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Abstract 
 
As the new-born brain grows and matures, the neurons within migrate, form synapses, and assemble 

into functional networks, all whilst changing in morphology and adapting to function. The first two 

weeks of life are a particularly dynamic period, with the adaptations in electrical properties and 

activity underpinned by the composition and biophysical properties of the neuronal membrane. The 

action potential (AP) is the foundation of neuronal communication, being the primary indicator of 

neuronal activity, the progenitor of neurotransmitter release and synaptogenesis, implicated in the 

formation of neuronal networks, and controlling gene expression. Changes to the AP waveform over 

maturation are therefore simultaneously indicative of the underlying biophysics and influential to 

neuronal structure and function. Even subtle changes to the AP waveform can contain a wealth of 

information, but thorough biophysical characterisation of the AP waveform with neuronal 

development has remained elusive. Such characterisation requires a combination of established 

experimental techniques, as well as carefully optimised models to elucidate the underlying membrane 

properties, ion channel populations and neuronal conductances that give the observed dynamics their 

particular development-dependent shape.  

 

By fitting computational conductance-based Hodgkin-Huxley models to electrophysiological data, the 

underlying biophysics can be illuminated. But, with multiple and developmentally-dynamic 

parameters to consider, accurate and fast optimisation techniques are needed. Voltage-based fitting 

methods can produce complex parameter error landscapes with local or narrow minima, requiring 

computationally expensive algorithms to return the maximal conductances associated with various 

channels. By instead algebraically solving the expressions for the ion channel gating variables and 

computing the difference between passive and active neuronal currents, parameter optimisation can be 

reduced to a simple linear sum of currents. The minimisation of the residual of this sum can be 

presented graphically for the different maximal conductances of the Hodgkin-Huxley model in 

multidimensional yet simple parameter landscapes that allow for intuitive interpretation and fast 

model optimisation.  

 

Via the combination of current-clamp whole-cell electrophysiology, dye-filling and confocal imaging, 

the biophysical characteristics of regular-spiking excitatory neurons in the somatosensory cortex of 

neonatal mice aged between 3 and 11 postnatal days were investigated. The experimental protocols 

used facilitated consideration of the development of ion channel populations, membrane thickness, 

cell morphology and gap junctions when painting a picture of neuronal biophysics.  

 

This work demonstrates that postnatal neuronal development is correlated with large increases in the 

height and speed of APs. Passive membrane dynamics are observed to mature, with analysis via a two-

compartment model of exponential decay revealing a developmentally dependent fast passive current 

sink in some cells. Further to this, these passive dynamics are manipulated to reveal surface area 

predictions that correlate with morphological observations. A surprising diversity of neuronal 

morphologies is found within the layer IV barrel cortex, along with evidence of gap junction coupling 

between neurons, with potential implications for development-dependent regulation of neural 

networks. Mathematical models, built on artificial data sets and optimised for multiple parameters via 

residual current minimisation, demonstrate better robustness to noise than  models optimised via 

voltage-comparison methods. Resultant multiple-channel neuron models can be used to provide a 

probe of the biophysical heterogeneity of maturing neuronal populations.   

 

The combination of electrophysiological, computational and imaging techniques allows us to make 

biophysically complex predictions of neuronal development, to produce a picture of the changing 

biophysical nature of these excitatory neurons as they approach maturity, and to elucidate the 

dynamics that drive maturation of neuronal excitability. 
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1 Introduction  
 
How do cortical neurons go from immature unconnected cells, to functional, mature, efficient 

units, integrating sensory information and determining behaviour? A biophysical approach, 

observing a neuron as a balance of inputs and outputs controlled through the combined action 

of different features, can improve upon our understanding of neuronal development. The 

biophysical underpinning of development that determines the trajectory of maturation in 

cortical neurons remains an area of contention, and is the subject of this thesis.  

 

When considering the biophysics of developing cortical neurons, where better to start than 

with the most fundamental unit of brain activity and neuronal communication: the action 

potential. Often regarded as simply a binary unit of activity, the action potential contains 

information within its height, width, waveform, timing, and the frequency at which it is fired. 

This information, once transmitted to other maturing neurons, informs further development, 

triggering gene transcription, protein expression and the initiation of plasticity mechanisms 

(Khazipov and Luhmann 2006, Valiullina, Akhmetshina et al. 2016). This adaptation of 

biophysical properties, particularly over the dynamic first two postnatal weeks, is reflected in 

the changing waveform of the action potential. When combined with observations of 

changing neuronal morphology, and with the intrinsic and passive dynamics of the cell – 

features that affect spiking activity – the forces that drive a cell towards maturity and function 

can be elucidated.  

 

As development is investigated, more subtle questions can be asked. Is development a gradual 

process, or are there critical periods when biophysical properties of the neurons 

fundamentally change? Through a combination of electrophysiology and microscopy a picture 

of the neuron as a dynamic, biophysical unit with inputs and outputs, can begin to be 

understood. However, a repertoire of experimental techniques alone is limited in scope for 

both comprehension of the developing neuron, and for making predictions, due to the 

interdependencies of developmental processes. The combination of experimental techniques 

and computational models can therefore be used to illuminate the primary drivers of neuronal 

development, and their corresponding relationships. 

 

Though evidence of developmental changes to the action potential (AP) waveform in cortical 

neurons have been reported previously, observation and characterisation of how these changes 

present themselves, and how they influence other developmental processes, remains a gap in 
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the developmental neuroscience literature. Additionally, the synergy of different 

developmental changes – individual cell growth, formation of ion channels, formation of 

neuronal networks –to provide optimum behaviour, has been discussed previously by 

theoreticians and computational neuroscientists, but experimental application of these 

interdependent relationships remains elusive, partly due to the overwhelming complexity of 

such a problem. Suggestions of ‘tuning’ and gain scaling of neurons have been theorised, 

without conclusive experimental demonstration.  

 

This thesis begins with an introduction to the development of cortical neurons in neonatal 

mouse somatosensory cortex, and an overview of the literature surrounding developmental 

neuronal biophysics and the computational techniques that can be used to decode these 

biophysics. It continues by describing the methods of investigation used to attempt to advance 

our knowledge on the subject. Following the methods are five results chapters, exploring 

active dynamics, passive dynamics, gap junctions and morphology, the unexpected effects of 

dyes on the biophysical properties investigated, and the development of optimised 

conductance-based models that could, in the future, shed light on the experimental results 

presented. In the final section, the implications of the presented data are discussed, caveats 

examined and ideas for future work put forward.  

 

1.1 The developing cortical neuron 

The growing brain of very young animals 

In mammals, the formation of the brain does not reach completion in utero but continues 

through infancy - this can be seen on the microscopic level by examining the developmental 

trajectory of individual neurons. The brain forms in an inside-out manner, with the most vital 

neuronal networks (those that control breathing, for example) formed first, and the cortex 

formed last (Turco and Kriegstein 1991, Li, Fertuzinhos et al. 2013); consequently, neurons 

of the cortex have prolonged developmental trajectories.   

 

The mouse model of the brain 

In immature brains, the features of cortical formation and organisation are surprisingly well-

preserved across evolution. Though the patterns of cortical development are repeated across 

mammalian species (on different spatial and temporal scales), a favourite and commonly used 

animal for models of brain development is the mouse. Bred to be close to genetically 

identical, C57BL/6 mouse pups are born after 19-21 days of gestation into litters of typically 
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4 to 8 pups (Murray, Morgan et al. 2010). Weaned within three weeks post birth (Williams 

2000), the short gestation period, high number of pups per litter, and rapid development of the 

mouse make it a useful model in studies of brain development. Huge changes in cortical 

structure and neuronal function can be observed in mouse pups in as short a period as a single 

week. The use of electrophysiology to observe these developmental changes of cortical 

neurons is well established. Electrical activity can be triggered within mouse cortical neurons 

even in the embryonic stages, and repetitive firing of action potentials can be observed from 

postnatal day 0 (Luhmann, Schubert et al. 1999). This early activity allows biophysical 

properties of the neuron to be studied across the duration of development.   

 

The barrel cortex 

The mouse processes its environment through the tactile sensory experience of whisking: of 

moving its whiskers back and forth and interpreting the subtle changes in deflection that result 

when the whiskers encounter environmental stimuli (Feldman and Brecht 2005) - both objects 

and textures (Jadhav, Wolfe et al. 2009). Thalamocortical projections relay sensory 

information from the whiskers to the cortex for interpretation  (Shi, Xianyu et al. 2017), first 

to the somatosensory cortex of layer IV, then onto other cortical layers (Osterheld-Haas and 

Hornung 1996, Valiullina, Akhmetshina et al. 2016). In a quite beautiful example of the 

specificity of the somatosensory cortex, the projections from each whisker pad reach to one 

discrete area of cortical layer IV per whisker (Feldman and Brecht 2005, Li, Fertuzinhos et al. 

2013, Mizuno, Luo et al. 2014), known as a barrel (owing to its ovoid shape). As the mouse 

pup senses and integrates its environment, the connections between cells of the barrel cortex 

form, and the cellular morphologies self-organise to best integrate the information. The 

somata of barrel cortex neurons self-organise around each barrel edge, their dendrites facing 

inwards to form connections with afferent thalamocortical axonal projections (Li, Fertuzinhos 

et al. 2013, Mizuno, Luo et al. 2014). The inter-barrel septa that form in the absence of grey 

matter define the barrel boundaries as the mouse matures. Barrels in the mature mouse are 

arranged in a perfect map of the whiskers, provided ample sensory information is gleaned 

(Woolsey and Van der Loos 1970, Feldman and Brecht 2005, Mizuno, Luo et al. 2014).   

 

The cells of the barrel cortex keep developing into the second postnatal week, as do the 

barrels themselves. Influenced by sensory experience and consequent synaptic plasticity, the 

barrels provide a representative region of the brain in which to study postnatal maturation, the 

development of which is correlated to the advancing behaviour of the young mouse (Feldman 

and Brecht 2005). Additionally, with the cortex so rapidly developing, the cells of the 

different cortical layers can easily become confused in the flux of radial migration; the barrels 
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provide a tangible cortical map that ensures experimental consistency in brain region and 

thalamocortical input. 

 

Cellular morphologies 

The somatosensory cortex contains a great many types of cells.  Broadly defined into two 

classes – excitatory and inhibitory (Feldmeyer, Egger et al. 1999, Staiger, Flagmeyer et al. 

2004) – cortical neurons form networks of positive and negative feedback loops for the 

processing of sensory information. Within the networks of the barrel cortex, the excitatory 

cells are generally classified as one of three cell types: spiny stellate cells, pyramidal cells, 

and star pyramidal cells (Feldmeyer, Lübke et al. 2002, Valiullina, Akhmetshina et al. 2016).  

 

The spiny stellate cell is the classic cell of the Layer IV barrel cortex. With a spherical soma 

and star-like dendritic arbour, the spiny stellate cell grows increasingly asymmetrical with 

development, as their dendrites reach towards the terminals of the thalamic cell axons in the 

centre of the barrel (Feldmeyer, Egger et al. 1999, Staiger, Flagmeyer et al. 2004, Li, 

Fertuzinhos et al. 2013). 

 
Pyramidal cells are more readily associated with layer III and layer V of the cortex but have 

been reported to be present within and around the barrels, their apical dendrites stretching up 

towards cortical layer I. Characterised by their triangular soma, pyramidal cells transmit 

information on to other layers of the cortex and other cortical columns (Staiger, Flagmeyer et 

al. 2004).  

 

Finally, star pyramidal cells exhibit a morphology that is intermediary between spiny stellates 

and pyramidal neurons (Staiger, Flagmeyer et al. 2004). It has been reported that star pyramid 

cells within the barrel cortex retract their apical dendrites with maturation, becoming more 

stellate in the process (Callaway and Borrell 2011, Li, Fertuzinhos et al. 2013). 

 

The ratio of different excitatory cell types within rat layer IV barrel cortex has been reported 

as approximately 80% spiny stellate 20% star pyramidal (Feldmeyer, Egger et al. 1999) but 

given ongoing cell migration during the first week of postnatal development, these 

proportions may not be accurate for immature cells.  

 

The use of molecular tracers and dyes to illuminate the morphologies of cortical neurons (for 

example, Lucifer Yellow, Biocytin and Neurobiotin (Huang, Zhou et al. 1992, Peinado, Yuste 

et al. 1993, Penn, Wong et al. 1994, Staiger, Flagmeyer et al. 2004, Káradóttir and Attwell 
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2006, Dehorter, Michel et al. 2011)) have been well established for many years and have been 

used to demonstrate the increases in neuronal size and complexity of dendritic arbour that 

come with postnatal maturation. Whilst mature and complex dendritic arbours make it easy to 

distinguish cell types, the relatively simple morphologies of very immature cells, with only a 

few primary dendrites, and little in the way of dendritic spines (Luhmann, Schubert et al. 

1999), make this categorisation more difficult.  This is compounded by the spiking 

behaviours: excitatory cells of the immature mouse have been reported to produce 

indistinguishable electrophysiological behaviours, and have therefore been grouped in 

previous analysis (Valiullina, Akhmetshina et al. 2016).  

 

Migration and differentiation 

Over the first few postnatal days, the most external layers of the cortex are still forming. From 

the cortical subplate, neurons extend primary dendrites towards the pial surface and migrate 

up through their respective cortical columns to their ultimate position in the laminar planes of 

the cortex (Rakic 1988, Turco and Kriegstein 1991, Osterheld-Haas and Hornung 1996, Elias 

and Kriegstein 2008). Migrating neurons begin their journey exhibiting a common, immature 

and relatively simple morphology, resembling pyramidal neurons (Callaway and Borrell 

2011, Li, Fertuzinhos et al. 2013). Once neurons arrive in their laminar layer, they undergo 

the process of differentiation; layer IV neurons between postnatal day 2 to postnatal day 4 are 

virtually indistinguishable in terms of their morphology, whereas cells only a few days older 

show dramatically different shapes, owing to the process of differentiation.  During 

differentiation the cell undergoes extensive dendritic and axonal growth (Callaway and 

Borrell 2011), allowing the formation of synapses with neurons in different cortical layers. 

The changes in morphology allow the neuron to make synaptic connections and begin to 

communicate in functional networks (Mizuno, Luo et al. 2014).   

 

1.2 The biophysical neuron 

An electrical understanding of the neuron  

Thermodynamic perspectives on the neuron underlie the importance of controlling the 

temperature in studies of neuronal behaviour (Heiurg and Jackson 2007, Andersen, Jackson et 

al. 2009, Hady and Machta 2015), but biophysical perspectives of the neuron generally 

consider it as a purely electrical entity (Rall 1969, Durand 1984). Indeed, the individual 

neuron can be thought of as an electrical circuit of multiple branches, with each branch 

representative of a different region of the cell, governed by dynamics that reflect the 



 
27 

 

morphology through capacitor-resistor components (Durand, Carlen et al. 1983), and the 

voltage-gated ion channels through sources of potential (Hodgkin and Huxley 1952). The 

contributions of these electrical components can be investigated through electrophysiology.  

 

The maturation of cortical neurons in the neonatal mouse is correlated with a number of changes  

that can been seen through the lens of electrophysiology, including a more hyperpolarized resting 

membrane potential (Luhmann, Schubert et al. 1999) increased repetitive firing of action 

potentials (Bigiani, Cristiani et al. 2002, Valiullina, Akhmetshina et al. 2016), and an increased 

sensitivity to quickly fluctuating electrical signals (Gjorgjieva, Mease et al. 2014). 

 

Measurements of the input resistance are inherent to most patch-clamping studies in rodents. 

Across the period of postnatal development, the input resistance has been reported to decrease 

with age, changes that have been previously related to the surface area of the cells, with 

highest input resistances correlated to the smallest cells (Luhmann, Reiprich et al. 2000, 

Valiullina, Akhmetshina et al. 2016). It is this connection between cell size and input 

resistance, as well as ion channel expression and input resistance, that would appear to drive 

the age-dependency.  

 

The relationship between biophysics and cell morphology 

Corresponding to the change in input resistance, morphological changes with age may 

influence the sub-action-potential-threshold electrical properties of the lipid bilayer cell 

membrane (D'Aguanno, Bardakjian et al. 1986). These passive dynamics can be analysed by 

modelling the cell membrane as a capacitor (Gentet, Stuart et al. 2000). The cell membrane 

capacitance has been shown to increase both with cell surface area and postnatal age (Zolnik 

and Connors 2016), leading to a decrease in the cell membrane time constant. The dendritic 

arbour of a neuron is known to grow with development, particularly during critical periods of 

spinogenesis (Luhmann, Schubert et al. 1999, Ashby and Isaac 2011), greatly changing the total 

neuronal surface area and consequently the membrane capacitance. The interdependence of the 

passive dynamics with the spiking behaviour must therefore be considered when investigating 

biophysical maturation (Connors, Gutnick et al. 1982, Wright, Bardakjian et al. 1996, Lepora, 

Blomeley et al. 2011).  
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1.3 Active Electrical Dynamics of the Cortical Neuron 

The action potential 

Action potentials, detected as large and distinctive time-dependent changes in the cellular 

membrane potential, are the primary means of neuronal communication (Hodgkin and Huxley 

1952, Hille 2001). The action potential originates within the axonal initial segment (AIS) and 

propagates back into the soma and dendrites (Yamada 1998). This jolt of electricity quickly 

traverses the length of the cell, changing the polarity of the membrane through its trajectory, 

and triggering the release of neurotransmitters at the axonal boutons (Hille 2001). 

Colloquially known as ‘spikes’, action potentials drive the patterns of neurotransmitter release 

that underpin plasticity, controlling calcium influx, influencing gene transcription, and 

facilitating the formation of functional cell networks (Li, Fertuzinhos et al. 2013). The 

distinctive action potential waveform is the result of nonlinear and time-dependent currents in 

and out of the neuron (Hodgkin and Huxley 1952) due to both active (voltage-gated ion 

channel dependent) and passive (non-voltage-gated) dynamics. The action potential’s 

distinctive shape makes it easily identifiable during electrophysiology experiments; in current 

clamp electrophysiology, the action potential is observed as a distinctive pulse of voltage over 

a timescale of milliseconds. The specific dynamics of the AP waveform, along with the 

spiking frequency, are well known to vary with cell type (Connors and Gutnick 1990, 

Luhmann, Reiprich et al. 2000, Bean 2007, Guan, Armstrong et al. 2015, Liu, Blair et al. 

2017) across animal species (Daou, Ross et al. 2013, Ciarleglio, Khakhalin et al. 2015). 

Evidence for the changing waveform with age during the period of postnatal maturation has 

been previously presented, whether in neurons of the thalamic reticular nucleus or layer IV 

excitatory cortical neurons  (Parker, Cruikshank et al. 2009, Valiullina, Akhmetshina et al. 

2016), but the specific causes of these developmental changes remain elusive.  

 

The action potential drives synaptic plasticity 

In the immature brain, the early firing of action potentials is necessary for synaptogenesis, 

synaptic plasticity, and the formation of networks (Khazipov and Luhmann 2006, Valiullina, 

Akhmetshina et al. 2016). Since the 1940s, Hebbian plasticity (“cells that fire together wire 

together”) (Hebb 1949) has provided the foundation of our understanding of the interplay 

between the discharging of action potentials and neuronal connectivity, but a significant 

interplay also exists between action potential waveform and timing, and synaptic 

transmission. The duration of the presynaptic waveform has been shown to strongly influence 

synaptic latency (Katz and Miledi 1967, Boudkkazi, Fronzaroli-Molinieres et al. 2011), and 
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action potential duration may ultimately determine neuronal coactivity, that in turn drives 

spike-time dependent plasticity ‘out of sync, lose your link’ mechanisms (Bi and Poo 1998).  

 

As the cell grows in size and morphological complexity with postnatal age, the geometry and 

ionic fluxes across different parts of the morphology give rise to local electric fields which 

may themselves have an influence on plasticity. Specifically, this may lead to scaling of the 

voltage response at the synaptic level, providing a method of neuronal encoding.  This scaling 

of synaptic inputs allows the neuron to encode information and maintain optimum levels of 

excitability, whilst compensating for the variability inherent in neural input (Turrigiano and 

Nelson 2004).  

 

It is necessary to conclude that the biophysical properties of a neuron isolated from its 

synaptic inputs may not be an accurate representation of true neuronal behaviour. 

Observations of synaptogenesis across developmental stages inform our picture of the 

biophysical underpinning of the changing action potential. 

 

Action potential shape is determined by ion channels 

Since the introduction of Hodgkin-Huxley models, developed on squid giant axons in the 

1950s (Hodgkin and Huxley 1952), the biophysics of neurons, including cortical neurons, 

have been implicitly correlated with the densities of voltage-gated ion channels within the cell 

membrane (Hille 2001, Bahrey and Moody 2003, Moody and Bosma 2005). Changes to the 

shape of the action potential can therefore be used as a proxy for the varying populations and 

densities of ion channels (Picken Bahrey and Moody 2003, Richter and Gjorgjieva 2017), and 

their corresponding current densities, for example, in somatosensory pyramidal neurons 

(Luhmann, Reiprich et al. 2000). 

 

Voltage-gated sodium (Na) channels hold the role of the instigator of action potentials 

(Hodgkin and Huxley 1952, Connors, Gutnick et al. 1982, Hille 2001, Baranauskas 2007). 

When the membrane potential is sufficiently depolarised, these channels open and allow the 

flow of Na+ ions, contributing a large and fast membrane current that pushes the neuron 

quickly to dramatic depolarisation, many tens of millivolts above the resting membrane 

potential. Returned to the extra-cellular space via the action of a Na+/K+-ATPase enzyme 

pump (Krouchev, Rattay et al. 2015), the movement of Na ions that and the resulting action 

potential is a high metabolic cost, and a determinedly active phenomenon.  
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The re-polarisation phase of the membrane potential is governed by voltage-gated potassium (K) 

channels (Hodgkin and Huxley 1952, Baranauskas 2007). Voltage-gated K+ channels come in a 

wide diversity of subtypes (Storm 1987). Some (Kv1.1, Kv1.2, Kv1.3, Kv1.6, for example) are 

thought to be primarily responsible for maintaining membrane potential and modulating 

excitability in neurons across the cortex, whilst others are thought to be necessary for 

neuronal afterhyperpolarisation (Kv1.4), or regulation of AP duration (Kv3.2) (Gutman, 

Chandy et al. 2005).  The balance of the populations of ion channels and their respective 

subtypes varies with cell type to produce different patterns of activity, but can be manipulated 

via various stimuli; when one potassium current is suppressed, for example in ion channel 

blocking experiments, others compensate, pointing towards homeostatic mechanisms that 

ensure robust spike shape (O'Leary, Williams et al. 2014). Amongst the subtypes, BK 

channels dominate many studies, since they are responsible for a substantial proportion of the 

hyperpolarising potassium current (Kimm, Khaliq et al. 2015). Other K+ channel currents may 

be slower, and follow the fast BK current, moderating the overall kinetics (Pospischil, 

Toledo-Rodriguez et al. 2008). An inward calcium current follows these sodium and 

potassium currents (Kimm, Khaliq et al. 2015), but it has been argued that the ratio of sodium 

conductance to potassium conductance alone is the main determinant behind spiking output 

and therefore the sensory information encoded within the action potential (prior to the after-

hyperpolarisation) (Gjorgjieva, Mease et al. 2014).  

 

Ion channels have been shown to be functionally expressed early in postnatal development in 

taste neurons of the mouse vallate papilla, with different ion channel types formed at different 

rates (Bigiani, Cristiani et al. 2002). This biophysical heterogeneity stabilises by adulthood, 

facilitating optimum electrical activity. However, the path to maturity is not necessarily 

linear: the proportion of sodium to potassium channels across development is not consistent, 

with the expression in sodium ion channels reaching high densities much earlier than 

potassium ion channels in cells of the mouse ventricular zone (Bahrey and Moody 2003). The 

picture is further complicated by the fact that ion channels may not be homogeneously 

distributed across the neuronal membrane, with, for example, potassium channel abundance 

lessened in the more distal axonal membranes of cortical neurons (Boudkkazi, Fronzaroli-

Molinieres et al. 2011).  

 

Through the blocking of voltage-gated ion channels, the ionic currents responsible for 

different action potential aspects can be identified (Krouchev, Rattay et al. 2015).  However, 

computational models of the varying contribution of the currents can also be used to explore 
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which conductances are the dominant influences on the action potential shape, and determine 

how this changes across different stages of development (Wester and Contreras 2013).  

 

The different rates of ion channel expression can therefore be implicated in determination of 

cell growth, morphological changes and electrophysiological signatures via changes in ionic 

conductance and synaptic plasticity (O'Leary, Williams et al. 2013), ultimately having an 

effect on the computational function and efficiency of the cell.  

 

Activity-driven genetics underpin ion channel expression 

The abundance and density of the ion channels, and the consequential shape of the action 

potential, is limited by gene transcription and subsequent ion channel protein expression, 

phenomena triggered by electrical activity (Stemmler and Koch 1999, Khazipov and 

Luhmann 2006, Li, Fertuzinhos et al. 2013). Strong correlations between mRNA expression 

and functional ion channel expression in specific neurons have been shown (Schulz, Goaillard 

et al. 2006, Schulz, Goaillard et al. 2007) and ion-channel specific genes identified (Toledo-

Rodriguez, Blumenfeld et al. 2004). Cells that show similar protein expression patterns also 

show corresponding similarity in electrical properties, further confirming this link (Schulz, 

Goaillard et al. 2006). This evidence, and the large variations in mRNA expression of ion 

channel genes found in cortical neurons, point to neuronal activity and subsequent gene 

transcription being controlled by homeostatic mechanisms (O'Leary, Williams et al. 2013).  

 

The action potential changes with development  

The flux of ionic conductances through development is reflected in the changing shape of the 

action potential across cortical neurons (Bigiani, Cristiani et al. 2002), with action potentials 

observed to become taller and narrower as the animal matures (Luhmann, Reiprich et al. 

2000, Nakamura, Harada et al. 2015). In mouse auditory neurons, for example, a 66% 

reduction in presynaptic action potential width between postnatal day 5 (P5) and P12 has been 

observed (Taschenberger and von Gersdorff 2000), and similar developmental profiles of the 

action potential have been noted in spiking of neurons in other brain regions (Ben-Ari, 

Cherubini et al. 1989). Previous doctoral thesis work by Laura Murray has provided evidence 

for the changing shape of the action potential with neuronal development in excitatory cells of 

the barrel cortex of mice from new-born to two weeks old (Murray 2015), providing the basis 

of the experimental work presented in this thesis.  
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Often regarded as discrete units of time-dependent information, the action potential may be 

specifically shaped to maximise efficiency of the information communicated. A broader 

action potential may be useful for coincidence detection: by prolonging the spike duration, the 

likelihood of two cells being coincident in their firing properties would increase.  However, 

with a long spike duration, precision of the signal, and hence the fidelity of the information 

that can be conveyed, would be compromised.  Therefore, it could be hypothesised that a 

broader spike of lower amplitude would be beneficial to the neuron during the early 

developmental phase, when the information inputs are minimal due to low synaptic 

connectivity.  As the neuron develops, becoming more morphologically complex and 

synaptically connected, the increased information input that would be expected would lead to 

patterns of gene expression, resulting in a more precisely timed spike, with a narrower 

waveform. Just such changes to the AP waveform have been observed in excitatory neurons 

of the barrel cortex in earlier work (Murray 2015); this thesis seeks to confirm these 

observations, but explore the patterns of waveform development, relating them to other 

observations of development-based change.  

 

Current-clamp electrophysiology in acute ex-vivo slices has been used extensively to 

investigate the waveform of the AP in a variety of neuron subtypes (Sabatini and Regehr 

1997, Kimm, Khaliq et al. 2015, Palacio, Chevaleyre et al. 2017), but questions still remain 

regarding the particulars of the developmental trajectory of the waveform. Postnatal 

maturation is known to be a highly dynamic period in terms of cell differentiation and 

migration (Osterheld-Haas and Hornung 1996, Cina, Bechberger et al. 2007), and 

developmental changes may correspondingly be expected in cell communication and 

electrical activity (Winnubst, Cheyne et al. 2015).   

 

Homeostasis of electrical activity in developing neurons 

As the neurons of the cortex change and mature, they maintain functionality. In order for a 

neuron to continue exchanging electrical information throughout the transitions of maturation, 

the delicate balance of biophysical properties must be maintained despite the massive changes 

of gating channel proteins and subsequent ionic fluxes (O'Leary, Williams et al. 2013, 

Ciarleglio, Khakhalin et al. 2015). The maintenance of homeostatic equilibrium through 

biophysical compensation has been observed across species, with strikingly different 

combinations of conductances observed to output strikingly similar patterns of behaviour 

(Turrigiano and Nelson 2004, Ciarleglio, Khakhalin et al. 2015). Such homeostatic regulation 

of neural activity stops neuronal circuits from becoming either inactive or over-active 
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(Turrigiano and Nelson 2004), and allows ion channels to become more or less activated or 

populous to compensate for one another (Kimm, Khaliq et al. 2015, Szücs and Huerta 2015). 

