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           Abstract 

Blowflies (Diptera: Calliphoridae) are of evolutionary, ecological and economic importance, 
performing essential ecosystem services in the consumption, recycling and dispersion of 
carrion and acting as facultative agents of livestock myiasis. The interspecific ecological 
differences that facilitate coexistence within the diverse blowfly community are not fully 
understood. To quantify differences in habitat use by calliphorid species (Chapter 2), thirty 
flytraps were distributed within three habitats at two sites in south west England during 
March–August 2016. A total of 17,246 specimens were caught and identified, Lucilia sericata 
(Meigen) was the dominant species in open habitats, whereas Lucilia caesar (Linnaeus) was 
the most abundant species in shaded habitats. The results demonstrate that Calliphora and 
Lucilia species show strong tempo,ral and spatial segregation, mediated by temperature, and 
that species of the genus Lucilia show differences in habitat use which are likely to be driven 
by differences in humidity tolerance and light intensity. These factors in combination result 
in effective niche partitioning. Within the genus Lucilia only one species is generally 
recognized as an obligate agent of myiasis in Europe, Lucilia bufonivora (Moniez). This species 
is a specialist parasite of amphibians. However, it has been suggested that a second species 
Lucilia silvarum (Meigen) may also act as a facultative parasite of amphibians. Their 
morphological similarity has led to misidentification, taxonomic ambiguity and a paucity of 
studies of L. bufonivora. To resolve this question (Chapter 3), larvae were analysed from toad 
myiasis cases from the U.K., The Netherlands and Switzerland, together with adult 
specimens of fly species that are thought to be implicated in amphibian parasitism: L. 
bufonivora, L. silvarum and the strictly Nearctic Lucilia elongata (Shannon). Partial sequences of 
two genes, COX1and EF1α, were amplified. Bayesian inference trees of COX1and EF1α and 
a combined-gene dataset were constructed. All larvae isolated from toads were identified as 
L. bufonivora and no specimens of L. silvarum were found implicated in amphibian myiasis. 
This study confirms L. silvarum and L. bufonivora as distinct sister species, however there is 
not clear resolution on the relationships of L. silvarum and L. elongata using the nuclear marker 
EF1α. The evolution of obligate toad parasitism is of particular interest and to investigate 
this (Chapter 5), molecular clock-dating was performed with a concatenated data set of 3 
genes: COX1 (mtDNA), ITS2 (non-coding) and per (nDNA). Unlinked substitution and 
relaxed clock models were implemented to allow evolution to vary amongst lineages. 
Obligate amphibian parasitism probably evolved just once around 4 mya. It is likely that this 
occurred after the niche displacement of a saprophagous ancestor from the carrion-fly 
community. Evidence from nDNA phylogenies suggest that, although with slow nuclear 
evolution rates, L. elongata is a distinct species to L. silvarum. Consistent paraphyly of 
L. bufonivora across single-gene phylogenies and high mtDNA sequence divergence between 
Palearctic and Nearctic lineages suggest on-going cryptic speciation of L. bufonivora in these 
two regions for at least 2mya. Thus, due to its relative rarity, it has remained unrecorded by 
taxonomists until recent studies. Since the ecology of L. bufonivora is poorly understood, 
ecological studies were undertaken in the Netherlands (Chapter 5). These demonstrated the 
low abundance of adult L. bufonivora in the field and showed that it was more frequently 
encountered in open and wet habitats where its hosts are abundant rather than in woodland 
habitats. The broad issues surrounding the evolution of diversity within the calliphorid 
blowflies are discussed (Chapter 6) and it is suggested that it is the patchy and ephemeral 
nature of carrion that is the key to understanding the ecology and evolution of this family of 
flies, since this drives the evolution of niche partitioning and specialisation. 
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1.1 Calliphoridae: Blowflies  
Calliphoridae, also known as blowflies, are a family of insects in the order Diptera, with over 

1000 known species across 150 recognised genera (Rognes, 1991). They are distributed 

worldwide and exhibit a wide variety of larval feeding strategies ranging from carrion-

breeding species to aggressive obligate parasites of livestock and wildlife. Thus, they are of 

great importance in a wide range of different disciplines and provide important ecosystem 

services (Putman, 1983).  

The term blowfly is attributed to their carrion-feeding behaviour, as they often use decaying 

flesh for oviposition and larval development. It is said that meat is ‘fly blown’ or ‘blown’ 

when it has eggs laid on it. Their saprophagous behaviour has made them establish a close 

contact with humans since ancient times. For instance, in ancient Egypt, fly-shaped amulets 

were assigned to bodies during mummification process. It was thought that these amulets 

would return to the body whatever the flies would take away while feeding on the corpse 

(Kritsky, 1985). In some rural areas it is believed that some flies may carry the spirits of their 

departed ancestors  (Kritsky, 1985). They also appear in important literature from Homer, 

Redi and even Shakespeare (Papavero et al., 2010). 

 

1.2 Taxonomy  
Within Calyptratae blowflies belong to the superfamily Oestroidea, which also includes bot 

flies (Oestridae), flesh flies (Sarcophagidae), tachinid flies (Tachinidae) and few other groups 

of flies (e.g. Rhinophoridae, Axiniidae, Mystacinobiidae). 

The monophyly of Calliphoridae has been debated over decades (Tschorsnig, 1985; Rognes, 

1991; Rognes, 1997). Using morphological features Rognes (1991) proposed the grouping 

of eight subfamilies within Calliphoridae: Calliphorinae, Chrysominae, Helicoboscinae, 

Luciliinae, Melanomyinae, Polleniinae, Rhiniinae and Rhinophorinae. However, a thorough 

analysis which used a maximum fit parsimony approach from forty-five adult and larval 

characters of 23 terminal monophyletic taxa within Oestroidea, conceived that the 

Calliphoridae are not a monophyletic group (Rognes, 1997). Certainly, the latter study 

suggests that the Rhinophoridae (woodlouse flies) cannot be treated as a subfamily within 

Calliphoridae (proposed by Rognes, 1986, 1991) neither as a sister group to Calliphoridae 

(proposed by Tschorsnig, 1985). Nevertheless, there is a growing body of research that has 

focused on the taxonomic study of the subfamilies Luciliinae (greenbottles), Calliphorinae 
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(bluebottles) and Chrysominae (screwworms) due to their economic, veterinary and forensic 

importance (Stevens and Wall, 1996; Stevens and Wall, 1997a; Stevens, 2003; Wallman et al., 

2005; McDonagh and Stevens, 2011). The latter three groups are generally recognised as 

subfamilies within Calliphoridae (Rognes, 1997).  

 

1.3 Life-cycle of blowflies.  
Blowflies are holometabolous insects, which means they exhibit complete metamorphosis. 

The life-cycle starts from an egg, followed by the larval stage (LI, LII and LIII), pupariation 

and adult stage.  As in almost all insects, blowfly rates of development are temperature-

dependant, hence their life cycle is strongly affected by the temperature on which individuals 

are exposed (Wall et al., 1992b).  

Although the life-cycle of individual species may vary according to the larval feeding 

behaviour, larval food source or temperature, the life-cycle of blowflies in general is very 

similar. Usually they lay batches of around 200 eggs. After hatching, larvae will start feeding 

on the dead or living tissue and continue to do so until they have completed 3 larval stages 

(Evans, 1936), which usually takes around 72 hours. Fully fed 3rd stage larvae migrate to the 

soil to begin pupation. Adults emerge after 3 days, depending on the temperature (Wall et 

al., 1992b). Once emerged, females need to feed on a proteinaceous substrate to produce 

fertile eggs (Wall, 1992). Females are ready to lay eggs usually after 3 days of emergence.  

 

1.4 General importance of blowflies.  
As previously mentioned, the different larval feeding strategies of blowflies have made them 

of great importance in many ways.  

Firstly, their saprophagic behaviour gives them with a major ecological significance. 

Sarcosaprophagous flies are considered the principal invertebrate consumers of terrestrial 

carrion (Peschke et al., 1987). They perform an essential ecosystem service in the 

consumption, recycling and dispersion of carrion nutrients (Putman, 1983). Previous 

research has shown that they greatly reduce the carcass mass in both large and small 

vertebrate carcasses (Parmenter and MacMahon, 2009). Fig. 1.1 shows an elephant carcass 

found in Zambezi Valley, Zimbabwe, which 7-10 days after death, was consumed almost on 
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its entirety by blowfly larvae and other carrion-eating arthropods (Fig. 1.1b; M. Hall, personal 

communication).  

Figure 1.1 Elephant carcass found in the Zambezi Valley, Zimbabwe: a) Early stages of the 

carcass, person on the picture is Frederick Vakayi, a worker from the Rekomitjie Tsetse Fly 

Research Station. b) Elephant carcass after 7-10 days of decomposition, carrion was 

consumed almost entirely by blowfly larvae and other arthropods. Pictures were kindly 

provided by Martin Hall (Natural History Museum, London). 

a 

b 
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Carrion is an ephemeral resource which, unless very large, rarely allows blowflies to complete 

more than one generation in a carcass (Beaver, 1977). Thus, several species use the same 

resource which results in strong intra and interspecific competition (Hanski, 1987). Within 

the carrion-fly community niche differences allow the coexistence of similar species, 

including differences in their phenology, habitat and spatial distribution, carcass size, etc 

(Hanski and Kuusela, 1977; Smith and Wall, 1997; Martínez‐Sánchez et al., 2001; Hwang 

and Turner, 2006). Knowing patterns of distribution and ecological differences of the 

carrion-fly community is of great importance for forensic entomologists (Greenberg, 1991; 

Hall, 2001; Zabala et al., 2014).  Amongst carrion breeding arthropods, blowflies are 

considered as the most important group since they are found in greatest numbers and, 

usually, they are the first organisms to arrive and colonise a dead body (Hall, 2001). They 

can provide the most accurate information about the minimum time-since-death 

(Greenberg, 1991).  

Studying the ecology of sympatric species could help our understanding of species co-

existence, community assembly and dynamics of different groups that possess different or 

similar roles within an ecosystem (Pianka, 1999). Moreover, in evolutionary biology knowing 

the community dynamics, spatio-temporal variation and niche differentiation may also help 

answering evolutionary questions, such as the role of ecology in speciation (Pianka, 1999). 

Given the wide range of larval feeding strategies of blowflies, studying their ecological and 

behavioural differences is vital to explain their evolution and, in combination with molecular 

studies, it can provide robust information on the speciation and divergence of parasite and 

non-parasite lineages.    

Over the course of evolutionary history, some calliphorid species have evolved ectoparasitic 

behaviour causing a diseases known as ‘myiasis’. According to Zumpt (1965) myiasis is 

defined as "the infestation of live human and vertebrate animals with dipterous larvae, which at least for a 

period, feed on the host's dead or living tissue, liquid body, substances, or ingested food". Some of them 

are of great economic significance as pests of livestock worldwide. For instance, Lucilia 

sericata is the main agent of ovine cutaneous myiasis or ‘blowfly strike’ in UK (Wall et al., 

1992a; Hall and Wall, 1995). In 2004 sheep strike by the latter species affected around 72% 

of farms in Wales, Scotland and England (Bisdorff et al., 2006). Similarly, in Australia and 

New Zealand Lucilia cuprina (dorsalis) is the main agent of sheep myiasis and can generate 

considerable economic losses in sheep husbandry (Heath and Bishop, 1995; Tellam and 

Bowles, 1997). Economic losses in South-America due to the New World screwworm fly 
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(Cochliomyia hominivorax (Coquerel)) have been estimated to be over $3600 million per year 

(Vargas-Teran et al., 2005).  

 

1.5 Evolution of myiasis.  
Within the super family Oestroidea, there is a wide range of species that cause myiasis 

including blowflies (Calliphoridae), bot flies (Oestridae) and flesh flies (Sarcophagidae). It 

is clear that within Calliphoridae, the parasitic habit has evolved multiple times 

independently (Stevens and Wall, 1997a; Stevens and Wallman, 2006; Stevens et al., 2006). 

Myiasis agents can be divided in different categories according to the host-parasite 

interaction (Zumpt, 1965)(Table 1.1). Phylogenetic analyses have highlighted the close 

relationships held between parasitic and non-parasitic sister taxa (Stevens, 2003). 

Understanding their evolutionary relationships can provide broad insights to the origin of 

parasitism in true flies. It has been speculated that these distinct behaviours may be 

mediated by differences in temperature tolerance, response to the immune system of the 

host and the production/secretion of enzymes associated with feeding on the host tissues 

(Stevens and Wallman, 2006). Certainly, the first larval stages of primary myiasis agents are 

able to induce local inflammatory responses in their host, and accompanied by a damage to 

epidermal cells and larval proteolytic enzyme secretion they work to initiate the wound 

development on the skin of their host (Sandeman et al., 1985; Sandeman et al., 1987). 

 

1.5.1 Oestridae. 

Botflies (Oestrid flies) are true obligate parasites that exhibit very high host-specificity and 

relatively low pathogenicity (Table 1.2). They are usually endoparasites with relatively 

ancient associations with the host (Stevens et al., 2006). They can cause myiasis in internal 

organs of the host (Hypoderma spp.), nasopharyngeal tracts (Oestrus spp.), digestive tracts 

(Gasterophilus spp., Fig. 1.2) and subcutaneous tissue (Przhevalskiana spp.)(Otranto et al., 

2003). Their larval feeding period can last for several weeks or even months within their 

host (Pape, 2006). These obligate larvae produce proteases that enable them to survive the 

immune system of the host. For instance, the first larval stages of Hypoderma  secrete serine 

proteases (chymotrypsin and hypodermin) that will not only assist them in combating the 

immune response of the host, but also facilitates the larval migration and movement within 

the host (Chaubadie and Boulard, 1992; Boulard et al., 1996; Otranto et al., 2003).  
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Table 1.1 Classification of myiasis according to their relationship with the host. Source: 

Zumpt (1965) 

 

 

It has been suggested that this group of flies could have evolved originally from rodent 

parasites (Pape, 2001) Recent mitogenomic studies indicate that the main diversification of 

Oestridae began with the wide radiation of mammal fauna that occurred during the 

Paleogene (Junqueira et al., 2016). Certainly, parallel evolution could have played a role in 

speciation of Oestridae by parasite lineages tracking host lineages through evolutionary time 

(Stevens and Wallman, 2006). 

Group Description Examples 

Obligate 
Dependent on their host for at least one 

stage of their life-cycle. 
Botflies (Oestridae) 

Facultative – 

Primary 

Do not depend on their host to complete 

their life cycle, however they are able to 

initiate myiasis. 

Lucilia sericata, 

Lucilia cuprina 

(Callophoridae) 

Facultative – 

Secondary 

Do not depend on their host and are 

unable to initiate myiasis. However, 

might be involved in myiasis once the 

wound has already been initiated by a 

primary agent. 

Calliphora vicina 

(Calliphoridae) 

Accidental 
May cause pathological reactions due to 

accidental ingestion. 

Sarcophaga spp. 

(Sarcophagidae) 
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Figure 1.2 Ventral view of a larval sample of a horse bot-fly (Gasterophilus sp.). Picture taken  

at the Veterinary Parasitology collection at University of Bristol, Life Sciences Building.  

 

1.5.2 Sarcophagidae  
Generally, flesh flies are ovolarviparous insects. This means the egg development and 

hatching occurs within the female. They exhibit different feeding larval behaviours, ranging 

from saprophagous, coprophagous, parasitoids and parasites (Pape, 1996). Unlike Oestridae, 

Sarcophagids have low host-specificity and larvae development occurs in a shorter period of 

time often with high pathogenicity (Table 1.2). The most representative myiasis-causing 

species of this group is Wohlfartia magnifica (Schiner), which is an obligate parasite and an 

important pest of sheep in Southern Europe including Spain, Hungary, Bulgaria and 

Romania (Sotiraki et al., 2010), however it has  been reported causing myiasis in humans, 

pigs, horses, camels and dogs (Hall and Farkas, 2000).  
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1.5.3 Calliphoridae 
Parasitic lineages of Calliphoridae exhibit many different forms of parasitism (Table 1.2), 

ranging from highly specialised obligate parasitism (e.g. Lucilia bufonivora) to an opportunistic 

facultative parasitism, for example Calliphora vicina (Robineau-Desvoidy) (Zumpt, 1965). 

Nonetheless, the majority exhibit low host-specificity. As in the Sarcophagidae, larvae 

development and myiasis occurs in shorter periods of time and with high pathogenicity 

(Stevens and Wallman, 2006; Stevens et al., 2006). Due to the life history of this group, it has 

been hypothesized that the parasite lineages may have had saprophagic origins and that the 

parasitic behaviour in some species evolved in association with humans and animal 

domestication (Erzinclioglu, 1989; Stevens and Wall, 1997a)  

Several species of this group exhibit primary facultative parasitism. Some of these species 

have a significant economic impact as pests of livestock. For example Lucilia sericata and 

Lucilia cuprina (Wiedemann) behave as the main sheep myiasis agents in Northern Europe 

and Australia respectively. Some species might exhibit secondary facultative parasitism and 

occasionally will be involved in myiasis once the wound has already been initiated by a 

primary agent, such as species of the genera Calliphora, Phormia and Protophormia. Usually 

secondary myiasis agents are not of great economic concern (Zumpt, 1965).  

This group also includes species that exhibit obligate parasitism, however the nature of 

their host-parasite relationship, differs greatly to that seen with Oestrid flies. They usually 

have considerably higher pathogenicity (Stevens et al., 2006). This has made them of great 

concern as pests of livestock in many different parts of the world. For example, in tropical 

and sub-tropical areas of the Western hemisphere, the New world screwworm fly C. 

hominivorax (Fig. 1.3) is considered one of the most destructive insect pests of livestock 

(Klassen and Curtis, 2005; Vargas-Teran et al., 2005). Similarly, in the Eastern hemisphere, 

the Old world screwworm fly, Chrysomya bezziana (Villeneuve), occupies equivalent 

ecological niches to C. hominivorax and is also an important pest of livestock (Zumpt, 1965).  
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Figure 1.3 Lateral view of a larval sample of the New world Screwworm fly (Cochliomyia 

hominivorax). Specimen kept at the Veterinary Parasitology collection at University of Bristol, 

Life Sciences Building. 

 

To a lesser extent some species have evolved a highly specialised obligate parasitism. The 

genus Protocalliphora is composed by species that are blood-feeding obligate parasites of birds 

(Whitworth and Bennett, 1992). Similarly, two species of the genus Lucilia are known to be 

highly specialised obligate parasites of amphibians, L. bufonivora and Lucilia elongata (Brumpt, 

1934; Zumpt, 1965). The latter two species are of particular evolutionary interest, as they are 

probably the only two species that exhibit highly specialised obligate parasitism within a 

genus that comprises mostly saprophagous and facultative species.  

 

Table 1.2 Myiasis in Oestroidea. The taxonomic family, species name, host interaction, 

specificity and range of the different taxa known as myiasis agents. Sources: Zumpt(1965); 

Rognes(1991); Wall et al. (1992a); Vergas-Teran et al. (2005); Pape(2006);  Sotiraki(2010); 

Tantawi and Whitworth(2014). 
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Family Name 
Host- parasite 

interaction 

Host-

specificity 
Host Range Distribution 

Oestridae 

(bot flies, warble flies) 

 

Dermatobia 

hominis 

Obligate High Primates South-America 

 

Hypoderma bovis  
Obligate High Cattle Holarctic 

 

Oestrus ovis 

 

Obligate High 
Ovine 

livestock 
Widespread 

 

Sarcophagidae 

(flesh flies) 

 

Wohlfartia 

magnifica 

Obligate Low 

 

Mammals. 

Main host: 

Sheep 

 

Mediterranean. 

Main agent of sheep myiasis in 

Spain. 

Calliphoridae 

(blowflies) 

 

Lucilia sericata 

 

Facultative. 

(Primary) 

Low 

 

Main host: 

Sheep 

 

Widespread, primary sheep myiasis 

agent in UK. 

 

Lucilia cuprina 

 

Facultative. 

(Primary) 

Low 

 

Main host: 

Sheep 

 

Widespread. Primary sheep myiasis 

agent in Australia, New Zealand and 

South-Africa 

Lucilia caesar 

 

Facultative.  

(Secondary, 

although it might 

act occasionally as 

primary) 

Low 
Main host: 

Sheep 

 

Widespread. Occasionally involved 

in sheep strike cases of UK. 

Lucilia illustris 

 

Facultative 

(Secondary) 

Low 

 

Main host: 

Sheep 

Widespread. 

Commonly involved in sheep strike 

in Norway 

 

Lucilia 

bufonivora 

 

Obligate 

 

High 

 

 

Amphibians 

 

 

Europe, Asia and Canada 

Cochliomyia 

hominivorax 
Obligate Low 

 

Mammals. 

Main host: 

Cattle 

 

South-America 

Chrysomya 

bezziana 
Obligate Low 

Mammals 

Main host: 

Cattle 

Tropical and Subtropical 

Asia and Africa. 
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1.5.4 Evolution of ectoparasitism in the genus Lucilia 
Lucilia (Diptera:Calliphoridae) is a relatively homogeneous group of blowflies, known as 

greenbottles, that include at least 27 species distributed throughout the Holoarctic occurring 

in all faunal regions (Rognes, 1991). Although they display a range of larval feeding strategies, 

they bear a close morphological resemblance to each other (Zumpt, 1965; Rognes, 1991).  

It has been hypothesised that parasitic behaviour has evolved multiple times independently 

within Lucilia, probably in association with humans and animal domestication (Erzinclioglu, 

1989; Stevens and Wall, 1997a). This parasitic behaviour is variable within and between 

different species of Lucilia. In Northern Europe the sheep blowfly L. sericata is the main 

agent of ovine cutaneous myiasis, usually known as ‘flystrike’ (Table 1.2). It is a facultative 

ectoparasite of great economically concern in sheep-producing farms, especially in UK 

(MacLeod, 1943; Wall et al., 1992a). Although its distribution and behaviour overlap with L. 

cuprina in many parts of its range, the latter occupies the equivalent ecological niche as the 

main sheep myiasis agent in warmer countries such as, Australia and New Zealand (Heath 

and Bishop, 1995; Tellam and Bowles, 1997).   

The British and Australian sheep blowflies, L. sericata and L. cuprina respectively, comprise a 

homogeneous group of species within Lucilia that are extremely similar in morphology. One 

of the main morphological characters that define them is the pale basicosta and the 3 pairs 

of post-acr bristles (Aubertin, 1933; Rognes, 1991). This group also includes species that are 

considered rare due to their low abundance, such as Lucilia richardsi (Collin), Lucilia regalis 

(Meigen) and Lucilia pilosiventris (Kramer). In the Palearctic, L. richardsi is sympatric with L. 

sericata in many parts of its range. They are extremely similar morphologically and 

phylogenetically (Aubertin, 1933; Stevens and Wall, 1997a). However, despite their close 

relationships, there are no existing records of the involvement of L. richardsi in ovine 

cutaneous myiasis and its biology is poorly known. Nuorteva and Skarén (1960) noted that 

it is strongly attracted to small carcasses of homothermal animals like birds and small 

mammals, and there is only one record its involvement in a wound myiasis of a nightjar 

(Nuorteva, 1959). Similarly, L. regalis and L pilosiventris are rare species for which little of their 

biology is known. Based on morphological characters Stevens and Wall (1996) highlighted 

their close relationship with Lucilia silvarum and L. cuprina. There are, however, no detailed 

phylogenetic studies that explore their relationships and taxonomic position within the genus 

Lucilia using molecular tools. 
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Lucilia caesar, Lucilia illustris (Meigen) and Lucilia ampullacea (Villeneuve) comprise a group of 

mainly saprophagous species that are also morphologically and genetically very similar 

(Stevens and Wall, 1996; Stevens and Wall, 1997a). They are well differentiated from the L. 

sericata species group by the presence of a black basicosta and 2 post acr bristles (Rognes, 

1991). Although rarely found as primary agents of myiasis, L caesar may be involved in 

myiasis in Northern Europe (Brinkmann, 1976; Wall et al., 1992a). L. illustris has been 

reported as a common species involved in ovine myiasis in Norway (Brinkmann, 1976), and 

in Finland it is the dominant species of the carrion-fly community (Hanski and Kuusela, 

1977).   

A few species exhibit an extremely specialised obligate form of parasitism for amphibians, 

such as the toad fly, L. bufonivora (Brumpt, 1934). Its life history suggest that the evolution 

of obligate parasitism occurred independent of human activity and had very different origins 

to the ones exhibited by the sheep blowfly. Due to the low economic impact of L. bufonivora, 

its taxonomy, biology and evolutionary history have been poorly studied. To date, the forces 

that have driven this highly specialised behaviour are poorly understood. 

 

1.6 Amphibian myiasis  
Unlike sheep myiasis, the mortality rate of amphibians infested with blowfly larvae is very 

high and usually do not survive the infestation (Brumpt, 1934). In Europe two species are 

thought to be involved in this disease: L. silvarum and L. bufonivora (Duncker, 1891; 

Mortensen, 1892; Linder, 1924; Stadler, 1930; Rognes, 1991). The former species is 

considered of forensic importance, as it has been found breeding in carrion and it is a 

common species of the carrion-fly community of Finland (Hanski, 1987; Fremdt et al., 2012). 

There is, however, no existing record of L. bufonivora breeding in carrion, which highlights 

its behaviour as an obligate parasite. Although there are reports of L. silvarum involved in 

amphibian myiasis, some authors argue that they might have been product of 

misidentification with L. bufonivora (Zumpt, 1965). Certainly, larval morphological 

identification is nearly impossible, and the adult stages share many morphological features 

(Rognes, 1991). Usually identification is done with the number of post acr bristles (2 and 3 

in L. bufonivora and L. silvarum respectively)(Aubertin, 1933). However, Rognes (1981, 1991) 

notes that this feature is not completely reliable because the number of bristles can be very 

variable. DNA-based identification is rarely performed to enable their differentiation. Thus, 
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to date, the species composition of Lucilia involved in amphibian myiasis in Europe is not 

well understood.  

 

 

1.6.1 Life-Cycle  
Females of the toad fly lay eggs on the surface of their host, often scattering them on the 

back of their host. After hatching first instar larvae migrate to the nasal cavities of their host 

where they start larvae development and feeding (Brumpt, 1934). Some reports of the 

pathology of amphibian myiasis in the North American continent differ slightly to the ones 

from Europe. In North America, amphibian myiasis reports have described myiasis wounds 

in the hind legs and back of the host (Bolek and Coggins, 2002; Bolek and Janovy, 2004).  

Whether this is a genuine difference or incidental variation is not known.  

