ELISA assays. All the trait, as 

well as the control samples, were diluted and tested according to the manufacturer’s 

protocols (see section 2.2.16, Chapter 2 for more details).  
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5.2 Results 
 

5.2.1 Molecular diagnosis, demographic data and laboratory 

parameters in TDT, NTDT, thalassaemic traits, and control 

individuals 
For the patients in TDT group (n=12), the genetic testing revealed that they comprised of 

HbE/β0-thalassaemia (n=8), HbE/β+-thalassaemia (n=2), one case of HbH-CS, and one 

compound heterozygote between HbE (βE/βE) and HbCS (ααCS/ααCS). Whereas patients in 

NTDT group (n=15) included patients with diagnoses of HbH-CS (n=6), HbH-Pakse (n=1), HbH 

disease (n=1), AE Bart’s disease (n=1), three homozygous HbE (βE/βE), two cases of HbE/β0-

thalassaemia, and one compound heterozygote of βE/βE and (ααCS/αα). The patients’ genetic 

backgrounds are summarised in Appendix III. A summary of all laboratory tests, age, and 

splenic status of the patients recruited to the clinical follow-up trial is provided in Table 5.2. 
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Table 5.2. Demographic data and laboratory parameters in different groups of patients, traits, 
and controls.  
 

Parameter TDT (n =12) 
NTDT 

(n = 18) 

Traits 

(n =8) 

Controls 

(n = 7) 

 Total Pre-Tx Post-Tx    

Age (years) 30.7±4.0 46.4±3.5 34.4±3.6 36.3±1.9 

Intact 

spleen 
6/12 (50%) 17/17 (100%) 8 7 

CBC n = 120 n = 60 n = 60 n = 38 n = 8 n = 7 

Hb (gdl-1) 7.90±0.13 6.88±0.11 8.84±0.17 9.29±0.23 13.06±0.69 13.96±0.52 

Hct (%) 25.30±0.38 22.57±0.35 27.98±0.45 31.41±0.68 41.54±2.11 42.93±1.40 

WBC (mm-3) 9832.90±484.41 9628±722.76 10145±657.08 6420.83±267.39 7587.5±663.44 7728.57±529.02 

Platelet 

(x103mm-3) 
453.82±28.24 467.27±41.22 433.93±38.43 199.60±8.25 303.25±0.14 282.00±0.26 

Reticulocyte 

count (%) 
6.63±0.61 5.96±0.85 7.20±0.89 3.88±0.38 1.53±0.17 1.46±0.09 

Harboe assay 

Plasma Hb 

(mgdl-1) 
0.09±0.01 0.06±0.01 0.12±0.01 0.05±0.01 0.05±0.02 0.04±0.02 

Haemolysis 
(%) 

0.87±0.06 0.72±0.07 1.01±0.1 0.36±0.04 0.20±0.06 0.16±0.04 

Blood chemistry 

Total 

bilirubin 

(mgdl-1) 

3.40±0.20 3.20±0.28 3.55±0.46 1.80±0.18 0.47±0.05 0.40±0.03 

Indirect 

bilirubin 

(IDB; mgdl-1) 

2.80±0.20 2.63±0.27 2.93±0.28 1.34±0.16 0.29±0.03 0.22±0.02 

LDH (Ul-1) 582.69±26.92 576.37±45.93 587.50±28.09 529.98±47.30 341.63±20.26 318.14±23.17 

Ferritin 
(ngml-1) 

2733.24±220.60 2732.03±352.70 2715.18±350.53 511.85±62.28 290.51±93.74 171.93±48.64 

ELISA 

Haptoglobin 
(mgdl-1) 

5.44±1.02 7.43±0.96 3.45±0.93 26.18±5.09 275.10±65.60 206.22±51.27 

Hemopexin 

(mgml-1) 
0.015±0.001 0.015±0.001 0.016±0.001 0.021±0.002 1.834±0.325 1.862±0.341 

Cathepsin S 
(pgml-1) 

13472.00±391.92 13333.56±565.92 13537.03±547.13 8042.15±1089.04 3942.28±685.18 4444.88±696.28 

Data represented as mean ± SE.CBC – complete blood count; ELISA – enzyme-linked 

immunosorbent assay. 
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5.2.2 Plasma haptoglobin 
Normal reference ranges of plasma haptoglobin are between 30 – 200 mgdl-1 (460). In this 

study, haptoglobin was one of the parameters tested in the UK from the plasma shipped from 

Thailand using ELISA technique (Abcam). Haptoglobin analysis was also simultaneously 

carried out in Thailand with the nephelometry technique. The results of the two methods 

were observed to show a similar trend. However, a statistical correlation is not possible to 

calculate due to the different limits of detection of the two methods (see Table 5.3 for the 

examples and the full list in Appendix I). The similarity trend between the two methods is also 

a validation of the dilutional preparation of the samples for the ELISA test in our study.  

Table 5.3.  Examples of haptoglobin levels (mgml-1) of two TDT (A01&A03) and NTDT 
(B07&B08) patients measured by nephelometry and ELISA methods. 
 

TDT patients   Haptoglobin levels (mgml-1) 

 Visit Transfusion Nephelometry ELISA 

A01 1 Pre <0.07 0.005381 

  Post <0.07 0.006048 

 2 Pre <0.027 0.006053 

  Post <0.027 0.004298 

 3 Pre <0.027 0.003871 

  Post <0.027 0.004124 

 4 Pre <0.027 0.006262 

  Post <0.027 0.007895 

 5 Pre 0.59 0.346042 

  Post 0.67 0.318589 

A03 1 Pre 0.4 0.416789 

  Post 0.4 0.008691 

 2 Pre 0.3 0.434014 

  Post 0.2 0.010845 

 3 Pre 0.31 0.321481 

  Post <0.027 0.006107 

 4 Pre 0.04 0.059143 

  Post <0.027 0.013820 

 5 Pre 0.13 0.047934 

  Post 0.14 0.099071 

NTDT patients Visit    

B07 1  0.7 0.073020 

 2  0.58 0.073262 

 3  0.34 0.035271 

B08 1  <0.07 0.000371 

 2  <0.027 0.000158 

 3  <0.027 0.000199 
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Regarding the ELISA test, levels of haptoglobin of the TDT group were measured as 5.44 ± 

1.02 mgdl-1 (mean±SE) and 26.18 ± 5.09 mgdl-1 for the NTDT group. Haptoglobin in 

thalassaemia traits and controls was 275.10 ± 65.60 mgdl-1 and 206.22 ± 51.17 mgdl-1, 

respectively. Due to the non-normally distributed data, the Kruskal-Wallis test was 

performed, and it showed a statistically significant difference between all groups (P <0.0001). 

The statistically significant differences between TDT and NTDT groups were examined using 

Mann-Whitney U-test (P =0.013) (Figure 5.1).  

 

Figure 5.1. Boxplot showing variation in haptoglobin level (mgdl-1) between groups of patients 
and controls as measured by ELISA.  
TDT (n=120), NTDT (n=38), thalassaemia traits (n=8), and controls (n=7). The box spans the 

interquartile range. The median and mean observation for a particular group is represented 

by horizontal lines and plus signs, respectively. Data were analysed by Kruskal-Wallis test and 

Mann-Whitney U-test. **P <0.05; ***P <0.0001. 
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5.2.3 Plasma hemopexin 
Plasma hemopexin is not a routine laboratory test in Thailand. Therefore, all the plasma 

samples were tested only at NHSBT Filton, Bristol, UK. Normal hemopexin level ranges from 

0.5 – 2 mgml-1 (440). In the TDT group, average hemopexin level was 0.015 ± 0.001 mgml-1, 

and this level was significantly lower than in the NTDT group which had an average 

measurement of hemopexin 0.021 ± 0.002 mgml-1 at P =0.0011 (unpaired t-test; 95%CI -

0.0098 to -0.0025). The significant difference in hemopexin levels was observed across all 

groups (Kruskal-Wallis test; P <0.0001), whilst the hemopexin levels between traits and 

controls were not significantly different. Their levels were on average 1.834 ± 0.325 mgml-1 

and 1.862 ± 0.341 mgml-1 for traits and controls, respectively.  

 

Figure 5.2. Boxplot showing the variation in hemopexin level (mgml-1) between groups of 
patients and controls.  
A markedly reduced level of hemopexin was observed in both the TDT (n = 120) and NTDT 

groups (n=38). The box spans an interquartile range. The median and mean observation for a 

particular group is represented by horizontal lines and plus signs, respectively. Data were 

analysed by Kruskal-Wallis test and unpaired t-test. ***P <0.0001. 
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5.2.4 Plasma cathepsin S  
CTSS is a new parameter proposed here to monitor the level of inflammation in 

haemoglobinopathy diseases. Levels of CTSS are predicted to increase in accordance with the 

increased activity of the reticuloendothelial system anticipated in thalassaemia. This study 

used ELISA to measure the level of CTSS from blood plasma in all groups. Across all groups of 

patients and controls, the CTSS were significantly different (one-way ANOVA; P <0.0001). TDT 

patients exhibited the highest level of CTSS at an average of 13435.29 ± 392.03 pgml-1, while 

CTSS levels in NTDT were lower, measured as an average of 8042.15 ± 1089.04 pgml-1. The 

differences between the two groups were statistically significant (t-test; P (two-tailed) 

<0.0001; 95%CI 3563.65 to 7222.64). CTSS in traits and controls were 3942.28 ± 685.18 and 

4444.88 ± 696.28, respectively. 

