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Abstract  

Circulating adrenal glucocorticoids exhibit characteristic circadian and ultradian rhythms, important 

for maintaining homeostasis and regulating multiple physiological processes. Glucocorticoids exert 

genomic actions on target cells via a ligand activated transcription factor, the glucocorticoid receptor 

(GR). In the liver, GR regulates transcription of many critical determinants of carbohydrate and fat 

metabolism. Furthermore, glucocorticoids been implicated in metabolic disorders including insulin 

resistance, hyperlipidaemia and non-alcoholic fatty liver disease. Despite the increasing prevalence of 

metabolic disease in western society, the relative contribution of glucocorticoid rhythm disturbance, 

particularly ultradian dysregulation, has been largely unexplored.  

Using GR ChIP-Seq of livers taken from corticosterone treated adrenalectomised (ADX) rats, I have 

found that ultradian replacement induces ~3,000 GR binding events at the pulse peak, all of which are 

lost at the pulse nadir. I have further demonstrated that constant corticosterone infusion results in 

prolonged GR binding. To assess effects on gene transcription, I have also performed RNA polymerase 

II ChIP-Seq with an antibody specific for the actively transcribing form of the complex. Using pSer2 

RNA polymerase II binding as proxy for active gene transcription, I found similarly synchronised, 

predominantly down-regulated transcriptional modulation in response to corticosterone pulses. 

Whereas in response to constant corticosterone, prolonged and mostly upregulated transcription was 

detected.  

Notably, functional pathway analysis showed that differentially regulated targets were involved in 

glucose, carbohydrate, cholesterol, fatty acid, lipid, proliferative and necrotic pathways. My findings 

support the hypothesis that glucocorticoid pattern dysregulation leads to dysregulation of key 

metabolic targets in the liver, potentially contributing to the development of metabolic syndrome.  

Finally, I present the development of a novel rodent corticosterone replacement model that 

incorporates both circadian and ultradian rhythms for use in longer duration studies where I plan to 

test the metabolic outcome of chronic glucocorticoid dysregulation. This approach shows great 

potential for ultradian research, particularly for translational studies.
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Chapter 1 Introduction 

GC rapid synthesis and secretion from the adrenal glands fluctuates over a 24-hour period; maximal 

levels recorded prior to the onset of the active period and gradually decreasing within the circulation 

to negligible levels within the inactive period. This pattern of secretion is under the regulation of a 

neuroendocrine circuit first described within the 1950s by Hans Seyle, termed the hypothalamic 

pituitary adrenal (HPA) axis (Selye, 1950; Lightman and Conway-Campbell, 2010). Further investigation 

discovered upon series, short time point blood sampling, that GC levels are not constant within the 

circulating blood plasma, but consists of a series of pulses whose amplitude varies in a circadian 

fashion (Windle, Wood, Lightman, et al., 1998; Windle, Wood, Shanks, et al., 1998; Walker, Terry and 

Lightman, 2010). Despite this being an intrinsic oscillatory and well conserved mechanism within 

mammals, research into dysregulated GC rhythm primarily asses longer time points of up to 6-12hrs 

that do not investigate function or loss of the ultradian intra-rhythm of GC signalling.  

Dysregulation from usual endogenous dynamics occur due to the ability of the HPA axis to respond to 

a range of stimuli including the stress response (Selye, 1950; Lightman and Conway-Campbell, 2010; 

Sarabdjitsingh et al., 2010). Whilst acute activation is thought to be protective, such as within the 

classic fight or flight response, chronic activation is associated with the development of a range of 

metabolic phenotypes such as obesity, type II diabetes and dyslipidaemia to name a few (Deuschle et 

al., 1997; J. Haller et al., 2000; Lightman, 2016; Oster et al., 2016; Kalafatakis et al., 2018). Similar 

presentations are observed within individuals whose activity is out of synchrony with their 

endogenous rhythm, such as workers with variable shift patterns and patients who suffer from 

hypercortisolism (Nieman and Ilias, 2005; Chandola, Brunner and Marmot, 2006; Buliman et al., 2016). 

Additionally, despite the tailoring of synthetic steroid use to recapitulate circadian GC rhythm, similar 

side effects are observed over a chronic time scale and has shown to be a primary cause of type II 

diabetes development (Simmons et al., 2012; Charmandari, Nicolaides and Chrousos, 2014).  

Despite emerging evidence of the importance of ultradian rhythms to homeostatic function, it remains 

relatively un-known how dysregulation of both the circadian and ultradian elements of GC dynamics 

may affect metabolic as well as cognitive homeostatic function (Flynn, Conway-Campbell and 

Lightman, 2018; Kalafatakis et al., 2018). 

1.1 The glucocorticoid receptor 

1.1.1 Glucocorticoid receptor structure 

GCs regulate transcription of specific genes via liganded activation of the glucocorticoid receptor (GR). 

The GR (encoded by the gene NR3C1) is a ligand-activated transcription factor that belongs to the 
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oxosteroid sub-family of steroid hormone receptors within the nuclear receptor superfamily. Other 

steroid hormone receptors include the mineralocorticoid receptor (MR) (encoded by the gene NR3C2), 

progesterone receptor (PR) (encoded by the gene NR3C3) and androgen receptor (AR) (encoded by 

the gene NR3C4) (‘A Unified Nomenclature System for the Nuclear receptor superfamily’, 1999; 

Bledsoe et al., 2002). Steroid hormone receptors are comprised of three main functional domains. The 

N-terminal domain (NTD), DNA binding domain (DBD) and ligand binding domain (LBD) (Figure 1.1). 

This structure is well conserved across mammalian species.  

 

Figure 1.1 Schematic of the GR protein.  

Diagram describes the GR three major domains; the N-terminal domain (NTD) (blue) and a central 

highly conserved DNA binding domain (DBD) which is separated from the ligand binding domain (LBD) 

by a hinge region (HR). GR regions important for dimerization, nuclear localisation, chaperone binding 

(e.g HSP90) and transactivation function (AF1 and AF2) are also indicated. Figure adapted from Robert 

H. Oakley and Cidlowski 2013. 

The N-terminal domain (NTD) is the least well conserved structural domain. It is a highly modifiable 

domain for post-translational events such as phosphorylation, and contains a large transactivation 

region (AF1) through which the GR interacts with a variety of chromatin remodellers and transcription 

factors such as the SWItch/ sucrose non-fermentable (SWI/SNF) complex, TATA binding box protein 

(TBP), cyclic adenosine 3’,5’-monophosphate- response element binding protein (CREB) binding 

protein (CBP) and p300, modulating GR transcriptional regulation (Giguère et al., 1986; Godowski et 

al., 1987; Bodwell et al., 1991; Dieken and Miesfeld, 1992; Dahlman-Wright et al., 1995; Almlöf et al., 

1998; Wallberg et al., 2000).  

The DBD contains a nuclear localisation sequence (NLS1) as well as a p-box of zinc finger motifs, 

termed the D-loop. These zinc fingers directly interact with short consensus 6bp palindromic DNA 

sequences separated by a 3bp spacer (5’-AGAACA-nnn-TGTTCT-3’) (within certain base predictive 

tolerances), termed glucocorticoid response elements (GRE)s (Figure 1.2)  (Scheidereit et al., 1983; 

Luisi et al., 1991; La Baer and Yamamoto, 1994; Savory et al., 1999; Meijsing et al., 2009). Each zinc 

finger of a GR homodimer recognises one half of the palindromic GRE sequence, therefore allowing 
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full sequence recognition by the complex (Dahlman-Wright et al., 1991; Oakley et al., 1999; Hudson, 

Youn and Ortlund, 2013). However, this model is further complicated by increasing evidence of higher 

order oligomerisation, such as the discovery of GR tetramers as well as heterodimers with other 

oxosteroid receptors such as MR (Trapp et al., 1994; Mifsud and Reul, 2016; Presman et al., 2016). 

 

Figure 1.2 DBD interactions with DNA and within the GR homodimer. 

GR binds as a homodimer in an inverted manner (classical model) to a GRE consensus sequence within 

the DNA via zinc finger within the P-box of the DBD (blue). Within the D-loop of each GR, the second 

zinc finger forms a dimerization interface (red). GRE consensus sequence required for GR recognition 

in bold. Figure modified from Hudson, Youn and Ortund 2013. 

Finally, the LBD contains a second nuclear localisation region (NLS2) consisting of a canonical three 

layered helical hydrophobic pocket formed from 11-12 α-helices and four β-sheets. These are held in 

a conformational state by a multimeric complex of chaperones including heat shock proteins (hsp) 

hsp40, hsp70, hsp90 and p23 as well as immunophilins such as FKBP51, FKBP52, CYP44 and PP5 

(Bourguet et al., 1995; Renaud et al., 1995; Xu et al., 1999). The multimeric complex plays a key role 

in maintaining the correct conformational state, opening a hydrophobic pocket in the LBD to increase 

binding affinity for ligands such as glucocorticoids (GCs) and preventing proteasome mediated 

degradation (Bresnick et al., 1989; Picard et al., 1990). Upon ligand binding to the LBD hydrophobic 

pocket, the GR undergoes a conformational change, exposing the NLS1 and NLS2 as well as stabilizing 

or de-stabilizing a secondary activatory region (AF2). This regulates the ability of GR to associate with 

co-regulators of transcriptional function (Wurtz et al., 1996; Savory et al., 1999; Bledsoe et al., 2002; 

Kauppi et al., 2003). Deletion studies have shown that NLS2 mediated import of the GR to the nuclear 

compartment is ligand dependent (Picard and Yamamoto, 1987; Savory et al., 1999). 
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1.1.2 GR post-translational modifications 

Over 20 residues (mostly serine and threonine) have been identified within the human GR (hGR) 

structure to undergo post-translational modification, this includes phosphorylation of up to six serine 

(Ser) residues within the AF1 region (Ser-113, Ser-134, Ser-141, Ser-203, Ser-211 and Ser-226) (Figure 

1.3) (Oakley and Cidlowski, 2013; Kino, 2018). Most phosphorylation events occur as a result of ligand 

binding and have distinct and varied effects on GR function. For example, phosphorylation of Ser-203, 

Ser-226 and Ser-404 is required for  hGR nuclear translocation, while cyclin dependent kinase 5 (Cdk5) 

dependent phosphorylation of Ser-203, Ser-211 and Ser226 facilitates recruitment of co-regulators 

such as the histone acetyl-transferases (HAT), CBP and p300, and adenosine triphosphate (ATP) 

dependent chromatin remodelling factors such as the SWI/SNF complex (Itoh et al., 2002; Wang, 

Frederick and Garabedian, 2002; Kino et al., 2007; Blind and Garabedian, 2008; Galliher-Beckley, 

Williams and Cidlowski, 2011).  

Other regulatory mechanisms involve acetylation at Lys-494 and Lys-495, which facilitates GR 

recruitment of histone deacetylase 2 (HDAC2), a factor known to interact with the tertiary structure 

of DNA and facilitate transcription (Ito et al., 2006; Nader, Chrousos and Kino, 2009). Post-translational 

modifications can also repress GR mediated transcription. Genetic mutations which substitute aspartic 

acid residues for Serine residues at positions 226 and 404, produce a GR mutant that is incapable of 

being phosphorylated at these sites and cannot recruit p300, CBP or the nuclear factor kappa-light-

chain-enhancer of activated B cells (NFκB) p65 subunit. These mutations have also been shown to 

attenuate glucocorticoid induced cell death of osteoblasts as well as play a distinct role within 

depression associated with GC resistant pathology (Miller et al., 2005; Chen, Rogatsky and 

Garabedian, 2006; Blind and Garabedian, 2008; Chen et al., 2008; Galliher-Beckley et al., 2008; Simic 

et al., 2013).   

Post-translational modification has also been shown to play a role in circadian rhythms as described 

within  (Chapter 1.2.3) Histone acetyltransferases such as CBP, P300, circadian locomotor output cycle 

kaput (CLOCK) and brain and muscle ARNT-like1 (BMAL1) can directly acetylate GR residues in a daily 

oscillating manner synchronised to the rise and fall of total blood serum corticosterone levels. This 

has been shown to directly regulate the induction of glucocorticoid induced leucine zipper (GILZ) and 

inhibition of glucose-6-phosphatase (G6PC) transcription and regulating gluconeogenesis within the 

liver (Nader, Chrousos and Kino, 2009).  
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Figure 1.3 Post-translational modification of the GR by phosphorylation, acetylation, ubiquitination 

and SUMOylation. 

Within the NTD of the human GR transcript, 7 serine residues are indicated as phosphorylation targets 

(P) within the AF1 region. Serine residues (Ser) directly phosphorylated by cyclin dependent kinase 1 

(CDK1) and 5 (CDK5), activation function-1 (AKT1) as well as adenosine 5’ monophosphate-activated 

protein kinase (AMPK) indirectly via c-Jun N-terminal kinase (JNK) are indicated. Ser-404 outside of 

the AF1 is phosphorylated by glycogen synthase kinase 3β (GSK3β) is also indicated. Lysine (Lys) 

residues Lys-277 and Lys-293 within the NTD and Lys-703 towards the c-termini of the LBD are 

targeted for SUMOylation (S) residues Lys-419 within the NTD for ubiquitination (U) and Lys-494 and 

Lys-495 within the HR are targeted for acetylation (U) are also indicated. All numbers refer to human 

GR structure. Figure modified from Oakley and Cidlowski, 2013; Kino, 2018. 

Proteasomal degradation of the GR is also initiated by a post-translational modification, in this case 

ubiquitination. Phosphorylation of proline, glutamic acid, serine and threonine residues (PEST) 

sequences often precede ubiquitination of proteins by a series of proteins commonly referred to as 

E1 activating, E2 conjugating and E3 ligase enzymes (Jadhav and Wooten, 2009). Mutational studies 

of (Lys) 426 residue within a (PEST) sequence were found to alter the degree of ubiquitination and 

reduce proteasomal degradation of hGR within HeLa and COS cell lines (Wallace and Cidlowski, 2001; 

Wallace et al., 2010). Overexpression of the Ubiquitin E3 ligase, carboxyl terminus of hsp70-interacting 

protein decreases GR transcript levels, indicating a chaperone complex role in proteasomal 

degradation (Ballinger et al., 1999; Vandevyver, Dejager and Libert, 2014). Conversely, inhibition of 

the 26S proteasome complex by the aldehyde peptide MG132 results in increased GR protein levels 

and retention within the nucleus (Wallace and Cidlowski, 2001; Deroo et al., 2002; Han et al., 2009; 

Wilkinson, Verhoog and Louw, 2018). Similarly, GR binding to DNA or ligands can induce small 

ubiquitin-related modifiers (SUMO) to covalently attach via an ATP-dependent process to residues 
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Lys-277, 293 within the NTD and Lys-703 in the LBD of the CTD, initiating proteasomal degradation (Le 

Drean et al., 2002; Tian et al., 2002; Holmstrom et al., 2008; Oakley and Cidlowski, 2013). SUMOs 

share 20% homology to ubiquitin and are regulated by the homologous factors SUMO2/ SUMO3 (95% 

homology) and SUMO1 (50% homology) factors (Mahajan et al., 1997; Kamitani et al., 1998; Tatham 

et al., 2001). Classically, SUMOylation is associated with proteasomal degradation during cellular heat 

shock mechanisms (Wallace and Cidlowski, 2001; Tatham et al., 2011). However, as SUMOylation of 

NTD sites affect co-regulator recruitment, transcriptional effects are varied and highly context 

dependent (Davies et al., 2008; Druker et al., 2013; Paakinaho et al., 2014).  

1.1.3 GR splice variants and translational isoforms 

The GR is coded by a single gene consisting of 9 exons within humans. Multiple variants and isoforms, 

however, are present with distinct features and actions of potential importance to function (Figure 

1.4). GR variants are produced from a range of splice events between exons 5-9 within the LBD coding 

region of the gene, and are categorized as GR-α, GR-β, GR-A and GR-P. A further variant, GR-γ, occurs 

due to splicing within exon 3-4 of the DBD coding region of the gene. Relative levels of isoforms can 

be tissue dependent, but GR-α is expressed most abundantly and is commonly described when 

investigating GR function (Hollenberg et al., 1985; de Castro et al., 1996; Oakley, Sar and Cidlowski, 

1996; Rivers et al., 1999; Haarman et al., 2004; Nieman and Ilias, 2005; Choi et al., 2006). 
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Figure 1.4 Splice variants and translational isoforms of the GR. 

(A) Exon number found within the GR primary transcript and location of splicing events that create 

alternative splice variants. (B) Schematic of GRα translational isoforms with translational start site (*) 

indicated to produce variable lengths. All numbers refer to human GR structure. Figure adapted from 

Oakley and Cidlowski, 2013.  

GRβ has an identical amino acid sequence to GRα up to amino acid 727, but this splice variant is joined 

further downstream within exon 9. Creating a non-homologous carboxyl-terminal sequence as well as 

reducing the overall length from 777 to 742 amino acids (Hollenberg et al., 1985). Due to the location 
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of the splicing events, the ability to bind ligand is lost due to the removal of helix 12 within the LBD 

(Bamberger et al., 1995; de Castro et al., 1996; Kino et al., 2009). However, unlike GRα, GRβ is primarily 

located within the nucleus and can occupy GREs in a ligand independent manner, potentially as a 

heterodimer with GRα, to act as dominant negative inhibitor of transcription (Bamberger et al., 1995; 

Oakley, Sar and Cidlowski, 1996; Oakley et al., 1999). Increased GRβ / GRα ratios have been implicated 

in inflammation, major depressive disorder and GC resistance. Notably, GRβ was found to be increased 

in liver during the re-feeding phase of fasted rats and is associated within insulin action within mouse 

embryonic fibroblast cells (Hinds et al., 2010; Carvalho et al., 2014; John et al., 2016).  

Information on the function and distribution of remaining variants are limited. However, insertion of 

an arginine residue at position 454 (exon3-4) is known to produce GRγ which does not affect the LBD 

coding region but does reduce the transactivation potential compared to GRα (Rivers et al., 1999). 

Whereas, splicing between exons 5-7 and 8-9 of the LBD coding region have been shown within 

isolated myeloma cells produces GR-A and GR-B respectively which may mediate function via 

modulation of GRα induced transcription (Moalli et al., 1993; Gaitan et al., 1995; Krett et al., 1995; de 

Lange et al., 2001; Oakley and Cidlowski, 2013). 

Additionally, a variety of GRα translational start sites within the NTD is known to  produce up to seven 

additional isoforms with the nomenclature GRα-A, -B, -C1, -C2, C3, -D1, -D2 and D3 (Lu and Cidlowski, 

2005) (Figure 1.1). Evidence has indicated in their liganded un-bound state, isoforms A-C are found in 

the cytoplasm whilst the two D isoforms can be found within the nucleus. As these translational 

isoforms reduce the length of the NTD from the N-terminus, alterations or loss of the AF1 region as 

well as sites for targeted for post-translational modifications could affect each isoforms capability to 

recruit certain co-regulators and their transactivator/ transinhibitory potential. It has been proposed 

as a mechanism for GRα-A, -B and -C isoform mediated specific regulation of apoptotic genes within 

human osteosarcoma bone cells and T lymphoblastic leukaemia cells (Lu et al., 2007; Wu et al., 2013). 

1.1.4 Ligand induced translocation of the GR 

In the absence of ligand, newly synthesised GR is sequestered within the cytoplasm. Upon ligand 

binding, conformational changes within the GR cause members of the chaperone multimeric complex 

to dissociate, exposing AF regions and the ligand-inducible NLS. Cytoplasmic GRs are shuttled into the 

nucleus by the Importin α/β nuclear import pathway and along microtubule tracks (Savory et al., 1999; 

Bledsoe et al., 2002; Kauppi et al., 2003; Pratt et al., 2004). Hsp90 is known to interact with FKBP52 

and dynein and in turn the microtubule-associated protein doublecortin-like to actively translocate 

GR into the nucleus (Czar et al., 1995; Elbi et al., 2004; Fitzsimons et al., 2008). Upon inhibition of 

either hsp90 or FKBP52, GR diffusion rates are lowered from active to passive gradient diffusion 
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(Galigniana et al., 1998; Elbi et al., 2004). Hsp90 also appears to be required for GR recruitment of 

cofactors such as CREB, p300 and CBP, and there are reports indicating a role for these multimeric 

chaperone proteins during rapid GR dynamics (Conway-Campbell et al., 2011). In contrast, inhibition 

of hsp70 had no effect on rapid translocation (Yang and DeFranco, 1994). After ligand loss, GR 

undergoes extremely slow translocation back into the cytoplasm. Therefore, unliganded GR can be 

found within a biochemically defined, low salt extractable, subcellular fraction sometimes referred to 

as the nucleoplasm (Yang, Liu and DeFranco, 1997; Conway-Campbell et al., 2007). Upon GC re-

exposure, GR re-binds ligand and is present within a high-salt extractable DNase-sensitive chromatin 

rich cellular fraction (Yang, Liu and DeFranco, 1997; Liu and DeFranco, 1999). Taken together, these 

findings indicate that the GR can be maintained within the nucleoplasm and become repeatedly 

activated with multiple cycles of ligand exposure. Further evidence shows that clearance from the 

nucleus is proteasome dependent (Stavreva et al., 2004, 2009; Wang and DeFranco, 2005; Conway-

Campbell et al., 2007, 2011). 

1.1.5 DNA structure and organisation of the genome 

Ligand activated GR can interact directly with DNA in a tissue and cell specific manner (John et al., 

2008, 2011; Grøntved et al., 2013) to regulate gene transcription. Within eukaryotic cells, the genome 

is organised into a highly complex structure termed chromatin that is separated into ‘nucleosomes’ of 

highly compacted DNA, coiled typically ~1.7 times around an octamer core of histone proteins (H2A, 

H2B, H3 and H4) (Kornberg, 1974; Hayes, Clark and Wolffe, 1991; Kornberg and Lorch, 1999). The 

density of chromatin is variable throughout the genome and can regulate the ability of factors to either 

bind or interact with the DNA template. It has been shown that nucleosomes packed to within 30nm 

structures are transcriptionally inactive, postulated to be due to inaccessibility of the molecular 

transcriptional machinery (Bednar et al., 1998). The chromatin configuration and corresponding 

densities are modulated by the post-translational status and the variants of histones, the recruitment 

of chromatin re-modelling factors and the degree of DNA methylation (Biddie et al., 2011; George, 

Lightman and Biddie, 2011). Regions of increased chromatin density are termed heterochromatin and 

described as ‘closed’ due to their transcriptionally inactive state, whereas less dense, ‘open’ regions 

of chromatin that are transcriptionally active are termed euchromatin (Archer et al., 1991; Bednar et 

al., 1998; John et al., 2008). Regions of euchromatin are usually comprised of highly methylated and 

acetylated histones (Barski et al., 2007; Bannister and Kouzarides, 2011). Mechanistic experiments in 

yeast have indicated that hyperacetylation of the H4 N-terminal tail can destabilize inter-nucleosomal 

contacts (30 nanometer fiber-like connections between histones) which have been shown to be 

important for maintaining higher order structures and therefore limiting access of the transcriptional 



 

10 
 

machinery (Shogren-Knaak et al., 2006). Conversely, histone deacetylases (HDACs) have been linked 

to a loss in transcription (Ito et al., 2006). The organisation of hetero- and euchromatin regions present 

fundamentally important tissue and cell specific mechanisms for directed nuclear factor binding. 

Separating binding sites into cell specific regions that are in either a ‘closed’ or ‘open’ chromatin state 

or sites that can be modified into an open or closed stated by external stimuli via intracellular signalling 

and co-factor assembly. Assessment of chromatin density in response to GR binding by formaldehyde-

assisted isolation of regulatory elements (FAIRE) next generation sequencing (Seq) and DNase 

footprinting have indicated that hormone-induced reductions in chromatin density occur at nearly all 

GRE containing GR binding sites (John et al., 2011; Burd et al., 2012). Further, 90% of all GR binding 

sites have been detected within pre-accessible, ‘open’ chromatin regions, which are highly cell-specific 

(John et al., 2008; Reddy, Pauli and Sprouse, 2009; Biddie et al., 2011; Burd et al., 2012). Nuclear 

factors such as the GR are able to initiate the remodelling of chromatin density via the recruitment of 

co-factors such as the HATs CBP and p300 and the ATP dependent chromatin remodellers such as the 

SWI/SNF complex (Lee and Archer, 1994; Archer and Lee, 1997; Kinyamu and Archer, 2004). Nuclear 

factors that initiate the ‘opening’ of the chromatin landscape in this way have been described as 

‘pioneer’ factors. It is further postulated similar mechanisms are involved within epigenetic regulation 

as well as acute and chronic changes of genome transcription and regulation (Archer et al., 1991; John 

et al., 2008, 2011; Reddy, Pauli and Sprouse, 2009; Jubb et al., 2017). 

1.1.6 Models of GR mediated transcription 

Upon ligand binding, GR is classically thought to translocate through the nuclear pore, rapidly diffuse 

throughout the nucleus and bind as a homodimer to specific regulatory elements across the genome. 

However, the homodimer is not essential for transcriptional regulation. GR monomers have been 

observed binding to both full GRE palindromic and half sites with differing transcriptional effects 

(Eriksson and Wrange, 1990; Grøntved et al., 2013; Schiller et al., 2014; Lim et al., 2015; Pooley et al., 

2017). In fact, it has been postulated monomeric binding is more common than the homodimer form. 

There is also evidence that GR forms tetramers, potentially via looping of GR dimers bound at opposing 

sites within the genome (Presman et al., 2016). 

Upon binding to regulatory sites within DNA, liganded GR can recruit numerous co-factors important 

to transcriptional regulation with intrinsic and synergistic acetylation, methylation and 

phosphorylation mechanisms. These interactions have been shown to be rate limiting as well as 

significantly enhancing or repressive of transcriptional capacity for a single transcription factor (De 

Bosscher et al., 2000; Tetel, 2009; Reiter, Wienerroither and Stark, 2017). In the simplest model, the 

co-factor complex will recruit the multi polypeptide transcription preinitiation complex (pre-Pol), 
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positioning ribonucleic acid (RNA) polymerase II (RNA Pol2) at the core promoter (a minimal DNA 

sequence required for the start of transcription) (Wang, Carey and Gralla, 1992; Wiley, Kraus and 

Mertz, 1992). Primarily, canonical TATA sequences within promoter regions direct the pre-Pol via 

interactions with the TATA box binding protein subunit, which in mammalian genes are typically 30b 

upstream of the transcriptional start site (TSS) (Ponjavic et al., 2006). This is however, a simplified 

model, as genome wide studies indicate other initiator sequences and CpG islands can also be 

transcriptionally active (Sandelin et al., 2007). In instances where the DNA cannot spontaneously 

unwind or non-template strands are not complementary, the helicase XPB subunit will melt 

approximately 11-15bp of the promoter, positioning the template strand within the active cleft to 

begin synthesis of RNA (Wiley, Kraus and Mertz, 1992; Holstege, Fiedler and Timmers, 1997; Tirode et 

al., 1999; Hahn, 2004; Luse, 2014). 

It has long been known that a classical promoter GR binding site is not required for transcriptional 

regulation and binding sites are often located many kilobases (kb) from the regulated TSS. These are 

sometimes referred to as ‘enhancer’ sites (Lee et al., 1987). In fact 93% of dexamethasone (Dex) 

induced GR binding sites in mouse 3134 cells were further than 2.5kb away from the TSS (John et al., 

2011). Similarly, in HeLa cells only 7% of GR binding events were within 10kb promoter regions and in 

macrophages, lipopolysaccharide induced <6% within 20kb proximal promoter regions (Rao et al., 

2011; Uhlenhaut et al., 2013). This highlights the question; how do long-distance interactions occur 

between GR binding and their transcriptionally dependent sites? The most accepted model relies on 

folding and organisation of the chromatin architecture within topologically associated domains 

(TADs). Within this ‘looping’ model, GR binding sites that are a very long distance (often many kbs) 

from a target gene’s TSS, loop to within close proximity and are therefore in chromosomal contact 

(Dixon et al., 2012; Nora et al., 2012; Sexton et al., 2012). It is theorised, co-regulated genes and 

appropriate regulating transcription factors all loop from a variety of locations to occupy the same 

spatial region or nuclear hub, termed ‘transcription factories’ (Jackson et al., 1998; Osborne et al., 

2004; Schoenfelder et al., 2010; Aguilar-Arnal and Sassone-Corsi, 2015). This has been shown via 

observations of the co-factor p300 which is considered to be a hallmark of active enhancers and 

commonly interacts with both GR and NFκB (Chakravarti et al., 1996; Gerritsen et al., 1997; Wang, 

Carroll and Brown, 2005; Heintzman et al., 2009). It has been demonstrated, using circular 

chromosome conformation capture coupled with next generation sequencing, that upon stimulation 

both GR and NFκB localise to transcriptionally active TADs. But genes within these TADs do not always 

have a promoter located transcription factor interaction (Kuznetsova et al., 2015). TADs and long-

range interactions as well as short-range loops have been shown to be functionally important to 

mammalian biology. For example, circadian changes in transcriptional regulation of active genes 
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condensed within sub-sets of genomic TADs have been observed 12hrs apart within C57BL/6J mouse 

liver which could be modified by altering circadian cues. Implicating the role of the molecular circadian 

regulators such as BMAL1 (Aguilar-Arnal et al., 2013; Zhao et al., 2015; Kim et al., 2018). GR facilitates 

this model of transcription by its ability to recruit co-factors such as CBP, p300 and nuclear co-activator 

1 (NCOA1) & 2 (NCOA2) (a.k.a. SRC-1 and TIF2/GRIP1 respectively) with intrinsic and synergistic HAT 

activity modifying the chromatin architecture (Beato et al., 1989; Lee et al., 1993; Grunstein, 1997; 

Reinke and Hörz, 2003; Conway-Campbell et al., 2011). Complexes can be built via NCOA1 & 2 

interaction with the GR via an activation domain. This same domain will also interact with CBP, p300 

and RNA helicase A of the Pre-pol and are essential for GR mediated transactivation (Hong et al., 1996; 

Nakajima et al., 1997; Spencer et al., 1997; Onate et al., 1998; Szapary, Huang and Simons, 1999). 

NCOA1 has a second activation domain which promotes transcription and a third which interacts with 

the SWI/SNF chromatin remodelling complex, enabling synergistic promotion of transcription and 

chromatin re-modelling (Hong et al., 1997; Koh et al., 2001; Belandia et al., 2002; Daujat et al., 2002; 

Chinenov et al., 2008). Transcription can also be mediated by multiple GR binding sites, as was first 

described at the dual GR binding site regulated gene, tyrosine amino transferase (TAT) in 1987 

(Jantzen et al., 1987).  

In certain situations, GR recruitment can also be repressive. These mechanisms are less well known 

but the recruitment of co-repressors such as sirtuin1 (SIRT1) and GSK3β have been implicated in 

certain situations. Recruitment of the co-repressor SIRT1 can induce inaccessibility of the chromatin 

to co-activators and the RNA Pol2 complex due to its intrinsic HDAC activity (Vaziri et al., 2001; Ito et 

al., 2006; Finkel, Deng and Mostoslavsky, 2009; Moore, Dai and Faller, 2012; Suzuki et al., 2018). Post-

translational modification of GR can also mediate transrepression as de-acetylation has been shown 

to promote binding of methyl-binding proteins which in turn recruit HDACs (Vaissière, Sawan and 

Herceg, 2008). Also, GSK3β modifies the phosphorylation state of GR, that can induce binding of the 

guanine nucleotide-binding protein β and has been postulated to be a mechanism of GR mediated 

transrepression of NFκB regulated targets (Kino et al., 2005; Galliher-Beckley et al., 2008; Kino, 2018).  

Transcriptional repression can also be induced by GR binding to so called negative GRE (nGRE) 

consensus sequences identified as 5’-CTCC(N)0-2GGAGA-3’ (Pei, 1996; Meijer et al., 2000; Surjit et al., 

2011). This proposed response element interacts with two ligand bound monomer GRs on opposing 

sides of the DNA helix in a head to tail configuration (see Figure 1.2 for classic GRE homodimer binding 

and Figure 1.5 for nGRE monomer GR binding schematics) (Hudson, Youn and Ortlund, 2013). nGREs 

enact a transrepressive effect via recruitment of the repressive inhibitors NCoR and SMRT (Surjit et 

al., 2011; Hudson, Youn and Ortlund, 2013). It has also been identified via biochemical analysis, that 
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binding of a monomer to one side of the nGRE sequence, reduces the affinity for the second monomer. 

Thereby increasing the potential for purely single monomer binding as opposed to dual (Hudson, Youn 

and Ortlund, 2013). The exact role of nGREs, however, remains to be fully elucidated as it has been 

reported mutation of discovered sequences upstream of the 5-HT1a promoter did not affect GR 

mediated repression nor was their a defined link between dexamethasone (Dex) induced repression 

within 3134 mouse mammary adenocarcinoma cell lines (Meijer et al., 2000; Presman et al., 2014). 

nGREs have been shown to provide a role within the HPA axis, mediating repression of CRH and POMC 

genes via associated GR binding (Surjit et al., 2011; Meijer, Buurstede and Schaaf, 2019). It has further 

been postulated that as the nGREs have also been characterised well within macrophages, then 

perhaps nGRE action is a cell and tissue context dependent mechanism of repression (Uhlenhaut et 

al., 2013; Jubb et al., 2016). 

 

 

Figure 1.5 nGRE binding of monomer GR 

A monomeric GR will bind to a negative GRE consensus sequence via a zinc finger within the P-box of 

the DBD (blue). A second monomeric GR can bind on the opposing side of the DNA helix in the same 

manner. There is no direct interaction between GRs within the dimerization interfaces (red). nGRE 

consensus sequence required for GR recognition in bold. Figure modified from Hudson, Youn and 

Ortlund, 2013. 

GR mediated transcriptional control can also work in a composite fashion. Multiple observations were 

made of overlapping as well as adjacent response elements for differing nuclear factors whose 

presence was required for transcriptional output (Biddie et al., 2011; Grøntved et al., 2013; Uhlenhaut 

et al., 2013). GR and activator protein 1 (AP1) was one of the first and most highly investigated 
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examples of transcriptional dependent composite interactions (Diamond et al., 1990; Biddie et al., 

2011). Interestingly, these same studies indicated the composite interactions of GR and AP1 occurred 

at AP1 response element regions devoid of GREs. In these situations, it is hypothesized GR is ‘tethered’ 

by another co-factor, which is bound to the DNA template (Schule et al., 1988; Newton and Holden, 

2007; Biddie et al., 2011). Similar observations have been made with other transcription factors 

including signal transducer and activation of transcription (STAT)5 and NFκB to mediate 

transrepressive effects (Jonat et al., 1990; Schule et al., 1990; Yang-Yen et al., 1990; Ray and 

Prefontaine, 1994; Stöcklin et al., 1996; Hudson, Youn and Ortlund, 2013). NFκB is a known mediator 

of inflammation via cytokine transcriptional induction. GCs are a potent anti-inflammatory and will 

interact with NFκB via tethering or as composite binding. Synergistic transcriptional regulation has 

also been shown with STAT3 & STAT5 tethered composites (Stoecklin et al., 1997; Aittomäki et al., 

2000). It has been theorised synergistic transcription mediated at regulatory regions could be 

dependent on the tethered factor bound to the DNA (Stoecklin et al., 1997; Zhang et al., 1997; Takeda 

et al., 1998; Engblom et al., 2007). This was recently shown by observing tethered STAT3 and GR 

complexes; DNA bound GR complexes tethered to STAT3 induced transcription, whereas when the 

complex was bound via STAT3 transcription was repressed (Langlais et al., 2012).  



 

15 
 

 

Figure 1.6 Diagram of the main pathways of GR mediated transcription. 

(A) Within the simple model of GR transactivation, GR binds as a homodimer to response elements 

(white box) within a DNA (black line) ‘promoter’ region of a gene and transcription can be increased 

(transactivation) (i). GR can also recruit other co-factors (X and Y) as part of a composite complex and 

bind to specific response elements within a shared region (ii). Or GR can be tethered to other DNA 

bound co-factors without the need for direct interaction with the GR DNA binding domain (iii). 

Inhibition (transrepression) maybe observed at response elements that can be termed negative GREs 

for each simple (iv), composite (v) and tethering (vi) model described. GR transactivatory action is 

mediated by the TATA binding protein and RNA polymerase 2 (Pol II). (B) GR transactivatory action 

can be mediated by the recruitment of factors such as CREB binding protein (CBP) and a p160 protein 

family member (p160) and histone acetylases transferases (HAT). The co-factor complex intrinsic 

histone acetylase action promotes opening of the chromatin structure to allow access to the 

transcriptional machinery such as TBP and PolII (i). This action is opposed if the complex recruit’s 

histone de-acetylases (HDAC) that deacetylate histones, closing the chromatin to transcriptional 

machinery. This has been described within a tethered model with NFκB amongst other nuclear 

receptors. Figure adapted from (Newton and Holden, 2007). 
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1.2 The pituitary-adrenal axis 

1.2.1 Corticosterone  

In the 1930s, small amounts of steroid hormones were extracted and isolated from the adrenal cortex, 

however it was only in 1949 that synthetic production of steroid compounds facilitated full scale 

clinical investigation and treatment of their potent anti-inflammatory effects. Originally termed 

compound B and compound E, corticosterone and cortisol (mainly cortisol) were observed to have 

remarkable efficacy in treating inflammatory conditions such as rheumatoid arthritis and rheumatic 

fever and to this day remain one of the most prescribed medicines (Kendall et al., 1936; Mason, Hoehn 

and Kendall, 1938; Hench and Kendall, 1949; Kendall, 1949).  

Corticosterone is the predominate circulating GC found in rodents, whereas in humans it is 

approximately 20 fold lower than cortisol (Underwood and Williams, 1972; Nishida et al., 1977; 

Karssen et al., 2001; Raubenheimer et al., 2006). Despite its prevalence in total circulating blood 

plasma levels, up to 90% of GCs are bound to the major transport protein, corticosteroid binding 

globulin (CBG), reducing free corticosterone levels to approximately 4% of total levels (Chan et al., 

2013). The half-life of circulating corticosterone is variable within biological systems, however studies 

in healthy young adult female rats have calculated total corticosterone half-life to be approximately 

8.6 ± 1.4 min within 10min blood serum sampling (Windle, Wood, Shanks, et al., 1998; Lightman, 

2006). This represents a significantly shorter half-life than the predominant human GC cortisol, which 

has been determined to between 62-97min (Weitsman et al., 1971; Weitzman, 1976; Veldhuis et al., 

1989).  

Free corticosterone and cortisol readily diffuse into cells due to their highly lipophilic nature, however, 

it was noted in 1953 that cortisone incubated in various rat tissues in vitro, could be converted to 

cortisol in a process identified to be the result of the of 11β-hydroxysteroid dehydrogenase enzymatic 

action (Amelung et al., 1953). The type I isoform (11β-HSD1) is the most widely expressed isoform 

throughout the body and is concentrated within the liver (Tannin et al., 1991). 11β-HSD1 is a bi-

directional enzyme, but predominantly acts as an oxidoreductase, converting inactive cortisone and 

11-dehydrocorticosterone to the biologically active cortisol and corticosterone (Duperrex et al., 1993; 

Low et al., 1994). Whereas the type II isoform (11β-HSD2) only works unidirectionally producing 

inactive 11-keto-metabolites (Agarwal et al., 1994). Depending on their selective expression of 11β-

HSD1 and 11β-HSD2, this mechanism enables cells to control the amounts of active GC ligand, 

regardless of circulating free corticosterone levels. 
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1.2.2 Anatomy of the hypothalamic-pituitary-adrenal axis 

Hans Selye (1950) was among the first to highlight the importance of the HPA axis in the homeostatic 

regulation of the adrenal cortex stress response, leading to further implications in immunological, 

cognitive and metabolic regulation (Selye, 1950; McEwen, 2007; Lightman and Conway-Campbell, 

2010). The HPA axis is modulated by a variety of inputs such as aversive stimuli (either physical or 

mental) or stress (Pariante and Lightman, 2008; Oster et al., 2016). The primary input is from the 

suprachiasmatic nucleus (SCN) within the anterior hypothalamus of the brain, also termed the ‘master 

clock’. The SCN mediates HPA axis regulation via innervations into the parvocellular subdivision of the 

paraventricular nucleus (PVN) as well as the hypothalamic medial preoptic area and dorsomedial 

nucleus (Figure 1.7) (Berk and Finkelstein, 1981; Vrang, Larsen and Mikkelsen, 1995). Parvocellular 

neuronal projections secrete corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) 

via the median eminence into the hypophyseal portal circulation to the anterior pituitary (Swanson et 

al., 1983; Sawchenko, Swanson and Vale, 1984) (Figure 1.7). Predominantly, binding of CRH to 

corticotrophs induces production and secretion of pro-opiomelanocortin and adrenocorticotropic 

hormone (ACTH) into the pulmonary network (Kiss, Mezey and Skirboll, 1984; Pariante and Lightman, 

2008). ACTH is transported around the body, diffusing into tissues such as the zona fasciculata of the 

adrenal cortex inducing synthesis and secretion of a range of steroids classed as GCs. ACTH release 

occurs in a highly synchronised, oscillating manner with an intrinsic 10min delay between release from 

the pituitary and the secretion of GCs from the adrenals (Follenius et al., 1987; Carnes et al., 1989; 

Veldhuis et al., 1990; Jasper and Engeland, 1991; D E Henley et al., 2009; Rankin et al., 2012; Walker 

et al., 2012). Adrenal GCs are transported around the body via the circulatory system and their 

lipophilic nature allows diffusion into nearly all tissues of the body, including the brain (M. T. Jones, 

Hillhouse and Burden, 1977). Therefore rising GC levels can act directly on CRH neurons within the 

PVN of the hypothalamus, as well as on ACTH producing corticotrophs of the anterior pituitary gland 

to rapidly and directly inhibit CRH production and ACTH secretion in a classical negative feedback loop 

(M T Jones, Hillhouse and Burden, 1977; Sawchenko, 1987; Harbuz and Lightman, 1989).  
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Figure 1.7 Hypothalamic-pituitary-adrenal axis schematic. 

Activation of the HPA axis, by circadian cues or stress, results in activation of parvocellular neurons in 

the PVN and increased secretion of CRH and AVP into the hypophyseal portal blood system. ACTH is 

secreted from corticotrophs in the anterior pituitary and targets the zona fasciculata of the adrenal 

cortex increasing GC production and release into the peripheral circulation. Figure adapted from 

Lightman and Conway-Campbell, 2010. 

1.2.3 Circadian rhythms 

The daily rotation of the earth as well as its annual rotation around the sun causes distinct and varied 

changes in light, temperature and availability of food. Therefore, mammalian systems have developed 

innate circadian (circa=around, di=day) mechanisms to adapt to daily and seasonal changes in the 

photoperiod, mediating a wide range of behaviour and hormonal release as well as regulating body 

temperature, activity and sleep (Weitzman, 1976; Refinetti and Menaker, 1992). These systems are 

dynamically regulated and can be altered by extension/ shortening of the photoperiod which the HPA 

axis plays an integral regualtory role (Edmonds and Adler, 1977; Waite et al., 2012). In unstressed 

Zona  
fasciculata 
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healthy mammals, GCs such as corticosterone and cortisol are synthesized and released from the 

adrenal glands at maximal capacity prior to waking. Maximal levels continue to be produced and 

secreted well into the onset of the active part of the day before gradually decreasing throughout the 

active period and returning to negligible levels during the inactive period and early sleep phase. This 

cycle continues with a period of 24hrs (Windle, Wood, Shanks, et al., 1998; Lightman et al., 2002; 

Lightman and Conway-Campbell, 2010; Russell et al., 2010). In 1972 it was discovered that bilateral 

destruction of the hypothalamic SCN ablated diurnal oscillations of plasma corticosterone, as well as 

circadian drinking and activity periodicity in rats (Moore and Eichler, 1972; Stephan and Zucker, 1972). 

Study of SCN hypothalamic slices confirmed an innate ability to produce spontaneous neural activity 

at a rate of approximately 24hrs and showed that transplant into SCN lesioned hamsters could restore 

circadian activity. Furthermore, the donor periodicity was preserved despite phase shift experiments 

within the host prior to implantation (Inouye and Kawamura, 1979; Welsh et al., 1995; Silver et al., 

1996). In the absence of light or other Zeitgeiber (Zt) cues, the ‘free running’ circadian period was 

determined to be slightly longer than 24 hours indicating the SCN has a phase advance activity. The 

maintenance of the 24hr rhythm has been found to be primarily regulated by light via impulses from 

activated retinal ganglion cells, along the retinohypothalamic tract and into the SCN (Aschoff, 1965; 

Czeisler et al., 1999; Hattar, 2002). Interestingly, SCN stimulation by light and output into the PVN do 

not differ between diurnal and nocturnal animals. Within SCN ablated rats, AVP infusion into the PVN 

and dorsomedial hypothalamic regions inhibited raised corticosterone levels within circulating blood 

during the active period. This effect could be reversed with an AVP antagonist, raising circulating 

corticosterone within the circadian inactive period (Kalsbeek et al., 1992; Kalsbeek, van der Vliet and 

Buijs, 1996). Opposing effects were observed in the diurnal rodent Arvicanthis ansorgei with the same 

experimental model, suggesting photic regulation of the SCN is conserved, but the downstream effect 

of AVP on the HPA axis is inhibitory in nocturnal and excitatory in diurnal mammals  (Kalsbeek et al., 

2008).  

1.2.4 Ultradian rhythms 

Frequent blood micro sampling methodologies have led to the detection of a pronounced rhythm 

underlying the circadian rhythm; an intra-rhythm of rising and falling phases, the amplitude of which 

followed the circadian 24hour period. This ‘ultradian’ rhythm has been shown to be highly conserved 

across all mammals studied, including rats (Carnes et al., 1989, 1994; Windle, Wood, Lightman, et al., 

1998; Sarabdjitsingh et al., 2010; Walker et al., 2012), hamsters (Loudon et al., 1994), dogs (Benton 

and Yates, 1990), sheep (Engler et al., 1990), horses (Cudd et al., 1995), rhesus monkeys (Holaday, 

Martinez and Natelson, 1977; Sarnyai et al., 1995), goats (Carnes et al., 1992) and humans (Krieger et 
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al., 1971; Weitzman, 1976; Veldhuis et al., 1989, 1990; Young, Carlson and Brown, 2001; D E Henley 

et al., 2009; Russell et al., 2010). However, there are variations in pulse frequency and duration as rat 

ultradian corticosterone frequency is roughly 56-60min, whereas human cortisol pulse frequency is 

roughly 95-180min (Figure 1.8) (Follenius et al., 1987; Veldhuis et al., 1989; Jasper and Engeland, 

1991). The difference may be due to specific regulation of the HPA axis as well as differing blood 

plasma half-lives of corticosterone (8-9min) and cortisol (62-97min) (Weitzman, 1976; Veldhuis et al., 

1989; Windle, Wood, Lightman, et al., 1998) . 

 

Figure 1.8 Ultradian models of human cortisol and rat corticosterone pulses and their relationship 

with ACTH. 

(A) 10min blood samples were collected over a 24hr period in a healthy human male and total blood 

serum cortisol and ACTH concentrations measured. Circadian changes are present with increases in 

circulating cortisol between 24-9hrs (maximal ACTH and cortisol levels are approximately 550nmol/L 

and 45ng/ml respectively just before 4hr) before overall levels decrease to nadir by approximately 

19hrs. Within overall circadian changes, supra-pulses of ACTH and slightly delayed phase shifted 

cortisol pulses are discernible within the raised cortisol period. Human cortisol and ACTH were 

measured by solid-phase, competitive chemiluminescent enzyme immunoassay. Figure adapted from 

D E Henley et al., 2009. (B) Similar circadian and ultradian changes in total circulating corticosterone 

are observable within the male rat but with an increased frequency of approximately 1hr. Rats are 

also nocturnal, therefore corticosterone rises start from approximately 11hrs, maximal at 17hrs 
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(~120ng/ml) and gradually decreases to nadir at 4hrs. Rat lighting schedule was on at 05:00 and off 

at 19:00 (14:10), food and water access ad libitum, total blood serum corticosterone levels assessed 

using an in house radio immunoassay (RIA) (n=8-10). Figure adapted from Seale et al ., 2004. (C) 

Average ACTH (grey line) and corticosterone (black line) oscillations in response to constant CRH 

infusion (0.5µg/hr) (grey bar) within male Sprague Dawley rats over a 3hr period and (D) over a 1hr 

period. Both measurements indicate a synchronised but slightly delayed phase shift in ACTH and 

corticosterone levels. Total blood serum corticosterone levels were assessed using RIA (n=3-7 per time 

point). Figure adapted from Walker et al ., 2012. 

The ultradian rhythm is an intrinsically oscillating system due to the interplay between feed forward 

and feedback pathways of the HPA axis. Even though multiple studies have reported pulsatile AVP and 

CRH secretion within the HPA axis, recent studies have shown ultradian GC secretion can be preserved 

in response to constant CRH and constant light (Figure 1.8) (Engler et al., 1989; Carnes et al., 1990; 

Walker, Terry and Lightman, 2010; Waite et al., 2012; Walker et al., 2012). It is in fact a two-step delay, 

the first delay is between ACTH secretion and induction of GC secretion from the adrenal glands within 

feed forward mechanisms, whilst the second delay occurs between rising GC levels within the 

circulation, acting on the brain and pituitary to inhibit ACTH release with the negative feedback loop 

of the HPA axis. Together this data indicates GC release is naturally oscillatory, due to delayed feed 

forward and feedback mechanisms intrinsic within the HPA axis, whilst the CRH activatory drive 

primarily regulates pulse amplitude in an overall circadian manner (Walker et al., 2012). 

1.2.5 A functional role for corticosterone rhythms in regulation of stress response, physiology and 

behaviour  

HPA axis activation and subsequent GC release has been shown to be a highly plastic system. Not only 

is it dependent on the type and duration of the stressful stimuli but also on the circadian phase. When 

an animal encounters a stressful situation, either real or perceived, during the circadian inactive phase 

when the CRH drive is naturally low and circulating ACTH and adrenal GCs are minimal, the HPA axis 

is highly responsive with rapid and robust activation of hypothalamic CRH and AVP neurons within the 

PVN (although multiple further interactions and sites exist), closely followed by increased ACTH 

secretion then a surge of adrenal GC synthesis and release. However, when a mammal encounters a 

stressful event during the circadian active phase, rapidly oscillating phases of HPA activation and 

inhibition are already underway, and these become very important for regulating outcome (Kyrou, 

Chrousos and Tsigos, 2006; Pariante and Lightman, 2008; Sarabdjitsingh et al., 2010). Stress induced 

GC rises have many implications for memory acquisition, cognition and analgesia as well as 

metabolism, mobilising glucose stores within the liver via induction of gluconeogenesis and lipolysis 
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whilst inhibiting energy consuming functions such as digestion, reproduction, growth and certain 

immune functions (Kyrou, Chrousos and Tsigos, 2006). Thus, providing easily accessible energy for 

‘fight / flight’ mechanisms.   

However, stress induced HPA axis activation can also be dependent on the ultradian phase of GC 

release. Indicating a role for ultradian stress mediated activation (Kyrou, Chrousos and Tsigos, 2006; 

Pariante and Lightman, 2008; Sarabdjitsingh et al., 2010). When ultradian corticosterone rhythmicity 

is lost, such as during constant corticosterone infusion into ADX rats, physiological (ACTH), 

neurological (neuronal activation) and behavioural stress responses were blunted (Sarabdjitsingh et 

al., 2010). Even within the intact, oscillating ultradian endogenous GC release, the amplitude of the 

stress-induced GC release has been shown to be dependent on the timing of the stressful encounter 

relative to the phase of the adrenal GC pulse. In female rats, total blood corticosterone levels 

measured 20min after a 114 decibel (12,000-60,000Hz) noise stress were increased from 136 ±9ng/ml 

to 377 ±87ng/ml, which also marginally increased the subsequent pulse nadir interval even though no 

difference in corticosterone clearance was observed. This increased the average interpulse 

corticosterone peak period from 48±2min (non-stressed controls) to 70±3min (after the noise stress). 

Interestingly, if a noise stressor coincided with the falling phase of a corticosterone pulse, the stress 

induced GC release was blunted (Windle, Wood, Shanks, et al., 1998). Similar behavioural effects have 

been observed when rats were exposed to a male intruder, the degree of self-initiated aggression was 

increased during a rising phase of endogenous corticosterone than during a falling phase (J Haller et 

al., 2000; J. Haller et al., 2000). These observations were made in response to an acute stress, 

however, the period of perceived stress will also affect GC release dynamics as a chronic 30min 

restraint stress of male rats induced prolonged raised total blood corticosterone levels for at least 

60min after the insult (Kitchener et al., 2004). In conclusion, the GC response to stress is highly 

dynamic, dependent not only on the nature of the stressor but also the endogenous corticosterone 

ultradian rhythm. 

These intriguing results, which strongly indicate a functional consequence of rapidly fluctuating GC 

hormones, lead to the question of whether other GC targets and processes also respond in an 

ultradian manner? It is already known that GCs mediate numerous effects on downstream tissues such 

as the brain, liver, skeletal muscle and others, to regulate a wide range of behavioural and metabolic 

processes (Pariante and Lightman, 2008; Lightman and Conway-Campbell, 2010; Sarabdjitsingh et al., 

2010; Walker et al., 2012; Oster et al., 2016). What is not known is how ultradian GC dynamics further 

modulate outcome. I hypothesise that an oscillating system can carry more information due to the 

increased flexibility to modulate signal profiles. 
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1.2.6 Ultradian GR regulation 

Even though 90% of circulating corticosterone and cortisol is bound to CBG, oscillating free levels of 

GCs have been measured by microdialysis in blood plasma, intra-adrenal extracellular fluid as well as 

the hippocampus of rats (Ballard et al., 1975; Jasper and Engeland, 1991; Droste et al., 2008, 2009). 

Other studies using multiple simultaneous microdialysis measurements have shown subcutaneous 

tissues do experience GC pulses highly synchronised with those observed in circulating blood (Qian et 

al., 2012). The fact tissues experience changes in GC levels at the uppermost zenith of an ultradian 

pulse has been postulated to re-enforce a ‘digital’ like signal to responsive cellular networks. This has 

further implications when one considers the relative affinities of responsive receptors. The MR has a 

6-10 fold higher affinity for GC ligand than the GR, indicating GRs will be activated within the upper 

range of GC pulses whereas MR could be responsive in a pro-longed manner to GR ligand activation 

and may not react in a pulsatile manner (Reul and Kloet, 1985; van der Laan, de Kloet and Meijer, 

2009; Mifsud and Reul, 2016). As indicated by western blots of nuclear extracts, GR and MR 

translocation within the nucleus of hippocampal cells of ADX rats, was observed in response to hourly 

bolus intravenous injections of corticosterone. Upon hourly corticosterone replacement via 

intravenous (I.V.) infusions, total circulating corticosterone levels were maximal by 1min, however, 

despite this relatively large dose (100µg), corticosterone was cleared from the blood plasma by 60min 

in a similar interphase period to endogenous ultradian frequency. Increased GR and MR nuclear levels 

were reported in response to corticosterone infusion, maximal at 10min and 15min respectively. 

However, nuclear GR levels were found to decrease to basal levels by 60min in synchrony to circulating 

corticosterone dynamics, MR remained elevated within the nucleus (Conway-Campbell et al., 2007). 

The model was expanded upon by investigating how these mock ‘ultradian’ like pulses induced GR 

recruitment to a known GRE upstream of the clock gene Period1 (Per1) as well as measuring 

heterogeneous ribonucleic acid (hnRNA) production within the liver of the rat. As was postulated, GR 

did bind transiently in response to the infusion model, reaching maximal binding levels by 10min in 

response to corticosterone administration and returning to basal levels by 60min at the GRE (Figure 

1.9-A). This corticosterone synchronised GR recruitment could be reinstated repeatedly by multiple 

infusions at hourly intervals, with no loss in maximal binding. Interestingly, hnRNA levels were similarly 

responsive to the corticosterone ‘pulses’, albeit in a slightly delayed manner, peaking 30min after each 

corticosterone peak (Stavreva et al., 2009).  

Expanding upon these experiments in vitro, corticosterone synchronised pulsatile dynamic GR binding 

and dissociation was observed at not just a single, but multiple binding sites. In a series of live imaging 

experiments to a tandem array of mouse mammary tumor virus (MMTV) promoter-reporter gene 
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cassettes within 3617 adenocarcinoma mouse cells, fluorescently tagged GR translocated into the 

nucleus and bound to the concatemerized GREs within the MMTV array after 20min stimulation of 

100nM corticosterone. Similarly to in vivo data, GR would fully dissociate within 40min of total 

corticosterone washout and could be repeated by successive mock ‘ultradian’ pulses of hormone 

(Figure 1.9-B). RNA Pol2 occupancy was shown to be similarly oscillatory indicating pulsatile 

transcriptional recruitment. Observed pulsatile responses were not intrinsic as the induction of 

oscillating ‘ultradian’ hnRNA production of SOUX, GILZ (aka TSC22D3), transglutaminase (TGM2) and 

Metallothionein (MT2)  in response to 8 cycles of corticosterone application and washout, became 

dysregulated upon constant corticosterone stimulation in vitro (Figure 1.9-C) (Stavreva et al., 2009). 

Together, these findings indicate that GR recruitment and resultant transcriptional regulation of target 

genes is highly dynamic in its response to pulses of corticosterone exposure both in cultured cells and 

in vivo.  
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Figure 1.9 A series of mock ‘ultradian’ pulses of corticosterone induce synchronised GR 

recruitment/ dissociation from the DNA template and resultant mRNA production at select targets 

in vivo and in vitro. 

(A) Three intravenous bolus injections of corticosterone at 0, 60 and 120min in an ADX male rat 

induced maximal circulating corticosterone levels by 1min, which cleared from the circulation within 

60min (red). Synchronized increases and decreases in GR binding (blue) to the proximal GR binding 
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site of the clock gene Period1 (Per1) was detected, followed by pulses of heteronuclear RNA (hnRNA) 

(green) at phasic intervals between corticosterone pulses. Maximal phasic dynamics of GR and hnRNA 

levels were detected at 10min and 30min respectively, before returning to basal levels by 60min. 

Circulating total corticosterone was measured using radioimmunoassay, GR binding was measured 

using quantitative ELISA-based assay and heterogenous nuclear RNA (hnRNA) was measured by RT-

qPCR analysis. (B) In a series of live cell imaging studies, green fluorescent protein tagged GR 

recruitment to the MMTV array in 3617 cell lines was induced by a 15min corticosterone 

administration and lost 40min after hormone washout. This was repeatable over three pulses of 

corticosterone (i) and GFP-GR MMTV array intensity against corticosterone concentrations plotted 

over time (ii). (C) Nascent transcript fold change to control were assessed via RT-qPCR analysis of 

selected up-regulated genes within 3134 cell lines in response to a series of eight 15min corticosterone 

administrations followed by 40min post hormone washout period (dotted lines). Results indicated 

pulsed corticosterone administration induced corticosterone synchronised increases in hnRNA of 

SUOX, GILZ, TGM2 and MT2. Oscillating hnRNA levels were lost in response to a constant exposure to 

corticosterone within froth media (black line). Control (C), induction (P) and withdrawal (W) are 

indicated along the x-axis. All error bars represent s.e.m. and figures are adapted from Stavreva et al., 

2009. 

1.2.7 Glucocorticoid regulation of gluconeogenesis 

GCs were so named at the beginning of the 19th century by their ability to alter blood glucose levels. 

Upon further research, additional roles within metabolism was recognised, revealing regulation of 

lipolysis, triglyceride, fatty acid and carbohydrate homeostasis as well as glucose.  

Glucose homeostasis is maintained by a myriad of endocrine signalling such as by insulin, glucagon 

and GC hormones. Indeed, glucocorticoids alter blood glucose levels by reducing uptake and glucose 

oxidation in skeletal muscle and white adipose tissues (WAT) whilst stimulating gluconeogenesis 

(mainly in the liver) and energy store mobilisation in response to a stressor (Kuo et al., 2015). Focusing 

within the liver, GR action has been shown to regulate the gluconeogenic genes pyruvate carboxylase 

(PC), phosphoenolpyruvate (PEPCK1), PFKFB1 (a bi-directional enzyme consisting of 6-phosphofructio-

2-kinase (PFK2)/fructose bisphosphatase2 (FBPase2) action), glucose-6-phosphatase (G6PC) and 

solute carrier family 37 member 4 (SLC37A4) (Figure 1.10).  
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Figure 1.10 The Gluconeogenic pathway. 

Within hepatocytes, non-carbohydrate substrates lactate and alanine are converted to pyruvate 

which is transported into mitochondria and converted by pyruvate carboxylase oxaloacetate (OAA). 

OAA cannot be transported out of the mitochondria, therefore it is converted into malate or aspartate 

within the tricarboxylic acid cycle, shuttled out and converted back to cytosolic phosphoenolpyruvate 

carboxykinase (PCK1) substrate, OAA. Indications have been reported of a PCK1 variant that can 

convert OAA into phospho-enolpyruvate (PEP) directly within the mitochondria (m-PCK1) before 

entering the gluconeogenic pathway. Once converted to glyceraldehyde-3-phosphate (G3P) either 

from metabolism of lactate, alanine or glycerol, G3P can either be metabolised back into lactate or 

alanine as part of the glycogenolysis pathway, or G3P is converted in fructose-1,6-bisphosphate 

(F1,6BP), a substrate for fructose-1,6-bisphosphatase 1 (FBP1). However, conversion to fructose-6-

phosphate (F6P) is dependent on the bi-directional enzyme phosphofructokinase 2 (PFK2)/ fructose 

bisphosphatase 2 (FBPase2) (PFKFB1). In the un-phosphorylated state, PFKFB1 favours its intrinsic 

PFK2 activity which induces phosphofructokinase 1 (PFK1) action via the allosteric activator fructose-

2,6-bisphospate (F2,6BP), converting F6P into F1,6BP within the glycogenolysis pathway. In contrast, 

glucagon signalling phosphorylates PFKBP1, whereupon its intrinsic FBPase2 activity is favoured, 

inhibiting F26BP activity and increasing FBP1 affinity for F1,6BP and favouring gluconeogenesis. 
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Hepatocytes can convert the precursor glucose-6-phosphaate (G6P) into glucose within the 

endoplasmic reticulum by the action of glucose-6-phosphatase catalytic subunit (G6PC) before 

transport out of the cell and into general blood circulation via the hepatic portal network. Tricarboxylic 

acid metabolites indicated by blue arrows and GC regulated targets are indicated in yellow. 2-

phosphoglycerate (2-PG), 3-phosphoglycerate (3-PG), 1,3-bisphosphoglycerate (1,3-BPG) and 

dihydroxyacetone phosphate (DHAP) are also indicated. Figure adapted from Kuo et al., 2015. 