As with most calliphorid flies, they pass through three larval stages. This process often kills 

the host after which the larvae may remain feeding in the carcass for a short period of time 

(Brumpt, 1934). Once the larvae are fully developed, they migrate to the soil, where they 

undergo pupariation. Although it is not yet clear, the absence of adults during colder months 

suggest that they overwinter through larval diapause, which is a common feature in Lucilia 

blowflies (Pitts and Wall, 2005). In northern regions adult flies can be found from June to 

August (Rognes, 1991). 

 

1.6.2 Host range.  
It has been assumed that in Europe the most common host for L. bufonivora is the common 

toad, Bufo bufo (Linnaeus) (Strijbosch, 1980; Weddeling and Kordges, 2008; Martín et al., 

2012). However, this needs to be confirmed using molecular tools because morphological 

identification of larvae is extremely difficult. Regardless, amphibian myiasis is not restricted 

to the common toad, in fact it has been recorded as affecting a wide range of amphibian 

hosts including Salamandra salamandra (Linnaeus), Rana temporaria (Linnaeus) and Epidalea 

calamita (Laurenti) which is an endangered species in the UK (Brumpt, 1934; Vestjens, 1958; 

Koskela et al., 1974; Weddeling and Kordges, 2008; Gosá et al., 2009).  
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1.6.3 Amphibian myiasis in North America  
In North America two species of Lucilia are thought to be involved in amphibian myiasis: L. 

silvarum and L elongata.(Bolek and Coggins, 2002; Bolek and Janovy, 2004). The latter species 

has never been reported breeding in carrion, therefore it is also considered an obligate 

parasite of amphibians. In this range, amphibian myiasis is reported affecting various frog 

species more often than it is in Europe. These include Nearctic species such as the wood 

frog, Lithobates sylvaticus (LeConte) and the western chorus frog Pseudacris triseriata (Wied-

Neuwied) and bufonids like the western toad Anaxyrus boreas (Baird and Girard) and the 

American toad Anaxyrus americanus (Holbrook)(James and Maslin, 1947; Roberts, 1998; 

Bolek and Janovy, 2004; Eaton et al., 2008).  

It was thought that L. bufonivora was restricted to the Palaearctic, however Tantawi and 

Whitworth (2014) made the first report of this species in Canada. As in Europe, this study 

also reported that misidentification between L. silvarum and L. bufonivora is very common. 

Certainly, the North American keys by Hall (1948) do not include L. bufonivora, and include 

only L. silvarum and L. elongata (which is listed as ‘Bufolucilia silvarum’ and ‘Bufolucilia elongata’ 

respectively). This is unfortunate because Hall’s keys have been used widely for the 

identification of flies reared from diseased amphibians (Bolek and Coggins, 2002; Eaton et 

al., 2008). Thus, the reports of L. silvarum causing amphibian myiasis in North America are 

also ambiguous. So far no molecular studies have been performed to determine the 

amphibian myiasis species composition in North America, and there are no existing studies 

of the evolutionary relationships of this species group. Moreover, it is not known whether 

the toad fly L. bufonivora has been present in North America since relatively ancient times or 

whether it was only recently introduced. 

 

1.7 Molecular systematics of blowflies 
In the past two decades there has been a significant increase in the use  of molecular tools 

for phylogenetic inference and identification of blowflies (Wallman et al., 2005; Junqueira et 

al., 2016). DNA-based diagnostics have proved to be particularly useful for the identification 

of larval specimens or damaged specimens of which morphological identification is 

ambiguous. Furthermore, molecular tools are of vital importance in forensic entomology 

(Yusseff-Vanegas and Agnarsson, 2017). Use of DNA sequence data for phylogeny 

inference and analysis has helped on solving taxonomic problems from different groups 

within Calliphoridae (Stevens, 2003; Wallman et al., 2005; Williams et al., 2016). 
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DNA-based methods do, however, have some disadvantages. For instance, using single-

locus approaches as an identification source is not completely reliable. A barcoding approach 

often fails to identify recently diverged taxa and/or closely related species (Nelson et al., 

2007; Whitworth et al., 2007). Thus, multi-gene approaches are needed to give stronger 

reliability for unambiguous identification and phylogeny inference (Wallman et al., 2005; 

McDonagh and Stevens, 2011)  

1.7.1 Mitochondrial markers.  
Mitochondrial DNA (mtDNA) has been widely used for blowfly phylogenetics and 

identification (Otranto and Stevens, 2002). It has several advantages over other molecular 

markers. Some of these are, for instance, the lack of recombination and the high copy 

number which makes it easy to isolate and amplify. This markers exhibit both conserved and 

variable regions and it is relatively easy to access universal primers for amplification (Avise 

et al., 1979; Folmer et al., 1994; Lunt et al., 1996). Furthermore, mtDNA usually exhibit 

much higher mutation rates than nuclear DNA (Brown et al., 1979), which makes it 

particularly useful for inferring relationships of recently diverged taxa (Stevens and Wall, 

1997b; McDonagh and Stevens, 2011). Amongst mtDNA markers, Cytochrome oxidase 

subunit I (COXI) and Cytochrome-b (Cyt-B) have been used widely for blowfly 

phylogenetics (Wallman et al., 2005; McDonagh and Stevens, 2011; Yusseff-Vanegas and 

Agnarsson, 2017). Mitochondrial markers have also proved useful for inferring divergence 

times within taxa (Wallman et al., 2005).  

 

1.7.2 Nuclear markers.  
Nuclear DNA (nDNA) possess several advantages such as the presence of exons and introns 

and also a low bias level of base composition (Brower and DeSalle, 1994; Friedlander et al., 

1994; Lin and Danforth, 2004). Usually these markers have greater power for resolving 

deeper node levels (Baker et al., 2001). However, nDNA has a lower copy number than 

mtDNA, which could result in a relatively more difficult PCR amplification. There is also 

the risk of occasional occurrence of paralogous loci (Lin and Danforth, 2004). 

Some of the nDNA markers that have been used for insect systematics, to mention a few, 

are elongation factor-1 alpha (EF1- α)(McDonagh and Stevens, 2011), dopa decarboxylase 

(DDC)(Tatarenkov et al., 1999), phosphoenolpyruvate carboxykinase (PEPCK)(Wiegmann 

et al., 2000). Moreover, recently developed nuclear markers have been used for the detection 
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of hybrids between the closely related species of sheep blowflies (L. cuprina and L. sericata 

respectively) in South Africa (Williams and Villet, 2013) 

 

 

1.7.3 Non-Coding ribosomal DNA: ITS2 
Non-coding ribosomal DNA, such as the Internal transcribed spacer two (ITS2), often 

exhibit higher mutation rates than mtDNA (Otranto and Stevens, 2002). This gene is 

transcribed as a larger precursor RNA molecule that contains three different ribosomal RNA 

(rRNA) subunits (18S, 5.8S and 28S) plus two internal transcribed spacers (ITS1 and ITS2) 

and two external transcribed spacers (5’-ETS and 3’-ETS)(Hillis and Dixon, 1991). A variety 

of structures that are created by the folding of the peptide chain form the secondary 

structures of the rRNA molecules. These secondary structures are usually conserved among 

taxa and make it a suitable marker for phylogenetic inference (Marinho et al., 2011). It has a 

high copy number and PCR amplification and sequencing are relatively easy. Recent studies 

has shown that ITS2 is a suitable marker for phylogenetic analyses at both species and generic 

levels (Marinho et al., 2011; Yusseff-Vanegas and Agnarsson, 2017). 

 

 

 

 

1.8 Aims  
The work described in this thesis had four primary aims. This first was to undertake an 

analysis of niche differentiation among the species of Lucilia found in the UK, to consider 

factors that facilitate their coexistence in the field. The second was to determine the species 

composition in amphibian myiasis in Europe from unidentified larvae of toad-myiasis cases 

using DNA-based identification methods. The third aim was to consider the taxonomy and 

ecology of the toad fly, L. bufonicora, using both molecular phylogenetics and field studies of 

its ecology to help to resolve its status as a species. Finally, to undertake a broader 

phylogenetic analysis to understand evolution of obligate amphibian parasitism within the 

genus Lucilia.  
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2.1 Introduction  
Carrion-breeding arthropod fauna, which incorporates blowflies in general, perform an 

essential role in an ecosystem, ensuring the consumption, dispersion and recycling of carrion 

nutrients (Putman, 1983; Parmenter and MacMahon, 2009). Carrion is an ephemeral 

resource which rarely allows them to complete more than one generation in a carcass 

(Beaver, 1977). Thus, several species use the same resource which results in strong intra and 

interspecific competition (Hanski, 1987).  

Within the carrion-fly community niche differences allow the coexistence of similar species, 

including differences in their phenology, carcass size, synanthropy, etc (Hanski and Kuusela, 

1977; Smith and Wall, 1997; Hwang and Turner, 2006). Habitat and species phenology may 

have a very important role on the species segregation of the blowfly community. For 

instance, Calliphora species are more abundant in early seasons and colder months, as they 

have a lower temperature requirement (Greenberg, 1991). Lucilia blowflies, however, have 

higher temperature requirements which results in an effective temporal segregation between 

Lucilia and Calliphora species (Greco et al., 2014; Zabala et al., 2014).  

MacLeod and Donnelly (1956) recorded thirteen different species from the carrion-blowfly 

community of UK (not counting Lucilia bufonivora). Six species of Lucilia, five species of 

Calliphora, one species of Protophormia and one species of Cynomya . A more recent study of 

the necrophagous fly community of South-east England (Hwang and Turner, 2006), have 

also found 3 species of Pollenia and one species of Melinda. The latter study found Calliphora 

vicina the most abundant species of the carrion-fly community. In the South-West, Lucilia 

sericata, Lucilia caesar and C. vicina are amongst the most common species that emerge from 

carcasses in the field (Smith and Wall, 1997b).  

The sheep blowfly (L. sericata) is a cosmopolitan species distributed throughout the world 

(Aubertin, 1933; Hall, 1948; Rognes, 1991). It is usually confined to open and exposed 

habitats  (Gregor, 1991; Smith and Wall, 1997; Martínez‐Sánchez et al., 2001). Woodridge et 

al. (2007) showed that the catch size of this species is significantly affected by light intensity. 

It is a synanthropic species, frequent in urban and populated areas (Fischer, 2000; Hwang 

and Turner, 2006). In Northern Europe, adult flies are found from April to October, usually 

in higher abundancies during the warmer months (Rognes, 1991). 

On the other hand, L. caesar is usually more abundant in shaded rather than open habitats 

(MacLeod and Donnelly, 1956).  Lucilia illustris is a very rare species in UK but very common 
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in Finland(Hanski, 1987). Macleod and Donelly (1956) noted that, unlike L. caesar, this 

species occurs in a wide range of habitat types, including shaded and non-shaded. The 

behaviour Lucilia ampullacea resembles to the one of L. caesar, however it exhibits a stronger 

confinement to shaded habitats and it is almost never recovered from open habitats 

(MacLeod and Donnelly, 1956).  

This aim of the work described in this Chapter was to examine the structure of a calliphorid 

community on farmland in south west England and to determine the roles of habitat, 

temperature and farm type on its species composition and its spatial and temporal 

abundance. 

 

2.2 Materials and methods  

2.2.1 Study sites 
Two sites were sampled in this study. Site one was on an organic livestock farm in Failand, 

North Somerset, situated in a rural area consisting mainly of pastureland for agricultural use 

and with little human activity (Fig. 2.1). Site two was on a mixed farm in Long Ashton, North 

Somerset, located in a semi-rural zone less than 500m away from an area with housing and 

higher human activity (Fig. 2.2). Each farm was situated approximately 5km from the city of 

Bristol and separated by 5km from each other. Both sites presented a variety of different 

patches of habitat within the farm, of which three were considered for this study: open field 

(grassland, with direct sunlight, Fig. 2.3a), hedgerow (mainly hawthorn and bramble, offering 

partial shade, Fig. 2.3b) and woodland (predominantly ash, hazel and birch, with complete 

shade, Fig. 2.3c). 
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Figure 2.1. Rural site with little human activity situated in North Somerset, England.  

2.2.2 Trapping 
Modified bottle traps (Hwang and Turner, 2006) were used to catch blowfly specimens in 

good condition to allow identification (Fig. 2.3d). Each trap was baited with approximately 

100g of fresh lamb liver. The liver was placed in a plastic container inside the trap and it was 

topped up with water during every collection to prevent bait desiccation. The bait was 

covered with a mesh and a rubber band to reduce oviposition.  

On the 2nd of March 2016, five traps were distributed at least 20 m from each other in each 

habitat placed approximately 1.5 m off the ground and attached to a tree, for the woodland, 

or a fence post for the hedgerow. To sample in open habitats, pre-existing posts supporting 

wire fences with no associated hedge vegetation were used or, if unavailable, wooden posts 

were erected for the study prior to trapping. Fifteen traps were placed at each farm, five in 

each habitat with a total of 30 traps for both farms.  The last collection and trap removal 

took place on the 5th of August 2016. 
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Figure 2.2. Semi-rural farm with moderate human activity situated in North Somerset, 

England. 

Collections were made every 3-6 days. At each collection, the upper part of the trap 

containing the flies was removed and replaced by a clean one for further trapping. Traps 

were taken back to the laboratory at the University of Bristol and placed at -20 °C for 20 

min to kill the flies.  Traps were then emptied and specimens were removed for further 

identification. Baits were replaced every 4-5 weeks; previous research has shown that the age 

of the baits has little effect on the blowfly catch size once past the initial stages of 

decomposition (Fisher et al., 1998). Once trapped flies had been removed, calliphorids were 

separated from non-target species and identification was made under a dissecting 

microscope model Leica S6E using keys (Emden, 1954). The number of each species was 

recorded in relation to habitat and site.  
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Figure 2.3. Habitats sampled in this study: open (a), hedgerow (b) and woodland (c). Picture 

d) displays the modified trap used for blowfly sampling. Bait was placed in the bottom part 

of the trap and the upper part held the trapped flies until collection was done.  Pictures a) 

and c) were taken at the semi-rural site, where as pictures b) and d) were taken at the rural 

site. 

 

a b 

c d 
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2.2.3 Data analysis  
The number of flies caught per trap per day was calculated by dividing the number of flies 

caught per trap (for individual species) by number of days of trap operation since the last 

collections.  Catch per day was used to remove any effect of the differences in time interval 

between collections. For each collection interval, mean temperature was calculated from the 

data recorded by a local weather station at Horfield/Filton (Table 2.1), situated 

approximately 13 km from both farms. Due to the non-normal distribution of the count 

data for the calliphorid species collected here (Fig. 2.4) a generalised linear mixed model with 

a negative binomial error was selected for each species separately with the function glm.nb 

using R in RSTUDIO 3.4.2 (2015) where the influence of site (rural, semirural), habitat 

(open, hedge, woods) and temperature were included as fixed factors and the transformed 

fly count number (described above) as the dependant variable.  Previous studies have shown 

that for overdispersed count data, negative binomial distribution models can provide better 

understanding of the probability distribution of different species (Sileshi, 2006). The best fit 

model was selected by the stepwise removal of non-significant factors for each separate 

species based on the Akaike information criterion AIC (Table 2.2). If any, interactions 

between site and habitat were also analysed. 

2.3 Results 
This work confirmed the presence of nine Calliphorid species in South-West UK: Lucilia 

richardsi, Lucilia silvarum, L. sericata, L. caesar, L. illustris, L. ampullacea, Calliphora vomitoria 

(Linnaeus), C. vicina, Cynomya mortuorum (Linnaeus) and Protophormia terranovae (Robineau-

Desvoidy). A total of 17,246 calliphorid specimens were caught and identified. Of these 

2,427 were L. sericata, 51 L. richardsi, 6,580 L. caesar, 307 L. ampullacea, 4,881 Calliphora vicina 

and 2,959 C. vomitoria. Least abundant species like C. mortuorum, P. terranovae, L. silvarum and 

L. illustris, were not included in the statistical analysis, as the number of specimens caught 

for each was less than 10. No specimens of Lucilia bufonivora were caught during this study. 
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Figure 2.4 Distribution frequencies of the calliphorid species recorded in this study. X axis 

displays the flies/trap/day and Y axis represents the frequency. Individual species names are 

indicated at the top of their respective histogram plot.   
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2.3.1 Model Selection  
Models selected for L. sericata, L. caesar, and C. vomitoria included habitat, site, temperature 

and the interaction between the latter 2 factors (Table 2.2). The model selected for L. 

ampullacea removed interactions between ‘site’ and ‘habitat’ as they were not significant (Table 

2.2). L. richardsi was the least abundant of the 6 species and in order to analyse the habitat 

distribution of this rare species, the model selected did not include the interactions between 

habitat and site. The best fit model for C. vicina did not include ‘temperature’ and just 

included ‘site’, ‘habitat’ and their interactions, resulting in lower AIC scores (Table 2.2). 

Calliphorid species composition changed over the duration of the collection period. C. vicina 

and C. vomitoria were the first calliphorid species to emerge in the month of March when the 

average temperature was 6.8 °C.  No Lucilia specimens were found in March (Fig. 2.5). The 

two Calliphora species were also the most abundant calliphorids over the month of April; the 

average temperature reported for this month was 8.9 °C (Table 2.1). In fact the highest catch 

recorded for the month of April of C. vicina was of 12 flies/trap/day. The first specimens of 

L. sericata and L. caesar were observed during late April at the semirural farm (Fig. 2.8, Fig. 

2.9).  The population of C. vicina decreased in the warmer months, June, July and August, 

while Lucilia populations increased over these months (Fig. 2.5). The statistical models 

showed that there was a significant effect of temperature on the number caught for all 

calliphorid species except for C. vicina, where temperature was not a significant factor (Table 

2.2). Nonetheless, Fig. 2.5 shows the early emergence of C. vicina showing strong segregation 

between it and Lucilia caesar. 

Table 2.1. Seasonal temperatures recorded in Bristol (Horfield/Filton weather station) for 

each sampling month (March-August 2016). Month of study, average temperature, average 

maximum temperature and average minimum temperature are displayed in the table.   

Month 

Average 

temperature 

(°C) 

Average max 

temp (°C) 

Average min 

temp (°C) 

March 6.8 10.2 3.4 

April 8.9 13.2 5.1 

May 13.9 18.6 9.5 

June 16.2 20.2 13.1 

July 17.7 21.7 14.1 

August 16.6 20.9 13 
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Figure 2.5. Median number of flies caught (trap/day) recorded for two farms in different 

months; boxes represent first and third quartile for Lucilia caesar and Calliphora vicina. 

Whiskers show 95% confidence intervals with outliers (dots). 

 

Table 2.2. Stepwise removal of non-significant factors for individual species models.  Table 

displays the formula used, its degrees of freedom and its AIC scores. *=model selected for 

statistical analysis of individual species. 
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glm.nb(nflies~1) 2 3401.58 5204.87 1193.25 378.011 5552.66 4014.88 
glm.nb(nflies~temp) 3 3294.63 5002.32 1154.45 375.644 5550.61 3986.53 
glmer.nb(nflies~site*habitat) 7 3211.52 5097.14 1045.01 345.421 5414.74* 3656.36 
glmer.nb(nflies~site*habitat+temp) 8 3087.54* 4847.13* 1003.15 340.349 5416.74 3619.60* 
glmer.nb(nflies~site+habitat+temp) 6 3102.83 4852.61 999.788* 341.727* 5426.90 3620.65 
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2.3.3 Effects of site 
Of the 17,246 specimens, 7,876 flies were caught in the rural farm and 9,370 in the semi-

rural farm. Site had a significant effect on the abundance of L. sericata (z=7.142, P<0.001; 

Fig. 2.6) and L. ampullacea (z=-9.591, P<0.001; Fig. 2.6); however, this factor had no 

association with the abundance of L. caesar, L. richardsi, C. vicina or C. vomitoria (Table 2.2). 

The sheep blowfly L. sericata was significantly more abundant at the semi-rural farm than in 

the rural farm (Fig. 2.6). In contrast L. ampullacea was significantly more abundant at the rural 

farm (Table 2.3, Fig. 2.6).  

Table 2.3. Effects of site on individual species abundance. Table displays the estimate, 

standard error, z value and p values computed by the model for each calliphorid species 

studied.  

 

2.3.4 Effects of habitat 
The factor ‘habitat’ had a significant effect on the fly catch for all the species collected (Table 

2.4). The calliphorid community in ‘open’ habitats was dominated by L. sericata (Fig. 2.7). 

The rare species, L. richardsi, was also more frequently found in this habitat it was rarely 

found in hedgerows and it was not found at all in woodland traps (Fig. 2.7). There was no 

significant difference in the number of L. richardsi caught in hedgerow or open habitats 

(Table 2.4).  

The most abundant species in hedgerow habitats were L. caesar (Fig. 2.7) and C. vicina. 

Statistical analysis showed that the abundance of the latter species was not significantly 

different between woodland and hedgerow habitats (z=-0.172, P=0.86, Table 2.4).  Although 

this species was found in shaded habitats, it was also found in open habitats in smaller 

Factor sp.  estimate SE z p 

Semirural - Rural L. sericata 1.9526 0.2734 7.142 <.0001 

Semirural - Rural L. caesar 0.3119 0.2308 1.351 0.1767 

Semirural - Rural  L. ampullacea -0.9815 0.2897 -3.388 <.0001 

Semirural - Rural  L. richardsi 0.7394 0.555 1.330 0.1834 

Semirural - Rural  C. vicina -0.0142 0.1840 -0.077 0.93841 

Semirural - Rural  C. vomitoria -0.3263 0.2134 -1.529 0.126 
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numbers (Fig. 2.7). In contrast, L. ampullacea had its highest abundance in woodland habitats 

and was almost completely absent from ‘open’ environments (Fig. 2.7). 

Woodland habitats were dominated by L. caesar and C. vomitoria (Fig. 2.7). The  abundance 

of L. caesar was significantly different between habitat types (Table 2.4), with its highest 

abundance recorded in woodland and its lowest in ‘open’ habitats (Fig. 2.7). Unlike C. vicina, 

statistical analysis showed a significant difference between hedgerow and woodland habitats 

on the abundance of C. vomitoria (Table 2.4), which had higher abundancies in the latter 

habitat (Fig. 2.7, Fig. 2.13).   

 

2.3.5 Interaction between factors  
There was a significant interaction between habitat and site on the catch of L. sericata, 

L. caesar, C. vicina and C. vomitoria (Table 2.2).  The sheep blowfly, L. sericata, was more 

common in the hedgerow habitats of the semirural farm (Fig. 2.8) than those of the rural 

farm (z=-7.142, P<0.001). Similarly, although L. caesar was more abundant in shaded 

habitats, it was not restricted to ‘open’ habitats, this happened with more frequency in the 

semirural farm than it did in the rural farm (z=-4.508, P<0.001; Fig. 2.9). The bluebottle, C. 

vicina, which also was generally more abundant in shaded habitats, was recovered more 

frequently from the ‘open’ habitats of the rural farm than those of the semirural farm 

(z=4.22, P<0.001; Fig. 2.12).  
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Figure. 2.6 . The number of flies caught (trap/day) at rural or semirural sites. horizontal axis 

displays the site of study (rural and semirural). The median flies/trap/day is displayed 

within boxes representing first and third quartiles. Whiskers show 95% confidence 

intervals with outliers (dots). Individual species names are indicated at the top of their 

respective figure.  
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Table 2.4. Effects of habitat on fly abundance. Table displays the estimate, standard error, z 

value and p values computed for individual calliphorid species studied. 

Sp. Factor Estimate SE z Pr(>|z|) 

L. sericata 
open – hedge 
woods - open 

0.75761 
-4.13423 

0.28256 
0.44628 

2.681 
-9.264 

0.007336 
<2e-16  

woods - hedge -3.37662 0.45041 -7.497 6.54E-14 

L. caesar 
open – hedge 
woods - open 

-2.49063 
2.97109 

0.25639 
0.25492 

-9.714 
11.655  

<2e-16 
<2e-16  

woods - hedge 0.48045 0.23309 2.061 0.0393 

L. ampullacea 
open – hedge 
woods - open 

-3.47E+01 
3.737E+01 

3.42E+06 
3.419e+06 

0 
0 

0.999992 
0.999991 

woods - hedge 2.67E+00 3.10E-01 8.601 < 2e-16 

L. richardsi 
open – hedge 
woods - open 

2.46E+00 
-3.56E+01 

5.99E-01 
3.881e+06   

4.107 
0 

4.01E-05 
0.99999 

woods - hedge -3.32E+01 3.88E+06 0 0.99999 

C. vicina 
open – hedge 
woods -open 

-1.1946 
1.1627  

0.18844 
0.1885 

-6.339 
6.169 

2.31E-10 
6.88E-10 

woods - hedge -0.03191 0.18572 -0.172 0.86359 

C. vomitoria 
open – hedge 
woods - open 

-2.87744 
4.43343 

0.26565 
0.26322 

-10.832 
16.843 

< 2e-16 
< 2e-16 

woods - hedge 1.55598 0.21063 7.387 1.50E-13 
 

2.4 Discussion 
Carrion is an unpredictable and ephemeral resource and diversity within carrion breeding 

insect community is thought to be structured by intense resource competition with 

ecophysiological, behavioural or phenological differences allowing niche partitioning in 

space and time (Cruickshank and Wall, 2002). However, the interspecific ecological 

difference that facilitate coexistence within the blowfly community are not fully understood. 

Differences in habitat use may have an important impact on their population dynamics, 

through its effects on the intensity of competition, predation or parasitism (Hatcher et al., 

2006).  Understanding patterns of habitat use is also important, because heterogeneity in 

distribution affects the variance in catch and thereby determines the spatial scale, method 

and intensity at which sampling must be carried out (Southwood, 1976).  For insect pests, 

the pattern of habitat use and the spatial scale of aggregation with specific parts of the habitat 

has a critical influence on the efficacy of almost all control techniques and therefore on the 

nature, application practicalities and cost of any control procedure.  An understanding of the 

factors that determine the relative abundance of Lucilia is also of particular practical interest 

since L. sericata and L. caesar are of economic importance in livestock myiasis (MacLeod, 

1943; Wall et al., 1992a).  
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Figure. 2.7 The number of flies caught (trap/day) in open (cream), hedgerow (light green) 

and woodland (dark green) habitats. The median flies/trap/day is displayed within boxes 

representing first and third quartiles. Whiskers show 95% confidence intervals with outliers 

(dots). Species names are indicated at the top of their respective figure.  
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Ecological studies typically try to explain distribution patterns of organisms and their 

variability through space and time. This is often made by counting individuals in a certain 

range (Southwood, 1976). Different statistical approaches have been employed by field 

entomologists to model general patterns of insect species distribution evaluating the effects 

of a series of variables (Southwood, 1976). Although there is a relatively wide body of 

research on blowfly ecology, spatial and/or temporal distribution of calliphorid species of 

veterinary/forensic importance is typically modelled assuming homogeneity of variance and 

normal distribution of the data. However, datasets often exhibit a high proportion of zeros, 

where the data is skewed by a mean that exceeds the theoretical variance. This phenomenon 

is called overdispersion and it is rarely considered in statistical analysis on insect ecology 

(Sileshi, 2006). If the model is not properly selected, the presence of excess zeros and 

variance heterogeneity can invalidate its assumptions. Furthermore, it could lead to a biased 

estimation on the effects of ecological factors that are defining the variability of a pattern. 