 

Figure 5.3. Boxplot showing the variation in cathepsin S level (pgml-1) between groups of 
patients and controls.  
These were statistically significant (P <0.0001) across all samples analysed using one-way 

analysis of variance (ANOVA). The higher CTSS level in the TDT (n =120) compared to the NTDT 

(n=38) group was also statistically significant. The box spans an interquartile range. The 

median and mean observation for a particular group are represented by horizontal lines and 

plus signs, respectively. ***P <0.0001. 
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5.2.5 The applications of haptoglobin, hemopexin and CTSS in the 

various clinical classification of thalassaemic patients. 
The analyses performed were based only on clinical classification of thalassaemia, not a 

genetic diagnosis, for several reasons. Firstly, in each individual clinical group, the majority of 

patients were homogeneous, i.e., eight HbE/β0-thalassaemic patients out of 12 (67%) in the 

TDT group, and nine α-thalassaemia from 15 (60%) NTDT patients (see Appendix III). 

Therefore, statistical  analysis made based on clinical or genetic backgrounds would be 

comparable. Secondly, statistical analysis of small sample size (<30) will be detrimental the 

validity of the results (461). Thirdly, the primary aim of this study was to utilise the three 

proteins as clinical biomarkers. Finally, since genetic testing was not available and cost-

efficient in the context of developing countries, majority of thalassaemia patients are treated 

based only on the clinical severity, not their genetic basis, or type of thalassaemia.  

 

5.2.5.1 NTDT patients 
The measured plasma haptoglobin, hemopexin and CTSS were analysed by ELISA method as 

described in previously (Table 5.2). The correlation analysis was performed across 38 tests (n 

= 38), P<0.05 (one-tailed) described the statistical significance for haptoglobin and hemopexin 

and P<0.05 (two-tailed) for CTSS. P <0.0001 denoted a highly statistical significance between 

the measured parameters. The results are displayed in Table 5.4. Additionally, the 

correlations between the three proteins and the haemolysis parameters are presented in 

Table 5.5.  

The correlations of all the haemolytic parameters with Hb were also analysed using 

Spearman’s rank one-tailed hypothesis. Factors that significantly correlated with Hb were Hct 

(P<0.0001; 95%CI 0.733 to 0.894; r = 0.841) and IDB (P <0.0001; 95%CI -0.773 to -0.343; r = -

0.592). The alteration of Hb levels did not significantly correlate with plasma Hb, percent 

haemolysis, LDH, or corrected reticulocyte counts. Plasma IDB correlations with LDH and 

reticulocyte counts were highly significant (P <0.0001); whereas, LDH also showed significant 

correlations with reticulocyte count, plasma Hb, and haemolysis percentage.  
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Table 5.4. A summary of the correlation studies of the NTDT group, using Spearman’s rank 

correlation, except for the marked parameters (※).  
 

Correlation analyses of haptoglobin and hemopexin followed one-tailed, while CTSS followed 

two-tailed hypothesis. LDH – lactate dehydrogenase, WBC – white blood cell, Hb – 

Haemoglobin; **P <0.05 statistically significant, ***P <0.0001 statistically highly significant. 

※ used Pearson correlation. Minus r (-r) indicates the inverse relationship.  

Parameters 
Correlation 
(one-tailed) 

95% 
Confidence interval 

Correlation coefficient (r) 

Haptoglobin 

Haemoglobin** P = 0.016 0.011 to 0.636 0.347 

Haematocrit P = 0.283 -0.243 to 0.400 0.096 

Plasma Hb** P = 0.003 -0.717 to -0.111 -0.447 

Haemolysis (%)** P = 0.001 -0.732 to -0.135 -0.484 

LDH*** P <0.0001 -0.819 to -0.540 -0.717 

Indirect bilirubin*** P <0.0001 -0.799 to -0.439 -0.663 

Reticulocyte counts***  P <0.0001 -0.720 to -0.320 -0.555 

Hemopexin  

Haemoglobin P = 0.423 -0.367 to -0.327 -0.032 

Haematocrit P = 0.085 -0.522 to -0.118 -0.227 

Plasma Hb** P = 0.011 -0.643 to -0.057 -0.378 

Haemolysis (%)** P = 0.016 -0.622 to -0.002 -0.352 

LDH**※ P = 0.039 -0.522 to 0.030 -0.290 

Indirect bilirubin** P = 0.009 -0.590 to -0.133 -0.384 

Reticulocyte counts** P = 0.006 -0.596 to -0.148 -0.403 

Cathepsin S (two-tailed)  

Haemoglobin P = 0.035 -0.552 to -0.061 -0.343 

Haematocrit P = 0.670 -0.377 to -0.301 -0.071 

Plasma Hb*** P <0.0001 0.322 to 0.772 0.587 

Haemolysis (%)*** P <0.0001 0.398 to 0.774 0.614 

LDH*** P <0.0001 0.476 to 0.843 0.702 

Indirect bilirubin*** P <0.0001 0.490 to 0.806 0.683 

Reticulocyte counts*** P <0.0001 0.404 to 0.792 0.629 

WBC** P = 0.035 0.011 to 0.629 0.342 

Platelet **※ P = 0.001 -0.713 to -0.228 -0.536 
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Table 5.5. The correlations of tested parameters in the NTDT group.  
 

All used Spearman’s rank correlation. P <0.05 denotes statistical significance. ***P <0.0001 

statistically highly significant. Hpx-hemopexin 

 

5.2.5.2 TDT patients  
When applied to TDT patients in our study, the haptoglobin, hemopexin, and CTSS assays and 

statistic analyses were similar to the NTDT group. The results are displayed in Table 5.6, and 

the correlations between the three parameters are presented in Table 5.7.  

The correlations of all the haemolytic parameters with Hb were also analysed using Pearson 

or Spearman’s rank one tailed hypothesis. Factors that correlated significantly with Hb were 

Hct (P <0.0001; 95%CI 0.928 to 0.964; r = 0.949), plasma Hb (P <0.0001; 95%CI 0.131 to 0.432; 

r = 0.282), IDB (P = 0.005; 95%CI -0.376 to -0.086; r = -0.237), reticulocyte counts (P = 0.013; 

95%CI -0.328 to -0.078; r = -0.205) and hemopexin (Table 5.6).    

  

Parameters Correlation 
95% 

Confidence interval 

Correlation 

coefficient (r) 

Haptoglobin v Hpx P(1-tailed) = 0.050 -0.070 to 0.557 0.270 

Haptoglobin v CTSS*** P(2-tailed) <0.0001 -0.744 to -0.503 -0.653 

Hpx v CTSS P(2-tailed) = 0.117 -0.564 to -0.077 -0.258 
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Table 5.6. Summary of the correlation studies of the TDT group using Spearman’s rank 

correlation, except for the marked parameters (※).  
 

Parameters 
Correlation 

(one-tailed) 

95% 

Confidence interval 
Correlation coefficient (r) 

Haptoglobin 

Haemoglobin P = 0.350 -0.141 to -0.225 0.035 

Haematocrit P = 0.179 -0.094 to 0.264 0.085 

Plasma Hb※ P = 0.099 -0.241 to 0.029 -0.119 

Haemolysis (%)※ P = 0.074 -0.243 to 0.007 -0.133 

LDH*** P <0.0001 -0.783 to -0.555 -0.683 

Indirect bilirubin** P =0.008 -0.316 to -0.103 -0.218 

Reticulocyte counts*** P <0.0001 0.316 to 0.592 0.467 

Hemopexin  

Haemoglobin*** P <0.0001 0.179 to 0.519 0.351 

Haematocrit*** P = 0.004 0.059 to 0.407 0.240 

Plasma Hb※ P = 0.053 -0.001 to -0.272 0.149 

Haemolysis (%)※ P = 0.224 -0.089 to -0.206 0.070 

LDH₸ P = 0.045 -0.050 to 0.348 0.155 

Indirect bilirubin*** P <0.0001 -0.530 to -0.209 -0.377 

Reticulocyte counts*** P <0.0001 -0.471 to -0.085 -0.299 

Cathepsin S (two-tailed)  

Haemoglobin P = 0.459 -0.110 to -0.245 0.068 

Haematocrit P = 0.045 0.014 to 0.351 0.183 

Plasma Hb P = 0.832 -0.196 to -0.161 0.020 

Haemolysis (%) P = 0.263 -0.291 to -0.074 -0.103 

LDH※*** P <0.0001 -0.474 to -0.217 -0.359 

Indirect bilirubin** P = 0.010 -0.401 to -0.058 -0.235 

Reticulocyte counts₸ P = 0.046 -0.027 to 0.385 0.182 

WBC P = 0.075 -0.039 to 0.300 0.132 

Platelet※  P = 0.051 -0.002 to -0.350 0.179 

Correlation analyses of haptoglobin and hemopexin followed one-tailed, while CTSS followed 

two-tailed hypothesis. LDH – lactate dehydrogenase, WBC – white blood cell, Hb – 

Haemoglobin; **P <0.05 statistically significant, ***P <0.0001 statistically highly significant. 

