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ABSTRACT

Belief Propagation is a message-passing algorithm used to propagate information in prob-
abilistic graphical models. In 2014 it was shown that, in theory, Belief Propagation can be
applied to Side Channel Analysis through an approach in which one can recover informa-

tion on the secret data of a cryptographic encryption algorithm by observing variations in power
consumption or electromagnetic radiation.

In this thesis we explore the viability of such an attack in a real-world scenario and devise
implementations to make the approach tractable in terms of its algorithmic and data complexity.

We explore the construction of a factor graph (a bipartite graphical representation) of the
AES cryptographic algorithm, showing that not all leakage points are useful in an attack. We
propose implementation improvements that significantly reduce its memory overhead. We also
provide a method that guarantees convergence at the cost of a small amount of information loss.
We demonstrate that a combination of these proposed methods yields a significantly improved
attack in terms of memory complexity and practical runtime.

Neural networks have been applied to assist profiled side channel attacks. We contribute
a new application of neural networks for inference based attacks in which we train networks
for the variable nodes existing in the factor graph representation of AES. We show that popular
network structures do not guarantee positive results and demonstrate that choice of performance
metrics is critical in order to obtain stable results.

Our analysis indicates that there is no ‘one size fits all’ model. However, we produce a network
that yields reasonable classification across all important intermediates. The results are compared
to other profiling methods in two ways: through per-trace classification, and a combined approach
using the Belief Propagation algorithm. We observe that the neural network assisted Belief
Propagation attack outperforms classical profiling methods such as Gaussian Templating and
Linear Discriminant Analysis.
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1
INTRODUCTION

1.1 Research Motivation

The most ubiquitous cryptographic device in the world is the smart card, with the market

exceeding 10 billion units this year (2019). With all their applications, one would expect security to

be the highest concern. Unfortunately for consumers, these devices are vulnerable to exploitation

via side channel attacks; an attack based on information gained from the implementation of

some cryptographic algorithm, rather than the algorithm itself. These side channels take many

forms; power consumption, electromagnetic radiation, timing information, or even sound [3] and

light [4]. When data-dependent information ‘leaks’ through these side channels, a malicious user

can use statistical analysis to recover secret data used within the cryptographic algorithm.

Both academia and industry started looking into this in detail after the Kocher et al. paper

Differential Power Analysis [5]. Countermeasures to naive attacks have been implemented

and manufactured, but the cycle continues as more sophisticated attacks are researched and

demonstrated on these newly manufactured devices. The more attacks are highlighted in the

research community, the harder industry has to work to secure the devices.

At the time of writing, most consumers have access to a great deal of compute power, through

multi-core CPUs and powerful GPUs. Such hardware can be utilised by a malicious user to accel-

erate and improve the effectiveness of a side-channel based attack. Previous work has explored

how one might harness the power of GPUs in effective ways [6]. The ‘SASCA’ attack [7] claims to

be the theoretically optimal attack, by targeting every single leaking point in a cryptographic

algorithm, effectively maximising the information extracted from a single trace. This is known

as an inference-based attack, an attack that combines information from multiple leakage points

to target the secret data (also referred to as a ‘multivariate’ attack). The reason this warrants

further study is that by understanding the ‘most powerful’ adversary, we are able to evaluate and
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improve the ‘worst case’ security.

Deep Learning, the widely used method of image classification [8], has been applied to side

channel analysis a great deal in recent literature, and is praised for its classification prowess.

Again, previous work has utilised deep learning in the context of side channel analysis [9–14],

but as of yet it has not been applied to an inference-based attack, and certainly not the Belief

Propagation Attack as proposed by Veyrat-Charvillon et al. [7]. Belief Propagation is a well known

message passing algorithm, used to propagate information around a bipartite graph known as a

‘factor graph’, allowing information combination from multiple sources. The two powerful tools

(Belief Propagation and Deep Learning) seem to partner exceptionally well together, so this thesis

aims to combine the two and create a powerful inference-based attack using neural networks as

a classification tool.

1.2 Research Contributions

Our first contribution takes the form of a number of improvements to the Belief Propagation

algorithm when applied to side channel analysis. As a frame of reference, to run the experiments

included in this thesis (described in Chapter 4) on an Intel i7-4790 CPU @ 3.60GHz (8 cores)

with 16GB RAM, the implementation of the Belief Propagation Attack as proposed by Veyrat-

Charvillon et al. [7] takes 25 hours. The first improvement is a criterion that, if met, will allow

the Belief Propagation to terminate early (without affecting the attack results). This is achievable

by observing the quantity of information passing to the key nodes after a number of iterations. By

using this improvement, we cut the expected runtime in half (12 hours using the above example).

The second is a method to detect erroneous traces. This is possible in a known plaintext attack,

as we compare the belief on our plaintext nodes with prior knowledge. A mismatch (over a certain

threshold) signifies error, and by discarding this trace, we improve the success of our attack.

The third improvement, and the most effective, is the introduction of the ‘importance’ metric

applied to variable nodes; that is, we show that different nodes provide different quantities

of information (depending on their location and leakage quality), and this can be computed

efficiently. By considering how much information each node provides, we can discard the nodes

that give us negligible to no information, drastically reducing the graph size from the original

proposal.

We then conclude our Belief Propagation algorithm analysis by exploring some further

techniques: we explore the effect of removing cycles from the factor graph, which results in

guaranteed convergence, at the cost of minimal information loss. We propose novel methods

to connect multiple traces together, and we present our result with the greatest success: the

Independent Factor Graph method, which computes the Belief Propagation algorithm on each

trace independently, combining beliefs after termination. This reduces the memory space of the

attack by a considerable margin, and is the preferred method for users with limited compute
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power. Primarily, these improvements were developed using simulated data, but in order to test

the effectiveness on real trace data, we extracted power measurements from an ARM Cortex-M0

running the AES FURIOUS implementation.

Our attention then turns to the classification step of the Belief Propagation attack. We

compare the standard univariate templating method to the multivariate Linear Discriminant

Analysis (machine learning algorithm using statistical methods to classify data), showing that the

multivariate classification method improves on the Gaussian (normally distributed) univariate

templates. We then go a step further, and shift our focus to Deep Learning; we aim to build

Neural Networks for all intermediates in AES (that have been shown to be important in this

work’s previous contribution). In contrast to other work, we concentrate the tuning of our deep

networks to maximise the per trace classification performance (instead of using a batch of test

traces).

Our findings confirm that the ‘no free lunch’ theorem may have a role to play here: across

all intermediates, there is no clear winner for the ‘best’ classification method (out of Gaussian

univariate templates, Linear Discriminant Analysis, and Neural Networks). We find this to

be true even for the same type of intermediate (e.g. the leakage corresponding to bytes during

an early step of AES known as ‘SubBytes’): different algorithms perform differently across the

various intermediates. Another interesting aspect of our work is related to the choice of metric

used to judge the classification performance of a network. Initially we utilised the “median

rank” metric (as utilised by Prouff et al. in Study of Deep Learning Techniques for Side-Channel

Analysis and Introduction to ASCAD Database [15]) to judge the classification performance,

and by doing so selecting the best network configuration (hyperparameters). When we used the

“median rank” metric, the produced networks behaved in a rather arbitrary and poor manner

when we trained them for different intermediates. We switched to using the “median probability”

as a measure and re-discovered the best hyperparameters for a network learning the leakage

related to SubBytes: this particular network configuration was able to learn the leakage for all

other intermediate values very efficiently. Thus our conclusion is that although neural networks

aren’t always the best classifier for all the intermediates in AES, they do provide the best success

when used in combination with the Belief Propagation Attack.

1.3 Thesis Outline

Chapter 1 serves as the Introduction chapter, complete with the motivation of this thesis, the

contributions, and the outline you are currently reading.

Chapter 2 covers the Preliminaries required to understand the contributions made in this the-

sis. This includes an introduction to Side Channel Analysis, an overview of the Belief Propagation

algorithm, and an introduction to Deep Learning as a classification technique.

Chapter 3 contains the Related Work section, providing in-depth analysis of the literature
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used during the development of this thesis. This is split up into sections according to content,

covering papers on general side channel analysis, Belief Propagation when specifically applied to

side channel analysis, Deep Learning, and an assortment of miscellaneous papers that do not

comfortably fall into the previously listed categories.

Chapter 4 is the first original contribution chapter, and contains the experiments and contribu-

tions of the Belief Propagation Algorithm. After the introduction in Section 4.1, we first go

into detail on how we implemented the Belief Propagation algorithm in Python in Section 4.2.

Our Belief Propagation Attack (BPA) contributions are contained within Sections 4.4 to 4.8. Each

section is split up into an introduction, experimental results, and a conclusion.

In Section 4.4 we propose an additional termination criterion to improve the practical ef-

ficiency of the Belief Propagation Algorithm. In Section 4.5 we propose a method to detect

erroneous traces during the Belief Propagation Attack, and to discard these traces before they

detrimentally affect the attack success. Section 4.6 studies the different methods of connecting

multiple traces together, and proposes two novel techniques that reduce the memory complexity

required in the original proposal of the algorithm by Veyrat-Charvillon et al. [7]. Section 4.7

studies the effect of removing nodes from the factor graph representation, the effect of which

has not previously been studied in the context of side channel analysis. One of the greatest

contributions made in this thesis is the introduction of the ‘importance’ metric, from which we

can identify nodes that can be safely excluded from the analysis in order to significantly reduce

computational complexity without adversely affecting the outcome. We make suggestions for

when and how to remove certain nodes, which follows into Section 4.8 where we show that by

removing cycles in the factor graph, we can guarantee convergence. Convergence is ideal in

Belief Propagation, as it guarantees full information propagation around the factor graph, and

prevents the ‘chaotic’ information fluctuation (see ‘Evidence of chaos in the Belief Propagation for

LDPC codes’ [16]). We explore what convergence means in the context of side channel analysis,

and provide experimental results comparing the effectiveness of a Belief Propagation attack on

different graph sizes.

Chapter 5 is our second original contribution chapter, and serves as a description of how to attack

Real Data. After the introduction in Section 5.1, we describe the practical setup in Section 5.2.

This includes all peripherals we used, and the specifications of each. Using this setup, we extract

traces from the target device, which we parse using our own code; this is described in Section 5.3.

Our univariate templating method is described in Section 5.3.7, along with implementation

details.

We compare the trace data extracted from the real device to the simulated data using ELMO

(the leakage simulation tool [17]) in Section 5.4, complete with comparison figures. Section 5.5

introduces Linear Discriminant Analysis (LDA), a multivariate classification tool which improves

on the standard univariate templating approach. We find the optimal power value window for

the LDA classifiers, and then we compare a BP attack using LDA to the Gaussian templates,
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showing the improvement that multivariate templating provides.

Chapter 6 is the final original contribution chapter of this thesis, and covers all work under-

taken in the area of Neural Networks. We introduce neural networks in the context of side

channel analysis in Section 6.1, along with the introduction of the ‘No Free Lunch’ theorem.

Implementation details are contained within Section 6.2, and we additionally refer to the ASCAD

GitHub page [18] for further implementation details.

The starting point for our work on neural networks was the paper titled Study of Deep

Learning Techniques for Side-Channel Analysis and Introduction to ASCAD Database [15].

We provide an in-depth analysis of this paper in Section 6.3, focusing on how the authors

constructed their networks, and how well the networks fared when classifying our own data

(referred to as the M0 data). After concluding that we must construct our own network in a

similar fashion, we experiment with different hyperparameter values in Section 6.4. This section

is a compilation of separate experiments focusing on one hyperparameter at a time; we describe

what the hyperparameter controls, which values we chose to test, which value was chosen as the

best, and a conclusion of our observations.

The results in this section highlighted some shortcomings in the pre-existing measures of

effectiveness. This prompted us to re-evaluate this metric in Section 6.5, and ultimately develop

a new metric: per trace intermediate classification probability. We compare the old metric to

the new metric and provide figures to show the large improvement we achieve on intermediate

classification using our new superior metric. We then train networks for all intermediates and

mount a Belief Propagation attack using them as classifiers in Section 6.6. We conclude with a

plot showing a successful neural network assisted Belief Propagation attack that outperforms all

of our previous attacks.

Chapter 7 contains the Concluding Remarks. We draw on the conclusions made in the original

contribution chapters, listing the proposed improvements along with their respective performance

benefits. We then provide an assessment of contributions, relative to related work in the field of

Side Channel Analysis. We end the thesis by proposing novel areas of future work that would

expand on the work done within this thesis.

1.4 Publications

A Systematic Study of the Impact of Graphical Models on Inference-Based Attacks on AES, Long

Paper [19], CARDIS 2018 version [2]

Not a Free Lunch but a Cheap Lunch: Experimental Results for Training Many Neural Nets,

submitted to CT-RSA 20th September 2019

In both submissions I was responsible for writing the code, carrying out the experiments,

analysing the results, and contributing to the text.
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2
PRELIMINARIES

The preliminaries chapter serves to introduce the core ideas and concepts behind this

thesis. The application of these concepts in related work will be described in Chapter 3.

2.1 The ARM Cortex-M0

The microprocessors used most widely in commercial smart card readers belong to the ARM

Cortex family. The ARM Cortex processor family is split up into categories: the Cortex-A CPUs,

which are built for performance at the cost of a large amount of power; the Cortex-R CPUs,

which are built for reliability and resilience for ‘mission-critical’ performance; and the Cortex-M

CPUs, built for energy efficient embedded devices. The ARM Cortex-M0 processor is the smallest

processor of the ARM Cortex-M group, and indeed the entire ARM Cortex processor family.

It uses a 32-bit von Neumann architecture with a three stage pipeline, and implements

the ARMv6-M Thumb instruction set. This includes the majority of the standard 16-bit Thumb

instruction set, as well as a number of 32-bit Thumb2 instructions. We use the ARM Cortex-M0

as our target CPU throughout this thesis due to its widespread commercial use, running an 8-bit

implementation of AES.

2.2 The Advanced Encryption Standard

The Advanced Encryption Standard (AES), previously known as Rijndael [20], is a symmetric

key encryption algorithm. All experiments used in the content chapters of this thesis target AES

as the cryptographic encryption algorithm; specifically, AES-128 (using a 128 bit key).

AES-128 takes a 128 bit key and a 128 bit plaintext as input (often the key is ‘hardcoded’ into

the target device, so the only input required is the plaintext). The key and plaintext are modelled
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as a square block of 16 bytes, ordered as shown in Figure 2.1

0
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7
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13

14

15

Figure 2.1: 128 bits represented as a block of 16 numbered bytes

The following provides a high-level overview of the AES algorithm, accompanied by Figure 2.2:

1. KeyExpansion, where the 10 ‘round keys’ are derived using Rijndael’s key schedule (a

series of operations using the initial 16 key bytes); these ‘round keys’ (each a 16 byte block)

will be used in the AddRoundKey steps

2. Initial AddRoundKey (AK), where the plaintexts bytes are XORd with the first round key

bytes

3. SubBytes (SB), byte-wise substitution of the current state bytes, often using a lookup table

hardcoded on the device known as a Substitution Box (SBOX S)

4. ShiftRows (SR), transposition of rows (not a focus point of this thesis as, in practice, can be

combined with the following step)

5. MixColumns (MC), a linear mixing operation that operates on the four bytes in each column

of the state bytes

6. AddRoundKey, as before, but using the next round key

7. Repeat from the SubBytes step for 8 further rounds (9 rounds total)

8. Final round of SubBytes, ShiftRows, and AddRoundKey (no MixColumns)

Round function f

AK SB

S

x
x
x
x

SR

C ←M×C

x
x

x
x

MC

wi−1 xi yi zi wi

Figure 2.2: A diagram of one round of AES, where wi is the state byte block in AES round i (w0
is the plaintext input, and w10 is the ciphertext output)
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The output (final sixteen state bytes) is referred to as the ciphertext. The implementation we

use in this thesis is named AES FURIOUS [21], designed for fast AES implementation on AVR

microcontrollers.

2.3 Introduction to Side Channel Analysis

Side Channel Analysis (SCA) targets information gained from the implementation of some cryp-

tographic algorithm, rather than the algorithm itself. Side channels can take many forms; for

instance, in 1996, Paul Kocher published a paper with the title ‘Timing Attacks on Implementa-

tions of Diffie-Hellman, RSA, DSS, and Other Systems’ [22]. The paper introduced a method of

exploiting the implementation of a cryptographic algorithm through observing the time it takes

to perform the encryption step. Algorithms that change their flow of execution depending on the

value of secret data are vulnerable to this attack. For example, observe Algorithm 1.

Algorithm 1: Foobar encryption, sets all bits to 0
Input: A string of bits B = {b0,b1, . . . ,bn}, bi ∈ {0,1}
Output: An ‘encrypted’ string of bits C = {c0, c1, . . . , cn}, ci ∈ {0,1}

1 for i ← 0 to n do
2 ci ← bi
3 if ci == 1 then
4 ci ← 0
5 end
6 end
7 return C

This ‘encryption’ algorithm will most likely remain unused in a practical scenario, as it will

always return a string of 0’s. However, it perfectly captures the timing side channel; on line 3,

the algorithm uses the if statement, checking the value of a ‘secret’ bit. If the secret bit is a 1, an

extra line of code is run; if the secret bit is a 0, this line is ignored. As executing an instruction

takes a non-zero amount of time, if we run this encryption algorithm on two different inputs (one

all 0’s, one all 1’s) we would observe the execution time on the latter input being longer than the

former. The publication of the Kocher paper revolutionised applied cryptography and became

known as the first paper highlighting the power of Side Channel Attacks.

2.3.1 Power Analysis

As mentioned, the timing side channel is only exploitable when the flow of execution is data

dependent. By analysing the extracted timing data, the adversary can infer the existence of

data-dependent ‘leakage’ (exploitable information), and mount an attack appropriately. The

timing side channel shown in Algorithm 1 can be removed by replacing the ‘if ’ statements with

9
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some constant-time alternative. Unfortunately for hardware manufacturers, there is also another

vulnerability in modern devices.

Current devices used for cryptographic purposes are implemented with CMOS transistors,

which make up the semiconductor logic gates used to perform the processing. When a charge

flows across a transistor gate, a certain amount of power is consumed (additionally producing a

certain amount of electromagnetic radiation). An adversary is able to measure the amount of

power used in a circuit by implanting a resistor in series (or in some cases, through non-invasive

means, such as holding an electromagnetic radiation probe over the target device [23]). The

current is computed by dividing the voltage difference across the resistor with the resistance in

the circuit.

The research contained in this thesis is based on exploiting the fact that the power consump-

tion of a cryptographic device varies over time based upon the data that is processed by the

algorithm implemented in that device. If the algorithm and its implementation is known to the

attacker, then there is the possibility of inferring data by analysing the power consumption over

time. This is the key premise of this research.

2.3.2 Simple Power Analysis

Simple Power Analysis is named thus due to the simple nature of the attack phase. The tech-

nique involves collecting a power trace from the target device; this is a collection of the power

consumption values taken from the target device whilst a cryptographic algorithm is running.

When the target device has little noise (interference that can skew the power consumption

samples), it may be possible to distinguish the exact operations occurring within the trace. For

example, if we were to observe a power trace taken whilst running Algorithm 1, we would see an

extra computation step taken when the current bit is set to 1 (shown in the if statement). By

noting when this observation occurs and when it does not, it may be possible to ‘read’ the bits of

the secret just by looking at a single power trace.

10



2.3. INTRODUCTION TO SIDE CHANNEL ANALYSIS

Figure 2.3: An example of a power trace with distinguishable bits, taken from ‘Introduction to
differential power analysis’ [1]

For example, Figure 2.3 shows a section of a power trace taken whilst the target device was

running RSA (a public key encryption algorithm). Part of the RSA algorithm requires modular

exponentiation, a computationally expensive operation. The method to perform this operation

in the target device is known as ‘square and multiply’, where bits are computed left-to-right.

Multiplications only occur when the exponent bit is 1, and multiplications require more power

than squares. In the trace, multiplications are shown by a small peak followed by a large peak,

whereas squares are simply one low peak. Knowing this, we can recover the secret bit quite easily,

marking all small-large progressions as bit 1, and all other low peaks as bit 0.

2.3.3 Differential Power Analysis

Most modern devices contain a great deal of noise in their power traces, making it difficult to

identify any kind of information by looking at a single trace, rendering Simple Power Analysis

ineffective. In 1999, Paul Kocher published a paper on applying statistical inference to power

analysis [24]. He named the technique ‘Differential Power Analysis’, or DPA for short. This

method is commonly used today, and is the basis of the research in this thesis.

The idea is to generate a large number of power traces, using the same fixed key but different

plaintexts, at a fixed moment of time. A typical DPA attack consists of five steps:

1. Choose a Target Intermediate Result. This should be a function f (d,k) where d is a

known data value (the plaintext) and k is a small part of the secret data (key).

2. Measure the Power Consumption, which essentially means we generate a number

of traces, each with a plaintext generated arbitrarily. We store the plaintexts in vector

d= (d0, . . . ,dT−1), where T is the number of traces generated (one plaintext per trace). Each

trace ti = (t0
i , . . . , tS−1

i ) corresponds to the ith encryption run using plaintext di, where S is

11
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the number of sample points per trace. We can then construct our matrix of traces T of size

T ×S.

3. Calculate Hypothetical Intermediate Values. We produce a vector containing every

possible value of k, named k= (k0, . . . ,kK−1). For example, if k were a byte, this would be the

vector (0, . . . ,255). Now we have vectors d (plaintext values) and k (hypothetical key values),

we can produce a matrix of hypothetical intermediate values V, where vi, j = f (di,k j) for i

in 0 to T −1 and j in 0 to K −1.

4. Map the Intermediate Values to the Power Consumption Values. We now simulate

the power consumption of the device to map the hypothetical intermediate values V to

hypothetical power consumption values H. This can be done using a number of techniques,

but the most common is using the Hamming Weight Leakage model; we therefore map V to

H where hi, j =HW(vi, j).

5. Compare the Hypothetical Power Consumption Values with the Power Traces.

Finally, each column hi of H (hypothetical power values) is compared against each column

t j of matrix T (real power values). All sample points s in matrix T are considered separately,

making this step computationally expensive for large matrices. The result of this step is

matrix R of size K ×S. The indices of the greatest values of matrix R represent the value

of the key used in the target device.

For further details, see ‘Power Analysis Attacks: Revealing the Secrets of Smart Cards’ [25].

In this thesis, we use the terms ‘power value’ and ‘leakage value’ interchangeably: both meaning

the power consumption measurement taken from the device at a specific time point.

2.3.4 Point of Interest Detection

One of the benefits of Differential Power Analysis is that we are not required to know any

algorithmic features of our target implementation: in other words, we do not need to know exactly

which sample in the trace contains the leakage we wish to exploit. An exploitable sample is

known as a Point of Interest. Step 5 of DPA compares the hypothetical power consumption values

with every single column (sample) in the power trace, covering all possible leakage points.
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Figure 2.4: Plot showing the Correlation Coefficients for the first intermediate output in the
SubBytes step in an implementation of AES

We now consider more powerful variants of DPA, that profile characteristics of the target device.

The caveat is that these methods are too computationally expensive to be applied to every sample

in the trace. We must first locate the Point(s) of Interest within the trace before mounting the

attack.

The most straightforward way of recovering the Points of Interest is by using correlation

analysis. We choose the input to the target device (plaintext and key) such that we can compute

the identity (real) value of the intermediate we wish to target: this is usually an output of the

SubBytes step. After recording the trace, we have a value-trace pair. By collecting a large number

of these value-trace pairs (we found 10,000 traces to be sufficient in our work), we take each

column (sample) of the traces, and correlate this to each value in the pairing. This results in

a vector of correlated values of size n (number of samples per trace), known as Correlation

Coefficients. The Point of Interest is chosen to be the sample with the highest correlated value.

Figure 2.4 shows a plot of these correlation coefficients corresponding to an output of the SubBytes

step. It is easy to spot the Point of Interest at around sample 8,100.

2.3.5 Template Attacks

Consider the following threat model: just like before, an adversary is able to produce power traces

from a target device with arbitrary plaintexts, and their objective is to extract the secret key

contained within the device. However, now the adversary has a ‘replica’ of the target device:

a separate device that acts (from a leakage perspective) identically to the target device. The

adversary can manipulate this replica at will, free to encrypt any message they like, providing

any value for the secret key. A template is defined in this thesis as a characterisation of a

univariate normal distribution consisting of two parts: a mean vector µ and standard deviation

σ, represented as the pair (µ,σ). One template characterises one possible leakage value of

an intermediate, so templates must be built for all possible values of the target intermediate.

Employing these templates in a Differential Power Analysis attack increases the attack success,

13



CHAPTER 2. PRELIMINARIES

and is known as a Template Attack.

Template attacks consist of two phases:

1. the offline phase, or the Template Building phase, where the power leakage from the replica

device is profiled and templates are created, and

2. the online phase, or the Template Matching phase, where the templates are matched with

the power traces taken from the real device, resulting in a ranking of possible keys

2.3.5.1 Template Building

The adversary has full control over the replica of the target device. This allows them to target a

single intermediate variable (for example, the first SubBytes output in the first round of AES),

find the sample in the trace that corresponds to this intermediate variable (using the Point of

Interest Detection step as described in Section 2.3.4), and collect these samples for a number of

traces (providing different key and plaintext pairs for each trace). The adversary can work out

the correct value of the target variable for each trace, matching it up to the corresponding leakage

value, as they have access to the key plaintext pairings on the replica of the target device.

Then next step is to partition these values into a number of sets, depending on the attack

strategy. One example would be to partition the values into 256 sets, one for each possible real

value; as the intermediate value is a byte, the value will be between 0 and 255. Within each

set, we store all the leakage values associated with this real value. Once we have 256 sets, we

can compute the mean and standard deviation of each set, resulting in a (µ,σ) pair. Each pair is

considered a ‘template’, and we require one template for every possible value. For further reading,

please see [25].

2.3.5.2 Template Matching

Once all of our templates have been built, we can match these up to the leakage values extracted

from traces taken from the real device. We use Bayes’ rule to obtain predictions, as defined in

Equation 2.1, where X is the knowledge of the trace data extracted through side channels, y is

the random variable of the intermediate we are targeting, and c is a possible value of y we wish

to template.

(2.1) P(y= c|X )= P(X |y= c)P(y= c)
P(X )

= P(X |y= c)P(y= c)∑
i

P(y= i|X ) ·P(y= i)

By calculating the Gaussian probability density function (defined in Equation 2.2) using a leakage

value against all of our templates, we get a vector of probabilities that correspond to how likely

that value was at being the correct identity of the target. We can normalise and combine these

probabilities over multiple traces to form a ranking of the possible subkey.
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(2.2) P(x|µ,σ)= 1

σ
p

2π
e

−(x−µ)2

2σ2

2.3.6 Side Channel Countermeasures

Having introduced how one might mount an attack against a cryptographic device by exploiting

side channels, we now introduce countermeasures that have been developed in recent literature

and implemented in commercial devices. The goal of these countermeasures is to make the power

consumption of the device independent of the intermediate values in the cryptographic algorithm.

These countermeasures fall into two categories: masking and hiding.

