

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Wood, Tim N

Title:
Reducing Communication Costs in Multi-Party Computation

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/376905727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Reducing Communication Costs in

Multi-Party Computation

Timothy Nicholas Wood

A dissertation submitted to the University of Bristol in accordance with the

requirements for award of the degree of Doctor of Philosophy in the Faculty of

Engineering

Department of Computer Science

October 2019

Word count: 102481

i

Abstract

Multi-party computation (MPC) is a way of computing on private
data without revealing the data itself. To do this, data is “secret-
shared” amongst a set of mutually-distrusting parties, which per-
form local computations and interactive processes to evaluate a
function. MPC protocols are diverse and offer a variety of differ-
ent security guarantees, and employ different methodologies to
optimize for different aspects of the evaluation. The goal of this
work is to show how to reduce communication costs involved in
different areas of MPC.

An access structure defines which sets of parties a so-called
adversary can corrupt such that the inputs remain private and
the outputs are revealed to the right parties; one type of access
structure is called Q2, under which assumption there are many
classical results on what sorts of functions can be evaluated. One
of the contributions of this work is to show how special “error-
detection” properties that apply in the context of Q2 access struc-
tures can be used to define MPC protocols that improve on the
efficiency of classical results.

In the so-called preprocessing model, parties evaluate a func-
tion on random inputs, and later “derandomize” using the real
(private) inputs. This model is popular in MPC as function eval-
uation is expensive, whereas derandomization is cheap. In this
thesis, a generic method is given for outsourcing preprocessing to
a set of servers, which means that low-powered clients who wish
to evaluate functions on their data can do so.

The final contribution is a protocol that allows parties to mix
two different MPC techniques called garbled circuits and secret-
sharing in a secure way, even when the adversary deviates ar-
bitrarily from the protocol description. Mixing these methods is
useful as they optimize for different aspects of computation.

iii

Dedication and Acknowledgements

This work is dedicated to the following people, to whom I am sin-

cerely thankful and without whom this work could not have been

completed:

To my secondary school teacher, Mr Mohan, for inspir-

ing me to pursue academic study in mathematics;

To my friends and colleagues in the Bristol Crypto

Group and COSIC, for keeping me grounded;

Particularly to Nigel Smart, my advisor, whose enthu-

siasm was a constant encouragement. He always took

the time to explain to me things I didn’t understand

and helped me to grow a lot as a researcher;

To my family and to Ron and Vera Smith, for their love

and care over many years;

And to Him to whom all gratitude belongs.

I would also like to thank DARPA and the FWO who funded me

during my studies.

v

Declaration

I declare that the work in this dissertation was carried out in ac-

cordance with the requirements of the University’s Regulations

and Code of Practice for Research Degree Programmes and that

it has not been submitted for any other academic award. Ex-

cept where indicated by specific reference in the text, the work

is the candidate’s own work. Work done in collaboration with, or

with the assistance of, others, is indicated as such. Any views ex-

pressed in the dissertation are those of the author.

SIGNED: ...

DATE:

vii

Contents

Contents ix

List of Figures xvii

List of Tables xxi

Acronyms xxiii

1 Introduction 1
1.1 This work . 2

1.2 Changes to Submissions and New Contributions 3

2 Preliminaries 7
2.1 General . 7

2.1.1 Notation . 7

2.1.2 Complexity . 9

2.1.3 Statistics and Probability . 10

2.1.4 Combinatorics . 12

2.2 Universal Composability . 13

2.3 Cryptographic Primitives and Basic Tools . 26

2.3.1 Hash functions . 26

2.3.2 Pseudorandom Functions . 27

2.3.3 MACs . 27

2.3.4 Communication Channels . 28

2.3.5 Commitments . 30

2.3.6 Coin-Flipping . 33

2.4 Secret Sharing . 34

2.4.1 Access Structures . 34

ix

CONTENTS

2.4.2 Access Structures to Secret-Sharing 36

2.4.3 Examples . 39

2.4.4 Multiplicativity . 42

2.5 MPC . 44

2.5.1 Correctness . 45

2.5.2 Privacy . 47

2.5.3 Main Techniques and Paradigms . 48

2.6 Literature Overview . 52

3 Error-detection and Share Reconstruction 57
3.1 Overview . 57

3.2 Opening to One Party . 61

3.3 Opening to All Parties . 62

3.4 Error-detection in Standard LSSSs . 67

3.4.1 Shamir’s Secret-Sharing . 67

3.4.2 Replicated Secret-Sharing . 68

3.4.3 DNF-based Sharing . 68

3.5 Finding a Reconstruction Map . 69

3.6 Share-Reconstructability . 70

4 Modelling Preprocessing 75
4.1 Overview . 75

4.2 Opening Functionality . 77

4.3 Opening Protocol . 80

4.3.1 Agreement Protocol . 80

4.4 Preprocessing Functionality . 85

4.5 Arithmetic Black Box . 86

4.6 Reactive Computation . 91

4.7 Modelling SPDZ . 97

4.7.1 Errors on MACs . 99

4.7.2 FPrep with MACs . 100

4.7.3 Viewing MACs as Part of the MSP . 101

5 Outsourcing MPC preprocessing 103
5.1 Overview . 103

5.2 Preliminaries . 105

xi

CONTENTS

5.2.1 Network . 105

5.2.2 Preprocessing Functionality . 106

5.2.3 Types of Secret-Sharing . 106

5.3 Outsourcing Q2 to Q2 . 106

5.3.1 Correctness . 107

5.3.2 Security . 109

5.4 Outsourcing Full-Threshold to Full-Threshold 114

5.4.1 Modified Preprocessing Functionality 115

5.4.2 Correctness . 116

5.4.3 Security . 117

5.5 Probabilistically Choosing a Secure Cover 124

5.6 Communication Complexity . 128

6 Q2 MPC for Small Numbers of Parties 131
6.1 Overview . 132

6.2 Preliminaries . 134

6.2.1 Replicated Secret-Sharing . 134

6.2.2 Redundancy . 135

6.3 Computational Random Sharings . 136

6.3.1 PRSSs . 137

6.3.2 PRZSs . 139

6.3.3 Communication Complexity . 142

6.4 Converting Additive to Replicated . 142

6.4.1 Information-Theoretic Conversion . 143

6.4.2 Computational Conversion . 144

6.5 Passively-Secure Q2 MPC Protocol . 148

6.5.1 Multiplication and Input using Conversion 149

6.5.2 Correctness . 150

6.5.3 Security . 151

6.5.4 Communication Complexity . 155

6.6 Actively-Secure Q2 MPC Protocol . 156

6.6.1 Correctness . 159

6.6.2 Security . 159

6.6.3 Communication Complexity . 163

6.7 No Partition . 165

xiii

CONTENTS

6.7.1 Existence of Non-Redundant Access Structures with No Partition . 165

6.7.2 Modified Protocol . 165

7 Q2 MPC for Large Numbers of Parties 169
7.1 Overview . 169

7.2 Preliminaries . 170

7.2.1 Locally Converting Replicated Shares 171

7.3 Generating Information-Theoretic Uniformly-Random Secrets 171

7.4 Information-Theoretic Preprocessing . 177

7.4.1 LSSS to Multiplicative LSSS . 178

7.4.2 Multiplicative LSSS to Preprocessing 179

7.5 Communication Complexity . 180

7.5.1 Preprocessing . 180

7.5.2 Online Phase . 182

7.5.3 Comparison with Other Protocols . 183

8 Actively-Secure Mixed Protocol 185
8.1 Overview . 185

8.1.1 Switching Mechanism . 188

8.1.2 Structure . 190

8.2 Preliminaries . 191

8.2.1 MPC . 192

8.2.2 Garbled Circuits . 195

8.3 Generation of daBits . 201

8.4 Switching and Modified Garbling . 208

8.4.1 Conversion from LSSS to GC . 212

8.4.2 Conversion From GC to LSSS . 213

8.4.3 Security . 214

8.5 Realizing the Protocol . 217

8.6 Application: Computation of a Multi-Class SVM 218

9 Conclusions 221

Bibliography 223

Index 239

xv

List of Figures

2.1 Knuth Shuffle. 13

2.2 Real World Versus Ideal World. 17

2.3 Random Oracle Functionality, FRO. 22

2.4 Broadcasting Functionality, FBroadcast. 29

2.5 Broadcasting Protocol, ΠBroadcast. 29

2.6 Commitment Functionality, FCommit. 31

2.7 Commitment Protocol, ΠCommit. 31

2.8 Coin-Flipping Functionality, FCoinFlip. 33

2.9 Coin-Flipping Protocol, ΠCoinFlip. 33

2.10 Realizing an LSSS from an MSP. 39

2.11 Replicated Secret-Sharing. 41

2.12 DNF Secret-Sharing. 41

2.13 Shamir’s Secret-Sharing. 42

2.14 Arithmetic Black Box Functionality, FABB. 45

2.15 Complexity of Broadcasting. 52

2.16 Highlights in the Timeline of MPC. 53

3.1 Errors in Secret-Sharing. 60

3.2 Algorithm for Determining Map q. 70

4.1 Opening Functionality, FOpen. 79

4.2 Agreement Functionality, FAgreement. 81

4.3 Hash Function Interface. 81

4.4 Agreement Protocol, ΠAgreement. 82

4.5 Opening Protocol, ΠOpen. 83

4.6 Simulator SOpen for FOpen. 85

4.7 Preprocessing Functionality, FPrep. 86

xvii

LIST OF FIGURES

4.8 Online Protocol, ΠOnline. 88

4.9 Simulator SABB for FABB. 90

4.10 Transcript for ΠOnline. 90

4.11 Reactive Preprocessing Functionality, FRPrep. 92

4.12 Reactive Preprocessing Protocol, ΠRPrep. 94

4.13 Simulator SRPrep for FRPrep. 96

4.14 MAC-Checking Subprotocol, ΠMACCheck. 99

5.1 Error-Checking Subprotocol, ΠErrorCheck. 108

5.2 Outsourcing Protocol, ΠR→Q
Outsource

. 110

5.3 Simulator SR→Q
Outsource

for FR→Q
Outsource

. 111

5.4 Transcript for ΠR→Q
Outsource

. 112

5.5 Modified Preprocessing Functionality, FPrep. 116

5.6 Optimized Outsourcing Protocol, Π
R→Q
Outsource. 118

5.7 Simulator SR→Q
Outsource for FPrep. 120

5.8 Transcript for Π
R→Q
Outsource. 121

5.9 Load-Balanced Topology. 124

5.10 Algorithm for Computing a Secure Cover. 126

5.11 Complete Bipartite Graph. 128

6.1 Functionality for Secret-Sharings of Random Secrets for Replicated Secret-

Sharing, FR
RSS. 137

6.2 Functionality for Secret-Sharings of Zero, FRZS. 137

6.3 Protocol for Secret-Sharings of Random Secrets using Replicated Secret-Sharing,

ΠR
RSS. 138

6.4 Simulator SR
RSS for FR

RSS. 139

6.5 Protocol for Secret-Sharings of Zero, ΠRZS. 140

6.6 Simulator SRZS for FRZS. 141

6.7 Protocol to Convert Additive Shares to Shares Under Any LSSS, ΠAToAny. . . 143

6.8 Optimized Multiplication in Running Example. 145

6.9 Optimized Protocol to Convert Additive Shares to Shares Under Replicated

Secret-Sharing, ΠAToROpt. 147

6.10 Passive Arithmetic Black Box Functionality, FPABB. 148

6.11 Online Protocol for a Q2 Access Structure Using Replicated Secret-Sharing,

Π
Q2,R
Online

. 150

6.12 Simulator SPABB for FPABB. 152

xviii

LIST OF FIGURES

6.13 Transcript for ΠQ2,R
Online

. 153

6.14 Preprocessing Protocol for a Q2 Access Structure using Replicated Secret-

Sharing, ΠQ2,R
Prep

. 158

6.15 Simulator SPrep for FPrep. 161

6.16 Transcript for ΠQ2,R
Prep

. 162

6.17 Protocol to Convert Additive Shares to Shares Under Any LSSS With No

Partition, ΠAToRNP. 166

7.1 Protocol to Convert Replicated Secret-Sharing to Any LSSS, ΠRToAny. 171

7.2 Functionality for Secret-Sharings of Random Secrets for Any LSSS, FAny

RSS
. . . 172

7.3 Protocol for Secret-Sharings of Multiple Random Secrets for Any LSSS, ΠAny

RSS
. 175

7.4 Simulator SAny

RSS
for FAny

RSS
. 176

7.5 Subprotocol for Information-Theoretic Multiplication, ΠIT
Mult. 180

8.1 Circuit and Arithmetic Black Box Functionality, FCABB. 188

8.2 Conversion Overview. 190

8.3 Functionality for Two MPC Engines, with daBits in Both, FRPrep+. 191

8.4 Conversion Protocol Dependencies. 191

8.5 Random Sampling Functionality, FRand. 194

8.6 Random Sampling Protocol, ΠRand. 194

8.7 Protocol for Two MPC Engines, with daBits in Both, FRPrep

∥∥ΠdaBits. 203

8.8 Simulator SPrep+ for FRPrep+. 207

8.9 Protocol for Garbling and Evaluating a Circuit, ΠCABB. 210

8.10 Subprotocol for Garbling a Circuit, ΠBMREvaluate. 211

8.11 Subprotocol for Evaluating a Garbled Circuit, ΠBMREvaluate. 212

8.12 Circuit Output Wires. 214

8.13 Simulator SCABB for FCABB. 216

xix

List of Tables

6.1 Total communication cost to realize FR
RSS and FRZS. 142

6.2 Total communication cost to realize FPABB with M inputs and T total multi-

plications. 155

6.3 Total communication cost to realize FABB with M inputs and T total multi-

plications. 164

7.1 Total preprocessing communication cost to realize FPrep performing T multi-

plications using FR
RSS and FRZS. 181

7.2 Total preprocessing communication cost to realize FPrep performing T multi-

plications using FAny

RSS
. 182

7.3 Total online communication cost to realize FABB performing T multiplications.182

8.1 Yao’s garbled gate with FreeXOR and Point-And-Permute. 196

8.2 Two-party linear SVM: single-threaded (non-amortized) preprocessing phase

costs with σ= 64. 219

8.3 Two-party linear SVM: single-threaded (non-amortized) online phase costs

with σ= 64. 220

xxi

Acronyms

ABY Arithmetic-Boolean-Yao

AES Advanced Encryption Standard

API Application Programming Interface

CNF Conjunctive Normal Form

CRS Common Reference String

DNF Disjunctive Normal Form

GC Garbled Circuit

GDPR General Data Protection Regulation

IOT Internet Of Things

IT Information-theoretic

ITM Interactive Turing Machine

LAN Local-area Network

LSSS Linear Secret-sharing Scheme

MAC Message Authentication Code

MPC Multi-party Computation

MSP Monotone Span Program

OT Oblivious Transfer

PKC Public-key Cryptography

xxiii

ACRONYMS

PPT Probabilistic Polynomial-time

PRF Pseudorandom Function

PRSS Pseudorandom Secret-sharing

PRZS Pseudorandom Zero-sharing

ROM Random Oracle Model

SHE Somewhat-homomorphic Encryption

SVM Support Vector Machine

UC Universal Composability

VSS Verifiable Secret-sharing

WAN Wide-area Network

ZKP Zero-knowledge Proof

xxiv

ACRONYMS

xxv

Chapter 1

Introduction

Cryptography is becoming more and more important in our everyday lives, as the amount

of data we produce by living in a digital world perpetually increases. Indeed, many com-

panies go to great lengths to seek out and exploit personal data to gain an advantage

in an increasingly competitive global market. Moreover, breaches of personal data are

becoming ever more frequent.

In the European Union, the General Data Protection Regulation (GDPR) mandates

that companies should disclose data breaches, and provides a legal framework for the

secure storage and use of personal data. This means that fortunately companies are

now obliged to provide a significant measure of control of personal data to the users of

their services.

Even if users are given access to privacy controls, it does not mean they will make

good use of them: with smart home devices (the Internet of Things (IOT)) it has got to

the point where the general population is not only happy to have companies listen to

their every conversation, but are willing to pay them for the privilege.

Cryptography is one tool, and is indeed the main tool used today, that can be used to

redress the balance back towards end users: while it seems the wont of the commercial

world to strip consumers of as much privacy as possible to gain competitive market

advantage, the job of cryptographers, one might say, is to put it back again.

Historically, the study of cryptography has chiefly involved showing how to keep

data safe while in transit or at rest. By contrast, this thesis concerns methods of keep-

ing data secure during computation, and finding efficient ways of doing so. This, per-

haps counterintuitive, idea has its roots in the late 1980s when the first results were

published. Since that time significant work has gone into making the protocols much

more efficient.

1

CHAPTER 1. INTRODUCTION

The specific tool under consideration in this work is known as multi-party computa-

tion (MPC), which is a method of computing on private data held by different entities

so that the only information learnt by each party at the end is the result of the com-

putation and whatever can be inferred from the output and each party’s own private

input. By construction, the protocol always computes the correct function when all par-

ties are honest. Additionally, the protocol must provide security guarantees that refer

to the level of tolerance of misbehaviour by corrupt parties the protocol can withstand

while ensuring correctness of the computation and the secrecy of inputs. Certain theo-

retical impossibility results preclude the existence of protocols for guarantees that are

“too strong”, i.e. when the corrupt parties are assumed to have too much power.

MPC has many applications and is particularly useful in situations in which pri-

vacy is paramount. A popular example is that of computing on private medical data,

in which multiple hospitals or data centres hold sensitive data on patients, and us-

ing MPC, researchers can analyse the data and perform aggregate statistical analysis

without directly learning the private information of individual data subjects. On the

commercial side, it has been shown how to use MPC: for private contact discovery, al-

lowing two users of a messaging service to discover they are both users of the service

without revealing this metadata to the service provider [DMP11]; in machine learn-

ing, to allow a model trained on a private dataset to be queried on a client’s private

input [MRSV19]; in online advertising, to correlate purchases with whether or not an

advert has been shown, to determine its success rate [PSSZ15]; and in private auctions,

of which the quintessential example is the Danish Sugar Beet auction [BCD+09], and

without mention of which no thesis on MPC would be complete.

1.1 This work

In this thesis, various aspects of secret-sharing-based MPC are explored and improved

on. The focus is on evaluating arithmetic circuits on secret inputs in a finite field, i.e.

addition and multiplication, but many of the protocols can be executed over F2, the

Galois field of two elements. Computation over a large prime field is often used to em-

ulate arithmetic over Z; one of the major downsides of protocols designed to allow for

computation of such circuits is that non-linear operations – such as comparisons of

secret-shared data – can be expensive in terms of communication; one of the goals of

this thesis to to reduce this cost. The other main goal is to provide efficient protocols

for so-called Q2 access structures by taking information-theoretic protocols and using

2

1.2. CHANGES TO SUBMISSIONS AND NEW CONTRIBUTIONS

computational assumptions to improve on them.

In Chapter 3, proofs of folklore results that apply to linear secret-sharing schemes

realizing Q2 access structures are given. These theoretical results are used to define a

practically-efficient actively-secure opening procedure, which is put to good use in later

chapters.

The preprocessing model involves splitting computation into an expensive prepro-

cessing phase and a cheap online phase. Before discussing specific MPC protocols, Chap-

ter 4 provides an overview of how preprocessing is used in MPC in different ways, and

gives general constructions that are used throughout the remainder of the thesis.

Chapter 5 gives a protocol to “transfer” secret-shared preprocessed data from a set

of servers to a set of clients very cheaply, with the idea that low-powered clients can

use the preprocessed data to evaluate a circuit by executing the online phase, without

having to execute the preprocessing phase themselves.

Using the results from Chapter 3, in Chapter 6 a computationally-secure protocol

that uses replicated secret-sharing to evaluate a circuit is given. Noting the inefficiency

of replicated secret-sharing for a large number of parties, in Chapter 7 the results are

generalized to an arbitrary secret-sharing scheme, which scales much better with the

number of parties.

Finally, in Chapter 8, a “mixed” protocol is given, that allows switching between gar-

bled circuits and secret-sharing, with active security, in the general multi-party setting.

Other works focus on small numbers of parties and involve asymmetric procedures that

do not appear to be amenable to generalization to large numbers of parties in the active

security setting. The experimental results show there is a tradeoff between preprocess-

ing computation and online computation.

1.2 Changes to Submissions and New Contributions

The work of this thesis is taken mostly from the following publications:

• [SSW17] When It’s All Just Too Much: Outsourcing MPC-Preprocessing, published

at IMACC 2019, joint work with Peter Scholl and Nigel Smart.

• [KRSW18] Reducing Communication Channels in MPC, published at SCN 2018,

joint work with Marcel Keller, Dragos Rotaru, and Nigel Smart.

3

CHAPTER 1. INTRODUCTION

• [SW19] Error Detection in Monotone Span Programs with Application to Commun-

ication-Efficient Multi-party Computation, published at CT-RSA 2019, joint work

with Nigel Smart.

• [RW19] MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Se-

curity, in submission, joint work with Dragos, Rotaru.

Descriptions in the preliminaries borrow from these works. Many of the definitions of

functionalities and protocols (and consequently proofs) are standard and immutable. All

of the proofs have been reformulated and tidied.

Chapter 3 All of the results of this chapter are taken from [KRSW18,SW19], and have

been revised into a general form to unify the works. The proofs in these papers

were completed by me, as were the main results on error-detection for Q2 access

structures.

Chapter 4 Section 4.3 is the protocol from [SW19]; however, Section 4.2 that models

this protocol independently as a functionality, and the proof, are new. Section 4.5,

including FABB and ΠOnline, are standard definitions from the literature, and the

proof is new but is a standard argument. Section 4.6 that defined FPrep is based on a

standard definition of an MPC functionality, for example as described in [LPSY15].

Section 4.7 is new as it explains how to model SPDZ using the newly-defined func-

tionality FOpen.

Chapter 5 Section 5.3 is new. Section 5.4 is unchanged from the publication, although

the proofs (which were completed by me for the publication) have been revised and

unified with the exposition for the Q2 case.

Chapter 6 Most of the results of this chapter are taken from [KRSW18], for which the

main MPC protocol formulation was a joint effort but the proofs were completed by

me. The main difference in this thesis is that a different formulation of functionali-

ties for generating random secrets in Section 6.3 is presented, in order to make the

constructions throughout the thesis more modular. These new formulations, how-

ever, are very well-known and standard results.

Chapter 7 This chapter uses the fact that ΠOnline can be executed for any access struc-

ture, which was the idea in [SW19]. Section 7.3 is new. Section 7.5 is a revision of

the costs given in [SW19] according to the new results from Section 7.3.

4

1.2. CHANGES TO SUBMISSIONS AND NEW CONTRIBUTIONS

Chapter 8 All of the results of this chapter are taken from [RW19], revised to use the

functionality FPrep, which replaces a functionality FMPC from the original work. The

idea of using cut-and-choose type protocols was a joint effort with my coauthor; the

formulation of the protocols and proofs were my contribution. The implementation,

discussed briefly in Section 8.6, was completed by the coauthor of this work.

5

Chapter 2

Preliminaries

This chapter gives the standard definitions, notation, and cryptographic primitives that

are used repeatedly throughout this thesis. A large section is devoted to describing the

universal composability (UC) model of Canetti [Can00], since all of the protocols in this

thesis are proved secure in this model.

2.1 General

2.1.1 Notation

The set of integers is denoted by Z, the set of natural numbers (excluding 0) by N, and

the set of real numbers by R. A set is called countable if it is in bijection with a subset of

N. The symbol := is used to denote assignment, so that x := a means that the variable x

is assigned the value a. Intervals are defined in the following ways: [a,b] := {x ∈R : a ≤
x ≤ b}; (a,b] := {x ∈R : a < x ≤ b}; [a,b) := {x ∈R : a ≤ x < b}; and (a,b) := {x ∈R : a < x < b}.

The set [1,n]∩Z= {i ∈Z : 1≤ i ≤ n} is written as [n]. For a real number a ∈R, the value

dae is defined as min{b ∈Z : b ≥ a}, and bac is the value max{b ∈Z : b ≤ a}. The function

log will always be used to refer to the base-2 logarithm. For a set S its cardinality will

be denoted by |S|, and its powerset by 2S. The notation S∗ is used to describe the set of

all words of finite length comprised of symbols in S. An element str of {0,1}∗ is called a

binary string, or simply string, and its length is denoted by |str|. The notation a ∈ A is

used to denote set membership, and the notation A 3 a is used to indicate that A is the

variable under consideration and that only those sets A containing the element a are to

be taken: thus {A ∈ {Ak}k∈[t] : A 3 a} is the set of all sets in {Ak}k∈[t] that contain a.

For any ring R, the value char(R), called the ring’s characteristic, is defined as the

7

CHAPTER 2. PRELIMINARIES

smallest positive integer c ∈Z such that c·x = 0 for all x ∈ R. The finite field of q elements

will be denoted by Fq; it is well known that q must be a prime power. A field is called

Boolean or binary if it is a (possibly trivial) finite field extension of F2. When the specific

field is unimportant it will be written as F.

Matrices will be written as uppercase letters and vectors in bold1. The space of all

matrices of dimension m×d with entries in the field F is denoted by Fm×d. Vectors are

assumed column vectors (i.e. elements of Fm×1
q) unless otherwise stated. The notation

0 and 1 is used to describe the “all zeroes” and “all ones” vector, respectively; the di-

mensions are omitted where it is clear from context. Vectors in Fm
q are identified with

elements of Fm×1
q – that is, column vectors are considered to be matrices with a single

column. If M ∈Fm×d
q then the element in the jth column of the ith row is written as Mi, j.

If x ∈Fm
q then its ith component is written as xi.

The function supp :Fm → [m] is defined to be s 7→ {i ∈ [m] : si 6= 0}, called the support

of s. The Hamming weight of a vector is defined as HW(s) := |supp(s)|. For a matrix

M ∈ Fm×d, its transpose will be denoted by M>. Given a set S ⊆ [m], the submatrix

denoted by MS is the matrix formed by concatenating all rows of M indexed by S. If S

is a singleton set {i} then Mi is used in place of M{i}.

The definition of the orthogonal complement V⊥ of a vector space V ⊆ Fd is as fol-

lows:

V⊥ =
{
w ∈Fd : 〈v,w〉 = 0

}
where 〈v,w〉 = v> ·w is the standard inner product. A linear map L : V → W between

vector spaces V ⊆Fd and W ⊆Fm can be represented by a matrix M ∈Fm×d, with respect

to some choice of bases for V and W . By the Fundamental Theorem of Linear Algebra,

im(M>)= ker(M)⊥ . The space im(M>) is normally described as the coimage of M and is

denoted by coim(M), which is the space spanned by the rows of M. Similarly, the space

ker(M>) is called the cokernel of M and is denoted by coker(M).

The level of security a protocol offers is parameterized by the computational security

parameter, κ, and the statistical security parameter, σ, which are used to quantify the

ability of an adversary to break the scheme. Roughly speaking, the former is used to

quantify the computational power required to break the scheme and the latter to bound

the ability of the adversary to learn secret information or the chance of cheating without

detection. Later, there will be detailed discussion of how these parameters are used to

define the security of a scheme.
1A special notation will be used for the share vector of a secret in a linear secret-sharing scheme but

they will not be written in bold. This is discussed in Section 2.4.

8

2.1. GENERAL

2.1.2 Complexity

The notation ascribed to Bachmann and Landau for describing the asymptotic behaviour

of functions will be used throughout. A function f :Z→R is said to be O(g) if |g| even-

tually bounds | f | from above; that is, if ∃ K ∈R and ∃ N ∈N such that | f (n)| ≤ K · |g(n)|
for all n > N. The function is said to beΩ(h) if |h| eventually bounds | f | from below; that

is, ∃ K ∈R and ∃ N ∈N such that | f (n)| ≥ K · |g(n)| for all n > N. The function f is said

to be Θ(f ′) if it is both O(f ′) and Ω(f ′).
The two primary models of computation considered in this thesis are circuits and

Turing machines. The precise formulations will not be given as they can be found in any

undergraduate textbook on complexity theory, and instead the focus here is on agreeing

the naming conventions used in later chapters.

A circuit is a representation of a function f : Rk1 → Rk2 , where R is a ring and k1 and

k2 are the numbers of inputs and outputs, respectively, as a directed acyclic graph for

which each vertex has indegree 2 and outdegree 1. Vertices are called gates and edges

are called wires, and a certain set of wires are designated as input wires and another set

as output wires. Arithmetic circuits evaluate functions for any ring R, where all gates

represent either addition, +, or multiplication, ×, in R. Boolean circuits are a special

case in which the ring is F2, where addition and multiplication correspond to the logical

operations XOR and AND, respectively. The circuit is evaluated on an input by setting

the appropriate input wires and proceeding gate-by-gate through the graph, executing

the operation defined by the vertex at each step. Circuits are called a uniform model

of computation since all inputs have a fixed length – specifically, the number of input

wires specified in the circuit description.

A Turing machine is an abstract machine that processes inputs on a read-only input

tape according to some program description called a protocol, possibly making use of a

random tape which is another read-only tape that contains an infinitely long string of

uniformly random inputs, and that writes to an output tape. Processing involves reading

from and writing to different tapes, and changing between finitely-many states. Turing

machines are non-uniform, meaning they can take arbitrary length (but polynomially-

bounded) inputs. An interactive Turing machine (ITM) is a Turing machine that has an

input tape that can be written to by other ITMs. Because it depends on inputs provided

by other ITMs, it is said to be reactive.

A Turing machine A is said to have oracle or black-box access to an oracle O if it can

make queries and receive responses but does not observe the internal behaviour – the

9

CHAPTER 2. PRELIMINARIES

oracle is therefore a “black box” to the querying entity. This access will be denoted by

AO .

A function will be called efficiently computable (or just efficient) if it can be computed

by a Turing machine in polynomial time, which means that the number of reads from

tapes, writes to tapes, and state transitions can be expressed as a polynomial function

of the input length. An algorithm is called probabilistic polynomial-time (PPT) if it is

probabilistic – i.e. part of the input is a polynomially-bounded random tape – and runs

in polynomial-time. Throughout this thesis, a computation is said to run in polynomial

time, or a probability is said to be negligible, if it is polynomial or negligible, respectively,

as a function of the relevant security parameter.

More generally, an event will be said to occur polynomially-many times if it occurs

a number of times that grows as a polynomial function in the input length. If an event

occurs polynomially-many times but the precise polynomial is unimportant, the function

is denoted by poly :R→R. A function is called negligible, and where the specific function

is unimportant is denoted by negl :N→R, if for every polynomial p ∈Z[X], there exists

an N ∈N such that negl(n)≤ 1/p(n) for all n > N.

Cryptographic assumptions are based on the idea that superpolynomial-time algo-

rithms become intractible for a large enough input length (i.e. computational security

parameter). The choice to parameterize security in terms of exponential (and negligible)

functions is essentially arbitrary, although a useful feature of such functions is that a

negligible function multiplied by a polynomial function is still negligible. The upshot of

this is that a polynomially-bounded adversary still has negligible advantage in winning

a security game even if it is permitted to observe an event that occurs with negligible

probability a polynomial number of times. Consequently, one can choose the security

parameters in such a way that a computationally-bounded adversary cannot win a se-

curity game except with negligible probability.

The class of non-deterministic polynomial-time algorithms NP can be defined as the

set of problems solvable in polynomial time by a non-deterministic Turing machine (i.e.

those that allow branching in the protocol description), or as the set of problems whose

solutions are verifiable in polynomial time.

2.1.3 Statistics and Probability

An event will be said to occur with overwhelming probability in the security param-

eter λ if it occurs with probability at least 1−negl(λ), and with high probability if it

10

2.1. GENERAL

occurs with probability at least 1−1/poly(λ).

An ensemble or family of distributions is a sequence of distributions over the same

sample space Ω, parameterized by a subset of N. For a set S, the notation x ← U (S)
is used to say that x is sampled uniformly at random from S. For a distribution D
over a sample space Ω, the notation x ← D (Ω) is used to say that x is sampled from

Ω according to distribution D. More generally, one defines a σ-algebra over Ω and a

distribution D over this algebra which enables sampling a set S ← D (Ω); in this thesis,

this is taken to mean that |S| elements are successively, independently sampled from Ω

according to distribution D. A set S is said to be sampled subject to some constraint if it

is sampled from the space of all possible sets where the constraint holds; for example,

another way of writing that a set {xi}n
i=1 ← U (F) is sampled subject to

∑n
i=1 xi = 0 is

to sample {xi}n
i=1 ← U

({
{xi}i∈[n] :

∑
i∈[n] xi = 0

})
. In this particular case (that appears

frequently in this thesis), it is equivalent to sampling i∗ ← U ([n]) arbitrarily, sampling

{xi}i∈[n]\{i∗} ← U (F), and setting xi∗ :=−∑
i∈[n]\{i∗} xi.

Computational Indistinguishability

Definition 2.1 (Computational indistinguishability). Two ensembles of distributions

D = {Dk}k∈N and E = {Ek}k∈N, where each distribution is over the same sample space Ω,

are said to be computationally indistinguishable or computationally close if for every

PPT Turing machine A, there exists a negligible function negl :N→R and some K ∈N
such that ∣∣∣∣ Pr

x ← Dk(Ω)
[A(x)= 1]− Pr

x ← Ek(Ω)
[A(x)= 1]

∣∣∣∣< negl(k)

for all k > K . This indistinguishability is denoted by D ∼c E .

Statistical Indistinguishability

Definition 2.2 (Statistical distance/Total variation distance). Let D and E be two dis-

tributions over the same sample space Ω. Then the statistical distance is defined as

∆(D,E)= sup
S⊆Ω

∥∥∥∥ Pr
X ← D(Ω)

[X = S]− Pr
X ← E(Ω)

[X = S]
∥∥∥∥∞

.

In the case where Ω is countable, the definition

∆(D,E) := 1
2 ·

∑
ω∈Ω

∣∣∣∣ Pr
x ← D(Ω)

[x =ω]− Pr
x ← E(Ω)

[x =ω]
∣∣∣∣

can be used, which may be easier to compute.

11

CHAPTER 2. PRELIMINARIES

Definition 2.3 (Statistical indistinguishability (version 1)). Two families of distribu-

tions D = {Dk}k∈N and E = {Ek}k∈N, where each distribution is over the same sample

space Ω, are said to be statistically indistinguishable or statistically close if there exists

a negligible function negl : N→R for which there exists a K ∈N such that ∆(Dk,Ek) <
negl(k) for all k > K . This indistinguishability is denoted by D ∼s E .

Statistical indistinguishability may be defined in the following way for comparison

with the computational case. Roughly speaking, Definitions 2.3 and 2.4 are equivalent

because the distance between the families of distributions is independent of any distin-

guisher attempting to determine where the distributions differ.

Definition 2.4 (Statistical indistinguishability (version 2)). Two ensembles of distri-

butions D = {Dk}k∈N and E = {Ek}k∈N, where each distribution is over the same sample

space Ω, are said to be statistically indistinguishable or statistically close if for every

(not necessarily polynomial-time) Turing machine A, there exists a negligible function

negl :N→R and some K ∈N such that∣∣∣∣ Pr
x ← Dk(Ω)

[A(x)= 1]− Pr
x ← Ek(Ω)

[A(x)= 1]
∣∣∣∣< negl(k)

for all k > K . This indistinguishability is denoted by D ∼s E .

2.1.4 Combinatorics

Knuth Shuffle

The version by Durstenfield [Dur64] of the algorithm due independently to Knuth [Knu97,

§3.4.1] and Fisher and Yates [FY48] for randomly permuting a tuple (1, . . . ,n) is given

in Figure 2.1.

12

2.2. UNIVERSAL COMPOSABILITY

Knuth Shuffle

Input Positive integer n ∈N and a seed seed. (The seed is implicitly used to perform all sampling

deterministically.)

Output Random permutation, π ∈ Sn.

Method
1. Set v= (1, . . . ,n).

2. For i := 1 to n−1,

a) Sample j ← U ({i, . . . ,n}).

b) Switch vi and v j.

3. Set π to be the bijection π : [n]→ [n] defined by i 7→ vi.

Figure 2.1: Knuth Shuffle.

2.2 Universal Composability

To prove a protocol is secure, one sets up a “security game” that models possible be-

haviour of an adversary and shows that if there exists an adversary that beats the game

then some well-established computational hardness assumption is false. In the security

game, a challenger poses an arbitrary instance of the computationally-hard problem to

the adversary, which must attempt to solve the problem efficiently with non-negligible

advantage over guessing the answer to the problem, given oracle access to an adversary

against the protocol. If such an adversary can be constructed, then there can be no ad-

versary against the protocol since its existence implies an efficient solution to the hard

problem, which does not exist by assumption. This is known as a reduction, since the

security of the protocol is reduced to the security of the computational assumption. The

protocol is said to be secure under the given assumption.

Security games typically consist of asking the adversary to distinguish between dis-

tributions, in which case the advantage of the adversary in winning the security game

is defined in the following way.

Definition 2.5 (Distinguishing advantage). Let D and E be two distributions. The dis-

tinguishing advantage of a distinguisher A between these distributions is the value

Adv(A) := ∣∣Pr[A(D)= 1]−Pr[A(E)= 1]
∣∣.

Finding the “right” assumption is important from both feasibility and security per-

spectives: if it is not clear how to prove the protocol is secure based on a given hard

13

CHAPTER 2. PRELIMINARIES

problem, then it may be necessary to prove it secure under a stronger assumption. As

an example, consider the hardness assumption called the computational Diffie-Hellman

problem (CDH):

Computational Diffie-Hellman Fix a group G generated by some element g ∈ G, so

G = {gk : k ∈Z}. Given ga and gb, compute ga·b.

One example of a stronger hardness assumption is the decisional Diffie-Hellman (DDH)

problem:

Decisional Diffie-Hellman Fix a group G generated by some element g ∈ G, so G =
{gk : k ∈Z}. Given (ga, gb, gc), determine if c = a ·b.

This is a stronger hardness assumption since any adversary with access to a CDH ad-

versary solving the computational problem can be used to determine ga·b, and compared

with the value gc to give a solution to the DDH problem.

Towards a discussion of the language of “oracle access”, consider the gap Diffie-

Hellman problem:

Gap Diffie-Hellman Fix a group G generated by some element g ∈ G, so G = {gk :

k ∈Z}. Given ga and gb, find ga·b given oracle access to a decisional Diffie-Hellman

oracle.

In this case, the protocol would be considered secure under the so-called “gap Diffie-

Hellman” assumption. Another way to say the same thing is to say that the protocol is

secure under the computational Diffie-Hellman assumption given access to a decisional

Diffie-Hellman oracle. This is a more generic way to describe the security of protocols

under standard security assumptions without the need to invent names for interme-

diate assumptions. Indeed, this language is by far the most common in the security

framework that will be considered in this thesis.

Motivating Composable Security

Historically, most cryptographic protocols have been proved secure in the standalone

model, in which one is only concerned about the security of a single execution of the

protocol, isolated from any other information potentially in the system in which the

protocol is run. In particular, this means the adversary may only query oracles whose

scope is limited to the security game. Consequently, proofs in this model offer no claims

14

2.2. UNIVERSAL COMPOSABILITY

of security when executing multiple protocols (or the same protocol multiple times si-

multaneously) using the same oracles (understood as PPT ITMs) for every game. For

example, if a game forbids the adversary from making specific oracle queries based on

the messages sent to and from the challenger of one game, this does not prevent the

adversary from making the forbidden oracle queries in a second game. This is not al-

ways directly problematic, but it highlights that designing cryptographic protocols that

are secure even when executed as part of a larger system while maintaining security is

non-trivial.

This problem motivated the development of a composable security framework in

which protocols could build on the security of others without the need to prove the se-

curity from the ground up each time, mirroring the standard mathematical approach of

building theorems by first proving lemmata and propositions. The UC framework intro-

duced by Canetti [Can00] is a security definition with a strong composability guarantee:

any protocol proved secure retains its security even when executed alongside, sequen-

tially or simultaneously, arbitrarily many other protocols, or even the same protocol. At

its core is the composition theorem:

Theorem 2.1 (Informal, [Can00]). Suppose the protocol Π UC-securely realizes F, and

that Π′ UC-securely realizes F ′ and uses F as a subroutine. Then Π′ UC-securely real-

izes F ′ when replacing F with Π.

The upshot of this theorem is that if a protocol makes use of a functionality as an

oracle, then this functionality may be replaced by any subprotocol that securely real-

izes it and the main protocol retains the same security. Multi-party computation (MPC)

is a perfect use case for composable protocols since the goal of computation on private

data is a complex task requiring multiple cryptographic primitives to achieve full secu-

rity against an active adversary. In this thesis the variant of UC taken from [Can00,

v.2018/12/31, §4.4.2] is used, in which the simulator interacts with the adversary in a

black-box way; Canetti showed that this is equivalent to the general definition of UC

security that he gives.

Defining Composable Security

To understand composable security, it is helpful to recall the more general notion of

security for cryptographic protocols. To prove the security of a protocolΠ in practice, one

constructs a trusted third party called a functionality F that performs an “ideal” version

of Π, that leaks only an “ideal” amount of information to the adversary – that is, it leaks

15

CHAPTER 2. PRELIMINARIES

exactly as much as the protocol architect decides is acceptable, and no more. One then

argues that Π leaks at most as much as F by showing that the leakage revealed in the

execution of Π can be simulated using only the ideal leakage from F. Since F is secure

by construction and nothing more can be learnt from Π than can be learnt from F, the

protocol is secure. More concretely, one shows that for any “real-world” adversary A
against Π, there exists an “ideal-world” adversary S, called the simulator, against F
with black-box access to A, that simulates the protocol towards A, such that A cannot

tell whether it interacted with S or with real honest parties.

Towards the goal of protocol composition, a stronger guarantee is required: the exe-

cutions should appear the same not only to the adversary, but to any so-called environ-

ment in which the protocol is executed. The execution environment, more formally, is

a non-uniform PPT ITM distinguisher Z that must determine which world of the two

worlds – ideal or real – is being executed, with non-negligible advantage over guess-

ing. The environment is more than a mere observer of the execution: Z is allowed to

choose honest parties’ inputs and observe their final outputs, and may interact arbi-

trarily with A (which controls the corrupt parties) throughout the protocol, including

specifying the code A runs. The only information hidden from Z is the intermediate

communication and computation between the first inputs and final outputs of any hon-

est party (either executing as in the description of the protocol or with the ideal func-

tionality), and their random tapes. The idea behind this definition of Z, which has a

considerable amount of information to help it distinguish, is that the protocol may be

run in some setting in which inputs are received by or sent to some other – potentially

corrupted – process in a larger system, and that the corrupt parties in the current proto-

col execution may be under control of the environment. In other words, the environment

captures exactly everything that is external to the protocol execution.

With these “composable” modifications to the security modelling, a protocol is said

to realize a functionality UC-securely if for every real-world adversary interacting with

real honest parties in the protocol there exists an ideal world simulator interacting with

the functionality such that the executions of the two worlds are indistinguishable from

one another to the environment.

The notation F will be used to denote the ITM for the ideal functionality itself,

as well as the algorithm it runs. Similarly, Pi denotes the ith party out of a set P of

n parties, indexed by [n] and executes the corresponding instructions of the protocol

written as Π. The environment is a PPT distinguisher Z that, given any adversary A,

a random tape, a security parameter, and an execution of Π or F, outputs a guess as

16

2.2. UNIVERSAL COMPOSABILITY

to which world was executed. The two different possible worlds in which the execution

occurs are shown in Figure 2.2. Notice that in both the real and ideal executions, the

environment is being made to “think” it is interacting with real honest parties as in the

protocol description.

P1

P2

P3P4

P5

A

Z

...

(a) Real world.

P1

P2

P3

F

S

Z

...

P1

P2

P3P4

P5
A

(b) Ideal world.

Figure 2.2: Real World Versus Ideal World.

To formalize the definition, for a fixed PPT A acting on behalf of corrupt parties, and

either the protocol Π or the algorithm executed by F, for every Z the following random

variables are defined:

EXEC(Z,A,Π) :=
{
EXEC(Z,A,Π)(λ,z)

}
λ∈N,z∈{0,1}∗

and

EXEC(Z,SA ,F) :=
{
EXEC(Z,SA ,F)(λ,z)

}
λ∈N,z∈{0,1}∗

17

CHAPTER 2. PRELIMINARIES

over the set {0,1}, where z is an input the environment handed to it at the beginning

(roughly speaking the input from another part of the system, and can be thought of as

an “auxiliary information” tape) and λ is the security parameter, and the distribution

is taken over the random tapes of all ITMs. The variable EXEC() outputs 0 if Z guesses

the execution is ideal and 1 if Z guesses the execution is real. The security guarantee is

that for every A there exists an S =SA such that for every Z it holds that

EXEC(Z,A,Π)∼s EXEC(Z,SA ,F).

In more detail, if the indexing set of corrupt parties is denoted by A and the number

of communication rounds (defined in detail later) by r, then it must hold that{
{INPUTSPi }i∈[n]\A,

({MESSAGESA↔Pi }i∈[n]\A)r
k=1,

(MESSAGESA↔Z)r
k=1,

{OUTPUTSPi }i∈[n]\A

}
λ∈N,z∈{0,1}∗

∼s

{
{INPUTSPi }i∈[n]\A,

({MESSAGESA↔SPi
}i∈[n]\A)r

k=1,

(MESSAGESA↔Z)r
k=1,

{OUTPUTSPi }i∈[n]\A

}
λ∈N,z∈{0,1}∗

where the distributions are taken over the random tapes of honest parties, and the ran-

dom tape of A which is determined by the environment’s auxiliary information tape z,

and SPi denotes the part of the simulator S that is responsible for emulating Pi. Note

that only the honest parties are assumed to have inputs, reflecting the fact that A
merely sends messages and S deduces the implicit inputs to pass on to F. The “inputs”

of corrupt parties are therefore included in the distribution of the execution implicitly as

part of the variable MESSAGESA↔S , not in the INPUTS variable. Similarly, corrupt par-

ties need not produce “final outputs” since Z can compute anything the corrupt parties

can after the final messages in the protocol have been sent.

Notice that the messages amongst all parties, except corrupt to corrupt, should ap-

pear in the distribution. Technically speaking, the messages amongst honest parties

should be included in the distributions, but usually secure channels are assumed, or

broadcasts over authenticated channels, so this communication does not reveal any in-

formation to the environment.

Constructing a Simulator

Throughout the simulation, S runs A as a black box, and any messages output by A in-

tended for Z are handed to Z, and the response is handed back to A. The full transcript

as viewed by A is passed on from S to Z. As for real honest parties, Z provides initial

18

2.2. UNIVERSAL COMPOSABILITY

inputs and receives final outputs in exactly the same way in both worlds. Thus the only

potential differences between executions are the values of the inputs and outputs, and

the transcript produced.

Throughout the execution of the protocol between A and S, the simulator must act

on behalf of “emulated” honest parties. The requirements on the distributions derived

from the full execution transcript, i.e. all inputs and outputs, and the messages the sim-

ulator generates on behalf of emulated honest parties, can be expressed as the following

three (informal) criteria:

Correctness Final outputs of all parties in a simulation of the protocol where the sim-

ulator is handed the real inputs of honest parties should result in the same output

as a real execution of the protocol.

Extractability The simulator must be able to deduce the set of inputs of corrupt par-

ties from the transcript.

Equivocation The simulator must be able to generate a transcript that convinces the

environment that the set of all messages sent and received in the execution is self-

consistent.

These properties are not entirely independent, but they summarize the key points

necessary for simulation. (For example, if Correctness and Equivocation hold, then the

simulator must have been able to extract inputs of corrupt parties, or guess them with

overwhelming probability.) A couple of important observations are highlighted here.

Extractability of the inputs of A is necessary in order for F to compute and return

the same output as would have been computed in the real world – i.e. for Correctness to

hold. Without this, even if the corrupt parties executed the protocol honestly, no party

would output the correct result (with high probability). Note that the ability of the

simulator to extract the inputs implies the set of honest parties can also do the same,

which is potentially problematic; in practice, however, the simulator is assumed to have

access to some trapdoor information in the form of a setup assumption to allow it to

extract, as discussed in detail in Section 2.2. It is important to keep in mind that corrupt

parties are not assumed to have explicit inputs, but implicit inputs are deduced from

the communication between A and S.

For Equivocation to hold, self-consistency of messages is required, which is (infor-

mally) defined as follows: the messages for final outputs must be simultaneously con-

sistent with all previous messages and must result in the adversary computing the

19

CHAPTER 2. PRELIMINARIES

same output that it would have computed in a real execution, despite the fact that emu-

lated communication throughout the protocol generated by S does not – indeed, cannot

– depend on honest parties’ inputs since they are unknown to the simulator in the real-

world experiment. Thus Correctness and Extractability on their own are not enough to

ensure indistinguishability of transcripts.

Proof of indistinguishability

Once a simulator has been constructed, it is necessary to prove that it indeed pro-

vides a view indistinguishable from a view in the real world. To do this, a sequence

of (polynomially-many) “hybrid” worlds is defined in which S is initially given the in-

puts of all honest parties, and then in each subsequent world S has one input fewer;

in the last hybrid world S knows the inputs of no honest parties. Thus the first and

last worlds are perfectly indistinguishable from the real and ideal worlds respectively,

by definition. Then it only remains to prove that consecutive hybrid worlds in the se-

quence are indistinguishable.

In the most formal treatments, a proof should specify a simulator for each hybrid

world and show that there is no distinguisher between any consecutive pair. However,

sometimes the ability of the simulator to extract inputs and equivocate outputs is inde-

pendent of the simulator’s knowledge of the honest parties’ inputs, and in this case the

argument for security can be summarized by showing that the protocol transcript re-

veals no information to the environment, which trivially means the environment cannot

distinguish.

Proving the indistinguishability of worlds will often involve giving a reduction to a

primitive being used in the protocol. For example, recall that the simulator must “fake”

the inputs of honest parties for which it does not know the input, and suppose that

the protocol involves each party broadcasting an encryption of their input. Instead of

broadcasting an encryption of an honest party’s input (which it does not know), the

simulator will send an encryption of 0. Then any environment that can distinguish

between worlds can distinguish between an encryption of 0 and an encryption of this

input. Thus the security reduces to the security of the encryption scheme.

The ability of the environment to distinguish is parameterized by the security pa-

rameters, κ and σ. The following definitions are used throughout this thesis, primarily

in theorem statements claiming that protocols securely realize functionalities in the UC

framework.

20

2.2. UNIVERSAL COMPOSABILITY

Definition 2.6. A protocol is said to realize a functionality UC-securely with statisti-

cal security parameter σ if any environment can distinguish with probability at most

O(2−σ).

Definition 2.7. A protocol is said to realize a functionality UC-securely with com-

putational security parameter κ if there exists an environment for which there is a

polynomial-time reduction to a computationally hard problem which has computational

security κ.

Setup Assumption

It is reasonable to wonder why the simulator should have the ability to extract (im-

plicit) inputs of the adversary based on the messages it sent: indeed, this is undesirable

as it implies the adversary should be able to do similarly from honest parties’ messages.

The classic example of this problem was given by Fischlin and Canetti [CF01]: the exis-

tence of a simulator for a commitment scheme in the UC model implies the commitment

cannot be hiding, since the simulator must be able to extract the message from the com-

mitment, and hence any “real” honest party would also be able to extract the message.

(See Section 2.3.5 for the properties of commitment schemes.)

This demonstrates that there are some functionalities that can never be realized in

the UC framework as described so far. However, giving the simulator some trapdoor

information via a trusted setup (i.e. a setup assumption) can give secure protocols. In

such a situation, instead of giving a protocol in the plain (or standard) model, a protocol

is said to be realized in a hybrid model, in which the existence of one or more ideal

functionalities (oracles) is assumed.

The key difference to a proof in a hybrid model and a proof in the plain model is that

the simulator is required to emulate the functionality to A. This gives the simulator a

limited ability to program the oracle with information of its choosing, although the sim-

ulated oracle should be indistinguishable from an oracle executed honestly, otherwise

the environment can use it to distinguish between worlds.

Random Oracle Model In the random oracle model (ROM), all parties in a proto-

col execution have access to an oracle that, on input some query, returns a uniformly-

sampled output, but always the same output for the same query. In the proof of security

for a protocol in the ROM, the simulator is allowed to program the random oracle – that

is, it emulates the oracle towards the adversary, but it need not execute the exact ideal

21

CHAPTER 2. PRELIMINARIES

behaviour given in the oracle description. As stated above more generally, the simula-

tor is not allowed to deviate “too much” from the oracle’s description, for example by

sampling according to a different distribution, since this may allow the environment to

determine that a simulation is taking place. By considering the functionality FRO in

Figure 2.3, the notion of the FRO-hybrid model coincides with the classical notion of the

ROM.

Random Oracle FRO

Initialize On input (Initialize, X , sid) where sid is a new session identifier and X is a set,

create a new dictionary DB with identifiers DB.Ids.

Random Element On input (id , sid), if id ∈ DB.Ids then return DB[id], and otherwise sample

DB[id] ← U (X) and return DB[id].

Figure 2.3: Random Oracle Functionality, FRO.

In the real world, random oracles taking polynomial-length inputs cannot exist since

then a truly random oracle must store exponentially-much data while being efficiently

queryable. This necessitates the use of hash functions. Typically, protocols require the

ROM if stronger properties of a cryptographic hash function are needed than those

usually given (i.e. than those given in Section 2.3.1), but will always be instantiated in

a real-world protocol using a hash function.

The ROM has received criticism as there are some artificial protocols proved secure

in the random oracle model which cannot be instantiated securely by any hash function

[CGH98]. Nevertheless, it is generally believed that protocols secure in the random

oracle model are secure against practical attacks [BR93].

Common Reference String Model In the common reference string (CRS) model, all

parties are handed a string sampled uniformly from an agreed distribution. The benefit

of the CRS model over the ROM is that one need not make the heuristic assumption that

a hash function behaves like a random oracle. However, it is often more challenging to

prove in this model as the simulator has much more limited power to equivocate the

transcript.

This model will not be discussed further except to say that it is, in some sense, one

of the alternative “base cases” for UC protocols for those who wish to avoid the ROM;

for example, Canetti and Fischlin [CF01] showed how to obtain UC commitments in the

CRS model.

22

2.2. UNIVERSAL COMPOSABILITY

Global Setup Suppose a protocol Π securely realizes F in the FRO-hybrid model, and

suppose Π̃ securely realizes F̃ in the FRO,F-hybrid model. The composition theorem

only guarantees security when each subprotocol has a session-specific instantiation of

the random oracle, which in particular means that the same query made to the two

different oracles will (with high probability) lead to different outputs. However, in the

real world a random oracle is usually replaced with a single hash function everywhere

it appears in the protocol description. A model known as the global ROM [CDPW07]

allows exactly this global replacement of the oracle with a hash function.

Canetti et al. [CDPW07] showed that there is a separation between the attacks

mountable against protocols in the non-global random oracle model and those in the

global random oracle model. The salient point for this thesis is that all functionalities

presented will keep track of the current session using a session identifier sid. If a party

calls the functionality with sid different from what was sent in its initialization pro-

cedure, the functionality outputs the message Reject to all parties and awaits another

message. For the sake of brevity this is taken to be implicit and will not be stated each

time a functionality is defined. The first step of almost all protocols in a given hybrid

model is for the parties to agree on a session identifier and initialize the oracle, the ex-

act method of which will not be discussed as its choice does not affect the security of the

protocols and so may be derived from any public information.

To save on denoting one session identifier for every distinct type of oracle (for exam-

ple, one for a commitment functionality and one for a random oracle), it will be assumed

that these functionalities use the same session identifier; the conflict only occurs if two

of the same type of oracle (for example, two commitment schemes) are initialized with

the same sid. This reflects the idea that the whole protocol is “one session”, but note

that this is merely a choice of notation for this thesis and is not standard.

Theorem Statements

To enable theorem statements with a concrete “number of bits” of security, the following

definition is given.

Definition 2.8 (Security with parameter λ). Let Dk be a sequence of distributions pro-

duced by S and let Ek be a sequence of distributions produced by A. A scheme is said to

be secure with security λ (bits) if the parameter k is chosen so that negl(k)≤ 2−λ, where

negl is taken from Definition 2.3 in the statistical case λ = σ, or from Definition 2.1 in

the computational case λ= κ.

23

CHAPTER 2. PRELIMINARIES

Theorem statements in this thesis will use the terminology of the following defini-

tion.

Definition 2.9. The protocol Π is said to realize F UC-securely with statistical secu-

rity σ if for every A there exists an S such that the distinguishing advantage of any

environment Z is a negligible function in σ.

Observations And Usage of UC in This Thesis

Functionality Interactions Throughout this thesis the functionalities will be de-

scribed as interacting with the ideal-world adversary, that is, the simulator S. In the

literature, functionalities are variously described as interacting nondescriptly with “the

adversary” or directly with the environment. The choice to talk about interaction with S
is, compared with the former, to emphasize that the adversary is “ideal”, and compared

with the latter to highlight that the environment should not “know” whether or not the

functionality is being executed.

Agreement Outside the Protocol To avoid cluttering the functionalities with ex-

traneous information, in most of the algorithms presented there is no discussion of how

to agree on public information such as which parties are to execute a given protocol,

the access structure they assume or the linear secret-sharing scheme (LSSS) that will

be used. The reason for this is that such information is beyond the scope of the proto-

col: for example, provided the functionality accepts a single set of parties to execute the

protocol, its security holds.

Furthermore, all of the protocols in this thesis are secure against static adversaries

only, which means that the adversary can corrupt parties once at the start of the exe-

cution but not dynamically throughout. For this reason, there will not be discussion of

special messages sent from the adversary to the functionality to allow the corruption of

parties, as is common in the literature, and instead the functionality will be assumed

already to know which parties are corrupt, and therefore how to interact with different

parties.

The Rushing Adversary In a synchronous network setting, the adversary is allowed

to be “rushing” in the sense that it can receive all messages from all honest parties be-

fore deciding what message it will send. This is a weak assumption – i.e. the protocols

have a stronger security guarantee under this assumption – but it often makes the

24

2.2. UNIVERSAL COMPOSABILITY

simulation a little more involved. As this thesis deals with rushing adversaries, in sim-

ulation proofs the simulator will always send input to the adversary before it receives

the messages in the same round of communication.

Rewinding One key way in which the UC framework differs from that of the stan-

dalone model in terms of the proof technique is that the adversary cannot be rewound

by the simulator, since this would be observed by the environment and provide a way for

it to distinguish between worlds. The ability to rewind the adversary is a crucial ability

in some proofs, such as in proving soundness of zero-knowledge proof (ZKP) protocols.

To prove the indistinguishability of the transcripts, it is of course possible to rewind the

environment; however, this will never enable extraction of the inputs required for the

simulation since the reduction sits outside of the environment.

Such strong security comes at a cost: for even some “natural” cryptographic prim-

itives it has been shown there cannot exist a protocol that UC-securely realizes them

without a setup assumption. For example, to motivate their UC-secure commitment

protocol secure in the CRS model, Canetti and Fischlin [CF01] explained that any UC-

secure commitment protocol in the plain model cannot hide the committing party’s in-

puts (which is a required property of such schemes), since the UC-security implies there

is a simulator that can extract the message from the commitment without any trapdoor

information, which means that any corrupt party can do this in the real world with any

honest party’s commitment.

Convention for Description of Messages Sent In the proofs in this thesis, it will

be stated that messages are sent between the adversary and simulator to mean that, on

behalf of each honest party, the simulator communicates one or more messages to each

corrupt party (controlled by A) or vice versa, over the relevant point-to-point channel.

The reason for this abstraction is that such explanation is cumbersome and distracting

from the important points of the simulation. It is important, however, to note that mes-

sages sent from the adversary to the simulator need to be parameterized by an index for

honest parties, or otherwise express that this happens, because corrupt parties might

send different data to different honest parties.

Combined Security In the theorem statements, for protocols realized in hybrid mod-

els the level of computational or statistical security is described assuming a perfect re-

alization of the hybrid functionalities. This is to avoid making any assumptions on the

25

CHAPTER 2. PRELIMINARIES

realization of these sub-functionalities. In order to determine the overall security of a

given protocol, one must look at the security of the realization of every functionality. The

computational or statistical security of a protocol is the “worst” computational or statis-

tical security out of the protocols chosen to realize the hybrid-world functionalities.

Relaying Messages To the fullest possible extent, the job of the simulator is to act as

a relay between A and F, “translating” messages into the appropriate format back and

forth. Thus the simulator is sometimes said to “relay” messages between the two. This

is particularly useful language in the following note on extending functionalities since

messages need no translation there.

Extending a Functionality One common way to create a functionality is to con-

struct a functionality that performs a subset of the desired commands and then to “ex-

tend” it with new commands; in this case, the latter functionality is said to extend the

former. This approach can be seen, for instance, in [KOS16]. This language will be used

in functionalities in this thesis.

Subprotocols Sometimes protocols are said to “make use of a subprotocol”. The idea

behind this is simply to make the design more modular and the presentation cleaner.

Subprotocols are not intended to realize any ideal functionality, since usually this is

not possible on their own: it is a presentational choice. Given a protocol ΠA that uses a

subprotocol ΠB, the unified protocol is written as ΠA‖ΠB (or ΠB‖ΠA).

2.3 Cryptographic Primitives and Basic Tools

This section contains definitions of fundamental tools used in cryptography. The proofs

are standard.

2.3.1 Hash functions

Hash functions are used to map arbitrary-length inputs to bit-strings of a fixed length.

Cryptographic hash functions are required to satisfy one or more guarantees on the

level of “unpredictability” of outputs, and consequently are often used to instantiate

random oracles efficiently. More formally, a cryptographic hash function H satisfies one

or more of the following properties:

26

2.3. CRYPTOGRAPHIC PRIMITIVES AND BASIC TOOLS

First preimage resistance Given a value h in the image, it should be hard to find m

such that h = H(m).

Second preimage resistance Given m, it should be hard to find m′ such that H(m′)=
H(m).

Collision resistance It should be hard to find two messages m and m′ for which

H(m)= H(m′).

Some protocols require the use of a random function, which is instantiated using a

hash function, and the security reduces to the heuristic assumption that a hash function

is “random enough”. However, some protocols do not need the full force of a random

oracle, in which case the security may depend on, for instance, the assumption that the

hash function is collision-resistant.