Focussing on GC regulated targets within the gluconeogenic pathway, PC catalyses the ATP dependent 

carboxylation of pyruvate into oxaloacetate (OAA) within hepatocyte mitochondria (Utter and Bruce 

Keech, 1960; Menefee and Zeczycki, 2014). This is an important preliminary step  as substrate for the 

tricarboxylic acid cycle but ultimately as a precursor for the action of PEPCK within gluconeogenesis 

(Hanson and Garber, 1972; Arinze, Garber and Hansons, 1973; Hansen and Juni, 1974; Méndez-Lucas 

et al., 2013; Stark et al., 2014). Data regarding direct GC regulation of PC transcription however is 

unclear. Two primary transcripts from alternative splicing events have been identified within rats, 

regulated by two promoter regions. The proximal promoter is active within gluconeogenic and 

lipogenic tissues and regulates production of the first transcript, whereas the distal promoter is active 

within a wide variety of tissues, regulating production of the second transcript (Jitrapakdee and 

Wallace, 1999). Functional GREs have been identified within the bovine PC promoter, but not in rat 

and human where only indirect GR regulation via CREB, nuclear factor 1 (NF-1) and hepatic nuclear 

factor 4 α (NHF4α) has been speculated to be the mechanism of PC transcriptional regulation 

(Jitrapakdee et al., 1997, 2008; White, Koser and Donkin, 2011). Opposing reports however, show 

either increased or no effect of Dex treatment on PC mRNA levels (Martin, Allan and Titheradge, 1984; 

Jones, Hothi and Titheradge, 1993; Kuo et al., 2015). Therefore, PC regulation by GCs requires further 

investigation to determine whether its transcriptional regulation is direct or indirect. 

PEPCK expression is increased in a fasting state synergistically by glucagon and GC administration. It is 

also inhibited by a carbohydrate diet. Both a cytosolic and mitochondrial isoforms of the rate limiting 

enzyme have been identified, converting OAA into phosphoenolpyruvate (PEP) (Hanson and Garber, 

1972; Arinze, Garber and Hansons, 1973; Hansen and Juni, 1974; Méndez-Lucas et al., 2013; Stark et 

al., 2014). PEPCK is a key target within GC regulated glucose homeostasis, mediated by two promoter 

GREs within composite glucocorticoid response units (GRUs), identified between -395b to -349b from 

the TSS within H4IIE rat hepatoma cell lines. The promoter region also contains three other regulatory 

regions at -451b to -431b (gAF2), -420b to -403b (gAF1), -327b to -321b (gAF3) as well as a cAMP 

response element (CRE) -93b to -86b from the TSS (Imai et al., 1990, 1993; Scott, Mitchell and Granner, 

1996b, 1996a; Vegiopoulos and Herzig, 2007; Kuo et al., 2015; Zhang et al., 2019). These regions are 
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conserved within human hepatoma (HepG2) cell lines, plus a further two at -933b (dAF1) and -1,365b 

(dAF2) (Cassuto et al., 2005). PEPCK transcription appears to require synergistic, multi-factorial 

regulation as reporter gene assays demonstrated that GR binding to individual GREs and AF regions 

did not confer transactivation alone. GRE affinity for GR was also found to be relatively weak and 

mutation of either AF1, AF2, GRU or CRE reduced PEPCK transcription by 50-60% whilst a combination 

completely ablated PEPCK transcription in response to GC stimulation (Imai et al., 1990, 1993; Scott, 

Mitchell and Granner, 1996a, 1996b; Scott et al., 1998). Composite binding complexes have been 

demonstrated in vivo between the GRU and CRE. It has been further postulated interactions also 

include accessory activity of HNF4α and chicken ovalbumin upstream transcription factor (COUP) via 

gAF1, and hepatic nuclear factor 3 (HNF3) α and β via gAF2 (Imai et al., 1993; Hall, Sladek and Granner, 

1995; O’Brien et al., 1995; Scott et al., 1998). Chromatin immunoprecipitation (ChIP) studies have 

indicated FoxA2, CEBPβ, HNF4α and COUP occupation of the promoter occurs prior to and does not 

change following GC treatment, indicating a basal state of occupation of these factors is required. GC 

induced Recruitment of GR transcriptional co-regulators NCOA1, p300, FoxO1, FoxO3 and CREB have 

been shown to be GC dependent, as is Pol2 recruitment (Hall et al., 2007). The gAF2 element also 

contains an insulin response element, however, how this confers inhibitory action is not yet fully 

understood but it has been theorised to have something to do with the loss of histone H3 de-

methylation (O’Brien et al., 1990; Hall et al., 2007). Interestingly, PEPCK is inhibited by GCs in WAT by 

an unknown mechanism (Meisner, Loose and Hanson, 1985; Friedman et al., 1993; Olswang et al., 

2003). The PEPCK promoter provides a detailed example of complex co-operative transcription factor 

binding and co-recruitment that can be required for transcriptional regulation.  

During gluconeogenesis, PEP is converted via 5 enzymatic steps to fructose-1,6-bisphosphate (F1,6BP), 

a pathway which is reversed in glycolysis (Kuo et al., 2015).  It is at this point the bi-directional enzyme 

PFKBP1 regulates the switch between gluconeogenesis and glycolysis pathway directions. PFKBP1 has 

intrinsic FBPase2 and PFK2 activity, of which the latter is favoured in its de-phosphorylated state. PFK2 

induces fructose 2,6-bisphosphatase, an allosteric activator of phospho fructokinase 1 (PFK1) within 

the glycolytic pathway. However, glucagon signalling pathways induce cAMP and AKT1 

phosphorylation of FKB1, favouring its intrinsic FBPase2 activity instead and reducing PFK2 activity and 

increasing FBP1 affinity for F1,6BP and conversion into fructose-1,6-bisphosphate (F6P) (Hue and 

Rider, 1987; Marcus et al., 1987; Rider et al., 2004). Dex treatment of ADX rats increases PFKFB1 

transcription, presumably via two intronic co-operative GREs identified in HeLa cells, the distal of 

which has been observed to mediate the greater transactivation (Zimmermann and Rousseau, 1994; 

McFarlan et al., 1997). As described previously for PEPCK, the PFKFB1 GRU recruits multiple co-factors, 

including NF1, CEBP, HNF3 and HNF6 within the rat liver (Pierreux et al., 1998).  
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Within gluconeogenesis, F6P is converted into glucose-6-phosphate by phosphoglucoisomerase, 

transported to the endoplasmic reticulum where it is converted into glucose by the action of the 

membrane bound G6PC (De Duve et al., 1949; Hers et al., 1951; El-Maghrabi et al., 1995; Kuo et al., 

2015). This is the final GC regulated target known to regulate the gluconeogenic pathway. Its 

expression is increased after GC administration and decreased in response to insulin (Vander Kooi et 

al., 2005). Within mouse liver, GR regulation to three identified GREs (-197/-183; -180/-166; -156/-

142) appears to be dependent on the recruitment of multiple forkhead transcription factors (FoxO1, 

FoxO3A) as well as HNF3, HNF4α and CEBP within the GRU of the promoter region (Lin, Morris and 

Chou, 1998; Schmoll et al., 1999; Vander Kooi et al., 2005). Suggesting similar modes of regulation as 

previously described for PEPCK. Three GREs  have been identified. It should be noted that FoxO1 has 

been implicated as a necessary factor for full GC mediated transcriptional output of the genes 

mentioned. Interestingly, FoxO1 has also been shown to be important for insulin’s inhibitory effect as 

FoxO1 liver knockout mice were unable to respond to insulin (Vander Kooi et al., 2005; Onuma et al., 

2006; K. Zhang et al., 2012), thus highlighting its potential role within nuclear factor mediated action. 

Interestingly, G6PC is postulated to be part of a multicomponent enzyme which also includes the 

transporter protein SLC37A4, which is required for translocation of G6P from the cytoplasm to the 

endoplasmic reticulum (ER) for conversion by G6PC into glucose within hepatocytes (Narisawa et al., 

1978; Van Schaftingen and Gerin, 2002; Kuo et al., 2015). 

GCs also interact within glycogen pathways. Even though GC treatment has been reported to increase 

levels of glycogen within the liver, it has been shown that it also regulates the activity of glycogen 

synthase. This is mediated by the GC regulated expression of protein phosphatase 1. In the de-

phosphorylated state, glycogen synthase will liberate glucose from glycogen stores and therefore 

increase glucose levels (Kuo et al., 2015). 

1.2.8 Fatty acid, triglyceride and lipid regulation by GCs 

Fatty acids are mostly dietary in source and transported from the intestine to the liver in chylomicrons 

due to their lipophobic nature and release non-esterified fatty acids and carbohydrates via the action 

of lipoprotein lipase for downstream metabolism. A relatively small amount of cholesterol, however, 

can be synthesized by the liver (Linder et al., 1976; Hellerstein, 1999; Rui, 2014). Briefly, when 

carbohydrates are in abundance, the glycolytic pathway, metabolises glucose via hydrolyses into 

pyruvate and metabolised within hepatocyte mitochondria into actetyl coenzymeA (acetyl-CoA) (a 

product of pyruvate kinase action), converted to the intermediate malonyl-CoA by acetyl-CoA 

carboxylase (ACC) before conversion to fatty acids by fatty acid synthase (FASN) (Chakravarthy et al., 

2005; Rui, 2014).  
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The two major fat stores within the body are the liver and WAT. Within the liver, fatty acids are 

esterified with glycerol into triglycerides (TG). This is a more efficient method of storage as TGs contain 

twice as much energy per gram than glycerol or glucose (Hillgartner, Salati and Goodridge, 1995). 

Insulin action increases this ‘short term’ storage of TGs within the liver as they are commonly packaged 

within lipoproteins and transported to target tissues (predominantly WAT) around the body 

(Malmström et al., 1997; Gibbons et al., 2004). Non-esterified fatty acid, carbohydrates and glycerol 

are released into the target metabolic tissues via the hydrolytic action of lipoprotein lipase (LPL), 

whereupon fatty acids are metabolised or re-esterified for storage within the said tissue. As previously 

mentioned, WAT is considered to be the major fat depot of the body, however, significant amounts 

are stored in the liver and muscle (Hillgartner, Salati and Goodridge, 1995; Macfarlane, Forbes and 

Walker, 2008; de Guia, Rose and Herzig, 2014).   

A number of key enzymes within carbohydrate and lipid metabolism are under GC control (Gibbons 

et al., 2004; de Guia, Rose and Herzig, 2014). Within the liver, carbohydrates are metabolised into 

lipids for transport around the body within lipoproteins. This process has been shown to be under GC 

regulation as serum cholesterol in obese and control mice were reduced after hepatic specific GR 

knockouts, as well as increased TG accumulation in GR knockout hepatocytes in vivo. This has been 

linked to the GR repressive action on hairy enhancer split 1 (HES1) transcription due to the recruitment 

of HDACs to the promoter (Lemke et al., 2008; Revollo et al., 2013). HES1 is a cAMP inducible 

repressor, indirectly reducing levels of peroxisome proliferator-activated receptor γ (PPARγ) which has 

been shown to be a key inducer of lipogenic genes. Presumably, this action occurs within the liver for 

lipoprotein release (Herzig et al., 2003). There were slight increases in sterol regulatory element 

binding transcription factor 1 (SREBP-1)c, which has also been implicated within lipogenesis and TG 

synthesis. However, this finding was not statistically significant and this variant is involved in fatty acid 

synthesis as opposed to carbohydrate metabolism (Shimomura et al., 1998; Lemke et al., 2008).  

Dex induced increases in mRNA have been reported for the key hepatic de novo lipid synthesis 

enzymes ACC and FASN, the latter of which has been shown to be directly GR regulated (Soncini et al., 

1995; Xu, Viviano and Rooney, 1995; Lu, Gu and Rooney, 2001; Zhao et al., 2010; Gathercole et al., 

2011). Genome wide analysis of Dex treatments in 3T3-L1 cells identified promoter associated GR 

binding sites for lipid synthesis targets Stearoyl-CoA desaturase 1 & 2 (SCD1) (SCD2),  glycerol-3-

phosphate acyltransferase 3 & 4 (GPAT3) (GPAT4) and LPIN1, as well as the lipolytic factor lipase E and 

lipid transporters CD36, LDL receptor related protein 1, very low density lipoprotein (VLDL) receptor 

(VLDLR) and SLC27A2 that facilitate lipid transport. Dex induction of known insulin targets such as the 

dual specificity phosphatase 1, insulin induced gene 2  and lipocalin 2 (which are all implicated in 
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insulin resistance), indicated GC induced lipid synthesis and mobilisation (MacDougald et al., 1994; P. 

Zhang et al., 2008; Yu et al., 2010). It should be noted, however, that most studies have focused on 

adipocyte function and require further elucidation within hepatic pathways. 

Apolipoproteins are synthesized within the liver and have a range of functions which are integral to 

lipoprotein synthesis, transport and targeted metabolism (Brown and Goldstein, 1983; Werner, 

Kuipers and Verkade, 2013). In the fasted state, hepatic apolipoprotein synthesis and release into the 

circulation is increased, transporting TGs, carbohydrates and glycerol to target tissues. However, this 

process is attenuated by ADX within rodents (van der Sluis et al., 2012). Within the fasted state, the 

liver will increase synthesis and stability of APOB-100 for VLDL synthesis so as to transport TGs and 

carbohydrate stores to target tissues around the body. As this synthesis requires carbohydrate 

substrates, when stores are low, APOB-100 transcription is decreased. Due to the rapid degradation 

of APOB-100 within the endoplasmic reticulum, the rate of transcription is thought not to be a 

determinant with regard to VLDL synthesis. However, loss of function of APOB or the rate limiting 

microsomal triglyceride transfer protein (MTP) which mediates correct folding of APOB, can inhibit 

the production of VLDL and induce the presentation of the rare conditions familial 

hypobetalipoproteinemia or abetalipoproteinemia, increasing circulating TG and cholesterol levels 

(Feingold and Grunfeld, 2000; Tiwari and Siddiqi, 2012; Hooper, Burnett and Watts, 2015). Reduction 

in LDL receptors within the VLDL (of which APOB contains a similar region), reduces uptake by IDL and 

reduces the body’s capacity to clear VLDLs from the circulation into target tissues for metabolism 

(Feingold and Grunfeld, 2000). 

It has been proposed GCs can induce transcription of apolipoproteins required for assembly and 

recognition by tissues, however, direct evidence for this in hepatocytes has not been shown, as the 

majority of research has focussed on adipocyte lipid regulation. For example, apolipoprotein AI 

(APOAI) and -IV (APOIV) are major constituents of HDLs, some of which are proposed to be transferred 

from chylomicrons and VLDLs during TG transfer (Lagrost et al., 1989). Transcription of APOAI is 

dependent on the co-regulatory action of both promoter bound HNF4α and peroxisome proliferator-

activated receptor γ coactivator-1α, as is HNF3β for APOAIV transcription. No direct GR regulation of 

either apolipoprotein has been identified, although HNF3β binding to APOIV promoter region has 

been postulated to be dependent on GR tethering (Saladin et al., 1996; Taylor et al., 1996; Mooradian, 

Haas and Wong, 2004; Hanniman et al., 2006; Vegiopoulos and Herzig, 2007). As may be expected, 

there are tissue specific differences in regulation between liver and adipocytes. For example, APOE is 

mainly synthesised within the liver and macrophages and is critical to lipoprotein metabolism within 

the body (Mahley, 1988; Rosenson et al., 2012). However, a recent study of macrophages and 
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hepatocytes (in vitro and in vivo) found Dex-induced APOE transcription was increased in macrophages 

but not hepatocytes, despite a conserved promoter GR binding site identified in humans (-111/-104). 

The authors postulated phospholipase A2, phospho lipase C and mitogen activated kinase kinase 

(MEK) pathways mediated inhibition of GR transactivation in hepatocytes (Trusca et al., 2017). 

Therefore, elucidating liver specific regulation of apolipoproteins and lipoproteins from circulating 

levels may lead to false discovery. Lack of function clarity is further compounded by studies reporting 

contradictory data. For example, before TGs are packaged into lipoproteins, they undergo hydrolysis 

by enzymes such as triacylglycerol hydrolysis. However, Dex has been shown to reduce VLDL synthesis 

via a reduction in triacylglycerol hydrolysis mRNA levels within hepatocytes (Lehner and Verger, 1997; 

Dolinsky et al., 2004), whereas other studies have shown Dex increased VLDL production (Mangiapane 

and Brindley, 1986).  

GC regulation of hepatic carbohydrate, fatty acid, lipid synthesis and transport play major roles within 

homeostasis of tissues around the body. Understanding these mechanisms is highly complex as each 

study design must control for age, weight, diet and underlying pathology to elucidate mechanisms. 

Current knowledge of these pathways has been gleaned from adipocyte function studies and is not 

yet at a level to avoid conflicting reports. Therefore, considerably more hepatic focussed research is 

required to fully understand the GC role in Fatty acid, triglyceride and lipid regulation  (Vegiopoulos 

and Herzig, 2007; Werner, Kuipers and Verkade, 2013; de Guia, Rose and Herzig, 2014).  

1.3 Metabolism and dysregulation of glucocorticoid rhythms 

GCs have multi-systemic effects within mammalian systems and their dysregulation can precipitate 

harmful pathophysiological effects including cognitive and memory acquisition impairment, 

depression and osteoporosis. Due to their significant role within metabolic homeostasis, dysregulation 

can also severely impair glucose, lipid, carbohydrate, fatty acid and liver homeostatic control; all of 

which have been implicated in the ever-increasing prevalence of metabolic syndrome (MetS). MetS 

describes an array of phenotypes including visceral obesity, hyperglycaemia and hypertension, 

reduced high density lipoproteins (HDLs) and raised VLDL levels, atherogenic dyslipidaemia, non-

alcoholic fatty liver disease (NAFLD) (TG >55mg/g or 5.5% of liver), hepatic steatosis and type II 

diabetes and can be presented in combination but not all are required for diagnosis (Alberti et al., 

2005; Szczepaniak et al., 2005). MetS presents a significant health burden within western societies as 

the National Health and Nutrition Examination Survey has reported that 23% of the U.S. population 

have presented MetS criteria (Rochlani et al., 2017). This review will focus on how GC dysregulation 

has been associated with MetS phenotypes and could play a critical role in its development.  
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Cushing’s Disease and Addison’s patients represent the two extremes of GC dysregulation. Cushing’s 

disease is caused by hypercortisolism, 70% of which are due to pituitary adenoma overstimulating GC 

release from the adrenal glands (Nieman and Ilias, 2005). Patients present with a number of MetS 

pathology including visceral fat gain and obesity (32-41%), hypertension, impaired glucose tolerance, 

dyslipidaemia (32-41%) and type II diabetes (20-47%) (Nieman and Ilias, 2005; Stratakis, 2008; 

Feelders et al., 2012; Buliman et al., 2016). Conversely, Addison’s disease is characterised as 

hypocortisolism, and can be caused by autoimmune hypothyroidism and type I diabetes as well as 

other rare conditions. Patients present with the opposite symptomology to Cushing’s patients with 

MetS development, as they usually lose weight and suffer from fatigue, anhedonia, hypotension and 

hypoglycaemia (Chakera and Vaidya, 2010). Whilst both conditions are relatively rare and extreme, 

the metabolic phenotypes observed provide the ‘worst case scenario’ example of metabolic adverse 

effects associated with GC dysregulation and can therefore inform about how dysregulated GC levels 

affect metabolism and other functions.  

1.3.1 Dysregulation of the HPA axis and the molecular ‘clock’  

Commonly referred to as the ‘clock’ transcriptome, targets are expressed throughout mammalian 

central and peripheral tissues, highly interconnected and cyclically transcribed within positive and 

negative feedback loops and are centrally timed by circadian / ultradian hormonal release, such as 

GCs (Delaunay and Laudet, 2002; Panda et al., 2002; Staels, 2006; Scott, Carter and Grant, 2008). As 

up to 9% of transcripts within mouse liver have been shown to be under circadian control, the clock 

transcriptome represents a highly adaptable and important system (Akhtar et al., 2002). Common 

targets of investigation include transcription activators such as circadian locomotor output cycles 

kaput (CLOCK), brain and muscle ARNT-like 1 (BMAL1) as well as the inhibitors period circadian 

regulator (PER) 1,2 & 3, cryptochrome1, cyrptochrome2 and nuclear receptors REV-ERB and retinoic 

acid-receptor-related orphan receptors (ROR) (Kume et al., 1999). These targets participate in an 

oscillating system of core clock processes as CLOCK and BMAL1 (which bind as a heterodimer to 

promoter elements) induce transcription of PER1 and cryptochrome 1. However, increased levels of 

PER1 and cryptochrome 1 will negatively feedback and allosterically inhibit CLOCK and BMAL1 binding 

to DNA (Gekakis et al., 1998; Kume et al., 1999; Shearman et al., 2000; Reppert and Weaver, 2002; 

Jetten, 2009; Cho et al., 2012).  

GC transcriptional regulation for numerous clock targets have been described and importantly, 

glucose, lipids, carbohydrates, insulin and leptin all exhibit circadian variations in their expression. 

Therefore, GC dysregulation may mediate its adverse metabolic affects via dysregulation of peripheral 

clock pathways. Liver specific GR-knockout mice have a faster phase-reset under restricted feeding of 
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the liver clock than controls. This is potentially mediated by their regulation of Per1 and Per2 (Le Minh 

et al., 2001). GR has been shown to regulate PER1 transcription via two GREs ~2kb upstream of the 

TSS and within intron 1, whilst PER2 transcription can be induced by BMAL1 dependent GR binding to 

the proximal promoter region (Conway-Campbell et al., 2010; Reddy et al., 2012; Zani et al., 2013). In 

a recent study, it was shown the expression of the rate limiting mitochondrial enzymes required for 

carbohydrate and lipid metabolism accumulated in a diurnal pattern. This was blunted in mice lacking 

Per1 and Per2 as well as a high fat diet (HFD) (Neufeld-Cohen et al., 2016). Per2 knockouts have 

reduced fasting glycaemia as well as altered hepatic glycogen accumulation which is postulated to be 

due to a loss of Per2 direct and indirect induced transcription of glycogen synthase and protein 

phosphatase-1 (Zani et al., 2013).  

The clock transcriptome is highly complex, with a myriad of crosstalk pathways and internally 

dependent regulation, therefore, it is difficult to identify an individual cause of metabolic phenotypes. 

For example, CLOCK and REV-ERBα expression is currently understood to not be directly GR regulated, 

but REV-ERBα has been shown to reduce GR half-life and activity, potentially via HAT activity to the 

GR (Okabe et al., 2016). CLOCK has been implicated in glycogen metabolism via regulation of glycogen 

synthase 2 transcription, a rate limiting glycogenic enzyme and REV-ERBα has been shown to directly 

regulate the expression of gluconeogenic genes PCK and G6PC (Yin et al., 2006; Doi, Oishi and Ishida, 

2010). Loss of Clock and REV-ERBα function induces dramatic metabolic changes, developing obesity, 

hepatic steatosis, hyperglycaemia, hyperleptinemia, hyperlipidaemia, hypoinsulinemia, elevated VLDL 

and hypercholesteremia. Whereas Rorα knockouts present opposing phenotypes, lowering 

triglycerides and increasing glucose and apolipoprotein C levels in the blood, however, dysfunction of 

peripheral clocks may not be the only cause (Raspé et al., 2001, 2002; Turek et al., 2013; Kojetin and 

Burris, 2014). For example, it was recently shown the restricted feeding attenuated MetS pathology 

in Cry1:Cry2 and liver specific Rev-erbα/β or Bmal1 knockouts. Even though elements of the clock 

transcriptome would have been partially intact, the study suggests eating behaviours could be the 

major influence (Chaix et al., 2019). Therefore, GC dysregulation can drive perturbations in the 

oscillatory pattern of the peripheral clock transcriptome, but there are clearly numerous other factors 

that also contribute to the development of MetS. 

1.3.2 Feeding and the HPA axis 

A myriad of studies has focussed on the loss of synchrony between endogenous circadian patterns 

(such as GCs) and environmental cues (light/ dark periods), emulating irregular shift work, 

transmeridian travel and inconsistent sleep patterns and their implication for MetS development. For 

example, mice left in 20:4hr light:dark cycles significantly gained weight without increasing overall 
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food intake. This was also associated with increased circulating endocrine hormones leptin and insulin 

levels as well as aberrant cognitive ability which was associated with a loss in neuronal plasticity 

(Karatsoreos et al., 2011). These alteration in light:dark periodicity implicate the HPA axis, as even 

though it is a highly plastic system, adaptions to new light periods are possible, that within humans is 

thought to be roughly an hour a day per time zone crossed (Eastman et al., 2005; Bullock et al., 2007; 

Doane et al., 2010). The HPA axis is chiefly regulated by the photoperiod and not activity, therefore 

individuals with permanent night shift work do not alter diurnal photoperiod endogenous melatonin 

and cortisol profiles (Roden et al., 1993). Unsurprisingly, night shift workers have a 2-fold higher risk 

of developing type II diabetes, potentially as consequence of insulin resistant like phenotypes, raising 

both resting insulin and glucose levels as well as increased oxidized carbohydrates (Gan et al., 2015). 

Interestingly, these phenotypes were more notable within phase advance as opposed to phase delay 

conditions  (Roden et al., 1993; Scheer et al., 2009; Gonnissen et al., 2012; Gan et al., 2015; Koopman 

et al., 2017). Similar glucose and insulin insensitivity have been shown in adrenally suppressed 

patients. Bolus cortisol injections during the natural circadian nadir (17:00) induced significantly 

elevated post-prandial glucose and insulin levels, compared to those induced by cortisol injections 

during the natural circadian peak (05:00) (Plat et al., 1999). This finding indicates differences in insulin 

and glucose sensitivity dependent on the phase of circadian cortisol release and could be particularly 

pertinent to shift work.  

It should be noted that dysregulation of circadian rhythms also affects feeding behaviour which may 

further contribute to the development of MetS. For example, mice fed a HFD still retain some circadian 

pattern to their feeding schedule but they consume significantly more during the inactive period 

without increasing their overall intake (Kohsaka et al., 2007). Indeed, the circadian phase an 

organism’s calorific intake occurs could be very important. Restricting feeding to the inactive period 

has been shown to induce MetS pathology in mice without altering their activity or calorific intake as 

well as a loss in synchrony between the SCN (remained intrinsically timed to the photoperiod) and 

peripheral hepatic molecular clock mRNA levels of Bmal1, Cry1, Cry2, Per1, Per2, Rorα, Pparα, Pparγ 

and Rev-Erbα, as well as the metabolic targets Pepck, fatty acid binding protein 1 & 4 and fatty acid 

synthase. Physiologically, these mice developed hypoinsulinemia and raised TG and free fatty acids. 

As Pparα and Gsk3β are not expressed within the SCN, these targets were identified as key drivers in 

peripheral misalignment to the central clock, particularly as they are key targets within glucose and 

lipid metabolism. The adverse metabolic effects were reversed by restricting feeding to the active 

period and targeted inhibitors, which the authors theorise could have therapeutic implications for 

shift workers as these inhibitors are already used clinically for mood and anxiety disorders (Kohsaka 

et al., 2007; Mukherji et al., 2015). These studies indicate metabolic pathways are distinctly integrated 
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into circadian signalling mechanisms and dysregulation of meal timing relative to circadian cues may 

be an additionally important factor integrating with GC dysregulation of metabolism.  

1.3.3 Maladaptive stress and metabolism 

Both physiological and psychological stressors are primary modifiers of the HPA axis. As previously 

discussed, stress innervation of hypothalamic CRH neurons activates HPA axis release of ACTH, 

inducing production and secretion of GCs from the adrenal glands. The ultradian regulation of GC 

levels has implications for the stress response as stress related maximal corticosterone increases are 

blunted when the stressor is applied during the falling phase of a GC pulse, as was aggression to an 

unknown male during a self-initiated aggression behavioural task (J. Haller et al., 2000; Sarabdjitsingh 

et al., 2010). Stress also alters the ultradian interpulse period, indicating modification of endogenous 

GC pulse frequency (Windle, Wood, Lightman, et al., 1998). Similar perturbations have been recorded 

in clinically depressed patients who present with increased circulating ACTH and cortisol levels, often 

with a loss in circadian nadir (Deuschle et al., 1997). Association with the loss of ultradian function has 

been shown via the blunted response of the HPA axis to secrete ACTH when corticosterone was 

infused into the circulation constantly as opposed to a hourly pulsatile model (Sarabdjitsingh et al., 

2010; Lightman, 2016; Oster et al., 2016).  

Stress induced GC release is a natural response that has been postulated to mobilise energy stores 

from WAT, skeletal muscle and liver. Raising blood glucose levels to provide energy to tissues such as 

the brain in classic fight or flight responses (Kuo et al., 2015). Under chronic situations, however, these 

changes can become maladaptive and have been associated with the development of MetS pathology. 

For example, the likelihood of developing MetS in workers who experience chronic stress (defined as 

three or more self-determined stressful events a week) were quoted as twice as likely including type 

II diabetes (Chandola, Brunner and Marmot, 2006; Rod et al., 2009; Edwards et al., 2012). Elevated 

cortisol levels have been associated with increased weight gain, elevated TGs and fasting glucose 

levels, and lowered HDL levels in stressed obese individuals when compared to non-stressed obese 

individuals (Vicennati et al., 2009; Bergmann, Gyntelberg and Faber, 2014; Garbarino and Magnavita, 

2015; Ryu et al., 2016). It must be noted that these studies are highly variable as controlling for dietary, 

circadian activity patterns and general lifestyles are difficult. Increased appetite behaviour in response 

to stress and GCs has also been reported due to the increased expression of orexigenic genes such as 

neuropeptide Y (White et al., 1994) 
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1.3.4 Clinical corticosteroids 

As previously mentioned, the discovery of cortisone and its anti-inflammatory affects in rheumatoid 

arthritic patients in the 1940s garnered huge interest and research (Hench and Kendall, 1949). Soon 

after, the ability to synthetically produce steroids in large amounts became a rapid and lucrative 

avenue of research and clinical treatment. Dehydration of the A ring at the 1, 2, position of cortisone 

or corticosterone, produced prednisone (cortisone derivative) and prednisolone (corticosterone 

derivative) with increased anti-inflammatory properties and the claim of reduced adverse side-effects. 

Dex was also created by combining 16α-methylation, 9α-fluorination and 1-dehydrogenation to 

become the most potent anti-inflammatory of its time (Arth et al., 1958; Hillier, 2007). The desired 

properties of synthetic glucocorticoids (sGCs) included greater anti-inflammatory action and longer 

half-lives compared to their endogenous counterparts and before long became the most commonly 

used anti-inflammatory and immunosuppressive drugs for rheumatic and other inflammatory 

conditions (Stahn et al., 2007). Their clinical use has become so prolific that pre 2007, in the United 

States 44.3 million prescriptions were made annually and in the UK, 0.85% of patients >18 years of 

age were prescribed oral sGCs (0.75% for long time use ≥3 months) over a 20 year period from 1989 

(Fardet, Petersen and Nazareth, 2011; Judd et al., 2014).  

Due to their structural similarity to adrenal corticosteroids, sGCs will act as ligand for the GR, however, 

data on ligand half-life’s and efficacy are varied and limited. Methylprednisolone circulation has been 

measured to just over two hours in separate 5 and 8 healthy male cohorts, whilst Dex plasma half-life 

at just over 3hrs (Al-Habet and Rogers, 1989; Uhl et al., 2002; Nicolaides et al., 2018). An in vitro study 

has shown that Dex treatment can induce GR activation up to 12 hours in AtT20 cells and in the rat 

pituitary in vivo and up to 6hrs in brain regions such as the hippocampus, perirhinal cortex and 

amygdala (Earl et al., 2017). The reduced activation in brain compared to the periphery is known to 

be due to Dex extrusion from the brain by the multiple drug resistant P-glycoprotein (Cordon-Cardo 

et al., 1989; Meijer et al., 1998; Karssen et al., 2001, 2005). 

To investigate the effect of sGCs on GR to DNA binding, GR occupancy at the MMTV array within 3617 

cells was used in response to 15min exposure and washout to a range of sGCs and the endogenous 

counterparts cortisol and corticosterone. Acute GR occupancy was similar for all corticosteroids 

assessed at 15min incubation, but only hydrocortisone, cortisol and corticosterone induced GR 

occupancy in a transient manner as GR was rapidly lost after hormonal washout. In contrast, the longer 

half-life engineered sGCs tested induced maximal prolonged GR binding at the MMTV array 

throughout the wash out period. This experiment was expanded upon using 20min corticosterone or 

Dex applications followed by 40min washouts repeated over multiple phases. As before, GR was 
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bound in response to 20min incubation, but only lost in the corticosterone induced data set, whereas 

Dex induced GR binding in a maximally prolonged manner throughout the wash period. This was 

repeatedly observed over the experimental timecourse, in addition to changes in RNA PolI2 

transcriptional recruitment and DNase hypersensitivity. Together, these data indicate GR binding in 

response to sGCs can be prolonged to the endogenous corticosterone counterpart and consequently 

dysregulate postulated ultradian / circadian cyclical gene induction (Stavreva et al., 2009, 2015).  

As sGCs can regulate GC responsive targets, loss of circadian / ultradian regulation of GC tissues could 

have significant effects. Long term administration of a variety of sGCs have been linked to osteoporosis 

as well as cognitive, memory, learning deficits and depression (Varney, Alexander and MacIndoe, 

1984; Wolkowitz, 1994; Manelli and Giustina, 2000; Blalock et al., 2005). Notably for my work, GCs are 

a principle mediator of metabolic homeostasis, therefore sGCs can induce major adverse side-effects 

on glucose, fatty acid, lipid and carbohydrate metabolism. Hyperglycaemia is a common side-effect of 

chronic corticosteroid treatment, most likely due to insulin insensitivity. For example, sGC treatment 

has been shown to primarily precipitate the development of type 2 diabetes in a cohort of patients 

with no apparent underlying risk such as family history or obesity (Simmons et al., 2012).  

Data on metabolic side effects is highly variable due to differing pharmacological properties of 

different sGCs, dose, prescription length and underlying pathophysiological condition. For example, 

high dose prednisolone (30mg) treatment has been shown to be associated with the appearance of 

insulin resistance urinary markers within 2 days of treatment. A slightly reduced dose of 15mg was 

associated with the appearance of the same markers by day 16 of treatment (Ellero-Simatos et al., 

2012). Similar effects have been reported with doses of 7.5mg, which is also a commonly prescribed 

dose (van Raalte et al., 2011). 
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Glucocorticoid 
Equivalent 

dose (mg) 
Potency 

HPA 

suppression 

Plasma half-life 

(min) 

Short-acting 

Cortisol 20.0 1 1.0 90 

Cortisone 25.0 0.8  80-118 

Intermediate-acting 

Prednisone 5.0 4.0 4.0 60 

Prednisolone 5.0 5.0  115-200 

Triamcinolone 4.0 5.0 4.0 30 

Methylprednisolone 4.0 5.0 4.0 180 

Long-acting 

Dexamethasone 0.75 30 17 200 

Betamethasone 0.6 25-40   300 
 

Table 1 Relative dose, potency, HPA suppression and plasma half-life of a selection of endogenous 

and synthetic glucocorticoids. 

Table adapted from Nicolaides et al., 2018 and based from Chrousos, 2005; Stewart and Newell-Price, 

2016. 

Daily oral Dex treatment over 5 days for paediatric acute lymphoblastic leukaemia, induced raised 

fasting HDL, LDL, cholesterol, TG, glucose and insulin levels. Glucose was also found to be raised 

between treatments, even after Dex should have been metabolised and cleared from the patients’ 

systems. Authors used a homeostasis model assessment of insulin resistance and observed increases 

from 8% to 85% post Dex treatment (‘Global IDF/ISPAD Guideline for diabetes in childhood’, 2011; 

Warris et al., 2016). This could be due to inhibition of insulin binding of its complementary receptor 

which has been observed to be dose dependent, as well as oxidative and non-oxidative glucose 

disposal (Olefsky et al., 1975; Tappy et al., 1994; van Raalte et al., 2011; Petersons et al., 2013; Pasieka 

et al., 2016). There are also indications that Dex could directly regulate adipocyte growth. Dex induced 

reporter gene activity and transcription of VLDLR in adipocyte 3T3-L1 cells via indirect GR regulation. 

Alterations in transcription could have distinct metabolic affects as increased VLDL expression has 

been shown to induce differentiation in adipocyte like cells, and VLDL receptor deficient mice have 

less adipocyte tissue (Ensler et al., 2002).  

There is also evidence of ligand specific GR regulation. A recent study in the 3617 MMTV array  

containing cell line reported a greater proportion of repressed genes with Dex treatment than with 
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corticosterone treatment (Stavreva et al., 2015). Specific ligand dependent effects on transcription 

and co-regulator recruitment have also been described for the GC regulated targets GILZ, SLC19A2 

and thrombomodulin within A549 cells (Monczor et al., 2019). This data highlights the potential 

importance of considering which GC ligand is used in experiments for molecular research, especially 

those related to dynamic GR mediated action, but even more importantly the clinical implications for 

GC replacement therapy. 

1.4 Next generation sequencing technology 

1.4.1 Chromatin immunoprecipitation assay next generation sequencing analysis 

The ability to identify multiple transcription factor interactions across the genome as well as de novo 

sites represents a highly powerful tool within molecular research and has been available since the turn 

of the century via utilisation of chromatin immunoprecipitation (ChIP) assays followed by DNA 

hybridization to a microarray (ChIP-ChIP). However, high density tiling arrays are costly, have a low 

resolution of local enrichment due to a high minimal fragment size (200b) and are limited by 

microarray probe capacity (Ren et al., 2000; Iyer et al., 2001).  

The next breakthrough in genome mapping came in the form of next generation sequencing (Seq) in 

2007 (Johnson et al., 2007; Robertson et al., 2007). Isolated genomic fragments are amplified, aligned 

to a reference genome and resulting tag profiles computationally modelled into areas of enrichment, 

the peaks of which associated with protein to DNA points of interaction and height relative to the 

degree of enrichment. Seq is not restricted by the probe capacity as in ChIP-ChIP but able to process 

hundreds of millions of fragments in a single run and load smaller DNA concentrations (10-100 ng 

compared to 2 µg for ChIP-ChIP) and fragment size (~35 b) (Harris et al., 2008). Thus, enhancing spatial 

resolution of localised protein targets, as is particularly important whilst profiling histone variants, 

post-translational modification of chromatin, lineage determinant factors and nucleosome 

positioning (Yuan et al., 2005; Bernstein et al., 2006; Barski et al., 2007; ENCODE Project Consortium, 

2007; Lee et al., 2007; Mikkelsen et al., 2007). For these reasons Seq of ChIP’d DNA has been applied 

to a wide range of transcription factors, histone modifiers and chromatin remodelling complexes in a 

variety of tissues and organisms (Johnson et al., 2007; Mikkelsen et al., 2007; Visel et al., 2009). 
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Figure 1.11 Schematic of next generation sequencing methodology. 

Genomic DNA is fragmented, sequences bound to proteins of interest are targeted by antibodies and 

isolated by ChIP assay. Fragments are amplified, 5’ end sequenced and aligned to a reference genome 

and localised tag densities genome wide are computationally analysed to a single peak of enrichments 

via modelling of forward and reverse fragment densities. Peak zenith denotes localised protein-DNA 

interaction within a normally binomial distribution of tags. Figure adapted from Park, 2009.  
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Seq produces large data sets requiring powerful analytical packages to identify significant enrichment 

regions across the genome. A range of algorithms have been written to identify enriched regions 

within Seq data. General algorithms include F-Seq  and Hotspot (the only algorithms specifically 

designed to analyse DNase I footprinting data), ZINBA (general peak caller), MACS2 (a model based 

ChIP-Seq analysis approach) and HOMER (Boyle et al., 2008; Y. Zhang et al., 2008; Park, 2009; Rashid 

et al., 2011; Baek, Sung and Hager, 2012; Feng et al., 2012; Yang et al., 2014; Heinz et al., 2015).  

Briefly, F-Seq measures parametric sequence tag density via implementation and estimated localised 

tag sequence centre in a smooth Gaussian kernel density estimation (Boyle et al., 2008). This 

proposedly overcomes histogram bin-boundary interference and introduction of error. This technique 

is noted for long run time during statistical testing (W. Zhang et al., 2012). 

Hotspot identifies regions of enrichment above background and will adjust significance based upon a 

false discovery rate measured from randomly selected Seq sequences. Therefore, Hotspot is regarded 

as the only program to apply statistical significance to DNase I hypersensitive site (DHS) peaks 

(Madrigal and Krajewski, 2012). Hotspot has been widely used by the ENCODE consortium and the 

latest version implements a “second pass” detection to select relatively small enrichment masked 

signal bias by areas of enrichment from other localised targets (Baek, Sung and Hager, 2012). 

ZINBA identifies genomic regions as background, enriched or zero-inflated using a mixture of 

regression models without the need for input control. Detected enriched regions within a defined 

distance are applied to a shape-detection algorithm for sharp signal discovery within broad regions of 

enrichment. The analysis can also be modified to take into account modelled covariate information 

(C/G content etc.) to improve low signal-to-noise ratio or complex analysis (Rashid et al., 2011). 

HOMER (Hypergeometric Optimization of Motif EnRichment) is a suite of tools designed for de novo 

and known motif discovery, however, a ChIP-Seq enrichment analysis tool is also included. findPeaks 

identifies enriched clusters of Seq tags across the genome, filtering significant clusters by estimation 

of a tag threshold according to a Poisson distribution and estimated false discovery rate (FDR). Clusters 

are then identified as significant based on local and clonal signals within the Seq data as well as fold 

change to input or IgG control Seq data (Heinz et al., 2010). 

MACS empirically models shift size enrichment of sequence reads compared to a background using a 

poisson distribution model (Pepke, Wold and Mortazavi, 2009; Kim et al., 2011; Rye, Sætrom and 

Drabløs, 2011). 
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Koohy, H. et al. reported Hotspot and MACS to be comparatively successful in identifying regions of 

DHS in DNase-Seq paradigm experimental results but F-seq peak sensitivity was greatest and ZINBA 

scored the lowest (Koohy et al., 2014).   

1.4.2 Motif discovery 

Genomic DNA contains short (5 to 20b) biologically significant repeated sequences termed DNA 

motifs. Transcription factors such as GR bind to GREs within promoter and enhancer sequences of 

associated targets regulating transcription, and these GREs often have well characterised DNA motifs. 

Therefore identification of these specific motifs in the ChIP-Seq dataset can provide integral 

information about binding regulation in a genomic landscape (Rombauts et al., 1999; Das et al., 2007). 

Motif analysis detects over represented and conserved motifs from orthologous sequences as a 

representation of the most likely transcription factor interacting candidates (Das et al., 2007). There 

are two main types of motif analysis. A word-based (string-based) algorithm enumerates and 

compares oligonucleotide frequencies, restricting analysis to detect identical short motifs and is used 

almost exclusively for eukaryotic genomic and optimised data structures (van Helden, André and 

Collado-Vides, 1998; Sagot, 2009). As transcription factor motif sequences often have longer, weakly 

constrained positions, these parameters restrict its ability to be applied to prokaryotic genomes and 

motifs of relatively low fidelity (Vilo et al., 2000). In these instances, a probabilistic sequence model is 

preferred. Model estimations use a maximum-likelihood principle or Bayesian inference, presenting 

data in a position weight matrix, where by letter height within a stack of predicted bases is 

proportional to the occurrence within over represented regions (Hertz, Hartzell and Stormo, 1990). 

This technique can be particularly sensitive detecting small changes and naturally biologically variable 

data (Bucher, 1990). 

1.5 Research question 

Classically, GR interactions are studied within, ‘promoter’ regions in close proximity to the TSS of 

regulated genes. Long distance interactions via looping and the functionality of TAD domains, 

however, are becomingly increasingly recognised for their fundamental biological role, particularly as 

functional circadian regulated TAD domains have been identified within the mouse liver (Aguilar-Arnal 

et al., 2013; Zhao et al., 2015; Kim et al., 2018).  

These interactions are further complicated by synergistic, GR dependent transcriptional regulation 

which was first identified for the gene TAT and have continued to be documented (Jantzen et al., 

1987). Additionally, GR interactions with STAT3, STAT5 and NFκB have been shown to be either 

transactivatory or transinhibitory; potentially decided by which factor is directly interacting with the 
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regulatory element within a tethered model of transcriptional control (Stoecklin et al., 1997; Zhang et 

al., 1997; Aittomäki et al., 2000; Engblom et al., 2007; Langlais et al., 2012). Highlighting the 

importance of de novo identification of GR binding events as well as sequence analysis to identify 

potential co-regulator response elements. 

As cells have multiple intrinsic post-transcriptional mechanisms regulating mRNA and protein 

production and degradation, as well as the time required for maturity of nascent RNA and translation 

of proteins, analysis of RNA and protein levels can mislead identification of directly regulated genes.  

To avoid false negative or false positive results from non-transcription dependent regulation, analysis 

of both GR binding and RNA Pol2 activity at the level of the genome is paramount to observe direct 

and indirect transcription factor mediated effects. Therefore, ChIP-ChIP, RT-qPCR and RNA-Seq 

analysis is not optimal for this investigative paradigm. Currently, the degree of sensitivity required to 

address and expand basic understanding of direct transcriptional regulation on a genomic scale is only 

achievable via ChIP-Seq methods. 

This has relevance for ultradian dynamics, as oscillations in circulating GCs can range from hourly 

within the rat to every three hours in the human (Follenius et al., 1987; Veldhuis et al., 1989; Jasper 

and Engeland, 1991). As these dynamics are so well conserved across mammalian species, it can be 

postulated oscillations mediate distinct and important regulatory function (Holaday, Martinez and 

Natelson, 1977; Benton and Yates, 1990; Engler et al., 1990; Carnes et al., 1992; Loudon et al., 1994; 

Cudd et al., 1995; Windle, Wood, Shanks, et al., 1998; Russell et al., 2010). Particularly as evidence has 

been published that maximal stress induced circulating corticosterone levels, as well as aggression, 

can be altered dependent on the phase of the GC pulse the stressor is applied (J Haller et al., 2000; J. 

Haller et al., 2000; Sarabdjitsingh et al., 2010). It can be postulated, the advantages of an oscillating 

system is the ability to carry more information for cellular signalling mechanisms than a static profile 

(Walker, Terry and Lightman, 2010; Walker et al., 2012; Lightman, 2016; Oster et al., 2016). 

23% of the united states population were quoted as presenting MetS phenotypes, however, most 

research highlighting the implications of dysregulated GC rhythms for both cognitive and physiological 

aberrant metabolic function have focussed on circadian dysregulation. Cushings syndrome as well as 

chronic stress have been shown to induce raised circulating GC profiles, which effectively dysregulate  

both circadian and ultradian oscillatory profiles (Deuschle et al., 1997; Nieman and Ilias, 2005; Newell-

Price et al., 2006). Despite the fact sGCs are mostly prescribed in a manner that best fits current 

understanding of endogenous hormone rhythms, patients still over-represent metabolic dysfunction, 

such as diabetes, compared to other medications (Varney, Alexander and MacIndoe, 1984; Wolkowitz, 
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1994; Filipsson et al., 2006; Simmons et al., 2012). Therefore, could abolition of ultradian GC 

oscillations induce these phenotypes, either directly or in a combination with other factors?  

Currently, investigation of GR binding dynamics as well as RNA Pol2 activity has only been observed 

on a genome-wide scale in immortalised cell lines. Additionally, many studies use sGCs as ligand for 

GR, despite evidence of ligand dependent effects on transcription (Conway-Campbell et al., 2007; 

Stavreva et al., 2009, 2015; Monczor et al., 2019). Therefore, investigation of corticosterone induced 

regulation in response to circulating ultradian oscillating levels and the potential repercussions of 

dysregulation, have distinct and important implications that could be fundamentally important to 

future circadian research as well as clinical intervention. 

1.6 Hypothesis 

The ultradian rhythm of the circulating glucocorticoid hormone corticosterone is integral to 

homeostatic processes, and controls regulation of target gene transcription. We hypothesise that 

disruption of the pulsatile corticosterone profile will result in dysregulation of GR binding and 

downstream transcriptional processes involved in regulating key metabolic target genes relevant to 

metabolic pathology.   

1.7 Aims 

1) Confirm cell culture evidence of differential regulation of GR binding in the liver during a 

pulsatile and constant corticosterone treatment, with an in vivo rodent model.  

2) Characterise genome wide GR binding patterns and RNA polymerase II activity during pulsatile 

corticosterone infusion compared to a constant delivery.  

3) Identify key differentially regulated metabolic gene targets involved in known metabolic 

syndrome. 

4) Develop a chronic infusion model to investigate if the ultradian pulses of corticosterone that 

underlie the circadian profile alter metabolic responses.  
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Chapter 2 General methods 

2.1 Surgery and husbandry 

Adult male Sprague-Dawley rats (250-300g) (Harlan, Bicester, UK) were individually caged in 

soundproof rooms under standard conditions in 14:10 light/dark cycle (lights on at 05:00hr) with 

standard chow and water available ad libitum. All procedures were carried out in accordance with the 

UK Home Office animal welfare regulations. 

Rats were anaesthetised with a combination of Isoflurane (100% w/w liquid vapour (Merial, UK)) and 

medical air during bilateral ADX, jugular vein or/ and carotid artery cannulation. The cannula (Smith 

Medicals, UK) was exteriorised via craniotomy or a vascular access button and attached to a spring 

and swivel system in individual cages (Figure 2.1). 1mg of Carprofen (Rimadyl, Pfizer, UK) was 

administered post-operatively for pain relief. 25µg Dex (Sigma, UK) and 2.5ml of glucose (5%)/ saline 

(0.9%) injected subcutaneously. Up to 5 days of post-surgical recovery was allocated, during which 

time 0.9% saline drinking water supplemented with 0.15 µg/L of corticosterone (Sigma, UK) was 

provided ad libitum to provide isotonic salt levels and maintenance of HPA axis homeostasis. 16 hours 

prior to experiment, corticosterone saline drinking water was replaced with saline drinking water to 

allow an adequate corticosterone washout period prior to the experiment. In some cases, telemetry 

probes were surgically implanted into the intraparietal space and secured via stitches to the intra-

abdominal epidermal layer in intact or ADX rats. Movement and body temperature were recorded via 

transmitter/ radio receivers (PTD 4000 E-mitter, Starr Life Sciences Corp) placed under the rodent’s 

cage and metal dividers between cages to reduce interference. 

Implanted cannula would be ‘flushed’ daily via withdrawal of blood through the cannula to remove 

any clots that may have formed and replaced with fresh heparanised saline (1:100) to maintain 

patency. 

2.2 Automated blood sampling 

Total corticosterone blood serum samples were taken via an in-house automated blood sampling 

(ABS) system (Figure 2.1). Briefly, blood is withdrawn via the action of the bi-directional pump from 

the indwelling cannula towards the pump. Once the required volume has been withdrawn, the pump 

changes direction and the valve switch system changes the flow direction towards the ABS fraction 

head for collection. Once the desired volume of blood/ heparinised saline has been collected, the 

valve/ switch system changes the flow direction back towards the rat. Delivering sterile heparinised 

saline back into the rat, replacing withdrawn blood volume and maintaining cannula patency. Within 

this study, 40 µl blood samples were collected every 10 min in 160 µl Heparin: Saline solution (1:100).  
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Figure 2.1. Schematic of programmable pump and automated blood sampling system.  

Rats implanted with intravenous cannulae, exteriorised either via craniotomy, protected by dental 

cement “head cap” or a vascular access “button” over the shoulders. Cannulae were protected by 

spring and attached to a swivel allowing free movement. Programmable pump settings were pre-set 

to infuse corticosterone solution (blue) at the desired time and rate via intravenous cannula. ABS 

system withdraws blood (red) from the intravenous cannula through the swivel and valve/ switch 

system powered by a reversible pump. Once the required volume has been withdrawn, the pump is 

reversed, and the valves direct the flow to infuse the same volume of heparised saline solution (black) 

back through the intravenous cannula. The swivel has been designed to incorporate both 

programmable pump and ABS via two intravenous cannulae if required. Arrows denote direction of 

travel. Rat was kindly animated by Mr. Martin Flynn. 

2.3 Infusion Profiles 

To produce in vivo ‘mock’ ultradian pulses (referred to as pulsatile infusion) a programmable pump 

(PHD Ultra Syringe Pump, Harvard Apparatus, USA) was used to infuse corticosterone solution 

(solubilised 2-hydroxypropyl-β-cyclodextrin (HBC) complex carrier (Sigma, UK) in 0.9% saline solution) 

through the jugular vein at a dose of 3.84 µM. Each pulsatile period began with a 20 min infusion at a 

rate of 1 ml per hour and paused for 40 min and repeated hourly for 3hrs (Figure 2.2). A sustained 

corticosterone-HBC saline solution (referred to as constant infusion) was infused at a reduced rate of 

0.33 ml per hour to match pulsatile corticosterone dose delivered per hour. The constant 

corticosterone infusion was modified to include an initial increased rate of 1 ml per hour for 10 min 

before returning to 0.33 ml per hour for the duration of the experiment to ensure no gaps within 

infusion solution had appeared since charging of cannula and infusion lines. Matched dose was 

confirmed by area under the curve analysis for both profiles (Figure 2.2).  
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Figure 2.2 Schematic and circulating total blood serum corticosterone levels after pulsatile and 

constant corticosterone infusions within freely roaming rats. 

(A) Pulsatile corticosterone (3.84 µM dose) was infused for 20 min at a rate of 1 ml per hour and 

paused for 40 min to generate the pulse peak and nadir (blue). A constant infusion of corticosterone 

was dose matched via reduction of the infusion rate to 0.33ml/hr over 60min (red). The constant 

infusion profile included an increased infusion rate between 0-10min at 1ml/hr before returning to 

0.33ml/hr for the duration of the experiment. Both patterns were repeated for three hours. (B) To 

confirm infusion model, 10min blood samples from the carotid artery were collected via the ABS over 

the three-hour corticosterone infusion period. Pulsatile corticosterone infusion total blood serum 

levels peak at 20, 80 and 140min (374ng/ml ±83), corresponding with the end of hourly 20min 

corticosterone infusions. corticosterone levels reduced to 68ng/ml ±20 within 40min of each pump 

cessation. The preliminary increased constant corticosterone infusion rate promotes maximal 

corticosterone levels at 10min (353ng/ml ±42) before reducing and flattening to 201ng/ml ±51 over a 

60-120min period. Between 140-180min corticosterone levels appear to fluctuate between 180-

240ng/ml. In response to a pulsatile corticosterone infusion, corticosterone levels were 387ng ±34 and 

64ng/ml ±5 at 140min and 180min. Whilst constant infusion induced circulating corticosterone levels 
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of 261ng/ml ±51 and 194ng/ml ±13. (C) Area under the curve analysis confirmed no difference in 

circulating total corticosterone between pulsatile and constant corticosterone infusions over the 

experimental period. Total blood serum corticosterone levels were measured by RIA trunk blood 

samples. Pulsatile AUC mean= 39,087(ng/ml) x min ±1,025 s.e.m. and constant AUC mean= 

38969(ng/ml) x min ±1,007 s.e.m..  

A pulsatile HBC complex dissolved in saline solution was used as matched vehicle control infusion 

(VEH) where indicated. Euthanasia time points corresponded to the third corticosterone pulse zenith 

and nadir at 140min and 180min infused timepoints respectively. Trunk blood samples were collected 

for each rat at the point of euthanasia with 40 µl of 0.5M ethylenediaminetetraacetic acid (EDTA) and 

total blood serum corticosterone levels assessed by radioimmunoassay (RIA). 

2.4 Tissue Collection 

Liver was dissected and 0.4g was fixed in 1% (v/v) formaldehyde (Sigma, UK), phosphate buffered 

saline (PBS) (1.37 M NaCl, 2.68 mM KCl, 10.14 mM Na2HPO4, pH 7.4) solution for 10 min at room 

temperature (RT). Formaldehyde cross-linking was quenched with addition of Glycine (final conc. 125 

mM) for 5 min and washed three times in ice cold PBS supplemented with 2 mM NaF, 0.2 mM Na 

Orthovanadate and 1X Complete protease inhibitor (Roche Diagnostics). Fixed liver was stored at -

80°C in 0.2g samples in 500 µl of S1 Buffer (10 mM HEPES, pH 7.9, 10 mM KCl, 15 mM MgCl2, 0.1 mM 

(EDTA), pH 8) supplemented with 0.5 mM Dithiothreitol and 2 mM NaF, 0.2 mM Na Orthovanadate 

and Complete protease inhibitor.  

2.5 Corticosterone radioimmunoassay (RIA) 

Plasma was separated from whole blood by centrifugation at 4000 rpm, 4°C. Samples were diluted 1 

in 50 with citrate buffer, processed in triplicate and incubated overnight in 50 µl of 125I corticosterone 

tracer (Oxford BioInnovation DSL Ltd, Oxford, UK) and 50 µl of rabbit anti-rat corticosterone antibody 

(kindly donated by G. Makara, Hungary). Free/bound separation was performed using charcoal 

dextran precipitation, centrifuged at 4000 rpm, 4°C and the solution aspirated before the 125I 

corticosterone tracer in the resulting pellets was read using a gamma counter (Wizard-2470, Perkin 

Elmer, MA) (Atkinson et al., 2006; Waite et al., 2012). Concentrations of corticosterone in each plasma 

sample were interpolated from a standard curve. Intra- and inter-assay coefficient of variation of this 

in house corticosterone assay have been established as 16.65% and 13.30%, respectively (Conway-

Campbell et al., 2007). 
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2.6 Chromatin Fragmentation 

Samples were thawed slowly on ice and adjusted to a final volume of 1ml/sample with supplemented 

S1 buffer, then homogenised on ice using a Dounce homogeniser.  The resulting lysate was centrifuged 

at 4000 rpm at 4°C to collect a crude nuclear pellet, which was then lysed in sodium dodecyl sulphate 

(SDS) lysis buffer (2% SDS, 10 mM EDTA, 50 mM Tris-HCl (pH8.1) supplemented with NaF and Na 

orthovanadate and 1X Complete Protease Inhibitor). Chromatin was sonicated using a Branson 

Sonifier 450 (Branson Ultrasonics, Danbury, CT, USA) to 300-500 bp fragments with multiple 10-sec 

bursts at 10% output and centrifuged at 13,000 rpm at 4°C to remove cellular debris from the 

chromatin suspension. Sheared chromatin was stored at -80°C.  

2.7 ChIP assay 

ChIP buffers were prepared in house, as described in the EZ ChIP kit protocol (Upstate Biotechnology, 

Lake Placid, NY, USA) with some modifications for use with animal tissue (as described where 

relevant). Sheared chromatin was removed from -80°C storage and thawed slowly on ice, diluted to 

desired input concentration in a final volume of 100 µl of SDS lysis buffer, then made up to a final 

volume of 1 ml with ChIP dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-

HCl pH8.1, 167 mM NaCl). For the ChIP assay, each input consisted of 50µg of sheared chromatin and 

individual inputs from each sample were immunoprecipitated against either a GR cocktail (2µg of PA1-

510A, 4µl of PA1511A (Thermo Fisher, USA)) (4µg of M-20X sc-1004X (Santa Cruz, USA)) or the serine 

2 phosphorylated RNA Pol2 complex (pSer2 Pol2) (2µl ab5095 (Abcam, UK)). Rabbit IgG antibodies 

were used as negative control (2µg of sc-2027 (Santa Cruz, USA)). All antibodies were incubated 

overnight at 4°C overnight then incubated with protein A Dynabeads for 4 hours (Sigma-Aldrich, UK). 

To reduce non-specific binding, the DNA-Antibody-Dynabead slurries were sequentially washed with 

150 mM salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH8.1), 500 mM salt 

buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA, 20 mM Tris-HCl pH8.1), LiCl buffer (0.25 M LiCl, 1% 

IGEPAL-CA630, 1% deoxycholic acid sodium salt, 1 mM EDTA, 10 mM Tris-HCl pH8.1) and twice in TE 

buffer (10 mM Tris-HCl, 1 mM EDTA) (pH 8.0). Complexes were eluted from the Dynabeads in 1% SDS 

100 mM NaHCO3. NaCl was added (300mM final concentration) and crosslinks reversed overnight at 

65°C in. RNA was removed using RNase treatment (Roche Diagnostics), then protein was digested 

using proteinase K (Ambion, Huntington, UK) after adjusting each solution with EDTA (1 mM final) and 

Tris-HCl (4 mM final). DNA was then extracted using 25:24:1 phenol-chloroform-isoamyl alcohol 

(Sigma, UK) followed by 24:1 chloroform-isoamyl alcohol (Sigma, UK). DNA in the aqueous phase was 

then precipitated overnight at -20°C with the addition of 2.5 VOL 100% ethanol and 20 µg glycogen 

(Sigma-Aldrich, UK) before the resulting ChIP DNA was pelleted by centrifugation at 13,000 rpm, 4°C 
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and washed in 70% Ethanol (13,000 rpm, 4°C), then air dried and suspended in 40 µl nuclease free 

water (Ambion, Huntington, UK). 

2.8 Quantitative Real- Time Polymerase Chain Reaction (RT-qPCR) 

Quantitative real-time polymerase chain reaction (RT-qPCR) was used to analyse relative quantities of 

immunoprecipitated DNA in each ChIP sample at specific sites in and near target genes of interest 

(Table 1). Primers were designed using the NCBI Primer Design Tool 

(www.ncbi.nlm.nih.gov/tools/primer-blast/) to selected target regions, as indicated in Table 2. Each 

reaction was performed in a final volume of 25 µl, with 0.5 µl of template DNA, forward and reverse 

primers (0.3 mM final concentration) and Fast SYBR Green (Applied Biosystems, Life Technologies, UK) 

reaction buffer depending on individual assay requirements. Assays were performed on a 

StepOnePlusTM PCR machine (Applied Biosystems, Life Technologies, UK) using 0.1 ml fast optical 96-

well reaction plates (Applied Biosystems, Life Technologies, UK). 

Gene of interest Forward primer sequence Reverse primer sequence 

rn6 Per1 (Intron 16) CCCGGGTCTTCCTCTGGGCA CCTGTCCAACGGCCAAGGCC 

rn6 Per1 Distal GRE -2500bp 

from TSS 

CCAAGGCTGAGTGCATGTC GCGGCCAGCGCACTA 

Table 2. RT-qPCR primer sequences. 

Primer sequences used to test GR and RNA Polymerase II, phospho-Serine 2 binding. 

2.9 Infused circulating corticosterone levels of sequenced samples 

Total blood serum corticosterone levels from trunk blood samples collected at the point of euthanasia 

were used to assess circulating corticosterone dynamics in response to either infusion pattern and/ or 

time point by RIA. Data were assessed using two-way ANOVA followed by Bonferroni’s multiple 

comparisons test adjusted for multiple comparisons. Significant relationships were found in response 

to infusion pattern, time and interaction (p<0.0001). In response to a pulsatile infusion of 

corticosterone at 140min (pulsatile peak) total blood serum corticosterone levels were raised (670 

±41 ng/ml) to 180min (pulsatile nadir) (64 ±17 ng/ml) (p<0.0001). Similarly, 140min and 180min of 

constant corticosterone infusion produced raised levels of circulating corticosterone compared to 

pulsatile 180min (625 ±38 ng/ml and 461 ±21 ng/ml respectively) (p<0.0001). Pulsatile 180min was 

unchanged to VEH controls indicating corticosterone levels clear from total blood serum within 40min 

of corticosterone infusion cessation. There was no difference between pulsatile and constant infusion 

at 140min, however, there was a reduction in corticosterone by 180min of constant infusion (p<0.01). 