Relatively recent research has shown that negative binomial distribution and over-dispersed 

corrected Poisson models can provide better estimates on the probability distribution of 

insect datasets that display overdispersion (Sileshi, 2006). In order to provide better estimates 

on the effect of ecological on spatial and temporal distribution of saprophagous and 

facultative blowflies, this work employed a generalised linear model with negative binomial 

distribution for data analysis. This work aims to provide an accurate inference of the effects 

of habitat, temperature and farm type on the spatial and temporal abundance of a 

saprophagous/facultative calliphorid community.  

The present work took place over a single year and, given the highly variable weather of the 

UK, climatic variation between years might be expected to result in differences in the 

abundance of the various species recorded. More extensive research over several years would 

be required to assess this possibility. However, the findings presented here correspond with 

previous studies on spatial and temporal distribution of calliphorid flies, giving confidence 

in the underlying robustness of the trends identified. For example, studies have shown that 

Calliphora species to be more abundant in cooler months relative to Lucilia species (Greco et 

al., 2014; Zabala et al., 2014). The minimum temperature below which the development of 

C. vicina ceases was reported to be 2 °C (Greenberg, 1991) and recent laboratory studies 

estimated a minimum developmental temperature of 1°C and a requirement of 4,700 

accumulated degree hours for the development from the egg hatch to pupation (Donovan 
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et al., 2006). The reduction in the abundance of Calliphora species in the carrion community 

during the warmer months could also possibly be affected also by the presence of other 

carrion breeding species with higher threshold temperature development, increasing 

competition for food resources (Fig. 2.5). The lower threshold temperature for L. sericata 

development is 9 °C (Wall et al., 1992b) and mean temperatures above 9 °C were not 

achieved until late April in the year of the study.  Hence, Lucilia adults were not present 

during March and most of April (Figs. 2.8-2.11). When L. sericata specimens were present, 

they were significantly more abundant in open habitats and rarely seen in the woodland (Fig. 

2.8). The high abundance of L. sericata in open relative to other habitats has also been 

recorded previously (Gregor, 1991; Smith and Wall, 1997b; Martínez‐Sánchez et al., 2001). 

This pattern of habitat use may be related to light intensity and previous studies have 

suggested that the behaviour (Smith et al., 2002) and trap catch size (Wooldridge et al., 2007) 

of L. sericata are strongly affected by light intensity, although microclimatic temperature and 

humidity tolerances may also be important(Cruickshank and Wall, 2002). The data also 

support previous studies where it is suggested that L. sericata is a synanthropic 

species(Fischer, 2000; Hwang and Turner, 2006), as the number of specimens recorded for 

the rural farm was much lower than that one recorded for the semirural farm, and in fact, 

during the whole experiment this number did not surpass the 0.8 flies/trap/day in the rural 

farm. 
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Lucilia sericata 

Figure. 2.8. The number of Lucilia sericata caught (trap/day) in different months and in 

different habitats (open, hedge and woods) at different sites: a) rural; b) semirural. The 

median flies/trap/day is displayed within boxes representing first and third quartiles. 

Whiskers show 95% confidence intervals with outliers (dots) 
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Lucilia caesar 

Figure 2.9. The number of Lucilia caesar caught (trap/day) in different months and in different 

habitats (open, hedge and woods) at different sites: a) rural; b) semirural. The median 

flies/trap/day is displayed within boxes representing first and third quartiles. Whiskers show 

95% confidence intervals with outliers (dots) 
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Lucilia ampullacea 

 

Figure 2.10. The number of Lucilia ampullacea caught (trap/day) in different months and in 

different habitats (open, hedge and woods) at different sites: a) rural; b) semirural. The 

median flies/trap/day is displayed within boxes representing first and third quartiles. 

Whiskers show 95% confidence intervals with outliers (dots) 
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Lucilia richardsi 

Figure 2.11. The number of Lucilia richardsi caught (trap/day) in different months and in 

different habitats (open, hedge and woods) at different sites: a) rural; b) semirural. The 

median flies/trap/day is displayed within boxes representing first and third quartiles. 

Whiskers show 95% confidence intervals with outliers (dots) 
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Calliphora vicina 

Figure 2.12. The number of Calliphora vicina caught (trap/day) in different months and in 

different habitats (open, hedge and woods) at different sites: a) rural; b) semirural. The 

median flies/trap/day is displayed within boxes representing first and third quartiles. 

Whiskers show 95% confidence intervals with outliers (dots)  
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Calliphora vomitoria 

 

Figure 2.13. The number of Calliphora vomitoria caught (trap/day) in different months and in 

different habitats (open, hedge and woods) at different sites: a) rural; b) semirural. The 

median flies/trap/day is displayed within boxes representing first and third quartiles. 

Whiskers show 95% confidence intervals with outliers (dots)  
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A species that is almost identical to L. sericata in their morphology, L. richardsi, was also more 

frequently found in the same habitats, usually ‘open’ (Fig. 2.11), which suggest also a close 

affinity in their physiology or behaviour. It is also known that L. richardsi has a close 

phylogenetic relationship with L. sericata (McDonagh and Stevens, 2011). Despite their 

similarity and close relationship, it remains unclear why L. richardsi has never been reported 

involved in sheep strike.  

In the present study, L. caesar was the most abundant calliphorid species, collected mainly 

from shaded habitats (Fig. 2.9). In western Scotland L. caesar was the second most abundant 

species of myiasis agent in sheep strikes and occurred at a significantly higher frequency than 

in more southerly latitudes (Morris and Titchener, 1997). While it has been suggested that 

this may be due to lower temperature and higher humidity requirements for L. caesar (Wall 

et al., 1992a) there is no firm understanding of why the involvement of L. caesar in ovine 

cutaneous myiasis is rare in England although it is very common as a carrion breeding species 

in woodland habitats. Similarly, L. illustris is reported as a common species involved in 

flystrike cases in Norway (Brinkmann, 1976) and as the dominant species of the carrion fly 

community in Finland (Hanski and Kuusela, 1977). However in England L. illustris has not 

been reported involved in flystrike (Wall et al., 1992a) and, in fact, the data presented here 

alongside previous studies suggest that it is a rare species in England (Smith and Wall, 1997b). 

Nonetheless, it is known that, unlike L. caesar, it can be found in most habitat types (MacLeod 

and Donnelly, 1956). The reason why L. illustris is rarely involved in flystrike cases in the UK 

is still unknown and further work is required to study this phenomenon. Another species of 

the L. caesar species group, L. ampullacea, exhibited stronger affinity to shaded habitats, as 

there were no specimens recovered from open habitats at all (Fig. 2.10). It is likely that this 

species is confined to locations with higher humidity levels and low light intensities.  

Most natural carcasses are situated in shaded habitats, as dying animals seek shelter (Blackith 

and Blackith, 1990) and this means that the food resource available to L. sericata is limited, 

as it has been reported as a relatively poor inter-specific competitor with other calliphorid 

species (Smith and Wall, 1997a). This could have played an important role in niche 

partitioning, possibly forcing L. sericata to migrate to food resources with fewer potential 

competitors, such as living hosts in open habitats.  However, more studies need to be carried 

out to determine and understand the pathway of the evolution of parasitic behaviour within 

this genus.  



65 
 

MacLeod and Donnelly (1956) suggested that relatively persistent fly distributions within the 

vegetational mosaic might be delimited by habitat requirements. Regardless of the long 

interval time between the present study and the former, the present results match largely and 

support the findings of the former study. The data presented here suggest that differences 

in phenology and habitat use between Calliphora and Lucilia are likely to be mediated most 

strongly by differences in temperature tolerance, whereas difference within species of the 

genus Lucilia are likely to be mediated by differences in humidity and desiccation tolerance 

and light intensity, resulting in effective niche partitioning. Desiccation tolerance may have 

conferred a behavioural advantage for L. sericata over other blowfly species, allowing it to 

become a more common agent of livestock myiasis in open pasture. Nonetheless, more 

studies are required to confirm this.     
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3.1 Introduction  
Within the genus Lucilia, only one species is thought to behave as an obligate parasite in 

Europe: Lucilia bufonivora (Moniez) (Brumpt, 1934). Moniez (1876) described the fly after he 

succeeded in rearing twenty-five adults which were then designated as syntypes in Raismes 

(Nord), France, however with no specified number of males and females. This species has a 

high host-specificity for amphibians and is thought to be the main amphibian myiasis agent 

in the Palearctic (Strijbosch, 1980; Weddeling and Kordges, 2008; Martín et al., 2012). Eggs 

are laid on the living host and, after hatching, the first stage larvae migrate to the nasal cavities 

where larval development takes place (Fig. 3.1a-b), usually resulting in the death of the 

amphibian host (Brumpt, 1934; Zumpt, 1965).  L. bufonivora has been reported as the cause 

of myiasis in a range of amphibian hosts, however, most reports relate to infestations of the 

common toad, Bufo bufo  (Strijbosch, 1980; Weddeling and Kordges, 2008; Martín et al., 

2012). This blowfly is widely distributed in Europe (Rognes, 1991) and Asia (Fan et al., 1997). 

Although it was thought to be restricted to the Nearctic, adult samples were recently reported 

from Canada (Tantawi and Whitworth, 2014).  

 

One of the main limitations of Dipterology, in general, is the close morphological 

resemblance between closely related species. This phenomenon has led to misidentification 

and erroneous reports of biodiversity data (Rognes, 2014). Certainly, L. bufonivora is almost 

morphologically identical to a saprophagous species Lucilia silvarum (Rognes, 1991; Tantawi 

and Whitworth, 2014). According to Rognes (1991), the L. bufonivora group is characterised 

by the presence of a normal arista with long hairs; 2-4 median marginal setae on T3 strong, 

different from the paramedian setae, and as long as T4 (or longer than half the length); the 

first flagellomere half as long as the greatest length of eye viewed in profile or less. 

Differentiation between L. bufonivora and L. silvarum is normally carried out by the number 

of post acr bristles, two and three respectively (Aubertin, 1933). However, this morphological 

character is very variable (Rognes, 1981, 1991), and thus accurate identification should 

include thorough examination of the terminalia as indicated by Rognes (1991) and Tantawi 

and Whitworth (2014).    

 

L. silvarum is  widely distributed blowfly species in the Palearctic (Rognes, 1991) and the 

Nearctic (Hall, 1948). In Europe, however there are several reports of L. silvarum being 

involved in amphibian myiasis (Duncker, 1891; Mortensen, 1892; Linder, 1924; Stadler, 

1930). It is also known to behave mainly as a carrion breeder in this region (Zumpt, 1956; 
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Fremdt et al., 2012). Zumpt (1965) argued that, in the Palearctic, most records of toad 

myiasis thought to have been caused by L. silvarum might be due to misidentification and 

should be attributed to L. bufonivora. To date, species composition in amphibian myiasis in 

Europe remains unclear due to taxonomic confusion. Moreover, no molecular studies have 

yet confirmed the involvement of either species in amphibian myiasis in Europe 

 

The monophyly of Lucilia as a genus has been debated for decades. Indeed, Rognes (1991) 

argued that, at the time he was writing, no detailed phylogenetic analyses had been 

performed, and thus the monophyly of Lucilia with respect to Hemipyrellia and Hypopygiopsis, 

remained questionable since they differed only in the absence of a long fine setae on the 

katerguite (Zumpt, 1965). Using a multi-gene approach, Williams et al. (2016) noted that 

recognising Hemipyrellia as a genus would consistently leave Lucilia paraphyletic.  

 

On the American continent, Townsend (1919) proposed a new genus, Bufolucilia, which 

included L. bufonivora as the type species, along with L. silvarum. Subsequently, Hall (1948) 

included Lucilia elongata Shannon in this genus, which has also been reported as an amphibian 

parasite in North America (James and Maslin, 1947; Bolek and Janovy, 2004). This has 

created confusion on the taxonomic status of L. bufonivora. More recently, the genus 

Bufolucilia was dismissed as a synonym of Lucilia by Rognes (1991), although it continues to 

be used as a subgenus by a number of authors (Kraus, 2007; Verves and Khrokalo, 2010; 

Draber-Mońko, 2013). However, while several studies provide strong support for the 

grouping of L. bufonivora and L. silvarum as closely related sister species (Stevens and Wall, 

1996; McDonagh and Stevens, 2011) recognition of subgenus Bufolucilia would leave other 

Lucilia species in a heterogeneous and paraphyletic group, as observed with some other 

proposed (but poorly supported) genera, for example, Phaenicia (Stevens and Wall, 1996).  

 

The mitochondrial gene cytochrome oxidase subunit one (COX1) has proved to be a useful 

molecular marker for detection and identification of parasites and pathogens such as 

nematodes (Aravindan et al., 2017), trypanosomes (Rodrigues et al., 2017), ticks (Chitimia et 

al., 2010), oestrid flies (Samuelsson et al., 2013) just to mention a few. Additionally, it has 

been widely used for blowfly phylogenetics (McDonagh and Stevens, 2011; Williams and 

Villet, 2013; Williams et al., 2016). Nonetheless it has its own limitations, for example in 

some cases molecular diagnostics of closely related species are not entirely reliable (Nelson 

et al., 2007; Whitworth et al., 2007). To overcome this problem, previous studies have 
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employed multi-gene approaches that not only improve identification accuracy, but also 

phylogenetic resolution at different levels of divergence (Wallman et al., 2005).These studies 

have made use of not only just mtDNA sequence data,  but also ribosomal non-coding DNA 

and nuclear DNA (McDonagh and Stevens, 2011; Williams and Villet, 2013; Williams et al., 

2016; Yusseff-Vanegas and Agnarsson, 2017).   

 

The aim of this work was to examine the blowfly species composition in amphibian myiasis 

in Europe by extracting and analysing DNA of unidentified larval specimens that were found 

causing nasal-myiasis in live-hosts.  Molecular analysis consisted of a multi-gene approach 

using sequence data from the mitochondrial protein-coding gene cytochrome c oxidase 

subunit I (COX1) and the nuclear gene elongation factor 1 alpha (EF1α). It also aimed to 

resolve the taxonomic confusion of the proposed genus ‘Bufolucilia’ (Townsend, 1919) and 

the positioning of L. bufonivora and L. silvarum as distinct species.   

 

3.2 Materials and methods  

3.2.1 Adult and larval specimens 
Unidentified larval specimens were sampled from 16 separate toad myiasis cases from six 

different locations in Britain (8 cases), four locations in The Netherlands (7 cases) and one 

site in Switzerland (1 case) (Table 3.1). Four adult specimens of L. bufonivora were also 

analysed, two from southern Germany and two collected with the aid of baited traps in The 

Netherlands (Table 3.3, Fig. 3.2). Five adult specimens of L. silvarum were analysed, including 

three from the UK, one from the USA and one from The Netherlands.  A specimen of L. 

elongata from Alberta, Canada was also added to facilitate further exploration of the 

evolutionary relationships across the broader group of fly species reported as amphibian 

parasites. Additionally, adult specimens of L. sericata, Lucilia caesar, Lucilia richardsi and Lucilia 

ampullacea collected in Bristol, UK (as described in chapter 2) were added to the analysis 

(Table 3.3). Two adult specimens of toad fly L. bufonivora and one adult specimen of L. 

silvarum collected in the Netherlands (as will be described in chapter 5) were also added to 

the analysis (Table 3.3). 

 

Information on the evolutionary relationships between Palearctic and strictly Nearctic 

lineages of Lucilia (e.g. Lucilia mexicana Macquart) is very limited. Given that L. elongata is 

strictly Nearctic (Tantawi and Whitworth, 2014) the addition of a non-parasitic taxon 
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restricted to this area might help resolving whether L. elongata has close relationships with 

other Nearctic species of non-parasitic blowflies. Therefore, two new specimens of adult 

Lucilia mexicana from Chapingo, Mexico were included in the analysis (Table 3.3). 

 

 

Figure 3.1. Common toad (Bufo bufo) with nasal myiasis due to Lucilia bufonivora. a) 

early stage of the disease, small nasal myiasis wounds are visible at each nostril. b) 

advance stages of nasal myiasis posterior ends of live third instar larvae are visible within 

the enlarged wounds. Bridgnorth, Shropshire, U.K.; Photographs courtesy of Dr. A. 

Breed, Animal and Plant Health Agency, Defra, U.K 

a) 

b) 
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Sequence data for specimens Lucilia cuprina and Lucilia illustris were obtained from 

EMBL/GenBank and included in the analysis. Two adult samples of Calliphora vicina 

collected in the UK (as described in chapter 2) and were included as outgroup taxa. Finally, 

a laboratory-reared adult specimen sent from Switzerland and labelled ‘L. bufonivora’ was 

included in the analysis. This specimen belonged to a second generation of flies from a 

colony that was originally stablished by rearing larvae from a toad-myiasis case in Switzerland 

(Table 3.3). All specimens were stored in 100% ethanol at 4°C prior to analysis.  

 

 

 

Figure 3.2. Location of larval (red dots) and adult (green triangles) specimens of Lucilia 

bufonivora analysed in this study. 1=Bridgnorth (3 cases); 2=Loughborough (1 case); 

3=Holkham (1 case); 4=Shrewsbury (1 case); 5=Nottingham (1 case); 6=Suffolk 

(McDonagh and Stevens, 2011); 7=Ossingen, CHE (1 case); 8=Haasksbergen, NLD (4 

cases); 9=Zelhem, NLD (1 case); 10=Friesland, NLD (1 case); 11=Rotterdam, NLD (1 

case); 12=Baden-Württemberg, DEU (2 adult flies); 13=Olst, NLD (1 adult); 14=Winssen, 

NLD(one adult).   
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3.2.2 DNA extractions and Polymerase Chain Reaction procedures  
Thoracic muscle of adult specimens was used for DNA extraction to avoid contamination 

with ingested protein, eggs or parasites. To avoid potential contamination from larval gut 

contents, the anterior and posterior ends of larvae were used for DNA extraction from LII 

and LIII life stages, while whole specimens were used if samples were LI; live larvae were 

maintained on damp filter paper for 3–6 hours prior to storage in ethanol to allow them to 

evacuate their gut contents. DNA extractions were carried out using a QIAGEN DNeasy® 

Blood and Tissue Kit (Qiagen GmbH, Germany) according to manufacturer’s instructions.  

 

Table 3.1.  Larval Lucilia specimens studied, including the location of collection, infestation 

ID and accession numbers for EMBL/GenBank DNA sequences for both COX1 and EF1α.  

+ = new sequence. NOTE: Only new sequence data were submitted to GenBank as haplotypes, 
thus specimens with the same haplotype were allocated with the same accession codes.  

Infestation ID  
 

Larvae 
analysed 

Country/Region of origin Name on tree COX1  EF1α  

BB016-2 1 Haaksbergen, The Netherlands Lbufo(NLD1) FR719161 FR719238 

BB016-3 1 Haaksbergen, The Netherlands Lbufo(NLD2) FR719161 FR719238 

BB016-1 1 Zelhem, The Netherlands Lbufo(NLD3) FR719161 FR719238 

BB016-4 1 Haaksbergen, The Netherlands Lbufo(NLD4) FR719161 FR719238 

BBSP1  1 Haaksbergen, The Netherlands  Lbufo(NLD5) FR719161 FR719238 

Friesl-1 1 Friesland, The Netherlands  Lbufo(NLD6) FR719161 FR719238 

Rott-1 1 Rotterdam, The Netherlands Lbufo(NLD7) FR719161 FR719238 

Oss-Ch-1 1 Ossingen, Switzerland Lbufo(CHE) FR719161 FR719238 

WV15 6QR-1 1 Bridgnorth, Shropshire, UK Lbufo(GBR1) FR719161 FR719238 

WV15 6QR-2 1 Bridgnorth, Shropshire, UK Lbufo(GBR2) FR719161 FR719238 

XT767-16 1 Loughborough, UK Lbufo(GBR3) FR719161 FR719238 

XT931-16 1 Bridgnorth, Shropshire, UK Lbufo(GBR4) FR719161 FR719238 

Holk-1   2 Holkam, UK Lbufo(GBR5), 
Lbufo(GBR6) 

FR719161  
FR719161 

FR719238  
FR719238 

Shrew-446 2 Shrewsbury, UK Lbufo17, 
Lbufo(GBR8) 

FR719161  
FR719161 

+LT900481  
FR719238 

ott-1 2 Nottingham, UK Lbufo(GBR9)  
Lbufo(GBR10) 

FR719161  
FR719161 

FR719238  
FR719238 

Suff-1   2 Suffolk, UK Lbufo(Suff1)  
Lbufo(Suff2) 

FR719161  
FR719161 

FR719238  
FR719238 
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DNA was extracted as total nucleic acid and subjected to PCR to amplify the cytochrome 

oxidase I (COX1) region of the mitochondrial protein-coding gene and the EF1-EF4 region 

of the nuclear protein-coding gene elongation factor 1 alpha (EF1α). Universal insect primers 

previously published (Table 3.2) were used. The PCR protocol published by Folmer et al. 

(1994) was modified to amplify COX1 and EF1-EF4 with the following cycling conditions: 

94°C for 5 min, followed by 35 cycles of 95°C for 30 s, 50°C (COX1) or 48°C (EF1-EF4) 

for 30 s, 72°C for 1 min, and a final step of 72°C for 1 min. PCR products were separated 

by gel electrophoresis and bands were visualized by ethidium bromide staining (Fig. 3.3). 

 

 Table 3.2.  Amplification and internal sequencing primers used to amplify the two genes 

studied, including the source of published primers 

 

 
Figure. 3.3. Agarose gel of PCR products for COX1 from different unidentified larval 

specimens extracted from toad-myiasis cases. The last lane did not contain any DNA 

(negative control). 1) 100bp ladder; 2) Control (no template); 3) Lbuf(NLD1); 4) 

Lbuf(NLD2); 5) Lbuf(NLD3); 6) Lbuf(NLD4); 7) Control (no template); 8) Lbuf(NLD5); 

9) Lbuf(NLD6); 10) Lbuf(NLD7); 11) Lbuf(CHE); 12) Control (no template); 13) 

Lbuf(GBR1); 14) Lbuf(GBR2); 15) Lbuf(GBR3); 16) Lbuf(GBR4); 17) Control (no 

template).  

Gene Primer Sequence Source 

 EF1α 
EF1 ACAGCGACGGTTTGTCTCATGTC McDonagh and Stevens (2011) 
EF4  CCTGGTTCAAGGGATGGAA McDonagh and Stevens (2011) 

COX1 LCO1490 GGTCAACAAATCATAAAGATATTGG Folmer et al. (1994) 

            HCO2198 TAAACTTCAGGGTGACCAAAAAATCA Folmer et al. (1994) 

1     2     3     4     5     6    7     8     9   10    11    12   13   14    15    16   17 
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Table 3.3. Adult Lucilia specimens studied, including the identity of the person responsible 

for morphological identification location of collection, name of sample used for 

phylogenetic reconstruction, and accession numbers for GenBank DNA sequences for 

both COX1 and EF1α.  

 

Adult specimen identification (Table 3.3): GAR=Gerardo Arias-Robledo (Bristol, UK), 

JRS=Jamie Stevens (Exeter, UK), RLW=Richard Wall (Bristol, UK), FAV=Francisco Arias-

Species ID Country/Region of origin  Name on Tree COX1 EF1α 

Lucilia bufonivora DM Baden-Wu ̈rttemberg, Germany Lbufo(DEU1)  FR719161  FR719238 

L. bufonivora DM Baden-Wu ̈rttemberg, Germany Lbufo(DEU2)  FR719161  FR719238 

L. bufonivora GAR Olst, The Netherlands Lbufo(Olst)  FR719161  FR719238 

L. bufonivora GAR Winssen, The Netherlands Lbufo(WN)  FR719161  FR719238 

Lucilia elongata AT Canada Lelongata(CAN)  KM858341* +LT965032 

Lucilia silvarum GAR Bristol, UK Lsilv(GBR1)  KJ394947  FR719260 

L. silvarum GAR Bristol, UK Lsilv(GBR2)  KJ394947  FR719260 

L. silvarum GAR Bristol, UK Lsilv(GBR3)  KJ394947  FR719260 

L. silvarum  RLW San Francisco, USA Lsilv(USA)  FR719259*  FR719259* 

L. silvarum RLW Sacramento, USA LsilvSacramento +LT963484 +LT965034 

L. silvarum GAR Olst, The Netherlands Lsilv(NLD) +LT963483  FR719253 

Lucilia richardsi GAR Bristol, UK Lrich(1)  FR872384  FR719253 

L. richardsi GAR Bristol, UK Lrich(2)  KJ394940  FR719253 

Lucilia sericata GAR Bristol, UK Lsericata(UK)  AJ417714 +LT965035 

L. sericata JRS Los Angeles, USA Lsericata(US)  AJ417715*  FR719257* 

Lucilia cuprina RLW Perth, Australia  Lcuprina(AUS)  AJ417707*  FR719245* 

L. cuprina AH/ 
DMB 

Dorie, South Island,  

New Zealand 

Lcuprina(NZL) 

 

 AJ417706* 

 

 FR719244* 

 

Lucilia caesar GAR Bristol, UK Lcae(Bristol-1) +LT900367 +LT900482 

Lucilia illustris  RLW Somerset, UK  Lillus  FR872384*  FR719253* 

Lucilia ampullacea  GAR Bristol, UK Lamp(Bristol)  +LT963485 +LT965033 

L. ampullacea RLW Somerset, UK Lamp  FR719236*  EU925394* 

Lucilia mexicana FAV Chapingo, Mexico Lmex(Mex1) +LT900368 +LT900483 

L. mexicana FAV Chapingo, Mexico Lmex(Mex2) +LT900368 +LT900483 

Calliphora vicina^ GAR Switzerland (lab. reared) Cvic(CHE)  KJ635728#   FR719219 

C. vicina GAR Bristol, UK Cvic(1)  KJ635728  FR719219 

C. vicina GAR Bristol, UK Cvic(2)  KJ635728  FR719219 
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Velazquez (Chapingo, Mexico), DM=Dietrich Mebs (Frankfurt, Germany), AH=Allen 

Heath (AgResearch, New Zealand), DMB = Dallas Bishop (AgResearch, New Zealand); AT 

= Angela Telfer (Guelph, Canada).  + = new sequence; * = sequence data from 

EMBL/GenBank; ^ = adult specimen provided by G. Guex (Zurich) thought to be L. 

bufonivora. Identified morphologically at University of Exeter by GAR; # identity confirmed 

on 540 bp of sequence data of COX1.       