A large range of conductances through the many different ion channels may result in near 

identical patterns of neuronal activity; homeostatic tuning approaches have been employed to 

comprehend this balancing act of variables (Marder and Goaillard 2006). 

 

Computational studies have suggested that each neuron may have a genetically encoded target 

activity pattern, on which the conductances from different ion channels can converge 

(LeMasson, Marder et al. 1993, Liu, Golowasch et al. 1998). Alternatively, it has been 

suggested that the balance of ion channels is underpinned by homeostatic control mechanisms 

that couple the expression rates of individual conductances to cell intrinsic readout of activity 

(O'Leary, Williams et al. 2013), a hypothesis that implies that there is considerable flexibility 

in the patterns of conductances that allow a target activity to be maintained. 

 

 

As well as ensuring survival throughout maturation, it has been postulated that homeostatic 

plasticity allows the dynamical range of the neuron to be maximised, therefore ensuring that 

maximum sensory information can be integrated and learned (Ciarleglio, Khakhalin et al. 

2015). Individual cortical neurons have been shown to learn to scale the gain of their active 

outputs within the first postnatal week (Mease, Famulare et al. 2013).  Gain-scaling, the 

adaptation of the neuron to its electrical inputs and outputs, has been reported to continue 

through adolescence and adulthood, (Richter and Gjorgjieva 2017). Waves of sensory 

information that slowly propagate across the cortex in immature rodents are replaced by fast 

and location specific fluctuations in mature animals, with the gain scaled to optimise sensory 

integration (Gjorgjieva, Mease et al. 2014). Indeed, this may be the driving force throughout 

maturation that is visible in the action potential’s changing shape. For example, the 

dynamically changing ratio of sodium to potassium conductance during the first postnatal 

week may represent a gain-scaling process (Mease, Famulare et al. 2013). Gain scaling may 

be manifest in broad AP waveforms that maximise coincidence detection fired by immature 

cells: a broad spike would, hypothetically, be capable of sampling a wide range of time 

points, and therefore a wide range of inter-spike-intervals, providing the necessary range of 

inputs to tune neuronal activity through gene expression and physiological changes on the 

cellular level. The resultant change in action potential waveform may then scale the gain of 

the information exchanged, improving the efficiency of the individual neurons and their 

neuronal circuits. Presumably, such improvements in efficiency would result in decreases in 

AP waveform breadth (duration) as neurons become more tuned to one another, and less 
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breadth is needed for coincidence detection, along with corresponding increases in AP 

waveform height (amplitude), and more complicated patterns of spiking activity, as stronger 

and more intricate patterns of information can be conveyed.  

 

 

 

 

 

 

 

 

 

 

Figure 1.1: The process of maturation for cortical neurons. As neurons develop they 

undergo changes in connectivity (A), facilitated by gap junctions and synapses, changes in the 

degree of ion channel growth, differentiation, migration, increasing spike-type coincidence, 

and the formation of coherent networks. B: All the while, the action potential waveform is 

changing 
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It has been suggested that as neurons grow, the changing membrane capacitance and 

resistance must be balanced with the synapses and the ion channels to maintain optimal 

activity for the neuronal network as a whole (Marder and Goaillard 2006). Therefore, these 

changing intrinsic and passive biophysical properties may provide the limits to ion channel 

gene transcription. As implicated in studies of the currents underlying the action potential, the 

proportion of sodium to potassium ion channels is highlighted as a dominant factor in this 

mechanism, since it has been shown that the ratio of expression of sodium and potassium 

currents allows the gain to be scaled most effectively (Mease, Famulare et al. 2013).  

 

Development and synaptic plasticity are intrinsically coupled: development is filtered through 

experience, via the mechanism of synaptic plasticity. In other words, experience dependent 

plasticity applies strong homeostatic constraints on the mechanisms of biophysical 

development (Turrigiano and Nelson 2004, Winnubst, Cheyne et al. 2015).  

 

Spontaneous activity in immature neurons 

A widely reported phenomenon, common to immature neurons across species, is that of 

spontaneous activity (Zhang and Poo 2001, Winnubst, Cheyne et al. 2015, Leighton and 

Lohmann 2016, Valiullina, Akhmetshina et al. 2016, Richter and Gjorgjieva 2017). The 

spontaneous firing of action potentials, detected in its earliest form from late embryonic 

periods, drives the earliest patterns of gene expression that set the neuron on its 

developmental trajectory and ultimately decide cell growth, differentiation and synaptic 

plasticity (Khazipov and Luhmann 2006). This early activity determines synaptic connectivity 

within both sensory and motor neuronal ensembles (Zhang and Poo 2001, Winnubst, Cheyne 

et al. 2015), but does not necessarily continue through to maturity: in mouse sensorimotor 

cortex, the critical period for gain-scaling of neuronal outputs has been reported to coincide 

with the end of spontaneous activity (Mease, Famulare et al. 2013). However, synaptogenesis 

as a consequence of such activity without pre-formed synapses and established neuronal 

networks presents us with a ‘chicken and an egg’ scenario – which comes first, the synapse or 

the activity?  The answer may lie in the early appearance of electrical synapses, or gap 

junctions, which facilitate the communication of relatively simplistic electrical signals 

between neighbouring cells from the earliest stages of development (Connors, Benardo et al. 

1983, Turco and Kriegstein 1991, Peinado, Yuste et al. 1993, Penn, Wong et al. 1994, 

Kandler and Katz 1995, Montoro and Yuste 2004).  
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1.4 Gap junctions 

Structure and function of gap junctions 

Gap junctions are protein channels between cells that connect the cellular cytoplasm, allowing 

an intercellular cytoplasmic equilibrium to be reached (Goodenough and Paul 2009, Leighton 

and Lohmann 2016).  Each gap junction is a hexamer structure of connexin proteins that 

forms a channel between neighbouring cells (Goodenough and Paul 2009). Highly expressed 

during embryonic stages (Elias and Kriegstein 2008), gap junctions facilitate the bidirectional 

exchange of information in the form of both electrical signals and some small molecules, 

allowing neuronal communication in the absence of chemical synapses (Montoro and Yuste 

2004, Cina, Bechberger et al. 2007). Gap junctions have been reported to have a 

phenomenally fast turnover, on the order of minutes, (Belousov and Fontes 2013) implying 

that, relative to synapses, they have low metabolic costs.  Organised radially around the cell, 

they transmit information on slower timescales than chemical synapses (Yuste, Nelson et al. 

1995).  

 

The role of gap junctions in development 

In the thalamus, gap junctions have been shown to precede the formation of inhibitory 

networks and be necessary for the development of complex dendritic morphologies (Zolnik 

and Connors 2016). Many groups have postulated that gap junction are developmentally 

transient, hypothesising that their role is that of a functional network blueprint (Kandler and 

Katz 1995, Montoro and Yuste 2004). Gap junctions may provide a method through which 

neurons can synchronise their output prior to synaptogenesis, or, alternatively they may 

provide a homeostatic buffer to allow robust neuronal activity throughout development 

(Leighton and Lohmann 2016). Presumably, the activity that results from gap junction 

coupling has an effect on gene transcription and protein expression similar to that of synaptic 

inputs to the cell, ultimately resulting in the formation of chemical synapses.  

 

Effects of gap junctions on measurable biophysics of developing neurons 

When considering the presence of gap junctions in our understanding of the developing 

neuron, the question arises of how they might affect the balance of biophysical inputs and 

outputs. They may contribute to the input resistances and passive currents in and out of the 

neuron (Feldmeyer, Egger et al. 1999), and therefore have an overall effect on the action 

potential shape.   
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Figure 1.2: A hypothetical pattern of development. A feedback loop between connectivity, 

gene transcription, activity, and connection that allows the neuron to go from spontaneous 

activity to optimum activity. 

 

 

1.5 Hodgkin Huxley models of action potentials 

A biophysical understanding of the developing neuron warrants efficient and robust 

computational models that can provide testable predictions of the balance of currents in and 

out of the cell at any particular developmental timepoint. From these currents, the proportion 

of ion channels, and the contribution of morphological changes to passive dynamics can be 

estimated. Conductance-based Hodgkin-Huxley style computational models (Hodgkin and 

Huxley 1952) of varying complexity have been used to provide biophysical predictions of ion 

conductance channels in various different mature cortical neurons (Shaul, Yoav et al. 2007, 

Geit, Schutter et al. 2008).  

 

Limitations of Hodgkin Huxley models 

Like all computational models, the Hodgkin-Huxley model has implicit assumptions that limit 

its scope. It assumes isopotential compartments of known geometry, consequently the 

classical version of the model breaks down when small morphological features such as 

dendritic spines are considered, where the fluxes of ions may be constrained by the limited 
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space (Sabatini and Svoboda 2000, Biess, Korkotian et al. 2007, Holcman and Yuste 2015). 

Additionally, the model has been shown to poorly describe the initiation period of the action 

potential, with cooperative action of voltage-gated ion channels not considered (Naundorf, 

Wolf et al. 2006). A wholly unphysiological assumption implicit in the model is that the 

reserves of ionic species are assumed to be infinite: there is no dependence on ionic 

concentrations beyond the reversal potentials (Yamada 1998). Despite these drawbacks, the 

Hodgkin-Huxley model is one of the most sophisticated and successful computational tools 

available for interpreting the action potential.   

 

Multiparameter optimisation 

Parameter optimisation of Hodgkin-Huxley style models remains necessary to achieve good 

fits to data, but this process can be fraught with difficulty (Shaul, Yoav et al. 2007, Geit, 

Schutter et al. 2008, Wulfram Gerstner 2009). Traditionally, error minimisation between 

model and data has been performed by comparing the simulated voltage output of the model 

directly with the spiking data. When the data and the model’s output match, the model is 

judged to be a good fit, and the parameters that underlie the output are taken as accurate 

estimations. The optimisation of the model using such voltage-based techniques has been 

studied by many groups who have put forth variations on the method, including straight 

comparison of trace with data, smoothed by the inclusion of intracellular calcium dynamics 

(Ye, Rozdeba et al. 2014), root mean square (RMS) comparison between model and data 

(Brookings, Goeritz et al. 2014, Lankarany, Zhu et al. 2014), and comparison of phase-plane 

plots (Geit, Schutter et al. 2008). 

   

Frequently, these voltage-based techniques are highly sensitive to spike-timing (Pospischil, 

Toledo-Rodriguez et al. 2008) and return complex error functions, making them reliant on 

stochastic exploration methods or evolutionary algorithms to find the correct values of the 

optimised parameters (Buhry, Pace et al. 2012, Lankarany, Zhu et al. 2014).  Such algorithms 

can be computationally expensive and time consuming, and therefore unsuitable for 

comparison with highly variable developmental data sets. Alternative statistical mechanics 

density function methods have shown to produce very good estimates of conductances, but 

also require computationally expensive algorithms (Toth, Kostuk et al. 2011), whilst state-

space methods with adaptive evolutionary algorithms have been shown to fit complex 

compartment models well to data (Vavoulis, Straub et al. 2012), but are again, 

computationally expensive. 
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By instead considering computation of the difference between passive and active neuronal 

currents, the optimisation can be reduced to a simple linear sum, in which a residual current 

error is minimised (Morse, Davison et al. 2001, Lepora, Overton et al. 2012). Such current-

optimisation techniques are preferable since they not only are less computationally expensive 

than voltage-based methods, but they also produce a smooth error function where finding the 

solution is trivial, and does not require evolutionary algorithms.  

 

In addition to providing testable predictions of neuronal biophysics, optimised models can 

provide us with multiparameter state-space landscapes, that allow us to explore theoretical 

limitations of biophysical homeostasis. The error function may not converge on a singularity, 

but instead on a shallow region of equilibrium, in which any solution set of conductances 

would produce effective firing activity, within certain limits (O'Leary, Williams et al. 2013).  

 

 

1.6 Summary 

The different aspects of cortical neuron maturation are not independent mechanisms, but are 

instead interdependent processes that influence one another and determine the ability of the 

developing neuron to communicate. Throughout all the developmental changes, each neuron 

must remain robust and able to function, even with gross biophysical changes over very short 

timescales. This implies a method of compensation between neuronal features, adjusting 

different properties of the neuron to keep it within limits of effective activity. Such 

compensation and improvement may be visible in changes to the action potential that act to 

balance coincidence detection with information transfer, specifically, the change from a broad 

spike of long duration to a narrow spike of short duration.  The biophysical parameters move 

about this phase space to collectively compensate for one another’s behaviour; a coupling of 

parameters that adapts across the course of maturation.   

 

The combination of electrophysiology and multiparameter optimised conductance-based 

models makes a potentially powerful tool with which to study neuronal development. This 

thesis investigates the biophysical changes to excitatory neurons in the barrel cortex of mice 

across postnatal days P3 to P11. Covering changes in input resistance, action potential 

waveform, changes in surface area and morphology, changes in membrane capacitance and 

resultant membrane time constants, and the occurrence of networks of gap junction coupled 

cells, it attempts to describe the neuron as a biophysical entity, traversing a landscape of great 
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transformation. The use of computational models to interpret these data and make falsifiable 

predictions is considered, with the necessity of effective and efficient parameter optimisation 

explored. Additionally, the surprising result that Neurobiotin has an effect on the properties of 

the action potential waveform is quantified, and a dose dependency established.  

 

As well as developing a fundamental understanding of the developmental pathway of cortical 

neurons, work on the biophysical changes evident over the first two postnatal weeks could 

have implications for our understanding of developmental diseases and hereditary conditions 

such as schizophrenia and autism.  The biophysics of individual neuronal development will 

have implications for our understanding of how neurons begin to create cortical networks, and 

ultimately our understanding on how variations in such neural networks might manifest, as 

well as understanding how the brain recovers after ischemia. Finally, an understanding of the 

trajectory of development can help us to understand the trajectory of neurodegeneration, 

whether due to disease or aging.   

  

By focusing on one area of the brain, in one species, over one brief window of time, this 

thesis hopes to elucidate the gross biophysical changes and patterns that occur with 

maturation, that they might provide predictions for experiments beyond the conditions 

explored here.  
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2 Materials and Methods 
 

This thesis discusses both experimental and computational methods. The experimental 

methods are described in this chapter, whilst the computational methods – fitting of two 

compartment models to passive dynamics data, and evaluation of parameter optimisation 

techniques of Hodgkin-Huxley models – are discussed fully in Chapter 4: Passive Dynamics, 

and Chapter 7: Multi-parameter Optimisation of Conductance-Based Hodgkin-Huxley 

Models. An overview of the experimental and computational techniques is shown in Figure 

2.1. 

 

Figure 2.1: Experimental and computational methods used, in sequence. Experimental 

methods involved the collection of active and passive dynamics data from whole-cell current 

clamp electrophysiology experiments.  In a subset of experiments, the intracellular internal 

solutions included dyes, which were used for post-hoc confocal imaging and analysis of cell 

morphology. Computational methods were used both during experimental analysis, and 

during multiparameter model optimisation based on synthetic target data (Chapter 7).  
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Age and genetics of mouse pups used 

All aspects of these studies were performed with Home Office approval under section 5(4) of 

the Animals (Scientific Procedures) Act 1986. Wild-type C-57- Black.6 (C57BL/6) mice were 

used (Harlan Laboratories, Carshalton, UK).  Pregnant dams were delivered on embryonic 

day 16, and typically gave birth after 20±1 days of gestation.  Dams and their litters were 

housed in Techniplast 1144 conventional cages on a 12:12 light/dark cycle with nesting 

material, environmental enrichment and ad libitum access to food and water.  Dams and litters 

were checked daily at the same time each day, but otherwise disturbed as little as possible. 

Mouse pups of both sexes were taken individually from the litter between days P3 and P11, as 

measured from discovery of their birth (i.e. postnatal age = Px ±24 hours).  

 

Preparation of artificial cerebral spinal fluid  

Chemicals were supplied by Thermo Fisher Scientific (Loughborough, UK), VWR 

(Leicestershire, UK), or Sigma Aldrich (Dorset, UK) unless otherwise stated.  

 

Artificial cerebral spinal fluid (ACSF) for the maintenance and perfusion of slices was made 

consisting of 119.0mMol NaCl, 2.5mMol KCL, 11.0mMol D-Glucose, 1.0mMol 

NaH2OPO4.H2O, 26.5 mMol NaHCO3, 1.3 mMol MgSO47H2O, and 2.5mMol CaCl2, 

dissolved in double-distilled H2O. Cutting fluid for use during dissection was made of the 

same chemical composition as ACSF, except that MgSO47H2O was increased to 9mMol to 

mitigate the excitotoxic effects of dissection.  

 

Preparation of internal solutions prior to experiments 

Carefully composed solutions made to replicate the chemical composition of the neuronal 

cytoplasm were used within the patch-pipette to retain equilibrium and cell vitality throughout 

the patching process.  In total, five different internal solutions were made for use in 

experiments (Table 2.1) 
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Figure 2.2: Age distributions of cells patched using different internal solutions.   

A: The number of cells patched at each age using each internal solution are shown above each 

bar.  Cells were patched from mice aged between 3 and 11 postnatal days.  For the internal 

solution containing 1mg/ml Neurobiotin, only cells from mice aged P9-P11 were patched.  

B: The number of mouse pups used. 
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Standard Internal solution was prepared first, with composition as described in Table 2.1. The 

solution was checked for osmolarity using an Advanced Instruments Model 3320 Osmometer, 

and acidity using an Accumet Basic AB15 pH Meter (Fisher Scientific, Loughborough, UK). 

H2O or KOH was added in minute amounts to bring the osmolarity to 285±3mOsm and the 

pH to 7.25±0.05, within 5% of the predicted volume of 50ml (50±2.5ml). The 50ml of stock 

Standard Internal solution was then aliquoted into 50 1ml Eppendorf tubes (Eppendorf, 

Hamburg, Germany) and frozen for long-term storage.  No internal solution was stored for 

longer than six months. 

 

Morphological analysis of cells and gap junction detection was performed via the inclusion of 

dyes in three of the five internal solutions. Tracer molecule Neurobiotin (NB) (Vector 

Laboratories World Wide, CA, USA) was used (Figure 2.3); NB has been recommended for 

morphological analysis at concentrations of 1 to 2mg/ml (Campbell, Ducret et al. 2011), but 

for gap junction detection it is has been recommended in concentrations of 3-10mg/ml 

(Káradóttir and Attwell 2006), with concentrations up to 150mg/ml (15% weight/volume) 

also reported in literature (for example, (Peinado, Yuste et al. 1993, Penn, Wong et al. 1994, 

Zahs and Newman 1997)).  Three different concentrations of Neurobiotin were used here: 

10mg/ml (1% weight/volume), 5mg/ml (0.5% w/v) and 1mg/ml (0.1% w/v).  

 

Dextran-conjugated Alexa Fluor 546 (Molecular Probes, Invitrogen, Paisley UK) was 

included in two of the internal solutions. The conjugation of Dextran, a large glucose 

molecule (H(C6H10O5)xOH), pushed the total molecular weight to 10000g/mol, too large to fit 

through gap junctions (Elias and Kriegstein 2008). The inclusion of this large molecule aided 

differentiation of primary patched cells from gap-junction coupled cells. 

 

NB stock internal solution was prepared via the dilution of 50mg NB powder in Standard 

Internal solution. 45ml of Standard Internal solution was prepared as described above, except 

that the potassium methylsulphanate (KMeSO4) was reduced from 130mMol to 115mMol to 

compensate for the addition of NB on the overall osmolality (Table 2.1). Double distilled 

H2O was added to bring the volume to just under 50ml.  Under constant stirring using a 

magnetic stirrer, 4ml of this solution was removed and used to dissolve 50mg NB.  

Osmolarity and pH were again monitored as 1ml of the remaining Standard Internal solution 

was added to top up the NB solution to 5ml, at 285±3mOsm and pH to 7.25±0.05.  The 

resulting mixture of 10mg/ml (1% weight/vol) NB internal solution was aliquoted into 20 

Eppendorf tubes in volumes of 250l before being frozen for long term storage.   
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Figure 2.3: Chemical formula for Neurobiotin.  

 

The three concentrations of NB-containing solution were created via different dilutions of NB 

stock internal solution in Standard Internal solution. For a NB concentration of 10mg/ml (1% 

w/v), NB stock internal solution alone was used. For a NB concentration of 5mg/ml NB 

(0.5% w/v), 10mg/ml NB stock internal solution and Standard Internal solution were mixed in 

the ratio 1:1 (0.2ml in 0.2ml). For a NB concentration of 1mg/ml NB (0.1% w/v), 10mg/ml 

NB stock internal solution and Standard Internal solution were mixed in the ratio 1:9 (0.04ml 

in 0.36ml). In each case, the mixture was vortexed (Lab Dancer Digital, VWR, Leicestershire, 

UK), centrifuged (VWR Ministar Silverline Galaxy centrifuge) and filtered. Prior to use, the 

5mg/ml and 1mg/ml NB solutions were also spiked with 10µM Dextran-conjugated Alexa 

Fluor 546.  

 

A fifth and final internal solution was prepared that had the same reduction in KMeSO4 as 

that in the NB-containing internal solution, but to which inert sucrose was added to maintain 

the same osmolality of 285±3 mOsm; this internal solution was labelled as ‘Sucrose’ and was 

otherwise prepared exactly as described above. 

 

Internal solutions were kept on ice at approximately 0°C to prevent the breakdown of 

magnesium adenosine 5'-triphosphate (Mg-ATP) and sodium guanosine 5′-triphosphate (Na-

GTP). They were transferred into the micropipette using an Eppendorf Microloader 

(Eppendorf, Hamburg, Germany) in volumes of between 14 and 20µl. 
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Standard Internal 

 
Sucrose Internal 

 
10mg/ml NB 

 
5mg/ml NB + Alexa-546 

 
1mg/ml NB + Alexa-546 

 

Table 2.1: The makeup of the internal solutions used, with different concentrations of 

Neurobiotin or sucrose.  Varying concentrations highlighted in bold.   

Material Concentration (mMol) Molecular Weight (g/Mol) 

KMeSO4 130.0 134.2 

NaCl 8.5 58.44 

HEPES 5.0  238.31 

EGTA 0.5 380.35 

Mg-ATP 4.0 507.2 

Na-GTP 0.3 523.2 

Material Concentration (mMol) Molecular Weight (g/Mol) 

KMeSO4 115.0 134.2 

NaCl 8.5 58.44 

HEPES 5.0  238.31 

EGTA 0.5 380.35 

Mg-ATP 4.0 507.2 

Na-GTP 0.3 523.2 

Sucrose 31.0 342.3 

Material Concentration (mMol) Molecular Weight (g/Mol) 

KMeSO4 115.0 134.2 

NaCl 8.5 58.44 

HEPES 5.0  238.31 

EGTA 0.5 380.35 

Mg-ATP 4.0 507.2 

Na-GTP 0.3 523.2 

Neurobiotin 31.0 322.8 

Material Concentration (mMol) Molecular Weight (g/Mol) 

KMeSO4 122.5 134.2 

NaCl 8.5 58.44 

HEPES 5.0  238.31 

EGTA 0.5 380.35 

Mg-ATP 4.0 507.2 

Na-GTP 0.3 523.2 

Neurobiotin 15.5 322.8 

Alexa-546 0.01 10000 

Material Concentration (mMol) Molecular Weight (g/Mol) 

KMeSO4 128.5 134.2 

NaCl 8.5 58.44 

HEPES 5.0  238.31 

EGTA 0.5 380.35 

Mg-ATP 4.0 507.2 

Na-GTP 0.3 523.2 

Neurobiotin 3.1 322.8 

Alexa-546 0.01 10000 
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Preparation of acute slices  

The dissection room was prepared prior to animals being removed from their home cage; all 

surgical implements were chilled to 0ºC, and the vibratome was calibrated to minimise 

orthogonal oscillation. Mouse pups were removed from their home cage and quickly 

transported to the dissection room. The time of transfer was minimised to reduce distress and 

to minimise the chance of hypothermia or hyperthermia, since the pups were too young to 

regulate their body temperature without the dam.  

 

Pups were sacrificed by Schedule-1 cervical dislocation. The head was sprayed with ethanol 

(70%) to minimise contamination of the brain tissue. A sagittal incision was made through the 

skin from the nose to the back of the head, the skull was exposed and cut through the midline 

using dissection scissors (Vannas Spring Scissors, Fine Science Tools, Heidelberg, Germany). 

The brain was removed using a spatula and placed into oxygenated cutting solution at 0ºC for 

one minute. The brain was retrieved, the cerebellum was removed, and the frontal cortex was 

cut at a 45-degree angle to produce a flat plane against which thalamocortical slices could be 

cut that preserved the connections between thalamus and barrel cortex, as previously 

described (Agmon and Connors 1991).  The brain was then glued down to a stage on the cut 

plane, and placed in the cutting bath, which was filled with chilled cutting solution.  The 

cutting bath was itself surrounded by ice to keep the temperature of the cutting solution and 

brain at ~0ºC. 

 

400µm slices were cut using a Leica VT1200 vibratome (Leica Microsystems, Milton 

Keynes, UK), fitted with a razor blade (Agar Scientific, Stansted, UK) oscillating at a 

frequency of 85±5Hz and amplitude of 2.75mm, with a knife travel speed of 0.09mm/s. 

Typically, 2-4 usable slices were cut per brain. Once cut, slices were transferred using a 

Liquipipette into cutting solution at room temperature for one minute, before being 

transferred to ACSF at room temperature, where they were each held in an individual 

submerged chamber. All ACSF and cutting solutions were constantly bubbled with 

pressurised carbogen (5% carbon dioxide, 95% oxygen).  Once all the viable slices were cut 

and transferred to ACSF, the rest of the brain tissue was disposed of, and the slices were left 

to rest for ~1 hour at room temperature. The slices were typically viable for 8-9 hours.  
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The electrophysiology rig 

The electrophysiology rig held a recording chamber, a shallow bath of approximately 150mm 

x 200mm x 50mm, with both input and output tubing for perfusion of ACSF. This was 

mounted upon a table with a Scientifica Patchstar micropipette manipulator headstage 

(Scientifica, East Sussex, UK) in close proximity, and a microscope mounted above. 

 

Electrodes were made from silver wire of diameter 0.25mm and length ~300-400mm (Advent 

Research Materials, Oxford, UK). Electrodes were reacted in bleach (Sodium hypochlorite, 

NaClO) for a minimum of 24 hours to allow a coating of silver chloride to form. Once coated, 

the bath electrode was soldered to the output wire and carefully positioned in the 

electrophysiology bath. The patch electrode was positioned within an electrode holder, which 

was screwed onto the headstage, and connected to the input wire. Signals from the electrodes 

were digitised using a Micro1401 Analogue to Digital Converter (Cambridge Electronic 

Design Ltd, Cambridge, UK), and amplified using an Axon Instruments Multiclamp 700A 

computer-controlled microelectrode amplifier (Molecular Devices, CA, USA). A Picoscope 

sampling oscilloscope (Pico Technology, Cambridgeshire, UK) allowed the waveforms to be 

visualised on a nearby computer. Noise was reduced by enclosing the entire electrophysiology 

rig in a faraday cage, and ensuring all electrical components were adequately grounded.  

 

ACSF, constantly bubbled with carbogen, was continuously perfused through the bath 

through perfusion tube of diameter 0.8mm using a Gilson Minipuls3 pump (Gilson Scientific 

UK, Bedfordshire, UK). A total volume of ~600 ml was typically sufficient for a 6-8 hour 

experiment (~1-2ml /min). Waste ACSF was removed via a vacuum pump (Dymax 5, Charles 

Austen Pumps, Surrey, UK).   

 

Fire-polished borosilicate glass capillary tubes of diameter 1.5mm (Harvard Apparatus, 

Edenbridge UK) were pulled into micropipettes using a P-87 Flaming / Brown Micropipette 

Puller (Sutter Instruments, CA USA) to produce pipettes of resistance of 4-8 MΩ. Patch 

pipettes, filled with internal solution, were mounted onto the manipulator, being careful not to 

scratch the patch electrode, nor touch the micropipette tip.  
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Temperature control 

Healthy internal body temperature of the adult mouse is generally accepted to be between 38 

and 36ºC (Talan 1984), whereas the temperature of the laboratory was generally between 21 

and 25°C. To mirror physiological conditions, the temperature within the bath was both 

monitored and controlled using a Warner instrument cooperation TC-324B automatic 

temperature controller, with the ACSF heated to a temperature of 36.9±0.4°C via a thermistor 

(Warner Instruments, CT, USA) just outside the bath.  