※ used Pearson correlation. Minus r (-r) indicates the inverse relationship. ₸ Asymptotic P 

value (P<0.05 but 95%CI crosses zero). 

 

 

 



165 

 

Table 5.7. The correlations of tested parameters in the TDT group. All used Spearman’s rank 
correlation. P <0.05 denotes statistical significance. 
 

**P <0.05 statistically significant. ₸ Asymptotic P-value. Hpx-hemopexin 

 

5.2.6 The effect of transfusion on haemolytic markers in TDT patients 
The majority of TDT patients enrolled in this study (n =12) were βE/β0 thalassaemia patients 

(n = 7; 58%), with 2 cases of βE/β+ thalassaemia (n = 2; 16%), one case of β0/β thalassaemia 

with unknown cause of anaemia and negative direct antiglobulin test, one case of 

homozygous HbE with Hb constant spring (HbCS), and one case of HbH-CS disease (see 

Appendix III for the genetic backgrounds of the patients in this study). The mean pre-

transfusion Hb baseline was 6.88 ± 0.11 gdl-1 (Table 5.2). For each patient, all of the laboratory 

parameters were measured at the pre-transfusion stage and one-hour post-transfusion for 

each of the five visits. Blood products used for transfusion were leukocyte-reduced red cell 

units, with one to two units per dose (one visit). The interval between transfusions ranged 

between four and six weeks. Statistic methods used to compare the two dependent groups 

were paired t-test for normally distributed data (only Hct), and Wilcoxon Signed-Rank test for 

the other parameters with a skewed distribution.  

Of all the monitored parameters in this study, only Hb, Hct, plasma Hb, and % haemolysis 

significantly altered their levels pre- and one-hour post-transfusion (Table 5.8). Figure 5.4 

depicts the differences between pre-transfusion and post-transfusion plasma levels of the 

three markers. There were no statistically significant changes observed between the pre- and 

post-transfusion blood levels of the three proteins.  

 

Parameters Correlation 
95% 

Confidence interval 

Correlation 

coefficient (r) 

Haptoglobin v Hpx₸ P(1-tailed) = 0.002 -0.004 to 0.503 0.260 

Haptoglobin v CTSS** P(2-tailed) =0.015 0.031 to 0.387 0.221 

Hpx v CTSS** P(2-tailed) = 0.017 -0.377 to -0.038 -0.218 
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Table 5.8. Statistical analysis of all parameters between pre-and post-transfusion plasma of the 
TDT group.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Wilcoxon Signed-Rank test was carried out on all parameters except Hct, which had a 

Gaussian distribution and was therefore analysed using the paired t-test. **P<0.005, 

***P<0.0001; ※ = Paired t-test analysis 

  

Parameters Z-score or 95% CI P-value (two-tailed) 

Haemoglobin*** -6.736 <0.0001 

Haematocrit***※ 95%CI -6.29 to -4.91 <0.0001 

Plasma Hb*** -5.597 <0.0001 

Haemolysis (%)** -3.2871 0.001 

LDH** -3.144 0.002 

Indirect bilirubin*** -5.017 <0.0001 

Reticulocyte counts -2.216 0.0264 

WBC (mm-3) -0.39 0.6965 

Platelet (mm-3) *** -4.518 <0.0001 
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Figure 5.4. Box plots showing different levels of plasma haptoglobin (mgml-1), hemopexin 
(mgml-1), and CTSS (ugml-1) pre- and post-transfusion.  
The differences between pre-Tx and post-Tx levels analysed by Wilcoxon Signed-Rank test 
(two-tailed) were not statistically significant (haptoglobin P=0.035; hemopexin P=0.159; CTSS 

P=0.25), where P<0.05 denoted significant difference. The box spans an interquartile range. 

The median and mean for a particular sample group is represented by horizontal lines and 

plus signs, respectively. 

 

However, for haptoglobin, the differences in pre- and post-transfusion levels in two patients 

approached statistical significance, where pre-transfusion haptoglobin levels were in the low 

normal range: patients A3 and A7 (32.40 ± 4.94 mgdl-1 and 10.64 ± 3.88 mgdl-1 for pre- and 

post-transfusion, respectively). 
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Figure 5.5. Haptoglobin pre- and one-hour post-transfusion and concentration (mgdl-1) shown 
for five visits for each individual patient. 
Pre-Tx and Post-Tx in X-axis; concentration (mgdl-1) in Y-axis. Each line represents one TDT 

patient. Orange dash line is the lower limit of normal haptoglobin level (30 mgdl-1). The blue 

vertical dash lines represent each post-Tx test. V designates visit, e.g., V1= visit1, V2= visit2. 

Note that patients A3 and A7 displayed particularly sharp declining levels of post-transfusion 

haptoglobin.  
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5.3 Discussion 
 

Currently, there is no definitive marker of haemolysis that would indicate the actual clinical 

severity of TDT and NTDT patients. It has been shown that Hb might not be a good marker in 

the chronic haemolytic patients, although it is an acceptable marker in the acute anaemic 

setting (258, 268). In this chapter, we have evaluated the clinical application of haptoglobin, 

hemopexin and CTSS observed to exhibit significantly altered abundance in the β-

thalassaemic patients’ plasma EVs (Chapter 4). The hypothesis tested in this chapter was that 

these proteins may act as biomarkers that may correlate better to the pathophysiology of the 

disease. We have also endeavoured to begin to understand how these markers could be 

utilised for predicting the clinical need for transfusion. 

 

5.3.1 Clinical severity of thalassaemia 
Haptoglobin, hemopexin and CTSS were identified due to their altered abundance in the in 

vivo circulating thalassaemic EVs compared to controls (see Chapter 4). Also, as elaborated in 

the section 4.3.3.5 of Chapter 4, haptoglobin and hemopexin are directly related to 

haemolysis condition and the pathophysiology of thalassaemia. In this chapter, we have 

confirmed that these three proteins significantly changed their concentration in plasma in 

concordance with the disease severity. TDT patients were observed to have the lowest level 

of both haptoglobin (5.439 ± 1.021 mgml-1) and hemopexin (0.015 ± 0.001 mgml-1) and had 

the highest level of CTSS (13435.29 ± 392.03 pgml-1) among all the groups. These levels were 

significantly different from the thalassaemia intermedia or the NTDT group (P <0.0001) and 

reflecting the more severe haemolysis observed in the TDT patients when compared to the 

other two groups.  

Previous studies of blood parameters for use as an indication of the severity of thalassaemic 

disease are very limited. Vinchi et al. (2016) reported the severe drop of serum haptoglobin, 

hemopexin, and transferrin in both β-thalassaemia major receiving regular transfusion (n = 

60) and β-thalassaemia intermedia groups (n = 7). Our study was in agreement with their 

findings (serum hemopexin in the thalassaemic group was <0.1 mgml-1 vs. ~0.6 mgml-1 in 

controls; P <0.0001; data interpreted from a bar chart) (443). Serum haptoglobin and 
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hemopexin showed differences in their concentrations in blood of SCD patients, measured by 

the ELISA method in a recent study of the potential of haptoglobin to distinguish severities 

between sickle cell anaemia, Hb SC disease, and healthy control groups (435). This study was 

a forerunner in ascertaining the clinical use of serum haptoglobin and hemopexin as 

biomarkers of disease severity in haemoglobinopathies. Hence, the results of our clinical 

follow-up study indicated that the three proteins may all be good biomarkers that reflect the 

clinical severity of the TDT patients. 

 

5.3.2 NTDT patients 
For NTDT patients, one of the key unsolved patient management issues is determining when 

to trigger the provision of transfusion to the patients. On the one hand, despite the NTDT 

group generally not requiring regular transfusion, this patient group is still prone to develop 

many complications related to chronic anaemia (224). On the other hand, a substantial 

number of patients may receive inappropriate transfusions when they can actually tolerate a 

lower baseline of Hb (241). The literature describes the criteria for decision making (228), but 

according to these criteria, only Hb <5 gdl-1 is a measurable laboratory parameter. 

Nonetheless, Hb as a marker for administering transfusion has limitations in representing the 

clinical status of NTDT patients (255), because patients with chronic haemolysis tend to 

tolerate a low Hb level. Direct evidence of how much volume or percentage of haemolysis 

needs to occur in order to change Hb level is not available. A single study revealed a drop of 

3% Hct (~ Hb 1 gdl-1) per 1 gdl-1 of free Hb (462). A recent survey of transfusion practice in 

NTDT patients from 11 medical centres has confirmed that the majority of physicians use 

clinical symptoms rather than Hb level to transfuse patients (268).  

Results presented in this chapter suggested that the correlations between Hb and the other 

markers were poor, with only IDB being significantly correlated with Hb level. Whereas, both 

haptoglobin and hemopexin levels correlated with plasma Hb, %haemolysis, LDH, IDB, and 

reticulocyte counts. This finding highlighted the limitation of Hb as a marker for the severity 

of the disease in the NTDT subtype. Additionally, plasma haptoglobin and hemopexin were 

superior in detecting the IVH portion of haemolysis that would occur in the patients. This is 

because both markers, especially haptoglobin, had moderate to strong statistical correlations 

with the IVH markers, i.e., plasma Hb, %haemolysis, and LDH (Table 5.3).  
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Plasma CTSS also demonstrated moderate to strong correlations with several haemolysis 

markers (Table 5.3) in NTDT patients. The levels of CTSS in the NTDT correlated with numbers 

of WBC. CTSS is located inside lysosomal compartments of professional antigen-presenting 

cells (457). Tato et al. (2017) recently reported the release of CTSS from activated 

macrophages and its potential as a marker for inflammation in autoimmune diseases (421). 