2.3.6.1 Masking

Masking randomises the intermediate values that are processed by the cryptographic algorithm.

Essentially, each intermediate value v is concealed by a ‘mask’ m, such that vm = f (v,m).1

This mask m is generated within the cryptographic device (and varies between encryptions),

and is not known by the attacker. The masks are applied (and removed after operation) to the

intermediates according to a ‘masking scheme’. Different masking schemes have been proposed

in recent literature [26–29], and will not be discussed in this thesis.

The advantage of masking is that it can be implemented without changing the power con-

sumption characteristics of the device (implemented at algorithm level). The disadvantage of

masking is the implementation cost, as it is expensive to add and remove masks to intermediates

throughout the entire algorithm.

We do not extend our analysis to protected implementations, however we do consider an im-

plementation that uses a more challenging leakage model than those used in recent literature [7].

2.3.6.2 Hiding

Hiding makes it difficult for an attacker to locate exploitable information within the power traces.

It does this by breaking the ‘link’ between the processed intermediate values and the power

consumption of the target device.

There are many ways to implement hiding: one could insert multiple instances of ‘dummy’

operations throughout the algorithm, which would not affect the state bytes within cryptographic

algorithm, but would show up in the power trace and mislead the attacker. One could also ‘shuffle’

the sequence of execution within the algorithm (when the execution order is arranged arbitrarily).

An example of this would be the SubBytes step in AES, where each of the 16 state bytes are passed

through a lookup table and their values are substituted accordingly. The computation of these 16

state bytes can be done in any order (the lookups are all independent), so the implementer of

1This function is often the Boolean XOR function, but may also be the modular addition or modular multiplication
depending on the cryptographic algorithm
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the algorithm could shuffle the execution of these lookups to prevent an attacker from finding

the timepoint of a specific intermediate. It is also possible for these two described methods to be

combined.

The hiding countermeasure is popular in industry, due to the ease of implementing hiding

in hardware. One advantage of hiding is that it can be implemented independently of the

cryptographic algorithm running on the target device. However, there have not been many

published hiding countermeasures at the software level.

We will not accommodate the hiding countermeasure in the context of this thesis.

2.4 Characteristics of Power Consumption

2.4.1 Signal-to-Noise Ratio

When we extract a number of power traces from a target device whilst it is running some

cryptographic algorithm with constant input parameters, the power measurements vary over

time. The fluctuations in these power traces are examples of electronic noise. There are multiple

possibilities for the source of electronic noise: for example, it could be from the power supply of

the target device, or from the clock generator (if in use), of perhaps from the combined emission

of all components on the Printed Circuit Board (PCB). It is not possible to remove electronic noise

completely, but it can be minimised through careful selection of hardware components.

Another form of noise is known as switching noise. As mentioned previously, when a logic

cell switches in value, a certain amount of power is consumed, more so than if the logic cell did

not switch. When we attack an implementation, we target a specific leaking operation, but at

the same time, multiple other values are being leaked from neighbouring operations. From an

attacker’s point of view, the power consumption related to operations other than the target can

be considered as noise.

The Signal-to-Noise Ratio (SNR) is a metric used to identify the ratio between the signal

and the noise component of some measurement. We define SNR as we use it in this thesis in

Equation 2.3.

(2.3) SNR= Var(signal)
Var(noise)

= σ2
s

σ2
n

In this thesis, we consider the Hamming Weight leakage function, where a leakage value is

related to the Hamming Weight of an 8 bit value. The variance of the signal is equal to 2, which

allows us to rewrite the SNR as 2
σ2

n
. In our experiments we show simulated data using different

SNRs, so the Gaussian noise is generated with respect to the Hamming Weight leakage function.

Naturally, the larger the Signal-to-Noise ratio, the easier it is to mount an attack (as the less

noise there to obstruct the attack). In this thesis, we often use an SNR of 2−1 in examples to show
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cases with a relatively small amount of noise. In a real world scenario, the real device would have

an SNR of around 2−5, where there is much more noise.

2.4.2 Clock Jitter

A clock generator is an electronic oscillator that produces a timing signal for synchronisation

within a circuit. Clock jitter is defined as the clock deviating from its ideal timing. This is usually

when it is affected by some noise or interference from nearby circuitry.

In side channel analysis, the attacker acquires a time series of power measurements (traces),

usually taken when the cryptographic algorithm commences. The alignment of these traces with

one another is crucial to power analysis, as the attacks work by comparing specific samples (time

points) across all traces. Clock jitter makes it very difficult to mount a successful power analysis

attack.

Methods available to deal with jitter include: using a stable external clock generator (thus

mitigating interference from nearby circuitry), using statistical techniques such as Dynamic Time

Warping (as seen in ‘Improving Differential Power Analysis by Elastic Alignment‘ [30]), or training

Neural Networks to combat the jitter through extensive training (as seen in ‘Convolutional Neural

Networks with Data Augmentation Against Jitter-Based Countermeasures’ [10]).

2.4.3 Leakage Simulation

Implementing and developing side channel analysis can be difficult when the target leakage is of

poor quality (excessively noisy, misaligned, etc). Instead it would be more advantageous to use

simulated data as the attack target, where the developer is aware of the structure of the leakage,

along with the amount of noise and misalignment (if any). Simulating leakage is not a trivial

matter, however. ELMO (Emulating Leakage on an ARM Cortex-M0) is a tool that can simulate

leakage from the ARM Cortex-M0. Excerpt from ‘Towards Practical Tools for Side Channel Aware

Software Engineering: ‘Grey Box’ Modelling for Instruction Leakages’ by David McCann and

Elisabeth Oswald and Carolyn Whitnall [31]:

“[ELMO is] a novel modelling technique that is capable of producing instruction-level power

(and/or EM) models... [ELMO is] the first leakage simulator for the ARM Cortex-M0.”

The creators of the tool constructed ELMO by observing the leakage of the ARM Cortex-M0

whilst running a large number of different operations in succession2.

In order to generate leakage traces, ELMO requires the assembly source code of the target

algorithm. It also needs knowledge of the inputs to instructions, so ELMO utilises the ‘Thumbu-

lator’, a Thumb (16 bit ARM) instruction set simulator. By using the Thumbulator, ELMO is able

to decode and execute each instruction sequentially, providing an unrolled version of the target

2ELMO has additional functionality to detect leakage, but for the purpose of this thesis we only use the function-
ality to generate leakage traces from assembly code
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algorithm, along with a number of leakage traces where each instruction cycle is represented by

an ELMO power value.

The ELMO power model (non-extended, as described in Section 3 of ‘Towards Practical Tools

for Side Channel Aware Software Engineering: ‘Grey Box’ Modelling for Instruction Leakages’) is

as follows:

(2.4) y= δ+ [ O1 | O2 | T1 | T2 ]β+ε

where:

• Oi = [ xi[0] | xi[1] | . . . | xi[31] ] is the matrix of operand bits across bus i = 1,2, where xi

represents the ith operand of a given instruction

• Ti = [ xi[0] ⊕ zi[0] | . . . | xi[31] ⊕ zi[31] ] is the matrix of bit transitions across bus i = 1,2,

where zi represents the ith operand of the previous instruction

• δ is the scalar intercept to be estimated

• β is the vector of coefficients to be estimated

• ε is the vector of error terms (modelled from a Gaussian distribution with a constant

variance)

By providing a compiled ARM assembly file to ELMO along with integer N (the number of traces

to generate), ELMO outputs the following files:

1. The plaintexts / inputs to the target algorithm for each trace, if not chosen specifically by

the user

2. The operations in the unrolled target algorithm of size l

3. N traces, each one containing l ELMO power values

The generated traces can then be used to develop and test various side channel techniques in a

simulated environment.

2.5 Introduction to Belief Propagation

The BP algorithm (first described in 1987 by Judea Pearl and Thomas Verma in ‘The Logic of

Representing Dependencies by Directed Graphs’ [32]) is an approach designed to enable multiple

discrete probabilistic distributions (each of which relating to a single component of a complex

system) to be combined in order to derive a unifying probabilistic model for the whole system. It
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works by representing the system using a factor graph consisting of operations and operands

in such a way that the discrete probabilistic distributions can be passed back and forth in the

form of messages. After passing these messages (i.e. propagating the information) around the

factor graph, one can compute the marginal of a variable (the probability distribution taking

into account all distributions in the factor graph) by taking the product of all messages sent

directly to the variable. The following section will briefly describe the main elements of Belief

Propagation as they are used within the thesis. The description is a paraphrased version taken

from Information Theory, Inference and Learning Algorithms [33].

2.5.1 Graph Structure

The Belief Propagation Algorithm in its simplest form is applied to a ‘factor graph’: an undirected

bipartite graph split into variable nodes (depicted as circles) and factor nodes (depicted as

rectangles). Variable nodes represent the state of a variable. The factor nodes provide details on

the relation between the variable nodes.

The factor graph is built to reflect the steps of an algorithm. As an example, consider Algo-

rithm 2.

Algorithm 2: Simple Algorithm to Demonstrate Factor Graph Construction
Input: Two variables v0 and v1
Output: Output variable v4

1 v2 = f0(v0,v1)
2 v3 = f1(v2)
3 v4 = f2(v2,v3)
4 return v4

We wish to build a factor graph representation of Algorithm 2. The factor graph construction step

consists of two stages:

1. Construct an intermediate directed graph, such that the directed edges reflect the flow of

data in the execution of Algorithm 2. The variables of Algorithm 2 (v0, . . . ,v4) are represented

as variable nodes, and the functions that operate on the variables ( f0, f1, f2) are represented

as factor nodes, as shown in Figure 2.5a. In this representation, the data always flows in

one direction (left to right in this example).

2. We now use the constructed directed graph for a different purpose. Our intention is to

associate statistical information with each node, and then pass this information between

nodes along the edges in all directions, which allows us to collect the combined information

on a specific variable node. To allow messages to be passed in all directions, we remove the

directional dependencies in the directed graph to produce an undirected factor graph, as

shown in Figure 2.5b.
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(a) Stage 1: Directed Representation of Algorithm 2
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(b) Stage 2: Undirected Representation of Directed Graph

Figure 2.5: The Stages of Factor Graph Construction

It is important to note here that by removing the directional dependencies from the directed

graph, we may produce cycles (paths from a variable node back to itself without traversing any

edge more than once). This is illustrated in Figure 2.6, where a cycle of four edges has been

created (indicated by the non-dashed lines).

v0

v1

v2 v3 v4

f0 f1 f2

Figure 2.6: Cycle created by removing directional dependencies, as indicated by the bold lines

The following definition was taken from ‘Information theory, inference and learning algorithms’ [33].

We define a function P∗ of a set of N variables x≡ {xn}N
n=1 as a product of M factors, as in Equa-

tion 2.5.

(2.5) P∗(x)=
M∏

m=1
fm(xm)

Each factor fm(xm) is a function of a subset xm of the variables that make up x. Following our

example in Figure 2.5, f0 was originally a function of the variable subset {xv0 , xv1} in the directed

representation of the algorithm, but by removing the directional dependencies, it becomes a

function of the variable subset {xv0 , xv1 , xv2}.
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We wish to be able to compute the marginal function of any variable xn, defined in Equa-

tion 2.6.

(2.6) Zn(xn)= ∑
{xn′ },n′ 6=n

P∗(x)

This sums over all the variables associated with xn, except for xn itself. Following the previous

example, the marginal function of variable v0 would be

Z0(v0)= ∑
v1,v2

f0(v0,v1,v2)

For further details, see ‘Information theory, inference, and learning algorithms’ [34].

2.5.2 Constructing a factor graph for AES FURIOUS

In the context of Side Channel Analysis, we target cryptographic algorithms, such as the block

cipher AES. We then use leakage information extracted from power measurements to infer

information on certain variables; most notably, the key used in the encryption / decryption

method. We can easily translate a cryptographic algorithm into a factor graph, and we will use

AES as an example.
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Figure 2.7: Factor Graph representation of the first column of the first round of AES, originally
presented in my CARDIS publication ‘A Systematic Study of the Impact of Graphical Models on

Inference-Based Attacks on AES’ [2]
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To start, we first construct variable nodes representing the sixteen initial plaintext and key bytes,

as these are provided as input to the AES algorithm. Figure 2.7 shows the first column of the

first round of AES, in which the first four key bytes and plaintext bytes are represented as the

variable nodes k1,...,4 and p1,...,4 respectively. We then inspect the AES assembly code line by

line. Each time we see an arithmetic operation (ignoring memory operations such as loading and

storing) being performed, we construct a new ‘factor’ node representing the computed operation

(e.g. XOR). We also create a new variable node (named uniquely but arbitrarily) to represent the

output of this operation. This new variable node is connected to the new factor node. We also

connect the input(s) to the operation, which will have previously been created using this method.

In this way, we continue adding nodes to our graph, until we have a factor graph that represents

the entire AES algorithm. In the AES FURIOUS implementation, the factor graph representation

contains the XTIMES, XOR, and SBOX factor nodes, as shown in Figure 2.7.
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Figure 2.8: A factor graph representation of the first round of AES FURIOUS limited to one
column, with two cycles highlighted: one small cycle in red, one larger cycle in blue (all other

edges are dashed for visual aid). Note that Factor Graphs are inherently undirected.

It is important to note that this factor graph contains multiple cycles, as illustrated in Figure 2.8.

2.5.3 The Belief Propagation Algorithm

Each edge in the factor graph represents two discrete probability distributions relating to the

connected variable node: one representing a message from the variable node to the factor node,
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and one from the factor node to the variable node. The Belief Propagation Algorithm updates

these edges (over a number of BP iterations) according to a set of rules.

Following the notation by David MacKay in “Information theory, inference and learning

algorithms” [33], we define the set of variables that the mth factor depends on ((x)m) by the set

of their indices N (m). Similarly, the set of factors in which variable n participates is defined as

M (n). Many of the functions involve ‘including all but one’ variable, so we define the set N (m)

with n excluded as N (m)\n. We also use the following shorthand xm\n:

(2.7) xm\n ≡ {xn′ : n′ ∈N (m)\n}

There are two types of messages passed in the Belief Propagation algorithm:

• messages qn−→m from variable nodes to factor nodes

• messages rm−→n from factor nodes to variable nodes

It is important to note that the messages are probability distributions corresponding to the

connected variable node: in other words, the message qn−→m and the message rm−→n both

hold a probability distribution of variable xn. In David MacKay’s original notation of the sum-

product algorithm, the a priori information of a variable node (leakage information taken from

the trace data) is modelled as a leaf factor node connected to the variable node (as will be

demonstrated in Figure 2.11. However, we opt to remove these leaf factor nodes from the factor

graph representation and instead include an initial distribution Ln that is initialised and stored

within each variable node.

The rule for updating the messages sent from variable nodes to factor nodes is defined in

Equation 2.8, and Figure 2.9 is provided as a visual representation of the direction of messages

(representing the AddRoundKey and SubBytes steps for one key and plaintext byte).

(2.8) qn−→m(xn)= Ln · ∏
m′∈M (n)\m

rm′−→n(xn)

k0

p0

t0 s0

XOR SBOX

Figure 2.9: An illustration of the Variable Pass step in the Belief Propagation Algorithm
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The rule for updating the messages sent from factor nodes to variable nodes is defined in

Equation 2.9, and Figure 2.10 is provided as a visual representation of the direction of messages.

(2.9) rm−→n(xn)= ∑
xm\n

(
fm(xm)

∏
n′∈N (m)\n

qm′−→n(xn)
)

k0

p0

t0 s0

XOR SBOX

Figure 2.10: An illustration of the Factor Pass step in the Belief Propagation Algorithm

The initial set up of the graph is different for leaf variable nodes; we define it in Equation 2.10.

(2.10) For leaf variable nodes n: qn−→m(xn)= Ln

The algorithm runs for a series of iterations. Within each iteration, first all the variables will

pass their messages to each of their neighbours according to equation 2.8, and once completed,

the factors will pass their messages according to equation 2.9. Variable nodes (and factor nodes

respectively) can perform their message passing in parallel, as the graph is bipartite, ensuring

independency between message passing. Of course, all variable (factor resp.) nodes must finish

passing their messages before factor (resp. variable) nodes can start to pass their messages.

As information propagates around the graph over a number of BP iterations, the edges are

continuously being updated. When the factor graph is tree-like (no cycles), BP will ‘converge’

after a certain number of BP iterations: this is when all information has propagated fully around

the graph, and the messages rest in a stable equilibrium, no longer being updated in successive

BP iterations. Convergence is only guaranteed when there are no cycles in the graph.

At the end of the Belief Propagation Algorithm (after all BP iterations, regardless of whether

BP has successfully converged), we compute the marginal of a variable node; this is the product

of all incoming messages and the initial distribution of the variable, as defined in Equation 2.11.

Figure 2.11 represents how we might compute the marginal of the k0 node; we take the product

of the message from the XOR node (which is the product of the messages sent to the XOR node

from variable nodes p0 and t0) with the initial distribution of k0, denoted as Lk0 . The collection

of marginals on specific variable nodes (in our case, the initial 16 key bytes) becomes the output

of the Belief Propagation algorithm.
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k0

p0

t0Lk0

XOR

Figure 2.11: An illustration of how the Marginal is computed for a Variable Node

(2.11) marginal(xn)= Ln · ∏
m∈M (n)

rm−→n(xn)

2.5.4 A Worked Example of Belief Propagation

k0

p0

t0 s0

XOR SBOX

Figure 2.12: An illustration of the Factor Graph used in the worked example

We provide a worked example of the Belief Propagation Algorithm, using the factor graph shown

in Figure 2.12. In this example, we play the role of the adversary attempting to recover the value

of the secret key node k0. We make three assumptions to simplify the illustration:

1. Each variable node represents a 3 bit value from 0 to 7 (as opposed to the 8 bit values

assumed later in this thesis, with values ranging from 0 to 255)

2. Values leak according to the Hamming Weight leakage model (we know the Hamming

Weight of all values apart from the plaintext, of which we know the correct value)

3. We define the SBOX function as S(x)= (x−1) mod 8, e.g. S(1)= 0 and S(0)= 7
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Variable Real Value Hamming Weight Initial Distributions
k0 1 1 {0, 1

3 , 1
3 ,0, 1

3 ,0,0,0}
p0 2 N/A {0,0,1,0,0,0,0,0}
t0 3 2 {0,0,0, 1

3 ,0, 1
3 , 1

3 ,0}
s0 2 1 {0, 1

3 , 1
3 ,0, 1

3 ,0,0,0}

Table 2.1: The values and initial distributions of the variable nodes in the worked BP example;
note that the Hamming Weight is not applicable for the variable node p0 as the real value is

known to the adversary

Table 2.1 shows the real values used in the example, along with their leaked Hamming Weight

values and resulting initial distributions. This example is intended to simulate a real world

scenario: as the adversary, we do not have access to the real values (bar the plaintext node),

but are able to extract the leaked Hamming Weights from a physical device. An alternative

interpretation of the initial distribution of k0 is shown in Equation 2.12.

(2.12) P(k0 = x)=


1
3 if x ∈ {1,2,4}

0 otherwise

The variable nodes in the factor graph are populated with their respective probability distribution,

in preparation for the first BP iteration.

2.5.4.1 Iteration 1

As described in Section 2.5.3, BP iterations consist of two phases: the variable pass phase,

followed by the factor pass phase. The variable pass phase in the first iteration is simple: the

variables pass their initial distributions to all adjacent factor nodes, as illustrated in Figure 2.9.

The factor pass phase requires the factor nodes to process incoming messages, then send

the processed messages to other neighbouring variable nodes, as illustrated in Figure 2.10. For

example, the XOR node must send its message to the key node k0. This is computed by performing

the XOR operation over the messages sent to the XOR node by the p0 and t0 variable nodes, as

shown in Listing 3 (for further reference, the python code to perform this calculation will be

provided in Listing 4.1).

The message from the XOR factor node to the key byte k0 is as follows:

rXOR−→k0(xk0)= XOR(qp0−→XOR, qt0−→XOR)= {0,
1
3

,0,0,
1
3

,0,0,
1
3

}

Once the XOR factor node has sent its message to k0, it then sends the appropriate messages to

p0 and t0. However, as these are propagating away from the key node (which we wish to recover),

we will not include these messages in this example.
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Algorithm 3: Algorithm to compute the XOR of two probability distributions
XOR(a0,a1), where the normalise() function makes the array sum to one

Input: Two arrays a0 and a1 (representing probability distributions)
Output: Output array a2

1 l ← size(a0)
2 a2 ← array of 0s of size l
3 for i = 0; i < 2l ; i++ do
4 for j = i; j < 2l ; j++ do
5 a2[i⊕ j]← a2[i⊕ j]+ (a0[i] ·a1[ j])
6 end
7 end
8 return normalise(a2)

The SBOX node sends its message to t0 by performing the SBOX operation on the incoming

message from the s0 node. As this is a 1-to-1 mapping (only one input) it effectively permutes the

incoming message, resulting in the following message:

rSBOX−→t0(xt0)= SBOX (qs0−→SBOX)= {0,0,
1
3

,
1
3

,0,
1
3

,0,0}

The iteration ends after all factor nodes have passed their messages to all their respective

neighbouring variable nodes. At this point we are able to calculate the marginal probability of k0,

as illustrated in Figure 2.11. Equation 2.11 calculates the marginal as the product of the initial

distribution of k0 with all incoming messages to k0 (in this example, the message rXOR−→k0(xk0)),

which would result in the following probability distribution:

marginal(xk0)= {0,
1
2

,0,0,
1
2

,0,0,0}

The marginal distribution at this point can be interpreted as “all the information we know about

k0 after one iteration of BP”. We can see we have reduced the possible key space from 3 values

down to 2.

2.5.4.2 Iteration 2

The variable pass phases in the second iteration onwards differ from the first, in that the (non-

leaf) variables must take into account incoming messages, as shown in Equation 2.8. The only

variable affected in this example is variable t0, which must now pass the product of L t0 (the

initial distribution of t0) with the incoming message from the SBOX factor node, rSBOX−→t0(xt0).

This results in the following probability distribution being sent to the XOR node:

qt0−→XOR(xt0)= {0,0,0,
1
2

,0,
1
2

,0,0}
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All leaf variable nodes continue to send their initial distribution in the variable pass phase, and

thus can be ignored. In the factor pass phase, the XOR node now has some new information from

t0, and will send the following message to k0:

rXOR−→k0(xk0)= XOR(qp0−→XOR, qt0−→XOR)= {0,
1
2

,0,0,0,0,0,
1
2

}

Once this message has been sent, all information has successfully propagated throughout the

factor graph, and the Belief Propagation Algorithm terminates. The marginal of k0 is computed

as:

marginal(xk0)= {0,1,0,0,0,0,0,0}

We have successfully recovered the value of k0 as 1. This would be classified as a first order

success (the exact value of the key is known).

2.5.5 Using Belief Propagation in SCA

The work presented in ‘Soft Analytical Side-Channel Attacks’ [7] provides a description of how

to use Belief Propagation in Side Channel Analysis. The attack is similar to a Template Attack,

where the adversary has access to a replica of the target device. We will use AES as an example,

as it is a widely used block cipher.

As described in Section 2.5.2, we are easily able to convert the underlying cryptographic

algorithm into a factor graph. We then build profiles of the power leakage for each variable in the

converted factor graph from the replica of the device. We run the cryptographic algorithm using

random plaintext and key pairs, storing the power leakage information for each trace along with

the key plaintext pair. We can then collect the power values for each respective variable in the

graph by using correlation analysis on the power traces.

Once we have profiled all variables in the factor graph, we can then mount our attack on

power traces taken from the real device. By using the same correlation analysis we extract

the power values for each variable, and by using the template matching step as described in

Section 2.3.5 we produce a probability distribution for each variable node. These probability

distributions become the ‘messages’ we propagate around the graph as described in Section 2.5.3.

2.5.6 Probability Distribution Distance Metrics

As previously described, the messages propagating around the factor graph during Belief Propa-

gation take the form of probability distributions: vectors of probabilities that sum to 1. We now

define metrics that compare the ‘similarity’ (or distance) between two probability distributions,

which will be utilised in Chapter 4. We define the probability distribution a of a random variable

X in Equation 2.13, where n is the number of possible values X could be.
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(2.13) a = {p1, p2, . . . , pn}, pi = P(X = i),
n∑

i=1
pi = 1

2.5.6.1 Euclidean distance

The Euclidean distance (previously known as the Pythagorean metric) is the straight line distance

between two vectors (or points) in Euclidean space. For two discrete distributions p and q the

Euclidean distance is defined in Equation 2.14.

(2.14) d(p, q)=
√

n∑
i=1

(qi − pi)2

2.5.6.2 Hellinger distance

The Hellinger distance metric (introduced by Ernst Hellinger in 1909) is used in probability

and statistics to quantify the similarity between two probability distributions. For discrete

distributions, the Hellinger distance metric is directly related to the Euclidean distance metric

(straight-line distance between two points in Euclidean space).

For two discrete distributions p and q the Hellinger distance is defined in Equation 2.15.

(2.15) D(p, q)= 1p
2

√
n∑
i

(
p

pi −p
qi )2 .

This produces a value between 0 and 1, where a 0 indicates the distributions p and q are identical,

and a 1 is achieved when p assigns probability zero to every index in which q has assigned a

positive probability (and vice versa).

2.6 Introduction to Machine Learning

Machine Learning is the concept that computer systems ‘learn’ how to perform specific tasks

without using explicit instructions. They do this by using algorithms and statistical models

that rely on finding patterns and inferring information from training data. Machine Learning

is recognised as a subset of Artificial Intelligence. In this thesis we use Linear Discriminant

Analysis as our first step into Machine Learning.

2.6.1 Linear Discriminant Analysis

Originally developed by Sir Ronald Fisher in 1936, Linear Discriminant Analysis (LDA) is a

generalisation of Fisher’s linear discriminant, which is a statistical method used to find a linear

combination of features that characterises multiple classes of objects. LDA is closely related
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to regression analysis, and is a widely used tool as a linear classifier (a tool that classifies

objects based on the value of a linear combination of the characteristics). By considering data

over a large window surrounding a Point of Interest, the LDA approach is an example of a

Machine Learning multivariate templating method. We consider multiclass LDA, as we wish to

classify each intermediate byte (256 values). In the training phase, LDA models the conditional

distribution of P(X |y= c) for each class c (and a vector of power values X ). In the classification

phase, LDA uses Bayes’ rule to obtain predictions, in an identical manner to the univariate

templating method as described in Section 2.3.5.2.

2.6.2 Introduction to Deep Learning

Deep Learning is a subset of Machine Learning. There is ambiguity in literature on the strict

divide between Deep Learning and Machine Learning. In this thesis, we define the distinction

between the two as follows: when a Machine Learning algorithm predicts something incorrectly,

the human user must intervene to adjust the model manually. In Deep Learning, the model

can determine whether the prediction is inaccurate on its own, and adjust itself accordingly.

In other words, Deep Learning learns features and model structure from unprocessed data,

and continues to self-improve without intervention. Other Machine Learning methods require

more preprocessing and guidance and hit limits sooner so that, after a point, new data does not

necessarily contribute to an improved model.

Neural networks are frameworks for machine learning algorithms to process complex data

inputs, and are examples of Deep Learning. Neural networks consist of a connected network

of simple processing nodes, where the nodes model the neurons in the human nervous system.

