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ABSTRACT

he core of high performance and reliable operation of wide bandgap devices lie in the

design of buffer layers. This thesis is primarily focused on the impact of the buffer on

the operation of AlGaN/GaN HEMTsS, devoted to both RF GaN on Silicon Carbide (SiC)
and power switching GaN on Silicon devices. The demand for higher power is increasing which
requires improvement at the material and device level. Nominally undoped GaN is usually
slightly n-type due to Nitrogen vacancies and impurities such as Oxygen acting as donors. A
dopant such as Iron (Fe) and Carbon is used to make the buffer more insulating. Fe, an acceptor
with the energy of 0.72 eV below the conduction band, sits on the Nitrogen site and has been
quite successful in achieving an insulating buffer resulting in good RF performance. Carbon, on
the other hand, is a better choice for the power industry which requires high breakdown voltages

0! Q.cm. However, Carbon is a deep acceptor

and has been able to deliver resistivity as high as 1
when on the Nitrogen site (Cpy) with an acceptor trap level 0.9 eV above the valence band making
the buffer p-type. A p-type buffer underneath the 2DEG forms a vertical p-n junction which can
make the buffer float and act as a reservoir for time-dependent charge storage. A background
level of Carbon will inherently be incorporated during GaN growth due to the presence of organic
carrier gases in MOCVD. It is the role of this background Carbon in Fe doped buffer layers and
its subsequent consequences, which forms the crux of this thesis.

Wafers with all parameters identical but for the background Carbon level has been subjected
to DC, Pulse I-V, transient and breakdown studies yielding valuable information about conduction
mechanism in the buffer. Kink effect, which is a hysteresis in the output characteristics of a
transistor, is shown to be strongly dependent on background Carbon density. An explanation based
on a "leaky dielectric" model of a floating semi-insulating GaN buffer together with conventional
Fe and C deep-level defects has been tested and applied successfully. The proposed model is a
more realistic approach in comparison to two other models reported in past which are based on
unusual deep level defect properties and cannot be explained by conventional defect models. The
proposed insight into the mechanism for kink offers a route to its control and suppression. Positive
and negative magnitude drain current transient signals with 0.9 eV activation energy have been
seen, corresponding to changes in the occupation of Carbon acceptors located in different regions
of the GaN buffer. The observation of such signals from a single trap type also raise questions
on conventional interpretations of these transients based on the bulk 1-D deep-level transient

spectroscopy (DLTS) models for GaN devices with floating regions.



These wafers showed very different Pulse I-V behaviour which can be explained based on
their buffer doping; however, under RF IV measurement they appeared identical. This absence
of correlation between Pulsed and RF IV brings into question the applicability of Pulsed I-V
measurements alone as a tool for extracting nonlinear device models in the case of GaN HEMTsS,
which is a widespread practice. Drain injected breakdown study on these wafers resulted in the
identification of the two-step process, one initiated by a leakage path between the source and drain
and other due to electron punch-through current. Simulations and Electroluminescence studies
under operation confirmed impact ionization, with its impact being much smaller compared to
punch through.

Effect of Carbon doping on buffer behaviour for GaN on Silicon devices aimed for power
applications has also been evaluated, using stepped and ramped substrate bias. For the first time,
experimental evidence of lateral charge spreading beyond the active area of the device and its
impact on neighbouring devices has been explained. The lateral charge spreading beyond the
active area can be a concern for wafer level reliability or system integration.

The last two Chapters introduces two possible next-generation RF transistors. GaN on
diamond transistors with ultra-thin GaN and diamond as a heat sink has been shown with
excellent thermal and electrical performance. As an alternative, a new wideband gap material
Gallium Oxide (8-Ga203), which could be a choice for future RF device has been evaluated using
Pulse I-V and large signal RF. These devices show minimal surface and buffer trapping, yielding
a record RF performance. However, poor thermal conductivity is the performance limiting factor,

which if countered well can lead to a promising material for future devices.
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CHAPTER

INTRODUCTION

uman life today revolves around technology, the majority of which is driven by electronics.

Discovery of the transistor by Shockley, Bardeen and Brattain in 1947 single handedly

revolutionised the electronics industry [1] [2]. Constant demands for improvement has
led to rapid developments in terms of efficiency and power capabilities of electronic switching
devices. However, with increasing electronic industry improvements and population, the energy
demands are rising rapidly as well. One estimate put the worldwide electricity consumption
to be double by 2035 [3]. Ironically 25% of all the electricity produced is lost, primarily due to
inefficient load technologies and poor power electronics [4]. Majority of these power converters
have primarily been based on Silicon due to maturity in CMOS process and development of
device design from three terminal transistor to HV insulated-gate bipolar transistor (high voltage
IGBT). They have been used extensively in power supply, motor drives and HV traction lines.
However, the ever-increasing demand for high<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>