Regarding β-thalassaemia, previous reports observed an increase in proinflammatory 

markers (463, 464) and the roles of macrophages in modulating thalassaemic erythroid 

proliferation and differentiation (465). Thus, with further exploration, CTSS has the potential 

to be a good marker of myeloid compartment activities and inflammation, particularly 

macrophages, in haemolytic settings.  

Future studies with a larger cohort of patients and a more extensive follow-up period, 

particularly capturing haemolytic crises, are essential to prove the advantages of these 

proteins as haemolysis biomarkers in the NTDT patients.  

 

5.3.3 TDT patients 
In the TDT group, a striking decrease of plasma haptoglobin after transfusion was observed in 

two patients (A3 and A7 in Figure 5.5). In those patients, pre-transfusion haptoglobin levels 

returned to low normal (>30 mgdl-1); whereas, this was not observed in ten other TDT patients 

who consistently had extremely low haptoglobin levels. Thus, our data emphasised the non-

homogenous disease severity observed among TDT patients. Moreover, we postulated, for 

the first time, that blood transfusion could potentially worsen the protective mechanisms in 

TDT patients who have less severe clinical features and already have haemolysis induced by 

transfusion.  

Plasma hemopexin demonstrated a good correlation with Hb and Hct (Figure 5.2), which in 

turn, could potentially complement Hb as a marker for optimising blood transfusion dosage 

and timing for individual patients. Both haptoglobin and hemopexin showed significant 

correlations with other haemolytic markers (LDH, IDB) and the marrow responsive marker, 

reticulocyte count (see Table 5.5). No direct relationship was found between the haemolytic 

markers in thalassaemic patients who receive blood transfusions. However, in the non-

thalassaemic setting, L’Acqua and colleagues (2015) assessed the effects of red blood cell 
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transfusion compared with saline/albumin infusion in critically ill children. A significant 

increase in plasma Hb, IDB, and non-transferrin bound iron was recorded in recently 

transfused patients (466), whereas other studies only showed the increase of the EVH 

markers in long-term stored RBC units (467, 468).  

Therefore, our project has revealed the significant alteration of haemolytic markers, 

particularly the IVH markers (plasma Hb; P<0.0001 and %haemolysis; P=0.003) in the TDT 

patients. These findings are in agreement with what was observed in post-transfusion status 

of the non-thalassaemic patients (466). It is possibly explained by the minimal level of 

haemolysis that occurs after transfusion, even with compatible blood or the presence of EVs 

in the transfused bag due to RBC storage lesions (469-471). Although it would be interesting 

to follow the haptoglobin and hemopexin cycle, we did not continue monitoring these 

markers after the one-hour post-transfusion sampling time. This limitation was necessary for 

ethical reasons - the pre-anaemic background of the recruited patients and the inconvenience 

of their follow-up as out-patients had to be considered.  

Smith and McCulloh (2015) reported 24 to 48 hours of restoration time for hemopexin, and 

14 days for haptoglobin to return to normal plasma levels after the haemolytic event (449). 

In our study, only two out of 12 TDT patients demonstrated the restoration of haptoglobin to 

low normal level. Note that the intervals between transfusions for these two patients were 

six-week and four-week for A3 and A7 patients, respectively. Therefore, ideally, baseline 

levels of the two proteins could be assessed if we were able to measure plasma hemopexin 

at 48 hours and haptoglobin at the two-week interval after transfusion. A longer monitoring 

period with a larger patient sample is required to confirm these observations.  

Importantly, this is the first study to identify the lowest recorded level of haptoglobin (5.44 ± 

1.02 mgdl-1 for TDT group; see Appendix I for individual data). Dilutional tests were performed 

to improve the ELISA manufacturer's protocol in order to be able to measure the extremely 

low levels of haptoglobin and hemopexin in TDT patients. The low measurable levels recorded 

by ELISA were also validated through the observed correlation with the other markers of 

haemolysis (Table 5.5). Therefore, we proposed here the benefit of the high sensitivity ELISA 

method for detecting low-level plasma haptoglobin. Measurements of both haptoglobin and 

hemopexin would benefit the future clinical management of patients as they can lead to the 

set-up of new cut-off values for a follow-up study in the setting of consistently low plasma 
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levels of these two proteins, e.g., in haemoglobinopathy diseases. Furthermore, if therapeutic 

haptoglobin and/or hemopexin are available on prescription in the future, ELISA-based tool 

would be useful to monitor their abundances following drug administration. Future studies 

on the inter- and intra-assays with greater number of samples are required to validate our 

findings. In a clinical context of the developing countries, including Thailand, these biomarkers 

harnessed together would be beneficial for monitoring the status of thalassaemic patients, 

because they are plasma proteins and are relatively easy to measure in a cost-effective way 

when compared to multiple clinical parameters of erythropoiesis and haemolysis such as 

serum erythropoietin with soluble transferrin receptor.   

 

5.4 Chapter summary  
 

This work has described the successful preliminary clinical evaluation of haptoglobin, 

hemopexin and CTSS and has demonstrated their potential useful as biomarkers for indicating 

the clinical severity of the thalassaemia diseases.  

The use of haptoglobin, hemopexin, and CTSS was postulated as markers for monitoring the 

transfusion requirements of NTDT patients, in conjunction with the standard Hb level 

measurement. Notably, hemopexin showed better correlation with plasma Hb and 

haemolysis percentage, known indicators of IVH, than Hb levels in the NTDT patient group. 

Moreover, the altered levels of the three proteins were observed to be of relevance across 

thalassaemic patient groups. We also demonstrated, for the first time, the significant 

alteration of CTSS levels in TDT and to a lesser extent in NTDT, which highlights its potential 

to contribute as an inflammatory marker for monitoring of haemoglobinopathy diseases.  

Although this study has followed a small cohort of TDT and NTDT patients, it has 

demonstrated that the three biomarkers may have potential utility in the clinical 

management of TDT and NTDT patients. For the future, this work will need to be expanded 

to conduct a larger trial of patients for a longer clinical follow-up to generate more 

longitudinal data.   
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CHAPTER 6 

 

CONCLUSIONS AND FUTURE 

PERSPECTIVES 
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Thalassaemic patients can present with a broad spectrum of clinical manifestations even with 

the same diagnosis and the same genetic background (267). The underlying causes of such 

diversity in not fully understood. The work conducted in this thesis has explored EVs as one 

potential factor which could explain the clinical variations observed. We have studied the 

behaviour of patient cells during in vitro erythroid culture, compared EVs from in vivo and in 

vitro sources and through this work, identified potential biomarkers for clinical management 

of thalassaemia patients. Finally, this project also explored genetic variation through the 

analysis of the relevant genes (see Appendix III). 

6.1 In vitro erythropoiesis of HbE/β-thalassaemic 

patients 
 

This work has successfully adapted the originally erythroid culture method described by 

Griffiths et al. (128) by the addition of dexamethasone (DXM), for the in vitro culture of 

CD34+cells isolated from peripheral blood of HbE/β0-thalassaemia. This was used to monitor 

cell proliferation, maturation, viability, and enucleation rates compared to healthy controls. 

Ineffective erythropoiesis is the hallmark of thalassaemia, characterised by the combination 

of increased cell proliferation and decreased erythroid production due to intramedullary 

apoptosis (212, 213). Previous studies reported an increase in apoptosis of thalassaemic RBC 

precursors during the polychromatophilic stage (159). However, although patients’ erythroid 

cells were successfully cultured to reticulocytes, we did not observe enhanced cell death at 

the polychromatophilic normoblast state (159). This could be explained by the different 

genetics of thalassaemic patient groups studied or could be due to the specific ex vivo culture 

conditions used. The lack of ineffective erythropoiesis in erythroid cultures was also reported 

by others (216, 218, 409). We did, however, observe slower cell maturation and lower 

enucleation rates as measured on day 21 of the culture in thalassaemia samples compared to 

controls.  

The discrepancy of the results between previous studies of cultured β-thalassaemia and our 

work exists. A study by Mathias et al. (2000) that cultured CD34+ progenitor cells isolated from 

bone marrow of β-thalassaemia major patients and observed ex vivo ineffective 

erythropoiesis of thalassaemic cells at the polychromatophilic stage (151). Another study that 
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observed an increase of apoptosis in ex vivo erythropoiesis of CD34+ cells isolated from 

peripheral blood of HbE/β-thalassaemia when compared to controls (10.01 ± 1.45% vs. 5.92 

± 1.16%) (472). Other studies explored apoptosis of cells obtained directly from bone marrow 

of β-thalassaemia major (211, 214). However, more recent work by Forster et al. (2016) also 

cultured CD34+ cells obtained from peripheral blood of five TDT β-thalassaemic patients and 

did not observe an increase in apoptosis of cells during the 14-day culture period when 

compared to the healthy controls (216).  