 

Observing barrels and cells using the optical microscope 

The slice was submerged in the ACSF-perfused bath and held in place a small metal slice 

anchor or ‘harp’. The slice and cells therein were imaged using a digital camera (UC480, 

Thorlabs, NJ, USA) at 4x and 40x magnification, using dry and water submersion objectives 

respectively (Plan N 4x Olympus, Hamburg, Germany; Achroplan 44 00 91 40x, Zeiss, Jena, 

Germany). This facilitated imaging of both the barrels in the cortex at 4x magnification, 

providing a visual record of the development of barrels over the period of interest, and the 

cells within the barrel at 40x magnification. The position and focus of the microscope were 

adjusted using electronic controls. 

 

The primary quarry of this investigation was the spiny stellate neuron: the regular-spiking cell 

most associated with layer IV barrel cortex and the processing of thalamocortical inputs from 

the pads of the whiskers. Spiny stellate cells were identified by their spherical shape and 

relatively small size, distinguishing them from large fast spiking interneurons and classic 

pyramidal cells. Glial cells, such as astrocytes, were occasionally visible, whilst red blood 

cells, suspended in their blood vessels, were easily identified by their classic ‘donut’ shape. 

All digital photographs were processed in FIJI ImageJ software and adjusted for brightness 

and contrast by eye to ensure the features of the image were clear and distinct. 

 

The structure of the barrel cortex was observed to first become visible in ex-vivo cortical 

slices at P3 (Figure 2.4), in accordance with some previous reports (Mizuno, Luo et al. 2014), 

but earlier than other reports (Barrera, Chu et al. 2013). The barrels were easily located by P5. 

Therefore, P3 was set as the lower age limit for robust electrophysiology experiments within 

layer IV barrel cortex.  
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Figure 2.4: The barrels of the somatosensory cortex become more apparent with 

development. Digital photographs at 4x magnification and 40x magnification (insets) show 

the barrel cortex, the position of the pipette and the patched cell for mice aged P3, P5, P7, P9 

and P11.  
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Whole-cell patching 

Once filled with internal solution and sealed onto the micromanipulator headstage with the 

patch electrode inside, the micropipette was brought to the surface of the brain slice, beneath 

the 4x objective and submerged in the ACSF. The pipette was aligned with the centre of a 

barrel within the barrel cortex.  In voltage clamp configuration, the current across the 

electrodes was minimised by the application of a pipette offset of 47±3mV (mean ± SEM). A 

square wave of 5mV amplitude was applied to the bath and slice via the patch electrode and 

visualised via Picoscope 6 oscilloscope software (Pico Technology). The magnification was 

increased to 40x, and the tip of the pipette was brought to a healthy neuron in the barrel, using 

positive pressure on the pipette to push away detritus as the neuron was approached.  A 

visible dimple in the target neuron membrane and a simultaneous decrease in voltage 

amplitude were used to indicate good contact between the neuron and the pipette. By 

reversing the pressure on the pipette from positive to negative, a gigaseal (resistance >1GΩ) 

was formed between the neuron and the pipette, as could be visualised in the oscilloscope as 

the reduction in the square wave amplitude to a negligibly small value (typically <0.2mV). 

Fast capacitive transients were cancelled using an automatic function in the Multiclamp 700A 

voltage clamp software. Via manual suction, the membrane of the cell was broken, and an 

equilibrium established between the inside of the cell and the inside of the pipette. A 

successful whole cell patch produced large capacitive transients of standard shape, as 

visualised in the oscilloscope software. Once this distinctive waveform was established, the 

square wave of voltage was removed, and the software configurations were switched from 

voltage clamp to current clamp.  Signals were Bessel filtered at 10kHz. 

 

 

Figure 2.5: The barrels of the barrel cortex and the current-step protocol.  A: The barrels 

correspond to the whiskers in a perfect contralateral somatosensory map. B: A square-wave 

‘current-step’ injection of current (bottom) produces a gradually depolarised voltage response 

(top) that, once the rheobase is reached, triggers the firing of action potentials, or spiking.   
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Resting membrane potential and holding current 

Upon patching the cell, the membrane potential (Vm) was manipulated to be held steadily at a 

mean value of -72.21±1mV, within a range of -51.81mV to -86.31mV via the application of a 

holding current (HC) (Figure 2.6). The HC was a controlled variable that was set and 

recorded at the start of each experiment but could vary between experiments. HCs used were 

typically in the range of -10 to -100pA.  When higher magnitude HCs were used it was 

generally symptomatic of an unhealthy cell that died quickly. If the membrane potential was 

seen to rise rapidly without the injection of a current the experiment was halted, as this was 

usually indicative of the degradation or death of the cell (which could be confirmed via quick 

visual inspection).   

 

 

 

Figure 2.6: The range of membrane potentials and holding currents used during 

experiments, prior to current injections.  A: Histogram of resting membrane potentials 

used in experiments. Bin width = 2.5mV. Dotted line shows Gaussian fit to data, with  

µ= -72.55mV and σ = 12mV. B: Histogram of HCs used in experiments. Bin width = 15.8pA. 

The majority of the HCs used were between -10 and -100pA. 

 

 

Although the Vm of individual cells was dictated by the application of the HC, no overall 

correlation was found between the two variables across the dataset; the magnitude of HC did 

not determine the final value of Vm, it was purely incidental to the properties of the cell.  No 

statistically significant correlation between age and HC was detected.  
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Electrophysiology Protocols 

Once a cell was patched and held at a steady membrane potential, software to induce and 

record the dynamics under investigation was opened. Signal 5.08 x86 (Cambridge Electronic 

Design Ltd) facilitated the use of different current-clamp protocols to induce both active 

dynamics (spiking behaviour) and passive dynamics (cell membrane charging and 

discharging). All recordings were made at a sampling frequency of 50kHz. Bridge balance 

error was minimised via a 7.3MΩ correction. 

 

The first protocol enacted was a current-step protocol that consisted of 11 square wave 

injections, or steps, of varying magnitude in both the hyperpolarising (negative) and 

depolarising (positive) directions. Steps were 500ms duration over a 1s trace, and started at a 

current injection of -16pA, increasing by 8pA up to a maximum hyperpolarising value of 

64pA. The hyperpolarising steps allowed measurement of the intrinsic properties of the cell, 

whilst the depolarising steps allowed measurement of the active dynamics of the cell. The 

increase in step size was chosen to show a range of activity in a short timeframe whilst also 

providing a good approximation for the rheobase (minimum current at which an action 

potential could be fired); as such the rheobase reported in subsequent chapters should be taken 

as the reported measure with a negative error bar of 8pA. Action potentials were typically 

fired by the 9th or 10th step. The cycle of 11 current injections was typically repeated 10-12 

times over a time period of 110-132s.  Throughout, the cell was carefully monitored for 

sudden changes in the resting membrane potential or morphology, as visible through the 

digital camera, that might be indicative of membrane degradation or cell death.    

 

The current-step protocol was applied first to ensure that the neuron was capable of firing 

action potentials. Once the current-step protocol was completed, the passive dynamics 

protocol was applied. This consisted of the application of two 1ms pulses of current of 

magnitude 0.4nA, 500ms apart. These pulses were equal but opposite; one was depolarising, 

the other hyperpolarising. This protocol avoided the activation of voltage-gate ion channels 

that could lead to action potentials being fired, allowing purely passive dynamics to be 

studied. 

 

The number of cells patched in a single slice depended on the internal solution used: where 

the internal solution included dye(s), a single cell per slice was patched to allow unambiguous 

identification in post-hoc imaging. Where no dye was present, this was not important, and so 

multiple cells were patched in a single slice. However, due to being heated to physiological 
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temperature, degradation of cells over timescales longer than ~1 hour was apparent, so no 

more than 3 cells were recorded from each slice.  

 

Dye filling 

Dye filling protocols were developed from those supplied by Dr Francesco Tamagnini of the 

University of Reading, as previously described (Káradóttir and Attwell 2006). The patched 

cell was filled with dye during electrophysiology experiments via passive diffusion of the 

internal solution, with the pipette in the cell for at least 30 minutes, in accordance with 

previous work (Mills and Sey 1998)  (median time = 33 minutes).  A sketch was made of the 

location of the patched cell, relative to the hippocampus, surrounding barrels and any other 

appropriate cortical landmarks to provide a map for later relocation (Figure 2.7). If a dye-

filled cell was observed to degrade at all over the course of the experiment, and the resting 

membrane potential change to such a degree as to garner any electrophysiological protocols 

unusable, it was still held for a minimum of 30 minutes to ensure the morphological data from 

dye-filling and imaging be consistent. Following this diffusion period, the pipette was very 

carefully retracted from the cell membrane, being cautious not to tear the cell or dislodge it 

from its position in the barrel.  If deemed necessary, a little positive pressure and/or a 1-5ms 

“zap” of current was used to break the gigaseal between pipette and cell membrane. The 

accidental removal of the primary cell during this manoeuvre was the main cause of post-hoc 

non-recovery. Once extracted from the cell, the pipette was hastily removed, as to avoid 

excess leakage of Neurobiotin or Dextran-conjugated Alexa546 into the surrounding tissue. 

One dye-filled cell was patched per acute slice, allowing for unambiguous matching of the 

confocal images to the electrophysiological data, except for the first few slices, where as 

many as three cells per slice were patched and filled. In such slices, the ambiguity meant that 

the cells could not be matched to their electrophysiological dynamics, but multiple-cell dye-

filling did allow direct comparison of cellular morphology. 
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Figure 2.7: Representative P11 spiny stellate neuron within the barrel cortex patched 

with internal solution containing Neurobiotin and Dextran-conjugated-Alexa546.  
Top: Digital photograph of the barrel cortex at 4x magnification overlaid with composite 

confocal maximum projection image. Dotted white lines show the approximate outlines of the 

layer IV barrels; solid white line shows the location of the micropipette. Confocal colours as 

follows: blue = DAPI, green = Neurobiotin with Streptavidin-Alexa488, red = Dextran-

conjugated Alexa546.  Soma appears yellow due to the colocalization of red and green dyes. 

Inset shows the confocal composite maximum projection image of the neuron at 20x 

magnification, with digital photograph (40x magnification) overlaid. Bottom: sketch of the 

location of the barrels within the cortical slice relative to the hippocampus and pial surface.  

Barrels are shown by circles, location of the patched cell is marked with an ‘x’.  
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 Preparing the tissue for imaging  

Once sketches and photographs were taken, the acute brain slice was quickly removed from 

the electrophysiology rig and placed into a 24-well plate containing a solution of 4% 

paraformaldehyde (PFA), dissolved in 0.1M phosphate buffered saline (PBS) (VWR 

Laboratories).  The PFA solution was removed and replaced three times to ensure that excess 

ACSF was minimised (all PFA containing solutions were disposed of safely, as it is 

hazardous to health and the environment).  The 24-well plate was covered, sealed, wrapped in 

foil to protect from light and stored at 4C for a minimum of 12 hours, but no longer than 24 

hours. After this period, cortical slices were moved to another well using a clean paintbrush 

and washed three times for five minutes each time using PBS solution to remove excess PFA.  

The slice was then transferred, using a different paintbrush, to another well in the 24 well 

plate for storage in PBS solution at 4C for up to a week.  

 

Stock staining solution was prepared that consisted of 

9ml 0.1M PBS 

1ml 5% Triton x100 (Sigma Aldrich)  

0.03g Bovine Serum Albumins protein (Sigma Aldrich) 

 

The fluorescent dye Streptavidin Alexa Fluor 488 (Molecular Probes), which has a high 

affinity for Neurobiotin, was applied in solution to the slices after post-fixation. Streptavidin 

stock solution was made up by diluting 1mg of Streptavidin in 1ml 0.1M PBS, and was stored 

in darkness at 4ºC. Streptavidin solution was then diluted in the staining solution, and brain 

slices were incubated in the resulting mixture. Dilutions of Streptavidin-Alexa488 solution in 

staining solution were recommended to be in the range of 1/25 to 1/1000; Streptavidin 

solution was added to the staining solution in either: 

• High concentration: 1:200, 5l Streptavidin per 1ml of staining solution. 

or 

• Low concentration: 1:1000, 1l Streptavidin per 1ml staining solution.  

 

Slices were removed from storage and transferred to a new 24 well plate using a clean 

paintbrush where they were incubated in ~1ml of Streptavidin/staining solution mixture.  

They were then sealed, wrapped in foil to protect from light, and placed on a rocker (Labnet 

Low Speed Laboratory Shaker, Labnet International, NJ, USA), undulating at a rate of 20rpm 

for a minimum of 6 hours, though more typically 12-24 hours. (On one occasion slices were 
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left in Streptavidin solution for ~60 hours.  This seemed to have no effect on the slices or the 

cells identified within).  

 

Slices were then washed three times in PBS to remove excess Streptavidin solution, allowing 

five minutes for each wash.  After washing, slices were moved from the 24-well plate to glass 

microscope slides (Marienfeld Mircoscope Slides, 76x26x1mm, Lauda-Königshofen, 

Germany) using a clean paintbrush. Excess PBS on the microscope slide was carefully 

removed using absorbent paper towel. Approximately 25l of Vectashield Mounting Medium 

(Vector Laboratories, Peterborough , UK) containing  4′,6-diamidino-2-phenylindole (DAPI), 

at 1.5g/ml concentration, was applied to the top of the slice.  A coverslip was gently lowered 

on top of the slide, being very careful to not trap air bubbles within.  Finally, a small amount 

of clear nail polish was used to seal to coverslip to the microscope slide. Slides were kept 

horizontal until the nail polish had set, and stored at 4°C. 

 

Confocal imaging  

The microscope slides were stored for up to a week before imaging and were returned to 

storage at 4ºC and re-imaged on several occasions without notable deterioration of the tissue 

or the fluorescence signal over time. Prior to confocal imaging, all tissue slices were observed 

using a Leica DM IRB fluorescence microscope (Leica Microsystems) at 10x and 20x 

magnification (filter cubes BP340-380, BP360/40, BP 480/40, and BP 546/12). This allowed 

for quick assessment of the success of the experiment: was the primary (patched) cell visible? 

Where the primary cell could not be identified, it was presumed that the primary cell was 

either destroyed or inadvertently removed during removal of the patch pipette, and the 

samples were not imaged with the confocal microscope.  

 

With the successfully patched, filled and recovered cells identified, confocal microscopy was 

done on the samples exhibiting the presence of filled cells. A Leica SPE single channel 

confocal laser scanning microscope attached to a Leica DMi8 inverted epifluorescence 

microscope (Leica Microsystems) was used to take z-stacks of images using the 10x (dry), 

20x (dry and/or oil immersion) and 40x (oil immersion) objectives. The image resolution was 

initially set to 1024x1024 pixels for images taken at 20x magnification, and 512x512 pixels 

for images taken at 10x or 40x magnification but was later adjusted to 1024x1024 pixels for 

images taken at 40x magnification. The z-stack of images facilitated 3D reconstruction, with 

the limits of the z axis found prior to imaging by setting the highest and lowest focus at which 

the primary cell could be identified.  Blue, green and red channels, corresponding to the 
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excitation lasers of wavelength 405nm, 488nm, and 532nm, were incident on the tissue to 

illuminate DAPI, Streptavidin-Alexa488, and Dextran-conjugated-Alexa546, respectively.  

Z-stacks were produced by taking optical slices through the tissue in increments of 2µm 

across the range of focus of the objective.  

 

Control experiments 

Control experiments were performed to establish that dye filling of neurons was not due to 

random uptake of Neurobiotin or Streptavidin-Alexa488, but due to the specific filling of the 

patched cell.  A micropipette, loaded with 5mg/ml Neurobiotin + Dextran-conjugated-

Alexa546 was lowered into a brain slice kept in identical conditions to those used in current-

clamp electrophysiology experiments.  The micropipette was brought up to the surface of a 

suitable cell within the barrel cortex, but the cell was not patched. The pipette was then kept 

in that location for a minimum of 30 minutes, whilst all of the electrophysiology protocols 

were applied, even though they were not injecting current into any specific cell. The pipette 

was then removed from the slice, and the slice was fixed in PFA, washed with PBS, treated 

with Streptavidin-Alexa488 staining solution, washed again with PBS, transferred to a 

microscope slide, set with DAPI-containing mounting solution, and imaged in the confocal 

microscope, as described above.  In none of these control experiments was any evidence for 

random uptake of Neurobiotin dye found (Figure 2.8.A).      

 

Troubleshooting 

In the initial dye-filling experiments, the Streptavidin-Alexa488 dilution of 1:200 resulted in 

random uptake of Streptavidin-Alexa488, not by other neurons, but by surrounding blood 

vessels.  This made it not only difficult to identify the primary patched cell, but also nearly 

impossible to unambiguously identify any gap-junction-coupled cells (Figure 2.8.B). Even an 

object that might appear, at first glance, to be a discrete and spherical cell could later be 

revealed to be a meander in a nearby blood vessel. All subsequent experiments were 

performed with the lower dilution of Steptavidin-Alexa488 of 1:1000, which showed a 

marked improvement in reducing random uptake by blood vessels, without detracting from 

the visibility of the patched cell.  There was some uptake of Dextran-conjugated Alexa546 

into dead neurons at the surface of the cortical slice. However, this was not a problem as they 

were only in the most superficial layers of the z-stack of confocal images and could easily be 

differentiated from the patched and coupled cells during post-imaging analysis. 
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Figure 2.8: Addressing issues in dye-filling and confocal imaging.  A: Representative 

confocal max-projection image from control dye-filling experiment. Magnification =20x.  

Control experiments follow the exact same protocol as normal experiments, except that no 

cell is patched.  Some Neurobiotin / Streptavidin-Alexa488 detritus is visible, as well as some 

uptake into blood vessels, but there is no dye uptake into neurons. B: Representative confocal 

max-projection image from dye filling with the high-concentration Streptavidin-Alexa488. 

Magnification =20x.  The white arrow shows the position of a patched neuron amongst the 

blood vessels that have been illuminated by high-concentration Streptavidin.  
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Calculating the junction potential error 

Prior to doing any assessment of patch-clamp data, the value of the junction potential error 

was calculated to allow adequate compensation. The junction potential error was calculated 

via the ionic properties of the compounds both within the pipette (the internal solution) and 

outside of the pipette, in the ACSF.  A junction potential error calculator was used, as 

provided by the ClampeX software, which itself is based on the program JPCalc (Barry 1994), 

that utilised the generalised Henderson Equation to calculate the potential across solutions 

with N polyvalent ions. A library of compounds was referred to for the valence and mobility 

of the ions contained within, and a graphical user interface allowed the input of the relevant 

concentrations of the different compounds. This facilitated the calculation of a junction 

potential error of +8.9mV. Consequently, this value was subtracted from all 

electrophysiological data prior to any other analysis.  

 

Preparing electrophysiology data for analysis 

Data analysis was performed using MATLAB 2016a (MathWorks, MA, USA). Cells were 

excluded from analysis if they were unable to demonstrate the ability to fire action potentials. 

Electrophysiology data recorded in Signal was converted to .mat files and organised 

according to date of recording, recording number, and internal solution. MATLAB scripts 

originally written by Jon Brown, developed by Michael Ashby and Sarah Hulme were used as 

the basis of the experimental analysis scripts used in this thesis, but were further developed to 

efficiently analyse this data. The analysis methods used will be described as appropriate in the 

ensuing results chapters.  

 

Distinguishing between regular-spiking and fast-spiking cell phenotypes 

To control for cell type and ensure that only the developmental biophysics of regular-spiking 

neurons was studied, it was imperative to accurately remove erroneously patched fast-spiking 

interneurons from the dataset. Although regular-spiking spiny stellate cells were targeted, 

occasionally fast-spiking interneurons were patched by accident. The dramatically different 

spiking waveforms of regular-spiking and fast-spiking neurons (Figure 2.9) made these cells 

highly conspicuous once patched.  

 

Using the second spiking trace (typically the 9th or 10th trace in the 11-step cycle), fast-spiking 

cells were identified by eye. To reduce error, the spiking traces were assessed by two separate 

people, without discussion, but with the same criteria for categorisation, resulting in 20/165 
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(12%) cells being categorised as fast-spiking, and the remaining 145 (88%) categorised as 

regular spiking. The fast spiking neurons were excluded from further analysis.  

 

 

 

Figure 2.9: Differentiating between regular spiking and fast spiking neurons.  

Representative spiking traces from regular spiking (left) and fast spiking (right) P10 neurons. 

The spiking frequencies, and the shape of the AHPs identify the cells as either regular or fast 

spiking.    

 

Statistical methods 

For all analysis methods of experimental data, n=number of cells, unless otherwise stated.  

Mean values were calculated with error bars of the standard error of the mean (σ/√n), unless 

otherwise stated. Where tests returned P-values, significance was defined as being P≤0.05.  

 

A one-way analysis of variance (ANOVA) was used to determine whether the data from 

different groups had a common mean, i.e. whether there was any statistically significant 

difference between means from different groups. The null hypothesis assumed that all group 

means are equal, under the assumption that all groups were normally distributed. It was 

applied in MATLAB using the command ‘anova1’. 

 

A Tukey Kramer test was used on data that showed statistically significant differences in the 

mean via a one-way ANOVA to test the hypothesis that the means from different groups are 

the same. This test assumed that the data tested is normally distributed and that there was 

homogeneity of variance across the groups tested. It worked under the assumption that the 

group sizes were the same, but was conservative for one-way ANOVA with different group 

sizes. The Tukey Kramer test was applied in MATLAB using the function ‘multcompare’.  

 

Pearson’s Linear Correlation Coefficient was used to assess the correlation between two 

variables. It was defined as the covariance between two variables divided by the product of 



 
62 

 

their standard deviation. In MATLAB this was applied via the function ‘corr’. With two 

variables, X and Y, their Pearson’s linear correlation coefficient is defined as  

 

𝜌 =  
∑ (𝑋𝑖 − �̅� )𝑛

𝑖=1 (𝑌𝑖 − �̅� )

{∑ (𝑋𝑖 − �̅�)2𝑛
𝑖=1 ∑ (𝑌𝑗 − �̅�)

2𝑛
𝑗=1 }

1
2

 

 

Values were returned between -1 and +1.  -1 indicated perfect negative correlation, and +1 

indicated perfect positive correlation.  

 

For purpose-built models, fitting in MATLAB was done using the least-squares function 

‘lsqcurvefit’. Via this function, a dimensionless goodness-of-fit of the model to the data 

was characterised by the nonlinear regression coefficient, R2:  

 

𝑅2 = 1 −
𝑣𝑎𝑟(𝑌𝑚𝑜𝑑𝑒𝑙 − 𝑌𝑑𝑎𝑡𝑎)

𝑣𝑎𝑟(𝑌𝑑𝑎𝑡𝑎)
 

 

As model → data, the right-hand side of this expression → 0, therefore a good fit is one where 

R2 →1.   
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3 Active Dynamics  
 

Key Findings 

1. The action potential of regular spiking excitatory neurons is observed to change with 

postnatal development, becoming significantly taller and narrower in the period 

between postnatal day 3 (P3) and postnatal day 11 (P11). 

2. Analysis of the first derivative of the membrane potential with age indicates a 

nonlinear change in action potential waveform, possibly indicating an asymmetrical 

development trajectory of different voltage-gated ion channels. 

3. Temperature is observed to affect the action potential waveform, with higher 

temperatures producing action potentials that are lower in amplitude and narrower 

(shorter duration) than those from cells kept in cooler conditions.  

4. Neuronal input resistance decreased significantly over development, with a possible 

decrease in input resistance variance also detected.  

 

3.1 Introduction 

Originating in the axonal initial segment (AIS), the action potential (AP) propagates down the 

axonal membrane to axonal boutons, and triggers the release of neurotransmitters that traverse 

the synaptic cleft and trigger APs in post-synaptic neurons (Bean 2007, Rowan, DelCanto et 

al. 2016, Telenczuk, Fontaine et al. 2017). Simultaneously back-propagating into the soma 

and dendrites of the pre-synaptic neuron (Telenczuk, Fontaine et al. 2017), APs facilitate 

neuronal development (Khazipov and Luhmann 2006) and the formation and organisation of 

functional networks of neurons through Hebbian plasticity rules “Neurons that fire together 

wire together” (Hebb 1949), and through spike-time-dependent plasticity (Jadhav, Wolfe et 

al. 2009, Winnubst, Cheyne et al. 2015).   

 

The ion channel hypothesis 

The distinctive waveform of the AP elucidates the phases of steep depolarisation and sharp 

repolarisation that occur within the cell membrane.  Since the work of Hodgkin and Huxley 

(Hodgkin and Huxley 1952), the waveform of the AP has been correlated to the currents of 

various ionic species in and out of the cell (Bean 2007, Szücs and Huerta 2015), a flux of 

charged particles through voltage-gated ion channels that are themselves governed by 
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probability-based kinetics (Hodgkin and Huxley 1952, Hay, Hill et al. 2011, Kimm, Khaliq et 

al. 2015). These currents are limited by the number, density and action of specific voltage-

gated ion channels that perform active transport to produce the electrostatic gradients. The 

influence of these channels on the AP has been studied extensively in mature cortical neurons 

via the use of channel blockers, allowing observation of the exact channel subtypes 

responsible for waveform features and spiking properties (Bean 2007, Deng, Rotman et al. 

2013, Kimm, Khaliq et al. 2015, Begum, Bakiri et al. 2016, Rowan, DelCanto et al. 2016). 

 

In a cascade of biophysical events, sub-threshold synaptic inputs combine to produce a 

voltage gradient that first activates the opening of Na+ channels, depolarising the cell 

(Catterall 2000, Krouchev, Rattay et al. 2015, Telenczuk, Fontaine et al. 2017). This 

depolarisation triggers the action of K+ channels; fast K+ channels rapidly re-hyperpolarise the 

cell, whilst slower-activated K+ channels mitigate these fast dynamics (Bean 2007, Kimm, 

Khaliq et al. 2015).  The combined dynamics of these gross changes in electrostatics result in 

an after-hyperpolarisation that overshoots the rectification in membrane potential, before the 

membrane potential returns to an equilibrium that is either quickly followed by a second AP, 

or a period of quiescence. These events occur on the timescale of milliseconds, and seemingly 

subtle changes in the position, action or population of different ion channels can have 

profound effects on the ultimate waveform of the AP, changing the rate of transfer of charge 

and changing the height or the duration of the spike (Deng, Rotman et al. 2013). The number 

and density of ion channels can therefore ultimately determine rate and fidelity of 

communication within neuronal networks and the function of applicable brain regions and 

associated cognitive behaviours (Gjorgjieva, Mease et al. 2014).  

 

Temperature 

Thermodynamic interpretations of the AP have been presented that argue that the statistical 

mechanics of the cell membrane ultimately determine its propagation and properties 

(Andersen, Jackson et al. 2009, Hady and Machta 2015). Though generally the AP is 

described in terms of electrical phenomena (Hodgkin and Huxley 1952), the effect of 

temperature on the waveform was considered. 

 

A healthy internal body temperature of a mouse is widely accepted to be between 38 and 34ºC 

(Talan 1984, Shoji, Takao et al. 2016). Room temperature is generally accepted to be at least 

10ºC cooler. Channel gating kinetics are highly temperature dependent (Hodgkin and Huxley 

1952, Hille 2001); temperature influences the dynamics of the voltage-gated ion channels by 
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affecting the flows of ionic species in and out of the cell. A high temperature dependence of 

AP waveform was therefore also expected. The movement of the ionic species in and out of 

the neurons can be related to the laws of classical thermodynamics, as developed by 

Boltzmann, which relate the kinetic energy of particles, and the probability of their different 

configurations, directly to temperature (Hodgkin and Huxley 1952, Tipler and Mosca 2007): 

 

 

 (3.1) 

Where m is the mass of a particle, v is its velocity (with vector quality), kB is the Boltzmann 

constant, equal to 1.38×10-23 m2 kg s-2 K-1, and T is temperature.  

 

 

(3.2) 

Where Pi is the probability of the ith microstate (configuration of a thermodynamic system) 

and E is the energy of the state.  