Neural networks are used extensively in the field of image recognition, where they are able

to identify images that contain specific objects. To be able to do this, they must be ‘trained’ by

being provided with some images in which the specific object is present, along with some images

where the specific object is not present. From this, the network can ‘learn’ key features about

the images, allowing them to classify images with greater precision. Neural networks have since

been applied to many different fields: voice recognition, medical diagnosis, and in our case, Side

Channel Analysis.

2.6.3 How Neural Networks Work

A neural network is a collection of connected neurons, often called nodes or units. A node is

where the computation happens, built to mimic the neuron within the human brain. Figure 2.13

provides a visual representation of a node. Its function is to combine inputs xi with respect to

weights wi, which either amplify or dampen the corresponding input. The idea behind this is

that some inputs might be more important than others when solving a specific task; the weights

are able to sift out unimportant pieces of information. The products of the inputs and respective

weights are summed within the input function, upon which an activation function is applied. This
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Figure 2.13: The inner workings of a neuron (often called a ‘unit’ or a ‘perceptron’)

activation function determines to what extent the signal should progress through the network

and affect the output of the network. The activation function can either ‘activate’ and let the

signal pass through, or not activate and let the signal die out.

A network ‘layer’ is a column of these nodes which act as switches: turning off or on depending

on the input and weights. The output of one layer becomes the input to the subsequent layer.

The end goal of a neural network is to either maximise or minimise the objective function

specified by the user: for example, in the case of image classification, the objective function of a

network could be to minimise the error when identifying the presence of a cat in a given image.

The weights in the network control which inputs affect the output of the network. These weights

are updated each ‘epoch’ (pass over the training data) using a ‘loss function’, which calculates the

error in a network prediction. By calculating this error during network training, the network can

adjust weights in the network accordingly in order to minimise future error.

2.6.4 Model Structures

There are multiple ways of structuring a neural network, and hence many models from which to

choose; each excelling in a particular scenario.

2.6.4.1 Perceptron

A perceptron is another word for a ‘unit’ or ‘node’ within a neural network. Perceptrons can be

used by themselves as a type of linear classifier, that makes its predictions based on a linear

predictor function.
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Figure 2.14: An example of a Multi-Layer Perceptron with one hidden layer. Each circle
represents a single neuron, whose internal state is depicted in Figure 2.13

More precisely, the perceptron is an algorithm for learning a binary classifier called a threshold

function: a function that maps its input x (a real-valued vector) to an output value f (x) as in

Equation 2.16, where w is a vector of weights, w ·x is the dot product
∑m

i=1 wixi (where m is the

number of inputs to the perceptron), and b is the bias (the purpose being to shift the decision

boundary away from the origin).

(2.16) f (x)=
1 if w ·x+b > 0,

0 otherwise

An illustration of a perceptron is shown in Figure 2.13.

2.6.4.2 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) is an example of a ‘feed-forward’ neural network (nodes do not

form any cycles). Typically, an MLP has at least three layers: an input layer, a hidden layer (or

multiple hidden layers), and an output layer, as shown in Figure 2.14. Each node (bar the input

nodes) is a neuron (perceptron) that uses a non-linear activation function (where an activation

function of a node defines the output of that node given a set of inputs).

MLP’s use back-propagation for training; this technique is commonly used in networks with

multiple hidden layers, and consists of ‘working backwards’ after each epoch to fine tune the
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(a) Linearly Separable Data (b) Non-linearly Separable Data

Figure 2.15: An example of Linearly Separable data and Non-linearly Separable data

weights of the network according to the loss function. The advantage of an MLP over a standard

linear perceptron (a machine learning binary classifier) is that it is able to distinguish data

that is not linearly separable: linearly separable data is data of multiple classes that can be

separated using a straight line, such as in Figure 2.15a. If the data cannot be separated using a

straight line, then the data is not linearly separable, such as in Figure 2.15b. Most applications

of neural networks deal with data that is not linearly separable, hence the need for more complex

algorithms than a standard perceptron.

In practice, smaller MLPs can be very quick to train and test, compared to some of the larger

and more complex models. However, the larger the model, the more complex data it can interpret

and classify.

2.6.4.3 Convolutional Neural Networks

Convolutional Neural Networks are a powerful form of Multi-Layer Perceptron. They are, in

essence, Multi-Layer Perceptrons that use convolution layers and pooling layers, as shown in

Figure 2.16. A convolution is a mathematical operation on two functions that produces a third

function, which expresses how the shape of one is modified by the other. Convolutional networks

are types of neural networks that use convolution instead of general matrix multiplication in at

least one of their layers, known as a ‘convolutional layer’. Convolution layers take advantage of

the local spatial coherence of the input. Because of this, they are widely used in the field of image

processing, as they are able to reduce the number of required parameters by sharing weights.

‘Deconvolutional’ layers effectively apply the inverse of the convolution function. These networks

also use layers such as ‘Pooling’ layers, which use down sampling to reduce the input size,

essentially ‘compressing’ the output of the previous layer whilst conserving ‘enough’ information.

These are often placed following convolutional layers.

In practice, in order to maximise the effectiveness of the convolutional networks, they are

required to be very large and complex. As a consequence, they take much longer to train over the

simpler MLPs.
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conv conv conv conv conv deconv deconv

Figure 2.16: An example of a Convolutional Neural Network: each convolutional layer (conv) and
deconvolutional layer (deconv) is immediately followed by a pooling layer

2.6.5 Training a Neural Network

We train a neural network similar to an LDA classifier. We provide a training set, comprised of

two parts:

• Training Data, the data to be analysed and classified; for example, the image data for

image recognition

• Training Labels, the correct value / identity of the training data; for example, the fact

that the image is a dog

There are also a number of hyperparameters to consider when training:

• Model Structure, to consider before training the network; there is no ‘one size fits all’ model

in practice, so finding a suitable model can be a challenging task; in general, models are

adapted from related works that aim to solve similar problems, and the precise structure is

then tuned manually

– In case of an MLP, this requires a number of hidden layers, each hidden layer con-

taining a number of hidden neurons / nodes; again these are adapted from previously

trained networks that solve similar problems

• Learning Rate, determines how quickly the neural network learns; if the learning rate is

too small, the model will converge too slowly; however, if the learning rate is too large, the

model will diverge

• Loss Function, used to compare the output of the network during training against the

intended known output

• Epochs, the number of passes over the training data; too few and the model might not train

to its full extent; too many and the model may over-fit (lose the ability to generalise in order

to minimise the error when classifying the training data)
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• Batch size, the amount of training data passed to the network in one go; more to do with

performance than accuracy of the model

• Activation function, the activation function of a node defines the output of that node given

a set of inputs, such as ReLU (a linear unit employing a ‘rectifier’, which takes the positive

part of its argument) and Softmax (a function that normalises an input vector into a

probability distribution)

• Optimiser, used to minimise the objective function; RMSProp [35] is a commonly used

optimiser in classification networks

The universal approximation theorem states that “networks with two hidden layers and a

suitable activation function can approximate any continuous function on a compact domain to any

desired accuracy” [36, 37]. Unfortunately, by only having two hidden layers, one would require an

exponentially large number of hidden nodes per layer relative to the input size. Neural Networks

are able to solve this by trading off the number of hidden layers for the number of nodes within

each hidden layer. Previous work shows that by having fewer nodes per hidden layer, “natural

functions” can be learnt quickly [38].

Despite there being a plethora of hyperparameters to consider, literature does not provide a

great deal of insight into how these should be selected. The most common approach is to either

employ a manual search (in which sets of values are tested at a time, and the trained networks

are then compared, whereupon the ‘best’ networks value is selected), or an automatic parameter

selection method is employed (such as grid search or random search [39]).

2.6.6 Validating a Neural Network

The Neural Network is trained on the training data over a number of ‘epochs’. Each epoch

constitutes a full pass over the training data (in batches specified by the batch size). During this

time, the internal weights and biases are constantly being updated to improve the success of the

model (with respect to the training data). After each epoch, the network validates itself to check

how well the model is learning.

The validation step (or ‘evaluation phase’) uses unseen data, separate from the training data.

This unseen data is supplied to the network, and the network classifies this data, producing an

output for each data entry. The output of the network is then compared to the correct labels of

the unseen data using the loss function, producing an ‘error’ metric that informs us how well

the network classified the unseen data. This error is often normalised and represented as an

‘accuracy’ metric: an accuracy of 0 means the model has not learnt anything, and an accuracy of 1

means the network is able to classify the data with 100% certainty.

As the network learns more key features about the training data over a number of epochs, the

validation accuracy will increase. There may come a point during training where the validation
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Figure 2.17: Plot taken during training, overfitting occurs after 430 epochs

accuracy reaches a local maximum, and further training epochs start to decrease the validation

accuracy. This is known as overfitting, where the model loses generality on unseen data by

maximising the accuracy on the available training data, as illustrated in Figure 2.17. The

training phase should be terminated when the validation accuracy is maximised.

2.6.7 Testing a Neural Network

Once a Neural Network has been fully trained, we can test the network on whatever data we

wish. The process is similar to the validation step: we supply the unseen data to the network, and

we compare the output to the known labels. The distinction between the validation phase and

the testing phase is that the validation phase occurs during training; the testing phase occurs

after the network has been trained.

The advantage of testing after fully training a network is that we are not limited to the

loss function required in the validation phase: we can use whatever metric we wish to measure

the success of our network. Similar to the validation data, it is important that the test data is

separate from the training data.

2.6.8 TensorFlow

Google produced TensorFlow [40] in 2015 as a machine learning framework under the Apache 2.0

license. It is available for researchers to use to implement and deploy machine learning models.

Although the core of TensorFlow is written in C++, there are front ends available for Python

and C++. Previous work in the field of Side Channel Analysis [11, 15] uses TensorFlow as a

framework to develop their neural networks.
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Figure 2.18: A screenshot showing the TensorBoard user interface

2.6.9 TensorBoard

TensorBoard [41] is a set of tools that allows a visual representation of TensorFlow. It is used to

aid in the development and training / testing of TensorFlow programs.

Figure 2.18 shows a screenshot of an example usage of TensorBoard. A network has been

trained (or is currently being trained) with a training set, and TensorBoard visually displays

various training details in a graphical format:

• The plot shows the training graph, with epochs on the x axis and training loss on the y axis

(in accordance to the loss function of the network)

– The orange line denotes the training loss, and the blue line denotes the validation loss

• In addition to the loss plot, TensorBoard also provides an accuracy plot: a generic metric

used to compare models with different loss functions

• There is a slide bar used to ‘smooth’ the plots, allowing for a more visual representation of

the training when there are erratic loss spikes during training

• Functionality exists to handle plotting multiple graphs over each other: either overlaying

them, or swapping the x axis from epochs to time
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• It also includes a graphical representation of the network being trained

TensorBoard is very easy to set up, requiring a single command in the terminal:

tensorboard --logdir=./ --host=127.0.0.1

The logdir argument points to the directory containing the TensorFlow generated log files

(this command is run from within this directory), and host indicates the IP address on which to

host the TensorBoard page.
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3
RELATED WORK

This chapter describes related work to the field of the thesis. We cover work ranging from

the conception of Side Channel Analysis to the more powerful attacks in recent literature.

We describe the papers that apply the Belief Propagation Algorithm to Side Channel

Analysis in detail. We finally include recent work that utilises Deep Learning in the context of

Side Channel Analysis.

3.1 Side Channel Analysis

Kocher et al. Differential Power Analysis [5] As described in Section 2.3, this paper intro-

duced Differential Power Analysis (DPA) to the side channel community. The paper demonstrates

power analysis attacks on the DES encryption algorithm. By introducing Simple Power Anal-

ysis (Section 2.3.2) and Differential Power Analysis (Section 2.3.3), the authors highlighted

vulnerabilities in modern devices, and expressed the need for appropriate countermeasures.

The Kocher et al paper is seminal to the field of Side Channel Analysis, and is cited in almost

every power analysis related paper. It also introduced the need for cryptographic devices to

be evaluated with respect to side channel attacks, and the need for certification following this

evaluation.

Goodwill et al. A Testing Methodology for Side Channel Resistance [42] Due to the

threat of effective side channel attacks against commercial devices, manufacturers benefit from

providing a guarantee that their product is protected against malicious exploitation. In other

words, they wish to prove that their products (microprocessors, embedded devices, etc) are not

vulnerable to any form of Side Channel Analysis.
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Goodwill et al. propose the use of the Test Vector Leakage Assessment (TVLA) framework to

detect the presence of leakage in a target cryptographic device. The framework detects leakage

through a suite of Welch’s t-tests [43] which partition traces taken from the target device and

compare the mean differences in each partition. One example is the ‘fixed-vs-random’ test, in

which the traces are partitioned into two sets: traces taken using a fixed input (plaintext), and

traces taken using a variety of different input values. By comparing the difference in the means of

both these trace sets, one can infer the presence of data-dependent leakage. The TVLA framework

is specified by the ISO standard (ISO/IEC 17825:2016 [44]).

Other methods of leakage detection have been proposed in recent literature. Recent findings

show that the mutual information between traces and known intermediates can be used to detect

the presence of data dependent leakage [45–47]. The correlation between the traces and a known

intermediate can also be exploited [48].

The Common Criteria (CC) [49] and EMVCo [50] evaluation approach is to subject the device

to a set of chosen attacks, representing ‘all’ of the most powerful attacks proposed in recent

literature. The chosen set of attacks is managed by the JIL Hardware Attacks Subgroup (JHAS)

and is not publicly available.

Whitnall et al. highlight the shortcomings of the methods mentioned above in ‘A Cautionary

Note Regarding the Usage of Leakage Detection Tests in Security Evaluation’ [51]. One of these

shortcomings is the ambiguity of what the proposed methods intend to achieve. If a device passes

a leakage detection test, intuition suggests that the device is free from leakage; however, this is

not necessarily the case. One can only conclude that no leakage was detected using that specific

approach.

The debate of the ‘best’ method of leakage assessment is still ongoing. Whitnall et al. show

that finding the ‘best’ approach for all evaluation goals is not viable, as each scenario is unique. In

this thesis, we consider the ‘worst case’ adversary: one that is able to exploit all possible leakage

points within a set of traces. We believe this is the best way to evaluate our device. In the rest of

this chapter we explore the various attacks that have been proposed in recent literature.

The intuition that subjecting the cryptographic attack to the ‘worst case adversary’ is echoed

in work such as ‘Soft Analytical Side-Channel Attacks’ by Veyrat-Charvillon et al. [7] (which will

be discussed further in Section 3.2), and ‘Study of Deep Learning Techniques for Side-Channel

Analysis and Introduction to ASCAD Database’ by Prouff et al. [15] (which will be discussed

further in Section 3.3).

Mather et al. Multi-target DPA attacks: Pushing DPA beyond the limits of a desktop
computer [6] When DPA was first published by Kocher et al [5], the computations were initially

geared towards low cost equipment and technology. Since then, advances in technology have

increased the computational capabilities of the typical adversary, allowing much more powerful

attacks. A trade off can now be made between the data complexity and the computational

complexity of attacks; in other words, the more powerful resources an adversary has, the fewer
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traces required for a successful attack. Multi-Target Attacks are an example of how to reduce

data complexity. Mather et al. do this by attacking multiple targets (multiple leakage points each

associated with a separate intermediate) within a single trace simultaneously, through extensive

use of parallelism. The result is an improvement on the classical DPA attack that can harness

the power of parallelisation in CPUs and GPUs.

The question of which additional targets (further to the outputs of the SubBytes step) to

exploit within the algorithm is addressed early in the paper in the context of AES: the output

of MixColumns, along with the intermediate computations during MixColumns. The paper does

not extend past the first round of AES. However, if the adversary has access to a large amount

of compute power, and wishes to maximise the information extracted from each trace, it poses

the question: are the later rounds of AES vulnerable to side channel exploitation? If so, how do

we combine that information together with leakage taken from the first round? This question is

answered in ‘Soft Analytical Side-Channel Attacks’ [7] by Veyrat-Charvillon et al. (which will be

described in detail in Section 3.2), and extended further in my work.

Chari et al. Template Attacks [52] Chari et al. propose a variant of DPA in which the

adversary has access to an additional tool: a ‘replica’ of the target cryptographic device. The

assumption is that the replica functions identically to the target device, but the adversary has

full control over the inputs (including the secret key), and can produce their own traces at will.

Using this replica, the adversary can profile the leakage of the device, creating templates that

characterise the leakage of certain input values. Further details are described in Section 2.3.5.

Chari et al. show that Template Attacks are exceptionally powerful, and achieve an improved

success rate over standard DPA as introduced by Kocher et al [5].

The power of Template Attacks proposed by Chari et al. could now be applied to the Multi-

Target Attack proposed by Mather et al. This would allow the adversary to have a replica of the

target device from which they could characterise the leakage of multiple leakage intermediates

within the cryptographic algorithm. In Section 3.2, we explore papers that do just that. However,

in order to combine the information from multiple targets, they use the message passing algorithm

known as Belief Propagation.

3.2 Belief Propagation in Side Channel Analysis

Veyrat-Charvillon et al. Soft Analytical Side-Channel Attacks [7] This paper introduces

Soft Analytical Side Channel Attacks (SASCA) as an alternative way of modelling Differential

Power Analysis. The idea is split up into three main steps:

1. Model the target cryptographic algorithm (e.g. AES) as a factor graph as described in

Section 2.5.2

41



CHAPTER 3. RELATED WORK

2. Supply leakage information taken from the target device into the newly constructed factor

graph as described in Section 2.5.5

3. Run the Belief Propagation algorithm over the graph, computing the marginal distributions

of the key bytes after termination, as described in Section 2.5.3

This represents the (theoretically) best attack against a cryptographic device: the idea is that

all possible leakage points are exploited within the trace, and are combined to extract information

on the secret key. However, there have been some gaps in the explanation of the algorithm that

make implementation from the description ambiguous. These have been noted as follows:

• In the SASCA adaptation of the belief propagation algorithm, Veyrat-Charvillon et al. note

that “any value that does not leak (either because it is protected1 or precomputed) has a

uniform prior [distribution]”. However, the first round of AES starts with the AddRoundKey

operation, where the key bytes are XOR’d with the plaintext bytes. If, for whatever reason,

at least one of the plaintext bytes does not leak any information, the SASCA algorithm

always fails (never finds the first-order key). This is due to the fact that the only factor

nodes connecting to the key bytes are XOR nodes, which also connect to the plaintext bytes.

If the plaintext nodes have a uniform probability distribution, no information can be passed

back to the key bytes. This scenario is only likely in an Unknown Plaintext Attack (where

the message input to AES is not known by the attacker). This scenario is not addressed by

the paper.

• The paper suggests using a ‘backbone’ to connect the shared key bytes to each trace used in

the attack (such that all shared key bytes are connected to nodes in every trace, creating

one huge graph). However, this increases not only the computation complexity, but also

the memory complexity; the size of the graph scales linearly with the number of traces,

and this large graph must be stored in memory whilst the Belief Propagation Algorithm

is performed. This computation would require a large amount of memory to be performed

efficiently; it would not be practical on current generation desktop workstations.

• Three functions are given as examples for the factor nodes: XOR, SBOX, and XTIME.

Firstly to note, factor functions are implementation specific; other implementations of AES

might use more complex functions, and as SASCA needs the exact implementation specific

factor graph in order to function, these functions would need to be hardcoded into the

SASCA algorithm. This is significantly less portable than a standard Template Attack.

Secondly, with functions like XOR, the direction of message propagation is not important;

XOR nodes have three neighbours, and to communicate a message to one neighbour, one

must take the product of the messages coming from the other two neighbours. However,

1Protected through the use of a Masking Scheme, see Section 2.3.6.1
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the SBOX and XTIME functions are both directed functions (non-involutory), and need

extra information (the direction) in order to perform the correct operation on the input (e.g.

SBOX(t)= s, but SBOX(s) 6= t). These directional requirements are not discussed within the

SASCA paper, but must be considered for the implementation of the Belief Propagation

algorithm.

• The results reported in the SASCA paper show a 100% success rate when the SNR is 24.

As attackers, we are interested in recovering the key bytes ki (Figure 2.7 for reference).

Noise affecting the key bytes directly would affect the results considerably more than noise

affecting a node far away from the key bytes (e.g. p17). If noise did affect a key byte directly

(as it might with an SNR of 24), it would be very difficult to recover the key. It is unclear

how the 100% success rate the paper achieved is possible in these circumstances.

• Veyrat-Charvillon et al. observed SNRs ranging from 22 to 2−5. We note that this SNR

range is significantly higher (less noisy) than that observed in practical situations, where

we observed SNRs between 2−5 and 2−6.

Grosso and Standaert. ASCA, SASCA and DPA with Enumeration: Which One Beats
the Other and When? [53] Further to the original SASCA paper, a follow-up paper was

published that compared the accuracy of SASCA to ASCA (Algebraic Side Channel Attacks [54],

developed by the same authors as SASCA) and to enumerated DPA attacks; specifically, a profiled

Template Attack.

However, as Grosso and Standaert make clear in the first section of their paper, SASCA is

better than ASCA in mostly every aspect, theoretically and practically. ASCA represents the

cipher as an instance of an algebraic problem, such as Boolean satisfiability (the problem of

determining if there exists an interpretation that satisfies a given Boolean formula). A ‘solver’ is

an algorithm or program that aims to satisfy a given problem, and requires equations between

variables as input. A single AES trace would be represented as approximately 18,000 equations

in 10,000 variables. This already has very large memory complexity. It then feeds in the leakage

information to these solvers; however, these solvers require ‘hard information’, that is, no errors.

In a practical sense, getting actual data in a noise free setting is next to impossible, and Grosso

and Standaert show in the paper how the performance of ASCA drops when attacking traces

with noise.

Grosso and Standaert comment that ‘SASCA are in general preferable to ASCA (i.e. both

for noise-free and noisy scenarios’ (Section 1 Summary in [53]), as it has a much lower memory

complexity by modelling the cipher as a factor graph (similar to a Hidden Markov Model [55])

rather than a series of equations, and it can deal with a significant amount of noise.

However, SASCA has a much larger computational complexity, as creating the factor graph

and then performing the Belief Propagation algorithm (especially with multiple traces) is compu-

tationally expensive. For this reason, in Grosso and Standaert’s comparison of SASCA with a

43



CHAPTER 3. RELATED WORK

Divide and Conquer attack (an attack that first attacks independent parts of the key separately,

then combines these pieces of information), the DC attack is allowed to use key enumeration

(able to ‘check’ a large number of keys according to a ranking scheme, allowing success to be

more lenient than a first-order attack). More accurately, the success rate of the SASCA attack is

compared to Divide and Conquer attacks that exploit “a computational power corresponding to

up to 230 encryptions”.

Grosso and Standaert compare SASCA and ASCA against a Bivariate Template Attack

(univariate targets a single leaking operation, whereas bivariate targets two), attacking the

AddRoundKey and SubBytes operations (i.e. {si}16
i=1 and {ti}16

i=1, Figure 2.7 provided as reference).

The paper is guaranteed to have a level of bias in its findings, so it is as expected that SASCA

“remains the most powerful attack when the adversary has enough knowledge of the implementa-

tion”. The power of SASCA comes from the number of exploitable leakage samples available to

the adversary; the more available, the greater the power SASCA has over Divide and Conquer

style attacks.

3.3 Deep Learning

Song et al. Overview of Side Channel Cipher Analysis Based on Deep Learning [56]
This short paper (published June 2019) provides an overview on the current state of research

regarding Deep Learning applied to Side Channel Analysis, specifically looking at which network

models have been utilised in different scenarios. This ranges from the simpler Multi-Layer

Perceptrons (MLPs) to the more complex Convolutional Neural Networks (CNNs). This work also

provides insight into the current research situation, highlighting the success of published attacks

against classical power analysis methods.

Prouff et al. Study of Deep Learning Techniques for Side-Channel Analysis and Intro-
duction to ASCAD Database [15] Deep Learning has been applied to Side Channel analysis

in recent literature. Training neural networks to classify power leakage has many advantages

(as described in Section 2.6.2); one that is highlighted in this paper is that CNNs (and also

MLPs) are resilient against clock jitter. The networks are successfully able to ‘pick out’ the useful

leakage within a window of power consumption values, and successfully classify a target leakage

point. Prouff et al. conclude, after comparing a trained MLP to a trained CNN, that the MLP

outperforms the CNN in a jitter-free scenario, whereas the CNN is more resilient against clock

jitter. This is expected given the shift invariance of the convolutional operation.

This paper not only provides an in depth analysis on how Prouff et al. trained a neural

network to aid in a side channel attack, but it also provides benchmarks upon which other

researchers can test their own neural networks. The data used by this paper have been released

to the public domain and have been used in the current research as reported in Chapter 6.
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Wong et al. Understanding data augmentation for classification: when to warp? [9]
Training a neural network is difficult when the training set is small. This could happen in side

channel analysis, for instance, if the adversary is unable to acquire a large number of traces in

order to build an accurate profile of the target leakage due to restrictions on the physical target

device. In this case, one solution is to use Data Augmentation. The idea behind this is to increase

the size of the training set by synthetically creating new data from the existing training set.

The paper highlights two approaches in particular: data warping, where transformation

on the existing training set take place in the data-space, and over-sampling, where additional

samples are created within feature-space. The paper concludes that data warping yields better

network performance than over-sampling.

Cagli et al. Convolutional Neural Networks with Data Augmentation Against Jitter-
Based Countermeasures [10] Cagli et al. showed that the performance of a CNN can be

improved when targeting jittery traces by using data augmentation on available training data

through a combination of two methods:

1. by ‘shifting’ a window within existing traces, and

2. by ‘add-remove’, in which R time samples are selected at random and either ‘added’ (dupli-

cated) or removed from the trace

By doing this on the training data supplied to the neural network, the hypothesis is that

the network will be able to learn how to deal with jittery traces. Their results show that this

application technique outperforms an implementation of a Gaussian Template Attack with trace

realignment.

Kim et al. Make Some Noise: Unleashing the Power of Convolutional Neural Networks
for Profiled Side-channel Analysis [11] In this paper, Kim et al. aim to find which CNN

structures work best in certain scenarios. To do this, Kim et al. focus on four data sets:

1. The DPA contest v4, a masked AES implementation freely available for public download [57]

2. an unprotected AES-128 implementation

3. an AES implementation with a random delay countermeasure implemented in the software

4. the ASCAD dataset, as defined in [15]

By considering each data set independently, Kim et al. build a CNN that works optimally. The

paper contains results that show that the success of the network structures is data dependent

(different structures work well on different data sets).
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The paper concludes by highlighting the need of a suite of CNN networks, so that people can

pick and choose the best structure for their use case. In addition, Kim et al. mention that when

Gaussian noise is added to the training data, the network becomes more resilient to noise. The

paper includes a demonstration of this using the ASCAD data set as an example.