2.3.2 Pseudorandom Functions

A pseudorandom function (PRF) is a family of efficiently samplable functions whose

members are efficiently computable functions that are computationally-indistinguishable

from random functions (i.e. an instance of a random oracle). More formally, a PRF

{Fk(·) : {0,1}∗ → {0,1}κ}k∈{0,1}κ

satisfies the following properties:

Samplability Sampling Fk(·) ← U
(
{Fk(·)}k∈{0,1}κ

)
is efficient.

Computability For any k ∈ {0,1}κ, for any x ∈ {0,1}∗, Fk(x) can be computed in time

poly(|x|).

Pseudorandomness For any k ∈ {0,1}κ, it holds that {Fk(x)}x∈{0,1}∗ ∼c U ({0,1}κ).

2.3.3 MACs

A message authentication code (MAC) is a method of ensuring the validity of a message:

specifically, that the message was not altered in transit, and that the message indeed

comes from the purported source. Their specific use in MPC is described in Section 2.5.3.

27

CHAPTER 2. PRELIMINARIES

2.3.4 Communication Channels

In almost all MPC protocols for circuits, linear operations come “for free” in the sense

that they require little computation and no – or little – communication, whereas multi-

plications, and non-linear operations in general, require interaction.

A round of communication can be defined as a period of time in which parties send all

possible necessary information from the protocol that is not dependent on other parties’

messages sent in the same round. The key metrics for communication complexity are

the number of rounds and the amount of data sent in a given round. These metrics

are used because they are independent of the network hardware, which determines the

network latency and bandwidth.

Throughout this thesis, synchronous communication will be assumed. In this com-

munication model, all messages for a given round are assumed to be delivered success-

fully before any parties send any messages for the following round. Protocols allowing

for asynchrony in the network more accurately model communication over wide-area

networks (WANs) such as the Internet but are generally more complex.

Authenticated Channels

The recipient of a message sent over an authenticated channel is sure that the pur-

ported sender is indeed the sender, and that the message has not been tampered with

in transit. Such channels do not guarantee privacy of communication. Given a graph

where the vertex set is the indexing set of parties [n] and edges E are connections be-

tween parties, the set of authenticated channels is denoted by AC(E).

Secure Channels

A secure channel is an authenticated channel which additionally guarantees privacy of

communication2. To realize a secure channel, parties use an authenticated channel to

agree on public-key/secret-key pairs, use these to establish a shared symmetric key, and

then use the symmetric key to encrypt all communication, which can then be sent over

the authenticated channel. Given a graph where the vertex set is the indexing set of

parties [n] and edges E are connections between parties, the set of secure channels is

denoted by SC(E).
2One can alternatively define secure channels with privacy but without authentication.

28

2.3. CRYPTOGRAPHIC PRIMITIVES AND BASIC TOOLS

Broadcast Channels

A message sent via a broadcast channel is one in which every honest party (eventually)

agrees it received the same message. The concern in this thesis is only on protocols se-

cure with abort (explained in Section 2.5), which simplifies the broadcasting procedure.

The functionality FBroadcast is given in Figure 2.4 and the protocol ΠBroadcast in Fig-

ure 2.5. Notice that the protocol need not make use of the random oracle since in the

simulation the simulator just relays the messages directly to the functionality.

Functionality FBroadcast

Initialize On input (Initialize, sid) from all parties, where sid is a new session identifier, set

Abort to false.

Broadcast On input (Broadcast, x, sid) from Pi, or from S if i ∈ A,

If i ∈ [n]\ A, for all j ∈ [n]\{i} send x to P j or to S if j ∈ A.

If i ∈ A, await a set of values {x j} j∈[n]\A and for each j ∈ [n]\ A, send x j to P j. If xi 6= x j for any

i, j ∈ [n]\ A, then set Abort to true.

Verify On input (Verify, sid) from all parties and S, await a message Abort or OK from S. If

the message is OK and Abort is false, send the message OK to all honest parties and continue;

otherwise, send the message Abort to all honest parties, (locally) output ⊥, and then halt.

Figure 2.4: Broadcasting Functionality, FBroadcast.

Protocol ΠBroadcast

Initialize Each party initializes an empty string str and they agree on a collision-resistant hash

function, H.

Broadcast For party Pi to broadcast a value x to all parties:

1. Party Pi sends x to all P j ∈P \{Pi} over an authenticated channel.

2. Each party P j updates str j := str j‖x where ‖ denotes string concatenation.

Verify To verify all broadcasts so far, each party Pi does the following:

1. Compute hi := H(stri).

2. For all j ∈ [n]\{i}, send hi to P j over an authenticated channel.

3. Await h j from P j for all j ∈ [n]\{i}.
4. If h j 6= hi for any j, send the message Abort to all other parties, (locally) output ⊥, and halt.

Figure 2.5: Broadcasting Protocol, ΠBroadcast.

Note that when an honest party aborts, another round of communication is needed to

29

CHAPTER 2. PRELIMINARIES

ensure all other honest parties abort, but this is not the same as the classical Byzantine

agreement [LSP82] problem since honest parties always abort if any other party tells

them to abort – they do not have to decide whether or not to abort. Note that secure

channels are also authenticated so it is assumed each party knows the identity of the

sender of each message.

Theorem 2.2. The protocol ΠBroadcast UC-securely realizes the functionality FBroadcast

against a static, active, computationally-bounded adversary in the plain model, assum-

ing the parties are connected by a complete network of authenticated channels.

Proof. Simulation is straightforward: the simulator emulates the honest parties hon-

estly, and simply acts as a relay between A and FBroadcast; then S sends the message

Abort to FBroadcast if the hash comparison fails, and otherwise sends OK.

A distinguisher Z between the worlds can be used to break the collision-resistance

of the hash function in the following way. Because S simply relays messages, the only

difference between the simulation and the real-world execution is that in the real world

the parties only abort if the hashes agree, not the messages themselves. Thus Z can

distinguish only if in the real world the adversary sends different messages to different

honest parties so that they do not abort in the protocol execution (whereas in the ideal

execution they would always abort in this case). The only way of doing this is by find-

ing two sequences of messages, i.e. two strings stri and str j, such that stri 6= str j but

H(stri) = H(str j), violating the assumption of collision-resistance of the hash function.

Note that the environment can choose all messages in both worlds, since these are the

parties’ inputs, so second-preimage resistance is not sufficient.

2.3.5 Commitments

A commitment scheme is a way of ensuring a party is not able to change its inputs after

observing the inputs of other parties. It has two intuitive properties:

Hiding The commitment should not reveal anything about the corresponding message.

Binding The party that generated the commitment should not be able to claim con-

vincingly that the message is anything but what was originally used to generate the

commitment.

The ideal commitment functionality FCommit is given in Figure 2.6 and a standard pro-

tocol securely realizing it is given in Figure 2.7.

30

2.3. CRYPTOGRAPHIC PRIMITIVES AND BASIC TOOLS

Functionality FCommit

Initialize On input (Initialize, X , sid) from all honest parties and S, where X is a set, initial-

ize a new dictionary DB with indexing set DB.Ids.

Commit On input (Commit, i, x, sid) from honest party Pi, or from S if Pi ∈ A, and

(Commit, i,⊥, sid) from all other parties, if x ∈ X , compute a new identifier idx, store DB[idx] :=
(x, i), send idx to all parties and S and continue.

Open On input (Open, i, idx, sid) from all honest parties and S, if (idx, i) ∈ DB.Ids, then send x to

all honest parties and S and continue. Otherwise, await a message Abort or OK from S. If the

message is OK, then send x to all honest parties and continue; otherwise, send the message

Abort to all honest parties, and then halt.

Figure 2.6: Commitment Functionality, FCommit.

Protocol ΠCommit

This protocol is realized in the FBroadcast, FRO-hybrid model.

Initialize The parties do the following:

1. Agree on a set X (elements of which are to be committed), computational security parameter

κ ∈N, and a session identifier sid .

2. Call an instance of FRO with input (Initialize, {0,1}2·κ , sid).

3. Call an instance of FBroadcast with input (Initialize, sid).

Commit For Pi to commit to an input x, parties do the following:

1. Party Pi samples r ← U ({0,1}κ).

2. Party Pi calls FRO with input (x‖r‖i, sid), where ‖ denotes concatenation of strings, and

receives an output τx ∈ {0,1}2·κ.

3. Party Pi calls FBroadcast with input (Broadcast,τx, sid).

Open To open the value with identifier idx, parties do the following:

1. Party Pi calls FBroadcast with input (Broadcast, x‖r‖i, sid). Let m j be the message received

by P j.

2. Each party P j calls FRO with input (m j, sid) and receives τ j
x in response.

3. The parties call FBroadcast with input (Verify, sid); if FBroadcast returns the message OK

then they continue; otherwise they (locally) output ⊥, and then halt.

4. Each party checks that τ j
x = τx and if so then it extracts x from m j = x‖r, outputs x, and

continues; otherwise, it calls FBroadcast with input (Broadcast,Abort, sid), (locally) outputs

⊥, and then halts.

Figure 2.7: Commitment Protocol, ΠCommit.

31

CHAPTER 2. PRELIMINARIES

Theorem 2.3. The protocolΠCommit UC-securely realizes the functionality FCommit against

a static, active, computationally-bounded adversary in the FBroadcast, FRO-hybrid model.

Proof. If the adversary behaves honestly, then since the protocol is realized in the FRO-

hybrid model, the simulator can extract any secrets to which corrupt parties commit

and forward these to FCommit.

When an honest party commits to a secret x in the ideal world, the simulator receives

some idx. The simulator then samples some τx ← U
(
{0,1}2·κ

)
instead of calling the local

instance of the random oracle and sends this to A emulating the call to FBroadcast. Now

when this commitment is opened, first S awaits the revealed secret x from FCommit,

and then programs the random oracle by sampling some r ← U ({0,1}κ) and fixing

DB[x‖r‖i] := τx.3 Then to open this secret to A, the simulator sends x‖r‖i to A, emulat-

ing the call to FBroadcast. Thus when the adversary queries the random oracle on x‖r‖i,

it will receive τx.

Now the only problem occurs if any r that was sampled by the simulator when emu-

lating honest parties’ commitments was part of a message already queried by A. How-

ever, the adversary is computationally-bounded so the number of queries is bounded by

some polynomial function in κ, and additionally the number of commitments emulated

on behalf of honest parties is bounded by a polynomial function in κ. Let poly(κ) be the

total number of queries to the random oracle in the execution. Then the probability that

this set contains collisions can be approximated as poly(κ)2 · (2 ·22·κ)−1 by the Birthday

Bound. (The Birthday Bound [Sch96] says that if q is the total number of queries and S

is the codomain of FRO, then the probability of a collision is approximately q2 ·(2·|S|)−1.)

By definition, a protocol secure against a computationally-bounded adversary with pa-

rameter κ means that A cannot perform 2κ operations. Thus 1
2 ·poly(κ)2 < 2κ and hence

poly(κ)2 · (2 ·22·κ)−1 < 2−κ.

Note that if the adversary does not call FRO before calling FBroadcast on some input

x‖r‖i, then the message it chooses to broadcast, τx, is rejected by honest parties (and

they abort) unless the value that FRO samples when handed the input x‖r‖i later (when

the adversary reveals the secret) happens to be τx. Since τx is sampled from a set of

size 22·κ, the chance that this happens is 2−2·κ.

Thus there is no environment that can distinguish between the real and ideal exe-

cutions except with negligible advantage over guessing.
3The simulator could sample until some r that has not been used before is obtained; however, the

analysis of the chance that collisions occur is easier if the sampling is always uniform here and makes no
difference to the final result.

32

2.3. CRYPTOGRAPHIC PRIMITIVES AND BASIC TOOLS

2.3.6 Coin-Flipping

The functionality FCoinFlip is given in Figure 8.5. The notion of a “secure coin-flipping”

functionality is an idea that originates from the ’80s at the latest, e.g. [Blu81]. The

idea is for a set of parties to obtain random strings of length at least one such that the

sampled strings follow a uniform distribution. A protocol ΠCoinFlip realizing FCoinFlip in

the FCommit-hybrid model is given in Figure 2.9.

Functionality FCoinFlip

Initialize On input (Initialize, X , sid), await further messages.

Random Element On input (RElt, sid) from all honest parties and S, sample x ← U (X), send x
to S, and await a message OK or Abort from S. If the message is OK then send x to all parties

and continue; otherwise, send the message Abort to all honest parties and halt.

Figure 2.8: Coin-Flipping Functionality, FCoinFlip.

Protocol ΠCoinFlip

This protocol is realized in the FCommit, FRO-hybrid model.

Initialize The parties do the following:

1. Agree on a set X from which to sample, a session identifier sid and a computational security

parameter κ.

2. Call an instance of FCommit with input (Initialize, {0,1}2·κ , sid).

3. Call an instance of FRO with input (Initialize, X , sid).

Random Element To obtain a random element sampled uniformly from some set X , party Pi

does the following:

1. Sample stri ← U
(
{0,1}2·κ

)
.

2. Call FCommit with input (Commit, i, stri, sid) and (Commit, j,⊥, sid) for all j ∈ [n]\{i}.
3. Await the identifiers idstr j for all j ∈ [n] from FCommit.

4. Call FCommit with input (Open, j, idstr j , sid) for all j ∈ [n] and await the set {str j} j∈[n] from

FCommit. If FCommit sends the message Abort, then (locally) output ⊥ and then halt; other-

wise, continue.

5. Call FRO with input
((⊕n

j=1 str j
)
, sid

)
and (locally) output the returned value x.

Figure 2.9: Coin-Flipping Protocol, ΠCoinFlip.

Theorem 2.4. The protocol ΠCoinFlip UC-securely realizes FCoinFlip in the presence of a

static, active, computationally-bounded adversary in the FCommit, FRO-hybrid model.

33

CHAPTER 2. PRELIMINARIES

Proof. The simulator runs local instances of FCommit and FRO. When FCoinFlip outputs

a value x to honest parties and S, the simulator programs the random oracle FRO to

store DB[
⊕n

i=1 stri] := x so that when A calls FRO with input
⊕n

i=1 stri the simulator will

return x.

Note that as there is always at least one honest party, the string in the real world is

uniformly-distributed, and as S honestly emulates the behaviour of honest parties, it is

also uniform in the simulation.

Now, as in the proof of Theorem 2.3, a problem with the simulation only occurs

if A queries FRO before S can program it with an output from FCoinFlip. Since A is

computationally-bounded, it is able to query FRO at most a number of times that is

polynomial in κ, poly(κ); since the seed string is 2 ·κ bits long and is always uniformly

random, the chance of this type of collision is at most poly(κ)2 ·(2·22·κ)−1 by the Birthday

Bound. As for the proof of ΠCommit, 1
2 ·poly(κ)2 < 2κ, so poly(κ)2 ·(2 ·22·κ)−1 < 2−κ. Thus no

environment can distinguish except with negligible advantage over guessing.

2.4 Secret Sharing

2.4.1 Access Structures

Two main aspects of corruption in MPC are the number of corrupted parties and the

type of corruption. Protocols usually tolerate some fixed corruption threshold, or more

generally define which sets of parties can be corrupted in a so-called access structure.

Different types of corruption will be discussed in Section 2.5.1: for now the focus is on

which sets of parties can be corrupted.

Access structures determine which parties or sets of parties are allowed to learn

specific information in a given protocol. Every secret in every protocol has an access

structure associated with it, explicitly or implicitly. Formally, given a set of parties P
indexed by a set [n], an access structure on those parties is pair of subsets of 2P , denoted

by Γ, called the qualified sets, and ∆, called the unqualified sets. The access structure

is called monotone if the superset of any set in Γ is also qualified, and the subset of

any set in ∆ is unqualified. When the specific set does not matter, a qualified set will

be denoted by Q, and an unqualified set by U . An access structure is called complete

if Γ∪∆ = 2P . With the monotonicity property, this means that they form a partition

of 2P . Consequently, complete monotone access structures can be completely specified

by the maximal sets ∆+ of ∆ (where maximal here means maximal with respect to the

34

2.4. SECRET SHARING

subset relation). These sets are called the maximally-unqualified sets. Similarly there

is a subset Γ− of Γ of minimally-qualified sets.

In general it is possible to consider “partial” access structures in which some sets

of unqualified parties may learn statistically-negligible but non-zero information about

the secret from the shares they hold. However, in this thesis attention is restricted to

complete monotone access structures and perfect secret-sharing schemes realizing them,

in which unqualified sets of parties have no information about the secret, and qualified

sets always learn the secret.

The term access structure refers to the set Γ since this set describes which sets of

parties should have access to secrets; in the literature, sometimes the term adversary

structure is used for the same, although this, strictly speaking, refers to ∆, but usually

complete access structures are considered so there is no ambiguity.

To be concise, the access structure will be written in terms of party indices [n] rather

than the parties themselves, P . For example, Γ− = {{1,2}, {1,3}, {2,3}} describes an access

structure on a set of parties P = {P1,P2,P3}. However, a set of parties Q may also be

said to lie in Γ, i.e. Q ∈Γ (rather than the indices) where it is clear from context.

Definition 2.10 ((n, t)-Threshold Access Structure). An (n, t)-threshold access structure

is defined on n parties as an access structure in which any set of t parties or fewer is

unqualified and any set of t+1 or more is qualified.

The example given above is the (3,1)-threshold access structure. For an (n, t)-threshold

access structure, |Γ−| = (n
t+1

)
and |∆+| = (n

t
)
. Note that in the literature t is sometimes

defined to be the least threshold for reconstruction (so the above definition would be

considered an (n, t+1)-threshold access structure). An (n,n−1)-threshold access struc-

ture is sometimes described as full-threshold since only the collaboration of the full set

of parties enables determining the secret. An (n, t)-threshold access structure in which

t ≤ bn−1
2 c is called an honest majority access structure, and one in which t ≤ bn−1

3 c an

honest supermajority.

A protocol is said to realize or respect an access structure if it satisfies the required

security definitions even when the adversary corrupts any unqualified set of parties.

Types of Access Structure

The predicate Q` is defined in the following way.

35

CHAPTER 2. PRELIMINARIES

Definition 2.11 (Q`). An access structure (Γ,∆) satisfies the predicate Q` if for every

set {Ui}i∈I ∈ 2∆ where |I| ≤ ` it holds that
⋃

i∈I Ui ([n].

An access structure satisfying Q` is said to “be Q`”. Note that for any ` ∈ N an

(n,bn−1
`

c)-threshold access structure is Q`. Thus this notion is a generalization of thresh-

old access structures, and in particular, one can think of Q2 and Q3 as generalizations

of honest majority and honest supermajority, respectively.

Example 2.1. Let (Γ,∆) be an access structure on 4 parties, where

Minimally-qualified sets: Γ− := {{1,2}, {1,3}, {1,4}, {2,3,4}}

Maximally-unqualified sets: ∆+ := {{1}, {2,3}, {2,4}, {3,4}}.

One can check that it is complete and monotone. Moreover, (Γ,∆) is Q2.

Definition 2.12 (Dual Access Structure). Given an access structure Γ, the dual access

structure is defined as Γ∗ := {Q⊆P :P \Q 6∈Γ}.

For example, the dual of an (n, t)-threshold access structure is an (n,n−t−1)-threshold

access structure. For any Q2 access structure it holds that Γ∗ ⊆Γ, since for every Q ∈Γ∗,

by definition (P \Q) 6∈Γ, which means Q ∈Γ (otherwise Q and (P \Q) are both in ∆ and

Q∪ (P \Q)=P , contradicting the fact that Γ is Q2).

2.4.2 Access Structures to Secret-Sharing

The goal of this section is to show how to share a secret amongst a set of parties under

any access structure. The first step is to interpret the access structure as a monotone

Boolean function. Such a function can be computed using a monotone span program,

and it was shown by Karchmer and Wigdersen [KW93] that MSPs are in bijection with

linear secret-sharing schemes, which are more well known.

Access Structures to Boolean Functions

Access structures are in one-to-one correspondence with monotone Boolean functions,

whose definition is given here.

Definition 2.13 (Monotone Boolean Function). Define the relation ≺ on the set {0,1}n

by the following: for any s,s′ ∈ {0,1}n, s ≺ s′ if and only if si ≤ s′i for every i ∈ [n]. Then

36

2.4. SECRET SHARING

the Boolean function f : {0,1}n → {0,1} with arity n is called monotone if for every s,s′ ∈
{0,1}n, it holds that

s≺ s′ =⇒ f (s)≤ f (s′).

The relation ≺ only induces a partial ordering on {0,1}n and there is no assumption

regarding the images of incomparable elements of the domain.

The bijection between monotone Boolean functions and complete monotone access

structures is immediate by associating every coordinate of the domain with a party in-

dex: consider the standard bijective map encoding subsets as Boolean strings, g : 2[n] →
{0,1}n defined as g : S 7→ s where si = 1 ⇐⇒ i ∈S; then let

Γ := {S ∈ 2[n] : f (g(S))= 1}

∆ := {S ∈ 2[n] : f (g(S))= 0}.

Then (Γ,∆) is a complete monotone access structure on parties indexed by [n].

Boolean Functions to MSPs

Monotone span programs (MSPs) were introduced by Karchmer and Wigderson [KW93]

as a model of computation for computing monotone Boolean functions.

Definition 2.14 (Monotone Span Program). An MSP is a quadruple M = (F, M,t,ρ)

where F is a field, M ∈Fm×d is an m×d matrix over F with rank d, t ∈Fd is a non-zero

vector, and ρ : [m]� [n] is a surjective map.

For s ∈ {0,1}n, let Ms denote the submatrix of M obtained by taking the rows indexed

by the set { j ∈ [m] : sρ(j) = 1}. An MSP can be used to define a Boolean function f :

{0,1}n → {0,1} in the following way: let s ∈ {0,1}n; then define

f (s) :=
1 if t ∈ coim(Ms)

0 otherwise
.

(Recall that for a matrix A, coim(A) is the row space of the matrix A.) The function

f is monotonic: given s and s′ such that s ≺ s′, coim(Ms) ⊆ coim(Ms′), so t ∈ coim(Ms)

=⇒ t ∈ coim(Ms′). A vector s for which f (s) = 1 is said to be accepted by the MSP, and

otherwise is said to be rejected.

The map ρ is called the row map and t the target vector. In the literature, it is

not always specified that the matrix should have full column rank; however, Beimel

et al. [BGP95] showed that performing column operations does not change the Boolean

37

CHAPTER 2. PRELIMINARIES

function that the MSP computes, so this may be assumed without loss of generality. Any

vector witnessing that t ∈ coim(Ms), i.e. a vector λ ∈ Fm satisfying Ms
> ·λ= t, is called

a recombination vector. If coker(Ms) is non-zero then there are multiple recombination

vectors for s.

MSPs to Secret-Sharing

Given a Boolean function that corresponds to some access structure, one can find an

MSP that computes it; then, a secret-sharing scheme can be defined in the following

way. To share a secret x, the dealer samples x ← U
(
Fd)

subject to the constraint that

〈t,x〉 = x, constructs a share vector [[x]] := M ·x, and for each i ∈ [n] sends [[x]]Pi
:= MPi ·x

to Pi, where MPi is the submatrix of rows of M indexed by the set { j ∈ [m] : ρ(j) = i}.

Here, a distinction is made between subscripts which are sets of indices and those which

are sets of parties. For example, M{1,2} denotes the submatrix formed by taking the first

two rows of M; however, M{P1,P2} denotes the submatrix indexed by all rows j ∈ [m] for

which ρ(j) ∈ {1,2}. Similarly, [[x]]1 denotes the first component of the vector M·x, whereas

[[x]]P1
denotes the vector of shares comprised of the components for which ρ(j) = 1. A

vector [[x]] is called qualified if ρ(supp([[x]])) ∈Γ and unqualified otherwise. The notation

[[·]] is used to encompass all of the information about the MSP – that is, the field, the

matrix, the row map and the target vector.

If a set Q is qualified then since t lies in the span of the rows of MQ, there is a linear

combination of rows expressed as the recombination vector λ ∈Fm, such that MQ
>·λQ =

t; thus the parties in Q can compute 〈λQ, [[x]]Q〉 =λQ
> ·MQ ·x= t> ·x= 〈t,x〉 = x.

Conversely, if a set U is unqualified then by definition the vector t does not lie in

the linear span of the rows of MU , i.e. im(MU
>), so by the Fundamental Theorem of

Linear Algebra, it lies in ker(MU). Thus there is a vector k ∈Fd satisfying 〈t,k〉 6= 0 and

MU ·k= 0; without loss of generality, choose k such that 〈t,k〉 = 1. Now given any share

vector x used to share a secret x, for any x′ ∈F define x′ := x+(x′−x)·k. Then by linearity,

〈t,x′〉 = x+(x′−x)= x′, and [[x′]]U := MU ·x′ = MU ·(x+(x′−x) ·k)= MU ·x+(x′−x) ·MU ·k=
MU ·x+ (x′− x) ·0 = MU ·x = [[x]]U . In words, this says that whatever share vector the

unqualified parties hold, every secret in F is equally as likely, and hence the set of

shares held by an unqualified set of parties reveals no information on the secret.

A summary of how an MSP realizes an LSSS is given in Figure 2.10.

38

2.4. SECRET SHARING

Realizing an LSSS from an MSP

Initialize
1. Agree on the access structure Γ and an MSP that realizes it, M= (F, M,t,ρ).

2. For each minimally-qualified set Q ∈ Γ−, fix λQ ∈ Fm to be any vector such that{
Pi ∈P : i ∈ ρ(supp(λQ))

}
⊆Q satisfying MQ

>λQ = t.

Share To share a secret x,

1. Sample x ← U
(
{x ∈Fd : 〈x,t〉 = x}

)
.

2. Compute [[x]] := M ·x.

3. For each j ∈ [m], send [[x]]ρ(j) to Pρ(j) over a secure channel.

Reconstruct For a set of parties Q ∈Γ to reconstruct, they do the following:

1. Retrieve from memory λQ′
where Q′ ∈Γ− is the lexicographically first set satisfying Q⊇Q′,

2. Compute the secret as x = 〈[[x]]Q′ ,λQ′
Q′〉.

Figure 2.10: Realizing an LSSS from an MSP.

Linearity

Parties can compute any linear function on secrets shared using an LSSS as above by

computing the same linear function on their shares. To say that the parties “add” shared

secrets [[x]] and [[y]] means that for all i ∈ [n], Pi computes [[x]]Pi
+ [[y]]Pi

. Additionally,

parties can add a public value a to a secret x that is secret-shared as [[x]] by agreeing

at the start of the protocol on some sharing of 1, [[1]], and computing [[x]]+ a · [[1]]. No

secrecy of this sharing need be assumed.

2.4.3 Examples

The sharing and reconstruction methods for the LSSSs used in this thesis are given in

this section, along with an example MSP that realizes each type. The initialization step

requires the parties to agree on the access structure, and they also agree on a sharing

of 1.

Additive Secret-Sharing An additive sharing is denoted by [[v]]A. To share a se-

cret v, the dealer, party Pi, samples {[[v]]AP j
} j 6=i ← U (F), sends [[v]]AP j

to P j over a secure

channel, and fixes [[v]]APi
:= v−∑

P j∈P\{P j} [[v]]AP j
.

39

CHAPTER 2. PRELIMINARIES

Example 2.2. Additive secret-sharing can be represented as an MSP with matrix

P1

P2
...

Pn−1

Pn

1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

0 0 · · · 1 0

−1 −1 · · · −1 1

and t= (1,1, · · · ,1)> ∈Fn, where the labels to the left of the matrix indicate ρ.

Replicated Secret-Sharing

Ito et al. [ISN93] gave an explicit, constructive method for generating an LSSS for any

monotone access structure, called replicated secret-sharing. (It is derived from the con-

junctive normal form (CNF) of the access structure and is therefore sometimes called

CNF sharing.)

In this scheme, given in Figure 2.11, the secret is split into one share for every set

in ∆+ and every party receives some subset of these shares. It is convenient to talk

about the set ∇ := {G ∈ 2P : P \G ∈ ∆+}, that is, the set of complements of sets in ∆+,

rather than ∆+ itself, because then a party receives a share if and only if it is indexed

by some G ∈∇.

Since each party obtains a set of shares and different parties may receive the same

share (if the dealer is honest), the scheme is said to contain replication. The notation xRG
will be used to denote the summand corresponding to set G ∈∇, xR∇ to denote the vector

(xRG :G ∈∇), and [[x]]R to denote the full vector with replication. Thus the vector of shares

held by Pi is [[x]]RPi
= (xRG :G ∈∇∧G 3Pi).

Replicated Secret-Sharing

Initialize
1. The parties agree on an access structure, Γ, and compute ∇ := {G ∈ 2P :P \G ∈∆+}.

2. The parties agree on a sharing of 1 by agreeing on any G∗ ∈ ∇, setting 1RG∗ := 1 and 1RG := 0

for all G ∈∇\{G∗}. Set this sharing to be [[1]]R.

Share For party Pi to share a secret x, it does the following:

1. Sample a set {xRG }G∈∇ ← U (F) subject to
∑
G∈∇ xRG = x.

2. For every G ∈∇, for every P j ∈G, send xRG to P j over a secure channel.

3. Each party P j concatenates received shares {xRG :G ∈∇∧G 3P j} into a share vector [[x]]RP j
.

40

2.4. SECRET SHARING

Replicated Secret-Sharing (continued)

Reconstruct For a qualified set of parties Q to learn a secret x amongst themselves,

1. For every G ∈ ∇, for any Pi ∈Q∩G, for every P j ∈Q\G, Pi sends xRG to P j over a secure

channel.

2. Each party in Q computes x =∑
G∈∇ xRG .

Figure 2.11: Replicated Secret-Sharing.

Replicated secret-sharing is perfect: an unqualified set of parties is contained in at

least one maximally-unqualified set, and is therefore missing at least one share. Since

the shares are uniform subject to the constraint that they sum to the secret, this set of

parties has no information on the secret. Conversely, any qualified set of parties Q is

not contained in any maximally unqualified set, so for each maximally unqualified set

U there is at least one party Pi that is in Q and not in U (otherwise every party in Q is

also in U , so Q is unqualified). Thus the parties in Q collectively hold all shares for all

secrets.

DNF Secret-Sharing

Disjunctive normal form (DNF)-based secret-sharing, first given by [ISN87], is given in

Figure 2.12.

DNF Secret-Sharing

Initialize
1. The parties agree on an access structure, Γ.

2. For each Q ∈ Γ−, order the parties in Q by their party index and set 1QPi
:= 1 where Pi is

the first party in set Q and 1QP j
:= 0 for all j where P j ∈Q and j > i. Set this sharing to be

[[1]]DNF.

Share For party Pi to share a secret x, it does the following:

1. For each Q ∈Γ−, sample {xQP j
}P j∈Q ← U (F) subject to

∑
P j∈Q xQP j

= x.

2. For each Q ∈Γ−, for each P j ∈Q, send xQP j
to P j over a secure channel.

Reconstruct For a qualified set of parties Q to open a secret x,

1. A qualified set Q of parties has all shares in the set {xQPi
}Pi∈Q. For every Pi ∈Q, for every

P j ∈Q\Pi, Pi sends xQPi
to P j over a secure channel.

2. Each party in Q computes x =∑
Pi∈Q xQPi

.

Figure 2.12: DNF Secret-Sharing.

41

CHAPTER 2. PRELIMINARIES

Shamir’s Secret-Sharing

Shamir’s secret-sharing scheme, developed independently by Blakley [Bla79] and Shamir

[Sha79], is given in Figure 2.13.

Shamir’s Secret-Sharing

Initialize
1. The parties agree on an (n, t)-threshold access structure.

2. The parties assign one distinct element of F to each party and one for the secret. For sim-

plicity, usually Pi is assigned the value i ∈F and the secret is assigned 0.

3. The parties agree on a sharing of 1 defined using the constant polynomial u(X) := 1.

Share For party Pi to share a secret x, it does the following:

1. Sample a polynomial f ← U (F[X]) of degree at most t subject to f (0)= x.

2. For each P j ∈P \{Pi}, send f (i) to P j over a secure channel.

Reconstruct For a qualified set of parties Q of size at least t+1 to open a secret x shared via

polynomial f ,

1. Each party Pi ∈Q sends their share f (i) to all other parties in Q over authenticated chan-

nels.

2. Each party in Q interpolates a polynomial f of degree at most t through the points {(i, f (i)) :

Pi ∈Q} and computes x := f (0).

Figure 2.13: Shamir’s Secret-Sharing.

Example 2.3. Shamir’s secret-sharing for an (n, t)-threshold access structure is given

by
P1

P2
...

Pn

10 11 · · · 1t

20 21 · · · 2t

...
...

n0 n1 · · · nt

i.e. a Vandermonde matrix, where the parties on the left of the matrix indicate the

row map, and t = (1,0, · · · ,0)>. In this example, when sharing secret s, the vector x
corresponds exactly to the vector of coefficients of the randomly-sampled polynomial.

2.4.4 Multiplicativity

Some of the protocols in this thesis rely on a property of certain LSSSs called multiplica-

tivity. If an access structure is Q2 then there exists an LSSS for which the parties can

compute an additive secret-sharing of the product of two secrets (shared in the LSSS)

42

2.4. SECRET SHARING

by local computations. In fact, one can derive a new MSP that realizes a new access

structure. This MSP will be denoted by [[·]][2] and will be called the product MSP (or

LSSS).

In order to determine how to combine shares to obtain an additive sharing, one

can use the following method. Recall the definition of the tensor product, ⊗ : Fd1×d2 ×
Fe1×e2 →Fd1e1×d2e2 , where for A = (ai, j) and B = (bi, j),

A⊗B 7→

a1,1B · · · a1,d2B

...

ad1,1B · · · ad1,d2B

=

a1,1

b1,1 · · · b1,e2

...

be1,1 · · · be1,e2

 · · · a1,d2

b1,1 · · · b1,e2

...

be1,1 · · · be1,e2

...

ad1,1

b1,1 · · · b1,e2

...

be1,1 · · · be1,e2

 · · · ad1,d2

b1,1 · · · b1,e2

...

be1,1 · · · be1,e2

Now define

M[2] :=

MP1 ⊗MP1

...

MPn ⊗MPn

.

This matrix has height m[2] :=∑n
i=1 |ρ−1(i)|2 and width d[2] := d2. The map ρ is assumed

monotonic (i.e. the rows of M are grouped according to ownership, and are ordered

according to party index). Define an augmented rowmap ρ[2] as:

ρ[2](j) := ρ(i) for all j satisfying
∑
k<i

|ρ−1(k)|2 < j < ∑
k≤i

|ρ−1(k)|2.

Then the original MSP is said to be multiplicative if t⊗ t lies in coim(M[2]). In other

words, if there exist (µ(i))i∈[n] such that

〈λ, [[a]]〉 · 〈λ, [[b]]〉 = ∑
i∈[n]

〈µ(i), [[a]]Pi
⊗ [[b]]Pi

〉.

The vector µ := (µ(i))i∈[n] from above is a recombination vector for the product MSP.

Example 2.4. Replicated secret-sharing is always multiplicative if the access structure

is Q2: given two secrets x and y shared using replicated secret-sharing, for every pair

43

CHAPTER 2. PRELIMINARIES

of shares (xRG1
, yRG2

), there is a party that holds both shares. To see this, recall that a

party receives the share indexed by the set G if and only if it is in G, and observe that

if G1 ∩G2 = ∅ then since G1 = P \U1 and G2 = P \U2 for some U1,U2 ∈ ∆+, it holds

that ∅ = (P \U1)∩ (P \U2) = P \ (U1 ∪U2); i.e. U1 ∪U2 = P , violating the Q2 predicate.

Thus every cross and diagonal term can be computed locally, which means parties can

compute an additive sharing of the product by (arbitrarily) assigning each mixed term

to one party.

Example 2.5. It is easy to see that Shamir’s secret-sharing can be used to obtain an

additive sharing of the product of ` secrets by local computations if it computes a Q`

access structure – that is, an (n,bn−1
`

c)-threshold access structure – since each party can

locally multiply the ` shares they hold to obtain a point on a polynomial of degree at

most most ` · bn−1
`

c ≤ n. This was noted by Ben-Or et al. [BGW88].

Product Access Structure

One can compute the access structure of the product by inspecting the matrix M[2].

Let this access structure be Γ[2]. It clearly holds that Γ[2] ⊆ Γ since the product MSP

is constructed from the original MSP, so any set of parties learning the product of two

secrets also knows the original shares.

2.5 MPC

The goal of MPC is to realize the so-called arithmetic black box introduced by Damgård

and Nielsen [DN03], the active variant of which, denoted by FABB, is given in Fig-

ure 2.14.

The two requirements of MPC protocols are that they must be correct and secure:

that is, the output of the protocol must be correct based on the initial inputs, and the

protocol must “be secure”, which depends on the definition of the security model. Indeed,

security is a nebulous term and is multi-faceted, and often defined on an ad hoc basis:

for example, protocols may be robust – all honest parties obtain the correct output –

or just secure “with abort” – the honest parties either receive the correct output, or

the adversary causes the protocol to abort. The privacy (or secrecy4) of honest parties’
4Some consider privacy to be “passive” and secrecy “active” in the sense that the former is general,

whereas the latter implies the existence of particular information a person wishes to keep hidden.

44

2.5. MPC

inputs is almost always required. In this section, an overview of some of the prevailing

techniques and the meaning of security and correctness in MPC is given.

Functionality FABB

Initialize On input (Initialize,F, sid) from all parties, initialize a new database DB with in-

dexing set DB.Ids and store the field as DB.Field :=F.

Input On input (Input, i, id , x, sid) from party Pi and (Input, i, id ,⊥, sid) from all other parties,

where i ∈ [n], id is a new identifier, and x ∈ DB.Field, set DB[id] := x and insert id into DB.Ids.

Add On input (Add, idx, idy, idz, sid) from all parties, if idx, idy ∈ DB.Ids and idz is a new iden-

tifier, set DB[idz] := DB[idx]+DB[idy] and insert id into DB.Ids

Multiply On command (Multiply, idx, idy, idz, sid) from all parties, if idx, idy ∈ DB.Ids and idz

is a new identifier, store DB[idz] := DB[idx] ·DB[idy] and insert idz into DB.Ids

Output To One On input (Output, i, id , sid) from all parties where id ∈ DB.Ids, if i ∈ A then

send DB[id] to the simulator S. If S responds with OK then continue and otherwise send the

message Abort to all parties, and then halt. Otherwise if i ∈ [n] \ A await a message OK or

Abort from S. If the message is OK then send DB[id] to Pi and continue; otherwise send the

message Abort to all parties, and then halt.

Output To All On input (Output,0, id , sid) from all parties, if id ∈ DB.Ids, send DB[id] to the

simulator S. If S responds with OK then send the value DB[id] to all parties continue, and

otherwise send the message Abort to all parties, and then halt.

Figure 2.14: Arithmetic Black Box Functionality, FABB.

2.5.1 Correctness

The correctness of a protocol Π is defined in terms of whether or not honest parties re-

ceive the same outputs they would in the ideal-world experiment in which they interact

with a functionality F that Π should emulate.

Definition 2.15 (Protocol Correctness). Given a protocol Π realizing an n-party func-

tionality F, for every distinguisher D that is handed the inputs and outputs of all par-

ties, for every initial input x ∈ {0,1}n·poly(σ) where poly ∈ Z[X] is a polynomial, it holds

that ∣∣Pr[D(x,Π(x))= 1]−Pr[D(x,F(x))= 1]
∣∣≤ negl(σ)

where negl :N→R is a negligible function and the probability is taken over the random

45

CHAPTER 2. PRELIMINARIES

coins of the honest parties and A. The correctness is said to be perfect if negl ≡ 0, or

statistical otherwise.

In the UC framework, the environment Z has strictly more information than the

distinguisher D in the above definition, so correctness is subsumed into security.

There are multiple ways of relaxing correctness:

Security with abort The adversary obtains output and can cause honest parties to

abort before they receive output.

Security with identifiable abort As above, but the honest parties can identify at

least one of the corrupt parties when an abort occurs.

Fairness Either all parties obtain correct output or none of them do.

Guaranteed output delivery/Robustness The adversary cannot prevent honest par-

ties from obtaining output once the inputs have been given.

The focus in this thesis is on providing security with abort, primarily because stronger

guarantees require heavier machinery (i.e. they typically incur greater computation and

communication complexity), leading to less efficient protocols, and because in real-world

applications it is considered a “good enough” level of security.

Adversary Types

Monolithic The corrupt parties operate under a global strategy defined by a PPT Tur-

ing machine called the adversary.

Rushing In a given round5, the adversary receives all honest parties’ communication

before sending its own.

Passive/Active Corruption of parties can be either passive or active. A passively-corrupt

party follows the protocol honestly but may try to glean information from the com-

munication tapes (i.e. the transcript) about other parties’ inputs. An actively-corrupt

party may deviate arbitrarily from the protocol. Protocols secure in the presence of

active adversaries are said to provide the strongest security guarantees since they

require the fewest assumptions on the adversary. Security against passive adver-

saries is essential for any MPC protocol to satisfy the secrecy property. Passive
5See Section 2.3.4 for the definition of round.

46

2.5. MPC

security is also known as Semi-honest, Honest-but-curious, Eavesdropping, Fault-

tolerance, and active as Malicious and Byzantine.

Static/Adaptive A static adversary corrupts a set of parties at the beginning of the

protocol and cannot later corrupt other parties. An adaptive adversary can corrupt

parties arbitrarily throughout the protocol.

Computationally-bounded/unbounded The adversary is either assumed to be comp-

utationally-bounded, or unbounded. A computationally-bounded adversary’s com-

puting power is parameterized by the computational security parameter κ.

Remark 2.1. It is possible for multiple adversaries to be working independently in any

given protocol execution, each corrupting different sets of parties. However, any mono-

lithic adversary learns at least as much as any subset of corruptions since it can corre-

late the information and so in the literature this assumption is almost always made.

Remark 2.2. A rushing adversary can be dealt with trivially by all parties first commit-

ting to their message in one round, and then in the next round opening the commitment.

Actively-secure protocols often amortize this cost by opening secrets optimistically and

deferring correctness checks to a single check at the end of the protocol.

2.5.2 Privacy

At a high level, an MPC protocol is said to achieve privacy if no party can learn anything

more about other parties’ inputs than what can be deduced from the final output and

its own inputs alone. As with correctness, privacy is implied in the UC framework,

since if the environment can determine the inputs of honest parties from the protocol

transcript, then it can use this to distinguish between simulator’s emulated inputs and

the real honest parties’ inputs.

It is necessary to think carefully about what functions should be permitted when

performing MPC. For example, any protocol securely computing the XOR of two secret

field elements, one input from each of two parties, will always reveal the other party’s

secret input. A less trivial example is computing the intersection of two private sets:

a malicious party could simply provide as input set to the protocol the whole universe

of inputs, and will then learn exactly the set provided as input by the other party. Un-

der the definition of privacy provided it is possible to create protocols to realize these

functionalities securely, but they are always susceptible to these attacks unless one is

careful to impose restrictions on the parties’ inputs.

47

CHAPTER 2. PRELIMINARIES

2.5.3 Main Techniques and Paradigms

Since MPC involves interaction amongst sets of parties, communication efficiency is

crucial. Round complexity divides the literature into two broad categories: constant-

round protocols that use so-called garbled circuits, and variable-round protocols that

use an LSSS. In the former, no communication is required to evaluate the circuit: it is

only required for the initial “garbling” and for decoding the result. In the latter, par-

ties continually communicate during circuit evaluation until the result is obtained. One

advantage in LSSS-based solutions is that they directly allow reactive computation,

meaning that parties can compute a circuit, reveal the output, and then compute fur-

ther on secret data not yet revealed; garbled circuits tend to be non-reactive since they

require (highly) function-dependent preprocessing. Generally speaking, garbled circuits

are more efficient in a wide-area network (WAN) setting, where latency is the main bot-

tleneck, and LSSS-based MPC is more efficient in a local-area network (LAN), though

this is not a hard-and-fast rule. As this thesis deals with LSSS-based MPC protocols

until Chapter 8, discussion of garbled circuits (GCs) is deferred until then.

Preprocessing Model: SPDZ Family of Protocols

Perhaps the most common technique employed in MPC protocols to improve their effi-

ciency is to generate preprocessed data that is essentially the desired circuit or function

evaluated on random inputs, and then to “derandomize” it later using the real inputs.

The advantage of doing this is that since the randomized version reveals nothing about

the real circuit inputs (indeed, they may not even be known prior to the derandomiza-

tion step), the parties can perform checks to ensure that the randomized versions are

correct with overwhelming probability in σ. This leaves very little room for the adver-

sary to deviate from the protocol when derandomizing the circuit.

Another advantage to this technique is that while actually computing the circuit

or function may be expensive – for full-threshold MPC, public-key cryptography (PKC)

is needed, for example somewhat-homomorphic encryption (SHE) [BDOZ11, DPSZ12,

KPR18] or oblivious transfer (OT) [NNOB12, FKOS15, KOS16] – the derandomization

process is generally very cheap and is information-theoretic (IT)6.

Beaver’s Circuit Randomization A common technique amongst LSSS-based MPC

protocols is that of circuit randomization. This technique due to Beaver [Bea92] allows
6While the evaluation is IT, the generation of Beaver triples may require a computational assump-

tion, in which case the complete protocol only has computational security.

48

2.5. MPC

a circuit to be evaluated with IT security assuming the existence of so-called Beaver

triples. These are triples of secret-shared values(
[[a]], [[b]], [[a ·b]]

)
where usually one denotes c := a · b. Together with any sharing of 1, denoted by [[1]],
two secrets [[x]] and [[y]] may be multiplied as follows: the parties reveal the values

[[x−a]] := [[x]]− [[a]] as a public value r and [[y− b]] := [[y]]− [[b]] as a public value s, and

compute

[[x · y]] := r · s · [[1]]+ s · [[a]]+ r · [[b]]+ [[a ·b]].

The security of the protocol comes from the fact that the secrets a and b are uni-

formly random and therefore essentially one-time-pad-encrypt the inputs when they

are opened.

Squaring secrets can be computed using triples, but can also be done with a special

type of preprocessing that can be cheaper to generate, given by [DKL+13]. Suppose the

parties have a pair ([[a]], [[a2]]). Then the parties open r := x−a and compute

[[x2]] := r · ([[x]]+ [[a]])+ [[a2]].

When making use of Beaver’s circuit randomization, circuit evaluation is split into

a preprocessing phase in which one Beaver triple is generated for each multiplication

in the arithmetic circuit, and an online phase in which the triple is derandomized as

described above.

This circuit randomization trivially extends to any multiplicative depth d by com-

puting all monomials of the product

d∏
i=1

([[1]]+ [[ai]])

as preprocessing, and then derandomizing by broadcasting secrets [[xi]] − [[ai]] for all

i ∈ [d], where [[xi]] are the secrets to be multiplied. However, the length of the tuples

increases exponentially in d and generating them becomes impractical.

Authentication In order to be secure in the presence of an active adversary, triples

are generated using some form of authentication, which ensures that any additive er-

ror introduced on the triple after its generation can be detected. Indeed, notice that

if Beaver’s circuit randomization technique is used, then circuit evaluation on actual

circuit inputs involves only opening secrets and then computing linear operations on

49

CHAPTER 2. PRELIMINARIES

secret-shared data. Thus, for active security in the online phase (i.e. when the actual

circuit is being evaluated), it suffices to ensure that corrupt parties do not introduce

additive errors on secrets.

The precise method of authentication used generally depends on the access structure

and secret-sharing scheme being used. Some LSSSs contain a sort of internal redun-

dancy that precludes such tampering of secrets essentially “for free”; this is explored in

detail in Chapter 3. Another way to guarantee correctness is to use a verifiable secret-

sharing (VSS) scheme, in which secrets are shared “robustly”: the honest parties can

always reconstruct secrets if the adversary chooses to corrupt shares or to abort.

In full-threshold LSSS-based protocols, authentication is achieved using IT MACs.

The SPDZ protocol due to Damgård et al. [DPSZ12] uses SHE to generate Beaver triples

with IT MACs; an overview of the MACs now follows. In the SPDZ protocol, additive

secret-sharing is used, denoted here by [[·]]A. In addition to holding a secret x as a

secret-sharing [[x]]A, parties also hold a sharing of the MAC [[γ(x)]]A := [[α ·x]]A where α is

a MAC “key” sampled uniformly at random from the field, held by the parties as another

sharing [[α]]A. This MAC is linear, so any linear function on the secret – which can be

computed without communication by linearity of the LSSS – can also be evaluated on

the shares of the MAC to obtain a sharing of a MAC on the output. The authenticated

sharing comprising both the secret and its MAC is denoted by [[·]] =
(
[[·]]A, [[γ(·)]]A

)
.

Remark 2.3. It is important to note that to say the parties hold the sharing [[γ(x)]]A is not

the same as saying Pi holds [[α]]APi
·x for all i ∈ [n] (though this is indeed a valid sharing

of the MAC on x): they hold uniformly random field elements
{
[[α · x]]APi

}
i∈[n]

subject to

the constraint that
∑

i∈[n] [[α · x]]APi
=α · x.

Recall that for Beaver multiplication, a sharing of 1 is required, which means that

the parties must have an authenticated sharing of 1, and not just some additive sharing

[[1]]A. For SPDZ, since the global MAC key α is additively shared as [[α]]A, an authenti-

cated sharing of 1 can be obtained by P1 setting [[1]]P1
:= (1, [[α]]AP1

) and all other parties

setting [[1]]Pi
:= (0, [[α]]APi

).

Another issue is that of how parties provide inputs with authentication. This has a

simple solution: in order to obtain a MAC on an actual secret, parties can derandomize a

random sharing which already has a MAC: suppose the parties hold [[r]] :=
(
[[r]]A, [[α · r]]A

)
for some uniformly random r unknown to any party; then for party Pi to input a secret x,

the parties send the shares of [[r]]A (but not the shares of the MAC) to Pi, then Pi

reconstructs r, computes ε := x− r, and broadcasts, and then all parties set [[x]] := [[r]]+

50

2.5. MPC

ε · [[1]]; i.e. they compute [[x]]A := [[r]]A+ε · [[1]]A and [[γ(x)]]A := [[γ(r)]]A+ε · [[α]]A.

The process of verifying MACs is not a costly operation and is performed infre-

quently. Further detail is given in Section 4.7.

Sacrifice The process of generating triples with authentication as used in SPDZ is not

the focus of this work. However, the technique known as sacrificing used in [DPSZ12]

and other works will be used later on, and so the outline is given here.

Authentication alone does not not ensure that that the relation c = a · b holds for

each triple. This verification is performed by “sacrificing” one triple to check the correct-

ness of another: parties execute a coin-flipping protocol to agree on some random field

element ρ, open [[r]] := [[a]]− [[a′]] and [[s]] := [[b]]−ρ · [[b′]], and open

[[t]] := r · s · [[1]]+ s · [[a′]]+ r ·ρ · [[b′]]+ρ · [[c′]]− [[c]]

and check that t = 0. If this check passes then the parties output ([[a]], [[b]], [[c]]) and

discard ([[a′]], [[b′]], [[c′]]). If the coin-flipping was unbiased then the probability that c 6=
a · b but it holds that t = 0 is the probability that the adversary sets c+ε and manages

to choose δ to add to c′ so that ρ ·δ−ε= 0, which can be done with probability at most

1/|F| by guessing ρ ahead of time and modifying shares accordingly before the triples

are authenticated.

Techniques have been developed to amortize the sacrifice checks in certain settings:

For example, in the honest majority threshold setting, Choudhury and Patra [CP17]

give a probabilistic approach to verifying the correctness of Beaver triples shared using

Shamir’s secret-sharing. However, the cost of generating extra triples and sacrificing

them to obtain full active security is generally substantial.

Opening secrets efficiently The derandomization procedure involves “opening” se-

crets. In many actively-secure MPC protocols, this is not the same as all parties broad-

casting their share(s) since correctness is not guaranteed until a later point in the pro-

tocol execution as an amortized batch check. For example, if MACs are used to authen-

ticate as described above, then multiple secrets can be revealed, and their MACs can

be verified at a later point in time. With this perspective, the apparent O(n2) overhead

can be avoided: the opening procedure can be performed in two rounds by opening to

a single party and having that party broadcast the reconstructed secret, as shown in

Figure 2.15.

If such a technique is used, it must be possible for the parties to detect if P1 de-

cides to change what the broadcast element should be. This opening procedure has been

51

CHAPTER 2. PRELIMINARIES

P1

P2

P3

P4P5

P6

P7

(a) One round, O(n2) communication.

P1

P2

P3

P4P5

P6

P7

P1

P2

P3

P4P5

P6

P7

(b) Two rounds, O(n) communication.

Figure 2.15: Complexity of Broadcasting.

used in MPC protocols designed to scale well with the number of parties; for exam-

ple, Damgård and Nielsen [DN07] offered IT protocols for different types of adversaries

using this procedure.

Authentication and Sacrifice in smaller fields Recall that the chance that the

adversary cheats but the honest parties do not abort depends on the size of the field, as

|F|−1. To obtain statistical security 2−σ for the sacrifice check, dσ/ log |F|e triples must be

used to check each triple; for authentication, the parties must hold dσ/ log |F|e MACs on

every secret (or, equivalently, one MAC in an extension field of degree dσ/ log |F|e).

2.6 Literature Overview

This section contains an overview – which is far from exhaustive – of articles important

for understanding the heritage of protocols in this thesis. A timeline is presented in

Figure 2.16.

The secret-sharing scheme due to Blakley and Shamir [Sha79,Bla79] based on poly-

nomial interpolation is ubiquitous in the literature of MPC protocols for threshold ac-

cess structures. Independently and concurrently, they showed how a secret could be split

up into n pieces and one piece given to each party so that any coalition of parties of size

larger than some fixed threshold t could recover the secret. The linearity of the scheme

– that is, that the sum of the shares of secrets is a sharing of the sum of secrets – makes

it suitable for use in MPC. One of the benefits of Shamir’s scheme over many others is

that each party need only hold a single share per secret; the main disadvantage is that

it only works for threshold access structures.

Goldreich et al. [GMW87] showed that any function is computable assuming a comp-

utationally-bounded adversary corrupting any number of parties. The idea was to take

52

2.6. LITERATURE OVERVIEW

1979

1986
1987
1988

1990

1992
1993

1997
1998

2000

2006
2007
2008
2009

2011
2012
2013
2014
2015
2016
2017
2018

MULTI-PARTY GARBLING
[BMR90]

[LPSY15]
[LSS16]
[HSS17], [WRK17b]
[KY18]

2-PARTY GARBLING
[Yao86]

[LP07]
[KS08]
[PSSW09]

[BHKR13]

[ZRE15]

[WRK17a]

FULL-THRESHOLD MPC
[BDOZ11]
[DPSZ12], [NNOB12]
[DZ13], [DKL+13]

[KOS16]

[KPR18]

THRESHOLD MPC
[Bar86]
[GMW87]
[CCD88b], [BGW88]

[Bea92]

[HM97]
[BW98]

[CDM00]

[Mau06]

SECRET-SHARING
[Sha79], [Bla79]

[ISN87]

[KW93]

Figure 2.16: Highlights in the Timeline of MPC.

a passive protocol and bootstrap to active security by proving in zero-knowledge7 that

local operations were performed according to the protocol specification. The protocol

requires authenticated channels and a broadcast channel.

Shortly after this, Chaum et al. [CCD88b] showed that assuming parties are con-
7It suffices to understand this as a type of proof in which a prover proves it knows the witness to an

NP statement to a verifier without the verifier learning anything about the witness.

53

CHAPTER 2. PRELIMINARIES

nected by secure channels, then with no cryptographic assumptions parties can com-

pute a function on their combined secret inputs, even if the adversary corrupts up to

one third of the total number of parties actively, or up to one half passively. The proto-

col relies on a procedure known as cut and choose to ensure secrets are dealt correctly,

which incurs a negligible probability of erroneous output. Concurrently, the protocol of

Ben-Or et al. [BGW88], known as the BGW protocol, showed essentially the same result

(indeed, exactly the same result in the passive case). However, in the active case, CCD

is correct except with negligible probability in σ, whereas BGW uses error-correcting

codes to correct any errors. Another distinction is that BGW computes an arithmetic cir-

cuit whereas CCD computes a Boolean circuit. An efficient implementation of threshold

protocols was given in VIFF [DGKN09].

Following this, Kilian [Kil88] showed that any circuit in NC1 can be computed by two

players using a primitive known as OT. The advantage of this construction over others

is that it does not require generic zero-knowledge proofs for NP statements, instead only

depending on the existence of OT (which is well-established) and a result due to Bar-

rington [Bar86] that gives a method for constructing a branching program of bounded

width and polynomial size for any NC1 circuit. Two decades later, in the same vein of

work founding MPC on OT, Ishai et al. [IPS08] showed how to use OT more efficiently

to overlay passively-secure protocols with a “consistency checking” procedure to obtain

active security in the full-threshold setting.

Secret-sharing has long been of interest independently of MPC. Ito et al. [ISN87]

showed how to construct a LSSS for any access structure. Karchmer and Wigdersen

[KW93] gave a mathematical description of secret-sharing schemes in terms of lin-

ear spaces and generating matrices, known as MSPs. It was shown by Hirt and Mau-

rer [HM97, HM00] and Beaver and Wool [BW98] that if an access structure is Q2 then

fault-tolerant protocols without cryptographic assumptions exist for these access struc-

tures. Maurer [Mau06] showed the same result using replicated secret sharing, where

if the access structure is Q2 then the protocols roughly coincide, and then showed that

assuming the access structure is Q3, by using a VSS scheme a robust protocol can be

constructed also using replicated secret-sharing, which is essentially a generalization

of the actively-secure (n,bn−1
3 c)-threshold protocols from [CCD88b,BGW88]. Various re-

sults in the secret-sharing literature, such as [CDM00] have led to efficiency improve-

ments in LSSS-based MPC.

Beaver [Bea92] showed how to evaluate a circuit on random inputs in such a way

that it may be derandomized later inexpensively, which has recently been a boon to

54

2.6. LITERATURE OVERVIEW

the world of MPC, for example in [BDOZ11, DPSZ12, DKL+13, KOS16, KPR18]. More

generally, the idea of using preprocessing has also been used in the context of evaluating

Boolean circuits [NNOB12,DZ13,FKOS15].

In a line of work quite independent from LSSS-based MPC, in 1986, Yao [Yao86, Oral

presentation] introduced a technique called circuit garbling and showed that two par-

ties could use it to evaluate a Boolean circuit securely on their combined input, assum-

ing passive corruption. The protocol requires only a constant number of rounds and uses

OT. Later, Beaver et al. [BMR90] showed how to garble circuits in the n-party honest-

majority setting assuming secure channels and a broadcast channel. The advantage of

the GC approach over the LSSS approach is that a circuit can be garbled in a constant

number of rounds (i.e. independently of the multiplicative depth of the circuit, on which

LSSS-based MPC protocols typically depend). They also showed how to garble in such

a way that the evaluator need only decrypt one ciphertext per gate, instead of all four,

in a technique called point-and-permute. To select a few highlights in the recent history

of circuit garbling: Lindell and Pinkas [LP07] showed how to obtain an efficient 2-party

protocol secure against active adversaries; Kolesnikov and Schneider [KS08] showed

how to garble XOR gates essentially for free with a stronger assumption on the PRF

used for encryption – a technique called FreeXOR; Pinkas et al. [PSSW09] used polyno-

mial interpolation to reduce the number of ciphertexts that need to be sent per gate; Bel-

lare et al. [BHKR13] showed how to use a fixed-key block cipher to generate the cipher-

texts; and Zahur et al. [ZRE15] used the asymmetry of the garbler/evaluator dichotomy

to halve the communication costs involved in garbling AND gates. More recently, secu-

rity against active adversaries in the n-party setting [HSS17,WRK17b,KY18] has been

a fruitful area of research, where OT has been used extensively.

55

Chapter 3

Error-detection and Share
Reconstruction

This chapter is based on work published at CT-RSA 2019 under the title Error Detection

in Monotone Span Programs with Application to Communication-Efficient Multi-party

Computation [SW19] and was joint work with Nigel Smart. The main contribution of

that work – error-detection for Q2 access structures – is discussed here; its application to

multi-party computation (MPC) is more the focus of Chapter 7.

This chapter In this chapter, some important properties of linear secret-sharing

schemes (LSSSs) that compute Q2 access structures are explored – in particular, they

offer a form of “free authentication”. One can view this as part-way towards a verifiable

secret-sharing (VSS) scheme, except that errors can only be detected, not corrected.

The notion of share reconstructability is also defined and explored, which is a prop-

erty of certain LSSSs and can be viewed as a relaxation of VSS where honest parties can

always determine all shares if they collaborate. It differs from VSS as honest parties do

not know the set of honest parties, so a given honest party does not know which set of

shares of other parties to collaborate to determine the remaining shares. LSSSs that

are share reconstructable provide optimal communication for the protocols described in

the following chapters of this thesis.

3.1 Overview

In the full-threshold SPDZ protocol [DPSZ12] and its successors, e.g. [DKL+13,KOS16],

authentication is achieved with additively-homomorphic message authentication codes

57

CHAPTER 3. ERROR-DETECTION AND SHARE RECONSTRUCTION

(MACs), as was outlined in Section 2.5.3: for each secret that is shared amongst the

parties, the parties also share a MAC on that secret. Since the authentication is addi-

tively homomorphic and the sharing scheme is linear, the sum (and consequently scalar

multiple) of authenticated shares is authenticated “for free” by performing the addition

(or scalar multiplication) on the associated MACs. It was shown in Section 2.5.3 that,

assuming the parties are provided with authenticated Beaver triples, multiplication is

also just a linear operation.

One important branch of the authentication methodology contributing significantly

to its practical efficiency is the amortization of verification costs by batch-checking

MACs, a technique developed in [BFO12,DPSZ12,DKL+13], amongst other works. The

idea is that one can check the correctness of multiple linear relations by performing a

single check on a random linear combination of the data items, which has statistical

security if the random coefficients are from a set of size O(2σ).

An orthogonal approach to batch verification for (3,1)-threshold access structures

was introduced by Furakawa et al. [FLNW17]. There they used redundancy in repli-

cated secret-sharing to reduce verification of multiple secrets to a simple procedure in

which parties checked the consistency of (a hash of) their views of the execution.