It should be noted that corticosterone level inconsistency from trunk blood samples has been reported 
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in previous studies (data not shown) likely due to the crude method of collection. Trunk blood sample 

volumes are not measured whereas ABS samples are accurately diluted 1:5 in heparinized saline, 

hence ABS data collection is the preferred method modelling circulatory blood total corticosterone 

dynamics. Nevertheless, trunk blood results are appropriate for confirming opposing infusion pattern 

paradigms at the point of euthanasia. These data do confirm total blood serum corticosterone levels 

are increased to VEH in response to 20min and constant corticosterone infusion whereas 40min 

infusion cessation is appropriate to allow levels to return to VEH control. Thus, producing either a 

pulsatile or constant corticosterone pattern within the cardiovascular system albeit with indications 

of fluctuating constant corticosterone infused levels. All bar graphs were plotted using GraphPad 

Prism v6.07 for Windows (La Jolla California, USA, www.graphpad.com). 
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Figure 2.3 Circulating total blood serum corticosterone levels of corticosterone or VEH infused 

sequenced ChIP samples at the point of euthanasia by RIA. 

In response to a third 20min infusion of corticosterone at 140min, circulating corticosterone levels 

were significantly higher than VEH control (p<0.0001) before significantly dropping after 40min pump 

cessation (p<0.0001) returning to baseline by 180min. In response to a constant corticosterone 

infusion, levels were raised at both 140 and 180min to VEH control (p<0.0001). There was a slight but 

significant reduction from constantly corticosterone infused levels at 140min to 180min by ~150ng/ml 

(p<0.01) indicating the possibility that corticosterone levels can fluctuate between time points. 

corticosterone levels after 180min constant corticosterone infusion were also reduced to pulsatile 

140min by ~200ng/ml (p<0.05) whereas no difference was detected at 140min constant 

corticosterone infusion. Changes in corticosterone levels are replicable to ABS data previously 

Time dependent changes 

** p-value <0.01 

**** p-value <0.0001 

 

Pattern dependent changes 

$$$$ p-value <0.0001 

 

Changes to either VEH control time point 

&&&& p-value <0.0001 
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described. Total blood serum corticosterone levels were measured by RIA from trunk blood samples 

and analysed by two-way ANOVA with Bonferroni’s test adjusted for multiple comparisons. Results 

after 140min infusion are indicated by white bars whereas 180min by grey bars and data is expressed 

as mean ±s.e.m.. Pulsatile or constant corticosterone infusion time dependent p-value changes are 

indicated by **<0.01 and ****<0.0001, 140min and 180min infusion pattern dependent p-value 

changes are indicated by $$$$<0.0001 and corticosterone infused p-value changes to either VEH 

control infused time point are indicated by &&&&<0.0001. 

2.10 ChIP-Seq quality control and alignment 

ChIP-Seq technical replicates for each corticosterone infusion pattern time point consisted of n=6 

biological ChIP repeats, bolstered to n=10 with technical repeats where required in line with the 3Rs 

guidelines. Biological and technical repeat ChIP samples were selected around the mean based on 

pSer2Pol2 ChIP assay results to two sites associated with the transcriptionally GR regulated clock gene 

Per1 (Figure 3.1 & Figure 4.1). 10 ChIP samples were pooled and concentrated using a UniVapo 

Vacuum concentrator (Transcriptomics facility, UOB) from approximately 400 µl to 35 µl. Samples 

were shipped to the National Institute of Health (NIH), Intramural Sequencing Centre (NISC) 

(Bethesda, MD) on dry ice. Two pooled replicate ChIPs and matched 1% input samples per group 

underwent library preparation (TrueSeq SBS v3-HS kit (illumina, US)) and sequencing using the Illumina 

HiSeq2000 platform (Illumina, USA) to 50b at the National Cancer Institute Advanced Technology 

Center (ATC, Rockville, MD, USA). 

Adapters were removed from the sequenced FASTQ files, filtered for a base quality of 33 and 

sequences of 50b were isolated using Trimmomatic-0.36 (Bolger, Lohse and Usadel, 2014). Trimmed 

FASTQ files were aligned to the rat genome (UCSC rn6 assembly) using bowtie2 (Langmead and 

Salzberg, 2012) and duplicate tags removed using SAMtools 1.3.1 (Li et al., 2009). Subsequent analysis 

was performed using HOMER v4.9 (Heinz et al., 2010).  

Counts were normalised to 10 million tags (makeTagDirectory) to allow for cross sample comparisons 

and visualised using the UCSC genome browser (Kent et al., 2002) (http://genome.ucsc.edu/). 

2.11 Identification of GR ChIP-Seq enriched regions 

Enrichment of GR tags to 1% input control, were identified (findPeaks) using relaxed settings (-F1 -L1 

-P.1 -LP.01 -poisson .1 -style factor). Replicate concordance was assessed using an irreproducible 

discovery rate (IDR v2.0.3) set to 0.01. Overlapping enrichments between replicates were merged 

using mergePeaks (HOMER v4.9.1) and filtered according to the IDR estimated confidence threshold. 

Overlapping confident enrichment regions were merged again (mergePeaks) to create a single list of 
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enriched GR locations across conditions (Heinz et al., 2015). Visualisation of tag densities, histograms 

plots and Pearson correlation coefficient calculations were done using EASeq v1.101 (Lerdrup et al., 

2016) 

2.12 Analysis of differential enrichments 

Analyses of pSer2 Pol2 ChIP-Seq enrichment was restricted to genes larger than twice the fragment 

length (>320b) and transcript coding regions limited to 10Kb from the transcriptional start site (TSS) 

(Ensemble release Rnor_6.0.92). Raw input ChIP-Seq tag counts were subtracted from both GR and 

pSer2 Pol enrichment regions (annotatePeaks.pl – HOMER v4.9.1). 

Differential GR and pSer2 Pol2 enrichment fold changes were assessed to VEH and between 

corticosterone infusion time points using getDiffExpression.pl (HOMER v4.9.1) that pipes to DESeq2 

(Heinz et al., 2010; Love, Huber and Anders, 2014). For DESeq2 analysis, tags were normalised to tag 

count within de novo binding regions whilst pSer2 Pol2 tag counts were normalised to total sequenced 

tags across replicates. Differential GR and pSer2 Pol2 enrichments were considered significantly 

different if fold change >1.5-fold and p-value <0.05 adjusted for multiple measurements and FDR 

<0.05. Duplicate variant gene Ensemble accession numbers were filtered for the variant reporting the 

greatest fold change across all conditions and time points. Differential GR enrichments were 

annotated to the closest pSer2 Pol2 differentially regulated TSS. Fold changes were visualised using 

heatmap.2 (RStudio 1.0.153). 

Distances between TSSs and GR binding regions were assessed using annotatePeaks.pl. 

2.13 Motif analysis 

Twice the average fragment length (446b) across the centre of GR binding sites were analysed for both 

de novo and known motifs using findMotifsGenome.pl (HOMER v4.9.1). Repeat sequences were 

masked and optimised for motifs 8, 10 and 12b long. Calculations of motifs per base pair per peaks 

were calculated using de novo motif matrices within HOMER v4.9.1 and histograms indicate location 

of the motif relative to the GR binding site centre and plotted using GraphPad Prism v6.07 for Windows 

(La Jolla California, USA, www.graphpad.com). 

nGRE motif sequences were based on published inverted repeat sequences located in the upstream 

promoter of both the human and mouse thymic stromal lymphopoietin TSS. Motif files were created 

using seq2profile.pl (HOMER v4.9.1) based in the published sequence CTCCN(0-2)GGAGA (Surjit et al., 

2011; Heinz et al., 2015) 
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2.14 Pathway analysis 

pSer2 Pol2 ChIP-Seq DESeq2 data were analysed via Ingenuity Pathway Analysis ©IPA (Qiagen Inc., 

https://www.qiagenbioinformatics.com/products/igenuity-pathway-analysis). Enrichment of 

pathways were identified from genes with fold changes >1.5-fold and adjusted p-value <0.05 to VEH 

control and z-score predictions assessed from liver tissue and HepG3, hepatoma, hepatocyte cell lines 

as well as mice, rat and human published data. Positive and negative z-scores represent either 

predicted activation or inhibition respectively based upon the fraction of genes known to regulate the 

pathway and degree of fold change and significance. The greater the predictive confidence, the 

greater the z-score. Documentation indicates a z-score >2 (or <-2) represents a significant prediction. 

Z-score values were plotted using GraphPad Prism v6.07 for Windows (La Jolla California, USA, 

www.graphpad.com). 
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Chapter 3 Genome wide binding of the glucocorticoid receptor in the 

liver during ultradian or constant corticosterone replacement in 

ADX rats.  

3.1 Background 

The GR is a member of the nuclear receptor superfamily and is a transcription factor with ligand 

dependent activity (‘A Unified Nomenclature System for the Nuclear receptor superfamily’, 1999; 

Bledsoe et al., 2002). The adrenal GC hormone is the endogenous ligand for the GR, which upon 

activation will translocate into the nucleus, where it can bind to GREs, recruit co-factors and regulate 

transcription of target genes (Meijsing et al., 2007; Oakley and Cidlowski, 2013; Ratman et al., 2013).  

Adrenal GC secretion is under HPA axis control and is conserved across mammalian species. 

Synchronised to the photoperiod, the SCN regulates HPA axis activity which in turn induces maximal 

GC secretion from the adrenal glands into the circulatory system prior to the active period and 

gradually decreasing towards the onset of the inactive period. Thus, a ‘circadian’ profile of GC release 

is produced and due to the lipophilic molecular structure, GCs will readily diffuse across into nearly all 

cells within the body. Oscillations in circulating levels have also been recorded in the hippocampus 

and subcutaneous tissue within the rat (Jasper and Engeland, 1991; Droste et al., 2008, 2009; Qian et 

al., 2012). However, studies with more frequent blood sampling have shown an underlying oscillating 

rhythm of GC pulses, termed the ‘ultradian’ profile (Windle, Wood, Shanks, et al., 1998; Lightman and 

Conway-Campbell, 2010). Recent studies have shown that intrinsic delays within both the positive 

feed forward and negative feedback arms of the HPA axis naturally produce oscillations in GC 

secretion, which result in discrete pulses measured in circulating blood serum and some tissues 

(Droste et al., 2008; Walker, Terry and Lightman, 2010; Qian et al., 2012; Walker et al., 2012). It is the 

amplitude of these pulses that is under circadian control.  

The predominant GC in rodents is corticosterone whereas cortisol is predominant in humans. This has 

implications for the ultradian pulse frequency as corticosterone has a shorter half-life than cortisol, at 

8-9min and 62-97min respectively (Weitzman, 1976; Veldhuis et al., 1989; Windle, Wood, Lightman, 

et al., 1998). Presumably, the differing half-lives contribute to a different pulse frequency, as 

corticosterone pulses occur at intervals of 56-60min whereas cortisol pulses in humans occur at 

intervals of 95-180min (Follenius et al., 1987; Veldhuis et al., 1989; Jasper and Engeland, 1991).  

Genome wide ChIP-Seq investigation of GR binding in mouse liver  found ~11,000-13,000 binding sites 

in response to Dex treatment and a comparative analysis to other cell types indicated 83% of the 
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binding sites were tissue specific (Grøntved et al., 2013; Lim et al., 2015). This was associated with a 

change in RNA Pol2 occupancy at ~400 genes, indicating significant transcriptional change, presumably 

in response to Dex induced GR binding (Grøntved et al., 2013).  

Recent studies modelling ultradian corticosterone replacement within the rat, have indicated the GR 

binds at characterised GREs known to regulate the GC target gene Per1, in the liver and hippocampus 

during the rise (maximal at the peak) of a corticosterone pulse before fully dissociating after 

corticosterone clearance from the circulation within 40min (Conway-Campbell et al., 2010, 2012). This 

mock ultradian model of corticosterone replacement, synchronises binding and loss of GR from the 

DNA template, which can be repeated over a series of pulses, inducing pulsatile transcriptional 

occupancy as well as hnRNA production (Stavreva et al., 2009; Conway-Campbell et al., 2010, 2011; 

George et al., 2017). Additionally, a genome wide GR ChIP-Seq study within derived murine mammary 

adenocarcinoma epithelial cells (3617) confirmed ‘slow cycling’ of GR binding, synchronised to the 

ultradian corticosterone rhythm at a large number of GC target sites which was markedly altered by 

constant corticosterone treatment (Stavreva et al., 2015). Regardless of this very compelling data, the 

question remains whether similar genome wide regulation occurs in a more physiologically relevant 

cell type or tissue? 

To date, in vivo investigation of GR binding dynamics during ultradian pulses have only been 

investigated at a small selection of target sites and genomic studies have utilised artificial constructs 

within cell lines. It is therefore not presently known whether ultradian GR recruitment occurs across 

all GR binding sites and if dynamics can be altered by dysregulated GC exposure in vivo, for example 

by constant corticosterone treatment. Within this chapter, I plan to assess genome-wide GR binding 

profiles in the liver in response to infused mock ‘ultradian’ pulses of corticosterone within ADX rats. 

These results will be used to confirm whether the observed in vivo pulsatile recruitment to the Per1 

hypersensitive GRE in hippocampal and liver tissue also occurs across all GR binding sites or whether 

it is selective to a subset. Further, it will be determined whether a constant corticosterone infusion 

disrupts any observed dynamics. 

3.2 Hypothesis 

Within the liver, GR recruitment to the DNA is differentially regulated in a pattern dependent manner 

by a pulsatile or constant corticosterone infusion into the circulation of ADX rats. 

3.3 Aims 

1. Identify GR recruitment at the peak and nadir of a mock ‘ultradian’ GC infused pulse. 
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2. Assess, if any, changes in recruitment dynamics in response to a matched constant GC 

infusion. 

3. Characterise GR binding within the liver 

3.4 Method 

All methods of GR ChIP-Seq analysis were done according to general methods discussed within 

Chapter 2. 

Briefly, FASTQ files were assessed and trimmed to desired settings using Trimmomatic-0.36 (Bolger, 

Lohse and Usadel, 2014) and aligned to the Rn6 genome using Bowtie2 (Langmead and Salzberg, 

2012).  

De novo GR binding sites were identified within each replicate against corresponding 1% input controls 

using findPeaks (HOMER v4.9.1) with relaxed settings (Heinz et al., 2010). Confident and concordant 

GR enrichments across replicates were identified using an irreproducible discovery rate (IDR v2.0.3) 

analysis. All concordant binding regions were analysed and any that overlapped were merged into a 

single region by mergePeaks (HOMER v4.9.1) (Heinz et al., 2010). 

Tag density and distribution across GR binding regions were visualised using EASeq (Lerdrup et al., 

2016) and the UCSC genome browser (Kent et al., 2002) (https://genome.ucsc.edu/).  

Enriched sequenced tag densities at every de novo GR binding region in response to a corticosterone 

infused time point was assessed against pooled VEH controls as well as between corticosterone 

infused time points by DESeq2 analysis, normalised to total tag count within identified enriched 

regions. Comparisons were filtered for significance by a fold change >0.585 (log2) and p-value <0.05 

adjusted for multiple measurements. All other results were assigned the value 0. Results were 

visualised using heatmap.2 (RStudio 1.0.153) and eulerr (Larsson et al., 2019). 

Overrepresented palindromic sequences, masked for repeating sequences, were identified within 

446b region at the centre of corticosterone regulated GR binding sites using findMotifsGenome.pl 

(HOMER v4.9.1). Histograms indicate location of the motif relative to the centre.  

All histograms were plotted using HOMER and GraphPad Prism v6.07 for Windows (La Jolla California, 

USA, www.graphpad.com) and are reported as mean ±s.e.m.. 
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3.5 Results 

3.5.1 ChIP assay validation 

ChIP-Seq samples were aligned to the Rn6 genome and normalised to 10million tags for comparison 

and visualisation using the UCSC genome browser. Prior to Seq, single aliquots of each ChIP assay were 

analysed for GR binding at the known GC regulated target, the clock gene Per1. A GRE containing 

region, 2.5kb upstream of the TSS has previously been characterised as a GR binding site in liver as 

well as other cell and tissue types (Stavreva et al., 2009; Conway-Campbell et al., 2011; Reddy et al., 

2012). No GR binding, to our knowledge, has been described for an intragenic region between intron 

16 and 17, therefore, primers were designed for both regions to respectively act as positive and 

negative controls for GR binding in RT-qPCR analysis.  

In response to three hourly 20min pulses of corticosterone infusion, GR binding was assessed at the 

characterised GRE containing GR binding site, at time points corresponding to the peak (140min) and 

nadir (180min) of the third pulse of the pulsatile corticosterone infusion as well as matched constantly 

infused time points. Two-way ANOVA indicated a significant effect of time (p=0.0156), infusion pattern 

(p<0.0001) as well as a significant interaction (p=0.0312) between the two. Post-hoc analysis revealed 

GR binding was significantly increased ~3 fold (p<0.01) at the corticosterone pulse peak (140min) 

compared to nadir (180min) (1.24 ±0.19 and 0.47 ±0.05 respectively) (Figure 3.1 A). GR binding in 

response to the constant corticosterone infusion were raised and not significantly different between 

140min and 180min infused time points (1.33 ±0.15 and 1.20 ±0.14 respectively). Results indicate 

prolonged GR binding, as no change was detected between the pulse peak of the pulsatile 

corticosterone infusion and the matched constant infused time point. There was a significant ~3 fold 

increase (p<0.01) in GR binding after 180min of constantly infused corticosterone compared to pulse 

nadir (180min). GR binding in response to the VEH infusion was unchanged between 140min and 

180min and significantly lower than all corticosterone infused time points (0.26 ±0.13 and 0.19 ±0.08 

respectively). 
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Figure 3.1 Assessment of positive and negative control sites for GR binding in the clock gene Per1. 

ChIP assay samples used in the next generation sequencing analysis, was evaluated by RT-qPCR to the 

distal GRE 2.5kb upstream of the clock gene Per1 (A). For GR binding at the distal GRE site, significant 

effects of time (p=0.0156), infusion pattern (p<0.0001) and interaction (p=0.0312) were detected by 

two-way ANOVA. (B) At the Intron16 site, a highly significant effect of infusion pattern (p<0.0001) and 

a significant effect of time and interaction (p<0.05) were detected by two-way ANOVA. All significant 

differences detected by Bonferroni multiple comparison post-hoc tests are shown on the graphs, with 

comparisons between cort infused and VEH infused matched time point represented by & symbols, 
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comparisons between cort infused time points (within infusion pattern) represented by * and 

comparisons between infusion pattern (at the same timepoint) represented by $ symbols. Significance 

values are *,$,&p<0.05, **,$$,&&p<0.01, ***,$$$,&&&p<0.001, ****,$$$$,&&&&p<0.0001. All data are 

expressed as mean ± s.e.m. (C) GR binding was visualised using the UCSC genome browser for ChIP-

Seq tag density enrichment in the vicinity of the Per1 gene (maroon track at top of figure) on 

chromosome 10 (chr10:55,682,284-55,700,077). The site of the distal GRE is indicated by the left black 

line and intron16 by the right black line. Increased tag density was observed at the Per1 distal GRE 

site in response to the pulsatile corticosterone infusion (blue) at 140min. Reduced tag density was 

observed at this site in the pulsatile corticosterone infusion (blue) at 180min. With constant 

corticosterone infusion, further increased tag density (red) was observed at the distal Per1 site for 

both time points. No visible peak in tag densities was seen at Per1 intron16 (black line to the right) for 

any of the treatment and/or time conditions. Genome browser shots describe Per1 as transcribed from 

the anti-sense strand (left to right) and intron/ exon coding region (exons represented as maroon 

blocks in gene track) locations from Ensembl rn6 co-ordinates. Data normalised to 10million tags and 

y-axis 0-250. 

Within the negative control, intronic region, two-way ANOVA indicated a significant effect of time 

(p=0.0001) as well as infusion pattern and interaction between the two (p<0.05) (Figure 3.1 B). Post-

hoc analysis revealed GR binding was low at both pulsatile infused time points and not significantly 

changed between 140min and 180min (0.04 ±0.01 and 0.03 ±0.01 respectively). VEH infusion resulted 

in similarly low GR binding levels at both time points (0.05 ±0.01 and 0.04 ±0.01 respectively), 

however, in response to a constant corticosterone infusion, relative levels of GR were increased by 

~1.5-fold (p<0.05) at the 180min compared to the 140min infused time point (0.19 ±0.02 and 0.12 

±0.02 respectively). Both time points were significantly raised to VEH infusion by 2- (p<0.05) and 5-

fold (p<0.0001) respectively. As a significant elevated result at this intronic site was unexpected, UCSC 

genome browser shots plotting normalised tag density of aligned tags across the Per1 coding region 

and primer sites have been included (Figure 3.1 C). At the positive (GRE containing) control primer 

site, relative increases in tag density are consistent with RT-qPCR results. Interestingly, the distal GR 

binding site corresponding to the positive control primer set has been previously described as a 

‘hypersensitive’ site (Reddy et al., 2012). In our data, we can observe a slightly increased tag density 

compared to the site most proximal to the TSS. In contrast, within the negative (intronic region) 

control primer site, no discrete peaks are observable, indicating this region does not contain a GR 

binding site and is potentially due to RT-qPCR sensitivity.  
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Together these data indicate that pulsatile corticosterone infusion induces GR binding at the pulse 

peak, which is lost to a significant degree within the nadir. In response to constant infusion, GR is 

bound to a similar level as pulsatile peak and remains at this high level after 180min, consistent with 

previous in vivo data (Stavreva et al., 2009; Conway-Campbell et al., 2011). 

3.5.2 GR ChIP-Seq replicate concordance 

Pearson correlation coefficient analysis was used to assess the degree of concordance between 

enriched GR binding regions across replicates at each corticosterone and VEH infused time point. In 

response to a VEH infusion, 118 enrichments were detected with a Pearson correlation coefficient of 

0.797 (Figure 3.2C). The number of enrichments was unexpected, as GR was expected to be unbound 

in ADX rats without corticosterone ligand exposure, however, the Pearson correlation coefficient 

value did indicate positive, strong association and concordance between replicate tag densities and 

was therefore considered to be confident.   
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Figure 3.2 Replicate concordance and GR enrichment length 

2D histogram of concordant enrichment tag counts (log2) identified by IDR for each replicate in 

response to either pulsatile (A) or constant corticosterone (B) at infusion time points 140min (i) and 

180min (ii) compared to VEH (C). Pearson correlation coefficient analysis indicated acceptable 

concordance between replicates (r>0.88 (A and B) and (r=0.797 (C)). Tag counts were normalised to 

10 million and both axes segmented into 100 bins. Normalised tag count (log2) within each bin is 
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colour coded according to the heatmap. Images produced from EASeq (Lerdrup et al., 2016). (D) 

Histogram plotting the distribution of total GR binding region lengths after overlapping regions 

between infused time points were merged. Minimum =149b, 25th percentile =395b, median =625b, 

75th percentile = 625b, Mean =558b and maximum =1,071b. 

In response to pulsatile corticosterone infusion, 3,210 enrichments were detected at the pulse peak, 

but only 73 were detected at the pulse nadir (Figure 3.2 A). Pearson correlation coefficient values were 

0.92 and 0.98 respectively, indicating a positive, strong association and concordance between 

replicates. In response to 140min constant corticosterone infusion, the total number of identified 

enrichments was reduced in comparison to the pulsatile peak to 1,721. Enrichment numbers were 

slightly increased by 180min of constant corticosterone infusion to 2,428 compared to 140min but still 

less than corticosterone pulse peak. A slight drop in Pearson correlation coefficient values to 0.93 and 

0.886 respectively were recorded but are still considered strong inter-replicate concordance values. 

Taken together, we concluded that both corticosterone and VEH infused time point replicates were 

concordant for use in downstream analysis. Overlapping enrichments between all conditions were 

merged into a single list of 3,980 GR binding sites for comparative analysis (Figure 3.2 D).  

3.5.3 GR tag density and distribution at merged enrichment regions 

Assessment of raw tags at merged enrichments and across conditions indicated increased tag intensity 

in response to the pulsatile corticosterone peak as well as at both constantly infused time points 

(Figure 3.3). All conditions associated with raised circulating corticosterone levels (Figure 2.2). 

Intensity was decreased in response to the pulsatile nadir and either VEH time point; conditions 

associated with negligible circulatory corticosterone levels. Pulsatile nadir tag intensity appeared 

slightly raised to VEH, however this was purely based on qualitative assessment at this stage.  
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Figure 3.3 GR tag density and distribution between replicates. 

Heatmap plots visualise changes in tag intensity at merged enrichment regions within each replicate 

in response to either pulsatile corticosterone (A), constant corticosterone (B) or VEH (C) at infusion 

time points 140min (i) and 180min (ii). Tag intensity across enrichment regions were increased at 

140min pulsatile corticosterone (Ai) and at both constant time points (Bi and Bii) to a similar degree 

across regions, relative to VEH (Ci and Cii). At 180min pulsatile corticosterone (Aii) tag intensity across 
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enrichment regions was reduced to similar levels as those observed in the VEH infusion groups (Ci and 

Cii). Tag count intensity normalised to 1million reads per 1kb is plotted on the x-axis, with 5kb in either 

direction from the centre segmented into 200 bins. The degree of intensity is indicated by heatmap, 

according to the 0-5 scale bar. Graphs were plotted using EASeq (Lerdrup et al., 2016). Histograms of 

tag distribution 5kb in either direction of the merged enrichment centre was plotted for pulsatile 

corticosterone (D), constant corticosterone (E) or VEH (F) at infusion times 140min (i) and 180min (ii). 

In all cases, peaks in tag density were observed at enrichment centre and reduced to negligible levels 

within 1kb in either direction. High tag density levels were seen in pulsatile corticosterone at 140min 

(Di) compared to low tag density levels seen in pulsatile corticosterone at 180min (Dii) and VEH at 

both time points (Fi and Fii). Relatively high tag density levels were seen in constant corticosterone at 

both time points (Ei) (Eii). Raw tags (log2) were segmented in 5b bins, spanning 5kb in each direction 

from enrichment centre. Graphs were plotted using GraphPad Prism 6 for windows. 

Histograms of raw tag distribution was maximal at the centre of de novo enrichment regions and was 

reduced in either direction to negligible counts within 1kb, indicating GR binding locations were most 

likely at the enrichment centre. Pulsatile corticosterone peak appeared to induce a much larger tag 

pile up than pulsatile corticosterone nadir (Figure 3.3 D) and VEH (Figure 3.3 F). Taken together, these 

data indicated high levels of GR recruitment at the pulse peak were rapidly returned to baseline within 

the pulse nadir. In response to constant corticosterone infusion, tag intensity was concentrated at the 

centre of enrichments and increased to similar levels as pulsatile peak, across both time points (Figure 

3.3 E).  

3.5.4 Filtering significant induction of GR binding 

Prior to any differential analysis, VEH replicates were analysed across binding regions by DESeq2 and 

no significant differences in tag density were detected (data not shown); therefore, both VEH 

replicates were pooled.  

To investigate statistically relevant corticosterone induced changes in GR binding relative to VEH 

control, normalised raw tag counts within binding regions were analysed by DESeq2. In response to a 

pulsatile corticosterone peak, increases in enrichment were detected at 2,658 sites, whilst a loss was 

detected at 50 sites (Figure 3.4 A). No enrichments passed significance thresholds at the pulsatile nadir 

(Figure 3.4 B). In response to a constant corticosterone infusion, gains in GR enrichment were detected 

at 1,263 and 1,953 sites after 140min (Figure 3.4 C) and 180min (Figure 3.4 D) infused time points as 

well as losses at 10 and 9 sites respectively. Results corroborate previous intensity and histogram data 

(Figure 3.3); GR binding is increased at the pulse peak (140min) of the pulsatile infusion and at both 
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140 and 180min time points during constant infusion. Interestingly, pulsatile peak was more effective 

at inducing changes in enrichment than either constant corticosterone time point.  

 

Figure 3.4 Differential GR binding over time during pulsatile or constant corticosterone infusion. 

Volcano plots showing GR enrichment fold change (log10) and adjusted p-value (-log10) relative to 

VEH control for pulsatile corticosterone infusion at 140min (A) and 180min (B) as well as constant 
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corticosterone infusion at 140min (C) and 180min (D). Enrichments were filtered for significant 

changes (red). (E) Table reports the number of differentially regulated enrichments and direction of 

change by either pulsatile or constant corticosterone infusion at 140 and 180min time points, relative 

to VEH control. Tags were normalised to total tags within enrichments and fold change >0.176 or <-

0.176 (log10) (latitudinal lines), p-value adjusted for multiple comparisons <0.05 (-log10) (longitudinal 

lines) and FDR<0.05 are plotted in red on volcano plots. All other values are plotted in black. 

3.5.5 GR binding dynamics during pulsatile versus constant corticosterone infusion 

Fold changes in enrichment at identified GR binding sites were hierarchically clustered and visualised 

within the heatmap (Figure 3.5 A). The corticosterone pulse peak induced significant GR binding at 

68% of identified sites; 24% of which were unique to this condition as shown in the Venn diagram 

(Figure 3.5 B). Constant corticosterone infusion induced GR binding at a reduced 32% of total sites, at 

the 140min time point matched to pulse peak. However, in contrast to the pulsatile nadir’s lack of 

detectable GR binding; constant corticosterone infusion was able to induce GR binding at 49% of total 

sites at the matched infused timepoint (180min).  
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Figure 3.5 GR binding sites inducible by infused patterned corticosterone time points (PCTs). 

(A) Visualisation of differentially regulated GR binding in response to either pulsatile or constant 

corticosterone infusion at times 140 and 180min. GR binding regions were hierarchically clustered 

according to amplitude of fold changes in response to each corticosterone infused time point, relative 
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to VEH. Heatmap colour intensity indicates degree of fold change (log2) as shown within the legend 

(top left) as well as distribution (white trace). Tags were normalised to total tag count within merged 

GR binding regions and filtered for log2 fold changes >0.585 or <-0.585, p-value adjusted for multiple 

comparisons <0.05 and FDR <0.05 to VEH control are plotted. All other enrichments were given the 

value 0. (B) VENN diagram of the number of differentially enriched regions to VEH control in response 

to 140min pulsatile and 140min and 180min constant corticosterone infused time points were plotted 

using eulerr (Larsson et al., 2019). (C) Little difference in distribution of corticosterone infused time 

points induced fold change to VEH control was found. Percentiles of corticosterone infused time points 

fold change to VEH control min: -6.9, -7.3, -7.3; 25th percentile: 5.0, 5.0, 4.7; Median: 5.7, 5.8, 5.3; 75th 

percentile: 6.5, 6.6, 6.0; max: 9.8, 9.6, 9.3 values for 140min pulsatile, 140min and 180min constant 

corticosterone infusions respectively. Y-axis is split into -10 to 4 and 4 to 10 segments of fold change 

(log2). 

GR binding events that were unique to either 140min or 180min constant corticosterone infusion 

occurred at just 2% and 5% of sites respectively, and a further 1.6% were present at both time points 

(Figure 3.5 B). However, 33.4% of GR binding events were common to pulsatile peak and both constant 

corticosterone time points, indicating GR binding across all corticosterone regulated sites are distinctly 

phasic in response to pulsatile corticosterone infusion. Of those, a proportion that are bound at the 

corticosterone pulse peak are subjected to prolonged GR occupancy over time during constant 

corticosterone infusion, however, pulsatile infusion at the corticosterone pulse peak was further 

capable of inducing a large proportion of GR binding not induced by any other corticosterone infused 

time point. Only a relatively small subset of GR binding events was constant corticosterone responsive 

only. The data further shows a greater number of GR binding events in common after the 180min 

constant infused time point (16%) than the 140min infused time point (2%) when compared to the 

corticosterone pulse peak, potentially suggesting constant corticosterone infusion induced gradual 

increases in GR binding over time. 

As previously mentioned, a number of sites reported significantly reduced tag densities relative to VEH 

control. Despite these representing just 1.4% of total binding sites, these reductions were unexpected 

as we hypothesised we would only detect GR binding in response to corticosterone ligand exposure. 

Interrogation of these sites indicated the majority were decreased by pulsatile peak only (1%), which 

returned to VEH levels in the nadir, indicating a transient loss of GR from these sites. Only a relatively 

small number of sites were reduced in response to 140min and 180min constant corticosterone 

infused time points (0.05% and 0.08% respectively), the rest were shared in combination and only one 
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site reported a loss in enrichment in response to each corticosterone infused time point (0.03%). No 

increases were recorded at these sites to VEH control.  

During the analysis of these sites, I referred to the concordant GR binding region results (findPeaks 

and IDR analysis of Seq replicates) for each corticosterone and VEH infused time point. 38 of the 56 

sites reduced by corticosterone infusion were within VEH identified GR binding regions, 19 of which 

were specifically found in response to the VEH infusion and no corticosterone infused time point. Plus, 

the presence of a GRE within 15 of the 56 sites suggest at least a proportion could be classical GR 

binding events, despite the opposing effect of corticosterone exposure. Additionally, analysis of tag 

density distribution around the centre of these enrichments (Figure 3.6) reports a distinct loss of tag 

density in response to 140min pulsatile corticosterone infusion compared to all other conditions. 

Indicating not only transient corticosterone exposure is more effective at reducing tag density within 

these regions, but also any loss is recoverable within the pulse nadir after 180min. Taken together and 

as pearson correlation coefficient analysis and differential analysis by DESeq2 indicated non-

significant change between VEH 140min and 180min samples, we have no reason to disregard these 

sites as false positives. 

 

Figure 3.6 Tag density histograms of regions that report a CORT dependent loss in enrichment 

compared to VEH control. 

Histograms of tag distribution 5kb in either direction of the merged enrichment centre was plotted for 

pulsatile corticosterone (A), constant corticosterone (B) or VEH (C) at infusion times 140min (i) and 

180min (ii). In all cases, peaks in tag density were observed at enrichment centre and reduced to 

negligible levels within 1kb in either direction. Tag density levels remain relatively unchanged between 
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pulsatile corticosterone after 180min and either constant infusion (Bi) (Bii) compared to VEH control 

(C). 140min of pulsatile corticosterone did report a marked loss in tag density compared to all other 

conditions (Ai). Raw tags (log2) were segmented in 5b bins, spanning 5kb in each direction from 

enrichment centre. Graphs were plotted using GraphPad Prism 6 for windows. 

3.5.6 Time and pattern dependent GR binding 

As a pulsatile corticosterone infusion induced a cohort of GR binding events that was not significantly 

detected in response to a constant corticosterone infusion compared to VEH control, it raises the 

question about time and pattern corticosterone dependent differences. Therefore, out of the 3,098 

GR binding regions that were induced to VEH control, time dependent and pattern dependent changes 

in GR enrichment were investigated between corticosterone infused time points. 

In response to a pulsatile infusion, 50.7% of corticosterone inducible sites were regulated in a time 

dependent manner, with 50.6% significantly increased by the pulse peak compared to nadir (Figure 

3.7). In contrast, constant infusion only significantly regulated 2.5% of GR binding events in a time 

dependent manner; 2.2% of which were increased at the 140min constantly infused time point. 
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Figure 3.7 Time and pattern dependent changes in GR binding. 

Heatmap visualisation of regions that were differentially enriched to VEH in response to corticosterone 

infused time point, compared to another corticosterone infused time point. Enrichments of log2 fold 

change were hierarchically clustered according to amplitude of change in response to each pattern of 

infusion. First four rows indicate fold change in GR enrichment in response to a corticosterone infused 

time point against VEH. Time dependent rows represent 140min vs 180min pulsatile and then constant 

corticosterone infusion. Subsequent double rows represent 140min and then 180min corticosterone 

infusion time points vs either constant infused time points.  Heatmap colour intensity indicates degree 

of fold change as shown within the legend (top right) as well as distribution (white trace). Tags were 

normalised to total tag count within merged enriched regions and fold change >0.585 or <-0.585, p-

value adjusted for multiple comparisons <0.05 and FDR<0.05 are plotted. All other enrichments were 

given the value 0. 
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Changes in enrichment, between inducible sites in response to pulsatile peak and to either 140min 

and 180min constant corticosterone infusion time points, were 7.1% and 6.1% respectively. Of these, 

6.2% and 5.5% respectively were enriched by the pulsatile peak, indicating pulsatile peak was more 

effective at inducing GR binding at these sites. Comparison of the corticosterone pulse nadir to either 

constant infused time point reported 16.7% and 30.0% of sites were down regulated at the pulse nadir. 

Indicating an increase in GR binding across both constantly infused time points to nadir. 

3.5.7 Motif analysis of GR binding sites 

GR binding to the genome can be directed to regulatory elements such as the GRE, however, the GR 

can also interact with binding sites via response elements complimentary to other nuclear factors 

either as a composite or tethered co-factor complex (Biddie et al., 2011; Grøntved et al., 2013; 

Uhlenhaut et al., 2013). De novo motif analysis of sequences from GR binding regions differentially 

enriched to VEH control (total of 3,098 regions) indicated the most significant over-represented 

homologous palindromic sequence resembled a GRE motif (0.92 score) within 39% of target 

sequences (Table 3). However, out of the top 6 most significant motifs (including the GRE), the most 

abundant resembled a forkhead box M1 (FOXM1) transcription factor motif (0.92 score) within 43% 

of binding regions. Despite this increased abundance, significance of representation in target 

sequences compared to background was greatly reduced from a p-value of 1e-458 to 1e-95. 

Sequences resembling known GR co-regulator motifs for HNF4α (0.94 score) and AR half-sites (0.76 

score) were identified in 31.2% and 24.1% of target sequences respectively (Biddie et al., 2011; Biddie, 

Conway-campbell and Lightman, 2012; Grøntved et al., 2013). Other over-represented motifs 

resembled CCAAT enhancer binding protein alpha (CEBPA) (0.95 score) and the STAT5 (0.97 score) 

motifs (0.76 score). 
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Table 3 De novo motif analysis of GR binding site sequences. 

Table reports, identification and occurrence of the top 6 significantly over-represented sequences 

within corticosterone regulated GR binding sites to VEH control and restricted to an area of 233b in 

either direction of the centre. P-value represents significance of identified sequence to randomly 

selected background DNA sequences, score is equal to the degree of similarity between de novo and 

known motif sequence, motif base logo indicates specific probability (s.p.) of base occurrence. 

All top 6 significant de novo motifs identified were located around the centre of the GR binding region, 

but GREs reported a greater occurrence to other motifs (Figure 3.8 A). Motif occurrence within regions 

that were induced by pulsatile peak or 140min and 180min constant corticosterone infusion time 

points were investigated separately but little difference was observed. Finally, the occurrence of 

potentially co-operative motif sequences within GRE containing regions were investigated. HNF4α and 

STAT5 were the most abundant (55.8% and 54.2% respectively) followed closely by AR half-sites 

(45.4%); representing the most likely to co-operatively direct GR binding to the genome (Figure 3.8 B). 

FOXM1 was relatively quite low compared to other motif occurrences. 
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Figure 3.8 Distribution and percentage of discovered motifs within PCT induced GR binding regions. 

3,098 corticosterone regulated binding regions differentially enriched to VEH control in response to 

either pulsatile or constant corticosterone infusion after 140min and 180min were assessed identified 

de novo motif sequences. (A)(B) Of the top six significant motifs identified, GREs reported the largest 

occurrence at the centre of the enriched regions. CEBPA, HNF4A, STAT5, FOXM1 and AR half-sites were 

similarly distributed but occurrence was distinctly reduced. (C) GR binding regions were separated into 

the 2,708 regions differentially enriched by 140min pulsatile, 1,273 by 140min constant and 1,962 by 

180min constant and motif occurrence was plotted. De novo motif distribution of GREs was the most 

prevalent at 66-74% of enrichments whilst FOXM1 was the least at 14-20%. However, there was no 

distinct difference in percentages of motif occurrence in response to a PCT corticosterone over 

another. (D) The presence of one of the top six most significant motifs was investigated within GRE 

containing enrichments significantly changed to VEH control by patterned corticosterone infusion. 

HNF4A was present in the most GRE containing sequences (56%) with STAT5 (54%) and AR half-sites 

(45%) slightly reduced. The two lowest were CEBPB and FOXM1 which were only present in 35% and 
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19% of GRE containing enrichments. De novo motifs were identified within 233b regions in either 

direction from the centre. 

GR enrichment regions were further investigated for the presence of a nGRE like sequence as 

identified by Surjit et al., within the upstream promoter of both the human and mouse thymic stromal 

lymphopoietin TSS. Of the 3,098 sites, just 2.23% regions contained a nGRE related sequence. Only 

two of these regions (0.06%) report a loss in GR enrichment. 

3.6 Discussion 

GR binding at the peak of the third corticosterone infused pulse via the jugular vein, can induce phasic 

genome-wide GR binding within the ADX rat liver. Interestingly, this phenomenon is not limited to a 

subset of sites but is observed at the vast majority (~90%) of our identified corticosterone regulated 

GR binding sites. Furthermore, bound GR was reported to dissociate from all binding sites, returning 

to baseline levels within the corticosterone pulse nadir. This phasic GR recruitment was not an intrinsic 

rhythm, as a constant corticosterone infusion prolonged GR binding. 26% of sites were induced by 

both corticosterone pulse peak and the matched constant corticosterone infused time point (140min) 

whilst only a small subset were induced by constant corticosterone infusion uniquely (~12%). Despite 

these subsets, GR binding was more effectively induced by the corticosterone pulse peak than any 

single corticosterone infused time point. Together, these observations indicate GR recruitment to the 

genome is highly corticosterone regulated and synchronised to hourly ultradian pulses.  

As several sites were significantly bound at the pulse peak and no other corticosterone infused time 

point, it was theorised these could represent dose dependent sites. To match the dose delivered 

between 20min pulsatile and 60min constant corticosterone infusion, a lower rate was used which 

induced a slightly lowered circulating corticosterone measurement (Figure 2.3). Levels at the infused 

pulsatile peak (140min) were at 387ng/ml ±34, whereas constant infused corticosterone levels were 

reduced at 261ng/ml ±51 at the matched time point. Therefore, this subset of GR bound at the 

pulsatile peak only are either exclusively responsive to a transient, rising phase of corticosterone or 

are dose dependent.  

Phasic GR binding in response to the pulsatile corticosterone infusion was dysregulated and prolonged 

by a constant corticosterone infusion. Additionally, there were indications that not all sites were 

maximally bound, as an increase in the number of significant binding sites over time was detected by 

180min of infusion compared to 140min. Perhaps indicating constant corticosterone infusion was 

gradually increasing GR binding levels over time (Figure 3.5).  
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This study discovered 3,980 binding sites after merging all de novo GR binding regions from all 

corticosterone and VEH infused time points, however, I present evidence that several sites were either 

not significantly regulated by corticosterone infusion or significantly decreased relative to VEH control. 

Whether the non-inducible sites are bound but at very low levels or represent corticosterone ligand-

independent/ VEH induced GR binding is unclear without further investigation. Disregarding potential 

Seq error, extra-adrenal de novo GC synthesis has been identified within intestine, skin, brain and 

lymphoid tissue within rodents and therefore presents the possibility of GR activation irrespective of 

adrenalectomy and independent of the corticosterone infusion (Vacchio, Papadopoulos and Ashwell, 

1994; Taves, Gomez-Sanchez and Soma, 2011). There is further evidence GR can be bound by a 

selection of co-factors in the absence of ligand. Perhaps this is an example of an active co-factor with 

the capacity to recruit GR to the genome within a tethered model of binding (Pfaff and Fletterick, 

2010; Monczor et al., 2019). This model may require a loss of corticosterone induced inhibition. 

Furthermore, non-liganded GR translocation into the nucleus has also been reported in response to 

shear stress, abnormal pH and temperatures as well as activation by tumour necrosis factor (TNF)α in 

COS-1 cells, but I would consider inductions by these methods unlikely and does not adequately 

explain the return of GR enrichment within the nadir of the pulsatile corticosterone infusion to VEH 

control levels (Ji, Jing and Diamond, 2003; Verhoog et al., 2011; Scheschowitsch, Leite and Assreuy, 

2017). If we consider these are real binding events via mechanisms not controlled for, I would 

hypothesise losses in response to corticosterone are most likely due to chromatin re-organisation in 

response to the large number of infused corticosterone induced GR binding across the genome. 

Multiple studies have shown GR binding induces re-organisation of the chromatin architecture and we 

could be observing increasing chromatin density and ‘closing’ at these sites, dis-placing GR (John et 

al., 2008, 2011; Grøntved et al., 2013; Kuznetsova et al., 2015; Stavreva et al., 2015). This would 

explain why there is a recovery of enrichment within the nadir of the pulsatile corticosterone infused 

time point (180min). However, this would require much further study, primarily to validate extra-

adrenal stimulation of GR that is bound to these select sites and chromatin accessibility. 

The number of potential GR binding sites discovered is lower than two recent studies within the mouse 

liver (11,000 sites). The first study used Dex treatment and a GR enrichment detection algorithm called 

hotspot to identify bound sites, so discrepancy may be due to differences in affinity, half-life and 

efficacy between ligands as well as the analysis algorithm (Baek, Sung and Hager, 2012; Grøntved et 

al., 2013). The second study however, was conducted within adrenally intact mice and found 

endogenous circadian variation in corticosterone induced GR binding at 11,000 sites despite similar 

HOMER detection methods. It should be noted, peak identification thresholds would be highly varied 

compared to mine, nor was any subsequent IDR analysis applied to identify concordant enrichments 
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between replicates (Heinz et al., 2010; Lim et al., 2015). I hypothesise discrepancies between GR 

enrichment detection and stringency limits for statistically significant GR binding regions reduced the 

number of GR binding sites to other studies, however, determination of this hypothesis could only be 

completed upon parallel analysis of published sequenced data. As I have successfully identified robust 

changes in GR binding, I would conclude analysis parameters were suited to my research question. 

Similar to other published studies, characterisation of inducible GR binding sites revealed not only GRE 

motifs, but other known co-factor motifs (Grøntved et al., 2013; Lim et al., 2015; Sasse et al., 2015; 

Hemmer et al., 2019). Comparison between studies of the relative occurrence of motifs within GR 

binding regions is difficult to ascertain from the literature due to tissue and cell type variability as well 

as analytical methods applied which were not always detailed within methods. For example, the two 

previously mentioned mouse liver studies quote a wide range of GRE occurrence within GR binding 

sites of 60% to 12% respectively, therefore, rates found within this study are difficult to compare 

(Grøntved et al., 2013; Lim et al., 2015). However, select motifs were identified that have been 

previously characterised as co-regulators for the GR and within the liver, such as STAT5, HNF4α and 

CEBP. Potentially indicating co-operatively directed binding and regulation of GRs (Hemmer et al., 

2019). Examination of the GR enrichment sequences revealed little evidence of nGRE like sequences 

(2.21% of regions). It has been postulated that as binding affinity to these sequences is reduced 

compared to classic GRE sequences and could therefore make detection of these sites difficult. 

Additionally, nGRE sequences have been characterised within macrophages and as GC action is to 

suppress the immune response, perhaps nGRE sequences are mostly relevant within that cell type 

(Uhlenhaut et al., 2013; Jubb et al., 2016). Either way, this study did not find robust evidence for a 

potential interaction between the GR and nGRE like sequences. 

In conclusion, this data presents strong, robust evidence that GR binding to the genome within an 

ultradian modelled system occurs in a phasic manner, synchronised to the rising and falling levels of 

corticosterone. GR dynamics can be dysregulated in a prolonged manner by alteration to a constant 

level of corticosterone, without changing the overall dose delivered and identifies potential GR co-

regulator motifs characterised within other in vivo liver studies. These data highlight the distinct 

regulatory role, ultradian like oscillations can have on GR recruitment at all regulated sites. 
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Chapter 4 Genome-wide RNA polymerase II binding in liver during 

ultradian or constant corticosterone replacement in 

adrenalectomised rats. 

 

4.1 Background 

Transcription of genes is dependent on the recruitment of the pre-Pol complex to regions typically 

30b upstream of the TSS. This is usually directed by interactions between the TATA box binding protein 

subunit of the pre-Pol complex and TATA sequences within the DNA as well as other initiator 

sequences (Wang, Carey and Gralla, 1992; Wiley, Kraus and Mertz, 1992; Ponjavic et al., 2006; 

Sandelin et al., 2007). The pre-Pol complex can then direct RNA Pol2 to the core promoter as well as 

unwind DNA via the action of the helicase XPB subunit of the pre-Pol complex prior to active synthesis 

of complimentary RNA sequences (Wang, Carey and Gralla, 1992; Tirode et al., 1999; Hahn, 2004; 

Luse, 2014).   

The phosphorylation of specific carboxy-terminal domain residues within RNA Pol2 directs multiple 

RNA processing factors. Investigation of residues within this region has identified phosphorylation of 

Ser5 (pSer5 Pol2) by Kin28 occurs predominantly within the promoter region and has been observed 

to be lost within the elongation phase of RNA synthesis (~200 nucleotides) (Corden, 1990; Hengartner 

et al., 1998; Komarnitsky, Cho and Buratowski, 2000). In contrast, phosphorylation of Ser2 by the 

carboxy terminal domain kinase 1 (Cdk1) occurs during the transcriptional elongation phase. 

Enrichment of Ser2 phosphorylated RNA Pol2 complexes (pSer2 Pol2) has been reported to increase 

towards the 3’ end of actively transcribing genes and may be important for the efficient recruitment 

of 3’ polyadenylation factors (Cho et al., 2001). Importantly, phosphorylation of Ser2 is associated with 

actively transcribing RNA Pol2 and hence provides a valuable tool for assessing dynamic changes in 

transcription (Ahn, Kim and Buratowski, 2004).   

Using specific antibodies for either phosphorylated state, occupation of RNA Pol2 at intragenic regions 

can be investigated using ChIP-Seq methods. However, identification of de novo enrichment and 

downstream analysis of RNA Pol2 occupied regions presents systematic challenges different to 

transcription factor ChIP-Seq analysis. These challenges include the identification of de novo enriched 

sites relative to background controls, such as with the GR analysis presented in Chapter 3. Algorithms 

of this type have been primarily designed to identify localised, discrete regions of enrichment as 

transcription  factors (such as GR) bind to short specific recognition elements  (Harmanci, Rozowsky 

and Gerstein, 2014). For example, the GR data presented previously, was sequenced from average 
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chromatin fragments of ~300b and identified enriched regions were on average 558b long, with the 

centre of the enrichment indicating the site of GR binding. Similar discrete enriched regions are not 

commonly observed in RNA Pol2 ChIP-Seq analysis. Creation of disulphide bonds during the fixing of 

tissue will trap RNA Pol2 as it actively transcribes through the gene’s coding region, which will vary 

greatly. Further, RNA Pol2 sequenced tag heights are highly stochastic throughout broad enrichment 

regions as low mappability and repeat regions do not sequence as efficiently as others. This is a 

problem for de novo identification as algorithms will identify sharp rises or falls within broad enriched 

regions as multiple single regions, fragmenting enrichments throughout the broad coding region (Lee 

and Schatz, 2012; Harmanci, Rozowsky and Gerstein, 2014). Some commonly used ChIP-Seq analysis 

tools have been designed to identify these RNA Pol2 enrichment traces via local thresholding and 

merging of proximal enriched region methods, but very few algorithms (such as PeakSeq and MUSIC) 

have been designed to specifically analyse RNA Pol2 enrichments (Y. Zhang et al., 2008; Rozowsky et 

al., 2009; Heinz et al., 2010; Harmanci, Rozowsky and Gerstein, 2014). Alternatively, Bayesian change-

point, local island identification and clustering methods have also been used, but ChIP-Seq analysis of 

RNA Pol2 occupancy still appears to be a relatively underexplored area of research with regard to 

analytical provision (Zang et al., 2009; Xing et al., 2012; Harmanci, Rozowsky and Gerstein, 2014). 

Despite analytical challenges, pSer2 Pol2 ChIP-Seq can provide important information regarding 

dynamics of active transcription, particularly relevant to my work investigating rhythmic GR regulation 

over a short time frame. Previous in vivo studies investigating the effects of corticosterone induced, 

transient binding of GR to the regulatory GRE of the Per1 gene in rat liver identified slightly delayed 

but phasic increases and decreases in nascent Per1 transcript production synchronised to 

corticosterone/ GR binding dynamics that are repeatable. Similar RNA Pol2 phasic dynamics of 

occupancy were reported within promoters across the MMTV array within 3134 cells in a series of 

photobleaching experiments. These changes were validated as transcriptionally active by phasic 

hnRNA production at a selection of targets. As previously shown with the GR, these phasic dynamics 

are not intrinsic and are dysregulated in a sustained manner by the sGC Dex, which has a prolonged 

half-life compared to corticosterone (Stavreva et al., 2009). Cell line work was expanded upon using 

ChIP-Seq analysis of pSer5 Pol2 occupation within MMTV array promoters, reporting similar phasic 

increases that were dysregulated and remained increased throughout corticosterone exposure over 

60min at majority of targets, as opposed to a 20min increase that returned to basal levels within 40min 

hormone washout (Stavreva et al., 2015). 

In Chapter 3, I demonstrated that genome-wide GR recruitment to corticosterone regulated binding 

sites within the liver is highly infusion pattern dependent. Therefore, in this chapter I expand upon 
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these findings by investigating whether resultant RNA Pol2 occupancy can be synchronised in a 

similarly dynamic manner by pulsatile or constant corticosterone replacement in ADX rats. As 

phosphorylation of the Ser2 residue wtihin the RNA Pol2 complex is associated with the actively 

transcribing RNA Pol2 complex, the liver pSer2 Pol2 ChIP-Seq data will be considered a proxy for active 

transcription, so that we can begin to understand how the ultradian profile, as well as its 

dysregulation, regulates overall transcriptional output within this key metabolic target organ.  

4.2 Aims 

1. Identify pSer2 Pol2 recruitment at the peak and nadir of a mock ‘ultradian’ GC infused pulse. 

2. Assess, if there are any changes in recruitment dynamics in response to a dose-matched 

constant GC infusion. 

4.3 Method 

All methods of pSer2 Pol2 ChIP-Seq analysis were done according to general methods discussed within 

Chapter 2. 

Briefly, ChIP-Seq quality control and alignment to the genome was handled in parallel to GR Seq 

analysis up to identification of de novo enrichment regions. Instead, regions for differential 

enrichment analysis were defined from gene transcript loci according to the Ensembl Rn6 genome 

build (Rnor_6.0.92). To mitigate bias of micro RNAs and increased significance to extremely long 

genes, coding regions smaller than twice the fragment length (<320b) were removed and regions were 

restricted to a maximum length of 10kb from the TSS. 

Histograms of pSer2 Pol2 tag density were restricted to transcripts that exceeded a 10kb coding region 

length and transcribed from the sense strand. This was to keep the TSS aligned across transcript 

regions for accurate assessment. 

All other analysis settings were used in parallel to GR ChIP-Seq methods except for the DESeq2 

analysis. Raw tag counts were normalised to total sequenced tags within replicates to avoid individual 

tags being counted multiple times and biasing the normalisation. These were based on methods 

previously published (Stavreva et al., 2015). 

4.4 Results 

4.4.1 ChIP assay validation 

ChIP-Seq samples were aligned to the Rn6 genome and normalised to 10million tags for comparison 

and visualisation using the UCSC genome browser. Prior to Seq, aliquots of each ChIP assay were 
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analysed for pSer2 Pol2 enrichment at the known GR regulated target, the clock gene Per1. Previously, 

increased Per1 nascent RNA production has been reported to be synchronised to rising and falling 

corticosterone levels, which were also associated to phasic GR binding at the distal upstream 

regulatory GRE (-2.5kb from the Per1 TSS) (Stavreva et al., 2009; Conway-Campbell et al., 2011). RT-

qPCR primers designed as positive and negative controls for GR binding at the distal GRE and an 

intronic region (intron 16) (Table 2) respectively, can still be used to investigate pSer2 Pol2 occupancy, 

but as recruitment is expected to be confined to within coding regions, the intronic primer becomes 

the positive control whilst the intergenic, distal GRE site would act as negative control.  

Two-way ANOVA of pSer2 Pol2 occupation of the distal GRE site indicated an effect of infusion pattern 

(p<0.0001) but not of time (p=0.2137), however, there was a significant interaction between the two 

(p=0018). Post-hoc analysis revealed a lack of significant differences in pSer2 Pol2 enrichment 

between the corticosterone pulse peak (140min) and nadir (180min) (0.72 ±0.11 and 0.41 ±0.04 

respectively) and neither was significantly different to VEH control at either 140min or 180min infused 

time points (0.46 ±0.06 and 0.48 ±0.06 respectively) (Figure 4.1 A). Therefore, no change in pSer2 Pol2 

was detected at the upstream GRE in response to a pulsatile infusion of corticosterone as expected at 

an intergenic site. In contrast, constant infusion resulted in ~2-3 fold increase in pSer2 Pol2 enrichment 

at both 140min and 180min infused time points, which were significantly raised to matched VEH and 

pulsatile corticosterone infused time points (p<0.001 and p<0.0001 respectively). Despite two-way 

ANOVA indicating a significant interaction between time and infusion pattern, there was no significant 

difference of RNA Pol2 enrichment detected between 140min and 180min of constantly infused 

corticosterone (1.36 ±0.16 and 1.46 ±0.1 respectively). I postulate the observed significant interaction 

is due to the non-significant trend of increased pSer2 Pol2 enrichment at the corticosterone pulse 

peak in response to a pulsatile infusion. 
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Figure 4.1 Assessment of positive and negative control sites for pSer2 Pol2 occupation to the clock 

gene Per1. 

ChIP assay samples used in the Seq analysis, were evaluated by RT-qPCR to the distal GRE 2.5kb 

upstream of the clock gene Per1 (A). For pSer2 Pol2 enrichment at the Per1 distal GRE, two-way 

ANOVA detected a highly significant effect of corticosterone infusion pattern (p<0.0001), no 

significant effect of time (p=0.2137), but a significant interaction between pattern and time (p=0018). 

(B) At the Intron16 site, two-way ANOVA detected a highly significant effect of infusion pattern 
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(p<0.0001), no significant effect of time (p=0.3786), but a highly significant interaction between 

pattern and time (p<0.0001). All significant differences detected by Bonferroni multiple comparison 

post-tests are shown on the graphs, with comparisons between corticosterone infused and VEH 

infused controls represented by & symbols, comparisons between time points (within infusion pattern)  

represented by * symbols, and comparisons between infusion pattern (at the same timepoint) 

represented by $ symbols. All data are expressed as mean ± s.e.m. Significance values are *,$,&p<0.05, 

**,$$,&&p<0.01, ***,$$$,&&&p<0.001, ****,$$$$,&&&&p<0.0001. (C) GR binding was visualised 

using the UCSC genome browser ChIP-Seq tag density pile around the Per1 coding region (bottom 

maroon track) of chromosome 10 (chr10:55,682,284-55,700,077). The site of the distal GRE is 

indicated by the left black line and intron16 by the right black line. Replicate traces for pulsatile (blue) 

and constant (red) corticosterone infusions at 140 and 180min timepoints are shown relative to VEH 

(black). pSer2-RNA Pol2 tag density traces within the Per1 gene coding region boundaries (highlighted 

in yellow), as well as upstream and downstream of Per1 coding region boundaries, are visibly and 

markedly increased for all corticosterone infused groups relative to VEH infused control groups. 

Chromosome number as well as 10kb scale bar indicated at the top of the genome browser shots. At 

the bottom, Per1 is transcribed from the anti-sense strand (left to right) and intron/ exon coding region 

(exon within intragenic maroon blocks) locations from Ensembl rn6 co-ordinates are indicated. Data 

normalised to 10million tags and y-axis 0-40. 

Despite the surprising enrichment of pSer2 Pol2 at the intergenic GRE region, occupancy was 

investigated at the Per1 intronic site. Two-way ANOVA analysis indicated an effect of infusion pattern 

(p<0.0001) but not of time (p=0.3786), however, a significant interaction was observed (p<0.0001). 

Post hoc analysis reported no significant difference in enrichment between pulsatile peak and nadir 

(0.65 ±0.07 and 0.44 ±0.04 respectively) or to either VEH infused time point (0.52 ±0.04 and 0.56 ±0.09 

respectively). However, in response to a constant corticosterone infusion, both 140min and 180min 

time points (1.4 ±0.12 and 1.72 ±0.1 respectively) were significantly raised ~2-3 fold to time-matched 

pulsatile corticosterone and VEH time points (p<0.0001) (Figure 4.1 B). 

Interestingly, the pattern of pSer2 Pol2 binding in response to the different patterned corticosterone 

and VEH infused time points were relatively similar at both sites (inter- and intra-genic). Therefore, as 

before, we visually inspected tag enrichment of aligned Seq data using the UCSC genome browser over 

a 17.5kb region encompassing and extending the Per1 TSS and 3’ end (Kent et al., 2002). Subjective 

assessment of the distal primer site indicated tag density in response to pulsatile corticosterone 

infusion was marginally increased at the pulse peak compared to both corticosterone nadir and VEH 

UCSC tracks. Increased tag density was observed at 140min of constantly infused corticosterone 
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compared to all other patterned corticosterone and VEH infused time points, whilst the tag density 

after 180min of constantly infused corticosterone was more similar to the corticosterone pulse peak. 

Subjective assessment of the UCSC tracks at the position of the intron 16 RT-qPCR primer site, 

indicated overall pSer2 Pol2 tag density levels were much lower compared to the distal GRE site across 

all conditions. However, when comparing between conditions at both distal and intronic sites, pSer2 

Pol2 tag densities appeared to differ in a pattern dependent manner. pSer2 Pol2 occupancy was 

increased at the corticosterone pulse peak (140min) compared to nadir (180min), whereas constant 

corticosterone infusion induced increased occupancy across both matched time points. All of which 

were raised to VEH control. Due to the relatively low tag density at the intronic site however, the 

results observed in the RT-qPCR data are not easily visible. Furthermore, tag density was not 

concentrated within the Per1 coding boundaries and extended well past the distal GRE site. Together, 

data visualised within the UCSC genome browser tracks strongly indicated regions chosen for our 

initial RT-qPCR assessment were far from ideally positioned and not suitable as positive or negative 

controls.  

Unlike at Per1, it was discovered upon further inspection of UCSC genome browser tracks other known 

GC regulated targets such as serine dehydratase (Sds), Tat and Gilz; increased pSer2 Pol2 tag density 

was distributed in a defined manner to distal intergenic region densities, that was within annotated 

gene boundaries (TSS and 3’ boundaries of intergenic regions) but often extended marginally into the 

5’ and 3’ UTR of select genes (Figure 4.2) (Jantzen et al., 1987; Su and Pitot, 1992; Wang et al., 2004).  

In response to a pulsatile corticosterone infusion, pSer2 Pol2 occupancy across all three targets 

appeared to be increased at the pulse peak compared to the nadir, indicating phasic, corticosterone 

synchronised increases in occupation. Interestingly, there was negligible pSer2 Pol2 tag density in the 

VEH control for Sds and Gilz (Figure 4.2). In contrast however, pSer2 Pol2 density within the Tat coding 

region, was visibly enriched in response to the VEH controls. In response to a pulsatile corticosterone 

infusion, tag density was marginally increased at the pulse peak (140min), but noticeably reduced by 

the nadir (180min) in comparison to the raised VEH levels. Indicating modulation of basal active 

transcription.   
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Figure 4.2 pSer2 Pol2 tag distribution over intragenic GC regulated gene regions. 

Sequenced tag distribution of pSer2 Pol2 replicates in response to pulsatile, constant and VEH infusion 

after 140min and 180min was visualised using the UCSC genome browser within and extending from 

the TSS and 3’ end of the GC regulated targets Sds (41,613,118-41,635,053b), Tat (41,665,082-

41,696,752b) and Gilz (111,880,663-111,891,528b). pSer2 Pol2 occupation in response to a 

corticosterone or VEH infused time point is concentrated throughout intragenic, coded regions 

(highlighted in yellow) but often extends from the 5’ and 3’ end before returning to negligible levels. 