Martinasek et al. Optimization of Power Analysis Using Neural Network [12] Marti-

nasek et al. focus on the preprocessing side of the Deep Learning-assisted Side Channel Attack;

how can one manipulate the training data to develop the best neural network for a given target

device? The method proposed in this paper involves finding the average trace within the training

data set, and then representing each trace as the difference between itself and the average. The

key idea behind this is that the Neural Networks no longer learn arbitrary leakage values, but

the distance of the measurements relative to the average, which may be easier for the Neural

Networks to learn. Kim et al. demonstrate this technique using an MLP, and show an increase in

the first order success rate of a classification attack.

However, this technique does come with some downsides: it ‘suppresses alternative probabili-

ties’. In other words, Martinasek et al. no longer produce a ranking of all possible keys; instead

producing a single ‘best guess’, where all other guesses are equally likely. The effect of this is

that the approach does not support backtracking to try other key guesses if the most likely key

guess is incorrect.

Martinasek et al. Profiling Power Analysis Attack Based on Multi-layer Perceptron
Network [13] Martinasek et al. use the MLP previously developed to compare the success of the

network to a Template Attack. To gauge the success rates between the two techniques, Martinasek

et al. used the guessing entropy metric. The network structure itself (all hyperparameters chosen)

was not included within the paper, and the paper concludes that the Template Attack outperforms

the neural network when the data has not been preprocessed. By preprocessing the data (as

described in [12]), Martinasek et al. are able to match the success rate of the MLP to the Template

Attack.

Martinasek et al. Profiling power analysis attack based on MLP in DPA contest V4.2
[14] Almost a continuation of [12], Martinasek et al. perform the same techniques, but targeting

the DPA contest v4.2 trace set (a publicly available trace set used to compare Side Channel

Attacks on equal footing). Martinasek et al. is successful in recovering the key from some but not

all of the data sets; Martinasek et al. note although unsure why some datasets failed, it was most

likely due to a degree of ‘distortion’ within the dataset.
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3.4 Summary of Related Work

The Kocher et al. paper [5] demonstrated the vulnerability of commercial devices by exploiting

side channels. Thus, devices must be evaluated with respect to this side channel vulnerability.

Idealistically, we wish for a tool that can evaluate a cryptographic device and provide certification

detailing its resilience against Side Channel Analysis.

The debate of how best to do this is ongoing. The TVLA [42] + ISO [44] method proposes the

use of statistical hypothesis testing as the sole required measure. The CC [49] and EMVCo [50]

evaluations involve subjecting the device against a suite of the ‘best’ side channel attacks proposed

in recent literature (although this suite is not publicly available). The papers included in this

Related Work chapter propose novel attacks that exploit side channel vulnerabilities using an

assortment of methods, including statistical analysis in Section 3.1, inference-based attacks in

Section 3.2, and Machine Learning-based attacks in Section 3.3.

In this thesis, we consider the best leakage assessment technique to be subjecting the target

device to the ‘worst case’ adversary, by mounting the theoretically best attack against the device.

The resulting attack is a combination of two techniques: the Belief Propagation Attack proposed by

Veyrat-Charvillon et al. [7], with the classification phase utilising Deep Learning as demonstrated

by Prouff et al. [15]. We improve the feasibility and efficiency of such an attack through detailed

experimentation, and compare our improved attack to other attacks proposed in recent literature.
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4
THE BELIEF PROPAGATION ATTACK

This chapter is concerned with the Belief Propagation algorithm, and its application to

Side Channel Analysis. It is based on an initial idea proposed by Elisabeth Oswald and

notation designed by Arnab Roy. A subset of the content included in this chapter was

published at CARDIS 2018, with the title A Systematic Study of the Impact of Graphical Models

on Inference-Based Attacks on AES [2].

4.1 Introduction

In Section 2.5 we describe how the Belief Propagation (BP) algorithm has been used in Side

Channel Analysis. Section 3.2 details the shortcoming of current Belief Propagation Attack (BPA)

implementations, such as Veyrat-Charvillon et al. [7]. The limitation of the attack is the large

memory requirement, and as such, is not practical for real world scenarios.

In this section we describe our contributions that develop BPA into a more efficient and

practical attack. We begin by describing in detail the system built to experiment with BPA

written in Python. Our first improvement makes the Belief Propagation algorithm itself more

efficient by reducing the practical running time through ‘Epsilon Exhaustion’: a new approach that

incorporates a method to identify when information has been adequately propagated throughout

the factor graph, thereby enabling an ‘early-out’ to obviate the need for significant further

computation that does not add materially to the analysis. Our second improvement detects

erroneous traces through the ‘Ground Truth Check’ (by comparing beliefs on known variables).

We then show the observations taken by experimenting with this system, starting with a method

to connect multiple traces together without incurring a large memory overhead. By connecting

multiple traces together, we combine leakage information from multiple traces, significantly

reducing the possible key space and increasing the chance of first order success (successful key
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recovery). We then show that it can be beneficial to remove certain nodes from the graph (to

enable a potentially significant reduction in algorithmic and data complexity), and we propose a

method to safely remove a node. Finally, we give details on the odd phenomenon of Loopy Belief

Propagation (Belief Propagation on a factor graph containing cycles, which prevents convergence):

the chaotic fluctuating of information. We go on to show the scenarios in which this phenomenon is

observed, why we should prevent this from happening, and a method to prevent it from occurring.

4.2 Implementation of BPA in Python

In order to experiment with the nature of the Belief Propagation algorithm, we elected to

implement it in Python 2.7 [58]. We chose Python for a number of reasons: it is interactive,

portable, and supports rapid development. For some of the more resource-intensive functions and

procedures, we used a Cython [59] compiler, converting the Python into C code before compilation.

Compiled Cython functions run faster than functions using the standard Python syntax.

4.2.1 Project Layout

main

factorGraphAES

gexfGraphCreatorleakageSimulator realTraceHandler

utility

correlationtestModelstrainModels marginalDistance

Figure 4.1: belief_propagation_attack Project Layout

Figure 4.1 shows the layout of the belief_propagation_attack project. Each block rep-

resents a Python class file. The blocks in red have a high computational complexity, and are

therefore written and compiled using Cython for runtime efficiency (using the suffix .pyx). The
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other blocks are written in Python (using the suffix .py). The two classes enclosed in the green

box (trainModels and testModels) are for training and testing the Neural Networks.

4.2.2 main.py

The main file, used to run the Belief Propagation Attack. It first handles the argument flags pro-

vided on the command line. It then sets up the Factor Graph and Leakage using factorGraphAES.pyx,

and starts running the Belief Propagation algorithm. The final state of the graph is recorded and

stored in corresponding results files as indicated through the argument flags. Without any flags,

running main.py will run a simple BP attack on simulated data. Table A.1 is provided in the

appendix as an exhaustive list of available argument flags sorted into categories.

4.2.3 factorGraphAES.pyx

This class file first handles the set up of the Factor Graph by using gexfGraphCreator.py. Once

created, it then handles the leakage information (described in Section 2.5.5) by either using

leakageSimulator.pyx if simulating the data using ELMO, or realTraceHandler.py if using

the leakage taken from a real device. It then handles all Belief Propagation related operations,

such as:

• Setting the initial distributions of all leaking variable nodes according to Equation 2.10,

and supplying non-leaking variable nodes with a uniform distribution

• Passing messages from variable nodes to factor nodes (and vice versa) according to Equa-

tions 2.8 and 2.9

• Storing all distributions as the ‘edges’ between nodes

• Computing the marginal distributions of any given node, mostly used on the key bytes to

determine the rank of the target key

• Implementing the Epsilon Exhaustion termination criterion and Ground Truth Checks,

which will be described in Sections 4.4 and 4.5 respectively

• Altering the leakage on certain nodes, removing nodes, and ‘fixing’ certain variable nodes

in a given trace, in order to measure the ‘importance’ of a node (all discussed in Section 4.7)

We implement the messages that propagate around the factor graph as numpy arrays of type

float and of size 256. numpy (mathematical library for Python) supports fast and efficient array

manipulation, which is crucial for our implementation of the Belief Propagation algorithm to run

smoothly. Each array of floats represents a probability distribution of a specific variable node, and

as such, is constantly normalised to sum to 1. The value stored in each array element indicates
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the probability the variable node has of being the index of the element (as nodes are bytes, the

possible values of the index range from 0 to 255).

factorGraphAES.pyx can be used independently if one wishes to experiment with the Belief

Propagation algorithm without the restrictions main.py might enforce.

4.2.4 leakageSimulator.pyx

This class file is able to simulate leakage for a specific value, as well as adding Gaussian noise if

necessary. This is hard-coded for AES FURIOUS, along with a file that can simulate ARM AES. The

idea behind this modularisation is to allow the use of any generic block cipher.

As discussed in Section 2.4.3, the ELMO tool has the ability to generate simulated power

traces from provided source code. In our work, however, we tweak the output of each leaked

power value, to match the following equation:

(4.1) y= δ+ [ O2 ]β+ε

Unlike Equation 2.4, we are only concerned with the Hamming Weight leakage on the second

operand. Using this simplified power model, we generate our traces using an AES implementation

written in the ARM assembly language.

4.2.5 gexfGraphCreator.py

Creates the structure of the AES FURIOUS graph, using the third party package networkx to

set up the nodes and the edges. It stores the resulting graph in the Graphs/ folder, which is

then checked (and loaded if present) by factorGraphAES.py each time a new graph is required,

preventing repeated creation of the same graph in each repetition of the attack.

We implemented one small change to the structure of the graph to how it was originally

introduced in the SASCA paper [7]. The leakage information is modelled to be identical to

Figure 4.2 (leakage provided to every variable as a leaf factor node), but in our implementation

we do not represent the leakage as separate nodes, using ‘initial distributions’ within the variable

nodes themselves. We do this because in the original proposal of the algorithm, these ‘Leakage

Factor Nodes’ are leaf nodes. They constantly send out their message at each iteration, and accept

incoming messages from their neighbouring variable node. This is redundant, as their message

only needs to be sent out once, and as we never compute the marginals of these factor nodes, we

do not need to accept incoming messages. As a consequence, we removed them, replacing them

with the initial distributions contained within each variable node. This reduces the number of

messages to be sent per BP iteration by the number of variable nodes in the graph (in the case of

the full 10 rounds of AES-128, this saves 1,212 operations per iteration).
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Figure 4.2: Factor Graph example using Leakage Information Lv as Factor Nodes; in this work
the Leakage Factor Nodes are removed and instead we use ‘initial distributions’ stored internally

in the variable nodes (in blue)

4.2.6 realTraceHandler.py

This is the class used to handle real trace data. It holds a pointer to the trace data in memory (it

does not load it due to the trace data being large in size). Additionally, it is able to handle leakage

on request, using any specified classifier listed below:

• Gaussian univariate templating, using the templates found in musigma.dict (Python dic-

tionary of templates built using correlation.py, which will be discussed in Section 4.2.11)

• Linear Discriminate Analysis classifier, using the LDA files located in the lda folder

• Neural Network-assisted classifier, using the model files located in the models folder

In addition, the class file can also test the effectiveness of a requested classifier / neural

network model. This feature is used in the testModels.py script.

4.2.7 utility.pyx

This Cython file contains utility functions that are used by all of the files in the project. These

range from printing and return statistics on various arrays, to mathematical functions that

are the heart of the Belief Propagation algorithm. During development of the system, many

functions became a bottleneck of computation (for example, the arrayXOR function used in Belief

Propagation), so in order to speed it up, it was compiled into C using Cython.

For example, the XOR operation present in the AES algorithm calculates the xor of two values.

In BPA we use the same factor graph that represents the execution of the AES algorithm: the

function nodes that correspond to the XOR operations perform a function on two probability

distributions that replicates the effect of the XOR operation.
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Listing 4.1: Python code to perform the XOR of two probability distributions

@cython.boundscheck(False)

@cython.wraparound(False)

# Function to xor two probability distributions

def fast_xor(np.ndarray [DTYPE_t, ndim=1] v1, np.ndarray [DTYPE_t, ndim=1] v2):

# Define Cython local variables

cdef np.ndarray [DTYPE_t, ndim=1] v_xor = get_zeros_array()

cdef int i, j

# Index 0 is easy enough, as i^i == 0

for val in zip(v1,v2):

v_xor[0] += val[0] * val[1]

# Loop through other values, multiplying probabilities

for i in range(256):

for j in range(i+1, 256):

v_xor[i^j] += (v1[i] * v2[j]) + (v1[j] * v2[i])

return v_xor

Listing 4.1 contains the function used to calculate the XOR operation over two probability

distributions, v1 and v2. This function includes a nested for loop, iterating through all possible

xor values and updating the probabilities accordingly1. Due to the nature of the nested for loop,

this function is the bottleneck of the Belief Propagation algorithm, and needs to be performed

a large number of times per BP iteration (equal to the total number of neighbours of all XOR

nodes in the factor graph, which for the full AES graph is 2148). A great deal of experimentation

went into optimising this function, and the best solution was to compile it using Cython, giving a

speedup of roughly 300%. Unlike the Python files in the project, all Cython files must be compiled

whenever they are modified.

4.2.8 trainModels.py

This file was adapted from the ASCAD file of the same name, used by Benadjila et al. to train

their models in ‘Study of Deep Learning Techniques for Side-Channel Analysis and Introduction

to ASCAD Database’ [15]. By using argument flags to tweak the hyperparameters of the model

to train, we use keras2 to train a neural network using available trace data. There is currently

support for the following models:

• The MLP pretrained on the ASCAD Database

1This produces a non-normalised ‘likelihood array’, which is then normalised by the separate function
normalise_array()

2A Neural Network API, see Section 6.2.1
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• The CNN pretrained on the ASCAD Database

• The MLP and CNN using the best model shown in the ASCAD paper

• A generic MLP model where the following hyperparameters can be modified:

– Number of hidden layers

– Number of nodes per hidden layer

– The loss function

and support for the following hyperparameters that affect all models:

• Number of input units (window size)

• Number of training traces and validation traces

• Number of epochs to train

• Batch size of training

• Learning rate

• Option to add jitter to traces to train for misalignment

• Option to use multilabel encoding (see Section 6.4.9)

• Option to train against Hamming Weight (as opposed to identity value)

Details on training a neural network are found in Section 2.6.5, and our experiments using

this file are described in Section 6.2.2.

4.2.9 testModels.py

The class file used to handle the testing for the neural networks. It sets up an instance of

realTraceHandler and requests various networks to classify test data; the results are stored in

a csv file for ease of comparison.

Details on training a neural network are found in Section 2.6.7, and our experiments using

this file are described in Section 6.2.4

4.2.10 marginalDistance.py

This separate script is solely used to measure the importance of nodes using the Hellinger

distance, as described in Section 4.7. Having run the Belief Propagation algorithm whilst certain

nodes are ‘fixed’ (externally set a specific initial distribution), this script collects the outputs of

these attacks and compares the difference in final key distributions to each other. Results using

this file can be found in Section 4.7.3.
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4.2.11 correlation.py

This is the Python file used to initially parse the trace .trs file (traces taken from the target

device) and to extract various sections into separate files. More specifically, it performs the

following methods sequentially:

1. Sets up the necessary directory structure for the project (detailed representation will be

provided in Figure 5.7 in Section 5.3.6)

2. Saves the metadata file by reading the .trs header: number of traces, number of samples,

and various codings and offsets for parsing the .trs file (further details will be provided in

Section 5.3.1)

3. Strips the trace data and the plaintexts into separate files

4. Simulates the intermediate variable identity values using the extracted plaintexts, storing

these in separate files

5. Performs correlation analysis to detect the points of interest of all nodes in the trace file

6. Generates all 256 univariate templates for each variable node

7. Trains Linear Discriminant Analysis classifiers for each variable node

Once run on a new .trs file, the main Belief Propagation attack can be run on the new trace

set.

4.2.12 Miscellaneous Files

Other files included in the project provide information to set up the environment, and are listed

as follows:

• REQUIREMENTS.txt, a list of all Python dependencies required by this project; generated

using pipreqs, one can use the pip install -r REQUIREMENTS.txt command to install

them

• PATH_FILE.txt, includes a list of hard coded directory paths for loading traces, neural

network models, and other large files; for instance, during development, the trace files were

around 20GB in size, so these were stored on an external hard drive, and PATH_FILE.txt

included a path to these traces

• README.md, includes all necessary information to set up the project environment

• Makefile, used to build and test the project using make build and make test respectively

• setup.py, used to compile the Cython files into C when running make build
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4.3 Experimentation and Recording Results

As an example, we run the Belief Propagation Attack using the following command:

python belief_propagation_attack/main.py -r 20 -t 10 -rep 5 -snrexp -3

This runs the attack using 20 iterations of BP, 10 traces, 5 repetitions (each using a different

fixed key and different plaintexts), and a simulated SNR of 2−3 (s.t. the noise is 8x more than

the signal). Upon termination, the program prints the attack results to the console, as shown in

Listing 4.2.

Listing 4.2: Output of the BPA program

+++++++++ Key Rank Statistics +++++++++

Max: 12 (~2^3)

Min: 1 (~2^0)

AriM: 4.6 (~2^2)

GeoM: 2 (~2^1)

Med: 3.0 (~2^1)

Rng: 11 (~2^3)

Var: 14.64 (~2^3)

Total Successes: 1 ( 20.0%)

Total Attacks: 50

Failures: 0 ( 0.0%)

Maxed Iterations: 50 ( 100.0%)

Epsilon Exhaust: 0 ( 0.0%)

After a single Belief Propagation Attack, the final ranking of the key bytes is recorded and

appended to a list. After all repetitions of the attack are completed, this list of key ranks is

analysed. We are mostly interested in two aspects of the analysis: the logarithm of the median

final key rank, and the attack success percentage.

We choose the median rank over the other metrics as it provides a more stable representation

of the attack, where a single noisy trace can easily skew the mean result. As the key rank can be

anywhere between 1 and 2128, we use the logarithm of the median rank. An attack is deemed

successful if the final key rank of the attack is 1: this is also known as ‘first order attack success’,

and means the attacker has successfully recovered the key. The successful attack percentage is

therefore the percentage of how many attacks successfully recovered the key.

57



CHAPTER 4. THE BELIEF PROPAGATION ATTACK

4.4 Epsilon Exhaustion

4.4.1 Introduction

The Belief Propagation algorithm as described in Section 2.5 is run for a number of iterations. A

number of iterations must be chosen to ensure full information propagation. Previous work has

not supplied a method of choosing this number, so in the case for the full 10 rounds of AES-128,

we use at least 100 BP iterations.

We denote the number of iterations run as the value tmax. In each iteration of BP, all messages

are updated. After experimentation during the development of the Belief Propagation Attack, we

observed three scenarios of the updated messages:

1. The information continued to propagate around the graph up to tmax, with the updated

messages being drastically different to the original messages.

2. The information continued to propagate around the graph up to tmax, but the messages

were only being updated a small amount (diminishing returns of updated information)

3. All information had fully propagated after a number of iterations before tmax, and further

iterations did not alter any messages

The first scenario (drastic message updating) is an example of the ‘chaotic’ behaviour that

exists when the Belief Propagation algorithm is run on a factor graph containing cycles. This

behaviour will be addressed in Section 4.8. However, in this section we will focus on the remaining

two scenarios: when the Belief Propagation reaches a state of (or close to) equilibrium.

We hypothesise that if we are able to detect this state of equilibrium from within the Belief

Propagation algorithm, then we will be able to terminate BPA without detrimentally affecting

the attack success. In the case of complete convergence (Scenario 3), this would be intuitive:

further rounds of BP do not affect the probabilities. However, in the case of continuous small

message updating (Scenario 2), it becomes much more challenging to predict the optimal BP

iteration to terminate the algorithm. We therefore propose two metrics: a threshold ε to control

how much information being updated is considered ‘small’, and a constant εs to measure the

number of consecutive Belief Propagation iterations that must be under the threshold ε in order

to terminate the Belief Propagation algorithm.

4.4.2 Experimentation

After every iteration of the Belief Propagation algorithm (consisting of a Variable Pass and a

Factor Pass), we observe the messages being sent to each of the key byte nodes. We compare

these messages to the messages sent by the previous iteration (excluding the first iteration of

BP). If the difference between these messages is smaller than some threshold ε, then we can infer

the information has not been updated. To check this difference, we required a distance metric.
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After experimenting with multiple distance metrics (Hellinger distance, KL Divergence, and

many others), we found the clearest results using the Euclidean distance metric, as defined in

Equation 2.14. If we observe this threshold not being met over εs iterations of BP (to ensure we

have not terminated too early when information is still flowing), then we can conclude that all the

information has propagated through the graph, and we can safely terminate the BP algorithm.

The Pseudocode for this method is included within Algorithm 4, and is marked by the comment

‘Epsilon Exhaustion check’.

Algorithm 4: The Belief Propagation algorithm complete with the Epsilon Exhaustion
termination criterion and the final Ground Truth check. Pseudocode was adapted from
my CARDIS publication ‘A Systematic Study of the Impact of Graphical Models on
Inference-based Attacks on AES’ [2]

1 function BPA(Gaes,ε,εs,εg, tmax,k∗,vp)
/* k∗ are the variable nodes corresponding to the key */

/* vp are the variable nodes corresponding to the plaintext */

2 Initialise the messages as i.i.d uniform random variables
3 count = 0
4 foreach t ∈ {1, . . . , tmax} do
5 foreach (v, f ) ∈Gaes do
6 update q(t)

v→ f according to Equation (2.8)
7 end
8 foreach (v, f ) ∈Gaes do
9 update r(t)

f→v according to Equation (2.9)
10 end
11 if (k∗, f ) ∈Gaes, ‖r(t)

f→k∗ − r(t−1)
f→k∗‖∞ < ε then

12 count = count+1
13 if count == εs then /* Epsilon Exhaustion check */

14 break
15 else
16 count = 0
17 end
18 end
19 if ‖r f→i p −mL [vp]‖∞ < εg then /* Ground Truth check */

20 return 0 /* mL [vp] is the leakage distribution at node vp */

21 else
22 return −1 /* Discard trace */

When using Epsilon Exhaustion (EE), the Belief Propagation can terminate in one of two

ways: either reaching tmax iterations, or terminating early when the updated information is below

threshold ε. We record the ratio of the BP termination method when we modify the values of ε, as

well as documenting the attack success with the median final key rank. We set the value of εs to

be 10, chosen to be not too small (which would be prone to scenarios where information fluctuated

steadily before rapidly escalating), and not to be too big (which would not save a significant
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amount of runtime).

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/main.py -r 100 -t 100

-rep 100 -raes 1 -snrexp [-1, -7]

-epsilon_s 10 -epsilon [0.1, 0.01, 0.001, 0.0001, 1e-5, 1e-6]

4.4.3 Results

Epsilon ε % Success Median Rank % EE Termination Average Trace Time (s)
None 95 0 0 10.04
0.1 99 0 42.48 7.2
0.01 96 0 30.8 8.87
0.001 96 0 26.11 9.26
0.0001 96 0 22.45 9.33
1.00E-05 96 0 19.13 9.58
1.00E-06 96 0 16.82 9.88

(a) Epsilon Exhaustion Results for SNR = 2−1

Epsilon ε % Success Median Rank % EE Termination Average Trace Time (s)
None 0 10 0 9.04
0.1 0 10 100 3.39
0.01 0 10 100 4.39
0.001 0 10 100 4.76
0.0001 0 10 100 5.39
1.00E-05 0 10 100 5.67
1.00E-06 0 10 100 7.17

(b) Epsilon Exhaustion Results for SNR = 2−7

Table 4.1: Epsilon Exhaustion Results in a Low Noise scenario and a High Noise scenario

4.4.4 Observations

Table 4.1a shows the attack results when the SNR is high (relatively small amount of noise). The

first observation to note is that we increase the attack success by using the Epsilon Exhaustion

termination method.

We also observe a faster runtime of the attack when we use the Epsilon Exhaustion termina-

tion method. Our fastest times come from a larger epsilon ε, which is intuitive: the larger the

threshold of ‘similarity’, the sooner they will be detected and the sooner BP can be terminated.
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We do not see a notable difference in attack success in this low noise scenario when modifying

the value of epsilon ε.

Table 4.1b shows a much noisier scenario, in which first order success is not achieved, but

the median rank within 210. The termination rate and the success of the attack are identical

among the experimented epsilon values. Similar to the low noise scenario, we observe the fastest

runtime when using a large epsilon ε.

4.4.5 Conclusions

The results of both experiments show that by changing the value of ε, we change the runtime of

the Belief Propagation algorithm without significantly affecting the final key results. In the low

noise case, we improve the success of the attack. This is most likely due to the number of cycles

in the graph: when Belief Propagation continues to propagate through a cycle, information seems

to fluctuate almost ‘chaotically’. This will be discussed further in Section 4.8.

Our findings suggest to use the Epsilon Exhaustion method whenever running the Belief

Propagation Attack. In our work, we opt to use an epsilon ε of around 0.01. This gives us a large

runtime speedup without the risk of losing information from terminating too early.

4.4.6 Benefits of Method

The benefit of the Epsilon Exhaustion method is a faster attack runtime, without any cost to

the attack success. Taking the experiments included in this thesis as an example, we perform

the Belief Propagation Attack using 100 traces, with 100 iterations of BP per trace, and an

SNR of 2−7. We also wish to repeat the experiment 100 times in order to find the attack success

percentage.

If we rely on the tmax termination criterion, an attack would take 9.04 ·100 ·100≈ 25 hours.

Using Epsilon Exhaustion, we reduce the time taken by half, down to 4.39 ·100 ·100≈ 12 hours.

4.5 Ground Truth Checking

4.5.1 Introduction

When we take power traces from a physical device, we expect a certain amount of random noise.

This means that not all traces will have equal noise; depending on the device, some traces will be

noisier than others. In addition to noise, one small clock jitter in a trace can make it very difficult

to extract useful information. One open question in Template Attacks is how the adversary

differentiates a ‘good’ trace (one that provides useful information) from a ‘bad’ trace (one that

provides little to no information, or in some cases, erroneous information).

Within Belief Propagation, the marginal distribution of a variable node is defined as the

product of all incoming messages, and multiplied by the initial distribution of the variable
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node, as described in Section 2.5. We perform this computation on the key bytes after the Belief

Propagation algorithm terminates, and we combine the marginals of all the initial sixteen key

bytes to produce a ranking of the possible keys. In this context, the messages take the form of

probability distributions regarding each key byte. It follows that if a message was sent to a key

byte where the probability for the correct value is set to 0, then this will persist after the product

is taken with the other distributions. This results in a failure for that key byte, as there is no

way to increase the probability of the correct key value. In order to mitigate this scenario, we

introduce a novel way to detect an erroneous trace (one that will most likely predict the correct

key value as 0).

In this work, we assume that the adversary knows the plaintexts used in the attack traces,

referred to in the Side Channel Analysis literature as a ‘known plaintext attack’. These known

plaintext bytes are referred to as ‘ground truths’, as we know their values with certainty. The

messages sent to each plaintext byte will be a combination of information from the rest of the

trace, excluding the ‘true’ information we know about the plaintext byte. Once BP terminates

(allowing information from all over the trace to propagate to the plaintext bytes), we compare the

‘belief ’ of the plaintext bytes to our knowledge of the correct values. For a ‘good’ trace, we expect

these two distributions to be similar. If the two distributions are not similar, however, then this

implies that erroneous information has been propagating around the factor graph. Although we

cannot locate the source of the erroneous leakage, we can prevent the error from detrimentally

affecting our attack success by simply discarding the trace. The ‘similarity’ between two traces

is measured using the Euclidean distance metric. This is done in a similar way to the Epsilon

Exhaustion method, as described in Section 4.4.