 

Input resistance 

The biophysics of the developing neurons within the barrels can be studied in terms of their 

input resistance (Llinás 2014), which has previously been shown to be cell-type dependent 

(Connors and Gutnick 1990, Luhmann, Reiprich et al. 2000), and age-dependent (Valiullina, 

Akhmetshina et al. 2016). The input resistance is the measure of the resistance to the flow of 

charge between the inside and the outside of the neuron. Factors that affect the input 

resistance can include the cell’s morphology (size of dendritic arbour, thickness of cell 

membrane), the density of organelles within the cellular cytoplasm, and the presence of ion 

channels (Kandel 2013).  It therefore follows that with neuronal growth and the formation of 

ion channels, developmental variation in input resistance is expected.  Hyperpolarising 

current injections that elucidate the electrical features of the neuron without triggering spiking 

have long been a feature of current-step protocols in whole-cell current clamp 

electrophysiology (Ito and Oshima 1965); such steps create a measurable change in potential 

difference that can be used to find the input resistance of the cell membrane via Ohm’s law 

(V=I×R). The input resistance of cortical neurons has previously been observed to decrease 

with postnatal age and influence spiking in different animal species (McCormick and Prince 

1987, Luhmann, Schubert et al. 1999, Bahrey and Moody 2002, Valiullina, Akhmetshina et 

1

2
𝑚𝑣2̅̅ ̅ =

3

2
𝑘𝐵𝑇 

𝑃𝑖 ∝  𝑒
(

𝐸
𝑘𝐵𝑇)

 



 
66 

 

al. 2016). The input resistance was therefore a necessary measure when evaluating neuronal 

intrinsic properties.  

 

This chapter investigates the changing waveform of the AP in regular spiking cells over the 

developmental period P3-P11, evaluating the height, width, and first derivative with respect to 

time of the membrane potential during the first spike fired at rheobase. The input resistance as 

a function of postnatal age is also investigated, as is the effect of temperature on the dynamics 

observed. 

 

 

3.2 Analysis Methods 

A total of 82 regular spiking cells from 36 neonatal mice between ages P3 and P11 were 

patched with pipettes containing either Standard Internal solution or Sucrose solution (see 

Methods for internal solution compositions) and analysed for age-dependent changes to the 

AP waveform.  No difference in measured membrane potential or AP waveform was detected 

between these two internal solutions, though Neurobiotin-including internal solutions were 

excluded from this analysis due to their effects on the AP waveform (Chapter 6: The Effect of 

Neurobiotin on Spiking Properties). As described in Methods, spiking behaviour was elicited 

via application of the current-step protocol, which consisted of a cycle of eleven 500ms 

injections of current of gradually increasing amplitude, each over a 1s period. This protocol of 

increasing current amplitude produced two hyperpolarised membrane potential responses and 

nine depolarised membrane potential responses; typically, spiking behaviour was elicited by 

the 9th or 10th step in the 11-step cycle. The AP threshold was defined as the membrane 

potential at which the first derivative of membrane potential with time (dV/dt) reached the 

threshold of 10.5mV/s and the subsequent membrane potential reached a minimum value of   

-35mV.  The size and number of the steps was chosen to provide a quick but reasonably 

accurate estimate of the rheobase (lowest magnitude depolarising current at which APs can 

fire, the current that pushes the cell to just suprathreshold). The first spiking waveform at the 

rheobase was detected (MATLAB command ‘findpeaks’), and the first AP from this trace 

was isolated for waveform analysis, whilst entire spiking traces allowed qualitative 

observations of waveform.  
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Action potential waveform analysis 

The first AP fired at the rheobase was analysed for changes to waveform (Figure 3.1.A), 

namely AP height and width (Figure 3.1.B). For each cell, the current-step protocol was 

repeated, typically 10-12 times.  For each repeated cycle there was a first spiking trace and a 

first AP; the waveforms of these first APs, each measured from AP threshold to AP threshold 

+ 16ms, and averaged to give a mean waveform. Using this mean AP waveform, height was 

measured as the difference in membrane potential between the AP threshold and the AP peak, 

and width was measured as the full width at half maximum height. For representative 

examples of spiking behaviour across the trace, the full second spiking trace after rheobase 

was observed. 

 

The first derivative of voltage with time 

From the waveform of the first AP fired at the rheobase, the first derivative of membrane 

potential with time (dV/dt) was found (MATLAB command ‘diff’). Two values were 

extracted from this first derivative: the maximum rate of rise, or Max dV/dt (steepest part of 

the rising phase) and the maximum rate of fall, or Min dV/dt (steepest part of the falling 

phase).  These two measures were used as a representative measure for rate of change of the 

AP with time.   

 

Effect of temperature on spiking properties 

The effect of temperature on the spiking properties was investigated on a separate preliminary 

dataset of cortical neurons from neonatal mice aged P3-P12 (n=16 cells, 9 animals). For each 

cell patched in this preliminary experiment, the temperature of the ACSF perfused into the 

bath was varied via a small thermistor heating element using a feedback controller system 

(Warner Instruments TC-324B) to temperatures between 22 and 37.5ºC. Using the current-

step protocol, spiking behaviour was elicited. The temperature was then varied, and the 

current-step protocol applied again to the same cell, allowing the features of the AP waveform 

as a function of temperature to be controlled for cell type and cell age. The mean first AP at 

each temperature was found, and measured for height and width, as described above. The 

height and width data were then grouped into two temperature-based sets for analysis: 

recordings taken at less than 27°C, recordings taken at more than 30°C.   
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Figure 3.1: Finding the primary features of the current-step protocol voltage trace.  

A:  Action potentials were triggered to fire via the injection of 11 gradually-increasing current 

steps, each lasting for 0.5s of a 1s trace. The first action potential is identified as the 

maximum point after the first derivative of voltage with time passes 10.5 V/s, trace 9, red 

circle. B:  It is this first action potential that was primarily studied, starting by measuring its 

height and its width. C: The first step of the current step protocol is a negative current 

injection, which hyperpolarises the cell, producing a hyperpolarised voltage response. The 

membrane potential in the absence of dynamics is found from the mean voltage over the first 

0.1s, prior to any current injection (red dotted line).  The steady state voltage of the 

hyperpolarised response is found by taking the mean voltage over the last 0.1s of the current 

injection (blue solid line). A single exponential can be fitted to the hyperpolarised voltage 

response (red solid line), from which the input resistance can be determined by the 

extrapolated value of the hyperpolarised membrane potential (red dashes). 
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Measuring input resistance 

Developmental variations in the input resistance were analysed via the membrane potential 

response to the first hyperpolarising current injection. The current injected was a controlled 

variable of -16pA, and the magnitude of the voltage response was found by both measurement 

of the mean hyperpolarised voltage (steady state response), and by the application of an 

exponential decay curve (extrapolated response) (Figure 3.1.C). Finding both the steady-state 

input resistance and the extrapolated input resistance required only the simple application of 

Ohm’s law: 

𝑉 = 𝐼 × 𝑅  

(3.3) 

𝑅 =
𝑉

𝐼
 

(3.4) 

The input resistance, found for each trace, was averaged over repeated cycles to give mean 

values for each cell (typically 10-12 repeats per experiment). This was done for both for the 

steady state response and for the extrapolated response. In most cells, the steady-state and 

extrapolated input resistances were approximately the same value.  However, in some cells, 

the hyperpolarised membrane potential rose by a few millivolts prior to the end of the current 

injection, in a phenomenon known as ‘sag’. The extrapolated membrane potential measure 

eliminated the contribution of sag, but relied upon adequate fitting of an exponential curve to 

the hyperpolarised voltage response.  

 

 

3.3 Results 

Temperature affects action potential height and width 

Temperature was found to have a significant effect on both the height and the width of APs 

from cortical neurons: cells were recorded from at both low and high temperatures, and at 

higher temperatures had narrower and lower amplitude APs (Figure 3.2). No further analysis 

was performed on the preliminary data from this temperature experiment, but it was ensured 

that all cells in subsequent experiments were perfused with ACSF heated to a temperature of 

36.9±0.4ºC. Accounting for heat loss between the thermistor and the bath, this corresponded 

to a temperature underneath the microscope objective of 34.2 ±0.7ºC.  
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Figure 3.2: Mean height (left) and width (right) of the first action potentials against 

temperature of the electrophysiology bath. Cells patched are aged P3 to P12.  Data are 

grouped by temperature to be either below 27°C or above 30°C (n=16). Error bars represent 

the SEM. One-way ANOVA with Tukey-Kramer test, P values as shown.   

 
 

Action potential height and width with postnatal age 

The AP waveform was observed to change with age; APs grew taller and narrower. The 

spiking profiles at and above the rheobase demonstrated qualitatively different shapes in 

terms of AP height and AP width. In observed representative second spiking traces at P3, P5, 

P7, P9 and P11 (Figure 3.3.A), these differences in waveform were apparent at a glance. 

 

The waveforms of the mean first APs from each cell were grouped by age into four sets, P3-

P4, P5-P6, P7-P8 and P9-P11, and averaged to give the mean first AP within that age range. 

These waveforms, in the period from threshold to threshold+16ms, were aligned by starting 

membrane potential, allowing the kinetics to be more clearly observed.  The waveforms were 

averaged across both Standard Internal and Sucrose solution (Figure 3.3.B), Standard Internal 

only (Figure 3.3.C, top) or Sucrose only (Figure 3.3.C, bottom).  In each dataset, the 

waveforms were observed to grow taller, whilst narrowing in terms of duration (AP width).    

 

 



 
71 

 

 

 

 

Figure 3.3: The waveform of the action potential changes with postnatal age.  
A: Representative second spiking traces in the current-step protocol (typically trace 9 or 10 in 

the 11-step cycle) for cells of odd-numbered ages between P3 and P11. B: The average first 

AP at rheobase from cells patched with either Standard Internal solution or Sucrose solution 

for four age groups. The AP is analysed from threshold to 16ms post-threshold. APs are 

aligned by threshold membrane potential. C: The average first AP from cells patched with 

Standard Internal solution (top) or Sucrose solution (bottom), again, grouped by age.  
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First AP height and width data were plotted as a function of age (Figure 3.4), both in scatter 

plots (main figures) and bar graphs of data grouped by age (P3-P4, P5-P6, P7-P8, P9-P11, 

insets).  APs were observed to grow in height from 24±6mV at P3 to 60±3mV at P11, and 

reduce in width from 2.4±0.5ms at P3 to 1.3±0.1ms at P11. The trends in AP height and width 

with age were expected to follow a sigmoidal function, levelling off when the maximum 

possible AP height and minimum width were reached (presumably at maturity).  However, 

the relationship was approximated to be linear for the relatively narrow range of postnatal 

ages in the data. A linear fit was applied to the scattered data and correlation with age was 

analysed using Pearson’s correlation coefficient. Bar graphs were analysed via one-way 

ANOVA and Tukey-Kramer tests of significance. Statistically significant decreases in width 

with postnatal age were observed whether the data was assimilated from cells patched with 

Standard Internal or Sucrose (Figure 3.4.A), or whether the internal solution populations 

were kept separate (Figure 3.4.B). Likewise, statistically significant increases in height with 

postnatal age were observed, with data grouped to include both Standard Internal and Sucrose 

(Figure 3.4.C) or differentiated by internal solution (Figure 3.4.D). Interestingly, the largest 

increases in height and decreases in width did not appear to occur simultaneously: between 

P3-P4 and P5-P6 a statistically significant increase in AP height was observed, but no such 

statistically significant decrease in AP width was seen during the same period (Figure 3.4.A 

and C, insets). A statistically significant decrease in AP width was observed by P7-P8, but no 

significant increase in AP height was observed between P5-P6 and P7-P8. Between P7-P8 

and P9-P11, changes in AP width were unperceivable whilst the height of the AP again 

increased. 

 

Dataset Slope (ms/day) Intercept (ms) Correlation P value 

Standard Internal + Sucrose -0.15 3.07 -0.51 <0.0001 

Standard Internal -0.12 2.79 -0.40 <0.01 

Sucrose -0.20 3.55 -0.72 <0.0001 

Table 3.1: Linear fits to first action potential width as a function of age. 

 

Dataset Slope (mV/day) Intercept (mV) Correlation P value 

Standard Internal + Sucrose 3.48 18.60 0.55 <0.0001 

Standard Internal 3.65 17.55 0.57 <0.001 

Sucrose 3.08 20.89 0.52 <0.01 

Table 3.2: Linear fits to first action potential height as a function of age. 
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Figure 3.4: The action potential significantly changes in width and height with age.  
A: The first AP width against age for cells patched with Standard Internal solution or Sucrose 

solution. Empty circles show the individual cells, dotted line shows linear fit to data, 

Pearson’s correlation coefficient =-0.51, P<0.0001. Inset shows bar graph of data grouped 

into four age groups, P3-P4, P5-P6, P7-P8 and P9-P11. Error bars show the standard error in 

the mean. A one-way ANOVA and a Tukey-Kramer test show a significant (***P<0.001) 

difference between the youngest group and subsequent groups. B: As before, but data are split 

by their internal solution to give data from Standard Internal solution experiments (top) and 

Sucrose solution experiments (bottom). C: The first AP height against age for cells patched 

with Standard Internal solution or Sucrose solution. Linear fit to data gives positive 

correlation, with Pearson’s correlation coefficient of 0.55, P<0.0001. Inset shows bar graph of 

data, grouped by age as above. One-way ANOVA and Tukey Kramer test show significant 

differences (*P<0.05, **P<0.01, ***P<0.001) between the youngest group and subsequent 

groups. D: As before, but data are split by internal solution.  
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The first derivative of membrane potential 

Changes to the AP with development were further illuminated by taking the first derivative of 

the membrane potential during spiking behaviour (Figure 3.5.A). The maximum and 

minimum of the first derivative, corresponding to the steepest positive gradient and steepest 

negative gradient of the AP (also known as the maximum rate of rise and maximum rate of 

fall), were evaluated both in terms of postnatal age, and in terms of their relationship to one 

another. Since measurements of the waveform already demonstrated that the AP increases in 

amplitude whilst decreasing in duration, it was already known that the rate of rise and rate of 

fall grow in magnitude with age. What was deemed more interesting was how they relate to 

one another: was the increase in height and decrease in width a consequence of either the 

rising phase or the falling phase, or a combination of both? By observing the relationship 

between these two measures as a function of age, insight into whether the ionic species that 

govern depolarisation or hyperpolarisation dominate the maturation of the AP waveform 

could be found.  

 

The maximum rate of rise was plotted in a scatter graph against the maximum rate of fall for 

data from cells patched with either Standard Internal or Sucrose solutions grouped into four 

developmental ages; P3-P4, P5-P6, P7-P8 and P9-P11 (Figure 3.5.B).  A linear fit (Pearson’s 

correlation coefficient: P3-P4=0.83, P<0.001; P5-P6=0.86, P<0.001; P7-P8=0.86, P<0.0001; 

P9-P11=0.84, P<0.0001) permitted measurement of the slope, or relationship, between the 

two variables, and hence observation of whether it was the depolarising or hyperpolarising 

active transport that dominated the shape of the AP at these broad age groups. The slope was 

observed to change, initially pointing increasingly towards Min dV/dt between P3-P4 and P5-

P6, before pointing more towards Max dV/dt, indicating the dominance of the depolarising 

phase (rate of rise) between P5-P6 and P9-P11. Data was combined from cells patched with 

Standard Internal and Sucrose solutions, as no difference in the time-dependent dynamics was 

found (Figure 3.5.C). The ratio of Max dV/dt to Min dV/dt was plotted as a function of age 

in both scattered (Figure 3.5.D) and age-grouped (P3-P4, P5-P6, P7-P8, P9-P11) data 

(Figure 3.5.D inset) 
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Figure 3.5: The first derivative of the membrane potential. A: A representative first AP 

with its corresponding first derivative. The maximum and minimum of the first derivative 

correspond to the steepest part of the AP on the way up (maximum rate of rise) and the 

steepest part of the way down (maximum rate of fall).  B: Maximum derivative against 

minimum derivative for cells patched with Standard Internal solution or Sucrose solution, 

grouped by age into four groups, P3-P4, P5-P6, P7-P8 and P9-P11. A linear fit (P<0.01) to 

each grouped dataset changes in slope with age. C: Phase plane diagrams (dV/dt against Vm) 

for both Standard Internal and Sucrose solutions illuminate the differences in age groups 

and show that there is no discernible difference between APs from cells patched with the two 

solutions. D: The ratio of Min dV/dt to Max dV/dt, plotted as a function of age.  Empty 

circles represent individual cells patched with either standard internal (red) or sucrose (black) 

solutions.  White circles with error bars show the mean rate of rise ratio at each age with the 

standard error in the mean.  Inset shows a bar graph of grouped data. One-way ANOVA and 

Tukey-Kramer test shows a significant difference (P<0.05) between P7-P8 and P9-P11 cells. 
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Figure 3.6: The input resistance decreases with postnatal age. For each scatter plot, empty 

circles represent individual cells, dotted line shows a linear fit, assessed for correlation using 

Pearson’s correlation coefficient. A: Extrapolated input resistance data from cells patched 

with Standard Internal or Sucrose solutions. (Pearson’s correlation coefficient = -0.55, 

P<0.0001). B: Extrapolated input resistance data for separate Standard Internal and Sucrose 

solution datasets. C: Steady-state input resistance as a function of age for cells patched with 

Standard Internal or Sucrose solutions (Pearson’s correlation coefficient = -0.52, P<0.0001).  

D: Steady-state input resistance data for separate Standard Internal and Sucrose solution 

datasets.  
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Input resistance 

The mean steady state input resistance and mean extrapolated input resistance of each cell 

were plotted against developmental age (Figure 3.6).  A linear fit returned statistically 

significant negative correlations between age and mean input resistance for both input 

resistance measurements (Pearson’s correlation coefficient, extrapolated input resistance = 

 -0.55, P<0.0001, steady state input resistance = -0.52, P<0.0001). This was the case whether 

the data from Standard Internal and Sucrose solution datasets were assimilated (Figures 3.6.A 

and 3.6.C) or kept separate (Figures 3.6.B and 3.6.D).  The mean extrapolated input 

resistance was observed to decrease from 321±71MΩ at P3 to 133±15MΩ at P11, whilst the 

mean steady-state input resistance was observed to decrease from 302±69MΩ at P3 to 

129±16MΩ at P11. Additionally, the variation in the input resistance appeared to decrease 

with development (Figure 3.7). To quantify this, the coefficient of variation (standard 

deviation/mean) of input resistance as a function of age was plotted for each of the two 

measures at each age point. Negative correlations were found in each case (Pearson’s 

correlation coefficient, extrapolated input resistance = -0.43, steady-state input resistance =  

-0.46), though these correlations did not reach statistical significance in either case. 

   

 
 
 
 
Figure 3.7: A decrease in variation of input resistance with age is suggested, though not 

statistically confirmed. A: Coefficient of variation (dimensionless units) for extrapolated 

input resistance. Empty circles are the coefficients at each age point for cells patched with 

Standard Internal or Sucrose solutions. Dotted line shows linear fit (Pearson’s correlation 

coefficient). B: As above, for steady-state input resistance. 



 
78 

 

3.4 Discussion 

Temperature control in electrophysiology experiments 

The results presented here demonstrate the necessity of careful temperature control during 

electrophysiology experiments that examine AP waveform, in accordance with previous work 

(Liu, Blair et al. 2017). Whilst there is a consensus on the importance of controlling the 

temperature, there is not the same agreement as to whether the temperature used should be 

closer to ‘room’ temperature, typically cited to be in the range of 20-25ºC (Luhmann, 

Schubert et al. 1999, Luhmann, Reiprich et al. 2000, Valiullina, Akhmetshina et al. 2016), or 

‘physiological’ temperature, which has been listed as between 34-38°C in the wildtype mouse 

(Talan 1984, Liu, Blair et al. 2017).   

 

When performing experiments on tissues subject to biophysical forces, what is of interest is 

how they work in their natural conditions. To understand how the biophysical actions and 

properties of the neuron develop with maturation, the conditions must replicate reality as 

closely as possible. Of course, ex-vivo slice electrophysiology can only come so close to true 

physiological conditions but ensuring that the cells are at a temperature within physiological 

range at least minimises the thermodynamic discrepancies.  For this reason, this preliminary 

temperature experiment informed all subsequent experiments, which were performed with 

ACSF heated to 36.9±0.4ºC. 

 

An interesting consideration is that across the temperatures studied, cells continued to fire 

APs.  Indeed, temperature robustness in terms of spiking activity may be governed by the 

homeostatic mechanisms that manipulate ion channel conductances (Rinberg, Taylor et al. 

2013, O'Leary and Marder 2016).  

 

Observations of changing waveform  

Both the height and width of APs were observed to change with age, becoming taller and 

thinner, in accordance with similar previous reports on APs from regular spiking cells within 

the mouse and rat barrel cortex (Parker, Cruikshank et al. 2009, Valiullina, Akhmetshina et al. 

2016). The correlations between cell age and AP height and width were observed to be highly 

statistically significant (P<0.001), indicating that changes to AP waveform are a part of 

neuronal development for regular spiking cells. APs have been observed in cortical cells of 

rodents from as early as embryonic day 18, with repetitive action potentials detected at P0 

(Luhmann, Schubert et al. 1999, Luhmann, Reiprich et al. 2000, Khazipov and Luhmann 



 
79 

 

2006).  Linear fits to the data presented here, though simplistic, provided an interesting 

estimate of the AP waveform properties at birth, before the AP is subject to sensory 

experience, with AP width estimated to be 3.1±0.5ms, and AP height estimated to be 

18.6±2mV at P0. With the data presented here limited to a brief developmental period, it 

would be interesting to observe at what age a ‘mature’ AP appears. It could be hypothesised, 

for example, that this maturation of waveform occurs when active whisking begins, at 2 

weeks of age (Arakawa and Erzurumlu 2015), or around the time of weaning (typically 21-22 

days (Bigiani, Cristiani et al. 2002)), where the young animal becomes responsible for finding 

its own food and therefore reliant on whisking behaviour to explore its environment. 

 

Not only was the AP observed to change with age, but it was observed that the width and 

height of the AP did not change concurrently, but instead appeared to ‘take turns’ in 

dominating the developmental trajectory of the overall waveform. Specifically, the APs first 

grew in height, then underwent an intermediary period of narrowing, before having a final 

increase in height towards the end of the developmental period studied. This observation 

indicates a compensatory mechanism that points to homeostasis underlying this period of 

maturation. Such mechanisms have been suggested in previous work (O'Leary, Williams et al. 

2013, Ciarleglio, Khakhalin et al. 2015), and could be aid our understanding of neuronal 

development.  

 

Though clear and statistically significant trends were observed in the AP properties, a large 

degree of variance in these properties at each age point was also present. Some noise in the 

AP waveform measurements as a function of age was almost certainly due to the imprecise 

measurements of time of birth. The dates of birth of all mouse pups were recorded, but of 

course, animals are born when they are ready, and not when would be most convenient to the 

experimentalist. Though the dams were checked at approximately the same time each day, 

each postnatal age reported comes with an error of ±24 hours. Mouse pups were sacrificed at 

approximately the same time of day for each experiment (±3 hours), so relatively speaking, 

the variance in this factor would have a negligible effect (it was assumed that neurons do not 

go on developing once the brain has been sliced). An additional consideration was that the 

gestation period of the mouse pups was not known, except that it fell within the normal range 

of 20±1 days (Barkley and FitzGerald 1990, Murray, Morgan et al. 2010). Arguably, the 

development of the barrel cortex and the cells contained within may be more precisely 

measured from the date of conception, rather than the date of birth, so differences in gestation 

by only a few hours might make a significant difference to the AP waveform at time of 

measurement. Another consideration is that dams do not necessarily have consistent maternal 
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behaviours; differences in feeding and grooming behaviour may lead to developmental 

deficits. The use of weight as the metric of development, rather than or as well as postnatal 

age, may be a suitable method of assuaging these variations, though this may be highly 

dependent on litter size.   

 
As has been shown here, the use of Standard Internal or Sucrose solutions in patch-clamping 

experiments produced no observable difference in dynamics across any of the ages studied, 

permitting these data to be assimilated. However, data from cells patched with internal 

solutions containing any concentration of Neurobiotin were excluded from this analysis, due 

to the surprising observation that Neurobiotin changed the AP waveform. This is explored 

thoroughly in Chapter 6: The Effect of Neurobiotin on Spiking Properties. 

 

The information contained within the first derivative 

The maxima and minima of the first derivative of the AP membrane potential were 

investigated for age-dependence and further illuminated the nonlinearity of AP waveform 

maturation, with the later period of maturation (P9 to P11) dominated by the rising phase of 

the AP at statistically significant levels (P<0.05). First derivative dynamics have been 

analysed in previous work by careful measurement of the features of phase plane diagrams 

(examples of which are shown in Figure 3.5.C). Such diagrams, produced by plotting the 

membrane potential against its own first derivative (Bean 2007), can be used to note subtler 

changes to the AP, in experimental, computational and theoretical studies (Naundorf, Wolf et 

al. 2006, Telenczuk, Fontaine et al. 2017).  

 

Input resistance 

A developmental decrease in input resistance was observed, in accordance with previous 

work, with the values of input resistance of comparable magnitude to reported values 

(McCormick and Prince 1987, Luhmann, Schubert et al. 1999, Luhmann, Reiprich et al. 2000, 

Bahrey and Moody 2002, Parker, Cruikshank et al. 2009, Valiullina, Akhmetshina et al. 

2016). The decrease in input resistance variation observed (but not statistically confirmed) 

here has been previously reported (Valiullina, Akhmetshina et al. 2016), and attributed to the 

huge developmental diversity between individual neurons at these ages.  

 

High input resistance in immature cells has previously been shown to be correlated to low 

spiking frequency and low spike height, features that have been hypothesised to correlate to 

high cell adaptability (Luhmann, Reiprich et al. 2000); presumably the high input resistance 
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observed in neurons that are still migrating and differentiating is a consequence of the lack of 

ion channels through which currents could flow. Correspondingly, the steady low values of 

input resistance seen in more mature neurons could be hypothesised to be a consequence of 

cells finding a place in their functional network and developing connections, providing 

electrical inputs that accelerate the formation of ion channels, as well as a consequence of cell 

growth (Bahrey and Moody 2002). 

 

The input resistance in developing cells may be influenced not only by the morphology, but 

also the presence of gap junctions. The role of gap junctions in developing cortical neurons is 

explored in Chapter 5: Gap Junctions and Morphology. 

 

Voltage gated ion channels underpin the changing AP waveform 

The features of the AP waveform are determined by the currents through voltage-gated ion 

channels in the neuronal membrane (Bean 2007). The initiation period of the spike, and 

consequently its height, are determined by the voltage-gated opening of Na+ channels, with 

height and Na+ channel population being observed to both increase with development 

(Luhmann, Reiprich et al. 2000). The width, or duration, of the spike, meanwhile, has been 

extensively linked to potassium channels (Bean 2007, Deng, Rotman et al. 2013, Kimm, 

Khaliq et al. 2015, Liu, Blair et al. 2017), with spike width being manipulated via the 

application of specific K+ channel blockers (Kimm, Khaliq et al. 2015), or via the saturation 

and inactivation of K+ channels following current injections that pushed the cell to fire long 

trains of high-frequency spikes (Liu, Blair et al. 2017). Likewise, fast activating currents 

through K+ channels have been implicated in narrower APs (Liu, Blair et al. 2017). 

 

Interpreting the results presented here in terms of the established understanding of AP 

waveform, it can be hypothesised that the changes in waveform observed correspond to an 

increased population of both Na+ and K+ voltage-gated ion channels, with an oscillating 

dominance between the two. The periods of increased AP height between P3 and P5 and 

between P9 and P11, point to the effect of Na+ channels being proportionately larger than that 

of K+ channels during these times. Correspondingly, the period of narrowing, with little 

change in height, between P5 and P9, implicates the K+ channels as dominating during this 

period. This oscillation suggests a homeostatic mechanism, in lines with what has previously 

been reported (O'Leary, Williams et al. 2013). This oscillation in dominance may repeat one 

or two more times, until the AP is fully mature and able to communicate information 

efficiently. What is less clear is whether this change is due to the population or effectiveness 
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of different ion channels. In fact, all that can be inferred is the proportional influence of the 

different types.  

 

The use of ion channel blockers has been a feature of many studies for the isolation of the 

different currents that determine the features of the AP (Bean 2007, Deng, Rotman et al. 

2013, Kimm, Khaliq et al. 2015, Begum, Bakiri et al. 2016, Rowan, DelCanto et al. 2016, 

Liu, Blair et al. 2017).  Without the use of these drugs, adverse and unspecific effects on the 

experimental protocols in this delicate period of maturation are avoided, but different currents 

go unattributed to their ion-channels.  Using the AP waveform as a command waveform and 

making recordings in voltage-clamp has previously been used as a technique to understand 

the contributions of different ion channels (Deng, Rotman et al. 2013, Liu, Blair et al. 2017). 

Such a method could be used in future experiments to better understand development.  

 

Alternatively, computational models can be used to provide insight to the developmental 

interplay between ion channels and their subtypes. Hodgkin-Huxley style models are a useful 

tool for determining the contribution of different ion channels in terms of their conductance. 