Chromosome number as well as 10kb and 5kb scale bars are indicated at the top of the genome 

browser shots. At the bottom, Sds, Tat and Gilz intron/ exon coding region (exon within intragenic 

maroon blocks) locations from Ensembl rn6 co-ordinates are indicated as transcribed from the anti-

sense strand (right to left). Data normalised to 10million tags and y-axis 0-230.  

In response to a constant corticosterone infusion, pSer2 Pol2 tag density (whilst variable between 

genes) was similar across time points for each respective gene. Compared to corticosterone pulse 

peak, constant corticosterone induced half maximal pSer2 Pol2 tag density within the Sds intragenic 

region, whilst Tat and Gilz were similar at both 140min and 180min infused time points. Subjectively, 

results indicate pSer2 Pol2 occupancy can be altered by infused corticosterone patterns in a similarly 

dynamic manner to previously reported GR recruitment profiles (Chapter 3). Additionally, I present 

evidence of gene specific basal pSer2 Pol2 occupancy in response to a VEH infusion at GC regulated 

genes within the liver of ADX rats.  
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In reference to the suitability of the Per1 primer sites tested as positive and negative controls for pSer2 

Pol2 occupancy; inspection of UCSC track data indicated Per1 was far less ideal for measuring robust 

changes in pSer2 Pol2 occupancy compared to other candidate GC target genes. Intra- and intergenic 

associated tag density levels were very low as the track height was set to 40 for Per1 whereas other 

GC targets were set to 140. Further, tag densities were not defined between coded (intragenic) and 

non-coded (intergenic) regions in comparison to Sds, Tat and Gilz coded regions (Figure 4.1 & Figure 

4.2). Therefore, Per1 primers were determined to be ineffective negative and positive controls for 

pSer2 Pol2 analysis, but as visual inspection of other GC regulated targets indicated patterned 

corticosterone effects, analysis was continued across the genome. 

4.4.2 pSer2 Pol2 tag enrichment detection 

De novo pSer2 Pol2 enrichments were analysed using MUSIC, MACS2, findPeaks and hotspot peak 

detection algorithms. Upon visual inspection, enrichment regions were highly fragmented throughout 

key GC targets due to highly stochastic pSer2 Pol2 broad enrichments, as observed within Figure 4.1 

and Figure 4.2 (Lee and Schatz, 2012; Harmanci, Rozowsky and Gerstein, 2014). Efforts to merge 

regions within suitable distances proved inaccurate, particularly when genes were within proximity to 

other 3’ and 5’ ends of other genes. Therefore, based on previously published methods (Stavreva et 

al., 2015), pSer2 Pol2 enrichment was assessed according to the 5’ and 3’ loci of coding regions from 

the Ensembl genome (Rn6). Transcript regions smaller than twice the sequenced fragment lengths 

were removed, and regions restricted to 10kb if the transcript was longer.  

4.4.3 pSer2 Pol2 assessment of replicate concordance 

Pearson correlation coefficient analysis was applied for each corticosterone and VEH infused time 

point between replicates. Results indicated a large positive strength of association and concordance 

between replicates (>0.91) (Figure 4.3). As the same number of regions were investigated for all 

replicates, no indications can be made of the ability of a patterned corticosterone or VEH infused time 

point to induce changes between conditions. It should be noted, that even though strong Pearson 

correlation coefficients were reported, as a large number of regions are plotted (>11,000), non-

concordant data could potentially be masked. Furthermore, gene variant genomic co-ordinates 

overlap, duplicating sequenced reads within the data, potentially biasing results.  



 

90 
 

 

Figure 4.3 Characterisation of replicate concordance and distribution of intragenic region lengths 

investigated. 

2D histograms of concordant enrichment tag counts (log2) within Ensembl coded regions for each 

replicate in response to either pulsatile (A) or constant corticosterone infusion (B) as well as VEH 

infusion (C) at 140min (i) and 180min (ii) time points. Pearson correlation coefficient analysis indicated 

strong replicate concordance (r>0.9) for all datasets. (D) Distribution of Intragenic regions lengths that 
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were >620b and limited to 10kb were plotted within the histogram. Percentiles reported minimum = 

321b, 25th percentile = 2,606b, median =10kb, 75th percentile = 10kb, Mean = 10kb and maximum 

=10kb. 2D histograms plot normalised tag counts to 10 million with x and y-axis segmented into 100 

bins; the number of regions within each bin is indicated by legend (log2) and images were produced by 

EASeq (Lerdrup et al., 2016). 

4.4.4 pSer2 Pol2 tag density and distribution from the TSS 

To investigate concordance between replicates, distribution of pSer2 Pol2 sequenced normalised tags 

upstream and downstream of the TSS was assessed for all conditions within 10kb coded regions on 

the sense strand only, to avoid plot misalignment of the TSS within histograms. Across corticosterone 

and VEH infused time points, maximal enrichment of sequenced tags was concentrated at +62.5b 

±5.39 s.e.m. from the TSS (Figure 4.4 C). As the histograms plot a well-defined peak for all conditions 

and replicates, data indicates an increased concentration of pSer2 Pol2 occupancy just downstream 

of the TSS that is maximally variable between infused time points. Greatest tag density was observed 

in response to a constant corticosterone infusion replicates at 140min (4.6 and 3.99 per base per 

region) (Figure 4.2 Bi). The second highest density was observed in a single replicate (2.63 per base 

per region) in response to a pulsatile corticosterone infusion at the pulse peak (140min). In 

comparison, reduced tag density was reported for the second replicate (1.99 per base per region) 

(Figure 4.2 Ai) which was within the range of other corticosterone and VEH infused maximal tag 

densities. 
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Figure 4.4 Replicate pSer2 Pol2 tag density, distribution and distance from TSS. 

Tag density regions were restricted to coding regions equal to 10kb from the TSS and coded on the 

sense strand. Within these regions, tag density changes within -5kb to +15kb of the TSS were plotted 

using histograms in overlay for each replicate within each group, including pulsatile (A) or constant 

corticosterone (B) infusion at times 140min (i) and 180min (ii), compared to VEH (C) infusion. Some 

variation in replicate tag density and distribution can be visualised in these plots. Therefore, area 

under the curve analysis (D) was used to assess overall changes within a 0-10kb region from the TSS. 

Tags were normalised to 10 million and segmented in 5b bins, spanning -5kb and +15kb in each 
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direction from TSS. Tag density area under the curve was analysed between 0kb to +10kb of the TSS 

(un-shaded area). 

Despite the reported changes in maximal tag densities, differential analysis assesses tag enrichment 

across the coding region to a maximal length of 10kb. Therefore, area under the curve analysis was 

used to assess potential changes in enrichment. Similarly to maximal tag density values, the greatest 

value was recorded in response to the constant corticosterone infusion after 140min (11.09 and 10.4 

per base per region x kb) which was reduced by 180min (10.19 and 9.49 per base per region x kb) 

(Figure 4.2 D). Area under the curve results were lowered in response to both VEH (9.14 and 8.54 per 

base per region x kb respectively) and pulsatile corticosterone at 140min (8.92 and 8.50 per base per 

region x kb) and 180min (9.10 and 8.73 per base per region x kb) infused time points. Observations of 

median values indicated a slight drop in response to the corticosterone pulse peak (140min) compared 

to nadir (180min) and VEH infusions, however, as standard deviation between these conditions 

overlapped it is difficult to interpret.  

Together these data indicate that tag density between replicates is similar when viewed across a 10kb 

intragenic region and patterned corticosterone infusion induces alterations in pSer2 Pol2 occupancy. 

4.4.5 Detection of significant changes in pSer2 Pol2 occupancy 

Prior to any differential analysis, VEH replicates were analysed at all binding regions by DESeq2 and 

no significant differences in tag density were detected (data not shown); therefore, both VEH 

replicates were pooled.  

To investigate statistically relevant corticosterone induced changes in pSer2 Pol2 occupancy relative 

to VEH control, total Seq raw tag counts were normalised and analysed by DESeq2. In response to a 

pulsatile corticosterone infusion, a greater number of regions were differentially enriched (relative to 

VEH control) for pSer2 Pol2 at the corticosterone pulse peak (140min) (Figure 4.5 A) compared to nadir 

(180min) (Figure 4.5 B). Volcano plots also indicate data is skewed towards a loss in pSer2 Pol2 

occupancy at both pulsatile infused time points.  
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Figure 4.5 Modulation of pSer2 Pol2 enrichment over time during pulsatile and constant 

corticosterone infusion. 

Volcano plots showing changes in pSer2 Pol2 tag density enrichment in response to pulsatile 

corticosterone infusion at 140min (corticosterone pulse peak) (A) and at 180min (corticosterone pulse 

nadir) (B) as well as constant corticosterone infusion at 140min (C) and 180min (D) relative to VEH 

control. Significant changes in pSer2 Pol2 enrichment within Ensembl gene coding regions (indicated 

in red) appeared to be greatest in the 140min pulsatile corticosterone dataset, which was markedly 

reduced in the 180min pulsatile corticosterone dataset. In contrast, number of intragenic regions 

subject to significant increased or decreased pSer2 Pol2 enrichment appeared similar between the 

constantly infused corticosterone time points. X-axis indicates fold change (log10) and y-axis the 

adjusted p-value (-log10). 

Subjectively, little difference was observed between the distribution of significantly gained or lost 

pSer2 Pol2 occupied targets after 140min and 180min constant corticosterone infused time points 
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(Figure 4.5 C & D). However, the number of differentially regulated regions appeared to be reduced 

to corticosterone pulse peak but raised to corticosterone pulse nadir with no obvious bias for gain or 

loss in pSer2 Pol2 occupancy. Interestingly, there were no indications within the DESeq2 analysis of 

the increased enrichment of pSer2 Pol2 as indicated by area under the curve data in response to 

constant corticosterone infusion (Figure 4.4 D). This is potentially due to the normalisation of tag 

counts within the DESeq2 analysis. 

With reference to the clock gene Per1 investigated previously (Figure 4.1), DESeq2 analysis indicated 

pSer2 Pol2 enrichment fold change to VEH was greater than significance thresholds. However, the 

adjusted p-value did not pass significance threshold (>0.433) (data not shown). Therefore, this study 

could not identify Per1 as a robust, pattered corticosterone regulated targets within these conditions 

and analyses. 

4.4.6 pSer Pol2 dynamics 

Out of all the regions assessed for pSer2 Pol2 occupancy, only individual Ensembl gene IDs were kept 

for downstream analysis. If multiple variants were significantly regulated, the region with the greatest 

cumulative fold change across corticosterone infused time points was kept. All other regions, as well 

as those with no significant change in response to corticosterone were removed, revealing a total of 

715 targets as differentially regulated by a single, or combination of, pattern corticosterone infused 

time points relative to VEH control (Figure 4.6). 

In response to a pulsatile corticosterone infusion, 77.3% of regulated targets had significantly altered 

pSer2 Pol2 enrichment relative to VEH control at the pulse peak (140min) which was reduced to 14.5% 

of targets within the nadir (Figure 4.6). At both time points, the majority (~3/4) had significantly 

decreased pSer2 Pol2 enrichment relative to VEH control, albeit more distinct within the pulse peak 

due to the greater number of targets. Taken together, these data report that pulsatile corticosterone 

infusion can induce phasic and synchronised changes in pSer2 Pol2 occupation to the corticosterone 

pulse peak over specific genes, which was decreased across the majority of targets. Indicating a down-

regulation of transcription that would be more distinct at the pulse peak than nadir. 
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Figure 4.6 Pattern and time dependent pSer2 Pol2 genome-wide enrichment profiles. 

pSer2 Pol2 tags were normalised to total sequenced tag counts and significant fold changes were 

defined as >0.585 or <-0.585 (log2), p-value <0.05 adjusted for multiple comparisons and FDR <0.05 

from VEH control. Only the greatest cumulative fold change for each target variant is reported. (A) 

pSer2 Pol2 differentially increased (cyan) or decreased (yellow) enriched regions were hierarchically 

clustered according to amplitude of fold changes in response to each corticosterone infused time 

point. Heatmap colour intensity indicates degree of fold change (log2) as shown within the legend 

(top left) as well as distribution (white trace). (B) Table reports the number of pSer2 Pol2 differentially 
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intragenic regions and direction of change by either pulsatile or constant corticosterone infusion at 

140 and 180min time points, relative to VEH control.  

In response to 140min constantly infused corticosterone, 35.5% of regions were differentially enriched 

for pSer2 Pol2, which was marginally increased to 38.9% by 180min. Contrary to the pulsatile 

corticosterone infusion effects, ~3/4 regions reported an increased pSer2 Pol2 enrichment at the 

constantly infused matched time point for the corticosterone pulse peak. This was not observed by 

180min, as the total numbers of increased or decreased pSer2 Pol2 enriched regions were equally 

distributed.  

Together, these data indicate that changes in pSer2 Pol2 occupation are synchronised to oscillating 

corticosterone levels and GR binding dynamics at select genes, which became dysregulated by a 

constant corticosterone infusion. I also report distinct differences in transcription between infusion 

patterns, as pulsatile corticosterone exposure was more effective at inducing repression whilst 

constant exposure was more effective at activation of the majority of genes.  

To investigate if an individual corticosterone infused time points was more effective at inducing 

changes in pSer2 Pol2 occupation, the distribution of fold change values to VEH was investigated. Time 

dependent differences in response to either infusion pattern indicated percentile values for both 

increased and decreased pSer2 Pol2 occupancy fold change were greatest at 140min compared to 

180min (Figure 4.7 B).  

Comparison of percentile values between infusion patterns, indicated losses of pSer2 Pol2 occupancy 

were greater at the pulsatile infused, corticosterone peak (140min) compared to either constant 

infused time point, whilst 140min of constantly infused corticosterone induced the greater percentiles 

of fold change for increases in pSer2 Pol2 enrichment. Corticosterone pulse peak nadir (180min) had 

the lowest percentile fold change values whether pSer2 Pol2 enrichment was increased or lost. These 

results validate previous observations within Figure 4.6. 
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Figure 4.7 Distribution of fold change and p-values of differentially regulated pSer2 Pol2 intragenic 

regions. 

(A) Distribution of fold increased or decreased (log2) pSer2 Pol2 enrichments within intragenic regions 

against respective p-values were plotted in response to corticosterone infused time points compared 

to VEH control were plotted. (B) Table reports quartile values for both gained and lost fold changes 

(log2) in pSer2 Pol2 enrichment in response to each corticosterone infused time point compared to 

VEH control. pSer2 Pol2 tags were normalised to total sequenced tag counts and regions filtered for 

enrichment fold changes >0.585 or <-0.585 (log2), p-value adjusted for multiple comparisons <0.05 

and FDR<0.05 from VEH control. Only the greatest cumulative fold change for each target variant is 

reported. 
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I then investigated if a combination of patterned corticosterone infused time points were more 

effective at inducing changes in pSer2 Pol2 enrichment within the same region. Results report pulsatile 

corticosterone infusion at the pulse peak (140min) alone induced changes in the greatest number of 

regions, regulating 297 genes (Figure 4.8). Interestingly, the next largest number of regions were 

regulated by a combination of 140min constant only (77 genes), 140min pulsatile/ 180min constant 

(73 genes) or 140min pulsatile/ 140min constant/ 180min constant (78 genes) corticosterone infused 

time points. This is of interest as these combinations of time points are all associated with raised 

circulating corticosterone levels (Figure 2.3), unlike the negligible levels found at the pulsatile 

corticosterone nadir (180min). Indicating a strong correlation between raised circulating 

corticosterone and inducible changes in pSer2 Pol2 occupation.  

 

Figure 4.8 Number of pSer2 Pol2 enrichments regulated by one or multiple corticosterone pattern 

infused time points. 

Intragenic regions were investigated for differential pSer2 Pol2 recruitment, relative to VEH control in 

response to corticosterone infused time points. Regions were plotted according to whether a single or 

multiple corticosterone infused time point induced changes in occupancy. The largest number of 

regions were regulated by 140min pulsatile corticosterone infusion only, equal to 42% of all 

corticosterone regulated regions. The next largest number of regions were regulated by three 

combinations of infused time points including 140min constant only; 140min pulsatile and 180min 

constant; 140min pulsatile, 140min constant and 180min constant corticosterone infusion. These 

represent 10-11% of all regulated regions. Total number of differentially pSer2 Pol2 recruited 

intragenic regions by each corticosterone infused time point is indicated by the bottom left horizontal 
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bar chart. Regulation by a single or multiple infused time point are indicated by spots and the number 

directly above the corresponding bar. Colour indicates whether a single (black), two (blue), three 

(green) or all four (red) infused time points differentially regulated pSer2 Pol2 occupancy and were 

plotted using UpSetR (Conway, Lex and Gehlenborg, 2017). 

4.4.7 Time and pattern dependent pSer2 Pol2 occupancy 

Similar to previous GR ChIP-Seq data; because pulsatile corticosterone infusion regulated distinct 

changes in pSer2 Pol2 occupation compared to constantly infused time points, time and pattern 

dependent differences between corticosterone infused time points were investigated by DESeq2 

analysis.  

Significant time dependent changes in pSer2 Pol2 enrichment between the corticosterone pulse peak 

(140min) and nadir (180min) were detected at 60.3% of regions in response to a pulsatile 

corticosterone infusion. This indicated robust phasic changes in pSer2 Pol2 occupation (Figure 4.9), 

whereas, in response to the constant corticosterone infusion, just 14.1% of sites were regulated. 

Significant pattern dependent changes were investigated at either corticosterone pulse peak (140min) 

or at the nadir (180min) and compared to both 140min and 180min of constantly infused 

corticosterone. Pulsatile corticosterone peak induced differential enrichment in 35.4% of regions, 

which was reduced to 15.9% in response to 140min and 180min constant infused time points 

respectively. Though a greater degree of differentially regulated regions were identified between the 

pulsatile corticosterone nadir and either constant infused time point (27.7% and 24.1% respectively).  

Together, these data indicate robust, pulsatile corticosterone synchronised pSer2 Pol2 occupancy 

across majority of targets is dysregulated by a constant corticosterone infusion. Interestingly, unlike 

the GR ChIP-Seq data, there were more differences at 140min between the pulsatile and constant 

infusions compared to the 180min time point, most likely due to the differing induction of inhibition 

and activation by the two patterns. Particularly as these data indicate pro-longed corticosterone 

induced transcription which was also reported for GR binding in response to a constant infusion. 
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Figure 4.9 Changes in pSer2 Pol2 occupancy in response to infused patterned corticosterone time 

points. 

Heatmap visualisation of pSer2 Pol2 differentially increased (cyan) or decreased (yellow) enriched 

regions, hierarchically clustered according to amplitude of fold change in response to each 

corticosterone infused time point. First four rows indicate fold change (log2) of corticosterone infused 

time points against VEH control. The next two rows below represent time dependent changes between 

140min and 180min infused time points in response to a pulsatile infusion and then constant 

corticosterone infusion. The next double rows represent comparisons between 140min pulsatile 

corticosterone (corticosterone pulse peak) against either 140min or 180min constant corticosterone 

infusion. Final two rows represent comparisons between 180min pulsatile corticosterone infusion 

(corticosterone pulse nadir) against either 140min or 180min constant corticosterone infusions. pSer2 

Pol2 tags were normalised to total sequenced tag counts and regions filtered for enrichment fold 
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changes >0.585 or <-0.585 (log2), p-value <0.05 adjusted for multiple comparisons and FDR<0.05 from 

VEH control. Only the greatest cumulative fold change for each target variant is reported and heatmap 

colour intensity indicates degree of fold change (log2) as shown within the legend (top right) as well 

as distribution (white trace). 

4.5 Discussion 

pSer2 Pol2 enrichment at a selection of targets within the liver has been shown to be highly phasic in 

response to mock ultradian pulses of corticosterone delivered into the circulation of adrenalectomised 

rats that are not intrinsic as dynamics become dysregulated in response to a matched constant 

corticosterone infusion. I therefore report, within the liver, both GR binding as well as transcriptional 

regulation is robustly regulated by ultradian corticosterone rhythms and their dysregulation. 

Interestingly, as with the induction of GR binding, pulsatile corticosterone infusion at the pulse peak 

(140min) induced changes in pSer2 Pol2 occupancy within the greatest number of genes compared to 

any other corticosterone infused time point (Figure 4.6). Further, I report differing patterns of 

corticosterone exposure can opposingly regulate transcriptional activity, as 3 out of 4 differentially 

occupied targets reported a loss in pSer2 Pol2, indicating a repressive transcriptional effect of pulsatile 

corticosterone exposure. In contrast at the matched time point, constantly infused corticosterone 

induced the opposite in 36% of regulated genes, indicating overall activation of transcription. 

Together, these data report differing patterns of corticosterone exposure in vivo can have distinct and 

opposing transcriptional effects within the rat liver. A previous study using Affymetrix GeneChip 

technology to investigate the effects of a 20min 100nM corticosterone administration on nerve 

growth factor-differentiated catecholaminergic (PC12) cells, found only downregulation of GC 

responsive genes within 1hr of hormone washout. However, upregulation of genes was detected 

much later, at the 3hr timepoint (Morsink et al., 2006). This is of interest as my data within the liver 

indicates a predominantly repressive action of transcription in response to acute, transient pulsatile 

corticosterone exposure, but the opposite during constant corticosterone infusion. In contrast, a 

genome-wide study assessing dynamic pSer5 Pol2 occupancy in mouse mammary adenocarcinoma 

cells at the MMTV array found mostly increased pSer5 Pol2 occupancy in response to both a pulsatile 

and constant corticosterone treatment over 60min (Stavreva et al., 2015). Despite similarities in 

analyses methods, there were a number of different conditions; my study investigated occupancy of 

a different phosphorylated forms of RNA Pol2, within an animal model as opposed to an artificial 

construct in a cell line, doses of corticosterone cannot be matched and widely differing time points 

were analysed. Therefore, it is difficult to compare confidently across studies other than identifying 

both show differing patterns of corticosterone exposure modulates transcriptional activity. Similar 
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issues arise when comparing other in vivo studies. hnRNA microarray or pSer5 Pol2 ChIP-Seq analysis 

within adrenalectomised rat livers revealed the proportion of differentially occupied targets was 

slightly skewed towards repression after 6hr or 1hr Dex administration respectively (Duma et al., 2010; 

Grøntved et al., 2013). But, ligand specific effects cannot be discounted, as the study by Stavreva., et 

al. (2015) reported an overall loss of RNA Pol2 occupation in response to Dex, whereas corticosterone 

was inducive (Stavreva et al., 2015). Together, these data highlight the importance of physiologically 

relevant, dynamic GC regulation of transcription as well as the need for clarity in response to differing 

patterns as well as differing GC ligands within in vivo models of biological systems as opposed to 

artificial constructs such as the MMTV array. 

An intriguing density profile was discovered during the interrogation of pSer2 Pol2 tag distribution 

around the TSS. Distinct peaks of sequenced tags were consistently observed in response to any 

corticosterone and VEH infused time point between +35b to +95b from the TSS, which could be 

explained by a promoter-pausing model of transcription (Figure 4.4). When RNA Pol2 is recruited to 

the promoter, the complex can enter the elongation phase and transcribe a short nucleotide sequence 

(about +50b in mammalian cells) prior to pausing that would explain the increased presence of RNA 

Pol2 at these positions (Rougvie and Lis, 1988; Muse et al., 2007; Core, Waterfall and Lis, 2008; Rahl 

et al., 2010; Quinodoz et al., 2014). This process has been described as a common bimodal model of 

RNA Pol2 occupancy and transcription within mammalian cells and to my knowledge has not been 

shown in this manner (Quinodoz et al., 2014).  

The investigation undertaken within this study identified a total of 715 corticosterone regulated genes 

to VEH control (Figure 4.6). This is a relatively restricted list when one considers the total number of 

genes within the Ensembl rat genome build. Whether my analysis was too restrictive or suitably 

sensitive is difficult to ascertain as a major analytical limitation was the inability to perform de novo 

identification of enriched pSer2 Pol2 occupied regions to background. Detection algorithms 

fragmented broad stochastic enrichments that were not overcome via merging of proximal regions 

and was further compounded when analysis was compared across corticosterone and VEH infused 

time points for differential analyses. Therefore, a method was adopted from a previous study by 

defining enrichment regions according to Ensembl (Rn6) genomic co-ordinates (Stavreva et al., 2015). 

It became evident during preliminary analysis via inspection of UCSC genome browser tag density 

traces, that broad pSer2 Pol2 enrichments often did not align with gene intragenic boundaries loci, 

indicating that despite improvements from previous iterations and genomic loci within the rat genome 

may not be suitably accurate for this type of analyses. As loci are based heavily on RNA Seq data, 

inaccurate intragenic boundary loci can be reported. Together, this can introduce a large degree of 
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error as indicated by UCSC genome browser screenshots for the GC regulated, metabolic target Lpin1 

(Figure 4.10). If the analysis included only the larger single variant, the pSer2 Pol2 enriched region 

would be missed. Due to the same tags being counted within overlapping variants and genes, tag bias 

could also be introduced to the DESeq2 normalisation. Despite these limitations, the method used in 

this study was the best available for this data, and whilst not perfect, still reports a selection of 

statistically significant and robust changes in hepatic transcriptional regulation in vivo. Satisfying the 

original aims of the research. 

 

Figure 4.10 Lpin1 variants and regions of pSer2 Pol2 enrichment analysed.  

Sequenced tag distribution of pSer2 Pol2 replicates in response to pulsatile, constant and VEH infusion 

after 140min and 180min were visualised using the UCSC genome browser within and extending from 

the TSS and 3’ end of the GC regulated target Lpin1 (41,788,031-41,881,762b). pSer2 Pol2 occupation 

in response to a corticosterone or VEH infusion is concentrated within the intragenic region for both 

variants. However, pSer2 Pol2 enrichment begins ~15kb downstream from the larger of the two 
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variants and upstream of the smaller variant TSS. Raised levels continue throughout and marginally 

past the 3’ end of both. As analysis was restricted to a 10kb region from the TSS (highlighted in yellow) 

only analysis of the smaller variant would incorporate increased pSer2 Pol2 tag densities. 

Chromosome number as well as 10kb and 5kb scale bars are indicated at the top of the genome 

browser shots. At the bottom, Lpin1 intron/ exon coding region (exon within intragenic maroon blocks) 

locations from Ensembl rn6 co-ordinates are indicated as transcribed from the anti-sense strand (right 

to left). Data normalised to 10million tags and y-axis 0-230. 

In conclusion, this data presents evidence that pSer2 Pol2 recruitment to a select number of targets 

within an ultradian corticosterone replacement paradigm, is strongly phasic and synchronised to rising 

and falling levels of circulating corticosterone and reported dynamic GR binding to the genome. My 

data further demonstrates that this well-regulated relationship, between ligand, receptor and 

transcriptional outcome becomes dysregulated when exposed to constant circulating corticosterone, 

with marked changes in transcriptional regulation of GC target genes over time. My study highlights 

the potential impact patterned GC exposure can have on a metabolically important target organ such 

as the liver.  
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Chapter 5 Characterisation of GR binding and RNA Pol2 occupancy 

and pathway analysis reveals potential mechanisms for 

glucocorticoid dysregulated pathologies. 

5.1 Background 

Over the last two chapters, I have shown how ultradian GC pulses induce synchronised phasic GR and 

RNA Pol2 binding across the genome. I report in Chapter 3 that of the 2,708 binding events induced 

at the pulse peak, all were lost by the nadir in response to a pulsatile corticosterone infusion. Similarly, 

but to a reduced degree, I report in Chapter 4 that 553 genes were differentially occupied at the pulse 

peak compared to just 104 by the nadir. Together, these data indicate robust phasic and synchronised 

GR binding as well as transcriptional activity by oscillating corticosterone levels. Interestingly, 

decreased pSer2 Pol2 occupancy was detected within majority of targets at both corticosterone peak 

and nadir; indicating an overall inhibitory effect. These dynamics were dysregulated in response to a 

dose-matched constant corticosterone infusion, as GR binding was no longer phasic but maintained 

in a prolonged manner and pSer2 Pol2 occupancy was also dysregulated. Interestingly, at the matched 

time point for the corticosterone pulse peak, constant infusion increased occupancy for majority of 

genes. Indicating phasic dynamics are distinctly dysregulated by a constant corticosterone infusion 

and I provide evidence that these changes induce opposing transcriptional activity. 

Within this chapter I will investigate the relationship between pattern dependent GR binding and 

pSer2 Pol2 occupancy of GC target genes. Additionally, using pSer2 Pol2 occupancy as a proxy for 

active transcription, I will perform functional pathway analysis on my identified set of pattern 

dependent differentially regulated genes to determine whether changes are associated with 

metabolic dysfunction or other disease states.  

5.2 Aims  

1) Investigate potential GR mediated effects of pSer2 Pol2 occupancy in response to patterned 

corticosterone. 

2) Assess pSer2 Pol2 changes in occupancy and their potential effect on metabolic downstream 

pathways. 

3) Identify key pathways and gene targets that are differentially regulated by different 

corticosterone patterned infusion, with particular focus on any that may play a significant role 

within metabolic dysregulation.  
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5.3 Methods 

All methods of analysis were done according to general methods discussed within Chapter 2. 

Briefly, GR binding sites as well as pSer2 Pol2 occupied sites that were significantly regulated by 

patterned corticosterone infusion compared to VEH control were used in all downstream analysis.  

Genic locations of GR binding sites as well as measurements of distance from the closest GR binding 

site to the TSS of a differentially pSer2 Pol2 occupied target was calculated using annotatePeaks.pl 

(HOMER) (Heinz et al., 2010) and graphs plotted using Prism v6.07 for Windows (La Jolla California, 

USA, www.graphpad.com). 

For the pathway analysis pSer2 Pol2 ChIP-Seq DESeq2 data were analysed via the Ingenuity Pathway 

Analysis package ©IPA (Qiagen Inc., https://www.qiagenbioinformatics.com/products/igenuity-

pathway-analysis). Enrichment of pathways were identified from genes with fold changes >1.5-fold 

and adjusted p-value <0.05 to VEH control and z-score predictions assessed from liver tissue and 

HepG3, hepatoma, hepatocyte cell lines as well as mice, rat and human published data. Positive and 

negative z-scores represent either predicted activation or inhibition respectively based upon the 

fraction of genes known to regulate the particular pathway and degree of fold change and significance. 

The greater the predictive confidence, the greater the z-score. Documentation indicates a z-score >2 

(or <-2) represents a significant prediction. Z-score values were plotted using GraphPad Prism v6.07 

for Windows (La Jolla California, USA, www.graphpad.com). 

5.4 Results 

5.4.1 Induction of GR binding and pSer2 Pol2 occupancy at select GC regulated targets 

The GC regulated targets Per1, Sds, Tat, Gilz and Lpin1 were visually inspected using the UCSC genome 

browser for validation of GR binding sites characterised within the literature as well as pSer2 Pol2 

regulated occupation. Previously, two transcriptionally regulating GR binding sites have been 

characterised for Per1, the distal of which has been described as ‘hypersensitive’ for GR binding (Reddy 

et al., 2012). In the human alveolar epithelial A549 cell line, these two GRE containing GR binding sites 

were identified 2kb upstream of the TSS and within intron1 according to the hg19 version of the 

human genome (Reddy et al., 2012). Whereas in the mouse liver, as well different cell lines, both GR 

binding sites were found within the first intron. It should be noted, the genome build was not indicated 

by the authors, making it difficult to make comparisons between studies (Grøntved et al., 2013). 

Together this data indicates two GR binding sites are conserved between mammals and genome 

builds, but variable in location to the TSS. In my data, two corticosterone regulated GR binding sites 
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were discovered at ~-1kb (chr10:55,685,633-55,686,257) and ~-3.5kb (chr10:55,683,482-55,684,046) 

upstream of the TSS. Both were bound by GR at all corticosterone infused time points except for pulse 

nadir (180min) (Figure 5.1). However, investigation of significant corticosterone time and pattern 

dependent changes were highly variable. Despite a 16- and 17-fold induction of GR binding at the ~-

1kb and ~-3.5kb binding sites respectively in response to the corticosterone pulse peak (140min), no 

significant changes were reported to the corticosterone pulse nadir (180min) at either site. Indeed, 

no significant changes were detected between corticosterone infused time points at the proximal ~-

1kb site. Whereas, at the distal site (which has been described as ‘hypersensitive’), a 2.4-fold time 

dependent induction of GR binding was detected at 140min compared to 180min constant 

corticosterone infusion. This increase at 140min of constantly infused corticosterone was also 

significantly pattern dependent, as GR binding was ~2.2 fold increased at the corticosterone pulse 

peak (140min). No significant changes in pSer2 Pol2 occupation of Per1, however, were detected in 

response to any infused corticosterone condition compared to VEH control. 

 

Figure 5.1 GR and pSer2 Pol2 sequenced tag density profiles across the glucocorticoid target genes 

Per1, Sds, Tat, Gilz and Lpin1. 

GR and pSer2 Pol2 replicate sequenced tag density distribution in response to pulsatile, constant and 

VEH infusion at 140min and 180min was visualised using the UCSC genome browser. Chromosomal 

loci shown are chr10 55,678,227-55,704,917b (Per1), chr12 41,616,490-41,638,425b (Sds), chr19 
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41,673,112-41,694,225b (Tat), chrX 111,881427-111,892,292b (Gilz) and chr6 41,790,201-

41,895,649b (Lpin1). Regions analysed for differential pSer2 Pol2 enrichment are indicated in yellow. 

Any GR and pSer2 Pol2 tag densities reported as significantly differentially enriched to VEH control are 

indicated by black boxes underneath replicate traces. Chromosome number as well as 10kb and 50kb 

scale bars are indicated at the top of the genome browser shots. At the left, Per1 is transcribed from 

the sense strand (left to right) whereas Sds, Tat, Gilz and Lpin1 are transcribed from the antisense 

strand (right to left) as indicated by arrows. The reference gene track at base of figure shows the 

Intron/ exon coding region (exon within intragenic maroon blocks) locations from Ensembl rn6 co-

ordinates . Data normalised to 10million tags and y-axis was set to-0-250.  

Sds is an enzyme that catalyses the deamination of serine (derived from glycine) into pyruvate within 

gluconeogenesis and changes in mRNA levels have been shown to be robustly circadian and Dex 

responsive (Sandoval and Sols, 1974; Kanamoto, Su and Pitot, 1991; Ogawa and Ansai, 1995; Ogawa 

et al., 2002). Two synergistic GR binding sites were identified in rat hepatoma (7AD-7) cells >5kb 

upstream of the TSS, of which the distal was reported to confer the greater transactivator effect (Su 

and Pitot, 1992). In my data, three corticosterone induced GR binding sites were identified ~-2kb 

(chr12:41,629,565-41,629,959), ~-5kb (chr12:41,632,348-41,632,972) and ~-8.5kb (chr12:41,636,073-

41,636,697) upstream of the larger coding variant TSS. The previously characterised GR binding sites 

are most likely the two most distal sites in our data (Su and Pitot, 1992). Interestingly, both the 

proximal and distal GR binding sites were bound in response to a corticosterone pulse peak (140min), 

whereas the central GR binding site was responsive to all corticosterone infused timepoints apart from 

pulse nadir (180min). The most proximal and central GR binding sites were induced in a significantly 

phasic, time dependent manner 42- and 24-fold respectively, by the corticosterone pulse peak 

(140min) compared to nadir (180min). None were differentially regulated between constant 

corticosterone timepoints, despite a 4.8-fold enrichment to VEH control at the central binding site. 

Only the central site reported a significant pattern dependent difference with a 10-fold decrease at 

the pulse nadir (180min) compared to constant infusion (180min). pSer2 Pol2 occupation was induced 

in a phasic manner by a pulsatile corticosterone infusion, with occupancy increased 3.3-fold at the 

corticosterone pulse peak (140min) compared to nadir (180min). No changes were detected across 

constantly infused timepoints despite the 5.9-fold enrichment to VEH control. There were significant 

pattern dependent differences in pSer2 Pol2 enrichment, with a 1.9-fold increase at pulse peak 

relative to constant infusion at 140min and a 3.3-fold decrease at pulse nadir relative to constant 

infusion at 180min. This data indicates robust and synchronised corticosterone pattern dependent 

changes in both GR binding and pSer2 Pol2 occupation of Sds. Further, the central GR binding site may 
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confer the greatest regulatory action, whilst the other two sites may act synergistically to confer 

patterned corticosterone regulation of pSer2 Pol2 occupation.  

Tat is a rate limiting enzyme involved within catabolism of tyrosine into ketogenic and gluconeogenic 

substrates in hepatic mitochondria (Granner and Hargrove, 1983). Transcription of this gluconeogenic 

target was one of the first to be identified as dependent on dual regulatory GR binding regions 

upstream of the TSS (Jantzen et al., 1987). Within our data, four corticosterone inducible GR binding 

regions were identified ~-2.5kb (chr19:41,688,403-41,689,032), ~-3.5kb (chr19:41,689,712-

41,690,106), ~-5.5kb (chr19:41,691,352-41,691,976) and ~-7kb (chr19:41,693,173-41,693,832) 

upstream of the TSS (Figure 5.1). There was also a 3’ GR binding site, ~+11.5kb (chr19:41,674,388-

41,675,013) downstream from the TSS. GR binding, at all sites except for the ~-3.5kb site, was induced 

at the corticosterone pulse peak and both constantly infused timepoints. Whilst, at the ~-3.5kb site 

GR was only bound at the corticosterone pulse peak. All GR binding sites were time dependently 

induced by a pulsatile infusion; increased at the pulse peak as opposed to nadir (+11.5kb: 9.7-fold; -

2.5kb: 170-fold; ~-5.5kb: 9.0-fold; ~-7kb: 36.8-fold) but were unchanged across constant 

corticosterone timepoints despite their enrichment above VEH control. Except for the ~3.5kb GR 

binding site, which was not significantly changed by patterned corticosterone or indeed any other 

comparison. Only the upstream sites -2.5kb, -5.5kb and -7kb were pattern dependent with 100-fold, 

6-fold and 25-fold decreases respectivly in response to the pulse nadir (180min) compared to the 

constantly infused matched time point. The 3’ +11.5kb site was not significantly regulated in a pattern 

dependent manner. Interestingly, there were indications of increased pSer2 Pol2 Seq tags in response 

to both corticosterone pulse peak as well as VEH infused controls, which was not significantly 

different, indicating no change in basally active transcription. There was a significant, 2.5-fold 

reduction in pSer2 Pol2 occupation at the pulse nadir compared to VEH control. Despite an increased 

pSer2 Pol2 enrichment detected in response to 140min of constantly infused corticosterone and not 

180min, relative to VEH control, there was no significant difference in enrichment between constant 

corticosterone timepoints. Finally, there was a 2.4-fold pattern dependent decrease in pSer2 Pol2 

enrichment in the corticosterone pulse nadir, when compared to the constant corticosterone matched 

timepoint of 180min. This data indicates that GR binding at all sites, except for the ~3.5kb site, were 

robustly regulated by infused corticosterone patterns. However, pattern dependent transcriptional 

change was more complicated, with decreased pSer2 Pol2 enrichment at the corticosterone pulse 

nadir and increased enrichment during constant corticosterone infusion.  

Gilz inhibits NFκB and the activation of monocytes and macrophages within anti-inflammatory 

pathways (D’Adamio et al., 1997; Hamdi et al., 2007). mRNA expression has been shown to fluctuate 
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in a circadian manner in adipose tissue and Dex has been observed to induce mRNA expression within 

the liver (Ayyar et al., 2015). Presumably via the two GRE regions identified within a +2.5kb region of 

the TSS in lung adenocarcinoma (A549) cells, but observations within these cells of endogenous mRNA 

profiles were highly variable and not robustly circadian (Wang et al., 2004; van der Laan et al., 2008; 

Monczor et al., 2019). Similarly, pulsatile GC replacement was shown by George et al., 2017 to be 

unable to induce pulsatile expression of Gilz nascent transcript in the prefrontal cortex of the rat 

(George et al., 2017). In my data, two inducible GR binding sites were discovered ~-1kb 

(chrX:111,888,508-111,889,132) and ~-2kb (chrX:111,889,568-111,889,962) upstream of the Gilz TSS.  

Both sites were bound at the corticosterone pulse peak but only the ~-1kb site was bound in response 

to constant corticosterone infusion at the 180min timepoint. Upon further analysis however, neither 

site was significantly changed in a time or pattern dependent manner, even though sites were 

significantly induced to VEH control, the differences in enrichment were not robust enough to 

confidently identify robust pattern or time dependent effects for GR binding. Despite the lack of 

observable corticosterone pattern induced GR binding events, pSer2 Pol2 enrichment was significantly 

regulated in both a pattern and time dependent manner. Increased pSer2 Pol2 was observed in 

response to all infused time points except corticosterone pulse nadir (180min). A significant time-

dependent 9.2-fold increase was found at the corticosterone pulse peak (140min) compared to nadir 

(180min) and a similar but reduced 2.2-fold increase was observed in the same comparison but in 

response to the constant infusion. The increased pSer2 Pol2 occupation at 140min was unchanged 

despite whether a pulsatile or constant corticosterone infusion was used, but there was a significant 

6.7-fold reduction at the 180min time point in response to a pulsatile corticosterone infusion, relative 

to the constant corticosterone infusion. My data indicates that, despite a lack of pattern and time 

dependent GR binding at proximal GR binding sites, pSer2 Pol2 occupation within the Gilz gene was 

significantly modified in a corticosterone pattern and time dependent manner. This may indicate that 

the proximal GR binding sites are not directly regulating dynamic changes in Gilz expression in liver, 

consistent with reports that Gilz can also be regulated by dynamic long-range interactions (Stavreva 

et al 2015).  

LPIN1 is an important PPARα co-factor oxidising fatty acids within the liver as well as inducing 

adipocyte differentiation (Finck et al., 2006). Further, transcriptional regulation has been reported to 

be dependent on GR binding at a GRE upstream of the TSS in mouse liver hepatoma (hepa 1-6) and 

pre-adipogenic mouse embryonic fibroblast (3T3-L1) cells (P. Zhang et al., 2008). In my data, two 

inducible GR binding sites were identified ~-42kb (chr6:41,884,401-41,885,025) and ~-48kb 

(chr6:41,890,043-41,890667) upstream of the TSS of the shorter variant (Figure 5.1). GR binding as 

well as pSer2 Pol2 occupancy was induced in response to all corticosterone infused timepoints except 
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the pulse nadir (180min). In response to pulsatile corticosterone infusion, GR binding was significantly 

time dependent, with 23-fold increased binding at the ~-42kb site and 16-fold increased binding at 

the ~-48kb binding site, at the pulse peak (140min) compared to nadir (180min). No significant time 

dependent differences were reported in response to a constant infusion, despite increased GR binding 

of 350-fold (140min) and 418-fold (180min) compared to VEH control. Similarly, no significant pattern 

dependent changes in GR binding were detected between pulsatile and constant corticosterone 

infusion at 140min. There was however, a ~17 fold and ~11 fold pattern dependent decrease in GR 

binding at the 180min timepoint in pulsatile compared to constant corticosterone infusion. Similar 

dynamics were reported for pSer2 Pol2 intragenic occupation as phasic, 15-fold increases were 

detected at the corticosterone pulse peak, compared to pulse nadir. No significant time dependent 

changes in Lpin1 pSer2 Pol2 enrichment were reported for constant infusion, despite 13-fold and 10-

fold increased occupation at both 140min and 180min infused time points respectively, relative to 

VEH. No significant pattern dependent differences were reported between pulsatile and constant 

corticosterone infusion at 140min, but there was at 180min with 25-fold decreased RNA Pol2 

enrichment in response to pulsatile compared to constant corticosterone infusion. Together, these 

data indicate robustly corticosterone pattern dependent regulation of both proximal GR binding and 

pSer2 Pol2 intragenic occupation. 

5.4.2 GR binding site distribution is unchanged by patterned corticosterone timepoint 

Genome-wide GR binding locations are highly dependent on cell-specific chromatin organisation. As 

transcriptional control was reported to be modified by infused corticosterone timepoints, GR binding 

site location within intergenic and intragenic regions was investigated for the presence of any 

differences between the different patterned corticosterone treatments and timepoints. 
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Figure 5.2 Distribution of GR binding sites within genic regions across the genome. 

The distribution of GR binding sites by intragenic region in response to either pulsatile corticosterone 

pulse peak (140min) (white bar) or constant corticosterone infusion at 140min (grey bar) and 180min 

(black bar). GR binding sites were split into TSS proximal promoter regions (-2.5kb to +0.1kb of the 

TSS) and intragenic binding sites were split into intronic and exonic regions as well as transcription 

termination sites (TTS). All other non-coding regions were classed as intergenic. 

The majority of patterned corticosterone inducible binding sites were found within intergenic regions, 

irrespective of whether they were induced by the corticosterone pulse peak (140min) or either 140min 

and 180min constantly infused timepoints (47.6, 43.6 and 46.9% respectively) (Figure 5.2). The second 

greatest number of sites were induced within intragenic regions, specifically at intronic sites (39.4%, 

39.7% and 38.8% respectively). Exonic sites (2.0%, 3.0% and 2.3% respectively) and transcriptional 

termination sites (TTS) (2.1%, 2.5% and 2.2% respectively) made up only a small percentage of these. 

Interestingly, a concentration of sites was found within promoter regions (9.0%, 11.6% and 10.0%) 

defined as -2.5kb to +0.1kb of the TSS relative to their overall genomic coverage. No obvious 

differences were observed in overall distribution in response to a single or combination of 

corticosterone condition and timepoint. 

5.4.3 Distance to the proximal GR binding site is predictive of pSer2 Pol2 occupancy changes 

GR has been found to exert transcriptional effects over long distances. Within my data, we 

investigated any potential relationship between changes in pSer2 Pol2 occupancy within a gene, and 

its distance from the closest corticosterone regulated GR binding site(s). All GR ChIP-Seq datasets were 
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interrogated in this way, except for pulsatile corticosterone nadir as no GR binding was detected in 

analysis relative to VEH control (Figure 3.5). 

Interestingly, genes with GR binding sites in closer proximity were more likely to be transcriptionally 

upregulated during the corticosterone pulse peak, i.e. increased pSer2 Pol2 occupancy. Typical 

examples of GR proximal associated increased transcription include the targets Per1 (RT-qPCR only), 

Gilz and Lpin1 as shown above. In contrast, genes without GR binding sites in proximity were more 

likely to be transcriptionally repressed during the corticosterone pulse peak, i.e. have decreased pSer2 

Pol2 occupancy. For example, 25% of gene targets with a GR binding site <860b from the TSS exhibited 

increased pSer2 Pol2 enrichment (Figure 5.3), whereas 25% of gene targets with a GR binding site 

>0.86kb and <20.3kb from the TSS exhibited decreased pSer2 Pol2 enrichment during the 

corticosterone pulse peak. This represents a difference of ~19.5kb (from GR binding site and gene TSS) 

between the two groups. The same phenomenon was observed throughout 50%, 75% and 100% 

percentiles with differences of 83.2kb, 357.6kb and 9,646.5kb respectively. 

Similar distributions were observed in response to either matched constant corticosterone infused 

timepoint to varying degrees. After 140min of constant corticosterone infusion the difference was less 

pronounced at 25%, 50% and 75% percentiles (a difference of 5.6kb, 22.7kb and 221.6kb respectively) 

and relative distances from the TSS were on average double the distance to the most proximal induced 

GR binding site compared to the pulsatile infused matched timepoint (corticosterone pulse peak). 

However, at the 100% percentile the difference in distance was unchanged. 

Similar distributions were observed in response to 180min of constantly infused corticosterone 

between increased or decreased pSer2 Pol2 occupation and the closest GR binding site, however, 

differences between percentiles was increased in comparison to any other corticosterone infused 

time point (a difference of 118kb, 415kb, 1,215.7kb and 22,111.3kb at 25%, 50%, 75% and 100% 

respectively).  



 

115 
 

 

Figure 5.3 Distance between GR binding site and the TSS of the closest regulated gene relates to 

probability of pSer2 Pol2 gain or loss in occupancy. 

(A) The percentage of either increased (solid line) or decreased (dotted line) pSer2 Pol2 occupied 

targets was plotted against the distance (log2) to the most proximal induced GR binding site by 

corticosterone to VEH control in response to the  pulsatile infusion at the pulse peak (140min) (black) 

(i) and either 140min (blue) (ii) or 180min (red) (iii) matched constant corticosterone infused 

timepoints. (B) The same comparison was plotted but with total numbers of either increased (i) or 

decreased (ii) pSer2 Pol2 occupied targets to VEH control. Dotted lines indicate at what distance the 

total number of targets that reported a loss in pSer2 Pol2 occupancy was greater than the total 

number of targets that reported a gain in response to the pulsatile corticosterone pulse peak (14.9kb) 

(black) and 180min constant (23.6kb) (red) corticosterone infusion. At no point was this observed in 

response to 140min constantly infused corticosterone. Pulsatile corticosterone pulse nadir (180min) 

was not plotted as no GR binding sites were differentially induced to VEH control. Changes in Pser2 

Pol2 occupancy were analysed in regions >620b and limited to intragenic regions <10kb from the TSS 

according to Ensembl (Rn6) co-ordinates and filtered for unique gene transcripts. Log2 distances were 

measured from differentially regulated target TSSs to the most proximal GR binding site in response 

to a corticosterone infused timepoint. Both pSer2 Pol2 and GR data were normalised to total 

enrichment or total sequenced tags respectively and differential analysis filtered results by fold change 
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>1.5, FDR<0.05 and p-value <0.05 adjusted for multiple comparisons compared to VEH infused control 

by DESeq2. 

There were further differences observed between corticosterone infused timepoints when total 

numbers of targets were plotted for either increased or decreased pSer2 Pol2 occupied targets. In 

response to a pulsatile corticosterone peak (140min) the number of targets that reported a decrease 

in pSer2 Pol2 occupation was only greater within targets that had an induced proximal GR binding site 

>29.9kb away. Whereas, in response to 180min constant corticosterone infusion, this was reported 

for targets that had an induced proximal GR binding site >12,803,190kb away, a distinct difference in 

GR distribution. Interestingly, the total number of regions with decreased pSer2 Pol2 occupancy in 

response to 140min constantly infused corticosterone was at no point greater than targets with an 

increased occupancy, when sorted by distance to the proximal inducible GR binding site. 

I investigated whether observed effects could be explained via the distribution of nGRE related motifs 

within GR binding regions. Of the GR enrichments closest to the TSS of GC regulated genes, only just 

2.23% of GC regulated targets contained a nGRE related sequence.  

Investigation of the closest identified GR binding site reports just 1.4% of GC regulated targets 

contained a nGRE related sequence. The instances of enriched GR binding in response to a 

corticosterone infused time point did not match up between the GR and pSer2 Pol2 differential results 

i.e. whilst enrichment of a GR binding site occurred at the same infused time point as a change in 

pSer2 Pol2 occupation, there were occurrences where GR was enriched and had no effect on pSer2 

Pol2 occupation. Additionally, no trend was observed between distance of nGRE like motif containing 

GR enrichment and pSer2 Pol2 occupation.Together, these data present evidence that increasing 

distance of GR binding site to a TSS is associated with an increased likelihood of decreased RNA Pol2 

occupancy and hence transcription does not appear to be dependent on the presence of a nGRE 

associated sequence. Observed differences are more likely dependent on distance of GR binding sites 

as well as corticosterone pattern and time of infusion.  

5.4.4 Functional pathway analysis 

As described previously, phosphorylation of the Ser2 residue within the carboxy-terminal domain of 

the RNA Pol2 is associated with the actively transcribing RNA Pol2 complex as it progresses through 

the coding region (Cho et al., 2001; Ahn, Kim and Buratowski, 2004). Therefore, I have interpreted 

changes in pSer2 pol2 occupancy as changes in gene transcription, hence, fold changes in pSer2 Pol2 

occupancy and associated p-values were analysed using the Ingenuity Pathway Analysis software 

(Qiagen, Inc.) (Krämer et al., 2014). A feature of the analysis is to predict either an activatory or 
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inhibitory ‘direction’ according to published literature. This, z-score, is calculated by the ratio of either 

activating or inhibiting effects by the number of targets characterised within a downstream pathway 

and significance is assessed within a binomial model. The IPA analysis recommends any positive 

(predictive activation) or negative (predictive inhibition) z-score >2 is a significant observation. 

5.4.5 Patterned corticosterone regulation of the inflammatory pathway. 

GCs have potent anti-inflammatory properties. Consistent with this, pathway analysis of targets 

regulated by patterned corticosterone predicted inhibition of the inflammatory pathway at both 

140min and 180min infused constant corticosterone timepoints (z-score of -1-15 and -0.59 

respectively) (Figure 5.4 A). Inhibition of the inflammatory pathway was also predicted at the 

corticosterone pulse peak (140min) (z-score of -0.18) but no prediction was made for the pulse nadir 

(180min). As previously described within section 5.3, analysis documentation outlines z-scores >2 (or 

<-2) as a significant prediction, therefore all observations reported are trends of inhibition that may 

facilitate a greater anti-inflammatory effect in response to a constant corticosterone exposure. 

 

Figure 5.4 Predicted modulation of the inflammatory pathway by patterned corticosterone infusion 

timepoints. 

(A) Analysis of pSer2 Pol2 occupied targets in the hepatic inflammatory pathway in response to both 

pulsatile and matched constant corticosterone infusion at 140min (white bars) and 180min (grey 

bars). Fold changes >1.5 from VEH infused control and p-values <0.05 adjusted for multiple 

comparisons were analysed by IPA software. Positive and negative z-scores >2 indicate significant 

predicted activation or inhibition respectively. (B) Differential occupancy of pSer2 Pol2 was 

hierarchically clustered by fold change values and plotted within heatmaps to the centre and right. 

Results were separated into factors known to activate (i) or inhibit (ii) inflammation. Degree of 

increased (cyan) or decreased (yellow) log2 fold change is indicated by colour intensity, as shown 
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within the key towards the top of the figure. Changes in pSer2 Pol2 occupancy to VEH control were 

analysed in regions >620b and limited to intragenic regions <10kb from the TSS according to Ensembl 

(Rn6) co-ordinates and filtered for unique gene transcripts. Z-score p-values are indicated by 

****<0.0001.  

Within the regulated inflammatory genes identified within the analysis, Cdh1 and Mapk9 could 

represent a couple of interesting targets for further study, as they are labelled as activators of 

inflammation, but transcription (pSer2 Pol2 occupancy) is transiently decreased in response to the 

pulsatile corticosterone infusion. Whereas, transcription of several inhibitory targets is increased 

across time points in response to constant corticosterone exposure, including Phyh, Mat1a, Il6r and 

Cbs. These genes could be responsible for the increased predictive trend of anti-inflammatory action.  

5.4.6 Canonical pathways 

Focusing on the canonical metabolic pathways, analysis predicted activation/ inhibition of key 

pathways in a patterned corticosterone dependent manner. In the liver, cholesterol synthesis and its 

metabolism is a primary function, however the liver metabolises a wide range of substrates such as 

melatonin, serotonin and methionine. For example, up to 90% of circulating melatonin is metabolised 

within a single pass through the hepatic portal circulation (Lane and Moss, 1985; Chojnacki et al., 

2012).  

Inhibition of cholesterol biosynthesis was predicted for pulsatile corticosterone, with a trend observed 

at pulse peak  (z-score of -1.89), which was significant within the nadir  (z-score of -2) (Figure 5.5 Ai). 

However, in response to constant infusion, no change was predicted at 140min, and a trend of 

inhibition reported at 180min (z-score of -1). Data indicates overall inhibition of cholesterol 

biosynthesis in response to pulsatile compared to constant infusion, possibly increasing cholesterol 

biosynthesis during constant corticosterone exposure. 

Out of the genes that were differentially regulated by patterned corticosterone, just Dhcr24 reported 

transiently increased transcription during pulsatile infusion, which was prolonged with constant 

corticosterone infusion (Figure 5.5 Bi). Transcription at most targets was decreased however, in 

response to the corticosterone pulse peak only, of which Cyp51, Dhcr7 and LSS were distinct.   
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Figure 5.5 Canonical pathways regulated by patterned corticosterone infusion timepoints. 

Canonical pathway analysis of pSer2 Pol2 occupancy changes in response to both pulsatile and 

matched constant corticosterone infusion at 140min (white bars) and 180min (grey bars). Fold 

changes >1.5 from VEH infused control and p-values <0.05 adjusted for multiple comparisons were 

analysed by IPA software. Positive and negative z-scores >2 indicate significant predicted activation 

or inhibition respectively. Differential occupancy of pSer2 Pol2 was hierarchically clustered by fold 
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change values and plotted within heatmaps to the right. Degree of increased (cyan) or decreased 

(yellow) log2 fold change is indicated by the colour intensity as shown within the key towards the top 

of the figure. Canonical pathway analysis indicated changes in cholesterol biosynthesis I, II (via 24,25-

dihydrolanosterol) and III (via Desmosterol), superpathway of melatonin degradation 1 and 

methionine degradation as well as serotonin degradation.  Changes in Pser2 Pol2 occupancy to VEH 

control were analysed in regions >620b and limited to intragenic regions <10kb from the TSS according 

to Ensembl (Rn6) co-ordinates and filtered for unique gene transcripts. Z-score p-values are indicated 

by *<0.05, **<0.01, ***<0.001 and ****<0.0001. 

Similar trends were observed within degrative pathways of melatonin and serotonin. In response to a 

pulsatile corticosterone infusion, a trend of inhibition was predicted at the corticosterone pulse peak 

(140min), and nadir (180min) for both melatonin (z-scores of -1.07 and -1.63 respectively) (Figure 5.5 

Aii) and serotonin (z-scores of -0.91 and -1.63 respectively) (Figure 5.5 Aiii). In response to constantly 

infused corticosterone, trends of activation were predicted for both pathways at 140min (z-score of 

1.13 and 1.00 respectively) but only at 180min for serotonin (z-score of 0.45). Together, this data 

indicates the potential for increases circulating melatonin and serotonin in response to a pulsatile 

corticosterone infusion. 

pSer2 Pol2 occupation of several genes was increased in response to patterned corticosterone 

infusion including Por, Ugt2b, Sult1b1 and Sult1a1; all of which were also enriched within serotonin 

degradation apart from Por. Occupation of all other 9 regulated genes was decreased in a transient 

manner to pulsatile corticosterone infusion, with indication of dysregulation in response to  constant 

infusion. This was more evident with occupation of genes involved in the serotonin pathway, as 

Ugt1a7c, Sult2a2, Aldh9a1 and Aldh2 were significantly lost to VEH control at the corticosterone pulse 

peak only. 

Significant predicted activations of the methionine degrative pathway were reported in response to 

the corticosterone pulse peak (140min) (z-score of 2.24), as well as in response to 140min and 180min 

constantly infused timepoints (z-score of 2.45 for both) (Figure 5.5 Aiv). No prediction was made for 

the corticosterone pulse nadir (180min). Therefore, this data strongly indicates a prolonged 

methionine degradation in response to a constant corticosterone infusion, as opposed to a transient 

activation that is synchronised to a corticosterone pulse peak, presumably reducing circulating 

methionine. 

Predicted activation of methionine degradation was significant at the corticosterone pulse peak and 

either constant corticosterone timepoints. Out of the six differentially occupied pSer2 Pol2 targets, 

Ahcy, Bhmt and Mat1a reported similar increases in pSer2 Pol2 occupation (Figure 5.5 Biv). 
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Interestingly, Got1 was similarly increased but also reported a decrease in occupation at the 

corticosterone pulse nadir to VEH control whilst Cbs/Cbsl was only increasingly occupied in response 

to a constantly infused corticosterone. These targets present prime candidates for further 

corticosterone dynamically regulated research. 

5.4.7 Patterned corticosterone regulation of glucose homeostatic pathways. 

Within the liver, dysregulation of glucose homeostasis is an important risk factor in the development 

of MetS phenotypes. Specifically, high glucose and insulin levels are indicators of insulin resistance 

and can lead to obesity and type II diabetes (Vegiopoulos and Herzig, 2007; de Guia, Rose and Herzig, 

2014).  

Pathway analysis reported activatory trends of glycogen quantity in response to pulsatile 

corticosterone at the pulse peak (140min) (z-score 1.67), but not at the nadir (180min) (Figure 5.6 Ai). 

In response to constant corticosterone, trends of activation were predicted at both corticosterone 

infused timepoints (z-score of 0.71 for both), indicating constant corticosterone exposure could 

increase glycogen quantities compared to pulsatile corticosterone induced, transient activation. 

Three corticosterone regulated genes known to activate this pathway, reported increased 

transcription in response to raised circulating corticosterone of Pfkfb1 was highly induced to VEH 

control. It should be noted, transcription of Pfkfb1 has bene characterised as a GC responsive and the 

enzyme is bi-directional, favouring either favoured glycolytic or gluconeogenic pathways within 

hepatocytes which is mostly dependent on glucagon signalling (Hue and Rider, 1987; Marcus et al., 

1987; Rider et al., 2004). Therefore, despite it being quoted as increasing glycogen, it has multi-

regulatory roles. The other two genes were H6pd and Myc. Dusp1 also reported similar dynamics, but 

too a much lesser degree.  

The observed increased confidence predicted at the corticosterone pulse peak is probably due to the 

loss of Jun and Gjb1 transcription at this time point. Together, these represent key genes within this 

pathway that are corticosterone regulated. 
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Figure 5.6 Predicted modulation of glucose metabolic pathways by patterned corticosterone 

infusion timepoints. 

(A) Predicted activation or inhibition was based upon analysis of pSer2 Pol2 occupied targets involved 

in glucose homeostatic pathways in response to both pulsatile and matched constant corticosterone 

infusion at 140min (white bars) and 180min (grey bars). Fold changes >1.5 from VEH infused control 

and p-values <0.05 adjusted for multiple comparisons were analysed by IPA software. Positive and 

negative z-scores >2 indicate significant predicted activation or inhibition respectively. Differential 

occupancy of pSer2 Pol2 was hierarchically clustered by fold change values and plotted within 

heatmaps to the centre and right. Results were separated into factors known to activate (B) or inhibit 

(C). Degree of increased (cyan) or decreased (yellow) log2 fold change is indicated by colour intensity, 

as shown within the key towards the bottom of the figure. Results indicated quantity of Glycogen (i), 

concentration of D-glucose (ii) and quantity of monosaccharide (iii) were modulated by corticosterone 

infused timepoints. Changes in pSer2 Pol2 occupancy to VEH control were analysed in regions >620b 

and limited to intragenic regions <10kb from the TSS according to Ensembl (Rn6) co-ordinates and 

filtered for unique gene transcripts. Z-score p-values are indicated by *<0.05, **<0.01, ***<0.001 and 

****<0.0001. 
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Similar predictive dynamics were observed for concentrations of dietary D-glucose and 

monosaccharide pathways. Trends of activation were reported in response to the pulsatile 

corticosterone infusion at the pulse peak (140min) as well as both 140min and 180min constantly 

infused timepoints for D-glucose (z-scores of 0.85, 0.90 and 0.90 respectively) (Figure 5.6 Aii) as well 

as for the quantity of monosaccharides (z-scores of 1.41, 1.41 and 1.70 respectively) (Figure 5.6 Aiii). 