Due to the structure of the AES Factor Graph, the original 16 plaintext bytes p0, . . . , p15 are

leaf nodes, each connected to an XOR factor node, which in turn connects to a key byte ki and

an AddRoundKey output ti (as can be seen in Figure 2.7). In order for information to propagate

through the XOR node to the plaintext byte, neither of the messages passed from ki or ti can

be uniform. If at least one is uniform, we encounter a ‘locking effect’; the XOR of a probability

distribution with a uniform distribution is always another uniform distribution. This prevents

any information from propagating through the XOR node. In order for the Ground Truth Check to

work, we require some initial leakage to be assumed on the sixteen initial key bytes. If we do

not have access to the initial leakage, this method would also work if leakage was provided from

the inclusion of the key schedule: the key schedule provides an alternate source of information

derived from the round keys that connect directly to the sixteen original key bytes.

4.5.2 Experimentation

In order to show the effect and advantage of implementing the Ground Truth Check, we firstly

need to demonstrate the effectiveness with which the Ground Truth Check works, and then we

need to show the improvement it gives to the success of the attack. To simulate erroneous traces,
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we selected all the nodes in 50 out of the 100 traces to have ‘errors’: instead of leaking the correct

value, they leak completely random values. Our hypothesis is that the Ground Truth Check

can detect these with different levels of Gaussian noise and, when detected, can discard these

erroneous traces to improve the success of the Belief Propagation attack.

The Pseudocode for this method is included within Algorithm 4, and is marked by the comment

‘Ground Truth check’.

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/main.py -r 100 -t 100 -rep 100

-raes 1 -bl [k,t,s,mc,xt,cm,h] -blt [0,2,4,...,96,98]

-snrexp [-1,...,-7] [--IGT, <none>]

4.5.3 Results

SNR Erroneous Traces Detected (%)
2−1 99.88
2−2 99.94
2−3 99.86
2−4 94.44
2−5 34.28
2−6 0
2−7 0

Table 4.2: Percentage Detection Rate for Ground Truth Checking with varying SNRs

Ground Truths Off Ground Truths On
SNR Success (%) Median Rank Success (%) Median Rank
2−1 78 0 86 0
2−2 0 14 99 0
2−3 0 64 31 2
2−4 0 82 0 34
2−5 0 87 0 84.5
2−6 0 88 0 88
2−7 0 82 0 82

Table 4.3: Results of Attacks varying SNR comparing the Ground Truth checking method

4.5.4 Observations

Table 4.2 shows how many erroneous traces were detected with different levels of noise. With low

noise, almost all erroneous traces were detected. This becomes increasingly difficult with large

amounts of noise, to the point where no errors were detected with an SNR below 2−6.
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Table 4.3 shows the improvement of using the Ground Truth Check over leaving the erroneous

traces within the Belief Propagation algorithm. For SNR = 2−2, we get first order success when

using the Ground Truth Check, improving the 0% success rate achieved when we do not use the

ground truth checking method. However, this is only true when errors are actually detected; the

success rates are identical for SNRs of 2−6 and below.

4.5.5 Conclusions

This experiment shows that the Ground Truth Check does not detrimentally affect the success of

the attack. As the time it takes to perform this check is very small, it is advantageous to use the

Ground Truth Check whenever performing the Belief Propagation attack with real trace data.

To generate the experimental results shown in the remainder of this thesis, the Ground Truth

Check is permanently turned on.

4.5.6 Benefits of Method

The Ground Truth Check improves the attack success of BPA by discarding erroneous traces,

allowing first order success in low SNRs (2−3 and 2−4). Experimental results show this is especially

effective in low noise scenarios. As this method is only performed once at the end of BP for each

trace, there is a negligible runtime cost in employing the Ground Truth Check.

4.6 Trace Connecting Methods

4.6.1 Introduction

In reality, side channel adversaries usually have access to a number of traces. In most cases,

these traces all use the same fixed key, but with different plaintext values. By combining these

traces, one can more accurately extract information regarding the secret fixed key. In the context

of Belief Propagation, Veyrat-Charvillon et al. [7] discuss a method to connect multiple leakage

traces together. However, there are multiple ways of connecting traces, each with their own

situational use advantages. This section first analyses the combination method as it was initially

proposed, and then explores alternative trace connection methods that yield superior results.

In this section, we use small factor graphs to illustrate the combination techniques. Figure 4.3

represents a single trace, composed of an XOR (representing the AddRoundKey step of AES) and

an SBOX (representing the SubBytes step of AES). Note that this is an undirected graph, allowing

messages to flow in any direction.

4.6.2 Large Factor Graphs (LFG)

The combination method as initially proposed by Veyrat-Charvillon et al. [7] involves having a

single large graph. This large graph is the combination of all leakage traces, connected through

64



4.6. TRACE CONNECTING METHODS
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Figure 4.3: An example of a Factor Graph

mutual nodes. In this work we consider cryptographic encryption algorithms that use the same

fixed key over multiple encryptions (in our case, AES, but common in most encryption algorithms).

The fixed key bytes are therefore common variable nodes across multiple traces, and one can build

any number of subgraphs all extending from the initial sixteen key bytes. Figure 4.4 provides a

visual representation of this connection method, connecting two traces to the common key byte

k1.
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t0
1 s0

1
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1
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Figure 4.4: Connecting two (or more) traces to form a large factor graph. The blue and red nodes
correspond to two different factor graphs (traces) where the node k1 is common to both of them

By connecting traces together in this way, information from one trace can propagate into

another. In the context of Belief Propagation, allowing all available information to propagate

throughout the factor graph is known to produce the most accurate results. However, modelling

a Large Factor Graph in memory is intensive, and the required memory (and the runtime of

the attack) grows linearly with the number of traces. The Ground Truth Check explained in

Section 4.5 can also not be applied here, as it would be difficult to pinpoint the source of the

error due to inter-trace propagation. Convergence is not guaranteed in this scenario; there will be

multiple cycles created by connecting traces together, even if the factor graph for each individual

trace is acyclic.
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4.6.3 Independent Factor Graphs (IFGs)

Instead of creating one large graph, another option presents itself; perform the Belief Propagation

algorithm on each trace in isolation. Only one factor graph would need to be stored in memory at

any given time. The resulting set of distributions produced from each independent trace can be

combined using Bayes theorem.

k0
1

p0
1

t0
1s0

1 k1
1

p1
1

t1
1 s1

1

K1

SBOX XOR XOR SBOX

Figure 4.5: Two independent traces connected via an isolated key node. The blue and red nodes
correspond to two different factor graphs (traces) where the node K1 is common to both of them

Constructing the factor graphs in this way allows for straightforward parallelism. In addition,

by not connecting the traces together, no additional cycles are created in the graphs, which are

known to decrease the likelihood of convergence (Section 2.5). The caveat is that this method

prevents the propagation of information from one trace into another, as evidenced by the results

of Section 4.6.6. In order to counter this disadvantage, we are able to use the Ground Truth Check

(Section 4.5) to discount erroneous traces.

In Figure 4.5, the key nodes k0
1 and k1

1 may have different initial leakage on them, for two

unique power traces. However, because the true value of this variable is identical among all

attack traces (fixed key, varying plaintexts), we are able to average all power values for each of

the initial 16 key bytes. By doing this, we average out the noise and improve our attack success.

4.6.4 Sequential Factor Graphs (SFGs)

As mentioned previously, the Large Factor Graph has the advantage of allowing inter-trace

propagation; that is, leakage information from one trace has the ability to propagate into another

connected trace, which is known to be advantageous in Belief Propagation. The Independent

Factor Graph method does not retain this advantage, as it separates the traces from one another.

A hybrid of these two methods is the Sequential Factor Graph method, in which the marginal

distributions of the key bytes in the i−1th trace (after termination of the Belief Propagation

algorithm) then become the initial distributions for the key bytes in the ith trace, as shown in

Figure 4.6.
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SBOX XOR XOR SBOX

Figure 4.6: Two independent traces connected one way through subsequent traces. The blue and
red nodes correspond to two different factor graphs (traces) where there are no common nodes

The advantage of this method is that, similar to the Independent Factor Graph method, it

only requires a single trace to be stored in memory during computation, and can easily be made

acyclic by removing certain nodes. One can also employ the ‘Ground Truth’ check using the

Sequential Factor Graph method. However, unlike the Independent Factor Graph method, the

‘output’ of one trace becomes the ‘input’ to the next, so it is not strictly feasible to parallelise BPA

on multiple traces.

4.6.5 Experimentation

The command used to generate these results was as follows, using red to indicate the modified

parameters:

• For the Independent Factor Graphs and the Sequential Factor Graphs:

python belief_propagation_attack/main.py -r 100 -t 100 -rep 100 -raes 1 -snrexp

[-1, -7] [<none>, --RM_C] [<none>, --IFG --SFG]

• For the Large Factor Graph method:

python belief_propagation_attack/main.py -r 100 -t [1, 2, ..., 100] -rep 100

-raes 1 -snrexp [-1, -7] [<none>, --RM_C] --IFG --SFG
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4.6.6 Results
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Figure 4.7: Comparing methods of graph combination using cyclic graph G1 and acyclic graph
GA

1 , using an SNR of 2−1 and 2−7

4.6.7 Observations

In both the low noise (SNR = 2−1) and the high noise (SNR = 2−7) scenarios, the LFG method

outperforms the graph connection methods when the graph is cyclic (G1), but is outperformed by

IFG and SFG in the acyclic case. The IFG and SFG methods share identical results apart from in

the high noise cyclic scenario, where the SFG method performs slightly better.

4.6.8 Conclusions

The cost of running Large Factor Graphs with a large number of traces may not always be

computationally feasible, depending on the attack setup; for example, it costs approximately

13GB memory to use the Large Factor Graph method with 2,000 attack traces (which may

be required for protected implementations of AES, see Section 2.3.6). It also prevents the use

of the Ground Truth Check, and is therefore unable to prevent the propagation of erroneous

leakage. However, when using cyclic graphs, the Large Factor Graph connection method should

be considered, as the results show it outperforms the other two combination methods.

When using acyclic graphs (the benefits of removing cycles are suggested in Section 4.8), the

experimental results indicate that it is more advantageous to use either the SFG or IFG methods,
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as these have better success than an acyclic LFG graph. In this case, if the user would opt to

use IFG if their computational system could make use of parallelisation (and/or fast runtime is

preferable over attack success), otherwise one would choose the SFG method.

4.6.9 Benefits of Methods

To summarise, the following table lists the advantages, disadvantages, and when to use each of

the three experimented graph connection methods:

LFG SFG IFG

Pros Best success rate Can use Ground Truths
Can use Ground Truths
Easy to parallelise

Cons
Large memory overhead
Cannot use Ground Truths

Cannot parallelise None

Use
Small number of traces,
small factor graph

Large number of Traces,
Speed not important

All-purpose

4.7 Removing Nodes

4.7.1 Introduction

The attack proposed in ‘Soft Analytical Side-Channel Attacks’ [7] by Veyrat-Charvillon et al.

requires 1,212 variable nodes and 2,756 edges, totalling approximately 6.6MB per trace to be

held in memory for the duration of the attack. Veyrat-Charvillon et al. experiment with different

numbers of traces used during the attack, ranging from 1 to 5,000. The attack that uses 5,000

traces therefore requires 33GB of memory. Depending on the adversary’s computational setup,

this attack may not be feasible in practice.

In this section we challenge whether it is beneficial to include every node in the full AES

factor graph. Our hypothesis is that not all rounds of AES are beneficial to our attack; that is,

nodes that are close to the initial sixteen key bytes (e.g. the first round of AES) provide more

information than nodes in further rounds (e.g. the second round of AES and beyond). Excerpt

taken from page 41, Section 3.5 of ‘The Design of Rijndael’ [20] (the creators of Rijndael):

“Two rounds of Rijndael [AES] provide ’full diffusion’ in the following sense: every state bit

[bit of the current state] depends on all state bits two rounds ago, or a change in one state bit is

likely to affect half of the state bits after two rounds.”

As described in Section 2.2, the ‘state bytes’ refer to the 16 bytes that are continuously

updated by the operations in AES. This quote describes that the ‘full diffusion’ property of AES

means that if we were to change one bit in the plaintext (given as input to the AES algorithm),

this would affect half of the state bits after two rounds of AES. This does not necessarily imply

that nodes located after the diffusion state (after two rounds) fail to provide their information

through Belief Propagation. We would like to be able to measure the amount of information a
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single node provides to the Belief Propagation attack. In this way, we will be able to quantify just

how ‘important’ that node is relative to other nodes in the factor graph. An ‘important’ node is

one that when we change its initial distribution, it affects the attack success (by altering the

marginal distribution of at least one key byte). We measure the ‘importance’ of a target variable

node by comparing the ‘distance’ of the target distribution from the distribution of the key bytes,

after ‘fixing’ the value of the target over all possible targets. Each variable node has its own

discrete distribution, so the metric we use must be able to work using discrete distributions.

As AES is a deterministic encryption algorithm, the value of an intermediate is fixed relative

to the plaintext and the secret key. If, in a given scenario, we know node X i has value x for a

given trace, we can describe this with a probability distribution such that P(X i = x) = 1 and

P(X i 6= x)= 0. This method is also used if we need to ‘fix’ node X i to have a certain value; we use

this in our metric to quantify importance.

Suppose we run the Belief Propagation attack using standard leakage (using an SNR of

around 21, which only provides a small amount of noise). After termination, we compute the

marginal distribution of key byte K as m(K). We then run the Belief Propagation attack twice

more, but this time we ‘fix’ node X i to have different values: in one attack, we fix node X i to have

value x, which corresponds to the ‘correct’ value of node X i. In the other attack, we fix node X i

to have value x′, which corresponds to an ‘incorrect’ value of node X i. When we compare the

marginal distributions of key byte K for both of these attacks, we expect the marginal distribution

from the attack using the correct value of node X i to be closer to m(K) than fixing the incorrect

value to node X i. In order to measure the distance between m(K) and m(K |X i = x), we use

Hellinger distance.

4.7.2 Importance of a Node

The importance of a variable node X is defined in Equation 4.2, where D(p, q) is the Hellinger

distance between the distributions p and q, and I (X) is a set of ‘distances’ for different values x

of X . The Hellinger distance metric is defined in Section 2.5.6.2.

(4.2) I (X )= {D(m(K),mX=x(K))}

The Hellinger distance (closely related to Bhattacharyya distance) is an appropriate metric

in this context as it is used to quantify the similarity between two probability distributions. Our

use case is to measure the similarity between two distributions of the same node (a key byte) in

two scenarios: one where we do not tamper with the leakage, and one where we ‘fix’ the leakage

of a node to have a certain distribution.
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4.7.3 Experimentation

Now that we have a metric that we can use to measure the importance of a variable node (relative

to the key bytes), our task is to iterate over all variable nodes in the full AES factor graph and

calculate their importance, observing how they differ in importance. To run these experiments,

we used our simulated data (in this case, Hamming Weight based leakage) with a small amount

of noise (SNR = 21).

We ran the Belief Propagation algorithm for 50 full iterations (without breaking early through

epsilon exhaustion (see Section 4.4) as this would have affected the results). Following the

definition of the metric, we collected the key distributions following termination of BP with the

standard leakage, before fixing our target node to have a certain value (repeating the experiment

256 times to simulate all possible values of the node). This allowed us to compute the distance

between the non-fixed distributions and the fixed distributions, as shown in Equation 2.15.

4.7.4 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/main.py -r 50 -raes 10

--TRACE_NPY -snrexp 1 -fix [s001, ..., s032, t001, ...]

These experiments produce .npy files which represent the marginal distributions of the key

bytes after fixing certain nodes with different values. These .npy files are then analysed using

the Hellinger distance metric, using the following code:

python belief_propagation_attack/marginalDistance.py --CSV
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(a) t nodes (the output of the AddRoundKey step)
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(b) s nodes (the output of the SubBytes step)
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(c) mc nodes (an intermediate variable in the MixColumns step)
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Figure 4.8: Plots showing the ‘importance’ of various nodes by computing the Hellinger distances
to the key byte k1
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4.7.5 Observations

When we run the Belief Propagation Algorithm with some provided leakage data, after termi-

nation of the algorithm we can compute the marginal distribution of the key byte k1. If we

rerun BPA, but this time modifying the initial distribution of some target node, we can compare

the ‘new’ marginal distribution of the key byte k1 to the one computed when we do not tamper

with the leakage. This comparison uses the Hellinger Distance, and produces a value between 0

(the probabilities are identical) to 1 (the probabilities are extremely different). The four plots in

Figure 4.8 show this approach for different target variables, over all 255 possible values of the

target node.

Figure 4.8a shows the Hellinger distances from the AddRoundKey output nodes to the key

byte k1, when fixing the AddRoundKey output nodes to different values. The correct value of t1 (in

the first round of AES) in this experiment was 108. This can be seen in the graph, as when t1 is

fixed to this correct value, the Hellinger distance drops to 0 (indicating identical probability to

the ‘standard leakage’). In all other cases, the node t1 has so much influence over the key byte k1

that all other Hellinger distances are 1. This is a clear example of a very important variable node.

If we look at t17 (located in the second round of AES), we see that the Hellinger distance is 0

for most fixed values. This is interpreted as follows: no matter what value we fix this node to be,

it has very little effect on the key byte k1 (and all other key bytes). This is an example of a node

that is not very important (provides little information, but still some).

Of course, nodes that have a Hellinger distance of 0 for all fixed values (e.g. t33 in the third

round) have no effect on the key byte k1 at all. This is an example of a node that can be removed

from the factor graph without affecting the results.

If we only consider the first round of AES (e.g. t1, s1, mc1, cm1), we see that the ‘importance’

of t1 and s1 is identical. This is because both t1 and s1 are connected to key byte k1 through a

1-to-1 mapping: Figure 2.7 shows that t1 is connected to k1 through an XOR node, but as this

is connected to the known plaintext byte p1, this means the message from t1 is permuted (and

not combined with any other information, as would be the case for a standard XOR factor node).

Similarly, s1 is connected to t1 through a 1-to-1 mapping (the SBOX factor node).

Figures 4.8c and 4.8d show the Hellinger distances for nodes mc1 and cm1 respectively. We

see that there are more ‘spikes’, which indicate occasions when the Hellinger distance was close

to 0. As indicated earlier, this shows that they have less influence over key byte k1, and are

therefore less ‘important’. This is because they are far away from the key byte k1, and unlike t1

and s1, are connected via at least one XOR where the message must be combined with another

message before being passed on.

4.7.6 Conclusion

If the marginal key distributions are affected when a target node is fixed to different values, we

conclude that the target is ‘important’. Nodes that are extremely close to the key distributions (e.g.
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the AddRoundKey output t and the SubBytes output s) have a large effect on the key distributions

when they are changed; so much so that if these nodes are fixed to any incorrect value, successful

recovery of the key is incredibly difficult. We see this with the distance of 1 for all incorrect

values, and a distance close to 0 for the correct value. Nodes that are slightly further away

(e.g. nodes in the second round) start to lose importance; for many fixed values, the distance

between the non-fixed distribution is close to 0, but for a few fixed values we see distances up

to 1. Although they have less ‘importance’ than nodes in the first round, they still maintain the

ability to influence the key bytes.

However, nodes in further rounds (e.g. AES round 3 and beyond) have zero effect on the key

distributions, regardless of their value. By applying this metric to all nodes in the graph, we can

identify nodes with zero importance, and remove them from the graph.

G : the graphical representation of the full ten rounds of AES, excluding the key schedule3, as

defined in Section 2.2. One graph contains 1,212 variable nodes, 1,020 factor nodes, and

2,756 edges, and requires approximately 6.6MB to store the graph of a single trace in

memory (if using the Large Factor Graph method, this requirement would scale according

to the number of traces required).

G1 : the graphical representation of the first round of AES. This representation does not include

the key schedule. One graph contains 140 variable nodes, 108 factor nodes, and 292 edges,

and requires approximately 0.7MB to store the graph in memory. A visual representation

of this graph is shown in Figure 4.9, limited to the first column due to space restrictions.

Several factor nodes are drawn in red in this graph. Removing them leads to GA
1 .

G2 : the graphical representation of the first two rounds of AES, up to the SubBytes output of

the second round. One graph contains 188 variable nodes, 140 factor nodes, and 372 edges,

and requires approximately 0.9MB to store the graph in memory.

GA
1 : the graphical representation of the first round of AES with certain nodes removed (shown

in red in Figure 4.9), resulting in a graph with no cycles. A visual representation of GA
1 is

shown in Figure 4.10, and the details regarding removing cycles are contained within

Section 4.8.3. One graph contains 132 variable nodes, 80 factor nodes, and 208 edges, and

requires approximately 0.54MB to store the graph in memory.

GKS
1 : the graphical representation of the first round of AES, but including the variable nodes

representing the key scheduling. One graph contains 161 variable nodes, 129 factor nodes,

and 350 edges, and requires ≈ 0.84MB to store the graph in memory.

3The key scheduling nodes are known to contain considerably less leakage relative to other intermediates
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Figure 4.9: A factor graph representation of the first round of AES FURIOUS limited to one
column, referred to as G1; the red nodes are removed to generate GA
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4.7.7 Benefits of Method

In Section 4.7.1 we included a description of the attack proposed in ‘Soft Analytical Side-Channel

Attacks’ [7] by Veyrat-Charvillon et al. which required 33GB of memory to mount the Belief

Propagation Attack against 5,000 traces. The proposal uses graph G. By reducing the graph to G2,

we maintain the attack success, whilst reducing the memory requirement down to approximately

4.5GB. The attack becomes feasible using this contribution.

This metric is also generalisable: depending on the target implementation (not necessarily

AES, but any block cipher), the number of edges and nodes in the factor graph may change. In

cases where the number of edges and nodes required in the factor graph is large, and memory

is at a premium, one can employ the Hellinger distance metric to all nodes in the graph to

detect unimportant nodes and remove them from the graph. This process can done automatically

and without human supervision. Our experimental results show we can reduce the memory

complexity by an order of magnitude.

4.8 Graph Convergence

4.8.1 Introduction
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Figure 4.11: Copy of Figure 2.8: A factor graph representation of the first round of AES FURIOUS
limited to one column, with two cycles highlighted: one small cycle in red, one larger cycle in blue
(all other edges are dashed for visual aid). Note that Factor Graphs are inherently undirected.
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Convergence in Belief Propagation is defined as meeting a stable equilibrium; when all the

information in the graph has successfully propagated, and messages are no longer being updated

after subsequent Belief Propagation iterations. When the graph is tree-like, convergence is

guaranteed after a number of Belief Propagation iterations equal to the length of the longest

path in the factor graph. When we perform Belief Propagation over a graph containing cycles, we

refer to it as ‘Loopy Belief Propagation’. Figure 4.11 shows the factor graph G1, limited to one

column of AES. This is an example of a graph with cycles: one is highlighted in red, and on is

highlighted in blue. Many more exist within the graph. This means that when we apply the Belief

Propagation algorithm to this graph, we are essentially performing ‘Loopy Belief Propagation’.

4.8.2 Loopy BP

Identifying whether the Belief Propagation algorithm will converge is difficult when there

are cycles present in the factor graph. As the number of cycles increases in the graph, this

identification problem becomes exponentially harder, making it difficult to predict how the

information will propagate over a cycle. Loopy BP has been studied in detail, such as in ‘Loopy

Belief Propagation for Approximate Inference: An Empirical Study’ [60] and in ‘Generalized

belief propagation’ [61]. In practice, our attack does not require convergence; we only require an

accurate approximation of the marginals. Unfortunately, loopy Belief Propagation can often lead

to chaotic behaviour [16], and it is unclear how one might extract an accurate approximation

following this behaviour. We see this fluctuation in our work; Section 4.4.2 shows the results

of the Epsilon Exhaustion technique. This checks when the graph has converged (or almost

converged, using a specified threshold). If the graph does not terminate through this method,

information is still being updated even after all information should have propagated. This is an

example of the chaotic fluctuation first observed in ‘Evidence of chaos in the Belief Propagation

for LDPC codes’ [16].

Several solutions have been proposed that aim to extract an accurate approximation following

chaotic fluctuation. One in particular involves taking the average marginal over a number of

iterations, hoping that the fluctuation of information is close to an accurate result. However,

if the information fluctuating is completely random (as has been observed in cases of extreme

noise), this becomes a rather poor solution. We observe that it is the cyclic nature of the factor

graph that is the underlying reason for lack of convergence of the BPA. From examination of the

factor graph we recognise that there are a set of edges that, if removed, would remove the cycles

from the graph. Therefore, we propose the hypothesis that eliminations of the cycles in a factor

graph through the removal of certain edges may result in guaranteed convergence with minimal

loss of data.

77



CHAPTER 4. THE BELIEF PROPAGATION ATTACK

4.8.3 Acyclic Factor Graphs

To remove the cycles from the graph, we remove selected edges and nodes. By removing the nodes

(and their connected edges) marked in red in Figure 4.9 we are left with the acyclic graph shown

in Figure 4.10. Specifically, we remove the XOR nodes connecting the SubBytes output bytes to

the mc nodes, as the experimental results using the Hellinger distance metric in Section 4.7

suggest the mc nodes provide a small amount of information relative to other nodes in the graph.

Additionally, we remove the first two h nodes in each column: similarly, experimental result

suggest these provide minimal information to the key bytes, and by removing them we produce

an acyclic factor graph. Running the Belief Propagation algorithm over this acyclic graph will

lead to guaranteed convergence, thus preventing the information fluctuation observed in cyclic

graphs.

However, the consequence of removing nodes and edges comes with drawbacks. Most obviously,

by removing nodes (in the case of Figure 4.9, the mc nodes as well as the h1 and h2 nodes) we

remove any information that node would have provided. As a (rather extreme) example, suppose

we have poor leakage on all nodes in the graph apart from the mc nodes. In other words, the

leakage on all nodes is either erroneous or has a very low SNR, whereas the leakage on the mc

nodes is perfect (the correct value has probability 1). In this scenario, running BPA on G1 will

yield a better final key rank than if we were to use the same leakage on GA
1 (as we have removed

the only nodes that supplied accurate leakage).

One other drawback that comes when we remove edges is that we stunt the flow of information

around the factor graph. By making the graph acyclic, we force information to only flow in one

direction. This means that some nodes which were ‘close’ in proximity through the key bytes

may now be further away, having to reroute through the only available path. In the following

section we experiment to see the impact removing nodes has on the success rate of the Belief

Propagation Attack.

