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Abstract

For some years Markov chain Monte Carlo (MCMC) has been regarded as a central tool in
computational statistics. Its principle shortcoming is that it requires evaluation of a likeli-
hood term, which is commonly infeasible in practice for reasons of intractability or high-
dimensionality. Recent work on the so-called pseudo-marginal method [1, 2] has largely
overcome this difficulty in settings where a positive, unbiased estimate of the likelihood is
available. For state space models such an estimate is routinely calculated using sequential
Monte Carlo methods. In combination the approach is termed particle Markov chain Monte
Carlo (PMCMC).

This thesis is principally concerned with developing a PMCMC method suitable for the
sequentially Markov coalescent (SMC) [3, 4], a model in population genetics for the ancestry
of a set of sequences taken from a population. It is shown that the SMC can be recast as a
piecewise deterministic Markov process and a novel particle filter is proposed for the case
of two and three individuals. In particular the case of three individuals introduces a number
of challenges that require bespoke solutions. These particle filter methods are then used in
the context of a PMCMC algorithm to infer parameters of the biological model. Finally,
backwards sampling is implemented in a non-trivial setting, and subsequently linked to very
recent work [5] on pseudo-marginal algorithms that can scale well with the dimension of the
problem, compared to traditional approaches.
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Chapter 1

Introduction

In almost every application imaginable, data is more freely available, and on a larger scale,
than it has ever been. With this surfeit of information has come a desire for more realistic,
faster, and better performing models and computational methods. Yet as more sophisticated
models become commonplace we are faced with fresh challenges, one of which is the presence
of intractable likelihoods. Such intractability typically arises in complex, high-dimensional
models dependent on a latent state that is impractical or impossible to marginalise analytically.

A notable case is the field of population genetics. Experimental advances of the last twenty
years have increased by orders of magnitude the quantity and quality of genome wide data,
revolutionising the discipline. However, the complex, high-dimensional nature of the stochas-
tic models underlying many frameworks for understanding reproduction prohibits the use of
most simple statistical approaches. A celebrated model in population genetics is the coales-

cent, an elegant simulation method for the ancestral history of a sample of individuals from
a population. Here, the problems of dimensionality and intractability are ever present. One
would like to find the posterior distributions of the parameters of the stochastic model under-
lying the coalescent, but this is only possible when the likelihood can be computed. Since to
do so would require marginalising a vast latent space of genealogies, the problem becomes
extraordinarily computationally demanding.

One of the most promising strategies of the last decade has been ‘exact approximate’ meth-
ods, introduced in [1] and later formalised in [2], where it was termed the pseudo-marginal ap-
proach. The idea is as simple as replacing the intractable likelihood in a Metropolis-Hastings
algorithm with a ‘good’ estimate. Provided the estimate is positive and unbiased (with re-
spect to the true likelihood) then not only is one justified in using it, but the resulting al-
gorithm is, somewhat miraculously, exact. Prior to this discovery, sequential Monte Carlo
methods, sometimes termed particle filters, had become a popular approach for inference in
high-dimensional state space models. Particle filters are capable of producing an unbiased
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estimate of the likelihood, and a connection was soon established. When the likelihood esti-
mate in the pseudo-marginal algorithm is provided by a particle filter, the resulting method is
termed particle Markov chain Monte Carlo (PMCMC) and was first presented in [6].

This thesis aims to develop an original particle Markov chain Monte Carlo approach to
inference under the coalescent model. Chapters 2 and 3 are concerned with developing a
strategy to mitigate the worst behaviour of pseudo-marginal algorithms, and proving results
about its performance. The remainder of the thesis is devoted to Monte Carlo methods for
coalescent inference. Chapter 4 introduces some models from population genetics, including
the coalescent. In Chapter 5 a particle filter approach is described for the sequentially Markov
coalescent model, for two and three individuals. The setting is challenging as it is not easily
described by a standard state space model and the observations are only weakly informative
of the latent state. Finally, the algorithm developed is placed in the context of a PMCMC
method and in Chapter 6 this is further developed through so-called backwards sampling to
allow application of a recent, state-of-the-art, high-dimensional MCMC method. It is hoped
that with further work a general and flexible approach of the type offered by PMCMC could
prove useful to practitioners.



Chapter 2

Rejuvenation within pseudo-marginal
Metropolis-Hastings algorithms

This chapter explores variations of pseudo-marginal Metropolis-Hastings (PsMMH) algo-
rithms into which ancillary mechanisms have been built to prevent sticking of the Markov
chain. A novel algorithm, termed l -PsMMH, is proposed and shown in the main result to
have greater efficiency than standard PsMMH. Firstly a brief survey of popular implementa-
tions of PsMMH algorithms is presented, along with a running example. Markov chain Monte
Carlo performance measures are discussed and placed in the context of pseudo-marginal al-
gorithms. Existing strategies to improve the performance of several PsMMH algorithms are
explored and contrasted with the rejuvenation strategy at the heart of l -PsMMH. Computer
simulations are carried out, indicating that the qualitative asymptotic variance ordering results
established can have impact in the field.

2.1 Algorithm descriptions

2.1.1 The Metropolis-Hastings algorithm

Following the notation of [2, 7] let p be a probability distribution, defined on a measurable
space (X,B(X)), from which one is interested in sampling. Suppose that it is infeasible to
generate samples directly, for example due to its complexity or high-dimensionality, but that it
is possible to evaluate the target distribution p point-wise. A traditional approach in Statistics
on such occasions is to implement Markov chain Monte Carlo (MCMC) methods, a flexible,
powerful sub-class of which are Metropolis-Hastings (MH) algorithms.

MH algorithms offer a technique of constructing a regular, reversible Markov kernel with
a desired stationary distribution - in practice chosen to be one’s target distribution. A defining
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facet of the MH algorithm is its ‘acceptance ratio’, that is the probability with which a new
state, proposed according to a proposal kernel q, is taken to be the next step in the Markov
chain. Taking the current and proposed states to be x,y 2 X, this probability is: [8–10]

a(x,y) := min
⇢

1,
p(y)q(y,x)
p(x)q(x,y)

�

= min{1,r (x,y)} (2.1)

where the meaning of r (x,y) is implicit. At each step of the algorithm the chain moves either
to a new state through an accepted proposal else it remains in the same state through a rejected
proposal. Thus the associated Markov kernel is given [7] by

P(x,dy) := a(x,y)q(x,dy)+d
x

(dy)r(x)

where r(x) := 1�
R

a(x,y)q(x,dy) is the probability of rejecting a proposed move to any
state. We note that the MH kernel is reversible with respect to the target since it preserves
detailed balance. For completeness this is briefly demonstrated. Ignoring inconsequentially
the diagonal component, detailed balance is established directly as follows, where both sides
of the equation are understood to be measures on the product space (X⇥X, B(X)⇥B(X)),

p(dx)a(x,y)q(x,dy) = min{p(dx)q(x,dy),p(dy)q(y,dx)}
= p(dy)a(y,x)q(y,dx)

and a simple substitution of this identity suffices to show that for any A 2 B(X),
Z

X
p(dx)P(x,A) = p(A).

We stress here that we require from the proposal kernel q that we can sample from it, and that
it can be evaluated pointwise up to a multiplicative constant. Outside of these requirements
any q is permissible, though a judicious choice of proposal kernel is crucial to the efficiency of
the algorithm. In summary, the MH algorithm produces a reversible Markov chain by virtue
of which the correct stationary distribution is targeted. Reversibility is clearly a sufficient
condition for stationarity, and has been widely adopted for this reason, but it is not necessary.
In line with the literature we will in this report refer to the MH algorithm presented here as
the marginal algorithm. Algorithm 2.1 provides instructions for performing a single iteration
of the marginal algorithm, taking x 2 X to be the current state.

A toy example is now introduced that will act as the basis for many of the comparisons and
explanations in this project. It is natural to explore stochastic algorithms in the first instance
empirically, yet often their inherent stochasticity can lead to a frustrating lack of robustness in
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Algorithm 2.1 Marginal algorithm: simulating from P(x, ·)
Input: current state x 2 X.

1. Sample Y ⇠ q(x, ·).

2. With probability a(x,Y ) given in (2.1):

set x

0  Y ,

otherwise:

set x

0  x.

Output: new state x

0 2 X.

output diagnostic data or output statistics of the chain. Moreover, as we shall see, this problem
presents a ‘catch 22’ - some of the most compelling questions in computational statistics relate
to improving inference in highly complex settings, for instance where high dimensionality or
intractable likelihoods are a feature, and it is in precisely such settings that computational
experiments are most fraught with misleading noise and artifacts. In order, then, to allow as
few artifacts as possible to distract our inference, and so to give us greater confidence in our
results, we have chosen to use very basic models for our examples in this section.

2.1.2 Example: random walk Metropolis Hastings

In light of the considerations above, our primary example throughout this chapter is the one-
dimensional target density p (·) = N (· | 0,1). Often in practice when using ‘off the shelf’
MCMC algorithms the choice of proposal distribution is a methodological bottleneck. For-
tunately there exist several canonical forms of proposal distribution which are simple to im-
plement and produce MH algorithms with well-studied properties. One such class is ran-

dom walk MH algorithms (see e.g. [11]), wherein the proposal density q can be written as
q(x,y) = q(y� x), for any x,y 2 X. In particular, we will use a random walk with Gaussian
innovations, that is q(x, ·)=N

�

· | x,s2�, indexed by a single scale parameter s 2 [0,•). Any
tuning of our proposal distribution will be performed by manipulating this scale parameter.

Figure 2.1 displays three typical MCMC diagnostic plots associated to a MH algorithm. In
particular for this example M = 5⇥105 iterations were used and a proposal standard deviation
of s = 5 was chosen. The trace plot and estimated density are standard, and the plot of
estimated autocorrelations is produced using R’s [12] built-in autocorrelation function (ACF).
A ‘mean acceptance rate’ of the algorithm is given simply by the number of novel proposals
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Figure 2.1: Diagnostic plots for a Random Walk MH algorithm. From left to right they are a trace

plot of the last 2⇥104
iterations of the Markov chain, an estimated density of the chain, and a plot

of its estimated autocorrelations to a lag of 100 steps.

accepted as a proportion of the total number of iterations, and the integrated autocorrelation
time (IAT), discussed in depth in Section 2.2, is found using a function based on a method due
to Sokal (see [13] and the implementation [14]).

2.1.3 The pseudo-marginal Metropolis-Hastings algorithm

In practice p may be intractable or prohibitively costly to evaluate, precluding evaluation of
the acceptance ratio (2.1) and ruling out use of the marginal algorithm. Recent work [1, 2]
motivated by problems in population genetics has sought to overcome this issue in settings
where unbiased estimates of point evaluations of the target are available. That is, for any
x 2 X, one has access to nonnegative estimates p̂(x) satisfying E [p̂(x)] = p(x), where this
expectation is taken with respect to the collection of random variables y implicitly used in
computing the estimate p̂(x) = p̂(x;y).

One intuitive approach is to exploit a law of large numbers, sampling independently N 2
N⇤ estimates {p̂(x)(i)}N

i=1 for every proposed state x, and substituting in the acceptance ratio of
the marginal algorithm the estimate N

�1 Â
i

p̂(x)(i) ⇡ p(x). Certainly, to build on this idea, one
can arbitrarily reduce the distance of the estimate from the true value by increasing N, so it is
reasonable to think that by increasing N this ‘averaged’ algorithm can in some sense approach
the ‘exact’ algorithm. In fact this intuition is well-founded and moreover, rather miraculously,
these so-called pseudo-marginal algorithms can be shown to be exact for any N � 1. We now
justify this claim, taking N = 1 without loss of generality.

A framework for describing and analysing pseudo-marginal Metropolis Hastings (PsMMH)
algorithms is given by [2, 7] and we follow this notation. It is fruitful to write the un-
biased estimates as their true value with multiplicative noise, i.e. p̂(x) = W

x

p(x), where
W

x

⇠ Q

x

(·) � 0 and E [W
x

] = 1 for any x 2 X. For definiteness we take the family of proba-
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bility measures {Q

x

}
x2X to be defined on the measurable space (R+, B(R+)). We proceed by

considering an augmented distribution on the product space (X⇥R+,B(X)⇥B(R+)), given
by p̃(dx,dw) := p(dx)p

x

(dw) where p
x

(dw) := Q

x

(dw)w. It is clear that p̃ has p as a marginal
distribution since

R

p̃(x,dw) = p(x). Let us imagine then a standard MH algorithm targeting p̃
with proposal kernel q̃(x,w;dy,du) := q(x,dy)Q

y

(du). The acceptance ratio of this algorithm
is

ã(x,w;y,u) = min
⇢

1,
p̃(dy,du)q̃(y,u;dx,dw)

p̃(dx,dw)q̃(x,w;dy,du)

�

(2.2)

= min
⇢

1,
p(dy)Q

y

(du)uq(y,dx)Q

x

(dw)

p(dx)Q
x

(dw)wq(x,dy)Q

y

(du)

�

= min
⇢

1,
p(dy)q(y,dx)

p(dx)q(x,dy)

u

w

�

= min
n

1,r (x,y)
u

w

o

. (2.3)

In simplifying the acceptance ratio we find it is exactly that of the “noisy” version of the
marginal algorithm, the pseudo-marginal algorithm, which can be seen by comparing this
expression to that of the marginal algorithm, which is given in Equation (2.1). Here it is
germane to emphasise that in describing the pseudo-marginal algorithm as noisy we make use
of a heuristic. The pseudo-marginal algorithm, like the marginal algorithm, is exact; indeed
we have shown it is a standard MH algorithm marginally targeting p . Finally, the Markov
kernel associated to the algorithm is

P̃(x,w;dy,du) := ã(x,w;y,u)q̃(x,w;dy,du)+d
x,w (dy,du) r̃ (x,w)

where, analogously to the marginal algorithm, the probability of rejection is

r̃ (x,w) := 1�
ZZ

ã(x,w;y,u)q̃(x,w;dy,du) .

There are few complications in extending this argument to averages of multiple unbiased es-
timates. Suppose we average N unbiased estimates at each step of the algorithm, giving an
estimate of the target, for any x 2 X, of N

�1 Â
i

W

i

p (x) where W1:N := (W1, . . . ,WN

) ⇠ Q

N

x

,
and Q

N

x

is a probability measure on RN

+. Note that throughout the project we will make
use of the rather loose terminology ‘weight’ or ‘weights’ to describe these unbiased draws.
Then, analogously to the N = 1 case, we can think of the pseudo-marginal algorithm us-
ing these averages as a MH algorithm targeting p̃N(dx,dw1:N) := p(dx)pN

x

(dw1:N) where
pN

x

(dw1:N) := Q

N

x

(dw1, . . . ,dw

N

)N�1 Â
i

w

i

, which still has p as a marginal distribution. The
transition kernel of the N-weight version will in general hereafter be denoted P̃

N

. Taking (x,w)
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to be the current state, for some x 2 X and w 2RN

+, instructions for performing one step of the
PsMMH algorithm are now given.

Algorithm 2.2 Pseudo-Marginal algorithm: simulating from P̃

N

(x,w; ·)

Input: current state (x,w).

1. Sample Y ⇠ q(x, ·).

2. Sample U ⇠ Q

N

Y

(·).

3. With probability ã(x,w;Y,U) given in 2.2:

set (x0,w0) (Y,U),

otherwise:

set (x0,w0) (x,w).

Output: new state (x0,w0).

We have chosen to leave the algorithms in an abstract form for clear exposition, however it
is helpful to remember that, for example, step 2 of Algorithm 2.2 corresponds in real terms to
drawing N unbiased estimates {p̂(Y )}N

i=1 and step 3 simply corresponds to substituting their
average into the MH ratio (2.1) in place of the true target (as in Equation (2.3)).

Results concerning the inheritance of ergodicity of the marginal algorithm by the pseudo-
marginal algorithm are now briefly discussed; ergodicity is defined and discussed more at the
start of Section 2.2. Several important cases are presented in [7], including a theorem in which
it is shown that the pseudo-marginal algorithm maintains polynomial ergodicity when the
marginal algorithm is a random walk Metropolis and the weights satisfy a moment-bounding
condition. It is also suggested as a general principle that geometric ergodicity is inherited
wherever the weights are uniformly bounded.

2.1.4 Example: PsMMH

Suppose we are again in the setting described in Example 2.1.2 but that it is now impossible
to sample directly from the target distribution p . Instead we have access only to a black box
capable of providing, for any x 2 X, unbiased estimates of p(x).

A number of modelling choices must be made before we can implement and test a PsMMH
algorithm in this scenario. Firstly, as is common (e.g. [15, Assumption 2] and [16, Assump-
tion 4]), we take the log-target distribution to be subject to additive Gaussian noise so that
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Q

x

(·) = logN
�

· |�g2/2,g2� for some variance parameter g2. Using the log-normal assump-
tion guarantees that Q

x

(W
x

� 0) = 1 holds, and the given relation between the parameters
satisfies the requirement E [W

x

] = 1. It is noted in [16], and reiterated here, that supposing the
weight W

x

to be distributed independently of the point x at which it is generated is simplistic.
It is however in line with our aim to conduct experiments in their most essential setting.
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Figure 2.2: Diagnostic plots for a Random Walk PsMMH algorithm. From left to right they are

a trace plot of the last 2⇥ 104
iterations of the Markov chain, an estimated density of the chain,

and a plot of its estimated autocorrelations to a lag of 200 steps. Note the adjusted lag scale in the

ACF plot.

In Figure 2.2 the log-noise variance was set to g2 = 3, the proposal standard deviation
was s = 3, and again M = 5⇥ 105 iterations were used overall. For simplicity only N = 1
estimate was simulated at each step. Note that a smaller proposal standard deviation was
chosen for this experiment as the value s = 5 used in Example 2.1.2 was larger than is optimal
for the current example; as one would expect, it is beneficial, broadly speaking, to share the
variance across the weights and the proposal density. It is clear from the plots that the implicit
noise introduced into the algorithm (through the use of unbiased estimates) has significantly
reduced its efficiency. Indeed intervals in which the algorithm is ‘stuck’ are clearly visible in
the trace plot, and this in turn is reflected in the diminished mean acceptance rate and inflated
autocorrelations. It is the central aim of this chapter to explore strategies to mitigate precisely
these issues - this process begins in earnest in Section 2.2.

2.1.5 Monte Carlo within Metropolis

A second possible implementation of the pseudo-marginal approach, namely Monte Carlo

within Metropolis (MCWM) or Noisy Metropolis Hastings, has also been studied [2, 17]. This
algorithm is superficially similar to the PsMMH algorithm, however in contrast the weight
associated to the current state is not carried from one step to the next, rather it is recalculated
at every step. Thus the algorithm constructs a Markov chain on (X,B(X)) in which all the
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auxiliary variables required are sampled within each step and only the state is recorded. In-
structions for performing a single iteration are given in Algorithm 2.3, taking x 2 X to be the
current state.

Algorithm 2.3 Monte Carlo within Metropolis algorithm: simulating from P

MCWM (x, ·)
Input: current state x 2 X.

1. Sample Y ⇠ q(x, ·).

2. Sample independently W ⇠ Q

N

x

(·) and U ⇠ Q

N

Y

(·).

3. With probability ã(x,W ;Y,U) given in (2.2):

set x

0  Y ,

otherwise:

set x

0  x.

Output: new state x

0.

To distinguish the acceptance ratio of the MCWM algorithm from that of the PsMMH
algorithm, we can write its acceptance ratio as

aMCWM
N

(x,y) := E
Q

N

x

✏Q

N

y

[ã(x,W ;y,U)] ,

using the notation of [17]. It is then possible to write the transition kernel as

P

MCWM (x,dy) := aMCWM (x,y)q(x,dy)+d
x

(dy)rMCWM (x)

where rMCWM (x) := 1�
R

XaMCWM (x,y)q(x,dy). Note that we have dropped the subscript N
for notational convenience. One drawback associated with the MCWM algorithm is that, by
recalculating all auxiliary variables at each step, it fails to achieve invariance under the target
distribution p . Indeed it may not have an invariant distribution at all - there are cases for which
the marginal and pseudo-marginal chains exhibit geometric ergodicity but the corresponding
MCWM chain is transient [17]. Monte Carlo within Metropolis has received less attention
than the pseudo-marginal method of Section 2.1.3 and less is known about its stability prop-
erties, though some interesting results are available; two such results are now summarised.
In the epilogue of [2] it is shown that when the marginal algorithm is uniformly ergodic and
the MCWM chain is invariant with respect to some probability distribution p̌

N

then, under
some reasonable conditions on the weights, the MCWM chain is also uniformly ergodic with
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Figure 2.3: Diagnostic plots for a Random Walk MCWM algorithm. From left to right they are a

trace plot of the last 2⇥104
iterations of the Markov chain, an estimated density of the chain, and

a plot of its estimated autocorrelations to a lag of 100 steps.

respect to p̌
N

, and moreover one can upper-bound the distance between p̌
N

and the true target.
Motivated by scenarios in which the marginal chain achieves at best geometric ergodicity, [17]
finds that when the marginal algorithm is geometrically ergodic then, under some conditions
on the weights, and for large enough N, the MCWM algorithm with transition kernel P

MCWM
N

is also geometrically ergodic (which is sufficient to guarantee it has an invariant distribution
p̌

N

). They find in addition under similar constraints on the weights that p̌
N

converges in total
variation towards the true target, with tractable rates of convergence available in some settings.

2.1.6 Example: MCWM

Continuing from Example 2.1.4, we now run an MCWM algorithm with N = 1 weight at every
step. Once again the parameters g2 = 3, s = 3, and M = 5⇥ 105 are used, and the result is
recorded in Figure 2.3. As one might expect the algorithm attains a higher acceptance rate
and lower IAT than the PsMMH algorithm, and the difference is profound. There is however a
prominent bias in the chain which, in the context of conducting inference, may be undesirable.
In short, the algorithm converges well to a distribution that is not the target. This reflects a
key issue, that the N required to ensure that the MCWM algorithm converges to an invariant
distribution, and further, an invariant distribution that is within an acceptable distance of the
true target, could be intolerably large. In Section 2.3 we carry out computational experiments
to study this ambiguity.

In practice the extent to which this bias matters depends on the object of inference; it may
well be that the bias in the first order moment is reasonable for small N, but it may require a
far larger N to guarantee similar accuracy in higher-order moments.
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2.2 Improving performance

It is well known that in practice Markov chain Monte Carlo algorithms can require consider-
able expertise to tune and often converge or mix very slowly (move slowly around the sup-
port of the target distribution), especially in high dimensions. Poor mixing is of concern to
the practitioner since to achieve ergodic averages of comparable quality to those of a more
rapidly mixing chain, one must compensate by running the MCMC for more iterations [18].
To this end, a considerable body of literature is dedicated to the choice of proposal distribu-
tion, its structure having a profound impact on the success of the algorithm (see for example
[19, 20]). In general, selecting a myopic proposal distribution, one making only very local
moves, ensures a high probability of acceptance but also guarantees slow mixing of the chain.
Conversely selecting a bold proposal distribution ensures more rapid mixing but guarantees a
greater probability of rejection, resulting in ‘stickiness’, that is, a propensity of the chain to
remain in the same state for many steps in a row. This trade-off is a fundamental factor in con-
structing the proposal distribution for a MH algorithm and there are some rules of thumb. For
example, in the case of the random walk Metropolis Hastings algorithm, the received wisdom
is to pick the variance of the proposal distribution to achieve an acceptance rate of roughly 0.44
in one dimension and 0.234 in the limit as the number of dimensions of the target distribution
increases (e.g. [20, 21]).

Naturally the noisy estimates used in the acceptance ratio (2.2) of the pseudo-marginal
algorithm exacerbate these problems since, in addition to the causes of poor mixing in the
marginal algorithm, the pseudo-marginal algorithm suffers from additional stickiness induced
by the stochasticity of the weights. To see this, consider the value of the acceptance probability

ã(x,w;y,u) = min
n

1,r (x,y)
u

w

o

when the weight at the current step is w = 50, in other words the estimate of the target happens
to be 50 times too large. This is entirely feasible; we require the weights to be positive,
and they must satisfy E

Q

N

x

[W1:N ] = 1, but their variance is essentially unrestricted and may
in practice cause difficulty. We see that the algorithm will struggle to move on from any
state for which an overestimate of the target has been produced, and moreover the form of ã
encourages moves to such states, as they ‘appear’ to be states that are very likely under the
target distribution. Before discussing possible solutions to these issues, we explore further
performance measures for MCMC algorithms.

Two related concepts underpinning the performance of a Markov chain Monte Carlo al-
gorithm are the rate of convergence and efficiency of estimation. One reason to distinguish
between the two is that attempting to optimise both criteria can result in conflicting demands
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on one’s choice of Markov kernel, as noted in [22], which may suggest a switching strategy.
We will see that the notion of statistical efficiency can be well described, for a process at
equilibrium, by the ‘asymptotic variance’ of an ergodic average based on the chain. This is
naturally a useful measure on its own, and a time-honoured strategy to compare two competing
Markov kernels. In practice, however, it is generally not possible to start an MCMC algorithm
at equilibrium since the target distribution is in principle unknown, so the rate at which the
algorithm, from an arbitrary starting point, reaches equilibrium is also crucial.

Notation and definitions relevant to the performance of MCMC are now recalled (see,
e.g., [10, 23]). Consider a Markov transition kernel P with invariant distribution µ defined
on a metric space (E, E) and let {F

k

; k � 0} denote the Markov chain generated by P from
equilibrium, that is F0 ⇠ µ . For a particular function f : E!R one typically makes use of the
ergodic average S

M

:= M

�1 ÂM

k=1 f (F
k

) to estimate µ( f ). Finally, we will use the standard
notation L2(µ) :=

�

f : µ( f

2)< •
 

for the space of measurable, real-valued functions f that
are square integrable with respect to µ .

Definition 1. For f 2 L2 (µ) the asymptotic variance of the estimator S

M

is

v( f ,P) := lim
M!•

M Varµ (SM

) 2 [0,•].

The asymptotic variance is a useful measure to compare the performance of Markov chains
with the same invariant distribution.

Definition 2. Taking r
k

to be the correlation between the random variables f (F0) and f (F
k

),

the integrated autocorrelation time is defined to be

t( f ,P) := 1+2
•

Â
k=1

r
k

.

A well known relationship exists between the asymptotic variance of the estimator and
properties of the integrated autocorrelation time of the Markov chain. Whenever t( f ,P) exists
and is finite, it holds that

v( f ,P) = s2
f

t( f ,P) 2 [0,•)

where s2
f

:= µ f

2�(µ f )2, a proof of which can be found in Appendix A.1. In essence a factor
of t( f ,P) is incurred in the variance of the estimator as a penalty for using dependent samples
rather than iid draws from the target distribution. There are connections here with the notion of
effective sample size in the theory of Monte Carlo techniques. Were simulating directly from
the target distribution feasible, the associated Monte Carlo average S

M

would enjoy variance
s2

f

/M. However, using auto-correlated MCMC samples the variance of the M-step average
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becomes s2
f

t( f ,P)/M = s2
f

/(M/t( f ,P)), thus by analogy the estimator is comparable in
variance to one based on M/t( f ,P) iid samples. In summary if two Markov chains with the
same invariant distribution are both candidates for estimating some expectation of interest,
the asymptotic variance of their respective estimators can help inform a choice between the
two, at least when both chains start at equilibrium. Computationally, it will be useful to carry
out this comparison using an estimate of the integrated autocorrelation time of the chain as a
surrogate.

As discussed earlier, because the chain is unlikely to start from its invariant distribution it
is crucial to consider the rate of convergence of the algorithm to equilibrium. Rates of con-
vergence are well classified and we give now a brief overview, following for example [24], in
which we describe several classes of chains in decreasing order of rate of convergence. Sup-
pose {F

k

; k � 0} is an ergodic Markov chain with invariant distribution µ , and that L
x

(F
n

)

denotes the probability law of the n-th state of the chain started from x 2 E. We will use
k µ k:= sup|g|1 |µ(g)| to denote the total variation distance of a signed measure µ [25]. Then
the chain is said to be:

Uniformly ergodic if for some constants V < • and 0 < r < 1 it holds that

k L
x

(F
n

)�µ kV r

n

for all x 2 E and n� 1.

Geometrically ergodic if for some function V : E ! R+ satisfying µV < •, and a constant
0 < r < 1, it holds that

k L
x

(F
n

)�µ kV (x)rn

for all x 2 E and n� 1.

Polynomially ergodic if for some function V : E ! R+ satisfying µV < •, and a constant
a > 0 it holds that

k L
x

(F
n

)�µ kV (x)n�a

for all x 2 E and n� 1.

Establishing rates of convergence is useful not just in comparing competing algorithms but
also in guaranteeing certain central limit theorems are satisfied. A function f is said to satisfy
a Central Limit Theorem (CLT) if the partial sums M

1/2(S
M

� µ( f )) converge weakly to a
normal distribution (e.g. [25, 26]). Consequently, where CLTs hold we have an understanding
of the error in an MCMC average S

M

. The rates of convergence described above constitute
convenient descriptions of sufficient conditions for some CLTs; we now give two well-known
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examples to highlight their usefulness. If the Markov chain {F
k

; k � 0} is uniformly ergodic
with invariant distribution µ , then a CLT holds for all f satisfying µ( f

2)<•, and in particular
M

1/2(S
M

�µ( f ))!d N (0,v( f ,P)). If the chain satisfies the weaker condition of geometric
ergodicity then a CLT holds for all f with µ(| f |2+d )<• for some d > 0. A plethora of similar
results exist, each hingeing on slightly different requirements.

It is worth remarking that ergodicity is not the only criteria relating to CLTs that has been
considered. A popular alternative is variance bounding (see [27]). A Markov kernel P with
unique stationary distribution µ is said to be variance bounding if there exists a constant
K < • such that v( f ,P) K Varµ( f ) for all f : E!R. For reversible chains variance bound-
ing is strictly weaker than geometric ergodicity, indeed geometric ergodicity implies variance
bounding. Often, however, CLTs are satisfied even in the absence of geometric ergodicity
- so a weaker concept is certainly justified. Variance bounding has a strong claim to being
precisely the notion required, since to quote [27, Theorem 7], if P is reversible, with unique
stationary distribution µ , then P is variance bounding if and only if every f 2 L2(µ) satisfies
a CLT for P.

Strategies for improving the quality of the chain produced by a pseudo-marginal algorithm
are now discussed. Our interests here are largely theoretical; computational tests and further
discussion are deferred to Section 2.3.

2.2.1 Choosing N

Perhaps the most obvious method of improving the performance of a pseudo-marginal algo-
rithm is increasing the number of weights averaged at each step. A reasonable intuition is to
expect (perhaps monotonic) improvement in performance as N increases. Andrieu and Vihola
[23] go some way towards proving this result, establishing that under certain conditions the
asymptotic variance of a pseudo-marginal algorithm is non-increasing in N, and that the ex-
pected acceptance probability between any two states is non-decreasing in N. The result [23,
Corollary 2.] is given here for completeness, after a number of definitions.

First define the simplex

S
N

:= {u 2 [0,1]N :
N

Â
i=1

u(i) = 1}

and suppose W

:= {W (1), . . . ,W (N)} is a vector of exchangeable, non-negative, unit expecta-
tion random variables - analogous to the weights of Section 2.1.3. For two vectors a,b 2 RN

we will use the inner product notation (a,b) := ÂN

i=1 a(i)b(i), from which we define, for some
n 2S

N

, the weight W

(n) := (n ,W ) - analogous to an averaging of weights in Section 2.1.3,
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though in this case not necessarily uniform averaging. The averaged weight W

(n) is also non-
negative with unit expectation, thus we can consider the PsMMH algorithm corresponding to
this particular weight. Let us denote its transition kernel P̃n . It is first shown [23, Corollary 2]
that uniform weighting is optimal with respect to asymptotic variance. For uniform weighting
we use the notation u

k

:= (1/k, · · · ,1/k,0, . . . ,0) 2S
N

, the length-N vector in which the first
k components are 1/k and the rest are zero. The corollary concerns the asymptotic variance v,
as described in Definition 1, and the conditional expected acceptance probability for a generic
pseudo-marginal kernel P̃, a

xy

(P̃) :=
R

R2
+

ã (x,w;y,u)Q

x

(dw)wQ

y

(du). We now paraphrase
the remainder of the corollary.

Corollary 1. For any x,y 2 X and f 2 L2(p), it holds that

i) k 7�! a
xy

�

P̃

u

k

�

is non-decreasing, and

ii) k 7�! v

�

f , P̃
u

k

�

is non-increasing.

Remark 1. The assumption of exchangeability on the weights is carried throughout this chapter
and is standard [2, 23]. Its meaning is as follows: the set of weights w1, . . . ,wN

⇠ Q

N

x

(·) is
N-exchangeable when E[g(w1, . . . ,wN

)] = E[g(wp1 , . . . ,wp
N

)] for all bounded and continuous
g, and all permutations {p1, . . . ,pN

} of {1, . . . ,N}. Loosely speaking, it is a claim that the
labelling of the random variables conveys no information to us.

Thus a gain with respect to asymptotic variance is always derived from increasing the
number of weights. Alas it is difficult to directly capitalise on such results - without a quanti-
tative expression for the improvement it is impossible to determine in advance of experiments
if there will be a net benefit to increasing N. In contrast recent work on Approximate Bayesian
Computation MCMC [28] suggests there is little, if any, net benefit derived from using any
number of weights N > 1, a claim that is also evaluated later in this chapter. One might expect
to find results establishing whether or not a similar relation holds for the convergence rate
of the algorithm as a function of N. To the best of our knowledge this is an open question;
speculatively a positive result seems likely. Computational experiments described in Section
2.3.2 support this hypothesis.