In the following chapters, full MPC protocols generalizing [FLNW17] are given.

These generalizations depend on the work in this chapter, which extends the “view

comparison” methodology to any Q2 access structure on any number of parties. This is

achieved by proving a folklore result that roughly says that an LSSS is error-detecting

if and only if it is Q2. While this result was fairly-well understood by the community, its

precise formulation and its use in making MPC protocols more efficient was neglected.

Indeed, it was noted by Fehr [Feh99] that a share vector is accepted in an monotone

span program (MSP) if and only if it is rejected by its dual, but the result in this chapter

that shows that the adversary is unable to change share vectors (non-trivially) without

detection for Q2 access structure was not shown, since this fact is of limited interest

outside of MPC.

This chapter explores the two instances in which error-detecting can be performed

if the access structure is Q2 (which occur frequently MPC protocols), which occur when

secrets are revealed:

• If a single party Pi is required to learn a secret, a form of error-detection can be done

on the shares it receives from other parties.

• If all parties are required to learn a secret, the parties engage in a round of commu-

58

3.1. OVERVIEW

nication in which not all parties need to communicate with each other. The parties

each reconstruct a view of what they think other parties have received, even if they

have not communicated with all other parties, and then after opening many secrets,

each party hashes the reconstructed view and checks every other party’s hash value

against their own, and aborts if they differ.

Motivating Example

To motivate a study of error-detection, and to aid intuition, consider the following exam-

ple that uses error-correction. Suppose the (7,2)-threshold access structure, which is Q3,

is computed using Shamir’s secret-sharing scheme. Any 3 parties together hold 3 dis-

tinct points on a quadratic, and so they can uniquely identify the polynomial and hence

the secret (defined as the polynomial evaluated at 0). If the adversary corrupts any 2

parties (i.e. an unqualified set) and corrupts their shares, then there are 5 correct shares

remaining. This means that if all parties broadcast their share, the honest parties can

always identify which shares are correct and which are not, since there is only one set

of 5 shares all lying on the same quadratic, and hence the erroneous shares may be

recomputed and the error thereby corrected. This is shown in Figure 3.1a, where every

honest party can determine the correct sharing and hence the correct secret regardless

of what corrupt parties broadcast.

This property allows the construction of an MPC protocol with identifiable abort,

and hence (via a VSS scheme), robust MPC. In fact, Cramer et al. [CDG+05] showed

how the correspondence between LSSSs and linear codes reveals an efficient method by

which qualified parties can correct any errors in a set of shares for some secret if the

access structure is Q3, since if this holds then a strongly-multiplicative LSSS realizing

it allows honest parties to correct any errors introduced by the adversary1. This is not

a direct connection to error-correction codes since such LSSSs do not necessarily allow

unique decoding of the entire share vector: it is only the component of the share vector

corresponding to the secret that is guaranteed to be correct.

The results presented here are parallel, but for Q2. If the access structure is Q2 then

any LSSS realizing it allows honest parties to agree on whether or not the secret is cor-

rect: thus one obtains a form of error-detection. This reveals why the hash-verification

procedure enables error-detection and hence security with abort. Again, an example is
1In a strongly-multiplicative LSSS, any set of parties whose complement is an unqualified set can

compute the product of two secrets. Replicated secret-sharing is strongly multiplicative if the access
structure is Q3.

59

CHAPTER 3. ERROR-DETECTION AND SHARE RECONSTRUCTION

0 1 2 3 4 5 6 7
0

20

40

60

Party index

Sh
ar

e

Secret
Honest

Dishonest

(a) Error correction.

0 1 2 3 4 5 6 7
0

20

40

60

Party index

Sh
ar

e

Secret
Honest

Dishonest

(b) Error detection.

Figure 3.1: Errors in Secret-Sharing.

instructive: consider the Q2 access structure (7,3)-threshold and Shamir’s scheme. Any

4 parties hold 4 distinct points on a cubic, so they can uniquely identify the polynomial

and hence the secret. If the adversary corrupts 3 parties and alters their shares, then

there are 4 correct shares remaining. Unlike in the above example, every 4 shares lie

on a cubic (since 4 distinct points determine a unique cubic). If all parties broadcast

their shares, the honest parties cannot know which 3 of the other 6 shares it sees are

correct. In Figure 3.1b, honest party P4 cannot decide which polynomial is correct from

the broadcasted shares alone. However, P4 does know that if not all 7 shares lie on the

same cubic, then some shares must be incorrect: since at least 4 shares are correct (held

by honest parties), there is no possible corruption of 3 shares which causes all 7 points

to lie on the same cubic but for the cubic to be different from the original equation.

In the example above, the error can be detected since the honest parties’ shares

determine the cubic, but this is because the only way all 7 points lie on the same cubic

is if the shares are correct. In different secret-sharing schemes, it is possible for an

unqualified set of shares to be altered so that the resulting share vector is still “valid”,

but in this section it will be shown that “valid” alterations cannot change the encoded

secret if the access structure is Q2.

Dispensing with MACs, the protocol presented here can be instantiated with au-

thentication over small finite fields, or use an LSSS over a ring. In the latter case MSP

must be defined over the ring, and it should be noted that while authentication is now

possible in a ring rather than just a field, the protocols in this thesis are still not (im-

mediately) amenable to computation over arbitrary rings as some procedures (such as

the sacrifice step of generating Beaver triples, outlined in Section 2.5.3) require that the

ring be an integral domain.

60

3.2. OPENING TO ONE PARTY

3.2 Opening to One Party

In this section, it will be shown that for an LSSS realizing a Q2 access structure, if

the share vector [[x]] for some secret x is modified with an error vector e ∈ Fm with

unqualified support then [[x]]+e is either no longer a valid share vector (i.e. is not in

im(M)), or the error vector encodes 0, and so by linearity [[x]]+e also encodes x. This

immediately gives an efficient method by which a party to whom a secret is opened (by

all other parties sending that party all of their shares) can check whether or not the

adversary has introduced an error. This process is described at the end of this section.

The procedure of opening to a single party is used in MPC protocols for the parties to

provide input and obtain output in an actively-secure manner.

In more detail, it will be shown that for any MSP computing any Q2 access structure,

there exists a matrix N such that for any vector e 6= 0 for which
{
Pi : i ∈ ρ (supp(e))

} 6∈Γ,

it holds that either N ·e 6= 0, or N ·e= 0 and 〈e,t〉 = 0.

Lemma 3.1. For any MSP M = (F, M,t,ρ) computing a Q2 access structure Γ, for any

vector [[x]] ∈Fm, define X := {
Pi : i ∈ ρ (

supp
(
[[x]]

))}
; then

X 6∈Γ =⇒
[[x]] 6∈ im(M), or

[[x]] ∈ im(M) and [[x]] = M ·x for some x ∈Fd where 〈x,t〉 = 0.

Proof. If X 6∈ Γ then P \X ∈ Γ since the access structure is Q2. Thus there is at least

one set Q ∈ Γ where Q⊆P \X for which [[x]]Q = 0, by definition of X . Recall that for a

qualified set Q of parties to reconstruct the secret, they take the appropriate recombi-

nation vector λ (which has the property that
{
Pi ∈P : i ∈ ρ(supp(λ))

}⊆Q) and compute

s = 〈λ, [[x]]〉. For this particular Q and corresponding recombination vector λ, it holds

that 〈λ, [[x]]〉 = 〈λQ, [[x]]Q〉 and 〈λQ, [[x]]Q〉 = 〈λQ,0〉 = 0 by the above, so the secret is 0.

Finally, if [[x]] ∈ im(M), then [[x]] = M ·x for some x ∈Fd where 〈t,x〉 = 0, since at least

one qualified set, Q, computes the secret as 0. Otherwise, [[x]] 6∈ im(M), as claimed.

The following lemma shows that if the adversary, controlling an unqualified set of

parties, adds an error vector e to a share vector [[x]], the resulting vector c := [[x]]+e will

either not be a valid share vector, or will encode the same secret as [[x]] (by linearity).

Adding in an error e that does not change the value of the secret can be viewed as the

adversary rerandomizing the shares of corrupt parties.

Lemma 3.2. Let M = (F, M,t,ρ) be an MSP computing Q2 access structure Γ and c :=
[[x]]+e be the observed set of shares, given as a valid share vector [[x]] encoding secret x,

61

CHAPTER 3. ERROR-DETECTION AND SHARE RECONSTRUCTION

with error e ∈Fm. Then there exists a matrix N such that{
Pi ∈P : i ∈ ρ(supp(e))

} 6∈Γ =⇒ either e encodes the error e = 0, or N ·c 6= 0

Proof. Let N be any matrix whose rows form a basis of ker(M>) and let e ∈ Fm. By

the Fundamental Theorem of Linear Algebra, ker(M>)= im(M)⊥, so [[x]] ∈ im(M) if and

only if N · [[x]] = 0. Since
{
Pi ∈P : i ∈ ρ(supp(e))

} 6∈ Γ, it holds by Lemma 3.1 that either

e 6∈ im(M), or e ∈ im(M) and e = 0.

If e ∈ im(M) then e = 0 as required, while if e 6∈ im(M) then N ·e 6= 0. In the latter case,

since [[x]] ∈ im(M), it holds that N ·[[x]] = 0 and hence N ·c= N ·([[x]]+e)= N ·[[x]]+N ·e=
0+N ·e 6= 0.

The matrix N is called the cokernel of M, and is analogous to the parity-check matrix

of the code defined by generator matrix M from Coding Theory. The method to open a

secret to a single party Pi is then immediate: all parties send their shares to Pi, who

then concatenates the shares into a share vector [[x]] and computes N · [[x]]. Since the

adversary controls an unqualified set of parties, if N · [[x]] = 0 then by Lemma 3.2 the

share vector [[x]] encodes the correct secret. In this case, Pi recalls any recombination

vector λ and computes the secret as s = 〈λ, [[x]]〉, and otherwise tells the parties to abort.

It was shown in a report by Fehr [Feh99] that the matrix N in fact realizes the dual

access structure by associating to it the same row map ρ as for M. Thus the result

given is a special case of this observation. However, Lemma 3.1 only holds for Q2 access

structures and is the crucial property needed for constructing an MPC protocol secure

with abort.

3.3 Opening to All Parties

In this section, the method for opening secrets to all parties with authentication is given.

To open a secret in a passively-secure protocol, all parties can broadcast all of their

shares so that all parties can reconstruct the secret. This method contains redundancy if

the access structure is not full-threshold since proper subsets of parties can reconstruct

the secret by definition of the access structure. This implies the existence of “minimal”

communication patterns for each access structure and LSSS, in which parties only com-

municate sufficiently for every party to have all shares corresponding to a qualified set

of parties.

In the active setting, the redundancy allows verification of opened secrets: honest

parties can check all parties’ broadcasted shares for correctness – for example, that

62

3.3. OPENING TO ALL PARTIES

all shares lie on a polynomial of the appropriate degree for Shamir’s secret-sharing.

When reducing communication with the aim of avoiding the redundancy of broadcast-

ing, honest parties must still be able to detect when the adversary sends inconsistent or

erroneous shares.

The trick of the protocol presented here (for arbitrary LSSSs) is for parties to receive

just enough shares to reconstruct the shares they did not see (which is at least the same

as the number of shares they require to reconstruct the secret), and then at the end

check that every party reconstructed the same share vector. To understand this more

concretely, consider Shamir’s secret-sharing scheme once more: a set of t+ 1 distinct

points determines a unique polynomial of degree at most t that passes through them.

This fact not only enables the secret to be computed using t+1 shares, but additionally

allows the entire polynomial, and consequently all other shares, to be determined. The

opening protocol then simply involves each party sending its share to its t left neigh-

bours; by symmetry, each party will receive t shares, and hence can interpolate a poly-

nomial, and thus determine the secret as well as all shares. After doing this possibly

many times, the parties can take a hash of the concatenation of the polynomials (say,

by concatenating the coefficient vectors) and at a later point in time comparing these

hashes. If the hashes are all the same, then all reconstructed vectors are the same, and

hence all parties must have computed the correct secrets. This, in essence, is the idea

behind the protocol of Furakawa et al. [FLNW17] tailored to replicated secret-sharing

in the (3,1)-threshold setting.

For a given LSSS, there is no reason a priori why parties should be able to recon-

struct shares of all parties given just enough shares to reconstruct the secret (though

in Shamir’s secret-sharing this is indeed the case). To allow parties to perform recon-

struction, each party is assigned a set of shares that it will receive, encoded as a map

q : [n]→ 2[m] defined as follows: for each Pi ∈P , define q(i) to be a set Si ⊆ [m] such that:

• ker(MSi)= {0}; that is, the kernel of the submatrix M restricted to the rows indexed

by Si, is trivial; and

• ρ−1({i}) ⊆ Si, where ρ−1 denotes the preimage of the row map ρ; that is, each party

includes all of their own shares in the set Si.

Remark 3.1. If ker(M) 6= {0}, such a map does not necessarily exist. In this situation, the

MSP admits sharings of 0 with unqualified support. In other words, for some LSSSs it

is not the case that any qualified set of parties have enough information to reconstruct

all shares, though obviously the full set of parties suffices and in this case one can set

63

CHAPTER 3. ERROR-DETECTION AND SHARE RECONSTRUCTION

q(i) := [m] for every i ∈ [n]. On the other extreme, a formal description of MSPs in which

all qualified sets of parties can reconstruct the entire share vector is given in Section 3.6.

In Section 3.5 a somewhat-optimized algorithm for finding a map q is given. These

sets are used as follows. Each Pi receives a set of shares, denoted by [[xi]]q(i), for a given

secret x, where one hopes that xi = x j for every i, j ∈ [n]. Then in order to reconstruct all

shares, Pi tries to find xi such that [[xi]]q(i) = Mq(i) ·xi and then computes [[xi]] := M ·xi as

the reconstructed share vector, which is then used to update the hash function (locally).

Trivially, one can take q(i)= [m] for every Pi ∈P , which corresponds to broadcasting all

shares; however, better choices of q result in better communication efficiency.

If such an xi does not exist then it must be because the adversary sent one or more

incorrect shares, because [[xi]]q(i) should be a subvector of some share vector. In this

case, the party or parties unable to reconstruct send a message to all parties to abort.

If such an xi does exist for each party then the adversary could still cause different

parties to reconstruct different share vectors (and thus output different secrets), but

then the hashes would differ and the honest parties would abort. The first condition,

ker(MSi) = {0}, ensures that if all parties follow the protocol, they all reconstruct the

same share vector, since there are multiple possible share vectors for a given secret,

otherwise an honest execution may lead to an abort.

Indeed, the only thing the adversary can do without causing abort – either when

opening secrets or later on when hashes are compared – is to change its shares so that

when they are combined with the honest parties’ shares, they form a valid share vector.

Intuitively, one can think of this as the adversary rerandomizing the shares owned only

by corrupt parties, which is not possible in Shamir or replicated secret-sharing, but in

general is possible if and only if the LSSS admits non-trivial share vectors with un-

qualified support (for example, in disjunctive normal form (DNF)-based secret-sharing

that was described in Section 2.4.3). Note that Lemma 3.2 prevents the adversary from

changing the secret by changing shares of corrupt parties (without this being detected).

If the adversary does choose to force different honest parties to compute different share

vectors (albeit sharing the same secret), then the honest parties will only abort after

comparing hash outputs, instead of during the opening procedure; note that if this is

the only form of cheating then the output will actually be correct, even though the par-

ties abort, which is undesirable as it offers “more ways” the adversary can cause the

protocol to abort, but does not make a difference since the adversary can always abort

just before output is given.

The intuition above can be summarized in the following lemma, that says that if all

64

3.3. OPENING TO ALL PARTIES

parties are able to reconstruct share vectors and the share vectors are consistent, then

the adversary cannot have introduced an error.

Lemma 3.3. Let q : [n] → 2[m] be any map satisfying ker(MSi) = {0} and ρ−1({i}) ⊆ Si

for all i ∈ [n] for an LSSS realizing a Q2 access structure, and let [[xi]]q(i) denote the

subvector of shares received by party Pi for a given secret. Suppose it is possible for each

party Pi ∈ P to find a vector xi such that [[xi]]q(i) = Mq(i) ·xi and let [[xi]] := M ·xi for

each i ∈ [n]. If [[xi]] = [[x j]] for every pair of honest parties Pi and P j, then xi = x j for all

i, j ∈ [n].

Proof. The existence of q follows from the fact that “at worst” one can take q(i) = [m]

for every Pi ∈P . Since each party Pi can find some xi such that [[xi]]q(i) = Mq(i) ·xi, and

ker(Mq(i))= {0} for every Pi ∈P by the first requirement in the definition of q, in fact xi

is the unique solution in each case.

Let A denote the set of corrupt parties. Since A is unqualified, the honest parties

form a qualified set Q=P \A since the access structure is Q2.

Each honest party uses their own shares in the reconstruction process by the sec-

ond requirement in the definition of q, so if [[xi]] = [[x j]] for every pair of honest parties

Pi and P j, then in particular they all agree on a qualified subvector defined by honest

shares – i.e. [[xi]]Q = [[x j]]Q for every pair of honest parties Pi and P j. Thus some qual-

ified subvector of the share vector is well defined, which uniquely defines the secret by

definition of MSP.

As mentioned in the introduction, the results in the last two sections are somewhat

analogous to the result of Cramer et al. [CDG+05, Thm 1] which roughly shows that for

a strongly multiplicative LSSS implementing a Q3 access structure, honest parties can

always agree on the correct secret (when all parties broadcast their shares).

Why not hash the secrets? In light of the fact that parties are merely agreeing on

the opened value each time a secret is opened, intuitively one might think it suffices to

compare the secrets reconstructed each time, and not the share vectors. However, this

is not sufficient as one must account for a rushing adversary (see Section 2.5.1) as in

the following example.

Example 3.1. This example demonstrates that hashing the secrets opened to all par-

ties is insufficient to prevent an adversary from causing honest parties to agree on the

65

CHAPTER 3. ERROR-DETECTION AND SHARE RECONSTRUCTION

correct output. Consider the MSP defined by the matrix

P1

P1

P2

P3

P4

1 0 0

0 1 0

1 0 1

0 1 1

0 0 1

where the labels of the rows indicate the row map and where t= (1,1,1). One can check

that the associated access structure is defined by

Γ− = {{1,2}, {1,3}, {1,4}, {2,3,4}}.

Let the map q be defined as follows:

q(1)= {1,2},

q(2)= {1,2},

q(3)= {1,3},

q(4)= {1,4}.

One can check that it satisfies the requisite properties. Suppose the adversary corrupts

party P1. In this case, since q specifies that every other party receives a share only from

P1, A can easily cause the parties to open the secret ŝ of its choosing as follows:

When A receives P2’s share s3, it samples x′ subject to 〈t,x′〉 = ŝ and 〈(1,0,1),x′〉 =
s3.2 Then it computes

1 0 0

0 1 0

1 0 1

 ·x′ =

s′1
s′2
s3

and sends s′1 and s′2 to P2.

When A receives P3’s share s4, it samples x′′ subject to 〈t,x′′〉 = ŝ and 〈(0,1,1),x′′〉 =
s4. Then it computes

1 0 0

0 1 0

0 1 1

 ·x′′ =

s′′1
s′′2
s4

and sends s′′1 and s′′2 to P3.

2Note that system is underconstrained so x′ certainly exists.

66

3.4. ERROR-DETECTION IN STANDARD LSSSS

Finally, when A receives P4’s share s5, it samples x′′′ subject to 〈t,x′′′〉 = ŝ and

〈(0,0,1),x′′′〉 = s5. Then it computes
1 0 0

0 1 0

0 0 1

 ·x′′′ =

s′′′1

s′′′2

s5

and sends s′′′1 and s′′′2 to P4.

Now P2, P3 and P4 agree on a secret ŝ. While the shares are now inconsistent (i.e. it

does not hold that s′1 = s′′1 = s′′′1 and s′2 = s′′2 = s′′′2), a comparison of the hash of the secret

would not reveal this cheating behaviour.

3.4 Error-detection in Standard LSSSs

Perhaps the four most well-known LSSSs are additive, Shamir’s, replicated, and DNF-

based, as were outlined in Section 2.4.3. In this section, the error-detection property is

explained as it applies to the last three LSSSs (since additive secret-sharing cannot be

used to realize a Q2 access structure).

3.4.1 Shamir’s Secret-Sharing

In the language of Coding Theory, error-detection for Shamir’s secret-sharing is just

checking whether or not the syndrome of the codeword (i.e. the share vector) is 0. For

a (5,2)-threshold access structure, Shamir’s secret-sharing can be expressed as an MSP

(F, M,t,ρ)=M (where F :=Q for simplicity) where M and ρ are given by

P1

P2

P3

P4

P5

10 11 12

20 21 22

30 31 32

40 41 42

50 51 52

and t= (1,0,0)>. The cokernel can be written as the image of the matrix

N =
(
1 0 −6 8 −3

0 1 −3 3 −1

)
.

Now observe that if it holds for some vector e that {Pi ∈ P : i ∈ ρ(supp(e))} 6∈ Γ, then e
encodes the evaluations of a polynomial f of degree at most 2 that has at least three

zeroes, so f ≡ 0 and hence e= 0, and so trivially N ·e= 0.

67

CHAPTER 3. ERROR-DETECTION AND SHARE RECONSTRUCTION

3.4.2 Replicated Secret-Sharing

Consider the replicated secret-sharing for the (3,1)-threshold access structure, described

using an MSP as follows:
P1

P1

P2

P2

P3

P3

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

where t= (1,1,1)> ∈F3. Let N be the cokernel of M; one possible choice is:

N =

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

 .

As with Shamir’s secret-sharing, there are no share vectors with unqualified support:

if N ·e = 0, then e is of the form (e1,e2,e3,e1,e2,e3)> where ei ∈ F. However, the image

under ρ of the support of an error with this form (for which the encoded secret is non-

zero) is necessarily qualified: for example, ρ(supp((1,0,0,1,0,0)>))= {1,2} ∈Γ). Thus the

adversary cannot change the share vector so that the new shares encode the same se-

cret, let alone change the share so that it shares a different secret, without the resulting

vector not being in im(M).

3.4.3 DNF-based Sharing

Consider the Q2 access structure given by

Γ− = {{1,2}, {1,3}, {1,4}, {2,3,4}}

∆+ = {{1}, {2,3}, {2,4}, {3,4}}.

68

3.5. FINDING A RECONSTRUCTION MAP

One choice of MSP is:
P1

P1

P1

P2

P2

P3

P3

P4

P4

1 −1 0 0 0 0

1 0 −1 0 0 0

1 0 0 −1 0 0

0 1 0 0 0 0

1 0 0 0 −1 −1

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

where t = (1,0,0,0,0,0)> ∈ F6. Let N be the cokernel of M, for some choice of basis; one

possible choice is:

N =

−1 1 0 −1 0 1 0 0 0

−1 0 1 −1 0 0 0 1 0

−1 0 0 −1 1 0 1 0 1

 .

For example, the vector (0,0,0,0,0,0,e5,0,−e5)> ∈ F9 is the image of (0,0,0,0,e5,−e5)>

for any e5 ∈ F, and it has unqualified support, namely {3,4}. However, observe that its

image under N is 0, as required.

3.5 Finding a Reconstruction Map

Before providing the opening protocol, first an algorithm to find a map q such that

|supp(q(i))| is “quite small”, for all i, is given. See Section 3.3 for the definition of q.

In the MPC protocols later, each party computes this algorithm and selects the lexico-

graphically first map, having already agreed on the access structure Γ and ordering its

sets lexicographically. There is a choice as to whether to minimize the number of im-

plied uni- or bi-directional channels. In the algorithm, by choosing the qualified sets as

described one (crudely) optimizes the number of uni-directional channels.

For the algorithm given in Figure 3.2, the MSP matrix M is assumed to have linearly-

independent columns, since if not then a linearly-independent subset can be taken to

obtain a new LSSS which realizes the same access structure [BGP95]. It is also assumed

that ρ is monotonically increasing so that each party owns a contiguous submatrix of

M. If it is not, the rows can be interchanged so that this is true.

69

CHAPTER 3. ERROR-DETECTION AND SHARE RECONSTRUCTION

Algorithm for Determining Map q

Input MSP (F, M,t,ρ) and corresponding access structure Γ. Recall M ∈Fm×d .

Output Map q.

Algorithm
1. For each Pi ∈P ,

a) Set A := MPi , S :=∅, k := 1.

b) Set Q ∈Γ− to be a smallest minimally qualified set containing Pi.

c) Set k := 1.

d) While rank(A)< d and k ≤ m Do

i. While Pρ(k) 6∈Q and k < m Do

A. Set k := k+1.

ii. End While.

iii. If k ≤ m and the row Mk of M is linearly independent of the rows of A then

A. Append Mk as a new row of A.

B. S := S∪ {k}.

iv. End If.

v. Set k := k+1.

e) End While.

f) k := 1.

g) While rank(A)< d and k ≤ m Do

i. While Pρ(k) ∈Q and k < m Do

A. Set k := k+1.

ii. End While.

iii. If k ≤ m and the row Mk of M is linearly independent of the rows of A then

A. Insert Mk into A.

B. S := S∪ {k}.

iv. End If.

v. k := k+1.

h) End While.

i) Set q(i) := S.

2. End For.

3. Output q.

Figure 3.2: Algorithm for Determining Map q.

3.6 Share-Reconstructability

To conclude this chapter, the notion of share-reconstructability is defined. An MSP that

is share-reconstructable is one in which share vectors can be reconstructed entirely from

70

3.6. SHARE-RECONSTRUCTABILITY

any qualified subvector. They are of interest because their use offers particularly good

communication efficiency inΠOpen, as q(i) is “as small as possible” for each Pi ∈P , which

minimizes communication. If an MSP that is both share-reconstructable and ideal (such

as Shamir’s scheme) is used, then the communication cost attains its minimum for that

access structure.

Definition 3.1. Let M = (F, M,t,ρ) be an MSP, where ker(M) = {0}, computing a Q2

access structure Γ. M is called share-reconstructable if for every s ∈ im(M), for every

Q ∈Γ, sQ uniquely determines the vector s.

The following lemma is a restatement but provides a more concrete check of whether

or not a given MSP is share-reconstructable, though it requires the computation of

exponentially-many submatrices (naïvely).

Lemma 3.4. Let M= (F, M,t,ρ) be an MSP, where ker(M)= {0}, computing a Q2 access

structure Γ. Then M is share-reconstructable if and only if for every Q ∈ Γ it holds that

ker(MQ)= {0}.

Proof. Suppose MQ has full column rank for all Q ∈Γ, and that there exist s,s′ ∈ im(M)

such that s 6= s′ but sQ = s′Q for some Q ∈ Γ. Then let M ·x = s and M ·x′ = s′. Then

MQ · (x−x′) = MQ ·x−MQ ·x′ = sQ−s′Q = 0, so since ker(MQ) = {0}, we have x = x′. But

then s = M ·x = M ·x′ = s′, which is a contradiction. Thus no such pair of share vectors

exist, so M is share-reconstructable.

Suppose there exists some Q ∈ Γ such that ker(MQ) 6= {0} and suppose we are given

sQ 6= 0. Fix some x such that sQ = MQ ·x and fix k ∈ ker(MQ)\{0}. We have MQ ·(x+k)=
MQ ·x+MQ ·k= sQ+0= sQ. Let s= M ·x and s′ = M ·(x+k). Since ker(M)= {0} and k 6= 0
it holds that M ·k 6= 0, so s′ = M · (x+k)= M ·x+M ·k 6= M ·x= s; but sQ = s′Q, so sQ does

not have a unique reconstruction, and hence M is not share-reconstructable.

Example 3.2. Shamir’s secret-sharing scheme is an example of a share-reconstructable

LSSS since any t rows of the Vandermonde matrix are linearly independent.

Example 3.3. Consider the access structure defined by Γ− = {{1,2}, {1,3}, {1,4}, {2,3,4}}

and ∆+ = {{1}, {2,3}, {2,4}, {3,4}} computed by the MSP given as follows:

P1

P1

P2

P3

P4

1 0 0

0 1 0

1 0 1

0 1 1

0 0 1

71

CHAPTER 3. ERROR-DETECTION AND SHARE RECONSTRUCTION

where t = (1,1,1)>. The reader may check that ker(MQ) = {0} for every Q ∈ Γ−, so given

sQ there is always a unique solution to MQ ·x= sQ for x, and hence s can be determined

from sQ by finding x and computing s= M ·x.

We know by Lemma 3.1 that for any MSP computing a Q2 access structure, share

vectors all have qualified support unless they encode the secret 0; to allow a unique

construction of each share vector from qualified subsets, share-reconstructable MSPs

are those for which the secret 0 is only encoded via the zero vector or with share vectors

with qualified support.

Lemma 3.5. Let M= (F, M,t,ρ) be an MSP, where ker(M)= {0}, computing a Q2 access

structure Γ. Then M is share-reconstructable if and only if

s ∈ im(M) =⇒ ρ(supp(s)) ∈Γ∪ {∅}

for all s ∈Fm.

In other words, M is share-reconstructable if and only if the only share vector with

unqualified support which encodes the secret 0 is the zero vector. For intuition, one

can think of Shamir’s scheme: the only polynomial of degree at most t which has at

least n− t > t zeros is the zero polynomial. The statement is corollary to the previous

lemmata by linearity of the MSP, but we give the formal proof below.

Proof. Suppose that M is not share-reconstructable. Then there exists Q ∈ Γ for which

∃ x ∈ ker(MQ) such that x 6= 0. Since MQ ·x = 0 it holds that ρ(supp(Mx)) ⊆ P \Q,

which is unqualified, since Γ is Q2. Since ker(M)= {0} and x 6= 0, it holds that M ·x 6= 0.

Now M ·x ∈ im(M), is non-zero, and has unqualified support. In other words, we have

M ·x ∈ im(M) and supp(M ·x) 6∈Γ∪ {∅}.

Conversely, suppose there exists some s ∈ im(M) such that supp(s) 6∈Γ∪{∅}, i.e., s 6= 0
and supp(s) is unqualified. Let x be such that s = M ·x, which exists since s ∈ im(M).

Then Q :=P\ρ(supp(s)) is qualified since Γ is Q2. Since sQ = 0, we have MQ ·x= sQ = 0,

so x ∈ ker(MQ). If x= 0 then s= M ·x= 0; but supp(s) 6=∅, so this is not the case, and so

ker(MQ) 6= {0}, and thus M is not share-reconstructable by Lemma 3.4.

Share-reconstructable MSPs yield comparatively communication-efficient instanti-

ations of our protocol because to each Pi the map q can assign a smallest Q ∈ Γ− con-

taining Pi.

72

3.6. SHARE-RECONSTRUCTABILITY

Theorem 3.1. For every Q2 access structure there exists a share-reconstructable MSP

computing it.

Proof. Replicated secret-sharing is always share-reconstructable since a qualified set of

parties together hold all shares by definition and so can vacuously compute the shares

held by all other parties.

73

Chapter 4

Modelling Preprocessing

This chapter is based on results from [SW19], as detailed in Section 1.2, which was joint

work with Nigel Smart.

This chapter This chapter describes how to model secret-sharing-based multi-party

computation (MPC) (with active security) less abstractly than previous work, by the

functionalities explicitly referencing the linear secret-sharing schemes (LSSSs) being

used to execute MPC. Modelling in this way provides a framework for the MPC protocols

described later which is crucial for the protocol presented in Chapter 5.

4.1 Overview

In this chapter, a preprocessing functionality is built up from an “opening” functional-

ity, which takes a LSSS and adds authentication. This allows one to talk of shares held

by parties as in [DPSZ12] instead of handles of elements in an “authenticated dictio-

nary” as in MASCOT [KOS16] and Overdrive [KPR18]. One of the benefits of modelling

using linear authentication functionalities was that it apparently helped to unify the

somewhat-homomorphic encryption (SHE) and oblivious transfer (OT) approaches of

preprocessing in the full-threshold context.

Concretely, the reasons for talking about shares rather than identifiers are as fol-

lows.

• Abstracting from the view that the secrets are shared using a form of authenticated

LSSS makes it difficult to build protocols that use this data explicitly. If the protocol

is built with a particular functionality in mind (as is the case for many protocols),

75

CHAPTER 4. MODELLING PREPROCESSING

it is logical to built up in this way. However, if a modular approach is taken with

the view in mind of allowing greater latitude in what protocols can be realized from

more basic subprotocols, modelling in this way imposes unnecessary restriction. For

example, in the outsourcing protocol in Chapter 5, the natural process of resharing

a secret amongst a different set of parties is not possible when treating preprocessed

data merely as a dictionary.

• By modelling the “opening” of secrets specifically, an asynchronous protocol can be

obtained by changing the opening functionality. So far the discussion has been lim-

ited to synchronous networks, but in the functionality FOpen presented in this chap-

ter, communication in online protocols exclusively uses commands in FPrep (as an ex-

tension of FOpen). Consequently, any asynchronous protocol securely realizing FOpen

should give an asynchronous protocol realizing FABB.

The compromise taken in this chapter is to treat the authentication as black-box but

to retain the shares, which reflects the fact that there exist different ways of authenti-

cating depending on the access structure and LSSS. For example, it was shown in Chap-

ter 3 that a LSSS realizing a Q2 access structure is in a sense “self-authenticating”; in

the full-threshold context, different types of information-theoretic (IT) message authen-

tication code (MAC) can be used – for example, the global MAC used in SPDZ, described

in Section 2.5.3. This modelling also dovetails well with non-LSSS-based MPC protocols

(i.e. garbled circuits [LPSY15,LSS16,WRK17a,WRK17b,HSS17,HOSS18b,HOSS18a])

which often realize functionalities generating authenticated secret-shared bits.

In more detail, the parties will realize an “opening” functionality FOpen that checks

whether or not shares are correct as the parties open secrets. The main difference be-

tween this functionality and the linear authentication functionality is that it does not

store secrets itself: instead, an initialization step “commits” the parties to open only

“valid” secrets in the scheme. (One can think of this as commitments to shares of the

MAC in the full-threshold setting, which is achieved in SPDZ by the parties broadcast-

ing an encryption of their share of the MAC key.) This is closer to what actually happens

in a protocol execution since shares can be locally modified by an active adversary: in-

stead of the functionality storing secrets and the simulator introducing an error, the

functionality accepts shares and causes an error specifically by sending an invalid set

of shares.

The benefits of modelling in this way manifest themselves throughout the remainder

of this thesis, allowing all of the protocols to be phrased in the same language, realizing

76

4.2. OPENING FUNCTIONALITY

the same functionalities with respect to different access structures. This does not make

the modelling here better per se, but it enables description of a wider range of protocols

in the same language, which is very helpful for the protocols in this thesis. In previous

works such as [DPSZ12,DKL+13], shares (not handles to secrets) were modelled but the

functionalities were specific to the LSSS and method of authentication.

4.2 Opening Functionality

In this section the functionality FOpen is presented, which is generic in the sense that it

allows any linear secret-sharing scheme combined with a linear authentication scheme

to check secrets are opened correctly.

The degree of abstraction of a functionality is a design choice. For example, the clas-

sical arithmetic black box from Section 2.5 could more succinctly be described as a box

accepting any arithmetic circuit as input and providing the parties with output. Instead,

in practice cryptographers choose to realize a black box in which more fundamental op-

erations, specifically, addition and multiplication, can be computed separately.

The functionality FOpen that will be presented in this section is not a significant

abstraction from the protocol that will realize it in Chapter 3: its purpose is to encode all

information about secret-sharing, and error-detection therein, with high-level function

calls. Abstracting to this degree, and no further, has the advantage of allowing both

abstract references to opening secrets with authentication, and low-level manipulation

of the secret-shared data, without the need to fiddle around with the details of how

secrets are authenticated.

The functionality is not a full verifiable secret-sharing (VSS) scheme as the secret

may not necessarily be learnt by honest parties if the adversary causes an abort to

occur. This relaxation matches the technique common to MPC literature of conceding

full robustness to “security with abort”. The functionality also involves a “checking”

procedure – that is, secrets are opened optimistically and then checked later – which

is analogous to the verification step of a VSS scheme. The key difference between this

“authenticated opening” functionality and a full VSS scheme is its failure to achieve

robustness.

Authentication During initialization of the functionality, the parties specify the LSSS

they wish to use. In the context of an LSSS realizing a Q2 access structure, the results

of Chapter 3 show that no further information beyond the description of the LSSS is

77

CHAPTER 4. MODELLING PREPROCESSING

required to allow secrets to be authenticated. However, it may be that parties wish to

authenticate in a different way – for example, using an IT MAC, such as in the full-

threshold setting. For clarity of notation, this detail is omitted from the functionality

description, for which the focus is the Q2 setting, but one can think of the LSSS pro-

vided in the command (as [[·]]) as “containing” information regarding the authentication.

A high-level view of how this works is given in Section 4.7.

From this point onwards, [[·]] is taken to mean a secret is secret-shared and au-

thenticated – be that “for free” in the Q2 setting, or with MACs in the full-threshold

setting.

The functionality FOpen can be viewed as an extension FBroadcast but for clarity is

kept as a separate functionality. For now, the map q : [n]→ 2[m] can be defined as q(i)=
[m] for all i ∈ [n] and encodes which shares should be received by Pi for all i ∈ [n];

in Section 3.3, it is shown that it is not necessary for all parties to receive all shares

to realize this functionality, in certain situations. The functionality FOpen is given in

Figure 4.1.

78

4.2. OPENING FUNCTIONALITY

Functionality FOpen

Initialize On input (Initialize,Γ, [[·]], sid) from each honest party and from S on behalf of

corrupt parties, set Abort to false. Compute the error matrix N for [[·]].

Send On input (Send, x, j, sid) from Pi, or from S if i ∈ A, send x to P j, or to S if j ∈ A.

Broadcast On input (Broadcast, x, sid) from Pi, or from S if i ∈ A, await n−1 further calls with

input (Send, x j, j, sid) for all j ∈ [n]\ (A∪ {i}). If xi 6= x j for any i 6= j, set Abort to true.

Open To One On input (Open, i, id , sid) from all honest parties and S, do the following:

1. For each j ∈ [n]\ A, await a vector of shares [[x]]P j
from honest party P j.

2. If i ∈ [n]\ A,

a) Await a vector of shares [[x]]A from S. If N · [[x]] 6= 0 then set Abort to true.a

b) Set x := 〈λ, [[x]]〉 and send x to Pi.

If i ∈ A,

a) Send [[x]]P\A to S.

b) Await a message OK or Abort from S. If the message is OK then continue; otherwise

send the message Abort to all honest parties, and then halt.

Open To All On input (Open,0, id , sid), the functionality does the following:

1. For each i ∈ [n]\ A, await a vector of shares [[x]]Pi
from honest party Pi.

2. Send {[[x]]k : ρ(k) ∈ [n]\ A and k ∈ q(A)} to S.

3. Await a message OK or Abort from S. If the message is Abort, then send the message Abort

to all honest parties, and then halt; otherwise, continue.

4. Await a set of vectors of shares {[[xi]]k : ρ(k) ∈ A and k ∈ q([n]\ A)}i∈[n]\A or a message Abort

from S. If the message is Abort, then send the message Abort to all honest parties, and then

halt; otherwise, continue.

5. For each i ∈ [n]\ A, set xi = 〈λi
q(i), [[x

i]]q(i)〉, solve Mq(i) ·xi = [[xi]]q(i) for xi and send xi to Pi;

if there are no solutions, send the message Abort to all honest parties, and then halt. If

xi 6= x j for any i, j ∈ [n]\ A then set Abort to true.

Verify On input (Verify, sid) from all honest parties and S, await a message OK or Abort from S.

If the message is OK and Abort is false then send the message OK to all honest parties and

continue; otherwise send the message Abort to all honest parties, and then halt.

aNote that for a full-threshold access structure, N is the zero matrix.

Figure 4.1: Opening Functionality, FOpen.

Notice that the honest parties send all of their shares to FOpen. This reflects the fact

that FOpen is essentially a subroutine to which the parties send their shares: the fact

that they only actually “send” a subset of shares to other parties is acknowledged in the

protocol realizing FOpen.

79

CHAPTER 4. MODELLING PREPROCESSING

It is also important to note that the adversary may send erroneous share vectors to

honest parties when providing input: if the adversary corrects this error later on, the

parties should not abort, which is why the functionality does not flag for an abort to

occur on receiving shares for honest parties as in input for a corrupt party. This makes

the simulation more “natural” in the sense that S need not keep a record of whether

or not it should abort after each input: it merely executes exactly as the honest parties

would, aborting as appropriate.

4.3 Opening Protocol

The protocol ΠOpen given in Figure 4.5 uses the results of Chapter 3 to define a sort of

“authenticated opening” protocol. Note that although the hash function is not guaran-

teed to be hiding, parties only hash shares of secrets that are being made public, so no

secret information is leaked when the hashes are revealed. Indeed, it would suffice for

parties to send the reconstructed share vectors to each other and verify they are the

same as what each computed itself: the hash function is used simply to amortize this

cost. This also means it does not matter if the hash function is evaluated on “short”

inputs (say, where the string is fewer than κ bits long) since the only thing that matters

is that honest parties agree on what the output is (and will abort if not the case). This

is one advantage of only requiring security with abort rather than full robustness.

4.3.1 Agreement Protocol

The agreement of parties on local secrets is dependent both on broadcasted elements

and on reconstructed elements which are computed from local data and are expected

(optimistically) to be the same for all honest parties. In the context of security with

abort, “broadcast” can be achieved over point-to-point secure channels, as was discussed

in Section 2.3.4; it is abstracted as the functionality FBroadcast.

The functionality FAgreement is given in Figure 4.2.

80

4.3. OPENING PROTOCOL

Functionality FAgreement

Initialize On input (Initialize, sid) from all parties, where sid is a new session identifier, set

Abort to false.

Add To Agreement On input (Agree, xi, sid) from Pi for all i ∈ [n], or from S if i ∈ A, if xi 6= x j

for some j 6= i then set Abort to true.

Verify On input (Verify, sid) from all parties and S, await a message Abort or OK from S. If

the message is OK and Abort is false, send the message OK to all honest parties and continue;

otherwise, send the message Abort to all honest parties, and then and halt.

Figure 4.2: Agreement Functionality, FAgreement.

The protocol to realize FAgreement makes use of a hash function. When implementing

the hash function in practice, while one could write that the parties store the string str

as the protocol is executed (which may be of arbitrary length and appended through-

out) and that they evaluate the hash function at the end; instead, in order to model

real-world practice, in the protocol as soon as this string is larger than some length

parameter, parties begin to evaluate. This can be expressed by writing that the hash

function is initialized and then its state is updated using consecutive chunks of the

string, i.e. by writing str = str1‖· · ·‖str t and to evaluate one executes H.Initialize()

and then a sequence of updates

H.Update(str1), . . . ,H.Update(str t)

and finally compute h :=H.Finalize(). This application programming interface (API)

is given in Figure 4.3.

Hash Function Interface

Given an efficiently-computable function H : {0,1}∗ → {0,1}κ, a stateful object H is defined to have

the following three procedures. To evaluate H on an input m = m1‖· · ·‖mt−1‖Padd(mt) where

Padd denotes a padding function, where each mi is of the correct block size len, do the following:

Initialize When H.Initialize() is called, set state(IV) where IV is the initialization vector.

Update When H.Update(mi) is called, update state according to the description of the hash

function.

Output When H.Finalize() is called, perform any finalization procedure prescribed by the hash

function definition and then return state.

Figure 4.3: Hash Function Interface.

81

CHAPTER 4. MODELLING PREPROCESSING

Finally, the protocol is given in Figure 4.4. It uses the algorithm given in Figure 3.2

to determine a map q.

Protocol ΠAgreement

This protocol is realized in the FBroadcast-hybrid model.

Initialize
1. The parties agree on a new session identifier sid and call FBroadcast with input

(Initialize, sid).

2. The parties agree on and initialize a hash function H : {0,1}∗ → {0,1}κ implemented by the

stateful object H (see Figure 4.3) and each party initializes it by executing H.Initialize().

They obtain a parameter len.

3. For each i ∈ [n], party Pi locally sets stri := ε (the empty word).

Add To Agreement If each party holds xi and they want to check that xi = x j for all i, j ∈ [n],

each party Pi does the following:

1. Interpret xi as a binary string and append it to the current string to check, stri := stri‖xi,

where ‖ denotes concatenation of strings.

2. If |stri| > len then set s to be the first len bits of stri, compute H.Update(s), and truncate

the first len bits off stri.

Verify To verify all values so far, each Pi ∈P does the following:

1. Execute H.Update(stri) (multiple times, with padding if necessary) and then set hi :=
H.Finalize().

2. Call FBroadcast with input (Broadcast,hi, sid) and await the messages {h j} j∈[n]\{i} from

other parties.

3. Call FBroadcast with input (Verify, sid), and if it aborts, or if h j 6= hi for any j ∈ [n] \ {i},
then (locally) output ⊥, and then halt; otherwise, continue.

Figure 4.4: Agreement Protocol, ΠAgreement.

82

4.3. OPENING PROTOCOL

Protocol ΠOpen

This protocol is realized in the FAgreement-hybrid model. If at any point a party receives the mes-

sage Abort, it runs the subprotocol Abort.

Initialize
1. Agree on a session identifier sid , and then agree on the Q2 access structure, Γ, and an

monotone span program (MSP) [[·]] realizing it.

2. Execute the algorithm in Figure 3.2 to obtain the map q.

3. For each i ∈ [n], each party computes λi as the lexicographically first recombination vector

such that supp(λi)⊆ q(i).
4. Call an instance of FAgreement with input (Initialize, sid).

Send Party Pi sends a secret x to P j over a secure channel.

Broadcast When Pi calls this procedure to broadcast a value x,

1. Party Pi sends the secret x to all other players over pair-wise secure channels; let x j denote

the value received by P j.

2. All parties call FAgreement with input (Agree, x j, sid).

Open To One To open a secret [[x]] to one party Pi, the parties do the following:

1. Each P j ∈ P \ {Pi} sends [[x]]P j
to Pi, who concatenates local and received shares into a

vector [[x]].
2. Party Pi computes N · [[x]]; if it is equal to 0, Pi (locally) outputs s = 〈λi, [[x]]〉, and otherwise

runs Abort.

Open To All To open a secret [[x]] to all parties, each Pi ∈P does the following:

1. Retrieve from memory the recombination vector λi.

2. For each P j ∈P , for each k ∈ q(j)⊆ [m], if ρ(k)= i then Pi sends [[x]]k to P j over an authen-

ticated channel.

3. For each k ∈ q(i), wait to receive [[x]]k from party Pρ(k).

4. Concatenate local and received shares into a vector [[x]]iq(i) ∈F|q(i)|.
5. Solve Mq(i) ·xi = [[x]]iq(i) for xi. If there are no solutions, run Abort.

6. Call FAgreement with input (Agree,xi, sid).

7. (Locally) output x = 〈λi
q(i), [[x]]

i
q(i)〉.

Verify The parties call FAgreement with input (Verify, sid). If the functionality sends the mes-

sage Abort then the parties run Abort; otherwise they continue.

Abort If a party calls this subroutine, or if it receives a message Abort from any other party, it

sends a message Abort to each other party over a secure channel, (locally) outputs ⊥, and then

halts.

Figure 4.5: Opening Protocol, ΠOpen.

83

CHAPTER 4. MODELLING PREPROCESSING

Theorem 4.1. The protocol ΠOpen universal composability (UC)-securely realizes the

functionality FOpen against a static, active adversary in the FAgreement-hybrid model.

Simulator SOpen

Initialize
1. Agree on a session identifier sid with A, and then agree on the Q2 access structure, Γ, and

an MSP [[·]] realizing it, with A; then call FOpen with input (Initialize,Γ, [[·]], sid).

2. Execute the algorithm in Figure 3.2 to obtain the map q.

3. For each i ∈ [n], compute λi as the lexicographically first recombination vector such that

supp(λi)⊆ q(i).
4. Await the call to FAgreement with input (Initialize, sid) from A and initialize a local

instance.

Send If Pi ∈A is sending a message to P j ∈P \A, then await x from A and then call FOpen with

input (Send, x, j, sid). If P j ∈A is awaiting a message from honest party Pi ∈P \A, then await

a message x from FOpen and forward x to A.

Broadcast
1. When Pi calls this procedure to broadcast a value ε,

If i ∈ [n]\ A, await ε from FOpen and forward this to A.

If i ∈ A, await a set of inputs {εi}i∈[n]\A from A, and then call FOpen with input

(Broadcast,εi, sid) for any i followed by inputs (Send,εi, i, sid)i∈[n]\A .

2. Await the call to FAgreement with input (Agree, x j, sid) and execute it honestly with A.

Open To One To open [[x]] to Pi,

If Pi ∈P \A,

1. Await a vector of shares [[x]]A from A.

2. Send the vector [[x]]A to FOpen.

If Pi ∈A,

1. Await the share vector [[x]]P\A from FOpen and send [[x]]P\A to A.

2. If A sends the message Abort then send the message Abort to FOpen; otherwise send the

message OK.

Open To All
1. For each emulated honest party Pi ∈ P \A, retrieve from memory the recombination vec-

tor λi.

2. Await a set of share vectors {[[x]]q(i)∩ρ−1([n]\A) : i ∈ [n]\ A} from FOpen and send these to A.

3. Await a message set of vectors of shares {[[x]]q(i)∩ρ−1(A) : i ∈ [n]\ A} from A. If the shares are

not sent, or if A sends a message Abort, then send the message Abort to FOpen; otherwise,

send the message OK and forward the share vectors to FOpen.

4. Concatenate local and received shares into a vector denoted by si
q(j) ∈F|q(i)|.

84

4.4. PREPROCESSING FUNCTIONALITY

Simulator SOpen (continued)

5. Solve Mq(i) ·xi = [[xi]]q(i) for xi. If there are no solutions, then send the message Abort to A
(emulating an honest party’s message) and halt; otherwise, continue.

6. Await the call to FAgreement with input (Agree,xi, sid) from A and execute it honestly.

7. Set xi := 〈λi
q(i), [[x

i]]q(i)〉.

Verify Await the call to FAgreement with input (Verify, sid) and execute it honestly. If A sends

the message Abort then send the message Abort to FOpen and halt. Otherwise, if Abort is

true, then send the message Abort to A on behalf of an (emulated) honest party and send the

message Abort to FOpen.

Figure 4.6: Simulator SOpen for FOpen.

Proof. The simulator is given in Figure 4.6. It essentially acts as a relay between the

real honest parties and A, via FOpen. Thus there is nothing to do to extract inputs of

corrupt parties.

The “inputs” of this protocol are share vectors that the environment provides to the

honest parties ahead of time. Indeed, this is exactly what the functionality aims to

achieve: the parties can generate secrets outside of this process, and check them inside

it.

Note that while the functionality has an abort flag, which is slightly unconventional,

this is merely a way of encoding that the adversary has behaved in such a way that

means the functionality will eventually abort. The reason for modelling in this way is

that the real protocol allows incorrect share vectors to be introduced at various points

in the execution, and the parties can choose to complete the protocol without running

the verification subroutine, which means that if the functionality were cut off without

running it, the environment should observe invalid share vectors as were specified by

the adversary.

4.4 Preprocessing Functionality

The functionality FPrep, that extends the functionality FOpen, is given in Figure 4.7,

which aims to capture all actively-secure LSSS-based MPC, that is, including the full-

threshold SPDZ protocol and the variants we described in this paper for Q2 access

structures.

85

CHAPTER 4. MODELLING PREPROCESSING

Functionality FPrep

This functionality extends FOpen. (See Section 2.2 for the definition of extension in this context.)

Mask On input (Mask, i, idr, sid), the functionality does the following:

1. If i ∈ [n]\ A, then sample r ← U (F); otherwise await the input r from S.

2. Execute the macro Sample(idr).

3. Await a message Abort or OK from S. If the message is OK and Abort is false, then for all

j ∈ [n]\A send [[r]]P j
to P j and send r to Pi; otherwise, send the message Abort to all honest

parties, and then halt.

Triples On input (Triple, (idak , idbk , idck)T
k=1, sid) the functionality does the following:

1. For k = 1, . . . ,T, the functionality does the following:

a) Sample ak,bk ← U (F) and set ck := ak ·bk.

b) Execute the macro Sample(idak), Sample(idbk) and Sample(idck).

2. Await a message Abort or OK from S. If the message is OK and Abort is false then for each

i ∈ [n] \ A, send ([[ak]]Pi
, [[bk]]Pi

, [[ck]]Pi
)T
k=1 to Pi; otherwise, send the message Abort to all

honest parties, and then halt.

Internal procedure

Sample When an internal procedure calls Sample(idv), the functionality does the following:

1. Await shares [[v]]A from S.

2. Retrieve v from memory, sample a vector v ← U
(
{v ∈Fd : MA ·v= [[v]]A∧〈t,v〉 = v}

)
to cre-

ate [[v]] := M ·v, and then return this vector.

Figure 4.7: Preprocessing Functionality, FPrep.

4.5 Arithmetic Black Box

The protocol ΠOnline is given in Figure 4.8; then follows a proof that it UC-securely

realizes the arithmetic black box FABB, given in Figure 2.14, in the FPrep-hybrid model.

86

4.5. ARITHMETIC BLACK BOX

Protocol ΠOnline

This protocol is realized in the FPrep-hybrid model.

Initialize The parties do the following:

1. Agree on a session identifier sid .

2. Agree on the circuit to compute, with T multiplication gates and M =∑
i∈[n] Mi total inputs,

where Mi is the number of inputs for Pi.

3. Call an instance of FPrep with input (Initialize,Γ, [[·]], sid).

4. Call FPrep with input (Triple, (idak , idbk , idck)T
k=1, sid) where T is the number of multipli-

cation gates in the circuit. If FPrep sends the message Abort, then (locally) output ⊥ and

halt; otherwise continue.

5. Call FPrep with input (Mask, i, idrk , sid) for each k ∈ Mi, for each party Pi. If FPrep sends

the message Abort, then (locally) output ⊥ and halt; otherwise continue.

6. Agree on a sharing of 1, [[1]].

Input For party Pi to provide input x,

1. The parties retrieve from memory the agreed mask (r, [[r]]) where Pi holds r.

2. Party Pi calls FPrep with input (Broadcast, x− r, sid) so all parties obtain x− r.

3. The parties compute a new identifier idx and set [[x]] := [[r]]+ (x− r) · [[1]].

Add To add secrets [[x]] and [[y]], the parties compute a new identifier idz for the result and set

[[z]] := [[x]]+ [[y]].

Multiply To multiply secrets [[x]] and [[y]], the parties do the following:

1. Retrieve from memory one unused multiplication triple ([[a]], [[b]], [[c]]).
2. Compute new identifiers idr and ids and set [[r]] := [[x]]− [[a]] and [[s]] := [[y]]− [[b]].
3. Call FPrep with input (Open,0, idr, sid) and (Open,0, ids, sid) to open r and s.

4. Compute a new identifier idz and set [[z]] := r · s · [[1]]+ s · [[a]]+ r · [[b]]+ [[c]].

Output to one To output a secret [[x]] to Pi, the parties do the following:a

1. Retrieve from memory the agreed mask (r, [[r]]) where Pi holds r.

2. Compute a new identifier idε and set [[ε]] := [[x]]− [[r]].
3. Call FPrep with input (Open,0, idε, sid) to open ε.

4. Party Pi computes x := r+ε.
5. Call FPrep with input (Verify, sid). If FPrep sends the message OK, then Pi (locally) out-

puts x; otherwise, the parties (locally) output ⊥ and halt.

87

CHAPTER 4. MODELLING PREPROCESSING

Protocol ΠOnline (continued)

Output to all To output a secret [[x]] to all parties, the parties do the following:

1. Call FPrep with input (Verify, sid) and execute it honestly with A. If FPrep sends the

message OK, then continue; otherwise, (locally) output ⊥ and halt.

2. Call FPrep with input (Open,0, idx, sid).

3. Call FPrep input (Verify, sid). If FPrep sends the message OK then all parties, then (locally)

output x; otherwise, (locally) output ⊥ and halt.

aAn alternative method is to call FPrep with inputs (Verify, sid) and then (Open, i, idx, sid).

Figure 4.8: Online Protocol, ΠOnline.

Theorem 4.2. The protocol ΠOnline UC-securely realizes the functionality FABB against

a static, active adversary in the FPrep-hybrid model.

Proof. The simulator is given in Figure 4.9 and the transcript is given in Figure 4.10.

Simulator SABB

Initialize Set Abort to true, call FABB with input (Initialize,F, sid), and then do the follow-

ing:

1. Agree on a session identifier sid with A.

2. Agree on the circuit to compute with A, with T multiplication gates and M =∑
i∈[n] Mi total

inputs, where Mi is the number of inputs for Pi.

3. Await the call to FPrep with input (Initialize,Γ, [[·]], sid) from A and initialize a local

instance.

4. Await the call to FPrep with input (Triple, (idak , idbk , idck)T
k=1, sid) from A where T is

the number of multiplication gates in the circuit, and execute it honestly with A. If FPrep

aborts, then send the message Abort to A and halt.

5. Await the call to FPrep with input (Mask, i, idrk , sid) for each k ∈ Mi, for each corrupt party

Pi with i ∈ A, and execute it honestly with A. If FPrep aborts, then send the message Abort

to A and halt.

6. Agree on a sharing of 1, [[1]], with A.

Input For party Pi to provide input x,

If i ∈ A,

1. Retrieve from memory the mask (r, [[r]]) generated in the local execution of FPrep.

2. Await the call to FPrep with input (Broadcast,ε, sid) from A.

• Await the calls (Send,ε j, j, sid) from A for j ∈ [n]\ A; if ε j 6= εi for all j, set Abort to true

and set ε := ε j for any j.
3. Set [[x]] := ε · [[1]]+ [[r]], set x := ε+ r, and then compute a new identifier and call FABB with

input (Input, i, id , x, sid).

88

4.5. ARITHMETIC BLACK BOX

Simulator SABB (continued)

If i ∈ [n]\ A,

1. Retrieve from memory the agreed mask (r, [[r]]) generated in the local execution of FPrep.

2. Call the internal copy of FPrep with input (Broadcast,−r, sid) and send the appropriate

outputs to A.

3. Set [[x]] := [[r]]− r · [[1]] and call FABB with input (Input, i, id ,⊥, sid).

Add Compute a new identifier idz, retrieve from memory the associated identifiers idx and idy,

set [[z]] := [[x]]+ [[y]], and call FABB with input (Add, idx, idy, idz, sid).

Multiply
1. Retrieve from memory one unused multiplication triple ([[a]], [[b]], [[c]]) generated in the ex-

ecution of FPrep.

2. Compute new identifiers idr and ids and set [[r]] := [[x]]− [[a]] and [[s]] := [[y]]− [[b]].
3. Await the call to FPrep with input (Open,0, idr, sid) and (Open,0, ids, sid) from A and exe-

cute the procedures honestly.

4. Compute a new identifier idz, set [[z]] := r · s · [[1]]+ s · [[a]]+ r · [[b]]+ [[c]] and call FABB with

input (Multiply, idx, idy, idz, sid).

Output to one To open some secret with identifier idx shared as [[x]] to a party Pi,

If i ∈ [n]\ A,

1. Retrieve from memory the mask (r, [[r]]) where Pi holds r.

2. Compute a new identifier idε and set [[ε]] := [[x]]− [[r]].
3. Await the call to FPrep with input (Open,0, idε, sid) and shares [[ε]]A from A.

4. Set x := r+〈λ, [[ε]]〉.
5. Await the call to FPrep with input (Verify, sid). If FPrep aborts, or if Abort is true, then

send the message Abort to FABB; otherwise, continue.

If i ∈ A,

1. Retrieve from memory the mask (r, [[r]]) where corrupt party Pi holds r.

2. Compute a new identifier idε and set [[ε]] := [[x]]− [[r]].
• Call FABB with input (Output, i, idx, sid) and await the output x.

• Sample a vector x ← U
(
{x ∈Fd : M ·x= [[ε]]∧〈t,x〉 = x− r}

)
and set [[x− r]] = M ·x.

• Send [[x− r]]P\A to A.

3. Await a message Abort or OK from A, and if the message is Abort then set Abort to true.

Then await the call to FPrep with input (Verify, sid). If the returned message is Abort or

Abort is true, then send the message Abort to FABB; otherwise, send the message OK to

FABB.

Output to all
1. Await the call FPrep with input (Verify, sid) from A. If the returned message is Abort then

send the message Abort to A and FPrep; otherwise, continue.

2. Await the call to FPrep with input (Open, idx, sid) from A and then do the following:

89

CHAPTER 4. MODELLING PREPROCESSING

Simulator SABB (continued)

• Call FABB with input (Output,0, id , sid) to receive the output x.

• Sample a vector x ← U
(
{x ∈Fd : M ·x= [[ε]]∧〈t,x〉 = x}

)
and set [[x]] = M ·x.

• Send [[x]]P\A to A.

3. Await the call to FPrep with input (Verify, sid) from A and execute it honestly with A.

If the returned message is Abort or Abort is true, then send the message Abort to A and

FABB; otherwise, continue.

Figure 4.9: Simulator SABB for FABB.

Procedure From To Message

Initialize A FPrep (Initialize,Γ, [[·]], sid)i∈A
A FPrep (Triple, (idak , idbk , idck)T

k=1, sid)
A FPrep Abort/OK
FPrep A ([[ak]]A, [[bk]]A, [[ck]]A)T

k=1
A FPrep ((Mask, i, idr i,k , sid)Mi

k=1)i∈[n]
A FPrep Abort/OK
FPrep A (([[r i,k]]A)Mi

k=1)i∈[n]
A S [[1]]

Input A FPrep (Broadcast,ε, sid)
A FPrep Abort/OK

Add n/a n/a n/a

Multiply A FPrep (Open,0, idr, sid)
S A {[[r]]k : ρ(k) ∈ [n]\ A and k ∈ q(A)}
A FPrep (Open,0, ids, sid)
S A {[[s]]k : ρ(k) ∈ [n]\ A and k ∈ q(A)}
A FPrep Abort/OK

Output To All A FPrep (Verify, sid)
A FPrep Abort/OK
A FPrep (Open,0, id , sid)
S A {[[x]]k : ρ(k) ∈ [n]\ A and k ∈ q(A)}
A FPrep (Verify, sid)
A FPrep Abort/OK

Output To One A FPrep (Verify, sid)
A FPrep Abort/OK
A FPrep (Open,0, id , sid)
S A {[[ε]]k : ρ(k) ∈ [n]\ A and k ∈ q(A)}
A FPrep (Verify, sid)
A FPrep Abort/OK

Figure 4.10: Transcript for ΠOnline.