4.8.4 Experimentation

To experiment with the effect of removing cycles from the graph, we compare a standard Belief

Propagation Attack on the two different graphs (cyclic and acyclic) with the same leakage

information. We use the following graphs:

• The cyclic graph G1 shown in Figure 4.9, created by removing second and further round

nodes from graph G

• The cyclic graph G2, created by removing nodes located in the third AES round onwards

from graph G, resulting in the first two rounds of AES (shown in Section 4.7 to have

identical success to G)
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• The acyclic graph GA
1 shown in Figure 4.10, created by removing the mc nodes as well as

the h1 and h2 nodes, shown in red in Figure 4.9

4.8.5 Results
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Figure 4.12: Reduced Graph Comparison, comparing graphs G2, G1, and GA
1 with different SNRs

4.8.6 Observations

When the SNR is high (in this case, 2−1) we see a small difference in the classification ranks when

we compare the different graph structures. Graph G2 has the best success, recovering the correct

key in roughly 3 traces, whereas G1 and GA
1 require 4 to 5 traces to recover the key. However,

when the SNR is low (high noise, e.g. SNR = 2−7), the difference between the graph structures is

minimal.

4.8.7 Conclusion

Acyclic graphs provide guaranteed convergence, removing the ‘loopy’ approximation from the

Belief Propagation algorithm. We therefore do not need to worry about implementing any ‘early

termination’ techniques such as Epsilon Exhaustion, as GA
1 only needs 8 iterations of Belief

Propagation to ensure that all information has fully propagated around the graph. Because of

this advantage, we suggest making the graph acyclic when performing the attack in scenarios

where the trace data has a low SNR. Our experiments show there is not a significant drop in

the success rate when we remove the cycles. In our case, it was easy to remove cycles from our

graph, as can be seen from Figure 4.9 to Figure 4.10. However, this many not always be the case;

if the cycle removal does not seem trivial, it may require some experimentation to find the most

efficient graph structure.

4.8.8 Benefits of Method

Convergence guarantees full propagation of all information in the factor graph. In an acyclic

graph such as GA
1 , convergence is guaranteed in a constant number of BP iterations. This gives
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CHAPTER 4. THE BELIEF PROPAGATION ATTACK

an upper bound on the runtime of the Belief Propagation Attack. Acyclic graphs also prevent the

‘chaotic’ fluctuation of data, observed in ‘Evidence of chaos in the Belief Propagation for LDPC

codes’ [16]. Experimental results (Figure 4.12) show negligible difference in the attack success

when the factor graph is acyclic. The benefits of this method are a faster runtime, a guarantee of

convergence, with no observed decrease in success for noisy traces.
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APPLICATION TO OBSERVED DATA

This chapter presents original work relating the application of the Belief Propagation

Attack to traces taken from a physical device. I was responsible for writing the code,

carrying out the experiments, analysing the results, and providing the write-up. This was

all done under the supervision of Elisabeth Oswald.

5.1 Introduction

During the development of the Belief Propagation Attack, leakage data was required to test the

effectiveness of the system. To acquire this data, we simulated the AES algorithm and provided

the Hamming Weights of the intermediate values as the leakage information. We sampled noise

from a Gaussian distribution to simulate the natural noise found when targeting real devices.

The amount of noise chosen to be sampled varied according to the desired Signal to Noise ratio

(SNR). This can vary depending on the device: in the paper titled ‘ASCA, SASCA and DPA with

Enumeration: Which One Beats the Other and When?’ [53], the SNR varies depending on the

nature of the operation, ranging from 22 on lpm instructions (Load Program Memory) to 2−5 on

eor instructions (XOR). For simplicity in our work, we opt to model all leakage using a constant

SNR, irrespective of the instructions.

Having developed the Belief Propagation Attack using this simulated data, we now turn to

a more accurate estimation of leakage data by using ELMO [17], as described in Section 2.4.3.

ELMO provides coefficients for the weighted bit model, which accurately reflect the leakage of

the M0. This method bridges the gap between using our simulated Hamming Weight model and

leakage extracted from a real device. ELMO currently exists on the University of Bristol’s Side

Channel Groups GitHub page and another version is currently in development.
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In this section, we document our move to running AES FURIOUS on a real device, extracting

the leakage, and applying our Belief Propagation Attack to successfully recover the secret key.

We improve on the state of the art by using a device that has a more complex leakage function to

those used in other works [53], generating more noise and requiring inventive attack methods to

successfully recover the key.

5.2 Practical Setup

To extract leakage from a device, we need access to the following:

• The target cryptographic device we wish to attack

• A power supply for the target device

• An oscilloscope to measure the power consumption

• Code to send data to the device, and to store the power consumption readings from the

oscilloscope

• A clock generator, if the device’s clock is unstable

• A Personal Computer (PC) to control all of the above

5.2.1 Target Device

The target device used was a SCALE Board [62] (Side-Channel Attack Lab. Exercises). The board

itself was designed by Daniel Page (my secondary supervisor) to facilitate the development of Side

Channel Attacks. It hosts an ARM Cortex-M0. The ARM Cortex-M0 is a well characterised and

understood processor, in the context of Side Channel Analysis. Previous work [31] has shown that

its leakage function has linear terms as well as statistically significant second order terms (the

leakage includes the number of bit flips in the registers), and that the noise is not significantly

different for different instructions. It has a maximum clock frequency of 50MHz, which is identical

to the Oscilloscope used in our attack setup. It runs AES FURIOUS [21] rewritten for the ARM

Assembly language (originally written for the Atmel AVR).

It is expected that target devices have some means to communicate with a PC, so we are able

to control the data being sent to and from the device. In the case of the SCALE board, the board

hosts five SMA ports (coaxial RF connectors, three intended for input and two for output), for the

following functions:

• Power input: to connect to an external power supply, although the board can also draw

power from the USB-B port
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Figure 5.1: SCALE Board

• Clock input: to allow for an external clock, allowing for more accurate control than the

on-board clock

• Probe input: used to facilitate fault attacks (unused for my work)

• Trigger output: a signal sent when the board begins or ends an encryption round; this sets

the time frame in which the board sends its power measurements

• Signal output: the voltage over a resistor, captured by the oscilloscope and stored in the

trace file

Unless using an external clock, we do not use the SMA inputs; we send data to the board

using the USB-B port, and the oscilloscope records the measurements from the signal port when

the trigger is toggled.

5.2.2 PC

The PC is connected to both the oscilloscope and the cryptographic device. It sends input data to

the device via the USB-B port, and stores the power traces taken by the oscilloscope.

5.2.3 External Clock Generator

If the target device is small and cheap to manufacture, there is a chance it has an unstable

clock. The clock jitter present on the device makes it difficult to extract meaningful traces, so
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we use an external clock to ensure stability. To ensure trace alignment, we use an external

peripheral to maintain a stable clock. The clock generator we use is the Agilent 33250A, 80MHz

Function, Arbitrary Waveform Generator. This piece of electronic test equipment is used to

generate electrical wave-forms. By setting the clock speed to the exact frequency of the Scope

(Section 5.2.4) we maximise our trace alignment accuracy.

Figure 5.2: Agilent Arbitrary Waveform Generator

5.2.4 Oscilloscope

The oscilloscope used was a PicoScope 2000 Series.There are several features that must be

considered when using an oscilloscope:

• Input Bandwidth: this is the maximum bandwidth of the scope, and must be equal to or

greater than the target device; in our case, our target device has a small clock bandwidth,

so the input bandwidth of the scope was also small

• Sampling Rate: how many points of signal recorded per second, which must be greater than

twice the most dominant frequency component of the power consumption signal (Nyquist

Sampling Theorem [63])

• Resolution: this is the number of possible values after the analogue to digital conversion,

most commonly 8 bits

The PicoScope has an 8 bit resolution at 500 MS/s, and runs at 50MHz.
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Figure 5.3: PicoScope 2000

5.2.5 Acquisition Code

The acquisition script was written in C by Si Gao, modelled on the acquisition script for the

SASEBO Board [64] (Side-channel Attack Standard Evaluation BOard). This script generates

the uniformly random plaintexts and the random (or fixed) key, sends them to the device, and

sets up the trigger on the PicoScope to start recording power values when the device starts the

encryption method. Once encryption is over, the code stores the meta-data and the trace data

using RISCURE’s .trs file format used in their own Inspector Tool [65]. In order to ensure the

trigger starts and ends correctly, an overhead of 0.5 seconds ensures we capture all significant

Points of Interest (as described in Section 2.3.4). As a consequence, running the algorithm takes

roughly 0.5 seconds per trace.

5.2.6 Acquired Traces

For the majority of our trace sets (unless stated otherwise), we generated 210,000 traces of G2,

each with 51,250 samples. We chose to use this number of traces in order to build templates that

could achieve first order success. At 0.5 seconds a trace, this takes just over a day to acquire, and

requires roughly 22GB. All these traces were stored on an external hard drive, and backed up on

two machines.

5.3 Parsing the Tracefile

5.3.1 RISCURE .trs format

The ‘.trs’ format is a proprietary encoding owned by RISCURE. The encoding consists of a header

block, followed by the trace block. In the header block, each object value is preceded by a tag

field (and in some cases a length field). Table 5.1 shows the various header tags along with a
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Figure 5.4: A Screenshot of a single trace, measured on the PicoScope

description of each. After the header block, each trace is stored along with the key / plaintext pair

used to generate the trace.

Tag Name Type Length Meaning
0x41 NT int 4 Number of Traces
0x42 NS int 4 Number of Samples per Trace
0x43 SC byte 1 Sample Coding
0x44 DS short 2 Length of cryptographic data included in trace
0x5F TB none 0 Trace block marker: an empty TLV that marks the end of the

header

Table 5.1: Table of .trs header tags along with their descriptions

5.3.2 Our Tracefile

The trace data we acquire consists of 210,000 traces: 200,000 traces where the key is random,

and 10,000 traces where the key is fixed to have the following value (chosen arbitrarily):

[0x54, 0x68, 0x61, 0x74, 0x73, 0x20, 0x6D, 0x79,

0x20, 0x4B, 0x75, 0x6E, 0x67, 0x20, 0x46, 0x75 ]

In order to use the acquired trace data, we must extract the leakage that will aid us in the

attack. The Python file correlation.py in the project performs the following steps to reformat
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5.3. PARSING THE TRACEFILE

the trace data into files that facilitate the attack. The construction of the factor graph is fixed;

that is, we know we are using AES FURIOUS and, as such, we construct the factor graph from our

knowledge of this algorithm. If one wishes to apply our code to a different cryptographic algorithm

(e.g. DES) then one would need to manually code the factor graph and leakage simulation for

that implementation. Therefore, when we refer to a ‘variable node’ in the following sections, this

is because we know which variable nodes will be included in the factor graph representation of

the acquired traces.

5.3.3 Separating the Data

The .trs file was designed to be read easily by the RISCURE Inspector Tool. It is simple to parse,

providing us with the following information:

• Number of traces

• Number of samples per trace

• The sample space (the data types and sizes of the power values)

• The plaintext and key for each trace, along with the trace data

We extract the meta data in the header, and store the trace data in a numpy (mathematical

library for Python) file for ease of access. Due to the large size of the trace data, we must memory

map this file: this keeps the trace data on the hard disk when reading and writing, avoiding

loading it into memory at the expense of slower reading and writing.

5.3.4 Computing Extra Data

After extracting the key and plaintext for each trace, we are able to generate all interme-

diate values. To do this, for each key and plaintext pair in the trace set, we run AES in

Python, storing all intermediate variables when they are computed (this is handled by the

leakageSimulatorAESFurious.py file). We then store these intermediate values in files to be

accessed by other functions.

5.3.5 Points of Interest Detection

Once we have all intermediate values, we can use correlation analysis to find the Points of

Interest, as described in Section 2.3.4. For each variable node, we find the correlation value (using

numpy.corrcoef) of the values of the node with each sample point across all traces.
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Figure 5.5: Hamming Weight Based Correlation Analysis
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Figure 5.6 shows the top correlated timepoint when using the identity values of each node for

the correlation analysis. Figure 5.5 shows the top correlated timepoint when using the Hamming

Weight of the identity value. For illustration purposes, there are vertical lines separating the

‘sections’ of AES (e.g. AddRoundKey, SubBytes, MixColumns, and KeyExpansion). We can see from

these plots that the Points of Interest chosen using the Hamming Weight of the identity value

are clustered close together, whereas the points selected using the identity value are often not

contiguous. For this reason, we opt to use the timepoints found through correlating the Hamming

Weights.

The Point of Interest detection step is a lengthy procedure, and is the most computationally

intensive method of correlation.py. After we have performed the detection step on all samples

within the trace (each producing a correlation coefficient), we store the list of coefficients in a file,

along with the highest correlating time point, and the power values associated at this time point.

5.3.6 Final Layout

The directory list is illustrated in Figure 5.7.

| TRACES
tracefile.trs
| tracefile

metadata.pkl
musigma.dict
| coefficientarrays

...
| keys

keys.npy
extrakeys.npy

| plaintexts
plaintexts.npy
extraplaintexts.npy

| tracedata
tracedata.npy
extratracedata.npy

| time points
...

| powervalues
...

| realvalues
...

Figure 5.7: Directory Listing for the parsed .trs file

Note that when a file is prefixed by extra, it refers to the 10,000 traces using the fixed key. It

is these that we attack to test the effectiveness of the Belief Propagation Attack.
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5.3.7 Univariate Templating

For each variable node, we sort the traces into n sets, where n is equal to the number of possible

values: n = 256 when using the identity value (as all variables are bytes), or n = 9 when using

the Hamming Weight model (as variables are 8 bits, they can have the Hamming Weight values

0 to 8 inclusively). For each of these sets, we compute the mean and standard deviation pair of

power values, giving us the list of templates:

[(µ0,σ0), (µ1,σ1), . . . , (µn−1,σn−1)]

These templates will be used to perform a template matching step as described in Sec-

tion 2.3.5.

5.3.8 Applying the Belief Propagation Attack

Now that we have our trace data formatted in a simple way, we can use the leakage data in the

Belief Propagation Attack. After building our factor graph, we template match the corresponding

power value (found in powervalues/) with the node’s templates (found in musigma.dict) for each

trace. This gives us a ‘likelihood array’ which, when normalised, becomes the initial distribution

for that node for the specific trace.

5.4 Real Data vs Simulated Data

The results shown in Chapter 4 used the simulated ELMO data as the attack target. In order to

validate the various improvements proposed in this chapter, we must confirm that our attack

yields similar results on leakage data taken from a real device. Previous work has shown that

the SNR of the leakage taken from a device is dependent on the type of instructions [31], but for

simplification one can model the overall leakage with a constant SNR.

In this Section, we run the Belief Propagation Attack on both the simulated data (using the

ELMO weighted bit model with Gaussian noise using an appropriate SNR) and the real data

taken from the ARM Cortex-M0. We infer the SNR by running BPA with a number of different

SNR values, and we selected the SNR that gave the most similar results to the attack on the

ARM Cortex-M0 leakage.

5.4.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/main.py -r 100 -t 100 -rep 100

-raes 1 [--RM_C, <none>] [--REAL, -snrexp -5, -snrexp -6]
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Figure 5.8: Plots showing Belief Propagation Attack results on simulated data (using an SNRs of
2−5 and 2−6) and on trace data taken from the ARM Cortex-M0, using cyclic graph G1 and

acyclic graph GA
1
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5.4.2 Observations

Figure 5.8a compares a Belief Propagation Attack against the trace data taken from the ARM

Cortex-M0 to an attack against simulated data, using graph G1. We see that the average key

rank of the real trace data is bounded in between the SNRs 2−5 and 2−6. This result is echoed in

Figure 5.8b where the same attack is mounted against graph GA
1 .

Figure 5.8c compares the Belief Propagation Attack results using the real data on different

graphs. The experimental results on G1 and GA
1 are identical, echoing results found using

simulated date in a high noise scenario in Section 4.8.3.

5.4.3 Conclusions

Our real trace data has an observed SNR between 2−5 and 2−6. There is more noise present

on this device than the device used in ‘Soft Analytical Side-Channel Attacks’ [7], where Veyrat-

Charvillon et al. observed SNRs ranging from 22 to 2−5. We confirm that our device uses a more

challenging leakage model (harder to attack).

Our experimental results show that an attack using the acyclic graph GA
1 yields identical

results to attacks using the cyclic graphs G1 and G2. This is not surprising: we saw the same

results using simulated data with an SNR of 2−7 (see Section 4.8.3). The benefits that come with

using the acyclic graph GA
1 (as described in Section 4.8) include guaranteed convergence, along

with a bound on the number of required BP iterations. For this reason, we propose to use graph

GA
1 when attacking the AES FURIOUS implementation.

5.5 Linear Discriminant Analysis

We describe Linear Discriminant Analysis (LDA) in Section 2.6.1. We can apply this statistical

technique to our template building scenario. The LDA Classifier predicts the value of the inter-

mediate variable, having been provided with a window of power values over the time point where

the intermediate variable is computed and loaded into memory.

5.5.1 Implementation

To implement LDA we use the scikit package, a third-party python library that comes with an

LDA class, which is able to handle the training and predictions of an LDA classifier. We train

a separate LDA classifier for each variable node in the graph. Due to the size of the full AES

graph G, we opt to reduce this to G2, following the conclusions made in Section 4.7. With this

reduction, we reduce the number of required trained classifiers from 1212 to 188. We train with

190,000 training traces, each using a random key and random plaintext (taken from our set of

210,000 available traces). Training an LDA classifier is straightforward, and is demonstrated in

Listing 5.1.
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Listing 5.1: Python code to train an LDA Classifier

# Get training labels for variable index i

# real_values [ variable_index, trace_number ]

y = real_values[i, :traces-validation_traces]

# Get training data window according to timepoint tp and window w

# trace_data [ traces, samples ]

X = trace_data[:-validation_traces, tp[i] - (w/2):tp[i] + (w/2)]

# Set up linDisAnalysis

lda = linDisAnalysis()

lda.fit(X, y)

# Save

pickle.dump(lda, ...)

5.5.2 Optimal Window

Now that we are considering a multivariate templating method, we firstly need to find the optimal

window of power values to provide to the LDA classifier. Too small, and we do not provide enough

information for the classifier to ‘learn’ the characterisation of the leakage. Too large, and we

run the risk of including redundant information that the classifier must sift through in order

to find the significant leakage. To compare the window results, we first trained LDA classifiers

for all variables in G1 using different window sizes, ranging from 50 to 300. We ran the Belief

Propagation Attack using the LDA classifiers for each window size, plotting the mean rank (log2)

of the final key.

5.5.2.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/main.py -r 100 -t 100 -rep 100 -raes 1

--REAL --LDA -tprange [2, 5, 10, ..., 250, 300]
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(b) LDA Window comparison closeup from 36 to 40 traces

Figure 5.9: Comparing the window size parameter for the LDA Classifier

5.5.2.2 Conclusions

Figure 5.9a shows that the variance in performance based on windows in the range 50 to 300 is

small. When we look at a closeup (as shown in Figure 5.9b), we see that the best result uses a

window of 200 values (100 samples either side of the Point of Interest). The experimental results
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suggest that a window of 200 is locally optimal, as it outperforms windows on either side (150

and 250).

5.5.3 Comparison to Gaussian Templates

In order to show the benefits of using LDA over univariate templating, we run the Belief

Propagation Attack using each of the classifiers independently, comparing the final distribution

of the key bytes.

5.5.3.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/main.py -r 100 -t 100 -rep 100 -raes 2

--REAL [<none>, --LDA]
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Figure 5.10: A comparison of Belief Propagation Attacks using Gaussian Univariate Templating
against using Linear Discriminant Analysis as a classifier

Figure 5.10 compares the Belief Propagation Attack using univariate templating and using

an LDA classifier. LDA outperforms the univariate method by successfully recovering the key

after 60 traces, whereas the univariate method achieves first order success at around 90 traces.

5.5.3.2 Conclusions

LDA is able to outperform the standard univariate templating method by utilising a window of

leakage over the target time point. Although the LDA classifier requires setup time in the offline
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phase, this timing overhead is not present during the attack phase. However, LDA has its own

limitations: ‘Enhancing Dimensionality Reduction Methods for Side-Channel Attacks‘ by Cagli

et al. [66] show that LDA is often overlooked due to its practical constraints, as it requires the

number of traces to be larger than the dimension (size) of them (known as the Small Sample Size

Problem). This in itself has been studied extensively in literature, with proposals for adjustments

to the LDA algorithm that are able to overcome the Small Sample Size Problem for LDA [67].

We have shown that the multivariate technique provides improvement over the univariate

method. We now turn to a much more powerful tool utilised in classification problems: Neural

Networks.
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APPLICATION OF NEURAL NETWORKS FOR THE BP ATTACK

This chapter is concerned with the implementation and experimentation of Neural Net-

works as a leakage classifier, and the application of the Neural Networks to the Belief

Propagation Attack. I was responsible for writing the code, carrying out the experiments,

analysing the results, and providing the write-up. This was all done under the supervision of

Elisabeth Oswald. A subset of the content included in this chapter has been submitted to CT-RSA

2020, with the title Not a Free Lunch but a Cheap Lunch: Experimental Results for Training

Many Neural Nets.

6.1 Introduction

The aim of this chapter is to utilise the power of Deep Learning classification by training a Neural

Network to classify power leakage. In Section 5.5 we show how we can use Linear Discriminant

Analysis as a power value classifier, and our experimental results show an improvement over the

univariate Gaussian templating method.

Our hypothesis is that when we combine the Neural Network classification method to the

profiling phase of our Belief Propagation Attack, we will improve the attack success over both

the univariate Gaussian templating method and the Linear Discriminant Analysis classifier. Our

reasoning behind this is that Neural Networks are widely used in the fields of image classification

and voice recognition. They excel at classification tasks, and our use case requires us to classify

the time series of power values. We are not the first to apply Neural Networks to Side Channel

Analysis, but we are the first to consider maximising the per trace classification result, as well

as training multiple Neural Networks to target multiple leakage points independently from

each other, then combining the results using Belief Propagation (as will be discussed within this
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Chapter).

6.1.1 Deep Learning in Side Channel Analysis

The rise of papers involving Deep Learning assisted Side Channel Attacks has been noticed by

academics and industry professionals alike. Some of the more recent papers use AES as an attack

target, all using their own preprocessing and attack methods; even the choice of device varies,

including the countermeasures included on the target implementation. However, there has yet to

be a paper that targets multiple intermediates within the attack trace; the other papers solely

look at a single leakage point, such as the SubBytes output. In addition, the devices that have

been targeted have simple leakage models, with an easy-to-target signal accompanied by little

noise.

Just like the Template Attack method (described in Section 2.3.5), the Neural Network

assisted attacks are split up into two phases; the offline phase, where the target device is profiled

using a replica of the target, and the offline phase, where the target is attacked directly, by

using the previously built profiles. In the offline phase, we acquire leakage information from

this replica; these traces use known plaintexts and keys. This leakage information becomes the

training set, which we explore in Section 6.2.2. At this point, we select a model for the Neural

Network. The structure itself is usually based off a model that has been used to do something

similar [10]. The hyperparameters for this network also need to be chosen, with respect to the

training data [15]. When the network is trained using the training data, the network will be able

to parse unseen leakage information, and produce some probability distribution over the key

space; this is part of the online attack phase.

One of the clear advantages of using Deep Learning is the Point of Interest detection; classical

methods (such as univariate templating) require a timepoint to be chosen in advance before

templates can be made. A feature of Neural Networks is the automatic Point of Interest Detection;

by using a loss function, the Neural Network selects the features within the dataset that result

in the best classification success. By providing a large window of leakage information, the

Neural Networks will learn to select the appropriate leakage values without the need of human

interference.

6.1.2 The ‘No Free Lunch’ Theorem

The “no free lunch” theorem was posited by David Wolpert and William Macready in 1997 [68].

This states that “any two optimisation algorithms are equivalent when their performance is

averaged across all possible problems”. This is relevant to Neural Networks, and their general

performance in different scenarios. Research has shown that a network that has been trained

effectively for one use case does not necessarily perform well when used to solve a different

problem [11]. In fact, for supervised learning, there is no perfect learning algorithm (that provides

the best result for all classification problems) [69].
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Our use case for the Neural Networks is in combination with an Inference Based Attack,

in which we combine information from multiple intermediates to recover the key. We wish to

discover whether the “no free lunch” theorem applies in this context: our hypothesis is that there

is no network structure that performs best for all of the leaking intermediates, despite all being

part of the same trace (i.e. the “no free lunch” theorem is applicable in the context of power

leakage classification).

6.2 Implementation

We wish to use Neural Networks to classify leakage from different intermediate variables.

When we provide a window of leakage information to the network, the network should return a

probability distribution over the target intermediate’s value space. This probability distribution

can then be used to attack the device, either in a profiled template attack scenario or the Belief

Propagation Attack from Chapter 4.

Neural Networks are defined in Section 2.6.2. There are many choices to be made when

selecting a network for a certain task. Results presented in Study of Deep Learning Techniques

for Side-Channel Analysis and Introduction to ASCAD Database [15] show that a Multi-Layer

Perceptron (defined in Section 2.6.4.2) excels at leakage classification when there is no clock

jitter in the traces. We shall use this as a starting point. One must also consider the various

hyperparameters to be chosen, which are highlighted in Section 2.6.5.

To implement the Neural Networks, we used the Keras API [70], using TensorFlow as a

backend (identical to [15]).

6.2.1 Keras

From the Keras webpage [70]:

Keras is a high-level Neural Networks API, written in Python and capable of running on top

of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation.

Keras is user friendly, providing powerful tools to shape and tune the Neural Network

according to our specification. To train and test a model in Keras, we use the Python files

train_models.py and test_models.py, briefly described in Section 4.2.8 and Section 4.2.9.

These files were adapted from the ASCAD code hosted on Github [18] from files of a similar name

(ASCAD_train_models.py and ASCAD_test_models.py).

In these files, Keras is used to build the model in an intuitive manner. Listing 6.1 demonstrates

how simple it is to build a Multi-Layer Perceptron using the Keras library.
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Listing 6.1: Python function to build a simple MLP

# Function to build and return an MLP

def mlp(nodes_per_layer, number_of_hidden_layers, input_length, classes,

,→ loss_function, learning_rate):

# keras.models.Sequential initialises a standard model

model = Sequential()

# Add the Input Layer

model.add(Dense(mlp_nodes, input_dim=input_length, activation=’relu’))

# Add the Hidden Layers

for i in range(number_of_hidden_layers):

model.add(Dense(nodes_per_layer, activation=’relu’))

# Add the Output Layer

model.add(Dense(classes, activation=’softmax’))

# Initialise the optimiser (we use RMSProp here)

optimizer = RMSprop(lr=learning_rate)

# Compile the model with respect to the loss function and optimiser

model.compile(loss=loss_function, optimizer=optimizer, metrics=[’accuracy’])

# Return the compiled MLP

return model

Training a model is done in a similar fashion to LDA, as shown in Listing 6.2; we only need

to fit the model to the training data and labels after reshaping them. The training and validation

labels must be ‘one hot encoded’ (converted to a vector of size 256, where all values are 0 except

for a 1 at the index of the correct label), which is as simple as calling the to_categorical()

function from the keras.utils package on a vector of identity values (the real byte values as

stored in the registers during the computation of the target algorithm).

Listing 6.2: Python code to train a model with some training data

# Training a model with the training data and labels, and validating with

,→ separate data

model.fit(x=training_data, y=training_labels, batch_size=batch_size, epochs=

,→ epochs, callbacks=callbacks, validation_data=(validation_data,

,→ validation_labels))

Once trained, we can test by extracting unknown power values from the testing set (along

with their corresponding labels), and querying the model, as seen in Listing 6.3. We can compare

the output of this query (a probability distribution) to the real identity of the value using whatever

metric we choose (which we discuss later in this chapter).
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Listing 6.3: Python code to query a model with some testing data

probability_distribution = model.predict(power_values)[0]

We used TensorFlow as a back end for Keras, as described in Section 2.6.8.