A related, though distinct, question concerns ordering of the asymptotic variances of par-
ticle Markov chain Monte Carlo (PMCMC) algorithms (see [6]). Typically in a PMCMC
algorithm a single unbiased estimate of the likelihood is used, that is N = 1, the variance of
which is controlled by a new parameter m, the number of particles used in the particle filter
at each step of the Markov chain. Recent work in this area [15, 16] has sought to provide
guidelines for choosing a maximally efficient m, under the assumptions of Gaussian additive
noise in the log-likelihood estimator, the variance of which is inversely proportional to m, and
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where the distribution of the noise is independent of the current position. In [15] the optimal
m, with respect to minimising upper bounds on computing time required to achieve a speci-
fied asymptotic variance, is found to be that which gives a log-likelihood standard deviation of
“slightly greater than 1.0” (at least when the efficiency of the marginal algorithm is unknown).
The result in [15] in fact holds for general pseudo-marginal algorithms, of which PMCMC
are a class. Under a different criteria of efficiency, namely the expected squared jump dis-
tance in the limit as the number of dimensions of the target diverges to infinity, the optimal m

is found in [16] to be that which gives a log-likelihood variance of 3.283 and an acceptance
rate of around 7%. An interesting question, as yet unanswered to the best of our knowledge,
is whether a result analogous to Corollary 1 holds for the number of particles m used in the
particle filter; in other words, does every particle count in PMCMC?

2.2.2 Rejuvenation

Of primary concern in improving the efficiency of pseudo-marginal algorithms is preventing
(entirely or with high probability) the weight, or average of weights, from bloating to such an
extent that the algorithm regularly fails to change state for many consecutive steps. Increasing
the number of weights N averaged at each step is one way in which this could be achieved. We
now describe a process, introduced in [29], by which one can rejuvenate, or agitate, the set of
weights {w1:N} of a given iteration in order to obtain a new set, crucially without disturbing
detailed balance and spoiling the invariant distribution of the algorithm.

First notice that it is possible to expose a mixture structure in the target distribution p̃N of
the algorithm:

p̃N(x,w1:N) = p (x)Q

N

x

(w1:N)
1
N

N

Â
k=1

w

k

=
N

Â
k=1

1
N

p (x)Q

N

x

(w1:N)w
k

=
N

Â
k=1

p̊ (k,x,w1:N) (2.4)

where p̊ (k,x,w1:N) := 1
N

p(x)Q

N

x

(w1:N)w
k

. We now consider p̊ in its own right, noting that
one can explicitly compute the full conditional distributions

p̊ (k | x,w1:N) =
w

k

ÂN

j=1 w

j
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and

p̊ (w�k

| k,x,w
k

) = Q

N

x

(w�k

| w

k

)

for any k 2 {1, . . . ,N}. If we have access to the second full conditional, which is certainly the
case for independent weights, then we are able to perform Gibbs updates which will naturally
preserve p̊ . In the seminal paper [6], analogous Gibbs updates on an extended state-space
were termed conditional sequential Monte Carlo (cSMC).

Algorithm 2.4 Pseudo-Marginal algorithm with rejuvenation

Input: current state (x,w).

1. Sample Y ⇠ q(x, ·).

2. Sample U ⇠ Q

N

Y

(·).

3. Rejuvenation step:

• Sample k ⇠ P(w1, . . . ,wN

)

• Resample w�k

⇠ Q

N

x

(· | w

k

)

4. With probability ã(x,w;Y,U) given in 2.2:

set (x0,w0) (Y,U),

otherwise:

set (x0,w0) (x,w).

Output: new state (x0,w0).

For definiteness, we will review the technique step by step. Each iteration of the pseudo-
marginal algorithm starts with a pair (x,w1:N) distributed (approximately) according to p̃N . We
then recast our target p̃N as a marginal distribution of another distribution p̊ on an extended
state space (k,x,w1:N). Gibbs steps are then performed, updating (k,w�k

), using as proposals
the full conditional distributions derived above. Marginalising over k, one is left with an
updated pair (x,u1:N). Therefore, for a given x 2 X and weights w1:N , the rejuvenation kernel,
i.e. the probability kernel of the described weight updates, is given by

R

N

�

x,w1:N ;x

0,du1:N
�

:=
N

Â
k=1

p̊ (k | x,w1:N) p̊ (u�k

| k,x,w
k

)d
x,w

k

�

x

0,du

k

�

. (2.5)
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In this way N� 1 of the N weights are rejuvenated producing a new, typically quite dif-
ferent, estimate for the target distribution at the previous iteration, which in turn reduces the
chance of the chain becoming stuck. Pseudo code for the pseudo-marginal algorithm with
a rejuvenation step is given in Algorithm (2.4). An appealing feature of the approach is its
flexibility - the rejuvenation need not be carried out at every step. One could consider for
instance an adaptive rule by which the weights are rejuvenated according to some degeneracy
criteria, though care must be taken here to avoid disrupting detailed balance. Our approach,
in contrast, will be to study PsMMH algorithms in which independently at each iteration the
rejuvenation step is performed with a probability l 2 [0,1], which we will term ‘l -PsMMH’.
Thus 0-PsMMH refers to the standard PsMMH of Section 2.1.3, whereas 1-PsMMH refers to
the PsMMH algorithm with rejuvenation at every step.

2.2.3 Example: rejuvenation

We now return to the setting of Example 2.1.4 to test this approach. Figure 2.4 presents
the output diagnostics from two independent runs of the PsMMH algorithm, one with an
additional rejuvenation step and the other without. The parameters for this example were set
to impose a greater challenge on the algorithm; M = 5⇥ 105 iterations were used again, but
now with N = 3 weights at every step, a weight variance of g2 = 4 and a proposal standard
deviation of s = 8. It is clear from this experiment that rejuvenation can offer impressive
benefits over standard PsMMH. Figure 2.4 shows for example a roughly 40% reduction with
respect to the autocorrelations of the chain produced.

We now show that the target distribution p̃N is invariant with respect to such rejuvenating
transitions. Note that, where no confusion is possible, we will hereafter often make use of the
reduced notation

R

x,N (w1:N ,du1:N) :=
N

Â
k=1

p̊ (k | x,w1:N) p̊ (w�k

| k,x,w
k

)d
w

k

(du

k

) .

Lemma 1. The rejuvenation kernel R

N

leaves p̃N

invariant.

Proof. It is sufficient to show that R

x,N (w1:N ;du1:N) := ÂN

k=1
w

k

ÂN

j=1 w

j

Q

N

x

(u�k

| w

k

)d
w

k

(du

k

) is
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Figure 2.4: Output diagnostics from two independent runs: (top) a standard PsMMH algorithm;

(bottom) a PsMMH algorithm with rejuvenation at every step. From left to right they are a trace

plot of the last 2⇥104
iterations of the Markov chain, an estimated density of the chain, and a plot

of its estimated autocorrelations to a lag of 100 steps.

reversible with respect to pN

x

(dw1:N) for any x 2 X. We observe the following equivalence

pN

x

(dw1:N)Rx,N (w1:N ;du1:N) = Q

N

x

(dw1:N)
1
N

N

Â
k=1

w

k

Q

N

x

(u�k

| w

k

)d
w

k

(du

k

)

=
1
N

N

Â
k=1

w

k

Q

N

x

(dw1:N)
Q

N

x

(u�k

,w
k

)

Q

N

x

(w
k

)
d

w

k

(du

k

)

=
1
N

N

Â
k=1

u

k

Q

N

x

(w1:N)
Q

N

x

(du1:N)

Q

N

x

(u
k

)
d

u

k

(dw

k

)

= Q

N

x

(du1:N)
1
N

N

Â
k=1

u

k

Q

N

x

(w�k

| u

k

)d
u

k

(dw

k

)

= pN

x

(du1:N)Rx,N (u1:N ;dw1:N)

where we have used the exchangeability of the weights, and in the third step interchanged w

k

and u

k

which is made possible by the presence of the Dirac measure.
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Interestingly the arguments above also suggest a rejuvenation strategy for the case N =

1. It consists of picking some number n � 2 and, assuming a current state of the algorithm
(x,w), sampling weights w2:n ⇠ Q

n

x, (· | w) to form a rejuvenation pool w1:n := (w,w2:n). The
weight succeeding w is then chosen to be w

k

with probability p̊ (k | x,w1:n). In this way one
preserves the target density p̃(dx,dw) := p(dx)Q

x

(w)w, a result formalised in Lemma 2. To
ease the proof we introduce the terminology ‘scale-up’ and ‘scale-down’ kernel to describe
the following two probability densities:

P̂

n

�

x,w;x

0,dv1:n
�

:=
1
n

n

Â
i=1

Q

n

x

(dv�i

| v

i

)d
x,w
�

x

0,v
i

�

P̌

n

�

x,v1:n;x

0,u
�

:=
n

Â
i=1

v

i

Ân

j=1 v

j

d
x,u
�

x

0,v
i

�

which correspond to the probability of scaling-up from 1 weight to a pool of n weights, and
scaling-down from a pool of n weights to 1 weight respectively. In possession of this notation
the rejuvenation strategy for N = 1, via a rejuvenation pool of size n, is described by the
transition

R

n

(x,w;x,u) :=
Z

Rn

+

P̂

x,n (w,dv1:n) P̌

x,n (v1:n,u) ,

where we have made use of a now overloaded notation R(· , ·). This strategy is now shown to
preserve detailed balance.

Lemma 2. The rejuvenation kernel R

n

leaves

ep invariant.

Proof. Reversibility of p
x

(dw)R

x.n (w;du) is established as in the proof of Lemma 1; the only
additional task on this occasion is to marginalise out the ancillary weights v1:n comprising the
rejuvenation pool. Firstly one finds

p
x

(dw)R

x.n (w;du) = Q

x

(dw)w

Z

Rn

+

P̂

x,n (w,dv1:n) P̌

x,n (v1:n,du)

=
w

n

Z

Rn

+

n

Â
i, j=1

Q

n

x

(dv�i

| v

i

)Q

x

(dw)
v

j

d
w

(dv

i

)d
v

j

(du)

Ân

l=1 v

l

at which point it is prudent to split the summands into diagonal and off-diagonal components,
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giving for the right hand side:

Z

Rn

+

w

n

n

Â
i=1

Q

n

x

(dv�i

| v

i

)Q

x

(dw)
v

i

d
w

(dv

i

)d
v

i

(du)

Ân

l=1 v

l

+
Z

Rn

+

w

n

n

Â
i, j=1
i6= j

Q

n

x

(dv�i

| v

i

)Q

x

(dw)
v

j

d
w

(dv

i

)d
v

j

(du)

Ân

l=1 v

l

.

Carrying out the possible integrations yields

1
n

n

Â
i=1

Z

Rn�1
+

Q

n

x

(dv�i

,dw)uwd
w

(du)


w+Ân

l=1
l 6=i

v

l

� +
1
n

n

Â
i, j=1
i6= j

Z

Rn�2
+

Q

n

x

�

dv�i, j,du,dw

�

uw



u+w+Ân

l=1
l 6=i, j

v

l

�

which, provided the weights satisfy the exchangeability assumption, is symmetric in u,w.

We have shown that for N weights it is straightforward to rejuvenate N � 1 weights.
Additionally, we have shown that for the case N = 1 it is possible to rejuvenate the single
weight through sampling a rejuvenation pool of size n. It is natural to ask if such rejuvena-
tion schemes can be extended to include, for any number of weights N, strategies for fixing
k 2 {1, . . . ,N�1} weights and rejuvenating N�k weights. Such flexibility is desirable since it
allows for greater control over the computational cost of executing the algorithm. For example
if N = 10 weights are used at each step, then rejuvenating 9 weights at every step doubles the
cost of the algorithm. However, rejuvenating 3 weights at each step may prove to be beneficial
as it only increases the computational cost of the algorithm by 1/3. It is shown presently that
whilst of theoretical interest, such strategies present unfortunate practical obstacles.

To facilitate our analysis we define new generalised scale-up and scale-down kernels. We
consider as before the pseudo-marginal algorithm with N particles at every step, N � k of
which are to be rejuvenated (with probability l ). Now, the first task is to ‘scale-down’, that
is, pick which weights are to be fixed, and calculate the respective probabilities with which
this occurs. Just as in the construction of the earlier scale-up and scale-down kernels, we are
inspired here by the form of the probability distribution p̊ introduced implicitly in Equation
(2.4). Let a1:k = {a1, . . . ,a

k

} be some permutation of k < N elements of the set {1, . . . ,N}.
Then for any x 2 X and weights w1:N 2 RN

+, the probability of keeping fixed the weights of
indices a1:k is

p̊(a1:k|x,w1:N) =
Âk

i=1 wa
i

ÂN

j=1 w

j

I{a1:k ⇢ {1, . . . ,N}}
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and
p̊(w�a1:k |a1:k,x,wa1:k) = Q

N

x

(w�a1:k |wa1:k).

Provided for v1:k 2Rk

+ there exists an injection s : {1, . . . ,k}! {1, . . . ,N} such that v

i

=ws(i),
i 2 {1, . . . ,k}, which we also write v1:k = ws , one finds

P̌

N,k
�

x,w1:N ;x

0,v1:k
�

:=
1

k

P

N

Â
s2S

Âk

i=1 ws(i)

ÂN

j=1 w

j

d
x,ws (x

0,v1:k)

where S is the set of injections from {1, . . . ,k} to {1, . . . ,N}; it is a standard result that there
are k

P

N

= N!
(N�k)! such injections. The probability associated with a particular rejuvenation of

the remaining N� k is then given by the scale-up operator

P̂

k,N
�

x,v1:k;x

0,u1:N
�

:=
1

k

P

N

Â
s2S

Q

N

x

(u�s |us )dx,v1:k(x
0,us ).

These results are interesting yet impracticable as presented since to implement the reju-
venation step would require calculation of the summation of k

P

N

different subsets of the N

weights. Future work could consider somehow restricting the set of injections considered to
reduce the computational complexity, for instance by ensuring k is either very close to 1 or
very close to N.

We now move towards proving our main result, that the asymptotic variance of the rejuve-
nated PsMMH is no greater than that of the standard algorithm. The following definition (e.g.
[30, 31]) will be useful.

Definition 3. Suppose P0 and P1 are Markov transition kernels on a generic metric space

(X,X ) with invariant distribution p . The kernel P1 is said to dominate P0 in the covariance
ordering, written P1 < P0, if for all f 2 L

2(p), h f ,P1 f i  h f ,P0 f i.

This ordering is an extension of an earlier concept, central to [10]: we say P1 dominates

P0 off the diagonal, written P1 ⌫ P0, if for p-almost all x 2 X, P1(x,A \ {x}) � P0(x,A \ {x})
for all A 2 X . It may be simpler in some cases to demonstrate off-diagonal domination than
domination in the covariance ordering, and it is sufficient, as shown in [10, Lemma 3], since
P1 ⌫ P0 implies P1 < P0. A powerful result from [31] is now quoted, and will be pivotal to
proving our theorem.

Lemma 3. Let p̃ be a probability measure on a metric space (Y⇥U,Y ✏U) and let P

i

and

Q

i

, i 2 {0,1}, be kernels on the same space satisfying

i) P

i

and Q

i

, i 2 {0,1}, are p̃-reversible,

ii) P1 < P0 and Q1 < Q0.
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Assume also that for all (y,u) 2 (Y⇥U),

P

i

(y,u;{y}⇥U) = 1 (i 2 {0,1}). (2.6)

Then for all f 2 L

2(p̃) such that f (y,u) = h(y) for some h, and such that

•

Â
k=1

�

�

�

D

f ,(P
i

Q

i

)k

f

E

�

�

�

< • (i 2 {0,1})

it holds that

v( f ,P1Q1) = v( f ,Q1P1) v( f ,P0Q0) = v( f ,Q0P0).

The result is a standard one when the compositions P0Q0 and P1Q1 are themselves p̃-
reversible, the classical statement of which is found in [10], but such composite reversibility
does not in general hold for p̃-reversible kernels P

i

,Q
i

, i 2 {0,1}. In possession of this result
we now show that, with respect to asymptotic variance, the l -PsMMH algorithm can perform
no worse than its 0-PsMMH counterpart.

Theorem 1. Let

n⇣

X

l
k

,W l
k

⌘

;k 2 N
o

and {(X
k

,W
k

) ;k 2 N}, with transition kernels P̃

l
N

and

P̃

N

, be Markov chains generated by the N particle l -PsMMH and 0-PsMMH algorithms re-

spectively, where l 2 [0,1] is a constant. Suppose that

⇣

X

l
0 ,W

l
0

⌘

⇠ p̃ and (X0,W0)⇠ p̃. Then

for any function g 2 L2 (p) satisfying

•

Â
k=1

| Cov(g(Z0) ,g(Z
k

)) |< • (for Z = X

l
and Z = X)

we have

v

⇣

g, P̃l
N

⌘

 v

�

g, P̃
N

�

.

Proof. To benefit from Lemma 3 we write the transition kernel associated with each of the
algorithms as the composition of two p̃-reversible kernels (we mean p̃N , and merely suppress
the N). First notice that the 0-PsMMH transition kernel may be written with a redundant
‘identity’ transition kernel as

P̃

N

= d P̃

N

by which it is meant that P̃

N

(x,w;dy,du) =
RR

d(x,w)(dx

0,dw

0)P̃
N

(x0,w0;dy,du). Secondly the
l -PsMMH transition kernel may be written as the composition of the rejuvenation kernel and
the 0-PsMMH transition kernel, that is

P̃

l
N

= R

N

P̃

N
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where R

N

is defined by Equation (2.5). That the conditions of the lemma are satisfied is
straightforward to show. We establish first the reversibility criterion. The delta measure is triv-
ially p̃-reversible since it is reversible with respect to any probability measure on (X,B(X)).
In Lemma 1 it is shown that R

N

is p̃-reversible and P̃

N

is reversible with respect to p̃ by
construction as it describes a Metropolis Hastings algorithm targeting p̃ .

We now demonstrate the relevant covariance orderings using the sufficient criteria of dom-
ination off the diagonal. It holds by definition of the delta measure that for any (x,w)2X⇥RN

+

and A✓ (B(X)⇥B(RN

+)) we have R

N

(x,w;A\{x,w})� d(x,w)(A\{x,w}) = 0. Of course we
can add to this the trivial identity P̃

N

< P̃

N

. In addition the restriction given in (2.6) is satisfied
for the measures d and R

N

as required, since these kernels only affect the weights. Finally
applying Lemma 3 to the function f (x,w) = g(x) gives the result.

2.2.4 Random refreshment

We describe now an algorithm, introduced in [31], that can be thought of as an MCWM algo-
rithm in which the proposal of the recalculated weights is ‘Metropolised’ through an additional
accept/reject step. In this way the so-called Random Refreshment algorithm (in contrast to the
systematic refreshment of MCWM) strikes a new balance, on the one hand reclaiming exact-
ness, on the other sacrificing some of the desirable autocorrelation properties of the standard
MCWM algorithm. A single step of the algorithm, whose transition kernel we term P̄

N

, is
performed according to the instructions given in Algorithm 2.5.

With the random refreshment algorithm defined a picture begins to emerge of a complex
web of possible pseudo-marginal algorithms. One can imagine for instance the standard 0-
PsMMH algorithm and the MCWM algorithm as being polar extremes. By turning the l -
dial from 0 to 1 we obtain the 1-PsMMH algorithm that rejuvenates N � 1 of N weights
systematically, which is in some sense as close as it is possible to get to the MCWM algorithm
without sacrificing detailed balance. The refreshment algorithm (we drop the ‘random’ for
brevity) lies somewhere in the middle, in that it will only refresh the weights in perhaps half
of the iterations, but exists, in a manner of speaking, on a slightly different plane in our mental
image; crucially its refreshments are total, they are not rejuvenations, and they are targeted

by virtue of the extra Metropolis step. One unfortunate facet of the refreshment algorithm is
its relative lack of flexibility. For an equal number of iterations M the refreshment algorithm
is virtually identical in cost to the MCWM algorithm, their cost being of the order 2NM,
since even for those iterations where the previous likelihood estimate is carried through and
not recalculated, the N new weights must nonetheless be drawn at every step to calculate the
probability of their own acceptance.
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Algorithm 2.5 Random Refreshment algorithm: simulating from P̄

N

(x,w; ·)

Input: current state (x,w).

1. Sample w

0 ⇠ Q

N

x

(·).

2. With probability r(w,w0) := 1^ N

�1 ÂN

i=1 w

0
i

N

�1 ÂN

i=1 w

i

set U  w

0, otherwise set U  w.

3. Sample Y ⇠ q(x, ·).

4. Sample Û ⇠ Q

N

Y

(·).

5. With probability ã(x,U ;Y,Û) given in (2.2):

set (x0,w0) 
�

Y,Û
�

,

otherwise:

set (x0,w0) (x,U).

Output: new state (x0,w0).

2.3 Simulation studies

In this section the algorithms and techniques discussed throughout this chapter are tested with
a view to establishing if they are in some settings worth implementing over standard algo-
rithms.

The central aim of the tests that follow will be to ask whether or not it is possible to ‘beat
the cost’ of augmenting standard algorithms with computationally intensive additional steps.
In other words, we ask: is it possible through improvements in statistical efficiency, speed
of convergence, or both to make up for the additional costs and thus make a gain overall?
Certainly there will be examples for which an improvement can be observed by implementing,
say, rejuvenation, but where it will be clear that a more efficient use of resources would be
instead to simply run the original chain for longer. Other examples will be amenable to our
additions and optimal strategies will be sought in these cases. Examples in this section will,
as in earlier examples, target the standard normal distribution, as well as a more challenging
asymmetric beta distribution.

For the normal distribution examples, we use a higher variance in the proposal density
than would typically be used. The lower acceptance rate and increased autocorrelations of the
algorithm caused by this choice are deleterious to its performance. We make this choice in an
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Figure 2.5: Estimated total variation distance of various pseudo-marginal algorithms with N = 2,

g2 = 3.5, s = 8. The splines are used solely for visual clarity.

attempt to recreate in a simpler environment some of the conditions found in very challenging
settings for statistical inference algorithms. It is not uncommon in a high-dimensional pseudo-
marginal algorithm to observe an acceptance rate under 5%, for example. It may also be very
difficult to choose an effective proposal density for the high-dimensional setting, or to tune
the proposal appropriately. The beta distribution target, in contrast, is itself already more
challenging for the algorithms presented here - it is asymmetric, U-shaped, and is defined on
a compact support. It is therefore unnecessary to undermine the performance of the algorithm
in any other way, and so we make a more natural proposal variance choice in these examples.

2.3.1 Rate of convergence comparison

We first concentrate on comparing the pseudo-marginal algorithms presented in this chapter by
their rate of convergence for two test cases, a standard normal distribution and a Beta(0.5,0.7)
distribution.

Figure 2.5a describes an experiment in which the total variation distance, estimated using
functions in the ‘distrEx’ R package [32], for each algorithm is compared for a standard normal
target. Some aspects of the graph agree with our intuitions; the MCWM algorithm converges
fastest of all but with a prominent bias, and random refreshment and 1-PsMMH are both
superior in rate of convergence to 0-PsMMH over any time scale.

Figure 2.5b shows again the performance of each algorithm with respect to total variation
distance from the target, but now with reference to a measure of the computation time. Here
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we have chosen to use the number of likelihood evaluations as a surrogate for wall-clock time.
It is a natural choice as in the majority of applications the likelihood calculation is the domi-
nant computational cost, though this may not always be the case in practice. For our purposes,
we suppose that in computational complexity, the PsMMH algorithm is O(MN), where M is
the number of iterations of the Markov chain and N is the number of weights. For this set
of experiments, the 0-PsMMH algorithm executes the fewest likelihood evaluations, N per
iteration of the Markov chain. The 0.5-PsMMH algorithm uses on average N + (N � 1)/2
likelihood evaluations at every iteration; (N�1)/2 for rejuvenating the previous weight with
probability 0.5 and a further N for the next estimate. Both MCWM and the refreshment algo-
rithm make use of 2N likelihood evaluations per iteration of the Markov chain. It is therefore
possible to scale the number of MCMC iterations executed for each algorithm, so that each
has made (in expectation) the same number of likelihood evaluations. This experimental pro-
cedure allows a user with knowledge of the computational cost of their likelihood evaluation,
to ‘look up’ which algorithm offers the best performance in total variation distance, given the
computational time available.

In 2.5b we again observe that MCWM offers competitive performance for a small number
of likelihood evaluations but at higher numbers becomes unfavourable due to its bias. The
remaining methods offer similar performance across a wide range of likelihood evaluations,
with 0.5-PsMMH by a small margin enjoying the lowest total variation distance for more than
50,000 likelihood evaluations. Around 200,000 likelihood evaluations the performances of the
algorithms become too close to distinguish.

An analogous experiment is now given in Figure 2.6 for the case of a Beta(0.5,0.7) target
distribution. In Figure 2.6a, MCWM again exhibits a bias, evident through its performance
plateau, though it fares better in comparison to its performance on the simpler example. The
remaining three algorithms exhibit the same ordering as in the simpler normal distribution ex-
ample. More interestingly, Figure 2.6b shows that with a more challenging target distribution,
discounting for computational cost, MCWM can be an optimal choice, at least up to 2⇥ 105

likelihood evaluations (equivalently 1⇥105 MCMC iterations). The remaining methods again
offer similar performance to each other, with the rejuvenated PsMMH algorithm marginally
outperforming the refreshment algorithm and 0-PsMMH. When run for a greater number of
likelihood evaluations, in line with expectations, the performance of MCWM (with respect to
its total variation distance from the target) becomes less favourable due to its bias.

We have shown in both a simple and more challenging example that the use of some level
of rejuvenation in PsMMH can improve the rate of convergence to the target, in some settings
and when the chain is run for enough iterations. In light of this, rejuvenation strategies show
promise as a beneficial addition to PsMMH. We therefore now turn our attention to whether
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Figure 2.6: Estimated total variation distance from Beta(0.5,0.7) target of various pseudo-

marginal algorithms with N = 2, g2 = 3.5, s = 3. The splines are used solely for visual clarity.

there is an optimal choice of the number of weights N and the probability of rejuvenation l in
l -PsMMH algorithms.

2.3.2 Optimising N

Having established the asymptotic variance results of Section 2.2.1, we concern ourselves here
primarily with the difference in rate of convergence of the PsMMH algorithm with varying
numbers of weights N. The examples in this section compare algorithms that have been run
with the same proposal distribution and a constant variance parameter. This is almost certainly
not a completely fair test - it is reasonable for example to suppose that better results could be
achieved when N is larger by running the chain a little ‘hotter’, that is, using a proposal of
higher variance. Nevertheless, it is hoped that this will have a modest effect, if any. Our
belief here is supported to an extent by the argument presented in [21, p.10] that the marginal
random walk Metropolis algorithm enjoys a relatively flat efficiency curve, as a function of the
proposal standard deviation s , and consequently is (in the high dimensional case) at least 80%
efficient with any acceptance rate in the region [0.15,0.5], despite the optimal being 0.234.

Figure 2.7a shows the total variation distance between the empirical distribution of a 1-
PsMMH algorithm and a standard normal target distribution for varying numbers of steps, with
each line describing a different N. Predictably, larger N seems to guarantee monotonically
faster convergence. In addition this improvement probably diminishes - the improvement in
speed of convergence derived from increasing the number of weights from 2 to 3 is likely
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Figure 2.7: Estimated total variation distance of the 1-PsMMH algorithm from a standard normal

target. Using parameters g2 = 3.5, s = 8.

to be greater than the improvement derived from increasing the number of weights from 4
to 5. Since the computational cost of running the algorithm increases essentially linearly in
N, it is likely that the choice of N that optimises the rate of convergence will be small in
most circumstances. This claim is supported by Figure 2.7b which shows the total variation
distance as a function of the number of likelihood evaluations. While the performance across
the values of N shown is similar, it is clear that N = 2 consistently offers the lowest total
variation distance per likelihood evaluation, in the range tested, with N = 3 a very close second
and N = 5 the worst performer in total variation distance for any number of steps discounted
by computational cost.

We return to the more challenging Beta(0.5,0.7) target in Figure 2.8. Figure 2.8a closely
resembles the outcome of the standard normal target experiment. In Figure 2.8b the same ex-
periment is expressed as a function of the number of likelihood evaluations, and this too looks
similar to the experiment in which a standard normal target was used. There is very close
performance between the algorithms with N = 2 and N = 3, and they overall out-perform the
choice N = 4 which overall out-performs the choice N = 5. We may be tempted to surmise
that the choice of N is invariant to the complexity of the problem, however this seems a pri-
ori unlikely. More plausibly, the choice of N is likely to depend in a complex way on the
dimension of the problem, the precise structure of the target distribution, and so on.
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Figure 2.8: Estimated total variation distance of the 1-PsMMH algorithm with g2 = 3.5, s = 8.

2.3.2.1 Optimising asymptotic variance

As discussed in Section 2.2 an appropriate measure of the asymptotic variance of the chain
is given by the integrated autocorrelation time. One would like to minimise the IAT, since
this minimises the asymptotic variance of ergodic averages based on the chain. However,
in keeping with the principles of this set of simulations, it is also essential to penalise the
performance of an algorithm as its cost increases to determine whether the additions perform
better than simply running the original chain for longer.

Figure 2.9a shows the effect on the IAT of varying the rejuvenation probability l in the
l -PsMMH Markov chain generated by P̃

l where one weight is drawn at every step and re-
juvenation is carried out with a pool of two weights. The target distribution is a standard
normal. The dash-dotted line on the plots represents the CPU-penalised IAT for l 2 [0,1],
which we observe achieves a non-trivial minimum somewhere in the region [0.2,0.3]. This
CPU-penalised IAT is found by scaling the IAT in proportion to its cost, that is in this case a
factor of 1+l . Achieving a non-trivial minimum implies that an optimal strategy has been
found with respect to IAT, since this strategy minimises the IAT penalised by computational
cost. The practitioner could realistically carry out such a test, perhaps on a short run in advance
of a more serious computation, to determine which value of l may improve the performance
of their algorithm.

By comparison Figure 2.9b targets a Beta(0.5,0.7). In this case the benefits of rejuve-
nation are far more pronounced. In contrast to Figure 2.9a, not only is an optimum of the
computational-cost penalised IAT achievable here, but any choice l > 0 is superior in cost-
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(a) Target distribution N (0,1). Using N = 1,

n = 2, g2 = 3.5, s = 10.
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(b) Target distribution Beta(0.5,0.7). Using

N = 1, n = 2, g2 = 3, s = 3.

Figure 2.9: Plots exploring the effect of increasing the rejuvenation probability l on the IAT of

the corresponding l -PsMMH chain. Each blue point, of which there are 100 for each l , is an

IAT estimate produced from running an entire PsMMH algorithm with M = 2⇥ 106
steps. To be

explicit, taking Figure (a), the blue points lying vertically above, e.g., l = 0.3, are 100 independent

realisations of the Sokal estimator t̂ of the true IAT t of the l -PsMMH algorithm in question.

penalised IAT to the choice l = 0. In other words, for our realistically complex target, any
amount of rejuvenation is better than no rejuvenation. The dotted curve does however exhibit
an optimum, and again it is found around l = 0.2.

In some settings then it is clear that a certain amount of rejuvenation offers a net benefit.
It is not yet apparent in which settings these benefits are greatest, though experiments seem
to indicate a more striking improvement in settings featuring complex target distributions, as
well as inappropriate or incorrectly calibrated proposal densities. If this is the case then it may
be that rejuvenation has potential to offer benefits in some challenging settings.

It seems unlikely that rejuvenation will be necessary if the standard pseudo-marginal al-
gorithm is performing well. Where the pseudo-marginal algorithm has mean acceptance rate
greater than for example 0.2, rejuvenation is unlikely to offer much improvement. However,
where the standard pseudo-marginal algorithm is struggling, for instance achieving a mean
acceptance rate of less than 0.1, it seems more likely that rejuvenation could offer some im-
provement. One example of particular interest is PMCMC algorithms, wherein rejuvenation
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can be carried out through a conditional SMC step. PMCMC methods are commonly used to
conduct inference in highly complex settings in which it may be impossible to come close to
an optimal proposal distribution. Indeed, if one is constructing a high-dimensional proposal
distribution through many auxiliary proposal distributions, as is often the case in SMC, this is
in some sense akin to a very high variance proposal density in the simple example discussed in
this project - and such high variance proposal algorithms respond very well, in the simulations
run so far, to rejuvenation.

Changing tack, there may also be alternative strategies to be sought in the particular im-
plementation of rejuvenation. If a rejuvenation probability of say l = 0.2 is desired at each
step then there are at least two ways of achieving this. We have so far described a process
by which the rejuvenation is carried out independently at each step with probability 0.2. An-
other strategy is to rejuvenate the weight deterministically every five steps. Recent work [33]
exploring the optimality of random or deterministic cycling of reversible kernels may prove
to be useful. A very brief description of the main result [33, Theorem 6] is as follows. Let
p be a probability distribution and P1,P2 be two p-reversible Markov transition kernels (de-
fined on appropriate measurable spaces). Define P

rand := (P1 +P2)/2, the transition kernel
of an MCMC algorithm evolving according to P1 and P2, and denote by P

strat the MCMC
algorithm evolving deterministically according to the composition P1P2. Andrieu shows [33]
under reasonable conditions on the function f that v( f ,Prand)� v( f ,Pstrat), whence it is natu-
ral to ask - does the result hold for more than two kernels? To the best of our knowledge this
is unknown and may be a fruitful direction for future research.