Whereas, no prediction was reported at the corticosterone pulse nadir (180min) for either.  In a similar 

way to glycogen; constant corticosterone exposure could increase both glucose and monosaccharide 

levels. 

Interestingly, differentially occupied targets within the monosaccharide pathway were also activatory 

within the D-glucose pathway (Figure 5.6 Bii & Biii). Only Gck (also within the glycogen pathway) was 

exclusive to the monosaccharide pathway. Increased transcription of Foxo1 and Avpr1a was reported 

in response to a constant corticosterone infusion only, whereas Fmo3 was also transiently increased 

in response to a pulsatile exposure. All these were activatory of these pathways, whereas 

corticosterone pattern regulated increases in transcription of the gene Myc (which was activatory for 

glycogen) was inhibitory. 

Together, this data indicates trends of prolonged increases in glycogen, D-glucose and 

monosaccharides in response to constantly infused corticosterone as opposed to transient increases 

synchronised to the corticosterone pulse peak during pulsatile infusion.  

5.4.8 pSer2 Pol2 occupancy predicts modulation of growth and necrotic pathways in response to 

patterned corticosterone infusion. 

Growth hormones and GCs play a distinct synergistic role within energy homeostasis via targeted 

activation of nuclear factors such as STAT5 and GR respectively. STAT5 has been shown to mediate 

cell proliferation, differentiation and survival in a post-natal mouse model that required co-regulator 

interactions with the GR in a composite manner (Stoecklin et al., 1997; Tronche et al., 2004; Engblom 

et al., 2007). Impairment of this interaction can dysregulate lipid metabolism and induce hepatic 

steatosis (Friedbichler et al., 2012; Mueller et al., 2012).   

Analysis of corticosterone regulated genes indicated trends of liver growth in response to the constant 

corticosterone infusion at 140min (z-score of 1.70) and 180min (z-score of 1.77) but not in response 

to the pulsatile corticosterone infusion (Figure 5.7 Ai). Similar trends in response to the constant 

corticosterone infusion were predicted for the proliferation of liver cells (z-score of 1.60 and 1.76 

respectively) (Figure 5.7 Aii), as well as a transient trend of activation predicted in response to the 

pulsatile infusion at the corticosterone pulse peak (140min) (z-score of 0.98). Together these data 
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suggest transient (if any) activation is prolonged upon the loss of corticosterone oscillations, which 

may increase growth and proliferation within the liver. 

Increased transcription of Nr1i2, Pik3r1, Myc, Nfkbia and Il6r identified in response to the pulse peak 

but not nadir, were prolonged by constant corticosterone exposure, presumably inducing both growth 

and proliferative pathways in corticosterone pattern dependent manner. Whereas, transcription of 

Jun, Il4r, Inhba, Raf1 and Pml was decreased at the corticosterone pulse peak only and would have 

been responsible for the reduced confidence of prediction at this time point. Out of the inhibitory 

genes, transcription of Entpd5, Nr1h4, Dlc1 and Cbp2 was similarly regulated by corticosterone, but in 

a reduced transcriptional capacity. Interestingly the activatory gene Agt (robustly corticosterone 

pattern increased transcription) and inhibitory Igf1 (decreased transcription at the pulse nadir and 

constant corticosterone) were the only genes not enriched in both pathways. 

 

 

Figure 5.7 Predicted modulation of growth and proliferative pathways by patterned corticosterone 

infusion timepoints. 

(A) Predicted activation or inhibition was based upon analysis of pSer2 Pol2 occupied targets 

regulating growth and proliferation in response to both pulsatile and matched constant corticosterone 

infusion at 140min (white bars) and 180min (grey bars). Fold changes >1.5 from VEH infused control 
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and p-values <0.05 adjusted for multiple comparisons were analysed by IPA software. Positive and 

negative z-scores >2 indicate significant predicted activation or inhibition respectively. Differential 

occupancy of pSer2 Pol2 was hierarchically clustered by fold change values and plotted within 

heatmaps to the centre and right. Results were separated into factors known to activate (B) or inhibit 

(C). Degree of increased (cyan) or decreased (yellow) log2 fold change is indicated by colour intensity, 

as shown within the key towards the bottom of the figure. Results indicated growth of liver (i) and 

proliferation of liver cells (ii) modulated by corticosterone infused timepoints. Changes in Pser2 Pol2 

occupancy to VEH control were analysed in regions >620b and limited to intragenic regions <10kb 

from the TSS according to Ensembl (Rn6) co-ordinates and filtered for unique gene transcripts. Z-score 

p-values are indicated by ****<0.0001. 

Interestingly, opposing necrotic and cell death pathways reported similar trends predicted for 

proliferation, in response to the corticosterone pulse peak (140min) (z-scores of 1.24 and 1.15 

respectively) (Figure 5.8 Ai) and at both constant corticosterone timepoints of 140min (z-scores of 

1.65 and 1.90) and 180min (z-scores of 1.34 and 1.10). Together this data indicates transient activation 

of necrotic and cell death pathways in response to pulsatile corticosterone infusion, could be 

dysregulated and prolonged in response to constant corticosterone infusion. 

 

Figure 5.8 Predicted modulation of necrotic and cell death of hepatoma cell line pathways by 

patterned corticosterone infusion timepoints. 
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(A) Predicted activation or inhibition was based upon analysis of pSer2 Pol2 occupied targets 

regulating both necrotic and cell death pathways in response to pulsatile and matched constant 

corticosterone infusion at 140min (white bars) and 180min (grey bars). Fold changes >1.5 from VEH 

infused control and p-values <0.05 adjusted for multiple comparisons were analysed by IPA software. 

Positive and negative z-scores >2 indicate significant predicted activation or inhibition respectively. 

Differential occupancy of pSer2 Pol2 was hierarchically clustered by fold change values and plotted 

within heatmaps to the centre and right. Results were separated into factors known to activate (B) or 

inhibit (C). Degree of increased (cyan) or decreased (yellow) log2 fold change is indicated by colour 

intensity, as shown within the key in the middle of the figure. Results indicate necrotic (i) and cell death 

of hepatoma cell lines (ii) modulated by corticosterone infused timepoints. Changes in Pser2 Pol2 

occupancy to VEH control were analysed in regions >620b and limited to intragenic regions <10kb 

from the TSS according to Ensembl (Rn6) co-ordinates and filtered for unique gene transcripts. Z-score 

p-values are indicated by *<0.05, **<0.01 and ****<0.0001. 

Most corticosterone regulated targets that were regulatory of the hepatoma cell death pathway were 

also enriched within the necrotic pathway. Except for the activatory and inhibitory targets, Jund and 

Cdkn1a, which were only regulatory of the cell death pathway. Activatory targets reporting 

corticosterone pattern increased transcription were Nr0b2, Myc, Nr1i2 and Nfκbiα (Figure 5.8 B), 

whilst a loss was reported at the inhibitory targets Rgn, Pzp, Plg, Selenop and Amacr (Figure 5.8 C). 

It is also worthy of note, a proportion of genes were identified as either activatory or inhibitory, for 

growth/ proliferative as well as necrotic/ cell death pathways. This indicates a high level of crosstalk 

between the pathways identified as well as bi-functional responses of genes. Or it could simply be a 

lack of clarity regarding direct target effects within pathways. Together, this data does indicate a 

pulsatile corticosterone exposure, could transiently affect hepatocyte turnover within the liver, which 

upon constant corticosterone exposure would become dysregulated and potentially increased. 

5.4.9 pSer2 Pol2 occupancy predicts modulation of carbohydrate pathways and factors involved in 

lipid homeostasis in response to patterned corticosterone infusion. 

Carbohydrate, fatty acid and lipid metabolism as well as lipoprotein synthesis and packaging for 

distribution around the body (predominantly WAT) is highly dependent on hepatic function 

(Vegiopoulos and Herzig, 2007; Werner, Kuipers and Verkade, 2013; de Guia, Rose and Herzig, 2014). 

Dysregulation of these homeostatic processes can induce raised circulating VLDLs and reduced HDLs, 

dyslipidaemia and NAFLD. All phenotypes associated with MetS (Alberti et al., 2005; Szczepaniak et 

al., 2005). 
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Pathway analysis of differentially corticosterone regulated genes that regulate the metabolism of 

carbohydrates, predicted trends of inhibition in response to the corticosterone pulse peak (140min) 

(z-score -1.68) and none by the nadir (Figure 5.9 Ai). In response to a constant corticosterone infusion, 

very weak confidence of inhibition and activation were predicted at 140min and 180min infused time 

points (z-score of -0.04 and 0.12 respectively) indicating a loss of transient inhibition and dysregulation 

by constant corticosterone exposure, which could increase metabolism of carbohydrates within the 

liver. 

Reduced transcription of genes known to activate carbohydrate synthesis was identified in Nr1h4, 

Gpam and Aqp9 in response to the corticosterone pulse peak only and down-regulation of Scd was 

greater at the same time point compared to nadir. Furthermore, Dusp6 transcription was transiently 

reduced in a similar manner but also in response to constant corticosterone exposure. Whilst, 

increased transcription of PPP1r3c, Slc37a4 (translocation protein for G6pc) and Ppp1r3b was in 

response to constant corticosterone only (de Guia, Rose and Herzig, 2014; Kuo et al., 2015). A reduced 

number of inhibitory genes were corticosterone pattern regulated, with H6pd and Nr0b2 transcription 

increased in response to raised circulating corticosterone time points and Avpr1a and Nr1i3 

transcription increased in response to constant corticosterone infusion only.  

Analysis of corticosterone regulated genes that affect carbohydrate quantities, predicted trends of 

activation in a transient manner at the pulse peak (z-score 1.84) but not by the nadir in response to a 

pulsatile corticosterone infusion (Figure 5.9 Aii). In response to a constant infusion, trends of 

activation were predicted in a pro-longed manner across 140min and 180min time points (z-score 1.53 

and 1.64 respectively) Together, analysis indicates trends of transient activation of carbohydrate 

quantity, were dysregulated in a prolonged manner, potentially increasing carbohydrates in response 

to constant corticosterone exposure within the liver. 

Transcription of genes associated with the quantity of carbohydrates that were increased in response 

to raised circulating infused corticosterone included Bhmt, Fmo3 and H6pd, whilst Ppp1r3c, Foxo1 and 

Avpr1a were constant corticosterone dependent only. Transcription of the inhibitory genes Gjb1 and 

Scp2 were decreased in response to the corticosterone pulse peak only.  
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Figure 5.9 Predicted modulation of carbohydrate metabolic pathways by patterned corticosterone 

infusion timepoints. 

(A) Predicted activation or inhibition was based upon analysis of pSer2 Pol2 occupied targets 

regulating carbohydrate metabolism in response to pulsatile and matched constant corticosterone 

infusion at 140min (white bars) and 180min (grey bars). Fold changes >1.5 from VEH infused control 

and p-values <0.05 adjusted for multiple comparisons were analysed by IPA software. Positive and 

negative z-scores >2 indicate significant predicted activation or inhibition respectively. Differential 

occupancy of pSer2 Pol2 was hierarchically clustered by fold change values and plotted within 

heatmaps to the right. Results were separated into factors known to activate (B) or inhibit (C). Degree 

of increased (cyan) or decreased (yellow) log2 fold change is indicated by colour intensity, as shown 

within the key. Results indicated metabolism of carbohydrate (i) and quantity of carbohydrate (ii) were 

modulated by corticosterone infused timepoints. Changes in pSer2 Pol2 occupancy to VEH control 

were analysed in regions >620b and limited to intragenic regions <10kb from the TSS according to 

Ensembl (Rn6) co-ordinates and filtered for unique gene transcripts. Z-score p-values are indicated by 

*<0.05, **<0.01 and ****<0.0001. 

Despite multiple studies highlighting the significant role of GCs within TG, fatty acid and lipid 

metabolism, interpretation of patterned corticosterone regulation was difficult due to limited 

numbers of differentially regulated targets. In response to the pulsatile infusion, trends of inhibition 

were predicted at the corticosterone pulse peak for the concentration of triacylglycerol (Figure 5.1 Ai) 

and lipids (Figure 5.10 Aii) (z-score of -1.08 and -1.13 respectively) whilst predicted activation for  fatty 
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acid concentration (Figure 5.10 Aiii) (z-score of 0.60). Similar but inverted trends were predicted by 

the pulse nadir (z-scores of 0.10, 0.60 and -1.31 respectively) indicating transient regulation. In 

response to constant corticosterone infusion, analysis reported trends of inhibition for TGs (z-score of 

-0.34 and -0.41), fatty acids (z-scores -1.15 and -0.51) and lipids (z-scores of -1.12 and -0.54). These 

data indicate that transient, pulsatile regulation of these pathways which are dysregulated by constant 

corticosterone exposure in a pro-longed and inhibitory action is possible, however, confidence of 

predictions was low. 

Analysis of corticosterone regulated genes reported enrichment of a number of genes with shared 

regulatory function in hyperlipidaemia and dyslipidaemia pathways as shown in Figure 5.10 B, except 

for Srebf1, Hsd11b1, Nr0b2, Apoe and Fasn, but with low confidence predictive trends (data not 

shown). Interrogation of individual corticosterone regulated genes within pathways, indicated 

increased transcription of Lpin1 and to a lesser degree Nr0b2, was induced by raised corticosterone 

infused time points except for pulse nadir. Similar trends but inhibitive, were observed for Apob. 

Transcription of Fasn was inhibited at both pulsatile corticosterone time points, but to a greater 

degree at the pulse peak and Foxo1 transcription was increased in response to a constant 

corticosterone exposure only. 

Together, despite the literature indicating dysregulating GCs can induce raised TG, fatty acid and lipid 

levels, my data indicated loss of transient transcription was potentially inhibitive of these pathways. 

Under further interrogation, I have identified key corticosterone regulated targets that present ideal 

candidates for further study.  
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Figure 5.10 Predicted pathway activation or inhibition of lipid, triglyceride and fatty acid 

metabolism. 

Predicted activation or inhibition was based upon analysis of pSer2 Pol2 occupied targets regulating 

the concentration of triacylglycerols (A), fatty acids (B) and lipids (C) in response to pulsatile and 

matched constant corticosterone infusion at 140min (white bars) and 180min (grey bars). Differential 

occupancy of pSer2 Pol2 targets within the hyperlipidaemic and dyslipidaemia pathways were 

hierarchically clustered by fold change values and plotted within heatmaps to the right. Results were 

separated into factors known to activate, inhibit or unknown effects on pathways. Targets apart from 

Lpin1, Angptl8, Insig2, Fdft1 and Fasn are involved in at least one of the three triacylglycerol, fatty 

acid and lipid pathways. Degree of increased (cyan) or decreased (yellow) log2 fold change is indicated 

by colour intensity, as shown within the key towards the top of the figure. Fold changes >1.5 from VEH 
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infused control and p-values <0.05 adjusted for multiple comparisons were analysed by IPA software. 

Positive and negative z-scores >2 indicate significant predicted activation or inhibition respectively. 

Pser2 Pol2 occupancy to VEH control were analysed in regions >620b and limited to intragenic regions 

<10kb from the TSS according to Ensembl (Rn6) co-ordinates and filtered for unique gene transcripts. 

Z-score p-values are indicated by ***<0.001 and ****<0.0001. 

5.5 Discussion 

Multiple studies have demonstrated that GRs are not required to bind within close proximity to a TSS 

or within the ‘promoter’ region to exert transcriptional regulation (Ratman et al., 2013). Indeed, 

further genomic studies have indicated up to ~7% of binding sites were within regions varying from 

2.5kb to 20kb regions of the TSS and that the largest proportion of GR binding sites were within 

intergenic regions (43.6-57.6%) as presented within this thesis (Figure 5.2) (John et al., 2011; Rao et 

al., 2011; Uhlenhaut et al., 2013). An interesting correlation was found within the data when genes 

were sorted into either increased or decreased corticosterone dependent transcription (increased or 

decreased pSer2 Pol2 occupancy) and plotted against the distance from the TSS to closest 

corticosterone induced GR binding event. It was observed that transcriptionally up-regulated genes 

were more likely to have a relatively closer GR binding site than those that were down-regulated 

(Figure 5.3). A similar relationship has been identified with mRNA abundancy in response to Dex 

administration within human alveolar epithelial (A549) cells (Reddy, Pauli and Sprouse, 2009). Due to 

such a limited number of nGRE associated sequence containing GR enrichment regions, no association 

could be made between the observed inhibitive effect of GR binding to nGRE motifs. Particularly when 

one considers just 2.23% of enriched GR regions contained a nGRE like sequence and approx. 75% of 

genes were inhibited by patterned corticosterone infusion. Exact mechanisms, therefore, are yet to 

be elucidated; however, it does provide an intriguing observation of distanced GR transcriptional 

control as well as further evidence that use of pSer2 Pol2 occupancy as a proxy of transcription is 

appropriate. 

 Pathway analysis of corticosterone regulated targets reported non-significant predictions for all 

pathways except cholesterol biosynthesis at the pulse nadir (Figure 5.5 Ai) and methionine 

degradation in response to raised circulating corticosterone time points (pulse peak and both constant 

corticosterone infused time points) (Figure 5.5 Aiii). The lack of confident predictions is most likely due 

to the limited number of regulated genes, as this analysis is primarily designed for RNA-Seq data. 

Despite the lack of significance, trends of transient corticosterone regulation of key metabolic 

pathways were predicted for the quantity of glycogen, monosaccharide and carbohydrate, 

proliferation of liver cells, cell death and necrosis as well as the significant result for cholesterol and 
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to a limited extent lipids. Whereas, TGs, fatty acids and metabolism of carbohydrates were inhibited 

in a similar manner, synchronised to the pulse peak of pulsatile corticosterone infusion. Interestingly, 

in response to a constant corticosterone infusion, dysregulation of pathway transient activation/ 

repression was predicted for all pathways. 

Dysregulation of these pathways could induce aberrant metabolic function as found with MetS 

phenotypes. Loss of inhibitory cholesterol synthesis by the constant corticosterone infusion could 

increase cholesterol levels, which have been associated with hypertension and obesity, as well as liver 

fibrosis, steatohepatitis and steatosis (Ioannou et al., 2009; Van Rooyen et al., 2011; Ichimura et al., 

2015). Similarly, prolonged activation of methionine degradation could reduce methionine levels and 

potentially increase methionine metabolites within the liver, which are associated with fatty liver 

development and NAFLD (Mato, Martínez-Chantar and Lu, 2008; Kharbanda, 2009). Prolonged 

increases of glucose and its derivatives has long been associated with insulin resistance, 

hyperglycaemia and diabetes (de Guia, Rose and Herzig, 2014; Kuo et al., 2015; Zhou et al., 2016; 

Yaribeygi et al., 2019), whilst dysregulated growth and apoptotic pathways are associated with non-

alcoholic steatohepatitis (NASH) and fibrosis (Feldstein et al., 2003; Argo et al., 2009; Luedde, 

Kaplowitz and Schwabe, 2014).  

Despite the inability of the pathway analysis to predict significant activation or inhibition, I have 

highlighted corticosterone targets known to regulate these pathways that would be interesting to 

characterise in future studies. For example, Got, Slc37a4, G6pc and Pfkfb1 dysregulation of transient 

transcriptional control could have distinct effects for glucose whilst Scd, Lpin1, Apob and Fasn for TG, 

fatty acid and lipid homeostasis. Particularly as 28 genes enriched within the pathways highlighted 

within this thesis, were identified as robustly corticosterone regulated i.e. significant and transient 

increased or decreased regulation in response to a pulsatile corticosterone infusion, whilst constant 

corticosterone exposure dysregulated this profile and indicated prolonged levels of increased 

transcription across time points (Figure 5.11 A).  
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Figure 5.11 Corticosterone pattern regulated targets involved in pathway regulation. 

Analysis of differentially pSer2 Pol2 occupied genes identified key targets known to regulate 

inflammatory, glycogen, glucose, monosaccharide, growth and proliferative, necrotic and cell death, 

carbohydrate fatty acid, triglyceride lipid, dyslipidemic as well as canonical melatonin, serotonin and 

methionine degradative and cholesterol biosynthesis pathways. These were split into distinct dynamic 

changes in occupation. First, targets which significantly time dependent (TD) in response to pulsatile 

infusion only but enriched to VEH control at both constant corticosterone timepoints were defined as 

corticosterone pattern dependent (A). Secondly, targets similarly TD in response to a pulsatile infusion 

but not enriched to VEH by a constant corticosterone infusion were defined as pulsatile responsive 

only (B). Finally, targets that were not TD in response pulsatile corticosterone infusion but were 

enriched to VEH in response to constant corticosterone infusion only and not TD were defined as 

constant responsive (C). Degree of increased (cyan) or decreased (yellow) log2 fold change is indicated 

by colour intensity, as shown within the key towards the top of the figure. Fold changes >1.5 from VEH 

infused control and p-values <0.05 adjusted for multiple comparisons were analysed by IPA software. 

Pser2 Pol2 occupancy to VEH control were analysed in regions >620b and limited to intragenic regions 

<10kb from the TSS according to Ensembl (Rn6) co-ordinates and filtered for unique gene transcripts. 

pSer2 Pol2 differentially occupied targets which were pattern dependent (PD) at 140min and 180min 

timepoints were also indicated. 

In conclusion, analyses of the functional effects of GR and pSer2 Pol2 corticosterone pattern regulation 

provides two main findings. First, corticosterone regulated increases in transcription are more likely 

to occur within targets where the distance between the TSS and an inducible GR binding site are 
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relatively short, and transcription is more likely to be decreased with an increasing distance to bound 

GR sites. Secondly, analysis of corticosterone regulated genes predicts a number of pathways in 

energy and liver growth/ death could be transiently regulated by ultradian oscillations of 

corticosterone, which are dysregulated by constant corticosterone exposure within a relatively short 

experimental time scale. These data indicate dysregulation of GCs could be a key factor in the 

development of associated pathologies such as insulin resistance, diabetes, dyslipidaemia, 

hyperlipidaemia, fibrosis, NASH and NAFLD MetS phenotypes.  
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Chapter 6 Modelling the 24hour artificial ‘ultradian’ Corticosterone 

infusion pattern 

6.1 Background 

The GR and pSer2 Pol2 ChIP-Seq data revealed dynamic GR binding and transcriptional regulation 

synchronised to peak and nadir of corticosterone pulses. Interpretation of the resulting effects, using 

functional pathway analysis, highlighted how key metabolic pathways were also dynamically regulated 

during pulsatile corticosterone exposure. Notably, pulsatile infusion induced phasic activation or 

inhibition of pathways known to be important for metabolic processes within the liver, including 

inflammatory regulation, glucose homeostasis, carbohydrate, lipid and fatty acid metabolism. Phasic 

activation of the cellular proliferation pathway was seemingly counterbalanced with phasic activation 

of cellular apoptotic pathways during pulsatile corticosterone infusion.  

In contrast, constant infusion of a matched corticosterone dose significantly dysregulated the 

characteristic ultradian dynamics of GR binding and RNA Pol2 enrichment within GC target genes. 

These pattern dependent effects were found to impact upon important metabolic functional 

pathways, with notable differences in the predicted trends for pathways mentioned previously. 

Dysregulation of these pathways is known to be associated with phenotypes of MetS such as insulin 

resistance, diabetes, dyslipidaemia, liver fibrosis and NASH and NAFLD. My data now contributes to 

our understanding about how altered GC rhythms, via dysregulated action of GR and aberrant 

transcriptional regulation of GC target genes in the liver, may directly induce the early stages of 

development of these conditions.  

Despite how rapid and robust observed transcriptional changes were in response to the two GC 

patterns over the 3hr timescale in my experiments, we expect that physiological changes would take 

far longer to become apparent. In fact, development of MetS as a result of GC dysfunction and the 

pathways highlighted within this study may even take years to develop fully, therefore, a more chronic 

experimental model is needed to test whether we can start to see measurable physiological changes 

(Jia et al., 2018).  

Within this chapter, I have modelled the 24hr endogenous ultradian GC profile, based upon data I 

collected from adrenally intact rats and have designed a corticosterone replacement protocol that 

delivers hourly 20min pulses of different amplitudes into in ADX rats, to recapitulate the circadian and 

ultradian corticosterone profile.  
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6.2 Aims 

• Model the endogenous ultradian circulating total blood serum corticosterone profiles within 

the rat. 

• Design a corticosterone infusion replacement profile with both circadian and ultradian 

characteristics. 

6.3 Methods 

All methods of analysis were done according to general methods discussed within Chapter 2. 

Briefly, adult male Sprague-Dawley rats (250-300g) (Harlan, Bicester, UK) were housed under standard 

conditions, 12:12 light/ dark cycle (lights on at 06:00h) with food and water available ad libitum.  

Surgical bilateral ADX or sham, I.P. telemetry probe implantation as well as jugular vein and carotid 

artery cannulation were performed under anaesthesia. ADX rats were provided with 0.15µg/L of 

corticosterone in 0.9% saline drinking water whilst sham operated control rats were provided with 

plain water. Both groups had access to normal chow, ad libitum during the 5-day post-surgical 

recovery period. All cannulae were flushed daily with 1% heparinised saline (0.9M) to maintain 

patency every 24hrs. Telemetry recordings of activity and temperature were collected every 10mins 

throughout.  

In ADX rats, 16 hrs prior to corticosterone infusions, corticosterone supplemented saline was replaced 

with 0.9% saline for drinking, to allow adequate washout period within the circulation.  

Blood samples were collected every 10mins from either the carotid artery or jugular vein using the 

ABS system over a 28hr period and total blood serum corticosterone was measured via in-house RIA. 

Within ADX rats, 3.84µM corticosterone-HBC conjugate was infused in 20min periods at variable rates 

hourly over a total 28hr period via the jugular vein.  

6.4 Results 

To accurately model circulating endogenous ultradian corticosterone oscillations over 24hrs, blood 

samples were collected from sham ADX rats every 10mins as well as activity and core body 

temperature (°C) data.  

Assessment of individual total blood serum corticosterone profiles revealed evidence of ultradian 

hourly pulses within the circadian active period (data not shown). When the data was averaged across 

rodents, the circadian rhythm was still clearly seen but the distinct ultradian pulses were no longer 

evident as pulses are not synchronised to a suitable degree between biological replicates (Figure 6.1 
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A). The circadian corticosterone rise began at ~Zt7 (5hrs before lights off) and does not return to basal 

levels until ~Zt22 (2hrs before lights on) consistent with previously published data (Windle, Wood, 

Lightman, et al., 1998; Windle, Wood, Shanks, et al., 1998; Waite et al., 2012; Walker et al., 2014). 

Maximal corticosterone (146ng/ml ±26) was detected at Zt12:40.  

 

Figure 6.1 Circulating corticosterone, body temperature and activity profiles in sham 

adrenalectomised rats. 

Jugular vein blood samples were taken at 10min intervals over 28hrs and total blood serum 

corticosterone levels were assessed using an in-house RIA (red). Analysis identified corticosterone peak 

at Zt12:40 (A). Telemetry probes were also implanted into the intraperitoneal space recording body 

temperature (blue) (B) and activity (green) (C) and data binned into 10min segments. Robust circadian 

profiles were observed in all three metrics (D). Rats (N=6) were sham adrenalectomised and housed 

in standard conditions under a 12:12 light schedule (dark bar indicates lights off), error bars represent 

mean ± s.e.m.. 

Analysis of average activity and body temperature data indicated a high degree of similarity to 

corticosterone changes. A distinct rise in body temperature was recorded between Zt12-14 and 
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maintained until ~Zt20-22 before returning to basal levels, of which Zt4:50 recorded the minimum 

temperature (36.8°C ±0.25) (Figure 6.1 B). Activity profiles followed a similar pattern to body 

temperature (Figure 6.1 C). Interestingly, maximal corticosterone levels coincided with the onset of 

increased body temperature and activity, however, both body temperature and activity remained 

elevated whilst corticosterone levels gradually retuned to nadir within the period ~Zt20-22.   

As my acute corticosterone replacement infusion model was 3hrs, the 24hr period was segmented 

into eight 3hr blocks. Zt11-14 was allocated as the circadian corticosterone peak period, based on 

maximal endogenous corticosterone level having been detected at Zt12:40 (Figure 6.2 A). Over this 

3hr period, the maximal rate of 1ml/hr over 20min every hour was used.   

To introduce the appropriate circadian amplitude variations into the infused corticosterone pulses, 

endogenous corticosterone data was analysed over each 3hr period by area under the curve. Fold 

decrease relative to circadian peak (Zt11-14) was calculated for each 3hr period, and infusion rates 

were appropriately reduced from the maximal rate of 1ml/hr by the calculated factor (Figure 6.2 B&C). 

Analysis and subsequent infusion profile design predicted a similar profile of relative change to 

endogenous profiles, particularly across a similar time segment (Zt2-5) as observed within endogenous 

corticosterone profiles (Figure 6.2 D). 
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Figure 6.2 Modelling the 24hr ‘ultradian’ corticosterone profile. 

The period between Zt11-14 was allocated as circadian peak according to 10min profiling of total 

circulating corticosterone. The rest of the 24hr period was segmented accordingly (A). Rats (N=6) were 

sham adrenalectomised and housed in standard conditions under a 12:12 light schedule (dark bar 

indicates lights off), error bars represent mean ± s.e.m..  Each 3hr section was assessed using an area 

under the curve analysis. Factor changes in results to circadian peak (Zt11-14) were used to calculate 

changes to the infused corticosterone dose, using 3.84µM for the maximal delivered dose, as used in 

the acute model (B). Modelled changes in doses within 3hr sections (C) as well as a hypothetical 

circulating corticosterone levels (normalised to circadian peak) (D) over 24hrs resembled endogenous 

ultradian profiles.  

To validate the modelled ultradian infusion model, corticosterone was infused into adrenalectomised 

rats over a 28hr period via the jugular vein, whilst simultaneous blood samples were collected from 

the carotid artery every 10mins throughout. Differing vessels were chosen so as to collect data on 
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corticosterone levels that had passed through the circulation network. Telemetry probes were also 

implanted I.P. to confirm intact circadian activity and body temperature profiles.  

Within the infusion model, an initial increased rate for 2min 30sec was used to prime the infusion line 

and cannula with corticosterone-HBC saline prior to the modelled infusion. Due to an error in initial 

programming of the infusion pump, 5 pulses of corticosterone-HBC saline were erroneously infused 

at this rate between Zt22-3. This was corrected for the remainder of the modelled infusion (Figure 6.3 

B). 

 

Figure 6.3 Validation of the mock ‘ultradian’ corticosterone infusion. 

28hr corticosterone-HBC saline infusion profiles, modelled to mimic a typical endogenous ultradian 

corticosterone profile, were infused via jugular implanted canulae during simultaneous blood 

sampling from the carotid artery of an adrenalectomised rat. Infusion rates were modelled over a 28hr 

period (A) and total blood corticosterone levels were assessed via RIA (B). Body temperature and 

activity data was also collected over the infusion and sampling period (C). Light schedule was 12:12 

(black bar indicates lights off) and n=1. 
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From an initial total of 8 rats, only four were successfully dual cannulated due to the high degree of 

difficulty cannulating the carotid artery which. One of the four blocked prior to experimental testing 

and two of the three remaining suffered adverse effects and were terminated prior to infusion 

completion. A full 28hr profile of corticosterone, body temperature and activity data were collected 

from a single rat. Rapid increases in circulating total corticosterone were recorded during each 20min 

infusion of corticosterone, which was rapidly cleared within 40min of each infusion, returning to basal 

levels before the next pulse (Figure 6.3 B). The amplitude of the delivered pulses varied as expected 

over the 28hr period, recapitulating previously characterised endogenous measurements. Overall, 

corticosterone increased from Zt6 to a maximal corticosterone level at Zt13:30 (209ng/ml) in response 

to the maximal infused dose of corticosterone (Figure 6.3 A). Pulse amplitude gradually decreased 

throughout the following period until reaching minimal levels at Zt23:20 (29ng/ml). Corresponding 

well with endogenous circadian nadir data. Despite the methodological error that occurred between 

Zt22-3, corticosterone data indicates the infusion model can replace circulating corticosterone in an 

adrenalectomised rat with both ultradian and circadian components.  

Analysis of telemetry data during corticosterone replacement, indicated that whilst increases in 

activity were associated with lights off similar to adrenally intact controls, body temperature did not 

and gradually decreased throughout the infusion period from ~38°C to 36.5°C (Figure 6.3 C). This is 

most likely an adverse effect associated with the dual cannulation method, as examination of 

telemetry data prior to infusion, reported drops in body temperature were associated with flushing 

of cannula to maintain patency. To fully remove any blood clots that may form within the cannula, 

heparinised saline is withdrawn until a small amount of blood (approx. 100µL) is drawn from the 

cannula. Whereupon fresh sterile heparinised saline (approx. 100µL) is infused back, clearing the 

cannula of blood and pushing a small amount into the circulation. Despite this method being used 

multiple times and no previous adverse effects observed in previous double cannulation experiments 

(Figure 2.2), these flushes may have induced a slight drop in blood pressure and thus core 

temperature.  

6.5 Discussion 

To my knowledge, GC replacement with both ultradian and circadian characteristics for use in a 

chronic model has not been shown before within the ADX rat. Within this pilot study, I have presented 

data showing that my model can deliver a physiologically realistic, hourly pulsatile corticosterone 

infusion via the jugular vein with circadian variations of amplitude across a 24hr period.  

As this characterisation has been successful in only one male ADX rat, due to adverse reactions 

associated with the double cannulation combination of jugular and carotid vessels, further refinement 
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of the procedure (followed by validation) is required. To avoid adverse reactions found with the 

combination of carotid and jugular cannulation used in this study, two cannulas will be inserted into 

a single jugular vein, as previously used in our group. 

Within this thesis, I have presented data showing that a 3hr pulsatile corticosterone infusion model 

will regulate synchronised, transient GR recruitment across regulated targets throughout the genome, 

which will induce similar profiles of up-regulated or down-regulated transcription of select genes 

important for regulation of metabolic pathways within the liver. I further report, loss of oscillating 

corticosterone, dysregulates both GR and transcriptional dynamics, in a manner that could modulate 

pathways integral to the development of MetS phenotypes. Despite these indications, I have not 

investigated any changes in circulating metabolic markers, nor would I expect to find any within a 3hr 

timescale as measurable physiological changes will take longer to develop. Additionally, the 3hr model 

was specifically designed to avoid having to account for circadian changes, therefore, to fully 

investigate the development of aberrant metabolic function that could be translationally significant 

for clinical studies, the infusion model has to be extended.  

Primarily, the model was designed to investigate whether metabolic action could be differentially 

regulated by a pulsatile ultradian or non-oscillatory, constant circadian pattern of circulating 

corticosterone. Therefore, I have also designed a novel matched constant circadian infusion model 

using similar methods. This constant circadian corticosterone replacement model, infuses over a 

60min period but at a reduced rate, matching the dose delivered over the 1hr to the 20min pulsatile 

infusion (Figure 6.4). 

 

Figure 6.4 Schematic of a matched modelled loss of pulsatile corticosterone infusion. 

Table describes the dose of corticosterone infusion delivered every 3hrs over a 24hr period as well as 

the rates used for either infusion pattern (A). To induce a pulsatile infusion pattern (dashed line), 
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corticosterone would be infused over a 20min period followed by a 40min pause and repeated hourly 

according to the table. Whereas, to induce a constant infusion pattern (solid line), corticosterone 

would be infused over the full 60min period every hour, but at a reduced rate to the pulsatile infusion, 

therefore matching total dose delivered every hour between infused patterns (B). 

Based on my experience of duration of canula patency, an experimental infusion period can be 

extended up to a 5-day chronic model. This may potentially be long enough to induce changes within 

metabolic homeostatic processes and detect measurable differences in circulating fatty acid, TG and 

lipid levels. The model can also be used to investigate GC phase shifts to the photoperiod, as found 

with transmeridian travel (a.k.a. jet lag) as well as an alteration of feeding behaviour as found with 

variable shift work. This model will also be useful for investigation of other GR regulated physiological 

process, and to assess effects on other important GC target tissues such as the brain, as corticosterone 

replacement is conducted in unstressed conditions and freely behaving conscious rats. 



 

144 
 

Chapter 7 General Discussion 

7.1 Summary of findings 

In this thesis, I report novel in vivo data showing how ultradian corticosterone replacement in ADX 

rats synchronises liver GR binding to the corticosterone pulse peak, at ~ 3,000 binding sites across the 

genome. GR binding was found to be phasic in 100% of cases, with complete dissociation from all 

binding sites within the corticosterone pulse nadir, hence, ultradian GR binding dynamics are tightly 

regulated by the pulsatile corticosterone pattern. Dysregulation of the ultradian rhythm via a dose 

matched constant infusion induced prolonged GR binding at the majority of these binding sites, 

indicating that pulsatile GR dynamics are extremely sensitive to disruption when circulating 

corticosterone rhythms are dysregulated. I report that genome-wide RNA Pol2 access to the 

chromatin template is also dynamically regulated, with precise timing synchronised by pulsatile 

corticosterone. I report the first evidence for a functional consequence of dysregulated ultradian 

corticosterone exposure in liver, as constant infusion resulted in distinct and opposing transcriptional 

outcomes to pulsatile infusion. While pulsatile corticosterone predominantly induced gene repression 

in the majority of cases, constant corticosterone predominantly induced gene transactivation in the 

majority of cases at 140min. The differentially regulated genes were found to be enriched within key 

metabolic pathways known to induce insulin resistance, diabetes, obesity, dyslipidaemia, fatty liver 

disease and hepatic steatosis within dysregulated GC pathology. Taken together, my data highlights 

the importance of maintaining the ultradian GC profile for homeostatic metabolic function via tightly 

controlled regulation of GR dependent transcriptional dynamics. This is the first evidence directly 

linking dysregulated ultradian GC rhythms with early transcriptional changes in known metabolic risk 

factors for the development of MetS. Finally, I have designed a novel 24hr corticosterone replacement 

model that will be used in future research to determine how these early changes manifest into 

metabolic changes over a longer timeframe.  

My research and findings of underlying metabolic mechanisms is extremely relevant to current public 

and government interests in tackling metabolic phenotypes that have risen in parallel with rhythm 

disrupting lifestyles, chronic stress, and prevalence of long-acting synthetic steroid treatments. 

Targets found to be sensitive to rhythm disrupting GC exposure in this study will inform translational 

approaches, in particular the identification of druggable candidates for therapeutic intervention in GC 

pathology and its associated metabolic dysregulation.  
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7.2 Overview of corticosterone patterned regulation 

The main focus of my work has been to investigate the biological significance of the ultradian GC 

rhythm. Adrenal circadian GC release is synchronised to the photoperiod via the HPA axis (Weitzman, 

1976; Lightman and Conway-Campbell, 2010). Due to intrinsic delayed positive feed forward and 

negative feedback mechanisms regulating adrenal GC secretion, combined with its short half-life upon 

entering the circulation, circulating GC levels oscillate in an ultradian rhythm within the circadian 

rhythm. The majority of research investigating the importance of GC rhythms focussed on the 

circadian rhythm, with 6-12hr intervals between data collection which misses the underlying ultradian 

dynamics, despite their highly conserved nature within mammalian biology (Krieger et al., 1971; 

Holaday, Martinez and Natelson, 1977; Benton and Yates, 1990; Engler et al., 1990; Carnes et al., 1992; 

Loudon et al., 1994; Cudd et al., 1995; Windle, Wood, Shanks, et al., 1998) and have been 

demonstrated to play important roles in a diverse range of physiological functions (Windle, Wood, 

Lightman, et al., 1998; Conway-Campbell et al., 2010; Sarabdjitsingh et al., 2010, 2014, 2016; 

Kalafatakis et al., 2018). It therefore seems short sighted to ignore their potential role in metabolic 

regulatory functions, as this is a major function ascribed to GCs (Kyrou, Chrousos and Tsigos, 2006; de 

Guia, Rose and Herzig, 2014; Kuo et al., 2015) 

7.2.1 Mock ‘ultradian’ corticosterone pulses direct robust glucocorticoid receptor binding and 

synchronised transcription 

Within Chapter 3, I present novel in vivo data, showing that physiological pulsatile corticosterone 

infusion into ADX rats, induced GR binding at 87.4% of corticosterone regulated sites across the 

genome exclusively at the peak of the pulse which was lost within the pulse nadir (Figure 3.7). To my 

knowledge, similar GR dynamics in vivo have only been reported for the well characterised Per1 GRE 

~2.5kb upstream from the TSS. Authors reported that three bolus 100µg corticosterone injections 

were associated with maximal GR binding at the peak of each corticosterone pulse and dissociated to 

basal levels within the corticosterone pulse nadir after 40min. They also reported phasic hnRNA 

production of Per1 that was slightly delayed to both corticosterone and  increased GR levels (Figure 

1.9) (Stavreva et al., 2009). My work validates that not only are these dynamics replicable using a 

corticosterone replacement infusion model via the jugular vein, but also that ultradian corticosterone 

dynamics can direct GR binding across all accessible binding sites across the genome which is not 

restricted to select targets.  

As previously mentioned, the GR is an oxosteroid nuclear transcription factor, mediating 

transcriptional regulation via recruitment of co-factors for its intrinsic transactivator/ transinhibitory 

mechanisms (Oakley and Cidlowski, 2013; Ratman et al., 2013). Previously it has been shown that 
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oscillating GR binding to the regulatory GRE of Per1 induced phasic hnRNA production in rat liver 

(Stavreva et al., 2009). In chapter 4, I expanded upon my GR binding data to present novel RNA Pol2 

ChIP-Seq data that indicated transcriptional regulation (gain of RNA Pol2 occupancy) of 77.3% of the 

liver corticosterone regulated genes identified in this study were similarly pulsatile. While there were 

many cases of increased transcription, gene repression (loss of RNA Pol2 occupancy) was found in the 

majority of cases (73.4%), synchronised to the corticosterone pulse peak.  Irrespective of the direction 

of change, there was a return to basal levels within the pulse nadir for the vast majority (85.1%) of 

cases (Figure 4.6) and just 14.5% of genes were differentially enriched relative to VEH control within 

the pulse nadir. These data strongly support a model whereby pulsatile GC exposure induces transient 

liver specific GR binding across the genome to mediate robust phasic transcriptional regulation of GC 

target genes in liver.  

My data in rat liver is consistent with findings from an in vitro model of GR binding and RNA Pol2 

occupancy within a mouse mammary carcinoma (3617) cell line. A series of real time live cell imaging 

experiments showed that GR recruitment to the artificial MMTV array was synchronised to pulses of 

15min corticosterone exposure, that fully dissociated within 45min of hormone withdrawal and was 

repeatable over multiple cycles of stimulation in the same cells (Stavreva et al., 2009). The authors 

expanded upon these findings using similar ChIP-Seq methods to those used in this thesis and reported 

RNA Pol2 occupancy was similarly synchronised. Their data, however, indicated corticosterone 

administration increased transcription at the majority of gene targets in response to a single 20min 

(followed by 40min washout) and 60min corticosterone administration (Stavreva et al., 2015). 

Interestingly, Affymetrix GeneChIP data analysis of nerve growth factor-determined 

catecholaminergic (PC12) cells after a 20min 100nM corticosterone pulse, indicated that the 

predominant effect was a reduction in mRNA levels at 1hr while increased mRNA levels were detected 

at a much later time of 3hrs after the corticosterone pulse (Morsink et al., 2006). The data I have 

presented here may indicate that repeated transient GR binding cycles are required to maintain 

repressive transcriptional effects as observed at the 1hr time point in PC12 cells. It is also possible that 

the delayed effects on mRNA upregulation in the Morsink study could be due to a timing delay in RNA 

processing, required to produce the mature transcript, or other post-transcriptional mechanisms. 

Alternatively, taken together with my findings, these data may highlight a potentially distinct 

regulatory role for dynamic regulation of transcriptional mechanisms over varying timescales.  



 

147 
 

7.2.2 Constant corticosterone exposure can induce prolonged GR binding and dysregulate 

synchronised transcriptional regulation  

Expanding upon these results, I presented novel in vivo data that shows how replacing ultradian pulses 

with dose matched constant infusion robustly dysregulated both GR and RNA Pol2 dynamics. Of all 

the GR binding sites identified as distinctly corticosterone regulated in this study, 87.4% were bound 

at the peak (140min) compared to 0% at the nadir (180min). GR binding in response to the dose 

matched constant corticosterone infusion whereas, was found at fewer sites than with pulsatile peak, 

with 32.0% of sites bound at 140min and 49.3% at 180min.   

A differential analysis for time dependent effects (within each pattern) confirmed the extent of 

dysregulation of phasic GR binding during constant corticosterone exposure as significant time 

dependent differences in GR binding was found for 50.7% of sites during pulsatile infusion but only 

2.5% of sites during constant infusion (Figure 3.7).  

In Chapter 4, I reported that pulsatile infusion resulted in a highly defined temporal regulation of 

transcription for GC target genes. At the corticosterone pulse peak, 77.3% of target genes were found 

to have significant changes in Pol2 occupancy, whereas, only 14.5% of genes were at the nadir to VEH 

control. This indicates a dynamic regulation of transcription coinciding predominantly with the pulse 

peak. Constant infusion markedly impacted upon the dynamics of phasic RNA Pol2 activity over time, 

with 35.5% and 38.9% of target genes found to have significant changes in Pol2 occupancy at 140min 

and 180min respectively, relative to VEH control (Figure 4.6).  

Similar to GR dynamics, differential analysis for time dependent effects (within each pattern) 

confirmed the extent of dysregulation of phasic transcriptional regulation during constant 

corticosterone exposure. Here, significant time dependent differences in relative RNA Pol2 

enrichment were found for 60.3% of sites during pulsatile infusion but just 14.1% of sites during 

constant infusion (Figure 4.6). 

As described in the previous section (4.4.6) pulsatile corticosterone was found to be more effective at 

inducing transcriptional repression of the majority of regulated targets, with reduced pSer2 Pol2 

occupancy detected at 73.4% of regulated genes at the pulse peak. In contrast, constant 

corticosterone was found to be much more effective at inducing upregulation, with increased pSer2 

Pol2 occupancy detected at 77.2% and 49.6% of total regulated genes at 140min and 180min 

respectively (Figure 4.6).  

The opposing outcome of pulsatile versus constant corticosterone treatment for GC regulation of the 

liver transcriptome was not supported by the data from the only other genome-wide study of this type 
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(Stavreva et al., 2015). The Stavreva study was performed in a mouse mammary carcinoma cell line, 

where no pattern dependent differential repressing or transactivating regulation was noted (Stavreva 

et al., 2015). As previously mentioned, mRNA production within PC12 cells was decreased post 1hr of 

corticosterone exposure, which was increased by 3hrs (Morsink et al., 2006). As only the Morsink et 

al. 2006 study used a similar time point to mine, one could conclude rapid, transient corticosterone 

and ultimately GR binding is required to induce inhibitory transcription. More research is required to 

confirm these dynamics, as well as clarify the discrepancies between different cell types, and in vitro 

versus in vivo observations. 

My data also highlights that constant corticosterone infusion was less effective than the 

corticosterone pulse peak at inducing GR binding, as well as regulating RNA Pol2 access to the 

chromatin template. Of the sites inducible by corticosterone, 47% were exclusively pulse peak 

dependent, whereas only 8.6% were exclusively induced by constant corticosterone (Figure 3.5). For 

the remaining 44.1% of binding sites, GR binding was commonly responsive to at least two of the three 

conditions with raised circulating corticosterone. Similar dynamics were observed in transcriptional 

regulation, as differential RNA Pol2 occupation was detected in 41.5% of regulated genes at the 

corticosterone pulse peak only, which reduced greatly to just 10.9% of regulated genes commonly 

responsive to all three conditions with raised circulating corticosterone (Figure 4.8).  

Dysregulation of RNA Pol2 dynamics during constant corticosterone exposure was more complicated 

than the simple prolonged duration effect observed with GR. There was also strong evidence for 

opposing overall transcriptional effects between pulsatile and constant corticosterone exposure as 

well as many gene specific differences evident within the data, which will be discussed in more detail 

in section 7.3.  

7.2.3 Dose-dependent effects 

To match the infused corticosterone doses between the two patterned infusion groups, the constant 

infusion rate was lower. The same dose was delivered over 60min in the constant group but over 

20min in the pulsatile group, therefore, circulating corticosterone concentration was highest at the 

pulse peak compared to any other condition and time point (Figure 2.2). Previously published data has 

indicated GR binding within the hippocampus of male ADX rats was induced at many of the same sites 

by two differing doses, however, a sub-group of sites were induced in response to the high dose only 

(Polman, de Kloet and Datson, 2013). As the data indicated distinct and opposing transcriptional 

induction by either patterned corticosterone exposure, I would hypothesise the peak dependent sites 

are more likely to be dose dependent. Despite this, I would not conclude observed transcriptional 

differences between infusion patterns are mostly dose dependent, as the loss of transient GR binding 



 

149 
 

is distinctly robust and cannot be discounted as a primary and synergistic factor for transcriptional 

dysregulation.  

7.3 Observations between transcriptional activity and proximal or distal GR binding 

In this study I found a relationship in the data that an increased distance, between the TSS and the 

closest regulated GR binding site, increased the likelihood of transcriptional inhibition of the gene 

which I cannot identify as nGRE mediated (Figure 5.2). To my knowledge, this phenomenon has only 

been reported in vitro in response to Dex administration in A549 cells with differential mRNA 

expression analysed by RNA-Seq (Reddy, Pauli and Sprouse, 2009). As this is observed in both RNA 

Pol2 occupancy as well as mRNA production, the data in part justifies the use of RNA Pol2 occupancy 

as a proxy for transcription, as well as indicating that this may represent a novel mode of GR mediated 

transcriptional regulation.  

Regulation of GR responsive genes has been observed over long distances and via TAD domains that 

rely on chromatin reorganisation to either ‘open’ or ‘close’ sites to transcription factors and their 

complexes as well as the transcriptional machinery (Ito et al., 2006; Kuznetsova et al., 2015; Kim et al., 

2018). This suggests the mechanisms of chromatin reorganisation needed for transcriptional 

regulation may depend on the proximity of  a GR binding event (Grøntved et al., 2015; Stavreva et al., 

2015; Jubb et al., 2017; Stubbs, Flynn and Conway-Campbell, 2018). Although the majority of GR 

binding sites are located in pre-accessible ‘open’ chromatin, several sites can also be found in highly 

compacted ‘closed’ chromatin that  is non-permissive for RNA Pol2 access to the TSS and gene bodies 

within these regions (Archer et al., 1991; John et al., 2008, 2011; Reddy, Pauli and Sprouse, 2009; Jubb 

et al., 2017). However, GR binding can initiate local chromatin opening via recruitment of co-factors 

such as the HATs CBP and P300 as well as chromatin remodelling factors such as the SWI/SNF complex, 

which slide nucleosomes open to increase accessibility for RNA Pol2 and the transcriptional machinery 

(Chakravarti et al., 1996; Gerritsen et al., 1997; Koh et al., 2001; Belandia et al., 2002). Even sites 

thought to be pre-accessible can also be opened further for gene regulation following glucocorticoid 

treatment (John et al., 2008; Burd et al., 2012).  

Despite these potential mechanisms, the role of chromatin remodelling in GR transcriptional inhibition 

is not well understood and so far, a greater role of SWI/SNF in transcriptional activation and induction 

of genes has been identified (John et al., 2008). Other chromatin reorganisation mechanisms may be 

required for long distance transcriptional inhibition such as chromatin looping, bringing a distant GR 

binding site into closer proximity with the TSS (Hakim et al., 2009; McDowell et al., 2018). For this 

study the degree of pre and post chromatin accessibility within regions of inducible GR binding were 

not investigated. So, no conclusions can be made as to whether binding sites induced by the 
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corticosterone treatment are located within ‘open’ or ‘closed’ chromatin or whether decompaction 

occurs. Further studies are needed to explore regulation of transcriptional inhibition and why a larger 

distance may frequently be found. New techniques that could help answer this question include Hi-C 

to detect chromatin interactions, DNA-FISH to assess chromatin decompaction  and DNase1-Seq or 

ATAC-Seq to assess chromatin accessibility (Buenrostro et al., 2013; Jubb et al., 2017). I would suggest 

further studies using some of these techniques would be important to explore mechanisms of not only 

GR mediated transactivation or transrepression but also in relation to pulsatile and constant 

corticosterone exposure.   

7.4 Homeostatic metabolic implications 

Within my thesis, I present the key metabolic pathways affected by differential pattern dependent 

corticosterone treatment. Some of these were predicted to be significantly activated or inhibited in 

response to an infused corticosterone condition and/or time point, many others were only trending. 

Together this data indicates key pathways can be synchronised to ultradian corticosterone oscillations 

within the liver, the dysregulation of which could potentially lead to the development of aberrant 

metabolic phenotypes associated with GC dysfunction and the development of MetS.  

The HPA axis is a highly plastic system, with the ability to adapt natural oscillations of GC release from 

the adrenal glands in response to a range of physical and psychological stimuli, the degree of which 

can be dependent on the self-perceived degree of a stressor (Pariante and Lightman, 2008; Lightman 

and Conway-Campbell, 2010; Sarabdjitsingh et al., 2010). These processes can become maladaptive, 

as clinically depressed patients present with flattened circadian rhythmicity as well as raised 

circulating ACTH and cortisol (Deuschle et al., 1997). Most research into endocrine rhythms has mainly 

focussed on dysregulation of circadian dynamics, whilst ultradian GC dysregulation remains a 

relatively underexplored but potentially important area. For example, the application of a stressor not 

only increases the interpulse period, but the degree of the physiological, neural and behavioural 

response to stress is dependent on the pulse phase (Windle, Wood, Lightman, et al., 1998; J. Haller et 

al., 2000; Sarabdjitsingh et al., 2010). Additionally, stress responsiveness, emotional processing and 

memory are blunted by constant corticosterone infusion (Sarabdjitsingh et al., 2010; Kalafatakis et al., 

2018).  

GCs are well known to either directly or synergistically regulate key targets within metabolic pathways 

of glucose, lipid, carbohydrate and cholesterol homeostasis within the liver; therefore dysregulation 

could have serious consequences (Kyrou, Chrousos and Tsigos, 2006). It has been demonstrated that 

workers who suffer chronic stress (defined as three events a week) were twice as likely to develop 

type II diabetes (Chandola, Brunner and Marmot, 2006). Cushing’s Disease is characterised by 
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hypercortisolism and there is an over representation of metabolic dysfunction including the 

development of significant visceral fat deposits and obesity (32-41%), dyslipidaemia (32-41%) and type 

II diabetes (20-47%) in these patients (Nieman and Ilias, 2005; Stratakis, 2008; Feelders et al., 2012; 

Buliman et al., 2016). Loss of HPA axis synchrony to the photoperiod is associated with increased 

weight gain and risk of diabetes without increasing overall food intake in rodents, which may be an 

important mechanism underlying the cause of a twofold increased risk of developing diabetes as 

observed within human studies of variable shift workers (De Bacquer et al., 2009; Karatsoreos et al., 

2011).  

As my data has indicated distinctly pulsatile GR binding and transcription in the liver, which becomes 

significantly dysregulated during constant infusion, what impact might this have for metabolic 

pathology?  

7.4.1 Glucose homeostasis 

Trends of activation within pathways regulating glycogen, monosaccharides and dietary glucose were 

predicted at the corticosterone pulse peak but not within the nadir, indicating transient activation 

which becomes prolonged in response to constant corticosterone exposure. The functional impact of 

this may include the potential for prolonged elevations in circulating glucose levels.  

Transcriptional regulation of the gluconeogenic targets Pfkfb1, G6pc and Slc37a4 were significantly 

pattern dependent and GR binding was found with varying proximity to the TSS of each of these genes. 

Pffkb1 is a bi-directional, rate limiting enzyme that is regulated in part by glucagon, switching the 

direction of glucose metabolism within hepatocytes favouring either gluconeogenesis or glycolysis. 

Within my data, I report a GR binding site (6kb upstream) that is robustly regulated and synchronised 

to circulating corticosterone infused patterns. Interestingly, RNA Pol2 was robustly increased at the 

pulse peak as well as prolonged in response to the constant infusion, indicating dysregulation of 

ultradian oscillations increases Pfkfb1 expression. As Pfkfb1 was enriched within the pathway for 

increasing quantity of glycogen, the functional impact of ultradian dysregulation may be to increase 

glycogen within the liver as shown in Dex treated fasted, ADX mice and rats (Mersmann and Segal, 

1969; Exton et al., 1976; de Guia, Rose and Herzig, 2014).Due to its glucagon regulated bi-directional 

effects however, it is difficult to predict the glucose regulated effects due to variable transcription 

rates. 

GC pathology is often associated with increased glucose production and mobilisation, and the inability 

to reduce glucose levels, leading to insulin resistance. G6pc and the associated carrier protein Slc37a4, 

are both rate limiting, converting glucose-6-phosphate into glucose. Deficiency of which is associated 
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with glycogen storage disease and a hypoglycaemic states (de Guia, Rose and Herzig, 2014; Kishnani 

et al., 2014; Kuo et al., 2015; Bali et al., 2016). G6pc was transcriptionally repressed at the 

corticosterone pulse peak only, whilst Slc37a4 was significantly upregulated by constant 

corticosterone infusion in a prolonged manner, with significantly increased expression relative to both 

pulsatile infusion and veh control. Two robustly pattern dependent GR binding sites (6kb and 12kb) 

upstream of G6pc TSS, and a single robustly pattern dependent GR binding site (0.1kb) upstream of 

Slc37a4 TSS were found.  

The impact of constant corticosterone exposure, via the combined changes in expression of these two 

genes, may therefore be an increased glucose production within hepatocytes. Additionally, 

overexpression of G6pc and presumably its carrier protein Slc37a4 has also been shown to precipitate 

hyperinsulinemia, decreased glycogen storage in the liver, and TG storage in peripheral tissues 

(Massillon et al., 1996; Trinh et al., 1998; Massillon, 2001; Gautier-Stein et al., 2012). Therefore, 

together these two targets are prime candidates for a causal role in inducing aberrant glucose 

metabolism during ultradian corticosterone rhythm dysregulation.  

Despite the lack of a significant prediction for the insulin resistance pathway, one of the key targets 

within the pathway, insulin like growth factor 1 (Igf1), was found to be highly pattern dependent in its 

regulation. RNA Pol2 occupancy in the Igf1 gene was reduced at the corticosterone pulse peak and at 

both constant corticosterone time points, indicating a prolonged decrease in transcription during 

constant corticosterone exposure. Significantly pattern dependent GR binding was identified 34.5kb 

downstream of the TSS. Igf1 mRNA has been reported previously to be reduced by Dex treatment in 

human KLE endometrial-like cells (Lembessis, Kalariti and Koutsilieris, 2004). There is also evidence for 

a link associating Igf1 hormone levels (either very low or very high levels) with an increased risk for 

insulin resistance and diabetes (Lembessis, Kalariti and Koutsilieris, 2004; Schneider et al., 2011; 

Friedrich et al., 2012).  

Together, this data highlights G6pc, Slc37a4 and Igf1 as ultradian regulated genes that could be key 

targets for further study regarding dysregulated GC pathology as well as corticosterone mediated 

insulin resistance. 

7.4.2 Fatty acid, TG, lipid and apolipoprotein metabolism 

Within this thesis, I present statistically significant pathway predictions of inhibited cholesterol 

production at the corticosterone pulse nadir as well as a selection of novel ultradian targets that, upon 

dysregulation by a constant corticosterone infusion, may play a role increasing storage of cholesterol, 

TG and lipids within the liver. Risk factors associated with the MetS phenotypes, NASH and NAFLD. 
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Pathway analysis of corticosterone regulated targets predicted a significant inhibition in the quantity 

of cholesterol at the pulse nadir in response to pulsatile infusion indicating dysregulation of ultradian 

rhythms could increase levels within the liver (Figure 5.5). Corticosterone synchronised trends of 

increased carbohydrates were also predicted at the pulse peak, but prolonged in response to a 

constant infusion (Figure 5.9), indicating a potential accumulation within the liver. Similar trends were 

not predicted for TG, fatty acid and lipid pathways, as despite evidence of synchronised ultradian 

regulation, prolonged trends of inhibition were predicted in response to a constant corticosterone 

infusion. This was disappointing as there are many studies that show an association with dysregulated 

GCs and hyperlipidaemia (Vegiopoulos and Herzig, 2007; Lemke et al., 2008; Lu et al., 2012; Kuo et al., 

2015). Upon further examination, key metabolic targets enriched within these pathways’ present ideal 

candidates for future research and potentially indicate a more chronic model of GC dysregulation is 

required for phenotypic development.  

Fasn converts the intermediate metabolite malonyl coenzymeA into fatty acids in a rate limiting 

reaction within de novo lipogenesis (Chakravarthy et al., 2005; de Guia, Rose and Herzig, 2014; Rui, 

2014). Within my data, Fasn and Scd (another factor involved in de novo lipogenesis) reported 

corticosterone synchronised losses of RNA Pol2 in response to the pulsatile infusion but not in 

response to a constant corticosterone infusion as well as corticosterone regulated binding sites 78kb 

upstream and 13kb downstream of the Fasn and Scd TSS respectively. Together, this data could 

indicate GR mediated increases in expression in response to disruption of ultradian oscillations, which 

could be important when one considers increased Scd mRNA levels are reported within obese and 

lipoatrophic diabetic mice as well as hepatic steatosis (Cohen et al., 2002; Asilmaz et al., 2004). Similar 

raised levels have been reported within NAFLD patients as well as TG accumulation within the liver 

indicating increased de novo lipogenesis could be significant with regard to aberrant metabolic 

function (Kotronen et al., 2009). Although studies within leptin-deficient (ob/ob) mice indicate just 

11% ±1 of TG within the liver originate from de novo synthesis, therefore despite indication of 

synthesis, effects could be minimal (Iizuka, Miller and Uyeda, 2006; Jensen-Urstad and Semenkovich, 

2012).  

Similarly, RNA Pol2 occupation of Lpin1 was increased in a prolonged manner by constant 

corticosterone infusion (Figure 4.2 and Figure 4.10). Pathway analysis indicated a regulatory role 

within hyperlipidaemia and dyslipidaemia pathways and similarly, over expression has been 

associated with increase adipocyte TG uptake and obesity, however, direct observations within the 

liver and its role with other Lpin variants remains to be fully elucidated (Phan and Reue, 2005; Finck 

et al., 2006; Reue and Dwyer, 2009). 
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Interestingly, my data also reported losses of RNA Pol2 at the apolipoprotein gene, Apob, were 

synchronised to the corticosterone pulse but prolonged in response to a constant infusion as well as 

a corticosterone regulated GR binding site 26kb upstream of the TSS. APOB is required for VLDL 

synthesis and function, facilitating lipid accumulation within the lipoprotein as well as endocytosis by 

intermediate density lipoproteins, lowering VLDL levels within the circulation (Powell et al., 1987; 

Atzel and Wetterau, 1993). As VLDL synthesis and function are integral to the livers ability to transport 

TG, lipids and other metabolites out of the liver and into the circulation which is a known risk factor 

of NAFLD and NASH, any dysregulation of synthesis could have significant effects over a prolonged 

period (Wetterau et al., 1992; Linton, Fame and Young, 1993; Ozcan et al., 2004; Ota, Gayet and 

Ginsberg, 2008; Jiang, Robson and Yao, 2013; Welty, 2014).  

I therefore hypothesise, dysregulation of ultradian oscillations by raised, non-oscillating GC exposure 

could increase the transcription of specific genes increasing deposition of TG, cholesterol and 

carbohydrates within the liver. Coupled with a loss in VLDL synthesis over a prolonged period could 

develop NAFLD and NASH phenotypes. Further research is required over a chronic model of GC 

replacement for confirmation and assessment.  