6.2.2 Training

The first step when training a network (after choosing a network structure) is to generate training

data and training labels, as described in Section 2.6.5. For our specific use case, the training data

will take the form of a large window of leakage data (power values). The training labels will be

the identity value of the target intermediate, where the point of interest lies somewhere within

the provided window.

We use 190,000 traces in our training data set, each using a random1 key and a random

plaintext (identical to the traces provided to the LDA classifier).

6.2.3 Validating

The validation data is then used to check how well the model is learning by using unseen data.

The specified loss function is used here; in our case, we use categorical cross entropy (which will

be defined in Equation 6.5). We utilise open source tools to visualise this validation, such as

TensorBoard (see Section 2.6.9). By using visualisation methods, we can check to see whether the

model is overfitting early, or whether the model is learning anything at all.

The data used to validate the Neural Network also uses random keys and random plaintexts.

We do not used a fixed key here as this would prevent the network from learning the effects of

using different key values. We use 10,000 of these traces.

6.2.4 Testing

The testing data uses random plaintexts, but a fixed key. This was done for multiple reasons;

firstly, by having a fixed key, we allow ourselves the possibility to test the networks using a

Differential Power Analysis attack, which would only work if the key remained constant for

a number of traces. Secondly, the work presented in ‘A Stochastic Model for Differential Side

Channel Cryptanalysis’ [71] shows that the AES SubBytes operation has equal images under

different subkeys, often referred to as having the EIS property. Therefore, we are able to make

assumptions on other keys when we use a fixed key to test, as they should all act in an identical

manner.

It is often the case that cross validation is used during the testing stage, as is the case

in ‘Study of Deep Learning Techniques for Side-Channel Analysis and Introduction to ASCAD

Database’ [15]. Our work differs in that we are interested in the classification performance per

1Random in this context can be interpreted as ‘non-fixed’
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trace. Therefore, cross validation is not necessary. Instead we use the holdout method (training

and validating split into two separate sections).

6.2.5 Success metrics

We define vector d to be a probability distribution produced by the network after classifying some

trace for an unknown subkey k ∈K , which has correct subkey value k∗. The probability given to

k∗ from d is denoted as d[k∗].

We first define the ‘rank’ of k∗ given a trace T in Equation 6.1. The rank is an integer between

1 (the best and largest probability relative to others) and |K | (the worst).

(6.1) rank(k∗,T)= |{k ∈K |d[k]> d[k∗]}|

Knowing the rank based on a single trace does not help us a great deal: the rank is derived

from input data that may be regarded as random, such that the ‘rank’ acts as a random variable.

Instead, we compute the rank on a set of traces T, and we look at both the median rank and the

median probability, defined in Equations 6.2 and 6.3 respectively.

(6.2) medianRank(k∗,T)=median
T∈T

(rank(k∗,T))

(6.3) medianProbability(k∗,T)=median
T∈T

(d[k∗])

We need to provide the correct subkey value k∗ to the Neural Network in the form of a training

label. We use one-hot encoding to do this; k∗ is represented as a sparse vector, with a single 1 at

index k∗, as defined in Equation 6.4.

(6.4) oneHot(k∗)= (0
0
, . . . , 1

k∗, . . . , 0
255

)

Therefore, the loss function ‘categorical cross entropy’ can be defined in Equation 6.5.

(6.5) crossEntropy(d,k∗)=−
255∑
i=0

yi logd[i]=− log(d[k∗]), where yi =
1 if i = k∗,

0 otherwise

6.3 Analysis of the ASCAD Database

In 2018, Prouff et al. published the paper titled Study of Deep Learning Techniques for Side-

Channel Analysis and Introduction to ASCAD Database [15], in which the authors included a
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detailed study on applying deep learning to Side Channel Analysis. This wasn’t the first paper of

its kind, but it provided a welcome step into how one must carefully structure the network and

select hyperparameters in order to maximise the effectiveness of the attack. They target AES as

an example, using an 8-bit device that leaks in such a way that it is straightforward to infer the

Hamming Weight of the intermediate values.

There were two main contributions in their paper that we focus on in this work; the first

is the detailed discussion they provide regarding the choice of hyperparameters to optimise

the classification of power leakage, and the second is the comparison between Multi-Layer

Perceptrons (MLPs) and Convolutional Neural Networks (CNNs) in the context of power leakage

classification on jittery traces. In their work, they conclude that the MLP outperforms the CNN

when there is minimal clock jitter, but the CNN is more resilient against trace misalignment.

In this work, we do not aim to defeat hiding countermeasures (random delays that cause clock

jitter), but instead we focus on whether it is possible to build networks for all intermediates

efficiently. Therefore we focus on MLPs for our intermediate classification, rather than the more

complex CNNs. It is interesting to note here that in the jitter free scenario, the template attack

Prouff et al. implemented outperformed both the MLP and the CNN.

Once a model structure has been chosen (in this case, the MLP), the next step is to select the

hyperparameters for the network. The ASCAD paper splits the hyperparameters up into two

groups: training parameters, such as how long to train the model for (number of epochs) and the

size of the training set, and architecture parameters, such as how big the model is in terms of

hidden layers and neurons per layer. These hyperparameters are selected one or two at a time,

and different values are tested using 10-fold cross validation with different sizes of the data set.

The results are compared using some metric (in their case, the mean rank w.r.t the number of

test traces), and the best value is saved, then used as the default hyperparameter value when

testing other hyperparameters. The training set Prouff et al. use was partitioned into 50,000

profiling traces and 10,000 validation traces (both with random2 keys and random plaintexts).

6.3.1 ASCAD’s Choice of Hyperparameters

Out of the two groups of hyperparameters, the training parameters were the first to be selected,

shown in Table 6.1. The architecture parameters are shown in Table 6.2. These tables list the

order in which the training and architecture parameters were chosen (with the exception of the

batch size and the number of epochs, which were tested and selected at the same time). In all

cases, a probability distribution was required as the network output, so the output layer was

always chosen to be Softmax (which converts the output into a probability distribution). Similarly,

the loss function was chosen to be categorical cross entropy throughout the testing.

Unfortunately, it is not clear from the paper whether the performance figures included always

target the leakage from the SubBytes output, but we assumed this to be the case. With this

2Random sampling from a uniform distribution
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assumption, we summarise that the MLP outperforms the CNN, and the MLP reaches a stable

first order success after 300 traces.

Table 6.1: The tested values and best values for chosen training parameters for the MLP in the
ASCAD paper.

Parameter Tested Values Best Value

Size of Training Set
10,000, 20,000, 30,000,
50,000, 70,000, 90,000

50,000

Number of Epochs 100, 200, 400 200
Batch Size 50, 100, 200, 500 100

Learning Rate 10−7, 10−6, . . ., 10−3 10−5

Optimiser
Adadeita, Adagrad,

Adam, RMSProp, SGD
RMSProp

Table 6.2: The tested values and best values for chosen architecture parameters for the MLP in
the ASCAD paper.

Parameter Tested Values Best Value

Number of Hidden Layers 3, 4, 5, 6, 7, 8, 11 4

Number of Nodes
per Hidden Layer

20, 50, 100, 150, 200,
250, 300, 500

200

Activation Functions
Hard Sigmoid, Linear, ReLU, Sigmoid,

Softmax, Softplus, Softsign, Tanh
ReLU

6.3.2 Reusing the ASCAD MLP for the M0 data

Continuing from Section 5.5.3.2, we decided to use Neural Networks to classify our leakage

taken from the SCALE board, which hosts an ARM Cortex-M0. Although architecturally the AES

implementations running on both were similar, the M0 is a more complex processor than the

AVR ATMega8515 used in Study of Deep Learning Techniques for Side-Channel Analysis and

Introduction to ASCAD Database [15], as the M0 processor features a range of leakage functions.

Our idea was to see how well the Neural Networks used for the ASCAD dataset performed on

our M0 data. Our hypothesis was that, at least for the SubBytes output, the results on our data

would be similar to those in the ASCAD paper.

Table 6.3 shows the classification results using the following classification models on the M0

data:

• A uniform distribution, included as a worst-case benchmark (all values predicted with

equal probability)
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• A pretrained CNN and a pretrained MLP, both originally trained on the ASCAD database,

then retrained on the M0 data; this retraining technique is often used in image classification

• A CNN and an MLP that were trained solely on the M0 data

– Both the pretrained models and the models only trained on the M0 data used the

optimal hyperparameters found in the ASCAD paper (they are referred to as MLPbest

and CNNbest)

• A univariate model, as described in Section 2.3.5

• A Linear Discriminant Analysis classifier, as described in Section 5.5

Table 6.3: Classification results using different learning algorithms, attacking the first SubBytes
output byte

Classifier Median Rank Median Probability Mean Probability
Uniform 128 0.003906 0.003906
CNN, Pretrained 127 0.001150 0.003813
MLP, Pretrained 128 0.003908 0.003909
CNN 126 2.69e-21 0.006996
MLP 73 0.004286 0.008182
Univariate 98 0.004243 0.004606
LDA 64 0.005063 0.007880

The results in Table 6.3 show that using the pretrained models on our data does not yield a

successful classifier. The models trained solely on the M0 data provide interesting results: the

CNN has a high mean probability, but a very low median probability and median rank. This is

to do with the CNN being ‘confident but wrong’; when the CNN predicts k∗ correctly, it does so

with high probability. However, it does not predict k∗ correctly many times. The MLP on the

other hand is much better at predicting the correct value, showing a median probability greater

than uniform, and comparable to the univariate templating method. However, both models are

outperformed by LDA in terms of median rank and median probability. We hypothesise that the

model’s lack of generality is due to the fact that the ASCAD networks were trained on masked

data (see Section 2.3.6.1), so the network was forced to learn the bivariate distribution of the

mask and the real value.

6.3.3 Conclusion

Firstly, using pretrained networks is not always the most sensible approach, especially when

there is a discrepancy between the previous problem and the new problem (in our case, possibly

due to a mismatch in the ASCAD data being masked). Secondly, the Convolutional Neural

Network was ‘confident but wrong’, which in most applications (e.g. image classification) is not
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always a bad thing. However, as we intend to use these networks to assist in a Belief Propagation

Attack, this feature is severely detrimental, as we will show in the results. We prefer a network

that provides consistent results, and the ASCAD MLP is a step in the right direction. However, it

is by no means optimal, as it is outperformed by the Linear Discriminant Analysis classifier. We

must consider re-tuning the network to maximise our own objective function with respect to our

M0 data.

6.4 Hyperparameter Selection

The task of manually testing and selecting optimal hyperparameters is time consuming and

arduous. There exist methods of speeding this process up; grid search and random search are

tools that test a set of hyperparameters and select the best one automatically [39]. However, this

work provides insight into how one would find the hyperparameters manually, and the effects

each hyperparameter has in the context of power value classification.

This section looks at each hyperparameter (and modelling technique) used in the search to

find the ‘best’ MLP for the M0 data. As we will eventually be using this model to classify all

intermediates, but training on all intermediates during the hyperparameter selection phase

would be too computationally expensive, we select our target to be the first output of the SubBytes

operation s1.

We used the ASCAD model as a starting point; once we experimented with a new hyperpa-

rameter and found a locally optimum value, we saved the value and used it in the subsequent

experiments, progressively shaping the model into the ‘best’ MLP.

6.4.1 Window Size

The first hyperparameter we considered was the input length, known as the ‘window size’. This

is the number of neurons (nodes) in the input layer. The ASCAD model used a window of 700

nodes, but (as far as we can tell from the paper) did not experiment with other window sizes.

The power value selection is defined in Equation 6.6, where T is the trace from which to

extract the power values, t is the time point associated with the target intermediate, and w is the

window of power values v to select.

(6.6) window (T, t,w)= T[vt−d w
2 e, . . . ,vt+b w

2 c]

6.4.1.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/train_models.py --MLP -mlp_layers 6
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-mlp_nodes 200 -epochs 200 -batch_size 200 -window [2, 10, . . ., 900]

Window Size Mean Rank Median Rank

2 128.04 127
10 120.53 118
20 111.76 104
50 106.39 98
100 102.56 91
200 83.23 67
500 67.13 50.5
600 71.68 57
700 66.7 50
800 66.81 50
900 71.02 54
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Figure 6.1: Table and Plot of Classification results tuning Window Size Hyperparameter

6.4.1.2 Observations

The best classification rank (mean and median) uses 700 neurons in the input layer. This is

identical to the ASCAD value, which suggests that the model (as it stands) is unable to make use

of additional power values, and the window of 700 perfectly encapsulates all necessary leakage

information on s1. This large window suggests that information leaks over a number of clock

cycles, rather than leaking on a single clock cycle.

The univariate templating method has a median classification rank of 95, which means in its

current state the Neural Network is outperforming the univariate method.
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6.4.2 Number of Epochs

The learning algorithm works through the entire training dataset over a number of epochs. In a

single epoch, each sample in the training set has had an opportunity to update the parameters

within the network. Each epoch is made up of a number of batches, which we will be testing

separately (see Section 6.4.5). An epoch with a single batch is called the ‘gradient descent’

learning algorithm. In general, classification success improves as we increase the number of

training epochs (increasing the time taken) to a certain point, then we see diminishing returns.

The ASCAD MLP uses 200 epochs for their ‘best’ model.

6.4.2.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/train_models.py --MLP -mlp_layers 6

-mlp_nodes 200 -window 700 -batch_size 200 -epochs [10, 20, . . ., 7000]
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Epochs Mean Rank Median Rank

10 109.27 100
20 86.84 72
50 69.81 53
100 56.33 40
150 55.78 40
200 51.69 37
250 55.53 40
300 48.11 33
400 46.12 31
500 42.79 28
750 39.59 25
1000 38.66 24
1200 35.33 22
1500 34.47 21
3000 30.79 18
4000 28.54 16
5000 27.79 15
6000 26.91 15
7000 27.62 16
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Figure 6.2: Table and Plot of Classification results tuning Number of Epochs

6.4.2.2 Observations

The classification rank continued to improve when we increased the number of epochs past the

optimal value of 700 for the ASCAD data. It took 6,000 epochs to minimise the classification rank

on the M0 data. With the current hyperparameters, it takes 3 seconds to perform one epoch over

the training set. This equates to 5 hours training time (using 6,000 epochs).

One possibility why we found the optimal number of epochs to be much higher than the

ASCAD value is that our data is slightly more complex; although we do not attack a masked
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implementation, the device on which our AES runs uses a 32 bit processor, yet the AES imple-

mentation is 8 bit. That means there are 24 bits unaccounted for, and we are unaware of what

these bits do during computation, as they are independent of the AES implementation. As such,

there is more for the network to learn, and by giving it more time in which to learn, it is able to

refine its knowledge of the leakage model.

6.4.3 Hidden Layers

All layers in an MLP are fully connected; every node is connected to every other node in the

subsequent layer. The universal approximation theorem states that “networks with two hidden

layers and a suitable activation function can approximate any continuous function on a compact

domain to any desired accuracy” [36, 37]. When dealing with more complex functions (as we do

in our use case), we must experiment with the number of layers to find the optimal value. The

ASCAD MLP uses 6 layers (4 hidden layers).

6.4.3.1 Results

We experiment not only changing the number of hidden layers, but with two different epoch

values: 200 (as was found to be optimal for the ASCAD data) and 6,000 epochs (as was found to

be optimal for our M0 data). The command used to generate these results was as follows, using

red to indicate the modified parameters:

python belief_propagation_attack/train_models.py --MLP -mlp_nodes 200

-window 700 -batch_size 200 -epochs [200, 6000] -mlp_layers [3,4,5,6]

200 Epochs 6,000 Epochs
Hidden Layers Mean Rank Median Rank Mean Rank Median Rank
1 65.92 49 32.61 19
2 60.73 44 31.05 18
3 67.62 51 32.43 19
4 65.8 49 32.75 19

6.4.3.2 Observations

The best result comes from using 2 hidden layers, resulting in a 4 layer MLP. In addition, we can

clearly see that using 6,000 epochs gives us a much better classification rank than 200 epochs.

6.4.4 Augmentation I

Recent literature in the side channel community has shown that one can improve the classification

performance of the Neural Networks by augmenting existing traces [10]. This is particularly

useful when training data takes a long time to produce, as one can synthetically create new data
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from existing data. One widely used approach is to add Gaussian noise to existing traces, and

adding these ‘noisy’ traces to the training dataset.

6.4.4.1 Results

We have 200,000 real traces; any more and we augment existing traces. The command used to

generate these results was as follows, using red to indicate the modified parameters:

python belief_propagation_attack/train_models.py --MLP -mlp_nodes 200

-mlp_layers 4 -window 700 -batch_size 200 -epochs 6000

-traces [200000, . . ., 290000] -sd [0, 1, . . ., 500]

Traces Mean Rank Median Rank

200,000 31.85 19
210,000 33.76 20
220,000 36.68 22
230,000 34.48 20
240,000 34.11 20
250,000 35.47 21
260,000 38.85 24
270,000 36.08 22
280,000 35.58 21
290,000 36.77 22
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Figure 6.3: Table and Plot of Classification results tuning the Number of Augmented Traces
(Gaussian Noise Standard Deviation = 100)
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Standard Deviation Mean Rank Median Rank

0 36.99 22
1 34.82 21
5 37.43 23
10 37.18 22
20 35.62 21
50 36.55 22
100 36.96 22
200 38.08 23
500 41.76 27

0 100 200 300 400 500
0

20

40

Standard Deviation

C
la

ss
ifi

ca
ti

on
R

an
k

(l
og

2)

Mean Rank
Median Rank

Figure 6.4: Table and Plot of Classification results tuning Data Augmentation Standard
Deviation (10,000 additional augmented traces, totalling 210,000 training traces)

6.4.4.2 Observations

Unfortunately, using data augmentation in this way did not improve our classification results,

with our best performance coming from not augmenting any traces at all. However, if we were to

use augmentation, the best result uses a standard deviation of 1. This indicates that this method

of augmentation does not excel on the M0 dataset.

6.4.5 Batch Size

As alluded to in Section 6.4.2, each epoch is made up of a number of batches. Altering the size of

these batches has a large impact on the speed of training, and the quality of the trained network.

A larger batch size allows for computational speedups through the use of parallelism in GPUs.

However, the drawback is that the larger the batch size, the less generalisable the resulting

network will be. We experiment with this hyperparameter on our M0 data.
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6.4.5.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/train_models.py --MLP -mlp_nodes 200

-mlp_layers 4

-window 700 -epochs [200, 6000] -batch_size [10,. . .,2000]

Batch Size Mean Rank Median Rank

10 37.11 23
20 34.83 21
50 32.28 19
100 31.29 18
200 31.21 18
500 34.54 21
1000 37.05 22
2000 37.68 23
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Figure 6.5: Table and Plot of Classification results tuning Batch Size

6.4.5.2 Observations

We find the best classification performance using a batch size of 200, which mirrors the value

found for the ASCAD data.

6.4.6 Augmentation II

We revisit Data Augmentation by considering two additional augmentation techniques, used in

recent literature [10].
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1. Time Warping existing traces

• This is done by ‘shifting’ an existing trace by a random amount (within a certain

threshold)

2. Averaging two existing traces

• Two traces (that have the same intermediate identity) are selected at random, and

the mean of these is added to the augmented dataset

• This method may not be effective as although we ensure the same identity value of

our target intermediate, we don’t ensure the same values of any other intermediate

variables; e.g. the keys and plaintexts might not match, so some crucial information

may be lost by averaging out

We compare these new techniques to our previous Data Augmentation experiments, which

use Gaussian noise to generate new training data.

6.4.6.1 Results

In these results, instead of showing classification mean and median rank, we use the Neural

Networks to perform a template attack. The results in Table 6.4 show the mean and median rank

of the target subkey k1 when attacking s1 (the SubBytes output). The command used to generate

these results was as follows, using red to indicate the modified parameters:

python belief_propagation_attack/train_models.py --MLP -mlp_nodes 200

-mlp_layers 4 -window 700 -batch_size 200 -epochs 6000 -traces [200000, 290000]

-aug [0 <Gaussian Noise>, 1 <Time Warp>, 2 <Averaging>]

Template Attack Traces
Augmentation Method Mean Rank Median Rank
None (200,000 Traces) 3.518 3.0
Adding Gaussian Noise (s.d. 100) 4.038 4.0
Time Warping (Max 10) 3.951 3.0
Averaging 2 Traces 4.045 4.0

Table 6.4: Table comparing Template Attack results using different methods of Data
Augmentation (100,000 augmented traces, resulting in 300,000 training traces)

6.4.6.2 Observations

Echoing our previous results, we do not improve performance by using Data Augmentation. If

we were to use augmentation, our experimental results suggest the use of the Time Warping

technique, using a random shifting window threshold of 10 (the trace will only shift by a maximum

of 10 samples each way).
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6.4.7 Classifying Different Variables

Our experiments have led us to use the following hyperparameter values:

• 4 layer Multi-Layer Perceptron (2 hidden layers)

• 200 nodes per hidden layer

• Window of 700 power values

• 6,000 epochs with a batch size of 200

• 200,000 training traces (no data augmentation), 10,000 attack traces

The next step is to see how well the network model generalises for different intermediates.

In an attack scenario, it would be too time and computationally expensive to find the optimal

network structure for each intermediate (as we would need to repeat the above experiments 188

times). Our goal is to produce a network model that is able to generalise across all intermediates

in our target cryptographic algorithm.

We selected three types of variables to test:

• the 16 key bytes k; the points of interest for these are either as the input to the AddRoundKey

step, or in the first KeyExpansion step in AES

• the 16 output bytes of the AddRoundKey step t, used again as the input for the SubBytes

step

• the 16 output bytes of the SubBytes step s, each used multiple times within the MixColumns

step

These three variable types were chosen as they are the most ‘important’ nodes in the graph,

shown in our experimental results in Section 4.7.5. For each intermediate, we train a separate

network, using the network structure and hyperparameters listed above. We take the arithmetic

mean and the median classification rank of 10,000 attack traces.

6.4.7.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/train_models.py --MLP

-mlp_nodes 200 -mlp_layers 4 -window 700 -epochs 6000

-batch_size 200 -v [s001, . . ., s016, t001, . . .]
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Key Byte k AddRoundKey t SubBytes s

Variable
Number

Mean
Rank

Median
Rank

Mean
Rank

Median
Rank

Mean
Rank

Median
Rank

1 80.18 56 91.87 79 66.18 46
2 52.37 50 69.09 36 74.66 67
3 146.82 147 102.61 95 70.34 49
4 243.92 256 100.48 91 120.28 116
5 156.77 155 94.43 84 64.8 44
6 61.65 58 46.49 23 73.85 61
7 124.93 114 94.36 81 122.5 119
8 15.76 8 93.89 82 121.8 117
9 156.03 181 79.72 66 55.25 35
10 53.62 46 40.52 19 82.85 70
11 53.49 45 84.57 72 102.73 95
12 96.51 100 88.86 77 105.16 88
13 202.85 209 77.07 65 47 32
14 112.1 123 92.87 82 90.75 81
15 176.64 194 77.06 62 46.13 31
16 133.85 149 87.42 73 60.97 40

Table 6.5: Classification results for different intermediates

Figure 6.6: Table comparing the classification results of various intermediates
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Figure 6.7: Histograms comparing the classification results of various intermediates
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6.4.7.2 Observations

Figure 6.7 shows the variance in the results, even across the same type of intermediate. Most

notably, the classification ranks for the key bytes k fluctuate a lot; in the case of k8, the network

has a median classification rank of 8, which is a very good result. However, in the case of k4, the

network has a median classification rank of 256. This is because the network has a strong bias

for a particular identity value; if the identity value of the inputted trace does not match this

biased value, then the network fails to classify the trace.

These results are unusual; we would expect that the key bytes are more difficult to classify

due to the lack of relevant leakage within the trace, but the results suggest that even for one

type of intermediate (for instance, the SubBytes output s), the classification results vary in

performance across the bytes, even though they use the same assembly instructions. This finding

supports our hypothesis that we cannot produce a network that performance the ‘best’ over all

intermediates.

6.4.7.3 Conclusions

The variance of median rank observed in the experimental results implies the networks are

failing to generalise across all intermediates. From this we conclude that the current method of

training the networks is insufficient; if a network trained to classify an intermediate is never able

to classify the identity value correctly (e.g. k4 in our experimental results), then we will never be

able to achieve first order success when applying the networks to an inference-based attack.

6.4.8 Using the Networks in a Belief Propagation Attack

The results shown in Section 6.4.7 show that the Neural Networks generalise inconsistently across

different intermediates. However, this is when each intermediate is classified separately. Using

the Belief Propagation Algorithm, we can combine the information from multiple intermediates

to recover information on the secret key.

Firstly, we run BPA using Neural Networks as the classification method (confirming the poor

results echoed in the classification results). We do this by replacing the templating method with a

Neural Network: when provided with a window of power values, the Neural Network produces a

distribution of the possible values of some target node. This distribution is provided as the initial

distribution for that target node in the factor graph, which is then propagated using the Belief

Propagation Algorithm. We compare this to an attack that uses Neural Network classification

when the Neural results have shown to be ‘good’ (classification rank less than 128), and supplies

a uniform distribution to the ‘bad’ nodes (referred to as ‘Ignore Bad’ in Figure 6.8). We also

show an attack where we use the ‘best’ classification method for that node (out of Univariate

Templates, Linear Discriminant Analysis (window size 200), and the Neural Networks shown in

Section 6.4.7).
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6.4.8.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/main.py -r 100 -t 100 -rep 100 -raes 1

--REAL [<none>, --LDA, --NN, --IGB, --BEST]
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Figure 6.8: Plot comparing attack success using different templating methods

6.4.8.2 Observations

Using the Neural Networks as the sole classifier was not only the worst performing attack,

but it failed to recover the correct key within 100 traces. This attack is only slightly improved

by replacing the ‘bad’ networks with a uniform distribution. The best attack result came from

combining the classification methods and selecting the ‘best’ classifier for each intermediate

(lowest median classification rank).

6.4.9 Multi-Label Classification

Following from the results in Section 6.4.8, we must rethink our strategy for training the

Neural Networks. One idea is to classify the bits of the identity byte value separately, rather

than attempting to predict the byte value itself. This is known as multi-label classification. For

example, in the case of three bits, the value 5 would have usually been one hot encoded to

[0,0,0,0,0,1,0,0]
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whereas under the multi-label encoding it will be encoded as

[1,0,1]

to effectively be the binary representation of the value.

There are two main changes to the model that come as a consequence of multi-label classifica-

tion:

1. The last layer activation function was softmax, now it must be sigmoid

• Softmax produces a probability distribution over all possible values, but as we are

predicting each bit independently, we have an output layer of nodes equal to the

number of bits (in this case, 8)

2. The loss function categorical cross entropy must now be binary cross entropy

• Each bit has two possible values: 0 or 1, and binary cross entropy reflects this

Following the results shown in Figure 6.7, we now include the Common Prediction percentage in

our tables, shortened to ‘ComPred’. This value shows how often the network predicts the same

value (chosen as the most common value for each network) during testing. This is because for

some variables (e.g. k4), the network predicts the same value throughout the majority of the

testing dataset. We capture this information in this table, and we wish to use networks that have

a low common prediction percentage.