2.4 Discussion

In this chapter we presented a survey of popular pseudo-marginal approaches, and explored
novel ‘rejuvenation’ techniques for pseudo-marginal algorithms, formalising and extending
the ideas presented in [29]. The reversibility of the transition kernels implied by our rejuve-
nation strategies has been demonstrated, and moreover we have proved that our l -PsMMH
strategy outperforms the standard PsMMH algorithm in asymptotic variance. The simulation
results presented seem to suggest that both l -PsMMH and random refreshment are strategies
of some promise - in our tests the two algorithms offer similar convergence rates, which are
a marked improvement over standard algorithms. Critically we have shown that there are re-
alistic scenarios in which the improvement in asymptotic variance of l -PsMMH appears to
justify its computational expense, as is illustrated by the kind of optimality found in Figure
2.9. We now briefly discuss potential avenues for future research in this area.

Our first thought is towards computational techniques. Throughout the report it is assumed
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that all strategies are run in series - it was natural to test the algorithms in this way since it
would be ideal if they could be shown to be optimal in series. Where parallel architectures are
available they can potentially be used to great effect, depending on the particular setting. Com-
putational advances are increasingly opening up the possibilities of efficient parallelisation, so
it may be worthwhile exploring the ways in which rejuvenation can be frugally adapted to take
advantage of these capabilities. If parallel computing is available (D cores say), is it preferable
to run D simultaneous PsMMH algorithms and then average, or one PsMMH algorithm with
D weights?

Secondly, there are potentially further ways to capitalise on the flexibility of l -PsMMH.
It would be possible for instance to use it as a strategy primarily intended to increase the rate
of convergence of the algorithm. In this case, one could for example only use rejuvenation
for the first 2⇥ 104 steps, then stop. This algorithm would make good use of the potential
of rejuvenation for fast convergence, without requiring it to be the most efficient way to run
the entire chain. Another, similar, idea would be to create a decreasing sequence of l s, and
use them so that the probability of rejuvenation is larger at the beginning of the Markov chain
and far less likely towards the end. There are many further adaptive strategies possible, for
example using MCWM for the burn in and then switching to l -PsMMH.



Chapter 3

Spectral analysis for Markov chains

In the last chapter we explored several strategies for improving the performance of pseudo-
marginal type algorithms. Primarily we concerned ourselves with the efficiency of the chain,
and for this reason studied results relating to the asymptotic variance of Markov chains. We
now turn our attention to analysing the convergence rate of the rejuvenation strategy of Chapter
2 in some settings.

3.1 A brief survey of spectral theory

Before considering convergence rates of Markov chains it will be essential to have an under-
standing of some aspects of spectral theory. We embark upon this project now, guided by [34].
The results here will be described in the discrete state space setting. In particular we will study
the eigenvalue and eigenvector relationship for square matrices, though many of the concepts
generalise straightforwardly to continuous state spaces.

First define the total variation distance between two probability distributions µ and n on
a measurable space (W,F):

k µ�n kTV:= max
A2F

|µ(A)�n(A)| . (3.1)

where | · | represents the usual Euclidean norm. In some sense this describes the greatest
possible disagreement between the two distributions about an event A. Of course conducting
a search over all possible subsets of the sample space is prohibitive, and so one often uses the
following alternative characterisation:

k µ�n kTV=
1
2 Â

x2W
|µ(x)�n(x)| (3.2)
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the proof of which is well known. We note that it is clear from equation 3.2 that the total
variation satisfies a triangle inequality since, for any new probability distribution h , we have

k µ�n kTV =
1
2 Â

x2W
|µ(x)�h(x)+h(x)�n(x)|

 1
2 Â

x2W
|µ(x)�h(x)|+ |h(x)�n(x)|

=k µ�h kTV + k h�n kTV (3.3)

where the second line makes use of the triangle inequality enjoyed by the Euclidean norm.
Where it is still impossible to use the characterisations 3.1 and 3.2, several alternatives exist.
One such alternative is offered by the method of coupling.

Definition 4. A pair of random variables (X ,Y ) defined on the same probability space are

said to be a coupling of the probability distributions µ and n if they are marginally distributed

according to µ and n . That is, any pair (X,Y) satisfying P(X = x) = µ(x) and P(Y = y) = n(y)
is a coupling of µ and n .

As shown in the following result, coupling is a useful construction because it directly re-
lates the complex distributional notion of total variation distance to a statement about equality
of random variables. A proof of the following proposition can be found in [34].

Proposition 1. Suppose µ and n are two probability distributions on W, and C (µ,n) is the

set of all couplings (X,Y) of µ and n . Then

k µ�n kTV= inf{P(X 6= Y ) : (X ,Y ) 2 C (µ,n)} .

In practice one hopes to construct a coupling (X ,Y ) that comes close to this lower bound,
since for any coupling (X ,Y ) 2 C (µ,n) we certainly have the upper bound k µ � n kTV
P(X 6= Y ).

Ultimately we seek to understand the total variation distance between the probability dis-
tribution of a Markov chain’s state and the stationary distribution of that chain. Access to this
distance would give a clear picture of the convergence of the Markov chain, the convergence
rate being simply how quickly this distance reduces as a function of the number of steps the
chain has taken. Define a coupling of Markov chains with transition matrix P to be a process
{(X

t

,Y
t

)}•
t=0 such that both (X

t

) and (Y
t

) are Markov chains with transition matrix P, though
not necessarily the same initial distribution. Let P

x,y denote the probability law of the chain,
conditional on X0 = x and Y0 = y. One can modify any coupling {(X

t

,Y
t

)}•
t=0 of Markov chains

with transition P so that once they meet the two chains remain together thereafter. That is, if
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for some s we have X

s

= Y

s

, then

X

t

= Y

t

for all t � s. (3.4)

One can imagine running the chains according to the original coupling until their first meeting,
after which they are run in unison. Now suppose the transition matrix P defines an irreducible
and aperiodic Markov chain, and that the stationary distribution is denoted p . We now give
another result, which follows directly from the preceding proposition and definitions.

Theorem 2. Suppose {(X
t

,Y
t

)}, with initial state (x,y), transition matrix P, and law P
x,y, is a

coupling satisfying 3.4. Let t := min{s : X

s

= Y

s

} be the first time the chains meet. Then for

any t � 1,

�

�

P

t(x, ·)�P

t(y, ·)
�

�

TV  P
x,y(t > t).

With this result in hand, we are in a position to quantify the convergence rate of the chain.
Define d(t) := max

x2W kPt(x, ·)�pkTV, that is, the distance between the Markov chain and
its stationary distribution after t steps, conditional on starting at a point x 2W . The following
corollary holds, describing this distance in terms of a coupling probability - its proof can be
found in [34].

Corollary 2. Suppose for each pair of states x,y 2 W there exists a coupling {(X
t

,Y
t

)} with

X0 = x and Y0 = y. Then

d(t) max
x,y2W

P
x,y(t > t).

The distance d(t) has connections with the eigenvalues of the transition matrix P, an idea
we now explore further.

Definition 5. Let P be a reversible (that is, reversible with respect to some probability mea-

sure) transition matrix on W with ordered eigenvalues�1 l|W| · · · l2 < l1 = 1. P is said

to have spectral gap, or ‘right’ spectral gap, g := 1�l2, which we will occasionally denote

Gap(P). The ‘absolute’ spectral gap is given by g? := 1�l? where l? := max2i|W|{|li

|}.

Remark 2. That P is reversible guarantees it has an eigenvalue of 1, associated with the eigen-
vector p (its stationary distribution). In addition, where P is aperiodic and irreducible it cannot
have an eigenvalue of �1, a consequence of the Perron-Frobenius theorem, thus g? > 0.

Definition 6. The e-mixing time of a Markov chain P is defined by

tmix(e) := min{t : d(t) e}. (3.5)
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In addition, the relaxation time of a reversible Markov chain with absolute spectral gap g? is

defined to be

trel :=
1
g?
.

The following theorem (proved in [34]) explains the relationship between these two quan-
tities.

Theorem 3. Let P be the transition matrix of a reversible, irreducible Markov chain with state

space W and stationary distribution p , and let pmin := min
x2W p(x). Then

tmix(e) log
✓

1
epmin

◆

trel.

In short, the e-mixing time (i.e. the speed of convergence) of the Markov chain is bounded
above by a quantity inversely proportional to the absolute spectral gap. We now define the
‘Dirichlet form’ - an object that will be central to our study of the spectral gap.

Definition 7. Suppose P is a reversible transition matrix with invariant distribution p . Then

for functions f and h on W, the Dirichlet form associated to the pair (P,p) is defined by

E
P

( f ,h) := h(I�P) f ,hip .

We will drop the subscript P where there is no confusion. The following result introduces
a variation of the definition above and connects the two.

Lemma 4. If we define

E
P

( f ) :=
1
2 Â

x,y2W
[ f (x)� f (y)]2 p(x)P(x,y), (3.6)

then E
P

( f ) = E
P

( f , f ).

Proof. First expand the squared bracket as follows

1
2 Â

x,y2W
[ f (x)� f (y)]2 p(x)P(x,y) = 1

2 Â
x2W

f

2(x)p(x)� Â
x,y2W

f (x) f (y)p(x)P(x,y)

+
1
2 Â

y2W
f

2(y)p(y)

= Â
x2W

f

2(x)p(x)� Â
x,y2W

f (x) f (y)p(x)P(x,y).
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Then, using the reversibility of P, one finds

Â
x2W

f

2(x)p(x)� Â
x,y2W

f (x) f (y)p(x)P(x,y) = Â
x2W

f

2(x)p(x)� Â
y2W

f (y)p(y)P f (y)

= h f , f ip �hP f , f ip
= h(I�P) f , f ip .

We now move towards showing the connection between the spectral gap g and the Dirichlet
form associated with the transition matrix P. First we require the following lemma from [34].

Lemma 5. Suppose the transition matrix P is reversible with respect to p . Then the inner

product space (RW,h·, ·ip) has an orthonormal basis of real-valued eigenfunctions { f

j

}|W|
j=1

with corresponding real eigenvalues {l
j

}.

Proof. The matrix A(x,y) := p(x)1/2p(y)�1/2
P(x,y) is symmetric by virtue of the reversibility

of P with respect to p . As a symmetric |W|⇥ |W| matrix there exists an orthonormal basis of
eigenfunctions {j

j

}|W|
j=1 with corresponding real eigenvalues {l

j

}|W|
j=1. Notice first that

p
p is

an eigenfunction of A with eigenvalue 1, since

Ap1/2(x) = Â
y2W

A(x,y)p1/2(y) = Â
y2W

p1/2(x)P(x,y) = p1/2(x).

Label j1 :=
p

p and l1 := 1. Define the diagonal matrix Dp by the diagonal elements Dp(x,x)=

p(x), whence we may write A = D

1/2
p PD

�1/2
p . If f

j

:= D

�1/2
p j

j

then f

j

is an eigenfunction of
P with eigenvalue l

j

, since

P f

j

= PD

�1/2
p j

j

= D

�1/2
p Aj

j

= D

�1/2
p l

j

j
j

= l
j

f

j

.

Now,
⌦

j
i

,j
j

↵

= d
i j

since {j
j

}|W|
j=1 are orthonormal with respect to the usual inner prod-

uct. This implies { f

j

}|W|
j=1 are orthonormal with respect to the inner product h·, ·ip because

⌦

j
i

,j
j

↵

=
D

D

1/2
p f

i

,D
1/2
p f

j

E

=
⌦

f

i

, f

j

↵

p .

Finally we are ready to combine the two notions. Throughout the remainder of the chapter
we will work with Dirichlet forms; the following lemma clarifies why this object is of interest.
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Lemma 6. Let P be the transition matrix of a reversible Markov chain, with associated Dirich-

let form E(·) = E
P

(·) defined by (3.6). Then, its spectral gap g = 1�l2 satisfies

g = min
f : f?p 1,k fk2=1

E( f ) = min
f : f?p 1, f 6⌘0

E( f )

k fk2
2
.

Proof. Let n = |W|. By Lemma 5 if f1, f2, . . . , f

n

are the eigenfunctions of P with asso-
ciated eigenvalues �1  l

n

 · · ·  l2 < l1 = 1, then any function f can be written as
f = Ân

j=1
⌦

f , f

j

↵

p f

j

. We can always take f1 = 1. The L2(p) norm of such a function is

k fk2
2 = h f , f ip =

n

Â
i=1

|h f , f

i

ip |
2 .

Therefore if k fk2 = 1 and f ? 1 (since f1 = 1 this is equivalent to the condition h f , f1ip = 0),
then f = Ân

j=2 a
j

f

j

where Ân

j=2 a2
j

= 1. Finally, this means

h(I�P) f , f ip = h f , f ip �hP f , f ip

=
n

Â
j=2

a

2
j

�
*

n

Â
i=2

a

i

P f

i

,
n

Â
j=2

a

j

f

j

+

p

=
n

Â
j=2

a

2
j

�
n

Â
i, j=2

a

i

a

j

l
i

⌦

f

i

f

j

↵

p

=
n

Â
j=2

a2
j

(1�l
j

)� 1�l2

where the third line follows from the orthonormality of the { f

j

} with respect to h·, ·ip .

In summary, we have found a connection between the spectral gap of the transition matrix
P and its Dirichlet form. In the next section we seek to understand what implications follow
from establishing ordering of Dirichlet forms.

3.2 Connections to convergence rate

To begin we show that the Dirichlet form has connections with the notion of asymptotic vari-
ance from the previous chapter.

Proposition 2. (Uniform (over all functions) ordering of Dirichlet forms implies ordering

asymptotic variance.) Let P1 and P2 be reversible transition matrices with the same invariant
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distribution p . If E
P1( f )� E

P2( f ) for all f 2 L2(p), then for any such f (·)

v( f ,P1) v( f ,P2).

Proof. Suppose E
P1( f )� E

P2( f ) for all f 2 L2(p). Using the definition of the Dirichlet form
and simple algebra, the following statements hold for all f 2 L2(p) and are equivalent:

h(I�P1) f , f ip � h(I�P2) f , f ip
p( f

2)�hP1 f , f ip � p( f

2)�hP2 f , f ip
hP1 f , f ip  hP2 f , f ip .

The final line implies P1 < P2, in other words, P1 dominates P2 in the covariance ordering.
It follows from [10, Theorem 4.] that v( f ,P1) v( f ,P2).

In addition, the Dirichlet form is related to the right spectral gap of the transition matrix as
is crystallised in the following proposition.

Proposition 3. (Ordering of Dirichlet forms implies ordering of right spectral gap.) Let P1 and

P2 be reversible transition matrices with the same invariant distribution p . If E
P1( f )� E

P2( f )

for all f 2 L2(p), then

Gap(P1)� Gap(P2).

Proof. If E
P1( f )� E

P2( f ) for all f 2 L2(p) then, inspired by the functional relationship estab-
lished in Lemma 6, it follows that

min
f2L2(p)

E
P1( f )� min

f2L2(p)
E

P2( f ).

Naturally the inequality still holds over the particular subset of functions

{ f : f 2 L

2(p), f ?p 1,k fk2 = 1},

whence it is clear that Gap(P1)� Gap(P2).

We note here that an ordering of the right spectral gap does not necessarily imply any
ordering on the speed of convergence, which depends on the absolute spectral gap. It has this
implication only if the right spectral gap coincides with the absolute spectral gap. Where P

is self-adjoint, equivalent to reversibility, then it must have a real spectrum. If in addition it
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satisfies hP f , f i � 0 for all f 2 L2(p) then P is called positive and is guaranteed to have a
non-negative spectrum [35]. Reversibility of P is key, since in this scenario there are strategies
for forcing the spectrum to be non-negative, e.g. using so-called ‘lazy’ chains where P(x,x)�
1/2,x 2W. Resolving this difference between right spectral gap and absolute spectral gap for
non-reversible operators P directly, without using techniques like lazy chains, is a challenging
avenue of current research and some headway has been made [35, 36].

3.3 Majorisation

We move towards proving a result concerning ordering of Dirichlet forms for the rejuvenated
pseudo-marginal method. Some concepts relating to majorisation and Schur-convex functions
must be introduced first as they will be essential to the proofs that follow. The results in this
section are both found in [37].

Definition 8. For x,y 2 Rn

, we say x majorises y (written x� y) if

8

<

:

Âk

i=1 x[i]  Âk

i=1 y[i], k 2 {1, . . . ,n�1},
Ân

i=1 x[i] = Ân

i=1 y[i]

where x[1] � . . .� x[n] denotes the components of x in decreasing order.

Definition 9. A real-valued function f defined on a set A ⇢Rn

is said to be Schur-convex on

A if

x� y on A ) f(x) f(y).

Similarly f is said to be Schur-concave on A if

x� y on A ) f(x)� f(y).

3.4 Rate of convergence of iterated rejuvenation

We are interested in what improvements can be made to the convergence rate of the pseudo-
marginal algorithm when one implements a rejuvenation step. It will first be crucial however
to understand the convergence properties of the rejuvenation kernel itself. Our efforts here are
towards ordering Dirichlet forms related to the algorithm, since from this follows immediately
the ordering of the right spectral gap and the asymptotic variance. The ordering of the Dirichlet
forms will use the techniques of majorisation introduced in the previous section.
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First define the N-simplex S
N

:= {u 2 [0,1]N : ÂN

i=1 u(i) = 1}. For the pseudo-marginal
algorithm in which one weight is used at each time step and N weights are used in the reju-
venation pool, the standard rejuvenation procedure is as follows. Suppose we start at (x,w) at
time t, then

1. Set w1 w and sample w

i

iid⇠ Q

x

(·), i 2 {2, . . . ,N}

2. Renormalise the weights w̄
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This is an application of the scale-up and scale-down kernels. Recall P̂
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as it will be e.g. in the importance sampling case. The marginal transition from w to u is given
by
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whence the appropriate Dirichlet form for the rejuvenation kernel R
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Inspired by the form of 3.7, for a = (a1, . . . ,aN

)T 2S
N

define the general Dirichlet form

Y(a) :=
N

Â
k,l=1

Z

RN

+

N

’
i=1

q(dw

i

)
a

k

w

k

a
l

w

l

ÂN

j=1 a
j

w

j

[ f (w
k

)� f (w
l

)]2.

We now present a theorem on the structure of this function.

Theorem 4. Y(a) is Schur concave, that is, for any a1,a2 2S
N

,
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That is,
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We are interested in the Hessian of F(a), and to this end first derive its gradient. A straight-
forward application of the chain rule yields
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The second derivative is found similarly. First notice
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where G(a) := 2(Ma)
i

� (aT
Ma)w

i

aTw so that

∂ 2F(a)

∂a
j

∂a
i

=
1

aTw

⇢

∂G(a)

∂a
j

� w

j

aTw
G(a)

�

. (3.9)

Now,

∂G(a)

∂a
j

= 2w

i

w

j

F

i, j +

�

aT
Ma

�

w

i

w

j

�

aTw
�2 �2

w

i

w

j

aTw

N

Â
k=1

a
k

w

k

F

j,k

= 2M

i, j +
w

i

w

j

�

aTw
�2

⇣

aT
Ma

⌘

�2
w

i

aTw
(Ma)

j

.

Substituting into equation 3.9 shows
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In summary, by a simple rearrangement where we have used the symmetry of M,
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We now show that the Hessian matrix —2F(a) is negative-semidefinite, i.e. hT —2F(a)h 0
for any h 2 RN . To see this, introduce the notation B

:= diag(w)
⇣

I� aw

T

aTw

⌘

from which it

follows that —2F(a) = 2
aTwB

T
FB. It is now prescient to observe that, for any h 2 RN , the
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vector Bh is orthogonal to the vector consisting of all 1s, i.e. (Bh)T1 = 0. Indeed,
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where we have used the fact that a is positive (by definition of the simplex) and so is w
as it is a pseudo-marginal weight. Therefore F(a) is concave in a for each fixed vector w.
Moreover, we assume (as is done throughout this thesis) the set of weights w1, . . . ,wN

⇠Q

N

x

(·)
is N-exchangeable. Note also that F(wP;aP) = F(w;a) for all permutations P, which can
be seen by examining the expression 3.8, and that F(w;a) is Borel measurable in w for each
fixed a . Therefore Y(a) = E

Q

N

x

[F(W;a)] is symmetric and concave [37, Proposition B.1, p.
393] and it follows that Y(a) is Schur-concave [37, Proposition C.2, p. 97].

From the theorem we can conclude that k 7!Y(u
k

) is non-decreasing. We would like from
this statement about the rejuvenation kernel to be able to say something about the spectral
gap associated with the rejuvenated pseudo-marginal algorithm explored in Chapter 2. Recall
that the pseudo-marginal averaging N weights at each step had a transition kernel denoted P̃

N

and that therefore the rejuvenated version of the same algorithm possessed a transition kernel
P̃

l
N

= R

N

P̃

N

. Now, for example, we speculate that k 7! Gap
⇣

P̃

l
u

k

⌘

is non-decreasing, but this



3.4 Rate of convergence of iterated rejuvenation 47

is not yet clear. We may however be sure from the theorem that the iterated rejuvenation
kernel has an asymptotic variance that is non-increasing in k and a right spectral gap that is
non-decreasing in k. We hope that the techniques contained in this chapter may form the basis
of future research that may, for example, show the function k 7!Y(u

k

) to be concave.





Chapter 4

The Coalescent

In this chapter we turn our attention away from pure statistical theory towards an important bi-
ological application of Monte Carlo methods. Experimental advances of the 1990s allowed for
the first time sequencing of entire genomes, precipitating enormous general interest in the pre-
viously arcane study of population genetics [38]. Prior to this the discipline had been largely
theoretical with a focus on probabilistic modelling. However with the sudden availability of
huge quantities of genome data at the DNA level new statistical challenges arose, which along
with access to rapidly improving computational capabilities gave life to the discipline of ‘pop-
ulation genomics.’ A panoply of techniques has since been developed, largely aiming to take
current DNA sequence data of a population or subset thereof, and from it to infer facets of the
ancestral past of that population, or the parameters of the stochastic model assumed to have
generated the genetic data. Some of these techniques will be discussed in this chapter and the
next. First we focus on some fundamental models in population genetics that underpin the
more complex models we explore later. Much of the following review is inspired by [39].

4.1 The Wright-Fisher model

We begin by discussing the Wright-Fisher model, introduced in [40] and [41]; possibly the
simplest model for describing the evolution of a finite population of genes through discrete
generations. Consider a population of N diploid individuals (carriers of two sets of genetic
information), which it is traditional to model as 2N haploid individuals (carriers of a single
set of genetic information). At this stage we refer loosely to ‘individuals’ or ‘members’ of a
population, by which we may mean a DNA sequence, gene, locus, or base - this distinction
is presently of little importance. The primary assumptions (though there are other implicit
assumptions) underlying a basic Wright-Fisher model are the following:
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1. The generations in the model are discrete and do not overlap, that is, all individuals in a
generation reproduce at the same time and simultaneously die.

2. The population size is fixed.

3. There are no considerations of fitness of individuals (selection).

4. There is no population structure, e.g. geographical or sexes.

5. There is no recombination or mutation.

Naturally none of these assumptions hold for real populations, but the model offers a simple
base on top of which more complicated models may be imagined. Population size and struc-
ture, for example, are often regarded as crucial factors in the genetic history of a population
and so are commonly included in practice. For our purposes the most limiting assumption of
the model, and one that we will shortly relax, is that of no recombination or mutation. These
additions do however significantly complicate the mathematics and for this reason are best
avoided at first.

The Wright-Fisher model for reproduction proceeds, forward in time, as follows. Suppose
we have reached generation t � 1, then generation t+1 comprises 2N genes copied uniformly
at random from the 2N genes in generation t. In other words, each new generation is con-
stituted of clones of members of the current generation sampled randomly with replacement.
Thus, every individual in generation t + 1 has a parent in generation t, but a randomly se-
lected individual in generation t will not necessarily have offspring in generation t +1, and if
it does not then its lineage is said to have died out. As generations elapse what emerges is a
population of genes, each of which has an ancestry.

Summarising [39, Section 1.4], label the genes in generation t by i 2 {1,2, . . . ,2N}. When
generation t reproduces, individual i produces v

i

2 {0,1, . . . ,2N} offspring in generation t+1.
Equivalently, for individual i to have k offspring in generation t +1, k members of generation
t +1 must ‘pick’ individual i in generation t as their parent, which they do independently with
probability 1/2N. One can simulate such a model and represent its evolutionary dynamics
using a simple graph, as is shown (on the left) in Figure 4.1; the colours represent distinct
alleles, each of which in this case is unique in the population when the model begins since
no colour is repeated. This example shows how, at least when the population size is small, in
relatively few generations one gene can become ubiquitous in the population through genetic

drift - i.e. changes in frequency of a particular allele or gene in a population due simply to
random sampling and not, for example, the relative fitness of the allele. Generation t + 1
selecting their parents in generation t is in this sense similar to drawing balls with replacement
from an urn, a classic exercise in probability theory. The balls, too, possess no qualities
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Figure 4.1: Left: A realisation of a Wright-Fisher model for a population of eight individuals.

After eleven generations the allele shown in red has become ubiquitous through genetic drift.

Right: Tracing the ancestral history of three samples from the population. Sequences one and

three coalesce in three generations (measured backwards in time from the present). Sequence six

coalesces with this lineage three generations later.

of ‘fitness.’ Yet if 2N balls of various colours were placed in an urn, and removed (with
replacement) to form a new urn of balls, after a small number of iterations of this process the
resulting urn would contain only one colour of ball.

A probabilistic framing of this drift is that the prevalence v

i

(t) of allele i considered across
generations {t, t +1, . . .} may be described as an irreducible, finite state space Markov chain.
It is irreducible since the state space (with two exceptions) constitutes one communicating
class; this means that providing there is at least one member of the population with allele X,
it is possible in a finite number of generations for all members of the population to possess
allele X, and vice versa. The Markov chain also has absorbing states 0 and 2N - in other
words, once one of these two states is reached the chain remains perpetually in that state. It
is bound to reach one of these absorbing states in finite time since the chain is necessarily
positive recurrent by virtue of being finite and irreducible [42].

Crucially, the interpretation of the model as having children ‘pick’ their parents provides
instructions for running the model in reverse, that is, starting with a subset of the population
and moving backwards in time disregarding other members of the population. With time
moving by generations in reverse, when two individuals in a generation choose the same parent
their lineages are said to coalesce; recording all such lineages and coalescences, one will
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eventually find a most recent common ancestor (MRCA), a single individual from which all
members of the present sample are descended. The right hand plot in Figure 4.1 shows the
process of tracing the MRCA of 3 individuals from a population of eight.

Consider two genes in the present population, and the time T in generations until a MRCA
is found. Whatever parent the first gene chooses, the second gene chooses the same with
probability 1/2N, that is, a Bernoulli trial with probability p = 1/2N of ‘success.’ If the two
do not share a common parent, then one simply looks back one generation further. Given
that they do not share a common parent, whether they share a common grandparent is an
independent Bernoulli trial with exactly the same probability of success/failure. In other words
T ⇠ Geom(p) and

P(T = k) = (1� p)k�1
p

where the probability of success is simply the probability of sharing a parent, that is p= 1/2N.
Consider next a generalisation; the waiting time for k genes to have fewer than k ancestral
lineages. Take first the complement of this event. In order for k genes to each have a distinct
parent the following sequence of events must occur. The first gene is free to choose its parent,
the second must choose a different parent with probability (2N � 1)/(2N), the third must
choose a parent distinct from the first two with probability (2N�2)/2N, and so on. Therefore
the probability that k genes have k distinct parents is

k�1
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Assuming one considers only values of k that are small relative to 2N then, approximately
speaking, the probability of no coalescence in k genes in one generation is 1�

�

k

2
� 1

2N

and the
probability of a coalescence event between two genes is

�

k

2
� 1

2N

. Note that this approximation
precludes more than one pair of genes simultaneously finding a common ancestor, though
in practice it will make little appreciable difference for N > 50. Analogously to the k = 2
case we can talk about the distribution of the time T

k

for the first coalescence of any pair of
genes out of a subpopulation of size k. Again this is simply a geometric distribution, namely
T

k

⇠ Geom
⇣

�

k

2
�

/2N

⌘

.

It follows from the structure of the model that any subset of genes will find a MRCA in a
finite number of generations - though this may be large if N is large. Indeed, the time °

k

to the
MRCA (which we will abbreviate to TMRCA) of k genes is given by °

k

= T

k

+T

k�1+ . . .+T2,
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where T
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< • a.s. for all k < •.

4.2 The coalescent model

We consider now a particular limiting case of this model. Fix a generation j 2 {1,2, . . .}, an
integer M 2 N+, and p 2 (0,1). Define a constant a

:= pM, a rescaled time t

:= j/M and a
rescaled TMRCA T

c := T/M . Recall that for any real a we have

e

a = lim
M!•

⇣

1+
a

M

⌘

M

,

and that from the properties of the geometric distribution, for T ⇠ Geom(p) one has that
P(T � j) = (1� p) j�1. Substituting the change of variables one finds

P(T c � t) = P(T � j)

= (1� p)tM�1

=
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and that, taking the limit, P(T c � t) = e

�at as M! •. Thus, the rescaled TMRCA is well
approximated in distribution by an exponential random variable with rate a. This describes a
Wright-Fisher model that in the limit is continuous in time. Indeed, let t be scaled by M = 2N

when N is sufficiently large, so that time is measured in units of 2N generations. Then, one can
convert a number of generations j into a continuous time t by the identity t = j/2N. Equally,
a continuous time t is converted to generations by j = b2Ntc. We also have

a =

�

k

2
�

2N

⇥2N =

✓
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2

◆

so that P(T
k

� t) = exp(�
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k

2
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t), i.e. T

k

⇠ Exp(
�

k

2
�

). Algorithm 4.1, which generates stochas-
tically a genealogy for k genes under the continuous coalescent model, is now adapted from
[39]. We refer to it as the basic coalescent (in Kingman’s work [43] this is referred to as
the n-coalescent). The limit argument presented above is the essence of coalescent models -
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Algorithm 4.1 The basic coalescent

Input: a sample of k genes.

1. Sample T

k

⇠ Exp(
�

k

2
�

), the time to the next coalescent event.

2. Sample uniformly at random a pair (i, j), 1 i < j  k.

3. Genes i and j coalesce after time T

k

and the sample size is reduced by one, that is,

k k�1.

4. If k � 2 return to step 1, else stop.

Output: an ancestral history of the k genes; the coalescence times and which lineages coa-

lesce.

they are population level models of reproduction that view time as moving in reverse from the
present towards the past continuously. They arise naturally as the continuous-time limit to a
range of discrete-time models like the Wright-Fisher and Moran models [44], and are for this
reason considered to be robust [39, 43, 45].

The coalescent method offers at least two key insights [46]. The first insight is that there
is a deep consequence of supposing mutations to be selectively neutral. Mutations need not
be generated, as presented here, as a competing process to coalescence that is generated at the
same time as the topology, but can instead be overlaid after the fact. They are independent of
the structure, or topology, of the ancestral history. Mutations can be simulated according to
a Poisson process and superimposed on the genealogy after the fact [47, Chapter 20]. This is
equivalent to algorithm 4.2 when the mutations are selectively neutral.

The second insight is that sampling the ancestral history of a sample of genes, or individu-
als, does not require sampling the history of the entire population. This follows from viewing
the Wright-Fisher model as each member of a generation ‘picking’ their parent. In fact the
coalescent is extraordinarily computationally efficient, at least when compared to simulating
the entire population forward in time and then tracing lineages back from the final generation
[46]. Rather than pick out the ancestral tree of interest from the vast web of population parent-
child relationships, it is instead drawn directly; this simplicity is incredibly useful but also
offers a profound heuristic. Returning to Figure 4.1, the left figure shows a forward in time
Wright-Fisher style model for a population of size eight. On the other hand, the right figure
shows in a fashion similar to the coalescent the ancestral history of individuals one, three, and
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six in the present day population. Note that in going from one view to the other, most of the
population reproduction information becomes irrelevant.

4.3 Mutations

In the Wright-Fisher model, genes were related at the population reproduction level through a
shared ancestry. To understand the biology of reproduction at a deeper level it is necessary to
consider the effect of mutations. There are several biological models of mutations including
the infinite alleles model, the infinite sites model, and the finite sites model [48–50]. We focus
here on the infinite sites model.

4.3.1 The infinite sites model

Under an infinite sites model it is assumed that, relative to the length of the genes considered,
the number of single nucleotide polymorphisms (SNPs) is small. If this assumption holds, it
is reasonable to expect in practice that each new mutation will occur at a new position in the
sequence. The model therefore assumes that mutations cannot occur at the same site twice.
Equivalently, every mutation affects a new site. This is in some sense quite natural in the con-
text of the coalescent model described above where the sequence is taken to be a continuous
interval, with mutations being placed on top by a continuous probability distribution.

A number of consequences follow from the infinite sites assumptions. First, every mu-
tation that has occurred in the ancestral history of the population is known - in particular it
is observed through the mutations in the genes. This is in contrast to a finite sites model for
example, where a mutation could occur at the same site twice, say A! G and G! A, which
would then be imperceptible through observation alone.

Secondly, considering the same position in the genome across a set of sequences (a sample
from a population, say) there will only ever be at most two states observed, since more would
require more than one mutation to occur at this base. For this reason, under the infinite sites
model, sets of sequences are often written in terms of 0s and 1s. ‘Translating’ from genetic
sequences (ATGC...) to this code is simple; fix the DNA corresponding to one sample as the
zero-type, i.e. all zeros. Then proceed base by base with each additional sample. Where the
bases are identical - A,A or T,T for example - then the sample being compared would also
receive a zero in this position. Where the bases differ, the sample would receive a one. Take
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as an example the fragment of genetic sequence for two individuals

GACATC...