7.4.3 Serotonin and melatonin metabolism 

Trends of increased melatonin and serotonin degradation were predicted in a phasic manner, 

synchronized to corticosterone pulse peak and prolonged in response to the constant corticosterone 

infusion, indicating pattern dependence.  

In vivo microdialysis measurement of both serotonin and melatonin have reported diurnal variations 

within the pineal gland, however, 95% of circulating serotonin is produced within the duodenum of 

the gut which also reports a degree of circadian rhythmicity (Sun et al., 2002; Ebert-Zavos et al., 2013). 

Melatonin is produced from serotonin within the pineal gland and is also secreted in an inverted 

circadian profile to GCs (Lane and Moss, 1985; Chojnacki et al., 2012). As the liver metabolises up to 

90% of circulating melatonin within a single pass through the hepatic portal circulation, alteration in 

degradative pathways could have a large impact (Lane and Moss, 1985; Chojnacki et al., 2012). 

Increased serotonin uptake and metabolism within the liver is associated with increased 

mitochondrial reactive oxygen species and lipid peroxides. Risk factors associated with NASH and 

potentially loss of ultradian oscillations as trends indicated a prolonged increase in degradation. 

Patients with liver cirrhosis have raised melatonin levels compared to controls, potentially due to a 

loss of clearance within the liver (Iguchi, Kato and Inayashi, 1982; Nocito et al., 2007). Additionally, 

single nucleotide polymorphism (SNP) within the melatonin receptor 1B reported increased glucose 
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and insulin secretion and was predictive of type 2 diabetes (Lyssenko et al., 2009). Therefore, constant 

corticosterone induction of melatonin degradation could be protective. 

In conclusion, prolonged activation of serotonin and melatonin degradation could have opposing 

effects regarding liver damage but present interesting candidates for future research considering their 

well-documented role within circadian biology. 

7.4.4 Hepatocyte turnover 

Seemingly opposing pathways for growth and proliferation, and necrosis and cell death were similarly 

enriched with pattern dependent targets, potentially indicating that hepatic cell turnover rate is 

sensitive to GC rhythm disruption. This may have implications for increased risk of the development 

of liver cancer, fibrosis and NASH (Feldstein et al., 2003; Argo et al., 2009; Luedde, Kaplowitz and 

Schwabe, 2014). 

Pathway analysis of differentially occupied RNA Pol2 genes, indicated predictive trends of increased 

proliferation and liver growth synchronised to the corticosterone pulse peak, were prolonged during 

constant corticosterone infusion. Interestingly, analysis predicted similar trends of activation for 

necrotic and cell death pathways. Within the liver, hepatocyte turnover is relatively low as a study in 

male Wistar rat liver demonstrated just 0.05% of hepatocytes were in an apoptotic state at any one 

time (Columbano et al., 1985; Luedde, Kaplowitz and Schwabe, 2014). Despite this, the liver has a 

relatively rapid and specialised capacity for regeneration after lobectomy of up to 3 of its 5 lobes (2/3 

total mass) (Higgins and Anderson, 1931). Regeneration due to partial hepatectomy is a tightly 

regulated process, with two rounds of DNA synthesis and proliferation followed by apoptosis that is 

thought to correct for any over proliferation (Sakamoto et al., 1999). Considering this capacity and 

ability for liver growth or cell death, any perturbation in cellular pathways could potentially have 

serious implications. 

Motif analysis showed that 54% of GR binding regions, which contained a GRE, also contained an over-

expressed sequence that resembled a STAT5 motif, indicating a co-regulation between GR and STAT5 

at these sites (Table 3). STAT5 is activated by a signalling cascade initiated by growth hormone, which 

regulates gene expression in the liver via the membrane bound growth hormone receptor. Activated 

STAT5 and GR form a potent transactivation complex to induce transcription of growth factors in the 

liver (Engblom et al., 2007; Hennighausen and Robinson, 2008). Interestingly, loss of STAT5B can 

reduce IGF1 expression that has been linked to reduced overall body growth as well as fatty liver, 

hepatic steatosis and impaired cell proliferation, as has GR liver specific knockouts (Tronche et al., 

2004; Cui et al., 2007; Engblom et al., 2007). Within the necrosis pathway, Igf1 was identified as 
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inhibitory and transient losses of RNA Pol2 occupancy were found in response to pulsatile but 

prolonged by constant corticosterone exposure.  

Unfortunately, there is a lack of clarity within the data, as similarly activatory or inhibitory genes 

enriched within growth/ proliferative pathways were also identified in necrotic/ cell death pathways. 

This is most probably due to multiple pleiotropic transcription factors within each pathway. For 

example, analysis listed the MYC proto-oncogene, BHLH transcription factor gene (Myc) as activatory 

of all four pathways (Zheng, Cubero and Nevzorova, 2017). c-Myc transcription can be induced via 

growth factor activation and has been identified as an immediate early gene, whose expression is 

increased by 30min post-lobectomy and reaching maximal levels twice at 2hr and 3hr time points 

(Ohgaki et al., 1996; Thorgeirsson and Santouni-Rugiu, 2003; Zheng, Cubero and Nevzorova, 2017). As 

c-MYC is a key transcription factor driving transition of hepatocytes from G0/G1 to S phase, these peaks 

in expression are associated with hepatocyte proliferation as mentioned previously (Thompson et al., 

1986). It has been shown that c-MYC sensitizes a cell to apoptosis via indirect inhibition of p53 

proteasomal degradation (Zindy et al., 1998). Hence, loss of c-MYC transcriptional control has long 

been associated with hepatic carcinoma and has been replicated within a hepatocyte specific Myc 

overexpressing mouse model (alb-Cre+/cMYCtg). Tumours developed in 40% of these mice at 45 weeks 

old, and 80% by 65 weeks (Evan and Littlewood, 1993; Hoffman and Liebermann, 2008; Freimuth et 

al., 2010). Increased collagen deposits leading to fibrogenesis and damage are also associated with 

this mutant mouse line. Increased collagen deposits have also been observed clinically and are 

postulated to further progress to hepatocellular carcinoma (Nevzorova et al., 2013; Zheng, Cubero 

and Nevzorova, 2017). Interestingly however, co-expression of c-MYC and hepatocyte growth factor 

inhibits proliferation and tumour growth (Thorgeirsson and Santouni-Rugiu, 2003). MYC function is 

not reserved just to hepatocyte proliferative and apoptotic pathways, as my analysis also listed Myc 

as activatory within the glycogen quantity pathway. This is unsurprising as evidence has shown Myc 

could be protective against HFD induced insulin resistance, obesity and hyperglycaemia due to its 

involvement in hepatic glucose accumulation and carbohydrate metabolism (Valera et al., 1995; Riu 

et al., 2003; Zheng, Cubero and Nevzorova, 2017). 

Analysis also listed Igbp1 as inhibitory of growth and proliferative pathways, despite a recent study 

indicating knockout reduced the capacity for liver regeneration after lobectomy (Leu et al., 2003). 

Within a tethered, complimentary co-factor complex, opposing or synergistic transcriptional effects 

can be dependent upon whichever co-regulator is bound to the DNA as described for NFκB or STAT 

transcription factor complexes with GR (Jonat et al., 1990; Ray and Prefontaine, 1994; Stoecklin et al., 

1997; Aittomäki et al., 2000; Rao et al., 2011; Ratman et al., 2013). A mechanism of this type could 



 

157 
 

explain opposing observations, nevertheless, it is reasonable to conclude that targets highlighted 

within these pathways have complex interactions that are yet to be fully elucidated. Whilst this data 

does not define an overall increase or decrease in hepatocytes, it does indicate a potential for 

dysregulation of turnover rates. The outcome of this dysregulation would need to be assessed over a 

longer timeframe using my chronic infusion protocol, particularly because proliferation, cell death and 

necrosis pathways have been associated with an increased risk of cancer, fibrosis and NASH (Feldstein 

et al., 2003; Argo et al., 2009; Luedde, Kaplowitz and Schwabe, 2014). 

7.4.5 Chronic model 

Within this thesis, I have highlighted that MetS may take years to develop, therefore, detection of 

such robust, early changes within the first 3hrs of GC rhythm dysregulation is quite remarkable 

(Edwards et al., 2012; Medina-Santillán et al., 2013; Bergmann, Gyntelberg and Faber, 2014; Kaur, 

2014). The ability to detect and observe how these changes affect metabolism over an extended 

period with a chronic treatment protocol would represent an important and fascinating tool for future 

research into dysregulated ultradian and circadian GC rhythms.   

Circulating metabolites such as TGs, lipids, free fatty acids, carbohydrates and VLDLs are known to 

fluctuate in a circadian manner and aberrant regulation has long been associated with dysregulated 

GCs (Kalsbeek, la Fleur and Fliers, 2014; Poggiogalle, Jamshed and Peterson, 2018). Furthermore, 

despite numerous studies investigating manipulation of the photoperiod or characterisation within 

sustained hyper- or hypocortisolism states (as found within Cushing’s and Addison patients), no-one 

has investigated the relative contribution of the ultradian versus the circadian GC profile in 

maintaining ‘healthy’ metabolic function.  

To answer these fundamental questions, I present a novel, hourly pulsed ultradian model of GC 

replacement within the ADX rat, that incorporates circadian variation in pulse amplitude over a 24hr 

period. Here, I have presented the first evidence that dynamic oscillations in circulating corticosterone 

can be delivered via a programmable infusion pump in a manner that models both circadian and 

ultradian endogenous corticosterone rhythms, albeit only in a pilot study (n=1) so far (Figure 6.3). To 

my knowledge, this is the first physiologically realistic ultradian corticosterone replacement infusion 

model, in vivo. I expanded upon this model to also design a replacement infusion that incorporated a 

circadian aspect, but without the ultradian pulsatile rhythm.  

This infusion protocol has great potential for use over a chronic timeframe to assess functional 

changes arising from circadian and/or ultradian dysregulation. Applications extend beyond 

assessment of liver function, as multiple GC targets including adipose tissue, muscle, and the brain 
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could be affected by chronically dysregulated GCs. In particular, cognitive impairment and depression 

have been reportedly associated with dysregulated GCs (Deuschle et al., 1997; Michaud, Forget and 

Cohen, 2009; Guo et al., 2018). Stress related aggressive behaviour, as well as appetite and weight 

loss, are not only mediated by the self-perceived degree of a stressful event, but also at what point 

within a circadian and ultradian profile it is applied (Akabayashi et al., 1994; Martí, Martí and Armario, 

1994; Rybkin et al., 1997; Windle, Wood, Lightman, et al., 1998; J Haller et al., 2000; J. Haller et al., 

2000; Shimizu et al., 2010; Ciriaco et al., 2013; Simic et al., 2013). Therefore, the ability to accurately 

interrogate system / tissue / cellular function in response to an acute or more chronic GC disruption 

paradigm within a specific circadian and/ or ultradian GC phase will be exceptionally informative about 

the processes of dynamic physiological regulation.  

7.4.6 Clinical importance 

Hypercortisolism, most commonly associated with Cushing’s disease, is associated with a myriad of 

aberrant metabolic effects such as obesity, insulin resistance, diabetes mellitus and dyslipidaemia 

(Nieman and Ilias, 2005). Interestingly, other cohorts of patients including those suffering with chronic 

depressive disorder, chronic stress conditions and chronic inflammatory disease have also been 

reported to exhibit hypercortisolism and poor metabolic profiles, albeit to a lesser extent than 

Cushing’s patients (Deuschle et al., 1997; Young, Carlson and Brown, 2001; Pariante, 2006; Pariante 

and Lightman, 2008; Lightman and Conway-Campbell, 2010; Almadi, Cathers and Chow, 2013). A 

particularly interesting and well characterised cohort of patients suffering from the chronic condition 

of obstructive sleep apnoea have been extensively assessed for associations between their 

hypercortisolism and poor metabolic profile. Analysis of 24hr blood profiling and metabolic 

assessments undertaken before and after treatment reported elevated ACTH and cortisol secretion 

along with increased incidence of metabolic syndrome pathology were mitigated by successful 

treatment with continuous positive airway pressure therapy (David E. Henley, Buchanan, et al., 2009; 

David E. Henley, Russell, et al., 2009).  

How do these clinical associations relate to my findings of altered metabolic gene regulation during 

constant GC infusion? It is first important to understand that hypercortisolism does not induce 

constant adrenal cortisol secretion. Ultradian pulsatility is still maintained, although in a significantly 

dysregulated form. Therefore, the clinical cases described above are not exposed to completely steady 

state GC levels, as experienced by the rats in my experimental protocol. It is, however, important to 

note that one of the defining features of hypercortisolism is elevated GC levels during the ultradian 

nadir (in most cases) and during the circadian nadir (in some cases). My data has demonstrated that 

it is the loss of the ultradian nadir during constant GC infusion that is the most significant factor for 
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inducing profound dysregulation of genes enriched within pathways known to induce MetS 

phenotypes. Overtime, chronic elevation in nadir GC levels may lead to the more severe manifestation 

of metabolic phenotypes observed in patients suffering with hypercortisolism.  

In contrast, hypocortisolism is adrenal insufficiency (such as found in Addison disease patients) and is 

commonly treated with a GC replacement therapy regime of two to three oral hydrocortisone pills per 

day. Clinicians are already aware of the importance of the circadian rhythm of GC secretion and 

attempt to artificially reinstate the circadian component of endogenous GC release as the first of three 

doses is to be taken within the morning and is equivalent to 2/3 of the total dose taken within 24hrs 

(Charmandari, Nicolaides and Chrousos, 2014). Despite this ‘optimal’ replacement regime, patients 

suffer from a range of metabolic side effects that are directly related to GC replacement dose and 

pattern (Filipsson et al., 2006). This is potentially relevant to my premise as delivery via oral dosing 

produces a smooth rise of GCs in the circulation which is prolonged over many hours. But perhaps, to 

mitigate these observed side effects, preservation of ultradian GC dynamics is required rather than 

simply the right dose in a general circadian manner. Based upon the dynamics of the intracellular GR 

and transcriptional machinery that have been explained in my data, it is likely that the prolonged 

hydrocortisone exposure in these patients will similarly induce prolonged GR activation and aberrant 

transcriptional regulation of many of the same metabolic pathway targets identified in my study. 

Therefore, again, the lack of pulsatile GC dynamics in these patients may be a root cause of their poor 

metabolic profiles. 

Due to their powerful anti-inflammatory properties, sGCs have become a cornerstone in the 

treatment of a wide range of inflammatory conditions; with 0.85% of patients >18years of age 

prescribed oral sGCs within the UK (Fardet, Petersen and Nazareth, 2011). sGCs have been rationally 

designed with structural similarity to the endogenous GCs, however, they are not metabolised in the 

body as rapidly. The half-lives of sGCs are significantly prolonged compared to their endogenous 

counterparts as the circulating prednisolone half-life has been reported at just over 2 hrs and Dex at 

3hrs. The biological half-life has however been described to be considerably longer. Recent evidence 

has indicated that methylprednisolone and Dex can induce GR binding in peripheral GC targets such 

as the pituitary for over 6hrs and 12hrs respectively, and in the brain for over 3hrs and 6hrs 

respectively (Al-Habet and Rogers, 1989; Uhl et al., 2002; Earl et al., 2017; Nicolaides et al., 2018). 

Disregarding potential ligand specific effects, clinical corticosteroid treatment was shown to primarily 

precipitate the development of type II diabetes in a cohort of patients that did not present underlying 

risk factors (Simmons et al., 2012). Similarly, 5 days of oral Dex treatment within paediatric acute 

lymphoblastic leukaemia induced prolonged raised HDL, LDL, cholesterol, TG, glucose and insulin 
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levels despite complete metabolism of Dex (Warris et al., 2016). Finally, a recent meta study concluded 

prescription of the sGC Dex and prednisolone were significant risk factors for development of insulin 

resistance within individuals with no underlying pathology (Zhou et al., 2016).  

In all the clinical cases described in this section, it is apparent that there are some common elements. 

First, prolonged and/or dysregulated GC dynamics with the potential for inducing prolonged and/or 

dysregulated GR dynamics are common factors. Most importantly, in all cases loss of pulsatile nadir 

GC levels appears to be the defining feature for increased risk of MetS development. My data provides 

a potential mechanism whereby phasic GR recruitment and dissociation from the DNA is needed to 

optimally regulate metabolic homeostatic pathways in the liver.  

Together, these data emphasise the clinical importance of strategies aimed at reinstating HPA axis 

rhythms and adrenal GC secretory dynamics in conditions such as chronic stress, depression and 

inflammatory diseases. For GC replacement therapy in adrenal insufficiency and GC treatment in a 

broad range of inflammatory conditions, more consideration should be given to understanding and 

recapitulating endogenous rhythms of hormones and their intracellular systems when developing 

treatment strategies and mitigation of steroid associated side effects.  



 

161 
 

Chapter 8 References 

‘A Unified Nomenclature System for the Nuclear receptor superfamily’ (1999) Cell, 97(2), pp. 

161–163. Available at: http://www.ens-lyon.fr/LBMC/LAUDET/nomenc. (Accessed: 21 March 2019). 

Agarwal, A. K. et al. (1994) ‘NAD(+)-dependent isoform of 11 beta-hydroxysteroid 

dehydrogenase. Cloning and characterization of cDNA from sheep kidney.’, The Journal of biological 

chemistry, 269(42), pp. 25959–62. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7929304 

(Accessed: 20 April 2019). 

Aguilar-Arnal, L. et al. (2013) ‘Cycles in spatial and temporal chromosomal organization driven 

by the circadian clock’, Nature Structural & Molecular Biology, 20(10), pp. 1206–1213. doi: 

10.1038/nsmb.2667. 

Aguilar-Arnal, L. and Sassone-Corsi, P. (2015) ‘Chromatin landscape and circadian dynamics: 

Spatial and temporal organization of clock transcription.’, Proceedings of the National Academy of 

Sciences of the United States of America. National Academy of Sciences, 112(22), pp. 6863–70. doi: 

10.1073/pnas.1411264111. 

Ahn, S. H., Kim, M. and Buratowski, S. (2004) ‘Phosphorylation of Serine 2 within the RNA 

Polymerase II C-Terminal Domain Couples Transcription and 3′ End Processing’, Molecular Cell. Cell 

Press, 13(1), pp. 67–76. doi: 10.1016/S1097-2765(03)00492-1. 

Aittomäki, S. et al. (2000) ‘Cooperation among Stat1, glucocorticoid receptor, and PU.1 in 

transcriptional activation of the high-affinity Fc gamma receptor I in monocytes.’, Journal of 

immunology (Baltimore, Md. : 1950). American Association of Immunologists, 164(11), pp. 5689–97. 

doi: 10.4049/JIMMUNOL.164.11.5689. 

Akabayashi, A. et al. (1994) ‘Hypothalamic neuropeptide Y, its gene expression and receptor 

activity: relation to circulating corticosterone in adrenalectomized rats.’, Brain research, 665(2), pp. 

201–12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7895055 (Accessed: 26 May 2019). 

Akhtar, R. A. et al. (2002) ‘Circadian cycling of the mouse liver transcriptome, as revealed by 

cDNA microarray, is driven by the suprachiasmatic nucleus.’, Current biology : CB, 12(7), pp. 540–50. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/11937022 (Accessed: 20 May 2019). 

Al-Habet, S. M. and Rogers, H. J. (1989) ‘Methylprednisolone pharmacokinetics after 

intravenous and oral administration.’, British Journal of Clinical Pharmacology. Wiley-Blackwell, 27(3), 

p. 285. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1379824/ (Accessed: 30 March 

2019). 

Alberti, K. G. M. M. et al. (2005) ‘The metabolic syndrome--a new worldwide definition.’, 

Lancet (London, England). Elsevier, 366(9491), pp. 1059–62. doi: 10.1016/S0140-6736(05)67402-8. 

Almadi, T., Cathers, I. and Chow, C. M. (2013) ‘Associations among work-related stress, 



 

162 
 

cortisol, inflammation, and metabolic syndrome’, Psychophysiology. John Wiley & Sons, Ltd (10.1111), 

50(9), pp. 821–830. doi: 10.1111/psyp.12069. 

Almlöf, T. et al. (1998) ‘Role of Important Hydrophobic Amino Acids in the Interaction between 

the Glucocorticoid Receptor τ1-Core Activation Domain and Target Factors †’, Biochemistry, 37(26), 

pp. 9586–9594. doi: 10.1021/bi973029x. 

Amelung, D. et al. (1953) ‘Conversion of cortisone to compound F’, The Journal of Clinical 

Endocrinology & Metabolism. Narnia, 13(9), pp. 1125–1126. doi: 10.1210/jcem-13-9-1125. 

Archer, T. K. et al. (1991) ‘Transcription factor access is mediated by accurately positioned 

nucleosomes on the mouse mammary tumor virus promoter.’, Molecular and cellular biology, 11(2), 

pp. 688–98. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1846670 (Accessed: 28 March 2019). 

Archer, T. K. and Lee, H.-L. (1997) ‘Visualization of Multicomponent Transcription Factor 

Complexes on Chromatin and Nonnucleosomal Templatesin Vivo’, Methods. Academic Press, 11(2), 

pp. 235–245. doi: 10.1006/METH.1996.0410. 

Argo, C. K. et al. (2009) ‘Systematic review of risk factors for fibrosis progression in non-

alcoholic steatohepatitis’, Journal of Hepatology. Elsevier, 51(2), pp. 371–379. doi: 

10.1016/J.JHEP.2009.03.019. 

Arinze, I. J., Garber, A. J. and Hansons, R. W. (1973) The Regulation of Gluconeogenesis in 

Mammalian Liver THE ROLE OF lLlITOCHONDRIAL PHOSPHOENOLPYRUVATE CARBOXYKINASE*. 

Available at: http://www.jbc.org/ (Accessed: 6 April 2019). 

Arth, G. E. et al. (1958) ‘16-METHYLATED STEROIDS. I. 16α-METHYLATED ANALOGS OF 

CORTISONE, A NEW GROUP OF ANTI-INFLAMMATORY STEROIDS’, Journal of the American Chemical 

Society. American Chemical Society, 80(12), pp. 3160–3161. doi: 10.1021/ja01545a061. 

Aschoff, J. (1965) ‘CIRCADIAN RHYTHMS IN MAN.’, Science (New York, N.Y.). American 

Association for the Advancement of Science, 148(3676), pp. 1427–32. doi: 

10.1126/SCIENCE.148.3676.1427. 

Asilmaz, E. et al. (2004) ‘Site and mechanism of leptin action in a rodent form of congenital 

lipodystrophy.’, The Journal of clinical investigation. American Society for Clinical Investigation, 113(3), 

pp. 414–24. doi: 10.1172/JCI19511. 

Atkinson, H. C. et al. (2006) ‘Diurnal variation in the responsiveness of the hypothalamic-

pituitary-adrenal axis of the male rat to noise stress.’, Journal of neuroendocrinology, 18(7), pp. 526–

33. doi: 10.1111/j.1365-2826.2006.01444.x. 

Atzel, A. and Wetterau, J. R. (1993) ‘Mechanism of microsomal triglyceride transfer protein 

catalyzed lipid transport.’, Biochemistry, 32(39), pp. 10444–50. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/8399189 (Accessed: 14 May 2019). 



 

163 
 

Ayyar, V. S. et al. (2015) ‘Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression 

and regulation by endogenous and exogenous glucocorticoids’, Physiological Reports, 3(6), p. e12382. 

doi: 10.14814/phy2.12382. 

De Bacquer, D. et al. (2009) ‘Rotating shift work and the metabolic syndrome: a prospective 

study’, International Journal of Epidemiology. Oxford University Press, 38(3), pp. 848–854. doi: 

10.1093/ije/dyn360. 

Baek, S., Sung, M.-H. and Hager, G. L. (2012) ‘Quantitative Analysis of Genome-Wide 

Chromatin Remodelling’, Methods in Molecular Biology, 833, pp. 433–441. doi: 10.1007/978-1-61779-

477-3_26. 

La Baer, J. and Yamamoto, K. R. (1994) ‘Analysis of the DNA-binding affinity, Sequence 

Specificity and Context Dependence of the Glucocorticoid Receptor Zinc Finger Region’, Journal of 

Molecular Biology. Academic Press, 239(5), pp. 664–688. doi: 10.1006/JMBI.1994.1405. 

Bali, D. S. et al. (2016) Glycogen Storage Disease Type I, GeneReviews®. University of 

Washington, Seattle. Available at: http://www.ncbi.nlm.nih.gov/pubmed/20301489 (Accessed: 28 

May 2019). 

Ballard, P. L. et al. (1975) ‘A Radioreceptor Assay for Evaluation of the Plasma Glucocorticoid 

Activity of Natural and Synthetic Steroids in Man1’, The Journal of Clinical Endocrinology & 

Metabolism. Narnia, 41(2), pp. 290–304. doi: 10.1210/jcem-41-2-290. 

Ballinger, C. A. et al. (1999) ‘Identification of CHIP, a novel tetratricopeptide repeat-containing 

protein that interacts with heat shock proteins and negatively regulates chaperone functions.’, 

Molecular and cellular biology, 19(6), pp. 4535–45. doi: 10.1128/mcb.19.6.4535. 

Bamberger, C. M. et al. (1995) ‘Glucocorticoid receptor beta, a potential endogenous inhibitor 

of glucocorticoid action in humans.’, The Journal of clinical investigation. American Society for Clinical 

Investigation, 95(6), pp. 2435–41. doi: 10.1172/JCI117943. 

Bannister, A. J. and Kouzarides, T. (2011) ‘Regulation of chromatin by histone modifications.’, 

Cell research. Nature Publishing Group, 21(3), pp. 381–95. doi: 10.1038/cr.2011.22. 

Barski, A. et al. (2007) ‘High-Resolution Profiling of Histone Methylations in the Human 

Genome’, Cell, 129(4), pp. 823–837. doi: 10.1016/j.cell.2007.05.009. 

Beato, M. et al. (1989) ‘DNA regulatory elements for steroid hormones.’, Journal of steroid 

biochemistry, 32(5), pp. 737–47. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2661921 

(Accessed: 25 March 2019). 

Bednar, J. et al. (1998) ‘Nucleosomes, linker DNA, and linker histone form a unique structural 

motif that directs the higher-order folding and compaction of chromatin.’, Proceedings of the National 

Academy of Sciences of the United States of America. National Academy of Sciences, 95(24), pp. 



 

164 
 

14173–8. doi: 10.1073/PNAS.95.24.14173. 

Belandia, B. et al. (2002) ‘Targeting of SWI/SNF chromatin remodelling complexes to estrogen-

responsive genes.’, The EMBO journal, 21(15), pp. 4094–103. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/12145209 (Accessed: 12 April 2019). 

Benton, L. A. and Yates, F. E. (1990) ‘Ultradian adrenocortical and circulatory oscillations in 

conscious dogs’, https://doi.org/10.1152/ajpregu.1990.258.3.R578.  American Physiological Society 

Bethesda, MD . doi: 10.1152/AJPREGU.1990.258.3.R578. 

Bergmann, N., Gyntelberg, F. and Faber, J. (2014) ‘The appraisal of chronic stress and the 

development of the metabolic syndrome: a systematic review of prospective cohort studies.’, 

Endocrine connections. Bioscientifica Ltd., 3(2), pp. R55-80. doi: 10.1530/EC-14-0031. 

Berk, M. L. and Finkelstein, J. A. (1981) ‘Afferent projections to the preoptic area and 

hypothalamic regions in the rat brain’, Neuroscience. Pergamon, 6(8), pp. 1601–1624. doi: 

10.1016/0306-4522(81)90227-X. 

Bernstein, B. E. et al. (2006) ‘A Bivalent Chromatin Structure Marks Key Developmental Genes 

in Embryonic Stem Cells’, Cell, 125(2), pp. 315–326. doi: 10.1016/j.cell.2006.02.041. 

Biddie, S. C. et al. (2011) ‘Transcription Factor AP1 Potentiates Chromatin Accessibility and 

Glucocorticoid Receptor Binding’, Molecular Cell, 43(1), pp. 145–155. doi: 

10.1016/j.molcel.2011.06.016. 

Biddie, S. C., Conway-campbell, B. L. and Lightman, S. L. (2012) ‘Dynamic regulation of 

glucocorticoid signalling in health and disease’, Rheumatology, 51(3), pp. 403–412. doi: 

10.1093/rheumatology/ker215. 

Blalock, S. J. et al. (2005) ‘Patient knowledge, beliefs, and behavior concerning the prevention 

and treatment of glucocorticoid-induced osteoporosis’, Arthritis Care and Research, 53(5), pp. 732–

739. doi: 10.1002/art.21446. 

Bledsoe, R. K. et al. (2002) ‘Crystal structure of the glucocorticoid receptor ligand binding 

domain reveals a novel mode of receptor dimerization and coactivator recognition.’, Cell. Elsevier, 

110(1), pp. 93–105. doi: 10.1016/S0092-8674(02)00817-6. 

Blind, R. D. and Garabedian, M. J. (2008) ‘Differential recruitment of glucocorticoid receptor 

phospho-isoforms to glucocorticoid-induced genes’, The Journal of Steroid Biochemistry and 

Molecular Biology. Pergamon, 109(1–2), pp. 150–157. doi: 10.1016/J.JSBMB.2008.01.002. 

Bodwell, J. E. et al. (1991) Identification of Phosphorylated Sites in the Mouse, Journal of 

Biological Chemistry. Available at: http://www.jbc.org/content/266/12/7549.full.pdf (Accessed: 25 

March 2019). 

Bolger, A. M., Lohse, M. and Usadel, B. (2014) ‘Trimmomatic: a flexible trimmer for Illumina 



 

165 
 

sequence data.’, Bioinformatics (Oxford, England). Oxford University Press, 30(15), pp. 2114–20. doi: 

10.1093/bioinformatics/btu170. 

De Bosscher, K. et al. (2000) ‘Glucocorticoids repress NF-kappaB-driven genes by disturbing 

the interaction of p65 with the basal transcription machinery, irrespective of coactivator levels in the 

cell.’, Proceedings of the National Academy of Sciences of the United States of America. National 

Academy of Sciences, 97(8), pp. 3919–24. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/10760263 (Accessed: 12 April 2019). 

Bourguet, W. et al. (1995) ‘Crystal structure of the ligand-binding domain of the human 

nuclear receptor RXR-α’, Nature. Nature Publishing Group, 375(6530), pp. 377–382. doi: 

10.1038/375377a0. 

Boyle, A. P. et al. (2008) ‘F-Seq: A feature density estimator for high-throughput sequence 

tags’, Bioinformatics, 24(21), pp. 2537–2538. doi: 10.1093/bioinformatics/btn480. 

Bresnick, E. H. et al. (1989) THE JOURNAL OF BIOLOGICAL CHEMISTRY Evidence That the 90-

kDa Heat Shock Protein Is Necessary for the Steroid Binding Conformation of the L Cell Glucocorticoid 

Receptor*. Available at: http://www.jbc.org/content/264/9/4992.full.pdf (Accessed: 21 March 2019). 

Brown, M. S. and Goldstein, J. L. (1983) ‘PERSPECTIVES Lipoprotein Receptors in the Liver - 

Control signals for plasma cholesterol traffic’, The journal of clinical investigational of clinical 

investigation, 72(3), pp. 743–747. Available at: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1129238/pdf/jcinvest00769-0002.pdf (Accessed: 10 

April 2019). 

Bucher, P. (1990) ‘Weight matrix descriptions of four eukaryotic RNA polymerase II promoter 

elements derived from 502 unrelated promoter sequences’, Journal of Molecular Biology, 212(4), pp. 

563–578. doi: 10.1016/0022-2836(90)90223-9. 

Buenrostro, J. D. et al. (2013) ‘Transposition of native chromatin for fast and sensitive 

epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position’, Nature 

Methods. Nature Research, 10(12), pp. 1213–1218. doi: 10.1038/nmeth.2688. 

Buliman, A. et al. (2016) ‘Cushing’s disease: a multidisciplinary overview of the clinical 

features, diagnosis, and treatment.’, Journal of medicine and life. Carol Davila - University Press, 9(1), 

pp. 12–18. Available at: http://www.ncbi.nlm.nih.gov/pubmed/27974908 (Accessed: 14 April 2019). 

Bullock, N. et al. (2007) ‘Effect of long haul travel on maximal sprint performance and diurnal 

variations in elite skeleton athletes’, British Journal of Sports Medicine, 41(9), pp. 569–573. doi: 

10.1136/bjsm.2006.033233. 

Burd, C. J. et al. (2012) ‘Analysis of Chromatin Dynamics during Glucocorticoid Receptor 

Activation’, Molecular and Cellular Biology. American Society for Microbiology (ASM), 32(10), p. 1805. 



 

166 
 

doi: 10.1128/MCB.06206-11. 

Carnes, M. et al. (1989) ‘Plasma Adrenocorticotropic Hormone in the Rat Demonstrates Three 

Different Rhythms within 24 h’, Neuroendocrinology. Karger Publishers, 50(1), pp. 17–25. doi: 

10.1159/000125197. 

Carnes, M. et al. (1990) ‘Effects of Immunoneutralization of Corticotropin-Releasing Hormone 

on Ultradian Rhythms of Plasma Adrenocorticotropin*’, Endocrinology. Narnia, 126(4), pp. 1904–

1913. doi: 10.1210/endo-126-4-1904. 

Carnes, M. et al. (1992) ‘Pulsatile ACTH and Cortisol in Goats: Effects of Insulin-Induced 

Hypoglycemia and Dexamethasone’, Neuroendocrinology, 55(1), pp. 97–104. doi: 

10.1159/000126102. 

Carnes, M. et al. (1994) ‘Coincident plasma ACTH and corticosterone time series: Comparisons 

between young and old rats’, Experimental Gerontology. Pergamon, 29(6), pp. 625–643. doi: 

10.1016/0531-5565(94)90075-2. 

Carvalho, L. A. et al. (2014) ‘Inflammatory activation is associated with a reduced 

glucocorticoid receptor alpha/beta expression ratio in monocytes of inpatients with melancholic 

major depressive disorder’, Translational Psychiatry. Nature Publishing Group, 4(1), pp. e344–e344. 

doi: 10.1038/tp.2013.118. 

Cassuto, H. et al. (2005) ‘Glucocorticoids Regulate Transcription of the Gene for 

Phosphoenolpyruvate Carboxykinase in the Liver via an Extended Glucocorticoid Regulatory Unit’, 

Journal of Biological Chemistry, 280(40), pp. 33873–33884. doi: 10.1074/jbc.M504119200. 

de Castro, M. et al. (1996) ‘The non-ligand binding beta-isoform of the human glucocorticoid 

receptor (hGR beta): tissue levels, mechanism of action, and potential physiologic role.’, Molecular 

medicine (Cambridge, Mass.). The Feinstein Institute for Medical Research, 2(5), pp. 597–607. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/8898375 (Accessed: 23 March 2019). 

Chaix, A. et al. (2019) ‘Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in 

Mice Lacking a Circadian Clock Chaix et al’, Cell Metabolism, 29, pp. 303-319.e4. doi: 

10.1016/j.cmet.2018.08.004. 

Chakera, A. J. and Vaidya, B. (2010) ‘Addison Disease in Adults: Diagnosis and Management’, 

The American Journal of Medicine. Elsevier, 123(5), pp. 409–413. doi: 10.1016/j.amjmed.2009.12.017. 

Chakravarthy, M. V. et al. (2005) ‘“New” hepatic fat activates PPARα to maintain glucose, lipid, 

and cholesterol homeostasis’, Cell Metabolism. Cell Press, 1(5), pp. 309–322. doi: 

10.1016/J.CMET.2005.04.002. 

Chakravarti, D. et al. (1996) ‘Role of CBP/P300 in nuclear receptor signalling’, Nature. Nature 

Publishing Group, 383(6595), pp. 99–103. doi: 10.1038/383099a0. 



 

167 
 

Chan, W. L. et al. (2013) ‘How changes in affinity of corticosteroid-binding globulin modulate 

free cortisol concentration’, Journal of Clinical Endocrinology and Metabolism, 98(8), pp. 3315–3322. 

doi: 10.1210/jc.2012-4280. 

Chandola, T., Brunner, E. and Marmot, M. (2006) ‘Chronic stress at work and the metabolic 

syndrome: prospective study.’, BMJ (Clinical research ed.), 332(7540), pp. 521–5. doi: 

10.1136/bmj.38693.435301.80. 

Charmandari, E., Nicolaides, N. C. and Chrousos, G. P. (2014) ‘Adrenal insufficiency.’, Lancet 

(London, England). Elsevier, 383(9935), pp. 2152–67. doi: 10.1016/S0140-6736(13)61684-0. 

Chen, W. et al. (2008) ‘Glucocorticoid Receptor Phosphorylation Differentially Affects Target 

Gene Expression’, Molecular Endocrinology, 22(8), pp. 1754–1766. doi: 10.1210/me.2007-0219. 

Chen, W., Rogatsky, I. and Garabedian, M. J. (2006) ‘MED14 and MED1 Differentially Regulate 

Target-Specific Gene Activation by the Glucocorticoid Receptor’, Molecular Endocrinology. Narnia, 

20(3), pp. 560–572. doi: 10.1210/me.2005-0318. 

Chinenov, Y. et al. (2008) ‘GRIP1-associated SET-domain methyltransferase in glucocorticoid 

receptor target gene expression.’, Proceedings of the National Academy of Sciences of the United 

States of America. National Academy of Sciences, 105(51), pp. 20185–90. doi: 

10.1073/pnas.0810863105. 

Cho, E. J. et al. (2001) ‘Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the 

RNA polymerase II C-terminal domain.’, Genes & development. Cold Spring Harbor Laboratory Press, 

15(24), pp. 3319–29. doi: 10.1101/gad.935901. 

Cho, H. et al. (2012) ‘Regulation of circadian behaviour and metabolism by REV-ERB-α and 

REV-ERB-β’, Nature, 485(7396), pp. 123–127. doi: 10.1038/nature11048. 

Choi, B. R. et al. (2006) ‘Expression of glucocorticoid receptor mRNAs in glucocorticoid-

resistant nasal polyps’, Experimental and Molecular Medicine. doi: 10.1038/emm.2006.55. 

Chojnacki, C. et al. (2012) ‘Melatonin secretion and metabolism in patients with hepatic 

encephalopathy’, Journal of gastroenterology and hepatology, 28(2), pp. 342–347. doi: 

10.1111/jgh.12055. 

Ciriaco, M. et al. (2013) ‘Corticosteroid-related central nervous system side effects.’, Journal 

of pharmacology & pharmacotherapeutics. Wolters Kluwer -- Medknow Publications, 4(Suppl 1), pp. 

S94-8. doi: 10.4103/0976-500X.120975. 

Cohen, P. et al. (2002) ‘Role for Stearoyl-CoA Desaturase-1 in Leptin-Mediated Weight Loss’, 

Science, 297(5579), pp. 240–243. doi: 10.1126/science.1071527. 

Columbano, A. et al. (1985) ‘Occurrence of cell death (apoptosis) during the involution of liver 

hyperplasia.’, Laboratory investigation; a journal of technical methods and pathology, 52(6), pp. 670–



 

168 
 

5. Available at: http://www.ncbi.nlm.nih.gov/pubmed/4010225 (Accessed: 14 May 2019). 

Conway-Campbell, B. L. et al. (2007) ‘Proteasome-dependent down-regulation of activated 

nuclear hippocampal glucocorticoid receptors determines dynamic responses to corticosterone.’, 

Endocrinology, 148(11), pp. 5470–7. doi: 10.1210/en.2007-0585. 

Conway-Campbell, B. L. et al. (2010) ‘Glucocorticoid ultradian rhythmicity directs cyclical gene 

pulsing of the clock gene period 1 in rat hippocampus’, Journal of Neuroendocrinology, 22(10), pp. 

1093–1100. doi: 10.1111/j.1365-2826.2010.02051.x. 

Conway-Campbell, B. L. et al. (2011) ‘The HSP90 molecular chaperone cycle regulates cyclical 

transcriptional dynamics of the glucocorticoid receptor and its coregulatory molecules CBP/p300 

during ultradian ligand treatment.’, Molecular endocrinology (Baltimore, Md.), 25(6), pp. 944–954. 

doi: 10.1210/me.2010-0073. 

Conway-Campbell, B. L. et al. (2012) ‘Molecular dynamics of ultradian glucocorticoid receptor 

action’, Molecular and Cellular Endocrinology. Elsevier Ireland Ltd, 348(2), pp. 383–393. doi: 

10.1016/j.mce.2011.08.014. 

Conway, J. R., Lex, A. and Gehlenborg, N. (2017) ‘UpSetR: an R package for the visualization of 

intersecting sets and their properties’, Bioinformatics. Edited by J. Hancock. Narnia, 33(18), pp. 2938–

2940. doi: 10.1093/bioinformatics/btx364. 

Corden, J. L. (1990) ‘Tails of RNA polymerase II’, Trends in Biochemical Sciences. Elsevier 

Current Trends, 15(10), pp. 383–387. doi: 10.1016/0968-0004(90)90236-5. 

Cordon-Cardo, C. et al. (1989) ‘Multidrug-resistance gene (P-glycoprotein) is expressed by 

endothelial cells at blood-brain barrier sites.’, Proceedings of the National Academy of Sciences, 86(2), 

pp. 695–698. doi: 10.1073/pnas.86.2.695. 

Core, L. J., Waterfall, J. J. and Lis, J. T. (2008) ‘Nascent RNA Sequencing Reveals Widespread 

Pausing and Divergent Initiation at Human Promoters’, Science (New York, N.Y.). NIH Public Access, 

322(5909), p. 1845. doi: 10.1126/SCIENCE.1162228. 

Cudd, T. A. et al. (1995) ‘Ontogeny and ultradian rhythms of adrenocorticotropin and cortisol 

in the late-gestation fetal horse.’, The Journal of endocrinology, 144(2), pp. 271–83. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/7706980 (Accessed: 2 April 2019). 

Cui, Y. et al. (2007) ‘Loss of signal transducer and activator of transcription 5 leads to 

hepatosteatosis and impaired liver regeneration’, Hepatology, 46(2), pp. 504–513. doi: 

10.1002/hep.21713. 

Czar, M. J. et al. (1995) ‘Evidence that the FK506-binding immunophilin heat shock protein 56 

is required for trafficking of the glucocorticoid receptor from the cytoplasm to the nucleus.’, Molecular 

Endocrinology, 9(11), pp. 1549–1560. doi: 10.1210/mend.9.11.8584032. 



 

169 
 

Czeisler, C. A. et al. (1999) ‘Stability, precision, and near-24-hour period of the human 

circadian pacemaker.’, Science (New York, N.Y.). American Association for the Advancement of 

Science, 284(5423), pp. 2177–81. doi: 10.1126/SCIENCE.284.5423.2177. 

D’Adamio, F. et al. (1997) ‘A new dexamethasone-induced gene of the leucine zipper family 

protects T lymphocytes from TCR/CD3-activated cell death’, Immunity, 7(6), pp. 803–812. doi: 

10.1016/S1074-7613(00)80398-2. 

Dahlman-Wright, K. et al. (1991) ‘Interaction of the glucocorticoid receptor DNA-binding 

domain with DNA as a dimer is mediated by a short segment of five amino acids.’, The Journal of 

biological chemistry, 266(5), pp. 3107–12. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/1993683 (Accessed: 25 March 2019). 

Dahlman-Wright, K. et al. (1995) ‘Structural characterization of a minimal functional 

transactivation domain from the human glucocorticoid receptor.’, Proceedings of the National 

Academy of Sciences of the United States of America, 92(5), pp. 1699–703. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/7878043 (Accessed: 25 March 2019). 

Das, M. K. et al. (2007) ‘A survey of DNA motif finding algorithms.’, BMC bioinformatics. 

BioMed Central, 8 Suppl 7(Suppl 7), p. S21. doi: 10.1186/1471-2105-8-S7-S21. 

Daujat, S. et al. (2002) ‘Crosstalk between CARM1 methylation and CBP acetylation on histone 

H3.’, Current biology : CB, 12(24), pp. 2090–7. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/12498683 (Accessed: 12 April 2019). 

Davies, L. et al. (2008) ‘Cross Talk of Signaling Pathways in the Regulation of the Glucocorticoid 

Receptor Function’, Molecular Endocrinology, 22(6), pp. 1331–1344. doi: 10.1210/me.2007-0360. 

Delaunay, F. and Laudet, V. (2002) ‘Circadian clock and microarrays: mammalian genome gets 

rhythm’, Trends in Genetics. Elsevier Current Trends, 18(12), pp. 595–597. doi: 10.1016/S0168-

9525(02)02794-4. 

Deroo, B. J. et al. (2002) ‘Proteasomal inhibition enhances glucocorticoid receptor 

transactivation and alters its subnuclear trafficking.’, Molecular and cellular biology. American Society 

for Microbiology Journals, 22(12), pp. 4113–23. doi: 10.1128/MCB.22.12.4113-4123.2002. 

Deuschle, M. et al. (1997) ‘Diurnal activity and pulsatility of the hypothalamus-pituitary-

adrenal system in male depressed patients and healthy controls’, Journal of Clinical Endocrinology and 

Metabolism, 82(1), pp. 234–238. doi: 10.1210/jc.82.1.234. 

Diamond, M. et al. (1990) ‘Transcription factor interactions: selectors of positive or negative 

regulation from a single DNA element’, Science, 249(4974), pp. 1266–1272. doi: 

10.1126/science.2119054. 

Dieken, E. S. and Miesfeld, R. L. (1992) ‘Transcriptional transactivation functions localized to 



 

170 
 

the glucocorticoid receptor N terminus are necessary for steroid induction of lymphocyte apoptosis.’, 

Molecular and cellular biology. American Society for Microbiology Journals, 12(2), pp. 589–97. doi: 

10.1128/MCB.12.2.589. 

Dixon, J. R. et al. (2012) ‘Topological domains in mammalian genomes identified by analysis of 

chromatin interactions’, Nature. Nature Publishing Group, 485(7398), pp. 376–380. doi: 

10.1038/nature11082. 

Doane, L. D. et al. (2010) ‘Associations between jet lag and cortisol diurnal rhythms after 

domestic travel.’, Health psychology : official journal of the Division of Health Psychology, American 

Psychological Association. NIH Public Access, 29(2), pp. 117–23. doi: 10.1037/a0017865. 

Doi, R., Oishi, K. and Ishida, N. (2010) ‘CLOCK regulates circadian rhythms of hepatic glycogen 

synthesis through transcriptional activation of Gys2.’, The Journal of biological chemistry. American 

Society for Biochemistry and Molecular Biology, 285(29), pp. 22114–21. doi: 

10.1074/jbc.M110.110361. 

Dolinsky, V. W. et al. (2004) ‘Regulation of the enzymes of hepatic microsomal triacylglycerol 

lipolysis and re-esterification by the glucocorticoid dexamethasone’, Biochemical Journal, 378(3), pp. 

967–974. doi: 10.1042/bj20031320. 

Le Drean, Y. et al. (2002) ‘Potentiation of Glucocorticoid Receptor Transcriptional Activity by 

Sumoylation’, Endocrinology, 143(9), pp. 3482–3489. doi: 10.1210/en.2002-220135. 

Droste, S. K. et al. (2008) ‘Corticosterone levels in the brain show a distinct ultradian rhythm 

but a delayed response to forced swim stress’, Endocrinology, 149(7), pp. 3244–3253. doi: 

10.1210/en.2008-0103. 

Droste, S. K. et al. (2009) ‘Distinct, Time-Dependent Effects of Voluntary Exercise on Circadian 

and Ultradian Rhythms and Stress Responses of Free Corticosterone in the Rat Hippocampus’, 

Endocrinology. Narnia, 150(9), pp. 4170–4179. doi: 10.1210/en.2009-0402. 

Druker, J. et al. (2013) ‘RSUME enhances glucocorticoid receptor SUMOylation and 

transcriptional activity.’, Molecular and cellular biology. American Society for Microbiology Journals, 

33(11), pp. 2116–27. doi: 10.1128/MCB.01470-12. 

Duma, D. et al. (2010) ‘Sexually dimorphic actions of glucocorticoids provide a link to 

inflammatory diseases with gender differences in prevalence.’, Science signaling. NIH Public Access, 

3(143), p. ra74. doi: 10.1126/scisignal.2001077. 

Duperrex, H. et al. (1993) ‘Rat liver 11 beta-hydroxysteroid dehydrogenase complementary 

deoxyribonucleic acid encodes oxoreductase activity in a mineralocorticoid-responsive toad bladder 

cell line.’, Endocrinology, 132(2), pp. 612–619. doi: 10.1210/endo.132.2.8425481. 

De Duve, C. et al. (1949) ‘LE SYSTEME HEXOSE-PHOSPHATASIQUE. 1. EXISTENCE DUNE 



 

171 
 

GLUCOSE-6-PHOSPHATASE SPECIFIQUE DANS LE FOIE’, Bulletin de la Société de Chimie Biologique, 

31(7–8), pp. 1242–1253. 

Earl, E. et al. (2017) ‘Synthetic glucocorticoid treatment causes dysregulated activation 

dynamics of glucocorticoid receptors in brain and pituitary’, in Brain and Neuroscience Advances: BNA 

2017 Festival of Neuroscience: Abstract Book, p. 83. 

Eastman, C. I. et al. (2005) ‘Advancing circadian rhythms before eastward flight: a strategy to 

prevent or reduce jet lag.’, Sleep, 28(1), pp. 33–44. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/15700719 (Accessed: 15 April 2019). 

Ebert-Zavos, E. et al. (2013) ‘Biological Clocks in the Duodenum and the Diurnal Regulation of 

Duodenal and Plasma Serotonin’, PLoS ONE. Edited by L. C. Lyons. Public Library of Science, 8(5), p. 

e58477. doi: 10.1371/journal.pone.0058477. 

Edmonds, S. C. and Adler, N. T. (1977) ‘Food and light as entrainers of circadian running activity 

in the rat’, Physiology & Behavior, 18(5), pp. 915–919. doi: 10.1016/0031-9384(77)90201-3. 

Edwards, E. M. et al. (2012) ‘Job Strain and Incident Metabolic Syndrome Over 5 Years of 

Follow-Up’, Journal of Occupational and Environmental Medicine, 54(12), pp. 1447–1452. doi: 

10.1097/JOM.0b013e3182783f27. 

El-Maghrabi, M. R. et al. (1995) ‘Human Fructose-1,6-Bisphosphatase Gene (FBP1): Exon-

Intron Organization, Localization to Chromosome Bands 9q22.2-q22.3, and Mutation Screening in 

Subjects with Fructose-1,6-Bisphosphatase Deficiency’, Genomics. Academic Press, 27(3), pp. 520–

525. doi: 10.1006/GENO.1995.1085. 

Elbi, C. et al. (2004) ‘Molecular chaperones function as steroid receptor nuclear mobility 

factors.’, Proceedings of the National Academy of Sciences of the United States of America. National 

Academy of Sciences, 101(9), pp. 2876–81. doi: 10.1073/pnas.0400116101. 

Ellero-Simatos, S. et al. (2012) ‘Assessing the metabolic effects of prednisolone in healthy 

volunteers using urine metabolic profiling.’, Genome medicine. BioMed Central, 4(11), p. 94. doi: 

10.1186/gm395. 

ENCODE Project Consortium (2007) ‘Identification and analysis of functional elements in 1% 

of the human genome by the ENCODE pilot project’, Nature, 447, pp. 799–816. doi: 

10.1038/nature05874. 

Engblom, D. et al. (2007) ‘Direct glucocorticoid receptor-Stat5 interaction in hepatocytes 

controls body size and maturation-related gene expression’. Cold Spring Harbor Laboratory Press, 

21(10). doi: 10.1101/gad.426007. 

Engler, D. et al. (1989) ‘Studies of the Secretion of Corticotropin-Releasing Factor and Arginine 

Vasopressin into the Hypophysial-Portal Circulation of the Conscious Sheep’, Neuroendocrinology. 



 

172 
 

Karger Publishers, 49(4), pp. 367–381. doi: 10.1159/000125141. 

Engler, D. et al. (1990) ‘Studies of the Regulation of the Hypothalamic-Pituitary-Adrenal Axis 

in Sheep with Hypothalamic-Pituitary Disconnection. II. Evidence for in Vivo Ultradian Hypersecretion 

of Proopiomelanocortin Peptides by the Isolated Anterior and Intermediate Pituitary*’, Endocrinology. 

Narnia, 127(4), pp. 1956–1966. doi: 10.1210/endo-127-4-1956. 

Ensler, K. et al. (2002) ‘Dexamethasone stimulates very low density lipoprotein (VLDL) 

receptor gene expression in differentiating 3T3-L1 cells’, Biochimica et Biophysica Acta (BBA) - 

Molecular and Cell Biology of Lipids. Elsevier, 1581(1–2), pp. 36–48. doi: 10.1016/S1388-

1981(02)00118-X. 

Eriksson, P. and Wrange,  Ӧrjan (1990) ‘Protein-Protein Contacts in the Glucocorticoid 

Receptor Homodimer Influence Its DNA Binding Properties’, The Journal of biological chemistry, 

265(6), pp. 3535–3542. Available at: http://www.jbc.org/ (Accessed: 28 March 2019). 

Evan, G. I. and Littlewood, T. D. (1993) ‘The role of c-myc in cell growth.’, Current opinion in 

genetics & development, 3(1), pp. 44–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8453273 

(Accessed: 29 May 2019). 

Exton, J. et al. (1976) ‘Carbohydrate metabolism in perfused livers of adrenalectomized and 

steroid-replaced rats’, American Journal of Physiology-Legacy Content, 230(1), pp. 163–170. doi: 

10.1152/ajplegacy.1976.230.1.163. 

Fardet, L., Petersen, I. and Nazareth, I. (2011) ‘Prevalence of long-term oral glucocorticoid 

prescriptions in the UK over the past 20 years’, Rheumatology, 50(11), pp. 1982–1990. doi: 

10.1093/rheumatology/ker017. 

Feelders, R. A. et al. (2012) ‘The burden of Cushing’s disease: clinical and health-related quality 

of life aspects’, European Journal of Endocrinology, 167(311), pp. 311–326. doi: 10.1530/EJE-11-1095. 

Feingold, K. R. and Grunfeld, C. (2000) Introduction to Lipids and Lipoproteins, Endotext. 

MDText.com, Inc. Available at: http://www.ncbi.nlm.nih.gov/pubmed/26247089 (Accessed: 14 May 

2019). 

Feldstein, A. E. et al. (2003) ‘Hepatocyte apoptosis and fas expression are prominent features 

of human nonalcoholic steatohepatitis.’, Gastroenterology, 125(2), pp. 437–43. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/12891546 (Accessed: 14 May 2019). 

Feng, J. et al. (2012) ‘Identifying ChIP-seq enrichment using MACS’, Nature Protocols, 7(9), pp. 

1728–1740. doi: 10.1038/nprot.2012.101. 

Filipsson, H. et al. (2006) ‘The Impact of Glucocorticoid Replacement Regimens on Metabolic 

Outcome and Comorbidity in Hypopituitary Patients’, The Journal of Clinical Endocrinology & 

Metabolism. Narnia, 91(10), pp. 3954–3961. doi: 10.1210/jc.2006-0524. 



 

173 
 

Finck, B. N. et al. (2006) ‘Lipin 1 is an inducible amplifier of the hepatic PGC-1α/PPARα 

regulatory pathway’, Cell Metabolism. Cell Press, 4(3), pp. 199–210. doi: 

10.1016/J.CMET.2006.08.005. 

Finkel, T., Deng, C.-X. and Mostoslavsky, R. (2009) ‘Recent progress in the biology and 

physiology of sirtuins’, Nature. Nature Publishing Group, 460(7255), pp. 587–591. doi: 

10.1038/nature08197. 

Fitzsimons, C. P. et al. (2008) ‘The microtubule-associated protein doublecortin-like regulates 

the transport of the glucocorticoid receptor in neuronal progenitor cells.’, Molecular endocrinology 

(Baltimore, Md.). The Endocrine Society, 22(2), pp. 248–62. doi: 10.1210/me.2007-0233. 

Flynn, B. P., Conway-Campbell, B. L. and Lightman, S. L. (2018) ‘The emerging importance of 

ultradian glucocorticoid rhythms within metabolic pathology’, Annales d’Endocrinologie. Elsevier 

Masson, 79(3), pp. 112–114. doi: 10.1016/J.ANDO.2018.03.003. 

Follenius, M. et al. (1987) ‘Ultradian plasma corticotropin and cortisol rhythms: time-series 

analyses’, Journal of Endocrinological Investigation. Springer International Publishing, 10(3), pp. 261–

266. doi: 10.1007/BF03348128. 

Freimuth, J. et al. (2010) ‘Application of magnetic resonance imaging in transgenic and 

chemical mouse models of hepatocellular carcinoma.’, Molecular cancer. BioMed Central, 9, p. 94. 

doi: 10.1186/1476-4598-9-94. 

Friedbichler, K. et al. (2012) ‘Growth-hormone-induced signal transducer and activator of 

transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from 

aggressive liver cancer’, Hepatology, 55(3), pp. 941–952. doi: 10.1002/hep.24765. 

Friedman, J. E. et al. (1993) Glucocorticoids Regulate the Induction of Phosphoenolpyruvate 

Carboxykinase (GTP) Gene Transcription during Diabetes* The hormonal regulation of transcription of 

the phosphoenolpyruvate carboxykinase (GTP) (4.1.1.32), THE JOURNAL OF BIOLOGICAL CHEMISTRY 

Q. Available at: http://www.jbc.org/content/268/17/12952.full.pdf (Accessed: 6 April 2019). 

Friedrich, N. et al. (2012) ‘The association between IGF-I and insulin resistance: a general 

population study in Danish adults.’, Diabetes care. American Diabetes Association, 35(4), pp. 768–73. 

doi: 10.2337/dc11-1833. 

Gaitan, D. et al. (1995) ‘Glucocorticoid receptor structure and function in an 

adrenocorticotropin-secreting small cell lung cancer.’, Molecular Endocrinology. Narnia, 9(9), pp. 

1193–1201. doi: 10.1210/mend.9.9.7491111. 

Galigniana, M. D. et al. (1998) ‘Heat Shock Protein 90-Dependent (Geldanamycin-Inhibited) 

Movement of the Glucocorticoid Receptor through the Cytoplasm to the Nucleus Requires Intact 

Cytoskeleton’, Molecular Endocrinology. Narnia, 12(12), pp. 1903–1913. doi: 



 

174 
 

10.1210/mend.12.12.0204. 

Galliher-Beckley, A. J. et al. (2008) ‘Glycogen Synthase Kinase 3 -Mediated Serine 

Phosphorylation of the Human Glucocorticoid Receptor Redirects Gene Expression Profiles’, 

Molecular and Cellular Biology, 28(24), pp. 7309–7322. doi: 10.1128/MCB.00808-08. 

Galliher-Beckley, A. J., Williams, J. G. and Cidlowski, J. A. (2011) ‘Ligand-independent 

phosphorylation of the glucocorticoid receptor integrates cellular stress pathways with nuclear 

receptor signaling.’, Molecular and cellular biology. American Society for Microbiology (ASM), 31(23), 

pp. 4663–75. doi: 10.1128/MCB.05866-11. 

Gan, Y. et al. (2015) ‘Shift work and diabetes mellitus: a meta-analysis of observational 

studies’, Occupational and Environmental Medicine, 72(1), pp. 72–78. doi: 10.1136/oemed-2014-

102150. 

Garbarino, S. and Magnavita, N. (2015) ‘Work Stress and Metabolic Syndrome in Police 

Officers. A Prospective Study.’, PloS one. Public Library of Science, 10(12), p. e0144318. doi: 

10.1371/journal.pone.0144318. 

Gathercole, L. L. et al. (2011) ‘Regulation of Lipogenesis by Glucocorticoids and Insulin in 

Human Adipose Tissue’, PLoS ONE, 6(10), p. 26223. doi: 10.1371/journal.pone.0026223. 

Gautier-Stein, A. et al. (2012) ‘Glucotoxicity induces glucose-6-phosphatase catalytic unit 

expression by acting on the interaction of HIF-1α with CREB-binding protein.’, Diabetes. American 

Diabetes Association, 61(10), pp. 2451–60. doi: 10.2337/db11-0986. 

Gekakis, N. et al. (1998) ‘Role of the CLOCK protein in the mammalian circadian mechanism.’, 

Science (New York, N.Y.), 280(5369), pp. 1564–9. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/9616112 (Accessed: 20 May 2019). 

George, C. L. et al. (2017) ‘Ultradian glucocorticoid exposure directs gene-dependent and 

tissue-specific mRNA expression patterns in vivo’, Molecular and Cellular Endocrinology. Elsevier 

Ireland Ltd, 439, pp. 46–53. doi: 10.1016/j.mce.2016.10.019. 

George, C. L., Lightman, S. L. and Biddie, S. C. (2011) ‘Transcription factor interactions in 

genomic nuclear receptor function’, Epigenomics.  Future Medicine Ltd London, UK , 3(4), pp. 471–

485. doi: 10.2217/epi.11.66. 

Gerritsen, M. E. et al. (1997) ‘CREB-binding protein/p300 are transcriptional coactivators of 

p65.’, Proceedings of the National Academy of Sciences of the United States of America. National 

Academy of Sciences, 94(7), pp. 2927–32. doi: 10.1073/PNAS.94.7.2927. 

Gibbons, G. F. et al. (2004) ‘Synthesis and function of hepatic very-low-density lipoprotein.’, 

Biochemical Society transactions. Portland Press Limited, 32(Pt 1), pp. 59–64. doi: 10.1042/. 

Giguère, V. et al. (1986) ‘Functional domains of the human glucocorticoid receptor’, Cell. Cell 



 

175 
 

Press, 46(5), pp. 645–652. doi: 10.1016/0092-8674(86)90339-9. 

‘Global IDF/ISPAD Guideline for diabetes in childhood’ (2011) International Diabetes 

Federation. Available at: www.ispad.org (Accessed: 20 May 2019). 

Godowski, P. J. et al. (1987) ‘Glucocorticoid receptor mutants that are constitutive activators 

of transcriptional enhancement’, Nature. Nature Publishing Group, 325(6102), pp. 365–368. doi: 

10.1038/325365a0. 

Gonnissen, H. K. et al. (2012) ‘Effect of a phase advance and phase delay of the 24-h cycle on 

energy metabolism, appetite, and related hormones’, The American Journal of Clinical Nutrition, 96(4), 

pp. 689–697. doi: 10.3945/ajcn.112.037192. 

Granner, D. K. and Hargrove, J. L. (1983) ‘Regulation of the synthesis of tyrosine 

aminotransferase : the relationship to mRNA TAT’, in Molecular and cellular biology, pp. 113–128. 

Available at: file:///C:/Users/mdzbf/Desktop/art%253A10.1007%252FBF00225249.pdf. 

Grøntved, L. et al. (2013) ‘C/EBP maintains chromatin accessibility in liver and facilitates 

glucocorticoid receptor recruitment to steroid response elements’, The EMBO Journal, 32(11), pp. 

1568–1583. doi: 10.1038/emboj.2013.106. 

Grøntved, L. et al. (2015) ‘Transcriptional activation by the thyroid hormone receptor through 

ligand-dependent receptor recruitment and chromatin remodelling’, Nature Communications, 6, p. 

7048. doi: 10.1038/ncomms8048. 