One major difference between Mathias paper and our own study was that they used a one-

stage cell culture system with hydrocortisone and, similarly, no corticosteroid was added in 

Lithanatudom study. In our work, the DXM additive was added up to day 11 in an optimised 

three-stage culture system (128) which may have ameliorated the oxidative stress 

experienced. Another difference is the presence in the culture media of SCF. One study of 

thalassaemic cell cultures has highlighted the dependence on SCF with or without DXM for 

thalassaemic cells to survive and mature to reticulocytes (410). The cells were observed to 

have the greatest proliferation in the culture protocol containing both SCF and DXM which is 

similar to the conditions observed in our cultures. This evidence is corroborated with our 

proteomic work on corticosteroid additive cells that showed an upregulation of SCF/KL 

expression over controls (see section 3.2.3 and Table 3.1 in Chapter 3). Thus, our optimisation 

of the three-stage culture protocol (128) with DXM may mimic stress erythropoiesis and could 

ameliorate ineffective erythropoiesis of thalassaemic cell culture. The alternative potential 

explanation is that the culture system only permits the more functional cells to survive, which 

was suggested by Satchwell et al. (2013) in the study of cultured MNCs of congenital 

dyserythropoietic anaemia (type II) patients, a disease characterised by SEC23B mutation 

resulting in dyserythropoiesis of erythroid cells (154). 

 

6.1.1 Proteomic study of in vitro-derived  thalassaemic EVs 
The work in Chapter 3 provided the first information of proteomic profiles of the adult in vitro 

thalassaemic reticulocyte membranes as well as the in vitro EVs-derived from these 

reticulocytes. We reported approximately 2500 and 600 proteins from the former and the 

latter sources, with 162 proteins shared across both sources (Table 3.6 and Figure 3.15). The 

bulk of proteins identified in both the reticulocyte membrane and the EV samples were 
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involved with metabolic processes. Importantly, a recent study reported the proteome of EVs 

isolated from reticulocytes produced using in vitro culture of human cord blood CD34+ cells. 

This study identified 367 individual proteins; many of these proteins were also detected in 

our study (413).  

When the reticulocyte membrane list was compared to the list derived from the reticulocyte 

EVs, the proteins that increased in abundance in both reticulocyte membranes and EVs of the 

patients were proteins that are known to be involved in cell maturation and facilitation the 

enucleation process (393, 395-397). No evidence of increased oxidative injury was found from 

this proteomics study. Again, this suggests that under the conditions of culture in the 

laboratory, the cells are experiencing less oxidative stress or the HbE/β-thalassaemia patient 

samples ex vivo cultured here are not as disturbed as previously studied thalassaemia 

patients.  

 

6.1.2 Future work around in vitro culture of thalassaemia 
 

6.1.2.1 Development of a synthetic cellular model of human β-thalassaemia 
With the difficulties of assessing the best cell culture system for studying the very small 

number of CD34+ HSCs available from minimal blood samples obtained from patients with 

thalassaemia, it was clear that a better system is required to facilitate the study of this 

disease. Lee et al. (2013) engineered a potential culture model using lentivirus-mediated 

human β-thalassaemia knockdown of HBB in cultured CD34+ cells obtained from adult donors 

(186). Using this model, it was observed that around the polychromatophilic stage, the 

majority of cells underwent apoptosis (186). Thus, the study of this β-thalassaemia model may 

shed light on the pathophysiology of ex vivo ineffective erythropoiesis. Additionally, the 

recent availability of adult erythroid cell lines, in particular, Bristol Erythroid Line Adult, (BEL-

A) (184), offer a potential opportunity to develop thalassaemic cell lines for reproducible 

studies on a known genetic background. This could be conducted by generating patient-

specific lines or using gene-editing technology of the current BEL-A line or any other 

appropriate erythroid immortalised line. These lines have recently been shown to be 

amenable to gene editing (185, 473). 
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6.1.2.2 Monitoring decreased differentiation of erythroid precursor cells 
One of the interesting findings observed during the culture of thalassaemic cells was delayed 

in differentiation when compared to healthy control cultures. This work needs to be expanded 

further in future studies, but similar observations were reported in previous studies of 

thalassaemic cultures (159, 218). The proposed mechanisms that hinder cell differentiation 

in thalassaemia could have potentially resulted from alterations in two transcription factors: 

DNA-binding protein inhibitor (ID1) and Forkhead box O3 (Foxo3).  

The activation of ID1 by JAK/STAT pathway was found inhibiting cell differentiation in β-

thalassaemia, which has sustained JAK2 activation. This could possibly explain the delay of 

cell maturation (474). A mouse model deficient in Foxo3 (murine homolog of human Foxo3a) 

decreased differentiation of erythroid progenitor (475). Interestingly, it was proposed that 

the ineffective erythropoiesis was caused by the loss of Foxo3, a transcription factor that 

regulates maturation of terminal erythropoiesis (475). Another study administered 

resveratrol (a natural antioxidant from plants) that activates Foxo3, and this resulted in 

amelioration of ineffective erythropoiesis, confirming the role of Foxo3 in this phenomenon 

(476). Therefore, in future work, it would be interesting to evaluate whether ID1 and Foxo3 

indeed contribute to ineffective erythropoiesis in -thalassaemia in humans and determining 

whether treatment with resveratrol could improve their symptoms. Ultimately, such studies 

may lead to a breakthrough in therapeutic options in the future, especially if coupled with the 

use of model systems derived from immortalised cell line models (see above) which would 

enhance reproducibility of the results.  

 

6.2 Identification and clinical applications of 

haptoglobin, hemopexin, and cathepsin S as 

biomarkers 
 

Although thalassaemia is one of the most common monogenic gene disorders globally and 

the main pathophysiology of the disease is haemolytic anaemia, surprisingly, there is lack of 

studies of the parameters used to monitor clinical severity in the patients. Moreover, the very 

limited evidence is available about the effects and appropriateness of blood transfusion in 
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these patients. We have explored in vivo sources of patient EVs by carrying out a proteomics 

study of plasma-derived EVs which successfully showed that antioxidants, chaperones, iron-

sequestering proteins and cathepsin S exhibited increase abundance in HbE/β-thalassaemic 

EVs; whilst, haptoglobin and hemopexin are reduced in thalassaemic patients’ EVs (419).  We 

then went on to show that there were significantly altered levels of plasma haptoglobin, 

hemopexin, and cathepsin S (CTSS) in different groups of thalassaemia patients (TDT, NTDT, 

carriers and controls) by conducting a small longitudinal study. 

These three proteins identified from the proteomics of thalassaemic EVs (Chapter 4) were 

closely correlated with the pathophysiology of the disease and other blood parameters of 

haemolysis, as shown by statistical analyses in Chapter 5 of this thesis. Such parameters 

include lactate dehydrogenase, indirect bilirubin, and reticulocyte counts (Table 5.4 and Table 

5.6). We specifically postulated the use of haptoglobin and hemopexin to monitor transfusion 

requirements of NTDT patients, instead of relying on Hb only as the current practices suggest 

(255). Because these two proteins correlated well with markers of intravascular haemolysis 

(i.e., plasma Hb and haemolysis percentage) for this group of patients, when Hb did not. In 

addition, we propose that CTSS should also be monitored as this  provides an indication of 

the degree of systemic inflammation in the patient (421), and so has potential as a biomarker 

for the degree of inflammation in haemoglobinopathy diseases. This initial study has 

illustrated the potential utility of these markers and merits further study of a larger cohort of 

patients with a longer clinical follow-up in future work.  

Lastly, the work in this thesis reports the lowest measurable haptoglobin levels across the 

cohort of thalassemia patients, and this would allow us to monitor blood level of this protein 

both for the follow-up purpose and, in the future, after therapeutic administration (477).  

 

6.3 Genetic studies of the thalassaemic patients 
 

With the limitations of Hb analysis for diagnosis (478) and the discrepancies observed 

between clinical manifestations and available, diagnosis in some of the patients recruited to 

this project, a parallel genetic assessment of the patients was also performed. Although not 

presented in a specific results chapter, this body of work represents is a substantial 
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undertaking and provides important additional information on the patients studied in this 

thesis, and so is presented in Appendix III.  This work confirmed the diagnosis of 27 patient 

cases, provided a new diagnosis to one patient, amended diagnoses of seven patients, and 

has identified new α-alleles (i.e., eight Hb Constant Spring, two Hb Paksé, and one Hb 

Westmead alleles) in 11 patient cases. The Hb Westmead [HBA2:c.369C>G] is a rare allele of 

HBA2 mutation reported to date in only two unrelated families in the Thai population (479). 

The HBA1, HBA2, HBB and KLF1 genes were also Sanger sequenced in 46 thalassaemic 

patients enrolled in the study, but no new mutations were observed. 