TACAGC...

which can be converted to

000000

100010

where we have assumed the first sequence to be the ‘ancestral’ state - the state considered to
be primary and from which others are derived by mutation.

Throughout this thesis we will work with an infinite sites model and under the assumption
that mutations are ‘selectively neutral’ - in other words, no genetic configuration out-performs
any other in terms of fitness. The probability of passing down a mutation does not depend on
the type held by the parent, and inheriting a mutation does not affect survival.

4.3.2 The basic coalescent with mutation

Mutation can be factored into the model similarly to coalescence. Assume that a mutation at a
given base occurs with constant probability µ per individual per generation; a scaled mutation

rate is typically defined by q := 4Nµ . Then, measured in generations, the time T

m

until the
next mutation event for a single individual will be a geometric random variable with expected
value 1/µ and is approximated in continuous time by an exponential random variable with
rate q/2. To see this, define a constant a

:= 2µN, rescaled time t

:= j/2N, and a rescaled time
to the first mutation of an individual T

c

m

:= T

m

/2N. Let N! • and µ ! 0, and observe

P(T c

m

� t) = P(T
m

� j)

= (1�µ)2Nt�1

=
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1� a

2N

⌘2N

�

t

⇣

1� a

2N

⌘�1

⇡ e

�at .

where a = 2µN = q/2.
Let us return to the basic coalescent algorithm and augment it with mutations. Beginning

again with a present subpopulation of k individuals, and looking backwards in time, the first
event that occurs could be a mutation in any of the k lineages or a coalescence between any
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pair. Since for independent random variables Y

i

⇠ Exp(l
i

), i 2 {1,2, . . . ,n} one has

min{Y1, . . . ,Yn

}⇠ Exp(
n

Â
i=1

l
i

)

it follows that the distribution of the first event time in our basic coalescent model with muta-
tion is exponential with rate

k

q
2
+

✓

k

2

◆

=
k(k�1+q)

2
.

The particular event that will take place at this time is chosen with probability proportional to
its contribution to the rate. In other words, the event will be a mutation with probability

kq/2
�

k

2
�

+ kq/2
=

q
k�1+q

and a coalescence with probability

�

k

2
�

�

k

2
�

+ kq/2
=

k�1
k�1+q

.

An algorithm for simulating a genealogy of k genes under the basic coalescent with mutation
is given by Algorithm 4.2.

We dedicate time here to labour an important point. Coalescent algorithms like Algorithm
4.2 are generic procedures in which is fed an input, namely k genes from a present subpopula-
tion of interest, and which stochastically generate backwards in time a genealogy, or history,
H 2 T (k). Here we define T (k) to be the entire space of such genealogies or trees that are
permissible under the particular coalescent model of interest, starting from a present subpop-
ulation of k individuals. Once such a tree is generated it can be run forward in time from
the MRCA (with any sequence as the MRCA) and the resulting genealogy and offspring will
be perfectly coherent with respect to the model. However, in practice our interest will often
be in asking, given a particular realisation of observed genetic data on k present individuals
(suppose for instance that we have sequenced the genomes of k people), what genealogy or
set of genealogies is likely to have generated those data. There is no simple adaptation of the
coalescent to this requirement. Indeed, a naive approach may fail at the first hurdle - imagine
running Algorithm 4.2 in reverse from an observed sample of k genes and further that the first
event is randomly chosen to be a coalescence between two non-identical individuals. In sum-
mary, for some problems of inference we may require access to the subset T (k;H0)⇢ T (k)

of trees, those compatible with a particular present sample history H0, and this refinement is
non-trivial.
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Algorithm 4.2 The basic coalescent with mutation

Input: a sample of k genes.

1. Start with sample of k genes.

2. Sample T

k

⇠ Exp
⇣

k(k�1+q)
2

⌘

, the time to the next event.

3. With probability k�1
k�1+q the event at time T

k

is a coalescence, otherwise it is a mutation.

4. If it is a coalescence, sample uniformly at random a pair (i, j), 1  i < j  k that will

coalesce, set k k�1.

5. If it is a mutation, pick uniformly one of the k lineages on which to place a mutation at

T

k

.

6. If k � 2 return to step 2, else stop.

Output: an ancestral history of the k genes.

4.4 The coalescent with recombination

In addition to mutation, an essential feature of real reproduction (of almost all multicellular
organisms on Earth [51]) is recombination. It describes the biological process by which a
child may inherit a ‘shuffled’ version of the genetic information of the parents. Imagining a
coalescent model, recombination when considered backwards in time has the opposite effect
to coalescence, in that it allows a bifurcation of lineages into the past. We will assume this
splitting process occurs at a single point in the sequence, referred to as ‘crossing-over’ at a
point [46]. A coalescent model with recombination is shown in Figure 4.2 where, for exam-
ple, sequence three first experiences a recombination event before eventually all the lineages
coalesce further back in time.

Introducing recombination into the model has two major consequences. Primarily, it turns
what was a tree topology into a graph, significantly complicating the interpretation and math-
ematics of the model. In addition, by splitting the ancestral information over many chromo-
somes backwards in time, the total space of possible graphs that explain the present sample
becomes very large. Crucially, we note that the ancestral history of a single position in the
sequence is still described by a tree - there is no way a single position can be split across two
chromosomes - and it follows that the full ancestral history can be described either as a graph
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or a collection of such trees. Mathematically it is challenging to model recombination, and the
phenomenon is less well understood than say mutation and several interpretations exist.

The coalescent with recombination was first presented in [52]. Here we describe the
closely related ancestral recombination graph (ARG) as described in [53] wherein an infi-
nite sites model is adopted. Consider first a discrete Wright-Fisher type model in which is
modelled the genetic evolution of a constant population of 2N sequences. It is assumed that
recombination occurs with constant probability r per individual per generation. The individ-
uals comprising the population are represented by a continuous length of gene or DNA data,
denoted by the interval [0,1]. This is simply a convenient representation of a sequence but
could easily be mapped back to discrete bases if necessary. Each member of generation t +1
samples with probability 1� r a single parent from generation t in the usual way, and with
probability r samples two parents uniformly at random from generation t and a recombination
occurs. A recombination event consists of sampling a break point Z on the gene, where Z takes
some continuous distribution over [0,1], and attributing the region [0,Z) to the first parent and
[Z,1] to the second. A typical choice is Z ⇠U(0,1) to reflect the scenario in which each base
on the gene has an equal probability of recombination.

Define the scaled recombination rate by r := 4Nr. Using an analogous limit argument to
subsection 4.3.2 it follows that the distribution of the first event time in the ARG is exponential
with rate

k

r
2
+

✓

k

2

◆

=
k(k�1+r)

2
.

The particular event that will take place at this time is chosen with probability proportional to
its contribution to the rate. In other words, the event will be a recombination with probability

kr/2
�

k

2
�

+ kr/2
=

r
k�1+r

and a coalescence with probability

�

k

2
�

�

k

2
�

+ kr/2
=

k�1
k�1+r

.

Algorithm 4.3 (adapted from [39]) describes the process for simulating an ancestral recombi-
nation graph for a sample of n individuals from a population. With the knowledge that we are
free to overlay mutations after the fact, we do not include them here.

Note that the process is guaranteed to reach a most recent common ancestor in finite time
since it may be recast as a birth/death process with birth rate proportional to k and death rate
proportional to k

2 [54]. If mutations are to be included in the analysis, then they are placed
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1 2 3 4

Figure 4.2: An ancestral recombination graph for four sequences. There are three recombination

events and six coalescent events.

on the edges of the ARG according to a Poisson process of rate q/2. The position of the
mutation on the sequence is chosen uniformly at random and independent of all other such
choices. Note it is possible for a mutation to fall in non-ancestral material, a section of the
gene that is not ancestral to any extant sequence.

Finally, as was briefly alluded to above, when referring to the ancestry of a particular base
there is no recombination to consider. Thus each position x 2 [0,1] within the length of gene
possesses an ancestral tree T (x) which is simply a realisation of a coalescent tree simulated
by the basic coalescent algorithm with mutation (see Algorithm 4.2). This tree is imbedded
within the full ARG and can be found as follows: trace backwards in time the ancestry of the
sequence on which the base is located, and if a recombination occurs at a point Z 2 [x,1] (resp.
Z 2 [0,x)) follow the left (resp. right) path of the bifurcation.

The complexity of the ancestral recombination graph causes some difficulties in practice.
Mathematically the process becomes much harder to work with as the likelihood function is
intractable, and estimating it is “notoriously difficult” [3] largely due to the enormity of the
space of possible latent states (the graphs).

4.5 Recombination as a process along sequences

In [55] it was shown that there is another way to view the coalescent with recombination; not
as whole sequences tracing their ancestry backwards through time, but instead moving along
the sequences from left to right and modifying the ancestral history when a recombination
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Algorithm 4.3 The ancestral recombination graph

Input: a sample of n genes.

1. Set k = n.

2. For k sequences with ancestral material, sample T

k

⇠ Exp
⇣

k(k�1+r)
2

⌘

, the time to the

next event.

3. With probability (k� 1)/(k� 1+r) the event at time T

k

is a coalescence, otherwise it

is a recombination event.

4. If it is a recombination, sample a random sequence and a random point Z on the se-

quence. Create two ancestral sequences: one with the ancestral material in [0,Z) and

another with the ancestral material in [Z,1]. Set k k+1 and go to 1.

5. If it is a coalescence, choose at random two of the ancestral sequences and merge them.

Set k k�1.

6. If k = 1 end, otherwise go to 1.

Output: an ancestral recombination graph relating the n genes.

point occurs. This ‘spatial’ algorithm begins at position 0 in the sequence with a standard
coalescent tree (see Algorithm 4.1), describing the ancestral history of the sequences at 0.
Moving (spatially) across the sequence new recombination points are proposed at which the
‘local tree’ is modified. Thus the ancestral history of the full sequence may be viewed as a
sequence of embedded trees. This approach is essentially equivalent to the ARG described
above, a brief argument for which is given in [55]. In essence, conditional on a total branch
length measured in generations of 2Nb, and considering a length of L nucleotides, the number
n of recombination points in the length-L segment is binomially distributed n ⇠ B(2NbL,r).
For large N and L, by the usual limiting arguments used for the coalescent, this number tends
to a Poi(br/2) distribution. It follows that the distance from a point on the sequence to the
next recombination point on the sequence is exponentially distributed. This fact is exploited
by the spatial algorithm for its movements across the sequence.

We do not go into great depth here about this particular model as in the next chapter we
will discuss at length a particular approximation to it. Note however that the approximation
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will arise out of a desire to cast the coalescent with recombination as a ‘spatial’, Markovian
state space model. The ARG is an inherently Markovian process viewed backwards in time -
one need only think of the interpretation of children picking their parents at each generation.
However, the spatial algorithm is not Markovian. Long-range dependencies are induced be-
cause the probability distribution of the next local tree depends on previous trees as a sequence
created in a recombination event is permitted to coalesce with branches of earlier trees.

With a sufficient understanding of coalescent models we begin in the next chapter to dis-
cuss the sequentially Markov coalescent (SMC) and SMC’ approximations [3, 4] to the full
ARG.



Chapter 5

Monte Carlo inference for SMC’

5.1 Introduction

There have been many proposed computational methods for analysing genetic variation data,
and as the volume and complexity of the available data is ever increasing the problem remains
as challenging as ever. Many promising strategies have used Monte Carlo techniques. For
example, importance sampling approaches have been developed in [53, 56–58] and sequen-
tial importance sampling in [38, 59]. The use of Markov chain Monte Carlo (MCMC) and
approximate Bayesian computation has also been popular. Some early methods are given in
[60, 61], as well as later [1, 62–64].

More recently, in 2005 the highly influential sequentially Markov coalescent model (SMC)
was proposed in [3]; it offers a Markovian interpretation of the spatial algorithm of [55] dis-
cussed in Chapter 4 and offers a good approximation to the full coalescent machinery of King-
man and Hudson. In [4] an adjustment to the SMC model is made that improves its likeness
to the full coalescent and runs faster (see [65] for a study into its accuracy). The pairwise se-
quentially Markov coalescent was described in [66], and is a particular implementation of the
SMC for two chromosomes, though it requires discretisation of time and along the sequence
length. A powerful Gibbs-sampling approach termed ‘threading’ was introduced in [67] to
sample from the hidden Markov model underpinning the SMC. In contrast, we will explore
here a general and flexible particle MCMC approach.

We begin by reviewing the SMC and closely related SMC’ algorithms. These algorithms
are commonly used in population genetics to generate possible sequence-level ancestral his-
tories of a set of individuals from a population. Our motivation will be to calculate the likeli-
hood of an observed set of mutations on a genetic sequence, marginal to the ancestral history
by which these mutations were brought about. In other words we seek to estimate PrJ (M),
where M denotes the observed mutations assumed to have been generated by a coalescent



64 Monte Carlo inference for SMC’

model with latent parameters J . Given a particular ancestral history H, which for now may
simply be thought of as a graph describing the ‘ancestry’ of a number of individuals (with
respect to this particular genetic sequence), PrJ (M|H) is tractable. A simple Monte Carlo
strategy, then, is to generate many histories {H(i)}

i2J1,NK consistent with M and estimate the
quantity of interest by

PrJ (M)⇡ 1
N

N

Â
i=1

PrJ (M|H(i)). (5.1)

Here we encounter at least two significant issues. First whilst the proposal of generic an-
cestral histories for any number of individuals is straightforward under the coalescent (and
even simpler under SMC’), generating ancestral histories consistent with a given set of ob-
served mutations is non-trivial. It will be shown that this problem does not arise for two
individuals, but will be a central concern for three and above. We propose a solution for the
three individual case.

Secondly the realm of possible ancestral histories is vast, so a naive approach (as in Equa-
tion (5.1)) may suffer from impracticably large variance (if it is guaranteed to converge at all).
To mitigate this issue, we propose a sequential Monte Carlo approach (hereafter referred to
as particle filter and never SMC). This is motivated by recasting the SMC’ dynamics as a
piecewise deterministic process (PDP) and investigating recent literature on the PDP particle
filter [68, 69]. This will provide the basis for exploration of a novel approach to using particle
filters for coalescent inference.

In addition, if an unbiased estimate of PrJ (M) is available, it is possible to perform infer-
ence on the latent parameters J by exploiting the pseudo-marginal method [2], for example
using a particle Metropolis-Hastings or particle Gibbs algorithm [6].

In this chapter we implement a pseudo-marginal Metropolis-Hastings algorithm for the
two sequence SMC’ algorithm and find an interesting feature of the model. The algorithm is
then expanded to include the case of three sequences, and a solution is found to the problem
of generating ancestral topologies inconsistent with the mutation data. In the last section we
turn our attention towards smoothing via backwards sampling for the particle filter method
developed. With this technique in hand, we exploit recent advances in efficient particle Gibbs
that make use of samples from the smoothing distribution.

5.2 The two sequence case

Coalescent models [43, 52] have been at the centre of population genetics research for over
thirty years, yet they are of limited use in inference over large regions of the genome. For
this reason several approximations to the coalescent have been developed, possibly the most
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well known of which is the sequentially Markov coalescent (SMC) algorithm introduced by
McVean and Cardin [3]. In particular we direct our attention towards an iteration of the al-
gorithm termed SMC’ [4]; an algorithmic description of the model is given in Algorithm 5.1.

Algorithm 5.1 The SMC’ algorithm

1. Generate a coalescent tree for x = 0. Denote the tree by T (x) and its total branch length

by L(x).

2. Simulate a distance g ⇠ Exp(r
2 L(x)) along the sequence to the next recombination point.

If x+ g > 1 stop.

3. Simulate a ‘cut point’ uniformly along the total branch length L(x) of the tree T (x).

4. Add a recombination event. The existing (left) branch above the cut point remains

where it is. A line emerges (right) from the point and evolves according to the standard

coalescent dynamics, i.e. proceeding backwards in time and coalescing with existing

lineages at a rate proportional to the number of lineages present.

5. Delete the left branch above the cut point, leaving a tree instead of a graph.

6. Set x = x+ g . Denote the length of the new tree by T (x) and its total branch length by

L(x).

7. Return to 2.

Output: a sample of an approximation to the full ARG.

Note that the original SMC algorithm differs from Algorithm (5.1) only in the reversal of
steps 4 and 5, which precludes the possibility of the new branch coalescing back to the original
branch it came from (since it has been deleted already). We now derive an expression for the
probability density associated with the addition of a new recombination point under SMC’ for
two individuals. This is achieved through examination of pseudo-code describing the SMC’
method, given in Algorithm 5.1.

Consider without loss of generality the first recombination point t0 = 0, and suppose the
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two branches of the associated tree coalesce at a time s0 in the past. Denote by t1 and s1

the position along the sequence of the first recombination point and the coalescence time of
its branches. Notice that the dynamics of the algorithm imply the following structure for the
transition:

p(t1,s1|t0,s0) = f (t1|t0,s0)q(s1|s0).

According to Algorithm 5.1, the first recombination point is sampled according to an expo-
nential distribution with rate rL(t0)/2, therefore it is straightforward to write

f (t1|t0,s0) = 1{t1 � t0}
rL(t0)

2
exp(�rL(t0)

2
(t1� t0)).

In the case of two individuals, L(t0) = 2s0 and thus it follows that

f (t1|t0,s0) = 1{t1 � t0}rs0exp(�rs0(t1� t0)).

Establishing the transition density q of the coalescence time is more involved. Consider
Figure 5.1, which describes events relevant to a transition q(·|s0). First, as in Figure 5.1a, a
cut point is picked uniformly along the total branch length. We may suppose this cut point is
measured from the bottom of the left branch of Figure 5.1a. In fact, as will be demonstrated
below, the particular branch chosen for the cut point makes no difference to the transition
probabilities here, as they are symmetrical with respect to the branch choice. For this reason
we refer hereafter only to the height of the cut point, denoted u and shown in Figure 5.1.

Next, an exponential random variable S1 of rate 2 (the number of branches) is simulated
backwards in time from the height u of the cut point, as in Figure 5.1b. We now consider the
possible development of the recombination event conditional on the realisation of S1.

Suppose first that the new branch created from the cut point during the recombination event
does not exceed the current two-branch epoch. In other words, suppose u  s0 and 0  S1 <

s0�u. Then there are two possible outcomes; with probability 1/2 the new branch coalesces
back to itself (the branch from which it came), else it coalesces with the other branch. If it
coalesces with itself, the coalescence time is unchanged and therefore s1 = s0. If it coalesces
with the other branch, the new coalescence time is s1 = u+S1 and we have s1 < s0.

Now suppose instead S1 > s0�u, that is, the branch generated from the cut point exceeds
the previous coalescence time s0. In this case the coalescent dynamics dictate that a second
exponential random variable, S

0
1, is drawn at rate 1, since only one lineage remains to which it

may coalesce (see Figure 5.1c). The new coalescence time is s1 = s0 +S

0
1 and s1 > s0.

Therefore three outcomes must be considered: s1 < s0, s1 = s0, and s1 > s0. Suppose first
that s1 < s0. As described above, this outcome occurs when S1 < s0�u and the recombination
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u

s0

(a) u⇠ U(0,2s0)

u

s0

S1

(b) S1 ⇠ Exp(2)

u

s0

S1

S

0
1

(c) S

0
1 ⇠ Exp(1)

Figure 5.1: A schematic explanation of adding a recombination event in the SMC’ algorithm for

two individuals.

branch does not coalesce with itself. The density of such a transition is given by

q1(s1|s0) =
Z

s0

0
q(s1|u,s0)q(u|s0)du (5.2)

=
1
s0

Z

s0

0
q(s1|u,s0)du

=
1
s0

Z

s1

0
e

�2(s1�u)
du

=
1

2s0
(1� e

�2s1).

Notice that this calculation does not depend on the branch of the cut point. To see this, observe
that sampling a uniform random variable on [0,2s0] is equivalent to first picking the half-
interval [0,s0] or (s0,2s0] each with probability 1/2, then sampling a uniform random variable
on the chosen half-interval. In equations this is trivially conveyed:

1
2s0

=
1
2

1
s0
.

In our present situation, this means that sampling a cut point on [0,2s0] is equivalent to picking
a branch B 2 {1,2} randomly and sampling a uniform random variable u⇠U(0,s0) to lie on
that branch. We can write this as q1(u,B|s0) = 1/2s0. Moreover, given that a cut point has
been placed on branch B and at a height u, we know that the outcome s1 < s0 occurs with
probability

q1(s1|u,B,s0) = 2e

�2(s1�u)⇥ 1
2
,

where the factor of 1/2 corresponds to choosing to coalesce with the ‘other’ branch. Together,



68 Monte Carlo inference for SMC’

this implies q1(s1,u,B|s0) =
1

2s0
e

�2(s1�u) so that

q1(s1|s0) = Â
B2J1,2K

Z

s0

0
1{us1}

1
2s0

e

�2(s1�u)
du

=
1

2s0
(1� e

�2s1).

In summary, Equation (5.2) gives the ‘one-branch’ equation. Marginalising over the branch
choice is equivalent to multiplying by 1/2 for the choice of branch, and then by a factor of two
since both branches were possible and would lead to equivalent outcomes.

Now suppose s1 = s0. This outcome occurs when S1 < s0�u and the recombination branch
coalesces with itself. If the branch coalesces to itself, it does not matter precisely where S1 is
realised in the region [u,s0]. For this reason the density must be marginalised with respect to
S1. In this case the transition is described by the probability

q2(s1 = s0|s0) =
Z

s0

0

Z

s0

u

q(s1 = t|u,s0)q(u|s0)dt du

=
1
s0

Z

s0

0

Z

s0

u

q(s1 = t|u,s0)dt du

=
1
s0

Z

s0

0

Z

s0

u

e

�2(t�u)
dt du

=
1

2s0

✓

s0�
1
2
�

1� e

�2s0
�

◆

where again we have used the one-branch simplification. Finally suppose s1 > s0, correspond-
ing to Figure 5.1c. The associated density is given by

q3(s1|s0) =
1
s0

Z

s0

0
q(s1|u,s0)du

=
1
s0

Z

s0

0
e

�2(s0�u)
e

�(s1�s0)
du

=
1

2s0
e

�(s1�s0)
�

1� e

�2s0
�

.

In summary the density, with respect to Lebesgue measure, for a transition corresponding to a
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recombination event can be written

q(ds1|s0) = 1{s1<s0}
1

2s0
(1� e

�2s1)ds1 (5.3)

+d
s0(s1)

1
2s0
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s0�
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�

1� e

�2s0
�

◆

+1{s1>s0}
1

2s0
e

�(s1�s0)
�

1� e

�2s0
�

ds1.

Notice that this indeed defines a probability density since

Z •

0
q(ds1|s0) =

1
2s0

⇢

Z

s0

0
(1� e

�2v)dv+ s0�
1
2
�

1� e

�2s0
�

+
�

1� e

�2s0
�
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s0
e

�(v�s0)
dv

�

=
1

2s0

�

2s0�
�

1� e

�2s0
�

+
�

1� e

�2s0
� 

= 1.

Our method here involved considering every possible outcome of the recombination process.
This is feasible in the current setting as there are only two sequences and the number of
possible outcomes of a recombination event is small. It is possible to find the transition density
q(·|s0) of the coalescence time through another, more direct, route. Namely, it can be written
in analogy with the algorithm that generates the model. Suppose we are currently at point
x in the sequence and the associated coalescence time is s0. Then, for two sequences, the
pseudo-code given in Algorithm 5.2 describes the coalescence time transition brought about
by a recombination event.
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Algorithm 5.2 Two-sequence recombination event

Input: The current position x and coalescence time s0 in the sequence.

1. Simulate a cut point along the total branch length L(x) of the tree T (x) and denote by u

its height.

2. Simulate S1 ⇠ Exp(2).

if u+S1  s0

Select uniformly at random one of the following two outcomes:

Set s1 S1 +u, go to (3).

Set s1 s0, go to (3).
else

Simulate S

0
1 ⇠ Exp(1).

Set s1 s0 +S

0
1, go to (3).

3. Return s1.

Output: the coalescence time s1 after a recombination event.

Suppose the current tree is T (0), with coalescence time s0, so that the total branch length
is given by L(0) = 2s0. A direct reading of the pseudo-code implies the following expression,
conditional on the height u of the cut point:

q(s1|u,s0) =
Z •

u

2e

�2(t�u)
n

1{u t  s0}
1
2
[d

s1(t)1{u s1}1{s1 < s0}+d
s0(s1)]

+1{t > s0}1{s1 > s0}e

�(s1�s0)
o

dt.

Performing the integration yields

q(s1|u,s0) = 1{s1 < s0}1{u < s1}e

�2(s1�u)

+d
s0(s1)

Z

s0

u

e

�2(t�u)
dt +1{s1 > s0}e

�(s1�s0)
Z •

s0
2e

�2(t�u)
dt

= 1{s1 < s0}1{u < s1}e

�2(s1�u)

+d
s0(s1)

1
2

⇣

1� e

�2(s0�u)
⌘

+1{s1 > s0}e

�(s1�s0)
e

�2(s0�u).
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After integrating out all possible cut points, this gives

Z
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which is identical to equation (5.3).

5.2.1 Verifying the transition density

Finally it is necessary to demonstrate agreement between samples drawn from the generative
description of the recombination event given in Algorithm 5.2, and the derived transition den-
sity given in Eq. (5.3). Several methods are suited to this task. We first carry out a visual
examination of the empirical sample quantiles against the quantiles of the cumulative distri-
bution function (CDF) associated with the transition density. The approach is as follows:

1. Fix the current coalescence time s0 to an arbitrary value in its support, i.e. [0,•).

2. Conditioned on starting at s0, simulate independently R recombination events giving
new coalescence times {s

i

1}i2J1,RK.

3. Compare using a Q-Q plot the empirical quantiles of the sample {s

i

1}i2J1,RK against the
theoretical quantiles provided by the CDF associated with density (5.3).

The process should of course be repeated for several values of s0, which may be sampled
according to an Exp(2) corresponding to the normal coalescent dynamics for two lineages.
Figure 5.2 shows the outcome of six independent runs of this experiment, with the initial
coalescence time s0 shown in red. Note that one observes a discontinuity in the Q-Q plot as
a consequence of the discontinuity (both left and right) of the transition density q(s1|s0) at s0.

The Q-Q plots appear to strongly support the correctness of the transition density, however
this approach relies solely on a visual appraisal. We now replace step three in the above
description with a one-sample Kolmogorov-Smirnov (KS) test to interrogate the hypothesis
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Figure 5.2: Q-Q plots comparing new coalescence times {s

i

1}i2J1,5⇥104K generated by Algorithm

5.2, conditional on s0 shown in red, to the theoretical CDF derived above. The initial values s0
were sampled from an Exp(2).

that the empirical CDF of the samples is sufficiently close to the CDF of the transition density
(5.3). Note that the traditional KS test may be used only with continuous CDFs. In this case
a mixed version of the test is required, capable of handling multiple discontinuities, or jumps.
Fortunately such an analogue exists [70] and is implemented in an R package [71].

The null hypothesis in a single experiment of this type is that the samples generated by the
recombination algorithm, conditional on starting at s0, are drawn from the density q(s1|s0),
as given in Equation (5.3). Naturally, the test must be carried out in a principled fashion for
many initial values s0; not rejecting the null hypothesis in an experiment conditioned on a
single value of s0 provides evidence of the correctness of the algorithm only for that value of
s0. We use here the following approach:

1. Sample the current coalescence time s0 ⇠ Exp(2).

2. Conditional on starting at s0, simulate independently R recombination events giving new
coalescence times {s

i

1}i2J1,RK.

3. Taking the empirical quantiles of the sample {s

i

1}i2J1,RK, and the theoretical quantiles
provided by the CDF, compute the p-value associated with the KS test statistic.
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Figure 5.3: Each histogram shows 10,000 replications of the p-value under the Kolmogorov-

Smirnov test. For each replication, R = 100 samples from the generative process were used to

construct the empirical CDF. The uniformity in plot (a) provides strong evidence for the null hy-

pothesis; namely, that the generative samples (Algorithm 5.2) are being drawn from the same

distribution as the CDF derived from Equation (5.3). Plot (b) shows the sensitivity of the analysis

to a small error introduced in the CDF.

Repeating this procedure, one can generate many p-values which under the null hypothesis are
uniformly distributed on the interval [0,1]. The result of generating 10,000 p-values by this
approach are shown in Figure 5.3, complete with 99% confidence interval for the uniform dis-
tribution on the histogram bins shown, calculated using the binomial distribution. The number
of recombination events, R, simulated in step 2 must be large enough to ensure some level of
smoothness in the empirical CDF. In Figure 5.3 it is shown that the uniform histogram test
is sensitive to small errors for sufficiently large R. In particular, the rate of the exponential
random variable was coded as 2.3 instead of the true value 2, resulting in a profound deviation
from uniformity in the histogram. This lends weight to our belief in the technique as a useful
diagnostic method. We note that in this case it did not require a particularly large number of
samples R to detect a fairly subtle error, which is encouraging. There will of course be a lower
bound to this. Repeating the experiment with the error present, we observed no deviation from
uniformity when only R = 20 samples were used per replication. It follows that some errors
may only be picked up by the method for large enough R, and it is reasonable to hypothe-
sise that the smaller the error one is attempting the find, the larger the R required to find it.
This follows too from the definition of the KS test statistic in combination with Donsker’s
theorem, which provides the rate at which the error decreases as the number of observations
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increases[72]. A pragmatic approach then is to simply run the process for as large a value of
R as is computationally feasible. We repeated the experiment in Figure 5.3 with R = 1000 and
found as before no noticeable deviation from uniformity. This does not constitute a proof of
correctness of the CDF with respect to the generative algorithm, only that if any errors persist
they are so small as to be effectively negligible.

Finally we note, for completeness, that the sample of p-values itself (from the correct gen-
erative process) was not rejected in a KS test of uniformity at the 5% significance level. In
conclusion, this series of investigations provided no evidence of any incorrectness in the prob-
ability density derived from the generative algorithm and so we proceed with some confidence
in its correctness.

5.2.2 Summary

We have now an expression for the transition density p(t1,s1|t0,s0) describing a single re-
combination event in the SMC’ model. It is useful to have this expression for two reasons.
First, it would be essential to have an explicit expression if one intended to use importance
sampling in the particle filter, for example as a variance reduction technique. This approach is
not explored here for the two sequence case, as sampling from the prior distribution is found
to be relatively efficient. However, performing the above calculations will also prove to be
useful preparation for performing analogous calculations for the three sequence case, where
it will be necessary to use techniques from importance sampling to overcome an interesting
property of the coalescent models under consideration. In particular the idiosyncrasy concerns
a characterisation of the mutations that are possible relative to a given ancestral history. Al-
ternatively, to use a more statistical phrase, it will be necessary to consider what observations
it is possible to observe given a particular latent state. For two sequences, or two individuals,
when we refer to ‘mutations’ we are comparing two variations of the same section of genome.
For example, if the two sequences began

ATACGTA . . .

AGACGCA . . .

then the first two mutation positions would be two and six with, for example, associated muta-
tions (1,0) and (0,1). Here 0 represents the ancestral state and 1 the derived or mutated state.
In this example, since the two sequences have in their second position (T, G) respectively, if
the mutation associated with this position is (1,0) then this means G is considered to be the
ancestral state and T the derived state. Note that the scientist is required to know which state
is ancestral and which derived; often this decision is made on the basis of biological evidence,
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but there are also methods in population genetics that treat it as another unknown and attempt
to infer it (see for example [56]).

It is crucial to observe that a mutation with respect to two sequences, for example (1,0),
does not rule out any particular ancestral history. In other words, given that a mutation m

has been observed, all underlying topologies are still possible explanations for this mutation.
Indeed in the two sequence case all topologies are essentially the same - two lines joined at
a point - only differentiated by the height at which they meet, that is, the coalescence time.
This property is exclusively enjoyed by the two sequence model. It is in general not true for
an arbitrary number of sequences that any underlying topology can explain a given mutation.
Therefore sampling directly from the prior for more than two sequences is extremely compu-
tationally expensive, if not impossible, as the vast majority of simulations will be incompatible
with the observed mutation and so must be discarded. This idiosyncrasy will be a central con-
cern when considering the three sequence case in Section 5.6, where an importance sampling
solution is derived.

0.0

0.5

1.0

1.5

2.0

Sequence position

C
oa

le
sc

en
ce

 ti
m

e

0 0.5 1

Mutations
Ancestral history

Figure 5.4: Viewing the evolution of the SMC’ algorithm as a piecewise deterministic Markov

process. In green is the ancestral history associated with a sample; its jumps are the recombination

points and the height of the line at each point is the coalescence time associated with that point

the sequence. The short black lines convey the position of the mutations present in the sequences

in the sample.

Consider again now the Markov process (t
i

,s
i

)
i=0,1,... analysed in this section. Figure 5.4
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shows a particular realisation of the recombination process for two individuals with mutations
overlaid. The evolution of the state dynamics can be viewed as a piecewise deterministic
process (PDP), i.e. a continuous-time stochastic process that jumps at a countable number of
jump times, between which it is deterministic. Such processes were first proposed in [73].
What we consider here is in fact a piecewise constant process - the recombination points (t

i

)

are the random times at which the stochastic jumps (s
i

) occur, and between the recombination
points the process is constant (and so deterministic). We now turn our attention more seriously
to these piecewise deterministic Markov processes and the challenges of applying standard
particle filter algorithms to them.

5.3 Piecewise deterministic processes

We now describe a formal framework for the analysis of the piecewise deterministic processes
(PDPs) discussed above. The following introduction follows the notation and ideas of [69]
and [68].