It is clear from the transcript that the only difficulty is to ensure the following: S
manages to extract corrupt parties’ inputs; that the broadcasted value ε by the simu-

90

4.6. REACTIVE COMPUTATION

lator when providing inputs for emulated honest parties is indistinguishable from the

broadcast in a real execution; and that the simulator can send a share vector for the cor-

rect final output instead of the simulated output. The rest of the interactions are calls

to FPrep and are identical to a real-world execution as S emulates a real instantiation

of the functionality.

Firstly, the ability of S to extract is ensured by the fact that since S executed FPrep

locally, it knows the mask and can compute the corrupt party’s (implicit) input. If A
“broadcasts” different values to different honest parties then they abort later in the

protocol, so the simulator sets a flag and aborts when the check in the real protocol

would occur. Secondly, the mask r is uniform and unknown to A (or indeed Z) so the

distributions of x+ r and r, where x is the real honest party’s input, are perfectly indis-

tinguishable. Thirdly, note that every share held by A is established from share vectors

generated by FPrep (i.e. S) and the agreed sharing of [[1]], which means that S knows

all the shares A would hold if it behaved honestly. Now, since A is unqualified, a set of

shares held by A for a given secret provides no information on the secret, which means

S can always replace shares for emulated honest parties so that A sees the output of

S’s choosing; thus it can modify the share vectors to encode the correct outputs of FABB

instead of the simulated outputs.

Hence the simulation is perfect, and so no environment can distinguish between

worlds.

4.6 Reactive Computation

In some applications, additional forms of preprocessing are useful, such as random bits

when using MPC for circuit garbling [LPSY15] (discussed in detail in Chapter 8). More-

over, the exact circuit to be computed may not be known ahead of time, so the execution

of an arithmetic black-box does not model the desired computation. In order to eval-

uate continuously – called reactive computation – an extended form of FPrep, denoted

by FRPrep, is given in Figure 4.11, and a protocol ΠRPrep realizing it is given in Fig-

ure 4.12. The functionality FRPrep is essentially the same as the functionality FMPC

given in [LPSY15, KY18] and offers essentially all of the commands of FABB, but in-

volves shares of secrets explicitly.

The purpose ΠRPrep here is only to show that it is possible to realize FRPrep, as it is

an essential ingredient for circuit garbling in Chapter 8. However, the method by which

this is achieved in ΠRPrep – namely, by extending the black box FPrep – is not necessarily

91

CHAPTER 4. MODELLING PREPROCESSING

the optimal way of obtaining FRPrep.

Notice that unlike FABB, no procedure Output is given: instead, the notion of “open-

ing” and later verifying is retained, which more closely resembles real-world execution

of the preprocessing protocol. The procedure for generating a random shared bit via

these steps was given in [DKL+13].

Functionality FRPrep

This functionality extends FPrep in Figure 4.7.

Input On input (Input, i, id , x, sid) from party Pi, or S if i ∈ A, and (Input, i, id ,⊥, sid) from all

other parties, execute Sample(id) and for all i ∈ [n]\ A, send [[x]]Pi
to Pi.

Add On input (Add, idx, idy, idz, sid) from all honest parties and S, await [[x]]Pi
and [[y]]Pi

from

each honest party i ∈ [n]\A, compute [[z]] := [[x]]Pi
+[[y]]Pi

and send [[z]]Pi
to Pi for all i ∈ [n]\A.

Multiply On input (Multiply, idx, idy, idz, sid) from all honest parties and S, for all i ∈ [n] await

shares [[x]]Pi
and [[y]]Pi

from Pi, or from S if i ∈ A, compute z := 〈λ, [[x]]〉 · 〈λ, [[y]]〉, execute

Sample(idz), and for all i ∈ [n]\ A, send [[z]]Pi
to Pi.

Random Element On input (RElt, idr, sid), sample r ← U (F), execute Sample(idr) and await

a message Abort or OK from S. If the message is OK, then for all i ∈ [n] \ A send [[r]]Pi
to Pi;

otherwise, send the message Abort to all honest parties, and then halt.

Random Bit On input (RBit, idb, sid), sample b ← U ({0,1}), execute Sample(idb), and await a

message Abort or OK from S. If the message is OK, then for all i ∈ [n] \ A send [[b]]Pi
to Pi;

otherwise, send the message Abort to all honest parties, (locally) output ⊥, and then halt.

Figure 4.11: Reactive Preprocessing Functionality, FRPrep.

92

4.6. REACTIVE COMPUTATION

Protocol ΠRPrep

This protocol is realized in the FPrep-hybrid model.

Initialize The parties do the following:

1. Agree on a session identifier sid .

2. Call FPrep with input (Initialize,Γ,auxi, sid).

3. Set [[1]] to be any sharing of 1.

FPrep subroutines

Send[–] For Pi to send x to P j, call FPrep with input (Send, x, j, sid).

Broadcast[<] To broadcast x, call FPrep with input (Broadcast, x, sid).

Open[>] To open a secret with identifier id to Pi, call FPrep with input (Open, i, id , sid).

Open[<>] To open a secret with identifier id to all parties, call FPrep with input (Open,0, id , sid).

Verify The parties call FPrep with input (Verify, sid).

Masks To generate masks, call FPrep with input (Mask, i, id , sid) several times, for each i ∈ [n].

If FPrep aborts, then the parties abort.

Triples To generate T triples, call FPrep with input (Triple, (idak , idbk , idck)T
k=1, sid) where T is

the batch-size. If FPrep aborts, then the parties abort.

ΠOnline subroutines

Input For party Pi to provide input x,

1. The parties call FPrep with input (Mask, i, id , sid) so that they obtain (r, [[r]]) where Pi

holds r.

2. Party Pi calls FPrep with input (Broadcast, x− r, sid) so all parties obtain x− r.

3. The parties compute a new identifier idx and set [[x]] := [[r]]+ (x− r) · [[1]].

Add To add secrets [[x]] and [[y]], the parties compute a new identifier idz for the result and set

[[z]] := [[x]]+ [[y]].

Multiply To multiply secrets [[x]] and [[y]], the parties do the following:

1. Compute new identifiers ida, idb, and idc and call FPrep with input

(Triple, (ida, idb, idc), sid) to obtain ([[a]], [[b]], [[c]]).
2. Compute new identifiers idr and ids and set [[r]] := [[x]]− [[a]] and [[s]] := [[y]]− [[b]].
3. Call FPrep with input (Open,0, idr, sid) and (Open,0, ids, sid) to open r and s.

4. Compute a new identifier idz and set [[z]] := r · s · [[1]]+ s · [[a]]+ r · [[b]]+ [[c]].
Additional commands

Random Bits To generate T shared bits, the parties do the following:

1. Call FPrep with input (Triple, (idak , idbk , idck)
3
2 ·T
k=1 , sid) to obtain ([[ak]], [[bk]], [[ck]])

3
2 ·T
k=1 .

2. For each k = T +1 to 3
2 ·T, relabel [[ak]] as [[d2(k−T)−1]] and [[bk]] as [[d2(k−T)]] and discard

[[ck]].

93

CHAPTER 4. MODELLING PREPROCESSING

Protocol ΠRPrep (continued)

3. For each k = 1 to T,

a) Compute new identifiers idrk and idsk and set [[rk]] := [[dk]]− [[ak]] and [[sk]] := [[dk]]−
[[bk]].

b) Call FPrep with input (Open,0, idrk , sid) and (Open,0, idsk , sid).

c) Compute a new identifier idek and set [[ek]] := rk · sk · [[1]]+ sk · [[ak]]+ r · [[bk]]+ [[ck]].
d) Call FPrep with input (Open,0, idek , sid).

e) Compute a new identifier idbk and set [[bk]] := 1
2 · (1pek

· [[dk]]+1).

4. Call FPrep with input (Verify, sid).

5. If FPrep sent the message OK, then {[[bk]]}T
k=1; otherwise, call FPrep with input

(Broadcast,Abort, sid).

Random Element The parties FPrep with input (Triple, (ida, idb, idc), sid) to obtain

([[a]], [[b]], [[c]]) and output [[a]].

Figure 4.12: Reactive Preprocessing Protocol, ΠRPrep.

Theorem 4.3. The protocol ΠRPrep UC-securely realizes the functionality FRPrep against

a static, active adversary in the FPrep-hybrid model.

Proof. The simulator is given in Figure 4.13 but the transcript is omitted as it is very

similar to the transcript provided in the proof of Theorem 4.2.

Simulator SRPrep

Initialize
1. Agree on a session identifier sid with A.

2. Await the call to FPrep with input (Initialize,Γ, [[·]], sid) from A on behalf of each corrupt

party and send (Initialize,Γ, sid) to FRPrep.

3. Set [[1]] to be any sharing of 1.

FPrep subroutines

Send[–] Await the call to FPrep with input (Send, x, j, sid) from A, forward the message to

FRPrep, and relay any response back to A.

Broadcast[<] Await the call to FPrep with input (Broadcast,ε, sid) from A, forward the mes-

sage to FRPrep, and relay any response back to A.

Open[>] Await the call to FPrep with input (Open, id , i, sid) from A, forward the message to

FRPrep, and relay any response back to A.

Open[<>] Await the call to FPrep with input (Open, id , sid) from A, forward the message to

FRPrep, and relay any response back to A.

94

4.6. REACTIVE COMPUTATION

Simulator SRPrep (continued)

Triples Await the call to FPrep with input (Triple, (idak , idbk , idck)T
k=1, sid) from A, forward the

message to FRPrep, and relay any response back to A.

Masks Await the call to FPrep with input (Mask, i, id , sid) from A, forward the message to FRPrep,

and relay any response back to A. Additionally, for any i ∈ A store mask value r sent by A in

the interaction.

Verify The parties call FPrep with input (Verify, sid).

ΠOnline subroutines

Input If Pi is to provide input,

If i ∈ A,

1. Await the call to FPrep with input (Mask, i, id , sid) and execute it using the local instance

of FPrep.

2. Await the call to FPrep with input (Broadcast,ε, sid), retrieve from memory the mask r,

and send the command (Input, i,ε+ r, sid) to FRPrep and (Input, i,⊥, sid) on behalf of all

corrupt parties P j where j ∈ A \{i}.
3. Compute a new identifier idx and set [[x]] := [[r]] + ε · [[1]], and when FRPrep executes

Sample(idx), send [[x]]A to FRPrep.

If i ∈ [n]\ A,

• Await the call to FPrep with input (Mask, i, id , sid) and execute it using the local instance

of FPrep and send the message (Input, i,⊥, sid) to FRPrep for each i ∈ A.

• Retrieve from memory the mask r and send −r to A to emulate the broadcast via FPrep.

• Compute a new identifier idx and set [[x]] := [[r]]− r · [[1]].

Add To add x and y, the simulator computes [[z]] := [[x]]+ [[y]].

Multiply To multiply secrets [[x]] and [[y]],
1. Compute new identifiers ida, idb, and idc and await a call to FPrep with input

(Triple, (ida, idb, idc), sid) from A.

2. Compute new identifiers idr and ids and set [[r]] := [[x]]− [[a]] and [[s]] := [[y]]− [[b]].
3. Await the call to FPrep with input (Open, idr, sid) and (Open, ids, sid) and execute the pro-

tocols honestly.

4. Compute a new identifier idz and set [[z]] := r · s · [[1]]+ s · [[a]]+ r · [[b]]+ [[c]] and call FRPrep

with input (Multiply, idx, idy, idz, sid)i∈A and when FRPrep executes Sample(id), send the

vector [[z]]A.

Additional commands

Random Bits To generate T shared bits, the parties do the following:

1. Call FPrep with input (Triple, (idak , idbk , idck)
3
2 ·T
k=1 , sid) to obtain ([[ak]], [[bk]], [[ck]])

3
2 ·T
k=1 .

2. For each k = T +1 to 3
2 ·T, relabel [[ak]] as [[d2(k−T)−1]] and [[bk]] as [[d2(k−T)]] and discard

[[ck]].
3. For each k = 1 to T,

95

CHAPTER 4. MODELLING PREPROCESSING

Simulator SRPrep (continued)

a) Set [[rk]] := [[dk]]− [[ak]].
b) Set [[sk]] := [[dk]]− [[bk]].
c) Call FPrep with input (Open, [[rk]], sid) and (Open, [[sk]], sid).

d) Set [[ek]] := rk · sk · [[1]]+ sk · [[ak]]+ r · [[bk]]+ [[ck]].
e) Call FPrep with input (Open, [[ek]], sid).

f) Set [[bk]] := 1
2 · (1pek

· [[dk]]+1).

4. Await the call to FPrep with input (Verify, sid) and execute it honestly with A. If FPrep

returns the message Abort then send the message Abort to FRPrep and halt; otherwise,

{[[bk]]}T
k=1; otherwise, call FPrep with input (Broadcast,Abort, sid).

Random Element The parties FPrep with input (Triple, (ida, idb, idc), sid) to obtain

([[a]], [[b]], [[c]]) and output [[a]].

Figure 4.13: Simulator SRPrep for FRPrep.

A subtle, technical point in the simulation is that because FPrep is being extended

and the simulator just relays information between A and FRPrep for commands to FPrep,

the simulator does not know masks for inputs, or the secret values of the triples. How-

ever, the environment does know these secrets, as the final outputs of the honest parties

include shares that will allow Z to reconstruct the secrets (since it will hold shares for

all honest parties and A). Thus in order to be able to simulate (specifically, to extract

inputs from A to pass on to FRPrep, and to provide messages on behalf of honest parties

that do not reveal the fact that S is emulating their inputs), it is crucial that any masks

and triples used in the real-world protocol to provide input and to multiply in this re-

alization of FRPrep should not be output by the honest parties at the end of the whole

execution.

This is achieved in the protocol by requiring that the procedures Mask and Triples
be called every time Input and Multiply are called, instead of the parties generating

these as a form of preprocessing. This ensures that the honest parties do not provide

the shares of the masks and triples that are used up in the execution as part of their

final output to the environment. This means the simulator can generate the shares of

the masks and triples itself by running the local instance of FPrep, and can thus extract

inputs, and can generate a transcript as if from real honest parties without knowing

their secret inputs. Note that if FRPrep is later used to realize FABB using ΠOnline, say,

then triples and masks may be generated as part of preprocessing.

As for Random Bits, the transcript for this part is exactly the same as for Multiply
as given in the proof of security for the protocol ΠOnline. Finally, note that since the only

96

4.7. MODELLING SPDZ

way parties obtain any shares throughout the whole protocol is to take linear combi-

nations of shares generated by FPrep (or FRPrep), S knows what the adversary would

compute, if it were to behave honestly, at all times. This means that in the execution of

Random Bits and of Random Element, S can provide FRPrep with the correct shares

during the execution of Sample(idb) and Sample(idr), respectively.

The remainder of the simulation is trivial as the simulator merely relays information

between A and FRPrep.

4.7 Modelling SPDZ

The main focus of this thesis concerns MPC for Q2 access structures. However, the aim

is to describe the functionalities obliviously to the access structure (which is particularly

useful for the protocols in Chapter 8), so it is helpful to understand how a protocol for a

full-threshold access structure can be used to realize these functionalities. The purpose

of this section is to give high-level intuition for this realization.

As outlined in Section 2.5.3, authentication for SPDZ is achieved with an IT MAC.

To initialize FOpen in this context, in the command (Initialize,Γ, [[·]], sid), the symbol

[[·]] is interpreted as the additive secret-sharing MSP and information regarding the

MAC being used. More specifically, the parties agree on an “authenticated” LSSS,

[[·]] :=
(
[[·]]A, [[γ(·)]]A

)
,

where now [[x]] is interpreted as the pair
(
[[x]]A, [[γ(x)]]A

)
. Then the initialization involves

party Pi sending the message(
Initialize,Γ,

(
[[1]]APi

, [[α]]APi

)
, sid

)
to FOpen.

Opening to One Party When secrets are opened, only the first component of the

share is sent; i.e. [[x]]APi
but not [[γ(x)]]APi

, as opening both secrets would reveal the global

MAC key and prohibit further computation with active security. The error-detection

matrix N for additive secret-sharing is the all-zeroes matrix in F1×n, which means that

a party to whom a secret is revealed never aborts in the full-threshold setting. The

intuition for this is that authentication is established via the MACs and not by the

LSSS as in the Q2 setting. This “optimistic” opening of secrets is exactly what happens

97

CHAPTER 4. MODELLING PREPROCESSING

in SPDZ, where a distinction is made between opening secrets, and providing output:

the correctness check is deferred to the verification stage.

Opening to All Parties The map q : [n] → [m] (where m = n for additive secret-

sharing) is defined as q(i) = [n] for all i ∈ [n].1 While the functionality checks that the

shares being sent correspond to a valid share vector in the general setting (by computing

a preimage of [[x]]Aq(i) under Mq(i)), for additive secret-sharing every set of shares is a

valid share vector since the matrix is invertible, and therefore in the protocol the parties

do not need to emulate this check.

Verification In addition to calling FAgreement to verify consistency of broadcasts, the

parties execute a procedure for checking MACs without revealing the global MAC key,

allowing computation to continue even after this check is performed. This was first given

in [DKL+13] and is presented in Figure 4.14 for completeness.

1By considering the codomain of q to be [2 ·n] instead of [n], q can be viewed as encoding the fact that
parties send shares of the secret but do not send shares of the associated MAC.

98

4.7. MODELLING SPDZ

Subprotocol ΠMACCheck

Parties use this subprotocol to check that a set of secret values {[[vk]]}t
k=1 are correct given a set

{[[vk]]}t+1
k=1 where [[vt+1]] is a random mask to be discarded (for example, this can be taken from

an unused triple). This subprotocol assumes there are running instances of FPrep and FCommit.

Recall [[v]] := ([[v]]A, [[γ(v)]]A) and that the parties also hold [[α]]A.

MAC Check
1. Agree on a new session identifier sid′ for a new instance of FCoinFlip.

2. Call a new instance of FCoinFlip with input (Initialize,Ft+1, sid′).
3. Call FCoinFlip with input (RElt, sid′) to obtain {rk}t+1

k=1 and compute [[v]] :=∑t+1
k=1 rk · [[vk]] and

agree on a new identifier, idv.

4. Call FPrep with input (Open,0, idv, sid).

5. Compute a new identifier idz.

6. Each party Pi does the following:

a) Set

[[z]]APi
:= [[α]]APi

·v−
t+1∑
k=1

rk · [[γ(vk)]]APi
.

b) Call FCommit with input (Commit, i, [[z]]APi
, sid) and (Commit, j,⊥, sid) for all j ∈ [n]\{i}.

7. Await identifiers {id
[[z]]APi

}i∈[n] from FCommit.

8. Call FCommit with input (Open, i, id
[[z]]APi

, sid) for all i ∈ [n]. If FCommit sends the message

Abort, then each party calls FPrep with input (Broadcast,Abort, sid), (locally) outputs ⊥,

and then halts.

9. Each party computes z =∑
i∈[n] [[z]]

A
Pi

. If every party computes z = 0 then they continue with

{[[vk]]}t
k=1 and discard [[vt+1]], and if any party computes z 6= 0 then that party calls FPrep

with input (Broadcast,Abort, sid), (locally) outputs ⊥, and then halts.

Figure 4.14: MAC-Checking Subprotocol, ΠMACCheck.

4.7.1 Errors on MACs

As a slight digression, the security of the MAC checking procedure is now analysed.

It is important in the protocols in Chapter 5 that the adversary should be allowed to

introduce errors onto the shares of the secret or on the MACs. In [DPSZ12], it was only

shown that errors on the secrets could be detected, but it is trivial to show that errors

on either the secret or the MAC (or both) still cause the honest parties to abort with

overwhelming probability in the statistical security parameter, as demonstrated in the

following lemma.

Lemma 4.1. If the adversary cheats on either the MAC or on the secret, then the protocol

ΠMACCheck aborts with probability at least 1−|F|−1.

99

CHAPTER 4. MODELLING PREPROCESSING

Recall that in SPDZ it is assumed that the field is of size O(2σ), and if not then

the parties generate several MACs for every secret as outlined in Section 2.5.3, and

so the probability that cheating is undetected is negligible in the statistical security

parameter.

Proof. Let Pi be the honest party. (Recall that in the full-threshold setting, the adver-

sary can corrupt all parties but one.) Since the shares of z are committed to before being

opened, the (rushing) adversary cannot wait for the honest party to send its share and in

return send its negative. Indeed, the only way to cheat without detection is to introduce

errors in such a way that z = 0 holds.

Suppose the adversary introduces errors {εk}t+1
k=1 on the shares of {vk}t+1

k=1 and {δk}t+1
k=1

on the shares of {γ(vk)}t+1
k=1 so that∑

j∈[n]
[[vk]]

A
P j

= vk +εk and
∑

j∈[n]
[[γ(vk)]]AP j

= γ(vk)+δk.

Then since the random coefficients {rk}t+1
k=1 are not known before ΠMACCheck is executed,

if the protocol does not abort then these errors must satisfy

0=α ·
(
v+

t+1∑
k=1

rk ·εk

)
−

(
γ(v)+

t+1∑
k=1

rk ·δk

)
=α ·

(
t+1∑
k=1

rk ·εk

)
−

(
t+1∑
k=1

rk ·δk

)
.

This means that choosing the correct errors is equivalent to guessing the MAC key,

which can only be done correctly with probability at most |F|−1.

4.7.2 FPrep with MACs

For realizing FPrep with MACs, it is necessary to alter the sampling procedure as fol-

lows.

Sample When an internal procedure calls Sample(idv), the functionality does the fol-

lowing:

1. Await shares [[v]]AA and [[γ(v)]]AA from S.

2. Retrieve v and α from memory, sample shares {[[v]]APi
, [[γ(x)]]APi

}i∈[n]\A ← U (F)
subject to v = ∑

i∈[n] [[v]]APi
and α · v = ∑

i∈[n] [[γ(v)]]APi
, and (locally) return the pair

([[v]]A, [[γ(v)]]A).

Notice that this procedure does not allow errors to be introduced on MACs. This is

because the simulator always has the opportunity to abort after Sample is executed (as

100

4.7. MODELLING SPDZ

shown in the description of FPrep). One could alternatively define FPrep to allow errors

to be introduced during Sample, and then argue that any time ΠMACCheck is executed

later will abort if the adversary introduced errors on the MACs. This is the approach

that is taken in Section 5.4.

4.7.3 Viewing MACs as Part of the MSP

An alternative way to interpret the initialization of FOpen with IT MACs is as an MSP

with secret matrix M as follows:

P1

P2
...

Pn

P1
...

Pn−1

Pn

1 0 · · · 0 0 · · · 0

0 1 · · · 0 0 · · · 0
...

...
...

0 0 · · · 1 0 · · · 0

0 0 · · · 0 1 · · · 0
...

...
...

0 0 · · · 0 0 · · · 1

α α · · · α −1 · · · −1

·

x1

x2
...

xn

xn+1
...

x2n−1

=

[[x]]AP1
...

[[x]]APn

[[γ(x)]]AP1
...

[[γ(x)]]APn

with target vector t= (1, . . . ,1,0, . . . ,0)> ∈F2n−1. Here, x ∈F2n−1 is the randomness vector

satisfying 〈x,t〉 = x, and the vector on the right is the complete vector of shares. The

(secret) error-detecting matrix N can be written as

N =
(
α α · · · α −1 · · · −1

)
.

However, interpreting the LSSS in this way interferes with other aspects of the

description of FOpen. For instance, if a secret is opened to one party, this party cannot

perform the error-detection procedure (premultiplying the share vector by N) because

the matrix N is secret.

101

Chapter 5

Outsourcing MPC preprocessing

This chapter is based on work published at IMACC 2017 under the title When It’s All

Just Too Much: Outsourcing MPC-Preprocessing [SSW17] and was joint work with Peter

Scholl and Nigel Smart. A protocol generalizing these results, to allow preprocessing

generated by a set of parties under a Q2 access structure, has also been given, employing

the error-detection results from Chapter 3.

This chapter Since the preprocessing is by far the costliest part of multi-party com-

putation (MPC), it is natural to wonder if this work may be outsourced. The benefits

are clear: for example, low-powered devices without access to strong entropy sources

(which are required for cryptography) can simply receive the preprocessed data and use

it to execute the cheap online protocol. It is shown in this chapter that there is a very

natural way to achieve this for SPDZ preprocessing. In fact, any form of secret-sharing

that makes use of linear message authentication codes (MACs) or another form of linear

authentication for a linear secret-sharing scheme (LSSS) is amenable to the transfor-

mation described here.

5.1 Overview

The idea is very simple: one set of parties, which will be denoted by R, produces prepro-

cessing – that is, the correlated randomness of Beaver’s circuit randomization technique

(see Section 2.5.3) – and sends it to a second set of parties, which will be denoted by Q, so

that the latter set can realize the arithmetic black box FABB in the FPrep-hybrid model

by executing the protocol ΠOnline given in Chapter 4. The strength of the universal com-

103

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

posability (UC) framework comes to the fore in this chapter, as the secure realization of

FABB for the parties in Q is immediate.

The motivation behind outsourcing is that while the preprocessing phase requires

expensive public-key cryptography (PKC) in the full-threshold setting, the online com-

putation is much less costly. Thus a set of low-powered devices can outsource the heavy

cost of preprocessing and then run the low-cost online phase to evaluate circuits. In-

deed, it makes sense for protocols in the preprocessing model to be designed with a view

to outsourcing in this way, as without outsourcing it may be more efficient to evaluate

the circuit directly.

The idea of the protocols in this chapter is that the parties executing the prepro-

cessing will send their data over a network to the parties that want to use it. The chal-

lenging part is to prove in the UC framework that the second set of parties will abort

if any of the parties producing preprocessing cheat when sending their data. Beyond

the resharing itself, transferring the preprocessing requires essentially no additional

communication cost because an inexpensive checking procedure can be performed. The

randomness required to verify the correctness of the outsourced data can also be out-

sourced, if indeed the use case is low-powered clients without access to good sources of

entropy.1 Following the protocol ΠOnline, whenever parties in Q require a preprocessed

data-item, they can request R to provide one. This may be necessary if the low-powered

devices have little memory, but this data could equally well be sent all at once.

All that is required is a methodology for translating [[·]]R sharings into [[·]]Q sharings

with active security. The principal idea of the protocol is for each party Ri in R to

reshare their share and send the shares to the parties in Q. Two different scenarios will

be considered:

• from a Q2 access structure to a Q2 access structure; and

• from full-threshold to full-threshold.

Because the preprocessed data from the source set of parties is shared using an LSSS

with a form of authentication, there is a low-cost method for the parties in Q to ver-

ify that no errors were introduced during resharing: in the case of a Q2 access struc-

ture on the parties in R this is achieved by the self-authentication of the LSSS; in the
1Low-powered devices often generate random data by using a pseudorandom function (PRF) to extend

a short seed, since high-entropy sources may not be available. Doing so drains power resources, which is
a crucial factor for protocols for battery-powered clients.

104

5.2. PRELIMINARIES

full-threshold setting where authentication is achieved through the use of information-

theoretic (IT) MACs, if parties cheat in what they send then the MAC will be incorrect

with high probability, and so the standard MAC verification procedure may be per-

formed to check this. The main differences between these two scenarios is caused by

this difference in the method of authentication; the rest of the protocol is essentially the

same. An optimization for the full-threshold to full-threshold case will also be explored

in which parties in R do not need to communicate with all parties in Q.

In the literature, there are several works that show how to outsource preprocessing

from a set of low-powered clients, typically through the use of a third party. In his thesis,

Yan Huang [Hua12] explained how to use a “partially” trusted third party to generate

preprocessed data for two computing parties to garble and evaluate circuits. Demmler

et al. [DSZ14] investigated how to generate preprocessed data on low-powered devices

cheaply through the use of hardware tokens. In their protocol known as Chameleon,

Riazi et al. [RWT+18] also looked at how to use a third party to generate correlated

randomness for both garbled circuits and LSSS-based MPC. The work in this chapter

can be seen as using MPC to replace the third party.

5.2 Preliminaries

5.2.1 Network

The complete set of parties is denoted by P and parties are indexed by [n]. The set P is

considered to be the union of two parts, R and Q, indexed by R and Q respectively (so

R,Q ⊆ [n] are not necessarily disjoint). To avoid confusion, parties in R will always be

indexed by the letter i, and parties in Q by the letter j. The variables nR and nQ denote

the number of parties in R and Q, respectively. The set A ⊆ R∪Q denotes the indexing

set of corrupt parties in the complete network.

It is assumed that there is a complete network of authenticated channels amongst

the parties in R, and amongst the parties in Q, and that each party in R is connected via

a secure channel to each party in Q. This last network assumption is replaced with the

notion of a secure cover in the full-threshold to full-threshold case, defined and discussed

in Section 5.4.

105

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

5.2.2 Preprocessing Functionality

The process of “outsourcing” MPC preprocessing is defined as a protocol realizing the

functionality FPrep for a set of parties Q given the functionality FPrep provided to a set

of parties R. In the language of the UC framework, a protocol ΠR→Q
Outsource

will be said to

realize FPrep for Q in the FPrep-hybrid model, where in the protocol the oracle FPrep is

used to generate preprocessing for R. To avoid ambiguity, the oracle is called FR
Prep and

the functionality the outsourcing protocol will realize is called FQ
Prep

.

Much of the remainder of this thesis deals with how to generate preprocessing ef-

ficiently for a set of parties in a Q2 access structure. For full-threshold MPC, FPrep

can more-or-less be realized by the SPDZ protocol as described in the original pa-

per [DPSZ12] and outlined in Section 2.5.3. This chapter demonstrates why modelling

of FPrep in terms of concrete realization of the “authenticated dictionary” via linear au-

thentication of secrets in an LSSS as described in Chapter 4 is useful: if FPrep were

expressed in terms of identifiers and not in terms of an LSSS then there would be no

way for parties to manipulate the shares, which is necessary in order for the “resharing”

to take place. Because the shares are explicit, the access structure on Q is determined

entirely by the LSSS used in the resharing.

The focus here is restricted to input and output masks and Beaver triples, rather

than other forms of correlated randomness such as shared squares and shared bits, as

the security of resharing these other kinds follows immediately from the security of the

first kinds.

5.2.3 Types of Secret-Sharing

Secrets shared amongst parties in R are denoted by [[·]]R, which is notation that en-

compasses all the information regarding the monotone span program (MSP) used. That

is, there is a matrix MR ∈ FmR×dR
, a target vector tR, and a row map ρR. Analogous

notation is used for secrets shared amongst parties in Q.

5.3 Outsourcing Q2 to Q2

Before the protocol is given, first the resharing and verification procedures are described

and their correctness is justified. Then the protocol ΠR→Q
Outsource

for outsourcing is pre-

sented, followed by a proof that it can be used to realize FPrep for the parties in Q.

106

5.3. OUTSOURCING Q2 TO Q2

5.3.1 Correctness

Resharing

The protocol involves sharings in Q of sharings in R: in the protocol, parties in Q will

hold vectors [[[[v]]R]]Q ∈FmR·mQ×1 as

[[[[v]]R]]Q =

[[[[v]]R]]QQ1

...

[[[[v]]R]]QQnQ

=

[[[[v]]R]]Q1

...

[[[[v]]R]]QmQ

=

[[[[v]]RR1
]]Q1

...

[[[[v]]RRnR
]]Q1

...

[[[[v]]RR1
]]QmQ

...

[[[[v]]RRnR
]]QmQ

=

[[[[v]]R1]]Q1
...

[[[[v]]RmR]]Q1
...

[[[[v]]R1]]QmQ
...

[[[[v]]RmR]]QmQ

.

Given a matrix A ∈FmR×k with k ≥ 1, the vector A> ·[[[[v]]R]]Q is defined as [[A> ·[[v]]R]]Q;

i.e. (1>⊗ A>) · [[[[v]]R]]Q where 1 ∈FmQ×1.

Each party reshares every component of the share vector they hold as a [[·]]Q sharing

and distributes the shares. More concretely, party Ri computes [[[[v]]RRi
]]Q and sends the

shares to the parties in Q. To obtain a single sharing of the same secret, each party Q j

in Q writes the shares
{
[[[[v]]RRi

]]QQ j

}
i∈R

as a share vector [[[[v]]R]]QQ j
, and then the parties

in Q compute

λ> · [[[[v]]R]]Q = [[λ> · [[v]]R]]Q = [[v]]Q

where party Q j computes [[v]]QQ j
= [[λ> · [[v]]R]]QQ j

.

Verifying a Resharing

To reduce communication costs for the parties in Q, verification of the resharing is

performed by computing a random linear combination of secrets and performing a single

check. To minimize the amount of randomness parties in Q need to generate, either

these parties can execute the checks individually instead of in batches, or they can use

a trusted source of randomness such as a blockchain, lottery or random beacon2, or

they can receive randomness from the parties in R via a sort of “outsourced FCoinFlip”

by initializing an agreement functionality FAgreement and doing the following:

1. Each party Ri in R samples r i and sends a commitment to r i to all Q j in Q.
2See, for example, the Interoperable Randomness Beacon project [KBPB19].

107

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

2. When all commitments have been received, the parties in R send the decommit-

ments.

3. Each party in Q fixes r :=∑
i∈R r i.

4. The parties in Q call FAgreement with input (Agree, r, sid).

The naïve way of resharing would be for each party Ri to compute an additive shar-

ing [[v]]ARi
:= 〈λRi , [[v]]RRi

〉, to compute a sharing [[[[v]]ARi
]]Q and distribute shares to parties

in Q, who could then set [[v]]Q := ∑nR
i=1 [[[[v]]ARi

]]Q. However, in the Q2 setting the error-

detection in the [[·]]R sharing is lost; in the protocol presented, the parties in R instead

reshare every component of the share vector they hold, and then the parties in Q recom-

bine as outlined above, but now they can additionally compute a sharing of the error

vector ε ∈FmR−dR
for the secret as follows:

NR · [[[[v]]R]]Q = [[NR · [[v]]R]]Q = [[ε]]Q ∈FmQ·(mR−dR)

where NR is the cokernel of the MSP matrix M, as described in Chapter 3. To verify

that this vector is 0, the parties in Q combine the (secret-shared) entries of the error

vector into a single field element by taking a random linear combination, and check it

is equal to zero. This check can be further amortized by combining error vectors from

several resharings together in a random linear combination first. The subprotocol for

verification is given in Figure 5.1.

Subprotocol ΠErrorCheck

Error Check The parties check the correctness of a set {[[vk]]
Q}t

k=1 with errors {[[εk]]Q}t
k=1:

1. Compute a new session identifier sid and call a new instance of FCoinFlip with input

(Initialize,F, sid).

2. Call FCoinFlip with input (RElt, sid) a total of (mR−dR)·t times to obtain
{{

rk,l
}mR−dR

l=1

}t

k=1
.

3. For each k ∈ [t], retrieve from memory the shares of [[εk]]Q and let [[εk
l]]

Q be the sharing of

the lth component of εk.

4. Compute [[ε]]Q :=∑t
k=1

∑mR−dR
l=1 rk,l · [[εk

l]]
Q and agree on a new identifier idε.

5. Call FQ
Open

with input (Open,0, idε, sidQ) followed by (Verify, sidQ). If ε 6= 0 or FQ
Prep

re-

turned the message Abort, then send the message Abort to all other parties, (locally) out-

put ⊥, and then halt; otherwise continue.

Figure 5.1: Error-Checking Subprotocol, ΠErrorCheck.

The security proof later relies on the assumption that the protocolΠR→Q
Outsource

aborts if

one or more invalid [[·]]R sharings are generated or if one or more invalid [[·]]Q sharings

are generated, and hence the following lemma is required.

108

5.3. OUTSOURCING Q2 TO Q2

Lemma 5.1. The probability that εk 6= 0 for some k ∈ [t] but that ε = 0 is at most 1/|F|.
The probability that NQ · [[vk]]

Q 6= 0 for some k ∈ [t] but that NQ · [[ε]]Q = 0 is at most 1/|F|.

Proof. When ε is opened in the call to FQ
Open

with input (Open,0, idε, sid), error-detection

is performed, meaning that once the resharing has taken place, the adversary cannot

change the value of ε.

Since the multipliers used in the linear combination are not known before the re-

sharing, it only holds that ε= 0 if the adversary chooses to add in error vectors {δk}t
k=1 =

{(δk
l)mR−dR

l=1 }t
k=1 so that

∑t
k=1

∑mR−dR

l=1 rk,l ·δk
l = 0. This is equivalent to fixing all {δk

l } but

one and then guessing the correct way to fix the final component, which can be done with

probability at most 1/|F|, the size of the set from which the multipliers were sampled.

For the second probability, note that again the adversary must guess the random

multipliers ahead of time to generate one or more invalid [[·]]Q sharings and correct

them in the combination. The probability of this is again at most 1/|F| by the same

argument.

For simplicity, the field is assumed O(2σ) so that this probability is negligible in the

statistical security parameter. When this is not the case, similar repetition techniques

as for sacrifice and MACs can be used, as described in Section 2.5.3.

5.3.2 Security

The goal is to show that if the set of parties R∪Q is provided the functionality FR
Prep

and FQ
Open

and executes the protocol ΠR→Q
Outsource

, then this “looks the same” to the parties

in Q as a functionality FQ
Prep

.

Protocol ΠR→Q
Outsource

This protocol is realized in the FCoinFlip, FQ
Open

, FR
Prep

-hybrid model and makes use of the subpro-

tocol ΠErrorCheck (where FCoinFlip is used).

Initialize
1. The parties agree on a session identifier, sid ; the parties in Q agree on a session identifier

sidQ and the parties in R agree on a session identifier sidR.

2. The parties in Q call an instance of FOpen with input (Initialize,ΓQ, [[·]]Q, sidQ). This

instance is denoted by FQ
Open

.

3. The parties in R call an instance of FPrep with input (Initialize,ΓR, [[·]]R, sidR). This

instance is denoted by FR
Prep

. The parties in R send the error-detecting matrix NR to the

parties in Q and any recombination vector λR.a

109

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

Protocol ΠR→Q
Outsource

(continued)

Mask To compute a mask for Q j, the parties do the following:

1. The parties in R compute new identifiers ida, idb and idc and call FR
Prep

with input

(Triple, (ida, idb, idc), sidR) to obtain some [[a]]R and relabel ida as idr(j) and the shares

as [[r(j)]]R.

2. The parties in R execute FeedValue(idr(j)).

3. Each Ri ∈R sends their share vector [[r(j)]]RRi
to Q j.

4. Party Q j computes NR · [[r(j)]]R and if it is equal to 0 then it computes r(j) := 〈λR, [[r(j)]]R〉;
otherwise Q j calls FQ

Open
with input (Broadcast,Abort, sidQ), (locally) outputs ⊥, and then

halts.

Triple To compute T triples for parties in Q, the parties do the following:

1. Parties in R compute new identifiers idak , idbk and idck for k ∈ [T] and call FR
Prep

with

input (Triple, (idak , idbk , idck)T
k=1, sidR) to obtain triples ([[ak]]

R, [[bk]]
R, [[ck]]

R)T
k=1.

2. For each v ∈ {ak,bk, ck}T
k=1 the parties in R execute FeedValue(idv).

Feed Value When the parties call FeedValue(idv), they do the following:

1. Each Ri ∈R does the following:

a) For each k ∈ ρ−1({i}),
i. Compute a sharing [[[[v]]Rk]]Q.

ii. For each j ∈Q, send [[[[v]]Rk]]QQ j
to Q j over a secure channel.

2. Each Q j ∈Q does the following:

a) Concatenate the shares {[[[[v]]Rk]]QQ j
}mR
k=1 into a share vector [[[[v]]R]]QQ j

.

b) Set [[v]]QQ j
:= 〈λR, [[[[v]]R]]QQ j

〉.
c) Store a vector of secret-shared values [[ε]]QQ j

:= NR · [[[[v]]R]]QQ j
∈FmQ·(mR−dR)×1.

Error Check To check the correctness of a set {[[vk]]
Q}t

k=1, the parties execute ΠErrorCheck. If the

parties did not abort, then they (locally) output shares of all secrets.

FQ
Open

subroutines

The parties call FQ
Open

with the appropriate input.

aFor example, they can take the first recombination vector for the first minimally-qualified
set, where both orderings are lexicographic.

Figure 5.2: Outsourcing Protocol, ΠR→Q
Outsource

.

Theorem 5.1. The protocol ΠR→Q
Outsource

UC-securely realizes the functionality FQ
Prep

with

statistical security parameter σ := log |F| against a static, active adversary in the FCoinFlip,

FQ
Open

, FR
Prep-hybrid model.

Proof of Theorem 5.1. The simulator is given in Figure 5.3.

110

5.3. OUTSOURCING Q2 TO Q2

Simulator SR→Q
Outsource

Initialize The simulator and adversary agree on a session identifier sid and then the simuator

does the following:

1. The simulator agrees on a session identifier with A.

2. Await the call to FOpen with input (Initialize,Q, [[·]]Q, sidQ) from A for each j ∈ Q ∩ A
and forward the commands to FQ

Prep
.

3. Await the call to FPrep with input (Initialize,R, [[·]]R, sidR) from A for each i ∈ R ∩ A
and initialize a local instance to be the oracle FR

Prep
.

Mask When the parties are to produce a mask for Q j in Q,

1. Await a call to FR
Prep

with input (Triple, (ida, idb, idc), sidR) and execute the procedure

from the local instace of FR
Prep

with A to obtain some [[r(j)]]R with identifier idr(j) .

2. Execute SFeedValue([[r(j)]]R) with A.

3. If j ∈ Q \ A, then await a set of shares [[r(j)]]RR∩A from A; if j ∈ Q ∩ A, then send [[r(j)]]RR\A
to A.

4. Send the message (Mask, j, idr(j) , sidQ) to FQ
Prep

and then send [[j()]]A to FQ
Prep

when it exe-

cutes Sample(idr(j)). If j ∈Q \ A, and if N · [[r(j)]] = 0 then send the message Abort to A and

to FQ
Prep

, and otherwise continue. If j ∈ Q ∩ A, then await a message Abort or OK; forward

this message to FQ
Prep

, and if the message is Abort then halt; otherwise, continue.

5. Execute Error Check.

Triples
1. Await the call to FR

Prep
with input (Triple, (idak , idbk , idck)T

k=1, sidR) from A and execute

the procedure from the local instance of FR
Prep

with A to obtain {[[ak]]
R, [[bk]]

R, [[ck]]
R}T

k=1.

2. For each v ∈ {ak,bk, ck}T
k=1, execute SFeedValue(idv) with A.

3. Execute Error Check.

Feed Value The macro SFeedValue(idv), simulating FeedValue(), is defined as follows:

1. For each i ∈ R \ A, sample a (complete) share vector [[[[v]]RRi
]]Q and send [[[[v]]RRi

]]QQ\A to A.

2. For each j ∈Q \ A,

a) For each i ∈ R∩ A, await a share vector [[[[v]]RRi
]]QQ j

from A.

b) Combine {[[[[v]]RRi
]]QQ j

}i∈R into a share vector [[[[v]]R]]QQ j
and set [[v]]QQ j

:=λR · [[[[v]]R]]QQ j
.

c) Set [[ε]]QP j
:= NQ · [[[[v]]R]]QQ j

.

Finally, sample a vector v ← U
(
{v ∈FdQ

: MQ
Q\A ·v= [[v]]QQ\A}

)
, set [[v]]Q := MQ ·v, return

the share vector [[v]]Q locally, and send [[v]]QA to FQ
Prep

when it executes Sample(idv).

Error Check The simulator awaits the call (RElt, sid) to FCoinFlip and then executes ΠErrorCheck

honestly with A; if honest parties would abort then send the message Abort to FQ
Prep

.

FQ
Open

subroutines

Relay commands between A and FQ
Prep

.

Figure 5.3: Simulator SR→Q
Outsource

for FR→Q
Outsource

.

111

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

The transcript produced during the protocol execution in the FCoinFlip, FQ
Open

, FR
Prep-

hybrid world is given in Figure 5.4.

Procedure From To Message

Initialize A FCommit (Initialize,P , sid)
A FQ

Open
(Initialize,ΓQ, [[·]]Q, sidQ) j∈Q∩A

A FR
Prep

(Initialize,ΓR, [[·]]R, sidR)i∈R∩A

Mask A FR
Prep

(Triple, (ida, idb, idc), sidR)
A FR

Prep
([[a]]RR∩A, [[b]]RR∩A, [[c]]RR∩A)

A FR
Prep

Abort/OK
S A [[[[a]]RR\A]]QQ∩A
A S [[[[ã]]RR∩A]]QQ\A

Triples A FR
Prep

(Triple, (idak , idbk , idck)T
k=1, sidR)

A FR
Prep

([[ak]]
R
R∩A, [[bk]]

R
R∩A, [[ck]]

R
R∩A)T

k=1
A FR

Prep
Abort/OK

S A ([[[[ak]]
R
R\A]]QQ∩A, [[[[bk]]

R
R\A]]QQ∩A, [[[[ck]]

R
R\A]]QQ∩A)T

k=1
A S ([[[[ãk]]

R
R∩A]]QQ\A, [[[[b̃k]]

R
R∩A]]QQ\A, [[[[c̃k]]

R
R∩A]]QQ\A)T

k=1

Error Check A FCoinFlip (RElt, sid)
FCoinFlip A {{rk,l}T

k=1}mR−dR
l=1

A FQ
Open

(Open,0, idε, sidQ) j∈Q\A

S A Abort/OK
A S Abort/OK

Figure 5.4: Transcript for ΠR→Q
Outsource

.

The honest parties in both R and Q have no inputs as the preprocessed data is de-

termined by the random tapes. Additionally, in the ideal world, the honest parties in R
have no input, no output, and do nothing in the execution of the functionality FQ

Prep
, and

thus can be perfectly emulated by the simulator. Moreover, all calls to the functionali-

ties are distributed identically in both worlds as the simulator emulates these oracles

honestly.

It only remains to show that the reshares sent from S to A are consistent with the

final outputs of honest parties in Q in the ideal world (as chosen by FQ
Prep

) despite S
having to sample share vectors to provide input to FQ

Prep
when the procedure Sample is

called. The difficulty comes from the fact that S does not see the reshares [[[[v]]RR∩A]]QQ∩A,

and yet must somehow deduce a set of shares [[[[v]]R]]QQ∩A for honest parties to send to

FQ
Prep

.

The idea is that it does not matter what shares the simulator chooses. Since at least

one honest party in R reshares its share vector, the final shares held by honest parties

112

5.3. OUTSOURCING Q2 TO Q2

are not known to A in the protocol execution. Thus, provided the final share vector of

shares output by honest parties in the ideal world [[v′]]Q\A concatenated with the shares

the adversary would compute [[v]]Q∩A forms a valid share vector, the distribution of

shares output by the parties in both worlds is the same.

To see this explicitly, recall that in the simulation, S samples

v ← U
({

v ∈FdQ
: MQ

Q\A ·v= [[v]]QQ\A

})
,

sets [[v]]Q := MQ ·v, and sends [[v]]QA to FQ
Prep

when it executes Sample(idv). Next, the

functionality uses these shares [[v]]A to sample a vector

v′ ← U
({

v ∈FdQ
: MQ

A ·v= [[v]]A
})

and then computes [[v′]] := MQ ·v′. The final share vector lies in the space given by

MQ ·
(
MQ

A
−1 ·

(
MQ ·

(
MQ

Q\A
−1 · [[v]]QQ\A

))
A

)
=MQ ·

(
MQ

A
−1 ·

(
MQ

A ·
(
v+ker(MQ

Q\A)
)))

=MQ ·
(
v+ker(MQ

Q\A)+ker(MQ
A)

)
=MQ ·v+MQ ·ker(MQ

Q\A)+MQ ·ker(MQ
A)

where MQ−1 here denotes the preimage, not the inverse (which may not be well-defined).

Vectors in the second summand are non-zero only on components owned by corrupt

parties. Thus the total share vector generated by FQ
Prep

may differ on corrupt parties’

shares by a share vector supported by rows owned by Q∩A, but this is still a valid share

vector. Furthermore, vectors in the third summand are non-zero only on components

owned by honest parties, and therefore the share vector plausibly shares any secret

from the point of view of A, which in the real world corresponds to the fact that there

is at least one honest party in R that generates a share vector, so the shares of honest

parties are unknown to A.

Finally, observe that if A does not faithfully reshare the vector [[v]]R∩A, then by

Lemma 5.1, the honest parties abort with overwhelming probability in σ= log |F|. Addi-

tionally, if the share vector [[[[v]]R∩A]]Q\A is invalid, then this is detected when opening

the secret [[ε]]Q. In either of these cases, S sends the message Abort to FQ
Prep

and so Z
does not see the erroneous share vectors.

113

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

5.4 Outsourcing Full-Threshold to Full-Threshold

To avoid overloading the notation used for shares [[·]]Q with a superscript A as has been

used previously to indicate the use of additive secret-sharing, in this section, all secret

sharing is assumed to be additive.

In the Q2 case, every party in R was required to reshare their shares under the

LSSS of the parties in Q. However additive resharing can be much more flexible: each

party in R can reshare its summand additively to some proper subset of parties in Q,

and if all parties in Q compute the sum of all shares they receive, then they will still

obtain an additive sharing of the original secret. In this case, secrecy (against the envi-

ronment) will hold if and only if at least one honest party in R reshares to at least one

honest party in Q. The intuition behind this requirement is that if it does not hold, then

every share held by parties in R is either known by A (if the party is corrupt), or each

honest party in R sends only to corrupt parties in Q, so A can reconstruct the share.

Thus, knowing all shares in R, A (and hence the distinguisher Z) can compute the se-

cret. This is problematic as it means the simulator cannot emulate the final outputs of

real honest parties without Z observing a difference with high probability. Conversely,

if this requirement does hold then at “worst” A obtains all reshares but one; then since

all reshares are sampled uniformly at random so that they sum to shares in R, and

these shares are themselves sampled so that they sum to the secret, this set of shares is

indistinguishable from a uniformly randomly sampled set. This trust assumption is for-

malized with the definition of secure cover {Q(i)}i∈R of Q, which defines to which parties

in Q the party Ri reshares.

Definition 5.1 (Secure Cover). A set {Q(i)}i∈R of (not necessarily disjoint) subsets of Q
is called a secure cover if the following conditions hold:

1. For every i ∈ R, Q(i) 6=∅.

2. The set
{
Q(i)}

i∈R is a cover for Q, i.e. Q=⋃
i∈R Q(i).

3. Every party Q j in Q(i) is connected to the party Ri ∈R via a secure channel.

4. There is at least one pair (Ri,Q(i)) where Ri is honest in R, and Q(i) contains at

least one honest party in Q.

The set
{
Q(i)}

i∈R is defined to be the corresponding cover on indexing set Q, and

similarly for R. While it is always possible to define a secure cover by setting Q(i) :=Q

114

5.4. OUTSOURCING FULL-THRESHOLD TO FULL-THRESHOLD

for all i ∈ R, there may be better (i.e. more communication-efficient) ways of defining it,

such as in the following ways:

• If R ⊆Q then for each i ∈ R, one can define Q(i) to be any subset of Q containing

Ri and ensure that
⋃

i∈R Q(i) =Q. In this case, since at least one party Ri in R is

honest, it is also honest in Q, and so Ri is the honest party in R that “sends” the

data to itself as the honest party in Q.

• If R and Q are disjoint but each party in Q believes that some proper subset of

parties in R contains at least one honest party then the cover can potentially be

created respecting this knowledge, provided the trusted sets form a cover.

One can also consider the set of parties in R connected to each party in Q. Let R(j)

denote the set of parties in R which are connected to party Q j ∈Q. Since Q(i) 6=∅ for all

i ∈ R, for every i ∈ R there is at least one j ∈Q such that R(j) 3Ri, and hence
{
R(j)}

j∈Q

is a cover for R. The last two properties are symmetrical, which means that in fact{
R(j)}

j∈Q is a secure cover for R.

5.4.1 Modified Preprocessing Functionality

The functionality FPrep must be modified in a few superficial ways. The altered function-

ality is denoted by FPrep and is given in Figure 5.5, and the reasons for the modifications

are described below.

It is very important to notice that honest parties in Q use shares they receive in an

entirely deterministic manner, and, as such, if some party Q j ∈Q is honest but receives

shares from only corrupt parties in R, then A has complete control over this party’s

share. For this reason, hereafter such parties are deemed “effectively” corrupt and are

called effectively-corrupt honest parties, which are added to the set of corrupt parties A,

which becomes the extended adversary set A. This means the functionality FPrep must

be modified to allow for this form of corruption, although it does not significantly change

the functionality except that the simulator will always choose the messages output by

FPrep to these parties. Note that this type of corruption is not the same as passive

corruption as A will not learn the inputs of such parties since the random masks used

for inputs are generated by all parties in R. In terms of the secure cover, an effectively-

corrupt honest party is an honest party Q j in Q for which R(j) \A=∅.

In order to make the outsourcing more efficient, it is not necessary for parties to

executeΠMACCheck to verify the correctness of secrets sent across the network: instead, it

115

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

suffices for these checks to be combined with checks executed during the online phase of

the protocol. Despite this, the ability of the simulator to cause the functionality to abort

may be retained as the adversary in the real world can cause honest parties to abort at

any time during the protocol execution. However, during Sample, the functionality now

allows the simulator to introduce errors on secrets and so the honest parties in Q may

end up with incorrect share vectors. It will be shown in the simulation that such errors

can be “carried through” from the real execution into the ideal world. The online phase

of the protocol remains secure since introducing errors during resharing is equivalent

to introducing errors during the execution of the online phase, which is detected in the

execution of ΠMACCheck.

Functionality FPrep

This functionality is identical to FPrep in Figure 4.7 except for the following modifications:

Whenever outputs are to be sent to effectively-corrupt honest parties, allow the adversary to

choose the outputs they receive.

Initialize Accept a cover
{
Q(i)}

i∈R from all parties and S and set

A :=A∪
{
Q j ∈Q :R(j) \A=∅

}
.

Additionally, the simulator is allowed to choose shares of the MAC key not only for corrupt

parties, but also for effectively-corrupt honest parties.

Sample In addition to accepting the vector of shares ([[v]]QA, [[γ(v)]]QA), the functionality also re-

ceives shares for effectively-corrupt honest parties, and then does the following:

1. Await shares [[v]]Q
A

and [[γ(v)]]Q
A

and errors εv and εγ(v) from S .

2. Retrieve v and α from memory, sample shares {[[v]]QPi
, [[γ(x)]]QPi

}i∈[n]\A ← U (F) subject to

v =∑
i∈[n] [[v]]APi

+εv and α ·v =∑
i∈[n] [[γ(v)]]APi

+εγ(v), and (locally) return ([[v]]A, [[γ(v)]]A).

Figure 5.5: Modified Preprocessing Functionality, FPrep.

5.4.2 Correctness

Resharing

To reshare, each party Ri in R additively shares their share amongst the parties in Q(i),

i.e. samples {[[[[v]]RRi
]]Q

(i)

Q j
} j∈Q(i) ← U (F) subject to

∑
j∈Q(i) [[[[v]]RRi

]]Q
(i)

Q j
= [[v]]RRi

. Then each

party Q j in Q sums all the shares they receive: [[v]]QQ j
:=∑

i∈R(j) [[[[v]]RRi
]]Q

(i)

Q j
. Correctness

holds by observing that
⋃

i∈R R×Q(i) =⋃
j∈Q R(j)×Q so the limits can be switched below

116

5.4. OUTSOURCING FULL-THRESHOLD TO FULL-THRESHOLD

to show that∑
i∈R

[[v]]RRi
= ∑

i∈R

∑
j∈Q(i)

[[[[v]]RRi
]]Q

(i)

Q j
= ∑

j∈Q

∑
i∈R(j)

[[[[v]]RRi
]]Q

(i)

Q j
= ∑

j∈Q
[[v]]QQ j

.

During initialization, the global MAC key α is reshared as above. Then for any secret x

that is shared as a pair ([[x]]R, [[γ(x)]]R), both [[x]]R and [[γ(x)]]R are reshared. Thus the

parties in Q hold secrets shared under the same global MAC key α.

Verification of Resharing

In contrast to the protocol outsourcing to a set of parties under an Q2 access struc-

ture, the protocol presented here does not involve an “error-checking” procedure. This

is because if the parties in R are dishonest in sending their data, any MAC-checking

procedure in the online phase will abort with high probability. (The checking proce-

dure involves verifying the correctness of the MACs and was given in Figure 4.14 in

Section 4.7.) This makes the protocol more straightforward, but the security analysis

a little more complicated: shares must now be consistently erroneous in the ideal and

real worlds. It will be shown that it is indeed possible to simulate.

A subtle point to be aware of is that while in the proof in the original SPDZ pa-

per [DPSZ12] errors were permitted on secrets but not MACs, the adversary now has

freedom to introduce errors on either. Thus a minor tweak to the proof of security of

the online phase (regarding the MAC check) is required, but was dealt with in detail in

Section 4.7 and so it is not explained here.

5.4.3 Security

The protocol is given in Figure 5.6 and the goal is to realize the functionality FPrep. The

access structures ΓR and ΓQ are full-threshold. The algorithm for finding a secure cover

is discussed in Section 5.5 and is used in the initialization of the protocol, but for now it

suffices to know that the parties can find a cover.

Theorem 5.2. The protocol Π
R→Q
Outsource UC-securely realizes the functionality FPrep with

perfect security against a static, active adversary in the FCoinFlip, FCommit, FQ
Open

, FR
Prep-

hybrid model, assuming a secure cover of Q is given.

117

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

Protocol ΠR→Q
Outsource

Initialize
1. The parties agree on a session identifier, sid ; the parties in Q agree on a session identifier

sidQ and the parties in R agree on a session identifier sidR.

2. The parties execute the algorithm in Figure 5.10 to obtain a secure cover, {Q(i)}i∈R .

3. The parties compute a new identifier idα, then each Ri samples [[α]]RRi
← U (F) and they

an instance of FPrep where Ri provides input
(
Initialize,ΓR,

(
[[1]]RRi

, [[α]]RPi

)
, sidR

)
. This

instance is denoted by FR
Prep

.

4. The parties in R execute FeedValue(idα).

5. The parties in Q call an instance of FOpen where Q j provides input(
Initialize,ΓQ,

(
[[1]]QQ j

, [[α]]QQ j

)
, sidQ

)
. This instance is denoted by FQ

Open
.

Mask To compute a mask for Q j, the parties do the following:

1. The parties in R compute new identifiers ida, idb and idc and call FR
Prep

with input

(Triple, (ida, idb, idc), sidR) to obtain some [[a]]R and relabel ida as idr(j) and the shares

as [[r(j)]]R.

2. The parties in R execute FeedValue(idr(j)).

3. Each Ri sends their share [[r(j)]]RRi
to Q j.

Triple To compute T triples for parties in Q, the parties do the following:

1. Parties in R compute new identifiers idak , idbk and idck for k ∈ [T] and call FR
Prep

with

input (Triple, (idak , idbk , idck)T
k=1, sidR) to obtain triples ([[ak]]

R, [[bk]]
R, [[ck]]

R)T
k=1.

2. For each v ∈ {ak,bk, ck}T
k=1 the parties in R execute FeedValue(idv).

Feed Value When the parties call FeedValue(idv), where idv is the identifier for a sharing [[v]]R,

they do the following on [[v]]R and then on [[γ(v)]]R:

1. Each Ri ∈R does the following:

a) Sample a sharing [[[[v]]RRi
]]Q

(i)
.

b) For each j ∈Q(i), send [[[[v]]RRi
]]Q

(i)

Q j
to Q j over a secure channel.

2. Each Q j ∈Q does the following:

a) Await shares {[[[[v]]RRi
]]Q

(i)

Q j
}i∈R(j) .

b) (Locally) output [[v]]QQ j
:=∑

i∈R(j) [[[[v]]RRi
]]Q

(i)

Q j
.

Figure 5.6: Optimized Outsourcing Protocol, Π
R→Q
Outsource.

Proof. The simulator is given in Figure 5.7.

118

5.4. OUTSOURCING FULL-THRESHOLD TO FULL-THRESHOLD

Simulator SR→Q
Outsource

Initialize
1. Agree on a session identifiers sid , sidQ and sidR with A.

2. Execute the algorithm in Figure 5.10 to obtain a secure cover, {Q(i)}i∈R .

3. Compute a new identifier idα and then on behalf of emulated honest par-

ties, sample {[[α]]RRi
}i∈R\A ← U (F); then await the call to FPrep with input(

Initialize,ΓR,
(
[[1]]RRi

, [[α]]RPi

)
, sidR

)
from A and initialize a local instance to be the ora-

cle FR
Prep

. Let [[α]]RR\A be the shares of the MAC key held by (emulated) honest parties.

4. Execute the simulated routine SFeedValue(idα) with A to obtain {[[α̃]]QQ j
} j∈Q and ∆α.

5. Await the call to FOpen with input
(
Initialize,ΓQ,

(
[[1]]QQ j

, [[α′]]QQ j

)
, sidQ

)
for j ∈ Q∩A

from A, redefine [[α̃]]QQ j
:= [[α′]]QQ j

for all j ∈ Q ∩ A, and then call FPrep with input(
Initialize,ΓQ,

(
[[1]]QQ j

, [[α̃]]QQ j

)
, sidQ

)
for j ∈Q∩ A.

Mask To generate a mask for Q j,

1. Compute new identifiers ida, idb and idc and call FR
Prep

with input

(Triple, (ida, idb, idc), sidR) to obtain some [[a]]R and relabel ida as idr(j) and the

shares as [[r(j)]]R.

2. Execute SFeedValue(idr(j)) with A to obtain [[r̃(j)]]Q, ∆r(j) , [[�γ(r(j))]]Q, and ∆γ(r(j)).

3. If j ∈Q \ A,

• Await shares [[r̃′(j)]]RR∩A from A.

• Set δr(j) :=∑
i∈R∩A [[r̃′(j)]]RRi

− [[r(j)]]RRi
.