 

6.4 Final summary 
 

Taken together, this thesis has achieved its aims to explore the proteomes of in vitro and in 

vivo thalassaemic patients EV samples and identified potential biomarkers for predicting 

clinical severity and transfusion requirement of thalassaemic patients. The initial longitudinal 

study that has been conducted on a wider group of thalassaemic patients has shown that the 

biomarkers identified have the potential for clinical management of such patients. Further 

studies on a larger patient cohort are needed to validate our findings and, ultimately, we hope 

the work initiated in this thesis will provide benefits to patients who have suffered from this 

haemoglobinopathic disease.  
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APPENDIX 

Appendix I 
 

Demographic data, initial diagnoses, laboratory parameters, 

medications, and ELISA results of all the patients recruited in the 

clinical follow-up trial 
 

Note: Coding  

A = Transfusion dependant thalassaemia (TDT) group 

B = Non-transfusion-dependent thalassaemia (NTDT) group 

C = thalassaemic traits 

D = healthy controls 

Green and yellow columns represent all the relevant tested performed in Thailand  

Orange colour denotes the ELISA test results performed at NHSBT, Filton, UK 
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A07 27 F splenectomised18/10/2017 1 1 HbE/β-thalassaemia 8.1 25.8 11000 687000 6.30 5670 0.86 194 0.4 0.02 0.19 Deferasirox 1,500 mg/day38.750 0.011 15052.35

1 2 10.8 32.6 20100 599000 5.49 5491 1.10 265 0.3 0.08 0.52 Deferiprone 2,000 mg/day5.174 0.013 16759.41

15/11/2017 2 1 7.6 23.4 11700 656000 5.90 5659 0.57 218 0.6 0.01 0.10 Folic a 5 mg/day 46.161 0.014 16471.18

2 2 11.6 34.7 13200 595000 6.78 6576 1.17 384 0.3 0.11 0.62 19.171 0.015 18431.76

13/12/2017 3 1 8.5 25.9 14000 732000 7.00 5597 0.94 254 0.4 0.07 0.60 45.010 0.033 15825.29

3 2 11.2 33.7 14100 530000 6.30 5316 1.26 318 0.2 0.14 0.82 18.712 0.030 17760.00

07/02/2018 4 1 8.7 25.6 15100 718000 5.19 6099 0.79 214 0.32 0.05 0.41 41.501 0.037 18101.18

4 2 11.5 33.8 17400 644000 5.38 6005 0.99 264 0.41 0.09 0.50 39.124 0.039 17675.29

14/03/2018 5 1 7.9 24.5 18500 641000 6.24 6277 1.03 344 0.15 0.03 0.28 24.598 0.029 15258.47

5 2 12.0 36.1 18800 452000 6.79 6638 1.05 355 0.08 0.08 0.42 10.399 0.026 15526.27

A08 22 F splenectomised18/10/2017 1 1 HbE/β-thalassaemia 6.8 22.5 11500 983000 10.38 4456 1.77 393 <0.071 0.05 0.58 Deferasirox 1,750 mg/day3.642 0.010 10987.71

1 2 8.9 29.0 11400 867000 9.29 4242 2.40 437 <0.071 0.08 0.64 folic a 5 mg/day 1.357 0.010 10784.75

15/11/2017 2 1 7.8 24.4 10800 989000 7.92 5224 1.64 273 0.2 0.05 0.48 9.735 0.015 10162.71

2 2 10.7 32.7 10300 948000 7.29 5064 2.16 367 <0.027 0.21 1.29 8.705 0.016 11613.56

13/12/2017 3 1 7.8 24.5 13200 841000 6.91 4108 1.55 293 0.3 0.11 1.06 21.646 0.033 9782.63

3 2 10.0 30.2 14500 787000 6.03 4012 3.94 578 0.1 0.12 0.83 3.036 0.040 10129.24

21/02/2018 4 1 7.0 23.3 12000 803000 12.98 3379 1.75 313 0.07 0.05 0.53 3.319 0.039 10368.64

4 2 9.7 30.9 10600 753000 12.66 3813 1.88 407 0.07 0.08 0.56 5.457 0.039 11686.02

21/03/2018 5 1 7.5 24.7 8800 811000 13.61 5612 2.10 489 <0.027 0.15 1.44 2.938 0.039 10239.41

5 2 8.7 27.9 7300 710000 13.54 5521 2.21 459 <0.027 0.08 0.65 1.101 0.039 10644.49

A09 20 M splenectomised01/11/2017 1 1 HbE/β-thalassaemia 6.2 22.2 19200 857000 0.58 1813 10.72 409 <0.071 0.08 0.96 Deferasirox 1,250 mg/day6.152 0.005 10465.25

1 2 8.3 27.8 n/a 829000 21.52 1992 12.37 471 <0.071 0.07 0.61 folic a 5 mg/day 4.222 0.006 11136.02

13/12/2017 2 1 6.4 22.4 31500 883000 11.40 2773 4.78 480 <0.027 0.06 0.71 0.493 0.006 13089.41

2 2 7.9 26.5 21900 798000 22.15 2581 4.55 540 <0.027 0.19 1.73 0.742 0.007 12161.44

31/01/2018 3 1 6.5 22.1 12600 852000 4.96 2101 7.27 399 <0.027 0.08 0.93 0.528 0.003 13328.81

3 2 8.6 28.3 12000 789000 22.11 2156 7.66 449 <0.027 0.13 1.03 1.495 0.005 11766.53

14/03/2018 4 1 6.6 23.2 27800 813000 21.78 2268 7.91 439 <0.027 0.06 0.68 2.115 0.006 10323.73

4 2 8.5 28.8 25500 765000 17.25 2200 8.25 395 <0.027 0.11 0.91 2.188 0.008 11618.64

19/04/2018 5 1 6.6 22.6 22300 635000 11.57 2630 7.38 476 <0.027 0.06 0.77 5.815 0.004 10083.05

5 2 8.2 27.0 19900 441000 16.16 1900 7.19 320 0.05 0.10 0.87 9.281 0.009 10227.12

A10 41 F splenectomised15/11/2017 1 1 HbE/β-thalassaemia 6.0 18.8 4500 299000 10.21 829.7 2.35 503 <0.027 0.10 1.34 Deferasirox 1,750 mg/day1.442 0.009 10570.34

1 2 7.6 22.7 4400 236000 10.33 790.4 2.22 708 <0.027 0.19 1.97 folic a 5 mg/day 1.244 0.010 12137.29

27/12/2018 2 1 5.8 17.8 7500 235000 8.49 686 2.51 571 <0.027 0.06 0.85 0.776 0.018 10303.39

2 2 8.0 24.4 5200 230000 9.34 686 2.43 545 <0.027 0.13 1.20 1.435 0.018 9965.68

24/01/2018 3 1 5.8 17.7 5000 8.10 653 2.01 490 <0.027 0.08 1.13 0.154 0.020 9464.41

3 2 7.9 22.7 7500 246000 7.05 715 2.74 511 <0.027 0.55 5.25 0.602 0.023 12844.92

21/02/2018 4 1 5.8 17.9 3500 259000 6.47 568 2.19 483 <0.027 0.11 1.53 0.597 0.023 10652.54

4 2 7.3 21.3 3400 257000 6.54 607 2.20 525 <0.027 0.08 0.85 0.720 0.021 10923.73

21/03/2018 5 1 5.0 18.2 6700 253000 7.12 814 1.38 544 <0.027 0.04 0.58 3.573 0.018 10852.97

5 2 7.5 22.8 5000 240000 7.38 750 1.48 587 <0.027 0.32 3.30 7.219 0.019 12561.02

A11 21 M intact 22/11/2017 1 1 HbE/β-thalassaemia 7.2 24.1 8900 161000 1.37 3164 3.68 1559 <0.027 0.06 0.63 Deferasirox 1,500 mg/day0.278 0.011 7773.73

1 2 7.8 25.8 7300 148000 2.13 3161 3.76 1191 <0.027 0.07 0.66 folic a 5 mg/day 0.411 0.013 7652.54

27/12/2017 2 1 8.0 26.3 8500 165000 2.36 2890 4.03 1965 <0.027 0.07 0.63 0.672 0.018 7958.90

2 2 8.4 26.9 7300 158000 2.12 2602 3.73 1437 <0.027 0.10 0.87 0.336 0.013 7302.97

31/01/2018 3 1 7.6 23.7 6800 180000 0.78 2192 2.59 856 <0.027 0.06 0.60 0.396 0.017 6109.32

3 2 8.4 25.8 7200 180000 0.74 2066 2.49 789 <0.027 0.08 0.71 0.209 0.020 6142.37

07/03/2018 4 1 7.0 25.0 8900 160000 1.22 3259 3.16 2270 <0.027 0.06 0.60 0.302 0.026 7776.27

4 2 8.5 27.5 8500 143000 1.12 3215 3.16 1162 <0.027 0.08 0.68 0.482 0.023 7013.14

04/04/2018 5 1 8.0 25.8 7700 176000 1.03 2661 3.55 1073 <0.027 0.08 0.74 0.384 0.017 6643.64

5 2 8.8 27.7 6700 179000 0.97 2529 3.46 1028 <0.027 0.04 0.33 0.550 0.021 7742.37

A12 16 M intact 20/12/2017 1 1 HbE/β-thalassaemia 6.3 21.1 6200 233000 1.04 1371 2.35 691 <0.027 0.06 0.76 Deferasirox 1,500 mg/day0.151 0.012 10507.20

1 2 7.6 23.9 5900 220000 2.21 1317 2.46 744 <0.027 0.20 1.94 folic a 5 mg/day 0.446 0.019 11130.93

24/01/2018 2 1 7.1 23.7 5,600 197000 2.09 2030 2.43 714 <0.027 0.10 1.05 0.183 0.020 11505.08

2 2 8.0 26.6 5200 196000 1.38 1820 2.76 789 <0.027 0.16 1.44 0.477 0.017 12085.17