Consider a Markov chain
�

t
j

,f
j

�

j2N[{0} comprising an increasing set of real jump times

t
j

2 R+, jump sizes f
j

taking values in a non-empty set F, and step- j transition kernel of the
form

p(d(t
j

,f
j

)|t
j�1,f j�1) = f (dt

j

|t
j�1,f j�1)q(df

j

|f
j�1)

with support (t
j�1,•)⇥F. Note that it is possible [69] to work with more general forms of

f and q, but the present forms are fit for our purpose. By convention, t0 = 0 and f0 ⇠ q0(·).
Let n

t

:= sup{ j 2 N[{0} : t
j

 t} denote the index of the last jump before time t, so that tn
t

is the time of the last jump before t. Use q to denote the set of static parameters of the model.
Then we have the following definition.

Definition 10. A continuous-time stochastic process z := (z
t

)
t�0 with initial condition z0 = f0

is said to be a piecewise deterministic process (PDP) when

z
t

= F

q (t,tn
t

,fn
t

)

for some deterministic function F

q : [0,•)2⇥F! F satisfying F

q (t, t,f) = f for any t �
0,f 2F.

Let 0 = t0 < t1 < t2 < .. . be a deterministic series of times and denote K

n

:= n
t

n

, with
realisations k

n

and convention k0 = 0, the stochastic number of jumps made by the process
�

t
j

,f
j

�

before time t

n

.
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The PDP (z
t

) for t 2 [0, t
n

] is determined by the function F

q and the collection of random
variables X

n

:=(K
n

,t1:K
n

,f0:K
n

) taking values in the disjoint union Ẽ
n

:=
S•
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n
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) (5.4)

where S(t, t;f) := 1�
R

t

t f (ds|t,f) is the probability of no jump occurring in the interval (t, t].
The state process can be observed in the nth epoch [t

n�1, tn) only through noisy observations
y[t

n�1,tn), a collection of random variables with density g(y[t
n�1,tn)|z[tn�1,tn)). Given the PDP,

observations in non-overlapping time intervals are assumed to be conditionally independent.
Up to a constant of proportionality the posterior distribution of the process (z

t

)
t2[0,t

n

], given
the observations y(0,t

n

], is of the form

p̃
n

(x
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n

> 0 is a normalising constant and the density g(y(0,t
n
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g(y(0,t
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)
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g(y[t
j�1,t j

)|t j�1,f j�1).

Having described a generic PDP it is clear that this is precisely the recombination process
discussed above, only with a slight change in notation. Here the state process is denoted
f rather than s, and we are considering in Equation (5.4) not the probability distribution of a
single recombination event, but all recombination events occurring in the interval [0, t

n

]. In our
case the t here does not literally refer to a series of times, but of positions along the genetic
sequence being considered. The observations y(0,t

n

] correspond simply to the positions and
types of mutations occurring on the sequence between position 0 and position t

n

.
In summary, the SMC’ algorithm (Algorithm 5.1) can be cast as a PDP. If one imagines

overlaying deterministic epochs 0 = t0 < t1 < t2 < .. . < t

P

on top of the sequence, then a prior
distribution over the number of recombination points, their times, and their sizes is given by
Equation (5.4). Having expressed the recombination process as a particular kind of state space
model, we now seek to apply particle filter methods to it. A modest literature exists exploring
the application of sequential Monte Carlo methods to PDPs, one of the first examples of which
is the variable rate particle filter (VRPF) of Godsill et al. [74] (see also [68] for a review).
Algorithm 5.3 is a pseudo-code description of the VRPF for SMC’ (see e.g. [75] for a review
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of particle filtering). An instance of the notation (i) implies that the operation should be
performed for all particles i 2 J1,NK where N is the total number of particles in the filter.
We use a multinomial resampling scheme for all subsequent experiments, it is however not
optimal and stratified or systematic resampling are to be favoured in general for their lower
computational complexity[76].

Algorithm 5.3 VRPF for SMC’

Input: observations y(0,t
P

], number of particles N, number of epochs T .

1. Sample f (i)
0 ⇠ q0(·). Set x

(i)
0  (t0 = 0,f (i)

0 ).

2. Set w0(x
(i)
0 ) 1 and W

i

0 µ w0(x
(i)
0 ).

3. For n 2 J1,T K:
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n
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n�1).
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(i)
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) and x
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0:n�1,x

(i)
n

).
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N
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0:n}.

Output: likelihood estimate p̂(y(0,t
P

]) = ’
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p̂(y(t
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1
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Â
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(x
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0:n).

More advanced applications of particle filter methods to PDPs do exist, a notable example
of which is the PDP particle filter introduced in [69]. An interesting feature of this approach
is its flexibility, for example (using the transition kernels suggested in the paper) at each step
of the particle filter a particle may make a new move, termed birth, but it may instead go
back and change a previous move, which is referred to as an adjustment. This is a broad
and powerful approach but comes at the cost of potentially adding considerable complexity.
Whiteley [69, p.6] suggests there is particular inefficiency in using standard particle filters
“when the expected jump arrival rate is low relative to the rate at which observations are
made.” It is doubtful that this is the situation we find here for the SMC’ model. There are
typically very few observations (mutations), and they arrive at a similar rate to the jumps
(recombination events). Moreover, the mutations are only very weakly informative of the
underlying ancestral topology. This is an issue in itself, and one central to the difficulty of
coalescent inference, but it also implies that an ability to adjust particle trajectories based on
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new observations may not be very beneficial in this setting.
Another issue with the PDP filter is that it may produce an approximation. As described

above, the “generic moves” used in [69] consist of an adjustment move and a birth move. In
the birth move, the number of events is incremented, i.e. new jumps are created in the PDP.
Unfortunately, if the number of jumps is by construction finite (as is the case with the toy
example of 1 birth) then an approximation is induced. One is targeting a different distribution
to the target, namely a distribution on the space of PDPs of no more than one jump event
per epoch of the particle filter. Whiteley says of this property [69, p.13] that “a forward
kernel capable of proposing any positive number of births in the interval (t

n�1, tn] must be
employed if there is a positive probability associated with such configurations under the target
distribution” and that feasibly a computationally cheap way to do this is to allow the forward
kernel to propose 1+D birth events per epoch where D follows a Poisson distribution of low
intensity.

Ultimately, despite the features offered by the more advanced model, we will hereafter
make use of the VRPF because of its simplicity. A key aim of the remainder of this work is
to establish a backward smoothing method for PDPs which can be applied to the coalescent
models under consideration. Sadly the nested construction of the PDP particle filter does
not lend itself naturally to backwards sampling - though Finke et al. address this in [68].
However, backwards sampling can be written down relatively simply using the VRPF as the
VRPF provides almost the standard setting for backward sampling on a SSM, albeit with a
slight complication related to the likelihood term. This is explored further in Section 6.

5.4 Performance of VRPF for two sequences

We now analyse the performance of the VRPF for the SMC’ (Algorithm 5.3). Figure 5.5
shows the convergence of log-likelihood estimates provided by the particle filter for increas-
ing numbers of particles N. As N increases, the log-likelihood estimates are contained in
the support of the log-likelihood estimates produced by the particle filter using a smaller N.
Standard errors are drawn as black bars with the corresponding value written below in black.
The standard deviation decreases like 1/N, for example we notice that 1.13/4⇡ 0.27 and that
0.27/2.5 ⇡ 0.11. Moreover as N increases the estimates appear to converge on a mean value
as they should (the true log-likelihood).

There is also a slight upward trend to be seen in both plots in Figure 5.5. This may seem
unusual, after all the likelihood estimates produced by the particle filter are unbiased for any
number of particles N and so should have the same mean for each input in the figure. Since
we are considering log-likelihood estimate here, the unbiasedness property no longer holds.
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(a) T = 20,r = 80,q = 80 (b) T = 60,r = 80,q = 80

Figure 5.5: Convergence of the log-likelihood estimates for the two-individual SMC’ particle

filters.

In fact, one would expect to see the kind of upward correction displayed here. See Appendix
A.2 for some further details and experiments.

Figure 5.6 shows the likelihood curves for the SMC’ model. Interestingly the likelihood
curve for q , the mutation rate, seems to be more informative than the curve for r , the re-
combination rate. Certainly the likelihood curve for r is much flatter. In addition the MLE
is much closer to the true value for q than r , and so in this sense too the likelihood is less
informative about r . This quirk will appear again later in the chapter when discussing the use
of this VRPF within particle MCMC.

Finally we consider the effect on the performance of the VRPF of increasing the number
of epochs used. One way of measuring this is through the effective sample size. Here, taking
the particle weights in each epoch to be given by the vector w = (w1, . . . ,wN

), and assuming
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Figure 5.6: Approximate likelihood curves of the SMC’ model. First a synthetic set of data (muta-

tions) for two sequences was produced using the SMC’ model and the parameters (q ,r)= (20,20).
Then one parameter, say r , is fixed and a VRPF is run using this r and a range of values of q -

the log-likelihood estimate of the particle filter is recorded. From left to right the plots are: (a)

r = 20,q 2 (0,200), (b) q = 20,r 2 (0,200), and plot (c) is identical to plot (b) but with a differ-

ent y-axis scale. This is intended to show the similarity of the q and r curves but also the relative

flatness of the r likelihood. N = 128 particles were used in the particle filters.

they are normalised, we define the ESS by a commonly used approximation (e.g. [77, 78]):

Neff(w) =
1

ÂN

i=1 w

2
i

.

Otherwise, if the weight vector w is not normalised, we have the expression

Neff(w) =
(ÂN

i=1 w

i

)2

ÂN

i=1 w

2
i

.

It is a commonly used measure of efficiency in sequential Monte Carlo. For example it is often
used to determine whether or not to perform a resampling step [75] since a low ESS (close
to zero) indicates a high level of degeneracy among the particle weights, whereas a high ESS
(close to N) indicates that the particles are all of a similar weight. Clearly, as shown in Figure
5.7, increasing the number of epochs over which the particle filter works increases the average
ESS. In practice it would be sensible to tune the algorithm by optimising with respect to the
trade off between ESS and CPU time.

5.5 Comparison with ARGweaver

In the following experiments we compare on simulated data sets results obtained from the
two-sequence particle filter just described and the popular ARGweaver software [67]. The
data we use is simulated from the SMC’ algorithm (Algorithm 5.1) with mutations overlaid
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Figure 5.7: The effective sample size (ESS) associated with three runs of the two-sequence al-

gorithm. From top to bottom the plots show: (i) the VRPF with 30 epochs, (ii) the VRPF with

100 epochs and (iii) the VRPF with 200 epochs. The ESS is calculated from the weights at each

epoch of the algorithm and is shown in red. The dotted blue lines represent the epochs of the

particle filters and the grey dashes at the top of the plots represent the positions of the mutations

in the sequence. The sequence itself is synthetic data simulated according to the SMC’ model with

q = r = 200.
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according to the usual dynamics. Our comparison follows an approach similar to that of the
recent work [79] of Heine et al. in which a ‘bridging’ method is compared to ARGweaver
by the number of recombinations in posterior samples. ARGweaver is in essence a Markov
chain Monte Carlo method, capable of generating correlated posterior samples of ancestral
recombination graphs (ARGs) given mutation data, as well as mutation and recombination
rate parameters (q ,r). The distribution therefore of the ARGs it produces is p(x1:P|y1:P),
where x represents the ARG across all sites and y represents the mutation data across the
sequence. This is of course precisely the filtering distribution reached in the final state of the
particle filter described earlier. Therefore by sampling from the latent process x1:P of ARGs
using a particle filter, we have a valid means of comparing the two approaches. The only detail
is that rather than comparing the full ARGs, we compare the number of recombination events,
which is a projection of the full ARG. The comparison proceeds as follows:

1. Sample a mutation rate r ⇠ U(5,50). Set q = r .

2. Conditional on the parameters (r,q), generate an ARG and mutation data M according
to the SMC’.

3. Conditional on M, run ARGweaver for 103 iterations to gain a sample of posterior
ARGs.

4. Conditional on M, run the two sequence VRPF independently 103 times to gain a sam-
ple of ARGs from the filtering distribution.

5. Summarise both sets of posterior ARGs by the number of recombinations and plot on
the same histogram.

Note that ARGweaver is run with a fixed set of parameters (r,q), as is the VRPF. We do
not use for this purpose the ‘true’ parameters (r,q) with which the data were generated.
Rather, we use a normal perturbation to the true values. This is a realistic test in the setting of
MCMC, in which often across the course of many iterations the particle filter will be run with
parameter values fairly close to the ‘true’ values. In addition, the samples from ARGweaver
are correlated as they originate from a Markov chain. In contrast, independent draws are being
taken from the particle filter. This appears to have little consequence in practice as ARGweaver
suffered from no appreciable autocorrelation in the examples shown here.

Figure 5.8 demonstrates the result of six realisations of this experiment. Encouragingly,
the posterior distributions of the number of recombinations appear to be very similar for both
approaches, and both are close to the true number of recombination events (shown as a dashed
line). This consistency between the approaches is to be expected as they both rely on the
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Figure 5.8: Six realisations of the posterior number of recombinations, given distinct mutation

data. ARGweaver is shown in red, while the two-sequence VRPF is shown in grey. N = 128
particles were used in the particle filter.

sequentially Markov coalescent model, though ARGweaver implements a Jukes-Cantor model
of mutation and not the infinite-sites model as we have implemented here and this may account
for some variation.

One further comparison of the approaches is given in Figure 5.9. In this simulation, many
experiments like the one described above were repeated. Each run, for example of ARG-
weaver, was summarised by the posterior mean of the number of recombination events. Simi-
larly a posterior mean was taken for each set of 103 particle filter runs. These point estimates
were then compared in mean squared error (MSE) to the true number of recombination events.
This experiment was repeated in total 100 times. The plot shows that in general the two ap-
proaches perform very similarly, with the VRPF perhaps achieving a slightly lower median
MSE. It is we believe more constructive to compare the posterior distributions qualitatively
as in Figure 5.8, since there is no reason why the posterior distribution should concentrate
on the true value. However, the MSE comparison is reassuring in confirming the particle fil-
ter method proposed here for SMC’ has similar properties to ARGweaver by this particular
recombination metric.
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Figure 5.9: The mean squared error associated with the posterior mean point-estimate of the

number of recombination events. The two-sequence particle filter is denoted PF, and ARGweaver

is denoted AW.

5.6 The three sequence case

We now consider the SMC’ algorithm for three sequences. In the case of three individuals we
are considering ancestral histories corresponding to topologies like those in Figure 5.10. Note
that we have referred to the three topologies in the figure as the essential topologies since,
although there are 3! ways of arranging the numbers 1 to 3, the symmetries of the model mean
it is indifferent to certain permutations.

We now discuss the key differences between the two sequence and three sequence settings.
First observe that, in contrast to the two sequence topology with its one-dimensional state
f = s, a three sequence ancestral topology is described by a three-dimensional state f =

(s1,s2,n). Here s1 denotes the coalescence time of the first two sequences to coalesce, and s2

denotes the coalescence time of the remaining lone branch with the coalesced pair. Finally,
n represents the index of the lone branch itself. Secondly, we again consider what position-
wise differences may be observed between three genetic sequences, using as an example the
following sequences:

ATACGTA . . .

AGACGCA . . .

ATACGCA . . .

Here, the first two mutations would be at positions two and six since in these positions the
three sequences do not all agree. Recall that a mutation can only be said to have occurred
with respect to some ancestral sequence, that is to say, an agreed starting point from which
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s1

s2

1 2 3
(a) Type 1 topology

s1

s2

2 3 1
(b) Type 2 topology

s1

s2

3 1 2
(c) Type 3 topology

Figure 5.10: The essential topologies in the SMC’ algorithm for three individuals. The numbers

below the trees describe each sequence or individual, while the branches describe their ancestral

relationship. For example, going from left to right, at the time of the first coalescence there are only

three possibilities; (a) individuals 2 and 3 have coalesced, (b) individuals 1 and 3 have coalesced,

or (c) individuals 1 and 2 have coalesced. Notice the tree itself can be drawn identically and we

may simply move the labels to describe every possible outcome.

the mutation was derived. If for this example we take the ancestral sequence to be the second
(AGACGCA . . .), then the mutations associated with positions two and six in the sequence
are (1,0,1) and (1,0,0) because in position two the first and third sequence differ from the
ancestral sequence and in position six only the first differs from it.

Since (0,0,0) and (1,1,1) would not be mutations at all, there are 23� 2 = 6 possible
mutation types. Three of these mutation types feature one mutation: (1,0,0), (0,1,0) and
(0,0,1). The other three feature two mutations: (1,1,0), (1,0,1) and (0,1,1). The first
class of mutation (only one individual mutated) is compatible with any underlying topology.
To clarify, consider the mutation (0,1,0) - this means a mutation has been observed only in
individual two. Compare this with the possible ancestral histories the three individuals could
have, shown as the numbers under the branches in Figure 5.10. Any of the ancestral histories
is a possible explanation of this mutation; indeed it would only require the mutation to have
happened on a different part of the tree.

The second class of mutation (two individuals mutated) are incompatible with some topolo-
gies. To see this, consider the mutation (0,1,1) and interrogate whether it is compatible with
the leftmost topology in Figure 5.10. To be compatible the mutation must be the result of
only one mutation, a requirement of the infinite sites model in genetics (the probability of a
mutation occurring at the same site at different points in the ancestral history is vanishingly
small). In this case it is compatible - it is explained by a mutation having happened on the
section of branch above where individuals 2 and 3 coalesce. In contrast, the mutation (1,1,0)
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0 1 1
(a) Type 1 topology

1 1 0
(b) Type 2 topology

1 0 1
(c) Type 3 topology

Figure 5.11: The essential topologies in the SMC’ algorithm for three individuals overlaid with

a single mutation (0,1,1). Branches of the topology on which a mutation must have occurred (to

explain the mutation) are shown in red. Notice that only in topology (a) is there exactly one red

branch, whereas (b) and (c) have two.

is incompatible with the leftmost topology in Figure 5.10, since the mutation would have to
be placed on the tree twice for this outcome to occur.

5.6.1 The VRPF for three sequences

The key difference between the two and three sequence SMC’ model, discussed above, presents
an issue for the particle filter methodology we have developed. It is argued above that if a SNP
is encountered at which exactly two of the three individuals have a mutation, the precise struc-
ture of this mutation will rule out some number of ancestral topologies for that SNP. We now
take the example further. Consider again the compatibility of Figure 5.10a with respect to an
observed mutation (0,1,1). It indeed offers a possible explanation, but notice that the other
two essential topologies in Figure 5.10 do not.

To better understand this, in Figure 5.11 the mutation (0,1,1) has been transposed onto
the topologies of Figure 5.10. Highlighted in red are the branches where a mutation would
have had to occur for the topology to explain the observed mutation (0,1,1). Recall that it is a
requirement of the infinite sites model in population genetics that the probability of a mutation
occurring twice at the same position is taken to be vanishingly small. Only in topology (a) is
it possible to achieve the observed mutation with just a single mutation on a branch. In other
words, for topologies (b) and (c) the likelihood of observing the mutation (0,1,1) is zero, since
it would require a violation of this assumption.

This is deleterious to the performance of a particle filter for the following reason. Sup-
pose the particle filter proposes recombination points and topologies according to the model
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(see Algorithm 5.1). Suppose further that the current interval of the particle filter contains a
problematic mutation, i.e. of the type described above - a mutation shared by exactly two of
the three individuals. Then, if the particle being considered reaches the problematic mutation
whilst its current state f is one of the two non-compatible topologies, the likelihood term in
the weight of this particle will vanish. Of course there is in principle nothing preventing the
particle weights in a particle filter from reaching zero, but it causes at least two difficulties for
the approach. First it will very rapidly lead to so-called sample impoverishment, a common
issue in particle filtering whereby only very few particles enjoy significant weight. This in turn
will lead to the filter producing log-likelihood estimates of high variance. A second, perhaps
more pressing, consequence of particle weights dropping to zero with high probability is that,
in a given epoch of the particle filter, all of the particles may die, in which case the algorithm
fails.

In practice this is a serious obstacle. Applying a classical particle filter with resampling to
the three sequence model, our experiments found that on average 80% of particles die in an
epoch containing a problematic mutation. And since the number that die is itself of course a
random variable, while it may be as little as 60% in an early epoch, it may later in the filter
happen to be 100%, at which point the algorithm collapses and the computational effort is
wasted.

There are at least two possible solutions to this difficulty. First we could discard the infinite
sites model for another model of mutation. The finite sites model, for instance, allows ‘recur-
rent mutations’ - more than one mutation happening in the same position [39]. This model
is adopted in, for example, [38, §5.2], but we do not pursue the approach here. Instead we
aim to develop now an algorithm that proposes only topologies that it knows to be consistent
with future mutations. For this reason we now repeat the calculations made for the transition
probabilities of the two individual case for three individuals (requiring a normalising constant
too). With this transition density in hand, we will explore an importance sampling method
through which we may control the probability of proposing a topology that is inconsistent
with a future mutation.

5.7 A different approach

We now describe a novel approach to the particle filtering for the SMC’ model, designed to
work around the pitfalls of the VRPF in this setting. The new algorithm has two key features
that differentiate it from the VRPF. First it facilitates the proposal of particles suited to the
observed mutations, in other words particles guaranteed to give a positive weight. Secondly it
allows the user to control the probability of a particle undergoing no events in an epoch. Both
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of these offer an improvement in stability of the algorithm and the variance associated with
the likelihood estimates.

An importance sampling approach will be taken, requiring an expression for the transition
densities associated with the three sequence SMC’ model. We begin, as for the two sequence
case of Section 5.2, by constructing a pseudo-code description of the SMC’ algorithm.

5.7.1 Pseudo-code for the three sequence case

Analogously to the two sequence case, the SMC’ dynamics (see Algorithm 5.1) imply a tran-
sition density for the jth recombination event of the form

p(t
j

,f
j

|t
j�1,f j�1) = f (t

j

|t
j�1,f j�1)q(f j

|f
j�1).

Pseudo-code is now developed that describes algorithmically the evolution of the state
process in a recombination event in the three-sequence case, i.e. the dynamics of q(f

j

|f
j�1).

This will facilitate in the sequel writing down the transition density. Later, in Section 5.7.5,
we return to the function f and the evolution of the jump times t

j

.
Earlier in the chapter we demonstrated that for a three sequence ancestral history we need

to track the three-dimensional state f = (s1,s2,n), corresponding respectively to the time of
the first coalescence, the second coalescence, and the index of the lone branch. For a visual
example, suppose for some k 2 N the current tree is T (f

k

), as depicted in Figure 5.12, with
coalescence times (s1

k

,s2
k

) so that the total branch length is given by L(f
k

) = 2s

2
k

+ s

1
k

. Denote
the index of the lone branch, i.e. the branch that does not coalesce first, by v 2 J1,3K, or
specifically n

k

for this iteration.
In a recombination event for three sequences, recalling the instructions of Algorithm 5.1, a

cut point must be simulated somewhere on the current topology. Let the height of the cut point
be given by u, while the index of the branch on which it occurs will be given by B. Unlike
in the two sequence setting, u and B here are not independent, and have a non-trivial joint
distribution. For conceptual clarity we introduce the random variable A, taking values in the
set {a,b} which stands for above and below. The event A = a occurs when the cut point lies
somewhere in the top section of the topology, that is in the two-branch epoch. On the other
hand, for a cut point in the bottom section of the topology, that is in the three-branch epoch,
we have A = b. Now, Algorithm 5.1 requires the cut point to be drawn uniformly along the
total branch length L(f

k

) of the current tree T (f
k

). We can write

q(A = a|s1
k

,s2
k

) =
2s̄

2
k

3s

1
k

+2s̄

2
k

=
2(s2

k

� s

1
k

)

2s

2
k

+ s

1
k
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Figure 5.12: A three-sequence topology T (f
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) = T (s1
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) demonstrating the height and branch

nomenclature.

since this is just the total branch length of the above section as a proportion of the total branch
length L(f

k

). Similarly we can write

q(A = b|s1
k

,s2
k

) =
3s

1
k

3s

1
k

+2s̄

2
k

=
3s

1
k

2s

2
k

+ s

1
k

.

Notice that when A = a we must have by construction B 2 {1,2},u 2 [s1
k

,s2
k

]. Conversely
when A = b we must have B 2 {1,2,3},u 2 [0,s1

k

]. Furthermore, u and B are conditionally
independent given A. This implies for example

q(u,B|A = a,s1
k

,s2
k

) =
1{B 2 J1,2K}

2
1{s

1
k

 u s

2
k

}
s

2
k

� s

1
k

.

Thus the probability of generating an initial cut point on the topology on branch B and at a
height u is given by

q(u,B|s1
k

,s2
k

) = q(A = a,u,B|s1
k

,s2
k

)+q(A = b,u,B|s1
k

,s2
k

)

= q(A = a|s1
k

,s2
k

)q(u,B|A = a,s1
k

,s2
k

)+q(A = b|s1
k

,s2
k

)q(u,B|A = b,s1
k

,s2
k

)

=
2(s2

k

� s

1
k

)

2s

2
k

+ s

1
k

1{B 2 J1,2K}
2

1{s

1
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 u s

2
k

}
s

2
k

� s

1
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+
3s

1
k

2s

2
k

+ s

1
k

1{B 2 J1,3K}
3

1{u s

1
k

}
s

1
k

and we have
R

s

2
k

0 Â
B2J1,3K q(u,B|s1

k

,s2
k

) = 1 as required. Note that hereafter we will sometimes
abuse notation by writing v

k

when what is really meant is the singleton {v

k

}. For example,
in Figure 5.12 the index of the lone branch is (in this case) v

k

= 1 and we sometimes use
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v

c

k

:= {2,3} to ease notation as well as v

c

k

:= {v

c

k

[1],vc

k

[2]}. We will also make use of the
notation v

k+1 = v

c

k

\B as a shorthand for choosing v

k+1 2 {v

k

}c\{B}c, where all complements
are taken with respect to the universal set J1,3K := {1,2,3}. There is no confusion here as
v

c

k

\B will only be used when B 2 nc

k

and so we will always have |{v

k

}c\{B}c|= 1.
A single recombination event for the three sequence SMC’ model is now given in pseudo-

code in Algorithm 5.4, starting from a present state f0 = (s1
0,s

2
0,n0). It is the three sequence

analogue to Algorithm 5.2. The pseudo-code is written for step k = 0 simply for visual clarity;
really it describes a general move f

k

! f
k+1, that is, it describes the procedure for sampling

from the distribution q(f
k+1|fk

).
Also given here are pseudo-code descriptions of two alternative versions of this algorithm.

The first (Algorithm 5.5) describes a recombination event under the three sequence SMC’
model where the outcome is conditioned on n

k+1 = n
k

. In other words it describes the pro-
cedure for sampling from the distribution q(s1

k+1,s
2
k+1|fk

,n
k+1 = n

k

). The second (Algorithm
5.6) describes a recombination event under the three sequence SMC’ model where the out-
come is conditioned on n

k+1 = n where n is given and n 6= n
k

. In other words it describes
sampling from the distribution q(s1

k+1,s
2
k+1|fk

,n
k+1 = n) where n 6= n

k

. These two additional
algorithms can be thought of as restrictions on Algorithm 5.4 in the sense that they observe
the same dynamics but their output (s1

k+1,s
2
k+1,nk+1) is restricted to a subset of the possible

outputs of that algorithm.

5.7.2 Sampling the next state

Recall that throughout this section we are concerned with finding the transition density

q(f1|f0) = q(s1
1,s

2
1,v1|s1

0,s
2
0,v0)

associated with the state transition in the three-sequence SMC’ model. That is, we aim to find
the probability density of the next topology (after a recombination event) given the current
topology. An explicit pseudo-code description of the model, as was developed above, allows
us in some sense to simply write down the transition density directly. We will do this by first
conditioning on the particular cut point generated in the algorithm and then marginalising over
all possible cut points.

There are in fact three categories of cut point. We start with the case 1{u s

1
0}1{B 6= v0},

followed by 1{u s

1
0}1{B = v0}, then finally 1{u > s

1
0}. To be explicit, we first consider the

transition density when the cut point is on the lower three branches, and not on the lone branch.
Then, we consider the density when the cut point is on the lone branch, in the lower section.
Finally we consider the transition density associated with a cut point on the upper branches.
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Algorithm 5.4 Three sequence recombination event
Input: a current state f0 = (s1

0,s
2
0,n0).

1. Simulate uniformly a cut point (u,B) along the total branch length of the tree T (f0).

2. if u s

1
0

Simulate H1 ⇠ Exp(3).
if u+H1  s

1
0

if B = v0
Select uniformly at random one of the following three outcomes:
Set s

1
1 s

1
0,s

2
1 s

2
0,v1 v0, go to (3).

Set s

1
1 u+H1,s2

1 s

1
0,v1 v

c

0[1], go to (3).
Set s

1
1 u+H1,s2

1 s

1
0,v1 v

c

0[2], go to (3).
else

Select uniformly at random one of the following three outcomes:
Set s

1
1 s

1
0,s

2
1 s

2
0,v1 v0, go to (3).

Set s

1
1 u+H1,s2

1 s

2
0,v1 v0, go to (3).

Set s

1
1 u+H1,s2

1 s

2
0,v1 v

c

0\B, go to (3).
else

Simulate H2 ⇠ Exp(2).
if s

1
0 +H2  s

2
0

if B = n0
Select uniformly at random one of the following two outcomes:
Set s

1
1 s

1
0,s

2
1 s

2
0,v1 v0, go to (3).

Set s

1
1 s

1
0,s

2
1 s

1
0 +H2,v1 v0, go to (3).

else
Select uniformly at random one of the following two outcomes:
Set s

1
1 s

1
0 +H2,s2

1 s

2
0,v1 v0, go to (3).

Set s

1
1 s

1
0 +H2,s2

1 s

2
0,v1 v

c

0\B, go to (3).
else

Simulate H3 ⇠ Exp(1).
if B = n0, set s

1
1 s

1
0,s

2
1 s

2
0 +H3,v1 v0, go to (3).

else set s

1
1 s

2
0,s

2
1 s

2
0 +H3,v1 B, go to (3).

else
Simulate H1 ⇠ Exp(2).
if u+H1  s

2
0

Select uniformly at random one of the following two outcomes:
Set s

1
1 s

1
0,s

2
1 s

2
0,v1 v0, go to (3).

Set s

1
1 s

1
0,s

2
1 u+H1,v1 v0, go to (3).

else
Simulate H2 ⇠ Exp(1) and set s

1
1 s

1
0,s

2
1 s

2
0 +H2,v1 v0, go to (3).

3. Return s

1
1,s

2
1,v1.

Output: the next state f1 = (s1
1,s

2
1,n1).
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Algorithm 5.5 Three sequence recombination event, conditional on v1 = v0.
Input: a current state f0 = (s1

0,s
2
0,n0).

1. Simulate uniformly a cut point (u,B) along the total branch length of the tree T (f0).

2. if u s

1
0

Simulate H1 ⇠ Exp(3).
if u+H1  s

1
0

if B = v0

Set s

1
1 s

1
0,s

2
1 s

2
0,v1 v0, go to (3).

else
Select uniformly at random one of the following two outcomes:
Set s

1
1 s

1
0,s

2
1 s

2
0,v1 v0, go to (3).

Set s

1
1 u+H1,s2

1 s

2
0,v1 v0, go to (3).

else
if B = v0

Simulate H2 ⇠ Exp(2).
if s

1
0 +H2  s

2
0

Select uniformly at random one of the following two outcomes:
Set s

1
1 s

1
0,s

2
1 s

2
0,v1 v0, go to (3).

Set s

1
1 s

1
0,s

2
1 s

1
0 +H2,v1 v0, go to (3).

else
Simulate H3 ⇠ Exp(1). Set s

1
1 s

1
0,s

2
1 s

2
0 +H3,v1 v0, go to (3).

else
Simulate H2 ⇠ Exp(2) such that s

1
0 +H2  s

2
0.

Set s

1
1 s

1
0 +H2,s2

1 s

2
0,v1 v0, go to (3).

else
Simulate H1 ⇠ Exp(2).
if u+H1  s

2
0

Select uniformly at random one of the following two outcomes:
Set s

1
1 s

1
0,s

2
1 s

2
0,v1 v0, go to (3).

Set s

1
1 s

1
0,s

2
1 u+H1,v1 v0, go to (3).

else
Simulate H2 ⇠ Exp(1) and set s

1
1 s

1
0,s

2
1 s

2
0 +H2,v1 v0, go to (3).

3. Return s

1
1,s

2
1,v1.

Output: the next state f1 = (s1
1,s

2
1,n1).
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Algorithm 5.6 Three sequence recombination event, conditional on v1 = v where v 2
J1,3K\{v0}
Input: a current state f0 = (s1

0,s
2
0,n0).

1. Simulate uniformly a cut point (u,B) along the total branch length of the tree T (f0)

such that u s

1
0.

2. if B = v0

Simulate H1 ⇠ Exp(3) such that u+H1  s

1
0.

Set s

1
1 u+H1,s2

1 s

1
0,v1 v, go to (3).

else if B = v

Simulate H3 ⇠ Exp(1).
Set s

1
1 s

2
0,s

2
1 s

2
0 +H3,v1 v, go to (3).

else
Simulate H1 ⇠ Exp(3).
if u+H1  s

1
0

Set s

1
1 u+H1,s2

1 s

2
0,v1 v, go to (3).

else
Simulate H2 ⇠ Exp(2) such that s

1
0 +H2  s

2
0.

Set s

1
1 s

1
0 +H2,s2

1 s

2
0,v1 v, go to (3).

3. Return s

1
1,s

2
1,v1.