 

A negative control (no template DNA) was included in each set of PCR amplifications. 

Targeted bands of COX1 were cut out and purified using a QIAquick® Gel Extraction Kit 

(Qiagen GmbH, Germany). Successful EF1-EF4 products were purified using 0.5µL of 

Exonuclease I and 0.5 µL of Antarctic phosphatase per 20 µL of PCR product. A total of 

658 bp of the COX1 region were amplified in a single fragment with primers HCO2198 and 

LCO1490. A fragment of 638 bp of the EF1α region was amplified with primers EF1 and 

EF4.  Purified PCR products were sequenced using commercial sequencing facilities, 

EUROFINS® (EF1α) and GENEWIZ® (COX1). 

 
 
3.2.3 Sequence alignment  
The quality of the sequences was checked and edited manually for both forward and reverse 

fragments; sequences were then assembled into a single consensus sequence using BioEdit 

software (Hall, 1999).  Each consensus sequence was checked against previously published 

sequences in EMBL/GenBank using BLAST. Multiple sequence alignment was carried out 

using BioEdit implementing the CLUSTALW algorithm.  

 

3.2.4 Phylogenetic analysis  
The best-fitting nucleotide substitution model for each dataset was selected using 

jModelTest (Posada, 2008) (TreNe2f + I was selected for the EF1-EF4 dataset; TIM3 + I 

+G was selected for COX1). Prior to Bayesian inference analyses the best-fitting model 

selected for each gene was implemented by changing the default settings (nst, rates, ngammacat, 

statefreqpr, revmat, shapepr and pinvarpr) in the software MrBayes v3.2.6 (Huelsenbeck and 

Ronquist, 2001). Phylogenetic analysis was then carried out implementing MCMC starting 

from two independent analyses simultaneously, each with three heated chains and one cold 

chain, they were run for 10,000 generations sampling every 10 generations. Analyses were 

stopped when the critical value for the topological convergence diagnostic fell below the 
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default threshold (0.01).  A fraction (0.25) of the sampled values were discarded (burninfrac = 

0.25) when the convergence diagnostics were calculated. Substitution model parameters 

(sump) and branch lengths (sumt) were summarized; tree topology was then calculated with 

the remaining data by constructing a majority-rule consensus tree.  A combined-gene analysis 

was also carried out with a partitioned dataset; model parameters for each gene were 

implemented separately (unlinked), allowing each gene to evolve under different rates.  An 

incongruence length difference test (ILD) was run in PAUP*4.0 (Swofford, 1998) to test 

phylogenetic congruence and to quantify the differences in topology between the single-gene 

trees. Analysis was conducted on a partitioned dataset with the combined dataset (EF1α and 

COX1).  

 

 

3.3 Results  

3.3.1 Molecular identification of Lucilia bufonivora 
All 20 larval specimens from the 16 infestations studied gave nuclear and mitochondrial 

sequence data consistent with BLAST searches for L. bufonivora.  Additionally, molecular 

data reaffirmed the identity of adult fly samples identified as L. bufonivora on the basis of 

morphology. All L. bufonivora samples were grouped together in a single unstructured clade 

in all phylogenies (Figs. 3.4 - 3.6). 

 

The adult fly from Switzerland, labelled as ‘L. bufonivora’, was identified both 

morphologically and genetically as C. vicina (Table 3.3). This specimen emerged from a 2nd 

generation of a fly-colony that was originally established from a toad-myiasis case. While it 

seems that the larvae causing the myiasis wound were L. bufonivora (Figs. 3.4 - 3.5), it is 

likely that they did not survive in laboratory culture without a live-host and were probably 

outcompeted by C. vicina. 

 

3.3.2 Single-gene phylogenies: EF1α  
All unidentified larval samples found in amphibian myiasis had sequence data of L. bufonivora. 

They were placed in a monophyletic clade along the adult samples from the Netherlands and 

Germany (Fig. 3.4). Within this group all L. bufonivora specimens analysed were classified 

together in a well-supported clade (Fig. 3.4), with minimal intra-specific variation (only one 

English specimen from Shrewsbury showed minor variation). However, the analysis did not 



78 
 

show clear distinction of L. elongata (a North American species) from L. silvarum (Fig. 3.4), 

although within this group, both USA samples of L. silvarum (Sacramento and San Francisco) 

were placed together with strong support and higher intra-specific variation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Bayesian inference tree constructed from the EF1-EF4 region of the nuclear gene 

ef1α. Green letters correspond to adult and larval samples identified as Lucilia bufonivora.  

Green dot within this clade represents a specimen from Shrewsbury (infestation ID ‘Shrew-

446’) which exhibited minimal intraspecific variation. Posterior probability values are labelled 

on each node. Scale represents expected changes per site. 
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Both specimens of L. ampullacea were grouped together in a single clade as a sister taxon of 

the amphibian parasite species group. This analysis also gave strong support to the clear 

relationships of L. sericata and L. richardsi (Fig. 3.4), placing together both USA and UK 

samples of L. sericata as a sister clade to the L. richardsi clade.  L. caesar and L. illustris were 

also placed together in a monophyletic group.  Both specimens of L. cuprina (NZ and AUS) 

were grouped in a single clade separated from the species mentioned above; a similar pattern 

of separation was observed with the two sequences of L. mexicana (Fig. 3.4).  All sequences 

of Calliphora vicina analysed grouped together in the same outgroup clade, with the inclusion 

of the adult sample misidentified as ‘L. bufonivora’ from Switzerland. 

 

3.3.3 Single-gene phylogenies: COX1  
The Bayesian inference tree based on COX1 gene sequence data placed all unidentified larval 

specimens found in toad-myiasis cases in a single clade with the adult samples of L. bufonivora. 

No sequence divergence was detected within this clade.  Lucilia elongata was grouped as a 

sister clade to L. bufonivora with strong support (Fig. 3.5).   

 

Sequences of L. richardsi, a European blowfly species, were placed as a sister clade to the 

European L. silvarum group; however, both North American L. silvarum samples were placed 

apart from this group (L. richardsi + European L. silvarum), further emphasising the relatively 

high intra-specific variation in L. silvarum (Fig. 3.5).  

 

The Bayesian analysis recovered the sheep myiasis agents L. sericata and L. cuprina as sister 

species with strong support (0.99).  The L. caesar group was also recovered, placing 

L. ampullacea as a sister taxon to the L. illustris + L. caesar clade.  The North American species 

L. mexicana was well separated from the L. caesar group.  All samples of C. vicina used in this 

study were classified in the same outgroup clade (Fig. 3.5).  

 

3.3.4 Combined-gene phylogeny  
The ILD test detected incongruence between the two genes used in this study (P = 0.01); 

nonetheless, Bayesian inference analysis of a combined partitioned dataset produced a 

phylogeny with generally strong posterior probabilities (Fig. 3.6). All L. bufonivora samples 

were grouped in a single clade as a sister species to L. elongata.  
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Figure 3.5. Bayesian inference tree constructed from 658bp of COX1. Green letters 

correspond to samples of Lucilia bufonivora, red represents Lucilia elongata and yellow 

represents Lucilia silvarum. Posterior probability values are labelled on each node. Scale 

represents expected changes per site.  
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Figure 3.6. Bayesian inference tree constructed from a partitioned dataset of the combined 

genes ef1α and COX1. Green letters correspond to samples of Lucilia bufonivora, red 

represents Lucilia elongata and yellow represents Lucilia silvarum. Green dot within this clade 

represents a specimen from Shrewsbury (infestation ID ‘Shrew-446’) which exhibited 

minimal intraspecific variation.  Posterior probability values are labelled on each node. Scale 

represents expected changes per site.   
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As observed in the COX1 tree, a monophyletic European L. silvarum group (GBR + NDL) 

was recovered, with L. richardsi grouped as its sister taxon (Fig. 3.6); again, both American 

specimens of L. silvarum were placed outside of this group as sister taxa with high support 

values. Both sheep blowfly species, L. sericata and L. cuprina, were recovered as a 

monophyletic group with strong support. The closely related species L. illustris and L. caesar 

were recovered as sister species, however, this combined-gene analysis placed L. mexicana 

more closely related to the L. caesar group than the L. ampullacea clade. Subfamily 

relationships of Luciliinae were recovered with strong posterior probability (1), grouping all 

C. vicina samples as an outgroup and differentiating subfamily Calliphorinae from Luciliinae 

with strong support (Fig. 3.6). 

 

3.4 Discussion  
Results presented here suggest that, as hypothesized by Zumpt (1965), the main amphibian 

myiasis agent in Europe is the toad fly L. bufonivora. No specimens of L. silvarum were found 

involved in the amphibian disease; as was previously suggested by some authors (Duncker, 

1891; Mortensen, 1892; Linder, 1924; Stadler, 1930). All unidentified larval samples from 

different countries across Europe were identified as L. bufonivora using both nuclear and 

mitochondrial sequence data.  

 

Amphibians with nasal-myiasis rarely survive infestation (Brumpt, 1934). Larvae keep 

feeding on the amphibian carcass until they complete their development. Once the host is 

dead, it can also serve as an oviposition substrate for saprophagous blowflies (e.g. Calliphora, 

etc). A study in Germany found different blowfly species (including L. sericata and C. vicina) 

emerging from toad carcasses with signs of nasal-myiasis (Weddeling and Kordges, 2008). 

Hence, this succession may have generated some of the confusion in relation to species 

composition in amphibian myiasis. For instance, in the present study, the swiss adult 

specimen labelled as ‘L. bufonivora’ was identified with molecular and morphological data as 

C. vicina. Nonetheless the larval sample extracted from the host before it died had been 

identified as L. bufonivora. This suggests that, as an obligate parasite, L. bufonivora did not 

survive the rearing process in the laboratory culture.  

 

The results from this work resemble those of McDonagh and Stevens (2011), using the 

mitochondrial COX1 gene L. silvarum and L bufonivora were recovered as distinct sister 
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species. However, in the same study both species were placed in the same clade using EF1α 

and 28S rRNA as nuclear markers, the latter failing to classify them as distinct species. In 

this study, the EF1-EF4 region of the protein-coding nuclear gene EF1α showed just a single 

nucleotide difference between the sequence data of L. silvarum and L. bufonivora; however, 

Bayesian inference analysis showed clear groupings, identifying them as distinct sister 

species. Addition of data from the North American amphibian parasite L. elongata, another 

putatively closely related taxon, allowed an even clearer understanding of the evolutionary 

relationships between L. silvarum and L. bufonivora, resulting in the differentiation of them as 

distinct sister species.  The EF1α tree supported the suggestion that L. bufonivora has diverged 

relatively recently from its sister taxon L. silvarum (Stevens and Wall, 1996). The COX1-based 

phylogeny showed clear relationships and distinction between L. bufonivora and L. silvarum, a 

finding reiterated in the combined-gene tree. It is probable that in the combined-gene tree a 

stronger signal in the mtDNA data (COX1) is driving the clear distinction and is dominating 

the weaker phylogenetic signal of the nuclear data (EF1-EF4).  The low signal present in the 

EF1α sequence data accords with the lower rate of evolution reported previously in this 

nuclear gene (McDonagh and Stevens, 2011) compared with that reported in the majority of 

insect mitochondrial genes (McDonagh et al., 2016).  Indeed, COX1 has been widely used 

in blowfly systematics (McDonagh and Stevens, 2011; Williams and Villet, 2013; Williams et 

al., 2016; Yusseff-Vanegas and Agnarsson, 2017) and due to generally higher rates of 

sequence change in mtDNA it is expected to reach reciprocal monophyly before nuclear 

genes (Funk and Omland, 2003; Dowton, 2004; Lin and Danforth, 2004). As such, 

mitochondrial sequence data (e.g. COX1) are useful for inferring the relationships of recently 

diverged species (Stevens and Wall, 1997b; Shao et al., 2001) and the results presented here 

appear to reaffirm this, suggesting that L. bufonivora is clearly a separate sister species to L. 

silvarum. Moreover, species distinctiveness is attributed to both molecular and morphological 

characters that allow unambiguous identification (Dantas-Torres, 2018). Certainly, 

employing sequence data of COX1 combined with morphological data of the adult stage, as 

indicted by Rognes (1991), identification of L. bufonivora can be well performed. This suggests 

that L. bufonivora is a disticnt sister species to L. silvarum and was strongly supported by the 

multi-gene phylogeny.  The phylogenetic resolution given from nuclear sequence data, 

however, is not well clear.  

 

Although the genus ‘Bufolucilia‘ is still used by some authors (Kraus, 2007; Verves and 

Khrokalo, 2010; Draber-Mońko, 2013), molecular data presented here suggest that, as 
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proposed by Rognes (1991), it  should be dismissed as a synonym of ‘Lucilia’. For instance, 

within the COX1 phylogeny (Fig. 3.5), L. silvarum exhibits a closer relationship with L. 

richardsi than with the toad fly, L. bufonivora. Given that ‘Bufolucilia’ do not include L. richardsi 

(Townsend, 1919; Hall, 1948), it would leave the remainder of the genus Lucilia paraphyletic. 

Moreover, all inferred phylogenies recovered Lucilia as a genus with strong posterior values.  

 

Molecular analysis of different populations of L. bufonivora from across Europe, detected no 

intra-specific differences in mitochondrial sequence data, while the nuclear gene EF1α 

exhibited only minimal intra-specific sequence variation (Fig. 3.4). However, in L. silvarum 

marked intra-specific variation in both nuclear and mitochondrial sequence data was 

observed between European and North American populations of this fly; recent 

phylogenetic analysis of populations of this species from the USA and Germany also showed 

a high degree of intra-specific difference (Williams et al., 2016).  In the current study, intra-

specific variation was also observed between European samples, with UK L. silvarum 

differing from a Dutch specimen of the same species. In contrast, a lack of significant 

variation in both nuclear and mitochondrial genes in the different European populations of 

L. bufonivora analysed suggests that it may be a recently diverged species that has accumulated 

less molecular variation. Further studies would be of value, particularly to explore the 

differences between European and North American populations of L. bufonivora (Tantawi 

and Whitworth, 2014). 

 

Although this study found no specimens of L. silvarum involved in amphibian myiasis, in 

North America there have been several reports of amphibian myiasis cases apparently 

involving L. silvarum (Bolek and Coggins, 2002; Bolek and Janovy, 2004; Eaton et al., 2008). 

Whether or not this is correct or simply misidentification cannot be determined from the 

current study. Tantawi and Whitworth (2014) made the first report of L. bufonivora in Canada 

and demonstrated it had been commonly confused with L. silvarum. Hence, reports of the 

latter species causing amphibian myiasis in North America remain arguable and more 

research is required to further explore the species composition in amphibian myiasis in the 

Nearctic region.  

 

In England L. bufonivora is considered a rare species, nonetheless a relatively recent study 

have confirmed its involvement in toad myiasis cases (McDonagh and Stevens, 2011). It is 

rarely caught with traps using standard blowfly baits e.g. carrion (MacLeod and Donnelly, 
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1956). This may illustrate the highly specific nature of the cues emanating from a living 

amphibian host that are required to attract L. bufonivora, or simply may reflect its restricted 

distribution and low abundance in the field (or the difficulty associated with its correct 

morphological identification). Nonetheless, the work presented in this chapter reaffirmed 

the presence of this obligate parasite in Britain, the Netherlands and Switzerland using larval 

samples extracted from toad myiasis cases (Fig. 3.3).  

 

European samples of L. silvarum appeared to be more closely related to L. richardsi than to 

L. bufonivora in the mitochondrial phylogeny (Fig. 3.3). However, the phylogeny constructed 

with EF1a recovered L. richardsi as a sister species of L. sericata, excluding it from the 

amphibian parasite group of flies. Similar results have been observed in the past (McDonagh 

and Stevens, 2011). Although L. sericata and L. silvarum have been reported as facultative 

parasites of sheep and amphibians, respectively (Hall, 1948; Zumpt, 1965), another species 

that exhibited close relationships with them, L. richardsi, has never being involved in either 

sheep or toad myiasis. The high similarity of L. richardsi with L. sericata based on nuclear 

DNA and with L. silvarum based on mitochondrial DNA, might be due to introgressive 

hybridization or incomplete lineage sorting. However, there is no robust data to confirm 

this.  

 

In conclusion, the work presented here suggests that amphibian myiasis in Europe is caused 

by the toad fly, L. bufonivora. Although L. silvarum was also thought to also be involved, DNA-

based identification methods of unidentified larval specimens showed otherwise. Inferred 

phylogenies from a nuclear (EF1α), a mitochondrial (COX1) and a concatenated dataset 

suggest L. bufonivora as a distinct sister species to L. silvarum. Recognising the genus 

‘Bufolucilia’ leaves the remainder of the genus Lucilia paraphyletic. A revision of this species-

group still needs to be carried out in order to resolve the taxonomic confusion in North 

America with the inclusion of a broader range of Nearctic samples of L. bufonivora, L. elongata 

and L. silvarum. Moreover, detailed studies are required to explore the evolution of the 

obligate parasitic trait within the genus Lucilia.  
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4.1 Introduction 
Many different lineages of flies within super-family Oestroidea are recognised as parasites of 

vertebrates. Within Oestroidea, the family Calliphoridae includes a range of saprophagous 

species, facultative parasites and, to a lesser extent, obligate parasites (Zumpt, 1965; Stevens, 

et al., 2006) , many of which are of major economic importance in the livestock industry (e.g 

Lucilia sericata, Lucilia cuprina, Cochliomyia hominivorax). Calliphorid flies typically exhibit low 

host-specificity, relatively short periods of larval development and are rarely seen infecting 

hosts in the wild (Erzinclioglu, 1989; Stevens, 2003).  Thus, it has been hypothesized that 

blowflies may have evolved ectoparasitism in association with humans and animal 

domestication (Stevens and Wall, 1997a; Stevens et al., 2006). However, the toad fly, Lucilia 

bufonivora, is generally associated with wild hosts (Brumpt, 1934; Weddeling and Kordges, 

2008). Moreover, it exhibits high host-specificity for amphibians, which is an atypical 

behaviour for flies in the genus Lucilia (Vestjens, 1958; Koskela et al. 1974; Strijbosch, 1980; 

Gosá et al., 2009; Martín et al., 2012). The life-history of facultative myiasis agents has been 

well studied in the past due to their economic importance as livestock parasites and as 

forensic indicators (Zumpt, 1965; Wall et al., 1992a; Stevens, 2003; Wallman et al., 2005). 

However, information on the evolutionary history of L. bufonivora is limited (Stevens and 

Wall, 1997; Stevens, 2003). Precisely when L. bufonivora evolved this high host-specificity for 

amphibians is unknown. An understanding of this question will contribute to an 

understanding of the evolution of myiasis in this genus in general and highlight the place in 

this evolutionary pathway that amphibian myiasis occupies.  

It was thought that L. bufonivora was a strictly Palearctic species, however Tantawi and 

Whitworth (2014) recorded adult specimens for the first time in Canada. The latter study, 

however, used only morphological data and, to date, there are no existing studies of the 

phylogenetic relationships between Nearctic and Palearctic populations of L. bufonivora. 

Moreover, although adult flies have been reported in North America, studies have not yet 

confirmed its involvement in amphibian myiasis in this geographical area. Additionally, it is 

not known whether this constitutes a recent introduction to North America or simply 

reflects its relative rarity and/or previous taxonomic confusion. 

In the United States and Canada, two species have been reported involved in amphibian 

myiasis: Lucilia elongata and Lucilia silvarum (Roberts, 1998; Bolek and Coggins, 2002; Bolek 

and Janovy, 2004). The former is restricted to the Nearctic and has never been observed 
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breeding in carrion, thus is also considered an obligate parasite of amphibians. In contrast, 

L. silvarum is also distributed throughout the Holarctic (Rognes, 1991; Tantawi and 

Whitworth, 2014). This species was thought to be involved in amphibian myiasis in Europe 

(Duncker, 1891; Mortensen, 1892; Linder, 1924; Stadler, 1930), however results from the 

previous chapter revealed that in Europe amphibian myiasis appears to be caused by 

exclusively by L. bufonivora. Moreover, the saprophagous behaviour of L. silvarum has been 

well documented in the past (Hanski and Kuusela, 1977; Hanski, 1987; Prinkkila and Hanski, 

1995; Fremdt et al., 2012). Nevertheless, blowflies often exhibit intraspecific behavioural 

differences according to their geographical area. As an example, the sheep blowfly L. sericata 

is typically a highly abundant saprophagous species in many countries but behaves as a 

primary myiasis agent in Northern Europe (Rognes, 1991; Wall et al., 1992a). Hence, 

variation in the behaviour of L. silvarum and its involved in amphibian myiasis could be 

possible in North America. Molecular analyses may contribute to resolving these issues. 

The use of single nuclear DNA molecular markers in isolation such as EF1α does not seem 

to provide clear phylogenetic resolution of the L. bufonivora species group. This has already 

been observed in the past also with the nuclear rRNA gene 28S (McDonagh and Stevens, 

2011). However, the newly optimised nuclear marker, the period gene (per), has been used 

recently to detect hybridization between the closely related sheep blowflies L. sericata and L. 

cuprina (Williams and Villet, 2013). Similarly, previous studies have shown that the non-

coding Internal Transcribed Spacer 2 (ITS2) is a suitable molecular marker for phylogenetic 

analyses at both genus and species level (Marinho et al., 2011). Thus, the combined use of 

these molecular nDNA markers might provide a clearer resolution on the relationships of 

L. bufonivora, L. elongata and L. silvarum.  

The aims of this work were, firstly, to infer the times at which the life-history trait of obligate 

amphibian parasitism arose within a genus that is mainly composed by species with sarco-

saprophagous life-cycles. To do this, this work analysed samples from the broad geographical 

range of L. bufonivora, L. elongata and L. silvarum. Molecular clock-dating was made using a 

concatenated dataset of a nuclear (per), a mitochondrial (COX1) and a non-coding gene 

(ITS2). Secondly, the work aimed to resolve the evolutionary relationships between 

Palearctic and Nearctic samples of L. bufonivora by inferring multiple phylogenies from the 

genes mentioned above. Finally, the work aimed to provide a better phylogenetic resolution 

on the L. bufonivora species group using relatively recent optimized nuclear markers (e.g. per 

gene).  
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In addressing these aims, this work offers valuable data on the primers and PCR protocols 

needed for the successful amplification of a partial sequence of the protein coding per gene 

of L. bufonivora. Additionally, it also provides sequence data for blowfly species that have 

remained understudied due to their low abundance, for example Lucilia pilosiventris and Lucilia 

regalis, that could be of importance to forensic entomology. In general, this work highlights 

the roles of geographical and ecological isolation on the speciation and evolution of blowfly 

species associated with amphibian myiasis. 

 

4.2 Methods  
4.2.1  Biological Material  
A total of 43 specimens were analysed in this study.  Whole DNA templates from the 

previous chapter were used to obtain novel sequence data for ITS2 and per genes. New 

specimens are indicated in Table 4.1. 

Twelve specimens of L. bufonivora from different locations in Europe were analysed in this 

study (Table 4.1, Fig. 4.1). Additionally, three COX1 sequences of the toad fly were obtained 

from BOLD/Genbank and included in the analysis (three from Canada and one from Spain; 

Table 4.2) 

Eight adult specimens of L. silvarum were included, five from different locations in Europe 

and three from different locations in the USA. Two COX1 sequences (from Canada and 

Spain, respectively) were also included in the analysis (Table 4.2) 

Lucilia elongata is rarely encountered in the field compared with other blowfly species in North 

America. This study obtained one specimen from Vancouver, Canada and another one from 

Alberta (Table 4.1, Fig. 4.1).  Two additional COX1 sequences from the United States and 

Canada were obtained from BOLD and included in the analysis (Table 4.2). 
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Figure 4.1 The location of the COX1 sequences analysed in this study.  Red dots represent samples of Lucilia elongata, orange dots Lucilia silvarum and 

green dots Lucilia bufonivora.  



92 
 

Table 4.1 Specimen list. The table provides the location, name on tree, collector/provider, tissue used for DNA extraction, host (if any), their 

GenBank/BOLD accession codes for their respective per, ITS2 and COX1 sequence data, length (bp) of ITS2 sequences and primers used for the 

amplification of the per gene.  