25/04/2018 3 1 7.8 24.8 4900 182000 2.04 3328 2.17 568 <0.027 0.13 1.24 1.104 0.022 11976.27

3 2 8.9 28.7 5100 195000 3.22 3072 2.27 636 <0.027 0.17 1.36 0.635 0.025 10840.68

23/05/2018 4 1 7.7 25.6 3800 187000 0.57 1855 3.06 559 <0.027 0.03 0.34 0.611 0.019 16045.45

4 2 8.3 27.2 4100 183000 1.28 2042 3.30 666 <0.027 0.07 0.61 0.331 0.023 16081.82

20/06/2018 5 1 7.1 23.4 4200 199000 0.76 1525 2.93 586 <0.027 0.36 3.86 0.584 0.024 18689.09

5 2 8.1 25.5 4300 184000 1.06 1517 2.78 603 <0.027 0.32 2.96 0.521 0.021 16799.09
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B12 was excluded from the study due to suspected tuberculosis infection 

Patient Age Sex
Splenic 

status
Diagnosis Date visit Hb (g/dL) Hct (%)

WBC 

(/mm3)

Platelet 

(/mm3)

corrected 

Retic (%)

Ferritin 

(ng/ml)
IDB LDH

Haptoglobin 

(mg/ml, 0.3-

2.0)

Medication
Plasma 

Hb (mg/dl)

Hemolysis 

(%)

Haptoglobin 

(mg/dl)

Hemopexin 

(mg/ml)

CTSS 

(pg/ml)

B01 69 M intact Hb H/Cs 11/10/2017 1 7.9 29.8 4,200 174,000 3.79 789.9 2.46 606 <0.07 Folic a 5 mg/day 0.05 0.44 0.22534682 0.01126136 8185.455

BPH 10/01/2018 2 7.7 28.9 3,400 166,000 4.16 798.9 2.50 589 <0.027 Asa 81 mg/day 0.05 0.44 0.2268729 0.02034505 7910.909

04/04/2018 3 8 30.6 3,800 177,000 4.70 826.7 2.49 646 <0.07 Xetrel XL 1x1, Feride 1x1, omeprazole 20 mg/d, Vit Bco 1x20.03 0.26 0.51629224 0.02335656 6984.545

B02 45 M intact Hb H/Cs 11/10/2017 1 9 33.6 7,600 203,000 4.26 489.6 2.97 1029 <0.07 Atenolol 25 mg/day 0.09 0.67 0.5313877 0.00572193 12511.82

AF 10/01/2017 2 8.9 32.1 9,500 210,000 5.88 413.2 3.26 1111 <0.027 Folic a 5 mg/day 0.06 0.45 0.21347258 0.00661936 12770

04/04/2018 3 9.2 33.5 5,700 154,000 4.18 612.3 2.61 1060 <0.027

B03 48 F intact Homozygous HbE 11/10/2017 1 11.1 35.1 7,500 193,000 1.12 183.5 0.11 337 1.4 Folic a 5 mg/day 0.16 1.04 101.334337 0.01987791 5405.455

CA breast stage IIB, in remission 6 y10/01/2018 2 11.4 34.6 8,900 228,000 1.23 192.30 0.33 347 1.92 simvastatin 40 mg/day

04/04/2018 3 11.1 33.9 7,700 193,000 1.15 191.30 0.38 366 1.25 0.01 0.06 41.6472608 0.0453032 3561.864

B04 35 M intact Hb H/Cs 18/10/2017 1 10.4 41.7 8,200 213,000 9.13 312.2 2.78 755 <0.07 Folic a 5 mg/day 0.10 0.57 0.76316584 0.00584978 11088.18

17/01/2018 2 10.2 39.2 8,100 232,000 8.19 250.8 2.99 693 <0.027 0.06 0.33 0.39545513 0.0071327 14256.36

25/04/2018 3 10 39.7 8,400 177,000 9.81 371.5 4.40 2150 <0.027 0.09 0.54 1.22216379 0.01205846 10053.81

B05 55 M intact Hb H disease 08/11/2017 1 10.4 35.4 4,900 232,000 1.89 741.0 0.31 319 0.7 Folic a 5 mg/day

Epilepsy 07/02/2017 2 10.3 34.8 5,400 236,000 1.94 639.9 0.47 310 0.44 Phenytoin

09/05/2018 3 11 37.1 6,200 249,000 2.02 527.8 0.50 326 n/a Phenobabital 0.04 0.23 39.3479428 0.02912832 3377.119

B06 23 M intact B-thal/Hb E 08/11/2017 1 7.8 24 7,500 301,000 0.94 485.0 1.20 316 0.3 0.02 0.18 28.8931452 0.04589783 3587.273

07/02/2018 2 8.2 24.6 7,700 212,000 0.72 497.4 1.08 313 0.16

20/06/2018 3 8.1 25.2 9,200 248,000 0.81 491.0 0.83 355 0.13 0.05 0.46 14.5088068 0.0309639 3191.102

B07 68 F intact AE Bart's disease 08/11/2017 1 7.5 26.7 8,000 232,000 1.72 347.2 1.58 359 0.7 Folic a 5 mg/day 0.04 0.39 73.0204372 0.01364867 5192.727

HT 14/02/2018 2 6.7 23.6 8,100 236,000 1.55 362.2 1.37 256 0.58 0.02 0.21 73.2622265 0.04214991 5292.727

02/05/2018 3 7 24.9 7,800 235,000 1.35 482.4 1.49 506 0.34 0.01 0.11 35.2706308 0.02685524 4158.051

B08 40 F intact Hb H/Cs 08/11/2017 1 8.5 32.1 5,800 269,000 4.36 2,201.0 0.88 591 <0.07 Folic a 5 mg/day 0.09 0.74 0.37122717 0.01081621 9188.235

Kikuchi lymphadenitis 21/02/2018 2 7.6 28.4 4,400 217,000 5.26 1,455.0 0.89 570 <0.027 Deferiprone 2,000 mg/day 0.02 0.18 0.15823154 0.02806978 8505.294

23/05/2018 3 8.5 32.3 4,800 245,000 3.75 1,050.0 1.06 510 <0.027 0.04 0.32 0.19906637 0.03575078 8062.712

B09 54 F intact Hb H disease 09/11/2017 1 8.6 28.5 5,900 220,000 1.46 300.0 0.43 342 0.5 Folic a 5 mg/day 0.01 0.08 82.7600928 0.01443991 4420

autoimmune hepatitis loss flu Azathioprine 75 mg/day 

B10 41 F intact Homozygous HbE 09/11/2017 1 12.3 36.6 6,200 251,000 2.05 163.4 0.30 322 1.2 Folic a 5 mg/day 0.01 0.05 113.217059 0.01551705 5042.941

14/02/2018 2 11.8 34.5 6,500 154,000 1.65 184.3 0.44 322 1.28 0.05 0.27 49.7623376 0.01777799 5992.941

09/05/2018 3 11.7 36.1 6,400 145,000 2.24 164.8 0.36 816 1.43 0.09 0.50 39.7767211 0.04009114 3313.983

B11 58 F intact Hb H disease 09/11/2017 1 8.9 30.1 3,600 159,000 0.88 191.0 0.56 284 0.8 Folic a 5 mg/day 0.01 0.08 53.562445 0.0112962 1671.186

14/02/2018 2 8.9 30.3 4,400 165,000 0.95 194.6 0.40 283 0.63 0.02 0.15 52.6568791 0.00951587 1503.814

02/05/2018 3 9.1 31 3,900 153,000 1.03 219.3 0.64 334 0.76 0.02 0.15 40.689485 0.01765496 2338.983

B13 32 F intact Hb H/Cs 15/11/2018 1 8.1 31.5 8,900 325,000 4.81 600 0.90 375 0.2 Folic a 5 mg/day 0.02 0.25

DM type 2 14/02/2018 2 7.9 31.3 8,600 214,000 5.11 582.2 1.00 351 0.14 Metformin 500 mg/day 0.03 0.26 20.8159592 0.01379721 5563.559

02/05/2018 3 8.9 33.5 7,700 231,000 5.12 1967 1.51 722 0.17

B14 69 M intact Hb H disease 02/11/2018 1 9.3 34.1 5,600 161,000 3.04 522.6 1.82 488 <0.027 Folic a 5 mg/day 0.05 0.35 0.60494764 0.00860106 4555.508

Hepatic hemochromatosis14/02/2018 2 10.5 39.4 5,800 194,000 3.53 529.1 1.50 452 n/a Deferiprone 3,500 mg/day

liver cirrhosis loss flu Sulfinpyrozole 400 mg/d, NaHCO3 1,200 mg/day

B15 48 F intact Homo HbE 22/11/2017 1 10.3 30.9 4,400 308,000 1.35 121.2 0.35 307 1.00 Folic a 5 mg/day 0.02 0.13 43.3013862 0.01362399 1796.186

Dyslipidemia 14/03/2018 2 10.6 31.7 4,600 275,000 1.44 148.3 0.38 313 0.42 Pitavastatin 2 mg/day 0.02 0.13 30.5734368 0.04194228 2860.169

20/06/2018 3 10.6 31.7 4,500 288,000 1.51 146.3 0.36 353 n/a 0.04 0.26 39.4504261 0.04130636 2828.814