Output: the next state f1 = (s1
1,s

2
1,n1).
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As there are only two branches in the upper section (by definition) this last calculation will be
analogous to the two-sequence transition density calculations of Section 5.2.

Case (1) 1{u  s

1
0}1{B 6= v0}. In words, we now calculate the transition density for a

recombination event starting at a cut point on the lower three branches, and not on the lone
branch. We have

q(f1|A = b,u,B 6= v0,f0) = q(s1
1,s

2
1,v1|A = b,u,B 6= v0,s

1
0,s

2
0,v0)

is given by

Z •

u
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dt
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dt

Performing the integrals here gives

=
1
3
(1� e

�3(s1
0�u))d
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1
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1)d
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2
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Then, integrating over u 2 [0,s1
0] gives

=
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Case (2) 1{u s

1
0}1{B = v0}. In words, we calculate here the transition density for a recom-

bination event starting at a cut point on the lower three branches, and in particular on the lone
branch. We have that q(f1|A = b,u,B = v0,f0) is given by

Z •

u

3e

�3(t�u)

(

1{u t  s
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Performing the integrals here gives
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Then, integrating over u 2 [0,s1
0] gives
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2
0)d
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1
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(s1
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2
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2
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i

Case (3) 1{u > s

1
0}. In words, we calculate here the transition density for a recombination

event starting at a cut point anywhere on the upper branches. This situation is analogous to
the two sequence calculations already shown in Section 5.2. Using the approach demonstrated
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there, q(f1|A = a,u,B,f0) is given by

Z •

u

2e

�2(t�u)d
s

1
0
(s1

1)dv0(v1)
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1{u t  s

2
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1
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d
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2
1
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2
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2
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2
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2
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= d
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1
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2
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2
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2
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Then, integrating over u 2 [s1
0,s

2
0] gives

d
s

1
0
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1)dv0(v1)
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2
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2
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1
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(1� e

�2(s2
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1
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+d
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2
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2
0)(1� e
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0�s

1
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We have written down tractable expressions for three conditional probability density functions,
they are q(f1|A = b,u,B 6= n0,f0), q(f1|A = b,u,B = n0,f0), and q(f1|A = a,u,B,f0). With
these expressions, we may write down the marginal transition density q(f1|f0) as follows.
First recall that the distribution q(f1,B|f0) may equivalently be written

Z

s

2
0

0
q(f1,u,B|f0)du =

Z

s

2
0

0

h

q(f1,A = a,u,B|f0)

+q(f1,A = b,u,B|f0)
i

du

=
Z

s

2
0

0

h

q(f1|A = a,u,B,f0)q(A = a,u,B|f0)

+q(f1|A = b,u,B,f0)q(A = b,u,B|f0)
i

du. (5.5)

Moreover, it was shown previously that

q(A = a,u,B|f0) =
2(s2

0� s

1
0)

2s

2
0 + s

1
0

1{B 2 J1,2K}
2

1{s

1
0  u s

2
0}

s

2
0� s

1
0
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and

q(A = b,u,B|f0) =
3s

1
0

2s

2
0 + s

1
0

1{B 2 J1,3K}
3

1{u s

1
0}

s

1
0

.

Substituting these expressions into Equation (5.5), as well as those of the three probability
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densities derived above, one finds that q(f1,B|f0) =
R

s

2
0

0 q(f1,u,B|f0)du is given by

=
1
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2
0 + s

1
0
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=
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Marginalising over the possible cut point branch choices B 2 J1,3K, we find that q(f1|f0) =

Â
B2J1,3K p(f1,B|f0) is given by
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. (5.6)

In summary we have found the full transition density q(f
k+1|fk

)= q(s1
k+1,s

2
k+1,vk+1|s1

k

,s2
k

,v
k

),
given by Equation (5.6). Note again that the specific case k = 0 was taken in the above deriva-
tions to minimise visual confusion between adjacent indices; in fact the derivations hold for a
general kth move, k 2 N.

5.7.3 Verifying the transition density

Analogously to the two-sequence case, it is necessary to verify the transition density developed
for the three-sequence algorithm. For completeness, we first check that the integral of the
density over its support evaluates to one, i.e. that
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q(f1|f0)df1 =
Z •

0

Z •

s

1
1

Â
v12J1,3K

q(s1
1,s

2
1,v1|s1

0,s
2
0,v0)ds

2
1 ds

1
1 = 1



5.7 A different approach 101

First, summing over v1 2 J1,3K:
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Integrating s
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It is now shown by simulation that samples drawn from the generative description given in
Algorithm 5.4 agree in distribution with Equation (5.6). As in the two-sequence case, our first
simulation is a visual examination of the empirical sample quantiles against the quantiles of
the CDF associated with the transition density. The approach is now the following:
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Figure 5.13: Q-Q plots showing the new lone branch in the topology {n1(i)}
i2J1,5⇥104K gener-

ated by Algorithm 5.4, conditional on the starting state (n0,s1
0,s

2
0) shown in red, compared to the

theoretical CDF derived above. There is strong agreement.

1. Fix the current state (n0,s1
0,s

2
0) to an arbitrary value in its support, i.e. {1,2,3}⇥ [0,•)⇥

(s1
0,•).

2. Conditioned on starting at (n0,s1
0,s

2
0), simulate independently R recombination events

giving new states {n1(i),s1
1(i),s

2
1(i)}i2J1,RK.

3. Compare the empirical quantiles of the marginals of the sample {n1(i),s1
1(i),s

2
1(i)}i2J1,RK

against the theoretical quantiles provided by the marginals of the CDF associated with
density (5.6).

In Figure 5.13, three independent runs of this experiment are shown. The initial states (n0,s1
0,s

2
0)

were sampled randomly by first drawing s

1
0 ⇠ Exp(3), then s

2
0 = s

1
0 +Y where Y ⇠ Exp(2).

Finally, the lone branch n0 was picked uniformly at random from the set {1,2,3}. The Q-Q
plots are based on the empirical CDF formed from 5⇥ 104 samples from the generative al-
gorithm. Analogous experiments are shown in Figures 5.14 and 5.15 for the first and second
coalescence times. All three sets of Q-Q plots show almost no observable deviance from a
straight line, which provides some support for the correctness of the marginals of Equation
(5.6).

Moving now to a more rigorous test, we again carry out a similar test to the two-sequence
case by calculating a p-value for a large number of initial states and assessing the uniformity.
We adopt the following process:

1. Sample the current state (n0,s1
0,s

2
0) by first drawing s

1
0 ⇠ Exp(3), then s

2
0 = s

1
0+Y where

Y ⇠ Exp(2), and finally n0 ⇠ U{1,3}.

2. Conditional on starting at (n0,s1
0,s

2
0), simulate independently R recombination events ac-

cording to the generative description in Algorithm 5.4, giving new states {n1(i),s1
1(i),s

2
1(i)}i2J1,RK.
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Figure 5.14: Q-Q plots showing the simulated (first) coalescence times {s

1
1(i)}i2J1,5⇥104K gener-

ated by Algorithm 5.4, conditional on the starting state (n0,s1
0,s

2
0) shown in red, compared to the

theoretical CDF derived above.

3. Taking the empirical marginal quantiles of the sample {s

i

1}i2J1,RK, and the theoretical
marginal quantiles provided by the CDF, and compute the associated p-value with an
appropriate test statistic.

We used here for simplicity the specific case of the first coalescence time, but in practice the
experiment is repeated to give an analysis of each marginal. As before, the procedure above
is repeated, giving many p-values which under the null hypothesis are uniformly distributed
on the interval [0,1]. For the s1 and s2 experiments, a (mixed) Kolmogorov-Smirnov (KS) test
statistic [70] was used, while for the n experiment we adopted Pearson’s chi-squared test.

The result of generating 10,000 p-values for each variable in the state by this approach
are shown in Figure 5.16, complete with 99% confidence interval for the uniform distribution
on the histogram bins shown, calculated using the binomial distribution. The plots provide
strong support for the correctness of the marginal distributions of the generative algorithm,
though of course they do not constitute a proof of correctness. We note that it is possible
for the marginal distribution to be correct and the joint distribution incorrect. Evidence in
support of the correctness of the joint distribution is not presented here, as we are aware of
no simple approach in the literature for testing samples from a joint distribution with both
discrete components and mixed discrete/continuous components. However, it is hoped that
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Figure 5.15: Q-Q plots showing the simulated (second) coalescence times {s

2
1(i)}i2J1,5⇥104K gen-

erated by Algorithm 5.4, conditional on the starting state (n0,s1
0,s

2
0) shown in red, compared to the

theoretical CDF derived above.

ν

Fr
eq
ue
nc
y

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120

140

p−value

(a) P-values calculated using a

Pearson chi-squared test.
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(b) P-values calculated using a

mixed KS test.
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(c) P-values calculated using a

mixed KS test.

Figure 5.16: Each histogram shows 10,000 replications of the p-value under the tests described

in each sub-figure. For each replication, R = 100 samples from the generative process were used

to construct the empirical CDF. The uniformity in the plots provides strong evidence for the null

hypothesis; namely, that the generative samples (Algorithm 5.4) are being drawn (marginally)

from the same distribution as the CDF derived from Equation (5.6).
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with evidence for the correctness of the marginal distributions of the generative algorithm,
together with a full Bayesian calibration of the inference algorithm presented later in this work,
there will be sufficient evidence to consider the density correct or subject to inconsequential
error.

5.7.4 Overcoming the three-sequence problem

We now concern ourselves with overcoming the drawbacks, discussed in Section 5.6.1, of a
particle filter that proposes particles according to the SMC’ model. It is desirable to be able
sample topologies of a given shape, which we have denoted v, since using this strategy can
obviate the proposal of particles incompatible with mutations in the sequence. In practice this
solution would involve looking ahead to the next problematic mutation event - that is a SNP
where exactly two of the three sequences have the mutation. Earlier it was shown that only
one topology (of the three essential topologies; see Figure 5.11) will be compatible with any
problematic mutation. This means if the last state f

k

proposed before the problematic mutation
had one of the two incompatible topologies then that particle will die (its weight will be zero).
However, if it were possible to sample from some relevant conditional distributions related to
q(f

k+1|fk

), then in principle the algorithm could ‘look’ ahead to see which topology n
k

will
be compatible with the problematic mutation. It would then sample the heights (s1

k

,s2
k

) condi-
tional on the compatible n

k

. In sum, it would be possible to propose particles on the support of
the posterior distribution. For this reason we now turn our attention to calculating the marginal
distribution q(v

k+1|s1
k

,s2
k

,v
k

) and the conditional distribution q(s1
k+1,s

2
k+1|vk+1,s

1
k

,s2
k

,v
k

).

Again, we use the notation of the k = 0 case for visual clarity. Notice that q(v1|s1
0,s

2
0,v0) =

R R

q(ds

1
1,ds

2
1,v1|s1

0,s
2
0,v1), and therefore firstly integrating s

2
1 2 (s1

1,•) yields:
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Rearranging, we find
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and a1 +2a2 = 1.

5.7.5 Sampling the next recombination point

We now consider the question of how to sample the next recombination point. Let the recom-
bination points be denoted (t

j

)
j2N[{0} with the convention that t0 = 0, and let f

j

:= (s1
j

,s2
j

,v
j

)

for j 2N[{0} be the coalescent history associated with the sequence in the interval (t
j

,t
j+1].

Recall that the SMC’ dynamics (Algorithm 5.1) imply a transition density for the jth recom-
bination event of the form

p(t
j

,f
j

|t
j�1,f j�1) = f (t

j

|t
j�1,f j�1)q(f j

|f
j�1).

Currently we are able to sample from

q(f
j

|f
j�1) = p(s1

j

,s2
j

,v
j

|s1
j�1,s

2
j�1,v j�1)
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directly (Algorithm 5.4), and alternatively by first conditioning on a particular value of v

j

then updating (s1
j

,s2
j

) given f
j�1 and n

j

(Algorithms 5.5, 5.6). We show presently that, for
the purposes of proposing particles that are compatible with observed mutations, sampling
recombination points from the prior distribution f (·|t

j�1,f j�1) is unsatisfactory. It remains
to design a method of proposing state transitions at useful recombination points.

The difficulty in proposing recombination points t
j

can be demonstrated with a simple
example. Suppose the SMC’ algorithm has undergone a recombination event at t

j

and is sub-
sequently in a state f

j

= (s1
j

,s2
j

,v
j

). Now suppose that further along the sequence a mutation
of an incompatible type is encountered at a position denoted m 2 (0,1), and of course m > t

j

.
The mutation at m is assumed to be compatible only with topologies of type v(m). According
to the usual SMC’ dynamics, a recombination point t

j+1 is generated stochastically according
to

t
j+1� t

j

⇠ Exp(
r
2

L(f
j

))

where L(f
j

) = 2s

2
j

+ s

1
j

is the total length of the tree associated with the state f
j

. Suppose this
recombination point occurs before the mutation at m, i.e. t

j+1 < m. Next a state f
j+1 must be

generated, but it is unclear by what method. If no more recombination points will be generated
under the model before the mutation at m then we would like f

j+1 to be generated conditional
on v

j+1 = v(m) to ensure the particle survives. On the other hand if it were possible to know
in advance that another recombination point t

j+2 would be proposed before point m then we
would instead allow f

j+1 to be generated according to the unrestricted SMC’ dynamics and
insist that f

j+2 be generated conditional on v

j+2 = v(m). Underlying our argument here is
a preference to sample recombination times from their prior distribution under the model.
Unfortunately proposing times in this way offers no guarantee that a recombination event will
occur before an anticipated problematic mutation. For this reason we must make what are in
some sense unnatural changes to this prior to ensure a recombination event happens before
the mutation. Nevertheless our aim is to explore a strategy making as few such interventions
as possible. One might think of generating first all the recombination points in the interval
(t

j

,m] and afterwards sampling the concomitant states f . This solution is however infeasible
in the situation where the proposal of the next recombination point depends on the most recent
state f , as is the case with f (t

j

|t
j�1,f j�1).

A promising approach is now described. First, given the interval (t
j

,m] on the sequence,
generate recombination events (t

i

,f
i

) according to the prior until one exceeds m. To be pre-
cise, suppose having started from a state (t

j

,f
j

) that further events (t
j+i

,f
j+i

)
i2{1,2,...} are

proposed according to SMC’ dynamics, and that the first recombination point to exceed m is
t

j+k+1 for some k 2 N. In other words, we have t
j

< t
j+1 < .. . < t

j+k

< m and m < t
j+k+1.

Then return to recombination point t
j+k

, the last before m, and sample a new state f
j+k

condi-
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tional on v

j+k

= v(m). It is clear that this will introduce a bias that must be corrected to retain
exactness of the algorithm.

For notational simplicity, suppose the epoch under consideration is (t
i

,m], and suppose the
particle filter is constructed so that m is the next point at which resampling takes place. Here
we make use of the notation x[t

i

,m] to describe the entire PDP, that is the set of recombination
points and coalescence times, from t

i

(including the state in which the PDP arrived at t

i

) up
to the mutation at point m. The mutations in the same region are describe by the observation
variable y(t

i

,m]. Then the weight of the particle described in the interval [t
i

,m] is given by

p[t
i

,m](k,t1:k,f0:k)g(y(t
i

,m]|x[t
i

,m])

p[t
i

,m](k,t1:k,f0:k�1)q(s1
k

,s2
k

|v
k

= v(m),fk�1)

=
p[t

i

,m](k,t1:k,f0:k)
R

p[t
i

,m](k,t1:k,f0:k�1,f⇤
k

)df⇤
k

⇥
g(y(t

i

,m]|x[t
i

,m])

q(s1
k

,s2
k

|v
k

= v(m),fk�1)

where f⇤
k

may be thought of as the ‘forgotten’ last state, the value of which is overwritten by a
value consistent with the problematic mutation following it. Substituting the prior distribution
defined in Equation (5.4), the first fraction is equivalent to

S(t
k

,m|f
k

)q0(f0)
⇣

’k

j=1 f (t
j

|t
j�1,f j�1)

⌘⇣

’k

j=1 q(f
j

|f
j�1)

⌘

R

S(t
k

,m|f⇤
k

)q0(f0)
⇣

’k

j=1 f (t
j

|t
j�1,f j�1)

⌘⇣

’k�1
j=1 q(f

j

|f
j�1)

⌘

q(f⇤
k

|f
k�1)df⇤

k

which, cancelling all terms independent of f⇤
k

, reduces to

S(t
k

,m|f
k

)q(f
k

|f
k�1)

R

S(t
k

,m|f⇤
k

)q(f⇤
k

|f
k�1)df⇤

k

.

Combining results, the weight may be expressed as

p[t
i

,m](k,t1:k,f0:k)g(y(t
i

,m]|x[t
i

,m])

p[t
i

,m](k,t1:k,f0:k�1)q(s1
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,s2
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|v
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= v(m),fk�1)

=
S(t
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)q(f
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R
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g(y(t
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,m]|x[t
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,m])

q(s1
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,s2
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|v
k

= v(m),fk�1)
. (5.7)

Notice that since, by the definition of conditional probability,

q(f
k

|f
k�1) = q(s1

k

,s2
k

|v
k

,f
k�1)q(vk

|f
k�1)
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it follows that when f
k

= (s1
k

,s2
k

,v(m)) we have

q(f
k

|f
k�1) = q(s1

k

,s2
k

|v(m),s
1
k�1,s

2
k�1,vk�1)q(v(m)|s1

k�1,s
2
k�1,vk�1).

Note that we need only consider the weight associated with a final state f
k

= (s1
k

,s2
k

,v
k

) with
v

k

= v(m), since if v

k

6= v(m) then the weight of the particle is guaranteed to be zero by the
likelihood term g(y(0,t

n

]|x0:n). This argument allows us to make the simplification

q(f
k

|f
k�1)

q(s1
k

,s2
k

|v
k

= v(m),fk�1)
= q(v

k

= v(m)|fk�1).

Now, defining a quantity from Equation (5.7):
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. (5.8)

one has the following expression for the weights

p[t
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,m](k,t1:k,f1:k)g(y(t
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,m]|x[t
i

,m])
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= v(m),fk�1)

=
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)q(f
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|f
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H(f
k�1,tk

,m)

g(y(t
i

,m]|x[t
i

,m])

q(f
k

|v
k

= v(m),fk�1)

=
S(t

k

,m|f
k

)q(v
k

= v(m)|fk�1)

H(f
k�1,tk

,m)
g(y(t

i

,m]|x[t
i

,m]). (5.9)

It will be shown in the sequel that H is tractable and so our weights are well defined in practice.

We now examine the no-event case. To retain exactness of the particle filter it is crucial
that in any interval the algorithm allow for no event to occur. In particular, this implies that
for any interval ending in a problematic mutation there must be a non-zero probability of no
new recombination events in the interval, and so a non-zero probability that a particle will die.
However, as discussed above, if too many particles have weight zero then the performance
of the algorithm deteriorates and it may fail altogether. It is now shown that the probability
with which a particle will have no recombination events can be controlled using importance
sampling techniques. Consider the following decomposition of the prior distribution of k
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jumps and their positions:

p(k,t1:k) = d0(k)p(k = 0)+1{k � 1}p(k � 1)p(k,t1, . . . ,t
k

|k � 1)

= d0(k)p(k = 0)+1{k � 1}(1� p(k = 0))p(k,t1, . . . ,t
k

|k � 1).

Now define the proposal density

pa(k,t1:k) := ad0(k)+(1�a)1{k � 1}p(k,t1, . . . ,t
k

|k � 1)

for some a 2 (0,1). Recall from Section 5.3 the definition

T
n,k := {t1:k 2 (0,•)k : 0 < t1 < .. . < t

k

 t

n

}

of the space of length-k sequences of positive, ordered jump times bounded by some t

n

. We
have for any t

n

2 (0,1), and any a 2 (0,1),

•

Â
k=0

Z

T
n,k

pa(k,t1:k)dt1:k = a +(1�a)
•

Â
k=1

Z

T
n,k

p(k,t1, . . . ,t
k

|k � 1)dt1:k

= a +1�a
= 1

thus pa is a probability density function for any a and in particular any a 2 [0,1].

With these results, we introduce a strategy we refer to as boosting that will ensure cor-
rectness of the algorithm whilst permitting control over the probability of loss of particles in
intervals that end with problematic mutations. Suppose the present interval of the particle
filter, denoted here (t

i

,m], ends with a problematic mutation m. Then, for each particle, with
probability a no recombination events will occur in the interval. With probability 1�a some
positive number of recombination events will occur. In other words, with probability a the
number of recombination events will be chosen according to the density d0(k) and with prob-
ability 1�a the number and position of recombination events will be chosen according to
the density 1{k � 1}p(k,t1, . . . ,t

k

|k � 1). The particle filter is boosted in the sense that the
number of particles still alive at the end of an epoch with a problematic mutation is increased,
and so the accuracy of the estimators is improved as is the stability of the algorithm.

The weights associated with the two moves are now derived. First consider the case of no
event, or k = 0. The correct particle weight in this case is given by

w[t
i

,m](k = 0) =
p[t

i

,m](k = 0)
a

g(y(t
i

,m]|x[t
i

,m]). (5.10)
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Secondly we consider the weight of a particle for which the number of events in the interval
(t

i

,m] is k > 0. In this case

w[t
i

,m](k) =
1

1�a
p[t

i

,m](k,t1:k,f1:k)g(y(t
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,m]|x[t
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,m])
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.

Notice that since
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and using properties of the exponential distribution we have
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i

,m](k = 0) = 1� e

� rL(t
i

)
2 (m�t

i

)

where L(t
i

) simply refers to the total branch length established at the last recombination event
before t

i

. Finally then the weight is found analogously to Equation (5.9):
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We now turn to calculation of the quantity H(f
k�1,tk

,m). Since S(t, t|f) := 1�
R

t

t f (ds|t,f),
we have
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Consider without loss of generality the case k = 1. Notice that since S(t1,m|s1
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2
1,v1) =
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1,s

2
1) = e

� r
2 (2s

2
1+s

1
1)(m�t1), writing l := r

2 (m� t1),
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Now, simplifying an expression derived above, we have already the density
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Multiplying through by the factor S(t1,m|s1
1,s

2
1,v1) and integrating, as in Equation (5.12),

gives
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Finally, integrating this expression with respect to s

1
1 gives
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In summary, we have found that the expression for the correct particle weights is tractable. In
the case of an interval not ending in a problematic mutation, the correct weight is given by
Equation (5.9). If an interval ends in a problematic mutation, then the correct weight is given
by Equation (5.10) in the case of choosing no event (with probability a) and by Equation
(5.11) in the case of choosing a positive number of events (with probability 1�a).

5.7.6 A new algorithm

The techniques explored above are now combined into a novel particle filter for the SMC’
model. First we choose a set of positions along the sequence that will define the intervals of
the particle filter. Any choice is valid and the method we propose here is as follows: decide on
an initial partition of the interval [0,1] and denote it T 0 := {0 = t

0
0, t
0
1, . . . , t

0
P

0 = 1}. Then take
the set of mutation positions {m1,m2, . . . ,mr

} corresponding to all mutations of problematic
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type and add them to this set. This results in an ordered set of times

T := {0 = t0, t1, . . . , tP = 1}

with an associated indicator vector I := (I1, . . . , IP

) where

I

s

:=

8

<

:

0 t

s

2 T 0

1 t

s

/2 T 0

describes whether epoch (t
s�1, ts] ends with a problematic mutation (I

s

= 1) or not (I
s

= 0).
If I

s

= 0, the epoch (t
s�1, ts] is such that t

s

2 T 0. For such epochs the particle filter generates
paths according to the model, as described in Algorithm 5.1 with particles weighted simply
by their likelihood. If I

s

= 1, the epoch (t
s�1, ts] is such that t

s

is a problematic mutation. For
these epochs the particle filter will follow the boosting approach described in Section 5.7.5.
With probability a a particle will experience no recombination events in the epoch - this may
lead to it being given a weight zero if the topology with which it entered the epoch is not
compatible with the problematic mutation at t

s

. Otherwise, with probability 1�a , the particle
will experience a positive number of events, and the last of these will have by design a state f
compatible with the mutation at t

s

. A precise description is found in Algorithm 5.7, wherein
an instance of the notation (i) implies that the operation should be performed for all particles
i 2 J1,NK.

5.7.7 Implementation details

There are several details of the implementation of Algorithm 5.7 that require further consider-
ation.

We first explore the choice of epochs. Since for a particular set of observations (mutations)
the positions of the problematic mutations are fixed, there is no way to change these interval
end-points. There is however control over all others, as the user may pick any initial partition
T 0 := {0 = t

0
0, t
0
1, . . . , t

0
P

0 = 1} of [0,1]. Note that we must have as a minimum {0,1}✓ T 0 for
Algorithm 5.7 to make sense. Our experiments to date have made use of a regular grid, evenly
dividing the interval into P

0 non-overlapping sub intervals. This approach is principled - no
large region of the sequence is left without a point where resampling can take place in the
particle filter - though it may not be optimal. Perhaps it is most effective to set T 0 = {0,1}, so
that T = {0,m1,m2, . . . ,mr

,1} and every interval end-point is a problematic mutation, save for
the last. Certainly this approach will be computationally efficient, it is in fact the minimum
number of resampling points possible for the particle filter as we have defined it (since T 0
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Algorithm 5.7 Particle filter (with boosting) for the SMC’ model
Input: number of particles N, indicator vector I, epoch times T , probability of no event a ,
parameters (q ,r).

1. Sample f (i)
0 ⇠ q0(·). Set x

(i)
0  (t0 = 0,f (i)

0 ).
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must contain the points {0,1}). Future research would look further into this.
The relative effectiveness of a fixed grid T 0 can be explored through the experiment shown

in Figure 5.17. Each of the three plots shows the effective sample size (ESS) within each epoch

Figure 5.17: The three sequence particle filter with boosting applied with initial partition T 0 :=
{0 = t

0
0, t
0
1, . . . , t

0
P

0 = 1} where P

0 2 {50,100,200}. Recall P

0
is simply the number of epochs in the

initial partition, before including problematic mutations.

of the algorithm. The three algorithms use an initial partition T 0 := {0= t

0
0, t
0
1, . . . , t

0
P

0 = 1} with
P

0 = 50,100,200 respectively. Clearly, increasing the density of the initial partition increases
the average ESS.

Secondly we consider the choice of a , the probability of having no events in an epoch
ending with a problematic mutation. A sensible choice here will be important for reducing
the weight variance and improving the overall efficiency of algorithm. Taking too small an
a will compromise the performance of the algorithm; too large an a and many particles will
be wasted in intervals with problematic mutations. An appealing strategy is to use a fixed
probability a 2 (0,1) for all particles. This is simple to implement and crucially offers a high
level of mathematical tractability. Consider an epoch ending in a problematic mutation. Sup-
pose each particle independently undergoes no recombination in the epoch with probability
a . Then, assuming the particle filter uses N particles, the total number of no-event particles
in the epoch, N

0 , is binomially distributed N

0 ⇠ B(N,a). Since the N�N

0 remaining par-
ticles are boosted to be compatible with the problematic mutation in the interval, the number
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Figure 5.18: For a fixed-a strategy, the cumulative distribution function of the proportion of

particles with no event in an interval. Here we considered N = 800 particles as an example.

of zero-weight particles is bounded above by N

0 and so an understanding of its distribution
is useful. Figure 5.18 shows the cumulative distribution function of N

0/N, the proportion of
particles experiencing no recombination in the epoch, for a 2 {0.1,0.3,0.5,0.7}. The fig-
ure is based on N = 800 particles but it changes very little with changes in N. Effectively
it shows that the variance of the number of no-event particles is small. For example, if we
choose a = 0.3, the proportion of no-event particles is bounded above by 0.35, at least with
probability 0.999 (around four standard deviations from the mean). Of course other schemes
are possible. One could take a to be state-dependent or even observation dependent. It is per-
haps desirable to select no events for particles where it makes most sense, for example using
the strategy a µ p(k = 0) where only the particles most likely under the prior to undergo no
events actually do so. We do not pursue this strategy further here.

Finally there is a programming consideration. Computationally, there are several ways to
sample from p[t

i

,m](k,t1:k,f1:k�1|k� 1) and specifically p[t
i

,m](k,t1:k|k� 1). The first is a sim-
ple rejection method in which PDP trajectories are proposed according to the model density
p[t

i

,m](k,t1:k,f1:k) and those for which k = 0 are simply rejected. This could prove compu-
tationally expensive in cases where the probability of no event is large. We use instead here
a truncated exponential distribution to simulate the position of the first recombination event.
In particular we take the following approach. Suppose again the particle filter is presently at
an interval (t

i

,m], and moreover (with probability 1�a) the particle under consideration has
been chosen to receive a positive number of recombination events. Then the position t1 of this
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Figure 5.19: Approximate likelihood curves of the SMC’ model for three sequences. First a

synthetic set of data (mutations) for three sequences was produced using the SMC’ model and

the parameters (q ,r) = (400,400). Then one parameter, say r , is fixed and a boosted par-

ticle filter is run using this r and a range of values of q - the log-likelihood estimate of the

particle filter is recorded. From left to right the plots are: (a) r = 400,q 2 (100,1500), (b)

q = 400,r 2 (100,1500), and plot (c) is identical to plot (b) but with a different y-axis scale.

This is intended to show the similarity of the q and r curves but also the relative flatness of the r
likelihood.

first recombination event is proposed according to the truncated version of the model density
f (t1|ti,f0,m):

f̃ (t1|ti,f0,m) =
1{t

i

 t1  m}rL(t
i

)
2 e

� rL(t
i

)
2 (t

i

�t0)

1� e

� rL(t
i

)
2 (m�t

i

)

from which it is straightforward to simulate using an inverse CDF method (see e.g. [80]).

5.7.8 Performance

First we examine the likelihood curves produced by the three sequence boosted approach
(Algorithm 5.7), which are shown in Figure 5.19. The plots are fairly similar to those of the
two sequence algorithm, shown in Figure 5.6, though here we take a far more computationally
demanding example. From the leftmost plot in the figure, it seems the algorithm determines
q well, though again the likelihood curve for r is much less informative. In Section 5.8 we
tackle the uninformative likelihood through the conditional dependence structure of the prior
distribution p(q ,r).

We now compare the performance of the naive VRPF to the boosted algorithm presented
here. In principle we are interested in comparing a metric like the effective sample size (ESS)
in Figure 5.17. Unfortunately we have found the ESS to be a poor indicator of performance
when comparing approaches where a large number of the particles have weight zero. To be
precise, for a single particle filter (featuring zero-weight particles) there is some meaning to
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Figure 5.20: A comparison of the original VRPF approach and our ‘boosted’ algorithm. For each

method, 100 particle filters were run independently. The resulting log-likelihood estimates are

shown in the histograms above. The dotted lines show the sample means for the two sets of 100

estimates. Based on a fixed grid of size P

0 = 40, and choosing a = 0.2.

the measure when comparing the ESS between epochs. However in comparing between two
different particle filters for a single epoch, the inference one would like to make from the ESS
is confounded by the difference in the proportion of zero-weight particles between the two
approaches. The ESS is effectively ‘blind’ to zero-weight particles (further criticism of the
ESS in particle filtering can be found in [81]).

Instead we can compare the VRPF to the boosted algorithm more directly, using the vari-
ance of the log likelihood estimates produced. Figure 5.20 shows the possible reduction in
variance of the likelihood estimates produced by the particle filter achieved through using
boosting, compared to the VRPF method. For this example, the variance of the VRPF esti-
mated log-likelihoods was 2.578 and the variance of the boosted algorithm’s estimated log-
likelihoods was 0.369; a near seven-fold improvement. In practice this makes an enormous
difference in the pseudo-marginal method where, as discussed in Chapter 2, the success of the
Markov chain Monte Carlo using an unbiased estimate in place of the true likelihood depends
to a large extent on the variance of the ‘noise’ term associated with the estimate.

Figure 5.21 shows the enormous benefits of the boosting algorithm for stability. The orig-
inal VRPF approach comes very close in some epochs to failing altogether because the num-
ber of wasted particles (zero-weight particles) reaches almost the total number N, even with
N = 5000. For this reason the algorithm is unreliable. In contrast the boosted algorithm limits
the extent to which its performance is affected by the proposal of particles that will be wasted.
By restricting the probability with which a ‘wasted’ particle may be proposed, the algorithm
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Figure 5.21: In orange is the number of wasted particles (zero-weight particles) in each epoch of

the particle filter for the original algorithm, and shown in blue is the new (boosted) algorithm. For

this experiment a = 0.1 was used, resulting in a more stable output.

retains exactness while improving stability and variance of its output.

5.7.9 Comparison with ARGweaver

As was done for the two-sequence particle filter, we now compare the three-sequence particle
filter to the ARGweaver software. We use a similar approach again, comparing the posterior
number of recombination events under each of the two approaches, given simulated data.

Figure 5.22 shows six realisations of the experiment as detailed in Section 5.5. Again,
the posterior numbers of recombinations are similar in each case and both are reasonably
close to the number of recombination events of the true ARG. While the mean squared error
of the posterior means generated by ARGweaver was higher on average for these six runs
than for the posterior means using the three-sequence particle filter developed here, it was not
computationally feasible to run the full MSE experiment.

5.8 Particle MCMC for SMC’

As briefly discussed in the introduction to this chapter, given an unbiased estimate of the
likelihood of the mutations given the static parameters it is possible to run a particle Markov
chain Monte Carlo algorithm (introduced in [6]) targeting the posterior distribution of the
parameters.
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Figure 5.22: Six realisations of the posterior number of recombinations, given distinct mutation

data generated by the SMC’ algorithm. ARGweaver is shown in red, while the three-sequence

particle filter proposed in this work is shown in grey. N = 256 particles were used in each particle

filter.