Species Location Name on tree Provided by  Tissue Host per ITS2 COX1 ITS2 
(bp) 

per 
primers 

Lucilia bufonivora Winssen, NL bufonivora_NLWi G. Arias Thorax - MK062159 MK579385 FR719161 306 3&4 
L. bufonivora Olst, NL bufonivora_NLOl G. Arias Thorax - MK062160 MK579385 FR719161 306 3&4 
L. bufonivora Roterdam, NL bufonivora_NLRo J. Mostert Larva Bufo bufo MK062160 MK579385 FR719161 306 3&4 
L. bufonivora Schaopedobe, NL bufonivora_NLSch T. Stark  Larva Bufo bufo MK062160 MK579385 FR719161 306 3&4 

L. bufonivora Wilp, NL bufonivora_frog T. Stark  Larva Pelophylax 
kl. esculentus MK062158 MK579385 MK598626 306 3&4 

L. bufonivora Norfolk, UK bufonivora_UKNor S. Henderson  Larva Bufo bufo MK062160 MK579385 FR719161 306 3&4 
L. bufonivora Nottingham, UK bufonivora_UKNot L. Griffiths  Larva Bufo bufo MK062160 MK579385 FR719161 306 3&4 
L. bufonivora Shrewsbury, UK  bufonivora_UKShrew A. Breed  Larva Bufo bufo MK062160 MK579385 FR719161 306 3&4 
L. bufonivora Ossingen, CHE bufonivora_CHE G. Guex Larva Bufo bufo MK062160 MK579385 FR719161 306 3&4 
L. bufonivora Badenw. DEU  bufonivora_DEU D. Mebs  Thorax↠ Bufo bufo MK062160 MK579385 FR719161 306 3&4 
L. bufonivora Borek, POL bufonivora_POL1 K. Szpila Thorax - MK062160 MK579385 FR719161 306 3&4 
L. bufonivora Czarny Bryńsk, POL bufonivora_POL2 K. Szpila Thorax - MK062160 MK579385 FR719161 306 3&4 
Lucilia silvarum  Bristol, UK silvarum_UK4 Gerardo Arias Thorax - MK062162 MK579386 KJ394947 312 3&4 

L. silvarum  Bristol, UK silvarum_UK1 G. Arias Thorax - MK062163 MK579386 KJ394947 312 3&4 

L. silvarum  Winssen, NL silvarum_NLWi G. Arias Thorax - MK062165 MK579386 MK598627 312 3&4 

L. silvarum  Olst, NL silvarum_NLOl G. Arias Thorax - MK062164 MK579386 LT963483 312 3&4 

L. silvarum  Zatwarnica, POL silvarum_POL K. Szpila thorax - MN123800 MK579386 KJ394947 312 3&4 

L. silvarum  Sacramento, US silvarum_USACa J. Stevens Thorax - MK062168 MK579387 LT963484 313 3&4 

L. silvarum  Washington, US silvarum_USAWa T. Whitworth Leg - MK062166 MK579387 MK598628 313 3&6, 4&5 

L. silvarum  Oregon, US silvarum_USAOr T. Whitworth Leg - MK062167 MK579387 LT963484 313 3&6, 4&5 

Lucilia elongata Alberta, CAN elongata_alberta A. Telfer Thorax - MK062161 MK579388 KM858341 306 3&6, 4&5 

L. elongata Vancouver, CAN elongata_vancouver T. Whitworth Leg - MK062161 MK579388 MK598629 306 3&6, 4&5 

Lucilia richardsi Bristol, UK richardsi_UK1 G. Arias Thorax - MK062169 MK579392 FR872384 333 3&4 
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L. richardsi Bristol, UK richardsi_UK3 G. Arias Thorax - MK062169 MK579392 KJ394940 333 3&4 

L. richardsi Toruń, POL richardsi_POL K. Szpila Thorax - MK062169 MK579392 KJ394940 333 3&4 

L. pilosiventris Frankfurt, DEU pilosiventris_DEU  K. Szpila Thorax - MK598634 MK579397 MK598631 331 3&4 

L. regalis Zbocza Płutowskie, POL regalis_POL K. Szpila leg - MK598633 MK579396 MK598630 326 3&4 

Lucilia caesar Bristol, UK caesar_UK R. Wall Leg - MK062178 MK579393 KM657111 312 1&2 

L. caesar Denizli, TRK caesar_TRK K. Szpila Thorax - MK062178 MK579393 KM657111 312 1&2 

Lucilia illustris Olst, NL illustris_NL G. Arias Thorax - MK062170 MK579390 KJ394900 314 3&4 

Lucilia ampullacea Bristol, UK ampullacea_UK G. Arias Leg - MK062172 MK579391 LT963485 300 1&2 
L. ampullacea Nijmegen, NL ampullacea_NL G. Arias Thorax - MK062171 MK579391 LT963485 300 1&2 
Lucilia sericata Chapingo, MX sericata_MX F. Arias Thorax - MK062173 EF560187 HQ978732 321 1&2 
L. sericata Winssen, NL sericata_NL G. arias Thorax - MK062176 EF560187 AJ417714 321 1&2 
L. sericata Dorset, UK sericata_UK J. Memmott  Leg - MK062176 EF560187 AJ417714 321 1&2 
L. sericata California, US sericata_USA J. Stevens Leg - MK062174 EF560187 HQ978732 321 1&2 
L. sericata Kerman, IRN  sericata_IRN K. Szpila Thorax - MK598635 EF560187 AJ417714 321 1&2 
Lucilia mexicana Chapingo, MX mexicana F. Arias Thorax - MK062177 MK579394 LT900483 331 1&2 

Lucilia cuprina  - cuprina_AUS - - - JN792783.1 EF560185 AJ417707 335 - 
Calliphora vicina Bristol, UK Calliphora_UK G. Arias Thorax - KF839531* MK579395 FR719219 327 - 
           

        
  

New specimens are indicated with bold letters 

If no host listed, the samples was collected in its adult stage.  

*per amplification primers:  1&2 = per5 and perreverse(Williams and Villet, 2013); 3&4 = pbf14 and per650-R (present study); 3&6= pbf14 and per433-R (present study); 4&5= pbf249 and 

per650-R (present study).  New sequence data are shown in red. NOTE Only new sequence data were submitted to GenBank as haplotypes, thus specimens with the same haplotype were 

allocated with the same accession codes.:   
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Table 4.2 Additional COX1 sequences used in this study with their respective location and 

BOLD/Genbank accession codes.  

 

 

Phylogenetic relationships between the sheep blowflies (L. sericata and L. cuprina) have been well 

studied in the past due to their economic importance (Stevens and Wall, 1997b; Wallman et al., 

2005; Williams and Villet, 2013). For comparative reasons, this study analysed five L. sericata 

specimens from a broad geographical range (Mexico, United States, the Netherlands, Iran and UK; 

Table 4.1). All L. cuprina sequence data were obtained from Genbank (Table 4.1).  

Specimens of L. richardsi, L. regalis, L. pilosiventris, L. caesar, L. illustris, L. mexicana and L. ampullacea 

were also included in the analysis (Table 1). A C.  vicina specimen from Bristol, UK, was used in 

the analyses as an outgroup, sequence data for per was downloaded from GenBank (Table 4.1). 

Additionally, two COX1 sequences of Lucilia thatuna (Shannon), another species believed to be 

implicated in amphibian myiasis in North America (Tantawi and Whitworth, 2014) were included 

in the analysis (Table 4.2).  

 
 

 

 

 

Species Location Accession Code BOLD/GenBank 
Lucilia bufonivora Spain GBDP15380-14 BOLD 
L. bufonivora Saskatchewan, CAN BBDCQ387-10 BOLD 
L. bufonivora Saskatchewan, CAN CNGSD7561-15 BOLD 
L. bufonivora Saskatchewan, CAN MF758767.1 Genbank 
Lucilia silvarum  Spain KJ394941.1 Genbank 
L. silvarum  Manitoba, CAN SMTPR3630-16 BOLD 
Lucilia elongata Vancouver, CAN BBDCP287-10 BOLD 
L. elongata Washington, USA GMNCF036-12 BOLD 
Lucilia richardsi Germany GMGMA838-14 BOLD 
Lucilia thatuna California, USA BBDIT928-11 BOLD 
L. thatuna San Francisco, USA DQ453489 Genbank 
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4.2.2  Samples of Lucilia silvarum  associated with amphibian myiasis in 

Canada  
Six single-leg samples labelled as ‘Lucilia silvarum’ were provided by D. Shpeley (Assistant Curator, 

of the insect collection, University of Alberta). All the mentioned samples were collected in 

Canada, with the earliest sample collected dated 1923 (Table 4.3). Two specimens were reared 

from diseased amphibians that were collected from different locations in Alberta (Table 4.3).  

 

Table 4.3 Lucilia silvarum specimens collected in Alberta, Canada, provided by D. Shpeley 

including their locality, identifier, year of collection and amphibian host (if the fly was collected 

by rearing a myiasis case). 

 

 

4.2.3 DNA extractions, primer design and PCR procedures  
To avoid contamination, thoracic muscle fibres were extracted from whole adult specimens and 

used for extractions. In the case of larval specimens, anterior and posterior parts of the larvae 

where used (or the whole specimen if it was a 1st larval stage) as indicated in Chapter 3. DNA 

extractions were carried out using a QIAGEN DNeasy®Blood and Tissue Kit (Qiagen GmbH, 

Germany) according to manufacturer’s instructions. 

When DNA extraction was undertaken on single legs, muscle fibres were extracted from the 

trochanter, femur, tibia and, if available, the coxa (Fig. 4.2). This was done by dissecting the legs 

in ethanol with the aid of a sterile scalpel blade and entomological pins. Once the tissue was 

extracted it was put in a mix of 80 µL of ATL buffer and 20 µL of Proteinase-K.  Cell lysis was 

carried overnight at 55 °C. In order to increase the yield and concentration of extracted DNA, the 

elution was carried by adding 40 µL of elution buffer (EB) to the spin-column and it was held for 

Species name Location ID by Year collected Host (if any) 

 

Lucilia silvarum 

 

Alberta, Toefield 

 

Shannon 

 

1923 

 

- 

L. silvarum Alberta, Lethbridge Morrison, F.O. 1933 - 

L. silvarum Alberta, Cooking Lake Hall, D.G. 1937 - 

L. silvarum Alberta, Edmonton - 1948 - 

L. silvarum Alberta, Pine Lake Roberts, W. 1991 Pseudacris triseriata 

L. silvarum Alberta, Calling lake Shpeley, D. 1998 Rana sylvatica 
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30 minutes before the spin-down. DNA templates were stored at –20°C for further use. Prior to 

PCR, the concentration of DNA of each template (ng/ µL) was checked using a Nanodrop.  

Amplification of the protein coding gene per for various Lucilia species was carried out using the 

primers published by Williams and Villet (2013). Nonetheless, these primers, did not prove 

suitable for the amplification of this gene in L. bufonivora (Fig. 4.3). Therefore, a set of primers 

(pbf14 and pbf650-R, Table 4.4) was designed for the amplification of ~610bp of the nuclear 

protein coding gene per of the L. bufonivora species group (Fig. 4.4). This procedure was carried 

out using the online software Primer3 v 3.4. (Untergasser et al., 2007) by checking that the 

difference of melting between primers temperature (TM) was less than 0.5 °C and that each 

primer had at least 50% or more Guanine-Cytosine base content.  

 

 

 Figure  4.2 Tissue used for DNA extraction. Arrow in red shows the muscle fibres extracted from 

single-leg samples.  

 

In the case of single leg extractions, an additional set of primers was designed in order to amplify 

the partial sequence of per gene in two fragments of ~410bp each (pbf14 + p433-R and p249 + 

pbf650-R; Table 4.4, Fig. 4.5) 
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A region of ~650bp of the mitochondrial COX1 was amplified using the primers LCO1490 and 

HCO2198 For the amplification of the internal transcribed spacer 2 (ITS2) the primers ITS4 and 

ITS5.8 were use All the primer sequences and their respective PCR protocols are listed in Table 

4.4.  

PCR products were purified by using 0.5 µL of exonuclease and 0.5 µL of Antarctic phosphatase 

per 20 µL of PCR product. After purification, both forward and reverse strands were sequenced 

in the commercial sequencing facilities EUROFINS®.  

 

Figure 4.3 Agarose gel of PCR products for per gene using primers per5’ and perreverse’ (Willams 

and Villet, 2013). 1) 100bp ladder; 2) Lucilia sericata (sericata_UK); 3) Lucilia bufonivora 

(bufonivora_NLWi); 4) Lucilia silvarum (silvarum_UK4); 5) Lucilia caesar (caesar_UK); 6) Lucilia 

ampullacea (ampullacea_UK); 7) Lucilia mexicana (mexicana); 8) control  (no template). 

4.2.4 Sequence editing and alignment  
Forward and reverse chromatograms were checked manually for potential reading errors using 

BioEdit software (Hall, 1999). The latter software was also used for assembling both strands into 

a single consensus sequence. Sequences obtained were subject to BLAST searches to confirm 

species identity. Alignment was done using the ClustalW algorithm in BioEdit (Hall, 1999).   

 

 

 

1    2   3    4    5   6   7    8 
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Table 4.4 Primers used for the amplification of per, COX1 and ITS2. Name, sequence, source 

and PCR protocols are described. 

*ID= initial denaturation step, D=denaturation, A=annealing, E=extension, C= cycles of D-A-E, 

F=final extension 

 

 

Figure 4.4 Agarose gel of PCR products for per gene of Lucilia bufonivora amplified with the 

primers pbf14 and pbf650-R designed in this study. 1) 100bp ladder; 2) bufonivora_NLWi, 

bufonivora_NLOl; 3) bufonivora_NLRo; 4)  bufonivora_UKNor; 5) bufonivora_DEU; 6) 

bufonivora_CHE; 7) Control (no template).  

    Protocol 

Gene Name Sequence Source  ID D A E C F 

            per 

per5 GCCTTCAGATACGGTCAAAC 
Williams and Villet, 2013 94°C 

5min 
94°C 
30s 

50°C 
1min 

72°C 
30s x36 72°C 

7min perreverse CCGAGTGTGGTTTGGAGATT 

pbf14 GGCGTTGTCAAGCTCTAGC 

this study 94°C 
5min 

94°C 
30s 

48°C 
1min 

72°C 
30s x36 72°C 

7min 
pbf650-R CCACGAATGTGAACCAACTC 

p249 GCAAACCAGTAACAGCACCT 

p433-R GTGCCTGTACCGGTGTTG 
 

      
   

COX1 LCO1490 GGTCAACAAATCATAAAGATATTGG Folmer et al., 1994 94°C 
5min 

95°C 
30s 

45°C 
30s 

72°C 
1min x35 72°C 

7min HCO2198 TAAACTTCAGGGTGACCAAAAAATCA 
 

     
 

   

ITS2 ITS4 TCCTCCGCTTATTGATATGC White et al., 1990 *94°C 
2min 

94°C 
30s 

44°C 
35s 

72°C 
30s x38 72°C 

3min ITS5.8 GGGACGATGAAGAACGCAGC 

1    2     3     4    5     6    7     
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Figure 4.5 Schematic representation of partial region of the protein coding gene per, indicating 

the position, amplifiable sequence length and the name of the primers that were designed in this 

study as well as the ones published previously by Williams and Villet (2013). 

In case of heterozygous sequences (per), both forward and reverse chromatograms were checked 

using BioEdit. Sites that presented two different nucleotide peaks within the same site and with 

the same height were considered heterozygous sites. Consensus sequences were encoded using 

their respective IUPAC annotation.  

4.2.5 Phylogenetic analyses 
Substitution model selection for single-gene datasets was carried out using jModeltest (Posada, 

2008) the best-fitting model was chosen using the Bayesian Information Criterion (ITS2) and the 

Akaike Information Criterion (per, COX1). The models selected were: GTR+F+I+G4 for COX1; 

TIM2+G for per; and finally, K3Pu+F+G4 for ITS2. In the ITS2 dataset, gaps were treated as 

complete deletions. Bayesian inference analysis was done with the software MrBayes v3.2.6 

(Huelsenbeck and Ronquist, 2001) by implementing the corresponding substitution model to each 

dataset. A Markov Chain Monte Carlo (MCMC) method was used, starting from two simultaneous 

independent runs, with three heated chains and one cold chain. Each was run for 10 million 

generations sampling every thousand generations. When the critical value for the topological 

convergence diagnostic fell below the default threshold (0.01) analyses were stopped.  Burn-in was 

set to 0.25 to discard a fraction of 0.25 of sampled values. Trees were drawn using R in Rstudio 

(2015) using the package “ggtree” (Yu et al., 2017).  New sequence data were submitted to 

GenBank (Table 4.1). Pairwise distances of COX1 were obtained using MEGA7 (Kumar et al, 

2006) (Table 4.6).  In case of heterozygocity (per), sequences were formatted in SeqPHASE (Flot, 

2009) and alleles were inferred using PHASE under the default settings.  
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To provide a clearer resolution to the evolutionary relationships of the L. bufonivora group using 

nuclear DNA, a parsimony splits network of concatenated data set with the inferred per alleles and 

the non-coding ITS2 was drawn under the default conditions of SplitsTree (Huson and Bryant, 

2006).  

4.2.6 Divergence time estimation 
Tree calibration was done by specifying the node age corresponding to the split between Luciilinae 

and Calliphorinae subfamilies (19.7 mya) estimated by Wallman et al. (2005) by using an 

invertebrate mtDNA clock rate of 0.0115 substitutions per site per million years (Brower, 1994). 

Sequence data for the three genes (mtDNA, nDNA and non-coding) were used for this analysis. 

Best-fit substitution models were unlinked to allow different evolution rates. Additionally, to allow 

substitution rates to vary among lineages, the clock model was set to an unlinked log-normal 

relaxed clock for each gene separately. Clock rate was set to ‘estimate' for each dataset under 

BEAST default settings (Suchard et al., 2018). MCMC consisted of two independent runs, each 

with a sampling size of 20 million with samples logged every 1000 steps. Convergence between 

runs was checked using Tracer. Tree files were combined using LogCombiner with a burn-in set 

to 10%. The software TreeAnnotator from the BEAST package, was used for annotating the 

maximum credibility tree. The latter was drawn using the package ‘strap’ (Bell and Lloyd, 2014) 

using R in Rstudio (2015).  

 

4.3 Results 
4.3.1 Specimens of Lucilia silvarum implicated in amphibian myiasis in 

Canada.  
Out of the six specimens analysed, DNA was successfully obtained from only two samples; these 

were collected in 1991 and 1998 and yielded 6.95 ng/uL and 24.7 ng/uL respectively. These adult 

flies were reared originally from 2 different amphibian myiasis cases in Canada. All three target 

genes were successfully amplified for these two specimens. Samples from 1937 and 1948 did not 

yield any amplifiable DNA (Fig. 4.6). No DNA was successfully extracted from the samples from 

1923-1933 (0 ng/uL). 

Although these samples had been originally labelled as ‘L. silvarum’, BLAST searches of COX1 

sequence showed a 100% match to sequence data for L. bufonivora from Canada (BBDCQ387-10, 

Table 4.5). Moreover, with the aid of recent keys (Tantawi and Whitworth, 2014), subsequent 

morphological identification (carried out by D. Shpeley) supported their identity as L. bufonivora. 
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The latter species was therefore confirmed responsible for the 2 amphibian myiasis cases. in 

Canada. Thus these samples (originally provided as ‘L. silvarum‘) were subsequently treated as 

Canadian L. bufonivora in the phylogenetic analyses (Table 4.5). 

Table 4.5 Canadian specimens of Lucilia bufonivora reared from different amphibian myiasis cases 

in Alberta. These were originally provided as ‘Lucilia silvarum’ (see Table 4.3). Specimens are listed 

with their location, name on tree, host, Genbank/BOLD accession codes for per, ITS2 and COX1 

as well as sequence length of ITS2 and the primers used for the amplification of per gene.  

Species Location Name on tree Host per ITS2 COX1 ITS2 
(bp) 

per 
primers 

Lucilia 
bufonivora 

Pine lake, 
Alberta bufonivora_CANPi Pseudacris 

triseriata MK598632 MK579389 BBDCQ3
87-10 304 3&6, 4&5 

L. bufonivora 
Calling 
Lake, 
Alberta 

bufonivora_CANCa Rana 
sylvatica MK598632 MK579389 BBDCQ3

87-10 304 3&6, 4&5 

 

per amplification primers: 3&4 = pbf14 and pbf650-R (present study); 3&6= pbf14 and p433-R 

(present study); 4&5= p249 and pbf650-R (present study).  New sequence data are shown in red. 

Accession codes in blue belong to BOLD database.  

 

Figure 4.6. Agarose gel of PCR products for a fragment of 410bp of per gene. PCR was carried 

out using DNA from single-leg extractions and using primers p249 and pbf650-R designed in this 

work. The first lane is 100bp ladder; second and third lanes belong to Canadian samples of 

Lucilia bufonivora; fourth and fifth lanes to samples provided originally as Lucilia silvarum. The date 

of collection is indicated at the top of their respective band. Sixth lane contains a positive control 

 

1991 1998 1948 1937   
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with DNA from a European sample of L. bufonivora (bufonivora_DEU). Seventh lane is a 

negative control with no DNA.  

4.3.2 Single-gene Phylogenies 
Overall, obligate amphibian parasitism was recovered as a monophyletic life history trait in all 

phylogenies inferred. The saprophagous species L. silvarum was never included in this 

monophyletic group. There was a consistent paraphyly of the toad fly L. bufonivora with respect to 

L. elongata, showing a clear distinction between individuals from Europe and Canada. The well-

known relationships between the sheep blowflies L. sericata and L. cuprina were recovered in all 

phylogenies with strong support. Similarly, the L. caesar species group, comprised by mainly 

saprophagous species very similar in morphology, was supported with strong PPO values in all 

phylogenies.     

 

ITS2 

Amplification of the non-coding region ITS2 exhibited very variable sequence length among taxa 

(Table 4.1). Similar to a previous study (Marinho et al., 2011) PCR amplification yielded three 

different rRNA subunits (5.8S, 2S and 28S), of which subunit 2S splits the region into ITS2a (30bp) 

and ITS2 (variable length). Since there was very little variation in the ITS2a region, phylogenetic 

analysis included only the 2S, ITS2 and 28S regions.   

Obligate parasitism of amphibians was recovered as a monophyletic trait. This incorporated L. 

bufonivora (Europe), L. elongata (North America) and L. bufonivora (Canada) (Fig. 4.7).  European 

sequences of L. bufonivora exhibited a consistent haplotype with the presence of an indel (8 bp) 

which was not observed in the Canadian haplotype of the same species (Fig. 4.8). This tree 

supports the paraphyly of L. bufonivora with respect to L. elongata. Whilst exhibiting generally lower 

posterior values, this tree recovered a European L. silvarum clade that was distinct from a North 

American clade of the same species (Fig. 4.7).    

This phylogeny recovered with strong support a L. sericata species group, that included both 

economically important sheep blowfly species, L. sericata and L. cuprina, as well as the 

morphologically similar species L. pilosiventris/L. regalis and L. richardsi. Despite the geographical 

distances, this phylogeny recovered a single monophyletic clade of the British sheep blowfly L. 

sericata incorporating samples from United States, Mexico, the Netherlands, Iran and UK (Fig. 4.7).     
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Similarly, this BI phylogeny recovered the monophyly of the L. caesar species group with strong 

support.  Lucilia caesar from Turkey and UK did not exhibit any intraspecific variation. Although 

L. caesar and L. illustris were grouped as sister species, they showed very short divergence distances 

between each other, highlighting the close relationship of these species. Lucilia ampullacea was 

recovered as a sister clade to L. caesar/L. illustris.  And, finally, the strictly Nearctic species L. 

mexicana was recovered as a sister species to the L. caesar species group (Figure 4.7).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7 BI tree constructed from Internal transcribed Spacer 2 (non-coding). Each specimen 

is labelled with the species name and location abbreviation as indicated in Table 4.1 and 4.5. 

Posterior probability values are labelled on each node. Scale represents expected changes per site.  

Green letters correspond to European samples of Lucilia bufonivora; red represents Lucilia elongata; 

purple represents Canadian L. bufonivora and finally yellow represents L. silvarum.  



104 
 

 

Figure 4.8 Alignment of partial ITS2 sequences of L. bufonivora species-group taxa.  Matching 

nucleotides with Lucilia elongata (MK579388) are represented with a dot. Sequence gaps are shown 

as hyphens. Nucleotide positions are shown above the alignment. Location abbreviations are 

quoted as indicated in Tables 4.1 and 4.5.  

 

COX1 

Bayesian inference analysis recovered all taxa known to be obligate parasite of amphibians in a 

monophyletic group with strong support (Fig. 4.9). Within this group there is a well-supported 

Palearctic clade with the inclusion of all European samples of L. bufonivora. Nonetheless, all 

Canadian samples of L. bufonivora were clustered together in a single clade independent from their 

European conspecifics. This clade included three additional sequences from Canada obtained from 

BOLD/Genbank. Samples of the strictly Nearctic L. elongata, although with some intraspecific 

variation, were recovered as a monophyletic sister clade to the Canadian clade of L. bufonivora. 

Therefore, L. bufonivora was recovered paraphyletically with respect to L. elongata.  Pairwise genetic 

distances between European and Canadian sequences of L. bufonivora were rather high (0.052, 

TTable 4.6). 

The saprophagous species L. silvarum was grouped outside of the monophyletic group of species 

implicated in amphibian myiasis (L. bufonivora + L. elongata). It was recovered as a paraphyletic 

species with respect to L. richardsi/L. pilosiventris/L. regalis with strong support. Samples from the 

Netherlands, UK, Spain and Poland were grouped in a single ‘European’ clade separate from a 

North American clade which incorporated all samples from Canada and North America (Fig. 4.9).  
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Figure 4.9 Bayesian Inference tree constructed from COX1 (mtDNA). Each specimen is labelled 

with the species name and location abbreviation as indicated in Tables 4.1, 4.2 and 4.3. Sequences 

obtained from BOLD/GenBank are also annotated with their respective accession codes. 

Posterior probability values are labelled on each node. Scale represents expected changes per site.  

Green letters correspond to European samples of Lucilia bufonivora; red represents Lucilia elongata; 

purple represents Canadian L. bufonivora and finally yellow represents Lucilia silvarum.  

L. richardsi, L. pilosiventris and L. regalis showed close relationships to one another (Fig. 4.9). Despite 

their close relationship to L. sericata, this analysis placed them as a sister group to the North 

American L. silvarum clade. This resembles to previous results from a morphological-based 

parsimony analysis (Stevens and Wall, 1996). 
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The sheep blowfly, L. sericata, was recovered as a monophyletic taxon with strong support 

incorporating sequences from UK, the Netherlands, Iran, North America and Mexico. Despite the 

geographical distances, minimal intraspecific variation was detected within this clade. The 

Australian sheep blowfly L. cuprina grouped next to the L. sericata clade with strong support (Fig. 

4.9). The pairwise distance displayed between them was lower than the one observed between the 

Canadian and European L. bufonivora (0.022, Table 4.6). 

Lucilia thatuna,  another species that is thought to be implicated in amphibian myiasis in North 

America (Tantawi and Whitworth, 2014), does not have close evolutionary relationships with the 

L. bufonivora species group (Fig. 4.9).  

 

per 

Species implicated in amphibian myiasis were recovered as a monophyletic group with strong 

support (Fig. 4.10). This group incorporated three distinct clades: L. bufonivora (Europe), L. elongata 

(Canada) and another L. bufonivora (Canada). Thus, this phylogeny also supported the paraphyly of 

L. bufonivora with respect to L. elongata. Unlike previous phylogenies, all samples of L. silvarum (both 

European and North American) were grouped in a single clade with strong support. Outside of 

this group, L. pilosiventris, was recovered as a sister clade showing close relationships with to L. 

silvarum. This is in contrast with previous phylogenies where L. pilosiventris showed close 

relationships with L. richardsi and L. regalis. These results match with previous morphological 

analyses (Stevens and Wall, 1996). 

Nevertheless, in this phylogeny L. richardsi showed close relationships with L. regalis, and they were 

recovered as a sister group to a sheep blowfly group (L sericata + L. cuprina). All samples of L. 

sericata were grouped in a monophyletic clade, with minimal variation displayed from samples of 

the American continent (Fig. 4.10). The Australian sheep blowfly, L. cuprina, was recovered as a 

sister species to L. sericata with strong support (Fig. 4.10).  