• Retrieve from memory [[r̃(j)]]Q
Q∩A and ∆r(j) and send [[r̃(j)]]Q

Q∩A and ∆r(j) −δr(j) to FPrep.

• Retrieve from memory [[�γ(r(j))]]Q
Q∩A and ∆γ(r(j)) and send these to to FPrep.

If j ∈Q∩ A,

• Send [[r(j)]]RR\A to A.

• Send r(j) to FPrep.

• Retrieve from memory [[r(j)]]Q
Q∩A and ∆r(j) and send these to FPrep.

• Retrieve from memory [[γ(r(j))]]Q
Q∩A and ∆γ(r(j)) and send these to FPrep.

Triples
1. Parties in R compute new identifiers idak , idbk and idck for k ∈ [T] and call FR

Prep
with

input (Triple, (idak , idbk , idck)T
k=1, sidR) to obtain triples ([[ak]]

R, [[bk]]
R, [[ck]]

R)T
k=1.

2. For each v ∈ {ak,bk, ck}T
k=1, execute SFeedValue(idv) with A to obtain [[ṽ]]Q, ∆v, [[γ̃(v)]]Q,

and ∆γ(v).

Then call FPrep with input (Triple, (idak , idbk , idck)T
k=1, sidQ), and when FPrep executes

Sample(idv) for each v ∈ {ak,bk, ck}T
k=1, send [[ṽ]]Q

Q∩A and ∆v followed by [[γ̃(v)]]Q
Q∩A and

∆γ(v).

Feed Value For the simulated macro SFeedValue(idv), where idv is the identifier for a sharing

[[v]]R, the simulator does the following on [[v]]R and then on [[γ(v)]]R:

119

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

Simulator SR→Q
Outsource (continued)

• For each i ∈ R \ A,

– Sample {[[[[v̂]]RRi
]]Q

(i)

Q j
} j∈Q(i) ← U (F) subject to

∑
j∈Q(i) [[[[v̂]]RRi

]]Q
(i)

Q j
= [[v]]RRi

.

– Send {[[[[v̂]]RRi
]]Q

(i)

Q j
} j∈Q(i)∩A to A.

– Set ∆i := 0.

• For each i ∈ R∩ A,

– If Ri sends only to honest parties,

* Await a set {[[[[ṽ]]RRi
]]Q

(i)

Q j
} j∈Q(i) from A.

* Set [[[[v̄]]RRi
]]Q

(i)

Q j
:= [[[[ṽ]]RRi

]]Q
(i)

Q j
for all j ∈Q(i).

* Set ∆i :=
(∑

j∈Q(i) [[[[ṽ]]RRi
]]Q

(i)

Q j

)
− [[v]]RRi

.

– If Ri sends to at least one corrupt party,

* Await a (possibly empty) set {[[[[ṽ]]RRi
]]Q

(i)

Q j
} j∈Q(i)\A from A.

* Sample reshares {[[[[v̄]]RRi
]]Q

(i)

Q j
} j∈Q(i)∩A subject to

∑
j∈Q(i)∩A

[[[[v̄]]RRi
]]Q

(i)

Q j
+ ∑

j∈Q(i)\A

[[[[ṽ]]RRi
]]Q

(i)

Q j
= [[v]]RRi

.

* Set ∆i := 0.

• For each j ∈Q \ A, compute [[w]]QQ j
=∑

i∈R(j)∩A [[[[ṽ]]RRi
]]Q

(i)

Q j
+∑

i∈R(j)\A [[[[v̂]]RRi
]]Q

(i)

Q j
.

• For each j ∈Q∩ A, compute [[w]]QQ j
=∑

i∈R(j)∩A [[[[v̄]]RRi
]]Q

(i)

Q j
+∑

i∈R(j)\A [[[[v̂]]RRi
]]Q

(i)

Q j
.

• Compute the error ∆ :=∑
i∈R∆i.

• (Locally) output ([[w]]Q,∆).

Figure 5.7: Simulator SR→Q
Outsource for FPrep.

Since the cover is secure, for every secret shared amongst R and reshared amongst

Q there is a share held by an honest party in R for which at least one reshare is held by

an honest party in Q. This means that every set of shares for every secret during the ex-

ecution of the protocol is statistically indistinguishable from uniform, which means that

throughout the protocol execution the environment cannot learn the value of any secret.

For example, consider that a secret a sampled by S during the execution of Triples in

FR
Prep is not the same as the value a′ sampled by FPrep during the corresponding execu-

tion in the ideal world (with high probability). The point is that this difference cannot

be observed by the environment.

However, after the execution, the environment learns all shares of parties in Q.

Since S honestly executes FR
Prep locally, the MACs will be correct according to the MAC

key sampled by S, but the secrets and MACs held by parties in Q at the end of the

execution should be correct with respect to the MAC key generated by FPrep. This is

not a problem because in the definition of FPrep, whatever shares are sent to it by S

120

5.4. OUTSOURCING FULL-THRESHOLD TO FULL-THRESHOLD

Procedure From To Message

Initialize A FR
Prep

(Initialize,ΓR, [[α]]RRi
, sidR)i∈R∩A

S A [[[[α]]RR\A]]QQ∩A
A S [[[[α̃]]RR∩A]]QQ\A
A FQ

Open
(Initialize,ΓQ, [[α̃]]QQ j

, sidQ) j∈Q∩A

Mask A FR
Prep

(Triple, (ida, idb, idc), sidR)
A FR

Prep
([[a]]RR∩A, [[b]]RR∩A, [[c]]RR∩A)

A FR
Prep

([[γ(a)]]RR∩A, [[γ(b)]]RR∩A, [[γ(c)]]RR∩A)
A FR

Prep
Abort/OK

S A [[[[r(j)]]RR\A]]QQ∩A (N.B. r(j) := a)
S A [[[[γ(r(j))]]RR\A]]QQ∩A
A S [[[[r̃(j)]]RR∩A]]QQ\A
A S [[[[�γ(r(j))]]RR∩A]]QQ\A
S A [[r(j)]]RR\A

Triples A FR
Prep

(Triple, (idak , idbk , idck)T
k=1, sidR)

A FR
Prep

([[ak]]
R
R∩A, [[bk]]

R
R∩A, [[ck]]

R
R∩A)T

k=1
A FR

Prep
([[γ(ak)]]RR∩A, [[γ(bk)]]RR∩A, [[γ(ck)]]RR∩A)T

k=1
A FR

Prep
Abort/OK

S A ([[[[ak]]
R
R\A]]QQ∩A, [[[[bk]]

R
R\A]]QQ∩A, [[[[ck]]

R
R\A]]QQ∩A)T

k=1
S A ([[[[γ(ak)]]RR\A]]QQ∩A, [[[[γ(bk)]]RR\A]]QQ∩A, [[[[γ(ck)]]RR\A]]QQ∩A)T

k=1
A S ([[[[ãk]]

R
R∩A]]QQ\A, [[[[b̃k]]

R
R∩A]]QQ\A, [[[[c̃k]]

R
R∩A]]QQ\A)T

k=1
A S ([[[[�γ(ak)]]RR∩A]]QQ\A, [[[[�γ(bk)]]RR∩A]]QQ\A, [[[[�γ(ck)]]RR∩A]]QQ\A)T

k=1

Figure 5.8: Transcript for Π
R→Q
Outsource.

on behalf of corrupt and effectively-corrupt honest parties, FPrep will create sharings of

secrets with MACs corresponding to its own MAC key. The only job of the simulator is

to ensure the same errors are introduced in the ideal world as in the real (hybrid) world.

Note that the adversary can cheat during initialization of the MAC key by call-

ing FR
Prep with one set of MAC key shares, then introducing errors in the execution of

FeedValue(α), and then sending different secrets to FOpen. In the simulation, the sim-

ulator just takes the shares provided as input to FOpen and passes these on to FPrep on

behalf of corrupt parties, and then, since FPrep expects shares from effectively-corrupt

honest parties, the simulator also passes on the shares generated during the execution

of SFeedValue(). There is therefore no difference between the MAC shares held by cor-

rupt and effectively-corrupt parties in Q in the real world (with respect to FOpen) and

the ideal world (with respect to FPrep).

Since there are no computational assumptions being exploited in the simulation,

121

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

the only strategy the environment can employ is to introduce errors and see how they

affect the final outputs of all parties, since this means the simulator must correctly

and consistently pass errors through into the ideal world. It only remains to argue that

errors can be carried through from the real world to the ideal world, since this ensures

that ΠMACCheck aborts with the correct distribution if it is executed later.

The only way to observe such errors is to inspect distributions on the sum of sets of

shares in Q, since any such set missing one share or more is indistinguishable from uni-

form. By the time the macro FeedValue() is called, S has a complete share vector [[v]]R

produced by the local execution of FR
Prep. With each share, S behaves differently depend-

ing on the secure cover. The only time the simulator considers the adversary to have

contributed an error is when all shares of a corrupt party are sent to honest parties.

The intuition is that if a corrupt party in Q, receiving from at least one corrupt party

in R, introduces an error and sends it to FPrep, this is equivalent to the corrupt sender

in R sending a different reshare to the corrupt party in Q. In other words, no error is

“committed” to unless the adversary sends all reshares of a given share only to honest

parties. The correctness of simulation regarding the errors the simulator computes will

now be explained in detail.

Note that in the simulation, there are three “types” of reshare:

1. v̂: honest to honest and honest to corrupt;

2. ṽ: corrupt to honest and corrupt to corrupt;

3. v̄: corrupt to corrupt, but simulated.

For each j ∈Q∩A, S fixes [[w]]QQ j
:=∑

i∈R(j)\A [[[[v̂]]RRi
]]Q

(i)

Q j
+∑

i∈R(j)∩A [[[[v̄]]RRi
]]Q

(i)

Q j
. Since the

simulator does not receive the reshares of corrupt parties in R to corrupt parties in Q,

this share [[w]]QQ j
is defined using the “guesses” [[[[v̄]]RRi

]]Q
(i)

Q j
’s not the “real” [[[[ṽ]]RRi

]]Q
(i)

Q j
’s

that the adversary computes (or would compute).

Let [[w]]Q
Q∩A denote the shares subsequently sent from S to FPrep and [[w]]Q

Q\A
de-

note the shares sampled by FPrep, which are sent to (real) honest parties. Consider the

variable defined as the sum of the shares of (real) honest parties in Q, i.e. the sum of

the shares [[w]]QP j
for j ∈Q \ A, with the sum of the shares [[w̃]]QQ j

for j ∈Q∩A generated

by the adversary that are not known to S. Then observe that

∑
j∈Q∩A

[[w̃]]QQ j
+ ∑

j∈Q\A

[[w]]QQ j
= ∑

j∈Q∩A

[[w̃]]QQ j
+

w+∆− ∑
j∈Q∩A

[[w]]QQ j

122

5.4. OUTSOURCING FULL-THRESHOLD TO FULL-THRESHOLD

= ∑
j∈Q∩A

(
����������∑
i∈R(j)\A

[[[[v̂]]RRi
]]Q

(i)

Q j
+ ∑

i∈R(j)∩A

[[[[ṽ]]RRi
]]Q

(i)

Q j

)
+w+∆

− ∑
j∈Q∩A

(
����������∑
i∈R(j)\A

[[[[v̂]]RRi
]]Q

(i)

Q j
+ ∑

i∈R(j)∩A

[[[[v̄]]RRi
]]Q

(i)

Q j

)

= ∑
j∈Q∩A

∑
i∈R(j)∩A

[[[[ṽ]]RRi
]]Q

(i)

Q j
− ∑

j∈Q∩A

∑
i∈R(j)∩A

[[[[v̄]]RRi
]]Q

(i)

Q j
+w+∆

= ∑
i∈R∩A

∑
j∈Q(i)∩A

[[[[ṽ]]RRi
]]Q

(i)

Q j
− ∑

i∈R∩A

∑
j∈Q(i)∩A

[[[[v̄]]RRi
]]Q

(i)

Q j
+w+∆

= ∑
i∈R∩A

∑
j∈Q(i)∩A

[[[[ṽ]]RRi
]]Q

(i)

Q j
− ∑

i∈R∩A:
Q(i)∩A 6=∅

∑
j∈Q(i)∩A

[[[[v̄]]RRi
]]Q

(i)

Q j
+w+∆

= ∑
i∈R∩A

∑
j∈Q(i)∩A

[[[[ṽ]]RRi
]]Q

(i)

Q j
− ∑

i∈R∩A:
Q(i)∩A 6=∅

[[v]]RRi
− ∑

j∈Q(i)\A

[[[[ṽ]]RRi
]]Q

(i)

Q j

+w

+ ∑
i∈R∩A:

Q(i)∩A=∅

 ∑
j∈Q(i)\A

[[[[ṽ]]RRi
]]Q

(i)

Q j
− [[v]]RRi

= ∑

i∈R∩A

∑
j∈Q(i)∩A

[[[[ṽ]]RRi
]]Q

(i)

Q j
− ∑

i∈R∩A

[[v]]RRi
+ ∑

i∈R∩A

∑
j∈Q(i)\A

[[[[ṽ]]RRi
]]Q

(i)

Q j
+w

= ∑
i∈R∩A

[[ṽ]]RRi
− ∑

i∈R∩A

[[v]]RRi
+w.

This shows that the shares sampled by the functionality for honest parties during this

procedure, namely the (vector of) shares [[w]]Q
Q\A

, sum with the shares the adversary

would compute to differ from the secret by precisely the error the adversary introduced

on the shares when resharing.

When masks are generated for parties in Q, there are two opportunities for parties

in R to produce errors: first, in the resharing during FeedValue(), and second, when

the parties in R open the mask to the party in Q. However, since at least one party

in R is honest, the environment can only compute the difference between
∑

j∈Q [[r]]QP j

and
∑

i∈R [[r]]RPi
to observe any errors. This means that in the simulation it is sufficient

to “imply” an error in opening by subtracting the error introduced in opening from the

error introduced in resharing. In other words, the environment cannot distinguish be-

tween (
ε+ ∑

i∈R
[[r]]RPi

, δ+ r

)
and

(
ε−δ+ ∑

i∈R
[[r]]RPi

, r

)
.

123

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

5.5 Probabilistically Choosing a Secure Cover

In order to cut the costs of resharing, the parties can attempt to agree on a secure

cover by a probabilistic process. In this section, it will be assumed that R and Q are

under threshold access structures but that they will execute full-threshold protocols,

for simplicity.

Let tR and tQ be the number of corrupt parties in R and Q respectively. Let εR :=
tR/nR and εQ := tQ/nQ be the associated ratios. To help with the analysis and for effi-

ciency and load-balancing reasons, it will be assumed that each party in R sends to the

same number of parties `≥ dnQ/nRe in Q. Any assignment of sets to parties in R which

covers Q where `= tQ+1 is secure since every party in R necessarily sends to at least

one honest party in Q.

Figure 5.9 shows an example of a load-balanced topology when nQ ≈ 2nR. Note that

it is not necessarily the case that each party in Q receives the same number of shares,

even though each party in R is required to reshare to the same number of parties in Q.

R1

R2

R3

R4

...

RnR

Q1

Q2

Q3

Q4

Q5

Q6

...

QnQ

Figure 5.9: Load-Balanced Topology.

An algorithm for creating a cover probabilistically is given in Figure 5.10. The high-

level idea is the following:

1. Randomly assign parties in Q to each party in R so that each party in R has exactly

dnQ/nRe parties in Q assigned to it. For ease of exposition, it is assumed that nR|nQ.

2. For each party in R, assign random parties in Q until each party in R is assigned a

total of ` parties.

Note that in Step 12, the assignment can be made by cycling through only the entries

Mi, j of row i for which Mi, j = 0 to reduce the expected number of loops, but, since the

124

5.5. PROBABILISTICALLY CHOOSING A SECURE COVER

random oracle is evaluated locally, this would not significantly improve runtime unless

there is a large number of parties.

Algorithm for Computing a Secure Cover

Recall that Mi, j denotes the (i, j)th entry of M and Mi denotes the ith row. The macro Shuffle()

denotes the Knuth Shuffle in Figure 2.1, Section 2.1.4.

Input R, Q, and `. For the purposes of this algorithm, R := [nR] and Q := [nQ] and are distin-

guished by using i to index R and j to index Q.

Output A cover, {Q(i)}i∈R , where each set has cardinality `.

Method
1. Call an instance of FCoinFlip with input (Initialize, {0,1}κ sid).

2. Call an instance of FRO with input (Initialize,Q, sid).

3. Let M ∈FnR×nQ
.

4. For each i ∈ R,

a) For each j ∈Q,

i. Set Mi, j := 0.

b) End For.

5. End For.

6. Set count := 1.

7. Call FCoinFlip with input (RElt, sid) to obtain seedQ .

8. Call FCoinFlip with input (RElt, sid) to obtain seedπ.

9. Set π := Shuffle(seedπ,nQ).

10. For each i ∈ R,

a) For each j where dnQ/nRe · (i−1)< j ≤ dnQ/nRe · i,
i. Set Mi,π(j) := 1.

b) End For.

11. End For.

12. For each i ∈ R,

a) While HW(Mi
>)< `,

i. Do

A. Call FRO with input (seedQ‖count, sid) to obtain j.
B. Set count := count+1.

ii. Until Mi, j = 0

iii. Set Mi, j := 1.

b) End While.

13. End For.

14. For each i ∈ R,

a) For each j ∈Q,

i. If Mi, j = 1 then

125

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

Algorithm for Computing a Secure Cover (continued)

A. Set Q(i) :=Q(i) ∪ {Q j}.

ii. End If.

b) End For.

15. End For.

16. Output {Q(i)}i∈R .

Figure 5.10: Algorithm for Computing a Secure Cover.

Correctness

The algorithm allows different parties in Q to receive from different numbers of parties

in R, whilst parties in R always send to the same number of parties in Q. One of the

reasons for doing this is that it lends itself better to analysis of probabilities below. Let

X be the event that every good party in R is assigned only dishonest parties in Step 10,

and let Y be the event that every good party in R is assigned only dishonest parties

in Step 12. Since these events are independent, the probability that the algorithm pro-

duces a secure cover is given by

1−Pr[X ∧Y]= 1−Pr[X] ·Pr[Y].

Computing Pr[X] The first probability is the number of ways of choosing dnQ/nRe
parties from the tQ corrupt parties divided by the number of ways of choosing dnQ/nRe
parties from all nQ parties: (tQ

dnQ/nRe
)

(nQ

dnQ/nRe
)

Thus the first dnQ/nRe corrupt parties in Q have been assigned. Then the probability

that the next honest party in R is also assigned only corrupt parties from the remaining

tQ−dnQ/nRe corrupt parties, out of the nQ−dnQ/nRe remaining parties in Q, is(tQ−dnQ/nRe
dnQ/nRe

)
(nQ−dnQ/nRe

dnQ/nRe
)

and this continues until all the nR−tR−1 honest parties in R have been assigned parties

in Q.

126

5.5. PROBABILISTICALLY CHOOSING A SECURE COVER

Computing Pr[Y] Each party in R has been assigned dnQ/nRe parties in Q so that

each party in Q has been assigned to exactly one party in R. In Step 12, each party in

R is independently assigned a random set of `−dnQ/nRe more parties in Q. For a given

party in R, this is the number of ways of choosing `−dnQ/nRe dishonest parties from

the remaining nQ−dnQ/nRe parties in Q such that they too are all dishonest – i.e. they

are from the tQ−dnQ/nRe remaining dishonest parties. Thus

Pr[Y]=
 (tQ−dnQ/nRe

`−dnQ/nRe
)

(nQ−dnQ/nRe
`−dnQ/nRe

)
nR−tR

.

Putting these together, the probability that the algorithm produces a secure cover is

given by:

1−
 (tQ

dnQ/nRe
) · (tQ−dnQ/nRe

dnQ/nRe
) · · · · · (tQ−(nR−tR−1)dnQ/nRe

dnQ/nRe
)

(nQ

dnQ/nRe
) · (nQ−dnQ/nRe

dnQ/nRe
) · · · · · (nQ−(nR−tR−1)dnQ/nRe

dnQ/nRe
)
 ·

 (tQ−dnQ/nRe
`−dnQ/nRe

)
(nQ−dnQ/nRe
`−dnQ/nRe

)
nR−tR

.

Simplified, this gives

(5.1) 1− tQ! · (nQ− (nR− tR)dnQ/nRe)!
nQ! · (tQ− (nR− tR)dnQ/nRe)! ·

 (tQ−dnQ/nRe
`−dnQ/nRe

)
(nQ−dnQ/nRe
`−dnQ/nRe

)
nR−tR

.

To see what happens in the extremal case where all parties but one are corrupt in each

of R and Q, set tQ = nQ−1 and tR = nR−1. Then:

1 − (nQ−1)! · (nQ−dnQ/nRe)!
(nQ)! · (nQ−1−dnQ/nRe)! ·

((nQ−1)−dnQ/nRe
`−dnQ/nRe

)
(nQ−dnQ/nRe
`−dnQ/nRe

)
= 1− nQ−dnQ/nRe

nQ · nQ−`
nQ−dnQ/nRe =

`

nQ .

This agrees with the intuition that when ` is equal to nQ, i.e. each party in R sends to

every party in Q, the cover is secure with probability 1. Since this probability is linear

in `, for outsourcing full-threshold to full-threshold, the only way of achieving statistical

security σ is to have an intractible number of parties, and hence in this situation it is

recommended for all parties in R to reshare to all parties in Q.

However, with lower thresholds the probability of a secure cover from the proba-

bilistic algorithm increases. When ` is at least tQ+1, then every party in R necessarily

sends to at least one honest party. The probability that this algorithm produces a secure

127

CHAPTER 5. OUTSOURCING MPC PREPROCESSING

cover grows with the number of parties. For example, if R is a (5,2)-threshold and Q
a (50,25)-threshold, then setting ` = 23 gives a secure cover with probability at least

1−2−80, instead of the 25 parties required to guarantee the cover is secure.

Thus it is not immediately clear that this probabilistic approach offers significant

advantage, as it only works when the number of parties is comparatively large. How-

ever, if a set of parties R has an access structure ΓR with nR/2 < tR < nR and runs

SPDZ then, for example, if R is (20,15)-threshold but runs a full-threshold protocol,

and Q is (50,25)-threshold, then ` = 13 gives a secure cover, and thus the amount of

communication is halved.

5.6 Communication Complexity

The costs associated with verifying the correctness of resharing are negligible compared

to the amount of preprocessed data that is transferred in circuits of large enough size.

The salient factor, then, is the cost of resharing.

The two sets of parties are connected with bilateral secure channels, giving the com-

plete bipartite graph between them. This topology requires nR ·nQ secure connections,

besides the additional internal networks in R and Q, and is shown in Figure 5.11.

R1

R2

R3

R4

...

RnR

Q1

Q2

Q3

Q4

Q5

Q6

...

QnQ

Figure 5.11: Complete Bipartite Graph.

For the Q2 outsourcing protocol, the communication cost is that of each party in R
resharing their shares under the LSSS for Q. The finite-field elements are sent over the

nR ·nQ secure channels, and the total communication cost (besides the verification step)

is mR·mQ. If the access structures are threshold access structures, then Shamir’s secret-

128

5.6. COMMUNICATION COMPLEXITY

sharing scheme can be used and then this is nR ·nQ, which is a linear communication

cost per party in R.

For the full-threshold case, without the optimization of probabilistically defining a

secure cover, the complete bipartite graph of secure channels is required, and again the

communication cost is nR ·nQ.

While the use case of outsourced preprocessing is primarily for situations in which

clients cannot perform preprocessing themselves, it would be informative to compare

the runtime of protocols executed in the “standard” manner with protocols in which

outsourcing is performed, to see if there are performance gains even when computing

parties are able to execute preprocessing. Unfortunately, this is difficult to do with-

out concrete instantiations due to the many variable factors in hardware and protocol

choice. This would be an interesting avenue of further research.

As a final note to conclude this chapter, observe that protocols for generating pre-

processing for parties under a Q2 access structure often assume a multiplicative LSSS

– as indeed is required for the protocol that will be presented in Chapter 6. (See Sec-

tion 2.4.4 for the definition of multiplicative LSSS.) However, ΠOnline, which is realized

in the FPrep-hybrid model, makes use only of the linear property of the LSSS, since

the costly multiplication step is resolved in the preprocessing phase. Consequently, the

LSSS used for parties in Q need not be multiplicative, which means a broader class of

LSSS can be used when resharing via the outsourcing protocol presented. This is use-

ful because it potentially allows a more efficient LSSSs to be used (i.e. one with fewer

total shares) to realize the access structure on Q. Further discussion on this is given in

Chapter 7.

129

Chapter 6

Q2 MPC for Small Numbers of Parties

This chapter is based on work published at SCN’18 under the title Reducing Commu-

nication Channels in MPC [KRSW18] and was joint work with Marcel Keller, Dragos,
Rotaru and Nigel Smart.

The functionality FRand from that paper has been separated into two separate func-

tionalities FR
RSS and FRZS. They have been proved secure in the universal composability

(UC) framework.

What was previously an optimization to the main protocol in the publication now

replaces the “un”-optimized variant, and the functionality now defines a more “full” pre-

processing phase from what was described in the published version, so that now input

and output masks are generated in addition to Beaver triples. The “opening” protocol of

the original work has been replaced with the generic functionality FOpen from Chapter 4,

which is taken from [SW19], resulting in a tidier proof of the actively-secure protocol.

This chapter This chapter focuses on two aspects of the communication cost asso-

ciated with multi-party computation (MPC): the total amount of data sent over the

network, and the number of channels the parties must maintain throughout circuit

evaluation.

More specifically, the focus is on an actively-secure, efficient protocol for Q2 access

structures with computational security, making use of the error-detection properties

of the linear secret-sharing scheme (LSSS) discussed in Chapter 3. The resulting pro-

tocol offers significant advantages in terms of communication cost when compared to

the historical, mainly information-theoretic (IT) protocols in this setting. The proto-

col uses replicated secret-sharing so the focus of this chapter is primarily on a proto-

col for a small number of parties as replicated secret-sharing requires Ω(2n/
p

n) (i.e.

131

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

exponentially-many) shares for threshold schemes.

6.1 Overview

General, as opposed to threshold, access structures are practically interesting in situa-

tions where different groups of parties play different organizational roles. For example,

in a financial application, one may have a computation performed amongst a number

of banks and regulators; the required access structures for collaboration between the

banks and the regulators may not be a straightforward threshold.

In the classical results of Chaum et al. [CCD88a] and Ben-Or et al. [BGW88], parties

were assumed to be connected by a complete network of secure channels. These results

for honest-majority threshold access structures were extended to arbitrary access struc-

tures by Hirt and Maurer [HM97] and Beaver and Wool [BW98], in which case the two

necessary and sufficient conditions become Q2 and Q3 respectively, as discussed in Sec-

tion 2.6.

Another line of work considered computationally-bounded adversaries, starting with

[GMW87]. There, parties are connected by a complete network of authenticated chan-

nels; it was shown that actively-secure protocols are possible in the (n, t)-threshold set-

ting when t < n/2 (i.e. with an honest majority), and active security with abort when only

one party is honest. Generally speaking, such computationally-secure protocols are less

efficient than the information-theoretic protocols as they require some form of public-

key cryptography (PKC); however, computational assumptions enable computation in

situations when it is provably impossible to do so using only IT primitives.

In recent years there has been considerable progress in practical MPC by mixing the

computational and IT approaches. For example, the VIFF [DGKN09], BDOZ [BDOZ11],

SPDZ [DPSZ12], Tiny-OT [NNOB12], and ABY [DSZ15] protocols are in the preprocess-

ing model and defer PKC to the preprocessing phase, and then use information-theoretic

primitives in the online phase.

It is therefore logical to wonder what advancements might be made in the Q2 setting

by sacrificing IT security. Recently, Araki et al. [AFL+16] gave an efficient passively-

secure MPC evaluation of the advanced encryption standard (AES) circuit (a common

benchmark) for a (3,1)-threshold access structure. This was then generalized to an

actively-secure protocol by Furukawa et al. [FLNW17]. Both protocols require a pre-

processing phase making use of symmetric-key cryptographic primitives only; thus the

132

6.1. OVERVIEW

preprocessing is much more efficient than for the full-threshold protocols mentioned

above.

The passively-secure protocol of [AFL+16] is very cheap for a number of reasons.

Firstly, the preprocessing phase is only used to produce additive sharings of zero. Pseu-

dorandom zero-sharings (PRZSs) can be easily produced non-interactively after a one-

time setup phase using symmetric key primitives, as will be shown in Section 6.3. Sec-

ondly, the network is not assumed to be complete: each party only sends data to one

other party via a secure channel, and only receives data from the third party via a

secure channel. Thirdly, parties only need to transmit one finite-field element per mul-

tiplication. Compared to IT protocols in the same setting, the protocol requires that

each party holds two finite-field elements per share, as opposed to using an ideal secret-

sharing scheme, such as Shamir’s, in which each party need only hold one finite-field

element per secret.

The underlying protocol of Araki et al., bar the use of the PRZSs, is highly remi-

niscent of the Sharemind system [BLW08], which also assumes a (3,1)-threshold access

structure. Since both [AFL+16] and [BLW08] are based on replicated secret-sharing,

they are also closely related to the “MPC-Made-Simple” approach of Maurer [Mau06].

Thus, for the case of this specific access structure, the work of [AFL+16] can be seen

as using cryptographic assumptions to optimize the information-theoretic approach

of [Mau06].

The actively-secure successor to [AFL+16] by Furakawa et al. [FLNW17] uses the

passively-secure protocol (over an incomplete network of secure channels) to run a pre-

processing phase that produces Beaver triples. These are then consumed in the online

phase, by using the triples to verify the passively-secure multiplication of actual secrets.

This is different from the traditional methodology in which Beaver triples are used to

perform the multiplication as describe in Section 2.5.3, which allows the online phase

to be executed over authenticated channels rather than secure channels.

The question addressed in this chapter is whether the approach outlined in [AFL+16],

[BLW08] and [FLNW17] is particularly tied to the (3,1)-threshold access structure, or

whether it generalizes to other access structures. The protocol presented in this chapter

shows that they do indeed generalize to any Q2 access structure.

133

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

6.2 Preliminaries

This chapter concerns the evaluation of an arithmetic circuit over a finite field Fq, where

q is a prime power. Most of the notation used in this chapter was defined in Chapter 2.

The network requirements are best understood in the context of the protocols them-

selves and so the descriptions are deferred until later.

6.2.1 Replicated Secret-Sharing

The protocols in this chapter make use of replicated secret-sharing, which was defined

in Section 2.4.3 but is explained in the context of MPC here. Recall that the set ∆+

of maximally unqualified sets of parties, and its structure, is important for replicated

secret-sharing; it is notationally simpler to consider the set of complements of maxi-

mally unqualified sets, which is denoted by ∇ := {G ∈ 2P :P\G ∈∆+}. Note that in general

it is not true that the set ∇ is equal to the set of minimally qualified sets, though there

are cases for which they do coincide (for example,
(
n, n−1

2

)
-threshold access structures

where n is odd). In replicated secret-sharing, a secret x is shared as an additive sum

x =∑
G∈∇ xRG , where party Pi is handed xRG if and only if i ∈G.

It is clear that if ∆ is Q2, then so is any subset. In particular, the set of maximally

unqualified sets ∆+ is also Q2. In fact, if ∆+ is Q2 then ∆ is Q2. Hence, for the set of

complements ∇ it holds that if G1,G2 ∈∇ then G1∩G2 6=∅. A set ∇ for which this property

holds was called a quorum system by Beaver and Wool [BW98].

Recall that a sharing of a secret x is denoted by the vector [[x]], and [[x]]Pi
is the

vector of shares that party Pi holds. For replicated secret-sharing, additionally [[x]]R is

used to denote the share vector proper, whereas xRG is used to denote the summand of

the secret corresponding to the set G ∈ ∇. Recall from Section 2.4.4 that if an access

structure is Q2 then replicated secret-sharing is multiplicative, i.e. given two secret-

shared values [[a]] and [[b]], an additive sharing of the product a · b can be computed as

a linear combination of the shares the parties hold; i.e. for each i ∈ [n] there exists a

vector µi ∈F|ρ−1(i)|2 such that

a ·b =
n∑

i=1
〈µi, [[a]]Pi

⊗ [[b]]Pi
〉.

The fact that by local computations the parties each obtain one summand of the product

is the reason that it is possible to build an MPC protocol for any Q2 access structure

secure against passive adversaries and with IT security (which is exactly the protocol

of Hirt and Maurer [HM97]).

134

6.2. PRELIMINARIES

Example 6.1, below, will be used throughout this chapter to demonstrate the savings

which can result from the protocol presented later, and also to examine the communica-

tion channels required.

Example 6.1. Consider the following set of maximally unqualified sets for a six-party

access structure

∆+ =
{
{2,5,6}, {3,5,6}, {4,5,6}, {1,2}, {1,3}, {1,4}, {1,5}, {1,6},

{2,3}, {2,4}, {3,4}
}
.

Here the set ∇ is

∇=
{
{1,3,4}, {1,2,4}, {1,2,3}, {3,4,5,6}, {2,4,5,6}, {2,3,5,6},

{2,3,4,6}, {2,3,4,5}, {1,4,5,6}, {1,3,5,6}, {1,2,5,6}
}
.

6.2.2 Redundancy

If there is a party Pi that is in a qualified set only if some other party P j is in the

qualified set then the access structure is said to contain redundancy and Pi is said to

be redundant.

In the terminology of access structures, given an access structure Γ, a party Pi is

considered redundant if there exists another party P j (j 6= i) such that for any U ∈ ∆,

Pi 6∈ U implies P j 6∈ U . In terms of replicated secret sharing, a party Pi is redundant if

there is another party P j that holds every share Pi holds (and possibly more).

For example, in the access structure defined by

∆+ := {{1,2}, {1,3,4}, {2,3,4}}

P3 (or, equivalently, P4) is redundant; once removed, the access structure becomes

∆+ := {{1,2}, {1,3}, {2,3}}.

Note that if any party is omitted from all sets in ∆+ then it is present in all sets in

∇ and hence every party, but this party, is redundant, which makes the MPC protocol

trivial: the omitted party can simply perform the entire computation itself and output

the result to all parties.

The idea is that Pi learns information only when P j learns it, so if an adversary

corrupts P j it learns as much as when it corrupts P j and Pi. For MPC, this means that

135

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

preprocessing can be outsourced to a non-redundant subset of parties and the data re-

distributed according to the original set of parties. For the protocol given in this chapter

this outsourcing is particularly cheap as replicated secret-sharing is used so the reshar-

ing cost is simply that of forwarding shares to the redundant party.

6.3 Computational Random Sharings

Improving on the protocols in [BW98] and [Mau06] seems to require sacrificing the IT

security for computational assumptions. In this section protocols for random sharings

are given, which are key components of the MPC protocol. The focus is on computational

security in the random oracle model, which leads to a very efficient protocol: any number

of (pseudo)random secrets can be generated from a one-time setup phase. Discussion of

the generation of random secrets with IT security is given in Section 7.3. As the one-time

setup cost potentially1 grows exponentially with the number of parties, the IT method

is more efficient for a large number of parties as the asymptotic cost is linear.

Specifically, this section gives protocols that UC-realize the functionalities FR
RSS in

Figure 6.1 and FRZS in Figure 6.2, which provide parties with pseudorandom secret-

sharings (PRSSs) and pseudorandom zero-sharings (PRZSs), respectively. The idea is

for different sets of parties to agree on keys that are appended to every call to a random

oracle to obtain correlated randomness that can be used to generate random sharings2.

UC proofs for random sharings were given in [DGKN09], but the functionalities

were not defined. Since they are a key component of the MPC protocols, full proofs are

given here.
1The cost depends on the access structure.
2The random oracle here can be instantiated with a keyed pseudorandom function (PRF) rather than

a hash function.

136

6.3. COMPUTATIONAL RANDOM SHARINGS

Functionality FR
RSS

Initialize On input (Initialize,Γ, sid) from all honest parties and S, where sid is a new ses-

sion identifier, P is the set of parties, and Γ is an access structure, set ∇ to be the set of

complements of sets in ∆+ and await further messages.

Sharing of Secret On input (SecretSharing, id , sid) from all honest parties and S, the func-

tionality does the following:

1. If id is a new identifier, sample a set {rRG : G ∈∇} ← U (F).

2. For each G ∈∇, for each Pi ∈G, send rRG to Pi or to S if Pi ∈A.

Figure 6.1: Functionality for Secret-Sharings of Random Secrets for Replicated Secret-

Sharing, FR
RSS.

Notice that the adversary cannot choose its own shares. This reflects the fact that

with replicated shares generated by PRF keys, A does not have a choice in what values

the shares take. Of course, this does not preclude it from ignoring these inputs later on,

but the validity of doing so is dealt with outside the execution of FR
RSS (specifically, by

FOpen in the protocol later on).

Functionality FRZS

Initialize On input (Initialize,P , sid) from all parties, where sid is a new session identifier

and P is the set of parties, await further messages.

Sharing of Zero On input (ZeroSharing, id ,P ′, sid) from all parties in a set P ′ ⊆P , where id
is a new identifier,

1. Sample {[[t]]APi
}i∈[n′] ← U (F) subject to the constraint that

∑
i∈[n′] [[t]]

A
Pi

= 0.

2. For each i ∈ [n′], send [[t]]APi
to Pi, or to S if i ∈ A.

Figure 6.2: Functionality for Secret-Sharings of Zero, FRZS.

6.3.1 PRSSs

The protocol ΠR
RSS used to realize FR

RSS is given in Figure 6.3.

137

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

Protocol ΠR
RSS

This protocol is realized in the FCoinFlip, FRO-hybrid model.

Initialize
1. The parties agree on a session identifier sid and a computational security parameter, κ.

2. The parties call an instance of FRO with input (Initialize,F, sid).

3. Each set of parties G ∈ ∇ agree on a session identifier sidG and send the message

(Initialize, {0,1}2·κ , sidG) to an instance of FCoinFlip; let this instance be denoted by

FG
CoinFlip

.

4. Each set of parties G ∈∇ call FCoinFlip with input (RElt, sidG) to obtain kG .

Sharing of Secret
1. The parties compute a new identifier, idr.

2. For each G ∈ ∇, the parties in G call FRO with input (idr‖kG , sid) and set the value they

receive as output as rRG .

3. Each party Pi concatenates the shares {rRG :G 3Pi} into a share vector [[r]]RPi
.

Figure 6.3: Protocol for Secret-Sharings of Random Secrets using Replicated Secret-

Sharing, ΠR
RSS.

Theorem 6.1. The protocol ΠR
RSS UC-securely realizes the functionality FR

RSS against a

static, active, computationally-bounded adversary in the FCoinFlip, FRO-hybrid model.

Proof. The simulator is given in Figure 6.4.

Simulator SR
RSS

Initialize
1. Agree on a session identifier, sid , with A.

2. Await the call to FRO with input (Initialize,F, sid) from A and send the command

(Initialize,Γ, sid) to FR
RSS

.

3. For each G ∈∇ where G∩A 6=∅, agree on a session identifier sidG with A and await the call

to FCoinFlip with input (Initialize, {0,1}2·κ , sidG) and execute it honestly with A, storing

the outputs locally.

4. For each G ∈ ∇ where G ∩A 6= ∅, await the call to FCoinFlip with input (RElt, sidG) and

execute it honestly, sending the output kG to A.

138

6.3. COMPUTATIONAL RANDOM SHARINGS

Simulator SR
RSS (continued)

Sharing of Secret
1. Compute a new identifier, idr.

2. Call FR
RSS

with input (SecretSharing, idr, sid) and then do the following:

• Await the set of shares {rRG :G ∈∇∧G∩A 6=∅} from FR
RSS

.

• For each G ∈∇ where G∩A 6=∅, await the call to FRO with input (s, sid) from A.

• If s = idr‖kG then send rRG to A.

• If s has been queried before, return the same output that was sent before.

• Otherwise sample t ← U (F) and send t to A.

3. (No simulation is required for this step.)

Figure 6.4: Simulator SR
RSS for FR

RSS.

The only problem occurs if A queries the random oracle before the set of seeds

{kG}G∈∇:G∩A 6=∅} are agreed on, and thus before S can program the random oracle by

replacing the call with an output from FR
RSS.

The adversary is computationally bounded, so the number of possible queries to

the random oracle is bounded by some polynomial function in κ, i.e. poly(κ). The seeds

are of length 2 ·κ bits, so the chance that the adversary queries the random oracle on

an input before the seed agreement phase on a query that must be programmed with

output from FR
RSS is poly(κ) · (2 ·22·κ)−1 < 2−κ by the Birthday Bound (see the proof of

Theorem 2.3). Thus no environment can distinguish except with negligible probability

in the computational security parameter.

6.3.2 PRZSs

In order to rerandomize additive sharings, which is required for proving the security

of the MPC protocol defined later, parties can add a uniformly-random sharing of zero.

Such sharings are provided by the functionality FRZS given in Figure 6.2. A protocol

ΠRZS realizing FRZS in the FRO-hybrid model is given in Figure 6.5.

This protocol was first described by Gilboa and Ishai [GI99], but instead of using

random oracles, there they altered the security notion to define a class of protocols that

involved agreeing on a random seed and then extending it locally. The reason for this

change in security definition is that there is some “short explanation” – namely, the

seeds – that “explains” the final random string that is given as output by any set of

parties, which means that simulation is not possible. Intuitively, one can see this as S
having to find a seed that produces the uniform output of FRZS, breaking the security of

139

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

the PRF, in order to send A information so that the environment would not know that

the random outputs of honest parties were not generated by evaluating a PRF. This

was the same problem encountered by Boyle et al. [BCGI18], again avoided by carefully

choosing the definition of security for the primitive. Since the protocol assumes the use

of random oracles in other places (for example, in realizing efficient UC commitments),

its use here does not change the set of security assumptions.

Protocol ΠRZS

This protocol is realized in the FCoinFlip, FRO-hybrid model.

Initialize
1. Agree on a session identifier sid .

2. Call an instance of FRO with input (Initialize,F, sid).

3. Each unordered pair of parties (Pi,P j) (i.e. for all (i, j) ∈ [n]2 such that (i < j)) does the

following:

a) Call an instance of FCoinFlip with input (Initialize, {0,1}2·κ , sidi, j); let this instance be

denoted by F i, j
CoinFlip

.

b) Call F i, j
CoinFlip

with input (RElt, sidi, j) and set the returned output as ki, j.

c) Call F i, j
CoinFlip

with input (RElt, sidi, j) and set the returned output as k j,i.

Sharing of Zero To obtain a sharing of zero amongst parties indexed by X ⊆ [n], for each i ∈ X ,

1. The parties compute a new identifier idr.

2. Each party Pi calls FRO with input (idr‖ki, j, sid) and set the returned output as r i, j.

3. Each party Pi calls FRO with input (idr‖k j,i, sid) and set the returned output as r j,i.

4. Party Pi sets

[[r]]APi
:= ∑

j∈X\{i}
r i, j − r j,i.

Figure 6.5: Protocol for Secret-Sharings of Zero, ΠRZS.

Theorem 6.2. The protocol ΠRZS UC-securely realizes the functionality FRZS against a

static, active, computationally-bounded adversary in the FRO-hybrid model.

Proof. The simulator is given in Figure 6.6. For correctness, observe that

∑
i∈[n]\A

[[t]]APi
+ ∑

i∈A

∑
j 6=i

(r i, j − r j,i)=
∑

i∈[n]\A
[[t]]APi

+ ∑
i∈A

(∑
j 6=i

r i, j −
∑
j 6=i

r j,i

)

= ∑
i∈[n]\A

[[t]]APi
+ ∑

i∈A

(∑
j 6=i

r i, j −
∑
j 6=i

(r i, j − ti, j)

)
= ∑

i∈[n]\A
[[t]]APi

+ ∑
i∈A

∑
j 6=i

ti, j =
∑

i∈[n]\A
[[t]]APi

+ ∑
i∈A

[[t]]APi
= 0

140

6.3. COMPUTATIONAL RANDOM SHARINGS

(where for simplicity it is assumed that X = [n]).

Simulator SRZS

Initialize
1. Agree on a session identifier, sid , with A.

2. Await the call to FRO with input (Initialize,F, sid) from A and initialize a local instance.

3. Each unordered pair of parties (Pi,P j) (i.e. for all (i, j) ∈ [n]2 such that (i < j)), where i ∈ A
or j ∈ A, do the following:

a) If i ∈ A or j ∈ A, await a call to an instance of FCoinFlip with input

(Initialize, {0,1}2·κ , sidi, j) and initialize a copy locally. This instance is denoted by

F i, j
CoinFlip

.

b) Await the call to F i, j
CoinFlip

with input (RElt, sidi, j), execute it honestly, set the returned

output as ki, j and send this to A.

c) Await the call to F i, j
CoinFlip

with input (RElt, sidi, j), execute it honestly, set the returned

output as k j,i and send this to A.

Sharing of Zero
1. Compute a new identifier idr, call FRZS with input (SecretSharing, idr, sid) and await a

share vector [[t]]AA in response.

2. For each i ∈ X ∩ A, await the call to FRO with input (idr‖ki, j, sid) for each j ∈ X , execute it

honestly, set the returned output as r i, j and send this to A.

3. For each i ∈ X ∩A, await the call to FRO with input (idr‖k j,i, sid) for each j ∈ X and do the

following:

• Sample a set {ti, j} j∈X ← U (F) subject to
∑

j 6=i ti, j = [[t]]APi
.

• Set r j,i := r i, j − ti, j.

• Send r j,i to A.

4. (No simulation is required for this step.)

Figure 6.6: Simulator SRZS for FRZS.

The only messages in the transcript are from the random oracle, (r i, j, r j,i). Each

r j,i can be viewed as −ti, j encrypted via the one-time pad r i, j. Thus the only informa-

tion learnt from such a pair is ti, j. Since the ti, j ’s are uniformly random subject to the

contraint that
∑

j 6=i ti, j = [[t]]APi
, and the [[t]]APi

’s are uniformly random subject to the con-

straint that they sum to 0, the distribution of the simulated view is identical to the real

view of A.

A similar argument as for the proof of Theorem 6.1 can be used to show that the

environment cannot distinguish between worlds by querying the random oracle except

with negligible advantage.

141

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

6.3.3 Communication Complexity

The total theoretical communication cost (in bits) for realizing the seed-agreement is

given in Table 6.1, where SC(EBC) and AC(EBC) denote a complete network of secure

and authenticated channels, respectively. The cost of instantiating the broadcast is

not included. The communication cost of commitments comes from the instantiation

of FCommit via ΠCommit in Figure 2.7. Furthermore, it is assumed that the functionality

FCoinFlip defined in Figure 2.8 is realized using the protocol ΠCoinFlip in Figure 2.9. Thus

in total, the cost (for each party in each pair, and for every party for every set in G ∈ ∇)

is that of a commitment, which is an element of {0,1}2·κ, and the decommitment, which

is a message that consists of the seed in {0,1}2·κ with the nonce in {0,1}κ.

Procedure Number of bits Channels

PRZS key commitments 2 ·κ ·n · (n−1) AC(EBC)
Opening commitments 3 ·κ ·n · (n−1) SC(EBC)
PRSS key commitments 2 ·κ ·∑G∈∇ |G| · (|G|−1) AC(EBC)
Opening commitments 3 ·κ ·∑G∈∇ |G| · (|G|−1) SC(EBC)

Table 6.1: Total communication cost to realize FR
RSS and FRZS.

6.4 Converting Additive to Replicated

Replicated secret-sharing is always multiplicative if the access structure is Q2, as dis-

cussed in Section 6.2. The real cost in computing a passive multiplication of secrets

shared using replicated secret-sharing is that of converting the additive sharing of the

product back into a replicated sharing. Indeed, at its heart, the protocol of Araki et

al. [ABF+17] is an efficient method of turning an additive sharing into a replicated

sharing.

This is analogous to the main communication cost in the BGW protocol, where the

task is to convert what is essentially an additive sharing (modulo the Lagrange inter-

polation coefficients) back to a Shamir sharing of the secret. Given a procedure that

performs this conversion, it is straightforward to give a subprotocol in which parties

multiply two secrets. For now, it suffices to understand that it is desirable to have a

methodology for doing this; the specifics of the multiplication are dealt with in detail in

the following section.

From a high level, additive secret-sharing and replicated secret-sharing look very

similar: to share a secret, the dealer additively splits the secret into several shares and

142

6.4. CONVERTING ADDITIVE TO REPLICATED

distributes them amongst the parties; indeed, additive secret-sharing is exactly repli-

cated secret-sharing for a full-threshold access structure. In this section, this similarity

is exploited to give a more communication efficient (but only computationally-secure)

method of converting additive sharings to replicated sharings; first, for comparison, the

“standard” (i.e. IT) method is described.

6.4.1 Information-Theoretic Conversion

The subprotocol given in Figure 6.7 is part of Maurer’s protocol [Mau06] and is sim-

ilar to the conversion in the protocol of Beaver and Wool [BW98] but uses replicated

secret-sharing rather than disjunctive normal form (DNF)-based secret-sharing. It is

expressed in its general form that turns an additive secret-sharing of a secret into a

secret under any other LSSS.

Subprotocol ΠAToAny

Parties hold [[v]]A and will convert to a sharing under another LSSS, denoted by [[·]].
Additive to Replicated

1. Each Pi creates a sharing [[[[v]]APi
]] of the value [[v]]APi

.

2. Each Pi acts as the dealer in the LSSS and for each j 6= i sends [[[[v]]APi
]]P j

to P j over a

secure channel.

3. Each Pi computes [[v]]Pi
:=∑

j∈[n] [[[[v]]AP j
]]Pi

.

4. Parties (locally) output [[v]].

Figure 6.7: Protocol to Convert Additive Shares to Shares Under Any LSSS, ΠAToAny.

Correctness

To see that the protocol is correct, observe that by linearity of the LSSS,

n∑
i=1

[[[[v]]APi
]]R = [[

n∑
i=1

[[v]]APi
]]R = [[v]]R.

Security

Security holds by the IT security of the LSSS.

143

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

Communication Complexity

In order to reshare [[v]]APi
, each party Pi sends a total of∑

G∈∇:G3Pi

(|G|−1)+ ∑
G∈∇:G 63Pi

|G| = ∑
G∈∇

|G|− ∑
G∈∇:G3Pi

1

finite-field elements, and communicates with every other party over a point-to-point se-

cure channel. Thus the total amount of data sent across all parties in a single resharing

is
n∑

i=1

(∑
G∈∇

|G|− ∑
G∈∇:G3Pi

1

)
= (n−1) · ∑

G∈∇
|G|

finite-field elements, across n·(n−1) secure channels (assuming a non-redundant access

structure). These secure channels are enumerated as uni-directional secure channels,

reflecting the fact that good security practice dictates that parties should have different

secret keys securing communication in different directions.

For the running example, Example 6.1, this translates to sending (6−1) ·41 = 205

finite-field elements over 6 ·5 = 30 secure channels. Note that the same finite-field ele-

ment will be sent to multiple parties (every set of parties G ∈∇ obtains a share common

to them all), but these elements are counted as distinct when analysing communication

costs.

6.4.2 Computational Conversion

The goal is to turn an additive sharing [[v]]A into a replicated sharing [[v]]R (with pas-

sive security) more efficiently than in the IT protocol above. The protocol is given in

Figure 6.9 but the method is first outlined here.

To do this conversion, once at the beginning of the protocol, each party is assigned

a set Gi ∈ ∇ where i ∈ Gi so that no two parties are assigned the same set. (Section 6.7

describes how to fix the protocol in the uncommon event that no such assignment can

be made.)

To turn an additive sharing [[v]]A into a replicated sharing, the parties first reran-

domize the additive sharing [[v]]A using a PRZS, by each party Pi computing [[v]]APi
+

[[t]]APi
, and then set this to be the share vRGi

.

To make up the remaining |∇|−n shares, the parties set any share not indexed by

some set in {Gi}i∈[n] to be the corresponding random share rRG from a PRSS [[r]]R. Thus,

at this point, the replicated sharing is∑
G∈∇

vRG = ∑
i∈[n]

vRGi
+ ∑

G∈∇\{Gi}i∈[n]

rRG = ∑
i∈[n]

(
[[v]]APi

+ [[t]]APi

)
+ ∑

G∈∇\{Gi}i∈[n]

rRG = v+ ∑
G∈∇\{Gi}i∈[n]

rRG .

144

6.4. CONVERTING ADDITIVE TO REPLICATED

In other words, the current sharing is offset from v by the sum of the random shares

taken from [[r]]R. To resolve this error, shares from r are subtracted from the vRGi
shares

so that the sum of all shares is still v. To ensure each random share from [[r]]R is

only subtracted once, a partition {∇(i)}i∈[n] is computed so that Pi subtracts all shares

{rRG}G∈∇(i) of the PRSS from vRGi
. All that remains to obtain a replicated sharing is for

each Pi to send vRGi
to every party who is supposed to hold it, since the parties already

hold the share vRG := rRG for all G ∈∇\{Gi}i∈[n]. Using the PRZS combined with the PRSS

means that the resulting sharing is uniform in the space of all share vectors [[v]]R that

share the secret v.

In the running example one could take G1 := {1,3,4}, G2 := {1,2,4}, G3 := {1,2,3}, G4 :=
{2,3,4,5}, G5 := {1,2,5,6} and G6 := {2,3,4,6} and take the partition as follows:

∇(1) = {{1,3,4}},

∇(2) = {{1,2,4}},

∇(3) = {{1,2,3}},

∇(4) = {{2,3,4,5}},

∇(5) = {{1,2,5,6}, {1,3,5,6}, {1,4,5,6}},

∇(6) = {{2,3,4,6}, {2,3,5,6}, {2,4,5,6}, {3,4,5,6}}.

This results in shares being generated and sent as shown in Figure 6.8.

[[v]]A [[t]]A
[[v]]R

123 124 134 1256 1356 1456 2345 2346 2356 2456 3456
P1 [[v]]AP1

[[t]]AP1
♦ ♦ � ♦ � �

P2 [[v]]AP2
[[t]]AP2

♦ � ♦ ♦ ♦ � �
P3 [[v]]AP3

[[t]]AP3
� ♦ � ♦ ♦ � �

P4 [[v]]AP4
[[t]]AP4

♦ ♦ � � ♦ � �
P5 [[v]]AP5

[[t]]AP5
� � � ♦ � � �

P6 [[v]]AP6
[[t]]AP6

♦ � � � � � �

Key
♦ Receive share
� Send share; defined by Gi; computed as [[v]]APi

+ [[t]]APi
−∑

�’s in same row
� }

Evaluate PRF
�

Figure 6.8: Optimized Multiplication in Running Example.

145

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

This method directly generalizes the method used by [AFL+16], which concentrated

on the case of the finite field F2 and a (3,1)-threshold, in the sense that this protocol

is the same as theirs in this 3-party setting. However, prior to this new methodology it

was not clear how to generate the remaining |∇|− n shares and maintain correctness,

and without incurring considerable additional communication overhead, since in the

3-party case |∇|−n = 0.

Choosing the Partition

After the sets {Gi}i∈[n] are chosen, the remaining shares are assigned to the parties

arbitrarily, where choices are made so that each party is assigned roughly the same

overall total number of shares in order to balance the load.

Any partition {∇(i)}i∈[n] of the set ∇ can be chosen with the constraint that for every

i ∈ [n] it holds that G ∈ ∇(i) implies Pi ∈ G. It is assumed that ∇(i) 6= ∅ for all i ∈ [n],

which may not always be possible, although there is an easy fix to the protocol in the

unlikely event that this happens, described in Section 6.7.

The partition is chosen by considering all the maps f : ∇ → P such that for every

i ∈ [n], f (G)=Pi implies Pi ∈G, and choosing a f such that im(f) is as large as possible.

If f is not surjective then there is at least one set f −1({Pi}) (for some i) which is empty.

For small numbers of parties on a non-redundant Q2 access structure, such a map can

always be found; the necessary adaptation to the protocol when this is not the case, and

further relevant discussion, is given in Section 6.7.

The formal description of the subprotocol is given in Figure 6.9 and is followed by a

justification of its correctness and security (in the passive security setting).

146

6.4. CONVERTING ADDITIVE TO REPLICATED

Subprotocol ΠAToROpt

It is assumed that, as part of the larger protocol, parties have already called an instance of FR
RSS

with input (Initialize,Γ, sid) and an instance of FRZS with input (Initialize,P , sid). Parties

hold an additive sharing [[v]]A.

Additive to Replicated
1. The parties compute a new identifier idt, call FRZS with input (ZeroSharing, idt,P , sid),

and receive an additive sharing of zero [[t]]A.

2. The parties compute a new identifier idr, call FR
RSS

with input (SecretSharing, idr, sid),

and receive [[r]]R.a

3. Each Pi defines a sharing [[v]]R by doing the following:

a) Set vRG := rRG for all G ∈∇\{G j} j∈[n] where G 3Pi.

b) Set vRGi
:= [[v]]APi

+ [[t]]APi
−∑

G∈ f −1({Pi})\{Gi} rRG .

4. For every i ∈ [n], for every P j ∈Gi, Pi sends vRGi
to P j over a secure channel.

5. Each party Pi concatenates {vRG :G ∈∇∧G 3Pi} into a share vector [[v]]RPi
.

6. Parties (locally) output [[v]]R.

aNote that in the instantiation of FR
RSS

viaΠR
RSS

, the parties need not to call the random oracle
on the keys {kGi }

n
i=1 – only on the other keys – since these shares are discarded in the next step.

Figure 6.9: Optimized Protocol to Convert Additive Shares to Shares Under Replicated

Secret-Sharing, ΠAToROpt.

Correctness

In Step 3a, Pi computes all shares not assigned to a party by {∇(j)} j∈[n]; in Step 3b the

share vR∇(i) is computed; and in Step 4, Pi receives a share for every G ∈ ∇ where G 3 i,

as is required by replicated secret-sharing.

To see that the replicated sharing shares the correct secret, observe that∑
G∈∇

vRG = ∑
G∈∇\{Gi}i∈[n]

vRG +
∑

G∈{Gi}i∈[n]

vRG

= ∑
G∈∇\{Gi}i∈[n]

rRG +
∑

i∈[n]

(
[[v]]APi

+ [[t]]APi
− ∑

G∈ f −1({Pi})\{Gi}
rRG

)
= ∑

G∈∇\{Gi}i∈[n]

rRG +
∑

i∈[n]
[[v]]APi

+ ∑
i∈[n]

[[t]]APi
− ∑

i∈[n]

∑
G∈ f −1({Pi})\{Gi}

rRG

= ∑
G∈∇\{Gi}i∈[n]

rRG +
∑

i∈[n]
[[v]]APi

+0− ∑
G∈∇\{Gi}i∈[n]

rRG

= v

where the penultimate equality holds because f −1(P) = ∇ and f (Gi) = Pi for all i ∈ [n]

(so Gi is not contained in f −1({P j}) for any j 6= i).

147

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

Security

The key observation for security is that the PRZS masks the local computations: any

unqualified set of parties U is missing at least one party, and hence one share of the

PRZS, which means that the shares {vRGi
}i∈[n] are indistinguishable from uniformly ran-

dom. All other computations are local and so security follows assuming a secure protocol

for realizing FR
RSS and FRZS is given.

6.5 Passively-Secure Q2 MPC Protocol

In this section the optimized (i.e. computationally-secure) variant of the additive-to-

replicated conversion is bootstrapped to a full MPC protocol. Linear operations are

straightforward; the passive multiplication procedure presented here starts as in Mau-

rer’s protocol – by forming an additive secret sharing of the product, which is always

possible with replicated secret-sharing realizing a Q2 access structure – but now the

optimized computational conversion procedure is used to convert the product to a repli-

cated sharing. The passively-secure arithmetic black box FPABB, which is the goal of

passively-secure MPC, is given in Figure 6.10.

Functionality FPABB

Initialize On input (Initialize,F, sid) from all parties, store F and initialize a new database DB

with indexing set DB.Ids and store the field as DB.Field :=F.

Input On input (Input, i, id , x, sid) from party Pi and (Input, i, id ,⊥, sid) from all other parties,

where i ∈ [n], id is a new identifier, and x ∈ DB.Field, set DB[id] := x and insert id into DB.Ids.

Add On input (Add, idx, idy, idz, sid) from all parties, if idx, idy ∈ DB.Ids and idz is a new iden-

tifier, set DB[idz] := DB[idx]+DB[idy] and insert idz into DB.Ids.

Multiply On command (Multiply, idx, idy, idz, sid) from all parties, if idx, idy ∈ DB.Ids are

present in memory and idz is a new identifier, store DB[idz] := DB[idx] · DB[idy] and insert

idz into DB.Ids.

Output To One On input (Output, i, id , sid) from all parties where id ∈ DB.Ids and i ∈ [n],

send DB[id] to Pi and continue.

Output To All On input (Output,0, id , sid) from all parties, if id ∈ DB.Ids, send DB[id] to all

parties and continue.

Figure 6.10: Passive Arithmetic Black Box Functionality, FPABB.

148

6.5. PASSIVELY-SECURE Q2 MPC PROTOCOL

6.5.1 Multiplication and Input using Conversion

Multiplication

The real difficulty in creating an MPC protocol given a LSSS is in performing secure

multiplication of secret-shared values, [[x]]R and [[y]]R. With this goal, we begin by fol-

lowing [BW98] and define a surjective function I : ∇2 →P (Intersection map) such that

I(G1,G2) =Pi implies that Pi ∈ G1 ∩G2; the existence of such a function follows from the

fact that the access structure is Q2, as discussed in Section 6.2. Note that there are

possibly multiple choices for I. Note also that party I(G1,G2) holds a copy of share xRG1

and yRG2
. The party indexed by I(G1,G2) will be put “in charge” of computing the cross

term xRG1
· yRG2

in the multiplication protocol. Then each Pi (locally) computes

[[z]]APi
:= ∑

(G1,G2)∈I−1({Pi})
xRG1

· yRG2
,

whence the parties can execute ΠAToROpt.

Input

The “standard” way for a party Pi to provide input x is to generate a sharing [[x]]R and

distribute the shares. In the protocol given here, it is also possible to make use of the

conversion subprotocol ΠAToROpt for parties to provide inputs, at no extra setup cost: the

parties take an additive sharing of zero [[t]]A, and then Pi sets [[x]]APi
:= x+ [[t]]APi

and all

other parties P j (j 6= i) set [[x]]AP j
:= [[t]]AP j

, and then they run the ΠAToROpt subprotocol. In

practice, this requires obtaining one PRZS and one PRSS which means the parties have

to perform several PRF evaluations, so as the number of parties grows (and the number

of required PRF evaluations grows exponentially) there may be a point at which it is

beneficial to provide input using the standard approach.