Recall from Section 2.1 that the acceptance ratio of the Metropolis-Hastings algorithm is
given by

a(J ,J 0) = min
⇢

1,
p(J 0)q(J 0,J)

p(J)q(J ,J 0)

�

. (5.13)

Where only an unnormalised version of the target distribution p is available, denoted

p̃(J) = Zp(J)

with normalising constant Z, notice that this may also be used since the normalising constant
cancels. The target distribution of interest is the posterior density of the SMC’ model param-
eters J = (q ,r) given the observed mutations M. Therefore, defining p(J) := p(J |M), we
have by Bayes’ theorem:

p(J) =
pJ (M)p(J)

p(M)
.

Thus an unnormalised target is given by

p̃(J) = pJ (M)p(J)

where pJ (M) is used as a shorthand for p(M|J). Moreover the pseudo-marginal method
[1, 2] permits the use of a positive, unbiased estimate p̂J (M) in place of the true likelihood
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pJ (M). In summary, the acceptance ratio we employ is of the form

â(J ,J 0) = min
⇢

1,
p̂J 0(M)p(J 0)q(J 0,J)

p̂J (M)p(J)q(J ,J 0)

�

.

For our purposes, p̂J (M) is an unbiased, positive likelihood estimate obtained as a result
of running a particle filter with parameter values J = (q ,r) and observations M (as in Algo-
rithm 5.7). A prior distribution p(J) on the parameter space Q must also be specified, as well
as a proposal density q(J , ·) for the parameter vector, and a thoughtful choice here is essential
to the performance of the algorithm. A priori the only physical constraint on the parameters
is (q ,r) 2 R2

+ since both q and r are rates. In the absence of further information, this might
suggest use of the improper prior Pr(q ,r) µ 1. We avoid this here to ensure we are guaranteed
a proper posterior distribution. Instead we start by considering a uniform prior distribution for
both parameters, bounded above by a large (but essentially arbitrary) value. The choice of
prior distribution will be discussed in more depth in the following sections, as will the choice
of proposal, which will require careful thought to overcome a quirk of the SMC’ model.

5.8.1 Validating a Bayesian algorithm

Before exploring the performance of the two and three-sequence particle filters in the context
of particle MCMC, it is essential to test the correctness of the algorithms. Many algorithms in
computational statistics are esoteric and highly complex. Yet, in the absence of an established
and well-tested software package or library, users must write their own (often substantial)
code bases to facilitate use of a particular algorithm. Even when the mathematics is well
understood, and this is by no means certain, it is extremely likely for bugs to be found in even
short sections of code written from scratch. The problem is made no easier by the stochastic
nature of many simulation heavy algorithms, like Markov chain Monte Carlo, which can mask
small errors to a degree. Without a rigorous validation process, simulations from an algorithm
cannot be taken to be reliable. Despite this, code validation is seldom referred to explicitly in
methodological papers in computational statistics. Many Bayesian statisticians will be familiar
with some form of posterior checking. For example, in a repeated experiment one takes a
sample from the prior distribution, generates data conditional on it, and observes whether or
not the true value lies within, for example, the associated 95% highest posterior density region,
as it should in 95% of such experiments. While this is correct, such approaches lack rigour
when performed in an ad hoc fashion and so a more principled Bayesian workflow must be
sought.

One of the earliest works in Bayesian validation is the Gibbs sampling approach of Geweke
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[82]. The technique relies on the comparison of two distinct Gibbs samplers for simulating
from the joint distribution p(J ,y). Though still used, the approach lacks flexibility as it re-
quires the user to change the code that is being tested so that it can resample the data given
the observation, precluding the evaluation of black-box inference methods. Another criticism
is that it is difficult to identify when the Gibbs sampler used in the method has converged
sufficiently, and only once this has occurred are the scores it produces meaningful [83]. More
recently, two popular approaches to Bayesian validation are those of Cook et al. [84] and Talts
et al. [83]. Both rely on posterior quantiles, though the latter has now superseded the former,
which contains errors [85] and is known in some cases to perform poorly [86].

We now describe the simulation-based calibration (SBC) method of [83]. In a Bayesian
model, the joint distribution over parameters J and data y can be written as the product of
the prior and likelihood terms, that is, p(J ,y) = p(y|J)p(J). It is desirable to exploit a
kind of internal self-consistency present in the relationship between the joint and posterior
distributions. Consider drawing a ‘true’ parameter value J̃ ⇠ p(J), then generating data ỹ⇠
p(y|J̃), and finally drawing samples from the posterior distribution given those observations
p(J |ỹ). Investigating the distribution of such posterior samples, marginal to the parameter
and observation drawn, one finds

Z

p(J̃)p(ỹ|J̃)p(J |ỹ)dJ̃ dỹ =
Z

p(J̃)p(ỹ|J̃)dJ̃ p(J |ỹ)dỹ

=
Z

p(ỹ)p(J |ỹ)dỹ

= p(J). (5.14)

Thus in any Bayesian model, the data-averaged posterior is identical to the prior distribution.
This is the desired self-consistency result, and indeed leads directly to a straightforward val-
idation procedure. Suppose L samples {J1, . . . ,JL

} are taken from the posterior distribution
following the process just described. By Equation (5.14) they will be distributed according
to the prior distribution in a properly executed program. In order to make this assessment in
practice, we define for any f : Q! R the rank statistic of the prior sample relative to the
posterior samples as

r({ f (J1), . . . , f (J
L

)}, f (J̃)) =
L

Â
l=1

1[ f (J
l

)< f (J̃)] 2 J0,LK

This rank statistic is uniformly distributed across the integers J0,LK ([83, Theorem 1.]). The
rank statistic, as it is defined here, is a strictly one-dimensional concept and so for a higher-
dimensional parameter J the rank statistic must be computed independently for each dimen-
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Algorithm 5.8 Simulation Based Calibration

Input: A histogram initialised with bins centred on the integers {1, . . . ,L}

1. Sample from the prior J̃ ⇠ p(J)

2. Generate data ỹ⇠ p(y|J̃)

3. Sample from the posterior {J1, . . . ,JL

}⇠ p(J |ỹ)

4. for each dimension of the parameter do
Increment the histogram with the rank statistic r({ f (J1), . . . , f (J

L

)}, f (J̃))

5. go to (1).

Output: The histogram of rank statistics, to be checked for uniformity.

sion of J . There are many possible methods to test the uniformity of the rank statistic. In [83]
a visual inspection of a histogram of rank statistics is employed for its diagnostic properties;
particular deviations from uniformity in the histogram can signal causes of error, not merely
that an error is present. The simulation based calibration algorithm is given in Algorithm 5.8,
which should be run for as many iterations as is feasible. We note here that model checking
is a valuable counterpart to model validation and should also be undertaken by the practi-
tioner. One’s model can of course be a very poor representation of the real world, and still be
internally consistent with respect to Bayesian inference.

In MCMC, only correlated samples from the posterior distribution are available, which
will affect the performance of the SBC method. One can for example easily imagine the first
L = 100 samples from a posterior distribution generated using Metropolis-Hastings obtaining
only one or two distinct values, from which it follows that the highest and lowest bins in the
SBC histogram will be over-represented. To combat this, thinning strategies are adopted to
reduce the autocorrelation present in the sample as far as possible. Recall from Section 2.2 that
for a Markov chain {J1,J2, . . .} at equilibrium, with transition kernel P, M samples have an
effective sample size of M/t( f ,P). Here, f is a square integrable function with respect to the
stationary distribution and t( f ,P) := 1+2Â•

k=1 r
k

[ f ], where r
k

[ f ] is the correlation between
the random variables f (J0) and f (J

k

), in other words the lag-k autocorrelation. Motivated by
this, a strategy is proposed in [83] for generating sufficiently many correlated samples from
an MCMC posterior. Suppose L effective samples are desired. First, sample L

0 steps of the
Markov chain, and then assess the number of effective samples

Meff[ f ] :=
L

0

1+2Â•
k=1 r

k

[ f ]
. (5.15)
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Algorithm 5.9 Simulation Based Calibration for MCMC

Input: A histogram initialised with bins centred on the integers {1, . . . ,L}

1. Sample from the prior J̃ ⇠ p(J)

2. Generate data ỹ⇠ p(y|J̃)

3. Sample L

0 iterations from the posterior {J1, . . . ,J
L

0}⇠ p(J |ỹ)

4. Compute the effective sample size Meff[ f ] of {J1, . . . ,J
L

0} for the function f using
(5.15)

5. if Meff[ f ]< L then
Rerun the Markov chain for L

0 ·L/Meff[ f ] iterations

6. Thin the chain uniformly to obtain L samples.

7. for each dimension of the parameter do
Increment the histogram with the rank statistic r({ f (J1), . . . , f (J

L

)}, f (J̃))

8. go to (1).

Output: The histogram of rank statistics, to be checked for uniformity.

It is then suggested that the chain is rerun for L

0 ·L/Meff[ f ] = L(1+ 2Â•
k=1 r

k

[ f ]) iterations.
Certainly it is plausible that the rerun chain will achieve an effective sample size close to L and
so mitigate to a large extent the artifacts of autocorrelation in the SBC histogram. However,
it is implied that the original L

0 samples are discarded in this procedure, when they could be
reused. If it was not intended for the samples to be discarded, another explanation is that
the first L

0 iterations are considered a kind of burn-in for the Markov chain, yet this seems
unlikely as it is not suggested that the ‘rerun’ chain begin from the position at which the
original chain ended. The second approach here is a practical addition to the method that
we would encourage, as it avoids a needless repetition of the burn-in period. Nevertheless,
in our simulations we implement the approach as it is written, and as is quoted in Algorithm
5.9. Note that for a model with multiple parameters it is sensible to take the minimum of the
effective samples sizes when thinning the chain.

We now briefly explore some properties of the SBC method in a toy example. Con-
sider a standard Metropolis-Hastings algorithm targetting the posterior distribution p(J |y) µ
p(y|J)p(J) with mixture prior p(J) = gN(J ;�1,22)+ (1� g)N(J ;10,32) and likelihood
p(y|J) = N(y;J ,82). For the following experiments we set g = 0.4, and used as proposal
kernel a Gaussian random walk with standard deviation s = 3. An application of the SBC
procedure in Algorithm 5.9 on this example is shown in Figure 5.23. In keeping with many
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Figure 5.23: A toy implementation of SBC, targetting p(J |y) where p(J) = gN(J ;�1,22)+(1�
g)N(J ;10,32) and p(y|J) = N(y;J ,82). The mixture proportion was g = 0.4 and the algorithm

was run for 10,000 steps.

examples in [83], we used 10,000 replications to populate the histograms. In addition, L = 101
posterior samples were drawn in each replication to facilitate grouping of the rank statistics
into 51 bins in the histogram, each covering two integer outcomes. No advice is given in [83]
on the choice of L

0, however in our experiments the integrated autocorrelation times were al-
most never small enough to render a choice of L

0 = 500 wasteful, and it is advisable to select
a reasonably large L

0 to ensure accuracy of the IAT estimate.

Figure 5.23a demonstrates the method applied using the IAT to inform the length of chain
required. In contrast, Figure 5.23b was run for exactly 101 iterations, i.e. L = L

0 = 101, and
therefore has no thinning applied. In the samples without thinning, autocorrelation is captured
quite clearly in the plots and we observe the anticipated U-shape. Many small errors can be
detected in a similar way. Figure 5.24 depicts the effect on the diagnostic histogram of several
typical coding errors. It demonstrates that small errors can be easily detected at this number of
replications of the procedure, and the shape of the resulting histogram can be a good indication
of where to search for an error.

It is to the best of our knowledge unknown to what extent replacing an exact algorithm
with an exact-approximate, or pseudo-marginal, alternative affects the performance of the
SBC method. To provide some insight into possible effects, we adapt the example above into a
pseudo-marginal method. To be precise, we append to the true likelihood term a multiplicative
factor, namely a non-negative random variable with expectation 1. In particular, in place of
p(y|J) = N(y;J ,82) we make use of the unbiased estimate p̂(y|J) = N(y;J ,82)W where,
using the shape/scale parameterisation, W ⇠Gamma(1/r,r) so that E[W ] = 1 and Var(W ) = r.
In this way, we have a single parameter r through which we can degrade the performance of
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Figure 5.24: Simulating the effect of a number of common mistakes on the SBC histogram.

the pseudo-marginal algorithm. With respect to the particle MCMC algorithms presented in
this thesis, increasing r is somewhat similar to reducing the number of particles used in the
particle filters. Naturally this is a simplification, though the experiment may provide some
insight regardless.

Figure 5.25 shows three experiments for a pseudo-marginal algorithm modelled by the
process described with r = 1, and three similar experiments for a pseudo-marginal algorithm
modelled by the process with r = 8. In Figures 5.25 (a, b, c), we see that a pseudo-marginal
process enjoying a low-variance likelihood estimate passes the calibration process with mod-
erate thinning, to the degree of one in three, or one in five samples. On the other hand, in (d,
e, f), we observe that a pseudo-marginal algorithm with a high-variance likelihood estimate
still shows signs of autocorrelation with thinning to the degree of one in five samples. After
thinning to one in ten samples the autocorrelation appears to have very little effect, if any.

These tests demonstrate that the SBC method can be extremely computationally intensive,
especially for high-dimensional or complex target distributions when integrated autocorrela-
tion times are typically much higher. However, it also seems clear that this is unavoidable. If
an algorithm requires a large number of iterations (and subsequent thinning) to pass the valida-
tion test, then equally it will require a large number of iterations in practice to yield reasonable
posterior samples or expectations. In this sense, the SBC approach is not only applicable to
validating the correctness of Bayesian algorithms, but in the context of Markov chain Monte
Carlo it is a promising convergence diagnostic. Indeed, manipulating the free parameters of
an MCMC proposal mechanism, or prior distribution, can have a profound impact on the uni-
formity of the associated SBC histogram and this provides a useful heuristic for tuning one’s
sampler. If an algorithm passes the calibration test convincingly, I can have some confidence
that it will perform well in practice in a setting similar to that in which it was tested. If it fails
to pass the calibration test convincingly, then, whether or not it is correct, it cannot be trusted
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Figure 5.25: Simulations exploring the effect of pseudo-marginal type approximations on SBC

histogram diagnostics.

at all in practice.
With this preparation in hand, we will make use of this validation procedure throughout

the remainder of the thesis.

5.8.2 Two sequence algorithm

First we discuss the performance of the two sequence VRPF (Algorithm 5.3) applied in the
particle MCMC setting. For our first experiments we take the prior distribution over the
parameters to be q ,r ⇠iid

U(0,400), and the proposal density to be q 0 ⇠ N (q ,sq ) and
r 0 ⇠N (r,sr).

Figure 5.26 demonstrates a feature of the SMC’ model we believe not to have been dis-
cussed in the literature. As seen in Figure 5.26a, when the mutation and recombination rates
are similar, that is when there are relatively few observations, the model has a propensity to
egregiously overestimate r . The effect appears to be a kind of overfitting; when there is very
little data to be explained, the model favours an extremely high recombination rate so that ev-
ery mutation in the sequence will have a recombination event almost tailored to it. Whereas,
as in figure 5.26a, when there are a relatively large number of mutations the algorithm favours
much more realistic values of r . This most probably is due to the combination of a uniform
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prior and the relatively flat likelihood of r shown in Figure 5.6.
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Figure 5.26: Posterior trace and density Pr(r,q |M) where M⇠ PrJ (·), generated by the particle

marginal Metropolis-Hastings algorithm with likelihood estimate provided by the two sequence

VRPF.

Though this behaviour is perhaps not accurately described as overfitting, the parameter r
has an identifiability issue for certain values of q . Later we will seek a regularisation solution
to the problem.

5.8.3 Prior elicitation

Now we reconsider the issue of prior elicitation. In our first tests (Figure 5.26) we took the
parameters to be independent, so that the conditional dependence structure of the pair J =

(q ,r) was described by
p(J) = p(q)p(r)

and q ,r ⇠iid

U(0,400). Other choices of prior distribution are possible, as are other depen-
dence structures. Let us now consider more closely the prior distribution for the mutation rate
q . An approach suggests itself that is loosely inspired by so-called empirical Bayes - where
hyperparameter values are estimated from the data - but which carries information from the
likelihood to the prior, and so is not Bayesian in spirit. We are motivated by the following line
of reasoning. If the observed genetic sequences differ for example at 500 SNPs, it is incon-
ceivable that the sequences were generated by the SMC’ model with mutation rate q = 30.
Such an outcome would require an implausible concurrence of many independently unlikely
events. Intuitively we expect the number of mutations to scale, possibly linearly, with the
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mutation rate of the process. This knowledge is highly informative and should therefore be
incorporated into the prior distribution of the parameter; it remains to construct a principled
method for doing so. Since we know the process by which mutations are generated according
to the model, we may generate for a single value of q a large number of full sets of muta-
tions, say n, which we denote Mq

1:n. Repeating this exercise for a range of values of q , say
{q1, . . . ,qnq }, yields a collection of mutations {Mq

i

1:n}i=1,...,nq . Let |Mq
i

j

| denote the number
of SNPs, or mutations, generated in the jth set of mutations generated at rate q

i

. Such an
experiment is visualised in Figure 5.27, where {q1, . . . ,qnq } = {10,30, . . . ,990}. To each q

i

is associated a boxplot of the lengths |Mq
i

j

|, j = 1 : 5000. Among other features, the boxplots
represent the median number of SNPs with a black line and the interquartile range (that is, the
25th and 75th percentile) with a grey box. In addition the 15th and 85th percentile are shown
in yellow, so that 70% of the sets of mutations generated for a value q

i

have a size (i.e. number
of SNPs) that lies between the two yellow lines.

Suppose now that the real sequences one is interested in comprise in total 500 SNPs -
this is represented by the solid red line in Figure 5.27. Where this line intersects the yellow
lines is visualised by dotted red lines. In this case the dotted red lines (in the top figure)
define an interval given approximately by Q = [420,740]. We can say: for all q 2 Q , and for
r = 100, sets of mutations ‘similar’ to those of the real sequences are ‘not unlikely’ under the
SMC’ model with parameters (r,q). Here, ‘similar’ simply means sets of mutations with the
same number of SNPs, and since the real sequences lie in the most likely 70% of outcomes
for all q 2 Q, they are in this sense not unlikely, though for a given q 2 Q there may of
course be far more likely outcomes. Notice that when the recombination rate under which the
mutations are simulated is increased from r = 100 to r = 500 the number of SNPs seems
to concentrate around the median, and the small density peak towards zero diminishes. This
has the effect in Figure 5.27 of reducing the interval generated by the above procedure to
approximately Q = [435,580]. In other words, for a fixed q , as r is increased a concentrating
behaviour is observed in the number of SNPs generated by the SMC’ model with parameters
(q ,r). A particular case (in effect a cross-section of Figure 5.27) is shown in Figure 5.28.
The explanation behind this concentrating behaviour is unclear. A possible explanation is that
with a higher recombination rate, any ancestral history generated is more likely to look like
an ‘average’ ancestral history. This follows because with a high recombination rate there are
many chances (recombination points) to alter the PDP that describes the ancestral history. On
the other hand, when the recombination rate is low one would expect to see a PDP with very
sparse jumps, and so perhaps more chance to be ‘stuck’ in a small or large coalescence time
state. Then, once mutations are overlaid on the topology, you are more likely to see very low
or very high numbers of mutations.
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Figure 5.27: Top: r = 100. Bottom: r = 500. Prior elicitation of q ; further explanation is found

in the text.
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Figure 5.28: Histograms showing the empirical density of numbers of SNPs generated by the

SMC’ model when the mutation rate is q = 520 and the recombination rate is r = 100 or r = 500.

It is clear from Figures 5.27 and 5.28 that the distribution of the number of SNPs, condi-
tional on the mutation rate q , is bi-modal. For every value of q considered there is a peak in
the density around the very lowest numbers of SNPs, for example the peak in Figure 5.28 for
q  20. One implication of this feature is that real sequences with very few or no SNPs will be
very difficult inference problems since they could be explained by a large range of parameters
and so are subject to great uncertainty. This issue is compounded in the low-SNP setting as
the bi-modal structure of the density is exacerbated at low values of r , and low values of r
are typically associated with low values of q .

It may not be prudent to use the interval Q generated by the above procedure as the sup-
port for the prior distribution, for example by using a uniform distribution over this region.
We recommend however that the prior distribution used should have a high concentration of
probability density in this interval. One simple choice is to use a normal distribution with
mean and variance such that, e.g.,

Z

Q
p(q)dq � 0.8 (5.16)

Note that this suggestion is a departure from the spirit of Bayesian statistics; a Bayesian ap-
proach here would be to simply use the reasoning above to pick promising initial values for
(q ,r) in conjunction with a vague prior. The mixing of the Markov chain should not suffer
from the choice of a vague prior, provided the chain starts in an area of high likelihood con-
centration. For example, in Figure 5.30 a normal distribution truncated to the region (0,•) is
used for both parameters, with its mean chosen to approximately satisfy (5.16).
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Figure 5.29: Posterior distribution trace plots and density estimates for the two sequence algo-

rithm. In the particle MCMC, M = 104
steps were sampled independently 30 times. In addition the

q and r proposals follow Gaussian random walks with standard deviations sq = 6.5 and sr = 7.5.

The prior distributions q ⇠U(50,350) and r ⇠U(0,800) were used, where p(q ,r) = p(q)p(r).
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Figure 5.30: Posterior distribution trace plots and density estimates for the two sequence algo-

rithm. In the particle MCMC, M = 104
steps were sampled independently 30 times. In addition the

q and r proposals follow Gaussian random walks with standard deviations sq = 6.5 and sr = 7.5.

The prior distributions q ⇠ N (200,40) truncated to q 2 (0,•), and r ⇠ N (q ,80) truncated to

r 2 (0,•), were used. Notice the conditional dependence structure p(q ,r) = p(q)p(r|q).
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Returning to the regularisation issue, it may be appropriate to consider an alternative de-
pendence structure between the two parameters. It is known in biology [46] that in most real
world examples q and r are likely to be of a similar magnitude. For this reason we now
consider the class of models described by the equation p(J) = p(q)p(r|q). In particular
this allows us to exploit the domain knowledge by featuring in our prior distribution for r
that it should be in some sense ‘close’ to q . We use this approach in Figure 5.30; taking
q ⇠ N (200,40) truncated to q 2 (0,•), we use conditional on this q the prior distribution
r ⇠N (q ,80) truncated to r 2 (0,•). A relatively large standard deviation of 80 is used here;
the aim is not to entirely constrain r , though this standard deviation should be small enough
that the parameter is encouraged to converge.

In Figures 5.29 and 5.30 each colour in the trace plots represents an independent particle
MCMC run, instantiated from a range of initial positions that span the region shown. The
histogram and density estimate plot includes (in gold on the x-axis) an estimate of the 80%
credible interval, i.e. the 80% highest posterior density interval, calculated using the R pack-
age [87]. Both plots are particle MCMC runs based on a two sequence VRPF (Algorithm 5.3)
with 50 epochs and N = 350 particles and based on mutation data simulated under the SMC’
model (Algorithm 5.1) with parameters q = r = 200. Notice that while the posterior trace
and density for q is fairly similar in both plots, the parameter r benefits enormously from
reconsidering its prior distribution. In 5.29, where a uniform prior distribution was used, one
can see that some Markov chains clearly do not converge to the stationary distribution, but
move unconstrained around the parameter space for long stretches. A very different picture
emerges in Figure 5.30 when r is encouraged by its prior distribution to remain close to q .

Turning to validation, we now explore the correctness of the algorithm through simula-
tion based calibration, described in Section 5.8.1. In the MCMC runs, the prior distribution
structure p(q ,r) = p(q)p(r|q) was used with q ⇠N (100,60) truncated to q 2 (0,200), and
r ⇠N (q ,60) truncated to r 2 (0,200). Initial values for the Markov chain were chosen uni-
formly on the same interval. The proposal density for each parameter was a normal random
walk with standard deviations 12 and 18 for q and r respectively. We used N = 256 parti-
cles in each particle filter, which ran over P = 20 epochs. Figure 5.31 shows the resulting
histograms. Assessing the counts visually, there appears to be an acceptable conformity to
the expected behaviour of the uniform distribution. In only two bins does a count exceed the
99% confidence interval, which meets expectations for uniform sampling. It is possible to
group together bins when, as is the case here by necessity, there are fewer realisations that one
would like. However we find the ample performance of the algorithm on bins covering only
a single integer to be encouraging with respect to the power of the test and so the grouping
of bins seems unnecessary. The right-most bin on both plots is considerably higher than the
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Figure 5.31: SBC histograms examining the correctness of posterior samples taken from the two-

sequence particle filter.

expected count for the bin, the simplest explanation for which is the presence of some residual
autocorrelation in the samples. On the other hand, this may simply be random variation.

Conducting the calibration process in practice for a real inference procedure is deceptively
challenging, given the simple specification of the SBC algorithm. We found in practice that
while it is relatively easy to obtain a histogram that is fairly uniform in appearance for low
numbers of realisations, say 100-500, to preserve this behaviour for a large number of reali-
sations can require a considerable number of MCMC iterations, such as would be infeasible
without the use of parallel computation, and a careful choice of prior distribution. This is
testament to the strength of the method as a convergence diagnostic. Chains that appeared
in trace plots or posterior histograms to have converged often fared badly when executed in-
side the SBC algorithm. One heuristic we gained from this process was to pick a larger L

0

in complex settings. The motivation for this is simple. In more complex settings, for exam-
ple when there is very dense mutation data, the autocorrelations of the chain are likely to be
higher. There may be noticeable autocorrelation at lags of hundreds of steps. In this case, if
the original run of the chain is too short, one will underestimate the integrated autocorrelation
time associated with the chain, indeed the autocorrelations associated with larger lags will not
be seen at all and may cumulatively contribute enormously to the integrated autocorrelation
time (of an imagined infinitely long chain). Then, when one executes the main run, the IAT
of which is compensated for in additional iterations in proportion to this IAT, it will fail to be
run for long enough to eliminate the artifacts of autocorrelation. In practice too we found the
choice of prior distribution to be subtle. Original experiments carried out with a uniform prior
over both parameters proved very difficult to validate by SBC, despite visually appearing to
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Figure 5.32: Top: r = 100. Bottom: r = 500. Prior elicitation of q ; further explanation is found

in the text.

converge, and so a normal prior was adopted. Even when considering a normal distribution
prior, the choice of standard deviation was of course crucial to the success of the algorithm.
Too high, and the distribution is effectively similar to a uniform; too low, and the performance
of the sampler deteriorates.

5.8.4 Three sequence algorithm

The performance of the three sequence (boosted) algorithm in the context of a particle MCMC
algorithm is now briefly discussed. There are many similarities to the two sequence case.
First we repeat the prior elicitation experiment for the three sequence case in Figure 5.32.
Unsurprisingly the average number of mutation events for a given mutation rate q is higher
than for the two sequence case. In addition, it is considerably less likely that we will observe
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Figure 5.33: Posterior distribution trace plots and density estimates for the three sequence algo-

rithm. In the particle MCMC, M = 104
steps were sampled independently 30 times. In addition the

q and r proposals follow Gaussian random walks with standard deviations sq = 6 and sr = 6.

The prior distributions q ⇠ N (200,30) truncated to q 2 (0,•), and r ⇠ N (q ,80) truncated to

r 2 (0,•), were used. Notice again the conditional dependence structure p(q ,r) = p(q)p(r|q).

a zero-mutation sequence. A similar result is found in Figure 5.33 to Figure 5.30, and they are
based on the same data.

We now focus on validating the three sequence algorithm using the simulation based cal-
ibration framework (Algorithm 5.8). For these tests the prior distribution structure p(q ,r) =
p(q)p(r|q) was used with q ⇠N (50,20) truncated to q 2 (0,100), and r ⇠N (q ,30) trun-
cated to r 2 (0,100). Initial values for the Markov chain were chosen uniformly on the same
interval. The proposal density for each parameter was a normal random walk with standard
deviations 7 and 9 for q and r respectively. We used N = 512 particles in each particle filter,
which had 31 fixed time steps in addition to those defined by the problematic mutations. The
results of the calibration simulation are shown in Figure 5.34.

The histograms summarise 3000 realisations of the Markov chain. More realisations would
be preferable but this was not computationally feasible in this case. Note that there are 51 bins
in this histogram as a result of pairing neighbouring bins, a practice advocated in [83] for
noise reduction, provided the ratio N/B of number of samples to number of bins remains, they
suggest, around the value 20. Even with pairing of bins, the resulting histograms are fairly
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Figure 5.34: SBC histograms examining the correctness of posterior samples taken from the three-

sequence particle filter.

noisy as a consequence of the low number of realisations. The large variations in bin count
indicate that the test may be underpowered. Nevertheless, while the histograms cannot prove
correctness, they do not highlight any significant failure in the algorithm. The histograms are
within the bounds of uniformity, and show no obvious trend or bias.

Once again, challenges were encountered in carrying out the SBC method. Principally, as
before, the choice of the number of iterations in the initial run was an issue. In addition, we
encountered the following problem. Though there are predictable signs one may look for in
the SBC histograms of posterior autocorrelations, where high autocorrelation is present and
where a small number of realisations must be used, it is less clear that one is looking at the
signs of autocorrelation, and therefore much time may be wasted on verifying code with no
errors. In addition, the choice of prior was again laboured over. This was partly a consequence
of the prohibitive cost of running the algorithm for large values of q . We therefore chose to
constrain the support of the parameters to the interval [0,100]. A consequence of truncating
the support in this way was that the performance of the algorithm became worse. This was
most likely due to using priors with the same variance as for a larger range of parameter values
and simply truncating their support. This has the effect of making the prior much flatter on the
remaining interval and so we reduced the standard deviation of the prior distributions, which
was beneficial for simulation based calibration. Finally, one feature of the approach became
quite apparent in this test. After carrying out a short run of the chain, the IAT estimate is
calculated and a new chain is run for (typically more) steps. As a result, the run time of the
calibration algorithm is highly stochastic. A chain with a sensible initial value and a little luck
could be run for twice as long after checking its integrated autocorrelation time. Another chain
may need to be run for 100 times longer. One might be tempted to simply end the calibration
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Figure 5.35: A comparison of the posterior distribution of the parameters (q ,r) derived from

running a two sequence pMMH algorithm, then incorporating an additional sequence from the

same population and running a three sequence pMMH algorithm. Notice the reduction in variance

of the three sequence algorithm.

after a finite number of hours, discarding and realisations that have not yet converged, yet
this seems unwise and mathematically indefensible as it biases the histograms towards high-
performing chains.

5.8.5 An additional sequence

We now consider the difference between the information gain in going from two sequences to
three sequences in the same population. More precisely, if one takes three sequences from a
population and runs the (boosted, three sequence) particle MCMC, then one removes one of
those sequences and runs the (VRPF based) particle MCMC for two sequences, what differ-
ence does this make to the posterior distribution of the parameters?

Figure 5.35 shows the posterior distributions derived from such an experiment. For both
parameters there is a decrease in the posterior standard deviation. One might expect this to
be the case; a priori three sequences contain more information about the genetic history of
the population than two, and so the posterior distribution ought to be more ‘certain’ in its
inference. On the other hand, as noted earlier, the strong genetic similarity between members
of the same population means there may only be a small gain to be made by considering more
sequences. The difference can be quantified by comparing the size of the HPD regions for
each approach in each plot of Figure 5.35. Another feature present that one might expect is
that the support for the posterior distribution of (q ,r) associated with using three sequences
lies within the support of the posterior distribution found through using two sequences.

It is possible, and we speculate, that perhaps this concentration of posterior distributions
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with the number of sequences implies that with more sequences one could relax the assump-
tions made in the choice of prior distributions. For instance if, as above, a normal distribution
was used for the prior distribution, then the variance of that normal distribution could be raised
as the number of samples considered increases. This would provide the practitioner with use-
fully precise results whilst only requiring of them a realistic level of certainty when eliciting
the prior distribution.





Chapter 6

Backward sampling and Metropolis
within particle Gibbs

In this chapter an adjustment is made to the particle filter algorithms established in Chapter
5 to allow sampling from smoothed trajectories of the PDPs, performed through so-called
backward sampling (introduced in [88]). An application of the method to PDPs is highly
non-trivial, though it has been tried in [68]. We derive again the approach for PDPs in full
and apply this to the two sequence VRPF discussed earlier. Backwards sampling for PDPs
has many potential applications outside of the models considered here, and so is of general
methodological interest. We are not aware of any other work applying smoothing approaches
to state space inference for coalescent models, and so there is novelty here.

Access to smoothed samples from the posterior distribution facilitates the use of very re-
cent, advanced particle MCMC techniques [5] that scale efficiently in the dimensions of the
data compared to traditional approaches. This property is naturally of keen interest to the
population geneticist; an algorithm that scales well in dimension could in theory be applied
relatively cheaply to a larger region of the genome, a challenge that is impracticable for many
common techniques of genomic inference. With further research it is hoped that such benefits
could be established for the particular case of the particle filters developed here for SMC’. We
present the concept and some computational experiments.