L. caesar, L. illustris and L. ampullacea together formed a monophyletic L. caesar group with strong 

support. The degree of divergence between the sister species L. illustris and L. caesar was higher 

than that observed in the ITS2 phylogeny (Fig. 4.10).  
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Table 4.6 The pairwise genetic distances computed with COX1 sequence data of various Lucilia specimens. The green circle highlights the distance 

between European and Canadian Lucilia bufonivora. The red circle highlights the distance between Lucilia sericata and Lucilia cuprina.  
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Figure 4.10 BI tree construted from per gene (nDNA). Each specimen is labelled with the species 

name and location abbreviation as indicated in Tables 4.1 and 4.5. Posterior probability values are 

labelled on each node. Scale represents expected changes per site. Green letters correspond to 

European samples of Lucilia bufonivora; red represents Lucilia elongata; purple represents Canadian 

L. bufonivora and finally yellow represents Lucilia silvarum. 

4.3.3 Parsimony splits: ITS2 + per 

A concatenated data set of per and ITS2 gene sequence data resulted in the analysis of ~1050bp 

(the number of bp is not exact due to the highly variable sequence length of ITS2)(Table 4.1). As 

suggested previously by the COX1 phylogeny, parsimony splits of the concatenated dataset 

clustered two well separated groups of amphibian parasites: a Nearctic (L. elongata and Canadian 

L. bufonivora) and a Palearctic (European L. bufonivora). Both displayed almost the same genetic 

distance with respect to the L. silvarum cluster (Fig. 4.11). 
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Figure 4.11 Parsimony splits network constructed from a per and ITS2 concatenated dataset. Heterozygous specimens are indicated with A and B. 

‘bufonivora_EUROPE_A’ is composed by a consistent haplotype present in all 12 samples from Europe  (Table 4.1), of which just two were 

heterozygous (‘bufonivora_frog’ and ‘bufonivora_NLWi’). ‘bufonivora_CAN’ and ‘elongata_CAN’ are represented by two samples each, none of 

them were heterozygous. Scale represents expected changes per site. 
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4.3.4 Divergence time estimation  
A concatenated dataset of COX1, ITS2 and per (~1700 bp) was analysed. A Bayesian 

uncorrelated relaxed clock was used to estimate the divergence time for a range of different 

species of Lucilia. The molecular clock calibration was set to the split between the subfamilies 

Luciliinae and Caliphorinae which was estimated to happen around 19.7mya (Wallman et al., 

2005). The present estimates indicate that the main radiation of the genus Lucilia occured 

during the middle Miocene about 15.57mya (95%CI: 10.69-20.26mya, Figure 4.12). Results 

match with previous estimations on the diversification of genera within Calliphoridae 

(Junqueira et al., 2016; Wallman et al., 2005).  Present results suggest that during this time, 

there was a major splitting between a lineage of mostly saprophagous habits (L. caesar group) 

and a lineage that would include the sheep blowfly (L. sericata) and the toad fly (L. bufonivora) 

species-groups (Figure 4.12). 

The split between the L. bufonivora and the L. sericata species-groups was inferred to have 

occurred during the Miocene around 9.26mya (95%CI:  5.6-13.10mya, Figure 4.12). This 

suggests that the L. bufonivora group may have diverged from a saprophagous ancestor.  

Diversification of the L. bufonivora group was estimated to have occurred during the Pliocene 

Epoch 4.98mya (CI: 1.92-8.4mya, Fig. 4.12). Within this group, niche isolation of their most 

recent ancestor might have played an important role in the adaptative radiation of two well 

distinct lineages: one with saprophagous behaviour (L. silvarum) and another one that evolved 

high host-specificity for amphibians (L. bufonivora + L. elongata).  

This group of taxa suffered fast diversification that seemed to be driven by geographical 

barriers. For instance, present results suggest that the diversification of the most recent 

ancestor to L. bufonivora was facilitated by geographical isolation between Nearctic and 

Palearctic individuals, which was estimated to have occurred 3.52mya (95%CI: 1.08-6.35mya, 

Fig. 4.12). Certainly, in Europe it diverged into a well-defined Palearctic L. bufonivora. 

However, in North America it diverged into a Nearctic lineage that diversified 1mya later 

into L. elongata and a Nearctic L. bufonivora (2.19mya, 95%CI: 0.5-4.02mya, Fig. 4.12). 

Therefore, the latter species has been present in the North American continent since then 

but has remained unrecorded possibly due to its low abundance and/or taxonomic 

confusion.  

Similarly, the divergence between a Nearctic and Palearctic L. silvarum was inferred to occur 

3.05mya (95%CI: 0.8-5.02mya, Fig. 4.12). This also suggests the independent evolution of 

this saprophagous species between two geographically isolated populations.  
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Figure 4.12 Divergence times estimated from a concatenated dataset of per, COX1 and ITS2 

for the Lucilia bufornivora species group. Substitution model and relaxed clock models were 

unlinked to each gene. The tree was callibrated by setting the root to the node age 

corresponding to the split between Luciilinae and Calliphorinae subfamilies (~19 mya) 

estimated by Wallman et al. (2005). Blue bars represent 95% highest posterior density (HPD) 

of each node age. Scale represents number 

 

4.4      Discussion 
4.4.1   Phylogenetic relationships   
Previous studies have suggested that the parasitic habit in Lucilia blowflies evolved 

independently multiple times  (Stevens and Wall, 1997a; Stevens, 2003; Stevens and 

Wallman, 2006). Present results support this hypothesis, as there was a clear distinction 

between the different Lucilia species-groups, most of which include taxa that exhibit both 

saprophagous and parasitic life histories. However, obligate parasitism and high 

specialisation for a distinct host group appear to have evolved just once, as indicated by the 

reciprocal monophyly of L. bufonivora and L. elongata. On the other hand, although L. silvarum 

showed close relationships with the latter two species, it was never incorporated to the 

monophyletic group of taxa associated with obligate amphibian myiasis. This is reasonable 

given the fact that L. silvarum exhibits saprophagous feeding habits, which have been well 

documented in the past (Hanski and Kuusela, 1977; Hanski, 1987; Prinkkila and Hanski, 

1995; Fremdt et al., 2012). 

By default, mutation rates in mtDNA are faster than the those in nuclear DNA due to the 

lack of recombination and the accumulation of deleterious mutations  (Neiman and Taylor, 

2009; Brown et al., 1979). Within recently diverged species of Lucilia blowflies, this can result 

in shorter branches in nuclear phylogenies but larger in mtDNA phylogenies (McDonagh 

and Stevens, 2011; Yusseff-Vanegas and Agnarsson, 2017). This has also been reported in 

other insect groups like cabronid wasps (Hymenoptera) (Kaltenpoth et al., 2012).  The rapid 

mtDNA substitution rates cannot be attributed to the parasitic life-style of the toad fly, as 

our results suggest that its saprophagous ancestor, L. silvarum, was already showing a fast 

mtDNA mutation rate.  

All phylogenies inferred in this study recovered a Nearctic clade of L. bufonivora which is 

distinct from a Palearctic clade of the same species, and therefore, consistent paraphyly of 
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L. bufonivora with respect to L. elongata.  Both the mtDNA phylogeny (COXI) and parsimony 

splits network (ITS2 + per) suggest that L. bufonivora from Canada has greater affinity with 

the strictly Nearctic L. elongata than with its Palearctic conspecifics. Surprisingly, COX1 

intraspecific pairwise distance between Canadian and European individuals of L. bufonivora 

was greater than the interspecific distance displayed by the sheep blowflies L. sericata and L. 

cuprina. Thus, geographical isolation of L. bufonivora and rapid mtDNA evolution rates appear 

to be facilitating on-going cryptic speciation. This phenomenon is relatively common within 

Diptera, as reported in geographically isolated populations of gall midges, tephritid flies and 

black flies (Tadeo et al., 2015; Adler et al., 2016; Duque-Gamboa et al., 2018). The status of 

L. bufonivora in Canada as a distinct species, however, remains to be resolved, and will also 

require detailed morphological examination of specimens from both Eastern and Western 

hemispheres 

Using nDNA (EF1α), the work from the previous Chapter grouped L. bufonivora as a separate 

species to L. silvarum and L. elongata. Nevertheless, BI analysis of the nuclear gene EF1α 

failed to differentiate the saprophagous L. silvarum to the obligate L. elongata, as they were 

grouped within the same clade. The results presented in this chapter provided better 

phylogenetic resolution with nDNA evidence from two markers (ITS2 and per) and grouped 

L. elongata as a distinct species to L. silvarum and L. bufonivora. This is also supported by recent 

morphological evidence (Tantawi and Whitworth, 2014). Previous research has showed the 

utility of ITS2 as a suitable marker to infer relationships at species level (Marinho et al., 2011). 

Certainly, L. elongata presented a unique consistent haplotype that allows its differentiation 

to L. bufonivora and L. silvarum. Therefore, unambiguous species identification can be carried 

out employing multi-locus analysis with COX1 and ITS2 sequence data. 

The saprophagous species L. silvarum exhibited high mtDNA sequence divergence between 

Palearctic and Nearctic samples. Although it could be concluded that this is due to species 

level differentiation, it should rather be interpreted with caution.  For instance, previous 

molecular studies on other blowflies, such as Phormia regina (Meigen), detected high mtDNA 

sequence divergence between North American and European populations (Boehme et al., 

2012; Desmyter and Gosselin, 2009). Due to the lack of morphological differentiation and 

minimal nuclear DNA variation, it was concluded that its mtDNA variation is not a species 

level differentiation  (Jordaens, et al., 2013). This phenomenon has also been reported for 

populations of Lucilia eximia (Wiedemann) and Lucilia rica (Shannon)  (Yusseff-Vanegas and 

Agnarsson, 2017). In addition, the BI analysis from the per gene clustered Nearctic and 

Palearctic in a single clade. Although with little variation, the parsimony splits network 
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grouped together all samples of L. silvarum with low distances, which was not a feature 

observed between Nearctic and Palearctic L. bufonivora (Fig. 4.11). Therefore, mtDNA 

variation suggests independent evolution rates of two isolated populations of L. silvarum but 

cannot be attributed to species level differentiation.  

Evidence from mtDNA (COX1) revealed that L. thatuna, another species that has been 

thought to be involved in amphibian myiasis (Tantawi and Whitworth, 2014), does not have 

close relationships with the L. bufonivora species-group. Given the fact that all inferred 

phylogenies support that evolution of specialisation for amphibians occurred only once, it is 

likely that L. thatuna does not behave as such. This matches with previous phylogenetic 

studies that have found no close relationships between L. thatuna and L. silvarum/L. elongata 

(DeBry et al., 2010; Debry et al., 2013). Thus, suggesting L. thatuna might only exhibit 

saprophagous feeding habits. 

The present results revealed that the rarely encountered species L. pilosiventris and L. regalis 

have close relationships with L. richardsi, conforming a species group which is related to both 

L. sericata and L silvarum, hence suggesting saprophagous behaviour. Little is known about 

their biology and life-history due to their low abundance (Rognes, 1991; Szpila, 2017). In 

fact, there is only one morphological-based phylogenetic study that has included these 

species (Stevens and Wall, 1996) although this was based on species descriptions given in 

the literature. The latter study found that L. pilosiventris and L. regalis are related to L. silvarum, 

which was also supported by the present mtDNA phylogeny (Fig. 4.9). This, however, is 

incongruent with the ITS2 phylogeny, as they seem to be more closely related to the L. sericata 

species group. In Drosophila flies, these incongruencies are attributed to incomplete lineage 

sorting (Pollard et al., 2006). The incongruencies observed in mtDNA and nDNA 

phylogenies from this study might also be a case of incomplete lineage sorting. For instance, 

the toad fly species group (L. bufonivora/L. silvarum/L. elongata) and the sheep blowfly species 

group (L. sericata/L. richardsi/L. regalis) seem to have a common ancestor (Figs. 4.7 – 4.12). 

It is likely that after the rapid speciation of this ancestral state, polymorphisms were fixed 

randomly in each species (e.g. L. sericata and L. bufonivora), and in some cases of non-sister 

species it would result on the fixation of the same ancestral polymorphisms (e.g. L. richardsi 

and L. silvarum). Nonetheless, our studies are limited to a single mtDNA locus, and further 

studies with more loci or mitogenomic data are required to confirm this hypothesis.  
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4.4.2 Evolution of obligate parasitism in Lucilia blowflies and host 

specificity for amphibians 

It is thought that economically important calliphorid flies (i.e. Lucilia sericata, L. cuprina) might 

have evolved parasitic behaviour in association with humans and animal domestication, as 

myiasis is rarely seen in wild animals  (Erzinclioglu, 1989; Stevens and Wall, 1997). However, 

high host-specificity for wild amphibians suggests that L. bufonivora evolved independently 

from those blowfly species associated with animal domestication.. Indeed, the time-scaled 

phylogeny suggests that this behaviour arose approximately 5mya, during the early Pliocene 

(~5 mya). In some groups of strictly obligate taxa such as Oestrid flies, host-parasite 

coevolution could have played an important role on lineage divergence and speciation (Pape, 

2006; Stevens et al., 2006). This, however, differs largely to the evolution of L. bufonivora as 

it shows close affinity with other fly species with predominantly saprophagous feeding habits 

(L. silvarum).  

Present results indicate that the most recent ancestor of L. bufonivora exhibited saprophagous 

feeding habits. Certainly, all phylogenies suggest reciprocal monophyly of the toad fly (L. 

bufonivora) and the sheep blowfly (L. sericata) species groups; both comprised by parasite and 

saprophagous taxa (Fig. 4.7, Fig. 4.9, Fig. 4.10). The time-scaled phylogeny suggests the co-

existence of the saprophagous ancestor of L. bufonivora with other Calliphorid lineages that 

behave mostly as carrion-breeders (e.g. Calliphora). It is well known that ephemeral resources 

such as it is carrion, facilitate intense interspecific competition (Hanski and Kuusela, 1977; 

Hanski, 1987; Prinkkila and Hanski, 1995). It is also thought that L. silvarum, a closely related 

species to L. bufonivora, is a very poor competitor of the carrion-fly community  (Hanski, 

1987). Thus, intense competition within the carrion-fly community might have forced the 

saprophagous ancestor of L. bufonivora to migrate to narrower ecological niches. In this case 

developing high host-specificity for amphibians, facilitating and effective adaptative 

radiation of an evolutionary lineage of obligate parasites, namely L. bufonivora.  

As previously discussed, geographical isolation facilitated the divergence of this evolutionary 

lineage, resulting in the speciation of L. bufonivora sensu stricto in the Palearctic and a distinct 

L. elongata + L. bufonivora in the Nearctic. The estimates from this work suggest that this split 

took place around the Pliocene (~3.5mya, Fig. 4.12). Given the difference of amphibian 

diversity, they have adapted to different hosts according to the geographical area. For 

instance, in Europe amphibian myiasis is normally reported occurring in the nasal nostrils of 

the common toad, Bufo bufo. In North America, however, it is reported from the back and 



116 
 

hind legs of mainly frog hosts (Zumpt, 1965; Strijbosch, 1980; Roberts, 1998; Eaton et al., 

2008). 

Despite the ectoparasitic behaviour of the sheep blowfly L. sericata, it typically behaves as a 

saprophagous species in a wide range of countries, and in contrast with L. bufonivora, it is a 

very common blowfly species (Hwang and Turner, 2006; Saloña-Bordas et al., 2009; Fremdt 

and Amendt, 2014; Lutz, 2019) .  Human migrations and movement of livestock could have 

played an important role on the intercontinental dispersal of economically important 

calliphorid species, such as the new world screwworm C. hominivorax  (Fresia, et al., 2013).  

Thus, movement of domesticated sheep might have had great implications on the 

distribution of L. sericata, and moreover, its saprophagous feeding habits could have 

facilitated its establishment in different geographical areas. Big population sizes, high 

migration capacity and fertility increase the rates of gene flow and reduce the impact of 

genetic drift over this species (Diakova, et al., 2018). This would explain the genetic 

consistency of geographically distant samples of L. sericata found in this study, which matches 

largely with previous research that has found very minimal variation in L. sericata (Stevens 

and Wall, 1997b; DeBry et al., 2010; McDonagh and Stevens, 2011; Williams and Villet, 

2013). In contrast, the low abundance of L. bufonivora in the field suggest that small 

population sizes, in combination with a restricted dispersal capacity, make the toad fly a 

vulnerable species to genetic drift, therefore, facilitating the rapid evolution of geographically 

isolated populations.   

Given that the toad fly, L. bufonivora, parasitizes mainly wild hosts, it is unlikely that human 

activity mediated its intercontinental dispersal. There is not enough robust evidence to 

conclude how it migrated between continents. Nonetheless, the present time-scaled phylogeny 

suggests that it occurred during the Pliocene, which was a determining epoch for 

intercontinental dispersal of vertebrates, such as mammals, through Beringia (Cook et al., 

2017). The latter is also known to have mediated intercontinental dispersal of plants, 

amphibians and even insects (Wen et al., 2016; Contreras and Chapco, 2006; Cook et al., 

2017; Li et al., 2015). Although there are existing reports of L. bufonivora from far east Asia 

and North Canada (Draber-Mońko, 2013; Tantawi and Whitworth, 2014), more detailed 

phylogeographic studies as well as updated surveys on the Calliphorid fauna from Eastern 

Russia and Alaska are required to answer this question. Nevertheless, it can be concluded 

that L. bufonivora has been present in the North American continent for at least 2 million 

years but has remained unrecorded due to its relative rarity as well as taxonomic confusion 

with L. silvarum.   



117 
 

4.4.3 Species composition in Amphibian myiasis in North America.  
There are numerous reports of the saprophagous L. silvarum causing amphibian myiasis in 

North America (Bolek and Coggins, 2002; Bolek and Janovy, 2004; Roberts, 1998). 

Although, as in Europe, the present study suggests that those cases are likely to be attributed 

to L. bufonivora. For instance, the morphological keys widely used for fly identification in 

North America (Hall, 1948) do not even include the taxon L. bufonivora. It was not until 2014 

that Tantawi and Whitworth (2014) provided morphological keys for its accurate 

identification and differentiation with L. silvarum. Moreover, the latter study found L. 

bufonivora specimens misidentified as ‘L. silvarum‘ in Canadian collections with 1954 as the 

earliest collection record. Certainly, present DNA analysis of the Canadian samples originally 

provided as ‘L. silvarum’ (reared from diseased amphibians) revealed their identity as L. 

bufonivora. Therefore, this is the first study to confirm its involvement in amphibian myiasis 

in Alberta, Canada. Nonetheless, more detailed studies are required to determine the 

amphibian myiasis species composition in North America.  

In conclusion, within the genus Lucilia, obligate parasitism and host-specificity for 

amphibians is likely to have evolved just once around 4 mya. It is likely that this occurred 

after the niche displacement of a generalist saprophagous ancestor from carrion-fly 

community. Consistent paraphyly of L. bufonivora across single-gene phylogenies and high 

mtDNA sequence divergence between Palearctic and Nearctic lineages suggest on-going 

cryptic speciation of L. bufonivora facilitated by geographical isolation. The time-scaled 

phylogeny suggests it has been evolving independently in these 2 regions for at least 2mya. 

Thus, this species appears to have been present in North America since this time, but due 

to its relative rarity it has remained unrecorded by taxonomists until relatively recently 

(Tantawi and Whitworth, 2014).   
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5.  Abundance, bait response and 

habitat use by adult flies of Lucilia 

bufonivora  
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5.1 Introduction  
The toad fly, Lucilia bufonivora, is a species that has remained understudied for several reasons. 

For instance, given the nature of its obligate form of parasitism, it does not provide 

ecosystem services, as most saprophagous calliphorids do as decomposers (Putman, 1983; 

Blackith and Blackith, 1990; Smith and Wall, 1997b). This also means that it is not an 

important species in forensic entomology (Fremdt and Amendt, 2014). Moreover, while 

economically important species of Lucilia (e.g. Lucilia sericata and Lucilia cuprina) are facultative 

parasites of domesticated animals (Zumpt, 1965; Wall et al., 1992a; Stevens, 2003), the toad 

fly affects mostly wild amphibian hosts (Brumpt, 1934; Strijbosch, 1980; Weddeling and 

Kordges, 2008; Gosá et al., 2009) and, hence does not have the same economic importance. 

 

Nonetheless as previously discussed in previous chapters, the study of this species is of 

interest in evolutionary entomology, due to its life-history as an obligate parasite amongst 

species with sarco-saprophagous habits (McDonagh and Stevens, 2011). Understanding the 

diversity of host-parasite relationships is important for conservation, hence it is also of 

importance for wildlife management (Hatcher et al., 2006; Hatcher et al., 2012). Additionally, 

L. bufonivora has been reported in a range of amphibian hosts, including a species which is 

currently endangered in the U.K., the Natterjack toad, Epidalea calamita (Vestjens, 1958; 

Weddeling and Kordges, 2008; Gosá, et al., 2009).  

 

It is known that parasites and pathogens play important roles within a community and can 

affect the complexity of food-webs and energy budgets of an ecosystem (Hatcher et al., 2006; 

Hatcher et al., 2012). Research on L. bufonivora has been focused typically on the study of the 

immature stage, as it is responsible for amphibian myiasis (Brumpt, 1934; Strijbosch, 1980). 

A study from Germany found infestation rates in toad populations from 15% and 70%  

(Weddeling and Kordges, 2008). In the Netherlands, L. bufonivora is more frequent in adult 

toads of Bufo bufo, with an average of 8% of individuals reported to be infected in a two-year 

period (Strijbosch, 1980). However, the ecological impact of L. bufonivora on amphibian 

populations, remains poorly understood. Part of this is due to the lack of knowledge on the 

ecology and abundance of the adult stage of this species. A broader understanding of the 

behaviour of the adult stage of the parasite is important for a number of reasons. Firstly, 

dispersal and reproduction of most dipterous parasites is carried out during their adult stage 

(Zumpt, 1956; Zumpt, 1965; Wall, 1992; Pape, 2001). Thus, ecological studies can provide 

valuable data to assist on further prediction of the spaces where the hosts (if any) are more 
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vulnerable to oviposition/infection. Secondly, it would offer knowledge on a calliphorid fly 

of which behaviour remains poorly studied (Zumpt, 1965; Rognes, 1991). Investigation of 

its ecology (e.g. spatial distribution) would also help understanding sympatry and co-

existence with respect to other calliphorid species and assist on the prevention of future 

misidentifications and erroneous biodiversity reports, which are known to happen 

commonly (Rognes, 2014; Tantawi and Whitworth, 2014). 

 

Previous research has shown that the type of bait influences the species composition in 

blowfly trapping (MacLeod and Donnelly, 1956; Blackith and Blackith, 1990). As discussed 

in Chapter 2, females of saprophagous blowflies are attracted to carrion and decaying meat 

as they use this source for larvae development (Smith and Wall, 1997b; Fisher et al., 1998). 

Additionally, it also attracts newly emerged adult females that are looking to obtain a 

proteinaceous meal that enables vitellogenesis prior to oviposition (Fisher et al., 1998; 

Huntington and Higley, 2010). In contrast, as an obligate parasite, L. bufonivora needs a live 

host for oviposition and larvae development (Brumpt, 1934; Zumpt, 1965). This has possibly 

been reflected in the low abundancies reported by previous authors that used standard 

blowfly baits (MacLeod and Donnelly, 1956; Fischer, 2000). Nonetheless, it has been 

suggested that adults are attracted to dead toads for ‘feeding’ (Zumpt, 1965). This, however, 

remains to be confirmed.  

 

Relatively little is known about habitat use and the spatial distribution of L. bufonivora. 

Macleod and Donnelly (1956) reported low catches of L. bufonivora in the UK, and they did 

not describe the type of habitat in in which they did catch it. However, the same authors 

noted that its sister species Lucilia silvarum was more frequently caught in non-shaded 

habitats. Fischer (2000) found that adult L. bufonivora were more abundant in forests and 

along riverbanks. In contrast, amphibian myiasis cases are frequently reported from sunnier 

environments. In the Iberian peninsula, several cases of amphibian myiasis have been 

recovered from meadows and wetlands from different Natural Reserves (Gosá et al., 2009). 

Weddeling and Kordges (2008) observed that infested amphibians occur more frequently in 

open landscapes or beside ponds but rarely in shaded forests. In the Netherlands, a study 

recovered toad-myiasis cases from different habitats including heaths, pastures, meadows 

and farmyards (Strijbosch, 1980).  
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The work described in this chapter was a collaboration with RAVON (Reptile, Amphibian 

and Fish Conservation in the Netherlands). It aimed to investigate the spatial distribution, 

bait response and abundance of adult L. bufonivora in three different sites of the Netherlands 

at which, according to the RAVON database, toad myiasis cases had been reported in the 

past. Additionally, this work also aimed to provide data on the general Lucilia-species 

community from the Netherlands.  

 

5.2 Methods 

5.2.1 Study sites  
Site 1  

Site one was on a small farm situated in a rural area situated in Wesepe, Olst (Fig. 5.1). It is 

surrounded by corn fields; small woodland patches with mainly birch and oak trees; and 

relatively large open and semi-open wetland and grassland with Apiaceae vegetation, (Fig. 

5.2). Amphibians reported at the site included the common toad (B. bufo) and the common 

frog (Rana temporaria).   

 

Figure. 5.1. Sampling site 1 (Olst). Trap number and bait (L=liver, T=Toad) are shown in 

the picture. Six traps were set at open or semi-open habitats (T1-T3; L1-L3) and four traps 

at woodland shaded habitats (T4, T5, L4 and L5).  
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Figure. 5.2. Dominant habitats at site 1 were mainly: a) open spaces with abundant Apiaceae 

and grassland vegetation and b) grassland surrounded by cropfields.   

a) 

b) 
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Site 2  

Stie 2 was located in a semi-rural area in Winssen, approximately 10 miles away from the 

town of Winssen (Fig. 5.3). The site was a private garden situated approximately half a mile 

away from the river Waal. It is surrounded by cattle farms, arable land, woodland patches 

(Oak, birch and willow) and a small semi-natural grassland with small native fruit trees and 

abundant apiaceae vegetation (Fig. 5.4). Amphibians reported at the site included the 

common toad (B. bufo), the common frog (R. temporaria), the edible frog (Pelophylax esculentus 

Linnaeus) and the common newt (Lissotriton vulgaris Bell).  

 

Figure. 5.3. Sampling site 2 (Winssen). Trap number and bait (L=liver, T=Toad) are shown 

in the picture. Four traps were set at open or semi-open habitats (T4, T5, L4 and L5) and 

six traps at woodland and shaded habitats (T1-T3; L1-L3).  
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Figure. 5.4. Habitats surveyed at site 2. Traps were set at woodland habitats that provided 

shade (a– b) or at semi-open habitats that provided direct or partial sunlight (c).  