It is crucial for the UC-security of this protocol that the simulator should be able to

extract the inputs of the adversary in this optimized subprotocol. Fortunately, this is

indeed the case as every share is held by at least one honest party, including the shares

indexed by Gi for all i ∈ A, which are the shares actually “containing” the corrupt party’s

input in this optimized input subprotocol.

The protocolΠQ2,R
Online

is given in Figure 6.11. This protocol is the analogue of [AFL+16]

for arbitrary Q2 access structures and arbitrary finite fields.

149

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

Protocol ΠQ2,R
Online

This protocol is realized in the FR
RSS

,FRZS-hybrid model and makes use of the subprotocol

ΠAToROpt.

Initialize
1. The parties agree on a session identifer sid .

2. The parties call FR
RSS

with input (Initialize,Γ, sid).

3. The parties call FRZS with input (Initialize,P , sid).

Input For Pi to provide input x, the parties compute a new identifier idx and do the following:

1. Party Pi sets [[x]]APi
:= x, and for each j 6= i, P j sets [[x]]AP j

:= 0.

2. The parties run the subprotocol ΠAToROpt on [[x]]A to obtain a sharing [[x]]R.

Add To add secrets [[x]]R and [[y]]R, the parties and compute [[x]]R+ [[y]]R to obtain a sharing [[z]]R.

Multiply To multiply secrets [[x]]R and [[y]]R, the parties compute a new identifier idz and do the

following:

1. For each i ∈ [n], Pi computes

[[z]]APi
:= ∑

(G1,G2)∈I−1({Pi})
xRG1

· yRG2
.

2. The parties run the subprotocol ΠAToROpt on [[z]]A to obtain a sharing [[z]]R.

Output To One To output a secret with identifier idx to Pi, the parties do the following:

1. For all j ∈ [n], for all G ∈ ∇(j), for all i ∈ [n], if Pi 6∈ G then P j sends xRG to Pi over a secure

channel.

2. Party Pi computes x :=∑
G∈∇ xRG .

Output To All To output a secret with identifier idx to all parties, the parties do the following:

1. For all i ∈ [n], for all G ∈ ∇(i), for all j ∈ [n], if P j 6∈ G then Pi sends xRG to P j over an

authenticated channel.

2. All parties compute x :=∑
G∈∇ xRG .

Figure 6.11: Online Protocol for a Q2 Access Structure Using Replicated Secret-Sharing,

Π
Q2,R
Online

.

6.5.2 Correctness

Correctness of Input and Multiply follows from the outlines given in Section 6.5.1. Cor-

rectness of Add follows by the linearity of the LSSS and of Output by the correctness

of reconstruction.

150

6.5. PASSIVELY-SECURE Q2 MPC PROTOCOL

6.5.3 Security

Theorem 6.3. Let Γ be a non-redundant Q2 access structure and let {∇(i)}i∈[n] be a par-

tition of the set ∇ as defined above. Then the protocol ΠQ2,R
Online

UC-securely realizes the

functionality FPABB against a static, passive adversary, in the FR
RSS,FRZS-hybrid model.

The alterations to the protocol for when there is no surjective partition are discussed

in Section 6.7.

Proof. The simulator is given in Figure 6.12 and the transcript in Figure 6.13.

Simulator SPABB

Since the subprotocol ΠAToROpt is used in Input and Multiply, a macro SAToR() is given for the

simulation (at the end).

Initialize
1. Agree on some sid with A.

2. Await the call to FR
RSS

with input (Initialize,Γ, sid) and initialize a local instance.

3. Await the call to FRZS with input (Initialize,P , sid) and initialize a local instance.

Input When party Pi is to provide input, the simulator computes a new identifier idx and does

the following:

1. Set [[x]]APi
:= 0 for all i ∈ [n]\ A on behalf of (emulated) honest parties.

2. Execute SAToR(idx) to obtain x.

If i ∈ A, then call FPABB with input (Input, i, id , x, sid) on behalf of Pi and

(Input, i, id ,⊥, sid) on behalf of all P j ∈A\{Pi}.

If i ∈ [n]\ A, then call (Input, i, id ,⊥, sid) on behalf of all P j ∈A.

Add To add [[x]]R and [[y]]R, compute a new identifier idz, set [[z]]R := [[x]]R+ [[y]]R, and call FPABB

with input (Add, idx, idy, idz, sid).

Multiply To multiply xR with yR, the simulator computes a new identifier idz and then does the

following:

1. On behalf of each (emulated) honest party, Pi ∈P \A, compute

[[v]]APi
:= ∑

(G1,G2)∈I−1({Pi})
xRG1

· yRG2
.

2. Execute SAToR([[v]]A) and then call FPABB with input (Multiply, idx, idy, idz, sid).

Output To One To output identifier idx, the simulator does the following:

1. Send the command (Output, i, idx, sid) to FPABB and then do the following:

If i ∈ [n]\ A, then await shares {xRG :G ∈⋃
i∈A ∇(i) ∧G 63Pi} from A.

If i ∈ A, then do the following:

• Retrieve from memory the corresponding shares [[x]]R.

151

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

Simulator SPABB (continued)

• Await the output x from FPABB.

• Sample xRG′ ← U (F) subject to
∑
G∈∇ xRG = x where G′ ∈∇ is any set satisfying G′∩ A =∅.

• Send {xRG :G ∈⋃
i∈[n]\A ∇(i) ∧G 63Pi} to A.

2. (No simulation is required for this step.)

Output To All To output a share with identifier idx, the simulator does the following:

1. Send the command (Output,0, idx, sid) to FPABB and then do the following:

• Await the output x from FPABB.

• Retrieve from memory the corresponding shares [[x]]R.

• Sample [[x]]RG′ ← U (F) subject to
∑

G∈∇ xRG = x where G′ ∈∇ is any set satisfying G′∩ A =
∅.

• For each i ∈ A, send {xRG :G ∈⋃
j∈[n]\A ∇(j) ∧G 63Pi} to A.

• For each i ∈ [n]\ A, await shares {xRG :G ∈⋃
j∈A ∇(j) ∧G 63Pi} from A.

2. (No simulation is required for this step.)

SAToR The macro SAToR(idv) for converting an additive sharing [[v]]A to a replicated sharing

[[v]]R is defined as follows:

1. Compute a new identifier idz, await the call to FRZS with input (ZeroSharing, idz,P , sid)

from A, then await the shares {[[t]]APi
}i∈A from A, compute shares for (emulated) honest

parties internally, and store all shares.

2. Compute a new identifier ids, await the call to FR
RSS

with input (SecretSharing, ids, sid)

from A, and execute the local instance honestly, returning appropriate outputs to A and

storing the output shares, [[r]]R.

3. For all i ∈ [n]\ A,

a) Set vRG := rRG for all G ∈∇\{∇(j)} j∈[n] such that G 3Pi.

b) Set

vRGi
:= [[v]]APi

+ [[t]]APi
− ∑

G∈ f −1({i})\{Gi}
rRG .

4. For every i ∈ [n]\A, for every j ∈ A, if P j ∈Gi then send the share vRGi
to A.

For every i ∈ A, for every j ∈ [n]\ A, if P j ∈Gi, then await the share vRGi
from A.

5. On behalf of each (emulated) honest party Pi ∈P \A, concatenate {vRG : G ∈ ∇∧G 3Pi} into

a share vector [[v]]RPi
.

6. (Locally) return v :=∑
G∈∇ vRG .

Figure 6.12: Simulator SPABB for FPABB.

Note that the simulator’s local copies of shares are consistent throughout in the

sense that any linear operations are emulated locally by honest parties. This means

that, for example, if Z provides as input x and y and then requests the outputs x, y and

a · x+b · y then the shares are consistent as well as the secrets – i.e. for all G ∈∇,

a · xRG +b · yRG = (a · x+b · y)RG .

152

6.5. PASSIVELY-SECURE Q2 MPC PROTOCOL

Procedure From To Message

Initialize A FR
RSS

(Initialize,Γ, sid)
A FRZS (Initialize,P , sid)

Input [See ΠAToROpt]

Add n/a n/a n/a

Multiply [See ΠAToROpt]

Output To One S A {xRG :G ∈⋃
i∈[n]\A ∇(i) ∧G 63Pi} (if Pi ∈A)

A S {xRG :G ∈⋃
i∈A ∇(i) ∧G 63Pi} (if Pi ∈P \A)

Output To All S A {xRG :G ∈⋃
j∈[n]\A ∇(j) ∧G 63Pi}i∈A

A S {xRG :G ∈⋃
j∈A ∇(j) ∧G 63Pi}i∈[n]\A

ΠAToROpt A FRZS (ZeroSharing, idz,P , sid)
FRZS A [[t]]AA
A FR

RSS
(SecretSharing, ids, sid)

FR
RSS

A [[r]]RA
S A {vRGi

: i ∈ [n]\ A∧Gi ∩ A 6=∅}
A S {vRGi

: i ∈ A∧Gi \ A 6=∅}

Figure 6.13: Transcript for ΠQ2,R
Online

.

It is clear from the transcript that the key points for distinguishing between worlds

are in the output stage and in the execution of ΠAToROpt. Notice that a corrupt party’s

input can always be extracted since Gi always contains at least one honest party (since

every set in ∇ contains at least one honest party, by the definition of Q2), so S can

always extract inputs using knowledge of the PRZS mask and the PRSS shares. This

means that the output in the ideal world is correct according to the inputs of (real)

honest parties and the adversary. Now, in the output stage, since there is at least one

set G ∈ ∇ such that A∩G =∅ (again, because the access structure is Q2), S can fix the

output to be whatever it chooses – and in particular, to what it receives from FPABB.

It only remains to show that the execution ΠAToROpt does not reveal the fact that S
set the emulated honest parties’ inputs to 0 during the simulation. This is achieved by

a standard argument involving a sequence of hybrid worlds in the following way. Let

A ∈∆ be the set of parties corrupted by the adversary, let h := |P \A|, and for simplicity

assume that the indexing set for A, A, indexes the last n−h parties so that [h] indexes

the honest parties. Define the ith hybrid world as follows:

Hybrid i The FR
RSS, FRZS-hybrid world in which the simulator is handed the inputs of

all honest parties P j ∈P \A where j ≤ i.

153

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

The simulator for the ith world is defined by replacing the instruction [[x]]AP j
:= 0 in

Step 1 of Input in SPABB with the instruction [[x j]]
A
P j

:= x j, where x j is the input of

honest party P j, for each j ≤ i. Thus Hybrid 0 is exactly the ideal world, in which the

simulator knows none of the honest parties’ inputs, and Hybrid h is the FR
RSS, FRZS-

hybrid world, where the simulator acts as honest parties would in a protocol execution.

Claim 6.1. The world Hybrid i is indistinguishable from Hybrid i+1 for all i such that

0≤ i < h.

Proof. Since inputs can always be extracted and outputs can always be doctored by S
to be the same secrets in the real (hybrid) world as in the ideal world, the only differ-

ence to the simulation between consecutive worlds is when an honest party provides

their input, (which is done independently for each i), which means that distinguishing

between consecutive worlds is the same task for all values of i < h. In detail, to distin-

guish between Hybrid i-1 and Hybrid i, Z must distinguish between the distributions

of shares it observes in the transcript for the input of Pi; that is, between{
rRG :G ∈∇\{G j} j∈[n] ∧G∩A 6=∅

}∪{
vRG j

:G j ∩A 6=∅∧ j 6= i
}
∪

{
[[t]]APi

− ∑
G∈ f −1({Pi})\{Gi}

rRG

}
and{
rRG :G ∈∇\{G j} j∈[n] ∧G∩A 6=∅

}∪{
vRG j

:G j ∩A 6=∅∧ j 6= i
}
∪

{
x+ [[t]]APi

− ∑
G∈ f −1({Pi})\{Gi}

rRG

}
where the first distribution is produced by a simulator that sets the input to be 0, as

in Hybrid i-1, and the second is produced by a simulator that knows the input of the

honest party Pi, as in Hybrid i.
Note that these two sets of shares are missing at least one share, indexed by some

set G such that G∩A=∅. Now either G ∈ {Gi}i∈[n], or G ∈∇\{Gi}i∈[n].

If G ∈ {Gi}i∈[n] then G = G j for some j ∈ [n]. Thus Z has no information on the share

[[t]]AP j
of the PRZS which masks for vRG j

. This means that both distributions above are

indistinguishable from uniform, since there is no way for Z to compute a sum and cancel

out this share.

If G ∈∇\{Gi}i∈[n], then Z has no information on some share rRG which masks one ele-

ment of {vRG j
: j ∈ [n]\ A}. This means that again both distributions are indistinguishable

from uniform. �

Since there are only polynomially-many hybrid worlds, Hybrid 0 is indistinguish-

able from Hybrid h by transitivity, which is exactly saying that the ideal and FR
RSS,

FRZS-hybrid worlds are indistinguishable.

154

6.5. PASSIVELY-SECURE Q2 MPC PROTOCOL

6.5.4 Communication Complexity

Unlike in the IT protocolΠAToAny, by usingΠAToROpt, it is no longer necessary for the par-

ties to be connected in a complete network during the passive multiplication: instead,

parties are connected as defined by the set

EAToR =
{
(i, j) ∈ [n]2 :P j ∈Gi \{Pi}

}
where (i, j) ∈ EAToR implies that Pi is connected to P j by a unidirectional channel. These

channels must be secure, and so they are denoted by SC(EAToR).

For a single party Pi to receive output, it must receive every share it does not hold

from a party that does hold the share, over a secure channel. The required set of con-

nections is defined by

E i
Open :=

{
(j, i) ∈ [n]× {i} :G ∈∇(j) ∧G 63Pi

}
.

For all parties to receive an output, it is the same as one party receiving output but over

authenticated channels. The set of connections is defined as

EOpen := ⋃
i∈[n]

E i
Open.

The costs are summarized in Table 6.2, where the cost for initialization is the cost of

instantiating FR
RSS and FRZS as given in Table 6.1 in Section 6.3.

Procedure Number of bits Channels

Initialize [See Table 6.1]
Input

∑
i∈[n](|Gi|−1) ·` ·M SC(EAToR)

Add n/a n/a
Multiply

∑
i∈[n](|Gi|−1) ·` ·T SC(EAToR)

Output To One
∣∣{G ∈∇ :G 63Pi}

∣∣ ·` SC(E i
Open)

Output To All
∑

i∈[n]
∣∣{G ∈∇ :G 63Pi}

∣∣ ·` AC(EOpen)

Table 6.2: Total communication cost to realize FPABB with M inputs and T total multi-
plications.

For circuits with high multiplicative depth, the communication cost is dominated

by the cost of ΠAToROpt, in which for each conversion, party Pi sends |Gi|−1 finite-field

elements, so the total is
∑

i∈[n](|Gi|−1). For a threshold scheme, this total cost is n · (n−
t−1) = O(n2) field elements – a linear cost per party per multiplication. This sharply

contrasts the IT case in which the cost is O(n1.5 ·2n) – an exponential cost per party.

155

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

For Example 6.1, the set of channels required for a passive multiplication is given

by

EAToR :=
{
(1,3), (1,4), (2,1), (2,4), (3,1), (3,2), (4,2), (4,3), (4,5),

(5,1), (5,2), (5,6), (6,2), (6,3), (6,4)
}
.

During the procedure, one field element is sent over each of these channels, so the par-

ties send 15 finite-field elements over 15 uni-directional secure channels for a passive

multiplication, which can also be seen by inspecting Figure 6.8. This equates to a band-

width saving, compared to the initial protocol of Maurer, of 93% in the number of trans-

mitted finite-field elements, and a saving of 50% in the number of secure channels.

6.6 Actively-Secure Q2 MPC Protocol

In this section, an actively-secure MPC protocol in the preprocessing model is given,

making use of the passively-secure protocol of the previous section and the cheap au-

thentication from Chapter 3. The overall protocol is then a relatively conventional ap-

proach to obtaining active security:

1. The preprocessing phase, realizing FPrep (Figure 4.7):

• Generate and multiply random secrets to obtain Beaver triples with passive se-

curity. This requires the passive protocol ΠQ2,R
Online

in Figure 6.11.

• Check triples by sacrificing. This requires communication over a set of reduced

set of authenticated channels and makes use of the protocol ΠOpen from Chap-

ter 3.

2. The online phase, realizing FABB (Figure 2.14):

• To evaluate a circuit, parties execute the protocol ΠOnline from Chapter 4. Addi-

tions require no communication and multiplications require only the same sub-

network of authenticated channels as for sacrificing instead of a complete net-

work.

Authentication for opened secrets was discussed in detail in Chapter 3 and is dealt

with by the functionality FOpen in Figure 4.1. An important aspect of the authenti-

cation procedure for a Q2 access structure is that secrets can be checked in batches;

156

6.6. ACTIVELY-SECURE Q2 MPC PROTOCOL

thus, comparably to [FLNW17] and analogously to the subprotocol ΠMACCheck (given in

Figure 4.14) used in full-threshold protocols such as SPDZ [DPSZ12], it is possible to

batch-check the correctness of Beaver triples, which means that, asymptotically, the cost

of generating a Beaver triple with active security is the same as the cost of performing

two passive multiplications and two openings of secrets. This is discussed in further

detail in Section 6.6.3.

Note that this standard bootstrapping to active security is unlike the method in

[FLNW17] where the online multiplication protocol involves executing the passively-

secure multiplication protocol and checking correctness using a Beaver triple. The tra-

ditional method allows the online protocol to be executed over authenticated, as opposed

to secure, channels. The preprocessing protocol ΠQ2,R
Prep

is given in Figure 6.14.

Protocol ΠQ2,R
Prep

This protocol is realized in the FCoinFlip, FOpen, FR
RSS

, FRZS-hybrid model.

Initialize The parties do the following:

1. Agree on a session identifer sid .

2. Set R := dσ/ log |F|e.
3. Call an instance of FOpen with input (Initialize,Γ, [[·]]R, sid).

4. Call an instance of FR
RSS

with input (Initialize,Γ, sid).

5. Call an instance of FRZS with input (Initialize,P , sid).

6. Set Abort to false.

7. Agree on a sharing of 1, [[1]]R.a

Mask In order for Pi to obtain a mask, the parties do the following:

1. Compute a new identifier idr and then call FR
RSS

with input (SecretSharing, idr, sid) to

obtain a sharing [[r]]R.

2. Call FOpen with input (Open, i, idr, sid) to open r to Pi. If the FOpen returns the message

Abort then (locally) output ⊥ and halt; otherwise party Pi (locally) outputs (r, [[r]]RPi
) and

for all j ∈ [n]\{i} party P j (locally) outputs [[r]]RP j
.

Triples To generate T triples, the parties do the following:

1. Generate For k = 1, . . . , (R+1) ·T, do the following:

a) Compute new identifiers idak and idbk and then call FR
RSS

with input

(SecretSharing, idak , sid) and (SecretSharing, idbk , sid) to obtain [[ak]]
R and

[[bk]]
R.

b) Execute Multiply of ΠQ2,R
Online

to obtain [[ck]]
R.

2. Sacrifice
a) Call a new instance of FCoinFlip with input (Initialize,FR·T , sid).

157

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

Protocol ΠQ2,R
Prep

(continued)

b) Call FCoinFlip with input (RElt, sid) to obtain {{ρk+`·T }T
k=1}R

`=1.

c) For k = 1, . . . ,T, do the following:b

i. For `= 1, . . . ,R, do the following:

A. Set [[rk+`·T]]R := [[ak]]
R− [[ak+`·T]]R and [[sk+`·T]]R := [[bk]]

R−ρk+`·T · [[bk+`·T]]R.

B. Call FOpen with inputs (Open,0, idrk+`·T , sid) and (Open,0, idsk+`·T , sid).

C. If the flag Abort has not been set to true, the parties locally compute value

[[tk+`·T]]R := rk+`·T · sk+`·T · [[1]]R+ sk+`·T · [[ak+`·T]]R+ρk+`·T · rk+`·T · [[bk+`·T]]R

+ρk+`·T · [[ck+`·T]]R− [[ck]]
R.

d) Call FOpen with input (Verify, sid), and if the parties have not aborted then call FOpen

with input (Open,0, idtk+`·T , sid) for every k ∈ [T] and for every ` ∈ [R]. If any returned

value is not zero, the parties set the flag Abort to true.

3. Check If the flag Abort is not set to true then the parties (locally) output

([[ak]]
R, [[bk]]

R, [[ck]]
R)T

k=1 and discard all other secret-sharings, and otherwise they call FOpen

with input (Broadcast,Abort, sid), (locally) output ⊥, and halt.

aFor example, let i be the first non-zero component of t; then set the randomness vector x to
be the vector 0 except with the ith component equal to 1/ti.

bAll openings on different sets of triples are independent and can be batched.

Figure 6.14: Preprocessing Protocol for a Q2 Access Structure using Replicated Secret-

Sharing, ΠQ2,R
Prep

.

Remark 6.1. Often in actively-secure MPC protocols, input and output masks are gen-

erated in the preprocessing phase and are then used in the online phase for parties to

provide inputs and obtain private outputs. (See, for example, [CDI05, DPSZ12].) The

input procedure was summarized in Section 2.5. For private outputs, the parties use a

secret-shared mask r known to Pi as follows: to reveal secret-shared x to Pi, the parties

compute and [[x]]− [[r]] and open this secret using authenticated channels; then Pi can

compute x = (x− r)+ r.

However, if the access structure is Q2, then a party to whom a secret is revealed can

detect whether or not the secret is correct, as described in Section 3.2. Rather than use

error-detection, the actively-secure protocols in this chapter follow the method involving

masks as it allows the online phase to be executed entirely over authenticated channels,

rather than requiring secure channels.

158

6.6. ACTIVELY-SECURE Q2 MPC PROTOCOL

6.6.1 Correctness

Correctness of ΠQ2,R
Prep

follows from the correctness of the passively-secure multiplication

protocol: the other parts of the protocol only involve opening secrets to all parties or to

one party.

6.6.2 Security

It is necessary to show that if the adversary cheats then the honest parties detect it,

except with negligible probability in the statistical security parameter.

Lemma 6.1. For a fixed k ∈ [T], if tk+`·T = 0 for every ` ∈ [R], then it holds that ak·bk = ck

except with probability at most 2−σ.

Proof. Suppose tk+`·T = 0 for all ` ∈ [R] but ck = ak·bk+εk for some εk 6= 0. The adversary

must introduce errors {εk+`·T }R
`=1 for triples {(ak+`·T ,bk+`·T , ck+`·T)}R

`=1 when executing

the passive multiplication subprotocol so that ck+`·T = ak+`·T · bk+`·T + εk+`·T but that

the sacrifice equation still holds.

Since ρk+`·T is an output of FCoinFlip and not known when the triples are generated,

the only way that tk+`·T = 0 but ak ·bk = ck+εk where εk 6= 0 is for A to guess each ρk+`·T
so that

ρk+`·T ·εk+`·T −εk = 0

for all ` ∈ [R]. This is equivalent to guessing {ρk+`·T }R
`=1, which can be done correctly

with probability at most |F|−R ≤ 2−σ.

Theorem 6.4. The protocol ΠPrep UC-securely realizes FPrep against a static, active ad-

versary in the FOpen, FCoinFlip, FR
RSS, FRZS-hybrid model with statistical security σ.

Proof. The simulator is given in Figure 6.15 and the transcript in Figure 6.16.

159

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

Simulator SPrep

Initialize The simulator does the following:

1. Agree on a session identifier sid with A.

2. Set R := dσ/ log |F|e.
3. Await the call to FOpen with input (Initialize,Γ, [[·]]R, sid) from A and then call FPrep

with input (Initialize,Γ, [[·]]R, sid) on behalf of each corrupt party.

4. Await the call to FR
RSS

with input (Initialize,Γ, sid) from A and initialize a local instance.

5. Await the call to FRZS with input (Initialize,P , sid) from A and initialize a local in-

stance.

6. Set Abort to false.

7. Agree on a sharing of [[1]]R with A.

Mask To create a mask for Pi, the simulator does the following:

1. Compute a new identifier idr, await the call to FR
RSS

with input (SecretSharing, idr, sid)

from A, call the internal copy of FR
RSS

with input (SecretSharing, idr, sid) to obtain [[r]]R,

and send the shares [[r]]RA to A.

2. Await the call to FOpen with input (Open, idr, i, sid) from A, and then do the following:

• Call FPrep with input (Mask, i, idr, sid) and if i ∈ A also send r.

• When FPrep executes Sample(idr), send the shares [[r]]RA to FPrep. Then,

If i ∈ A,

– Send [[r]]RP\A to A.

– If A calls FOpen with input (Broadcast,Abort, sid) then send the message Abort to

FPrep and halt; otherwise send the message OK.

If i ∈ [n]\ A,

– Await [[r]]RA from A.

– If N · [[r]]R 6= 0 then send the message Abort to FPrep and call the local instance of

FOpen with input (Broadcast,Abort, sid) and execute it honestly with A; otherwise,

send the message OK.

Triples To generate T triples, the simulator does the following:

1. Generate For k = 1, . . . , (R+1) ·T, compute identifiers idak , idbk and idck , call FPrep with

input (Triple, (idak , idbk , idck)T
k=1, sid), and then do the following:

a) Call the internal copy of FR
RSS

with input (SecretSharing, idak , sid) and

(SecretSharing, idbk , sid) to obtain [[ak]]
R and [[bk]]

R, and when FPrep executes

Sample(idak) and Sample(idbk), send [[ak]]
R
A and [[bk]]

R
A to both A and FPrep.

b) Execute Multiply of ΠQ2,R
Online

honestly with A, running the simulation of ΠAToROpt by ex-

ecuting SAToR(idv) from SPABB, to obtain a share vector [[c̃k]]
R, and when FPrep executes

Sample(idck), send [[c̃k]]
R
A.

2. Sacrifice
a) Await the call to FCoinFlip with input (Initialize,FR·T , sid) and initialize a (new) local

instance.

160

6.6. ACTIVELY-SECURE Q2 MPC PROTOCOL

Simulator SPrep (continued)

b) Await the call to FCoinFlip with input (RElt,FR·T , sid) from A, execute it honestly to

obtain {ρk+`·T }R·T
k=1, and send this set to A.

c) For k = 1, . . . ,T, do the following:

i. For `= 1, . . . ,R, do the following:

A. Set [[rk+`·T]]R := [[ak]]
R− [[ak+`·T]]R and [[sk+`·T]]R := [[bk]]

R−ρk+`·T · [[bk+`·T]]R.

B. Await the call to FOpen with inputs (Open, idrk+`·T , sid) and (Open, idsk+`·T , sid)

from A and execute honestly with A using the local instance of FOpen.

C. Compute the honest parties’ shares of

[[tk+`·T]]R := rk+`·T · sk+`·T · [[1]]R+ sk+`·T · [[ak+T]]R+ρk+`·T · rk+`·T · [[bk+`·T]]R

+ρk+`·T · [[c̃k+`·T]]R− [[c̃k]]
R.

d) Await the call to FOpen with input (Verify, sid) from A and execute the procedure

honestly with A. If the (emulated) honest parties did not abort, then await the calls to

FOpen with input (Open, idtk+`·T , sid) for every k ∈ [T] and for every ` ∈ [R], and execute

the procedures honestly. If any (emulated) honest party would have set their flag Abort

to true then S sets its own Abort to true.

3. Check If A calls FOpen with input (Broadcast,Abort, sid), or if the flag Abort is set to

true, then call the internal copy of FOpen with input (Broadcast,Abort, sid), execute it

honestly with A, and then send the message Abort to FPrep; otherwise, send the message

OK to FPrep.

Figure 6.15: Simulator SPrep for FPrep.

It is clear from the transcript that the parties do not have inputs and the only out-

puts are triples and masks. This means that there are only two ways for an environ-

ment, Z, to attempt to distinguish between hybrid-world and ideal-world executions: 1)

Examining shares generated by corrupt parties to see if they are “carried through” by

the simulator into the ideal world; or 2) Making the adversary generate invalid share

vectors, masks, or triples, so that the hybrid world would abort but the simulator does

not detect this. It is important that the probability with which honest parties can detect

cheating behaviour be overwhelming in σ in order for the protocol to be (statistically)

correct.

For the first, recall that since replicated secret-sharing is used, S receives all shares

held by A during the execution of Multiply, which means that S can pass these on

to FPrep. This means that the shares passed on to (real) honest parties by FPrep are

consistent with the adversarially-generated shares during the execution of Multiply.

It is also necessary to show that nothing is revealed to Z by the fact that S does not

161

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

Procedure From To Message

Initialize A FOpen (Initialize,Γ, [[·]]R, sid)
A FR

RSS
(Initialize,Γ, sid)

A FRZS (Initialize,P , sid)

Mask A FR
RSS

(SecretSharing, idr, sid)
FR
RSS

A [[r]]RA
A FOpen (Open, idr, i, sid)
FOpen A [[r]]RP\A

Triples
Generate A FR

RSS
(SecretSharing, idak , sid)

FR
RSS

A [[ak]]
R
A

A FR
RSS

(SecretSharing, idbk , sid)
FR
RSS

A [[bk]]
R
A

[See ΠAToROpt, Figure 6.13]
Sacrifice A FCoinFlip (Initialize,FR·T , sid)

A FCoinFlip (RElt,FR·T , sid)
FCoinFlip A {ρk+`·T }R·T

k=1
A FOpen ((Open, idrk+`·T , sid)T

k=1)R
`=1

FOpen A (([[rk+`·T]]RP\A)T
k=1)R

`=1
A FOpen ((Open,0, idsk+`·T , sid)T

k=1)R
`=1

FOpen A (([[sk+`·T]]RP\A)T
k=1)R

`=1
A FCoinFlip (RElt,F(R−1)·T , sid)
FCoinFlip A (((σk+`·T,`′)T

k=1)R
`=1)R

`′=1
A FOpen (Verify, sid)
A FOpen (Open,0, idu`′ , sid)R

`=1
FOpen A ([[u`′]]

R
P\A)R

`′=1
Check A FOpen (Verify, sid)

Figure 6.16: Transcript for ΠQ2,R
Prep

.

know the values of ak and bk and hence cannot compute “correct” sharings [[ck]]
R
Gi

for

i ∈ [n]\ A. However, it was shown in Claim 6.1 that the environment never has enough

information to learn the value of the secret in the additive sharing being converted.

For the second, it is necessary to show that if the adversary introduces errors, then S
signals FPrep to abort in the ideal world with overwhelming probability in σ. There are

only two places to cheat: the corrupt parties can create an invalid share vector during

the execution of ΠAToROpt, or the share vectors can be valid but it does not hold that

ak · bk = ck for one or more k ∈ [T]. In the first case, the simulator can always detect

the error and tell FPrep to abort since it emulates FOpen honestly as a local instance. In

the second case, Lemma 6.1 shows that honest parties will abort, except with negligible

probability in σ if A cheated during the execution of Multiply.

162

6.6. ACTIVELY-SECURE Q2 MPC PROTOCOL

6.6.3 Communication Complexity

For this section it will be assumed that a partition {∇(i)}i∈[n] where ∇(i) 6=∅ for all i ∈ [n]

can be found. For redundant access structures, the redundant parties being removed

from the computation phase only interact with the remaining parties in the input and

output phases. Further discussion is given in Section 6.7.

The total communication cost is summarized in Table 6.3, and an explanation is

given below, which makes use of the definitions of EAToR, E i
Open, and EOpen given in

Section 6.5.4. The field size is denoted by ` := dlog |F|e.

Preprocessing phase The costs associated with Initialize are given in Table 6.1.

For Mask, the cost is given for Pi: to receive a mask, every party must send all of their

shares to Pi as outlined in Section 3.2, and so the set of channels required is

E i
Mask := ([n]\{i})× {i}.

For Triples, the passive multiplication protocol is used for generation requiring the

connections EAToR, and sacrificing triples requires EOpen from Section 6.5.4. For checking

triples, the complete graph of channels is needed, which is defined as

EBC := {
(i, j) ∈ [n]2 : i 6= j

}
.

Remark 6.2. While the channels EOpen suffice for opening secrets to all parties when

using replicated secret-sharing, for other LSSSs the channels required depends on the

map q as described in Section 3.3, which in general is a larger number of channels since

the authenticated opening procedure is more complex than simply all parties receiving

all shares they do not hold.

Online phase For Input, specifically for party Pi to provide input, it broadcasts a

field element, requiring AC(E i
BC) where

E i
BC := {i}× ([n]\{i}).

The procedure Multiply, using Beaver triples, involves opening secrets to all parties,

so the same network as for triple sacrifice is required, AC(EOpen). In Output To One,

providing output to party Pi requires the channels AC(EOpen) since the parties reveal

x− r and party Pi computes (x− r)+ r where r is a mask, and Output To All can also

be performed over AC(EOpen) since the verification step will authenticate that this was

163

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

Phase Procedure Number of bits Channels

Preprocessing Initialize [See Table 6.1]
Mask

((∑
G∈∇

∣∣G∣∣)− ∣∣{G ∈∇ :G 63Pi}
∣∣) ·` SC(E i

Mask)
Triples

Generation (1+dσ/`e) ·∑i∈[n](
∣∣Gi

∣∣−1) ·` ·T SC(EAToR)
Sacrifice (Open) 3 · dσ/`e ·∑G∈∇

∣∣P \G
∣∣ ·` ·T AC(EOpen)

Sacrifice (Check) 2 ·n · (n−1) ·κ AC(EBC)
Check n/a n/a

Online Input (n−1) ·` ·M AC(E i
BC)

Add n/a n/a
Multiply 2 ·∑G∈∇

∣∣P \G
∣∣ ·` ·T AC(EOpen)

Output To All
∑

G∈∇
∣∣P \G

∣∣ ·` AC(EOpen)
Output To One

∑
G∈∇

∣∣P \G
∣∣ ·` AC(EOpen)

Verify 2 ·n · (n−1) ·κ AC(EBC)

Table 6.3: Total communication cost to realize FABB with M inputs and T total multi-
plications.

done correctly (instead of requiring all parties to broadcast all of their shares). Finally,

Verify requires all parties to broadcast, so the network is EBC.

The costs for the running example are now given. The main communication costs in

the protocol are those associated with multiplication. This involves passive multiplica-

tion in the preprocessing phase to generate the triples, for which costs were analysed in

Section 6.5.4, and then opening secrets over authenticated channels in the online phase.

For the latter, the following connections are required:

EOpen =
{
(1,2), (1,5), (1,6), (2,3), (2,5), (2,6), (3,4), (3,5), (3,6), (4,1),

(4,6), (5,2), (5,3), (5,4), (6,1), (6,2), (6,3), (6,4), (6,5)
}
.

The number of field elements sent over these channels for one opening is∑
i∈[n]

∑
G∈∇(i)

|P \G| = n · |∇|− ∑
i∈[n]

∑
G∈∇(i)

|G| = n · |∇|− ∑
G∈∇

|G|.

Note that this is more than the number of authenticated channels because, for example,

P6 sends both shares xR{1,3,4,6} and xR{2,3,5,6} to P1; this contrasts the computation for

passive multiplication which requires the same number of field elements as channels.

Thus each opening requires the transmission of 6 ·11− (3 ·3+8 ·4)= 25 finite-field el-

ements, and so a multiplication requires 50 finite-field elements over 19 authenticated

channels. Opening final output values still requires a complete network of authenti-

164

6.7. NO PARTITION

cated channels for the verification, but is performed far less frequently than the basic

multiplication operation.

6.7 No Partition

To conclude this chapter, modifications to the protocol are given when a partition {∇(i)}i∈[n]

satisfying ∇(i) 6=∅ for all i ∈ [n] cannot be found. This occurs for a non-redundant access

structure if the number of maximally unqualified sets is smaller than the number of

parties.

6.7.1 Existence of Non-Redundant Access Structures with No
Partition

First it is necessary to show that this is indeed possible. An example of a 6-party access

structure is given in Example 6.2.

Example 6.2. Consider the following access structure:

∆+ := {{1,2,4}, {1,3,5}, {2,3}, {4,5}, {6}}

for which

Γ− := {{1,6}, {2,5}, {3,4}, {1,2,3}, {1,4,5}, {2,6}, {3,6}, {4,6}, {5,6}}.

One can check that every set in 2[6] is a subset or superset of at least one maximally

unqualified or minimally qualified set, which determines whether or not the set is qual-

ified, hence these sets indeed form a complete monotone access structure. It is easily

verified that this access structure is Q2 and contains no redundant parties. However,

since there are only five sets in ∆+, there is no surjective map f from the five sets in ∇
to the six parties in P .

6.7.2 Modified Protocol

Recall from Section 6.4.2 that a map f : ∇→P is chosen such that im(f) is as large as

possible. For any Pi ∈P \ im(f), fix ∇(i) :=∅. The modification to the protocol is to apply

the protocol as given for all Pi ∈ im(f), and use the standard IT sharing protocol for all

Pi with Pi ∈ P \ im(f). The multiplication protocol then becomes the protocol ΠAToRNP

given in Figure 6.17.

165

CHAPTER 6. Q2 MPC FOR SMALL NUMBERS OF PARTIES

Subprotocol ΠAToRNP

It is assumed that, as part of the larger protocol, parties have already called an instance of FR
RSS

with input (Initialize,Γ, sid) and an instance of FRZS with input (Initialize,P , sid). Parties

hold an additive sharing [[v]]A.

1. The parties agree on a new identifier idt and call FRZS with input (ZeroSharing, idt,P , sid)

and receive an additive sharing of zero [[t]]A.

2. The parties agree on a new identifier idr and call FR
RSS

with input (SecretSharing, idr, sid)

to obtain [[r]]R.

3. Each Pi ∈ im(f) defines a sharing vR by setting

a) Set vRG := rRG for all G ∈∇\{G j} j∈[n] where G 3Pi.

b) Set vRGi
:= [[v]]APi

+ [[t]]APi
−∑

G∈ f −1({Pi})\{Gi} rRG .

4. For each i ∈ [n], for all P j ∈Gi, Pi sends vRGi
to P j over a secure channel.

5. Each party Pi concatenates {vRG :G ∈∇∧G 3Pi} into a share vector [[v]]RPi
.

6. For each Pi 6∈ im(f), party Pi samples a share vector [[ui]]R := [[[[v]]APi
+ [[t]]APi

]]R and distributes

the shares.

7. The parties set the final output to be [[v]]R := [[v]]R+∑
{i:Pi∈P\im(f)} [[ui]]R.

Figure 6.17: Protocol to Convert Additive Shares to Shares Under Any LSSS With No

Partition, ΠAToRNP.

The correctness of the modified protocols follows from the correctnes of ΠAToROpt

and the fact that the secret-sharing scheme is linear. Security comes from the fact that

ΠAToROpt is secure and the only difference is that there are some additional shares that

are shared with IT security.

Communication Complexity

The only outstanding issue is to adapt the formulae for when f is not surjective. The

only difference is in how ΠAToROpt is executed and how secrets are opened.

Conversion The graph is

EAToRNP := {(i, j) : i ∈ im(f)∧G ∈∇(i) ∧P j ∈G \{Pi}}

∪ {(i, j) :Pi ∈P \ im(f)∧G ∈∇∧P j ∈G \{Pi}}

and the set of channels for converting is then SC(EAToRNP). Recall that secure channels

are used to perform the multiplication. The number of field elements over the network

166

6.7. NO PARTITION

is

∑
Pi∈im(f)

∑
G∈∇(i)

(|G|−1)+ ∑
Pi∈im(f)\P

(∑
G∈∇:G3Pi

(|G|−1)+ ∑
G∈∇,G 63Pi

|G|
)

= ∑
G∈∇

(|G|−1)+ ∑
Pi∈im(f)\P

(∑
G∈∇:G3Pi

(|G|−1)+ ∑
G∈∇,G 63Pi

|G|
)

.

Opening Authenticated channels are used for opening secrets. In order for secrets to

be opened with authentication in replicated secret-sharing, it suffices for each party to

receive every share it does not hold from some other party. In the case where f is not

surjective, the “partial” partition can be used in the same way the “full” partition was

used before: each party Pi is put in charge of sending the shares indexed by sets in ∇(i)

to all parties that do not hold it. Thus the set of channels is:

EOpenNP := {(i, j) :Pi ∈ im(f) ∧ G ∈∇(i) ∧ P j ∈P \G}

and the total number of finite-field elements sent over the network is∑
Pi∈im(f)

∑
G∈∇(i):G3P j

(|P \G|−1)= ∑
G∈∇

(|P \G|−1).

167

Chapter 7

Q2 MPC for Large Numbers of
Parties

This chapter is based on work published at CT-RSA 2019 under the title Error Detection

in Monotone Span Programs with Application to Communication-Efficient Multi-party

Computation [SW19] and was joint work with Nigel Smart. The main contribution of

that work referring to error detection for Q2 access structures was discussed separately

in Chapter 3. This chapter focuses on how to use the results in multi-party computation

(MPC).

A new section, Section 7.3, has been introduced. It describes the generation of secrets

with information-theoretic security for arbitrary Q2 access structures, giving a constant

factor saving in communication cost.

This chapter In this chaper, the results on error-detection for linear secret-sharing

schemes (LSSSs) realizing Q2 access structures are used to describe an MPC proto-

col for situations in which the access structure and the number of parties makes the

computationally-secure protocol of Chapter 6 too costly.

7.1 Overview

One of the questions left open by Furukawa et al. [FLNW17] was generalizing to an

arbitrary number of parties while avoiding replicated secret-sharing. While replicated

secret-sharing offers flexibility in being able to realize any access structure, unfor-

tunately it can require an exponentially-large number of shares to be held by each

party for each shared secret, depending on the access structure: moreover, the num-

169

CHAPTER 7. Q2 MPC FOR LARGE NUMBERS OF PARTIES

ber of pseudorandom function (PRF) keys to generate pseudorandom secret-sharings

(PRSSs) depends linearly on the number of maximally-unqualified sets. For example,

for a (256,128)-threshold access structure using the former method, the parties would

need to agree on roughly as many keys as there are atoms in the observable universe.

The exponential factor has significant repercussions for both communication and com-

putation complexity: on the communication side, parties must agree on exponentially-

many keys, and to open each secret, exponentially-many field elements must be sent

over the network; on the computation side, generating a single shared secret requires

each party to evaluate an exponential subset of these keys. For the protocols in this

chapter, the costs are essentially quadratic in the number of parties.

A key observation for obtaining better asymptotic efficiency is that in ΠOnline, given

in Figure 4.8, the LSSS need not be multiplicative. There are then three obvious ways

to reduce the costs of the overall protocol, which are discussed in this chapter:

• Perform the replicated protocol as described for small numbers of parties (incurring

exponential costs), and then convert this by local operations for use in the online

phase. In this case, the preprocessing phase is costly but the online phase is very

cheap.

• Outsource the preprocessing: then since the parties performing preprocessing can

reshare into whatever LSSS is desired, the online phase is cheap.

• Generate random secrets without starting at replicated secret-sharing, and then

use (an adapted version of) the information-theoretic (IT) protocol of Maurer from

Section 6.4.1 to generate triples in the preprocessing phase.

The first two methods are straightforward and follow from the results in previous

chapters. The focus in this chapter is primarily on the third method.

7.2 Preliminaries

The only preliminary information required for this chapter that has not yet been dis-

cussed involves how to convert sharings for different LSSSs by local operations.

170

7.3. GENERATING INFORMATION-THEORETIC UNIFORMLY-RANDOM SECRETS

7.2.1 Locally Converting Replicated Shares

Cramer et al. [CDI05] showed how to convert replicated sharings into sharings of any

other LSSS by local computations. This procedure is given in Figure 7.1. For correctness,

notice that for all i ∈ [n], ∑
G∈∇:Pi∈G

rRG · [[1G]]Pi
= ∑

G∈∇
rRG · [[1G]]Pi

since [[1G]]Pi
= 0 if Pi 6∈ G by definition of [[1G]]. Then correctness holds by linearity of

the LSSS.

Subprotocol ΠRToAny

This protocol was given by Cramer et al. [CDI05]. At this point in the protocol, the parties have a

replicated sharing [[x]]R, where Pi holds [[x]]RPi
, and will convert it to a sharing of a different LSSS,

[[·]].
Initialize The parties agree on a set of sharings of 1, {[[1G]]}G∈∇ where for each G ∈ ∇,

supp([[1G]])⊆ { j ∈ [m] : ρ(j) ∈G}.

Convert Each party Pi computes ∑
G∈∇:Pi∈G

rRG · [[1G]]Pi
.

Figure 7.1: Protocol to Convert Replicated Secret-Sharing to Any LSSS, ΠRToAny.

7.3 Generating Information-Theoretic
Uniformly-Random Secrets

A functionality for generating uniformly-random secrets according to any LSSS is given

in Figure 7.2. Notice that this functionality produces t random sharings at a time, for

reasons that will be explained later. For a small number of parties, the key-setup re-

quired in realizing FAny

RSS
, viaΠR

RSS from Chapter 6 is modest. However, the cost is asymp-

totically O(2n/
p

n) for threshold access structures, so for large numbers of parties the

generation of random shares is unlikely to yield good results.

The naïve method of obtaining a random sharing is for every party to sample a

random secret, distribute shares, and for the parties to take the sum; then, since at

least one party is honest, the resulting secret is uniform. Chapter 3 used redundancy

in an LSSS for a Q2 access structure to reduce the cost of opening secrets with active

171

CHAPTER 7. Q2 MPC FOR LARGE NUMBERS OF PARTIES

security. The goal of this section is to provide a methodology for generating uniformly-

random secrets more efficiently than by the naïve method by exploiting redundancy in

the Q2 access structure once more.

Functionality FAny

RSS

Initialize On input (Initialize,Γ, sid) from all honest parties and S, where sid is a new ses-

sion identifier, P is the set of parties, and Γ is an access structure, await further messages.

Sharing of Secret On input (SecretSharing, {idk}t
k=1, sid) from all honest parties and S, the

functionality does the following:

1. Await a set of shares {[[xk]]A}t
k=1 from S and error vectors

{
εk}t

k=1 where εk ∈ Fm for all

k ∈ [t].
2. For each k ∈ [t], sample xk ← U

(
{x ∈Fd : MAxk = [[xk]]}

)
and set [[xk]] := M ·xk +εk.

3. For each i ∈ [n]\ A, send {[[xk]]Pi
}k∈[d] to honest Pi.

Figure 7.2: Functionality for Secret-Sharings of Random Secrets for Any LSSS, FAny

RSS
.

Using a Qualified Set of Parties

Perhaps the most obvious way of obtaining uniformly-random shares is for every party

in any set of qualified parties to generate a random secret and distribute the shares,

and to take the sum of these secrets. Since the set is qualified, it contains at least one

honest party and so the resulting secret is uniformly-random. For an (n, t)-threshold

access structure, this gives 1 sharing from t+1. However, when the number of parties

is large, this leaves a lot of work to a small set of parties.

Generalization of Damgård-Nielsen

Damgård and Nielsen [DN07] showed how to do this in a much more symmetrical man-

ner in the threshold setting. More specifically, they showed how to obtain n− t random

secrets from n secrets, where t is a constant fraction of n satisfying n−t > t. This method

exploits the fact that any set of n−t parties contains an honest party, so if every random

sharing contains a contribution from at least one honest party then the secret is uni-

form. In this section this method is generalized, which is crucial for obtaining (general)

asymptotic improvement to protocols making use of Beaver’s circuit randomization.

Approach for Threshold Q2 Access Structures The technique of [DN07] is as

follows. Each party Pi samples some [[r i]] and distributes the shares. Then the parties

172

7.3. GENERATING INFORMATION-THEORETIC UNIFORMLY-RANDOM SECRETS

compute
[[s1]]

...

[[sn−t]]

 :=V> ·

[[r1]]

...

[[rn]]

where V is the Vandermonde matrix

10 · · · 1n−t−1

...

n0 · · · nn−t−1

 .

The key observation is that if the adversary corrupts some set of parties A (of size t),

then the remaining set of n− t parties, P \A, can still force the resulting set of shares

([[s1]], . . . , [[sn−t]])
> to be a set of uniformly-random secrets since every submatrix of V

consisting of n− t rows is linearly independent. Explicitly,
[[s1]]

...

[[sn−t]]

 :=V> ·

[[r1]]

...

[[rn]]

=VP\A
> ·

[[r1]]

...

[[rn]]

P\A

+VA
> ·

[[r1]]

...

[[rn]]

A

where the first summand is always uniformly-random since VP\A
> has full rank and(

[[r1]], . . . , [[rn]]
)
P\A

> is a vector of shares that are generated by honest parties.

Approach for General Q2 Access Structures In the general case, the argument

is that for any set of parties A corrupted by the adversary, the rows owned by the re-

maining (honest) parties P \A have rank d, where d is the rank of the monotone span

program (MSP) matrix. The reason this is sufficient is that it means that whatever set of

parties is corrupted, the shares that are output are always shares of uniformly-random

secrets. In fact, the necessary property required for using the matrix for randomness

extraction is exactly that it should be a share-reconstructable MSP for the Q2 access

structure. The notion of share-reconstructability was introduced in Section 3.6. Note

that this implies it is necessary for the access structure to be Q2, since for any unqual-

ified set U ∈ ∆, the target vector t necessarily lies in the span of the rows owned by

P \U .

These observations suggest that the parties can perform randomness extraction us-

ing any share-reconstructable MSP that realizes the same access structure. However, it

is possible to do better than this: given an access structure Γ, let

∆ :=
{
U ∈ 2P :P \U ∈Γ

}
173

CHAPTER 7. Q2 MPC FOR LARGE NUMBERS OF PARTIES

and consider the complete monotone access structure it defines. (Note that it is indeed

a complete monotone access structure since ∆ is trivially closed under the subset oper-

ation as Γ is closed under the superset operation.) One could call this access structure

the “Q2 closure” of Γ since if ∆ is Q2 then ∆ is the largest superset of ∆ that is still

Q2. Now consider the complement of ∆ in 2P : since the access structure Γ is complete,

a set is in Γ if and only if it is not in ∆; thus the set of complements can be expressed as

Γ= {Q ∈ 2P :P \Q 6∈Γ}. Hence the “Q2 closure” is exactly the dual access structure. (See

Section 2.4.1 for the definition of dual access structure.)

The result of Cramer et al. generalizes in the following way: one can use the matrix

from any share-reconstructable MSP realizing the dual access structure Γ∗ for random-

ness extraction (or indeed realizing any access structure Γ′ satisfying Γ∗ ⊆Γ′ ⊆Γ). In the

general case, this means that the parties must together provide m sharings, and will

obtain d. (Recall that the MSP matrix is in Fm×d.) The MSP matrix used to perform

randomness extraction need not be the same as the matrix used to share the secrets.

This generalization coincides with the original construction that used a (n,n− t) Van-

dermonde matrix for an (n, t)-threshold access structure, since this is exactly the MSP

matrix for Shamir’s secret-sharing (which is share reconstructable) of the dual access

structure, (n,n− t−1)-threshold.

Note that MSPs with these properties always exist because replicated secret-sharing

is always share-reconstructable (see Theorem 3.1), but will not always be efficient.

However, note that there is often a saving over the naïve method of obtaining 1 shar-

ing from n sharings: for example, in an (n, t)-threshold scheme, the parties generate

mR = n · (n−1
n−(n−t−1)−1

)
sharings and obtain dR = (n

n−(n−t−1)

)
, which is an average of obtain-

ing 1 sharing from t+1 sharings. This matches the intuition that the method described

above is “as efficient” as using a qualified set of parties to obtain 1 sharing from t+1

sharings, but the load is balanced amongst all the parties.1 Unfortunately, the technique

still incurs a linear cost, but this method works regardless of the access structure, and

not just for threshold schemes. Nevertheless, this is a constant saving in communica-

tion cost. Note that in practice, using the matrix MR is relatively cheap since the matrix

is sparse so the cost of computing this matrix-vector multiplication is modest. Since for

large numbers of parties the exponential blow-up of replicated secret-sharing is exactly

what this chapter seeks to avoid, in general a more efficient share-reconstructable MSP

is likely to be preferable, if one exists.
1Clearly in this case the Vandermonde matrix should be used: the example is only intended to give

intuition for the asymptotics.

174

7.3. GENERATING INFORMATION-THEORETIC UNIFORMLY-RANDOM SECRETS

These observations give rise to the protocol given in Figure 7.3. To differentiate

between the MSP in which the secrets are shared and the MSP used for randomness

extraction, the variables relating to the latter have the superscript R, which has been

used previously to indicate replicated secret-sharing, which may be used here but is not

required.

Protocol ΠAny

RSS

Initialize Given an MSP, [[·]], realizing a Q2 access structure Γ, agree on any share-

reconstructable MSP realizing Γ∗, and let MR ∈FmR×dR
be the corresponding MSP matrix.

Sharing of Secret
1. Each party Pi samples a set {rk}|ρ

R(i)|
k=1 ← U (F).

2. Each party Pi generates sharings {[[rk]]}
|ρR(i)|
k=1 and distributes the shares.

3. The parties compute
[[s1]]

...

[[sdR]]

 := MR> ·

[[r1]]

...

[[rmR]]

and output {[[sk]]}dR

k=1.

Figure 7.3: Protocol for Secret-Sharings of Multiple Random Secrets for Any LSSS,

Π
Any

RSS
.

Lemma 7.1. The secret-sharings {[[sk]]}dR

k=1 generated in ΠAny

RSS
are shares of independent

and uniformly-random secrets with respect to the access structure Γ.

Proof. The shares have the same access structure as the original secrets as they are

computed as a linear combination of secret-shared data (which is performed locally). It

remains to show that the resulting secrets are uniformly-random in the secret-sharing

space.

Let A denote the set of parties corrupted by A. Then
[[s1]]

...

[[sdR]]

 := MR> ·

[[r1]]

...

[[rmR]]

= MR
P\A

> ·

[[r1]]

...

[[rmR]]

P\A

+MR
A
> ·

[[r1]]

...

[[rmR]]

A

.

Since A is a corrupt set of parties and MR realizes the dual access structure, the set P\A
of honest parties is qualified. Moreover, because the MSP is share-reconstructable, the

matrix MR
P\A has rank dR. Thus the vector ([[r1]], · · · , [[rmR]])>P\A · MR

P\A is a vector of

175

CHAPTER 7. Q2 MPC FOR LARGE NUMBERS OF PARTIES

independent, uniformly-distributed secrets in FdR
, which means ([[s1]], . . . , [[sdR]])> is a

vector of independent, uniformly-random secrets.

The threshold protocol described by Cramer et al. [CDI05] was not proved secure in

the universal composability (UC) framework. Indeed, the main difficulty in doing so is

defining the right functionality and showing it is possible to simulate.

Theorem 7.1. The protocolΠAny

RSS
UC-securely realizes the functionality FAny

RSS
in the plain

model against a static, active adversary.

Proof. The simulator is given in Figure 7.4.

Simulator SAny

RSS

Initialize Call FAny

RSS
with input (Initialize,Γ, sid).

Sharing of Secret
1. On behalf of each (emulated) honest party Pi, sample a set of vectors

{
xk}

k∈ρR−1(i) ← U
(
Fd)

and compute sharings [[rk]] := M ·xk.

2. Distribute and receive shares as follows:

• For each k ∈ [mR]\ρR−1(A), send [[rk]]A to A.

• For each k ∈ [mR]∩ρR−1(A), await a share vector [[rk]]P\A.

• Pad [[rk]]P\A with 0’s to become a full share vector [[rk]] and set εk := N · [[rk]].
• Sample xk ← U

({
x ∈Fd : MP\A ·x= [[rk]]P\A−εk

P\A

})
and set [[rk]] := M ·xk +εk.

• Compute ([[s1]], . . . , [[sdR]])> := ([[r1]], . . . , [[rmR]])> ·MR.

• Compute
(
ε̃1, . . . , ε̃dR

)>
:=

(
ε1, . . . ,εmR

)> ·MR.

• Send {[[sk]]A}k∈[dR] and {ε̃k}k∈[dR] to FAny

RSS
.

3. (No simulation is required for this step.)

Figure 7.4: Simulator SAny

RSS
for FAny

RSS
.

The tricky part about this simulation is to show correctness: that is, to ensure that

the final output shares of (real) honest parties form a valid share vector with the shares

held by corrupt parties if they act honestly. Since Lemma 7.1 implies the final share

vectors are uniform regardless of the set A of parties the adversary corrupts, and the

linear combination is public, it suffices to show that this holds for a single random

vector generated between S and A, i.e. where S sends shares [[r]]A for the sharing [[r]]
of a random secret r, and A responds with shares [[r′]]P\A, so that the final sharing held

by corrupt and honest parties should be [[r+ r′]]. (Note that S must send the vector first

as the adversary may be rushing.)

176

7.4. INFORMATION-THEORETIC PREPROCESSING

The argument is similar to that given in the proof of Theorem 5.1. Suppose S gener-

ates [[r]] honestly and sends [[r]]A to A. Then A responds with a set [[r′]]A. Let [[x]]P\A :=
[[r]]P\A+ [[r′]]P\A. Then S samples [[x′]]A such that ([[x]]P\A, [[x′]]A) is a valid share vec-

tor. Then it sends [[x′]]A to FAny

RSS
, which samples [[x′′]]P\A so that ([[x′′]]P\A, [[x′]]A) is a

valid share vector and sends the shares of [[x′′]]P\A to (real) honest parties, which output

these shares to the environment.

Let r′ be defined as the “actual” vector chosen by A so that [[r′]] = M ·r′ and let r be

the vector chosen by S to generate [[r]] as M ·r. Let x := r+r′. The process of sampling,

restricting, sending and resampling means the final share vector lies in the space

M · (M−1
A · (M · (M−1

P\A · [[x]]P\A
))
A

)
=M · (M−1

A · (MA · (x+ker(MP\A)))
)

=M · (x+ker(MP\A)+ker(MA))

=M ·x+M ·ker(MP\A)+M ·ker(MA)

where for a matrix A, here A−1 denotes taking a preimage. Now the first summand is

equal to the “actual” randomness vector the parties used to generate the secrets that

were sent, and is therefore indeed a particular solution to the equation above. The sec-

ond summand is any sharing supported by P \A, and since there is always a sharing of

1 with support P \A, the final share vector is a sharing of any secret in the field. The

third summand corresponds to a sharing supported by A, which by Lemma 3.1 is a shar-

ing of 0 since the access structure is Q2. Consequently, the final share vector obtained

by the environment from the real honest parties’ shares and the shares generated by A
is a valid share vector.

Finally, observe that if the adversary does not send shares to honest parties that

correspond to a valid share vector, then the simulator is able to compute the errors using

the error-detection matrix N (since the access structure is Q2). This is analogous to

computing the syndrome of a codeword in Coding Theory. The functionality introduces

the same errors in the ideal world, and so the environment is not able to distinguish

between the real and ideal worlds.

7.4 Information-Theoretic Preprocessing

Only linear operations are performed on shares in the protocol ΠOnline, since the non-

linearity of multiplication is handled by the Beaver triples. The consequence of this is

177

CHAPTER 7. Q2 MPC FOR LARGE NUMBERS OF PARTIES

that the LSSS used in the online phase need not be multiplicative. Typically, multi-

plicative LSSSs realizing a given access structure require at least the same number of

shares in total as non-multiplicative schemes.

The idea in this section is to execute the preprocessing phase using a multiplicative

LSSS to generate Beaver triples, but then to convert to a LSSS with a smaller number

of shares by local computations so that the online phase may proceed with this “more

efficient” LSSS.

Almost the entire preprocessing protocol is the same as in Chapter 6, so the full pro-

tocol is not given in this section. Instead, only the information-theoretic multiplication

subprotocol will be given. This passively-secure subprotocol can be slotted directly into

the preprocessing protocol of Chapter 6, and the IT functionality FAny

RSS
can be used to

obtain triple multiplicands (i.e. a’s and b’s) instead of the functionality FR
RSS.

7.4.1 LSSS to Multiplicative LSSS

In order to use the IT multiplication protocol of Maurer [Mau06] in which the additive

sharing of the product is converted back into the original LSSS, as outlined in Sec-

tion 6.4.1, the LSSS must be multiplicative.

The first step of IT preprocessing is to recall the observation of Cramer et al. [CDM00]

that any LSSS realizing a Q2 access structure can be made multiplicative by at most

doubling the total number of shares. The observation is that if a secret is shared ac-

cording to an access structure Γ and its dual Γ∗, written as ([[·]], [[·]]∗) then by local

computations the parties can obtain an additive sharing of the secret. The details of the

construction are not given here as they are not important for the protocol. Thus the first

task is to find an optimal multiplicative LSSS for the access structure (in terms of total

number of shares); if one does not exist then the task is to find an optimal LSSS and

then to perform the computation to convert it to a multiplicative scheme.

The original LSSS is denoted by [[·]] and the LSSS derived from for computing prod-

ucts locally by [[·]]Π. Using this notation, it always holds that either [[·]]Π = [[·]] or

[[·]]Π = ([[·]], [[·]]∗). This notation should not be confused with [[·]][2], which is computed

with respect to an initial LSSS [[·]] and denotes any LSSS realizing the access structure

of the product of two secrets under [[·]], which is typically simply additive secret-sharing,

[[·]]A.

178

7.4. INFORMATION-THEORETIC PREPROCESSING

7.4.2 Multiplicative LSSS to Preprocessing

Once the parties have generated a large number of secrets according to the multiplica-

tive LSSS using FAny

RSS
, they can obtain an additive sharing of the product of two secrets

by local operations (by the definition of multiplicativity) and then execute the IT pro-

tocol ΠAToAny from Section 6.4 that turns an additive sharing into a sharing under any

other LSSS. In the case that [[·]]Π = ([[·]], [[·]]∗), i.e. where it is necessary to extend the

LSSS in order to make it multiplicative, a couple of points must be noted.

Firstly, since the online phase does not require multiplicativity, it suffices for the

parties to reshare their summands under the original LSSS, not in the product LSSS.

This reduces the amount of communication required when establishing the sharing of

the product of secrets.