6.1 Smoothing

We now describe Monte Carlo smoothing (which we may also refer to as ’backward sam-
pling’) as developed in [88]. Consider a state-space model (SSM) with unobserved, Marko-
vian state (x

t

)
t�1 assumed to evolve according to x

t+1 ⇠ f (x
t+1|xt

) and observations (y
t

)
t�1
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with density y

t+1 ⇠ g(y
t+1|xt+1). We suppose f and g may be non-linear and non-Gaussian

but that they can be evaluated pointwise. The joint distribution of states and observations is
easily shown to be

p(x1:t ,y1:t) = f (x1)g(y1|x1)
t

’
i=2

f (x
i

|x
i�1)g(yi

|x
i

)

where x1 ⇠ f (·) is the initial state distribution. In many state-space problems the object of
inference is the so-called filtering density p(x

t

|y1:t). In contrast, smoothing aims to estimate
densities of the form p(x

t

|y1:T ) for any t 2 J1,T K . To this end, first consider the standard
factorisation

p(x1:T |y1:T ) = p(x
T

|y1:T )
T�1

’
t=1

p(x
t

|x
t+1:T ,y1:T ). (6.1)

The Markovian structure of the model permits the simplification

p(x
t

|x
t+1:T ,y1:T ) = p(x

t

|x
t+1,y1:t)

=
p(x

t

|y1:t) f (x
t+1|xt

)

p(x
t+1|y1:t)

µ p(x
t

|y1:t) f (x
t+1|xt

).

Running a particle filter forward in time on this SSM would produce at each time step
t 2 {1, . . . ,T} a sequence of weighted particles {x

(i)
t

,w
(i)
t

}
i2J1,NK approximating the filtering

distribution by the empirical distribution

p(x
t

|y1:t)⇡
N

Â
i=1

w

(i)
t

d
x

(i)
t

(x
t

).

Therefore a similar approximation may be found to p(x
t

|x
t+1:T ,y1:T ) through a simple modi-

fication of the existing forward-pass weights:

w

(i)
t|t+1 :=

w

(i)
t

f (x
t+1|x(i)

t

)

ÂN

j=1 w

( j)
t

f (x
t+1|x( j)

t

)
.

Assume a particle filter has been run forwards to obtain a sequence of weighted particles
{x

(i)
t

,w
(i)
t

}
i2J1,NK for t 2 {1, . . . ,T}, then the backward smoothing algorithm is given in Algo-

rithm 6.1. Note that the algorithm outputs a sample approximately drawn from p(x1:T |y1:T ).

Note that although the exact structure of this algorithm rests on the Markovian nature
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Algorithm 6.1 Backward smoothing

Input: A sequence of weighted particles {x

(i)
t

,w
(i)
t

}
i2J1,NK for t 2 {1, . . . ,T} from a forward

run of the particle filter.

1. With probability w

(i)
T

set x̃

T

= x

(i)
T

.

2. For t = T �1 to 1:

• Compute weights w

(i)
t|t+1 µ w

(i)
t

f (x̃
t+1|x(i)

t

) .

• With probability w

(i)
t|t+1 set x̃

t

= x

(i)
t

.

Output: The sample x̃1:T := (x̃1, . . . , x̃T

)

of the state process, this is in general not essential (e.g. [89]) and indeed a more elaborate
backwards filter is now presented for the case of particle filters for PDPs. Again consider a
deterministic series of times 0 = t0 < t1 < .. . < t

P

= 1, and let X

n

:=
⇣

K

n

,tn

0:K
n

,f n

0:K
n

⌘

be the
events occurring only in epoch n, that is the interval (t

n�1, tn], for n 2 N\{0}. For any integer
s 2 J1,PK let

µ(s) := min{l 2 Js+1,PK : k

l

6= 0}

denote the first epoch after the sth to contain an event, with the convention that min /0 = P+1.
Similarly, let

n(s) := max{l 2 J1,s�1K : k

l

6= 0}

denote the last epoch before the sth to contain an event, with the convention that max /0 = 0.
We will use the convention that X0 = (K0 = 0,t0

0 = 0,f 0
0 ) and (tn

0 ,f n

0 ) = (t
n�1,f

n(n)
Kn(n)

) for all
n and a particular realisation of the nth epoch of the process will be denoted x

n

. This defines
a non-homogenous, non-Markovian system with transitions

F

n

(x
n

|x
n�1) :=

8

<

:

S(tn

k

n

, t
n

;f n

k

n

)’k

n

i=1 f (tn

i

|tn

i�1,f n

i�1)q(f n

i

|f n

i�1) for k

n

> 0

S(t
n�1, tn;f n(n)

kn(n)
) for k

n

= 0

Along with the initial distribution

M(x0) := M(k0 = 0,t0
0 = 0,f 0

0 ) = 1{k0=0}1{t0
0=0}q0(f 0

0 )
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the posterior distributions of interest may be written

p
n

(x0:n) µ g(y(0,t
n

]|x0:n)M(x0)
n

’
j=1

F

j

(x
j

|x
j�1).

An application of the memoryless property of the Poisson process shows that for any t  t  t 0

the simplification S(t, t) f (t 0|t) = f (t 0|t) holds. Many such products occur in the posterior
distributions of interest, which now admit the following representation

p
n

(x0:n) µ g(y(0,t
n

]|x0:n)S(tn

k

n

, t
n

;f n

k

n

)M(x0)
n

’
j=1

k

j

’
i=1

f (t j

i

|t j

i�1,f
j

i�1)q(f
j

i

|f j

i�1)

where we have replaced the previous convention tn

0 = t

n�1 by a new convention tn

0 = tn(n)
kn(n)

. In
words, under the new convention the 0th transition of an epoch is the last event that happened.
The likelihood is assumed to factorise over any interval [0,T ] as

g(y[0,T ]|x0:P) =
m

’
i=1

g(y[a
i�1,ai

)|x0:P)

for any partition 0 = a0 < a1 < .. . < a
m

= T and m 2 N\{0}, and for any 0 r < s P we
have the conditional independence result

g(y[t
r

,t
s

)|x0:P) = g(y[t
r

,t
s

)|xn(r+1):s). (6.2)

Note that it is in fact possible to make the further simplification

g(y[t
r

,t
s

)|xn(r+1):s) = g(y[t
r

,t
s

)|xr+1:s).

This is because we have established convention that f r+1
0 = f n(r+1)

kn(r+1)
and therefore the informa-

tion from which the particle ‘sets off’ at t

r

is contained in x

r+1. However, this simplification
will be omitted hereafter for the sake of clarity.

We now address our specific approach to backwards sampling for PDPs. Recall that we
aim to use information from a forward run of a particle filter to sample approximate draws
from the smoothing distribution of the latent process. That is, we would like to be able to
sample approximately from the posterior distribution p

P

(x0:P) := p
P

(x0:P|y(t0,tP]), where the
dependence on the observations y will be suppressed for brevity. In the setting outlined above,
access to conditional distributions of the form p

P

(x
m

|x
m+1:P) for m 2 J0,P�1K was assumed

and these distributions led naturally to the smoothing distribution through the decomposition
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6.1. In the PDP setting such conditional distributions are not available. A distinct strategy is
as follows: by the definition of conditional probability, for any m 2 J0,P�1K, we have

p
P

(x0:P) = p
P

(x0:m|xm+1:P)pP

(x
m+1:P) (6.3)

where x0:P = (x0,x1, . . . ,xP

). If the conditional distribution p
P

(x0:m|xm+1:P) is tractable and
can be evaluated up to a normalising constant then it is possible to obtain approximate sam-
ples from the posterior distribution. Rather than using a single decomposition, as in equation
6.1, we apply the decomposition 6.3 for each m in sequence. To be precise, suppose a stan-
dard forward run of the particle filter is performed and a final state x

P

drawn (approximately)
from the filtering distribution p

P

(x
P

). Then it is possible to sample a history x

0
0:P�1 accord-

ing to p
P

(x00:P�1|xP

), giving together a particle x

0
0:P = (x00:P�1,xP

) approximately distributed
according to the smoothing distribution. Most of this particle however is simply taken in or-
der from the history of a particle in the forward pass of the algorithm. A more representative
sample from the smoothing distribution is found by applying this idea sequentially, backwards
through steps P to 0.

We now derive an expression for the conditional distribution p
P

(x0:m|xm+1:P). Notice that
since the m-step model prior can be written

F0,m(x0:m) = M(x0)
m

’
i=1

F

i

(x
i

|x
i�1)

it follows that

F

m+1,P(xm+1:P|x0:m) =
P

’
i=m+1

F

i

(x
i

|x
i�1).

Using the notation g(y[t
i

,t
j

)|x0:P) := G(t
i

, t
j

|x0:P), the smoothing distributions can be expressed
as

p
P

(x0:m|xm+1:P)

µ G(0, t
m

|x0:m)G(t
m

, t
P

|xn(m+1):P)M(x0)F0,m(x0:m)Fm+1,P(xm+1:P|x0:m)

µ p
m

(x0:m)G(t
m

, t
P

|xn(m+1):P)Fm+1,P(xm+1:P|x0:m).

Employing identity 6.2, and since n(µ(m)+1) = µ(m),

G(t
m

, t
P

|xn(m+1):P) = G(t
m

, tµ(m)|xn(m+1):µ(m))G(tµ(m), tP|xµ(m):P)
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where n(m+1)< µ(m) by definition. Finally, considering the dependence on x0:m, we find

p
P

(x0:m|xm+1:P)

µ p
m

(x0:m)G(t
m

, t
P

|xn(m+1):P)Fm+1,P(xm+1:P|x0:m)

µ p
m

(x0:m)G(t
m

, tµ(m)|xn(m+1):µ(m))Fm+1,P(xm+1:P|x0:m)

µ p
m

(x0:m)G(t
m

, tµ(m)|xn(m+1):µ(m))

8

<

:

f (tµ(m)
1 |t

m

,f n(m+1)
kn(m+1)

)q(f µ(m)
1 |f n(m+1)

kn(m+1)
) µ(m) P

S(t
m

, t
P

|f n(m+1)
kn(m+1)

) otherwise

This suggests the following backwards sampling algorithm, where w

m

corresponds to the
weights originating from the forward pass of the particle filter.

Algorithm 6.2 Backward sample smoothing for SMC’

Input: A sequence of weighted particles {x

(i)
t

,w
(i)
t

}
i2J1,NK at each time step t 2 {0, . . . ,P}

from a forward run of the particle filter.

1. Pick x

(i)
P

with probability w

(i)
P

.

2. Iterate over epochs m 2 {P�1, . . . ,0}:

• Compute the normalised weights

w

( j)
m|P µ w

( j)
m

G(t
m

, tµ(m)|t
µ(m)
1 ,f n(m+1)

kn(m+1)
( j))

⇥

8

>

<

>

:

f (tµ(m)
1 |t

m

,f n(m+1)
kn(m+1)

( j))q(f µ(m)
1 |f n(m+1)

kn(m+1)
( j)) µ(m) P

S(t
m

, t
P

|f n(m+1)
kn(m+1)

( j)) otherwise

• Sample i⇠ P(w
(1)
m|P, . . . ,w

(N)
m|P)

Output: The reconstructed particle x1:P.

Note that the algorithm produces an approximate realisation from p
n

(x0:n). For clarity we
now describe how this backward sampling algorithm works in the simplest case, that is P = 2,
the case of only two intervals. Suppose we run a forward particle filter and x

(3)
2 , the third

particle in the Pth interval is chosen by multinomial sampling according to the final weights
w

(i)
P

. Then, according to the equations given in Algorithm 6.2, one computes the backwards
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weights w

( j)
P�1|P as follows:

w

( j)
1|2 µ w

( j)
1 G(t1, tµ(1)|t

µ(1)
1 ,f n(2)

kn(2)
( j))

⇥

8

<

:

f (tµ(1)
1 |t1,f n(2)

kn(2)
( j))q(f µ(1)

1 |f n(2)
kn(2)

( j)) µ(1) P

S(t1, t2|f n(2)
kn(2)

( j)) otherwise

= w

( j)
1 G(t1, t2|t2

1 (3),f 1
k1
( j))

⇥

8

<

:

f (t2
1 (3)|t1,f 1

k1
( j))q(f 2

1 (3)|f 1
k1
( j)) µ(1) P

S(t1, t2|f 1
k1
( j)) otherwise

where for expository reasons we have included here an explicit dependence on the third parti-
cle in the 2nd interval with the notation (3) where appropriate. Using as a reference figure 6.1
it is clear that particle 3 in the second interval undergoes a positive number of recombination
events. Therefore the final weighs in this case would be given by

w

( j)
1|2 µ w

( j)
1 G(t1, t2|t2

1 (3),f 1
k1
( j)) f (t2

1 (3)|t1,f 1
k1
( j))q(f 2

1 (3)|f 1
k1
( j)).

Notice that for G(t1, t2|t2
1 (3),f 1

k1
( j)) we need only calculate the quantity

G(t1,t2
1 (3)|t2

1 (3),f 1
k1
( j))

i.e. the likelihood from the start of the second interval to the time of the third particle’s first
event, since from this point the likelihood is the same for every particle considered, regardless
of what position it arrived from in the prior interval.

A word of caution may be timely here. Algorithm 6.2 is easy to misunderstand when view-
ing the SMC’ as a collection of lines. Visualising the SMC’ process as a PDP was an insight
of great benefit to this point, and plots like Figure 6.1 serve as useful heuristics. However now
the SMC’ process is best thought of as a set of points and not as a step function. The reason
this can be misleading is that if one imagines the state x

n

carrying all the information about
the state in the region (t

n�1, tn] and that this state is represented by a step function stretching
from exactly t

n�1 to t

n

, then it is possible to confuse oneself with thoughts like “if I select
a new antecedent state x

n�1 to my now fixed x

n

, the lines won’t meet at t

n

.” This confusion
never arises if the process is thought of simply as a collection of jump times and heights (with
a recipe for visualising a step function from them, if you like).
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Figure 6.1: Generating a sample from the smoothing distribution in a simple case; note that the

positions of mutations have been omitted. Here, there are N = 3 particles and only two intervals,

[0,0.5] and (0.5,1]. On the right hand side the particles are labelled 1,2 and 3 - this is simply

the order in which they were generated. The lower plot shows (as a dotted line) an example of a

sample generated from the smoothing distribution; notice this sample is not present in the forward

paths generated by the particle filter.
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6.2 Estimating the likelihood ratio

A recent advance in particle MCMC methodology is now explored which makes use of the
smoothed samples, obtained through backwards sampling, to construct a very efficient sam-
pler. Recall that the acceptance ratio of the Metropolis Hastings algorithm is given for J ,J 0 2
Q by

a(J ,J 0) = min
⇢

1,
p(J 0)q(J 0,J)

p(J)q(J ,J 0)
L(J ,J 0)

�

where
L(J ,J 0) :=

pJ 0(M)

pJ (M)
(6.4)

is referred to as the likelihood ratio. In Chapter 5 a pseudo-marginal approach was adopted
in which the likelihood ratio was estimated by the ratio of estimates produced by independent
particle filters. That is, we estimated the likelihood ratio by L̂(J ,J 0) := p̂J 0(M)/p̂J (M)

where J ,J 0 2 Q are points in parameter space, and p̂J (M) is the positive, unbiased estimate
provided by the particle filter of the likelihood of observing mutations M. Note that the es-
timator p̂J (M) scales linearly in T , the dimension of the latent process (see e.g. [90]). In
contrast, [5] proposes an algorithm in which the likelihood ratio L(J ,J 0) is itself estimated
directly. A key benefit of this method is its efficiency, due to the stability afforded by es-
timating a stochastic ratio of two random quantities using a unique source of randomness.
Moreover it is shown in [5] that it is possible to use the method to design algorithms that scale
well in the dimension of the problem. Their approach relies on conditional sequential Monte
Carlo (cSMC) [6] in combination with annealed importance sampling (AIS) [91, 92]. We now
summarise the derivation of the likelihood ratio estimate.

Suppose the latent process (X
t

) takes values in (X,X ). Denote pJ (x1:T ) the posterior
distribution of interest given a parameter J . The approach first requires for any J ,J 0 2 Q
the choice of a family of ‘bridging’ probability distributions PJ ,J 0 = {pJ ,J 0,V ,V 2 [0,1]}
defined on (XT ,X⌦T ), as well as a non-decreasing function V(·) : [0,1]! [0,1] such that
V(0) = 0 and V(1) = 1. They are bridging in the sense that they satisfy the end point conditions
pJ ,J 0,0(·) = pJ (·) and pJ ,J 0,1(·) = pJ 0(·). Further, we require the following condition on the
support of the distributions: for any A 2 X⌦T , V ,V 0 2 [0,1] with V  V 0 we have

pJ ,J 0,V 0(A)> 0) pJ ,J 0,V (A)> 0.

In addition, define a family of transition probabilities RJ ,J 0 = {RJ ,J 0,V (·, ·) : XT ,X⌦T !
[0,1],V 2 [0,1]}, such that for any V 2 [0,1], RJ ,J 0,V (·, ·) leaves pJ ,J 0,V (·) invariant. Now
it is possible to choose a number of bridging distributions K and define the sub family of
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distributions
PJ ,J 0,K := {pJ ,J 0,V( k

K+1 )
,k 2 J0,K +1K}⇢PJ ,J 0

with concomitant transitions RJ ,J 0 = {RJ ,J 0,k(·, ·) : XT ,X⌦T ! [0,1],k 2 J0,K +1K}. Here-
after we write pJ ,J 0,k = pJ ,J 0,V( k

K+1 )
for simplicity. Setting u := x1:T , a Markov chain is defined

by U0 ⇠ pJ and for k � 1, (U
k

|U
k�1 = u

k�1)⇠ RJ ,J 0,k(uk�1, ·). Observe that the joint distri-
bution of the chain is given by

pJ (u0)RJ ,J 0,1(u0,u1) · · ·RJ ,J 0,K(uK�1,uK

)

so that by taking the integrals with respect to u0,u1, . . . in order it is easy to show

E

 

K

’
k=0

pJ ,J 0,k+1(Uk

)

pJ ,J 0,k(Uk

)

!

=
Z

K

’
k=0

pJ ,J 0,k+1(uk

)

pJ ,J 0,k(uk

)
⇥pJ (u0)RJ ,J 0,1(u0,u1) · · ·RJ ,J 0,K(uK�1,uK

)du0 · · ·du

K

=
Z



pJ (u0)

pJ ,J 0,0(u0)
⇥ pJ ,J 0,1(u0)RJ ,J 0,1(u0,u1)

pJ ,J 0,1(u1)
⇥

pJ ,J 0,K(uK�1)RJ ,J 0,K(uK�1,uK

)

pJ ,J 0,K(uK

)
⇥pJ ,J 0,K+1(uK

)

�

du0 · · ·du

K

= 1.

Where the normalised density is unavailable, but we have access to pointwise evaluations of
an unnormalised version gJ ,J 0,V = ZJ ,J 0,V pJ ,J 0,V , notice that we have the identity

K

’
k=0

gJ ,J 0,k+1(Uk

)

gJ ,J 0,k(Uk

)
=

K

’
k=0

ZJ ,J 0,k+1pJ ,J 0,k+1(Uk

)

ZJ ,J 0,kpJ ,J 0,k(Uk

)

=
K

’
k=0

ZJ ,J 0,k+1

ZJ ,J 0,k

K

’
k=0

pJ ,J 0,k+1(Uk

)

pJ ,J 0,k(Uk

)

=
ZJ ,J 0,K+1

ZJ ,J 0,0

K

’
k=0

pJ ,J 0,k+1(Uk

)

pJ ,J 0,k(Uk

)

whereupon it follows that an unbiased estimate of ZJ ,J 0,K+1/ZJ ,J 0,0 is given by ’K

k=0
gJ ,J 0,k+1(Uk

)

gJ ,J 0,k(Uk

) .
In other words, when gJ ,J 0,0(x1:T )= pJ (x1:T ,y1:T ) and gJ ,J 0,1(x1:T )= pJ 0(x1:T ,y1:T ), we have
a method of obtaining an unbiased estimate L̂(J ,J 0) of the likelihood ratio L(J ,J 0) given in
Equation (6.4). The AIS algorithm is quoted from [5] in Algorithm 6.3, which to avoid bias
should be started from a path x1:T ⇠ pJ (·). Notice that the variance of the estimate will be
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Algorithm 6.3 AIS(x1:P,PJ ,J 0 ,RJ ,J 0 ,K)

Input: x1:P,PJ ,J 0 ,RJ ,J 0 ,K

1. Set u0 = x1:P

2. for k = 1, . . . ,K:

• Sample u
k

⇠ RJ ,J 0,k(uk�1, ·)

3. Compute the estimate

L̂(J ,J 0) =
K

’
k=0

gJ ,J 0,k+1(uk

)

gJ ,J 0,k(uk

)

Output: (L̂(J ,J 0),u
K

).

smaller when J and J 0 are close, provided the model is sufficiently smooth in the parame-
ter J , since the end point densities pJ (·) and pJ 0(·) will be ‘similar’. Indeed it may be that
smaller values of K can be tolerated in this case. We now explain our interest in this context in
cSMC algorithms. The cSMC update, proposed in [6], is a sequential Monte Carlo algorithm
in which one of the path trajectories is fixed. Its transition kernel is pJ invariant and so it is
now often studied in the context of MCMC algorithms [93, 94]. As with all sequential Monte
Carlo methods, the resampling within cSMC can cause sample impoverishment or degener-
acy. A crucial consequence of this is that for particle paths x

(i)
P

at time P, while there may
be great diversity in the paths at the more recent end of the paths, there will be little diversity
across the particles for x

(i)
m

where m is much less than P. One solution, suggested in [95],
involves combining cSMC with backwards sampling - this is given in Algorithm 6.4 for the
two sequence SMC’ algorithm. Note that BS is chosen to be true when backwards sampling
is desired. The cSMC algorithm is known to be reversible with respect to the target density
pJ (·) with backwards sampling or without [93, 96]. Finally, the AIS (Algorithm 6.3) with
transition kernels given by the cSMC with BS = True is referred to as AIS-cSMC.

6.3 Scalable inference

The ideas presented in this section is largely a summary of others’ work. However, the rel-
evance of this new methodological work to the coalescent application is to the best of our
knowledge original and we believe of scientific interest.
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A central issue with the pseudo-marginal method, or more specifically the particle marginal
Metropolis-Hastings (PMMH) algorithm explored in Chapter 2, is that its performance de-
pends heavily on the quality of the likelihood estimate used in the ratio (6.4) in place of the
true likelihood. In the context of PMMH this means that often in practice large numbers of
particles are required in the filter to guarantee a likelihood estimate of low enough variance.
Moreover to maintain a given likelihood estimate variance as the dimension P of the state
space model increases, N should increase linearly with P.

Algorithm 6.5 is proposed in [5] as an alternative method for sampling from the joint dis-
tribution p(J ,x1:P). Note that q represents the proposal distribution of the parameter and h
the prior distribution. They show that the algorithm is reversible with respect to p(J ,x1:P) for
any K � 0. In fact, taking K = 0 one obtains a reducible algorithm where x1:P is not updated,
only J . Following this reasoning, one can imagine (as is done in Gibbs sampling) alternately
updating J using Algorithm 6.5 with K = 0, then updating x1:P using a cSMC update (Algo-
rithm 6.4). One could use the cSMC with or without backwards sampling for this purpose,
though it is shown in [5] experimentally that MCMC-AIS is only efficient when cSMC-BS
can be implemented and moreover only where cSMC-BS is an efficient choice. They term
this approach Metropolis-within-Particle-Gibbs (MwPG) and its application to SMC’ is now
explored further. It may be possible, as is the case for models satisfying certain assumptions
in [5], that the computational cost of the algorithm as the length of sequence increases could
be favourable compared to the PMMH approach. If this is correct, it may follow that large
regions of genome could be considered for a small increase in computing time. This is by no
means certain but would be an idea well worth pursuing in future research.

We now apply the MwPG to real genetic data sequenced from cichlid fish from Lake Ita-
mba, an isolated crater lake in Tanzania. The data itself comes from the study [97]. For
computational ease genetic data only up to the first 200 SNPs was used for these simulations.
Figure 6.2 shows the posterior distributions derived from the approach developed in this chap-
ter for two sequences. We note that the convergence of the algorithm is excellent, if only
for a short sequence and that for the particular sequences chosen, at least in the region of the
sequences considered, the algorithm seems to show fairly confidently that the recombination
rate is lower than the mutation rate.

Finally, we address validation of the MwPG algorithm using the simulation based cali-
bration approach described in Section 5.8.1. The results are shown in Figure 6.3, which was
generated using particle filters with N = 256 particles and P = 20 epochs. The prior distribu-
tion used for the parameters was p(q ,r) = p(r|q)p(q) where q ⇠ N(100,60), truncated to
[0,200], and r ⇠ N(q ,60), also truncated to [0,200]. A normal random walk was used for the
proposal density, with standard deviations 6 and 8 for q and r respectively. Initial values for
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Figure 6.2: Posterior distribution trace plots and density estimates for the two sequence algorithm

on two individuals from the Itamba dataset. M = 3⇥ 104
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Figure 6.3: SBC histograms examining the correctness of posterior samples taken from the MwPG

algorithm.
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the Markov chain were chosen uniformly at random on the support of the prior distributions.
Appraising the results visually, there appear to be no drastic deviations from uniformity,

which is reassuring. Due to computational limits, the test was only run for 3000 realisations,
and so it is not surprising that the histograms exhibit fairly large variability even when neigh-
bouring bins have been paired. There is however no clear pattern or trend to be observed in the
counts. Therefore we conclude that there is no major issue, for example a large bias, present
in the algorithm.
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Algorithm 6.4 Two sequence cSMC for SMC’
Input: Number of particles N, number of epochs P, a particle x1:P.
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Algorithm 6.5 AIS
Input: Current sample (J ,x1:P)

1. Sample J 0 ⇠ q(J , ·)

2. Generate (x01:P, L̂(J ,J 0)) according to AIS(x1:P,PJ ,J 0 ,RJ ,J 0 ,K) (Algorithm 6.3)

3. Return (J 0,x01:P) with probability

min
⇢

1,
q(J 0,J)

q(J ,J 0)
h(J 0)
h(J)

L̂(J ,J 0)
�

otherwise return (J ,x1:P).

Output: New sample (J 0,x01:P)



Chapter 7

Conclusion

The work presented in this thesis has primarily centred around the search for a general and
flexible particle Markov chain Monte Carlo method that can be applied to the sequentially
Markov coalescent model from population genomics.

In Chapter 2 we explored pseudo-marginal Metropolis-Hastings (PMMH) algorithms [1,
2] and discussed existing strategies to mitigate any poor performance resulting from use of a
likelihood estimate of high variance. We demonstrated that a particular strategy, rejuvenation,
has desirable properties and we proved that in particular the efficiency of this strategy can be
no worse than the original algorithm (and in practice may be substantially better).

In Chapter 3 a review of some topics in discrete spectral theory was presented. We ex-
plored the utility of the Dirichlet form as a mechanism for understanding the spectral gap of
an operator. Using strategies from the theory of majorisation we proved an ordering on the
asymptotic variance and right spectral gap of the iterated importance-sampling rejuvenation
kernel.

Chapter 4 comprised a review of some essential population genetics models and their role
in the development of coalescent theory, providing the necessary background for the work of
Chapter 5, in which a particle MCMC approach was developed. First, we recast the SMC’
model as a piecewise deterministic Markov process and studied existing algorithms for such
processes. An algorithm termed the variable rate particle filter was shown to work well for
the two sequence case. For three sequences extensions to existing models were required. We
developed an approach termed the boosted particle filter that was able to ‘look ahead’ at up-
coming mutations in the sequence and propose particle paths consistent with these mutations,
thus ‘boosting’ the number of particles of positive weight in intervals with problematic muta-
tions. This was shown to reduce considerably the variance of the likelihood estimated when
compared to a naive algorithm.

Following this, the particle filter methods were placed in the context of a PMMH in order to



164 Conclusion

carry out posterior inference on the mutation and recombination rate parameters that generated
the model, satisfying our original aim in this project.

In Chapter 6 we derived a backwards sampling approach for the piecewise determinis-
tic Markov processes considered. In turn this allowed us to consider a recent state-of-the-
art pseudo-marginal method, an alternative to the PMMH framework that can scale very
favourably with the dimension of the problem.

7.1 Future research

A natural question is whether the particle filter approach derived is amenable to generalisation
with respect to the number of sequences. Certainly, we believe there is no restriction in prin-
ciple to the number of sequences that one may consider simultaneously using this technique.
In practice, because for three or more sequences an importance sampling proposal will be re-
quired (a consequence of the problematic mutations), the challenge in increasing the number
of sequences will be in calculating the state transition density. As was evident in Chapter 5,
calculating the transition density for three sequences was cumbersome and the problem only
grows as the number of sequences increases. However we are optimistic that there may exist
strategies to facilitate increasing the number of sequences. For example, since the ancestral
recombination graph (ARG) for four individuals contains the ARG for three, it seems natural
that there is some kind of recursive structure to coalescent models that could be exploited to
find tractable expressions for the transition density more easily. Another possibility is that the
process could be automated. As was demonstrated in Chapter 5, the transition density may
be written down directly from the description of the coalescent algorithm (SMC’ in this case).
Once it has been ‘transcribed’ from its algorithmic form, following through the calculations
is mechanical and there exists software for this purpose. It is possible that the calculations
following from transcribing the algorithm may contain intractable integrals, precluding such
an approach. It is unclear whether this will occur in reality, though it seems unlikely as for the
two and three sequence cases almost all the terms in the transition density were exponential
functions or convolutions of exponential functions, which are in general straightforward to
integrate in many scenarios.

We must also ask whether there is a limit to the number of sequences that it is beneficial to
consider. Increasing the dimension of a statistical problem will always incur a penalty of some
type, so one must carefully select the number of sequences so that it remains beneficial overall.
For coalescent type models it is possible to argue that this number may not be very large.
For example, a result from [98] shows that for a simple Wright-Fisher model, considering a
sample of i individuals in the present day, the probability that their common ancestor is also
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the common ancestor of the whole population t time units in the past is given by

e

�t

i�1
i+1

This value is, remarkably, independent of the size of the population and may give us a sense
of the size of sample needed for inferences about a sample to hold for the entire population.

i 2 3 4 5 6 7
i�1
i+1 0.333 0.5 0.6 0.666 0.714 0.75

We note that it only requires four sequences to be more sure than not that the most recent
common ancestor (MRCA) for your sample is the MRCA for the entire population from which
they come. Moreover it has long been known [58] that increasing the number of sequences
considered is less important than making use of all the information in each sequence. This
is because we study members sampled from a single population, who naturally will have
very strong correlation in their DNA since they are closely related. In summary, though of
course it is desirable to be able to perform (for example) whole population genome studies
using coalescent techniques, we must also ask what opportunities are there to make best use
of the data one has, as opposed to using more? This is arguably particularly salient for the
coalescent as it seems unavoidable that more sequences will entail a considerable increase in
computational complexity, even if it is possible.

Finally, it would be particularly interesting in future research to look deeper into the results
of Chapter 6, and the possibility that the particle filters developed may possess properties that
allow them to benefit from the improved scaling of the annealed importance sampling MCMC
approach of [5]. This is of course by no means guaranteed but the asymptotic variance results
observed in simulations do suggest some improvement is being conferred.
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Appendix A

Omitted proofs

A.1 Asymptotic variance and integrated autocorrelation time

Recall first that by definition, and using the shorthand f̄ (F
i

) := f (F
i

)�µ f ,
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Since the Markov chain is assumed to be at stationarity, we have Varµ ( f (F
k

)) = s2
f

for all
k � 0, where s2

f

:= µ f

2� (µ f )2 . Using this stationarity and denoting by r
k

the correlation
coefficient between the random variables f (F0) and f (F
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), it follows that
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Reversing the order of summation yields
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Taking the appropriate limit gives the required
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A.2 Jensen’s Inequality

Denote (l
i

)
i2J1,nK a set of likelihood estimates produced from running a VRPF independently

n times. A non-rigorous argument is now provided. As a consequence of Jensen’s inequality
and the concavity of log(·):

log(l) :=
1
n

n

Â
i=1

log(l
i

)

 log(
1
n

n

Â
i=1

l

i

)

=:
log(l̄).

Therefore averaging the log-likelihood estimates (like in Figure 5.5) is guaranteed to be upper
bounded by the logarithm of the average of the likelihood estimates. Suppose the true like-
lihood is l

⇤ = 500. In order to model unbiased estimates we will use a gamma distribution.
Supose l̃

i

⇠iid Gamma(k,g) so that the probability density function is given by

f
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;k,g
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k�1
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e
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where G(·) is the gamma function. Notice that taking k = 1/g ensures E(l̃
i

) = 1, and that
Var(l̃

i

) = g . We now consider an experiment where an independent set of likelihood esti-
mates (l̃

i

)
i2J1,nK derived using the same particle filter are assumed to have distribution l̃

i

⇠iid

Gamma(1/g,g) for parameter values g 2 {0,2�2,2�1,20,21} = {0,0.25,0.5,1,2}. Now de-
fine l

i

= 500⇤ l̃

i

. Where we have written g = 0 we really mean l

i

= l

⇤ for all i. The results of
the experiment are shown in Figure A.1. In the left plot are the artificial ‘likelihood estimates’
and on the right are the corresponding ‘log-likelihood estimates’. In other words, each point
in the left plot is given by 1

n

Ân

i=1 l

i

where l

i

/500 ⇠iid Gamma(1/g,g), whereas the right plot
shows 1

n

Ân

i=1 log(l
i

) where we have used n = 1⇥106. The whole experiment is repeated four
times at each value of g and lines join the first attempt at each value of g , the second attempt,
and so on. Using lines in the first plot gives a sense of the random fluctuation around the
mean. Of course, as the likelihood estimate is unbiased, these fluctuations average to roughly
the correct value (shown in dotted red). On the other hand, the average of the log-likelihood
estimates displays a concave behaviour, tending towards the true value log(l⇤) as the variance
of the estimates decreases. This is analogous to increasing the number of particles used in the
particle filter. Moreover the four runs of the experiment have given almost identical results on
the log scale.
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Figure A.1: A comparison of the likelihood and log-likelihood of an imagined particle filter.
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