  

a) b) 

c) 
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Site 3  

Site three was within the botanical and experimental gardens of Radboud University (Fig. 

5.5). Situated in an urban area with dense housing in central Nijmegen. It is mainly composed 

by forest vegetation with a variety of native and non-native trees, pines and ferns (Fig. 5.6).  

It has a pond lying on the middle of the garden. Within site, trapping access was restricted 

only to woodland areas, therefore grassland habitats were not surveyed. Amphibians 

reported at the site include the common toad (B. bufo), the common frog (R. temporaria), the 

edible frog (P. esculentus.), common newt (L. vulgaris) and the alpine newt (Ichthyosaura alpestris 

Laurenti).  

 

 

 

Figure 5.5. Sampling site 3 (Botanical Gardens - Nijmegen). Trap number and bait 

(L=liver, T=Toad) are shown in the picture. Only woodland habitats were surveyed from 

this site.  
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Figure 5.6. Dominant habitat at site 3 were mainly shaded woodland spaces with a variety 

of tall trees and fern vegetation that offered shade to the traps (a -b). Modified traps used 

for blowfly sampling were attached to the stems of tall vegetation present in woodland (c). 

 

 

  

a) 

b) 

c) 
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5.2.2 Bait response 
To measure the differences in the abundance of L. bufonivora using different baits, porcine 

liver (standard blowfly-bait) or toad carcasses were used for fly sampling. The former was 

obtained from a local butcher in Nijmegen, while toad carcasses (death by natural causes) 

were provided by A. Spitzen (RAVON). Modified bottle traps (Hwang and Turner, 2006) 

were used to catch specimens in sufficiently good condition to allow identification. Fifty 

grams of bait (liver or toad) were placed in a plastic container and it was covered with a mesh 

and a rubber band to reduce oviposition. The container was then placed inside the trap. 

Throughout the trapping period, baits were topped up with water to prevent their 

desiccation. It has been suggested that after the initial stages of decomposition, bait age has 

little effect over blowfly catch size (Fisher et al., 1998) so bait age was not standardised. As 

the experiment did not last more than 2 months and due to bait availability (toad carcasses), 

baits were not replaced (unless removed by external factors, such as strong winds, 

scavengers, etc.).  

 

5.2.3 Effects of Habitat 
This study considered 2 different types of habitats for fly sampling. The first one was shaded 

areas, mainly woodland and forests which offered wind cover and no direct sunlight to the 

traps (Fig. 5.4 a-b; Fig. 5.6). Within these areas, traps were set-up by attaching them to tree 

stems present within the area. The second habitat was open or partially open landscapes, 

typically with low vegetation such as grass or Apiaceae, that allowed direct sunlight to the 

traps (Fig. 5.2; Fig. 5.4c).  Traps were attached to pre-existing fence-posts or bushes in these 

open areas (Fig. 5.4c).  

 

5.2.4 Trap distribution, collection and identification  
Traps were placed in pairs: one liver-baited and one toad-baited, separated by approx. 6-8m. 

The distance between pair of traps was approximately 30 meters. Numbers of traps at each 

site was determined by the relative amount of each habitat-type available. At site 1 (Olst), 6 

traps were set in open and semi-open habitats and 4 traps in woodland (Fig. 5.1). In site 2 

(Winssen), 4 traps were set in semi-open areas and 6 were set in shaded habitats (Fig. 5.2). 
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Finally, given that site 3 (Nijmegen) was mainly woodland, fly-sampling in this site was only 

carried out only in shaded areas (Fig. 5.3).  

At site 1, traps were set on the 10th of August, 04th of August at site 2, and 9th of August at 

site 3. Collections were made every three to six days for four weeks from the day the traps 

were set. At every collection, the upper part of the bottle traps was emptied in individual 

collecting containers. Each container was labelled with its respective collection date, site, bait 

and habitat sampled. Traps were then placed back in their respective place in the field. Flies 

were then frozen and morphological identification carried out at the University of Bristol 

during late-September and October 2017. 

Containers were emptied and green iridescent flies were separated from non-target species 

for identification. Morphological keys were employed for reliable morphological ID 

(Rognes, 1991). Although indicated in several keys, this work did not consider post-acr 

bristles as a differentiation character between L. bufonivora and L. silvarum as it is not 

consistent between individuals. Instead, genitalia were examined under a dissecting 

microscope, in case of females L. bufonivora was identified by the presence of microtrichia on 

the epiproct and the abdominal terguite and sternite 7 (Fig. 5.7 – Fig. 5.8). The number of 

specimens per trap at each collection was recorded for individual species of Lucilia.  

 

5.2.5 Data analysis 

This work considered the spatial distribution and abundance of L. bufonivora.  Given that fly-

sampling lasted less than 2 months, it was not possible to analyse temporal changes in 

abundance. Hence, analysis was carried out using the number of flies/trap/day for individual 

species of Lucilia as described in chapter two. Count data for all Lucilia studied exhibited 

overdispersion (Fig 5.9). Thus, a generalised linear mixed model was used for data analysis 

of individual species. The best-fit model was selected using appropriate model families for 

overdispersed data and stepwise removal of non-significant factors was undertaken based 

on AIC scores (Sileshi, 2006). Effects of bait-type and habitat on the abundance of individual 

Lucilia species were evaluated as fixed factors. Due to the difference on the trapping starting 

date and inconsistency in surveyed habitats per site, ‘site’ was implemented as a random 

factor using the package Lme4 (Bates et al., 2015) with the function glmer.nb using R in 

RSTUDIO 3.4.2. To test whether ‘site’ had a significant effect on the fly catch, the selected 

model and a null model (without site) were subjected to ANOVA.  
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Figure 5.7. Ovipositor of: a) Lucilia silvarum and b) Lucilia bufonivora. Pictures taken by Abby 

Parravani (University of Bristol). 

 

Figure 5.8. Male terminalia of Lucilia bufonivora: a) ventral view and b) dorsal view. Male 

terminalia of Lucilia silvarum: ventral view (c) and dorsal view (d).   

a) b) 

c) d) 

a) b) 
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 Figure 5.9. Distribution frequencies of the Lucilia species recorded in this study. X axis 

displays the flies/trap/day and Y axis represents the frequency. Individual species names 

are indicated at the top of their respective histogram plot.   
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5.3 Results 
A total of 3,855 Lucilia flies were collected and six different species were identified in this 

study (Table 5.11); 77 individuals were L. bufonivora, 133 L. silvarum, 959 L. sericata, 381 L. 

illustris, 579 L. ampullacea and 1,756 L. caesar.  

 

5.3.1 Model selection 

Lucilia bufonivora 
Any model within ΔAIC=2 are considered equally likely, in these cases it is generally 

suggested that the simplest model is accepted. In this analysis, three models fell within this 

rule (Table 5.1). From these, the simplest model included ‘habitat’ as a fixed factor and ‘site’ 

as a random factor and excluded the fixed effects of ‘bait’ from the analysis. This suggests 

that ‘bait’ has no appreciable effect on the catch of L. bufonivora. In contrast, ‘habitat’ was a 

significant factor affecting the numbers of L. bufonivora caught (Z=-5.31, P<0.001); higher 

numbers were caught in open habitats and it was almost absent from shaded areas (Fig. 5.10). 

ANOVA using the factors included in the optimum and null models showed that ‘site’ had 

a significant effect on the fly catch size of L. bufonivora (χ2(1) = 8.65, P<0.001). No specimens 

were caught at Site 3, and the highest abundance recorded was at site 1.  

Table 5.1.  AIC scores of the different models tested for data analysis of Lucilia bufonivora. 

Table displays formula of the model, family, degrees of freedom and AIC scores. 

 

                                                                                                               

 

 

 

 

Letters in blue indicate the model selected for data analysis. ‘Buf’ represents the numbers 

of Lucilia bufonivora flies per trap per collection.  ‘(1|site)’ indicates the inclusion of ‘site’ as 

a random factor in the given formula.   

Model Family df AIC 

Buf ~ habitat Negative binomial 3 219.381 

Buf ~ bait Negative binomial 3 316.612 

Buf ~ habitat+bait Negative binomial 4 218.569 

Buf ~ habitat+(1|site) Negative binomial 4 212.733 

Buf ~ bait*habitat*(1|site) Negative binomial 6 212.246 

Buf ~ bait*habitat+(1|site) Negative binomial 5 211.233 

Buf ~ bait+(1|site) Negative binomial 4 270.763 
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Figure 5.10. The number of Lucilia bufonivora caught (trap/day) in different habitats with 

different baits (Liver and toad) at different sites: a) site 1 – rural, b) site 2 – semirural, c) 

site 3 – urban. The median flies/trap/day is displayed within boxes representing first and 

third quartiles. Whiskers show 95% confidence intervals with outliers (dots).  
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Lucilia silvarum   
The model selected for the analysis of L. silvarum included ‘habitat’ as a fixed factor and 

random effects of ‘site’ (Table 5.2). ANOVA of the selected null model showed that ‘site’ 

had a significant effect on the fly catch size of this species (χ2(1) = 21.38, P<0.0001). It 

had its highest abundance at site 1 and was almost absent from site 3 (Fig. 5.11). Although 

the catch of L. silvarum was numerically greater in liver-baited traps, statistical analysis 

showed that it was not significantly different from toad-baited traps. Therefore, it was 

removed from the model resulting in lower AIC scores (Table 5.2). In contrast, ‘habitat’ 

had a significant effect on its abundance. This species was also more frequent in non-

shaded open habitats (Fig. 5.11). 

 

Table 5.2. AIC scores of the different models tested for data analysis of Lucilia silvarum. 

Table displays formula of the model, family, degrees of freedom and AIC scores. 

 

 

 

 

 

 

 

Letters in blue indicate the model selected for data analysis. ‘Sil’ represents the numbers of 

Lucilia silvarum flies per trap per collection.  ‘(1|site)’ indicates the inclusion of ‘site’ as a 

random factor in the given formula.  

 

 

 

 

 

Model family df AIC 

Sil ~ habitat Negative binomial 3 319.285 

Sil ~ bait Negative binomial 3 384.613 

Sil ~ habitat+bait Negative binomial 4 313.722 

Sil ~ habitat+(1|site) Negative binomial 4 299.902 

Sil ~ bait*habitat+(1|site) Corrected Poisson 5 313.073 

Sil ~ bait+habitat+(1|site) Corrected Poisson 4 320.928 

Sil ~ bait+(1|site) Negative binomial 4 335.447 
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Figure 5.11. The number of Lucilia silvarum caught (trap/day) in different habitats with 

different baits (Liver and toad) at different sites: a) site 1 – rural, b) site 2 – semirural, c) site 

3 – urban. The median flies/trap/day is displayed within boxes representing first and third 

quartiles. Whiskers show 95% confidence intervals with outliers (dots).  
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Lucilia sericata  
Models with fixed effects of ‘habitat’ and random effects of ‘site’ gave a singular fit of the 

covariance matrix indicating that at least one variable was expressed as an exact linear 

combination of some of the others. An ANOVA of two null models showed that ‘habitat’ 

and ‘site’ were causing the singularity of the matrix, as they were not significantly different 

(χ2(1) = -23.4, P=1). Therefore, the random effects of ‘site’ were removed from the analysis. 

The best-fit model then included the fixed effects of both ‘bait’ and ‘habitat’, as well as the 

interactions between them (Table 5.3). The factor ‘habitat’ had a significant effect on the fly 

catch of L. sericata, as it was more abundant in open areas (Table 5.4, Fig. 5.2)  

 

Table 5.3. AIC scores of the different models tested for data analysis of Lucilia sericata. Table 

displays formula of the model, family, degrees of freedom and AIC scores. 

 

 

 

 

 

 

 

Letters in blue indicate the model selected for data analysis. ‘Ser’ represents the numbers of 

Lucilia sericata flies per trap per collection.  ‘(1|site)’ indicates the inclusion of ‘site’ as a 

random factor in the given formula.  

 

 

 

Model family Df AIC 

Ser ~ habitat Negative binomial 3 876.14 

Ser ~ bait Negative binomial 4 921.708 

Ser ~ habitat+bait Negative binomial 3 865.179 

Ser ~ habitat*bait Negative binomial 5 861.997 

Ser ~ bait +(1|site) Negative binomial 4 904.296 

Ser ~ bait*(1|site) Negative binomial 4 904.2959 
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Figure 5.12. The number of Lucilia sericata caught (trap/day) in different habitats with 

different baits (Liver and toad) at different sites: a) site 1 – rural, b) site 2 – semirural, c) site 

3 – urban. The median flies/trap/day is displayed within boxes representing first and third 

quartiles. Whiskers show 95% confidence intervals with outliers (dots).  
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Although ‘bait’ on its own had no significant effect on the abundance of L. sericata, statistical 

analysis showed that its interactions with ‘habitat’ had a significant effect on catch (Table 

5.4). This indicates that in woodland areas, L. sericata was more frequent in liver-baited traps 

than it was in toad-baited traps (Fig. 5.12) but this was not the case in open habitats. This 

species was found in all three sampling sites (Fig 5.12) 

 

Table 5.4. Effects of ‘habitat’, ‘bait’ and their interactions on the number of Lucilia sericata 

caught. The table displays the estimates, standard errors, z values an p values computed by 

the selected model. 

 

Lucilia illustris 

Although 2 models were well within ΔAIC=2, the simplest one included the fixed effects 

of both ‘habitat’ and ‘bait’, as well as random effects of ‘site’ (Table 5.5). ANOVA of the 

selected model and a null model demonstrated that ‘site’ had a significant effect over the 

fly catch of L. illustris (χ2(1) = 38.79, P<0.001). This species was present at all 3 sampling 

sites, however its abundance at site 3 was the lowest reported (Fig. 5.13). Although this 

species was found in every habitat sampled, it was significantly more abundant in open 

habitats (Table 5.5). Traps baited with liver caught significantly more flies than the ones 

baited with toad tissue (Table 5.6, Fig. 5.13).  

  

Effects Estimate Std. Error z value p 

Habitat(woods) -1.474 0.3225 -4.574 <0.001 

Bait(toad) -0.220 0.3646 -0.605 0.545 

Habitat(woods):bait(toad) -1.091 0.473 -2.309 0.020 
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Table 5.5. AIC scores of the different models tested for data analysis of Lucilia illustris. 

Table displays formula of the model, family, degrees of freedom and AIC scores. 

 

 

 

 

 

 

 

 

Letters in blue indicate the model selected for data analysis. ‘Ill’ represents the numbers of 

Lucilia illustris flies per trap per collection.  ‘(1|site)’ indicates the inclusion of ‘site’ as a 

random factor in the given formula. 

 

 

 

Table 5.6. Effects of ‘habitat’, ‘bait’ on the number of Lucilia illustris caught. The table 

displays the estimates, standard errors, z values an p values computed by the selected 

model. 

 

  

Model family df AIC 

Ill ~ habitat Negative binomial 3 638.48 

Ill ~ bait Negative binomial 3 671.624 

Ill ~ habitat+bait Negative binomial 4 633.949 

Ill ~ habitat+(1|site) Negative binomial 4 603.147 

Ill ~ bait*habitat +(1|site) Negative binomial 6 599.122 

Ill ~ bait+habitat+(1|site) Negative binomial 5 597.154 

Ill ~ bait+(1|site) Negative binomial 4 610.557 

    

Effects Estimate Std. Error z value p 

Habitat(woods) -0.97 0.237 -4.097 <0.001 

Bait(toad) -0.66 0.227 -2.885 0.004 
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Figure 5.13. The number of Lucilia illustris caught (trap/day) in different habitats with 

different baits (Liver and toad) at different sites: a) site 1 – rural, b) site 2 – semirural, c) 

site 3 – urban. The median flies/trap/day is displayed within boxes representing first and 

third quartiles. Whiskers show 95% confidence intervals with outliers (dots).  
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Lucilia caesar 
Model selected included ‘habitat’ and ‘bait’ as fixed factors as well as random effects of ‘site’ 

(Table 5.7).  The latter factor had a significant effect over the fly catch size of L. caesar (χ2(1) 

= 18.508, p<0.001).  L. caesar was recovered from all 3 sites (Fig. 5.14). It was significantly 

more abundant in woodland habitats (Table 5.8, Fig. 5.14). Liver-baited traps caught 

significantly more adult flies than toad-baited traps (Table 5.8, Fig. 5.14). 

 

Table 5.7. AIC scores of the different models tested for data analysis of Lucilia caesar. Table 

displays formula of the model, family, degrees of freedom and AIC scores. 

 

 

 

 

 

 

 

 

Letters in blue indicate the model selected for data analysis. ‘Cae’ represents the numbers 

of Lucilia caesar flies per trap per collection.  ‘(1|site)’ indicates the inclusion of ‘site’ as a 

random factor in the given formula.  

 

Table 5.8. Effects of ‘habitat’, ‘bait’ on the number of Lucilia caesar caught. The table 

displays the estimates, standard errors, z values an p values computed by the selected 

model. 

Model family df AIC 

Cae ~ habitat Negative binomial 3 1169.641 

Cae ~ bait Negative binomial 3 1194.035 

Cae ~ habitat+bait Negative binomial 4 1177.565 

Cae ~ habitat+(1|site) Negative binomial 4 1181.418 

Cae ~ bait*habitat+(1|site) Negative binomial 6 1160.350 

Cae ~ bait+habitat+(1|site) Negative binomial 5 1161.057 

Cae ~ bait+(1|site) Negative binomial 4 1190.251 

    

Effects Estimate Std. Error z value p 

Habitat(woods) 1.2247 0.2016 6.076 <0.001 

Bait(toad) -0.8410 0.1691 -4.972 <0.001 
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Figure 5.14. The number of Lucilia caesar caught (trap/day) in different habitats with different 

baits (Liver and toad) at different sites: a) site 1 – rural, b) site 2 – semirural, c) site 3 – urban. 

The median flies/trap/day is displayed within boxes representing first and third quartiles. 

Whiskers show 95% confidence intervals with outliers (dots).  
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Lucilia ampullacea 
Model selected for L. ampullacea included fixed effects of ‘habitat’, ‘bait’ and random effects 

of ‘site’ (Table 5.9). The latter factor had a significant effect on fly-catch size (χ2(1) = 38.42, 

P<0.001). The lowest abundance recorded for this species was at site 1 (Fig. 5.15).  This 

species was significantly more abundant in woodland habitats and its fly catch was 

significantly higher using liver-baited traps (Table 5.10, Fig. 5.15).  

Table 5.9. AIC scores of the different models tested for data analysis of Lucilia ampullacea 

Table displays formula of the model, family, degrees of freedom and AIC scores. 

 

 

 

 

 

 

 

Letters in blue indicate the model selected for data analysis. ‘Amp’ represents the numbers 

of Lucilia ampullacea flies per trap per collection.  ‘(1|site)’ indicates the inclusion of ‘site’ as 

a random factor in the given formula.  

Table 5.10. Effects of ‘habitat’, ‘bait’ on the number of Lucilia ampullacea caught. The table 

displays the estimates, standard errors, z values an p values computed by the selected 

model. 

 

 

Model family df AIC 

Amp ~ habitat Negative binomial 3 764.283 

Amp ~ bait Negative binomial 3 769.186 

Amp ~ habitat+bait Negative binomial 4 745.945 

Amp ~ habitat+(1|site) Negative binomial 4 733.907 

Amp~bait*habitat+(1|site) Negative binomial 6 711.471 

Amp~bait+habitat+(1|site) Negative binomial 5 709.527 

Amp ~ bait+(1|site) Negative binomial 4 718.726 

    

Effects Estimate Std. Error z value p 

Habitat(woods) 1.0041 0.2992 3.356 <0.001 

Bait(toad) -1.2230 0.2256 -5.420 <0.001 
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Figure 5.15. The number of Lucilia ampullacea caught (trap/day) in different habitats with 

different baits (Liver and toad) at different sites: a) site 1 – rural, b) site 2 – semirural, c) 

site 3 – urban. The median flies/trap/day is displayed within boxes representing first and 

third quartiles. Whiskers show 95% confidence intervals with outliers (dots). 
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5.3.2 Effects of site  
 ‘Site’ was a significant factor affecting the abundance of all species of Lucilia studied except 

for the sheep blowfly L. sericata¸which was found at all sampling sites (Table 5.11, Fig. 5.16). 

In general, L. caesar was the most common species in the study, yielding a total of 1,726 flies 

caught (Table 5.11). On the other hand, the toadfly L. bufonivora was the least abundant 

species recorded. Nonetheless, it was more frequent at site 1 (Fig. 5.16). No specimens were 

caught at site 3 (Table 5.11, Fig. 5.16). Similarly, L. silvarum had its highest abundance at site 

1, with a total of 117 flies caught and only two specimens caught at site 2 (Table 5.11, Fig. 

5.16). L. ampullacea was a relatively rare species at site 1, however it was a common species 

at both site 2 and 3 (Table 5.11, Fig. 5.16). Finally, L.illustris was a common species at site 1 

and 2, but with a very rare at site 3 site (Table 5.11,  Fig. 5.16). 

Table 5.11. Total numbers of flies caught at each study site. The total numbers of 

individual Lucilia species caught per site and the sum of all sites is displayed in the table.  

 

 

5.3.3 Effects of ‘habitat’ and ‘bait’ 
The fixed factor ‘habitat’ had a significant effect on the fly catch of all Lucilia species). The 

toad fly L. bufonivora was caught with more often in open areas (Fig. 5.17). This was also seen 

with its sister species, L. silvarum (Figure 5.17).  L. sericata and L. caesar were the dominant 

species in open and shaded areas respectively (Figure 5.17). L ampullacea was more abundant 

in shaded areas (Figure 5.17). L. illustris was found in all habitats sampled but was significantly 

less abundant in forests (Fig. 5.17). 

The factor ‘bait’ had significant effect on the fly catch of L. bufonivora or L. silvarum. Model 

selection removed this factor from analysis. L. caesar, L. illustris and L. ampullacea were caught 

more frequently by liver-baited traps than toad-baited traps (Figure 5.17). In woodland 

habitats, L. sericata was more abundant in liver-baited traps (Fig. 5.17). 

Site L. bufonivora L. silvarum L. sericata L. illustris L. ampullacea L. caesar Total  

1.Olst 60 114 610 232 21 446 1483 

2.Winssen 17 17 217 144 191 932 1518 

3.Nijmegen  0 2 132 5 367 348 854 

Total 77 133 959 381 579 1726 3855 
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5.4 Discussion  
At the sites investigated in the Netherlands, adults of the amphibian parasite L. bufonivora 

were rare in comparison to other Lucilia blowflies such as L. ceasar or L. sericata, as would be 

anticipated from previous studies (MacLeod and Donnelly, 1956; Fischer, 2000). However, 

in the present study adult L. bufonivora were more abundant in non-shaded habitats (Fig. 

5.10). This matches with the habitats on where toad myiasis cases are typically reported 

(Weddeling and Kordges, 2008; Gosá, et al., 2009).  For instance, a study from Germany 

found numerous cases of amphibian myiasis from open habitats and rarely found cases in 

woodland habitats (Weddeling and Kordges, 2008). In the Iberian peninsula there are also 

reports of amphibian myiasis from open to semi-open landscapes of various natural parks 

(Gosá et al., 2009). Additionally, the specimens analysed by Tantawi and Whitworth (2014) 

were collected by net sweeping from flowers of Achillea and Heracleum. These plants are 

typically abundant in relatively open spaces such as abandoned grasslands, meadows, 

marshes, roadsides and forest edges (Page et al., 2006; Thiele et al., 2006; Alberski et al., 

2009). Certainly, sampling site 3 (botanical gardens of Nijmegen) on which only shaded 

forests were surveyed, no specimens of L. bufonivora were found. These findings contrast 

with those from a study in Czech Republic that found L. bufonivora typically more abundant 

in forests (Fischer, 2000).  
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Figure 5.16. The number of various species of Lucilia caught (trap/day) at different sites:  

site 1 (Olst), site 2(Winssen) and site 3 (Nijmegen). The median flies/trap/day is displayed 

within boxes representing first and third quartiles. Whiskers show 95% confidence 

intervals with outliers (dots).  
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Figure 5.17. The number of various species of Lucilia caught (trap/day) with different baits 

(liver and toad) at different habitats:  a) open and b) shaded. The median flies/trap/day is 

displayed within boxes representing first and third quartiles. Whiskers show 95% 

confidence intervals with outliers (dots).  
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To a large extent the presence of L. bufonivora is likely to be dictated by the presence of open 

water and its amphibian hosts, rather than its own immediate habitat requirements. This 

study and previous reports of toad myiasis suggest that the activity of L. bufonivora is higher 

at open or semi-open landscapes (Fig. 5.10). Although L. silvarum has different larval feeding 

habits from its sister species L. bufonivora  (Fremdt and Amendt, 2014), this study showed 

that they are both more frequent in the same type of habitats (Fig. 5.11). This matches with 

previous research that found L. silvarum to be more abundant at open or semi-open sunny 

habitats with meadow and grassland vegetation (MacLeod and Donnelly, 1956; Aesch et al., 

2003). Therefore, in addition to the close relationship morphologically and phylogenetically 

with L. bufonivora (Rognes, 1991; McDonagh and Stevens, 2011), these species have also very 

similar adult-fly behaviour.  

It is known that the metabolic processes and larval development of blowflies are temperature 

dependant (Wall et al., 1992). Hence, body temperature in mammals provides optimal 

conditions for their development, for example in sheep skin surface temperature has been 

estimated at 37 °C (Davies and Hobson, 1935). Certainly, the host range of parasitic blowflies 

are mostly mammals (Zumpt, 1965; Stevens and Wallman, 2006; Stevens et al., 2006). 

However, amphibians are ectothermic vertebrates and cannot regulate their temperature 

metabolically, hence field temperatures strongly influence their physiology and survivorship 

(Brattstrom, 1979; Hutchison and Dupre, 1992) although body temperature of toads is highly 

correlated with the extent of exposure to solar radiation and basking behaviour (Careay, 

1978; Meek and Jolley, 2006). In fact, a study on B. bufo found body temperatures of above 

30°C in basking individuals (Meek and Jolley, 2006). Although there is very little known 

about the temperature requirements of the toad fly, toads with warmer body temperatures 

that are basking in sunny areas could be more likely to serve as a host to L. bufonivora. This, 

however, needs to be confirmed with further research on the physiological processes and 

host-selection of this species.  

Field work from chapter 2 revealed that L. caesar is the most abundant calliphorid species in 

South West England. Similarly, present results indicate that this species is also the most 

abundant calliphorid from the sites investigated in the Netherlands and the data from both 

countries showed that it is the dominant species in shaded habitats. This has been well 

recorded in the past (MacLeod and Donnelly, 1956; Gregor, 1991; Smith and Wall, 1997b). 