Secondly, if a and b are secret-shared in the product LSSS, i.e. as [[a]]Π and [[b]]Π,

and only the original LSSS is going to be used in the online phase, then these sharings

need to be converted to the original (non-multiplicative) sharings so that all three parts

of the triple are shared according to the same scheme. Fortunately, this can be done very

efficiently. It was observed by Cramer et al. [CDI05] that some LSSSs can be converted

to other LSSSs that realize the same access structure by local computations. Moreover,

for a product LSSS generated from an LSSS by the method from [CDM00] (outlined

in the previous section), this is indeed the case for converting back into the original

scheme. In this case, the “local computation” involves each party Pi taking the shares

([[x]]Pi
, [[x]]∗Pi

) of the secret x and simply discarding [[x]]∗Pi
.

In summary, the protocol involves parties generating shares [[a]]Π and [[b]]Π, per-

forming the local computation to obtain [[c]]A, and then resharing this as [[c]] defined

as
∑

i∈[n] [[[[c]]
A
Pi

]]. The subprotocol ΠIT
Mult for generating triples after obtaining [[a]]Π and

[[b]]Π is given in Figure 7.5.

179

CHAPTER 7. Q2 MPC FOR LARGE NUMBERS OF PARTIES

Subprotocol ΠIT
Mult

At this point, the parties are assumed to hold sharings [[a]]Π and [[b]]Π, where [[·]]Π is the product

LSSS derived from [[·]].
Multiply

1. Each party Pi computes [[c]]APi
:= 〈µ(i), [[a]]ΠPi

⊗ [[b]]ΠPi
〉 where µ(i) is the vector from Sec-

tion 2.4.4.

2. Each party Pi samples a share vector [[[[c]]APi
]] for the summand [[c]]APi

, and distributes the

shares over secure channels.

3. Each party Pi awaits shares from all parties and computes [[c]]Pi
:=∑

j∈[n] [[[[c]]
A
P j

]]Pi
.

4. The parties perform local computations to convert [[a]]Π to [[a]] and [[b]]Π and [[b]].
5. The parties output ([[a]], [[b]], [[c]]).

Figure 7.5: Subprotocol for Information-Theoretic Multiplication, ΠIT
Mult.

The arithmetic circuit can now be evaluated in the usual way (i.e. using ΠOnline).

7.5 Communication Complexity

In this section, analysis of the communication complexity will be expressed in terms of

the costs for Shamir’s secret-sharing so that the results may be compared with other

protocols in the honest-majority setting, but it is important to note that many of the

techniques from this chapter – and indeed throughout this thesis – apply to general Q2

access structures, which many other protocols do not.

For a threshold access structure, the topologies from Section 6.5.4 and Section 6.6.3

can be expressed as follows:

E i
BC = {i}× ([n]\{i})

EBC = {(i, j) ∈ [n]2 : i 6= j}

E i
Output = ([n]\{i})× {i}

EOpen = {(i, j) ∈ [n]2 : j = i+k mod n for k ∈ [t]}

EAToR = {(i, j) ∈ [n]2 : j = i+k mod n for k ∈ [n− t−1]}

7.5.1 Preprocessing

In this section, the cost of generating preprocesing for a threshold access structure in

two different ways is given:

180

7.5. COMMUNICATION COMPLEXITY

• Parties execute the protocol from Chapter 6 and then convert using ΠRToAny.

• Parties execute the IT protocol from Section 7.4.

Preprocessing with Computational Security

If the parties use replicated secret-sharing and convert, then the cost is shown in Ta-

ble 7.1, which is the same as Table 6.1 but for a threshold access structure. Notice that

ΠRToAny can be applied after the triple has been generated but before it is sacrificed,

which would save communication costs further.

Procedure Number of bits Channels

Initialize
PRZS key commitments 2 ·κ ·n · (n−1) AC(EBC)
Opening commitments 3 ·κ ·n · (n−1) SC(EBC)
PRSS key commitments 2 ·κ ·n · (n−1

n−t−1

) · (n− t−1) AC(EBC)
Opening commitments 3 ·κ ·n · (n−1

n−t−1

) · (n− t−1) SC(EBC)

Mask
Generation n/a n/a
Open (n−1) ·` SC(E i

Output)

Triples
Generation (a and b) n/a n/a
Generation (c) (1+dσ/`e) ·n · (n− t−1) ·` ·T SC(EAToR)
Sacrifice (Open) 3 · dσ/`e ·n · t ·` ·T AC(EOpen)
Sacrifice (Check) n/a n/a

Table 7.1: Total preprocessing communication cost to realize FPrep performing T multi-
plications using FR

RSS and FRZS.

Preprocessing with Statistical Security

Whereas PRSSs can be generated non-interactively after the key-setup phase, Table 7.2

shows the amount of communication required to generate T triples.

The key point to notice is that for a small number of parties, the binomial term is

small enough that the key-setup phase is tractible; for a larger number of parties, the IT

protocol essentially replaces the binomial term with a quadratic term that also depends

on the number of multiplication gates, T, in the circuit. Note that in the generation of

the triple, obtaining c is only a constant factor more expensive (in terms of communica-

181

CHAPTER 7. Q2 MPC FOR LARGE NUMBERS OF PARTIES

Procedure Number of bits Channels

Initialize n/a n/a

Mask
Generation (1+dσ/`e) · d T

n−te ·n · (n−1) ·` SC(EBC)
Open (n−1) ·` SC(E i

Output)

Triples
Generation (a and b) (1+dσ/`e) · d T

n−te ·n · (n−1) ·` SC(EBC)
Generation (c) (1+dσ/`e) ·n · (n−1) ·` ·T SC(EBC)
Sacrifice (Open) 3 · dσ/`e ·n · t ·` ·T AC(EOpen)
Sacrifice (Check) n · (n−1) ·κ AC(EBC)

Table 7.2: Total preprocessing communication cost to realize FPrep performing T multi-
plications using FAny

RSS
.

tion) than the method using replicated secret-sharing since the term n− t−1 = O(n) is

replaced by n−1.

7.5.2 Online Phase

The total cost of the actively-secure protocol is given in Table 7.3. There is a clear ad-

vantage to converting to Shamir’s secret-sharing for executing the online phase as the

binomial factors that would appear in Table 6.3 by considering a threshold access struc-

ture are replaced with factors linear in n.

Procedure Number of bits Channels

Input n · (n−1) ·` AC(E i
BC)

Add n/a n/a

Multiply 2 ·n · t ·` ·T AC(EOpen)

Output To One (n−1) ·` SC(E i
Output)

Output To All n · t ·` ·T AC(EOpen)

Verify 2 ·n · (n−1) ·κ AC(EBC)

Table 7.3: Total online communication cost to realize FABB performing T multiplica-
tions.

182

7.5. COMMUNICATION COMPLEXITY

7.5.3 Comparison with Other Protocols

Comparison with Maurer

The protocol of Maurer [Mau06] is not realized in the preprocessing model, and it only

offers passive security. Nonetheless, it is interesting to compare.

In Maurer’s protocol, assuming a circuit with a large number of multiplications (i.e.

so that n·(n−1)·κ¿ T), the total number of bits sent over the network per multiplication

is n · (n−1) ·`.

In the protocol here, assuming a large field so that dσ/`e = 1, the cost is

n · (n− t−1) ·`+3 ·n · t ·`+2 ·n · t ·`= n · (n+4 · t−1) ·`

(where the authentication check is effectively 0). Since t < dn−1
2 e, this cost is at most 3·n·

(n−1) ·`. Thus the cost of actively-secure multiplication with computational security is

asymptotically just 3 times the cost of Maurer’s passive multiplication with IT security.

Comparison with Chida et al. [CGH+18]

The protocol of Chida et al. [CGH+18] takes quite a different approach to obtaining

actively-secure multiplication, bootstrapping the 2-round passive protocol for multipli-

cation due to Damgård and Nielsen [DN07], discussed briefly in Section 2.5.3, to active

security. The main point of their passive protocol was to create a scalable protocol: the

overall communication cost is linear in the number of parties rather than quadratic as

in protocols using Beaver’s circuit randomization.

The preprocessing phase requires generating sharings of random secrets under both

the original LSSS and its associated product LSSS, i.e. as ([[r]], [[r]][2]) where r is uni-

formly random. To multiply [[x]] and [[y]] in the online phase, the parties locally compute

the sharing [[x· y]][2], open the secret [[x· y]][2]−[[r]][2] and compute [[x· y]] := [[r]]+(x· y−r).

For active security, message authentication codes (MACs) are maintained on every se-

cret; in the online phase, every circuit operation is performed on both the secrets and

the corresponding MACs. The preprocessing for this protocol also facilitates the use of

randomness extraction described in Section 7.3. For non-threshold access structures,

the techniques for randomness extraction in Section 7.3 can be used to improve on their

efficiency.

While [CGH+18] scales better with the number of parties, there are several scenarios

in which the protocols in this chapter might be preferable. Firstly, [CGH+18] requires

the online phase to use a multiplicative LSSS, which for general Q2 access structures

183

CHAPTER 7. Q2 MPC FOR LARGE NUMBERS OF PARTIES

may necessitate either doubling the number of shares (compared to the online phase

of the protocol in this chapter) or using replicated secret-sharing. Secondly, the online

phase of the protocol in this chapter involves a constant factor less communication over

small fields since in [CGH+18], dσ/ log |F|e MACs are required for each secret and hence

1+dσ/ log |F|e passive multiplications are needed for one active multiplication; thus for

situations in which parties outsource their preprocessing, the protocol from this chapter

is better. It should be noted that the overall asymptotic costs are comparable with re-

spect to σ since triple generation depends linearly on dσ/| logF|e. Thirdly, in high-latency

networks, for example over wide-area networks (WANs), one would expect the online

phase of [CGH+18] to be slower as each multiplication requires two rounds instead of

one.

184

Chapter 8

Actively-Secure Mixed Protocol

This chapter is based on work in submission under the title MArBled Circuits: Mixing

Arithmetic and Boolean Circuits with Active Security [RW19] and was joint work with

Dragos, Rotaru.

This chapter Many efficient protocols exist for evaluating general Boolean [BDOZ11,

NNOB12,HSS17,WRK17b,HOSS18a] and arithmetic [DPSZ12,DKL+13,KOS16,KPR18]

circuits in the multi-party setting. Garbled circuits (GCs) are often used in situations

where the round complexity is important, for example over a wide-area network (WAN),

since they can be used to evaluate circuits in a constant number of rounds, but using

them to evaluate arithmetic circuits is generally expensive. On the other hand, while

linear secret-sharing scheme (LSSS)-based multi-party computation (MPC) for arith-

metic circuits is efficient for “purely” arithmetic operations such as additions and mul-

tiplications, for more complex non-linear operations, the communication costs are sig-

nificantly higher. In this chapter, a protocol is given that allows GCs and LSSS to be

stitched together with active security, allowing one to choose how to evaluate different

parts of a large “mixed” circuit.

8.1 Overview

The motivation for this chapter is that many real-world use cases of computing on pri-

vate data involve a mixture of computations better-suited to Boolean circuits – such as

the comparison of two integers – and computations better for arithmetic computations

– such as evaluating statistical formulae.

185

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

One way of combining these types of computation involves using LSSS-based MPC

over a finite field or ring to emulate arithmetic over the integers, and performing oper-

ations such as comparisons between secrets (i.e. <,>,=) using (what can be thought of

as) a costly emulation of a Boolean computation. One of the shortcomings of LSSS-based

MPC is that these natural but more involved procedures require special preprocessing

and several rounds of communication.

Another way of combining the computation is to use (Boolean) GCs instead of secret-

sharing for circuits involving many bit-wise operations. The disadvantage of using GCs

for mixed computations is that performing general arithmetic computations in Boolean

circuits can be expensive since addition and multiplication must be computed bit-wise.

Garbled circuits will be explained in detail later, but for now the following intuition

suffices: a GC is a randomized version of a circuit produced by a so-called garbler that

hard-wires its own inputs; the circuit is handed to a so-called evaluator, that evaluates

it on its inputs; finally, the garbler and evaluator engage in some procedure for decoding

the final circuit output. The security guarantee is roughly the same as for LSSS-based

MPC: that the garbler and evaluator should only learn the output and what can be in-

ferred from the output and their own inputs. Garbling of arithmetic circuits is challeng-

ing and the best-known techniques [BMR16,Ben18] require O(p) ciphertexts to be sent

for every multiplication, where p is the field characteristic. Conversely, techniques for

Boolean circuits have been known since the 1980s [Yao86, Oral presentation] and have

seen significant improvements since that time, as outlined in Section 2.6. The circuit

garbling described above is a two-party protocol. In multi-party garbling, every party

acts as both the garbler and evaluator, a protocol for which was first given by Beaver

et al. [BMR90]. In the recent past, Lindell et al. [LPSY15] showed how to garble with

active security (efficiently) using MPC, after which followed much work with a similar

approach [WRK17b, HSS17, KY18] so that multi-party garbling of Boolean circuits is

considered efficient enough to be practical.

So-called mixed protocols are those in which parties switch between secret-sharing

and garbled circuits mid-way through a computation, thus enjoying the efficiency of the

basic addition and multiplication operations in any field using the former and the low-

round complexity of GCs for non-linear subroutines using the latter. One can think of

mixed protocols as allowing parties to choose the most efficient field in which to eval-

uate different parts of a circuit. For mixed protocols to be efficient, clearly the cost of

switching between secret-sharing and garbling, performing the operation, and switch-

ing back must be more efficient than the method that does not require switching, per-

186

8.1. OVERVIEW

haps achieved by relegating some computation to the offline phase.

There is a rich literature of mixed protocols in the two-party setting with passive

security – for example, [BPSW07, HKS+10, KSS14, BDK+18, IMZ19]. One of the more

recent works is that of Demmler et al. [DSZ15], known as Arithmetic-Boolean-Yao

(ABY), in which parties convert between arithmetic, Boolean, and “Yao” sharings. For

small subcircuits, converting arithmetic shares of a secret to Boolean shares of the bit-

decomposition of the same secret – without any garbling – suffices for efficiency gains

over evaluating the same circuit without switching. However, for large subcircuits, us-

ing garbling additionally allows reducing online costs.

Mohassel and Rindal [MR18] constructed a three-party protocol known as ABY3 for

mixing these three types of sharing in the active-security setting assuming at most one

corruption. However, actively-secure mixed protocols in a general multi-party setting

have hitherto not received much attention. One of the reasons for this is perhaps that

there is a difficult technical challenge to overcome in ensuring that authentication of

secrets is maintained through the conversion – that is, to ensure that the adversary

cannot introduce errors during the switching procedure.

The goal of this chapter is to realize a circuit and arithmetic black box (CABB),

given by the functionality FCABB (which extends FABB) in Figure 8.1, which is an ab-

straction of a mixed protocol in the active-security setting. The solution uses MPC in

a black-box way, and while the method used for garbling the circuit has some loose

requirements that must be satisfied, it is compatible with many state-of-the-art multi-

party Boolean circuit-garbling techniques; the only requirement is that parties should

be able to authenticate their own choices of inputs, and that XOR can be computed be-

tween authenticated bits. (This is discussed in detail later.) As the garbling uses MPC as

a black box, being executed in the FRPrep-hybrid model, no restriction need be made on

the access structure, making it compatible with the recent compilers for general access

structures [ABF+18,ACK+19].

187

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

Functionality FCABB

This functionality extends FABB in Figure 2.14. The function BitDec : F→ {0,1}blog |F|c takes an

element of F and computes its bit-decomposition as a sequence of bits.

Evaluate Circuit On input (EvaluateCircuit,C, (idk)t
k=1, id , sid) where t ·log |DB.Field| is the

arity of Boolean circuit C, if idi ∈ DB.Ids for all i ∈ [t], then await a message OK or Abort from

the adversary. If the message is OK, then set DB[id] := C(BitDec(DB[id1]), . . . ,BitDec(DB[idt]))

and continue; otherwise, send the message Abort to all parties, and then halt.

Figure 8.1: Circuit and Arithmetic Black Box Functionality, FCABB.

8.1.1 Switching Mechanism

The exposition in this chapter is focused mainly on the full-threshold setting, and hence

authentication is achieved using information-theoretic (IT) message authentication codes

(MACs) as described in Section 2.5.3, but since FRPrep is used as a black box, any access

structure can be used as long as FRPrep can be realized.

The key challenge for mixed protocols in the active-security setting is that secrets

must remain authenticated through the conversion from LSSS to GC and back again.

In the full-threshold setting, the naïve way of maintaining authentication from LSSS

to GC is for parties to bit-decompose the shares of their secrets and the MACs locally

and use these as input bits to the circuit, and checking the MAC inside the GC. This

necessitates a considerable amount of online communication since each party needs to

broadcast a pseudorandom function (PRF) key for each bit in the bit-decomposition of

each share of each secret and its MAC. This method also requires garbling several ad-

ditions and multiplications inside the circuit to check the MAC, and some methodology

for obtaining secret-shared output (in the arithmetic field) and corresponding MACs

(perhaps by requiring random masks to be provided as auxiliary input to the circuit).

The advantage of this solution, despite these challenges, is that it requires no additional

preprocessing, nor adaptations to the garbling procedure.

Contrasting this approach, the idea in this chapter is to make use of special pre-

processing to speed up the conversion in the online phase of the protocol. This prepro-

cessing takes the form of “doubly-shared” authenticated bits, dubbed daBits, following

the nomenclature set out in [NNOB12]. These doubly-shared secrets are values in {0,1}

shared and authenticated both in Fp and F2l , where 0 and 1 here denote the additive

and multiplicative identities, respectively, in each field. The idea is to use these daBits

to convert authenticated, secret-shared data in Fp, where p is a large prime, to authen-

188

8.1. OVERVIEW

ticated secret-shared data in F2l .

Remark 8.1. The parameter l is not directly related to ` := blog pc since the bits of an

element in Fp will be translated into a set of secret-shared bits in F2l , not a single F2l

field element. The parameters are chosen so that `=O(σ) and l =O(κ) in order that the

MPC protocol is secure with statistical security σ and the circuit garbling is secure with

computational security κ.

The switching procedure of a secret-shared element x in Fp to a set of input bits to

a garbled circuit involves constructing a random secret r in Fp using daBits, opening

x− r, bit-decomposing this public value (requiring no communication) and using these

as input bits for a GC. Then the parties can evaluate the garbled circuit locally, where

the circuit has a prepended subcircuit that adds r and computes the result modulo p.

This general idea for conversion has been used in many of the prior works in the two-

party semi-honest security setting. Garbling of the subcircuit is achieved using the bit

decomposition of r with the parts of the daBits in F2l . It will be shown in Section 8.4 that

retrieving outputs from the circuit in secret-shared form can be done by local operations,

whence they can proceed with further LSSS-based computations on secrets in Fp. This

method keeps the authentication check mostly outside of the circuit, instead requiring

that the MAC on x− r be correct. In fact, this approach is oblivious to the method used

for authenticating, which means that daBits can be generated using any MPC protocol

that offers authentication, such as the protocols in Chapters 6 and 7. This process of

mixing arithmetic and Boolean circuits by facilitating switching between secret-sharing

and garbled circuits is dubbed “circuit MArBling”, from Mixing Arithmetic and Boolean

circuits.

The rough structure is shown in Figure 8.2, where the Boolean circuit C is evaluated

on inputs x and y that are initially secret-shared in Fp, and the output is a set of secret-

shared bits in Fp representing the bit-decomposition of an element of Fp. The procedure

called “Mask conversion” (explained in the following sections) is a local operation in the

online phase. The notation (a− b) j is used to denote the jth bit in the binary expansion

of the integer a−b.

The only use of doubly-shared masks is at the two boundaries between a garbled cir-

cuit and secret-shared data (i.e. circuit input and output): all secrets used in evaluating

arithmetic circuits (i.e. using standard LSSS-based MPC) are authenticated shares in

Fp only. All other secrets “inside” the circuit (that is, for all wires that are not circuit

input or output wires) are authenticated shares of bits in F2l only. The online commu-

nication cost is that of each party broadcasting a single element of Fp and then broad-

189

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

(x− r)0

(x− r)1
...

(x− r)`−1 +r
m

od
p

(y− s)0

(y− s)1
...

(y− s)`−1 +s
m

od
p

C

M
as

k
co

nv
er

si
on

[[z0]]p

[[z1]]p

...
[[z`−1]]p

Figure 8.2: Conversion Overview.

casting log p PRF keys (of length κ) per input, for a circuit of any depth. Thus the online

cost is O(κ · log p) bits per party, per Fp input to the Boolean circuit.

Remark 8.2. While essentially all of the basic actively-secure MPC protocols enable the

evaluation of additions and multiplications, for more complicated non-linear functions

the only solutions that exist are those that require additional assumptions on the input

data. For example, comparison requires bit decomposition, which itself requires that

secrets be bounded by some constant. Since the bits of each input are directly inserted

into the circuit, this additional assumption can be avoided.

8.1.2 Structure

The realization of the functionality FCABB is achieved in the following way:

• In the preprecessing phase:

1. The MPC functionality FRPrep is extended to the functionality FRPrep+ given in

Figure 8.3 to allow the same bits to be generated in two independent FRPrep

sessions in two different fields, Fp and F2l .

2. The F2l instance of FRPrep inside FRPrep+ is used to perform a form of garbling

known as SPDZ-BMR-style garbling [LPSY15,KY18].

• In the online phase:

– The protocol ΠOnline is used with the instance of FRPrep over Fp to perform LSSS-

based MPC over a prime field, realizing the FABB part of FCABB.

– The protocol ΠBMREvaluate to used to evaluate circuits garbled as preprocessing,

realizing the circuit-evaluation part of FCABB.

190

8.2. PRELIMINARIES

– A switching procedure is used to convert between secret-sharing and garbled

circuits and back again.

Functionality FRPrep+

This functionality extends the reactive functionality FRPrep with commands to generate the same

bits in two independent sessions.

Instances of FRPrep

Two independent copies of FRPrep are identified via session identifiers sidp and sid2l .

Additional command

daBits On receiving (daBits, (idk)t
k=1, sidp, sid2l), from all parties where {idk}t

k=1 are fresh iden-

tifiers,

1. Sample a set {bk}t
k=1 ← U ({0,1}).

2. Execute the macro Sample(idbk) from each instance of FRPrep with S for each k ∈ [t].
3. Await a message Abort or OK from S. If the message is OK and Abort is false, then for all

i ∈ [n] \ A, send {[[bk]]
p
Pi

, [[bk]]
2l

Pi
}t
k=1 to Pi; otherwise, send the message Abort to all honest

parties, and then halt.

Figure 8.3: Functionality for Two MPC Engines, with daBits in Both, FRPrep+.

A summary of the dependencies is given in Figure 8.4.

FRPrep FRPrep+ FCABB

FRPrep

∥∥ΠdaBits ΠCABB

Figure 8.4: Conversion Protocol Dependencies.

8.2 Preliminaries

This section provides an overview of the MPC techniques important for this chapter,

then gives a brief recapitulation of the protocol known as SPDZ-BMR developed by

Lindell et al. [LPSY15] for computing a multi-party garbled circuit with active security,

followed by an overview of the conversion technique.

Throughout this chapter, it will be assumed that the parties are connected in a com-

plete synchronous network of secure channels, i.e. SC(EBC), and have access to a broad-

cast channel, which can be instantiated in the random oracle model over this set of

191

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

secure channels as described in Section 2.3.4 since the MPC and GC protocols here only

offer security with abort.

8.2.1 MPC

The protocol will make use of MPC as a black box; it involves reactive computation so

the functionality FRPrep from Section 4.6 is used (rather than FABB).

For the protocols that realize FCABB, it is not important how authentication is achieved

– i.e. whether by linear MACs so that [[·]] = ([[·]]A, [[γ(·)]]A) as in SPDZ, or by error-

detection properties as for Q2 access structures – the key point is that secrets can be

opened with authentication. Shares are denoted in the following three ways:

Sharing in Fp: [[a]]p

Sharing in F2l : [[c]]2
l

Sharing in both: [[b]]p,2l = ([[b]]p, [[b]]2
l
) where b ∈ {0,1} .

The sharing [[b]]p,2l
, called a daBit, is considered correct if the bit is the same in both

fields – that is, either both the additive identity or both the multiplicative identity, in

their fields. Creating daBits efficiently is one of the main tasks of this chapter.

Conditions on the secret-sharing field

Let ` := blog pc. Throughout, MPC is executed in Fp where p is some large prime, but

the conversion protocol is only secure if it is possible to generate uniformly random field

elements by sampling bits uniformly at random {[[r j]]
p}`−1

j=0 and summing them to get

[[r]]p := ∑`−1
j=0 2 j · [[r j]]

p. This requires that 1− 2`
p = O(2−σ), which roughly speaking says

that p is only slightly larger than a power of 2. (By symmetry of this argument one can

require that p just be close (above or below) to a power of 2.) Recall that sampling a uni-

form element of {0,1}` produces the same distribution as sampling ` bits independently

by standard Measure Theory. It follows from Lemma 8.1 that under this assumption on

p, the statistical distance between the uniform distribution over Fp and the same over

{0,1}` is negligible.

Lemma 8.1. Let `= blog pc, let D be the probability mass function for the uniform dis-

tribution D over [0, p)∩Z and let E be the probability mass function for the uniform

distribution E over [0,2`)∩Z. Then the statistical distance between distributions is neg-

ligible in the security parameter if 1− 2`
p =O(2−σ).

192

8.2. PRELIMINARIES

Proof. By definition of statistical distance (see Definition 2.2),

∆(D,E)= 1
2
·

p−1∑
x=0

|D(x)−E(x)| = 1
2
·
2`−1∑
x=0

∣∣∣∣ 1
p
− 1

2`

∣∣∣∣+ 1
2
·

p−1∑
x=2`

∣∣∣∣ 1
p
−0

∣∣∣∣
= 1

2
·2` · p−2`

p ·2` + 1
2
· (p−2`) · 1

p
= 1− 2`

p =O(2−σ).

Note on XOR

The protocol makes heavy use of the (generalized) XOR operation. This can be defined

in any field as the function

f :Fp ×Fp →Fp

(x, y) 7→ x+ y−2 · x · y,(8.1)

which coincides with the usual XOR function for fields of characteristic 2. In LSSS-

based MPC, addition requires no communication, so computing XOR in F2l is for free;

the cost in Fp (char(p) > 2) is one multiplication, which requires a Beaver triple and

some communication. This operation is the main cost associated with the preprocessing

phase, since generating daBits with active security requires generating lots of them and

then computing several XORs in both fields.

Agreement of Random Strings

The protocols require algorithms that provide the parties with specific random strings,

shown in Figure 8.5. Such random strings can be agreed in the FCoinFlip-hybrid model

using FCoinFlip to generate seeds and then using deterministic algorithms locally to com-

pute the necessary shared data, as demonstrated by ΠRand in Figure 8.6. Unfortunately,

a clean description of FRand that simply samples uniformly from the required sets is

not possible for a technical reason, as discussed in Section 6.3.2. It is, however, easy

to get around this by defining the functionality to sample a seed uniformly and to use

this to generate the random string deterministically itself. There is no communication

in the protocol beyond the call to FCoinFlip for a seed, so the simulation in the FCoinFlip-

hybrid world is trivial: the S replaces the seed provided as output by its local instance

of FCoinFlip with the seed sampled and output by FRand.

193

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

Functionality FRand

Initialize On input (Initialize, sid) from all honest parties and S, await further messages.

Random subset On input (RSubset, X , t, sid) where X is a set and t satisfies t ≤ |X |,
1. Sample a seed seed ← U ({0,1}κ).

2. Set π := Shuffle(seed, |X |).
3. Let X = {xi}

|X |
i=1 and set S := {xπ(i) : 1≤ i ≤ t}.

4. Send S to all honest parties and S, and additionally send seed to S.

Random buckets On input (RBuckets, X , t, sid) where X is a set and t ∈N such that |X |/t ∈N,

do the following:

1. Sample a seed seed ← U ({0,1}κ).

2. Set π := Shuffle(seed, |X |).
3. Let X = {xi}

|X |
i=1 and for each i = 1 to |X |/t, set X i := {xπ(j) : (i−1) · t < j ≤ i · t}.

4. Send (X i)
|X |/t
i=1 to all honest parties and S, and additionally send seed to S.

Figure 8.5: Random Sampling Functionality, FRand.

Protocol ΠRand

This protocol is realized in the FCoinFlip-hybrid model. Let Shuffle() be the Knuth Shuffle in

Figure 2.1.

Initialize Parties agree on a session identifier sid and computational security parameter κ, and

call FCoinFlip with input (Initialize, {0,1}κ , sid).

Random Subset To compute a random subset of size t of a set X , parties do the following:

1. Call FCoinFlip with input (RElt, sid) to obtain a seed seed.

2. Set π := Shuffle(seed, |X |).
3. Let X = {xi}

|X |
i=1 and set S := {xπ(i) : 1≤ i ≤ t}.

Random Buckets To put a set of items indexed by a set X into buckets of size t ∈ N where

|X |/t ∈N, the parties do the following:

1. Call FCoinFlip with input (RElt, sid) to obtain a seed seed.

2. Set π := Shuffle(seed, |X |).
3. Let X = {xi}

|X |
i=1 and for each i = 1 to |X |/t, set X i := {xπ(j) : (i−1) · t < j ≤ i · t}.

Figure 8.6: Random Sampling Protocol, ΠRand.

Cut-and-choose

A process known as cut-and-choose is a way of one party proving a statement to another

party by generating a large number of randomized instances of a problem and revealing

194

8.2. PRELIMINARIES

the secrets used to generate a large random subset so that with overwhelming probabil-

ity in the statistical security parameter, the remaining secret instances that were not

revealed are correct. Its general definition is not particularly important for this chapter

as the specific probabilities are calculated on an ad hoc basis in the following sections,

but it should be noted that it is a standard technique in cryptography.

8.2.2 Garbled Circuits

In this section, protocols for multi-party garbling are explained. The focus of this chap-

ter is on showing how to use special preprocessing to make mixed protocols efficient,

and consequently, the garbling methods described here are intended only to show the

use of daBits in situ – there is no claim of novelty in the garbling methods presented

here. Indeed, there are many optimizations to the outline given that are not discussed

since the precise garbling techniques are not important and they complicate exposition.

The garbling protocol presented is due to Keller and Yanai [KY18], which can be

thought of as a variant of SPDZ-BMR, as it is the easiest to explain from the point of

using MPC as a black box.

Garbling as an MPC Protocol

An outline of circuit garbling in the two-party setting was given in Section 8.1. The

concrete process, which only offers passive security, is now given. It is assumed that the

garbler and evaluator have already agreed on a Boolean circuit they wish to evaluate

on the union of their secret inputs.

To garble the circuit, first the garbler samples a global difference ∆, and then for

each wire u in the circuit samples a “zero key” ku,0 and sets the corresponding “one

key” as ku,1 := ku,0 ⊕∆. The keys can then be written as ku,b = ku,0 ⊕ b ·∆ for b ∈ {0,1}.

(The reason for this setup is explained below, and is part of the FreeXOR technique.)

A wire connection exiting one gate and entering another is considered one wire, as are

all circuit input and output wires. A masking (or permutation) bit λu is also sampled

for each wire, the reason for which will be explained shortly. Then the garbler converts

each Boolean fan-in-two gate g, where g : {0,1}2 → {0,1}, with input wires u and v and

output wire w to a set of 4 ciphertexts as shown in Table 8.1, where Enc is an encryption

algorithm that takes two symmetric keys and a message as input. The details of the

encryption scheme are explained later.

195

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

u v Ciphertexts

0 0 Encku,0,kv,0

(
kw,0 ⊕∆ · (g(0⊕λu,0⊕λv)⊕λw)

∥∥(g(0⊕λu,0⊕λv)⊕λw)
)

0 1 Encku,0,kv,1

(
kw,0 ⊕∆ · (g(0⊕λu,1⊕λv)⊕λw)

∥∥(g(0⊕λu,1⊕λv)⊕λw)
)

1 0 Encku,1,kv,0

(
kw,0 ⊕∆ · (g(1⊕λu,0⊕λv)⊕λw)

∥∥(g(1⊕λu,0⊕λv)⊕λw)
)

1 1 Encku,1,kv,1

(
kw,0 ⊕∆ · (g(1⊕λu,1⊕λv)⊕λw)

∥∥(g(1⊕λu,1⊕λv)⊕λw)
)

Table 8.1: Yao’s garbled gate with FreeXOR and Point-And-Permute.

From the table, observe that the gate is transformed into a set of four ciphertexts,

each encrypting one of two output keys concatenated with a bit called a signal bit,

computed as a function of masking bits and gate input bits.

Once every gate has been garbled, the garbler sends all ciphertexts to the evaluator,

and for every wire u corresponding to one of its own inputs it sends a key and a signal

bit Λu := u⊕λu to the evaluator:

(ku,u⊕λu

∥∥u⊕λu)

where u ∈ {0,1} is the garbler’s input on wire u. (Note that in practice the garbler can

just hardwire its inputs instead of sending ciphertexts and keys, but the exposition is

clearer if this is not assumed.)

In the protocol known as oblivious transfer (OT), a sender sends two messages and a

receiver chooses to receive one; the security guarantee of the protocol is that the sender

does not learn which message was selected and the receiver does not learn anything

about the message it did not select. This process is used to transfer keys for circuit

input wires that correspond to the evaluator’s inputs from the garbler to the evaluator:

specifically, the garbler provides as input to the OT protocol the messages

(kv,0⊕λv

∥∥0⊕λv)

(kv,1⊕λv

∥∥1⊕λv)

where λv is known only to the garbler (but can be immediately deduced by the evaluator

using its own input). The evaluator selects the first if its input is v = 0, or the second if

its input is v = 1. Thus the evaluator obtains

(kv,v⊕λv ,v⊕λv)

which corresponds to the key kv,Λv with signal bit Λv = v⊕λv, and learns nothing about

the other key by the security of the OT protocol.

196

8.2. PRELIMINARIES

Evaluation proceeds in the following way. Given a gate, signal bits Λu and Λv and

corresponding keys ku,Λu and kv,Λv , the evaluator decrypts the ciphertext corresponding

to the row (Λu,Λv), i.e. the ciphertext

Encku,Λu ,kv,Λv
(kw,0 ⊕∆ · (g(Λu ⊕λu,Λv ⊕λv)⊕λw)

∥∥(g(Λu ⊕λu,Λv ⊕λv)⊕λw))

which returns the key kw,0 ⊕∆ · (g(u,v)⊕λw) since Λu ⊕λu = u and Λv ⊕λv = v, along

with the bit (g(u,v)⊕λw). Now since w = g(u,v), it holds that g(u,v)⊕λw = w⊕λw =
Λw and so the key learnt is kw,Λw and the bit is Λw. The evaluator now uses this key

(and the output key of another gate) to decrypt the next gate. The evaluator proceeds

iteratively through the circuit and obtains a key (or multiple keys) as final output. The

evaluator and garbler then interact to obtain the output to which the circuit output keys

correspond.

Point-and-Permute The technique of using masking bits as described above is called

point-and-permute and was introduced by Beaver et al. [BMR90]. The purpose of the

masking bits is so that the evaluator does not learn partial evaluations of the circuit,

which may otherwise leak information about the garbler’s input. Since the masks are

unknown and uniform, the signal bits leak nothing about the partial evaluation. Note

that it is only necessary to hide internal circuit wire values from the evaluator, so mask-

ing bits on circuit input wires can be set to 0.

The original technique for determining the output key while keeping the internal

circuit wire secret was to use some sort of authenticated encryption and for the evalu-

ator to permute the ciphertexts arbitrarily, so that the garbler had to decrypt all four

ciphertexts and output whichever was a valid plaintext; using point-and-permute, the

garbler only needs to decrypt one ciphertext per gate.

FreeXOR The reason for choosing keys to differ by the global difference ∆ is that it

leads to an efficient way to garble XOR gates: instead of choosing an independent output

wire key kw,0 and mask λw for XOR gates, the key can be set to kw,0 := ku,0 ⊕ kv,0 and

λw :=λu⊕λv. Then because the (XOR) difference between every zero/one key pair in the

circuit is the same (the global difference, ∆), there is no need to send ciphertexts for

197

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

XOR gates: the evaluator computes Λw :=Λu ⊕Λv and

ku,Λu ⊕kv,Λv = ku,0 ⊕∆ · (v⊕λv)⊕kv,0 ⊕∆ · (v⊕λv)

= ku,0 ⊕kv,0 ⊕∆ · (u⊕v⊕λu ⊕λv)

= kw,0 ⊕∆ · (w⊕λw)

= kw,Λw .

This technique was introduced by Schneider and Kolesnikov [KS08] and is known as

FreeXOR. It requires additional assumptions on the encryption scheme, discussed below

when the encryption scheme is defined.

Multi-Party Garbling Overview

In multi-party garbling, every party acts as both garbler and evaluator. Each party

generates a circuit for which it knows all the wire keys, but where each ciphertext

is encrypted under all parties’ corresponding wire keys. This means that every party

must evaluate all n circuits in parallel to decrypt each subsequent gate and so learn all

n succeeding keys.

Lindell and Pinkas [LP07] showed how to use cut-and-choose to obtain active secu-

rity. The orthogonal approach of SPDZ-BMR garbling is to force the parties to act hon-

estly when garbling by using actively-secure MPC to compute the ciphertexts. Lindell et

al. [LPSY15] gave a generic multi-party method, known as SPDZ-BMR, for garbling in a

constant number of rounds with active security where the preprocessed material is ob-

tained from SPDZ [DPSZ12]. Their method is (roughly) to execute the classic [BMR90]

multi-party garbling protocol using SPDZ to generate all the necessary secrets (such as

random bits and keys) and to compute the ciphertexts. While the SPDZ-BMR protocol

garbles Boolean circuits, the wire masks are arithmetic shares in Fp of binary values,

and the wire keys are random elements of Fp secret-shared amongst the parties. Impor-

tantly, it was shown that it is not necessary for parties to provide zero-knowledge proofs

that the evaluations of the PRF used for encryption, which are computed locally by each

party, are done honestly, as the evaluators will abort with overwhelming probability if

parties cheat in this way.

The FreeXOR garbling technique crucially relies on the fact that the keys are ele-

ments of a field of characteristic 2. Towards the goal of a multi-party garbling protocol

with FreeXOR, one might hope to perform SPDZ-BMR over F2l . One of the reasons

this was not considered for SPDZ-BMR was (presumably) that the SPDZ offline phase

198

8.2. PRELIMINARIES

was much faster for large prime fields than extension fields. Indeed, the most efficient

variant of SPDZ used BGV [BGV12] as the somewhat-homomorphic encryption (SHE)

scheme, which means that while the preprocessing phase can be parallelized through

ciphertext packing, for large extension fields – and in particular for finite extensions

of F2 – the amount of packing is severely limited. However, shortly after this Keller et

al. [KOS16] showed how to use OT to perform the offline phase even more efficiently.

This solution was shown to be more efficent than using SHE for extension fields. De-

spite recent work [KPR18] showing that SHE solutions outperform OT solutions for

large prime fields, [KOS16] remains faster over extension fields. Subsequently, Keller

and Yanai [KY18] showed how to apply FreeXOR in the multi-party setting using SPDZ-

BMR-style garbling where the SPDZ shares are in F2l instead of Fp.

Meanwhile, Hazay et al. [HSS17] also showed how to obtain FreeXOR in the multi-

party setting, again over F2l , but take a different approach from SPDZ-BMR: they do not

make use of a a full-blown MPC functionality and instead produce an unauthenticated

garbled circuit – it is merely additively shared, whereas in SPDZ-BMR and [KY18], the

garbled circuit is authenticated with MACs. Active security comes from the fact that an

incorrectly-garbled circuit will only cause the parties to abort when evaluating it. This

approach requires only a single (authenticated) F2 multiplication per AND gate.

The implementation of the protocols in this chapter1 uses the multi-party Boolean

circuit garbling protocol due to Keller and Yanai [KY18], which is less efficient than

[HSS17] and [WRK17b], but the implementation [Kel19] was easier to integrate with

the SPDZ compiler to be able to switch between different online phases of an MPC

program [ABF+18]. Despite this there is good reason to believe that the generation of

the specialized preprocessing required in the solution here dovetails with most if not all

of these alternative these garbling schemes as the only requirements are the following:

• Parties should be able to authenticate their own secret inputs (in fact, secret bits

suffices), for whatever authentication method is used in the protocol.

• Parties should be able to compute the XOR of authenticated bits.

Unfortunately, the authentication is usually abstracted away in garbling functionalities

so one cannot make straightforward claims about using garbling in a black-box way.
1The implementation was done by the coauthor of this work.

199

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

Encryption

So far, discussion of encryption has been abstract; in this section the definition as used

in the SPDZ-BMR protocol is given. Messages are encrypted by computing the XOR of

the message with a pseudorandom one-time-pad generated by a PRF under keys held

by multiple parties as described below. In detail, the encryption of a message m ∈ {0,1}κ

under keys ku := k1
u
∥∥ · · ·∥∥kn

u and kv := k1
v
∥∥ · · ·∥∥kn

v and nonce r, where Pi holds they keys

ki
u,ki

v ∈ {0,1}κ, is defined as

Encku,kv(m; r) :=
(

n⊕
j=1

Fk j
u,k j

v
(r)

)
⊕m

where

Fka,kb (·) := Fka(·)⊕Fkb (·).
For clarity, the formula will be explicitly in the circuit garbling rather than abstract

to the encryption notation. Use of the PRF for encryption as above, and the integration

of the FreeXOR technique to circuit garbling, require specific assumptions on the PRF,

as is discussed in [CKKZ12] and [HSS17]. Analysis of the security of this encryption

scheme is omitted as the details of the garbling are not the focus of this chapter.

Multi-Party Garbled Gate Using this encryption scheme, a garbled gate is defined

by the parties computing the following 4 · n ciphertexts, indexed by (α,β) ∈ {0,1}2 and

j ∈ [n]:

[[g̃ j
α,β]]

2l
:=

(
n⊕

i=1
[[Fki

u,α,ki
v,β

(idg, j)]]2
l
)
⊕[[k j

w,0]]
2l⊕[[∆ j]]2

l ·
(
(α⊕ [[λu]]2

l
) · (β⊕ [[λv]]

2l
)⊕ [[λw]]2

l)
where idg denotes the gate index and ∆ j is the global difference of P j. Each PRF eval-

uation Fki
u,α,ki

v,β
(idg, j) is evaluated by party Pi and then provided as input to the MPC

engine by calling FRPrep with input

(Input, i, idF i
α,β

,Fki
u,α,ki

v,β
(idg, j), sid).

The masking bits are generated as random bits using FRPrep so no party knows them.

Thus each gate requires 4 ·n MPC multiplications:

[[∆ j]]2
l · [[λu]]2

l
, [[∆ j]]2

l · [[λv]]
2l

, [[∆ j]]2
l · [[λw]]2

l
, ([[∆ j]]2

l · [[λu]]2
l
) · [[λv]]

2l
.

and n2 inputs for the PRF evaluations.

200

8.3. GENERATION OF DABITS

Once these ciphertexts have been computed, they are revealed to all parties, and so

each party Pi holds { g̃ j
α,β : (α,β) ∈ {0,1}2 , j ∈ [n]}. The full protocol is given in Figures 8.9,

8.10 and 8.11 but it is modified to allow for the use of the special preprocessing and for

parties to obtain secret-shared output, so it is best read in the context of later sections.

Note that since the keys for the PRF are in the field F2l in the garbling protocol, the

instance of FRPrep must be over a field with l =Ω(κ) for computational security.

Output

In the usual BMR protocol, immediately after garbling, the parties open the masks for

output wires. This enables all parties to view the output bits. Instead, in the conversion

protocol later, the parties will obtain the final output in secret-shared form, which they

can do simply by not opening the output masks, and by computing (locally) the XOR of

the public signal bit with the output mask. That is, an output bit is shared as

[[b]]2
l
:= [[λw]]2

l ⊕Λw.

8.3 Generation of daBits

In this section, the functionality FRPrep+ is constructed.

Any technique for generating daBits using MPC as a black box requires some form of

checking procedure to ensure consistency between the two fields. One common method

of checking consistency between two sets of the (alleged) same secrets involves checking

that random linear combinations of secrets produce the same result in both cases. Unfor-

tunately, since the two instantiations of MPC are in different fields, one cannot compute

the same linear combination in both fields. It is, however, possible to check XORs of bits,

which in Fp is non-linear and so requires multiplication. (See Equation 8.1 in Section

8.2.) Minimizing communication costs here therefore means minimizing the number of

multiplications. Techniques using OT such as [WRK17b] to generate authenticated bits

require a lot of XORs for checking correctness, so are undesirable for generating daBits.

The protocol for generating daBits is summarized as follows. In order to generate the

same bit in both fields, each party samples a bit and calls the Fp and F2k instances of

FRPrep with this same input and then the parties compute the n-party XOR. To ensure

all parties provided the same inputs in both fields, randomized checking procedures

called cut-and-choose and bucketing are executed. While this is often an expensive pro-

cedure, the larger the number of daBits generated the lower the average cost per daBit.

201

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

The idea behind these checks is the following. First, the parties open a random sub-

set of secrets so that with some probability all unopened bits are correct. This ensures

that the adversary cannot cheat on too many of the daBits. Then the secrets are placed

into “buckets”, and then in each bucket one secret is designated as the one to output,

all other secrets in the bucket are used to check the designated secret, and then they

discard all but the designated secret. For a single bucket, the check will only pass (by

construction) if either all secrets are correct or all are incorrect. Thus the adversary is

forced to corrupt whole multiples of the bucket size and hope they are grouped together

in the same bucket. Fortunately, (it will be shown that) there is no leakage on the bits

since the parameters required for the parts of the protocol described above already pre-

clude it.

The cut-and-choose and bucketing checks in the protocol presented here are similar

to those described by Frederiksen et al. [FKOS15, App. F.3], in which “triple-like” se-

crets can be checked efficiently. Note that it is not necessary to remove leakage on the

bits as described in [FKOS15, p.5] since no operation is performed beyond inputting the

bits into the two different fields: for triples, one creates the triple, authenticates and

then sacrifices, which means there is the possibility for leakage on the triple.

The protocol FRPrep

∥∥ΠdaBits is given in Figure 8.7.

Protocol FRPrep

∥∥ΠdaBits

This protocol is in the FRPrep-hybrid model. To save on notation, to say that the parties com-

pute [[z]] := [[x]] · [[y]] means that they compute a new identifier idz, call F p
RPrep

with input

(Multiply, idx, idy, idz, sidp), and store the output secret-sharing of a secret identified as idz

(and analogously for the F2l instance).

Initialize
1. Call an instance of FRPrep with input (Initialize,Γ, [[·]]p, sidp); denote it by F p

RPrep
.

2. Call an instance of FRPrep with input (Initialize,Γ, [[·]]2l
, sid2l); denote it by F2k

RPrep
.

FRPrep subroutines

Dealt with by F p
RPrep

or F2k

RPrep
, as determined by the session identifier.

daBit subroutine

daBits To generate ` bits, the parties do the following:

1. Generate daBits
a) Choose C > 1 and B > 1 so that CB · (B·`

B
)> 2σ.

b) For each i ∈ [n],

i. Party Pi samples a bit string (bi
1, . . . ,bi

C·B·`) ← U
(
{0,1}C·B·`).

202

8.3. GENERATION OF DABITS

Protocol FRPrep

∥∥ΠdaBits (continued)

ii. The parties call F p
RPrep

where Pi has input (Input, i, idbi
k
,bi

k, sidp)m
k=1 and P j ∈P \

{Pi} has input (Input, i, idbi
k
,⊥, sidp)m

k=1.

iii. The parties call F2l

RPrep
and F2k

RPrep
where Pi has input (Input, i, idbi

k
,bi

k, sid2l)m
k=1

and P j ∈P \{Pi} has input (Input, i, idbi
k
,⊥, sid2l)m

k=1.

iv. The parties store the returned shares {[[bi
k]]

p, [[bi
k]]

2l
}m
k=1.

2. Cut and Choose
a) Call FRand with input (RSubset, [C ·B ·`], (C−1) ·B ·`, sid) to obtain a set S ⊆ [C ·B ·`] of

size (C−1) ·B ·`.

b) Call F p
RPrep

with inputs (Open,0, idbi
k
, sidp)k∈S for all i ∈P .

c) Call F2k

RPrep
with inputs (Open,0, idbi

k
, sid2l)k∈S for all i ∈P .

d) If any party sees daBits which are not in {0,1} or not the same in both fields, they call

(either instance of) FRPrep with input (Broadcast,Abort, sid), (locally) output ⊥, and

halt.

3. Combine For all k ∈ [`]\ S, do the following:

a) Set [[bk]]
p := [[b1

k]]
p and [[bk]]

2l
:= [[b1

k]]
2l

.

b) For i from 2 to n,

i. Set [[bk]]
p := [[bk]]

p + [[bi
k]]

p −2 · [[bk]]
p · [[bi

k]]
p.

ii. Set [[bk]]
2l

:= [[bk]]
2l ⊕ [[bi

k]]
2l

.

4. Check Correctness
a) Call FRand with input (RBuckets, [B ·`],B) to obtain a set of sets {Xk}`k=1 to put the B ·`

daBits into ` buckets of size B.

b) For each bucket Xk ∈ {Xk}`k=1,

i. Relabel the bits in this bucket as b1, . . . ,bB.

ii. Set [[ck]]p := [[b1]]p and [[ck]]2
l
:= [[b1]]2

l
.

iii. For k′ from 2 to B, compute a new identifier idck and do the following:

A. Set [[ck]]p := [[b1]]p + [[bk′
]]p −2 · [[b1]]p · [[bk′

]]p.

B. Set [[ck]]2
l
:= [[b1]]2

l ⊕ [[bk′
]]2

l
.

iv. Call F p
RPrep

with inputs (Open,0, idck , sidp)B
k=2.

v. Call F2k

RPrep
with inputs (Open,0, idck , sid2l)B

k=2.

vi. If any party sees daBits which are not in {0,1} or not the same in both fields, they

call (either instance of) FRPrep with input (Broadcast,Abort, sid), (locally) output ⊥,

and halt.

vii. Set [[bk]]
p,2l

:= [[b1]]p,2l
.

c) Call F p
RPrep

with input (Verify, sidp).

d) Call F2k

RPrep
with input (Verify, sid2l).

e) If the checks pass without aborting, output {[[bk]]
p,2l

}`k=1 and discard all other bits.

Figure 8.7: Protocol for Two MPC Engines, with daBits in Both, FRPrep

∥∥ΠdaBits.

203

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

Proposition 8.1 is required in order to show that FRPrep

∥∥ΠdaBits universal compos-

ability (UC)-securely realizes the functionality FRPrep+ in Figure 8.3 in the FRPrep-

hybrid model.

Proposition 8.1. For a given ` > 0, choose B > 1 and C > 1 so that C−B · (B`
B

)−1 < 2−σ.

Then the probability that one or more of the ` daBits output after Check Correctness
by FRPrep

∥∥ΠdaBits is different in each field is at most 2−σ.

Proof. Using F p
RPrep

and F2k

RPrep as black boxes ensures the adversary can only possibly

cheat in the input stage. It will be argued that:

1. If both sets of inputs from corrupt parties to F p
RPrep

and F2k

RPrep are bits (rather than

other field elements), then the bits are consistent in the two different fields with

overwhelming probability.

2. The inputs in F2k are bits with overwhelming probability.

3. The inputs in Fp are bits with overwhelming probability.

If these hold then it follows that the daBits are bits in the two fields, and are consistent.

1. Let c be the number of inconsistent daBits generated by a given corrupt party. If

c > B` then every set of size (C−1)B` contains an incorrect daBit so the honest parties

will always detect this in Cut and Choose and abort. Since (C−1)B` out of CB` daBits

are opened, on average the probability that a daBit is not opened is 1− (C−1)/C = C−1,

and so if c < B` then

(8.2) Pr[None of the c corrupted daBits is opened]= C−c.

At this point, if the protocol has not yet aborted, then there are B` daBits remaining of

which exactly c are corrupt.

Suppose a daBit [[b]]p,2l
takes the value b̃ in Fp and b̂ in F2k . If the bucketing check

passes then for every other daBit [[b′]]p,2l
in the bucket it holds that b̃⊕ b̃′ = b̂⊕ b̂′, so

b̃′ = (b̂⊕ b̂′)⊕ b̃, and so b̃ = b̂⊕1 if and only if b̃′ = b̂′⊕1. (Recall that at this stage it is

assumed that the inputs are certainly bits.) In other words, within a single bucket, the

check passes if and only if either all daBits are inconsistent, or if none of them are. Thus

the probability that Check Correctness passes without aborting is the probability

that all corrupted daBits are placed into the same buckets. Moreover, this implies that

if the number of corrupted daBits, c, is not a multiple of the bucket size, this stage never

204

8.3. GENERATION OF DABITS

passes, so c = Bt for some t > 0. Let E be the event that all corrupted daBits are placed

in the same buckets. Then

Pr[E]=
(Bt

B
) · (B(t−1)

B
) · · ·(B

B
) · (B`−Bt

B
) · (B`−Bt−B

B
) · · ·(B

B
)(B`

B
) · (B`−B

B
) · · ·(B

B
)

= (Bt)!
B!t

· (B`−Bt)!
B!`−t · B!`

(B`)!

=
(
B`
Bt

)−1

.

Since the randomness for Cut and Choose and Check Correctness is independent,

the event that both checks pass after the adversary corrupts c daBits is the product of

the probabilities. To upper-bound the adversary’s chance of winning, the probability is

maximized by varying over t: thus it is necessary to find C and B so that

(8.3) max
t

{
C−Bt ·

(
B`
Bt

)−1}
< 2−σ.

The maximum occurs when t is small, and t ≥ 1 otherwise no cheating occurred; thus

since the proposition stipulates that C−B ·(B`
B

)−1 < 2−σ, the daBits are consistent in both

fields, if they are indeed bits in both fields.

2. Next, it will be argued that the check in Cut and Choose ensures that the in-

puts given to F2k

RPrep are indeed bits. It follows from Equation 8.2 that the step Cut and
Choose aborts with probability C−c if any element of either field is not a bit, as well

as if the elements in the two fields do not match. Moreover, in Check Correctness, in

order for the check to pass in F2k for a given bucket, the secrets’ higher-order bits must

be the same for all shares so that the XOR is always zero when the pairwise XORs are

opened. Thus the probability that this happens is the same as the probability above in

Equation 8.3 since again this can only happen when the adversary is not detected in

Cut and Choose, that it cheats in some multiple of B daBits, and that these cheating

bits are placed in the same buckets in Check Correctness.

3. It will now be shown that all of the Fp components are bits. To do this, it will be

shown that if the Fp component of a daBit is not a bit, then the bucket check passes

only if all other daBits in the bucket are also not bits in Fp.

205

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

If the protocol has not aborted, then in every bucket B, for every 2 ≤ j ≤ B, it holds

that

(8.4) b1 +b j −2 ·b1 ·b j = c j

where c j ∈ {0,1} are determined by the XOR in F2k . Note that since c j =⊕n
i=1 b1

i ⊕
⊕n

i=1 b j
i

and at least one b j
i is generated by an honest party, this value is uniform and unknown

to the adversary when it chooses its inputs at the beginning.

Suppose b1 ∈Fp \{0,1}. If b1 = 2−1 ∈Fp then by Equation 8.4 we have b1 = c j; but c j

is a bit, so the “XOR” is not the same in both fields and the protocol will abort. Thus it

may be assumed that b1 6= 2−1 and so the equation above can be rewritten as

(8.5) b j = b1 − c j

2 ·b1 −1
.

Now if b j is a bit then it satisfies b j(b j −1)= 0, and so

0=
(

b1 − c j

2 ·b1 −1

)
·
(

b1 − c j

2 ·b1 −1
−1

)
=− (b1 − c j)(b1 − (1− c j))

(2 ·b1 −1)2

so b1 = c j or b1 = 1− c j; thus b1 ∈ {0,1}, which is a contradiction. Thus if b1 is not a

bit then b j is not a bit for every other b j in this bucket. Moreover, for each j = 2, . . . ,B,

there are two distinct values b j ∈ Fp \ {0,1} solving Equation 8.5 corresponding to the

two possible values of c j ∈ {0,1}, which means that if the bucket check passes then the

adversary must also have guessed the bits {c j}B
j=1, which it can do with probability 2−B

since they are constructed using at least one honest party’s input. Thus the chance of

cheating without detection in this way is at most 2−Bt ·C−Bt · (B`
Bt

)−1
.

Thus it has been shown that the probability that b1 ∈ Fp \ {0,1} is given as output

for the Fp component is at most the probability that the adversary corrupts a multiple

of B daBits, that these daBits are placed in the same buckets, and that the adversary

correctly guesses c bits from honest parties (in the construction of the bits {b j} j∈B) so

that the appropriate equations hold in the corrupted buckets. Indeed, needing to guess

the bits ahead of time only reduces the adversary’s chance of winning from the same

probability in the F2k case.

It is therefore possible to conclude that the daBits are bits in both fields and are the

same in both fields with probability except with probability at most 2−σ.

Theorem 8.1. The protocol FRPrep

∥∥ΠdaBits UC-securely realizes FRPrep+ against an ac-

tive, static adversary corrupting up to n−1 out of n parties in the FRPrep, FCoinFlip-hybrid

model.

206

8.3. GENERATION OF DABITS

Proof. The simulator is given in Figure 8.8.

Simulator SPrep+

Initialize
1. Await the call to FRPrep with input (Initialize,Γ, [[·]]p,0), initialize a local instance, and

then call FRPrep+ with input (Initialize,Γ, [[·]]p,0).

2. Await the call to FRPrep with input (Initialize,Γ, [[·]]2l
,1), initialize a local instance, and

then call FRPrep+ with input (Initialize,Γ, [[·]]2l
,1).

FRPrep subroutines

All calls for producing preprocessing, other than what is described for the generation of daBits,

below, sent from A to F p
RPrep

or F2l

RPrep
, should be forwarded to FRPrep+. All response messages

from FRPrep+ are relayed directly back to A.

daBit subroutine

daBits Call FRPrep+ with input (daBits, id1, . . . , id`,0,1).

1. Generate daBits Execute Generate daBits from FRPrep

∥∥ΠdaBits with A, sampling in-

puts for all honest parties.

2. Cut and Choose Execute Cut and Choose from FRPrep

∥∥ΠdaBits with A.

3. Combine Execute Combine from FRPrep

∥∥ΠdaBits with A.

4. Check Correctness Execute Check Correctness from FRPrep

∥∥ΠdaBits with A. If the pro-

tocol aborted, send Abort to FRPrep+, and otherwise send OK.

Figure 8.8: Simulator SPrep+ for FRPrep+.

The simulator merely relays information between A and FRPrep+ for the entire exe-

cution of the protocol outside of the procedure daBits, so the simulation here is perfect.

The simulator also honestly executes the oracle FCoinFlip, so this is also simulated per-

fectly.

Notice that the parties do not have inputs in the subroutine daBits in FRPrep+, so

there is no need for the simulator to extract any inputs from corrupt parties. It remains

to show the contribution to the transcripts produced in its execution are indistinguish-

able, namely that the protocol aborts in the hybrid world with the same distribution

as when the honest parties are emulated by the simulator, and that the outputs of all

corrupt parties combined with the outputs of honest parties are “consistent” – that is,

they correspond to a possible execution of FRPrep+ or of the protocol.

The correctness of the simulation holds by the fact that the simulator simply exe-

cutes the protocol as honest parties would, making random choices for honest parties

by sampling in the same way as in the protocol.

207

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

If the adversary performs a selective-failure attack, then the environment may learn

information. A selective failure attack is where the environment can learn some infor-

mation if the protocol does not detect cheating behaviour. For example, if the environ-

ment guesses an entire bucket of bits (and thus guesses some daBit) and chooses the

adversary’s input so that the bucket check would pass based on these guesses, then if

the protocol does not abort, then the environment learns that its guesses were correct.

Moreover, in this case the simulator does not tell FRPrep+ to abort and so the environ-

ment receives the outputs of honest parties. Then if the final output bit for this daBit

is not the XOR of the honest parties’ final output shares for this daBit with the XOR of

the corrupt parties’ shares, then the execution must have happened in the ideal world

since in this world the output depends on the random tape of FRPrep+ and is indepen-

dent of the adversary’s and honest parties’ random tapes, contrasting the output in the

FRPrep,FCoinFlip-hybrid world in which the final output is an XOR of bits on these tapes

(which were guessed by the environment). Since this happens with probability 1
2 , in

expected 2 executions, the environment can distinguish. However, by Proposition 8.1,

the environment can only mount a selective failure attack by making such guesses with

success with probability at most 2−σ by the choice of parameters.

Thus the only way to distinguish between worlds is if the transcript leaks informa-

tion on the honest parties’ inputs. However, the only time data regarding the honest

parties’ inputs are revealed is in Check Correctness, in which XORs are computed

in both fields and the result is opened. This reveals no information on the final daBit

outputs as the linear dependence between the secret and the public values is broken

by discarding all secrets in each bucket except the designated (i.e. first) bit. Thus the

overall distributions of the two executions are statistically indistinguishable.

8.4 Switching and Modified Garbling

In this section, the switching procedures are explained in detail. The modified SPDZ-

BMR protocol ΠCABB is given in Figures 8.9, 8.10 and 8.11.

208

8.4. SWITCHING AND MODIFIED GARBLING

Protocol ΠCABB

This protocol is realized in the FRPrep+-hybrid model. To save on notation, to say that the parties

compute [[z]] := [[x]] · [[y]] means that they compute a new identifier idz, call F p
RPrep

with input

(Multiply, idx, idy, idz, sidp), and store the output secret-sharing of a secret identified as idz

(and analogously for the F2l instance). Recall that ` := blog pc.
Initialize The parties call FRPrep+ with inputs (Initialize,Fp, sidp) and

(Initialize,F2k , sid2l).

Arithmetic Circuit

Input For Pi to provide input x ∈ Fp, the parties compute a new identifier idx, Pi calls

FRPrep+ with input (Input, i, idx, x, sidp) and all other parties call FRPrep+ with input

(Input, i, idx,⊥, sidp).

Add To add secrets x and y, parties compute a new identifier idz and call FRPrep+ with input

(Add, idx, idy, idz, sidp) and then each Pi provides input [[x]]p
Pi

and [[y]]p
Pi

.