Grunstein, M. (1997) ‘Histone acetylation in chromatin structure and transcription’, Nature. 

Nature Publishing Group, 389(6649), pp. 349–352. doi: 10.1038/38664. 

de Guia, R., Rose, A. J. and Herzig, S. (2014) ‘Glucocorticoid hormones and energy 

homeostasis’, Hormone moecular biology and clinical investigation, 19(2), pp. 117–128. 

Guo, N. et al. (2018) ‘Dentate granule cell recruitment of feedforward inhibition governs 

engram maintenance and remote memory generalization’, Nature Medicine. Nature Publishing Group, 

24(4), pp. 438–449. doi: 10.1038/nm.4491. 

Haarman, E. G. et al. (2004) ‘Glucocorticoid receptor alpha, beta and gamma expression vs in 

vitro glucocorticod resistance in childhood leukemia’, Leukemia. Nature Publishing Group, 18(3), pp. 

530–537. doi: 10.1038/sj.leu.2403225. 

Hahn, S. (2004) ‘Structure and mechanism of the RNA polymerase II transcription machinery’, 

Nature Structural & Molecular Biology. Nature Publishing Group, 11(5), pp. 394–403. doi: 

10.1038/nsmb763. 

Hakim, O. et al. (2009) ‘Glucocorticoid receptor activation of the Ciz1-Lcn2 locus by long range 

interactions’, Journal of Biological Chemistry, 284(10), pp. 6048–6052. doi: 10.1074/jbc.C800212200. 

Hall, R. K. et al. (2007) ‘Insulin Represses Phosphoenolpyruvate Carboxykinase Gene 



 

176 
 

Transcription by Causing the Rapid Disruption of an Active Transcription Complex: A Potential 

Epigenetic Effect’, Molecular Endocrinology. Narnia, 21(2), pp. 550–563. doi: 10.1210/me.2006-0307. 

Hall, R. K., Sladek, F. M. and Granner, D. K. (1995) ‘The orphan receptors COUP-TF and HNF-4 

serve as accessory factors required for induction of phosphoenolpyruvate carboxykinase gene 

transcription by glucocorticoids.’, Proceedings of the National Academy of Sciences of the United 

States of America. National Academy of Sciences, 92(2), pp. 412–6. doi: 10.1073/PNAS.92.2.412. 

Haller, J et al. (2000) ‘The active phase-related increase in corticosterone and aggression are 

linked.’, Journal of neuroendocrinology, 12(5), pp. 431–6. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/10792582 (Accessed: 15 April 2019). 

Haller, J. et al. (2000) ‘Ultradian corticosterone rhythm and the propensity to behave 

aggressively in male rats’, Journal of Neuroendocrinology, 12(10), pp. 937–940. doi: 10.1046/j.1365-

2826.2000.00568.x. 

Hamdi, H. et al. (2007) ‘Glucocorticoid-induced leucine zipper: A key protein in the 

sensitization of monocytes to lipopolysaccharide in alcoholic hepatitis’, Hepatology, 46(6), pp. 1986–

1992. doi: 10.1002/hep.21880. 

Han, Y. H. et al. (2009) ‘The effect of MG132, a proteasome inhibitor on HeLa cells in relation 

to cell growth, reactive oxygen species and GSH.’, Oncology reports, 22(1), pp. 215–21. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/19513526 (Accessed: 26 March 2019). 

Hanniman, E. A. et al. (2006) ‘Apolipoprotein A-IV is regulated by nutritional and metabolic 

stress: involvement of glucocorticoids, HNF-4a, and PGC-1a’, Journal of lipid research, 47, pp. 2503–

2514. doi: 10.1194/jlr.M600303-JLR200. 

Hansen, E. J. and Juni, E. (1974) ‘Two routes for synthesis of phosphoenolpyruvate from C4-

dicarboxylic acids in Escherichia coli’, Biochemical and Biophysical Research Communications. 

Academic Press, 59(4), pp. 1204–1210. doi: 10.1016/0006-291X(74)90442-2. 

Hanson, R. W. and Garber, A. J. (1972) ‘Phosphoenolpyruvate carboxykinase. I. Its role in 

gluconeogenesis’, The American Journal of Clinical Nutrition. Narnia, 25(10), pp. 1010–1021. doi: 

10.1093/ajcn/25.10.1010. 

Harbuz, M. S. and Lightman, S. L. (1989) ‘Glucocorticoid inhibition of stress-induced changes 

in hypothalamic corticotrophin-releasing factor messenger RNA and proenkephalin a messenger RNA’, 

Neuropeptides. Churchill Livingstone, 14(1), pp. 17–20. doi: 10.1016/0143-4179(89)90029-2. 

Harmanci, A., Rozowsky, J. and Gerstein, M. (2014) ‘MUSIC: identification of enriched regions 

in ChIP-Seq experiments using a mappability-corrected multiscale signal processing framework’, 

Genome Biology. BioMed Central, 15(10), p. 474. doi: 10.1186/s13059-014-0474-3. 

Harris, T. D. et al. (2008) ‘Single-molecule DNA sequencing of a viral genome.’, Science (New 



 

177 
 

York, N.Y.), 320(5872), pp. 106–9. doi: 10.1126/science.1150427. 

Hattar, S. (2002) ‘Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and 

Intrinsic Photosensitivity’, Science, 295(5557), pp. 1065–1070. doi: 10.1126/science.1069609. 

Hayes, J. J., Clark, D. J. and Wolffe, A. P. (1991) ‘Histone contributions to the structure of DNA 

in the nucleosome.’, Proceedings of the National Academy of Sciences of the United States of America. 

National Academy of Sciences, 88(15), pp. 6829–33. doi: 10.1073/PNAS.88.15.6829. 

Heintzman, N. D. et al. (2009) ‘Histone modifications at human enhancers reflect global cell-

type-specific gene expression’, Nature. Nature Publishing Group, 459(7243), pp. 108–112. doi: 

10.1038/nature07829. 

Heinz, S. et al. (2010) ‘Simple combinations of lineage-determining transcription factors prime 

cis-regulatory elements required for macrophage and B cell identities.’, Molecular cell. NIH Public 

Access, 38(4), pp. 576–89. doi: 10.1016/j.molcel.2010.05.004. 

Heinz, S. et al. (2015) ‘The selection and function of cell type-specific enhancers’, Nat Rev Mol 

Cell Biol. Nature Publishing Group, 16(3), pp. 144–154. doi: 10.1038/nrm3949. 

van Helden, J., André, B. and Collado-Vides, J. (1998) ‘Extracting regulatory sites from the 

upstream region of yeast genes by computational analysis of oligonucleotide frequencies.’, Journal of 

molecular biology, 281(5), pp. 827–42. doi: 10.1006/jmbi.1998.1947. 

Hellerstein, M. K. (1999) ‘De novo lipogenesis in humans: metabolic and regulatory aspects.’, 

European journal of clinical nutrition, 53 Suppl 1, pp. S53-65. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/10365981 (Accessed: 20 May 2019). 

Hemmer, M. C. et al. (2019) ‘E47 modulates hepatic glucocorticoid action’, Nature 

Communications. Nature Publishing Group, 10(1), p. 306. doi: 10.1038/s41467-018-08196-5. 

Hench, P. S. and Kendall, E. C. (1949) ‘The effect of a hormone of the adrenal cortex (17-

hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on 

rheumatoid arthritis.’, Mayo Clinic proceedings. Mayo Clinic, 24(8), pp. 181–197. doi: 12/18/2013. 

Hengartner, C. J. et al. (1998) ‘Temporal Regulation of RNA Polymerase II by Srb10 and Kin28 

Cyclin-Dependent Kinases’, Molecular Cell. Cell Press, 2(1), pp. 43–53. doi: 10.1016/S1097-

2765(00)80112-4. 

Henley, D E et al. (2009) ‘Development of an automated blood sampling system for use in 

humans) Development of an automated blood sampling system for use in humans Development of an 

automated blood sampling system for use in humans’, Journal of Medical Engineering & 

TechnologyOnline) Journal Journal of Medical Engineering & Technology, 33(3), pp. 199–208. doi: 

10.1080/03091900802185970. 

Henley, David E., Russell, G. M., et al. (2009) ‘Hypothalamic-Pituitary-Adrenal Axis Activation 



 

178 
 

in Obstructive Sleep Apnea: The Effect of Continuous Positive Airway Pressure Therapy’, The Journal 

of Clinical Endocrinology & Metabolism. Narnia, 94(11), pp. 4234–4242. doi: 10.1210/jc.2009-1174. 

Henley, David E., Buchanan, F., et al. (2009) ‘Plasma apelin levels in obstructive sleep apnea 

and the effect of continuous positive airway pressure therapy’, Journal of Endocrinology, 203(1), pp. 

181–188. doi: 10.1677/JOE-09-0245. 

Hennighausen, L. and Robinson, G. W. (2008) ‘Interpretation of cytokine signaling through the 

transcription factors STAT5A and STAT5B.’, Genes & development. Cold Spring Harbor Laboratory 

Press, 22(6), pp. 711–21. doi: 10.1101/gad.1643908. 

Hers, H. G. et al. (1951) ‘The hexose-phosphatase system. III. Intracellular localization of 

enzymes by fractional centrifugation.’, Bulletin de la Société de Chimie Biologique, 33(1–2), pp. 21–41. 

Available at: https://www.ncbi.nlm.nih.gov/pubmed/14935564 (Accessed: 6 April 2019). 

Hertz, G. Z., Hartzell, G. W. and Stormo, G. D. (1990) ‘Identification of consensus patterns in 

unaligned DNA sequences known to be functionally related.’, Computer applications in the 

biosciences : CABIOS, 6(2), pp. 81–92. doi: 10.1093/bioinformatics/6.2.81. 

Herzig, S. et al. (2003) ‘CREB controls hepatic lipid metabolism through nuclear hormone 

receptor PPAR-γ’, Nature. Nature Publishing Group, 426(6963), pp. 190–193. doi: 

10.1038/nature02110. 

Higgins, G. M. and Anderson, R. M. (1931) ‘Experimental pathology of the liver. I. Restoration 

of the liver of the white rat following partial surgical removal’, Archives of pathology & laboratory 

medicine, 12, pp. 186–202. 

Hillgartner, F. B., Salati, L. M. and Goodridge, A. G. (1995) ‘Physiological and molecular 

mechanisms involved in nutritional regulation of fatty acid synthesis.’, Physiological reviews, 75(1), 

pp. 47–76. doi: 10.1152/physrev.1995.75.1.47. 

Hillier, S. G. (2007) ‘Diamonds are forever: The cortisone legacy’, Journal of Endocrinology, pp. 

1–6. doi: 10.1677/JOE-07-0309. 

Hinds, T. D. et al. (2010) ‘Discovery of glucocorticoid receptor-beta in mice with a role in 

metabolism.’, Molecular endocrinology (Baltimore, Md.). The Endocrine Society, 24(9), pp. 1715–27. 

doi: 10.1210/me.2009-0411. 

Hoffman, B. and Liebermann, D. A. (2008) ‘Apoptotic signaling by c-MYC’, Oncogene. Nature 

Publishing Group, 27(50), pp. 6462–6472. doi: 10.1038/onc.2008.312. 

Holaday, J. W., Martinez, H. M. and Natelson, B. H. (1977) ‘Synchronized ultradian cortisol 

rhythms in monkeys: persistence during corticotropin infusion.’, Science (New York, N.Y.), 198(4312), 

pp. 56–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/197603 (Accessed: 2 April 2019). 

Hollenberg, S. M. et al. (1985) ‘Primary structure and expression of a functional human 



 

179 
 

glucocorticoid receptor cDNA.’, Nature. Howard Hughes Medical Institute, 318(6047), pp. 635–41. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/2867473 (Accessed: 23 March 2019). 

Holmstrom, S. R. et al. (2008) ‘SUMO-Mediated Inhibition of Glucocorticoid Receptor 

Synergistic Activity Depends on Stable Assembly at the Promoter But Not on DAXX’, Molecular 

Endocrinology, 22(9), pp. 2061–2075. doi: 10.1210/me.2007-0581. 

Holstege, F. C., Fiedler, U. and Timmers, H. T. (1997) ‘Three transitions in the RNA polymerase 

II transcription complex during initiation.’, The EMBO journal. European Molecular Biology 

Organization, 16(24), pp. 7468–80. doi: 10.1093/emboj/16.24.7468. 

Hong, H. et al. (1996) ‘GRIP1, a novel mouse protein that serves as a transcriptional coactivator 

in yeast for the hormone binding domains of steroid receptors.’, Proceedings of the National Academy 

of Sciences of the United States of America, 93(10), pp. 4948–52. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/8643509 (Accessed: 12 April 2019). 

Hong, H. et al. (1997) GRIP1, a Transcriptional Coactivator for the AF-2 Transactivation Domain 

of Steroid, Thyroid, Retinoid, and Vitamin D Receptors Downloaded from, MOLECULAR AND CELLULAR 

BIOLOGY. Available at: http://mcb.asm.org/ (Accessed: 12 April 2019). 

Hooper, A. J., Burnett, J. R. and Watts, G. F. (2015) ‘Contemporary Aspects of the Biology and 

Therapeutic Regulation of the Microsomal Triglyceride Transfer Protein’, Circulation Research, 116(1), 

pp. 193–205. doi: 10.1161/CIRCRESAHA.116.304637. 

Hudson, W. H., Youn, C. and Ortlund, E. A. (2013) ‘The structural basis of direct glucocorticoid-

mediated transrepression’, Nature Structural & Molecular Biology. Nature Publishing Group, 20(1), pp. 

53–58. doi: 10.1038/nsmb.2456. 

Hue, L. and Rider, M. H. (1987) ‘Role of fructose 2,6-bisphosphate in the control of glycolysis 

in mammalian tissues.’, Biochemical Journal. Portland Press Ltd, 245(2), p. 313. Available at: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1148124/ (Accessed: 6 April 2019). 

Ichimura, M. et al. (2015) ‘High-fat and high-cholesterol diet rapidly induces non-alcoholic 

steatohepatitis with advanced fibrosis in Sprague-Dawley rats’, Hepatology Research, 45(4), pp. 458–

469. doi: 10.1111/hepr.12358. 

Iguchi, H., Kato, K. and Inayashi, H. (1982) ‘Melatonin Serum Levels and Metabolic Clearance 

Rate in Patients with Liver Cirrhosis’, The Journal of Clinical Endocrinology & Metabolism. Narnia, 

54(5), pp. 1025–1027. doi: 10.1210/jcem-54-5-1025. 

Iizuka, K., Miller, B. and Uyeda, K. (2006) ‘Deficiency of carbohydrate-activated transcription 

factor ChREBP prevents obesity and improves plasma glucose control in leptin-deficient ( ob/ob ) 

mice’, American Journal of Physiology-Endocrinology and Metabolism. American Physiological Society, 

291(2), pp. E358–E364. doi: 10.1152/ajpendo.00027.2006. 



 

180 
 

Imai, E. et al. (1990) ‘Characterization of a complex glucocorticoid response unit in the 

phosphoenolpyruvate carboxykinase gene.’, Molecular and cellular biology. American Society for 

Microbiology (ASM), 10(9), pp. 4712–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/2388623 

(Accessed: 6 April 2019). 

Imai, E. et al. (1993) ‘Glucocorticoid receptor-cAMP response element-binding protein 

interaction and the response of the phosphoenolpyruvate carboxykinase gene to glucocorticoids.’, 

The Journal of biological chemistry, 268(8), pp. 5353–6. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/8449898 (Accessed: 7 April 2019). 

Inouye, S. T. and Kawamura, H. (1979) ‘Persistence of circadian rhythmicity in a mammalian 

hypothalamic “island” containing the suprachiasmatic nucleus.’, Proceedings of the National Academy 

of Sciences of the United States of America. National Academy of Sciences, 76(11), pp. 5962–6. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/293695 (Accessed: 1 April 2019). 

Ioannou, G. N. et al. (2009) ‘Association between dietary nutrient composition and the 

incidence of cirrhosis or liver cancer in the united states population’, Hepatology, 50(1), pp. 175–184. 

doi: 10.1002/hep.22941. 

Ito, K. et al. (2006) ‘Histone deacetylase 2–mediated deacetylation of the glucocorticoid 

receptor enables NF-κB suppression’, Journal of Experimental Medicine. Rockefeller University Press, 

203(1), pp. 7–13. doi: 10.1084/JEM.20050466. 

Itoh, M. et al. (2002) ‘Nuclear Export of Glucocorticoid Receptor is Enhanced by c-Jun N-

Terminal Kinase-Mediated Phosphorylation’, Molecular Endocrinology. Narnia, 16(10), pp. 2382–

2392. doi: 10.1210/me.2002-0144. 

Iyer, V. R. et al. (2001) ‘Genomic binding sites of the yeast cell-cycle transcription factors SBF 

and MBF.’, Nature, 409(6819), pp. 533–538. doi: 10.1038/35054095. 

Jackson, D. A. et al. (1998) ‘Numbers and organization of RNA polymerases, nascent 

transcripts, and transcription units in HeLa nuclei.’, Molecular biology of the cell. American Society for 

Cell Biology, 9(6), pp. 1523–36. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9614191 

(Accessed: 29 March 2019). 

Jadhav, T. and Wooten, M. W. (2009) ‘Defining an Embedded Code for Protein 

Ubiquitination.’, Journal of proteomics & bioinformatics. NIH Public Access, 2, p. 316. doi: 

10.4172/jpb.1000091. 

Jantzen, H. M. et al. (1987) ‘Cooperativity of glucocorticoid response elements located far 

upstream of the tyrosine aminotransferase gene.’, Cell, 49(1), pp. 29–38. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/2881624 (Accessed: 25 March 2019). 

Jasper, M. S. and Engeland, W. C. (1991) ‘Synchronous ultradian rhythms in adrenocortical 



 

181 
 

secretion detected by microdialysis in awake rats’, American Journal of Physiology-Regulatory, 

Integrative and Comparative Physiology, 261(5), pp. R1257–R1268. doi: 

10.1152/ajpregu.1991.261.5.R1257. 

Jensen-Urstad, A. P. L. and Semenkovich, C. F. (2012) ‘Fatty acid synthase and liver triglyceride 

metabolism: housekeeper or messenger?’, Biochimica et biophysica acta. NIH Public Access, 1821(5), 

pp. 747–53. doi: 10.1016/j.bbalip.2011.09.017. 

Jetten, A. M. (2009) ‘Retinoid-Related Orphan Receptors (RORs): Critical Roles in 

Development, Immunity, Circadian Rhythm, and Cellular Metabolism’, Nuclear Receptor Signaling, 

7(1), p. nrs.07003. doi: 10.1621/nrs.07003. 

Ji, J. Y., Jing, H. and Diamond, S. L. (2003) ‘Shear stress causes nuclear localization of 

endothelial glucocorticoid receptor and expression from the GRE promoter.’, Circulation research, 

92(3), pp. 279–85. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12595339 (Accessed: 24 May 

2019). 

Jia, X. et al. (2018) ‘Dynamic development of metabolic syndrome and its risk prediction in 

Chinese population: a longitudinal study using Markov model.’, Diabetology & metabolic syndrome. 

BioMed Central, 10, p. 24. doi: 10.1186/s13098-018-0328-3. 

Jiang, Z. G., Robson, S. C. and Yao, Z. (2013) ‘Lipoprotein metabolism in nonalcoholic fatty liver 

disease.’, Journal of biomedical research. Education Department of Jiangsu Province, 27(1), pp. 1–13. 

doi: 10.7555/JBR.27.20120077. 

Jitrapakdee, S. et al. (1997) ‘Regulation of Rat Pyruvate Carboxylase Gene Expression by 

Alternate Promoters during Development, in Genetically Obese Rats and in Insulin-secreting Cells 

Multiple transcripts with 5’-end heterogeneity modulate translation’, The Journal of biological 

chemistry. American Society for Biochemistry and Molecular Biology, 272(33), pp. 20522–30. doi: 

10.1074/JBC.272.33.20522. 

Jitrapakdee, S. et al. (2008) ‘Structure, mechanism and regulation of pyruvate carboxylase.’, 

The Biochemical journal. NIH Public Access, 413(3), pp. 369–87. doi: 10.1042/BJ20080709. 

Jitrapakdee, S. and Wallace, J. C. (1999) Structure, function and regulation of pyruvate 

carboxylase - alternate promoters generate multiple transcripts with the 5’-end heterogeneity, 

Biochem. J. Available at: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220216/pdf/10229653.pdf (Accessed: 6 April 

2019). 

John, K. et al. (2016) ‘The glucocorticoid receptor: cause of or cure for obesity?’, American 

journal of physiology. Endocrinology and metabolism. American Physiological Society, 310(4), pp. 

E249-57. doi: 10.1152/ajpendo.00478.2015. 



 

182 
 

John, S. et al. (2008) ‘Interaction of the Glucocorticoid Receptor with the Chromatin 

Landscape’, Molecular Cell, 29(5), pp. 611–624. doi: 10.1016/j.molcel.2008.02.010. 

John, S. et al. (2011) ‘Chromatin accessibility pre-determines glucocorticoid receptor binding 

patterns.’, Nature genetics, 43(3), pp. 264–8. doi: 10.1038/ng.759. 

Johnson, D. S. et al. (2007) ‘Genome-wide mapping of in vivo protein-DNA interactions’, 

Science, 316(5830), pp. 1497–1502. doi: 1141319 [pii]\r10.1126/science.1141319. 

Jonat, C. et al. (1990) ‘Antitumor promotion and antiinflammation: Down-modulation of AP-1 

(Fos/Jun) activity by glucocorticoid hormone’, Cell. Cell Press, 62(6), pp. 1189–1204. doi: 

10.1016/0092-8674(90)90395-U. 

Jones, C. G., Hothi, S. K. and Titheradge, M. A. (1993) ‘Effect of dexamethasone on 

gluconeogenesis, pyruvate kinase, pyruvate carboxylase and pyruvate dehydrogenase flux in isolated 

hepatocytes’, Biochemical Journal, 289(3), pp. 821–828. doi: 10.1042/bj2890821. 

Jones, M T, Hillhouse, E. W. and Burden, J. L. (1977) ‘Dynamics and mechanics of corticosteroid 

feedback at the hypothalamus and anterior pituitary gland.’, The Journal of endocrinology, 73(3), pp. 

405–17. Available at: http://www.ncbi.nlm.nih.gov/pubmed/194993 (Accessed: 15 November 2018). 

Jones, M. T., Hillhouse, E. W. and Burden, J. L. (1977) ‘Structure-activity relationships of 

corticosteroid feedback at the hypothalamic level’, Journal of Endocrinology, 74(3), pp. 415–424. 

Jubb, A. W. et al. (2016) ‘Enhancer Turnover Is Associated with a Divergent Transcriptional 

Response to Glucocorticoid in Mouse and Human Macrophages.’, Journal of immunology (Baltimore, 

Md. : 1950). American Association of Immunologists, 196(2), pp. 813–822. doi: 

10.4049/jimmunol.1502009. 

Jubb, A. W. et al. (2017) ‘Glucocorticoid Receptor Binding Induces Rapid and Prolonged Large-

Scale Chromatin Decompaction at Multiple Target Loci’, Cell Reports. Elsevier, 21(11), pp. 3022–3031. 

doi: 10.1016/j.celrep.2017.11.053. 

Judd, L. L. et al. (2014) ‘Adverse Consequences of Glucocorticoid Medication: Psychological, 

Cognitive, and Behavioral Effects’, American Journal of Psychiatry. American Psychiatric 

AssociationArlington, VA, 171(10), pp. 1045–1051. doi: 10.1176/appi.ajp.2014.13091264. 

Kalafatakis, K. et al. (2018) ‘Ultradian rhythmicity of plasma cortisol is necessary for normal 

emotional and cognitive responses in man.’, Proceedings of the National Academy of Sciences of the 

United States of America. National Academy of Sciences, 115(17), pp. E4091–E4100. doi: 

10.1073/pnas.1714239115. 

Kalsbeek, A. et al. (1992) ‘Vasopressin-containing neurons of the suprachiasmatic nuclei 

inhibit corticosterone release’, Brain Research. Elsevier, 580(1–2), pp. 62–67. doi: 10.1016/0006-

8993(92)90927-2. 



 

183 
 

Kalsbeek, A. et al. (2008) ‘Opposite actions of hypothalamic vasopressin on circadian 

corticosterone rhythm in nocturnal versus diurnal species’, European Journal of Neuroscience, 27(4), 

pp. 818–827. doi: 10.1111/j.1460-9568.2008.06057.x. 

Kalsbeek, A., la Fleur, S. and Fliers, E. (2014) ‘Circadian control of glucose metabolism.’, 

Molecular metabolism. Elsevier, 3(4), pp. 372–83. doi: 10.1016/j.molmet.2014.03.002. 

Kalsbeek, A., van der Vliet, J. and Buijs, R. M. (1996) ‘Decrease of endogenous vasopressin 

release necessary for expression of the circadian rise in plasma corticosterone: a reverse microdialysis 

study.’, Journal of neuroendocrinology, 8(4), pp. 299–307. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/8861286 (Accessed: 2 April 2019). 

Kamitani, T. et al. (1998) ‘Covalent modification of PML by the sentrin family of ubiquitin-like 

proteins.’, The Journal of biological chemistry. American Society for Biochemistry and Molecular 

Biology, 273(6), pp. 3117–20. doi: 10.1074/JBC.273.6.3117. 

Kanamoto, R., Su, Y. and Pitot, H. C. (1991) Hormonal Regulation of Serine Dehydratase Gene 

Expression in Liver and Kidney of the Adrenalectomized Rat. Available at: 

https://academic.oup.com/mend/article-abstract/5/11/1661/2714261 (Accessed: 30 April 2019). 

Karatsoreos, I. N. et al. (2011) ‘Disruption of circadian clocks has ramifications for metabolism, 

brain, and behavior’, Proceedings of the National Academy of Sciences, 108(4), pp. 1657–1662. doi: 

10.1073/pnas.1018375108. 

Karssen, A. M. et al. (2001) ‘Multidrug resistance P-glycoprotein hampers the access of cortisol 

but not of corticosterone to mouse and human brain’, Endocrinology, 142(6), pp. 2686–2694. doi: 

10.1210/en.142.6.2686. 

Karssen, A. M. et al. (2005) ‘Low Doses of Dexamethasone Can Produce a Hypocorticosteroid 

State in the Brain’, Endocrinology. Narnia, 146(12), pp. 5587–5595. doi: 10.1210/en.2005-0501. 

Kauppi, B. et al. (2003) ‘The Three-dimensional Structures of Antagonistic and Agonistic Forms 

of the Glucocorticoid Receptor Ligand-binding Domain’, Journal of Biological Chemistry, 278(25), pp. 

22748–22754. doi: 10.1074/jbc.M212711200. 

Kaur, J. (2014) ‘A comprehensive review on metabolic syndrome.’, Cardiology research and 

practice. Hindawi Limited, 2014, p. 943162. doi: 10.1155/2014/943162. 

Kendall, E. C. et al. (1936) ‘A physiologic and chemical investigation of the suprarenal cortex’, 

Journal of Biological Chemistry. 

Kendall, E. C. (1949) ‘Some observations on the hormone of the adrenal cortex designated 

compound E’, Proc Staff Meet Mayo Clin, 24(8), pp. 181–197. 

Kent, W. J. et al. (2002) ‘The human genome browser at UCSC.’, Genome research. Cold Spring 

Harbor Laboratory Press, 12(6), pp. 996–1006. doi: 10.1101/gr.229102. 



 

184 
 

Kharbanda, K. (2009) ‘Alcoholic Liver Disease and Methionine Metabolism’, Seminars in Liver 

Disease, 29(02), pp. 155–165. doi: 10.1055/s-0029-1214371. 

Kim, H. et al. (2011) ‘A short survey of computational analysis methods in analysing ChIP-seq 

data’, Human Genomics, 5(2), pp. 117–123. doi: 10.1186/1479-7364-5-2-117. 

Kim, Y. H. et al. (2018) ‘Rev-erbα dynamically modulates chromatin looping to control 

circadian gene transcription.’, Science (New York, N.Y.). American Association for the Advancement of 

Science, p. eaao6891. doi: 10.1126/science.aao6891. 

Kino, T. et al. (2005) ‘G protein beta interacts with the glucocorticoid receptor and suppresses 

its transcriptional activity in the nucleus.’, The Journal of cell biology. The Rockefeller University Press, 

169(6), pp. 885–96. doi: 10.1083/jcb.200409150. 

Kino, T. et al. (2007) ‘Cyclin-Dependent Kinase 5 Differentially Regulates the Transcriptional 

Activity of the Glucocorticoid Receptor through Phosphorylation: Clinical Implications for the Nervous 

System Response to Glucocorticoids and Stress’, Molecular Endocrinology. Narnia, 21(7), pp. 1552–

1568. doi: 10.1210/me.2006-0345. 

Kino, T. et al. (2009) ‘Glucocorticoid receptor (GR) beta has intrinsic, GRalpha-independent 

transcriptional activity.’, Biochemical and biophysical research communications. NIH Public Access, 

381(4), pp. 671–5. doi: 10.1016/j.bbrc.2009.02.110. 

Kino, T. (2018) ‘GR-regulating Serine/Threonine Kinases: New Physiologic and Pathologic 

Implications.’, Trends in endocrinology and metabolism: TEM. Elsevier, 29(4), pp. 260–270. doi: 

10.1016/j.tem.2018.01.010. 

Kinyamu, H. K. and Archer, T. K. (2004) ‘Modifying chromatin to permit steroid hormone 

receptor-dependent transcription’, Biochimica et Biophysica Acta (BBA) - Gene Structure and 

Expression. Elsevier, 1677(1–3), pp. 30–45. doi: 10.1016/J.BBAEXP.2003.09.015. 

Kishnani, P. S. et al. (2014) ‘Diagnosis and management of glycogen storage disease type I: a 

practice guideline of the American College of Medical Genetics and Genomics’, Genetics in Medicine. 

Nature Publishing Group, 16(11), pp. e1–e1. doi: 10.1038/gim.2014.128. 

Kiss, J. Z., Mezey, E. and Skirboll, L. (1984) ‘Corticotropin-releasing factor-immunoreactive 

neurons of the paraventricular nucleus become vasopressin positive after adrenalectomy.’, 

Proceedings of the National Academy of Sciences of the United States of America, 81(6), pp. 1854–

1858. doi: 10.1073/pnas.81.6.1854. 

Kitchener, P. et al. (2004) ‘Differences between brain structures in nuclear translocation and 

DNA binding of the glucocorticoid receptor during stress and the circadian cycle’, European Journal of 

Neuroscience, 19(7), pp. 1837–1846. doi: 10.1111/j.1460-9568.2004.03267.x. 

Koh, S. S. et al. (2001) ‘Synergistic Enhancement of Nuclear Receptor Function by p160 



 

185 
 

Coactivators and Two Coactivators with Protein Methyltransferase Activities’, Journal of Biological 

Chemistry, 276(2), pp. 1089–1098. doi: 10.1074/jbc.M004228200. 

Kohsaka, A. et al. (2007) ‘High-Fat Diet Disrupts Behavioral and Molecular Circadian Rhythms 

in Mice’, Cell Metabolism. Cell Press, 6(5), pp. 414–421. doi: 10.1016/J.CMET.2007.09.006. 

Kojetin, D. J. and Burris, T. P. (2014) ‘REV-ERB and ROR nuclear receptors as drug targets.’, 

Nature reviews. Drug discovery. NIH Public Access, 13(3), pp. 197–216. doi: 10.1038/nrd4100. 

Komarnitsky, P., Cho, E. J. and Buratowski, S. (2000) ‘Different phosphorylated forms of RNA 

polymerase II and associated mRNA processing factors during transcription.’, Genes & development, 

14(19), pp. 2452–60. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11018013 (Accessed: 25 

May 2016). 

Koohy, H. et al. (2014) ‘A comparison of peak callers used for DNase-Seq data’, PLoS ONE, 9(5). 

doi: 10.1371/journal.pone.0096303. 

Vander Kooi, B. T. et al. (2005) ‘The Glucose-6-Phosphatase Catalytic Subunit Gene Promoter 

Contains Both Positive and Negative Glucocorticoid Response Elements’, Molecular Endocrinology. 

Narnia, 19(12), pp. 3001–3022. doi: 10.1210/me.2004-0497. 

Koopman, A. D. M. et al. (2017) ‘The Association between Social Jetlag, the Metabolic 

Syndrome, and Type 2 Diabetes Mellitus in the General Population: The New Hoorn Study.’, Journal of 

biological rhythms. SAGE Publications, 32(4), pp. 359–368. doi: 10.1177/0748730417713572. 

Kornberg, R. D. (1974) ‘Chromatin structure: a repeating unit of histones and DNA.’, Science 

(New York, N.Y.), 184(139), pp. 868–871. doi: 10.1126/science.184.4139.868. 

Kornberg, R. D. and Lorch, Y. (1999) ‘Twenty-Five Years of the Nucleosome, Fundamental 

Particle of the Eukaryote Chromosome’, Cell. Cell Press, 98(3), pp. 285–294. doi: 10.1016/S0092-

8674(00)81958-3. 

Kotronen, A. et al. (2009) ‘Hepatic stearoyl-CoA desaturase (SCD)-1 activity and diacylglycerol 

but not ceramide concentrations are increased in the nonalcoholic human fatty liver.’, Diabetes. 

American Diabetes Association, 58(1), pp. 203–8. doi: 10.2337/db08-1074. 

Krämer, A. et al. (2014) ‘Causal analysis approaches in Ingenuity Pathway Analysis’, 

Bioinformatics. Narnia, 30(4), pp. 523–530. doi: 10.1093/bioinformatics/btt703. 

Krett, N. L. et al. (1995) ‘A variant glucocorticoid receptor messenger RNA is expressed in 

multiple myeloma patients.’, Cancer research. American Association for Cancer Research, 55(13), pp. 

2727–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7796394 (Accessed: 23 March 2019). 

Krieger, D. T. et al. (1971) ‘Characterization of the Normal Temporal Pattern of Plasma 

Corticosteroid Levels’, The Journal of Clinical Endocrinology & Metabolism. Narnia, 32(2), pp. 266–284. 

doi: 10.1210/jcem-32-2-266. 



 

186 
 

Kume, K. et al. (1999) ‘mCRY1 and mCRY2 are essential components of the negative limb of 

the circadian clock feedback loop.’, Cell, 98(2), pp. 193–205. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/10428031 (Accessed: 20 May 2019). 

Kuo, T. et al. (2015) ‘Regulation of Glucose Homeostasis by Glucocorticoids.’, Advances in 

experimental medicine and biology. NIH Public Access, 872, pp. 99–126. doi: 10.1007/978-1-4939-

2895-8_5. 

Kuznetsova, T. et al. (2015) ‘Glucocorticoid receptor and nuclear factor kappa-b affect three-

dimensional chromatin organization.’, Genome biology. BioMed Central, 16, p. 264. doi: 

10.1186/s13059-015-0832-9. 

Kyrou, I., Chrousos, G. P. and Tsigos, C. (2006) ‘Stress, Visceral Obesity, and Metabolic 

Complications’, Annals of the New York Academy of Sciences. John Wiley & Sons, Ltd (10.1111), 

1083(1), pp. 77–110. doi: 10.1196/annals.1367.008. 

van der Laan, S. et al. (2008) ‘Chromatin immunoprecipitation scanning identifies 

glucocorticoid receptor binding regions in the proximal promoter of a ubiquitously expressed 

glucocorticoid target gene in brain’, Journal of Neurochemistry, 106(6), pp. 2515–2523. doi: 

10.1111/j.1471-4159.2008.05575.x. 

van der Laan, S., de Kloet, E. R. and Meijer, O. C. (2009) ‘Timing is critical for effective 

glucocorticoid receptor mediated repression of the cAMP-induced CRH gene.’, PloS one. Public Library 

of Science, 4(1), p. e4327. doi: 10.1371/journal.pone.0004327. 

Lagrost, L. et al. (1989) ‘Evidence for high density lipoproteins as the major apolipoprotein A-

IV-containing fraction in normal human serum’, Journal of lipid research, 30, pp. 1525–1534. Available 

at: www.jlr.org (Accessed: 10 April 2019). 

Lane, E. A. and Moss, H. B. (1985) ‘Pharmacokinetics of Melatonin in Man: First Pass Hepatic 

Metabolism’, The Journal of Clinical Endocrinology & Metabolism. Narnia, 61(6), pp. 1214–1216. doi: 

10.1210/jcem-61-6-1214. 

de Lange, P. et al. (2001) ‘Expression in hematological malignancies of a glucocorticoid 

receptor splice variant that augments glucocorticoid receptor-mediated effects in transfected cells.’, 

Cancer research, 61(10), pp. 3937–41. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11358809 

(Accessed: 23 March 2019). 

Langlais, D. et al. (2012) ‘The Stat3/GR Interaction Code: Predictive Value of Direct/Indirect 

DNA Recruitment for Transcription Outcome’, Molecular Cell. Cell Press, 47(1), pp. 38–49. doi: 

10.1016/J.MOLCEL.2012.04.021. 

Langmead, B. and Salzberg, S. L. (2012) ‘Fast gapped-read alignment with Bowtie 2’, Nat 

Methods, 9(4), pp. 357–359. doi: 10.1038/nmeth.1923. 



 

187 
 

Larsson, J. et al. (2019) ‘eulerr: Area-Proportional Euler and Venn Diagrams with Ellipses’. 

Comprehensive R Archive Network (CRAN). Available at: https://cran.r-

project.org/web/packages/eulerr/index.html (Accessed: 22 April 2019). 

Lee, D. Y. et al. (1993) ‘A positive role for histone acetylation in transcription factor access to 

nucleosomal DNA’, Cell. Cell Press, 72(1), pp. 73–84. doi: 10.1016/0092-8674(93)90051-Q. 

Lee, H. L. and Archer, T. K. (1994) ‘Nucleosome-mediated disruption of transcription factor-

chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vivo.’, 

Molecular and cellular biology. American Society for Microbiology Journals, 14(1), pp. 32–41. doi: 

10.1128/MCB.14.1.32. 

Lee, H. and Schatz, M. C. (2012) ‘Genomic dark matter: the reliability of short read mapping 

illustrated by the genome mappability score.’, Bioinformatics (Oxford, England). Oxford University 

Press, 28(16), pp. 2097–105. doi: 10.1093/bioinformatics/bts330. 

Lee, W. et al. (1987) ‘Activation of transcription by two factors that bind promoter and 

enhancer sequences of the human metallothionein gene and SV40’, Nature. Nature Publishing Group, 

325(6102), pp. 368–372. doi: 10.1038/325368a0. 

Lee, W. et al. (2007) ‘A high-resolution atlas of nucleosome occupancy in yeast.’, Nature 

genetics, 39(10), pp. 1235–44. doi: 10.1038/ng2117. 

Lehner, R. and Verger, R. (1997) ‘Purification and Characterization of a Porcine Liver 

Microsomal Triacylglycerol Hydrolase †’, Biochemistry, 36(7), pp. 1861–1868. doi: 10.1021/bi962186d. 

Lembessis, P., Kalariti, N. and Koutsilieris, M. (2004) ‘Glucocorticoid receptor function 

suppresses insulin-like growth factor 1 activity in human KLE endometrial-like cells.’, In Vivo, 18(1), pp. 

43–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15011750 (Accessed: 14 May 2019). 

Lemke, U. et al. (2008) ‘The Glucocorticoid Receptor Controls Hepatic Dyslipidemia through 

Hes1’, Cell Metabolism. Cell Press, 8(3), pp. 212–223. doi: 10.1016/J.CMET.2008.08.001. 

Lerdrup, M. et al. (2016) ‘An interactive environment for agile analysis and visualization of 

ChIP-sequencing data’, Nature Structural & Molecular Biology. Nature Publishing Group, 23(4), pp. 

349–357. doi: 10.1038/nsmb.3180. 

Leu, J. I. et al. (2003) ‘Impaired Hepatocyte DNA Synthetic Response Posthepatectomy in 

Insulin-Like Growth Factor Binding Protein 1-Deficient Mice with Defects in C/EBP and Mitogen-

Activated Protein Kinase/Extracellular Signal-Regulated Kinase Regulation’, Molecular and Cellular 

Biology, 23(4), pp. 1251–1259. doi: 10.1128/MCB.23.4.1251-1259.2003. 

Li, H. et al. (2009) ‘The Sequence Alignment/Map format and SAMtools.’, Bioinformatics 

(Oxford, England). Oxford University Press, 25(16), pp. 2078–9. doi: 10.1093/bioinformatics/btp352. 

Lightman, S. (2016) Rhythms Within Rhythms: The Importance of Oscillations for 



 

188 
 

Glucocorticoid Hormones, A Time for Metabolism and Hormones. doi: 10.1007/978-3-319-27069-

2_10. 

Lightman, S. L. et al. (2002) ‘Hypothalamic-pituitary-adrenal function.’, Archives of physiology 

and biochemistry, 110(1–2), pp. 90–3. doi: 10.1076/apab.110.1.90.899. 

Lightman, S. L. (2006) ‘Patterns of exposure to glucocorticoid receptor ligand.’, Biochemical 

Society transactions, 34(Pt 6), pp. 1117–8. doi: 10.1042/BST0341117. 

Lightman, S. L. and Conway-Campbell, B. L. (2010) ‘The crucial role of pulsatile activity of the 

HPA axis for continuous dynamic equilibration.’, Nature reviews. Neuroscience. Nature Publishing 

Group, 11(10), pp. 710–718. doi: 10.1038/nrn2914. 

Lim, H. W. et al. (2015) ‘Genomic redistribution of GR monomers and dimers mediates 

transcriptional response to exogenous glucocorticoid in vivo’, Genome Research, 25(6), pp. 836–844. 

doi: 10.1101/gr.188581.114. 

Lin, B., Morris, D. W. and Chou, J. Y. (1998) ‘Hepatocyte Nuclear Factor 1α Is an Accessory 

Factor Required for Activation of Glucose-6-Phosphatase Gene Transcription by Glucocorticoids’, DNA 

and Cell Biology, 17(11), pp. 967–974. doi: 10.1089/dna.1998.17.967. 

Linder, C. et al. (1976) ‘Lipoprotein lipase and uptake of chylomicron triglyceride by skeletal 

muscle of rats’, American Journal of Physiology-Legacy Content. American Physiological Society, 

231(3), pp. 860–864. doi: 10.1152/ajplegacy.1976.231.3.860. 

Linton, M. E., Fame, R. V and Young, S. G. (1993) ‘Familial hypobetalipoproteinemia’, Journal 

of lipid research, 34(4), pp. 521–541. Available at: www.jlr.org (Accessed: 14 May 2019). 

Liu, J. and DeFranco, D. B. (1999) ‘Chromatin Recycling of Glucocorticoid Receptors: 

Implications for Multiple Roles of Heat Shock Protein 90’, Molecular Endocrinology. Narnia, 13(3), pp. 

355–365. doi: 10.1210/mend.13.3.0258. 

Loudon, A. S. et al. (1994) ‘Ultradian endocrine rhythms are altered by a circadian mutation in 

the Syrian hamster.’, Endocrinology. Narnia, 135(2), pp. 712–718. doi: 10.1210/endo.135.2.8033819. 

Love, M. I., Huber, W. and Anders, S. (2014) ‘Moderated estimation of fold change and 

dispersion for RNA-seq data with DESeq2’, Genome Biology, 15. doi: 10.1186/s13059-014-0550-8. 

Low, S. C. et al. (1994) ‘“Liver-type” 11 beta-hydroxysteroid dehydrogenase cDNA encodes 

reductase but not dehydrogenase activity in intact mammalian COS-7 cells.’, Journal of molecular 

endocrinology, 13(2), pp. 167–74. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7848528 

(Accessed: 20 April 2019). 

Lu, N. Z. et al. (2007) ‘Selective Regulation of Bone Cell Apoptosis by Translational Isoforms of 

the Glucocorticoid Receptor’, Molecular and Cellular Biology, 27(20), pp. 7143–7160. doi: 

10.1128/MCB.00253-07. 



 

189 
 

Lu, N. Z. and Cidlowski, J. A. (2005) ‘Translational Regulatory Mechanisms Generate N-

Terminal Glucocorticoid Receptor Isoforms with Unique Transcriptional Target Genes’, Molecular Cell. 

Cell Press, 18(3), pp. 331–342. doi: 10.1016/J.MOLCEL.2005.03.025. 

Lu, Y. et al. (2012) ‘Glucocorticoids promote hepatic cholestasis in mice by inhibiting the 

transcriptional activity of the farnesoid X receptor’, Gastroenterology, 143(6), pp. 1630–1640. doi: 

10.1053/j.gastro.2012.08.029. 

Lu, Z., Gu, Y. and Rooney, S. A. (2001) ‘Transcriptional regulation of the lung fatty acid synthase 

gene by glucocorticoid, thyroid hormone and transforming growth factor-beta 1.’, Biochimica et 

biophysica acta, 1532(3), pp. 213–22. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11470242 

(Accessed: 11 April 2019). 

Luedde, T., Kaplowitz, N. and Schwabe, R. F. (2014) ‘Cell Death and Cell Death Responses in 

Liver Disease: Mechanisms and Clinical Relevance’, Gastroenterology. NIH Public Access, 147(4), p. 

765. doi: 10.1053/J.GASTRO.2014.07.018. 

Luisi, B. F. et al. (1991) ‘Crystallographic analysis of the interaction of the glucocorticoid 

receptor with DNA’, Nature. Nature Publishing Group, 352(6335), pp. 497–505. doi: 

10.1038/352497a0. 

Luse, D. S. (2014) ‘The RNA polymerase II preinitiation complex. Through what pathway is the 

complex assembled?’, Transcription. Taylor & Francis, 5(1), p. e27050. doi: 10.4161/trns.27050. 

Lyssenko, V. et al. (2009) ‘Common variant in MTNR1B associated with increased risk of type 

2 diabetes and impaired early insulin secretion’, Nature Genetics. Nature Publishing Group, 41(1), pp. 

82–88. doi: 10.1038/ng.288. 

MacDougald, O. A. et al. (1994) ‘Glucocorticoids Reciprocally Regulate Expression of the 

CCAATEnhancer-binding Protein a and 6 Genes in 3T3-Ll Adipocytes and White Adipose Tissue’, 

JOURNAL OF BIOLOGICAL CHEMISTRY, 269(29), pp. 19041–19047. Available at: 

http://www.jbc.org/content/269/29/19041.full.pdf (Accessed: 11 April 2019). 

Macfarlane, D. P., Forbes, S. and Walker, B. R. (2008) ‘Glucocorticoids and fatty acid 

metabolism in humans: fuelling fat redistribution in the metabolic syndrome’, Journal of 

Endocrinology, 197(2), pp. 189–204. Available at: 

https://joe.bioscientifica.com/view/journals/joe/197/2/189.xml (Accessed: 31 March 2019). 

Madrigal, P. and Krajewski, P. (2012) ‘Current bioinformatic approaches to identify DNase I 

hypersensitive sites and genomic footprints from DNase-seq data’, Frontiers in Genetics. doi: 

10.3389/fgene.2012.00230. 

Mahajan, R. et al. (1997) ‘A Small Ubiquitin-Related Polypeptide Involved in Targeting 

RanGAP1 to Nuclear Pore Complex Protein RanBP2’, Cell. Cell Press, 88(1), pp. 97–107. doi: 



 

190 
 

10.1016/S0092-8674(00)81862-0. 

Mahley, R. W. (1988) ‘Apolipoprotein E: cholesterol transport protein with expanding role in 

cell biology.’, Science (New York, N.Y.). American Association for the Advancement of Science, 

240(4852), pp. 622–30. doi: 10.1126/SCIENCE.3283935. 

Malmström, R. et al. (1997) ‘Metabolic basis of hypotriglyceridemic effects of insulin in normal 

men.’, Arteriosclerosis, thrombosis, and vascular biology, 17(7), pp. 1454–64. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/9261280 (Accessed: 20 May 2019). 

Manelli, F. and Giustina, A. (2000) ‘Glucocorticoid-induced Osteoporosis’, Trends in 

Endocrinology & Metabolism, 11(3), pp. 79–85. doi: 10.1016/S1043-2760(00)00234-4. 

Mangiapane, E. H. and Brindley, D. N. (1986) ‘Effects of dexamethasone and insulin on the 

synthesis of triacylglycerols and phosphatidylcholine and the secretion of very-low-density 

lipoproteins and lysophosphatidylcholine by monolayer cultures of rat hepatocytes.’, The Biochemical 

journal. Portland Press Ltd, 233(1), pp. 151–60. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/3513755 (Accessed: 10 April 2019). 

Marcus, F. et al. (1987) ‘Function, structure and evolution of fructose-1,6-bisphosphatase.’, 

Archivos de biologia y medicina experimentales, 20(3–4), pp. 371–8. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/8816077 (Accessed: 6 April 2019). 

Martí, O., Martí, J. and Armario, A. (1994) ‘Effects of chronic stress on food intake in rats: 

influence of stressor intensity and duration of daily exposure.’, Physiology & behavior, 55(4), pp. 747–

53. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8190805 (Accessed: 15 May 2019). 

Martin, A. D., Allan, E. H. and Titheradge, M. A. (1984) ‘The stimulation of mitochondrial 

pyruvate carboxylation after dexamethasone treatment of rats.’, The Biochemical journal. Portland 

Press Limited, 219(1), pp. 107–15. doi: 10.1042/BJ2190107. 

Mason, H. L., Hoehn, W. M. and Kendall, E. C. (1938) ‘Chemical studies of the auprarenal cortex 

IV. structures of compounds C, D, E, F, and G’, Jounral of biological chemistry, 120, pp. 719–741. 

Available at: http://www.jbc.org/ (Accessed: 20 April 2019). 

Massillon, D. et al. (1996) ‘Glucose regulates in vivo glucose-6-phosphatase gene expression 

in the liver of diabetic rats.’, The Journal of biological chemistry. American Society for Biochemistry 

and Molecular Biology, 271(17), pp. 9871–4. doi: 10.1074/jbc.271.17.9871. 

Massillon, D. (2001) ‘Regulation of the glucose-6-phosphatase gene by glucose occurs by 

transcriptional and post-transcriptional mechanisms. Differential effect of glucose and xylitol.’, The 

Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 276(6), pp. 

4055–62. doi: 10.1074/jbc.M007939200. 

Mato, J. M., Martínez-Chantar, M. L. and Lu, S. C. (2008) ‘Methionine Metabolism and Liver 



 

191 
 

Disease’, Annual Review of Nutrition.  Annual Reviews , 28(1), pp. 273–293. doi: 

10.1146/annurev.nutr.28.061807.155438. 

McDowell, I. C. et al. (2018) ‘Glucocorticoid receptor recruits to enhancers and drives 

activation by motif-directed binding.’, Genome research. Cold Spring Harbor Laboratory Press, 28(9), 

pp. 1272–1284. doi: 10.1101/gr.233346.117. 

McEwen, B. S. (2007) ‘Physiology and neurobiology of stress and adaptation: Central role of 

the brain.’, Physiological Reviews, 87, pp. 873–904. doi: 10.1152/physrev.00041.2006. 

McFarlan, S. C. et al. (1997) ‘Characterization of an intronic hormone response element of the 

rat liver/skeletal muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase gene’, Molecular and 

Cellular Endocrinology. Elsevier, 129(2), pp. 219–227. doi: 10.1016/S0303-7207(97)00069-5. 

Medina-Santillán, R. et al. (2013) ‘Hepatic manifestations of metabolic syndrome’, 

Diabetes/Metabolism Research and Reviews, p. n/a:n/a. doi: 10.1002/dmrr.2410. 

Meijer, O. C. et al. (1998) ‘Penetration of Dexamethasone into Brain Glucocorticoid Targets Is 

Enhanced in mdr1A P-Glycoprotein Knockout Mice 1’, Endocrinology. Narnia, 139(4), pp. 1789–1793. 

doi: 10.1210/endo.139.4.5917. 

Meijer, O. C. et al. (2000) ‘Transcriptional repression of the 5-HT1A receptor promoter by 

corticosterone via mineralocorticoid receptors depends on the cellular context’, Journal of 

Neuroendocrinology, 12(3), pp. 245–254. doi: 10.1046/j.1365-2826.2000.00445.x. 

Meijer, O. C., Buurstede, J. C. and Schaaf, M. J. M. (2019) ‘Corticosteroid Receptors in the 

Brain: Transcriptional Mechanisms for Specificity and Context-Dependent Effects.’, Cellular and 

molecular neurobiology. Springer, 39(4), pp. 539–549. doi: 10.1007/s10571-018-0625-2. 

Meijsing, S. et al. (2009) ‘DNA binding site sequence directs glucocorticoid receptor structure 

and activity’, Science, 324(5925), pp. 407–410. doi: 10.1126/science.1164265.DNA. 

Meijsing, S. H. et al. (2007) ‘The ligand binding domain controls glucocorticoid receptor 

dynamics independent of ligand release.’, Molecular and cellular biology. American Society for 

Microbiology (ASM), 27(7), pp. 2442–51. doi: 10.1128/MCB.01570-06. 

Meisner, H., Loose, D. S. and Hanson, R. W. (1985) ‘Effect of Hormones on Transcription of the 

Gene for Cytosolic Phosphoenolpyruvate Carboxykinase (GTP) in Rat Kidneyf’, Biochemistry, 24, pp. 

421–425. Available at: https://pubs.acs.org/sharingguidelines (Accessed: 6 April 2019). 

Méndez-Lucas, A. et al. (2013) ‘PEPCK-M expression in mouse liver potentiates, not replaces, 

PEPCK-C mediated gluconeogenesis.’, Journal of hepatology. NIH Public Access, 59(1), pp. 105–13. doi: 

10.1016/j.jhep.2013.02.020. 

Menefee, A. L. and Zeczycki, T. N. (2014) ‘Nearly 50 years in the making: defining the catalytic 

mechanism of the multifunctional enzyme, pyruvate carboxylase’, FEBS Journal. John Wiley & Sons, 



 

192 
 

Ltd (10.1111), 281(5), pp. 1333–1354. doi: 10.1111/febs.12713. 

Mersmann, H. J. and Segal, H. L. (1969) ‘Glucocorticoid Control of the Liver Glycogen 

Synthetase-activating System’, The journal of biological chemistry, 244(7), pp. 1701–1704. Available 

at: http://www.jbc.org/ (Accessed: 1 May 2019). 

Michaud, K., Forget, H. and Cohen, H. (2009) ‘Chronic glucocorticoid hypersecretion in 

Cushing’s syndrome exacerbates cognitive aging’, Brain and Cognition. Elsevier Inc., 71(1), pp. 1–8. 

doi: 10.1016/j.bandc.2009.02.013. 

Mifsud, K. R. and Reul, J. M. H. M. (2016) ‘Acute stress enhances heterodimerization and 

binding of corticosteroid receptors at glucocorticoid target genes in the hippocampus.’, Proceedings 

of the National Academy of Sciences of the United States of America. National Academy of Sciences, 

p. 201605246. doi: 10.1073/pnas.1605246113. 

Mikkelsen, T. S. et al. (2007) ‘Genome-wide maps of chromatin state in pluripotent and 

lineage-committed cells.’, Nature, 448(7153), pp. 553–560. doi: 10.1038/nature06008. 

Miller, A. L. et al. (2005) ‘p38 Mitogen-Activated Protein Kinase (MAPK) Is a Key Mediator in 

Glucocorticoid-Induced Apoptosis of Lymphoid Cells: Correlation between p38 MAPK Activation and 

Site-Specific Phosphorylation of the Human Glucocorticoid Receptor at Serine 211’, Molecular 

Endocrinology, 19(6), pp. 1569–1583. doi: 10.1210/me.2004-0528. 

Le Minh, N. et al. (2001) ‘Glucocorticoid hormones inhibit food-induced phase-shifting of 

peripheral circadian oscillators.’, The EMBO journal. European Molecular Biology Organization, 20(24), 

pp. 7128–36. doi: 10.1093/emboj/20.24.7128. 

Moalli, P. A. et al. (1993) ‘Alternatively spliced glucocorticoid receptor messenger RNAs in 

glucocorticoid-resistant human multiple myeloma cells.’, Cancer research. American Association for 

Cancer Research, 53(17), pp. 3877–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8358712 

(Accessed: 23 March 2019). 

Monczor, F. et al. (2019) ‘A Model of Glucocorticoid Receptor Interaction With Coregulators 

Predicts Transcriptional Regulation of Target Genes.’, Frontiers in pharmacology. Frontiers Media SA, 

10, p. 214. doi: 10.3389/fphar.2019.00214. 

Mooradian, A. D., Haas, M. J. and Wong, N. C. W. (2004) ‘Transcriptional Control of 

Apolipoprotein A-I Gene Expression in Diabetes’, Diabetes. American Diabetes Association, 53(3), pp. 

513–520. doi: 10.2337/DIABETES.53.3.513. 

Moore, R. L., Dai, Y. and Faller, D. V (2012) ‘Sirtuin 1 (SIRT1) and steroid hormone receptor 

activity in cancer.’, The Journal of endocrinology. NIH Public Access, 213(1), pp. 37–48. doi: 

10.1530/JOE-11-0217. 

Moore, R. Y. and Eichler, V. B. (1972) ‘Loss of a circadian adrenal corticosterone rhythm 



 

193 
 

following suprachiasmatic lesions in the rat’, Brain Research. Elsevier, 42(1), pp. 201–206. doi: 

10.1016/0006-8993(72)90054-6. 

Morsink, M. C. et al. (2006) ‘The dynamic pattern of glucocorticoid receptor-mediated 

transcriptional responses in neuronal PC12 cells’, Journal of Neurochemistry. John Wiley & Sons, Ltd 

(10.1111), 99(4), pp. 1282–1298. doi: 10.1111/j.1471-4159.2006.04187.x. 

Mueller, K. M. et al. (2012) ‘Hepatic growth hormone and glucocorticoid receptor signaling in 

body growth, steatosis and metabolic liver cancer development.’, Molecular and cellular 

endocrinology. Elsevier, 361(1–2), pp. 1–11. doi: 10.1016/j.mce.2012.03.026. 

Mukherji, A. et al. (2015) ‘Shifting eating to the circadian rest phase misaligns the peripheral 

clocks with the master SCN clock and leads to a metabolic syndrome’, Proceedings of the National 

Academy of Sciences, 112(48), pp. E6691–E6698. doi: 10.1073/pnas.1519807112. 

Muse, G. W. et al. (2007) ‘RNA polymerase is poised for activation across the genome.’, Nature 

genetics. NIH Public Access, 39(12), pp. 1507–11. doi: 10.1038/ng.2007.21. 

Nader, N., Chrousos, G. P. and Kino, T. (2009) ‘Circadian rhythm transcription factor CLOCK 

regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region 

lysine cluster: potential physiological implications’, The FASEB Journal. Federation of American 

Societies for Experimental Biology, 23(5), pp. 1572–1583. doi: 10.1096/fj.08-117697. 

Nakajima, T. et al. (1997) ‘RNA helicase A mediates association of CBP with RNA polymerase 

II.’, Cell, 90(6), pp. 1107–12. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9323138 (Accessed: 

12 April 2019). 

Narisawa, K. et al. (1978) ‘A new variant of glycogen storage disease Type I probably due to a 

defect in the glucose-6-phosphate transport system’, Biochemical and Biophysical Research 

Communications. Academic Press, 83(4), pp. 1360–1364. doi: 10.1016/0006-291X(78)91371-2. 

Neufeld-Cohen, A. et al. (2016) ‘Circadian control of oscillations in mitochondrial rate-limiting 

enzymes and nutrient utilization by PERIOD proteins.’, Proceedings of the National Academy of 

Sciences of the United States of America. National Academy of Sciences, 113(12), pp. E1673-82. doi: 

10.1073/pnas.1519650113. 

Nevzorova, Y. A. et al. (2013) ‘Overexpression of c-myc in hepatocytes promotes activation of 

hepatic stellate cells and facilitates the onset of liver fibrosis’, Biochimica et Biophysica Acta (BBA) - 

Molecular Basis of Disease. Elsevier, 1832(10), pp. 1765–1775. doi: 10.1016/J.BBADIS.2013.06.001. 

Newell-Price, J. et al. (2006) ‘Cushing’s syndrome’, Lancet, pp. 1605–1617. doi: 

10.1016/S0140-6736(06)68699-6. 

Newton, R. and Holden, N. S. (2007) ‘Separating transrepression and transactivation: a 

distressing divorce for the glucocorticoid receptor?’, Molecular pharmacology. American Society for 



 

194 
 

Pharmacology and Experimental Therapeutics, 72(4), pp. 799–809. doi: 10.1124/mol.107.038794. 

Nicolaides, N. C. et al. (2018) Glucocorticoid Therapy and Adrenal Suppression, Endotext. 

MDText.com, Inc. Available at: http://www.ncbi.nlm.nih.gov/pubmed/25905379 (Accessed: 31 March 

2019). 

Nieman, L. K. and Ilias, I. (2005) ‘Evaluation and treatment of Cushing’s syndrome’, The 

American Journal of Medicine, 118(12), pp. 1340–1346. doi: 10.1016/j.amjmed.2005.01.059. 

Nishida, S. et al. (1977) ‘The Variations of Plasma Corticosterone/Cortisol Ratios Following 

ACTH Stimulation or Dexamethasone Administration in Normal Men’, The Journal of Clinical 

Endocrinology & Metabolism. Narnia, 45(3), pp. 585–588. doi: 10.1210/jcem-45-3-585. 

Nocito, A. et al. (2007) ‘Serotonin Mediates Oxidative Stress and Mitochondrial Toxicity in a 

Murine Model of Nonalcoholic Steatohepatitis’, Gastroenterology, 133(2), pp. 608–618. doi: 

10.1053/j.gastro.2007.05.019. 

Nora, E. P. et al. (2012) ‘Spatial partitioning of the regulatory landscape of the X-inactivation 

centre’, Nature. Nature Publishing Group, 485(7398), pp. 381–385. doi: 10.1038/nature11049. 

O’Brien, R. M. et al. (1990) ‘Identification of a sequence in the PEPCK gene that mediates a 

negative effect of insulin on transcription.’, Science (New York, N.Y.), 249(4968), pp. 533–7. Available 

at: http://www.ncbi.nlm.nih.gov/pubmed/2166335 (Accessed: 7 April 2019). 

O’Brien, R. M. et al. (1995) ‘Hepatic nuclear factor 3- and hormone-regulated expression of 

the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes.’, 

Molecular and cellular biology, 15(3), pp. 1747–58. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/7532283 (Accessed: 7 April 2019). 

Oakley, R. H. et al. (1999) ‘The dominant negative activity of the human glucocorticoid 

receptor beta isoform. Specificity and mechanisms of action.’, The Journal of biological chemistry, 

274(39), pp. 27857–66. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10488132 (Accessed: 23 

March 2019). 

Oakley, R. H. and Cidlowski, J. A. (2013) ‘The biology of the glucocorticoid receptor: New 

signaling mechanisms in health and disease’, Journal of Allergy and Clinical Immunology. Mosby, 

132(5), pp. 1033–1044. doi: 10.1016/J.JACI.2013.09.007. 

Oakley, R. H., Sar, M. and Cidlowski, J. A. (1996) ‘The human glucocorticoid receptor beta 

isoform. Expression, biochemical properties, and putative function.’, The Journal of biological 

chemistry. American Society for Biochemistry and Molecular Biology, 271(16), pp. 9550–9. doi: 

10.1074/JBC.271.16.9550. 