For young and developing cells, the nonlinear dynamics of active transport requires models 

that are adequately optimised for the changes inherent in maturation. Parameter optimisation 

of Hodgkin-Huxley models, for effective use on data from immature neurons is discussed 

thoroughly in Chapter 7: Multi-parameter Optimisation of Conductance-Based Hodgkin-

Huxley Models.  

 

The evolutionary benefit of a changing action potential waveform 

Whilst it is apparent that the AP waveform changes with development, what is not so clear is 

why the AP changes at all, why neurons are not born firing APs with mature waveforms.  The 

developmentally-limited AP fired by immature neurons may be a consequence of the 

metabolic limitations of the developing brain or may in fact hold benefits determined as 

favourable over long millennia of evolution.  

 

Previous work has shown extensively the dependence of neuronal activity in the 

somatosensory cortex on sensory experience, with spontaneous spiking of variable and 

desynchronised frequencies observed in immature cells (Khazipov and Luhmann 2006, 

Winnubst, Cheyne et al. 2015, Valiullina, Akhmetshina et al. 2016) and more precise spiking, 

corresponding to cues within the sensory environment developing with postnatal age 

(Khazipov and Luhmann 2006, Valiullina, Akhmetshina et al. 2016). This could easily be 

investigated by the removal of sensory input by simply trimming the whiskers of the neonatal 
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mouse and conducting experiments that are otherwise identical to those outlined in this thesis. 

Sensory experience has been shown to be a primer for gene expression that leads to the 

formation of voltage-gated ion channels (Khazipov and Luhmann 2006). Should ion channel 

populations and AP waveform be dependent on sensory experience, we would expect the 

sensory-deprived animal to produce APs that remain it their immature state, and not become 

taller and narrower with development.  

 

However, an alternative hypothesis may be that the observed changes in AP waveform are 

independent of sensory experience, and that the AP waveform follows a developmental 

trajectory predetermined in utero. If this is the case, then questions arise as to why neurons are 

not born with adequate and balanced populations of ion channels that produce AP waveforms 

in their mature state. One possible explanation is that, given the migration and differentiation 

still undergoing during the developmental period studied, it may be inefficient for neurons to 

have mature ion channel populations, when these may prove ineffectual in their final role. The 

biophysical properties of the neuron must be able to withstand the flux of maturation 

(O'Leary, Williams et al. 2013), and this may be simpler for cells with fewer ion channels. 

Such a hypothesis could be investigated by observing whether mature APs correlate with the 

appearance of mature functional networks, more than they correlate with age. This could be 

done simply by considering different cells patched from the same area of cortical slice: it 

would be interesting to observe whether ‘mature’ spiking activity correlated to networks, 

whether gap-junction or synaptically coupled.  

 

It may be that the immature AP is metabolically beneficial to the immature neuron. A low-

amplitude AP may communicate the necessary information to trigger gene expression, 

without the metabolic cost of forming all the ion channels necessary for a mature AP; until 

networks are formed it may be favourable to keep APs low-amplitude. This could also 

provide an explanation for developmental changes in spiking frequency previously reported 

(Luhmann, Schubert et al. 1999, Valiullina, Akhmetshina et al. 2016); for the immature 

neuron, there may be little or no benefit to firing long trains of APs when there are few 

synapses with which to build functional networks under Hebbian plasticity rules (Hebb 1949).  

 

The broadness, or duration, of the AP may also provide initial conditions that permit efficient 

maturation; it may be developmentally beneficial to start with broad spikes. Previously, the 

breadth of spikes has been implicated as an important factor in the probability of 

neurotransmitter release (Deng, Rotman et al. 2013).  Neuronal communication relies on the 

summation of many signals from presynaptic neurons in the body of a postsynaptic neuron, a 
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summation that is time dependent. Coincidence of activity drives synaptic plasticity and the 

formation of functional networks: “out of sync, lose your link” (Winnubst, Cheyne et al. 

2015). In developing networks where activity is largely unsynchronised or spontaneous, 

narrow APs like those seen in mature neurons would have a small probability of triggering 

ongoing signals within the same time window.  The wider APs seen in immature neurons fall 

over a longer time window, and therefore have an increased probability of being concurrent 

with one another. Spike-time dependent plasticity may require a larger time signature for the 

formation of immature networks, therefore, the narrowing of APs with development would 

correspond to the refinement of functional networks as they are formed. Thus, the cortical 

networks of the barrels would maintain homeostasis of communication whilst increasing their 

probability of self-formation and their maximum efficiency.  

 

This hypothesis would also be supported by the observation that APs appear to go through a 

period of growing taller before they become narrower, emphasising the idea that APs are as 

wide as is necessary before the formation of effective functional networks leads to the 

increased spiking activity, that in turn leads to the gene expression that drives increased ion 

channel formation, and ultimately permits refinement.  

 

The relationship between active dynamics and input resistance 

The changes to AP waveform are presumably related to the reduction in input resistance 

observed. The observed decrease in input resistance could be attributed to the increasing 

population of voltage-gated ion channels that permit a greater flux of ionic species in and out 

of the cell, ultimately contributing to larger potential differences across the cell membrane. 

 

The active dynamics are coupled to the passive dynamics 

The AP is a perturbation of the cell membrane, triggered by and manifested as a change in 

charge distributions. Although the active dynamics produce the distinctive shape of these 

events, they are underwritten by the subtler passive dynamics of the cell membrane (Bean 

2007, Guan, Armstrong et al. 2015). These dynamics are determined by the membrane 

resistance and the cell morphology (Rowan, DelCanto et al. 2016), both of which change with 

development as the cell grows. When observing how the AP changes with age, the coupling 

between these two types of dynamics must also be considered. The maturation of the passive 

dynamics is therefore explored in the next chapter.  
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3.5 Summary 

The AP of excitatory regular spiking cells within the barrel cortex of P3-P11 neonatal mice 

changes nonlinearly over maturation, demonstrating both increases in height and decreases in 

width.  Meanwhile, the input resistance is shown to decrease dramatically, in accordance with 

previous reports. This age dependence in input resistance suggests a change in ion channel 

density, but also gross changes to the cell morphology over the process of maturation. Using 

qualitative arguments based on Hodgkin Huxley dynamics, the changes in AP waveform and 

input resistance can be hypothesised to be caused by variations in voltage-gated ion channel 

populations during maturation. Specifically, the result presented here suggest an initial 

increase in Na+ channels, followed by a rectifying increase in K+ channels, in turn followed 

by Na+ again that balances and adjusts the biophysics in accordance with homeostatic rules.  

This homeostatic compensation may allow the neurons to communicate and begin to form 

their function networks whilst undergoing the gross changes in position and morphology that 

occur with brain maturation.  
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4  Passive Dynamics 
Key Findings 

1. Passive dynamics, in the form of an exponential membrane potential decay across the 

cell membrane, correspond to the electrical discharge across the insulating lipid 

bilayer. A two-compartment model of exponential decay, based on that of a solid-state 

resistor and capacitor, fits well to the passive dynamics data.  

2. The coefficients of the two-compartment model demonstrate age-dependence of the 

cell membrane resistance and capacitance, indicative of a growing surface area.  

3. A fast component of passive dynamics decay is detected in some cells, with a 

dendritic time constant up to an order of magnitude smaller than that seen in other 

cells. Possible explanations for this current ‘sink’ are explored. 

 

4.1 Introduction 

The changing biophysics of the action potential (AP) waveform is determined by the active 

dynamics of the voltage-gated ion channels in the developing neuron, but is underpinned by 

the dynamics that do not require active transport (Hille 2001, Lepora, Blomeley et al. 2011). 

For example, the magnitude of post-synaptic potentials at synapses are dependent on the 

neuronal membrane capacitance (Gentet, Stuart et al. 2000), ultimately contributing to the AP 

waveform.  These so-called ‘passive dynamics’ (PD) are governed by the diffusive 

electrostatics of the neuronal membrane but are coupled to the dynamics of fast acting 

voltage-dependent ion channels. Passive neuronal biophysics of this nature have previously 

been shown to be highly dependent on geometry (Rall 1969): both the gross cell morphology 

and the cell membrane thickness (Mason and Larkman 1990). Studying these dynamics over 

the course of postnatal development therefore provides insight into how the gross geometry of 

the cell membrane affects its electrical properties as the cell grows and differentiates.  

Inclusion of these passive dynamics is therefore necessary when formulating models of the 

dynamically maturing neuron.  

 

The biophysics of the cell membrane  

The membrane of the neuron is a lipid bilayer (Montal and Mueller 1972, Gentet, Stuart et al. 

2000). Polar lipid molecules, consisting of a hydrophilic phosphate head and hydrophobic 

‘greasy’ tail of two fatty-acid chains, assemble into bilayer structures that form the basis of 
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the membrane (Bretscher 1972).  This lipid bilayer is thin, being only a few nanometres 

across (Gentet, Stuart et al. 2000), but also impermeable to ions due to its chemical structure, 

allowing the neuron to self-regulate and generate action potentials via the action of voltage-

gated ion channels. Electrically insulating when compared to the conductive cytoplasm of the 

cell or the extracellular media, the conductor-insulator-conductor formation defines the lipid 

bilayer as a capacitor: a passive electrical component that stores potential energy in its electric 

field (Barbour 2014). The cellular cytoplasm, cell membrane, and extracellular media can be 

approximated as a resistor-capacitor (RC) circuit (Durand, Carlen et al. 1983, Wright, 

Bardakjian et al. 1996, Barbour 2014), with branches in the circuit representing different 

morphological parts, or compartments, of the neuron. The level of complexity of the RC 

circuit can therefore be used to infer neuronal models with an increasing number of 

compartments, which can in turn be used to model the finer detail of how the cell membrane 

changes with development.  

 

The cell membrane as a circuit of capacitors 

By Coulomb’s law, the amount of charge that can be stored within any capacitor is equal to  

𝑄 = 𝑉𝐶 

(4.1) 

where Q is the amount of charge stored, V is the potential difference across the capacitor and 

C is the capacitance, typically measured in Farads (F).  The capacitance per unit area of 

membrane is referred to as the specific capacitance of the membrane, and is generally quoted 

as ~1µFcm-2, though diversity has been reported (Major, Larkman et al. 1994). This value has 

been shown to be a good estimate since the pioneering work of Hodgkin and Huxley 

(Hodgkin and Huxley 1952, Wright, Bardakjian et al. 1996)  and has thus historically been 

assumed to be a constant across all excitable membranes, with the diversity of proteins found 

in the membrane of little consequence (Gentet, Stuart et al. 2000).   

 

When passive dynamics are triggered via the charging of the capacitive membrane, the 

voltage discharge measured across the membrane can be described as an extension of the 

well-known capacitor discharge equation:  

𝑉 = 𝑉𝐶𝑖𝑒
−𝑡
𝑅𝐶 

(4.2) 

This can be expanded to a potentially infinite sum of exponential components to describe a 

cell of multiple compartments, where each term represents a compartment in the cell, or a 
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branch of the RC circuit, , separated by an axial resistance (D'Aguanno, Bardakjian et al. 

1986, Amsalem, Geit et al. 2016). 

 

𝑉 = 𝑉𝑚𝑃𝐷
+  𝛼1 ∙ 𝑒

−𝑡
𝑅1𝐶1 + 𝛼2 ∙ 𝑒

−𝑡
𝑅2𝐶2 + 𝛼2 ∙ 𝑒

−𝑡
𝑅2𝐶2 + … +  𝛼𝑖 ∙ 𝑒

−𝑡
𝑅𝑖𝐶𝑖 

(4.3) 

In this model, V is the measured membrane potential during charging and discharging, αi is 

the capacitor voltage for each compartment at time t0 (which is a hypothetical value that 

assumes the membrane has been fully charged), t is time, Ri is the specific resistance of the 

membrane in compartment i, Ci is the specific capacitance of the membrane of compartment i, 

and VmPD is the resting membrane potential of the cell prior to any passive dynamics.  

 

In each exponential term, the denominator can be expressed as the time constant tau, the time 

taken for the capacitor to discharge through a resistor to ~36.8% of its maximum charge 

voltage: 

𝜏𝑖 = 𝑅𝑖𝐶𝑖 

(4.4) 

The time constants that can be found from the data are therefore indicative of both the 

compartment resistance and the compartment capacitance. 

 

When faced with this infinite sum of compartments, it is necessary to estimate the level of 

complexity necessary to capture the biophysics, and thereby limit the number of 

compartments in the model. 

 

The first term in the infinite sum has historically been taken as an approximation of the 

summed dynamics, with the first time constant taken as the most important for understanding 

the membrane. This dominant time constant has, perhaps misleadingly, been generally 

referred to as the ‘membrane time constant’ and has previously been determined by ‘peeling’ 

away the dynamics of all subsequent terms (Rall 1969, Amsalem, Geit et al. 2016), or by 

parameter optimisation (D'Aguanno, Bardakjian et al. 1986). It has been employed as an 

empirical measure of neuronal membranes (Durand, Carlen et al. 1983), despite long-standing 

concerns that this may be insufficient to capture all of the dynamics (Mason and Larkman 

1990). Arguments for the inclusion of rectifying secondary time constants in even the 

simplest models have been postulated since the 1960s (Rall 1969). 
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Figure 4.1: The neuronal membrane is modelled as a capacitor. A: The cell is 

approximated as two compartments, each with a lipid bilayer membrane. B: The capacitance 

of the cell membrane is investigated via small current injections that trigger a capacitive 

voltage response. C: The neuron can be thought of as a two-branch RC circuit, with a single 

amplified input (the patch electrode) but with two membrane potentials to be measured in the 

one voltage output: the somatic and the dendritic. An axial resistance separates compartments.  

 

 

Two-compartment models have been used by several groups (Kita, Kita et al. 1984, Wright, 

Bardakjian et al. 1996, Kim, Major et al. 2009) to good effect. A two-compartment passive 

model of striatal medium spiny and fast spiking neurons (Lepora, Blomeley et al. 2011), 

derived from differential expressions of the membrane equation, has been used to describe the 

membrane electrodynamics of excitatory neurons via an equation of the form: 

 

𝑉 = 𝛼1 ∙ 𝑒
−𝑡
𝜏1 + 𝛼2 ∙ 𝑒

−𝑡
𝜏2 + 𝑉𝑚𝑃𝐷

 

(4.5) 

This two-compartment model forms the basis of the work described here.  

A 

B C 
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The implications of passive dynamics on neuronal morphology 

Since the work of Rall, the time constants of passive membrane dynamics have been related 

to the electrotonic geometry of neuronal compartments (Rall 1969, Durand, Carlen et al. 

1983, D'Aguanno, Bardakjian et al. 1986). Taking into account the specific membrane 

capacitance and the magnitude of the current injection that facilitates the charging of the cell 

membrane, the four coefficients returned from the two-compartment model, Alpha1, Alpha2, 

tau1 and tau2, can be related to an estimation of the neuronal surface area (Lepora, Blomeley 

et al. 2011).  Being determined by both geometry and resistance, the cell membrane time 

constants have previously been shown to change with age, as neurons grow (Luhmann, 

Schubert et al. 2011). Passive dynamics predictions of the surface area would be expected to 

show neuronal growth, with a particularly large increase in dendritic surface area 

corresponding to the critical period for dendritic spine growth (Ashby and Isaac 2011).  

 

This chapter describes an investigation on the age dependence of PD via the application of the 

two-compartment model to PD data recorded from the same excitatory neurons that 

underwent active dynamics investigations, as described in Chapter 3: Active Dynamics, in 

acute slices from mice aged P3 to P11.  It describes the extensive data processing methods 

necessary for fitting this model to experimental data and compares the time constants returned 

from this fitting to that from the literature. It then explores how the coefficients of this fit vary 

with postnatal age, and relates the passive dynamics coefficients to the cellular surface area 

and membrane resistance via the application of previously developed models (Lepora, 

Blomeley et al. 2011), providing a prediction of the overall increase in neuronal surface area 

with maturation.  It also describes some unusually fast dynamics that were observed in some 

cells, indicating the presence of a current ‘sink’.  These fast dynamics are shown to be 

development dependent.  

 

 

4.2 Analysis Methods 

The passive dynamics of the cell were studied via current-clamp electrophysiology by the 

application of a current injection that triggered a membrane potential response that fell below 

the threshold for stimulation of voltage-gated ion channels.  PD protocols were used on 145 

regular-spiking excitatory cells across the full range of internal solutions used, since no 

difference in passive dynamics was found between internal solutions (Chapter 6: The Effect of 

Neurobiotin on Spiking Properties).  
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The experimental protocol used in PD experiments is described in detail in Methods, but, 

briefly, regular spiking excitatory cells in the barrel cortex of neonatal mice aged P3 to P11 

were whole-cell patched with a micropipette and held in current clamp at -72±10mV.  

Following the application of a current-step protocol that elicited spiking behaviour, a PD 

protocol was applied that consisted of two short pulses of magnitude 0.4nA and duration 1ms, 

one hyperpolarising and one depolarising, with a gap of 500ms between pulses, as developed 

from previous work (Lepora, Blomeley et al. 2011). This protocol induced a capacitive 

charging and discharging of the cell membrane, observed in current clamp as a sudden 

increase in membrane potential followed by a long exponential decay. This protocol was 

repeated 40-100 times per patched cell, with the resting membrane potential closely 

monitored throughout.  

 

Data processing and quality control 

Variations in PD recordings between cells were small and subtle; to elucidate the 

developmental-dependent changes, it was necessary to employ stringent quality control 

methodologies to ensure that the average PD trace from each cell was indeed representative of 

that cell (Figure 4.2), and not skewed by noise or other artefacts (Major, Larkman et al. 

1994).   

 

It was first necessary to correct for bridge-balance error. This error occurs due to the voltage 

drop across the electrodes in the electrophysiology rig, and can easily be corrected via the 

amplifier, given that the current being injected is known. Bridge-balance error was minimised 

via a compensatory adjustment of 7.3MΩ.  

 

Secondly, it was necessary to remove any traces that displayed markers of active dynamics, to 

ensure that the dynamics being studied were indeed purely passive. This was achieved by first 

removing any PD datasets that showed the routine firing of APs. Where the resting membrane 

potential was found to be of such a magnitude that the small current injection triggered the 

routine firing of APs, the holding current on the cell was adjusted to reduce the resting 

membrane potential (keeping it within the -72±10mV range), and the experiment was 

restarted. For datasets that exhibited sporadic APs, systematic deletion of traces was 

performed.  The amplitude of each PD trace was measured, and the amplitudes were observed 

to follow a normal distribution (Figure 4.2.C).  Amplitudes that exceeded one standard 

deviation from the mean were judged to be indicative of active dynamics and were removed 
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from the dataset. To ensure that the centre of the normal distribution of PD trace amplitudes 

was not shifted by this data cleansing, the traces that were more than one standard deviation 

below the mean amplitude were also discarded.  A consequence of this was that in ‘good’ 

datasets with no active dynamics present, up to 32% of the data may have been erroneously 

discarded, but this was deemed necessary to ensure that the dynamics measured were truly 

passive. In most cases, the presence of one or two AP traces in a dataset of 40-100 shifted the 

normal distribution towards higher amplitudes, and the 1-standard deviation cut-off 

performed well.  

 

 

 
 
 

 
Figure 4.2: Pre-processing of passive dynamics data. A: Raw data consisted of the cell’s 

membrane potential response to two short current injections, one hyperpolarising and one 

depolarising.  Each of the current injections resulted in an exponential membrane potential 

decay.  The current injection was repeated 40-100 times. B: The entire passive dynamics trace 

was assessed for quality by the first 0.4s. The amplitudes of the traces followed a normal 

distribution (C). Any traces that fell outside one standard deviation of the mean of this 

distribution were removed to ensure that no action potentials contaminate the dataset.  The 

data were then aligned around the mean value of the resting membrane potential (first 0.1s of 

the trace), allowing any data with a particularly noisy ‘tail’ to be removed.  

D: From the processed and aligned data, the mean passive dynamics trace was found.  
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With active dynamics cleansed from the dataset, the PD traces were aligned, allowing 

detection of traces that were particularly noisy. Noise was assumed to be primarily due to the 

breakdown of the cell membrane around the site of pipette patching. In each dataset, the 

traces were aligned by the mean resting membrane potential, Vm. Once aligned, noisy traces 

were identified by the later period of decay where the membrane potential had approximately 

returned to baseline: traces were deleted when the mean amplitude of the PD trace in the 

period 250-400ms (150ms after the peak) was more than one standard deviation above the 

mean amplitude of the dataset in this period.  

 

The resultant PD dataset of a cell could be greatly depleted by this process, but what was left 

produced a robust mean trace, to which a two-compartment exponential decay model could be 

fitted (Figure 4.2.D).  

 

Modelling the exponential decay  

A two-compartment model of membrane voltage under capacitive charging (Equation 4.5) 

was fit to the mean PD trace from each cell. The two compartments within the model were not 

defined from physiological observations during microscopy but were thought of as 

approximating ‘somatic’ compartment and ‘dendritic’ morphologies. It was therefore 

expected that the coefficients of the dendritic compartment would indicate a much larger 

surface area than that of the somatic compartment given what is known about neuronal 

morphology. The first term in Equation 4.5 was allocated to the somatic compartment, and the 

second term was allocated to the dendritic compartment. The third term, VmPD, represents the 

membrane potential prior to the current injections as returned from the fitting, rather than that 

measured directly from the experimental data.  

 

This model was first fit to the data decay part of the trace only - the trace data from the period 

spanning 101ms to 501ms - to extract the PD coefficients (MATLAB command ‘fit’ was 

used in original scripts). This was possible because the dynamics that governed the capacitive 

discharging of the cell membrane were the same that governed its capacitive charging, except 

that the rising phase is stopped after only 1ms, whereas the decaying phase stretched over 

400ms, allowing more scope for model refinement.  

 

With the two-compartment model fit to the discharging part of the trace, goodness of fit was 

evaluated using the nonlinear regression coefficient, R2; the dataset was rejected if a 

minimum R2 value of 0.99 was not reached. Such a high threshold for acceptable fit was 
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necessary because of the exponential nature of the model; small misfits between data and 

model returned vast differences in the coefficients extracted. The five coefficients returned 

from good fits, Alpha1, tau1, Alpha2, tau2, and VmPD, were then used to model the brief 

charging portion of the PD trace. This allowed a ‘holistic’ model of PD charging and 

discharging to be made, allowing a secondary evaluation, to ensure that the entire trace 

reached the minimum R2 measure of goodness of fit.  

 

 

Figure 4.3: Construction of a holistic model of the passive dynamics. The discharging 

(decay) part of the trace is fit with a two-compartment model (orange). The coefficients of 

this model are used to inform the resting part of the trace (magenta) and the charging part of 

the trace (navy). The entire trace is checked for goodness of fit (R2 measure). Inset shows the 

region around the peak.  

 

 

Demonstrating dynamics are purely passive 

It was necessary not only to exclude AP dynamics from the PD traces, but also to demonstrate 

that no active dynamics that could precede the firing of an AP were triggered. To ensure that 

only true passive dynamics were observed, the experimental protocol was constructed to 

facilitate observation of any contribution from active dynamics, as has been previously 

described (Huang, Hong et al. 2015): the depolarising current pulse injection was followed by 

an equal and opposite hyperpolarising pulse injection. It was hypothesised that if only PD 

were invoked, then the membrane potential response from both depolarising and 

hyperpolarising injections would be symmetrical; asymmetry between depolarising and 

hyperpolarising components of the trace would imply that voltage-gated ion channels were 

being activated when the membrane potential was increased in one direction but not the other.  

 

Once data were aligned and averaged, and all quality control methodologies performed as 

described above, the absence of active dynamics was confirmed via three methods (Figure 
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4.4). In the first method, (Figure 4.4.A) the PD trace was split into two sections. The first 

consisted of the data spanning the period of 0 to 400ms, encompassing the depolarising 

current injection and resultant PD decay, the second section consisted of the data from the 

period 401 to 800ms, encompassing the hyperpolarising current injection and resultant PD 

decay. The hyperpolarised section of the data was flipped and overlaid on top of the 

depolarised section, thereby allowing visual inspection to demonstrate that they were the 

same shape and there was little to no difference between sections.    

 

The second method compared the coefficients returned from the two-compartment model fit 

of both hyperpolarising and depolarising sections (Figure 4.4.B).  If active dynamics were 

present, the time constants from the hyperpolarised and depolarised sections would be 

unequal. The ratio of tau1 to tau2 for the hyperpolarising component was plotted against the 

equivalent ratio for the depolarising component, allowing detection of any asymmetry as a 

deviation from the line of equality. As with the previous method, we found that the 

hyperpolarising and depolarising sections were largely symmetrical, and no evidence of active 

dynamics was found. 

 

Finally, the hyperpolarising section of each trace was summed with its corresponding 

depolarising section to produce a time-dependent measure of the effective difference between 

the two.  When hyperpolarising and depolarising sections were identical, the summation was 

equal to zero. This effective difference was averaged across cells to give a mean summation, 

and both the summations from individual cells and the mean summation were plotted (Figure 

4.4.C). An asymmetry in this average effective difference would indicate dominance of either 

section, but no such asymmetry was observed; instead, the minor fluctuations of the average 

effective difference were well within the noise level, and when compared to the mean PD 

depolarised membrane potential response, these minor fluctuations were clearly negligible.  

 

Therefore, it was concluded that no significant difference between the two membrane 

potential responses was detected, and since the symmetry was preserved, no active dynamics 

were triggered.  
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Figure 4.4: Three different methods to ensure there is no difference between the 

hyperpolarising and depolarising membrane potential decay curves, thereby 

demonstrating that the dynamics were passive. A: (Left) Membrane potential decay curves 

are produced by two brief (1ms) injections of current, one depolarising, the other 

hyperpolarising, 400ms apart. (Right) Method 1: The resulting capacitive decays are sectioned 

out and are overlaid to check by eye that there is no visible difference (representative traces).  

B: Method 2: a two-compartment model fitted to both hyperpolarising and depolarising 

curves. The ratios of the time constants (tau1, tau2) from each curve are plotted and compared 

(blue circles).  A straight line fits to the data with correlation coefficient >0.99. C: Method 3: 

(Left) The summation of hyperpolarising curve with the depolarising curve for each trace 

(grey lines), and the resulting average amplitude (black line).  The summation amplitude does 

not deviate far from 0 and is negligible when plotted against the mean depolarising curve 

(right). 
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4.3 Results 

Passive dynamics change with age 

Mean PD traces were found for each age across all cells patched using all internal solutions. 

The mean shape of the PD trace was observed to change with age. When aligned by Vm, an 

age-dependent decrease in PD amplitude was detected, indicating a reduction in the amount of 

charge that can be stored in the cell membrane (Figure 4.5.A). PD traces were then scaled for 

amplitude to allow comparison of kinetics.  This showed a subtler age-dependent variation: 

PD traces appeared to become narrower over the period P3-P6, before becoming wider over 

the period P7-P11.  This nonlinear variation was expected to be reflected in the measured time 

constants, and therefore in the membrane capacitance and resistance (Figure 4.5.B).  

 
Figure 4.5: The passive dynamics appear to change with developmental age. A: Mean PD 

trace at each age, overlaid with the previous age to show the change in amplitude.  

B: As above, except traces are scaled for amplitude to show the changing kinetics.  
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Comparison of models with different numbers of compartments 

Exponential decay models with different numbers of compartments were trialled on all PD 

datasets, with all models being assessed by their R2 measure of goodness of fit (Figure 

4.6.A). A one-compartment model generally produced poor fits to the data, as assessed by a 

‘good fit’ of R2 ≥ 0.99. A two-compartment model fit well to the passive dynamics data in 

122 (84%) of cases. Models of three and four compartments made no significant improvement 

on the R2 value, and consequentially, the two-compartment model was judged to be 

sufficiently complex to capture most of the information from the data without overfitting.  

 

Regarding the PD from cells that did not fit well to the two-compartment model, and were 

therefore rejected from the overall dataset, the majority (12 cells) were from early 

experiments where the apparatus had not been corrected for bridge-balance error.  However, 

there were some data that did not fit to the two-compartment model despite being bridge-

balanced. In three cases the PD trace was too noisy to produce an adequately high R2 

measure. In two cases, a two-compartment model fit well to the data, but the dynamics were 

very different to those seen in other cells, producing coefficient outliers. Since these outliers 

were so anomalous, and dynamics so unusual, it was judged that in this case the cells 

exhibited partially-active dynamics that surpassed all our quality checks. These cases were 

isolated and not indicative of the effectiveness of the quality controls. 