Multiply To multiply secrets x and y, parties call FRPrep+ with input

(Multiply, idx, idy, idz, sidp) where idz is a new identifier.

Output To receive output x with identifier idx, parties do the following:

1. Call FRPrep+ with input (Verify, sidp).

2. Call FRPrep+ with input (Open,0, idx, sidp).

3. Call FRPrep+ with input (Verify, sidp).

Boolean Circuit (All of the following procedures are performed, in order.)

Initialize garbling To garble a Boolean circuit C with identifiers W for wires, GAND for AND

gates and GXOR for XOR gates, the parties do the following:

1. The parties compute new identifiers {idλw }w∈Wo and call FRPrep+ with input

(daBits, {idλw }w∈Wo , sidp, sid2l) where Wo denotes the set indexing circuit output wires.

2. For each i ∈ [n], the parties compute a new identifier id∆i and call FRPrep+ with input

(RElt, id∆i , sid2l) and then call FRPrep+ with input (Open, i, id∆i , sid2l) to reveal ∆i to Pi.

Input layer Let the number of Fp inputs to the circuit be t. The parties do the following:

1. For k = 1 to t,
a) Compute new identifiers {idrk, j }

`−1
j=0 and call FRPrep+ with input

(daBits, {idrk, j }
`
j=0, sidp, sid2l) to obtain {[[rk, j]]

p,2l
}`j=0.

b) Compute a new identifier idrk and set [[rk]]
p :=∑`−1

j=0 2 j · [[rk, j]]
p.

c) Create the circuit ADDMOD(ak,bk, p) and prepend the circuit to C to be garbled, augment-

ing GAND and GXOR as appropriate. See Section 8.4.1 for details.

d) For every input wire w corresponding to an input ak, j of ADDMOD(ak,bk, p), compute a

new identifier idλwk, j
and set [[λwk, j]]

2l
:= [[0]]2

l
.

e) For every input wire w corresponding to an input bk, j of ADDMOD(ak,bk, p), compute a

209

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

Protocol ΠCABB (continued)

new identifier idλwk, j
and set [[λwk, j]]

2l
:= [[rk, j]]

2l
.

2. For each input wire w ∈W, for each i ∈ [n],

a) Compute a new identifier idki
w,0

and call FRPrep+ with input (RElt, idki
w,0

, sid2l).

b) Call FRPrep+ with input (Open, i, idki
w,0

, sid2l) to reveal ki
w,0 to Pi.

c) Pi sets ki
w,1 := ki

w,0 ⊕∆i and the parties set [[ki
w,1]]

2l
:= [[ki

w,0]]
2l ⊕ [[∆i]]2

l
.

Garble Refer to ΠBMRGarble in Figure 8.10.

Output layer For every wire w that is an (external, circuit) output wire, the parties do the fol-

lowing

1. Retrieve a daBit [[λw′]]p,2l
from memory, generated in Initialize, with identifier idλw′ .

2. Compute a new identifier idλw0
and set [[λw0]]

2l
:= [[λw]]2

l ⊕ [[λw′]]2
l
.

3. Call FRPrep+ with input (Open,0, idλw0
, sid2l); all parties store this locally in memory as the

value Λw0 .

Open To open the circuit, the parties do the following:

1. For every g ∈GAND, for every j ∈ [n], for every (α,β) ∈ {0,1}2,

a) Call FRPrep+ with input (Open,0, id g̃ j
α,β

, sid2l). If FRPrep+ sends the message Abort, then

call FRPrep+ with input (Broadcast,Abort, sidp), locally output ⊥, and halt; otherwise

continue.

2. Call FRPrep+ with input (Verify, sid2l). If FRPrep+ sends the message Abort, then (locally)

output ⊥ and halt; otherwise, locally output (idg, (g̃ j
0,0, g̃ j

0,1, g̃ j
1,0, g̃ j

1,1)n
j=1)g∈G and the input

mask identifiers idr1 , . . . , idr t and associated shares [[r1]]p, . . . , [[r t]]p.

Evaluate Refer to ΠBMREvaluate in Figure 8.11.

Figure 8.9: Protocol for Garbling and Evaluating a Circuit, ΠCABB.

Subprotocol ΠBMRGarble

Garble Traversing the circuit in topological order, for every gate g ∈G with (internal) input wires

u and v and (internal) output wire w,

• If g is an XOR gate, i.e. g ∈GXOR,

1. The parties set [[λw]]2
l
:= [[λu]]2

l ⊕ [[λv]]2
l
.

2. For each i ∈ [n], Pi computes ki
w,0 := ki

u,0 ⊕ ki
v,0 and ki

w,1 := ki
w,0 ⊕∆i and all parties set

[[ki
w,0]]

2l
:= [[ki

u,0]]
2l ⊕ [[ki

v,0]]
2l

.

• If g is an AND gate, i.e. g ∈GAND,

1. Compute a new identifier idλw and call FRPrep+ with input (RBit, idλw , sid2l) to obtain

[[λw]]2
l
.

2. For each i ∈ [n],

210

8.4. SWITCHING AND MODIFIED GARBLING

Subprotocol ΠBMRGarble (continued)

a) Compute a new identifier idki
w,0

and call FRPrep+ with input (RElt, idki
w,0

, sid2l) to

obtain [[ki
w,0]]

2l
.

b) Call FRPrep+ with input (Open, i, idki
w,0

, sid2l) to reveal ki
w,0 to Pi.

c) Party Pi sets the one key as ki
w,1 := ki

w,0 ⊕∆i.

d) For all four distinct elements (α,β) ∈ {0,1}2, and for every j ∈ [n], the par-

ties compute a new indentifier idF g,i, j
α,β

, and then Pi calls FRPrep+ with in-

put
(
Input, i, idF g,i, j

α,β
,Fki

u,α,ki
v,β

(idg‖ j), sid2l

)
and the other parties with input(

Input, i, idF g,i, j
α,β

,⊥, sid2l

)
.

3. For all j ∈ [n] and all (α,β) ∈ {0,1}2, the parties compute

[[g̃ j
α,β]]

2l
:=

(⊕n
i=1 [[F g,i, j

α,β]]2
l)⊕ [[k j

w,0]]
2l ⊕ [[∆ j]]2

l ·
(
(α⊕ [[λu]]2

l
) · (β⊕ [[λv]]2

l
)⊕ [[λw]]2

l)
.

Figure 8.10: Subprotocol for Garbling a Circuit, ΠBMREvaluate.

Subprotocol ΠBMREvaluate

Evaluate The parties, holding the outputs (idg(g̃i
0,0, g̃i

0,1, g̃i
1,0, g̃i

1,1)n
i=1)g∈G , idr1 , . . . , idr t and

[[r1]]p, . . . , [[r t]]p of ΠBMRGarble, evaluate in the following way, traversing the circuit in topologi-

cal order:

1. For each input {[[xk]]
p}k∈[t], the parties do the following:

a) Retrieve from memory the secret mask [[rk]]
p (locally) output in ΠBMRGarble.

b) Compute a new identifier idak and set [[ak]]
p := [[xk]]

p − [[rk]]
p.

c) Call FRPrep+ with input (Open,0, idak , sidp).

d) Denote the corresponding input wires by {wk, j}
blog pc−1
j=0 . Bit-decompose the public value

ak and let the bits be {ak, j}
blog pc−1
j=0 .

e) For each j = 0, . . . ,blog pc−1, set Λwk, j := ak, j ⊕0.

f) For each i ∈ [n], Pi sends {ki
wk, j ,Λwk, j

}blog pc−1
j=0 to all other parties.

g) The parties call FRPrep+ with input (Verify, sidp).

2. For every g ∈G,

a) If g is an XOR gate,

i. Party Pi computes Λw :=Λu ⊕Λv.

ii. Party Pi computes all n output keys indexed by j ∈ [n], as k j
w,Λw

:= k j
u,Λu

⊕k j
v,Λv

.

b) If g is an AND gate,

i. Each party computes the n keys indexed by j ∈ [n] as

k j
w,Λw

:= g̃ j
Λu ,Λv

⊕
(

n⊕
i=1

Fki
u,Λu

,ki
v,Λv

(g‖ j)

)

and compares its keys ki
w,0 and ki

w,1 to the ith key obtained to determine the global

211

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

Subprotocol ΠBMREvaluate (continued)

signal bit Λw.

3. For every external output wire w,

a) Retrieve from memory the corresponding public signal bit Λw0 produced in Output
layer.

b) Locally compute Λw′ :=Λw0 ⊕Λw.

c) Locally compute the secret output as

[[bw]]p :=Λw′ + [[λw′]]p −2 ·Λw′ · [[λw′]]p.

4. Send the message (Verify, sid2l) to FRPrep+.

Figure 8.11: Subprotocol for Evaluating a Garbled Circuit, ΠBMREvaluate.

8.4.1 Conversion from LSSS to GC

In brief, the parties open x− r in MPC where r =∑blog pc−1
j=0 2 j · [[r j]]

p is constructed from

daBits
{
[[r j]]

p,2l}blog pc−1

j=0
, and FRPrep is called with input (Verify, sidp) either at this

point or later on, and then these public values are taken to be signal bits to the circuit.

To correct the offset r, the circuit simply takes in the F2k parts of the daBits of r as

input, and the circuit (x− r)+ r mod p is computed inside the garbled circuit.

In more detail, consider the following Boolean circuit

ADDMOD(a,b, p) := (a+b)− p ·
(
(a+b)

?≥ p
)

where the computation takes place over the integers and the inputs a and b are supplied

as a string of bits.

Let the input wires of ADDMOD(a,b, p) be (u j)
blog pc−1
j=0 for the bits of a, (v j)

blog pc−1
j=0 for the

bits of b, and the output wires be (w j)
blog pc−1
j=0 , and let the input wires of C be (u′

j)
blog pc−1
j=0 .

Then the circuit that the parties garble in ΠCABB is the circuit obtained by associating

wire w j with wire u′
j for every j = 0 to blog pc−1. Now if a = x− r and b = r then clearly

(C ◦ADDMOD)(a,b, p)= C(x) where ◦ denotes the wiring association as above.

Optimization With some tweaking of the garbling protocol, it is possible to reduce

communication and computation costs further. Since x− r is a public value, there is no

need to have masks for the corresponding input wires, so they can be set to 0. Fur-

thermore, since r is independent of the online inputs, the bits used to construct r can

be hard-wired into the circuit, reducing preprocessing and online costs: if the masking

212

8.4. SWITCHING AND MODIFIED GARBLING

bits are set to be equal to the daBits used to construct r, i.e. {r j}
blog pc−1
j=0 , then when

computing the ciphertexts, for the input u corresponding to the bit r j, it holds that

α=Λu =λu ⊕ r j = 0, so the ciphertexts are

[[g̃ j
0,β]]

2l
:=

(
n⊕

i=1
[[Fki

u,0,ki
v,β

(idg, j)]]2
l
)
⊕[[k j

w,0]]
2l ⊕[[∆ j]]2

l ·
(
(0⊕ [[λu]]2

l
) · (β⊕ [[λv]]

2l
)⊕ [[λw]]2

l)
for β ∈ {0,1}. Thus there are only 2n ciphertexts instead of 4n, and consequently also

only 2n keys must be opened online instead of 4n. Note that in order to avoid cluttering

the description, in the protocol in Figure 8.9, all four ciphertexts are computed and

opened.

8.4.2 Conversion From GC to LSSS

The output of a multi-party garbled circuit is one or more keys and corresponding public

signal bits. In SPDZ-BMR, the output wire masks are revealed after garbling so that

all parties can learn the final outputs. A simple way of retaining shared output of the

circuit, as required in mixed protocols, is for the parties not to reveal the masks for

output wires after garbling and instead to compute the XOR of the secret-shared mask

with the public signal bit, in MPC. In other words, for output wire w they obtain a

sharing of the secret output bit b by computing

[[b]]2
l
:=Λw ⊕ [[λw]]2

l
.

However, the output must be in Fp. If the circuit output wires are daBits, then the

parties can (locally) compute a sharing of each output bit as

[[b]]p :=Λw + [[λw]]p −2 ·Λw · [[λw]]p.

If such modifications to the garbling protocol are not possible, then the following

approach gives a cheap conversion procedure. One can define an additional layer to the

circuit after the output layer which converts output wires with masks only in F2l to

output wires with masks as daBits, without changing the real values on the wire. To do

this, parties do the following: for every output wire w,

1. In the garbling stage,

a) Take a new daBit [[λw′]]p,2l
.

b) Set [[λw0]]
2l

:= [[λw]]2
l ⊕ [[λw′]]2

l
.

213

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

c) Call FRPrep+ with input (Open,0, idλw0
, sid) an call this Λw0 = 0⊕λw0 .

2. In the evaluation stage, upon obtaining Λw,

a) Compute Λw′ :=Λw ⊕Λw0 .

b) Compute the final (Fp-secret-shared) output as [[b]]p := Λw′ + [[λw′]]p − 2 ·Λw′ ·
[[λw′]]p.

Observe that Λw0 ≡λw0 so this procedure is just adding a layer of XOR gates where the

masking bits are daBits and the other input wire is always 0 (so the gate evaluation

doesn’t change the real wire value), as shown in Figure 8.12. This was the labelled

“Mask Conversion” layer in Figure 8.2. Note that since the signal bits for XOR gates are

determined from input signal bits and not the output key, there is no need to generate

an output key for wire w0.

(w, [[λw]]2
l
,Λw,kw,Λw)

(w0, [[λw0]]
2l

,Λw0 ,⊥)

(w′, [[λw′]]2
l
,Λw′ ,⊥)

Figure 8.12: Circuit Output Wires.

For correctness, observe that:

Λw′ ⊕λw′ = (Λw ⊕Λw0)⊕ (λw ⊕λw0)

= (
(b⊕λw)⊕ (0⊕λw0)

)⊕ (λw ⊕λw0)

= b.

8.4.3 Security

Correctness of the actual garbling was outlined in Section 8.2. The proof of Theorem 8.2

follows from the security of SPDZ-BMR [LSS16] and [KY18], and the fact that the addi-

tional input and output procedures perfectly hide the actual circuit inputs and outputs.

Theorem 8.2. The protocol ΠCABB UC-securely realizes the functionality FCABB against

a static, active adversary in the FRPrep+-hybrid model.

Proof (Sketch). Security essentially follows immediately from the security of the gar-

bling protocol, the fact that FPrep can be used to realize FABB UC-securely via the pro-

tocol ΠOnline (which means that FRPrep can also be used to realize it also using ΠOnline

214

8.4. SWITCHING AND MODIFIED GARBLING

since it is merely an extension of FPrep), and the fact that the only communication in

the switching procedure involves revealing inputs masked by random values in Fp. A

sketch of the proof is now given highlighting these key points.

The only secrets to which the simulator is not privy are the secret inputs of honest

parties. Everything else in the protocol involves calls to FRPrep+ which is locally emu-

lated by the simulator. Moreover, preprocessing is not output by FCABB, which means

that any preprocessing generated to perform the garbling or circuit evaluation can be

emulated perfectly by the simulator.

Suppose there are h honest parties in total, and that they are indexed by [h] ⊆ [n],

and let Hybrid i be defined as follows:

Hybrid i The FRPrep+-hybrid world in which the simulator is handed the inputs of all

honest parties P j ∈P \A where j ≤ i.

The simulator is given in Figure 8.13.

Simulator SCABB

Initialize Initialize a local copy of FRPrep+ and await the inputs (Initialize,Fp, sidp) and

(Initialize,F2k , sid2l) from A.

Arithmetic Circuit

Calls to FRPrep+ with sid = sidp have the same format as corresponding calls in FCABB, so the

simulator just relays these calls. For any calls to preprocessing, the simulator executes a local copy

of FRPrep+ and emulates honest parties honestly.

Boolean Circuit (All of the following procedures are performed, in order.)

Initialize garbling Run Initialize from ΠCABB with A.

Input layer Run Input layer from ΠCABB with A.

Garble Run ΠBMRGarble with A.

Output layer Run Output layer from ΠCABB with A.

Open Run Open from ΠCABB with A.

Evaluate Call FCABB with input (EvaluateCircuit,C, idx1 , . . . , idxt , id , sidp) and then do the

following:

1. For each k = 1 to t do the following:

a) Retrieve the masks [[rk]]
p generated during ΠBMREvaluate as well as the shares of the

input [[xk]]
p.

215

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

Simulator SCABB (continued)

b) Compute a new identifier idak and set [[ak]]
p := [[xk]]

p − [[rk]]
p.

c) Await the call to FRPrep+ with input (Open,0, idak , sidp) from A and execute it honestly

to obtain some ak ∈Fp.

d) (This step requires no simulation.)

e) (This step requires no simulation.)

f) Await the calls to FRPrep+ with input (Open,0, idkwk, j ,ak, j
, sid2l)`−1

j=0 from A, where wk, j is

the wire for the jth input bit ak, j of ak, and execute the procedure honestly.

g) Await the call to FRPrep+ with input (Verify, sidp) and execute it honestly, aborting if

(emulated) honest parties would.

2. Execute the circuit evaluation honestly on behalf of (emulated) honest parties, aborting if

they would abort. to FCABB. If an honest party would have aborted then the simulator

sends Abort to FCABB.

3. Execute the output layer procedures honestly on behalf of (emulated) honest parties.

4. Await the call to FRPrep+ with input (Verify, sid2l). If at any point an (emulated) honest

party aborted, send the message Abort to FCABB, and otherwise send the message OK.

Figure 8.13: Simulator SCABB for FCABB.

The world Hybrid h is exactly the ideal world in which the simulator receives the

inputs of no honest parties. The world Hybrid 0 is exactly the FRPrep+-hybrid world and

is simulated perfectly since the simulator just executes the protocol on behalf of honest

parties. No extraction of inputs is required since the ideal calls of A to FRPrep+ contain

all necessary information to pass on messages to FCABB so that the functionality will

provide the same outputs to real honest parties.

Claim 8.1. Hybrid i is indistinguishable from Hybrid i+1 for i = 0, . . . ,h−1.

Proof. For the emulation of FRPrep+ with sid = sidp and for the garbling the simulation

is perfect since honest parties’ inputs are not required.

The ability of the simulator to equivocate outputs in the simulation SABB of the pro-

tocol ΠOnline that realizes FABB in the FPrep-hybrid world implies the simulator here

can do the same when FCABB provides output and the adversary calls FRPrep+ to obtain

outputs of secrets. The upshot of this is that the values on which the garbled circuit is

evaluated in the protocol do not matter, since circuit evaluation does not leak informa-

tion about the inputs (as proved in [LPSY15]), and FCABB only outputs elements of Fp,

so whatever is given as output from FCABB can be used to replace the simulated output:

it only matters that the protocol aborts with the same distribution as in a real execution,

which it does because the simulator emulates the behaviour of honest parties.

216

8.5. REALIZING THE PROTOCOL

However, there is one point in the protocol in which the transcript is dependent on

the real inputs of honest parties (which are unknown to the simulator), which is when

secrets in Fp are opened after being masked with daBits. However, since the secret

masks [[r]]p are constructed from uniformly-sampled bits, by Lemma 8.1 the distribution

of the uniformly sample r′ ← U
(
Fp

)
is statistically close to the distribution of a− r

mod p where a is the input of an honest party and r ← U
(
{0,1}blog pc). �

Since there are a polynomial number of hybrid worlds that are statistically indis-

tinguishable, Hybrid 0 and Hybrid h are also statistically indistinguishable – that is,

the FRPrep+-hybrid world is indistinguishable from the ideal world.

8.5 Realizing the Protocol

When implementing the daBit generation, there are various caveats and possible opti-

mizations to the protocol described, a few of which are outlined in this section.

Choice of prime It is necessary that p be close to a power of 2 so that x− r is (sta-

tistically) indistinguishable from a uniform element of the field, as discussed in Sec-

tion 8.2. If SPDZ is used to perform the MPC, a technique known as packing is used

to amortize the costs; this technique requires that p be congruent to 1 mod N where

N = 215 = 32768. This means that the prime is always different from a power of two

by at least 15 bits since the l-bit prime must be of the form 2l−1 + k ·215 +1 for some k

where 1≤ k ≤ 2l−16−1, so the secret masks r constructed from a sequence of bits “miss”

at least this much of the field.

Cut and choose optimization Parties only need to input bits (instead of full field

field elements) into FRPrep during FRPrep

∥∥ΠdaBits, which means that for the instance of

FRPrep over F2l , only authenticated “bit” masks need to be generated for the input phase:

for FRPrep over F2l , full field element masks are generally constructed by generating a

set of l authenticated bits. This trick cannot be applied to the instance of FRPrep over

Fp.

Share conversion To reduce the amount of garbling when converting an additive

share to a GC one, if the Fp inputs to the garbled circuit are assumed to be bounded

217

CHAPTER 8. ACTIVELY-SECURE MIXED PROTOCOL

by p/2σ, then a uniform r in Fp is 2σ times larger than x so x − r is statistically-

indistinguishable from a uniform element of Fp; consequently, one need only garble

(x− r)+ r and not (x− r)+ r mod p, which makes the circuit marginally smaller

8.6 Application: Computation of a Multi-Class SVM

The application and implementation as described here was completed by the coauthor of

this work. It is included for the sake of completeness.

A (multi-class) Linear Support Vector Machine (SVM) is a method for classifying

images using machine learning. It involves deciding on a set of classes and computing a

matrix A and a vector b from a large dataset generated by some well-defined method in

such a way that when a new input “feature vector”, x, is provided as input, the index of

the largest component of the vector A ·x+b determines the class. The key computation

is therefore the function

ARGMAX (A ·x+b) ,

that is, computing the index of the first component of the vector A ·x+b attaining the

maximum value in the vector (i.e. ‖A ·x+b‖∞), for a given vector x.

Computing an SVM can be done in MPC. The application for this is that an orga-

nization or company that trains the model (i.e. computes A and b) on a large private

dataset may want to allow clients to query the model on their own private input (i.e. x).

In this case, the MPC computation is that of computing

ARGMAX
(
[[A]] · [[x]]+ [[b]]

)
,

where [[A]] and [[b]] are input by the company with the private dataset, and [[x]] by the

client that wishes to classify their image.

The efficiency of the switching protocols (called “circuit marbling”) described in this

chapter, using daBits, was tested for an SVM. This particular circuit was chosen because

it is clear that it uses a combination of arithmetic computation, namely [[A]] · [[x]]+ [[b]],
and bit-wise operations, namely ARGMAX, which are better suited to LSSS-based and

GC-based MPC, respectively. In the experiments, the online phase of an SVM with 100

classes and 128 features was benchmarked by simulating a WAN with a round-trip

ping time of 100ms and 50Mb/s bandwidth with two parties. Concretely, this means

that x ∈F128
p , A ∈F102×128

p and b ∈F102
p . This is the same SVM structure used by Makri

218

8.6. APPLICATION: COMPUTATION OF A MULTI-CLASS SVM

et al. [MRSV19] to classify the Caltech-101 dataset [LAR03] which contains 102 dif-

ferent categories of images such as aeroplanes, dolphins, helicopters, and others. The

particular SVM has bounded inputs so that x can be viewed as a vector x ∈ (Z/225Z)128,

a field size p where log p = 128 and statistical security σ= 64.

The results are given in Tables 8.2 and 8.3, where “Marbled SPDZ” refers to the

protocols as described in this chapter. The costs are given in terms of data items (i.e.

triples, bits, and AND gates) as the concrete costs depend on the implementation of

MPC and GC that is used. Timings were computed using [Kel19].

The online phase using Marbled-SPDZ is one order of magnitude faster than both

SPDZ-BMR and SPDZ. The price paid for this efficiency in the online phase is that

approximately 2.6 times the number of triples are required when compared to SPDZ;

however, Marbled-SPDZ requires significantly fewer garbled AND gates, essentially be-

cause arithmetic modulo p is expensive in a Boolean circuit, saving by a factor of almost

400.

Protocol Sub-Protocol
Preprocessing cost

Fp triples Fp bits AND gates

SPDZ n/a 19015 9797 n/a

SPDZ-BMR n/a n/a n/a 14088217

SPDZ 0 13056 n/a
Marbled-SPDZ daBit convert 63546 0 27030

SPDZ-BMR n/a n/a 8383

Table 8.2: Two-party linear SVM: single-threaded (non-amortized) preprocessing phase
costs with σ= 64.

It is clear that by relegating computation to the preprocessing phase by generating

daBits, there is considerable speed-up in the online phase. Thus in situations in which

preprocessing is outsourced, daBits are a useful form of data. However, the total amount

of preprocessing required is significantly more than for plain SPDZ.

In conclusion, the method presented here for generating daBits is very costly and

there may be situations in which parties can generate them with authentication without

treating the garbling and secret-sharing in a “completely” black-box way. Despite this,

it seems that they are indeed a useful form of preprocessed data.

219

Protocol Sub-Protocol
Online cost

Comm. rounds Time (ms) Total (ms)

SPDZ n/a 54 2661 2661

SPDZ-BMR n/a 0 2786 2786

SPDZ 1 133
272Marbled-SPDZ daBit convert 2 137

SPDZ-BMR 0 2

Table 8.3: Two-party linear SVM: single-threaded (non-amortized) online phase costs
with σ= 64.

Chapter 9

Conclusions

After a little over 30 years, multi-party computation (MPC) is finally starting to become

practical, and is deployed in real-world applications. Nonetheless, there is still a lot to

be done. This chapter lists a few of the areas of research that would follow well from the

topics covered in this thesis.

Asynchronous MPC The protocols in this work have assumed synchronous com-

muncation, in which every party receives all messages in a given round before sending

any messages for the next round. In asynchronous protocols, the adversary is permitted

to delay messages, which models real-world communication over wide-area networks

(WANs) such as the Internet much more closely.

It would be interesting to investigate how the error-detection properties of a Q2

access structure could be used to develop asynchronous protocols. For example, if the

parties were under a Q3 access structure, then when opening secrets in each round of

communication they could wait until they received enough shares to reconstruct and

then continue, but meanwhile wait to receive enough shares to perform error-detection,

and then abort if they detect that a party is sending erroneous shares.

Examining Share-Reconstructability It turned out that share-reconstructability

of a monotone span program was a useful property not only for error-detection, but also

for randomness extraction. It would be interesting to see if this property is related to

any other properties of secret-sharing schemes in the literature.

In a similar vein, it would be interesting to know for which complete monotone non-

redundant Q2 access structures there exists a partition indexed by [n], as required by

the protocol in Chapter 6. Considerable effort went into finding Example 6.2.

221

CHAPTER 9. CONCLUSIONS

Generalizing Outsourcing The outsourcing protocol only explored outsourcing to a

set of parties using the same “type” of authentication. It would be interesting to de-

velop a methodology for mixing the different types. Indeed, recently, Smart and Tan-

guy [ST19] showed how to use resharing techniques to outsource preprocessing from a

Q2 access structure to a full-threshold access structure, giving “Triples-as-a-Service”.

It would be informative to implement and compare these techniques with the “naïve”

methods for generating preprocessing (i.e. without outsourcing).

Better daBit Generation The method involving cut and choose for generating daBits

in Chapter 8 is not very efficient, requiring several Beaver triples to check correctness

of a single daBit. One of the reasons for this is that, prior to this thesis, it was not pos-

sible to talk about the explicit shares of secrets when using MPC (namely, when using

FPrep to realize FABB or to execute the SPDZ-BMR protocol) since secrets were always

assumed to be stored in an “authenticated dictionary” to which parties only had black-

box access, as was discussed in Section 4.1. Now that there is a methodology for FPrep

involving shares explicitly, there is no need to use secrets in a completely black-box way,

and consequently there may be more efficient ways to generate daBits. Improving the

cost to generate daBits to the extent that the overall cost of preprocessing and online

time was less than the same time for executing either SPDZ or a multi-party garbling

protocol would be a major breakthrough.

To complement the support vector machine example, it would also be interesting

to find a good application for evaluating a garbled circuit first and then linear secret-

sharing scheme (LSSS)-based MPC.

Mixing Homomorphic Encryption and MPC The protocol in Chapter 8 allowed

conversion between the two of the main pillars of computing on private data – LSSS and

garbled circuits (GCs). However, there remains one further expansive area of research

in this field in the form of homomorphic encryption. Mixed protocols involving these

three techniques may lead to some interesting results, as indeed has been shown by

Henecka et al. in the case of two parties with passive security [HKS+10].

222

Bibliography

[ABF+17] Toshinori Araki, Assi Barak, Jun Furukawa, Tamar Lichter, Yehuda Lindell,

Ariel Nof, Kazuma Ohara, Adi Watzman, and Or Weinstein.

Optimized honest-majority MPC for malicious adversaries - breaking the 1

billion-gate per second barrier.

In 2017 IEEE Symposium on Security and Privacy, pages 843–862, San Jose,

CA, USA, May 22–26, 2017. IEEE Computer Society Press.

[ABF+18] Toshinori Araki, Assi Barak, Jun Furukawa, Marcel Keller, Yehuda Lindell,

Kazuma Ohara, and Hikaru Tsuchida.

Generalizing the SPDZ compiler for other protocols.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,

editors, ACM CCS 2018: 25th Conference on Computer and Communi-

cations Security, pages 880–895, Toronto, ON, Canada, October 15–19,

2018. ACM Press.

[ACK+19] A Aly, D Cozzo, M Keller, E Orsini, D Rotaru, P Scholl, NP Smart, and

T Wood.

Scale–mamba v1. 4: Documentation.

2019.

[AFL+16] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma

Ohara.

High-throughput semi-honest secure three-party computation with an hon-

est majority.

In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.

Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on

Computer and Communications Security, pages 805–817, Vienna, Aus-

tria, October 24–28, 2016. ACM Press.

[Bar86] David A. Mix Barrington.

223

BIBLIOGRAPHY

Bounded-width polynomial-size branching programs recognize exactly those

languages in NC1.

In 18th Annual ACM Symposium on Theory of Computing, pages 1–5, Berke-

ley, CA, USA, May 28–30, 1986. ACM Press.

[BCD+09] Peter Bogetoft, Dan Lund Christensen, Ivan Damgård, Martin Geisler,

Thomas Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus

Nielsen, Kurt Nielsen, Jakob Pagter, Michael I. Schwartzbach, and

Tomas Toft.

Secure multiparty computation goes live.

In Roger Dingledine and Philippe Golle, editors, FC 2009: 13th International

Conference on Financial Cryptography and Data Security, volume 5628

of Lecture Notes in Computer Science, pages 325–343, Accra Beach, Bar-

bados, February 23–26, 2009. Springer, Heidelberg, Germany.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai.

Compressing vector OLE.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,

editors, ACM CCS 2018: 25th Conference on Computer and Communi-

cations Security, pages 896–912, Toronto, ON, Canada, October 15–19,

2018. ACM Press.

[BDK+18] Niklas Büscher, Daniel Demmler, Stefan Katzenbeisser, David Kretzmer,

and Thomas Schneider.

HyCC: Compilation of hybrid protocols for practical secure computation.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,

editors, ACM CCS 2018: 25th Conference on Computer and Communi-

cations Security, pages 847–861, Toronto, ON, Canada, October 15–19,

2018. ACM Press.

[BDOZ11] Rikke Bendlin, Ivan Damgård, Claudio Orlandi, and Sarah Zakarias.

Semi-homomorphic encryption and multiparty computation.

In Kenneth G. Paterson, editor, Advances in Cryptology – EURO-

CRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages

169–188, Tallinn, Estonia, May 15–19, 2011. Springer, Heidelberg, Ger-

many.

[Bea92] Donald Beaver.

Efficient multiparty protocols using circuit randomization.

224

BIBLIOGRAPHY

In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91, volume

576 of Lecture Notes in Computer Science, pages 420–432, Santa Bar-

bara, CA, USA, August 11–15, 1992. Springer, Heidelberg, Germany.

[Ben18] Aner Ben-Efraim.

On multiparty garbling of arithmetic circuits.

In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –

ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes in Computer

Science, pages 3–33, Brisbane, Queensland, Australia, December 2–6,

2018. Springer, Heidelberg, Germany.

[BFO12] Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky.

Near-linear unconditionally-secure multiparty computation with a dishon-

est minority.

In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptol-

ogy – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,

pages 663–680, Santa Barbara, CA, USA, August 19–23, 2012. Springer,

Heidelberg, Germany.

[BGP95] Amos Beimel, Anna Gál, and Mike Paterson.

Lower bounds for monotone span programs.

In 36th Annual Symposium on Foundations of Computer Science, pages 674–

681, Milwaukee, Wisconsin, October 23–25, 1995. IEEE Computer Soci-

ety Press.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan.

(Leveled) fully homomorphic encryption without bootstrapping.

In Shafi Goldwasser, editor, ITCS 2012: 3rd Innovations in Theoretical Com-

puter Science, pages 309–325, Cambridge, MA, USA, January 8–10,

2012. Association for Computing Machinery.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson.

Completeness theorems for non-cryptographic fault-tolerant distributed

computation (extended abstract).

In 20th Annual ACM Symposium on Theory of Computing, pages 1–10,

Chicago, IL, USA, May 2–4, 1988. ACM Press.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway.

Efficient garbling from a fixed-key blockcipher.

225

BIBLIOGRAPHY

In 2013 IEEE Symposium on Security and Privacy, pages 478–492, Berkeley,

CA, USA, May 19–22, 2013. IEEE Computer Society Press.

[Bla79] G. R. Blakley.

Safeguarding cryptographic keys.

Proceedings of AFIPS 1979 National Computer Conference, 48:313–317,

1979.

[Blu81] Manuel Blum.

Coin flipping by telephone.

In Allen Gersho, editor, Advances in Cryptology – CRYPTO’81, volume ECE

Report 82-04, pages 11–15, Santa Barbara, CA, USA, 1981. U.C. Santa

Barbara, Dept. of Elec. and Computer Eng.

[BLW08] Dan Bogdanov, Sven Laur, and Jan Willemson.

Sharemind: A framework for fast privacy-preserving computations.

In Sushil Jajodia and Javier López, editors, ESORICS 2008: 13th European

Symposium on Research in Computer Security, volume 5283 of Lecture

Notes in Computer Science, pages 192–206, Málaga, Spain, October 6–8,

2008. Springer, Heidelberg, Germany.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway.

The round complexity of secure protocols (extended abstract).

In 22nd Annual ACM Symposium on Theory of Computing, pages 503–513,

Baltimore, MD, USA, May 14–16, 1990. ACM Press.

[BMR16] Marshall Ball, Tal Malkin, and Mike Rosulek.

Garbling gadgets for boolean and arithmetic circuits.

In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.

Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on

Computer and Communications Security, pages 565–577, Vienna, Aus-

tria, October 24–28, 2016. ACM Press.

[BPSW07] Justin Brickell, Donald E. Porter, Vitaly Shmatikov, and Emmett Witchel.

Privacy-preserving remote diagnostics.

In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, ed-

itors, ACM CCS 2007: 14th Conference on Computer and Communica-

tions Security, pages 498–507, Alexandria, Virginia, USA, October 28–

31, 2007. ACM Press.

226

BIBLIOGRAPHY

[BR93] Mihir Bellare and Phillip Rogaway.

Random oracles are practical: A paradigm for designing efficient protocols.

In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and

Victoria Ashby, editors, ACM CCS 93: 1st Conference on Computer and

Communications Security, pages 62–73, Fairfax, Virginia, USA, Novem-

ber 3–5, 1993. ACM Press.

[BW98] Donald Beaver and Avishai Wool.

Quorum-based secure multi-party computation.

In Kaisa Nyberg, editor, Advances in Cryptology – EUROCRYPT’98, volume

1403 of Lecture Notes in Computer Science, pages 375–390, Espoo, Fin-

land, May 31 – June 4, 1998. Springer, Heidelberg, Germany.

[Can00] Ran Canetti.

Universally composable security: A new paradigm for cryptographic proto-

cols.

Cryptology ePrint Archive, Report 2000/067, 2000.

http://eprint.iacr.org/2000/067.

[CCD88a] David Chaum, Claude Crépeau, and Ivan Damgård.

Multiparty unconditionally secure protocols (abstract) (informal contribu-

tion).

In Carl Pomerance, editor, Advances in Cryptology – CRYPTO’87, volume

293 of Lecture Notes in Computer Science, page 462, Santa Barbara, CA,

USA, August 16–20, 1988. Springer, Heidelberg, Germany.

[CCD88b] David Chaum, Claude Crépeau, and Ivan Damgård.

Multiparty unconditionally secure protocols (extended abstract).

In 20th Annual ACM Symposium on Theory of Computing, pages 11–19,

Chicago, IL, USA, May 2–4, 1988. ACM Press.

[CDG+05] Ronald Cramer, Vanesa Daza, Ignacio Gracia, Jorge Jiménez Urroz, Gregor

Leander, Jaume Martí-Farré, and Carles Padró.

On codes, matroids and secure multi-party computation from linear secret

sharing schemes.

In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume

3621 of Lecture Notes in Computer Science, pages 327–343, Santa Bar-

bara, CA, USA, August 14–18, 2005. Springer, Heidelberg, Germany.

[CDI05] Ronald Cramer, Ivan Damgård, and Yuval Ishai.

227

http://eprint.iacr.org/2000/067

BIBLIOGRAPHY

Share conversion, pseudorandom secret-sharing and applications to secure

computation.

In Joe Kilian, editor, TCC 2005: 2nd Theory of Cryptography Conference,

volume 3378 of Lecture Notes in Computer Science, pages 342–362, Cam-

bridge, MA, USA, February 10–12, 2005. Springer, Heidelberg, Germany.

[CDM00] Ronald Cramer, Ivan Damgård, and Ueli M. Maurer.

General secure multi-party computation from any linear secret-sharing

scheme.

In Bart Preneel, editor, Advances in Cryptology – EUROCRYPT 2000, vol-

ume 1807 of Lecture Notes in Computer Science, pages 316–334, Bruges,

Belgium, May 14–18, 2000. Springer, Heidelberg, Germany.

[CDPW07] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish.

Universally composable security with global setup.

In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography Confer-

ence, volume 4392 of Lecture Notes in Computer Science, pages 61–85,

Amsterdam, The Netherlands, February 21–24, 2007. Springer, Heidel-

berg, Germany.

[CF01] Ran Canetti and Marc Fischlin.

Universally composable commitments.

In Joe Kilian, editor, Advances in Cryptology – CRYPTO 2001, volume 2139

of Lecture Notes in Computer Science, pages 19–40, Santa Barbara, CA,

USA, August 19–23, 2001. Springer, Heidelberg, Germany.

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi.

The random oracle methodology, revisited (preliminary version).

In 30th Annual ACM Symposium on Theory of Computing, pages 209–218,

Dallas, TX, USA, May 23–26, 1998. ACM Press.

[CGH+18] Koji Chida, Daniel Genkin, Koki Hamada, Dai Ikarashi, Ryo Kikuchi,

Yehuda Lindell, and Ariel Nof.

Fast large-scale honest-majority MPC for malicious adversaries.

In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryptol-

ogy – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Computer

Science, pages 34–64, Santa Barbara, CA, USA, August 19–23, 2018.

Springer, Heidelberg, Germany.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou.

228

BIBLIOGRAPHY

On the security of the “free-XOR” technique.

In Ronald Cramer, editor, TCC 2012: 9th Theory of Cryptography Confer-

ence, volume 7194 of Lecture Notes in Computer Science, pages 39–53,

Taormina, Sicily, Italy, March 19–21, 2012. Springer, Heidelberg, Ger-

many.

[CP17] Ashish Choudhury and Arpita Patra.

An efficient framework for unconditionally secure multiparty computation.

IEEE Transactions on Information Theory, 63(1):428–468, 2017.

[DGKN09] Ivan Damgård, Martin Geisler, Mikkel Krøigaard, and Jesper Buus Nielsen.

Asynchronous multiparty computation: Theory and implementation.

In Stanislaw Jarecki and Gene Tsudik, editors, PKC 2009: 12th Interna-

tional Conference on Theory and Practice of Public Key Cryptography,

volume 5443 of Lecture Notes in Computer Science, pages 160–179,

Irvine, CA, USA, March 18–20, 2009. Springer, Heidelberg, Germany.

[DKL+13] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl,

and Nigel P. Smart.

Practical covertly secure MPC for dishonest majority - or: Breaking the

SPDZ limits.

In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors, ES-

ORICS 2013: 18th European Symposium on Research in Computer Se-

curity, volume 8134 of Lecture Notes in Computer Science, pages 1–18,

Egham, UK, September 9–13, 2013. Springer, Heidelberg, Germany.

[DMP11] Emiliano De Cristofaro, Mark Manulis, and Bertram Poettering.

Private discovery of common social contacts.

In Javier Lopez and Gene Tsudik, editors, ACNS 11: 9th International Con-

ference on Applied Cryptography and Network Security, volume 6715 of

Lecture Notes in Computer Science, pages 147–165, Nerja, Spain, June 7–

10, 2011. Springer, Heidelberg, Germany.

[DN03] Ivan Damgård and Jesper Buus Nielsen.

Universally composable efficient multiparty computation from threshold ho-

momorphic encryption.

In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729

of Lecture Notes in Computer Science, pages 247–264, Santa Barbara,

CA, USA, August 17–21, 2003. Springer, Heidelberg, Germany.

229

BIBLIOGRAPHY

[DN07] Ivan Damgård and Jesper Buus Nielsen.

Scalable and unconditionally secure multiparty computation.

In Alfred Menezes, editor, Advances in Cryptology – CRYPTO 2007, volume

4622 of Lecture Notes in Computer Science, pages 572–590, Santa Bar-

bara, CA, USA, August 19–23, 2007. Springer, Heidelberg, Germany.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias.

Multiparty computation from somewhat homomorphic encryption.

In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptol-

ogy – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,

pages 643–662, Santa Barbara, CA, USA, August 19–23, 2012. Springer,

Heidelberg, Germany.

[DSZ14] Daniel Demmler, Thomas Schneider, and Michael Zohner.

Ad-hoc secure two-party computation on mobile devices using hardware to-

kens.

In Kevin Fu and Jaeyeon Jung, editors, USENIX Security 2014: 23rd

USENIX Security Symposium, pages 893–908, San Diego, CA, USA, Au-

gust 20–22, 2014. USENIX Association.

[DSZ15] Daniel Demmler, Thomas Schneider, and Michael Zohner.

ABY - A framework for efficient mixed-protocol secure two-party computa-

tion.

In ISOC Network and Distributed System Security Symposium –

NDSS 2015, San Diego, CA, USA, February 8–11, 2015. The Internet

Society.

[Dur64] Richard Durstenfeld.

Algorithm 235: Random permutation.

Commun. ACM, 7(7):420–, July 1964.

[DZ13] Ivan Damgård and Sarah Zakarias.

Constant-overhead secure computation of Boolean circuits using preprocess-

ing.

In Amit Sahai, editor, TCC 2013: 10th Theory of Cryptography Confer-

ence, volume 7785 of Lecture Notes in Computer Science, pages 621–641,

Tokyo, Japan, March 3–6, 2013. Springer, Heidelberg, Germany.

[Feh99] Serge Fehr.

Efficient construction of the dual span program.

230

BIBLIOGRAPHY

1999.

[FKOS15] Tore Kasper Frederiksen, Marcel Keller, Emmanuela Orsini, and Peter

Scholl.

A unified approach to MPC with preprocessing using OT.

In Tetsu Iwata and Jung Hee Cheon, editors, Advances in Cryptology – ASI-

ACRYPT 2015, Part I, volume 9452 of Lecture Notes in Computer Science,

pages 711–735, Auckland, New Zealand, November 30 – December 3,

2015. Springer, Heidelberg, Germany.

[FLNW17] Jun Furukawa, Yehuda Lindell, Ariel Nof, and Or Weinstein.

High-throughput secure three-party computation for malicious adversaries

and an honest majority.

In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in

Cryptology – EUROCRYPT 2017, Part II, volume 10211 of Lecture Notes

in Computer Science, pages 225–255, Paris, France, April 30 – May 4,

2017. Springer, Heidelberg, Germany.

[FY48] Ronald Aylmer Fisher and Frank Yates.

Statistical tables for biological, agricultural and medical research.

Statistical tables for biological, agricultural and medical research., (3rd ed),

1948.

[GI99] Niv Gilboa and Yuval Ishai.

Compressing cryptographic resources.

In Michael J. Wiener, editor, Advances in Cryptology – CRYPTO’99, volume

1666 of Lecture Notes in Computer Science, pages 591–608, Santa Bar-

bara, CA, USA, August 15–19, 1999. Springer, Heidelberg, Germany.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson.

How to play any mental game or A completeness theorem for protocols with

honest majority.

In Alfred Aho, editor, 19th Annual ACM Symposium on Theory of Comput-

ing, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM

Press.

[HKS+10] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and

Immo Wehrenberg.

TASTY: tool for automating secure two-party computations.

231

BIBLIOGRAPHY

In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors,

ACM CCS 2010: 17th Conference on Computer and Communications Se-

curity, pages 451–462, Chicago, Illinois, USA, October 4–8, 2010. ACM

Press.

[HM97] Martin Hirt and Ueli M. Maurer.

Complete characterization of adversaries tolerable in secure multi-party

computation (extended abstract).

In James E. Burns and Hagit Attiya, editors, 16th ACM Symposium Annual

on Principles of Distributed Computing, pages 25–34, Santa Barbara,

CA, USA, August 21–24, 1997. Association for Computing Machinery.

[HM00] Martin Hirt and Ueli M. Maurer.

Player simulation and general adversary structures in perfect multiparty

computation.

Journal of Cryptology, 13(1):31–60, January 2000.

[HOSS18a] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-

Vazquez.

Concretely efficient large-scale MPC with active security (or, TinyKeys for

TinyOT).

In Thomas Peyrin and Steven Galbraith, editors, Advances in Cryptology –

ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes in Computer

Science, pages 86–117, Brisbane, Queensland, Australia, December 2–6,

2018. Springer, Heidelberg, Germany.

[HOSS18b] Carmit Hazay, Emmanuela Orsini, Peter Scholl, and Eduardo Soria-

Vazquez.

TinyKeys: A new approach to efficient multi-party computation.

In Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryp-

tology – CRYPTO 2018, Part III, volume 10993 of Lecture Notes in Com-

puter Science, pages 3–33, Santa Barbara, CA, USA, August 19–23, 2018.

Springer, Heidelberg, Germany.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez.

Low cost constant round MPC combining BMR and oblivious transfer.

In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology

– ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Com-

232

BIBLIOGRAPHY

puter Science, pages 598–628, Hong Kong, China, December 3–7, 2017.

Springer, Heidelberg, Germany.

[Hua12] Yan Huang.

Practical secure two-party computation.

PhD thesis, University of Virginia, 2012.

[IMZ19] Muhammad Ishaq, Ana Milanova, and Vassilis Zikas.

Efficient mpc via program analysis: A framework for efficient optimal mix-

ing.

Cryptology ePrint Archive, Report 2019/651, 2019.

To appear at ACM CCS2019. https://eprint.iacr.org/2019/651.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai.

Founding cryptography on oblivious transfer - efficiently.

In David Wagner, editor, Advances in Cryptology – CRYPTO 2008, volume

5157 of Lecture Notes in Computer Science, pages 572–591, Santa Bar-

bara, CA, USA, August 17–21, 2008. Springer, Heidelberg, Germany.

[ISN87] M. Ito, A. Saito, and Takao Nishizeki.

Secret sharing schemes realizing general access structure.

In Proc. IEEE Global Telecommunication Conf. (Globecom’87), pages 99–102,

1987.

[ISN93] M. Ito, A. Saito, and Takao Nishizeki.

Multiple assignment scheme for sharing secret.

Journal of Cryptology, 6(1):15–20, March 1993.

[KBPB19] John Kelsey, Luís T. A. N. Brandão, René Peralta, and Harold Booth.

A reference for randomness beacons, format and protocol version 2.0, Apr

2019.

[Kel19] Marcel Keller.

Multi-Protocol SPDZ, 2019.

https://github.com/n1analytics/MP-SPDZ.

[Kil88] Joe Kilian.

Founding cryptography on oblivious transfer.

In 20th Annual ACM Symposium on Theory of Computing, pages 20–31,

Chicago, IL, USA, May 2–4, 1988. ACM Press.

[Knu97] Donald E. Knuth.

233

https://eprint.iacr.org/2019/651
https://github.com/n1analytics/MP-SPDZ

BIBLIOGRAPHY

The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Al-

gorithms.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl.

MASCOT: Faster malicious arithmetic secure computation with oblivious

transfer.

In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.

Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on

Computer and Communications Security, pages 830–842, Vienna, Aus-

tria, October 24–28, 2016. ACM Press.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru.

Overdrive: Making SPDZ great again.

In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology

– EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Com-

puter Science, pages 158–189, Tel Aviv, Israel, April 29 – May 3, 2018.

Springer, Heidelberg, Germany.

[KRSW18] Marcel Keller, Dragos Rotaru, Nigel P. Smart, and Tim Wood.

Reducing communication channels in MPC.

In Dario Catalano and Roberto De Prisco, editors, SCN 18: 11th Inter-

national Conference on Security in Communication Networks, volume

11035 of Lecture Notes in Computer Science, pages 181–199, Amalfi,

Italy, September 5–7, 2018. Springer, Heidelberg, Germany.

[KS08] Vladimir Kolesnikov and Thomas Schneider.

Improved garbled circuit: Free XOR gates and applications.

In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórs-

son, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008: 35th

International Colloquium on Automata, Languages and Programming,

Part II, volume 5126 of Lecture Notes in Computer Science, pages 486–

498, Reykjavik, Iceland, July 7–11, 2008. Springer, Heidelberg, Germany.

[KSS14] Florian Kerschbaum, Thomas Schneider, and Axel Schröpfer.

Automatic protocol selection in secure two-party computations.

In Ioana Boureanu, Philippe Owesarski, and Serge Vaudenay, editors, ACNS

14: 12th International Conference on Applied Cryptography and Network

Security, volume 8479 of Lecture Notes in Computer Science, pages 566–

234

BIBLIOGRAPHY

584, Lausanne, Switzerland, June 10–13, 2014. Springer, Heidelberg,

Germany.

[KW93] Mauricio Karchmer and Avi Wigderson.

On span programs.

In Proceedings of Structures in Complexity Theory, pages 102–111, 1993.

[KY18] Marcel Keller and Avishay Yanai.

Efficient maliciously secure multiparty computation for RAM.

In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology

– EUROCRYPT 2018, Part III, volume 10822 of Lecture Notes in Com-

puter Science, pages 91–124, Tel Aviv, Israel, April 29 – May 3, 2018.

Springer, Heidelberg, Germany.

[LAR03] Fei-Fei Li, Marco Andreetto, and Marc ’Aurelio Ranzato.

Caltech101 image dataset.

2003.

[LP07] Yehuda Lindell and Benny Pinkas.

An efficient protocol for secure two-party computation in the presence of

malicious adversaries.

In Moni Naor, editor, Advances in Cryptology – EUROCRYPT 2007, vol-

ume 4515 of Lecture Notes in Computer Science, pages 52–78, Barcelona,

Spain, May 20–24, 2007. Springer, Heidelberg, Germany.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai.

Efficient constant round multi-party computation combining BMR and

SPDZ.

In Rosario Gennaro and Matthew J. B. Robshaw, editors, Advances in Cryp-

tology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Com-

puter Science, pages 319–338, Santa Barbara, CA, USA, August 16–20,

2015. Springer, Heidelberg, Germany.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease.

The byzantine generals problem.

ACM Trans. Program. Lang. Syst., 4(3):382–401, July 1982.

[LSS16] Yehuda Lindell, Nigel P. Smart, and Eduardo Soria-Vazquez.

More efficient constant-round multi-party computation from BMR and SHE.

235

BIBLIOGRAPHY

In Martin Hirt and Adam D. Smith, editors, TCC 2016-B: 14th Theory of

Cryptography Conference, Part I, volume 9985 of Lecture Notes in Com-

puter Science, pages 554–581, Beijing, China, October 31 – November 3,

2016. Springer, Heidelberg, Germany.

[Mau06] Ueli M. Maurer.

Secure multi-party computation made simple.

Discrete Applied Mathematics, 154(2):370–381, 2006.

[MR18] Payman Mohassel and Peter Rindal.

ABY3: A mixed protocol framework for machine learning.

In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang,

editors, ACM CCS 2018: 25th Conference on Computer and Communica-

tions Security, pages 35–52, Toronto, ON, Canada, October 15–19, 2018.

ACM Press.

[MRSV19] Eleftheria Makri, Dragos Rotaru, Nigel P. Smart, and Frederik Vercauteren.

EPIC: Efficient private image classification (or: Learning from the masters).

In Mitsuru Matsui, editor, Topics in Cryptology – CT-RSA 2019, volume

11405 of Lecture Notes in Computer Science, pages 473–492, San Fran-

cisco, CA, USA, March 4–8, 2019. Springer, Heidelberg, Germany.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and

Sai Sheshank Burra.

A new approach to practical active-secure two-party computation.

In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptol-

ogy – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science,

pages 681–700, Santa Barbara, CA, USA, August 19–23, 2012. Springer,

Heidelberg, Germany.

[PSSW09] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams.

Secure two-party computation is practical.

In Mitsuru Matsui, editor, Advances in Cryptology – ASIACRYPT 2009, vol-

ume 5912 of Lecture Notes in Computer Science, pages 250–267, Tokyo,

Japan, December 6–10, 2009. Springer, Heidelberg, Germany.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner.

Phasing: Private set intersection using permutation-based hashing.

236

BIBLIOGRAPHY

In Jaeyeon Jung and Thorsten Holz, editors, USENIX Security 2015: 24th

USENIX Security Symposium, pages 515–530, Washington, DC, USA,

August 12–14, 2015. USENIX Association.

[RW19] Dragos Rotaru and Tim Wood.

MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Se-

curity.

Cryptology ePrint Archive, Report 2019/207, 2019.

https://eprint.iacr.org/2019/207.

[RWT+18] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M.

Songhori, Thomas Schneider, and Farinaz Koushanfar.

Chameleon: A hybrid secure computation framework for machine learning

applications.

In Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and

Taesoo Kim, editors, ASIACCS 18: 13th ACM Symposium on Informa-

tion, Computer and Communications Security, pages 707–721, Incheon,

Republic of Korea, April 2–6, 2018. ACM Press.

[Sch96] Bruce Schneier.

Applied Cryptography.

John Wiley & Sons, New York, second edition, 1996.

[Sha79] Adi Shamir.

How to share a secret.

Communications of the Association for Computing Machinery, 22(11):612–

613, November 1979.

[SSW17] Peter Scholl, Nigel P. Smart, and Tim Wood.

When it’s all just too much: Outsourcing MPC-preprocessing.

In Máire O’Neill, editor, 16th IMA International Conference on Cryptogra-

phy and Coding, volume 10655 of Lecture Notes in Computer Science,

pages 77–99, Oxford, UK, December 12–14, 2017. Springer, Heidelberg,

Germany.

[ST19] Nigel P. Smart and Titouan Tanguy.

Taas: Commodity mpc via triples-as-a-service.

Cryptology ePrint Archive, Report 2019/957, 2019.

https://eprint.iacr.org/2019/957.

237

https://eprint.iacr.org/2019/207
https://eprint.iacr.org/2019/957

BIBLIOGRAPHY

[SW19] Nigel P. Smart and Tim Wood.

Error detection in monotone span programs with application to

communication-efficient multi-party computation.

In Mitsuru Matsui, editor, Topics in Cryptology – CT-RSA 2019, volume

11405 of Lecture Notes in Computer Science, pages 210–229, San Fran-

cisco, CA, USA, March 4–8, 2019. Springer, Heidelberg, Germany.

[WRK17a] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.

Authenticated garbling and efficient maliciously secure two-party computa-

tion.

In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,

editors, ACM CCS 2017: 24th Conference on Computer and Communica-

tions Security, pages 21–37, Dallas, TX, USA, October 31 – November 2,

2017. ACM Press.

[WRK17b] Xiao Wang, Samuel Ranellucci, and Jonathan Katz.

Global-scale secure multiparty computation.

In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu,

editors, ACM CCS 2017: 24th Conference on Computer and Communica-

tions Security, pages 39–56, Dallas, TX, USA, October 31 – November 2,

2017. ACM Press.

[Yao86] Andrew Chi-Chih Yao.

How to generate and exchange secrets (extended abstract).

In 27th Annual Symposium on Foundations of Computer Science, pages 162–

167, Toronto, Ontario, Canada, October 27–29, 1986. IEEE Computer

Society Press.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans.

Two halves make a whole - reducing data transfer in garbled circuits using

half gates.

In Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology –

EUROCRYPT 2015, Part II, volume 9057 of Lecture Notes in Computer

Science, pages 220–250, Sofia, Bulgaria, April 26–30, 2015. Springer,

Heidelberg, Germany.

238

Index

Access Structures, 34

Additive Secret-Sharing, 39

Adversary Types, 46

Authenticated Channels, 28

Authentication (of Secrets), 49

Beaver’s Circuit Randomization, 48

Broadcast Channels, 29

Coin Flipping, 33

Commitment Schemes, 30

Common Reference String Model, 22

Communication Channels, 28

Complexity, 9

Computational Security Parameter, 8

Correctness (of Protocol), 45

Distributions, 10

DNF Secret-Sharing, 41

Extending Functionalities, 26

Global Setup, 23

Hash Functions, 26

Indistinguishability, 11

Knuth Shuffle, 12

Message Authentication Codes, 27

Monotone Span Program, 37

MPC Overview, 44

MPC Techniques, 48

Multiplicativity, 42

Point-to-point Channels, 28

Preprocessing Model, 48

Privacy of Protocol, 47

Pseudorandom Functions, 27

Random Numbers, 33

Random Oracle Model, 21

Replicated Secret-Sharing, 40

Sacrifice, 52

Sampling, 10

Secrecy of Protocol, 47

Secure Channels, 28

Setup Assumptions, 21

Shamir’s Secret-Sharing, 42

Simulation, 18

Statistical Security Parameter, 8

Types of Access Structure, 35

Universal Composability Framework, 13

239

	Contents
	List of Figures
	List of Tables
	Acronyms
	1 Introduction
	1.1 This work
	1.2 Changes to Submissions and New Contributions

	2 Preliminaries
	2.1 General
	2.1.1 Notation
	2.1.2 Complexity
	2.1.3 Statistics and Probability
	2.1.4 Combinatorics

	2.2 Universal Composability
	2.3 Cryptographic Primitives and Basic Tools
	2.3.1 Hash functions
	2.3.2 Pseudorandom Functions
	2.3.3 MACs
	2.3.4 Communication Channels
	2.3.5 Commitments
	2.3.6 Coin-Flipping

	2.4 Secret Sharing
	2.4.1 Access Structures
	2.4.2 Access Structures to Secret-Sharing
	2.4.3 Examples
	2.4.4 Multiplicativity

	2.5 MPC
	2.5.1 Correctness
	2.5.2 Privacy
	2.5.3 Main Techniques and Paradigms

	2.6 Literature Overview

	3 Error-detection and Share Reconstruction
	3.1 Overview
	3.2 Opening to One Party
	3.3 Opening to All Parties
	3.4 Error-detection in Standard LSSSs
	3.4.1 Shamir's Secret-Sharing
	3.4.2 Replicated Secret-Sharing
	3.4.3 DNF-based Sharing

	3.5 Finding a Reconstruction Map
	3.6 Share-Reconstructability

	4 Modelling Preprocessing
	4.1 Overview
	4.2 Opening Functionality
	4.3 Opening Protocol
	4.3.1 Agreement Protocol

	4.4 Preprocessing Functionality
	4.5 Arithmetic Black Box
	4.6 Reactive Computation
	4.7 Modelling SPDZ
	4.7.1 Errors on MACs
	4.7.2 FPrep with MACs
	4.7.3 Viewing MACs as Part of the MSP

	5 Outsourcing MPC preprocessing
	5.1 Overview
	5.2 Preliminaries
	5.2.1 Network
	5.2.2 Preprocessing Functionality
	5.2.3 Types of Secret-Sharing

	5.3 Outsourcing Q2 to Q2
	5.3.1 Correctness
	5.3.2 Security

	5.4 Outsourcing Full-Threshold to Full-Threshold
	5.4.1 Modified Preprocessing Functionality
	5.4.2 Correctness
	5.4.3 Security

	5.5 Probabilistically Choosing a Secure Cover
	5.6 Communication Complexity

	6 Q2 MPC for Small Numbers of Parties
	6.1 Overview
	6.2 Preliminaries
	6.2.1 Replicated Secret-Sharing
	6.2.2 Redundancy

	6.3 Computational Random Sharings
	6.3.1 PRSSs
	6.3.2 PRZSs
	6.3.3 Communication Complexity

	6.4 Converting Additive to Replicated
	6.4.1 Information-Theoretic Conversion
	6.4.2 Computational Conversion

	6.5 Passively-Secure Q2 MPC Protocol
	6.5.1 Multiplication and Input using Conversion
	6.5.2 Correctness
	6.5.3 Security
	6.5.4 Communication Complexity

	6.6 Actively-Secure Q2 MPC Protocol
	6.6.1 Correctness
	6.6.2 Security
	6.6.3 Communication Complexity

	6.7 No Partition
	6.7.1 Existence of Non-Redundant Access Structures with No Partition
	6.7.2 Modified Protocol

	7 Q2 MPC for Large Numbers of Parties
	7.1 Overview
	7.2 Preliminaries
	7.2.1 Locally Converting Replicated Shares

	7.3 Generating Information-Theoretic Uniformly-Random Secrets
	7.4 Information-Theoretic Preprocessing
	7.4.1 LSSS to Multiplicative LSSS
	7.4.2 Multiplicative LSSS to Preprocessing

	7.5 Communication Complexity
	7.5.1 Preprocessing
	7.5.2 Online Phase
	7.5.3 Comparison with Other Protocols

	8 Actively-Secure Mixed Protocol
	8.1 Overview
	8.1.1 Switching Mechanism
	8.1.2 Structure

	8.2 Preliminaries
	8.2.1 MPC
	8.2.2 Garbled Circuits

	8.3 Generation of daBits
	8.4 Switching and Modified Garbling
	8.4.1 Conversion from LSSS to GC
	8.4.2 Conversion From GC to LSSS
	8.4.3 Security

	8.5 Realizing the Protocol
	8.6 Application: Computation of a Multi-Class SVM

	9 Conclusions
	Bibliography
	Index