6.4.9.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/train_models.py --MLP -mlp_nodes 200

-mlp_layers 4 -window 700 -batch_size 200 -epochs 6000 [<none>, --MULTI_LABEL]

Single Label Multi-Label
Variable Epochs Median Rank ComPred % Median Rank ComPred %

s1 5 126 46.56 104 47.91
s1 1000 82 14.8 92 17.13
k4 6000 256 99.03 199 43.07

Table 6.6: Classification results comparing single label to multi-label encoding
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6.4.9.2 Observations

When we train for a few epochs, multi-label approach has a better median rank. This implies it is

quicker to learn about the target leakage function. However, after more training, the single label

approach outperforms the multi-labelling.

Interestingly, the multi-label approach improves the k4 classification by reducing the common

probability percentage down from 99% to 43%, but the median classification rank is still above

the uniform 128, so this improvement is not extremely beneficial.

6.4.10 Rank Loss Function

The next improvement idea came from questioning the use of categorical cross entropy as the

loss function in the context of Side Channel Analysis. Cross entropy is defined in Equation 6.5.

Due to the nature of the equation, it heavily penalises predictions that are confident but wrong.

We do not want to penalise predictions that are ‘wrong’ (the highest predicted value is not the

correct identity value), but instead encourage a high probability of the correct value relative to

other predictions.

We now consider the ‘Rank’ loss function; identical to categorical cross entropy, but with the

addition of the ‘rank’ of the correct value. By adding this value, we aim to minimise the rank of

the correct identity value. As the rank is a value between 0 and 255, this will heavily outweigh

the cross entropy value, but such balancing can be considered after an initial investigation.

6.4.10.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/train_models.py --MLP -mlp_nodes 200

-mlp_layers 4 -window 700 -batch_size 200 -epochs 6000 [<none>, --RANK_LOSS]

Cross Entropy Rank Loss
Variable Median Rank ComPred % Median Rank ComPred %

s1 46 5.58 51 6.89
k4 256 93.64 219 77.69

Table 6.7: Classification results comparing Cross Entropy loss to Rank loss

6.4.10.2 Observations

We see similar results to the Multi-label approach; the performance classifying s1 is worse using

the Rank Loss function, but marginally improves classification for k4 (but still below uniform).
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In addition to the results shown in Table 6.7, we also experimented with Hinge Loss [72] (the

most common loss function for support vector machines), but this did not suit our use case, and

provided poor results.

6.4.11 Hamming Weight Classification

We have tried training the models to predict the identity function (either through single or

multi-label) with little success. We now try predicting the Hamming Weight of the value. The

following adjustments need to be made to accommodate this change:

1. The one hot encoding must be applied to the Hamming Weight of the value, rather than the

identity value itself

2. The output layer must consist of 9 nodes, corresponding to the 9 possible Hamming Weights

(0 to 8)

6.4.11.1 Results

The command used to generate these results was as follows, using red to indicate the modified

parameters:

python belief_propagation_attack/train_models.py --MLP -mlp_nodes 200

-mlp_layers 4 -window 700 -batch_size 200

-epochs 6000 [<none>, --HAMMING_WEIGHT]

Identity Function Hamming Weight
Variable Median Rank Min Rank ComPred % Median Rank Min Rank ComPred %

s1 55 1 6.65 126 1 40.72
k4 256 1 94.97 154 28 87.31

Table 6.8: Classification results comparing Identity Function classification to Hamming Weight
classification

6.4.11.2 Observations

Unfortunately, we see a similar result to the Multi-label method and the Rank Loss function: the

classification results are much worse for the SubBytes output, but seem to improve upon the key

bytes (though not below uniform). Of course, as we are predicting the Hamming Weight of the

identity value, we will only achieve a rank of 1 if the network successfully predicts the value 0 or

9, as there exist multiple values that share the Hamming Weights 1 to 8.
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6.5 Metric Re-evaluation

The hyperparameter results from Section 6.4 show poor generalisability over multiple intermedi-

ates. We experimented with various techniques to improve the classification rate, but to no avail.

Now, we take a step back and re-evaluate whether our ‘rank’ metric is suitable in this context.

This method was used during the training of the ASCAD model, so it was initially adopted as the

main metric from which to select the optimal hyperparameters.

6.5.1 Rank as metric

Figure 6.9a compares the median classification rank of three separate templating methods: the

univariate templates, the LDA classifier, and the ‘best’ Neural Network found that maximises the

median rank for s1, the first SubBytes output. This is where we see something interesting: the

performance of the classical profiling methods (univariate templating and Linear Discriminant

Analysis) are also extremely variable. Similarly, Figure 6.9b targets the AddRoundKey output

intermediate, which also has a fair amount of variance in the result. In this case, however, the

Neural Networks consistently provide better success than the classical templating methods.

Finally, Figure 6.9c shows the classification results targeting the initial 16 key bytes. The

leakage on the key bytes is often noisier and less reliable than those on the SubBytes outputs,

and our results not only confirm this, but show the greatest variability yet. Again, this variance

is also seen in the classical templating methods.

After observing these results, we conclude that perhaps this phenomenon is occurring not

due to the classifiers behaving erratically, but due to the way we measure the performance (using

the median rank). The rank (defined in Equation 6.1) is a useful measure that relates to how we

evaluate attack outcomes in an attack scenario; however, in an attack scenario, we use multiple

traces, which would produce stable ranks. The classification experiments we performed show the

classification per trace, which means it is not unlikely that the classifiers will produce erroneous

ranks. This is just one of the drawbacks of using the rank metric on per trace classification;

another is that we are discarding information on the actual probability of the correct value, which

would show how confident the network was at classifying the correct value. A metric that would

capture this confidence would be using the median probability.

6.5.2 Probability as metric

The median probability metric is defined in Equation 6.3. As we are now using a different metric,

we must re-tune all our hyperparameters with respect to the new metric. Upon doing so, the

result was a completely different network structure than the one that maximised median rank.

Table 6.9 shows the optimal hyperparameter values for the ASCAD MLP, the MLP using median

rank as a metric, and our new MLP that uses median probability as a metric. Note that the output
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Figure 6.9: Three histograms showing the classification results of various intermediates using
Median Rank as a performance metric
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layer must use the Softmax activation function to ensure the network outputs a normalised

probability distribution.

Parameter ASCAD Network Rank Network Probability Network
Number of Hidden Layers 4 2 3
Number of Nodes in Hidden Layers 200 200 100
Activation Function ReLU ReLU ReLU
Number of Epochs 200 6,000 100
Window Size 700 700 2,000
Batch Size 100 200 50
Learning Rate 10−5 10−5 10−5

Optimiser RMSProp RMSProp RMSProp

Table 6.9: Table comparing the locally optimal parameter values between various networks

There are some notable observations:

• Our new network has 3 hidden layers, in between ASCAD’s 4 and the Rank network’s 2,

but the number of nodes per layer is decreased to 100

• The number of epochs has been dramatically reduced from the rank networks 6,000 (at 16

seconds per epoch makes 1 day to train) to 100 (27 minutes of training time)

• The window size has been dramatically increased from the previous 700 inputs to 2,000

units; this may be an indication of leakage present in this larger window that the probability

network was able to harness (there is a buffer between the registers and the external

memory in our target M0 device, which causes intermediate values to “hang around” for

additional clock cycles)

• The optimal batch size dropped to 50, smaller than both the ASCAD and the Rank network

An interesting observation comes from looking at the TensorBoard accuracy plots taken

during training. When we train the probability network using the values listed in Table 6.9, but

this time using 6,000 epochs, we get the accuracy plot shown in Figure 6.10a. We can see from this

plot that the network stops learning (the training accuracy peaks) at around 4,200 epochs, and

the validation plot shows the model overfits after around 2,000 epochs. However, when we use

our median probability metric to compare the results, the model using 100 epochs outperforms

the model using any other number of epochs (6,000, 4,200, and 2,000). The training plot using

100 epochs is shown in Figure 6.10b, where the training and validation accuracy are still rising,

showing there is still information ‘to be learnt’. It is interesting that there is a mismatch between

these plots and the actual effectiveness of the models (with respect to median probability); this

discrepancy is most likely due to the accuracy plots using categorical cross entropy to calculate

the training and validation accuracy.
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Figure 6.10: TensorBoard Training Plots training for s1 using different numbers of epochs;
network parameters maximising the Median Probability metric
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6.5.3 No Free Lunch

Now we have found a model structure and hyperparameters that maximise the median probability

for the SubBytes output s1, our next step is to compare this to the classical templating methods,

and check to see how well the model generalises for other intermediates. Figure 6.11a is a

histogram that compares the median probability classification of the probability based network

to the classical templating methods (univariate templating and Linear Discriminant Analysis

classifier) for the first 16 SubBytes outputs. At a glance, we can already see this is much more

stable than the results shown in Figure 6.9a (the rank based network for the same intermediates),

which gives us more confidence in the quality of the networks.

There exist some targets (e.g. s2, s9) where the Neural Networks outperform the classical

classification methods; however, this is not always the case (e.g. s8, s11). This is also true for the

AddRoundKey outputs and the key bytes, shown in Figure 6.11b and Figure 6.11c respectively;

there exist intermediates in which the most successful classifier is not the Neural Networks, but

one of the classical templating methods (e.g. t3, k11).

6.5.4 Conclusion

The stability of the probability based networks (compared to the rank based networks) give a

more optimistic review of the performance of Neural Networks as a classifier. However, as seen

in the results, they are not always the best classifier (compared to the classical methods). We

believe this is a manifestation of the ‘no free lunch’ theorem; it is possible that there is no single

classification method that outperforms all other learning approaches for all intermediates (or

even for a specific type of intermediate, e.g. the first 16 SubBytes outputs). However, we can

clearly see that the Neural Networks provide the best classification performance for the majority

of intermediates, which implies they should perform well when used as the templating method in

a profiled Side Channel Attack.

6.6 Belief Propagation with Neural Classifiers

In the previous section, we considered the classification performance of the Neural Networks

(along with the classical templating methods) on a per trace basis. We now consider a full attack

that combines leakage information from multiple traces. We start by solely attacking a single

operation: the SubBytes step.

6.6.1 Attacking the SubBytes Step

When we use a classification tool on a window of leakage data (or single leakage value, in the case

of Gaussian univariate templates), we produce a probability distribution for the likely values.

By taking the product of these probability distributions for a number of traces (where the key is
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Figure 6.11: Histogram showing the classification results of various intermediates using Median
Probability as a performance metric

130



6.6. BELIEF PROPAGATION WITH NEURAL CLASSIFIERS

fixed) followed by a normalisation phase, we get a probability distribution that has the combined

information from all of the traces. If we know the plaintext and the key used for all the traces, we

can permute this probability distribution to represent a distribution over the key bytes, rather

than the SubBytes output, as shown in Equation 6.7.

(6.7) ki =SBOX−1(si)⊕ pi

To actually implement the attack, we can make use of the Belief Propagation system built

as described in Section 4.2. By ignoring all intermediates apart from the first sixteen SubBytes

output bytes (and removing those nodes further away, resulting in reduced graph G0), we can

reproduce the single target attack. The nodes that are ignored will have a uniform distribution,

which allows the probability distributions from the SubBytes output to propagate back to the key

bytes without interference from any other distribution (they will only be permuted, as the XOR

operation is with the plaintext byte, which is a one-hot encoded vector). The command used to

generate these results was as follows, using red to indicate the modified parameters:

python belief_propagation_attack/main.py -r 3 -t 100 -rep 100 -raes 0

--REAL [<none>, --LDA, --NN]

Figure 6.12a shows the mean final rank of the whole key by using different classifiers3. Also

included is a non-profiled Hamming Weight based Correlation Power Analysis attack, an attack

used when an adversary does not have access to a copy of the device, and thus cannot generate

profiles for the target device’s leakage (this was implemented separately, not using the Belief

Propagation code). The results are intuitive; the profiled attacks outperform the non-profiled

CPA, and the Neural Network assisted attack (the Neural Network here being the probability

network) outperforms all other classifiers, by achieving first order success within 60 traces.

6.6.2 Combining Intermediate Leakages

By using the Belief Propagation Attack, we can combine leakage information not only from

multiple traces, but from multiple leaking intermediates in each trace. For a description on how

the Belief Propagation Algorithm works, see Section 2.5. Our attack implementation is similar to

that in Section 6.6.1, but this time we do not ignore any intermediates, and we include all nodes

from graph G2. The command used to generate these results was as follows, using red to indicate

the modified parameters:

python belief_propagation_attack/main.py -r 100 -t 100 -rep 100 -raes 2

--REAL [<none>, --LDA, --NN]

3We can use the mean rank here as we are combining information from multiple traces
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Templating Method
Time Taken to

generate 1 template
Memory Required for

1 Intermediate
Memory Required for
all nodes in G2 (188)

Gaussian Univariate
Templates

45 seconds 2KB 376KB

Linear Discriminant
Analysis Classifier

1 minute 3.2MB 601.6MB

Neural Network 27 minutes 4.6MB 864.8MB

Table 6.10: Time and Memory comparison of the different classification methods

Figure 6.12b compares the attack results after running the Belief Propagation Attack using

the three different classifiers: univariate templates, Linear Discriminant Analysis, and the Neural

Networks (both the rank network and the probability network have been included for comparison).

The rank based network performs very poorly compared to the other classification methods; this

was foreshadowed by the variance of classification results over the different intermediates shown

in Figure 6.9. The best attack performance came from the probability based network, which

achieves first order success after 30 traces. It is able to bring the key space down to 232 with less

than 10 traces, which is easily enumerable on a standard PC, and therefore extremely successful

as a classifier.

6.6.3 Conclusion

When the classification methods are compared in an attack scenario, the best results use Neural

Networks as the classifier. However, this is in consideration of the attack phase, having already

built all the necessary profiles (in this case, already produced the Neural Networks required).

Table 6.10 compares the time and memory requirements for the different classifiers. The tem-

plates can be computed in parallel, so we only need to concern ourselves with the time taken to

generate a single template. Neural Networks take 30 times longer than the LDA method, which

is only marginally slower than generating the Gaussian Templates. However, in terms of memory,

there is not a large difference between the LDA classifiers and the Neural Networks (although of

course the univariate templates are exceedingly small, comprised of 256 * 2 32-bit floats).

An adversary that has access to a great deal of compute power should then opt to use

the Neural Networks to aid in the classification phase, due to their performance over other

classification methods. However, it should be noted that if time and compute power is not a factor,

the adversary could afford to tune a separate model targeting every single required intermediate.

One question that merits further research is the appropriate use of the loss function in

conjunction with the separate Median Rank / Probability metrics. During the training of the

neural networks, the loss function is intended to be maximised / minimised, and the neural

networks learn to classify data with respect to this loss function. It makes sense for this loss
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Figure 6.12: Plots showing results of different attacks targeting SubBytes and the whole G2
graph
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function to be identical to the intended use of the neural networks (in this case, in the context of

the Belief Propagation Algorithm). However, early results indicated that by using categorical

cross entropy as the sole metric (as seen in other work [15]), we achieve poor results in the

Belief Propagation Algorithm. From this result stems our use of a separate metric (Median

Probability / Rank), but a more efficient solution would be to create a loss function (compatible

with keras / TensorFlow) that, when maximised / minimised, produces optimal results when used

in conjunction with the Belief Propagation Algorithm.
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CONCLUDING REMARKS

This thesis sheds light on the worst-case physical security of cryptographic implementations

by increasing our understanding of the most powerful class of side-channel adversaries.

We improve both the offline and the online phase of an inference based attack on AES.

In Chapter 4 we improved the online phase through the practical improvements of the Belief

Propagation Algorithm. By studying the effect of Belief Propagation when applied to side channel

analysis, we reduced the memory complexity by a magnitude whilst preserving the attack success,

along with speeding up the runtime of the attack.

We explored the effect of convergence in the Belief Propagation Algorithm, and showed that

by removing the cycles in the graph we can guarantee convergence. This reduces the runtime

at the cost of a small amount of information. We also showed how we can connect multiple

traces together in different ways, depending on the resources available to the attacker; if the

attacker has a great deal of memory and compute power, they can combine all traces into a large

graph, whereas if they have limited memory then the traces can be computed in parallel whilst

maintaining a low memory requirement.

In Chapter 5 we described our target device along with our attack setup, and how an adversary

could mount an attack against it. We started to consider improving the offline phase through the

use of the multivariate Linear Discriminant Analysis classifier.

Finally, Chapter 6 covered our work with neural networks. We contributed our findings in the

form of step-by-step experiments, manually tuning hyperparameters to create the ‘best’ network

model structure to generalise across all our intermediates. We found that it was crucial to choose

the right metric with which to judge network performance; we used two different metrics (‘rank’

and ‘probability’), and showed direct comparisons between the network results. The probability

based network outperformed the rank network substantially, and also outperformed the classical
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classification methods (univariate templating and Linear Discriminant Analysis). Our results

followed the ‘no free lunch’ theorem, in that there was no single network that outperformed both

classical methods for every single intermediate.

7.1 Assessment of Contributions

7.1.1 Belief Propagation

The paper titled Soft Analytical Side-Channel Attacks by Veyrat-Charvillon et al. [7] provided the

first construction of a side channel attack using Belief Propagation. The contributions made in

this thesis take the form of ‘improvements’ to this attack, by both modifying the graph structure

representing AES, or by adding additional functionality to reduce the runtime and memory

overhead of the attack. However, there are some clear distinctions between the attack setup

used in this thesis and in the work done by Veyrat-Charvillon et al. The target device used by

Veyrat-Charvillon et al. was an 8-bit Atmel ATMEGA644p microcontroller at a 20 MHz clock

frequency. The target device used in this thesis was a 32-bit ARM Cortex-M0 at a 50 MHz clock

frequency. This 24 bit overhead may have affected the noise in our results, as we were running

the same 8-bit implementation of AES FURIOUS that Veyrat-Charvillon et al. run in [7].

The results shown in this thesis only used this one device, and only this specific implementa-

tion of AES. In order to truly make general statements, one could argue the experiments should

be repeated on a separate device with a different implementation of AES.

One of our experiments analysed the impact of removing cycles in the factor graph representa-

tion, to guarantee convergence in the Belief Propagation algorithm (see Section 4.8.3). To remove

the cycles, we studied the factor graph manually and selected nodes and edges to remove that

would result in an acyclic graph. However, the nodes we chose were arbitrary; there are many

other ways one could remove the cycles in the graph. We do not explore the other possibilities in

this work, nor do we provide a method of generally choosing which edges to remove for any given

factor graph. The method of node removal is left to the user.

7.1.2 Neural Networks

The neural network contributions made in this thesis are compared to those made in Study of Deep

Learning Techniques for Side-Channel Analysis and Introduction to ASCAD Database by Prouff

et al. [15]. However, these comparisons must consider the differences in attack setup (similar

to the previous section). Most notably, the target AES implementations differ substantially; we

use AES FURIOUS, but Prouff et al. use a masked AES implementation. This masking may have

affected how the neural networks ‘learnt’ the leakage. When we attack the Sbox in our AES

implementation, the neural network learns the univariate distribution of this leakage point. The

networks developed by Prouff et al. must learn the bivariate distribution between the SubBytes

output and the mask.
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In addition to the paper, Prouff et al. provide code on GitHub [18], where users can run similar

experiments to those shown in the paper. Reproducing the results proved to be a challenging

task; it is unclear whether this was due to a difference in hardware or a problem with their code.

This might be related to the fact that the CNN displayed poor results on the M0 data, although

the MLP was able to classify the data successfully.

7.2 Future Work

This thesis studies the Belief Propagation attack when targeting AES, specifically the AES

FURIOUS implementation. The contributions made in this thesis could be further extended to

different algorithms, perhaps even asymmetric encryption algorithms (e.g. RSA). The Belief

Propagation algorithm is completely dependent on the structure of the graph, and this would

change significantly if using a different cryptographic algorithm.

In addition, Belief Propagation is just one of the many well-known message passing algorithms.

The “Divide and Concur” algorithm [73] is another, which aims to satisfy constraints with

continuous variables. It is worth looking into these other methods as an alternative to Belief

Propagation because (at the time of writing) these have not been studied in great detail when

applied to Side Channel Analysis.

As mentioned in the analysis, we selected nodes and edges arbitrarily to remove in order to

achieve an acyclic graph. Further study could look into this in more depth; is there a method

that will consistently select the edges and/or nodes to remove to achieve an acyclic graph that

minimises the information loss? This would be useful and would encourage the use of guaranteed

converging factor graphs.

Finally, the work presented by Prouff et al. in Study of Deep Learning Techniques for Side-

Channel Analysis and Introduction to ASCAD Database [15] shows that the Multi-Layer Per-

ceptron outperforms the Convolutional Neural Network when classifying power leakage when

there is no jitter present. However, when jitter is introduced, the CNNs outperform the MLPs.

Further study could extend the contributions made in this work to consider clock jitter, and other

implementations of side channel countermeasures. There exist several methods of dealing with

clock jitter; one can either mitigate the jitter through statistical preprocessing (dynamic time

warping) or one can train a network (CNN) to adapt to the jitter (or even do a mixture of both).

Further study could aim to answer the question: what is the best way to deal with jitter in an

inference-based attack?
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A.1 Belief Propagation Attack

Table A.1: Table listing all argument flags available when running main.py from the command

line. The lower case flags require an additional input (e.g. -t <number> runs the attack with a

set number of traces), whereas the upper case flags are booleans that toggle the default result

when provided to main.py.

Flag(s) Description Default
Value

BP Algorithm Parameters

rep Number of Repetitions to Average 1
r Number of Iterations in BP 5
t Number of Traces 1

BP Algorithm Tweaks

epsilon Threshold for breaking early 0.0001
epsilon_s How many successive epsilon round to

break early
10

IGT Toggles Ignore Ground Truths TRUE
BERR, BIF Break if failed (check through Plaintext) FALSE
BFND Break when correct value found FALSE
BPAT Break when patterns matched FALSE

Factor Graph Structure

lo For Distance between nodes, leave out
node

[]

rm Removes target variable []
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Flag(s) Description Default
Value

raes, rounds_of_aes Number of Rounds of AES 2
ING, IND, IFG Toggles Independent Graph Off TRUE
KS Toggles Key Scheduling On FALSE
LFG Toggles Large Factor Graph On FALSE
REMOVE_CYCLE, RM_C, ACYCLIC Removes cycle in MixColumns step FALSE
SQG, SEQ, SFG Toggles Sequential Graph On FALSE
ARM, ARM_AES Use ARM AES Implementation instead

of AES Furious
FALSE

Input Data

bl Badly leaks on target variable []
blt Badly leaks on target traces []
nn No noise on target variable []
nl Doesn’t leak on target variable []
blsnrexp snr Exponent for the bad leakage, s.t. snr

= 2**SNR_exp
-7

ct, cthresh Threshold for refusing bad point of inter-
est detected nodes

None

j, jitter Clock Jitter to use on real traces None
k Chosen Key as Hex String None
seed Seed for extra randomisation 0
snrexp snr Exponent, s.t. snr = 2**SNR_exp 5
thresh Threshold for refusing bad leakage None
tp, trace_range Window of Power Values over Time point 1
KEYAVG, KAVG, KPAVG Toggles Key Power Value Averaging Off TRUE
LOTF Toggles Leakage on the Fly off TRUE
LOCAL_LEAKAGE Toggles Local Leakage Off, if cannot com-

pute on the fly
TRUE

RANDOM_REAL Uses Random Trace Subsets for Real
Trace Experiments

TRUE

UNPROFILED, NEW If Real Traces, only attack unprofiled
traces

TRUE

ELMO Toggles ELMO Power Model On FALSE
HW Toggles HW Power Model On FALSE
IGB, IGNORE_BAD_TEMPLATES Toggles Ignore Bad Templates FALSE
NLKS Doesn’t leak on Key Schedule FALSE
NO_NOISE No Noise in Simulation FALSE
READ_PLAINTEXTS Reads Plaintexts from File FALSE
REAL_TRACES, REAL Attacks a Real Trace FALSE
UPDATE_KEY, UKID Updates Key Initial Distributions FALSE
USE_BEST, B, BEST Uses Best Template for Real Traces, out

of Univariate, LDA, and NN
FALSE
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Flag(s) Description Default
Value

USE_LDA, LDA Uses LDA for Real Traces FALSE
USE_NN, NN Uses Neural Network for Real Traces FALSE

Misc

fix Fix Variable node to get Marginal Dis-
tance to Key Bytes

None

Printing and Storing Results

ALL_CSV Writes all data to csv file after each re-
peat

FALSE

CONVERGENCE_CSV Writes convergence data to csv file after
each trace and repeat

FALSE

CONVERGENCE_TEST Prints out Convergence Statistics FALSE
DUMP_RESULT, DATA_DUMP Dumps Result in output/data_dump.txt FALSE
FULL_ROUND_CSV Writes full key rank round data to csv

file
FALSE

MARTIN, MARTIN_RANK Adds Martin Rank to final Rank FALSE
NO_PRINT Only prints out Average Rank FALSE
ONLY_END, END_ONLY Only prints out End Result FALSE
ONLY_FINAL, FINAL_ONLY Only prints out Final Rank FALSE
ONLY_RESULT, RESULT_ONLY, RE-
SULTS_ONLY

Only prints out Result FALSE

PLOT Plot Final Key Ranks FALSE
PRINT_DICT Prints Dictionary of Values from Leak-

age Simulation
FALSE

EVERY_TRACE Prints out Key Rank after each trace FALSE
FKD Prints Final Key Distribution FALSE
RANK_CSV Writes key rank data to csv file FALSE
REPEAT_CSV Writes key distribution data to csv file

after each repeat
FALSE

ONLY_REP, REPEAT_ONLY Only prints out End of each Repeat Re-
sult

FALSE

ROUND_CSV Writes key rank round data to csv file FALSE
SAVE_FIRST_DISTS, SFD Saves the Distributions of the first Key

and Plaintexts bytes (Test Purposes
Only)

FALSE

TRACE_CSV Store Trace Values as csv FALSE
TRACE_NPY Store Trace Values as npy FALSE
WRITE_CSV, CSV Writes key distribution to csv file FALSE
WRITE_NPY, NPY Writes key distribution to npy file FALSE

Testing and Debugging

TEST_NAME Name for Test (if testing) Standard
CL, CHECK_LEAKAGE Checks Initial Leakage FALSE
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Flag(s) Description Default
Value

CURRENT_TEST Alters values to match current test
statistic

FALSE

RANDOM_KEY Uses Random Key (Test Purposes Only) FALSE
TEST_KEY, NEW_KEY Uses Different Key (Test Purposes Only) FALSE

142



A.1. BELIEF PROPAGATION ATTACK

143



APPENDIX A. APPENDIX

A.2 Neural Networks
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Figure A.1: MLP architectures
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Figure A.2: Graphical Representation of the Probability Network, as generated by TensorBoard
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