 

For the remaining six cells, the two-compartment model was observed to be a ‘bad fit’ despite 

these cells appearing to have fairly typical dynamics with low noise. Interestingly, for these 

six rejected datasets, a three-compartment model was observed to fit reasonably well to each 

of these cells, with R2 measures of goodness of fit that fell within our thresholds (Figure 

4.6.B). Using a three-compartment model on these ‘bad fit’ data lead to an improvement on 

the R2 measure for each of these six cells; for five of these cells, the improvement was modest 

(~2% improvement with three compartments), but for one cell the improvement was 

noticeably larger, with a ~20% improvement with three compartments. This outlier may be a 

different type of neuron with different dynamics, but other explanations are also possible.  

These datasets came from cells with an average age of P9; the three-compartment model may 

therefore become necessary as the cells mature and develop more complex morphology. For 

example, the third compartment may be indicative of an explosion of spine growth, as has 

been previously reported at this postnatal age (Ashby and Isaac 2011).  
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File Age R2  for 2 
compartments 

R2 for 3 
compartments 

Improvement with 
3 compartments 

141215_043 8 0.9844 0.9978 0.0134 

211116_016 7 0.9703 0.9882 0.0179 

241116_038 10 0.8311 0.9970 0.1659 

251116_022 11 0.9642 0.9880 0.0238 

251116_028 11 0.9841 0.9995 0.0154 

251017_029   7 0.9830 0.9899 0.0069 

 
 
Figure 4.6: A two-compartment model of exponential decay fits well to most passive 

dynamics (PD) traces. A: The R2 measure of goodness of fit as a function of the number of 

compartments.  Empty circles show the R2 value for models of various compartments fitted to 

PD traces from each cell.  Black crosses show the locations of the mean R2 value for each 

number of compartments, with the length in the y axis representing the standard error in the 

mean. Dotted black line shows an exponential fit to the mean R2 values.  Two compartments 

are shown to be as good as three or four in most cases. B: Representative PD trace to which a 

two-compartment model did not fit well, but a three-compartment model did.  Data shown in 

blue, models of two (top) and three (bottom) compartments shown in red. R2 measure of 

goodness of fit dramatically increases with three compartments. C: Table of R2 error for the 

six PD traces to which a two-compartment model did not fit. In each case, a three-

compartment model gives an improvement.  
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A fast component of passive dynamics decay 

Of the 122 cells tested for PD and fit with a two-compartment model, 57 (47%) exhibited a 

fast component of membrane potential decay, or a ‘kink’, visible as a very sharp initial phase 

of the PD decay. Two cells, judged to be representative of a ‘kink’ trace, and a ‘no kink’ 

trace, were used to categorise the rest of the cells in the same way by visual inspection 

(Figure 4.7.A). For this analysis, the entire PD trace was plotted alongside the 9ms 

surrounding the PD peak (Figure 4.7.A, insets). This allowed for careful comparison between 

the PD of each cell and these two representative traces.  This evaluation of the dynamics was 

binary: all cells were assigned either a 0 for ‘no kink’ or a 1 for ‘kink’.   

 

When fitted with the two-compartment model, the cells that exhibited the kink returned a 

second time constant, tau2 that was as much as an order of magnitude smaller than that 

observed in other cells (Figure 4.7.B). No such change was observed in tau1. The brevity of 

this time constant raised doubts as to whether it could be attributed to electrostatic diffusion 

across the lipid bilayer. It was therefore hypothesised that this fast membrane potential decay 

was due to a current ‘sink’ – an unexpected leak or channel in the cell membrane that 

facilitated membrane potential decay on a much faster scale than the physics of lipid bilayer 

cell membranes would be expected to permit.  

 

The proportion of cells exhibiting kink dynamics on each postnatal day, as defined from 

visual inspection, was then calculated and plotted in a bar graph against age (Figure 4.7.C).  

This showed that there was a visible qualitative difference between ages, with an apparent 

minimum at P6 where only 15% of cells exhibited kink dynamics, as opposed to an apparent 

maximum at P8, where 79% of cells exhibited kink dynamics. A Gaussian distribution fit to 

these data (R2 value = 0.59) showed a peak at 8.76 postnatal days, despite returning a 

relatively poor fit.  Both this distribution and the raw data seem to indicate that these 

dynamics are somewhat transient, dropping back to lower levels in more mature cells.  

 

The age-dependent dynamics of tau2 approximated the inverse of the dynamics seen in the 

kink dynamics. To confirm that the kink was related to the value of tau2, the proportion of 

cells exhibiting the kink at each age was drawn on the same plot as the inverse of the mean 

value of tau2 at each age (Figure 4.7.D). Quadrature was used to find the standard error in the 

mean for the inverse of tau2. When overlaid in this way, the covariance between the presence 

of the kink and the value of tau2, and the age-dependence of both, became apparent.  
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Figure 4.7: A fast component of passive dynamic decay. Of the 122 cells that underwent 

the passive dynamics protocol and fit to the two-compartment model, 57 of them exhibited 

dramatically different dynamics, evident by the presence of very fast dynamics, or a ‘kink’ in 

the voltage decay. This was confirmed by the statistically significant difference in the tau2 

dendritic time constant. A: Two representative PD traces (blue) with their corresponding two-

compartment models. These traces were used to categorise all other traces as ‘kink’ or ‘no 

kink’ via visual comparison.  Inset in each case shows the dynamics of the 9ms surrounding 

the peak.  There is a difference of more than an order of magnitude between the returned time 

coefficient tau2 for these two examples. B: Scatter plot of tau1 and tau2 for cells exhibiting no 

kink vs those exhibiting a kink. The Y axis has a logarithmic scale. Empty circles show 

individual cells, filled circles with error bars show the mean with the standard error in the 

mean. No relationship was found between tau1 and the presence of the kink, but tau2 was 

shown to be related to the kink (one-way ANOVA, Tukey-Kramer test, P= 0.0028).  

C: The proportion of cells at each age that exhibited a kink in their dynamics, as defined via 

visual inspection, varied with age.  D: Covariance of the kink proportion with the value of 

tau2 as a function of age provided confirmation that these dynamics are related to the second 

time constant. The proportion of cells that exhibited kink dynamics (kink proportion) plotted 

as a function of age (blue), overlaid with the inverse tau2 as a function of age (red).  Error 

bars represent the standard error in the mean, calculated via quadrature. 
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To ascertain that the fast component of membrane potential decay seen in some cells was not 

due to an artefact of the experimental apparatus, a model cell, a small electrical circuit of 

resistors used to calibrate and check the electrophysiology rig, was used to attempt to recreate 

these dynamics. The model cell was mounted on the electrophysiology rig and subjected to 

the passive dynamics protocol with the Multiclamp 700A amplifier settings varied across their 

range. The bridge-balance error seen in some cells was recreated easily, but no dynamics 

resembling the ‘kink’ could be artificially created, regardless of the experimental setup used. 

It was therefore concluded that the origins of the kink are either physiological, or are due to 

interactions with the pipette, or a combination of the two.  

 

Coefficients of the fitted model against age 

Two time constants were returned from the model fit to data across ages P3-P11. The first, 

tau1, was found to be between 4.1 and 107.1ms, with a mean value of 34.5±1.5ms. The 

second, tau2, was found to be between 0.3 and 15.5ms, with a mean value of 2.6±0.2ms. 

These values were of the same order of magnitude as time constants that have been reported 

from two-compartment models across neuron types and species (Kita, Kita et al. 1984, 

Wright, Bardakjian et al. 1996, Kim, Major et al. 2009, Lepora, Blomeley et al. 2011) 

 

To investigate the age-dependence of the PD, the coefficients of the two-compartment fit, 

Alpha1, Alpha2, tau1 and tau2 were each plotted against age (Figure 4.8).  A statistically 

significant age dependence was found for Alpha1, appearing to show a linear negative 

correlation, reflecting the earlier observation that the amplitude of PD decreases with age. No 

age-dependence was found for Alpha2, nor for tau1, the time coefficient from the 

compartment designated as ‘somatic’. However, tau2, the time coefficient from the 

compartment designated as ‘dendritic’ demonstrated some very interesting dynamics, 

appearing to show an oscillatory relationship: an initial increase in tau2 with age between P3 

and P5, followed by a decrease at between P5 and P9, followed by a dramatic increase 

between P9 and P11. A statistically significant difference was found between the data at P8 

and at P11, due to the steepness of this increase. These time points may be significant in terms 

of morphology, corresponding to phases of dendritic elaboration within the barrel, pruning of 

dendrites as the barrels become more discrete, and later spinogenesis (Ashby and Isaac 2011).  

 

Taken together, these data appear to show two interesting age-dependent effects: the capacity 

of the neuron to store charge decreases with age, and the speed of membrane discharge 

changes with age, with the fastest dynamics at around P8.  

 



 
103 

 

 

 
 
Figure 4.8: The passive dynamics coefficients from the two-compartment fit to the data 

show age dependent variance in both Alpha1 and tau2. The four age-dependent coefficients 

returned from the two-compartment fit. Bars represent mean values; error bars show standard 

error in the mean. A one-way ANOVA and Tukey-Kramer test of significance was performed 

on each coefficient, and found age-dependent variation in Alpha1, which significantly 

decreased with age, and tau2, which appeared to exhibit nonlinear age-dependent variability.   

 

 

 

 

Passive dynamics predictions of the neuronal surface area 

Within the two-compartment model, the ‘somatic’ and ‘dendritic’ names are not meant to 

strictly define the scope of the biophysical compartments, rather, they are given to provide 

some contextual physiological basis to the analysis. The two compartments instead represent 

the regions of the cell that can be regarded as separate isopotentials.  By referencing a 

previously described model of neuronal surface area that utilises the coefficients of the two-

compartment model to provide predictions of both somatic and dendritic compartments 

(Lepora, Blomeley et al. 2011), an age-dependent prediction of neuronal surface area for the 

two compartments was made.  
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𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 𝑆𝑜𝑚𝑎𝑡𝑖𝑐 =  

𝐼0
𝐶

𝛼1
𝜏1

+
𝛼2
𝜏2

 

(4.6) 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 𝐷𝑒𝑛𝑑𝑟𝑖𝑡𝑖𝑐 =  
𝛼2 ∙ 𝜏1

(𝛼1 ∙ 𝜏2) ∙ 𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 𝑆𝑜𝑚𝑎𝑡𝑖𝑐
 

(4.7) 

This assumes a specific membrane capacitance of 1μFcm-2, as is typically quoted, and uses 

the known current injection of 0.4nA. Via the application of this model, both compartments 

returned surface areas of an order of magnitude appropriate for neurons. Reassuringly, the 

‘dendritic’ compartment returned a surface area prediction that was approximately an order of 

magnitude larger than the ‘somatic’ surface area across each age in the developmental period 

studied.  For both dendritic and somatic compartments, the surface area prediction increased 

with postnatal age (Figure 4.9), indicating the expected neuronal growth. Approximating the 

relationship between postnatal age and surface area as linear, a positive correlation was found 

for both somatic and dendritic compartments (Pearson’s correlation coefficient, somatic 

compartment correlation = 0.2, P = 0.02, dendritic compartment correlation = 0.261, P = 

0.005).  By finding the intercept of these linear fits (y=mx+c), a somatic surface area of 

0.03mm2 and a dendritic surface area of 0.6mm2 at birth (P0) was suggested.  However, 

despite providing statistically significant results, the linear model did not fit very well to the 

data, with an R2 measure of goodness of fit through the mean values from somatic and 

dendritic compartments returning values of only 0.187 and 0.299 respectively.  A linear 

model was therefore judged to be an oversimplification, and other models of the relationship 

between neuronal surface area and development were explored. 
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Figure 4.9: Surface area of both the dendritic and the somatic compartments increases 

with age. A: The somatic surface area as a function of age. Empty circles show individual 

cells, filled circles with error bars show the mean with the standard error in the mean at each 

age. Grey line shows a linear best fit to the data. Pearson correlation coefficient shows a 

positive correlation of 0.209 (P=0.027).  Linear fit indicates minimum somatic surface area of 

0.031mm2 at P0. R2 measures of goodness of fit on both the data and the means shows a linear 

model to be a poor approximation.   B: The dendritic surface area as a function of age.  Data 

and statistical tests as above. Pearson correlation coefficient shows a positive correlation of 

0.261 (P=0.005).  Linear fit indicates minimum dendritic surface area of 0.616mm2 at P0. As 

above, R2 measure of goodness of fit shows a linear model to be a poor approximation. 
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Higher order models of surface area developmental dynamics 

Given the limitations of the linear fit to the increase in surface area of both somatic and 

dendritic compartments, subtler patterns of neuronal growth were investigated. One 

interesting observation was that the PD-predicted increase in surface area appeared to fit well 

to a cubic function of the form:  

 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 = 𝑎 ∙ 𝐴𝑔𝑒 3 + 𝑏 ∙ 𝐴𝑔𝑒 2 + 𝑐 ∙ 𝐴𝑔𝑒 + 𝑑 

(4.8) 

This polynomial was constrained to have a lower limit on the fourth coefficient, d, of zero, 

since the surface area cannot be negative (if the surface area of a cell is zero or below, the cell 

does not exist). When age =0, i.e. at postnatal day P0, the expression simplifies to: 

 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 = 𝑑    

(4.9) 

and since surface area ≥ 0, then by definition d must also be ≥ 0.   No constraints were set to 

any of the other coefficients of this polynomial as the fitting was purely exploratory. The 

cubic function fit well to both the somatic and dendritic surface area predictions (Figure 

4.10), indicating an initial increase in total cell surface area, followed by a brief period of 

reticence between P5 and P9, followed by an apparent explosion in neuronal growth between 

P9-P11 for both compartments.  Both growth trajectories would be expected to plateau as the 

cell approaches maturity, and therefore this cubic model of development does not provide a 

complete picture of these developmental dynamics.  However, it is interesting that the sudden 

increase in surface area predicted here corresponds to the previously reported explosion in 

dendritic spines observed at P10-P11 (Ashby and Isaac 2011).  

 

An R2 assessment of goodness of fit of this model to the mean surface area at each age-point 

returned a much-improved value of 0.702 for the somatic compartment and 0.731 for the 

dendritic compartment, indicating that this cubic function is a much closer approximation to 

the dynamics of neuronal growth than a linear model.  
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Figure 4.10: A third-order polynomial (cubic) fit to surface area against age hints at 

some interesting dynamics. A: The somatic surface area as a function of age. B: The 

dendritic surface area as a function of age.   Empty circles show individual cells, filled circles 

with error bars show the mean with the standard error in the mean at each age.  
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4.4 Discussion 

Are the dynamics truly passive? 

It has previously been argued that what are regarded as passive dynamics are in fact 

determined by voltage-gated ion channels open at the resting membrane potential (Wright, 

Bardakjian et al. 1996). Specifically, it has been suggested that they are due to the 

contribution of sub-AP-threshold voltage-sensitive very-slow-inactivating K+ and Na+ 

channels (Connors, Gutnick et al. 1982). Others have argued that the PD are dependent on 

ionic concentration as well as neuronal morphology and that a Goldman-Hodgkin-Katz-based 

model that describes the flux of ionic compounds is necessary to explain the dynamics fully 

(Huang, Hong et al. 2015).  The data presented here do not provide any information to falsify 

this hypothesis; it was found that the hyperpolarised and depolarised passive dynamics traces 

observed were symmetrical, which would imply that whatever ion channels are open stay 

open throughout this experimental protocol. It is possible that the change with maturation that 

we see is more due to the changing population of these resting-state ion channels than the 

changes in morphology; in reality, it is probably a combination of factors.  

 

Considerations of experimental protocol ordering in passive dynamics 

measurements 

When designing and developing the experimental protocols used, it was necessary to make 

compromises that may have had an influence on the data collected. It was decided to elicit the 

spiking behaviour of the cell by first running the current step protocol, therefore ensuring that 

the cell was healthy and capable of firing APs. This meant that the PD protocol ran second, 

after a period of voltage-gated ion channel activation. It is therefore feasible that the after-

effects of this active period contributed to the measured PD. However, since it has been 

thoroughly demonstrated that the PD observed were as free from active transport as can be 

observed, we conclude that this ordering of protocols is no cause for concern.  

 

Are passive dynamics indicative of age dependence? 

The data presented here clearly demonstrate that the PD of the developing cortical neuron 

change with postnatal age, both in terms of the membrane potential and time constants of 

capacitive charging and discharging.  However, these dynamics do not change in a simplistic 

fashion.  Although the amplitude of the dynamics shows a linear age dependence, the kinetics 

of the dynamics are nonlinear, appearing to correlate to the established critical periods in 

neuron surface area expansion (Ashby and Isaac 2011).  
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Are two-compartment models the most appropriate for these data? 

Excluding the datasets that exhibited bridge-balance error, the two-compartment model fit to 

92% of PD datasets with an R2 value of 0.99 or more. The two-compartment model is 

attractive for its simplicity, but the presence of datasets (one in particular) that only fit well to 

the higher order compartment models raises the question of whether some dynamics are being 

missed by oversimplification. Arguments have long been made for a minimum of three 

compartments within models, with the dendritic structure and the endoplasmic reticulum 

suggested as physiological factors responsible for the subtler dynamics (Ito and Oshima 

1965).  It may be the case that a three-compartment model gives more robust fits and more 

accurate predictions of neuronal physiology at different developmental stages. However, this 

raises philosophical questions about the nature of building mathematical models of biological 

structures; we do not expect our models to provide us with an entire description of the 

developing neuron, but we do expect them to provide testable hypotheses on the changing 

dynamics of the cell (“All models are wrong, but some are useful” (Box 1987)). Whilst the 

two-compartment model provides good fits to the majority of data and testable hypotheses, 

the justification for adding complexity is low.  

 

Even with little justification for adding complexity, it is still interesting to ponder the 

physiological basis of more compartments. The improvement in fitting seen for one cell may 

be simply due to it being a different cell type, or otherwise unusual morphology, but it could 

also be hypothesised that the third compartment may be indicative of more complex 

morphology that occurs later in development. The relationship between morphology and 

passive dynamics was examined via dye filling and post-hoc confocal imaging experiments 

described in the next chapter (Chapter 5: Gap Junctions and Morphology). Unfortunately, 

none of the six cells that preferably fit to a three-compartment model were successfully 

imaged in these experiments so for this dataset, this question will remain unanswered.  

 

The fast component of exponential decay 

A ‘kink’ in the PD, indicative of a particularly fast component of capacitive discharge, was 

observed to be present in 47% of cells measured.  Such dynamics have been observed before, 

and have been attributed to the experimental apparatus: to pipette artefacts (Major, Larkman 

et al. 1994), to an ‘unbalanced electrode’ (D'Aguanno, Bardakjian et al. 1986),  or to a shunt 

caused either by pipette damage or an otherwise unspecified decrease in somatic resistance 

(Durand 1984). However, the frequency of the occurrence of these dynamics was observed to 

follow an age-dependent probability distribution and could not be correlated to any changes in 
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the pipette or other experimental apparatus or internal solution, raising the intriguing 

possibility that these dynamics are instead related to morphological or otherwise 

physiological developments.  The kink was particularly notable for the fact that it 

corresponded to a tau2 coefficient that was as much as an order of magnitude smaller than 

what was seen in non-kink cells. Such a fast component of membrane potential decay defies 

our understanding of charge diffusion across the cell membrane, implicating an unattributed 

leak current or current ‘sink’. However, these dynamics have previously been attributed to the 

redistribution of charge across the neuron (Mason and Larkman 1990), which could 

simultaneously provide a simple explanation whilst also being dependent on cell morphology, 

and hence development.  

 
Potentially, the kink could be attributable to morphology: differences in the dendritic arbour 

between cells, for example.  One intriguing possibility was the potential presence of 

development-dependent gap junctions between cells. Gap junctions, also known as electrical 

synapses, are hexamer protein structures between neurons that permit the transfer of electrical 

information and some biological molecules (Belousov and Fontes 2013, Amsalem, Geit et al. 

2016, Belousov, Fontes et al. 2017). Observed via electron microscopy as connections 

between adjacent cells (Goodenough and Paul 2009), they could hypothetically provide the 

current sink by virtue of essentially being holes in the membrane through which a current 

could flow. They have previously been implicated in passive dynamics recordings, with a 

distortion to the dynamics thought to be correlated to the size of the gap-junction network 

(Amsalem, Geit et al. 2016), predicting a decrease in the time constant from a single-

compartment model of up to 65%. Gap junctions could potentially provide the mechanisms 

necessary for a charged neuron to passively discharge over these brief timescales. The 

presence of gap junctions would absolutely affect models of the developing neuron, 

particularly if they were developmentally transient (Ko, Cossell et al. 2013). The following 

chapter (Chapter 5: Gap Junctions and Morphology) investigates this hypothesis by use of 

dye-filling and post-hoc confocal imaging. 

 

A Gaussian curve was fit to the distribution of kink against age, returning a peak in kink 

probability at 8.76 postnatal days; it could be that this corresponds to a peak in the occurrence 

of whatever physiological phenomenon is responsible.  However, the nonlinear regression 

coefficient returned from this fit indicated that this data is not normally distributed, and 

therefore a Gaussian fit is an oversimplification. Looking again at this data, it is possible that 

the kink-probability is bimodal, having an early peak at around P4, followed by the later peak 

at around P8.  This would imply two critical periods for whatever physiological properties of 
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the cell result in the fast dynamics across the cell membrane that give rise to the kink. These 

two time points may potentially correspond to the formation of barrels (Wu, Rosado et al. 

2011) and the onset of spinogenesis (Ashby and Isaac 2011). 

 

Surface area model 

Using the PD as a measure of neuronal morphology has previously been explored (Lepora, 

Blomeley et al. 2011).  Specifically, the coefficients of the two-compartment model have been 

shown to provide a prediction of neuronal compartment surface area. The work presented here 

demonstrates a development-dependent increase in both somatic and dendritic compartment 

surface areas, with the dendritic compartment being around an order of magnitude larger than 

the somatic compartment. The positive correlation between postnatal age and the surface area 

prediction corresponds with the simple expectation that neurons grow during development.   

 

The titles attributed to the two compartments are, however, simplistic misnomers, and brute 

application of the model to the expected geometry would lead to an overestimation of 

‘somatic’ size (Lepora, Blomeley et al. 2011). It can be demonstrated that the ‘somatic’ 

compartment cannot only encompass the soma, as it is far too large; if the soma of the spiny 

stellate cell is approximated to be spherical, with a diameter no more 30 microns (and 

typically between 12-17 microns (Staiger, Flagmeyer et al. 2004)), then via application of the 

geometrical definition of spherical surface area, A=4πr2, a somatic surface area could not be 

any greater than 3000µm2.  The mean somatic surface across all ages predicted from the two-

compartment model is equal to 87800µm2, which would give a mean somatic diameter of 167 

µm. Since this is clearly not the case (the mean diameter of the somas observed in Chapter 4: 

Gap Junctions and Morphology is roughly a tenth of this), the ‘somatic’ compartment must in 

fact encompass other parts of the cell.  A more accurate model may include the axonal initial 

segment (AIS, 10-60 microns in length (Kole and Stuart 2012)) and the primary dendrites 

(Figure 4.11). This would also correspond with previous work that assigned the primary 

dendrites as a necessary part of the somatic compartment (Lepora, Blomeley et al. 2011). 
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Somatic diameter = ~15 microns 

Approximating the soma as a sphere,  

somatic surface area= ~700 microns squared 

 

AIS minimum diameter = ~ 2 microns,  

AIS maximum diameter = ~ 10 microns,  

AIS length = ~ 50 microns 

Approximating the AIS as a frustum,  

AIS surface area = ~2000 microns squared 

 

Primary dendrite length = ~ 1500 microns 

Primary dendrite diameter = ~ 3 microns 

Approximating dendrites as cylinders, surface area = ~14000 microns squared per primary dendrite 

Total surface area of soma, six primary dendrites and AIS = ~ 87000 microns squared 

 

 

Figure 4.11 A model of the ‘somatic’ compartment that includes primary dendrites and 

the axonal initial segment (not to scale)  

 

 

With a model of the ‘somatic’ compartment that included the primary dendrites and the AIS, 

the ‘dendritic’ compartment would comprise the rest of the axon, the axonal boutons, the 

secondary and tertiary dendrites, and the dendritic spines. Given that in layer IV excitatory 

neurons, the number of dendritic spines per mm of dendrite length has been observed to be on 

the order of ~500 (Miquelajauregui, Kribakaran et al. 2015), and the surface area of a spine 

has been estimated to be of the order of 6µm2 (Segev, Friedman et al. 1995), the spine surface 

area contribution could be approx. ~0.003mm2 per mm of dendrite. If secondary and tertiary 

dendrites are estimated to be cylinders of ~1mm length and 2μm diameter, the total surface 

area per dendrite, including spines, would be of the order of 0.01mm2. Therefore, with ~100 

secondary and tertiary dendrites and an axon, the surface area prediction for the ‘dendritic’ 

compartment of ~1mm2 would seem to be of the correct order of magnitude.  

 

As well as increasing with age, as would be expected from a population of growing neurons, 

the surface area also appeared to follow a cubic function that pointed to a more interesting 

pattern of dendrite growth, retraction and spinogenesis. To correctly address this interesting 

observation in future investigations, it would be necessary to establish a model of neuronal 

growth that takes these dynamics into account over a larger developmental period, a priori of 

any data being collected.  Such a model would require a physiological basis for the values of 
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the coefficients a, b, c and d. Given the preliminary fits to the two compartments performed 

here, the coefficient d is returned as zero.  This coefficient presumably represents the surface 

area of the compartment at P0, before the period of postnatal development; this value could be 

found experimentally from simple morphological analysis at this age. If coefficients a and b 

are set to zero, then the solution becomes a linear function; the coefficient c therefore 

presumably represents the gradient of a component of the surface area that increases linearly.  

As with the coefficients of the two-compartment model of PD decay, coupling between 

coefficients would make simplistic attributions of coefficients to morphological features 

highly unlikely; it is much more feasible that these coefficients interact in thus far unforeseen 

ways. 

 

4.5 Summary  

This chapter developed a methodology for the experimental investigation of passive 

membrane dynamics in developing cortical neurons.  The dynamics were demonstrated to be 

passive by virtue of an experimental protocol that allowed for comparison of both 

hyperpolarising and depolarising traces, which were shown to be symmetrical, exhibiting no 

voltage-dependent active dynamics.  Stringent quality controls allowed for robust fitting of a 

two-compartment capacitive decay model to 92% of bridge-balanced datasets with an R2 

value of 0.99 or more. The fitting of this two-compartment model returned five coefficients, 

including membrane potential amplitudes and capacitive time constants, that were 

intrinsically related to the morphology and resistance of the cell membrane. The values of 

these time constants fit within the range reported in previous literature.  The faster of the two 

time constants, tau2, was shown to vary with postnatal age, a variation which was also evident 

in a surface area prediction model, developed from previous work (Lepora, Blomeley et al. 

2011).  The application of the surface area prediction to both compartments showed a 

significant increase in surface area with age, corresponding to expected neuronal growth. A 

cubic function was shown to fit surprisingly well to the surface area prediction, hinting at 

interesting dynamics that align to previous work investigating dendritic spinogenesis.  A fast 

component of PD membrane potential decay was observed in some cells in the form of a kink 

in the PD traces, hinting at the presence of a current sink, possibly caused by developmentally 

transient gap junctions between cells.  
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5 Gap Junctions  

and Morphology  
 

Key Findings 

1. Dye filling, done concurrently with patch clamp electrophysiology, is an effective tool 

for determining the morphology of patched cortical cells. 

2. A diverse range of morphologies of excitatory neurons were observed in layer IV of 

the cortex of the neonatal mouse, with spiny stellate, star pyramidal and pyramidal 

cells being identified within the barrel.  The ratio of spiny stellate to star pyramidal 

cells was similar to that reported in previous work (Feldmeyer, Egger et al. 1999). 

3. Cellular morphology was observed to become more complex over development, in 

accordance with passive dynamics surface area predictions.  

4. The use of Neurobiotin, a small tracer protein, allowed for the detection of gap 

junctions between the patched (primary) cell and gap-junction-coupled cells (GJCC) 

in the near vicinity of the patched cell. 

5. Evidence of a relationship between gap junction coupling and age was observed, with 

a positive correlation between the occurrence of gap junction coupling and postnatal 

age, and an apparent peak in GJCC per primary cell at P5-P6.  

6. No apparent correlation between the presence of gap junctions and the time constants 

of passive membrane dynamics was found. 