B16 41 F intact B-thal/Hb E 06/12/2017 1 7.6 25.1 8,800 106,000 1.84 663.5 1.57 529 <0.027  0.06 0.59 0.29241068 0.00469253 8982.627

07/03/2018 2 7.4 24.8 10,800 109,000 2.17 688.9 1.27 496 <0.027 0.07 0.65 3.04400985 0.02813092 31636.36

23/05/2018 3 7.8 25.6 7,900 101,000 1.99 674.9 1.61 542 <0.027 0.06 0.57 3.09900497 0.02786981 25513.64

B17 34 M intact B-thal/Hb E 20/02/2018 1 8.5 26.8 5,900 113,000 1.29 640 2.83 782 <0.027 0.07 0.68 0.17455369 0.00410236 7644.492

14/03/2018 2 7.6 23.9 4,900 102,000 1.38 501 3.51 846 <0.027 0.05 0.49 1.153231 0.0281703 19681.82

29/06/2018 3 7.7 23.9 5,000 91,000 1.76 380 2.96 825 <0.027 0.32454281 0.02773154 21123.64

B18 28 F intact Homo HbE 20/12/2017 1 12 35.3 5,300 148,000 1.19 83 0.2 288 0.71 0.13 0.66

14/03/2018 2 11.2 33.4 4,200 144,000 1.42 116.5 0.29 311 0.45 0.01 0.06 7.35419038 0.02810033 7930

06/06/2018 3 12.2 36.1 5,600 192,000 1.12 75 0.18 336 1.18

no results
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Sample Age Sex Date Diagnosis Hb (g/dL) Hct (%)
WBC 

(/mm3)

Platelet 

(/mm3)

Corre

cted 

Retic 

count 

(%)

Ferritin 

(ng/ml)
IDB LDH

Haptoglobin 

(mg/ml, 0.3-

2.0)

Plasma 

Hb 

(mg/dl)

Hemolysis 

(%)

Haptoglo

bin 

(mg/ml)

Hemopex

in 

(mg/ml)

CTSS 

(pg/ml)

C01 39 F 10/11/2017 β-thal trait 12.7 41.4 5200 257,000 1.04 63.4 0.4 354 0.8 0.02 0.09 144.61 0.67 5118.18

C02 56 F 10/11/2017 Hb E trait 13.1 41.8 6900 338,000 1.63 238.8 0.14 434 2 0.01 0.04 470.72 0.69 3611.82

C03 37 f 25/04/2018 β-thal trait 10.2 33.1 5000 372000 1.02 78 0.22 303 0.82 0.00 0.00 201.00 1.78 3355.45

C04 26 m 20/06/2018 β-thal trait 14.7 46.2 7900 302000 1.20 776 0.43 381 0.48 0.11 0.40 3.46 1.18 2023.73

C05 33 m 20/06/2018 α-thal1 12.8 42 7200 312000 0.89 354 0.3 322 1.52 0.06 0.28 339.61 2.79 3475.45

C06 28 m 20/06/2018 α-thal1 15.9 50.2 9900 265000 1.95 225 0.23 340 1.52 0.03 0.09 443.20 2.81 7472.73

C07 31 m 20/06/2018 Hb E trait 14.4 44.5 9700 269000 2.48 567 0.3 360 1.79 0.12 0.41 452.28 2.80 5125.45

C08 25 F 10/11/2017 Hb E trait 10.7 33.1 8900 311000 1.15 21.9 0.3 239 0.7 0.04 0.25 259.10 1.95 1355.45

Sample Age Sex Date Hb (g/dL) Hct (%)
WBC 

(/mm3)

Platelet 

(/mm3)

Corrected 

Retic count 

(%)

Ferritin 

(ng/ml)
IDB LDH

Haptoglobin 

(mg/ml, 0.3-

2.0)

Plasma Hb 

(mg/dl)

Hemolysis 

(%)

Haptoglo

bin 

(mg/ml)

Hemopex

in 

(mg/ml)

CTSS 

(pg/ml)

D01 39 M 10/11/2017 12.8 39.7 6,600 299,000 1.31 7.9 0.27 264 1.3 0.02 0.09 248.91 2.97 4734.55

D02 29 F 22/11/2017 13.1 40.8 6,900 184,000 1.42 157.3 0.19 284 1.4 0.02 0.09 364.83 2.98 2053.81

D03 44 m 20/06/2018 15 45.2 9200 218000 1.81 272 0.22 326 1.06 0.05 0.19 93.53 1.19 3016.10

D04 38 f 20/06/2018 13.5 41 7200 276000 1.14 70 0.2 279 0.79 0.02 0.08 211.76 1.06 3285.59

D05 29 f 20/06/2018 12.7 39.4 7300 399000 1.39 90.8 0.17 277 0.83 0.04 0.19 151.83 2.79 2102.54

D06 38 m 20/06/2018 16.5 49.4 6700 303000 1.72 377 0.33 365 0.66 0.13 0.40 3.41 2.76 7660.91

D07 37 m 20/06/2018 14.1 45 10200 295000 1.44 228.5 0.19 432 1.59 0.02 0.08 369.29 2.90 5312.73
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Appendix II 
 

Primers used for PCR amplifications and Sanger sequencing
Primer Primer Product size PCR amplification enzyme

sequence position†  (bp) and annealing temp. (°C)

HBB_1+2_ F 5’-TCCTAAGCCAGTGCCAGAA-3’ 5' UTR (-211 to -193)

HBB_1+2_ R 5’-CCCTGTTACTTATCCCCTTCC-3’ intron 2 (+65 to +85)

HBB_3_ F 5’-ATGGTTGGGATAAGGCTGGAT-3’ intron 2 (-85 to -65)

HBB_3_ R 5’-ATATGCATCAGGGGCTGTTG-3’ 3' UTR (+300 to +319)

HBB_intr2_ F 5’-TATCATGCCTCTTTGCACCA intron 2 (-253 to -234)

HBB_intr2_ R 5’-AATCCAGCCTTATCCCAACC-3’ intron 2 (-83 to -64)

KLF1_1_F 5’-TTGACTTGGCTTTGGACACAG-3’ 5' UTR (-237 to -217)

KLF1_1_R 5'-CCCTAGACCACCCTCCTCAC-3’ intron 1 (+164 to +183)

KLF1_2a_F 5’-TGGGGAAGTGGGACAGACAGA-3’ intron 1 (-136 to -116)

KLF1_2a_R 5’-AAGTAGCCACCCGAGGAGCC-3’ exon 2 (+439 to +458) 

KLF1_2b_F 5’-GGATCACTCGGGTTGGGTG-3’ exon 2 (+303 to +321)

KLF1_2b_R 5’-CACTCACTCTCAGAGGCCAGC-3’ intron 2 (+93 to +113)

KLF1_3_F 5’-TTACAGGGGAAGAAGGGTTGC-3’ intron 2 (-206 to -186)

KLF1_3_R 5’-GCGAGTCCAGGAGAGGGTC-3’ 3' UTR (+116 to +134)

HBA1_1_F 5’-GGAGTGGCGGGTGGAGGGT-3’ 5' UTR (-250 to -232)

HBA1_1_R 5’-GTTGGGCATGTCGTCCAC-3’ exon 2 (+125 to +142)

HBA1_2_F 5’-CACCCCTCACTCTGCTTCTC-3’ intron 1 (-27 to -8)

HBA1_2_R 5’-CGGTATTTGGAGGTCAGCAC-3’ exon 3 (+106 to +125)

HBA1_3_F 5’-CCACTGACCCTCTTCTCTGC-3’ intron 2 (-24 to -5)

HBA1_3_R 5’-AGCAAATGCATCCTCAAAGC-3’ 3' UTR (+303 to +323)

HBA2_1_F 5’-GGGCTCCGCGCCAGCCAATGAG-3’ 5' UTR (-122 to -101)

HBA2_1_R 5’-GGGGAGAAGCAGAGTGAGG-3’ intron 1 (-23 to -5)

HBA2_2_F 5’-CACCCCTCACTCTGCTTCTC-3’ intron 1 (-27 to -8)

HBA2_2_R 5’-AGAAGCCAGGAACTTGTCCA-3’ exon 3 (+77 to +96)

HBA2_3_F 5’-CTCTCAGGGCAGAGGATCAC-3’ intron 2 (+52 to +71)

HBA2_3_R 5’-CTGCAGAGAGGTCCTTGGTC-3’ 3' UTR (+177 to +196)

*F and R denote forward (sense) and reverse (antisense) direction, respectively.

†Primer positions are relative to the respective exon/intron boundary.

Phusion, 68HBA1  exon 3 476

330 Phusion, 70

604HBA1  exon 1 Phusion, 68

506HBA1  exon 2 Phusion, 68

470HBA2 exon 2

HBA2  exon 1 

HBA2 exon 3 416

AmpliTaq, 68

AmpliTaq, 65

HBB exon 1+2 741 BioTaq, 65

HBB exon 3 BioTaq, 65533

HBB IVS-II 190 BioTaq, 65

KLF1 exon 2a Phusion, 65594

KLF1 exon 2b 637 Phusion, 68

KLF1 exon 3 BioTaq, 65516

Primer*Amplified region

KLF1 exon 1 507 BioTaq, 65
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Appendix III 
 

Table summarised genetic backgrounds of all the thalassaemia patients 

recruited in the project 