Similarly, L. sericata was the most abundant Lucilia species in non-shaded habitats, which also 

matches with results from Chapter 2. This suggests that L. bufonivora and L. silvarum co-exist 
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with potential stronger competitors of the carrion fly community (Hanski and Kuusela, 

1977), which could have played an important role on the sympatric speciation of L. bufonivora.  

The type of carrion can influence oviposition and colonisation (Lane, 1975; Smith, 1986; 

Smith and Wall, 1997b; Heath and Appleton, 1999; Byrd and Castner, 2001). However, the 

results presented here did not show any association with bait type; adult L. bufonivora were 

equally abundant in both liver and toad-baited traps. This contrasts with the speculation by 

Zumpt (1965) which suggested that adult females of this species are attracted to feeding on 

dead toads.  To start vitellogenesis, newly emerged blowflies need a proteinaceous meal 

which can be usually obtained from carrion (Wall, 1992; Huntington and Higley, 2010). 

Hence, L. bufonivora might use any available carrion as a protein source for vitellogenesis, 

which in this case could have been obtained from both baits used in this study. However, 

no gravid females of L. bufonivora were observed in the traps and, due to its life-history trait 

as an obligate parasite, it would not use this source for oviposition (Brumpt, 1934). This 

might explain the low abundance of L. bufonivora using carrion as a bait, as it lays eggs 

exclusively on a live host (Weddeling and Kordges, 2008). In contrast, the present work 

found adult flies of saprophagous blowflies (e.g. L. illustris, L. caesar and L. ampullacea) more 

abundant in liver-baited traps. Similarly, when present in woodland, L. sericata was more 

abundant in traps that were baited with liver. Typically, saprophagous female blowflies that 

are attracted to carrion-baited traps are either gravid flies ready for oviposition or young flies 

in search of a proteinaceous meal (Brodie et al., 2014). Certainly, gravid and non-gravid 

females are attracted to semiochemicals from flies that are either ovipositing (gravid) or 

feeding (non-gravid) on the same resource (Brodie et al., 2015). Hence, the cue response by 

gravid and non-gravid females of L. bufonivora might be very different to the one exhibited 

by saprophagous blowflies. Previous research on L. sericata, has shown that, not only 

chemical, but also visual cues are important when selecting a final landing site (Wall and 

Fisher, 2001). Adult oestrid flies of Cephenemyia trompe and Hypoderma tarandi, obligate 

parasites of reindeer, are more attracted to mobile targets than to stationary ones (Andersson 

and Nissen, 1996). Host-seeking behaviour of frog-biting midges, Corethrella spp., strongly 

depends on acoustic cues from their anuran hosts (Bernal and de Silva, 2015).  To date, the 

cues that are involved in the attraction of gravid females of L. bufonivora are unknown and 

more research is required to resolve the host-seeking behaviour of this obligate parasite.  

In general, the present results on habitat use by Lucilia blowflies match those observed in 

Chapter 2. However, species composition varied between countries. For instance, this work 

did not recover a specimen of L. richardsi and, although low in abundance, Chapter 2 
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confirmed its presence in the South-West UK. Similarly, this work found L. illustris a 

relatively common species from the Netherlands, however it was very rare in UK (Chapter 

2). While no specimens of L. bufonivora were collected in the UK, this study recovered 77 

specimens from two different sites of the Netherlands. 

In conclusion, using carrion-baited traps, adult L. bufonivora is a rare species compared to 

other species such as L. sericata or L. caesar. However, this low abundance might be the 

product of its specialized behaviour as an obligate parasite, using carrion as a vitellogenic 

protein source rather than a breeding site. This species was significantly more abundant at 

open and semi-open sunnier areas and very low abundant in shaded habitats such as 

woodlands or forests. It was equally attracted to toad carcasses than it was to standard 

blowfly baits, such as liver. Although this work provides a better understanding on its spatial 

distribution, its temporal abundance remains unsolved. More research that uses a longer 

trapping period (e.g. early spring to late summer) is required to understand this. It could 

provide valuable data on the number of generations per year, temperature effects on its 

abundance and also to understand whether its phenology and life-cycle is related with that 

of its hosts.  
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6.  General Discussion 
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6.1 Habitat partitioning by blowflies  
Calliphorid blowflies are one of the best known, commonly encountered and economically 

important groups of insects due to the ecosystem services they provide as consumers of 

carrion. Ephemeral resources, such as a carcass, facilitates intense interspecific competition 

among the individuals that use it for development (Hanski and Kuusela, 1977; Hanski, 1987). 

Thus, the coexistence of blowflies is driven by niche differentiation mediated through 

differences in phenology, synanthropy, type of carrion and environmental tolerance to 

factors such as humidity and light intensity (Hanski and Kuusela, 1977; Smith and Wall, 

1997b; Cruickshank and Wall, 2002; Hwang and Turner, 2006). 

This study found Calliphora species to be more abundant in cooler months, which reflects 

their low temperature requirements (Greenberg, 1991). Segregation between Calliphora and 

Lucilia species appears, therefore, to be mediated by season and temperature. In UK 

ecosystems, Calliphora species are the first blowflies to emerge in spring, which has also been 

found in previous research on the seasonal variation of calliphorid flies (Greco et al., 2014; 

Zabala et al., 2014). Clear knowledge of the seasonal distribution of blowflies in different 

geographical ranges is not only of ecological relevant, but it also provides valuable data which 

could later be used in supporting evidence for legal cases and thus, is of importance to 

forensic sciences.  

Out of seven species of Lucilia reported in the UK (Emden, 1954; MacLeod and Donnelly, 

1956), only six were found in this study (Lucilia sericata, Lucilia illustris, Lucilia richardsi, Lucilia 

caesar, Lucilia silvarum and Lucilia ampullacea). Lucilia bufonivora was the only species absent in 

the South West UK. Its presence has been confirmed, however, in other localities of UK 

(e.g. Norfolk, Suffolk, etc.) using DNA-based identification methods (McDonagh and 

Stevens, 2011). Interspecific segregation of the different species of Lucilia appears to be 

mediated by factors that are defined by the type of habitat, such as light intensity and 

humidity levels. Certainly, habitat had the strongest influence over the abundance and 

distribution of the different species of Lucilia. For instance, L. caesar was the dominant 

species in shaded areas like woodland and microhabitats that provide shaded environments 

such as hedgerows but certainly it was less frequently found in open pasture. This species 

segregation has been well reported in the past (MacLeod and Donnelly, 1956; Smith and 

Wall, 1997b; Martínez‐Sánchez, et al., 2001). Overall, L. caesar was the most abundant 

calliphorid fly found at different sites in South West UK and the Netherlands.  
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On the other hand, open pasture habitats were dominated by the sheep blowfly L. sericata. 

This indicates that it is confined to locations with lower humidity levels and high light 

intensities. Thus, as previously discussed, niche differences might have played an important 

role on the evolution of ectoparasitism of L. sericata, with this species being able to colonize 

live hosts in open areas. Though it is the most common species involved in ovine cutaneous 

myiasis in the UK (Wall et al., 1992a), it is still unclear why this species typically exhibits 

saprophagic behaviour outside of this range. This phenomenon, however, might be related 

to niche availability in different geographical locations. For instance, in Mediterranean 

countries the flesh fly Wohlfahrtia magnifica (Sarcophagidae) develops as an obligate agent of 

cutaneous myiasis, where it may effectively exclude L. sericata. Similarly in Australia, the 

myiasis niche seems to be occupied by Lucilia cuprina, which is also able to effectively exclude 

L. sericata. More detailed studies are needed to understand the intraspecific behavioural 

variation in different populations of the sheep blowfly L. sericata. 

A sympatric species, L. richardsi largely resembles L. sericata in morphology (Rognes, 1991), 

and was found to be most abundant in the same type of habitats as L. sericata - mostly open 

landscapes. Although L. richardsi is not involved in ovine myiasis, Nuorteva (1959) reported 

it from myiasis wound of a nightjar. Since then, there are no existing records of this species 

parasitizing animals. In fact, in some instances, L. richardsi may be a species of forensic 

importance, as shown by a study that described the morphological features of its larval stages 

that were obtained from females laying eggs in carrion (Szpila et al., 2013). In contrast with 

L. sericata, this study found that L. richardsi is rarely encountered in the field. Despite their 

known close morphological, genetic and behavioural similarity with L. sericata it is still unclear 

why the latter species has never been recorded causing sheep myiasis; as with the examples 

given above, competitive exclusion could be one possible reason – but this would require 

experimental study to resolve.  

Although this work could not evaluate the blowfly seasonal variability in the Netherlands, 

the blowfly species diversity from this country was relatively different to the one observed 

in South West UK. For instance, L. illustris, a closely related species to L. caesar, was a 

relatively common species in the Netherlands, however very rarely encountered in England 

(with no more than 10 specimens caught for the whole trapping season). In fact, no statistical 

analysis could be carried out with the data obtained from UK because of the low numbers 

of this species. Nonetheless, data from the Netherlands demonstrated that it was less 

common in shaded areas than its sister species L. caesar. Although it does not appear to have 
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close relationships with L. sericata, L illustris is occasionally involved in sheep myiasis in 

Europe (Brinkmann, 1976) .  

The saprophagous species L. silvarum was a very rare species in the UK.  The field work 

carried out in the Netherlands, however, showed that it was relatively abundant  in the month 

of August. This species was almost never caught at woodland habitats, which was a feature 

shared with its sister species the obligate agent of myiasis L. bufonivora. The absence of the 

latter species in the surveyed areas from UK also might reflect the low abundance of 

potential hosts (e.g. Bufo bufo). This suggests that, as might be expected, L. bufonivora is 

confined to areas where its most common host B. bufo is also abundant, a point also noted 

by Fischer (2000). Certainly, L. bufonivora was caught in sites from the Netherlands where 

relatively large populations of B. bufo were available. Contrasting with the findings of Fischer 

(2000), however, the current work found that L. bufonivora was more abundant in open 

spaces, rather than forests and woodland.  

 

6.2   Why misidentification of Lucilia blowflies is so 

common? 
Lucilia is a relatively small genus of blowflies that morphologically resemble each other 

closely (Rognes, 1991). Misidentification is a very common phenomenon and it often leads 

to erroneous reports in biodiversity data (Rognes, 2014). Part of this is due to the taxonomic 

confusion of the monophyly of Lucilia, which has been debated for decades (Rognes, 1991; 

Stevens and Wall, 1996; Williams et al., 2016). Typically, one of the main factors that has 

exacerbated this issue has been the use of synonymic genera in different geographical 

regions, particularly North America, with the genera Bufolucilia, Phaenicia, Hemipyrellia, 

proposed1. Recent phylogenetic analyses have shown that Hemypyrellia, for instance, should 

be dismissed as a synonym to Lucilia  (Williams, et al., 2016). The present work also supports 

the monophyly of Lucilia, as it was found to be paraphyletic with respect to another genus 

proposed by Townsend (1919) ‘Bufolucilia’. The latter genus, therefore, should also be 

dismissed as a synonym to Lucilia. Although the monophyly of Lucilia seems to become 

stronger with the improvement of phylogenetic methods, more analyses with samples from 

across the globe are still required to fully resolve the monophyly of Lucilia.  

 
1 See Townsend (1919) and Hall (1948) 
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In addition, morphological differences displayed by recently diverged taxa are sometimes 

minimal. For instance, identification of the sheep blowflies L. sericata and L. cuprina using 

morphological features extremely difficult. Moreover, it is known that these species undergo 

hybridisation (Stevens and Wall, 1996b; Williams and Villet, 2013). In some other species 

even identification with molecular markers can be difficult, as reported for the sister taxa L. 

illustris and L. caesar (Sonet et al., 2012). Nonetheless multi-gene approaches seem to 

overcome this problem. For instance, in combination with COX1 sequence data, the BI per 

gene phylogeny from the present study could contribute solving the species delimitation 

issue for the latter two species. The phylogenetic relationships of L. caesar and L. illustris, 

however, needs further exploration 

One of the major factors, clearly identified from this study, is the ongoing taxonomic 

confusion of L. bufonivora with L. silvarum. Morphological identification can be extremely 

difficult. Specially because one of the features for species level identification given in 

morphological keys (Emden, 1954) is the number of post acr bristles (2 in L. bufonivora and 3 

in L. silvarum). This, however, is highly variable between individuals (Rognes, 1981), and 

might have contributed largely to the continuous misidentification of these taxa. Species 

identification, therefore, cannot rely on this morphological feature and instead it should be 

determined by examining genitalia as indicated by Rognes (1991). Clearly, to avoid further 

confusion, accurate identification should be performed, not only by detailed morphological 

examination, but also confirming identity using a DNA-based multi-gene approaches. 

 

6.3 What is the taxonomic status of the toad fly L. 

bufonivora?  
All BI phylogenies inferred in this thesis support the status of L. bufonivora as a distinct 

species to L. silvarum and L. elongata. In arthropods, species delimitation is typically attributed 

to monophyly but also to phenotypical and genotypical features that enable unambiguous 

differentiation and diagnosis (Dantas-Torres, 2018). Certainly, identification of L. bufonivora 

can be performed unambiguously using both molecular data (e.g. COX1 and ITS2) and with 

morphological features (Rognes, 1991). A previous phylogenetic study also grouped L. 

bufonivora and L. silvarum as distinct species using mtDNA (McDonagh and Stevens, 2011). 

The same study, however, failed to differentiate them using nuclear DNA (EF1α and 28s). 

Similarly, this present study also found no clear resolution on the relationships of L. 
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bufonivora, L. silvarum and L. elongata when using the EF1-EF4 region of the nuclear gene 

EF1α. Thus, EF1α does not appear to be a suitable marker for inferring relationships of 

recently diverged taxa. Nevertheless, newly optimized nuclear molecular markers that have 

shown to be useful for inferring relationships at species (Marinho et al., 2011; Williams and 

Villet, 2013), provided enough evidence to solve this taxonomic issue. Indeed, all taxa appear 

to exhibit a unique haplotype of the gene ITS2. Similarly, the protein coding gene per 

provided higher phylogenetic resolution than EF1α. In combination, ITS2 and per provided 

nDNA evidence to infer accurately the close relationships of L. bufonivora, L. silvarum and L. 

elongata, thus, grouping them as distinct sister species. These conclusions, however, are based 

on only two nuclear loci and one mitochondrial locus. Given the recent advances of 

phylogenomics in dipterology (Kutty et al., 2019), more detailed studies using these tools are 

required for deeper insights on the relationships of these closely related taxa.   

 

 

6.4 Which species is/are involved in amphibian 

myiasis?  
Results from this work suggest that, in Europe, amphibian myiasis seems to be caused 

exclusively by L. bufonivora. Although L. silvarum was thought to be involved in this condition 

its saprophagic behaviour has been well recorded in the past (Hanski and Kuusela, 1977; 

Hanski, 1987; Prinkkila and Hanski, 1995; Fremdt, et al., 2012). This work suggests, as 

previously argued by Zumpt (1965), that reports of L. silvarum causing amphibian myiasis in 

Europe are likely to be the result of misidentification with L. bufonivora. For instance, using 

DNA-based identification methods, the present work showed that all European sequences 

from larvae that had been found infesting live amphibians belonged to L. bufonivora. 

Indicating, therefore, that L. silvarum is not involved in amphibian myiasis in Europe. It is 

known that amphibians that host larvae of L. bufonivora do not usually survive infestation 

(Brumpt, 1934; Strijbosch, 1980). Accurate diagnosis of the species composition in 

amphibian myiasis should, therefore, be performed by analysing the larvae that are found 

causing the disease in the live host. Given that blowflies are the first group of insects to 

colonize carrion (Hall, 2001), amphibian carcasses might also serve as a food source to other 

saprophagous blowflies. A study from Germany recovered 53 cases of amphibian myiasis 

which, after death, were left under natural conditions to decompose (Weddeling and 
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Kordges, 2008). The authors found a wide variety of saprophagous flies emerging from the 

carcasses (e.g. C. vicina, L. sericata) as well as specimens of toad fly L. bufonivora.  The 

mentioned study, however, found no specimens of L. silvarum emerging from such carcasses.  

In North America, however, L. silvarum has been reported as causing amphibian myiasis 

(Roberts, 1998; Bolek and Coggins, 2002; Bolek and Janovy, 2004; Eaton, et al., 2008). These 

reports remain questionable, as the results may not be reliable, given that none of these 

studies have used molecular methods; and again, taxonomic confusion and misidentification 

might be the reason to this. For instance, although L. bufonivora was thought to be absent in 

the Nearctic, Zumpt (1965) stated “L. bufonivora may occur in North America, where it is 

perhaps confused with L. silvarum, but this is a problem that remains to be cleared up.”. 

Indeed, L. bufonivora remained unrecorded in this area until Tantawi and Whitworth (2014) 

confirmed its presence in Canada and noted that it has been confused with L. silvarum since 

1954. To illustrate this problem, two samples reared from different amphibian myiasis cases 

in Canada were provided to the author, labelled as ‘L. silvarum’. These samples have been 

identified using North American keys which do not include L. bufonivora (Hall, 1948).  

Subsequent DNA analysis revealed their identity as L. bufonivora and, thus, Hall’s keys can 

potentially lead to the misidentification of the latter species – and should not therefore be 

used. Unfortunately, in North America, these keys are commonly used for identification of 

flies that are found involved in myiasis. Results from the present thesis, therefore, suggest 

that records of L. silvarum involved in amphibian myiasis in North America might also due 

to misidentification of L. bufonivora.  Further studies that employ molecular and 

morphological methods are required to confirm the species composition in amphibian 

myiasis in North America. Nevertheless, this present work is the first study to confirm the 

involvement of L. bufonivora in amphibian myiasis in Canada using DNA-based identification 

methods. The species found affected were the wood frog, Lithobates sylvaticus and the western 

chorus frog, Pseudacris triseriata.  

 

6.5 Evolution of ectoparasitism in Lucilia and origins of 

obligate amphibian parasitism   
Previous research suggests that blowflies in general have evolved ectoparasitism 

independently several times (Stevens and Wall, 1997; Stevens, 2003; Stevens and Wallman, 

2006; McDonagh and Stevens, 2011). Moreover, the evidence suggests that the independent 
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evolution of ectoparasitisim appears even within taxa that comprise the genus Lucilia. 

Facultative myiasis agents of livestock (e.g. L. sericata and L. cuprina) are thought to have 

evolved parasitism in association with man and sheep domestication  (Erzinclioglu, 1989; 

Stevens and Wall, 1997). The reason to this is that myiasis is rarely reported affecting hosts 

in the wild. Both species are estimated to be at least 4 mya old, which is also supported by 

the present time-scaled phylogeny. This suggests, therefore, that L. sericata and L. cuprina, had 

predominantly saprophagous feeding habits, perhaps occasionally infesting dying or 

debilitated live animals, before the domestication of sheep, which has been estimated to 

happen 11 000 years ago (Zeder, 2008). As previously discussed, sheep husbandry could 

have provided a suitable and unoccupied alternative niche for L. sericata and L. cuprina in 

different geographical ranges. Obligate amphibian parasitism, however, differs largely to 

sheep facultative myiasis. Firstly, it affects wild hosts to a greater extent. Secondly, it has a 

higher pathogenicity, host-specificity and most of the times it causes the death of the host 

(Brumpt, 1934; Strijbosch, 1980). Finally, the physiological processes of amphibians are very 

different to those of the mammals; body temperature for instance. More studies on the 

physiology of the toad fly are required to understand the traits that have enable this species’ 

niche adaptation.  

In contrast with the independent evolution of facultative ectoparasitism across the genus 

Lucilia, obligate amphibian parasitism appears to have evolved only once. It was recovered 

as a monophyletic life history trait in mtDNA (COX1) and nDNA (ITS2 and per) phylogenies 

and supported by the time-scaled phylogeny. Within Lucilia this behaviour is only displayed 

by L. bufonivora and L. elongata, however their close relationship with the saprophagous L. 

silvarum suggest that it diverged from a generalist saprophagous ancestor. It is likely that, in 

combination with interspecific physiological requirements, the intense competition within 

the carrion-fly community mediated the migration of L. bufonivora to this narrow and 

unoccupied niche. Certainly, the present-time scaled phylogeny suggests that this 

evolutionary event occurred approximately 5mya by showing a clear split between a 

saprophagous lineage (L. silvarum) and a strictly obligate lineage (L. bufonivora + L. elongata). 

This is relatively recent compared with the evolution of other major Diptera groups that 

exhibit strictly obligate habits such as Oestrid flies (Stevens et al., 2006). In fact the 

diversification of Oestridae is thought to be associated with the major radiation of mammals 

during the Paleogene (30-50mya) (Pape, 2006; Junqueira et al., 2016). Given that all taxa that 

comprise Oestridae display obligate parasitism, coevolution and host-parasite interactions 

might have played an important role in their speciation (Stevens and Wallman, 2006). 
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Nevertheless, as discussed before, evolution of obligate amphibian parasitism was a result of 

niche displacement rather than host-parasite coevolution.  

The reciprocal monophyly between Nearctic and Palearctic parasites of amphibians suggest 

that their most recent ancestor already exhibited obligate parasitic habits.  This life history 

trait, therefore, evolved before the intercontinental dispersion of this ancestral state rather 

than the independent origin of obligate amphibian parasitisim in two different continents. It 

is unclear, however, how this intercontinental dispersal occurred and more phylogeographic 

studies are required to answer this question. The monophyletic origin of obligate amphibian 

parasitism in Lucilia is in contrast with other blowflies that seem to have evolved obligate 

parasitism of mammals independently. The most representative example is the new-world 

and old-world screwworm flies, Cochliomyia hominivorax and Chrysomya bezziana respectively 

(McDonagh and Stevens, 2011). 

Subsequent geographical isolation triggered then the speciation of L. bufonivora in the 

Palearctic and L. elongata in the Nearctic. Although this work confirmed the presence of L. 

bufonivora in Canada, the time scaled phylogeny indicates that this cannot be attributed to a 

recent introduction to this range. Certainly, the split between L. bufonivora and L. elongata, 

which occurred in the Nearctic, was estimated to happen approximately 2mya. Lucilia 

bufonivora then remained rather unrecorded due to its low abundance and the already intensely 

discussed taxonomic confusion of this species group.   

 

6.6 On-going cryptic speciation of L. bufonivora?  
As stated before, L. bufonivora is confirmed to be present in the North American continent. 

High rates of mtDNA sequence divergence and consistent paraphyly across nDNA 

phylogenies suggest cryptic speciation of L. bufonivora in the Nearctic. Surprisingly, toad fly 

samples from Canada exhibited a closer affinity to the strictly Nearctic L. elongata.  

Lucilia bufonivora (Europe), L. bufonivora (Canada) and L. elongata exhibited unique haplotypes 

of the non-coding gene ITS2 with differences in length and base composition. In 

combination with sequence data from the mtDNA marker COX1, unambiguous 

identification of these three putative taxa can be performed accurately. Current findings 

suggest, therefore, the presence of a cryptic species of L. bufonivora in North America. 

Nevertheless, thorough morphological examination with a wider sample size is required to 
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determine whether L. bufonivora is indeed a different species in the Nearctic or simply it 

corresponds of a species complex comprised by a Palearctic and a Nearctic subspecies.  

The COX1 phylogenies presented in this work suggest that, indeed, arthropod mtDNA 

displays faster evolution rates than nuclear DNA. Certainly, the lack of recombination and 

accumulation of mutations enable the fast evolution of mtDNA (Brown et al., 1979; Neiman 

and Taylor, 2009; McDonagh et al., 2016). Within the L. bufonivora species group, however, 

the mtDNA evolution rate appears to be even faster compared with other species of Lucilia. 

For instance, the intraspecific genetic distance observed between Canadian and European 

L. bufonivora was rather high. In fact, it was greater than the interspecific distance shown by 

L. sericata and L. cuprina.  As discussed in the previous chapter, the attributes of L. sericata 

such as high fertility, migration capacity, synanthropy and facultative myiasis behaviour, 

reduce potential gene flow barriers, thus, reducing the impact of genetic drift and finding 

strong genetic consistency across geographically distant samples. In contrast, species that 

exhibit a highly specialised behaviour and have a restricted dispersal capacity are more 

vulnerable to genetic drift. This work provides enough evidence to suggest the independent 

evolution of two geographical isolated populations of L. bufonivora. A similar case has been 

reported for a fleshfly that causes obligate myiasis in a range of non-livestock hosts, 

Wohlfartia vigil, that appears to have at least two different species (or sub-species) according 

to its geographical range (Hall et al., 2009). Given, that it is unlikely to be dispersed by human 

activity, genetic isolation is more likely to occur. There are still, however, many aspects of 

this issue that need further exploration, such as mitochondrial heteroplasmy and even 

cytoplasmic incompatibility induced by Wolbachia.  

In conclusion, given the wide variety of life histories of Calliphoridae, phylogenetic and 

ecological studies are of great importance for veterinary, evolutionary, medical and forensic 

sciences. Misidentification and taxonomic confusion, however, have been limiting factors 

for the studies of these species and the evolution of myiasis and for research in dipterology 

in general. This thesis highlights the use of recent molecular techniques and methods that 

are gradually helping to overcome this problem; such as multi-gene approaches for 

identification of blowflies or choosing the right statistical models to predict accurately their 

distribution and abundance. Using negative binomial distribution modelling, results suggest 

that the coexistence of blowflies is indeed mediated by differences in their phenology, 

temperature and humidity requirements, thus resulting in effective habitat partitioning. 

Carrion, as an ephemeral resource, creates intense interspecific competition that has forced 

certain species to migrate, in an evolutionary sense, to different niches. It can be argued that 
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it is the patchy and ephemeral nature of carrion that is perhaps the key to understanding the 

ecology and evolution of this family of flies.  Human activity and sheep domestication 

offered an unoccupied niche that potentially triggered the evolution of facultative 

ectoparasitism of several taxa independently, as displayed by the primary agents L. cuprina - 

L. sericata and the secondary agents L. caesar and L. illustris. Some other species, however, 

were able to evolve parasitic behaviour independently from animal domestication and likely 

as a result of the niche displacement of the carrion-fly community, such as the toad fly Lucilia 

bufonivora. This work also highlights the role of geographical and ecological isolation in 

speciation within taxa that exhibit highly specialised behaviour, such as obligate amphibian 

parasitism. There are still many issues to be researched, such as the behavioural differences 

associated with the distribution L. sericata; and a broader study of the monophyly of Lucilia 

itself would be of value.   
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