 
 

5.1 Introduction 

Electrophysiology is not the only tool for unpeeling the biophysics of the developing cortical 

neuron; much can be discovered about the size, shape and potentially even the networks of 

neurons by dye-filling.  The biophysical properties observed via electrical stimulation are 

intrinsically linked to the geometry of the cell and the current sources and sinks that provide 

the necessary conditions for spiking behaviour and neuronal communication (Torben-Nielsen 

and Schutter 2014). Observing the changing morphology over the course of cell development 

is therefore a necessary part of the electrophysiologist’s repertoire, should they wish to have a 
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complete picture of dynamic neuronal biophysics. Dye injection can be performed 

concurrently with electrophysiology by simply including dyes in the internal solution within 

the patch pipette and allowing sufficient time for ample dye diffusion once the cell is patched 

and the electrophysiological protocols are completed.  Post-hoc recovery and confocal 

imaging of the cell then allows for comprehensive analysis of the cell morphology. Should the 

injected dye remain solely in the patched cell, recovery and imaging can reveal its type, size, 

and clues to such subtle measures as dendritic spine density, as well as confirmation of the 

location of the cell within the cortical layers and its position within the barrel.  If the dye 

traverses gap junctions into secondary, gap-junction-coupled cells (GJCC), imaging can 

reveal the foundations of functional networks that may precede synaptogenesis (Kandler and 

Katz 1995, Montoro and Yuste 2004). 

 

Cellular Morphology 

The spiny stellate cell, a relatively compact but dendritically complex neuron (Venance, 

Rozov et al. 2000), has been observed to be the most common resident of the barrels of layer 

IV cortex (Feldmeyer, Egger et al. 1999).  These cells are morphologically distinct from the 

pyramidal cells of layer II/III and layer V and from fast spiking interneurons, even at low 

optical magnification, due to their spherical cell bodies and stellate dendritic arbour 

(Feldmeyer, Egger et al. 1999, Staiger, Flagmeyer et al. 2004) .  However, since neuronal 

migration and differentiation continues over development, the cells of the cortex found within 

or surrounding the barrel may not be in their final location, or indeed of their final form 

(Luhmann, Schubert et al. 2011). As well as the established spiny stellate cells, observations 

of star pyramidal neurons within the barrel have been reported by several groups (Staiger, 

Flagmeyer et al. 2004, Mizuno, Luo et al. 2014).  These cells have morphologically similar 

basal dendritic arbours to spiny stellate cells, but have apical dendrites resembling those of 

pyramidal cells.  It may be the case that spiny stellate cells within the barrel cortex initially 

possess a morphology similar to that of pyramidal neurons, before their developmental 

metamorphosis retracts their apical dendrite and produces a much more rotund dendritic 

arbour; such a retraction of dendrites during postnatal development has been reported (Li, 

Fertuzinhos et al. 2013, Mizuno, Luo et al. 2014). Dye filling can identify whether the cells 

patched in the barrel cortex are in their final positions, with their final functions, or if they are 

simply passing through.   
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Dendritic arbour  

The dendritic arbour of the developing excitatory neuron in the somatosensory cortex has 

been previously shown to grow dramatically in size, surface area and complexity over the first 

two postnatal weeks, with a particular increase in surface area due to a rapid growth in 

dendritic spines at postnatal days P9-P11 (Ashby and Isaac 2011). Changes to dendritic reach 

and surface area are thought to be connected to the integration and refinement of sensory 

information. Previous work (Ashby and Isaac 2011) has implicated the changing morphology 

of excitatory neurons within the barrel cortex with evolving plasticity, showing that sensory 

deprivation has a marked effect on the growth and complexity of the dendritic arbour of a 

developing neuron.  

 

It was expected that these same changes would be observed in the dye-filling and imaging 

experiment, to correspond not only with previous work, but also to the surface area 

predictions made via the passive dynamics coefficients in Chapter 4: Passive Dynamics. 

These results predicted an overall rise in the surface area of the dendritic compartment in 

particular, but with a marked increase in the surface area in the period between P9 and P11.  

 

Gap Junctions 

Electrical synapses, or gap junctions, have been reported between neighbouring neocortical 

neurons, primarily with cells of the same subtype (Zhang, Li et al. 2017). Providing a fast 

pathway for the communication of electrical signals (Pereda 2016), gap junctions were of 

particular interest to the scope of this thesis given previously reported work that suggested 

their presence might be crucial for development (Elias and Kriegstein 2008), specifically that 

they may be implicated in the formation of functional networks (Yuste, Nelson et al. 1995, 

Venance, Rozov et al. 2000, Yu, He et al. 2012, Hatch, Mendis et al. 2017).   Some groups 

have presented evidence for the theory that gap junctions between neurons are 

developmentally transient (Belousov and Fontes 2013, Belousov, Fontes et al. 2017), perhaps 

setting a ‘blueprint’ for the locations of more permanent chemical synapses (Katz 1995, 

Yuste, Nelson et al. 1995, Rörig, Klausa et al. 1996); gap junctions may arrive in the cell for a 

couple of days and set up a functional network before being dismantled.  Such a gross change 

to cellular biophysics could have a visible effect in the current clamp recordings, either 

passive or active (Yuste, Nelson et al. 1995), particularly if such an assembly and disassembly 

occurred within the developmental window studied in this thesis.  
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What biophysical benefits could gap junctions provide? They may facilitate the early 

propagation of calcium waves (Elias and Kriegstein 2008), but it may also be the case that a 

gap junction is a less energetically expensive structure than a synapse.  A rough-and-ready 

method of neuronal communication for the young brain, prior to experience-dependent 

plasticity, is certainly an attractively simple hypothesis.    

 

Gap junctions are formed from connexin proteins (Katz 1995).  Neuronal gap junctions are 

most commonly associated with a structure of six hexamer proteins called connecxin36 

(Cx36) (Belousov, Fontes et al. 2017), with molecular analysis by reverse transcription 

polymerase chain reaction demonstrating that spiny stellate cells within the barrel have gap 

junctions comprised of only this protein (Venance, Rozov et al. 2000). Additionally, 

connecxin proteins Cx26 and Cx40 have been suggested to contribute to the degree of gap 

junction coupling between developing neurons (Belousov and Fontes 2013). Gap junctions 

communicate information between cells via the electrostatic redistribution of charge and by 

the passive diffusion of small molecules such as glutamate and adenosine triphosphate in a 

nonspecific manner  (Belousov, Fontes et al. 2017, Su, Chen et al. 2017). Common in cardiac 

neurons and in astrocytes (Belousov, Fontes et al. 2017), their role in developing cortical 

neurons is not fully understood.  Dye filling using molecules small enough to traverse 

intracellular gap junctions is a proven method of identifying GJCC and a basis for hypotheses 

on the corresponding cellular networks (Yuste, Nelson et al. 1995). 

 

Neurobiotin as a tool for gap junction detection  

The Biocytin derivative Neurobiotin can be used to identify gap junctions in cortical neurons 

(Katz 1995). Neurobiotin is a small molecule that can be included in the internal solution of 

the patch micropipette for effective transfer into the cell, provided ample time is allowed for 

diffusion (Rörig, Klausa et al. 1996). Once inside the cell, it can diffuse through the 

cytoplasm of the soma to the dendrites and axon.  There, should it encounter any gap 

junctions, it is small enough to be able to pass through them, and into the secondary cells 

(Penn, Wong et al. 1994). Neurobiotin itself is not fluorescent, but it has a high affinity for 

Streptavidin-Alexa488, a highly fluorescent molecule that can be applied to the acute slice 

post electrophysiology experiments (Zahs and Newman 1997, Mills and Sey 1998).   

 

This chapter describes work on dye filling of barrel cortex excitatory neurons, done 

concurrently with current-clamp electrophysiology. This work was motivated by the fast 

dynamics observed during passive dynamics experiments, which were thought to be 
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independent of the lipid bilayer membrane biophysics; these dynamics were seemingly too 

fast to be described by any capacitive relaxation across the cell membrane.  It was 

hypothesised that gap junctions between cells might be the origin of these dynamics; the 

presence of a current ‘sink’ in the form of gap junctions could explain the sharpness of the 

voltage decay curves observed. The occurrence of GJCC was related to postnatal age and the 

relationship between GJCC and passive dynamics coefficients was examined.   

 

5.2 Analysis Methods 

Image analysis 

Confocal images were analysed with Fiji ImageJ software. Images were optimised by eye for 

brightness and contrast based on the visibility of the soma of the primary (patched) cell for 

each of the three channels (green, blue and red) separately.  A composite maximum projection 

image was built for two-dimensional examination.  A maximum projection image at 20x 

magnification in the green channel only, edited to produce a clearer black-and-white 

representation, was built for straightforward analysis of the morphology. Where necessary, 

images were ‘stitched’ together using the ImageJ tool MosaicJ (P. Thévenaz 2007).  This tool 

allowed for the formation of a composite image of two or more separate images, providing 

there was some overlap. 

 

For the detection of GJCCs, the z-stack of confocal images was processed into three different 

formats: 

1. A looping movie traversing down through the z-stack of tissue, slice by slice. 

2. A three-dimensional projection and reconstruction of the tissue that rotated on a 

central vertical axis. 

3. A graphics interchange format (gif) image that showed the back-and-forth rotation of 

the three-dimensional projection about 60 degrees on the central vertical axis.  

 

Observing the morphology of the primary cell 

The injection of dyes afforded the opportunity to observe the fine morphology of layer IV 

cortical neurons. Via the observed size and shape of soma and dendrites, each filled and 

recovered cell was grouped into one of four categories: spiny stellate, star pyramidal, 

pyramidal, and unknown. Cell types are categorised in accordance with criteria previously 

described (Feldmeyer, Egger et al. 1999, Staiger, Flagmeyer et al. 2004): 
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• Spiny stellate cells were observed to have an approximately spherical soma 10-15µm in 

diameter. They were noted for their lack of apical dendrite, and in older cells, for their 

typically asymmetrical dendritic arbour, owing to the fact that most dendrites were 

projecting from the soma into the centre of the barrel. 

• Star pyramidal cells were observed to have either a spherical or triangular soma 

approximately 15-20µm in diameter. They had a clear apical dendrite that reached no 

further up through the cortex than layer II/III. Their dendritic arbour was otherwise similar 

to that of the spiny stellate cell, being star-like, though typically a little more symmetrical.  

• Pyramidal cells were observed to have a triangular soma 15-19µm across. They had an 

apical dendrite that stretched up through the cortex to layer I, where it typically terminated 

in an apical tuft. The remaining dendritic arbour was concentrated around the base of the 

soma in a basal skirt distribution. 

• Unknown cells occurred where the soma of cell was ripped from the tissue slice during the 

removal of the patch-pipette. Although all efforts were made to prevent this happening, 

the presence of dye-filled dendritic and/or axonal projections without the corresponding 

soma was present in 4 slices.  Despite the lack of somata the projections and/or the 

presence of GJCC can be observed.  

 

Detecting gap junction coupled cells  

To complement the injection of Neurobiotin into cortical neurons, a second molecule, 

Dextran-conjugated-Alexa546 was also used. Injection of Dextran-conjugated-Alexa546 

fulfilled two roles: it provided additional validation of the presence and location of the 

primary (patched) cell, and it provided a control against which to test the hypothesis that gap 

junction coupled cells will be visible by the presence of Neurobiotin; if only Neurobiotin and 

not Dextran-conjugated-Alexa546 was observed in secondary cells, then gap junctions would 

be implicated. GJCC were detected via both the presence of Neurobiotin (green) and the 

absence of Dextran-conjugated Alexa546 (red), indicating that the small Neurobiotin 

molecule had traversed gap junctions that were too narrow for the large Dextran-conjugated 

Alexa546.  It was assumed that both molecules would diffuse at a similar rate and have 

sufficient time to diffuse throughout the accessible morphology. The minimum loading time 

was 30 minutes.  

 

Objects resembling GJCC were identified within the three-dimensional representations of 

stacks of images taken at 20x magnification. This allowed for assured differentiation between 
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neurons and blood vessels. When a potential a GJCC was identified, the following criteria for 

confirmation were implemented: 

1. The primary cell must clearly be identified by having the brightest fluorescence in the 

examined tissue. 

2. GJCC must be approximately spherical in shape and have a demonstrably discrete 

volume. 

3. GJCC cells must contain Neurobiotin (appear green). 

4. The presence of Dextran-conjugate-Alexa546 within GJCC (red) must not be brighter 

than background. 

5. Gap-junction-coupled cells must have an identifiable nucleus, as shown by the 

presence of DAPI (blue) in the soma. 

 

It was important to carefully consider the method of quantification of the degree of gap 

junction coupling. For some tissue slices, one or two cells appeared to be very strongly 

coupled, with the brightness of the secondary cells being almost equivalent to the brightness 

of the primary cell.  In other slices, there could be many gap-junction-coupled secondary cells 

(Belousov and Fontes 2013), but with visibly less fluorescence than primary cells. From a 

biophysical perspective, what is of interest is the conductance between the primary and 

secondary cell(s), and how this affects the overall balance of currents in and out of the 

primary neuron (Venance, Rozov et al. 2000, Gibson, Beierlein et al. 2005). Therefore, a 

single cell that provides a large current sink, either by location, or by the number of gap 

junctions that connects it to the primary cell, may be more influential on the biophysics than 

ten secondary cells that are more distal (Penn, Wong et al. 1994, Pereda 2016). Within this 

dataset of confocal images, the large diversity of secondary cell locations and relative 

fluorescence led to a simple binary measure of gap junction coupling: if secondary cells were 

observed, then the patched cell was given a coupling parameter =1, whether it was coupled to 

1 or 100 secondary cells. If no secondary cells were observed, then the coupling parameter 

was set to zero.  This crude measure of gap junction coupling allowed analysis of the 

relationship between gap junctions and developmental biophysics. To provide some finer 

detail, the number of visible GJCC were also counted, but with the caveat that this number 

may have had no relation to the biophysics of the primary neuron, and was highly susceptible 

to human error in both imaging and counting.  

 

To summarise, once GJCC were detected, two measurements were taken: 

1. A binary measure of the presence or absence of GJCC, where presence=1, absence=0. 

2. A count of the number of GJCC visible in the cell gif.  
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Quantitative Data Analysis 

Data was analysed using a purpose-built MATLAB script. This script performed quantitative 

analysis on the morphology and GJCC against developmental age. All confocal image 

analysis and electrophysiological analysis was done separately and blinded, as to not bias the 

search for GJCC. 

 

5.3 Results 

The morphology of the primary patched cells 

Morphological analysis was used to determine the proportion of cell types within the barrels 

of layer IV of the cortex. Previous groups have reported excitatory cells within the barrel 

cortex in rats or mice are limited to spiny stellate and star pyramidal morphologies, at a ratio 

of approximately 8:2 (Feldmeyer, Egger et al. 1999). Accounting for only the spiny stellate 

and star pyramidal cells, populations within the barrel at a similar ratio of 21:8 were found 

here (approximately 7:3) but a smaller number of pyramidal cells were also identified. This 

warranted further investigation and utilised some of the otherwise erroneous imaging data: 

when attempting simultaneous current clamp and electrophysiology experiments, occasionally 

the first patched cell would not spike, particularly in the earliest experiments when the 

technique was still being perfected.  As to not waste the slice, the position of the patched cell 

was carefully recorded and a second (or indeed a third) attempt was made at patching a 

healthy cell in another barrel. On a few occasions, multiple cells were identified in post-hoc 

confocal imaging, in separate barrels of the barrel cortex, with the number of cells visible 

equal to the number of patching attempts. A remarkable diversity of cell morphologies was 

observed in this small data set, with pyramidal cells and spiny stellate cells found in 

neighbouring barrels in the same cortical layer.  This therefore implies that pyramidal-type 

cells can in fact be found in the barrels of layer IV (Figure 5.1) in these young mice. 

  

Of the 67 cells patched with dye in the internal solution, dye-filled cells were recovered via 

fluorescent and later confocal microscopy in 43 cases (a 64% success rate). These cells 

comprised postnatal days P4 to P11, as no cells at P3 were successfully recovered. The 

majority (49%) were spiny stellate, but a significant number were also star pyramidal (19%) 

or pyramidal (23%) (Figure 5.2). A small number of cells (9%) were categorised as 

‘unknown’, due to the soma being absent. The cell-type populations were observed to change 

over the developmental period studied (Figure 5.3): both the number (Figure 5.3.A) and the 
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proportion (Figure 5.3.B) of spiny stellate cells increased over development, starting at 25% 

of the total cell population at day P4, and reaching 57.1% of the total cell population by day 

P11. Meanwhile, the pyramidal and star pyramidal cells showed an overall decrease in 

population with age, dropping from 37.5 to 14.3% and 37.5 to 28.6% respectively. This data 

hints that spiny stellate cells become more populous within the barrel cortex, perhaps at the 

expense of other cell types, although this is not statistically confirmed.   

 

 
 
 

Figure 5.1: Cells patched within or the barrels of layer IV of the cortex exhibit 

surprising diversity in their morphology, with pyramidal and spiny stellate cells found 

within a few hundred micrometres of one another.  Digital photograph composite images 

of the barrel cortex (greyscale images) at 4x magnification, overlaid with composite confocal 

maximum projection images at 10x magnification. White dotted lines show the approximate 

positions of the barrels, based on digital photograph. Solid white lines show the location of 

the patch pipettes.  

 

Dendritic arbour grows with postnatal age 

There was a marked change in neuronal morphology with postnatal age.  In particular, the 

dendritic arbour became much larger and more complex (Figure 5.4), with presumably a 

much-increased surface area.  This corresponds both to what has previously been reported in 

various brain regions and species (Luhmann, Schubert et al. 2011), and to the earlier 

prediction of dendritic surface area from the passive dynamics coefficients, as reported in 

Chapter 4: Passive dynamics.   
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Figure 5.2: Cell types identified by morphology.  Spiny stellate cells are identified by their 

star-like appearance, small, round cell body, absence of apical dendrite, and generally 

asymmetric dendritic arbour. Pyramidal cells are identified by the presence of an apical 

dendrite that projects to layer I of the cortex, ending in an apical tuft, with all other dendrites 

are polarised to a basal ‘skirt’. Star pyramidal cells fall in between spiny stellate and 

pyramidal cells in terms of morphology, having a prominent apical dendrite that does not 

stretch beyond layer II/III, and an otherwise non-polar dendritic arbour. The remaining cells 

recovered during confocal imaging are categorised as ‘unknown’, due to their soma being 

removed or destroyed during removal of the patch-pipette.  

 

  

n=21 

n =10 

n=8 
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Figure 5.3: Cell type plotted against postnatal age.  The number (A) and the percentage (B) 

of cell types observed via dye-filling and post-hoc confocal imaging over the developmental 

period P4-P11. 
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Figure 5.4: Confocal imaging reveals an increase in dendritic arborisation with 

postnatal age. Maximum projections of z-stack confocal images in the green channel at 20x 

magnification of representative cells between P4 and P11.  Images adjusted by eye for 

brightness and contrast. Arrows show the direction of the pial surface 
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Gap junction coupled cells are clearly visible in some slices 

Of the 39 patched cells of identifiable morphology recovered during post-hoc imaging, GJCC 

were visibly coupled to 22 (56%) (Figure 5.6). GJCC are not observed to be particularly 

prevalent to any one cell type: they were coupled to 11/21 spiny stellate cells (52.4%), 4/8 star 

pyramidal cells (50%) and 7/10 pyramidal cells (70%). In two instances, the number, size and 

distribution of GJCC apparent during confocal imaging indicated that the primary neuron was 

not, in fact, coupled to other neurons, but instead glia (Figure 5.5.A). Certainly, previous 

groups have reported the presence of gap junctions in networks of astrocytes, (Zahs and 

Newman 1997, Belousov and Fontes 2013, Belousov, Fontes et al. 2017), but this does 

contradict previous work that asserted the coupling is never observed between neurons and 

glia (Katz 1995).  In one instance the morphology was seen to resemble two conjoined cells 

(Figure 5.5.B).  Conjoined cells within cortical columns, coupled by gap junctions are a 

phenomenon in the developing brain that has been previously described (Yu, He et al. 2012), 

and this may be further evidence of this effect.  However, given the low frequency of these 

types of coupling in this dataset, explanation of these phenomena was not pursued, nor was its 

effect on neuronal biophysics.  

 

 

Figure 5.5: Unusual morphologies are visible in some confocal images. A: Neurons gap-

junction-coupled to glia. B: What appears to be conjoined neurons. Arrows show direction of 

pial surface.  
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Figure 5.6: Gap junction coupled cells (GJCC) are clearly identifiable via the presence of 

Neurobiotin. Confocal images of four cells of varying ages and morphologies at 40x 

magnification, with (left) all three channels shown in a composite maximum projection, 

(centre) the green channel only, showing the presence of Neurobiotin, and (right), the red 

channel only, showing the presence of Dextran-conjugated Alexa546. White arrows show the 

location of GJCC. Red staining away from the patch cell is due to uptake of Dextran-

conjugated Alexa546 by dead cells at the acute slice surface.  
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Postnatal age and gap junction prevalence 

Where GJCC were observed in a slice, the number of secondary cells were counted. Between 

1 and 70 secondary cells were observed per primary cell (mean = 8.39, median = 3, mode = 

1). The number of GJCC per primary cell as a function of postnatal age was counted (Figure 

5.7.A) and compared and contrasted with the mean number of GJCC at each age. No 

statistical significance was found using the tests employed here, but there remains the hint of 

developmentally transient GJCC as has been previously reported across species (for example, 

(Rörig, Klausa et al. 1996)). The frequency of GJCC occurring in slices was investigated via 

the binary measure of gap junction coupling (Figure 5.7.B); this appeared to show an age 

dependent increase in the occurrence of GJCC, though a linear fit with Pearson’s correlation 

coefficient provided a result that did not reach statistical significance (P=0.051). 

 

 
 
Figure 5.7: The presence of gap junction coupled cells (GJCC) appears to potentially 

change with age A: Number of GJCC per primary (patched) cell against age. Grey circles are 

the number of GJCC visible, black circles are the mean number of GJCC per primary cell, red 

stars are the mean number of GJCC at each age point. A peak is apparent at P5, though this is 

due to the unusually high number of GJCC within one slice. B: Frequency of GJCC appearing 

within slices as a function of age, binary measure per slice. Linear fit assessed with Pearson’s 

correlation coefficient and found a positive correlation of 0.664 with P=0.0511 

 

 

Gap junctions and passive dynamics 

Following the observation of a fast component of passive voltage decay in some cells 

(Chapter 4: Passive Dynamics), it was hypothesised that GJCC were correlated with the time 

constant coefficients gleaned from the fitting of a two-compartment model.  The value of the 

faster time constant, tau2, was expected to be directly correlated to the presence and/or extent 

of GJCC, since it is the dramatic variation of tau2 – in some cases as much as an order of 

magnitude smaller than that observed in other cells – that was identified as the cause of the 



 
129 

 

‘kink’ seen in some passive dynamics traces. To test the hypothesis that the presence of GJCC 

leads to a lower value of the second passive dynamics time constant tau2, tau2 was plotted 

against the number of GJCC (Figure 5.8.A), but no significant correlation was found. It was 

expected that any effect of GJCC on the time constants would likely be amplified by 

considering the ratio of tau1 to tau2 (Figure 5.8.B), but again, no significant correlation was 

found. Looking at the binary measure of GJCC, a significant difference between the mean 

values of tau2 from primary cells exhibiting GJCC when compared to those with no GJCC 

was predicted (Figure 5.8.C), but no such difference was found. This lack of significance was 

replicated for the ratio of tau1 to tau2, and the product of tau1 and tau2.  

 

Finally, the frequency of coincidence between the presence of GJCC and the presence of the 

kink seen in some passive dynamics traces was assessed.  Passive dynamics traces were 

defined as having a kink via visual inspection: each trace was plotted in two figures, one of 

the entire trace, the second spanning the 9ms around the membrane potential peak. Each pair 

of figures was then compared to two representative passive dynamics traces: one of a trace 

defined as having no kink, the other defined as having a kink.  By comparison, passive 

dynamics data were assigned ‘1’ if their dynamics were more similar to the kink trace, and 0 

if their dynamics were more similar to the no kink trace.  Where the binary measure of kink 

matched the binary measure of GJCC, a coincidence measure was given the value 1.  Where 

they did not match, it was given the value 0.  The cumulative sum of coincidence was 

calculated and plotted against the number of recovered and imaged primary cells (Figure 

5.8.D) and was compared to the coincidence of two random distributions of zeros and ones 

(repeated 100 times).  As shown in the figure, the coincidence of kink and GJCC is no more 

likely than the coincidence of random numbers; in fact, it lies right in the middle of the 

random distribution. Given the assessment of all these measures, it was necessary to conclude 

that the fast component of passive dynamics decay seen in some traces was not correlated to 

the presence of GJCC. 

An unexpected effect: Neurobiotin affects the spike waveform 

During these experiments, a strange effect on the spike waveform was noticed: Neurobiotin 

appeared to have a concentration-dependent effect on the spike width and height, making 

them lower in amplitude and longer in duration. This is obviously a problem if Neurobiotin is 

used to correlate electrophysiological dynamics with morphology or gap junction coupling.  

The following chapter, Chapter 6: Neurobiotin has an Effect on Spiking Properties, 

investigates the effect of Neurobiotin on spike waveform in detail. 
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Figure 5.8: Gap junction coupled cells (GJCC) have no influence on the passive 

dynamics time constants.  A: GJCC per primary cell plotted against each cell’s tau2. B: total 

number of GJCC plotted against tau ratio. Both relationships assessed via Pearson’s 

correlation coefficient, with no significant correlation detected. C: Binary measure of GJCC 

against tau2, tau ratio and tau product. Light green circles are primary cells without GJCC, 

dark green circles are primary cells with GJCC. One-way ANOVA finds no significance. D: 

Cumulative frequency of coincidence between passive dynamics kink and GJCC (blue 

circles), compared with a distribution garnered from a random number generator (red stars). 

 

 

 

5.4 Discussion 

Via the use of Neurobiotin, Streptavidin-Alexa488, Dextran-conjugated-Alexa546 and DAPI, 

dye-filling was performed concurrently with electrophysiology experiments, producing three-

dimensional confocal images of filled cells, allowing examination of their morphology and 

networks of GJCC. The proportion of different morphological phenotypes found in the barrels 

of the developing neocortex, and how this proportion changes with age, was examined. The 

occurrence of GJCC with age and their correlation (or lack thereof) with passive dynamics 

time coefficients was also investigated.  
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Cell morphology 

Previous work has put the proportions of regular-spiking neurons in the barrel cortex of rats 

and mice at approximately 80% spiny stellate, 20% star pyramidal (Feldmeyer, Egger et al. 

1999).  Examination of the cells imaged in this work showed a very similar morphological 

ratio, except that pyramidal cells within the barrels were also observed across the entire 

developmental period studied. There are four possible explanations for this discrepancy:  

1.  These pyramidal cells are simply outside of the barrel cortex and were patched due to 

inaccuracy of pipette positioning.  This is the simplest explanation; pyramidal cells are 

well known to be present in both layer V and layer II/III of the cortex in rodents 

(Larsen and Callaway 2006). Therefore the question arises of whether it is necessary 

to exclude these pyramidal cells from the electrophysiological analysis.  Over this 

developmental period, the large variation in observed dynamics, particularly at the 

youngest ages, makes the task of cell-type differentiation more complicated. 

Consequently, the electrophysiological data presented in this thesis is categorised only 

as ‘fast spiking’ or ‘regular spiking’ (with fast spiking cells being excluded from the 

data set). With 36% of cells patched with Neurobiotin in the internal solution not 

recovered during post-hoc imaging, presumably the total number of pyramidal cells 

patched is much larger than the 10 observed.  By extrapolating the percentage of 

pyramidal cells seen via imaging to the total population, the total number of pyramidal 

cells can be estimated to be ~40 out of the total of 166 cells studied. Removing these 

data from the electrophysiological data set without accidentally removing spiny 

stellate or star pyramidal cells would be a near-impossible task, and, as can be seen in 

Figure 5.1, pyramidal cells can be found within the barrels and at the same cortical 

depth as spiny stellate cells. 

 

2. Neuronal differentiation is still ongoing over the developmental period investigated in 

this thesis; groups have previously shown the differentiation of cortical neurons in 

rodents to continue up to postnatal day P12 (Osterheld-Haas and Hornung 1996). Cells 

resembling pyramidal or star pyramidal cells have been shown to retract their apical 

dendrite, becoming increasingly stellate as they mature (Li, Fertuzinhos et al. 2013), 

with the development of spiny stellate cells reported as a two-step process, starting 

with a pyramidal morphology before sculpting a stellate morphology (Callaway and 

Borrell 2011). Given this dynamic state of differentiation, more pyramidal cells may 

be expected to be observed at the earliest stages of development. An overall decrease 

in the populations of both pyramidal and star pyramidal cells with age is seen, 

alongside a simultaneous increase in the population of spiny stellate cells, but at 
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present the numbers of cells observed are too low to state with any confidence that this 

is a consequence of differentiation.  