Ogawa, H. et al. (2002) ‘Evidence for a dimeric structure of rat liver serine dehydratase’, 

International Journal of Biochemistry and Cell Biology, 34(5), pp. 533–543. doi: 10.1016/S1357-



 

195 
 

2725(01)00146-7. 

Ogawa, H. and Ansai, Y. (1995) ‘Diurnal Rhythms of Rat Liver Serine Dehydratase, D-Site 

Binding Protein, and 3-Hydroxy-3-methylglutaryl Coenzyme A Reductase mRNA Levels Are Altered by 

Destruction of the Suprachiasmatic Nucleus of the Hypothalamus’, Archives of Biochemistry and 

Biophysics. Academic Press, 321(1), pp. 115–122. doi: 10.1006/ABBI.1995.1375. 

Ohgaki, H. et al. (1996) ‘Molecular analyses of liver tumors in c-myc transgenic mice and c-

myc and TGF-alpha double transgenic mice.’, Cancer letters, 106(1), pp. 43–9. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/8827045 (Accessed: 29 May 2019). 

Okabe, T. et al. (2016) ‘REV-ERBα influences the stability and nuclear localization of the 

glucocorticoid receptor’, Journal of Cell Science, (129), pp. 4143–4154. doi: 10.1242/jcs.190959. 

Olefsky, J. M. et al. (1975) ‘The effects of acute and chronic dexamethasone administration on 

insulin binding to isolated rat hepatocytes and adipocytes’, Metabolism. W.B. Saunders, 24(4), pp. 

517–527. doi: 10.1016/0026-0495(75)90076-1. 

Olswang, Y. et al. (2003) ‘Glucocorticoids repress transcription of phosphoenolpyruvate 

carboxykinase (GTP) gene in adipocytes by inhibiting its C/EBP-mediated activation.’, The Journal of 

biological chemistry. American Society for Biochemistry and Molecular Biology, 278(15), pp. 12929–

36. doi: 10.1074/jbc.M300263200. 

Onate, S. A. et al. (1998) ‘The steroid receptor coactivator-1 contains multiple receptor 

interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 

domains of steroid receptors.’, The Journal of biological chemistry, 273(20), pp. 12101–8. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/9575154 (Accessed: 12 April 2019). 

Onuma, H. et al. (2006) ‘Correlation between FOXO1a (FKHR) and FOXO3a (FKHRL1) Binding 

and the Inhibition of Basal Glucose-6-Phosphatase Catalytic Subunit Gene Transcription by Insulin’, 

Molecular Endocrinology. Narnia, 20(11), pp. 2831–2847. doi: 10.1210/me.2006-0085. 

Osborne, C. S. et al. (2004) ‘Active genes dynamically colocalize to shared sites of ongoing 

transcription’, Nature Genetics. Nature Publishing Group, 36(10), pp. 1065–1071. doi: 

10.1038/ng1423. 

Oster, H. et al. (2016) ‘The functional and clinical significance of the 24-h rhythm of circulating 

glucocorticoids’, Endocrine Reviews. Oxford University Press, 38(1), p. er.2015-1080. doi: 

10.1210/er.2015-1080. 

Ota, T., Gayet, C. and Ginsberg, H. N. (2008) ‘Inhibition of apolipoprotein B100 secretion by 

lipid-induced hepatic endoplasmic reticulum stress in rodents.’, The Journal of clinical investigation. 

American Society for Clinical Investigation, 118(1), pp. 316–32. doi: 10.1172/JCI32752. 

Ozcan, U. et al. (2004) ‘Endoplasmic reticulum stress links obesity, insulin action, and type 2 



 

196 
 

diabetes.’, Science (New York, N.Y.). American Association for the Advancement of Science, 306(5695), 

pp. 457–61. doi: 10.1126/science.1103160. 

Paakinaho, V. et al. (2014) ‘SUMOylation regulates the chromatin occupancy and anti-

proliferative gene programs of glucocorticoid receptor’, Nucleic Acids Research. Narnia, 42(3), pp. 

1575–1592. doi: 10.1093/nar/gkt1033. 

Panda, S. et al. (2002) ‘Coordinated Transcription of Key Pathways in the Mouse by the 

Circadian Clock’, Cell. Cell Press, 109(3), pp. 307–320. doi: 10.1016/S0092-8674(02)00722-5. 

Pariante, C. M. (2006) ‘The glucocorticoid receptor: part of the solution or part of the 

problem?’, Journal of Psychopharmacology. SAGE PublicationsLondon, Thousand Oaks, CA and New 

Delhi, 20(4_suppl), pp. 79–84. doi: 10.1177/1359786806066063. 

Pariante, C. M. and Lightman, S. L. (2008) ‘The HPA axis in major depression: classical theories 

and new developments’, Trends in Neurosciences, 31(9), pp. 464–468. doi: 

10.1016/j.tins.2008.06.006. 

Park, P. J. (2009) ‘ChIP-seq: advantages and challenges of a maturing technology.’, Nature 

reviews. Genetics. Nature Publishing Group, 10(10), pp. 669–80. doi: 10.1038/nrg2641. 

Pasieka, A. et al. (2016) ‘Impact of Glucocorticoid Excess on Glucose Tolerance: Clinical and 

Preclinical Evidence’, Metabolites. Multidisciplinary Digital Publishing Institute, 6(3), p. 24. doi: 

10.3390/metabo6030024. 

Pei, L. (1996) Identification of a Negative Glucocorticoid Response Element in the Rat Type 1 

Vasoactive Intestinal Polypeptide Receptor Gene* Downloaded from, THE JOURNAL OF BIOLOGICAL 

CHEMISTRY. Available at: http://www.jbc.org/ (Accessed: 29 March 2019). 

Pepke, S., Wold, B. and Mortazavi, A. (2009) ‘Computation for ChIP-seq and RNA-seq studies’, 

Nature Methods, 6(11s), pp. S22–S32. doi: 10.1038/nmeth.1371. 

Petersons, C. J. et al. (2013) ‘Effects of Low-Dose Prednisolone on Hepatic and Peripheral 

Insulin Sensitivity, Insulin Secretion, and Abdominal Adiposity in Patients With Inflammatory 

Rheumatologic Disease’, Diabetes Care. American Diabetes Association, 36(9), p. 2822. doi: 

10.2337/DC12-2617. 

Pfaff, S. J. and Fletterick, R. J. (2010) ‘Hormone binding and co-regulator binding to the 

glucocorticoid receptor are allosterically coupled.’, The Journal of biological chemistry. American 

Society for Biochemistry and Molecular Biology, 285(20), pp. 15256–67. doi: 

10.1074/jbc.M110.108118. 

Phan, J. and Reue, K. (2005) ‘Lipin, a lipodystrophy and obesity gene’, Cell Metabolism, 1(1), 

pp. 73–83. doi: 10.1016/j.cmet.2004.12.002. 

Picard, D. et al. (1990) ‘Reduced levels of hsp90 compromise steroid receptor action in vivo’, 



 

197 
 

Nature. Nature Publishing Group, 348(6297), pp. 166–168. doi: 10.1038/348166a0. 

Picard, D. and Yamamoto, K. R. (1987) ‘Two signals mediate hormone-dependent nuclear 

localization of the glucocorticoid receptor.’, The EMBO journal, 6(11), pp. 3333–40. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/3123217 (Accessed: 25 March 2019). 

Pierreux, C. E. et al. (1998) ‘Inhibition by Insulin of Glucocorticoid-Induced Gene Transcription: 

Involvement of the Ligand-Binding Domain of the Glucocorticoid Receptor and Independence from 

the Phosphatidylinositol 3-Kinase and Mitogen-Activated Protein Kinase Pathways’, Molecular 

Endocrinology. Narnia, 12(9), pp. 1343–1354. doi: 10.1210/mend.12.9.0172. 

Plat, L. et al. (1999) ‘Metabolic Effects of Short-Term Elevations of Plasma Cortisol Are More 

Pronounced in the Evening Than in the Morning 1’, The Journal of Clinical Endocrinology & Metabolism. 

Oxford University Press, 84(9), pp. 3082–3092. doi: 10.1210/jcem.84.9.5978. 

Poggiogalle, E., Jamshed, H. and Peterson, C. M. (2018) ‘Circadian regulation of glucose, lipid, 

and energy metabolism in humans’, Metabolism. W.B. Saunders, 84, pp. 11–27. doi: 

10.1016/J.METABOL.2017.11.017. 

Polman, J. A. E., de Kloet, E. R. and Datson, N. A. (2013) ‘Two Populations of Glucocorticoid 

Receptor-Binding Sites in the Male Rat Hippocampal Genome’, Endocrinology, 154(5), pp. 1832–1844. 

doi: 10.1210/en.2012-2187. 

Ponjavic, J. et al. (2006) ‘Transcriptional and structural impact of TATA-initiation site spacing 

in mammalian core promoters’, Genome Biology. BioMed Central, 7(8), p. R78. doi: 10.1186/gb-2006-

7-8-r78. 

Pooley, J. R. et al. (2017) ‘Genome-wide identification of basic helix-loop helix and NF-1 motifs 

underlying GR binding sites in male rat hippocampus’, Endocrinology, 158(5), pp. 1486–1501. 

Powell, L. M. et al. (1987) ‘A novel form of tissue-specific RNA processing produces 

apolipoprotein-B48 in intestine.’, Cell, 50(6), pp. 831–40. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/3621347 (Accessed: 13 May 2019). 

Pratt, W. B. et al. (2004) ‘Role of hsp90 and the hsp90-binding immunophilins in signalling 

protein movement’, Cellular Signalling, 16(8), pp. 857–872. doi: 10.1016/j.cellsig.2004.02.004. 

Presman, D. M. et al. (2014) ‘Live Cell Imaging Unveils Multiple Domain Requirements for In 

Vivo Dimerization of the Glucocorticoid Receptor’, PLoS Biology, 12(3), p. e1001813. doi: 

10.1371/journal.pbio.1001813. 

Presman, D. M. et al. (2016) ‘DNA binding triggers tetramerization of the glucocorticoid 

receptor in live cells’, Proceedings of the National Academy of Sciences. National Academy of Sciences, 

113(29), pp. 8236–8241. doi: 10.1073/PNAS.1606774113. 

Qian, X. et al. (2012) ‘Circadian and ultradian rhythms of free glucocorticoid hormone are 



 

198 
 

highly synchronized between the blood, the subcutaneous tissue, and the brain.’, Endocrinology, 

153(9), pp. 4346–53. doi: 10.1210/en.2012-1484. 

Quinodoz, M. et al. (2014) ‘Characteristic bimodal profiles of RNA polymerase II at thousands 

of active mammalian promoters.’, Genome biology. BioMed Central, 15(6), p. R85. doi: 10.1186/gb-

2014-15-6-r85. 

van Raalte, D. H. et al. (2011) ‘Low-dose glucocorticoid treatment affects multiple aspects of 

intermediary metabolism in healthy humans: a randomised controlled trial’, Diabetologia, 54(8), pp. 

2103–2112. doi: 10.1007/s00125-011-2174-9. 

Rahl, P. B. et al. (2010) ‘c-Myc regulates transcriptional pause release.’, Cell. NIH Public Access, 

141(3), pp. 432–45. doi: 10.1016/j.cell.2010.03.030. 

Rankin, J. et al. (2012) ‘Characterizing dynamic interactions between ultradian glucocorticoid 

rhythmicity and acute stress using the phase response curve’, PLoS ONE, 7(2), p. e30978. doi: 

10.1371/journal.pone.0030978. 

Rao, N. A. S. et al. (2011) ‘Coactivation of GR and NFKB alters the repertoire of their binding 

sites and target genes.’, Genome research. Cold Spring Harbor Laboratory Press, 21(9), pp. 1404–16. 

doi: 10.1101/gr.118042.110. 

Rashid, N. U. et al. (2011) ‘ZINBA integrates local covariates with DNA-seq data to identify 

broad and narrow regions of enrichment, even within amplified genomic regions’, Genome Biology, p. 

R67. doi: 10.1186/gb-2011-12-7-r67. 

Raspé, E. et al. (2001) ‘Transcriptional regulation of apolipoprotein C-III gene expression by 

the orphan nuclear receptor RORalpha.’, The Journal of biological chemistry. American Society for 

Biochemistry and Molecular Biology, 276(4), pp. 2865–71. doi: 10.1074/jbc.M004982200. 

Raspé, E. et al. (2002) ‘Identification of Rev-erbalpha as a physiological repressor of apoC-III 

gene transcription.’, Journal of lipid research, 43(12), pp. 2172–9. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/12454280 (Accessed: 15 April 2019). 

Ratman, D. et al. (2013) How glucocorticoid receptors modulate the activity of other 

transcription factors: A scope beyond tethering, Molecular and Cellular Endocrinology. Elsevier. doi: 

10.1016/j.mce.2012.12.014. 

Raubenheimer, P. J. et al. (2006) ‘The role of corticosterone in human hypothalamic? 

pituitary?adrenal axis feedback’, Clinical Endocrinology. John Wiley & Sons, Ltd (10.1111), 65(1), pp. 

22–26. doi: 10.1111/j.1365-2265.2006.02540.x. 

Ray, A. and Prefontaine, K. E. (1994) ‘Physical association and functional antagonism between 

the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor.’, Proceedings of 

the National Academy of Sciences of the United States of America. National Academy of Sciences, 



 

199 
 

91(2), pp. 752–6. doi: 10.1073/PNAS.91.2.752. 

Reddy, T. E. et al. (2012) ‘The hypersensitive glucocorticoid response specifically regulates 

period 1 and expression of circadian genes.’, Molecular and cellular biology, 32(18), pp. 3756–67. doi: 

10.1128/MCB.00062-12. 

Reddy, T. E., Pauli, F. and Sprouse, R. O. (2009) ‘Genomic determination of the glucocorticoid 

response reveals unexpected mechanisms of gene regulation Genomic determination of the 

glucocorticoid response reveals unexpected mechanisms of gene regulation’, Genome Research, 19, 

pp. 2163–2171. doi: 10.1101/gr.097022.109. 

Refinetti, R. and Menaker, M. (1992) The Circadian Rhythm of Body Temperature, Physiology 

& Behavior. 

Reinke, H. and Hörz, W. (2003) ‘Histones Are First Hyperacetylated and Then Lose Contact 

with the Activated PHO5 Promoter’, Molecular Cell. Cell Press, 11(6), pp. 1599–1607. doi: 

10.1016/S1097-2765(03)00186-2. 

Reiter, F., Wienerroither, S. and Stark, A. (2017) ‘Combinatorial function of transcription 

factors and cofactors’, Current Opinion in Genetics & Development. Elsevier Current Trends, 43, pp. 

73–81. doi: 10.1016/J.GDE.2016.12.007. 

Ren, B. et al. (2000) ‘Genome-wide location and function of DNA binding proteins.’, Science, 

290(5500), pp. 2306–2309. doi: 10.1126/science.290.5500.2306. 

Renaud, J.-P. et al. (1995) ‘Crystal structure of the RAR-γ ligand-binding domain bound to all-

trans retinoic acid’, Nature. Nature Publishing Group, 378(6558), pp. 681–689. doi: 

10.1038/378681a0. 

Reppert, S. M. and Weaver, D. R. (2002) ‘Coordination of circadian timing in mammals’, 

Nature. Nature Publishing Group, 418(6901), pp. 935–941. doi: 10.1038/nature00965. 

Reue, K. and Dwyer, J. R. (2009) ‘Lipin proteins and metabolic homeostasis.’, Journal of lipid 

research. American Society for Biochemistry and Molecular Biology, 50 Suppl(Supplement), pp. S109-

14. doi: 10.1194/jlr.R800052-JLR200. 

Reul, J. M. H. M. and Kloet, E. R. DE (1985) ‘Two Receptor Systems for Corticosterone in Rat 

Brain: Microdistribution and Differential Occupation’, Endocrinology, 117(6), pp. 2505–2511. doi: 

10.1210/endo-117-6-2505. 

Revollo, J. R. et al. (2013) ‘HES1 is a master regulator of glucocorticoid receptor-dependent 

gene expression.’, Science signaling. NIH Public Access, 6(304), p. ra103. doi: 

10.1126/scisignal.2004389. 

Rider, M. H. et al. (2004) ‘6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-

head with a bifunctional enzyme that controls glycolysis.’, The Biochemical journal. Portland Press Ltd, 



 

200 
 

381(Pt 3), pp. 561–79. doi: 10.1042/BJ20040752. 

Riu, E. et al. (2003) ‘Overexpression of c-myc in the liver prevents obesity and insulin 

resistance’, The FASEB Journal, 17(12), pp. 1715–1717. doi: 10.1096/fj.02-1163fje. 

Rivers, C. et al. (1999) ‘Insertion of an Amino Acid in the DNA-Binding Domain of the 

Glucocorticoid Receptor as a Result of Alternative Splicing’, The Journal of Clinical Endocrinology & 

Metabolism. Narnia, 84(11), pp. 4283–4286. doi: 10.1210/jcem.84.11.6235. 

Robertson, G. et al. (2007) ‘Genome-wide profiles of STAT1 DNA association using chromatin 

immunoprecipitation and massively parallel sequencing’, Nature Methods, 4(8), pp. 651–657. doi: 

10.1038/nmeth1068. 

Rochlani, Y. et al. (2017) ‘Metabolic syndrome: pathophysiology, management, and 

modulation by natural compounds’, Therapeutic Advances in Cardiovascular Disease. SAGE 

PublicationsSage UK: London, England, 11(8), pp. 215–225. doi: 10.1177/1753944717711379. 

Rod, N. H. et al. (2009) ‘Perceived stress as a risk factor for changes in health behaviour and 

cardiac risk profile: a longitudinal study’, Journal of Internal Medicine, 266(5), pp. 467–475. doi: 

10.1111/j.1365-2796.2009.02124.x. 

Roden, M. et al. (1993) ‘The circadian melatonin and cortisol secretion pattern in permanent 

night shift workers’, American Journal of Physiology-Regulatory, Integrative and Comparative 

Physiology, 265(1), pp. R261–R267. doi: 10.1152/ajpregu.1993.265.1.R261. 

Rombauts, S. et al. (1999) ‘PlantCARE, a plant cis-acting regulatory element database’, Nucleic 

Acids Research, pp. 295–296. doi: 10.1093/nar/27.1.295. 

Van Rooyen, D. M. et al. (2011) ‘Hepatic Free Cholesterol Accumulates in Obese, Diabetic Mice 

and Causes Nonalcoholic Steatohepatitis’, Gastroenterology, 141(4), pp. 1393-1403.e5. doi: 

10.1053/j.gastro.2011.06.040. 

Rosenson, R. S. et al. (2012) ‘Cholesterol efflux and atheroprotection: Advancing the concept 

of reverse cholesterol transport’, Circulation. NIH Public Access, 125(15), p. 1905. doi: 

10.1161/CIRCULATIONAHA.111.066589. 

Rougvie, A. E. and Lis, J. T. (1988) ‘The RNA polymerase II molecule at the 5′ end of the 

uninduced hsp70 gene of D. melanogaster is transcriptionally engaged’, Cell. Cell Press, 54(6), pp. 795–

804. doi: 10.1016/S0092-8674(88)91087-2. 

Rozowsky, J. et al. (2009) ‘PeakSeq enables systematic scoring of ChIP-seq experiments 

relative to controls.’, Nature biotechnology. Nature Publishing Group, 27(1), pp. 66–75. doi: 

10.1038/nbt.1518. 

Rui, L. (2014) ‘Energy metabolism in the liver.’, Comprehensive Physiology. NIH Public Access, 

4(1), pp. 177–97. doi: 10.1002/cphy.c130024. 



 

201 
 

Russell, G. M. et al. (2010) ‘Rapid glucocorticoid receptor-mediated inhibition of 

hypothalamic-pituitary-adrenal ultradian activity in healthy males.’, The Journal of neuroscience : the 

official journal of the Society for Neuroscience. Society for Neuroscience, 30(17), pp. 6106–15. doi: 

10.1523/JNEUROSCI.5332-09.2010. 

Rybkin, I. I. et al. (1997) ‘Effect of restraint stress on food intake and body weight is 

determined by time of day.’, The American journal of physiology, 273(5 Pt 2), pp. R1612-22. Available 

at: http://www.ncbi.nlm.nih.gov/pubmed/9374801 (Accessed: 15 May 2019). 

Rye, M. B., Sætrom, P. and Drabløs, F. (2011) ‘A manually curated ChIP-seq benchmark 

demonstrates room for improvement in current peak-finder programs’, Nucleic Acids Research, 39(4). 

doi: 10.1093/nar/gkq1187. 

Ryu, H. et al. (2016) ‘Office Workers’ Risk of Metabolic Syndrome-Related Indicators’, Western 

Journal of Nursing Research. SAGE PublicationsSage CA: Los Angeles, CA, 38(11), pp. 1433–1447. doi: 

10.1177/0193945916654134. 

Sagot, M. F. (2009) ‘Spelling approximate repeated or common motifs using a suffix tree’, 

Lecture notes in computer science, pp. 374–390. doi: 10.1.1.39.3583. 

Sakamoto, T. et al. (1999) ‘Mitosis and apoptosis in the liver of interleukin-6-deficient mice 

after partial hepatectomy’, Hepatology, 29(2), pp. 403–411. doi: 10.1002/hep.510290244. 

Saladin, Rc. et al. (1996) Transcriptional induction of rat liver apolipoprotein A-I gene 

expression by glucocorticoids requires the glucocorticoid receptor and a labile cell-specific protein, Eur. 

J. Biochem. Available at: https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1432-

1033.1996.0451u.x (Accessed: 8 April 2019). 

Sandelin, A. et al. (2007) ‘Mammalian RNA polymerase II core promoters: insights from 

genome-wide studies’, Nature Reviews Genetics. Nature Publishing Group, 8(6), pp. 424–436. doi: 

10.1038/nrg2026. 

Sandoval, I. V and Sols, A. (1974) Gluconeogenesis from Serine by the Serine-Dehydratase-

Dependent Pathway in Rat Liver, Eur. J. Biochem. Available at: 

https://febs.onlinelibrary.wiley.com/doi/pdf/10.1111/j.1432-1033.1974.tb03448.x (Accessed: 30 

April 2019). 

Sarabdjitsingh, R. A. et al. (2010) ‘Stress responsiveness varies over the ultradian 

glucocorticoid cycle in a brain-region-specific manner’, Endocrinology, 151(11), pp. 5369–5379. doi: 

10.1210/en.2010-0832. 

Sarabdjitsingh, R. A. et al. (2014) ‘Ultradian corticosterone pulses balance glutamatergic 

transmission and synaptic plasticity.’, Proceedings of the National Academy of Sciences of the United 

States of America. National Academy of Sciences, 111(39), pp. 14265–70. doi: 



 

202 
 

10.1073/pnas.1411216111. 

Sarabdjitsingh, R. A. et al. (2016) ‘Hippocampal Fast Glutamatergic Transmission Is Transiently 

Regulated by Corticosterone Pulsatility’, PLOS ONE. Edited by R. Trullas. Public Library of Science, 

11(1), p. e0145858. doi: 10.1371/journal.pone.0145858. 

Sarnyai, Z. et al. (1995) ‘Effects of cocaine and corticotropin-releasing factor on pulsatile ACTH 

and cortisol release in ovariectomized rhesus monkeys.’, The Journal of Clinical Endocrinology & 

Metabolism. Narnia, 80(9), pp. 2745–2751. doi: 10.1210/jcem.80.9.7673418. 

Sasse, S. K. et al. (2015) ‘Response Element Composition Governs Correlations between 

Binding Site Affinity and Transcription in Glucocorticoid Receptor Feed-forward Loops.’, The Journal 

of biological chemistry. American Society for Biochemistry and Molecular Biology, 290(32), pp. 19756–

69. doi: 10.1074/jbc.M115.668558. 

Savory, J. G. A. et al. (1999) ‘Discrimination between NL1- and NL2-Mediated Nuclear 

Localization of the Glucocorticoid Receptor’, Molecular and Cellular BiologyCellular Biology. American 

Society for Microbiology (ASM), 19(2), pp. 1025–1037. Available at: 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC116033/ (Accessed: 22 March 2019). 

Sawchenko, P. E. (1987) ‘Evidence for a local site of action for glucocorticoids in inhibiting CRF 

and vasopressin expression in the paraventricular nucleus’, Brain Research. Elsevier, 403(2), pp. 213–

224. doi: 10.1016/0006-8993(87)90058-8. 

Sawchenko, P. E., Swanson, L. W. and Vale, W. W. (1984) ‘Co-expression of corticotropin-

releasing factor and vasopressin immunoreactivity in parvocellular neurosecretory neurons of the 

adrenalectomized rat.’, Proceedings of the National Academy of Sciences of the United States of 

America, 81(6), pp. 1883–7. doi: 10.1073/pnas.81.6.1883. 

Van Schaftingen, E. and Gerin, I. (2002) The glucose-6-phosphatase system, Biochem. J. 

Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1222414/pdf/11879177.pdf (Accessed: 

7 April 2019). 

Scheer, F. A. J. L. et al. (2009) ‘Adverse metabolic and cardiovascular consequences of 

circadian misalignment’, Proceedings of the National Academy of Sciences. National Academy of 

Sciences, 106(11), pp. 4453–4458. doi: 10.1073/pnas.0808180106. 

Scheidereit, C. et al. (1983) ‘The glucocorticoid receptor binds to defined nucleotide 

sequences near the promoter of mouse mammary tumour virus.’, Nature, 304(5928), pp. 749–52. 

Scheschowitsch, K., Leite, J. A. and Assreuy, J. (2017) ‘New Insights in Glucocorticoid Receptor 

Signaling-More Than Just a Ligand-Binding Receptor.’, Frontiers in endocrinology. Frontiers Media SA, 

8, p. 16. doi: 10.3389/fendo.2017.00016. 

Schiller, B. J. et al. (2014) ‘Glucocorticoid receptor binds half sites as a monomer and regulates 



 

203 
 

specific target genes’, Genome Biology. BioMed Central, 15(8), p. 418. doi: 10.1186/s13059-014-0418-

y. 

Schmoll, D. et al. (1999) ‘Identification of a cAMP response element within the glucose- 6-

phosphatase hydrolytic subunit gene promoter which is involved in the transcriptional regulation by 

cAMP and glucocorticoids in H4IIE hepatoma cells.’, The Biochemical journal. Portland Press Ltd, 338 

( Pt 2)(Pt 2), pp. 457–63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10024523 (Accessed: 7 

April 2019). 

Schneider, H. J. et al. (2011) ‘Prediction of incident diabetes mellitus by baseline IGF1 levels’, 

European Journal of Endocrinology, 164(2), pp. 223–229. doi: 10.1530/EJE-10-0963. 

Schoenfelder, S. et al. (2010) ‘Preferential associations between co-regulated genes reveal a 

transcriptional interactome in erythroid cells’, Nature Genetics. Nature Publishing Group, 42(1), pp. 

53–61. doi: 10.1038/ng.496. 

Schule, R. et al. (1988) ‘Many transcription factors interact synergistically with steroid 

receptors’, Science. American Association for the Advancement of Science, 232(4750), pp. 613–618. 

doi: 10.1126/science.3457470. 

Schule, R. et al. (1990) ‘Functional antagonism between oncoprotein c-Jun and the 

glucocorticoid receptor’, Cell, 62(6), pp. 1217–1226. doi: 10.1016/0092-8674(90)90397-W. 

Scott, D. K. et al. (1998) ‘Further Characterization of the Glucocorticoid Response Unit in the 

Phosphoenolpyruvate Carboxykinase Gene. The Role of the Glucocorticoid Receptor-Binding Sites’, 

Molecular Endocrinology. Narnia, 12(4), pp. 482–491. doi: 10.1210/mend.12.4.0090. 

Scott, D. K., Mitchell, J. A. and Granner, D. K. (1996a) ‘Identification and charaterization of the 

second retinoic acid response element in the phosphoenolpyruvate carboxykinase gene promoter.’, 

The Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 271(11), 

pp. 6260–4. doi: 10.1074/JBC.271.11.6260. 

Scott, D. K., Mitchell, J. A. and Granner, D. K. (1996b) ‘The orphan receptor COUP-TF binds to 

a third glucocorticoid accessory factor element within the phosphoenolpyruvate carboxykinase gene 

promoter.’, The Journal of biological chemistry. American Society for Biochemistry and Molecular 

Biology, 271(50), pp. 31909–14. doi: 10.1074/JBC.271.50.31909. 

Scott, E., Carter, A. and Grant, P. (2008) ‘Association between polymorphisms in the Clock 

gene, obesity and the metabolic syndrome in man’, International Journal of Obesity, 32, pp. 658–662. 

doi: 10.1038/sj.ijo.0803778. 

Selye, H. (1950) ‘The phsiology and pathology of exposure to stress, a treatise based on the 

concepts of the general-adaption-syndrome and the diseases of adaption.’, ACTA, inc., Medical 

Publishers. 



 

204 
 

Sexton, T. et al. (2012) ‘Three-Dimensional Folding and Functional Organization Principles of 

the Drosophila Genome’, Cell. Cell Press, 148(3), pp. 458–472. doi: 10.1016/J.CELL.2012.01.010. 

Shearman, L. P. et al. (2000) ‘Interacting molecular loops in the mammalian circadian clock.’, 

Science (New York, N.Y.), 288(5468), pp. 1013–9. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/10807566 (Accessed: 20 May 2019). 

Shimizu, H. et al. (2010) ‘Glucocorticoids increase NPY gene expression in the arcuate nucleus 

by inhibiting mTOR signaling in rat hypothalamic organotypic cultures’, Peptides, 31(1), pp. 145–149. 

doi: 10.1016/j.peptides.2009.09.036. 

Shimomura, I. et al. (1998) ‘Nuclear sterol regulatory element-binding proteins activate genes 

responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver.’, 

The Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 273(52), 

pp. 35299–306. doi: 10.1074/JBC.273.52.35299. 

Shogren-Knaak, M. et al. (2006) ‘Histone H4-K16 acetylation controls chromatin structure and 

protein interactions.’, Science (New York, N.Y.). American Association for the Advancement of Science, 

311(5762), pp. 844–7. doi: 10.1126/science.1124000. 

Silver, R. et al. (1996) ‘A diffusible coupling signal from the transplanted suprachiasmatic 

nucleus controlling circadian locomotor rhythms’, Nature. Nature Publishing Group, 382(6594), pp. 

810–813. doi: 10.1038/382810a0. 

Simic, I. et al. (2013) ‘Phosphorylation of leukocyte glucocorticoid receptor in patients with 

current episode of major depressive disorder’, Progress in Neuro-Psychopharmacology and Biological 

Psychiatry. Elsevier, 40, pp. 281–285. doi: 10.1016/J.PNPBP.2012.10.021. 

Simmons, L. R. et al. (2012) ‘Steroid-Induced Diabetes: Is It Just Unmasking of Type 2 

Diabetes?’, ISRN Endocrinology, 2012, pp. 1–5. doi: 10.5402/2012/910905. 

van der Sluis, R. J. et al. (2012) ‘Adrenalectomy stimulates the formation of initial 

atherosclerotic lesions: Reversal by adrenal transplantation’, Atherosclerosis. Elsevier, 221(1), pp. 76–

83. doi: 10.1016/J.ATHEROSCLEROSIS.2011.12.022. 

Soncini, M. et al. (1995) ‘Hormonal and nutritional control of the fatty acid synthase promoter 

in transgenic mice.’, The Journal of biological chemistry. American Society for Biochemistry and 

Molecular Biology, 270(51), pp. 30339–43. doi: 10.1074/JBC.270.51.30339. 

Spencer, T. E. et al. (1997) ‘Steroid receptor coactivator-1 is a histone acetyltransferase’, 

Nature. Nature Publishing Group, 389(6647), pp. 194–198. doi: 10.1038/38304. 

Staels, B. (2006) ‘When the Clock stops ticking, metabolic syndrome explodes’, Nature 

medicine. Nature Publishing Group, 12(1), pp. 54–55; discussion 55. doi: 10.1038/nm0106-54. 

Stahn, C. et al. (2007) ‘Molecular mechanisms of glucocorticoid action and selective 



 

205 
 

glucocorticoid receptor agonists’, Molecular and Cellular Endocrinology, 275(1–2), pp. 71–78. doi: 

10.1016/j.mce.2007.05.019. 

Stark, R. et al. (2014) ‘A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-

M) in the regulation of hepatic gluconeogenesis.’, The Journal of biological chemistry. American 

Society for Biochemistry and Molecular Biology, 289(11), pp. 7257–63. doi: 10.1074/jbc.C113.544759. 

Stavreva, D. A. et al. (2009) ‘Ultradian hormone stimulation induces glucocorticoid receptor-

mediated pulses of gene transcription.’, Nature cell biology. Nature Publishing Group, 11(9), pp. 1093–

1102. doi: 10.1038/ncb1922. 

Stavreva, D. A. et al. (2015) ‘Dynamics of chromatin accessibility and long-range interactions 

in response to glucocorticoid pulsing.’, Genome research, 25(6), pp. 845–857. doi: 

10.1101/gr.184168.114. 

Stavreva, D. a et al. (2004) ‘Rapid glucocorticoid receptor exchange at a promoter is coupled 

to transcription and regulated by chaperones and proteasomes.’, Molecular and cellular biology, 

24(7), pp. 2682–2697. doi: 10.1128/MCB.24.7.2682-2697.2004. 

Stephan, F. K. and Zucker, I. (1972) ‘Circadian rhythms in drinking behavior and locomotor 

activity of rats are eliminated by hypothalamic lesions.’, Proceedings of the National Academy of 

Sciences of the United States of America. National Academy of Sciences, 69(6), pp. 1583–6. Available 

at: http://www.ncbi.nlm.nih.gov/pubmed/4556464 (Accessed: 6 November 2018). 

Stöcklin, E. et al. (1996) ‘Functional interactions between Stat5 and the glucocorticoid 

receptor’, Nature. Nature Publishing Group, 383(6602), pp. 726–728. doi: 10.1038/383726a0. 

Stoecklin, E. et al. (1997) ‘Specific DNA binding of Stat5, but not of glucocorticoid receptor, is 

required for their functional cooperation in the regulation of gene transcription.’, Molecular and 

Cellular Biology. American Society for Microbiology Journals, 17(11), pp. 6708–6716. doi: 

10.1128/MCB.17.11.6708. 

Stratakis, C. A. (2008) ‘Cushing syndrome caused by adrenocortical tumors and hyperplasias 

(corticotropin- independent Cushing syndrome).’, Endocrine development. NIH Public Access, 13, pp. 

117–32. doi: 10.1159/000134829. 

Stubbs, F. E., Flynn, B. P. and Conway-Campbell, B. L. (2018) ‘FISH-ing Novel Dynamic Modes 

of Glucocorticoid-Induced Chromatin Reorganization’, Trends in Endocrinology & Metabolism. 

Elsevier, 29(4), pp. 204–207. doi: 10.1016/j.tem.2018.02.003. 

Su, Y. and Pitot, H. C. H. (1992) ‘Location and characterization of multiple glucocorticoid-

responsive elements in the rat serine dehydratase gene.’, Archives of biochemistry and biophysics. 

Academic Press, 297(2), pp. 239–43. doi: 10.1016/0003-9861(92)90667-L. 

Sun, X. et al. (2002) ‘Circadian 5-HT production regulated by adrenergic signaling’, Proceedings 



 

206 
 

of the National Academy of Sciences. National Academy of Sciences, 99(7), pp. 4686–4691. doi: 

10.1073/PNAS.062585499. 

Surjit, M. et al. (2011) ‘Widespread Negative Response Elements Mediate Direct Repression 

by Agonist- Liganded Glucocorticoid Receptor’, Cell. Cell Press, 145(2), pp. 224–241. doi: 

10.1016/J.CELL.2011.03.027. 

Suzuki, S. et al. (2018) ‘SIRT1 is a transcriptional enhancer of the glucocorticoid receptor acting 

independently to its deacetylase activity.’, Molecular and cellular endocrinology. NIH Public Access, 

461, pp. 178–187. doi: 10.1016/j.mce.2017.09.012. 

Swanson, L. W. et al. (1983) ‘Organization of ovine corticotropin-releasing factor 

immunoreactive cells and fibers in the rat brain: an immunohistochemical study.’, 

Neuroendocrinology, 36(3), pp. 165–186. doi: 10.1159/000123454. 

Szapary, D., Huang, Y. and Simons, S. S. (1999) Opposing Effects of Corepressor and 

Coactivators in Determining the Dose-Response Curve of Agonists, and Residual Agonist Activity of 

Antagonists, for Glucocorticoid Receptor-Regulated Gene Expression. Available at: 

https://academic.oup.com/mend/article-abstract/13/12/2108/2747824 (Accessed: 12 April 2019). 

Szczepaniak, L. S. et al. (2005) ‘Magnetic resonance spectroscopy to measure hepatic 

triglyceride content: prevalence of hepatic steatosis in the general population’, American Journal of 

Physiology-Endocrinology and Metabolism, 288(2), pp. E462–E468. doi: 10.1152/ajpendo.00064.2004. 

Takeda, T. et al. (1998) ‘Crosstalk between the interleukin-6 (IL-6)-JAK-STAT and the 

glucocorticoid-nuclear receptor pathway: synergistic activation of IL-6 response element by IL-6 and 

glucocorticoid.’, The Journal of endocrinology, 159(2), pp. 323–30. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/9795374 (Accessed: 30 March 2019). 

Tannin, G. M. et al. (1991) ‘The human gene for 11 beta-hydroxysteroid dehydrogenase. 

Structure, tissue distribution, and chromosomal localization.’, The Journal of biological chemistry, 

266(25), pp. 16653–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1885595 (Accessed: 20 

April 2019). 

Tappy, L. et al. (1994) ‘Mechanisms of dexamethasone-induced insulin resistance in healthy 

humans.’, The Journal of Clinical Endocrinology & Metabolism, 79(4), pp. 1063–1069. doi: 

10.1210/jcem.79.4.7962275. 

Tatham, M. H. et al. (2001) ‘Polymeric chains of SUMO-2 and SUMO-3 are conjugated to 

protein substrates by SAE1/SAE2 and Ubc9.’, The Journal of biological chemistry. American Society for 

Biochemistry and Molecular Biology, 276(38), pp. 35368–74. doi: 10.1074/jbc.M104214200. 

Tatham, M. H. et al. (2011) ‘Comparative Proteomic Analysis Identifies a Role for SUMO in 

Protein Quality Control’, Sci. Signal. American Association for the Advancement of Science, 4(178), pp. 



 

207 
 

rs4–rs4. doi: 10.1126/SCISIGNAL.2001484. 

Taves, M. D., Gomez-Sanchez, C. E. and Soma, K. K. (2011) ‘Extra-adrenal glucocorticoids and 

mineralocorticoids: evidence for local synthesis, regulation, and function.’, American journal of 

physiology. Endocrinology and metabolism. American Physiological Society, 301(1), pp. E11-24. doi: 

10.1152/ajpendo.00100.2011. 

Taylor, A. H. et al. (1996) ‘Glucocorticoid increases rat apolipoprotein A-I promoter activity.’, 

Journal of lipid research, 37(10), pp. 2232–43. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/8906599 (Accessed: 8 April 2019). 

Tetel, M. J. (2009) ‘Nuclear receptor coactivators: essential players for steroid hormone action 

in the brain and in behaviour.’, Journal of neuroendocrinology. NIH Public Access, 21(4), pp. 229–37. 

doi: 10.1111/j.1365-2826.2009.01827.x. 

Thompson, N. L. et al. (1986) ‘Sequential protooncogene expression during rat liver 

regeneration.’, Cancer research, 46(6), pp. 3111–7. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/3516391 (Accessed: 29 May 2019). 

Thorgeirsson, S. S. and Santouni-Rugiu, E. (2003) ‘Transgenic mouse models in carcinogenesis: 

interaction of c-myc with transforming growth factor α and hepatocyte growth factor in 

hepatocarcinogenesis’, British Journal of Clinical Pharmacology, 42(1), pp. 43–52. doi: 10.1046/j.1365-

2125.1996.03748.x. 

Tian, S. et al. (2002) ‘Small ubiquitin-related modifier-1 (SUMO-1) modification of the 

glucocorticoid receptor.’, The Biochemical journal, 367(Pt 3), pp. 907–11. doi: 10.1042/BJ20021085. 

Tirode, F. et al. (1999) ‘Reconstitution of the transcription factor TFIIH: assignment of 

functions for the three enzymatic subunits, XPB, XPD, and cdk7.’, Molecular cell, 3(1), pp. 87–95. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/10024882 (Accessed: 12 April 2019). 

Tiwari, S. and Siddiqi, S. A. (2012) ‘Intracellular Trafficking and Secretion of VLDL’, 

Arteriosclerosis, Thrombosis, and Vascular Biology. Lippincott Williams & Wilkins Hagerstown, MD, 

32(5), pp. 1079–1086. doi: 10.1161/ATVBAHA.111.241471. 

Trapp, T. et al. (1994) ‘Heterodimerization between mineralocorticoid and glucocorticoid 

receptor: a new principle of glucocorticoid action in the CNS.’, Neuron, 13(6), pp. 1457–62. Available 

at: http://www.ncbi.nlm.nih.gov/pubmed/7993637 (Accessed: 25 March 2019). 

Trinh, K. Y. et al. (1998) ‘Perturbation of Fuel Homeostasis Caused by Overexpression of the 

Glucose-6-phosphatase Catalytic Subunit in Liver of Normal Rats’, Journal of Biological Chemistry, 

273(47), pp. 31615–31620. doi: 10.1074/jbc.273.47.31615. 

Tronche, F. et al. (2004) ‘Glucocorticoid receptor function in hepatocytes is essential to 

promote postnatal body growth’. Cold Spring Harbor Laboratory Press, 18(5). doi: 



 

208 
 

10.1101/gad.284704. 

Trusca, V. G. et al. (2017) ‘Differential action of glucocorticoids on apolipoprotein E gene 

expression in macrophages and hepatocytes.’, PloS one. Public Library of Science, 12(3), p. e0174078. 

doi: 10.1371/journal.pone.0174078. 

Turek, F. W. et al. (2013) ‘Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice’, 

Science. American Association for the Advancement of Science, 1043(2005), pp. 3–6. doi: 

10.1126/science.1108750. 

Uhl, A. et al. (2002) ‘Pharmacokinetics and pharmacodynamics of methylprednisolone after 

one bolus dose compared with two dose fractions.’, Journal of clinical pharmacy and therapeutics, 

27(4), pp. 281–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12174030 (Accessed: 30 March 

2019). 

Uhlenhaut, N. H. et al. (2013) ‘Insights into Negative Regulation by the Glucocorticoid 

Receptor from Genome-wide Profiling of Inflammatory Cistromes’, Molecular Cell, 49(1). doi: 

10.1016/j.molcel.2012.10.013. 

Underwood, R. H. and Williams, G. H. (1972) ‘The simultaneous measurement of aldosterone, 

cortisol, and corticosterone in human peripheral plasma by displacement analysis.’, The Journal of 

laboratory and clinical medicine, 79(5), pp. 848–62. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/5062996 (Accessed: 13 August 2019). 

Utter, M. F. and Bruce Keech, D. (1960) Preliminary Communications Formation of 

Oxaloacetate from Pyruvate and, THE JOURNAL OF BIOLOGICAL CHEMI~TRS. Available at: 

http://www.jbc.org/ (Accessed: 6 April 2019). 

Vacchio, M. S., Papadopoulos, V. and Ashwell, J. D. (1994) ‘Steroid production in the thymus: 

implications for thymocyte selection’, Journal of Experimental Medicine, 179(6), pp. 1835–1846. doi: 

10.1084/jem.179.6.1835. 

Vaissière, T., Sawan, C. and Herceg, Z. (2008) ‘Epigenetic interplay between histone 

modifications and DNA methylation in gene silencing’, Mutation Research/Reviews in Mutation 

Research. Elsevier, 659(1–2), pp. 40–48. doi: 10.1016/J.MRREV.2008.02.004. 

Valera, A. et al. (1995) ‘Evidence from transgenic mice that myc regulates hepatic glycolysis.’, 

The FASEB Journal, 9(11), pp. 1067–1078. doi: 10.1096/fasebj.9.11.7649406. 

Vandevyver, S., Dejager, L. and Libert, C. (2014) ‘Comprehensive Overview of the Structure 

and Regulation of the Glucocorticoid Receptor’, Endocrine Reviews. Oxford University Press, 35(4), pp. 

671–693. doi: 10.1210/er.2014-1010. 

Varney, N. R., Alexander, B. and MacIndoe, J. H. (1984) ‘Reversible steroid dementia in 

patients without steroid psychosis’, American Journal of Psychiatry, 141(3), pp. 369–372. doi: 



 

209 
 

10.1176/ajp.141.3.369. 

Vaziri, H. et al. (2001) ‘hSIR2SIRT1 Functions as an NAD-Dependent p53 Deacetylase’, Cell. Cell 

Press, 107(2), pp. 149–159. doi: 10.1016/S0092-8674(01)00527-X. 

Vegiopoulos, A. and Herzig, S. (2007) ‘Glucocorticoids, metabolism and metabolic diseases’, 

Molecular and Cellular Endocrinology. Elsevier, 275(1–2), pp. 43–61. doi: 10.1016/J.MCE.2007.05.015. 

Veldhuis, J. D. et al. (1989) ‘Amplitude modulation of a burstlike mode of cortisol secretion 

subserves the circadian glucocorticoid rhythm.’, The American journal of physiology, 257(14), pp. E6–

E14. 

Veldhuis, J. D. et al. (1990) ‘Twenty-Four-Hour Rhythms in Plasma Concentrations of 

Adenohypophyseal Hormones Are Generated by Distinct Amplitude and/or Frequency Modulation of 

Underlying Pituitary Secretory Bursts*’, The Journal of Clinical Endocrinology & Metabolism. Narnia, 

71(6), pp. 1616–1623. doi: 10.1210/jcem-71-6-1616. 

Verhoog, N. J. D. et al. (2011) ‘Glucocorticoid-independent Repression of Tumor Necrosis 

Factor (TNF) α-stimulated Interleukin (IL)-6 Expression by the Glucocorticoid Receptor’, Journal of 

Biological Chemistry. American Society for Biochemistry and Molecular Biology, 286(22), pp. 19297–

19310. Available at: http://www.jbc.org/content/286/22/19297.long (Accessed: 26 March 2019). 

Vicennati, V. et al. (2009) ‘Stress-related Development of Obesity and Cortisol in Women’, 

Obesity, 17(9), pp. 1678–1683. doi: 10.1038/oby.2009.76. 

Vilo, J. et al. (2000) ‘Mining for putative regulatory elements in the yeast genome using gene 

expression data’, Proc Int Conf Intell Syst Mol Biol, 8, pp. 384–394. Available at: 

http://www.ncbi.nlm.nih.gov/htbin-post/Entrez/query?db=m&form=6&dopt=r&uid=10977099. 

Visel, A. et al. (2009) ‘ChIP-seq accurately predicts tissue-specific activity of enhancers.’, 

Nature, 457(7231), pp. 854–8. doi: 10.1038/nature07730. 

Vrang, N., Larsen, P. J. and Mikkelsen, J. D. (1995) ‘Direct projection from the suprachiasmatic 

nucleus to hypophysiotrophic corticotropin-releasing factor immunoreactive cells in the 

paraventricular nucleus of the hypothalamus demonstrated by means ofPhaseolus vulgaris-

leucoagglutinin tract tracing’, Brain Research. Elsevier, 684(1), pp. 61–69. doi: 10.1016/0006-

8993(95)00425-P. 

Waite, E. J. et al. (2012) ‘Ultradian corticosterone secretion is maintained in the absence of 

circadian cues.’, The European journal of neuroscience, 36(8), pp. 3142–50. doi: 10.1111/j.1460-

9568.2012.08213.x. 

Walker, J. J. et al. (2012) ‘The Origin of Glucocorticoid Hormone Oscillations’, PLoS Biology. 

Edited by A. J. Vidal-Puig. Public Library of Science, 10(6), p. e1001341. doi: 

10.1371/journal.pbio.1001341. 



 

210 
 

Walker, J. J. et al. (2014) ‘Rapid intra-adrenal feedback regulation of glucocorticoid synthesis’, 

J. R. Soc. InterfaceJ, 12, p. 20140875. 

Walker, J. J., Terry, J. R. and Lightman, S. L. (2010) ‘Origin of ultradian pulsatility in the 

hypothalamic–pituitary–adrenal axis’, Proceedings of the Royal Society B: Biological Sciences. The 

Royal Society, 277(1688), pp. 1627–1633. doi: 10.1098/rspb.2009.2148. 

Wallace, A. D. et al. (2010) ‘Lysine 419 targets human glucocorticoid receptor for proteasomal 

degradation’, Steroids, 75(12), pp. 1016–1023. doi: 10.1016/j.steroids.2010.06.015. 

Wallace, A. D. and Cidlowski, J. A. (2001) ‘Proteasome-mediated glucocorticoid receptor 

degradation restricts transcriptional signaling by glucocorticoids.’, The Journal of biological chemistry. 

American Society for Biochemistry and Molecular Biology, 276(46), pp. 42714–21. doi: 

10.1074/jbc.M106033200. 

Wallberg, A. E. et al. (2000) ‘Recruitment of the SWI-SNF chromatin remodeling complex as a 

mechanism of gene activation by the glucocorticoid receptor tau1 activation domain.’, Molecular and 

cellular biology, 20(6), pp. 2004–13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10688647 

(Accessed: 25 March 2019). 

Wang, J.-C. et al. (2004) ‘Chromatin immunoprecipitation (ChIP) scanning identifies primary 

glucocorticoid receptor target genes.’, Proceedings of the National Academy of Sciences of the United 

States of America, 101(44), pp. 15603–15608. doi: 10.1073/pnas.0407008101. 

Wang, Q., Carroll, J. S. and Brown, M. (2005) ‘Spatial and Temporal Recruitment of Androgen 

Receptor and Its Coactivators Involves Chromosomal Looping and Polymerase Tracking’, Molecular 

Cell. Cell Press, 19(5), pp. 631–642. doi: 10.1016/J.MOLCEL.2005.07.018. 

Wang, W., Carey, J. D. and Gralla, J. D. (1992) ‘Polymerase II promoter activation: closed 

complex formation and ATP-driven start site opening’, Science. Science, 255(5043), pp. 540–453. 

Available at: http://www.ncbi.nlm.nih.gov/pubmed/3413495 (Accessed: 12 April 2019). 

Wang, X. and DeFranco, D. B. (2005) ‘Alternative Effects of the Ubiquitin-Proteasome Pathway 

on Glucocorticoid Receptor Down-Regulation and Transactivation Are Mediated by CHIP, an E3 Ligase’, 

Molecular Endocrinology. Narnia, 19(6), pp. 1474–1482. doi: 10.1210/me.2004-0383. 

Wang, Z., Frederick, J. and Garabedian, M. J. (2002) ‘Deciphering the Phosphorylation “Code” 

of the Glucocorticoid Receptor in Vivo’, Journal of Biological Chemistry, 277(29), pp. 26573–26580. 

doi: 10.1074/jbc.M110530200. 

Warris, L. T. et al. (2016) ‘Acute Activation of Metabolic Syndrome Components in Pediatric 

Acute Lymphoblastic Leukemia Patients Treated with Dexamethasone’, PLOS ONE. Edited by O. R. 

Bandapalli. Public Library of Science, 11(6), p. e0158225. doi: 10.1371/journal.pone.0158225. 

Weitsman, E. D. et al. (1971) ‘Twenty-four Hour Pattern of the Episodic Secretion of Cortisol 



 

211 
 

in Normal Subjects’, The Journal of Clinical Endocrinology & Metabolism. Narnia, 33(1), pp. 14–22. doi: 

10.1210/jcem-33-1-14. 

Weitzman, E. D. (1976) ‘Circadian Rhythms and Episodic Hormone Secretion in Man’, Annual 

Review of Medicine. Annual Reviews 4139 El Camino Way, P.O. Box 10139, Palo Alto, CA 94303-0139, 

USA, 27(1), pp. 225–243. doi: 10.1146/annurev.me.27.020176.001301. 

Welsh, D. K. et al. (1995) ‘Individual neurons dissociated from rat suprachiasmatic nucleus 

express independently phased circadian firing rhythms’, Neuron. Cell Press, 14(4), pp. 697–706. doi: 

10.1016/0896-6273(95)90214-7. 

Welty, F. K. (2014) ‘Hypobetalipoproteinemia and abetalipoproteinemia.’, Current opinion in 

lipidology. NIH Public Access, 25(3), pp. 161–8. doi: 10.1097/MOL.0000000000000072. 

Werner, A., Kuipers, F. and Verkade, H. J. (2013) ‘Fat Absorption and Lipid Metabolism in 

Cholestasis’. Landes Bioscience. Available at: 

https://www.ncbi.nlm.nih.gov/books/NBK6420/?report=printable (Accessed: 9 April 2019). 

Wetterau, J. R. et al. (1992) ‘Absence of microsomal triglyceride transfer protein in individuals 

with abetalipoproteinemia.’, Science (New York, N.Y.), 258(5084), pp. 999–1001. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/1439810 (Accessed: 14 May 2019). 

White, B. D. et al. (1994) ‘Type II corticosteroid receptor stimulation increases NPY gene 

expression in basomedial hypothalamus of rats.’, The American journal of physiology.  American 

Physiological Society Bethesda, MD , 266(5 Pt 2), pp. R1523-9. doi: 

10.1152/ajpregu.1994.266.5.R1523. 

White, H. M., Koser, S. L. and Donkin, S. S. (2011) ‘Differential regulation of bovine pyruvate 

carboxylase promoters by fatty acids and peroxisome proliferator-activated receptor-α agonist’, 

Journal of Dairy Science. Elsevier, 94(7), pp. 3428–3436. doi: 10.3168/JDS.2010-3960. 

Wiley, S. R., Kraus, R. J. and Mertz, J. E. (1992) ‘Functional binding of the “TATA” box binding 

component of transcription factor TFIID to the -30 region of TATA-less promoters.’, Proceedings of the 

National Academy of Sciences of the United States of America. National Academy of Sciences, 89(13), 

pp. 5814–8. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1321424 (Accessed: 12 April 2019). 

Wilkinson, L., Verhoog, N. J. D. and Louw, A. (2018) ‘Disease and treatment associated 

acquired glucocorticoid resistance.’, Endocrine connections. Bioscientifica Ltd., 7(12), p. R328. doi: 

10.1530/EC-18-0421. 

Windle, R. J., Wood, S. A., Lightman, S. L., et al. (1998) ‘The Pulsatile Characteristics The 

pulsatile characteristics of hypothalamo-pituitary-adrenal activity in female Lewis and Fischer 344 rats 

and its relationship to differential stress responses.’, Endocrinology. Narnia, 139(10), pp. 4044–4052. 

doi: 10.1210/endo.139.10.6238. 



 

212 
 

Windle, R. J., Wood, S. A., Shanks, N., et al. (1998) ‘Ultradian Rhythm of Basal Corticosterone 

Release in the Female Rat: Dynamic Interaction with the Response to Acute Stress’, Endocrinology. 

Oxford University Press, 139(2), pp. 443–450. doi: 10.1210/endo.139.2.5721. 

Wolkowitz, O. M. (1994) ‘Prospective controlled studies of the behavioral and biological 

effects of exogenous corticosteroids.’, Psychoneuroendocrinology, 19(3), pp. 233–55. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/7515507. 

Wu, I. et al. (2013) ‘Selective glucocorticoid receptor translational isoforms reveal 

glucocorticoid-induced apoptotic transcriptomes’, Cell Death & Disease. Nature Publishing Group, 

4(1), pp. e453–e453. doi: 10.1038/cddis.2012.193. 

Wurtz, J.-M. et al. (1996) ‘A canonical structure for the ligand-binding domain of nuclear 

receptors’, Nature Structural Biology. Nature Publishing Group, 3(1), pp. 87–94. doi: 

10.1038/nsb0196-87. 

Xing, H. et al. (2012) ‘Genome-Wide Localization of Protein-DNA Binding and Histone 

Modification by a Bayesian Change-Point Method with ChIP-seq Data’, PLoS Computational Biology. 

Edited by I. Ioshikhes. Public Library of Science, 8(7), p. e1002613. doi: 10.1371/journal.pcbi.1002613. 

Xu, H. E. et al. (1999) ‘Molecular Recognition of Fatty Acids by Peroxisome Proliferator–

Activated Receptors’, Molecular Cell. Cell Press, 3(3), pp. 397–403. doi: 10.1016/S1097-

2765(00)80467-0. 

Xu, Z. X., Viviano, C. J. and Rooney, S. A. (1995) ‘Glucocorticoid stimulation of fatty-acid 

synthase gene transcription in fetal lung: antagonism by retinoic acid.’, The American journal of 

physiology, 268(4 Pt 1), pp. L683-90. doi: 10.1152/ajplung.1995.268.4.L683. 

Yang-Yen, H. F. et al. (1990) ‘Transcriptional interference between c-Jun and the 

glucocorticoid receptor: Mutual inhibition of DNA binding due to direct protein-protein interaction’, 

Cell, 62(6), pp. 1205–1215. doi: 10.1016/0092-8674(90)90396-V. 

Yang, J. and DeFranco, D. B. (1994) ‘Differential roles of heat shock protein 70 in the in vitro 

nuclear import of glucocorticoid receptor and simian virus 40 large tumor antigen.’, Molecular and 

cellular biology. American Society for Microbiology (ASM), 14(8), pp. 5088–98. Available at: 

http://www.ncbi.nlm.nih.gov/pubmed/8035791 (Accessed: 22 March 2019). 

Yang, J., Liu, J. and DeFranco, D. B. (1997) ‘Subnuclear trafficking of glucocorticoid receptors 

in vitro: chromatin recycling and nuclear export.’, The Journal of cell biology, 137(3), pp. 523–38. doi: 

10.1083/jcb.137.3.523. 

Yang, Y. et al. (2014) ‘Leveraging biological replicates to improve analysis in ChIP-seq 

experiments.’, Computational and structural biotechnology journal. Research Network of 

Computational and Structural Biotechnology, 9, p. e201401002. doi: 10.5936/csbj.201401002. 



 

213 
 

Yaribeygi, H. et al. (2019) ‘Insulin resistance: Review of the underlying molecular mechanisms’, 

Journal of Cellular Physiology. John Wiley & Sons, Ltd, 234(6), pp. 8152–8161. doi: 10.1002/jcp.27603. 

Yin, L. et al. (2006) ‘Nuclear Receptor Rev-erb  Is a Critical Lithium-Sensitive Component of the 

Circadian Clock’, Science. American Association for the Advancement of Science, 311(5763), pp. 1002–

1005. doi: 10.1126/science.1121613. 

Young, E., Carlson, N. E. and Brown, M. B. (2001) ‘Twenty-Four-Hour ACTH and Cortisol 

Pulsatility in Depressed Women’, Neuropsychopharmacology. Nature Publishing Group, 25(2), pp. 

267–276. doi: 10.1016/S0893-133X(00)00236-0. 

Yu, C. Y. et al. (2010) ‘Genome-wide analysis of glucocorticoid receptor binding regions in 

adipocytes reveal gene network involved in triglyceride homeostasis’, PLoS ONE, 5(12). doi: 

10.1371/journal.pone.0015188. 

Yuan, G.-C. et al. (2005) ‘Genome-scale identification of nucleosome positions in S. 

cerevisiae.’, Science (New York, N.Y.), 309(5734), pp. 626–30. doi: 10.1126/science.1112178. 

Zang, C. et al. (2009) ‘A clustering approach for identification of enriched domains from 

histone modification ChIP-Seq data.’, Bioinformatics (Oxford, England). Oxford University Press, 

25(15), pp. 1952–8. doi: 10.1093/bioinformatics/btp340. 

Zani, F. et al. (2013) ‘PER2 promotes glucose storage to liver glycogen during feeding and acute 

fasting by inducing Gys2 PTG and GL expression’, Molecular Metabolism. Elsevier, 2(3), pp. 292–305. 

doi: 10.1016/J.MOLMET.2013.06.006. 

Zhang, K. et al. (2012) ‘Hepatic Suppression of Foxo1 and Foxo3 Causes Hypoglycemia and 

Hyperlipidemia in Mice’, Endocrinology, 153(2), pp. 631–646. doi: 10.1210/en.2011-1527. 

Zhang, P. et al. (2008) ‘Regulation of lipin-1 gene expression by glucocorticoids during 

adipogenesis.’, Journal of lipid research, 49(7), pp. 1519–1528. doi: 10.1194/jlr.M800061-JLR200. 

Zhang, W. et al. (2012) ‘Genome-wide identification of regulatory DNA elements and protein-

binding footprints using signatures of open chromatin in Arabidopsis.’, The Plant cell, 24(7), pp. 2719–

31. doi: 10.1105/tpc.112.098061. 

Zhang, X. et al. (2019) ‘Unraveling the Regulation of Hepatic Gluconeogenesis’, Frontiers in 

Endocrinology. Frontiers, 9, p. 802. doi: 10.3389/fendo.2018.00802. 

Zhang, Y. et al. (2008) ‘Model-based Analysis of ChIP-Seq (MACS)’, Genome Biology. BioMed 

Central, 9(9), p. R137. doi: 10.1186/gb-2008-9-9-r137. 

Zhang, Z. et al. (1997) ‘STAT3 acts as a co-activator of glucocorticoid receptor signaling.’, The 

Journal of biological chemistry. American Society for Biochemistry and Molecular Biology, 272(49), pp. 

30607–10. doi: 10.1074/JBC.272.49.30607. 

Zhao, H. et al. (2015) ‘PARP1- and CTCF-Mediated Interactions between Active and Repressed 



 

214 
 

Chromatin at the Lamina Promote Oscillating Transcription’, Molecular Cell, 59, pp. 984–997. doi: 

10.1016/j.molcel.2015.07.019. 

Zhao, L. F. et al. (2010) ‘Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene 

transcription.’, Endocrine journal, 4, pp. 317–324. Available at: 

https://www.ncbi.nlm.nih.gov/pubmed/20139635 (Accessed: 11 April 2019). 

Zheng, K., Cubero, F. J. and Nevzorova, Y. A. (2017) ‘c-MYC-Making Liver Sick: Role of c-MYC 

in Hepatic Cell Function, Homeostasis and Disease.’, Genes. Multidisciplinary Digital Publishing 

Institute  (MDPI), 8(4). doi: 10.3390/genes8040123. 

Zhou, P.-Z. et al. (2016) ‘Relationship Between Glucocorticoids and Insulin Resistance in 

Healthy Individuals.’, Medical science monitor : international medical journal of experimental and 

clinical research. International Scientific Information, Inc., 22, pp. 1887–94. doi: 

10.12659/MSM.895251. 

Zimmermann, P. L. N. and Rousseau, G. G. (1994) ‘Liver-specific DNase I-hypersensitive sites 

and DNA methylation pattern in the promoter region of a 6-phosphofructo-2-kinase/fructose-2,6-

bisphosphatase gene’, European Journal of Biochemistry. John Wiley & Sons, Ltd (10.1111), 220(1), pp. 

183–191. doi: 10.1111/j.1432-1033.1994.tb18613.x. 

Zindy, F. et al. (1998) ‘Myc signaling via the ARF tumor suppressor regulates p53-dependent 

apoptosis and immortalization’, Genes & Development, 12(15), pp. 2424–2433. doi: 

10.1101/gad.12.15.2424. 

 

 