 

3. Cells are still migrating to their final location when these cells are patched.  The 

process of migration of cells through the cortex is known to continue throughout the 

first two weeks of postnatal development in a number of mammals including mice (Li, 

Fertuzinhos et al. 2013), with gap junction coupling reported to mediate neuronal 

migration (Elias and Kriegstein 2008). The pyramidal cells patched within the barrel 

cortex may not yet be in their final position and may ultimately localise in layer II/III. 

As with the diversification hypothesis, this would imply that pyramidal and star 

pyramidal cells would be seen in the barrel cortex in higher numbers at younger ages.  

With a larger data set, it may be possible to observe this distribution at statistically 

significant levels.  

 

4.  Pyramidal cells remain in the barrel throughout life and have just not been observed 

before.  This seems very unlikely, given the plethora of confocal, two-photon, 

fluorescence and light-microscopy studies performed on cell morphologies within the 

barrel cortex.  

 

These hypotheses work under the assumption that there was no experimental bias in the 

proportion of cells that were patched and recovered. It is possible, however, that cellular 

morphology may be an influencing factor in cell survival; that the morphologies of particular 

cells may be more robust and less likely to be destroyed through the process of dye filling. In 

this case, this dataset could be weighted towards one particular cell type.  

 

Of the 43 cells recovered in confocal imaging, 13 were determined to have both identifiable 

morphology and a fast component of passive dynamics decay, or kink. As a percentage of the 

total number of cells recovered with each morphology, the pyramidal cells appeared to be the 

most likely to exhibit kink dynamics, with the fast component of decay apparent in n=5/10 

cells, whilst spiny stellate cells appeared to be the least likely to exhibit these dynamics, with 

the kink only present in n=5/21 cells (Figure 5.9).  A Fisher’s Exact Test was performed to 

detect any intergroup differences, but no statistically significant difference was found 

(P=0.22). The test being conservative, it may be that these numbers are too low to produce 

any statistically significant conclusions. A larger data set may be used in the future to test the 

hypothesis that the presence and indeed dynamics of the kink may be intrinsically related to 

the presence and/or length of the apical dendrite. A large apical dendrite may provide a 
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sufficiently separate compartment to perform the role of the current sink that facilitates these 

dynamics.  

 

 

Figure 5.9: The proportional frequency of recovered and identified cells exhibiting 

‘kink’ dynamics.  The percentage of cells exhibiting kink dynamics is different for the three 

different morphologies recovered and identified, but a Fisher’s exact test on these data finds 

no statistically significant difference between groups (P=0.22). 

 

 

The presence of gap junction coupled cells 

Here, gap junctions are implied by the combined dye-filling of single patched cells with 

Neurobiotin and Dextran-conjugated-Alexa546, the molecular weights of these two dyes 

being used to differentiate between patched and gap junction coupled cells within layer IV 

barrels and the surrounding area. 

 

GJCC were observed to be coupled to 56% of dye-filled and recovered cells.  However, there 

are caveats to consider that may have introduced a bias into these observations.  The presence 

of GJCC could influence the robustness of the primary cell to this experimental technique. It 

must also be considered that GJCC might be outside of the 400 µm range of the tissue slice 

thickness used in these experiments. Although GJCC have been reported to be organised 

within cortical column domains (Katz 1995, Yuste, Nelson et al. 1995, Yu, He et al. 2012), 

these domains may not be constrained to the 400µm-deep plane of the acute cortical slice. 

Since GJCC were observed far from the soma, it is not inconceivable that GJCC may have 

been cut off by the slicing procedure. If this is the case, then the quantification methodologies 

of GJCC may be incorrect. Indeed, gap junction coupling between distal axons or dendrites of 
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cells could, hypothetically, extend across the cortex; to be filled with Neurobiotin, such cells 

may require much longer diffusion times.  With the diffusion time limited to 30-40 minutes 

the number of GJCC observed could have been affected, particularly cells that were distal or 

low conductance.  Longer diffusion periods may be needed to allow dye diffusion that fully 

illuminates gap junction coupled networks (Rörig, Klausa et al. 1996). 

 

The role of gap junction coupling in cortical development 

The precise role of gap junctions within the cortex is still a subject of contention and debate, 

but what is clear is that they facilitate the exchange of information between coupled neurons.  

Previous work (Venance, Rozov et al. 2000, Gibson, Beierlein et al. 2005, Yu, He et al. 2012, 

Hatch, Mendis et al. 2017, Zhang, Li et al. 2017) has illuminated the transfer of action 

potentials between GJCC via multi-cell electrophysiology, and gap junctions have been 

shown to have a dramatic effect on the firing probability of secondary neurons (Hatch, 

Mendis et al. 2017).   What is not so clear is why this is necessary. Synapses are known to be 

the primary pathway of neuronal communication, so the question arises of what benefit gap 

junctions provide cortical neurons. 

  

One possible answer is that the formation of gap junctions may be development-dependent, 

necessary for healthy dendritogenesis and spinogenesis, (Su, Chen et al. 2017), and a 

necessary precursor to synaptogenesis (Belousov, Fontes et al. 2017). Between interneurons, 

gap junction coupling has been reported to accelerate between P7 and P10 (Zhang, Li et al. 

2017).   The work presented here provides hints, if not conclusive evidence, towards the 

developmental dependence of gap junctions: the number of primary cells exhibiting some 

degree of gap junction coupling appears to increase with age, but the number of GJCC 

appears to peak at some point between P5 and P8.  This corresponds to previously presented 

evidence of developmentally transient gap junctions (Belousov and Fontes 2013). It is 

possible that there is a mass formation of gap junctions at one age point until entire networks 

of neurons are established; this could then be followed by a period of refinement where all but 

a few gap junctions are replaced by synapses (Belousov, Fontes et al. 2017). Thus, an early 

peak in the total number of GJCC followed by a slower accumulation of cells exhibiting gap 

junction coupling would be seen, as those networks were formed and refined. However, the 

numbers of cell observed here are too low to draw these conclusions with any statistical 

significance.  
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Figure 5.10: The appearance of gap junction coupled cells may be developmentally 

transient and followed by synaptogenesis of some of these cells.  

 

 

Should the development-dependent gap junction hypothesis prove correct, what would be the 

biophysical benefits and/or consequences of this over the early formation of extensive 

synaptic networks?  Previous studies have suggested that gap junctions are necessary for the 

generation of synchronised oscillations (Katz 1995, Belousov and Fontes 2013, Su, Chen et 

al. 2017), specifically that they may act as a low-pass filter for the synchronisation of slow 

cortical waves (Katz 1995).  Spike-time dependent plasticity in immature neuronal networks 

may rely on early gap junction coupling.  

 

Given the relatively simple hexamer structure of gap junctions (Montoro and Yuste 2004), it 

may be possible that they are a less energetically expensive investment than synapses within 

the developing neuron. Given the migration and diversification of neurons, and the rapid 

growth and formation of barrels, the early appearance of synaptic boutons and spines that are 

later proved redundant may be a high price to pay for this area of the growing brain. 

However, some have argued that the gap junction is far more complex than its superficial 

reputation (Pereda 2016), giving a counterpoint to this hypothesis. This energy-cost 

hypothesis could be investigated by observing the mitochondrial density in dendritic spine 

and axonal boutons across this developmental age range and investigating any age-

dependence. Since gap junctions work via electrostatic charge distributions and passive 

diffusion, presumably they do not require mitochondria to work.  

 

Gap junctions facilitate the exchange of action potentials in networks of cells (Belousov and 

Fontes 2013) which may lead to the formation of synapses in a secondary neuron (Pereda 

2016, Su, Chen et al. 2017).  Therefore, their presence may become unnecessary as synapses 

provide a more refined method of information communication. Regarding the relationship 
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between chemical synapses and gap junctions, some groups have found no correlation 

between the occurrence of gap junctions and chemical synapses (Zhang, Li et al. 2017), whilst 

others have reported developmental uncoupling of gap junctions coinciding with a major 

period of synaptogenesis and increased synaptic activity (Belousov and Fontes 2013).  An 

inverse correlation between the presence of gap junctions and synaptogenesis would 

presumably result in the observation that GJCC become less populous at exactly the period in 

development where dendritic spine density and synapse formation explodes, namely P9-P12 

in cortical neurons in mice (Ashby and Isaac 2011).  The data presented here appear to 

indicate a drop-off in GJCC between P9 and P11; meanwhile the morphological data and 

passive dynamics analysis of neuronal surface area suggest a simultaneous surge in dendritic 

arborisation.  To confirm this hypothesis, cells at later stages in maturation would need to be 

studied.  Should the formation of gap junctions follow a developmental trajectory that is 

independent of synapses, yet follows similar Hebbian plasticity rules, a decrease in gap 

junction coupling with sensory deprivation would be expected to be seen.  Given previous 

work  (Feldman and Brecht 2005, Ashby and Isaac 2011) on the consequences of sensory 

deprivation via whisker trimming on the dendritic arbour of cells within the barrel cortex, it 

could be argued that a depleted dendritic arbour with a smaller neuronal surface area would 

leave less space available for the formation of gap junctions.  This could be tested 

experimentally by incorporating whisker trimming experiments into our dye-filling and 

electrophysiology experimental protocol.  Of course, the opposite hypothesis may instead be 

true: with sensory deprivation and synaptic depletion, the role of gap junctions may be 

amplified to compensate, and to maintain electrical homeostasis.  

 

The effect of gap junctions on passive dynamics and active dynamics 

Having observed an unexpectedly fast component of passive dynamic voltage decay in the 

earlier experiments (Chapter 4: Passive Dynamics) that was identified as a current sink of 

timescales faster than usually seen across the capacitive cell membrane, it was hypothesised 

that this was due to the presence of gap junctions. This analysis has shown that there is, in 

fact, no correlation between the presence of GJCC and passive dynamics time constants, nor 

any correlation between the presence of gap junctions and a kink in the passive dynamics. The 

lack of effect of the gap junctions on the electrophysiological profile, as determined by the 

passive dynamics, may be due to the low conductance of gap junctions in comparison to other 

current channels. The fast component of the passive dynamic decay present in some neurons 

may instead be caused by changes in dendritic arbour.  
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5.5 Summary 

Neuronal morphology and gap junction coupled cells can be illuminated via the injection of 

Biocytin derivative Neurobiotin and post-hoc confocal imaging. A surprisingly diverse range 

of neuronal morphologies were observed with in the barrels, providing evidence for ongoing 

neuronal differentiation and migration. Gap junction coupling was detected via the presence 

of gap junction coupled cells in 56% of neurons patched, dye-filled and recovered in post-hoc 

analysis, but the degree of gap junction coupling proved difficult to define, leading to a binary 

measurement for gap junction coupling being determined. Gap junction coupling was found 

to not be correlated to the time constants of a two-compartment fit on the passive dynamics 

across the cell membrane.   
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6 The Effect of Neurobiotin  

on Spiking Properties 
Key findings 

1. Neurobiotin, in its typically recommended concentration for gap-junction detection, 

influences the active dynamics of the spiking excitatory cell in the barrel cortex of 

neonatal mice. 

2. Neurobiotin has no detectable effect on passive dynamics, the dynamics of the cell 

membrane without activation of the voltage-gated ion channels, nor on any observed 

intrinsic properties. 

3. A reduced concentration of Neurobiotin, to a tenth of what has been recommended for 

gap junction detection, can still successfully fill gap-junction coupled cells and be 

recovered in post-hoc confocal imaging without effect to the active dynamics of the 

cell.   

 

6.1 Introduction 

Electrophysiology can be used to measure the action potential (AP) waveform of the 

developing cortical neuron, and dye filling can be used to ascertain its morphology.  Previous 

studies have extolled the virtues of Neurobiotin (NB), a derivative of Biocytin (Kita and 

Armstrong 1991), as an effective tool for dye-filling that can also be used to illuminate 

presence of any secondary cells coupled to the patched cell via gap junctions (Mills and Sey 

1998, Montoro and Yuste 2004, Curti, Hoge et al. 2012). As described in the previous chapter 

(Chapter 5: Gap Junctions and Morphology) dye filling that involves the diffusive injection of 

impermeant dye or tracer molecule into the cell via the patch pipette internal solution can be 

used to good effect when coupled with confocal microscopy.  The molecule fills the cell by 

diffusing throughout the cellular cytoplasm, and visualisation of the dye distribution by post-

hoc microscopy can be used to reveal the cellular morphology. NB is small enough to traverse 

gap junctions and fill the somas of secondary cells; the detection of secondary cells via NB-

filling has therefore been used as a proxy for the detection of gap junctions in a number of 

studies (Peinado, Yuste et al. 1993, Penn, Wong et al. 1994).  In these studies, the 

experimental analysis was performed under the assumption that the NB itself does not have 

any effect on the electrophysiological properties of the cell.  
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A small number of studies (Xi and Xu 1996, Schlösser, ten Bruggencate et al. 1998) have 

reported a significant effect of NB on neuronal spiking properties, with an increase to spike 

width observed, but no significant effects on membrane properties. From these studies, an 

effect of NB on potassium conductance has been postulated, but this phenomenon has been 

otherwise largely ignored by the scientific community. Since electrophysiological properties 

are closely related to the cell morphology, as shown in previous chapters, any effect of NB on 

those electrophysiological properties presents a serious problem if morphological and 

electrophysiological results are to be combined. However, in order to account for the effects 

of gap junctions on neuronal development, concentrations of NB high enough to detect gap 

junction coupling between cells were needed.  

 

This chapter seeks to demonstrate the effect of NB on the spiking properties, quantify this 

effect, allude to its origins, and assess what could be regarded as a “safe” concentration of NB 

that can be used in experiments without detriment to the electrophysiological recordings.  It 

examines the effect of NB on the neuronal dynamics produced via the different patch-clamp 

protocols: the passive dynamics, the intrinsic properties and the active dynamics.  

 

6.2 Analysis Methods  

The experimental methods used were as described in Methods; neurons within the barrel 

cortex, whole-cell patched with NB-containing internal solutions, were taken through the 

electrophysiological protocols as previously described, allowing investigations into active and 

passive dynamics of the developing cells. 

 

The spiking behaviour was analysed as described in Chapter 3: Active Dynamics. Only cells 

identified as regular-spiking excitatory neurons were included in analysis. This was done via 

analysis of mean measurements of those dynamics, and via monitoring of those properties 

over the course of the current-step protocol. To establish whether the effect of NB on active 

dynamics was dose-dependent and provide a corresponding dose response curve, the AP 

properties were examined as a function of NB concentration.   

 

Three different doses of NB were included in the internal solutions:  

1. 10mg/ml, as suggested in (Káradóttir and Attwell 2006), reported as a concentration 

adequate to detect gap junctions between cells,  
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2. 5mg/ml, or 50% of the initial dose,   

3. 1mg/ml, or 10% of the initial dose.      

 

It was necessary to test whether any changes to the AP waveform were due to the presence of 

the NB molecule, or due to the absence of KMeSO4, which was reduced in concentration to 

compensate for the increase in osmolarity that the addition of NB would bring.  This test was 

performed via comparison of measurable electrophysiological features between cells patched 

with NB-containing solutions and cells patched with Sucrose internal solution. This internal 

solution had the same reduction of KMeSO4, but with the osmolarity compensated for by the 

addition of sucrose instead of NB.   

 

Cells aged between P3 and P11 were patched with Standard Internal solution, 10mg/ml NB 

internal solution, 5mg/ml NB internal solution, and Sucrose internal solution. Cells aged 

between P9 and P11 were also patched with 1mg/ml NB internal solution.  The compositions 

of all internal solutions were as described in Methods. 

 

Finally, gap junction coupling via confocal imaging was investigated across the range of NB 

concentrations used, with a view to revise the accepted lower-limit of NB necessary for gap 

junction imaging investigations.  

 

Calculating the junction potential error 

As previously mentioned Methods, it is necessary to calculate the junction potential error 

(JPE) prior to performing any analysis on patch-clamp data (Neher 1992, Haas 2015). The 

JPE is a function of the concentrations, valences and mobilities of the ions contained within 

the internal solution and the ACSF.  Therefore, the addition of NB may have a marked effect 

on this correction. Unfortunately, no documents or literature containing the ionic valance and 

mobility for NB were found that could allow calculation of a precise value of its contribution 

to the JPE.  It was assumed that the charge (valence) must be +1 because it is often 

electroporated into cells using negative voltage pulses, but we recognised that would likely be 

balanced by the chloride ion of -1, so this was included in the calculations.  With regards to 

the mobility, with no literature to refer to it was concluded that it would be necessary to make 

a best guess from which a sensible range of JPE values could be established.  For each of the 

concentrations of NB (10mg/ml, 5mg/ml, 1mg/ml and 0mg/ml), the JPE was calculated at 

mobilities of 0.01, 0.1 and 1, relative to the mobility of K+. For this range of concentrations 

and mobilities, the range of JPE calculated was between 5 and 8.9mV.  Since is it beyond the 
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scope of this thesis to calculate the precise mobility of NB, for the sake of this chapter it was 

decided to maintain consistency with the JPE calculated for the Standard Internal solution and 

keep it at 8.9mV for all internal solutions, including those containing NB, as has previously 

been done (Káradóttir and Attwell 2006, Zolnik and Connors 2016).  

 

NB Concentation Relative mobility Junction Potential Error (mV) 

10mg/ml 0.01 5 

10mg/ml 0.1 5.2 

10mg/ml 1 7.7 

5mg/ml 0.01 6.9 

5mg/ml 0.1 7.1 

5mg/ml 1 8.3 

1mg/ml 0.01 8.5 

1mg/ml 0.1 8.6 

1mg/ml 1 8.8 

0mg/ml n/a 8.9 

Table 6.1: Calculating the junction potential error for the internal solutions with different 

concentrations of NB  

 

Post-experiment data processing 

Data processing was done using purpose-built MATLAB scripts that allowed the separate but 

concurrent analysis of data by both age and internal solution.  

 

6.3 Results   

Neurobiotin influences action potential waveform across all observed 

developmental time points 

A significant effect of NB on the spiking properties of cells, was observed: NB appeared to 

make APs lower-amplitude and longer in duration (Figure 6.1.A). Both the width and height 

of APs were observed to change with the concentration of NB in the internal solution (Figure 

6.1.B and 6.1.C).  For the 10mg/ml concentration, on average, APs increased in duration by 

~4ms (P=4x10-9), and decreased in height by ~15mV (P=4x10-7).  For the 5mg/ml 

concentration, on average, APs increased in duration by ~2ms (P=4x10-9) and decreased in 

height by ~10mV (P≤0.0005).  No difference in AP height or width was found between cells 

patched with Standard Internal and Sucrose solutions. This confirmed that it is the addition of 

NB, not the reduction in KMeSO4, that produced a change to both AP height and width across 

developmental time points.  Across all figures in this chapter, waveforms and scatter plots are 
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colour coded for internal solution: Standard Internal is shown in red, 1mg/ml NB in pink, 

5mg/ml NB in green, 10mg/ml NB in blue, and Sucrose in black.  

With the mean AP widths and heights observed to change with NB across the full age range 

investigated (P3-P11), the data set was restricted to the oldest age group (P9-P11) for more 

stringent quantitative analysis, since it has already been demonstrated (Chapter 3: Active 

Dynamics) that AP waveform changes with postnatal age.  The breadth of the age range of 

P9-P11 was chosen to balance sufficiently large n number with minimal age-related 

waveform change.  For this data, the 1mg/ml NB with Alexa-546 internal solution was 

included, since it was used in cells aged P9-P11 only.  

 

The waveform of each cell’s average first AP was again measured using the same techniques 

as outlined previously, and AP width against internal solution (Figure 6.2.C) and height 

against internal solution (Figure 6.2.D) were analysed. In these age-matched recordings, 

5mg/ml and 10mg/ml NB led to increased AP width. Indeed, APs were, on average, ~3 times 

longer in the presence of 10mg/ml NB.  (P=0.00025 for 5mg/ml NB and P=1 x10-8 for 

10mg/ml NB). For cells patched with both Sucrose and 1mg/ml NB, there was again no 

statistically significant difference in mean AP width.  For AP height, a statistically significant 

difference between 10mg/ml NB and Standard Internal was detected (P=2x10-7) but no 

difference was found between Standard Internal and any of the other internal solutions.  

 

It was therefore concluded that the effect of NB on the AP height and width is dose dependent 

and becomes negligible when the concentration of NB is kept at or below a threshold of 

1mg/ml (0.1% w/v).  For future electrophysiology and dye filling experiments NB 

concentrations are recommended to be kept at or below this level 

 

Does Neurobiotin affect the relationship between postnatal age and action 

potential waveform? 

Having established that NB effects AP properties, the amplitude of this effect was 

investigated across the course of development.  If NB was affecting a voltage-gated ion 

channel, such an effect would be amplified at developmental age points where that ion 

channel is proportionately more populous. To investigate this, the changing AP properties 

with postnatal age were observed for cells patched with the range of internal solutions. NB 

was not expected to affect the relationships between AP waveform and postnatal age, but 

instead have an approximately equal effect on voltage gated ion channels across the 

developmental period studied. Figure 6.3 shows the waveforms of the average AP at four 
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different developmental timepoints (left), a scatter plot of AP width against postnatal age 

from P3-P11 (centre) and a scatter plot of AP height against postnatal age from P3-P11 

(right), for each of the five internal solutions.  
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Figure 6.1: Neurobiotin (NB) appears to affect the action potential (AP) waveform, 

specifically AP height and width, in developing cortical neurons aged between P3 to P11.  

A: The mean first AP for neurons under the current-step protocol, patched with internal 

solutions containing different amounts of NB. Time scale from AP threshold to threshold 

+16ms. Qualitatively, NB appears to decrease the amplitude and increase the duration of the 

AP.  B: Mean first AP full width at half maximum for each cell.  For each internal solution, 

the number of cells is as follows: Standard Internal n=68, 5mg/ml NB + Al.546 n=28, 

10mg/ml NB n=21, Sucrose n=29. Empty circles are individual cell AP widths, solid circles 

are the mean AP width, and error bars are the standard error in the mean. The AP becomes 

significantly wider with the application of increasing concentrations of NB.  Mean width is 

significantly different for both NB-containing internal solutions with *** P=4x10-9. There is 

no difference in the means of AP widths between Standard Internal and Sucrose solutions.  

C: Mean first AP height, measured from threshold to AP peak, data populations as above. 

Cells patched with internal solutions containing NB have lower amplitude APs with 

***P≤0.0006. All data analysed using a one-way ANOVA with Tukey-Kramer test.  
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Figure 6.2: Neurobiotin (NB) has a significant effect on the action potential (AP) width 

and height in developing cortical neurons aged P9 to P11. This effect is eliminated at 

concentrations at or below 1mg/ml.  A: Representative example traces of AP firing 

following current injection to the rheobase. B: The mean first AP, time scale from threshold 

to threshold + 16ms. C: Mean first AP full width at half maximum.  Each empty circle point 

represents an individual cell; Standard Internal n=27, 1mg/ml NB +Al.546 n=17, 5mg/ml NB 

+Al.546 n= 7, 10mg/ml NB n=6, Sucrose n=9.  Solid circles with error bars represent the 

mean and the standard error in the mean. Significant difference in the values of the mean AP 

for the internal solutions made with the two higher concentrations of NB, with P =0.00025 

and P=1x10-8, but no significant difference at 1mg/ml NB + Al.546. D: Mean first AP height, 

measured from threshold to AP peak. Data populations as above. Cells patched with internal 

containing10mg/ml NB have significantly lower amplitude APs with ***P=2x10-7. All data 

analysed using a one-way ANOVA with Tukey-Kramer test.  
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This allowed direct comparison of how NB affected the developmental trajectory of the 

cortical neuron. A linear fit to each scatterplot was used to test for correlation between 

width/height and age, and determine any NB-dependent change in slope or intercept. As 

discussed in Chapter 3: Active Dynamics, the linear fit is an approximation; previous postnatal 

studies have shown that the AP waveform stabilises with maturation (Valiullina, 

Akhmetshina et al. 2016), meaning that a closer approximation for the relationship would be a 

sigmoid or exponential function.  However, for the age range investigated here, it is a 

reasonable approximation.  

 

For all internal solutions, a negative slope was returned on the linear fit to postnatal age 

against AP width, as expected i.e. APs became narrower with age. However, for the internal 

solutions containing NB, the negative correlations of these variables did not reach 

significance. This implies that the relationship between age and width weakens with the 

application of NB, but no significant results can be inferred from the slopes or intercepts of 

these linear fits.  

 

Internal Solution Age: AP Width Correlation Slope Intercept 

Standard Internal -0.40 -0.12 2.79 

1mg/ml NB+Al.546 Does not reach significance -0.37 5.56 

5mg/ml NB+Al.546 Does not reach significance -0.28 5.77 

10mg/ml NB Does not reach significance -0.46 9.92 

Sucrose -0.72 -0.20 3.55 

 

Table 6.2: Linear relationship between postnatal age and AP width across cells patched with 

different internal solutions. All data sets except 1mg/ml NB+Al.546 constitute data from cells 

aged P3-P11.  1mg/ml NB+Al.546 data is from cells aged P9-P11 only. 

 

For AP height, a statistically significant positive correlation with age was observed for four of 

the five internal solutions, with only the 10mg/ml NB destroying the correlation. 
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Figure 6.3: Neurobiotin (NB) affects both height and width of the action potential (AP) 

waveform. Left The mean first AP at four different developmental time-points, P3-P4, P5-P6, 

P7-P8 and P9-P11 for cells patched with each of the different internal solutions. Centre First 

AP width plotted against age. Empty circles are individual cells. Linear fit plotted as dotted 

line.  Pearson’s correlation coefficient finds significant negative correlation for Standard 

internal and Sucrose datasets, but this correlation breaks down for NB-including internal 

dataset. Right First AP height plotted against age.  Data plotting conventions and statistical 

tests as above.  Positive correlation present for all datasets except the highest dose of NB. 

Intercept of linear fit shifted with the application of 5mg/ml NB, when compared to Standard 

Internal and Sucrose solution datasets.  
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Internal Solution Age: AP Height Correlation Slope Intercept 

Standard Internal 0.57 3.65 17.55 

1mg/ml NB+Al.546 0.67 8.31 -37.44 

5mg/ml NB+Al.546 0.54 3.75 7.50 

10mg/ml NB Does not reach significance -1.51 41.16 

Sucrose 0.52 3.08 20.89 

 

Table 6.3: Linear relationship between postnatal age and AP height across cells patched with 

different internal solutions. All data sets except 1mg/ml NB+Al.546 constitute data from cells 

aged P3-P11.  1mg/ml NB+Al.546 data is from cells aged P9-P11 only. 

 

Together, these data suggest that at high concentrations NB occludes the developmental 

changes in ion channel expression that lead to the appearance of narrower and taller action 

potentials. 

 

The first derivative of membrane potential with time illuminates the effect of 

Neurobiotin further  

The subtler measurement of the change in the first derivative of membrane potential (voltage) 

with time during spiking behaviour (dV/dt) was then investigated (Figure 6.4.A). As 

described in Chapter 3: Active Dynamics, dV/dt reaches its peak at the steepest part of the 

rising section of the AP; this point is also known as the maximum rate of rise. dV/dt reaches 

its minimum at the steepest part of the falling section of the AP, the point also known as the 

maximum rate of fall.  Plotting Vm against dV/dt produces a circular plot, as the first 

derivative rises to its zenith where the AP is steepest before returning to zero at the point of 

inflection: the apex of the spike, before finally going through a negative phase that follows the 

downwards slope of the AP. 

 

Phase plots of the mean APs of cells aged P9-P11 (Figure 6.4.B) allowed the changes to the 

first derivative of the membrane potential with time to be compared across internal solutions. 

Each phase plot, overlaid with the corresponding mean phase plot from cells patched with 

Standard Internal, was examined for evidence of how NB might affect the dynamics of the 

voltage-gated ion channels. Via comparison, Sucrose internal solution was found to have no 

effect on the phase plot and overlap with the Standard Internal phase plot perfectly. The phase 

plot from 1mg/ml NB showed that the rate of rise reached its peak at a slightly lower 

membrane potential, but otherwise the dynamics are nearly identical. At higher concentrations 
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of NB, both the rising and falling phase are significantly affected, but the rate of fall was 

particularly impacted, being completely flattened at 10mg/ml NB.  

 

Interesting dynamics in the initial section of the phase plot from each NB-including dataset 

(Figure 6.4.B, inset) were observed, with NB appearing to produce a ‘shoulder’ in the phase 

plot that increased in length (membrane potential) in a dose-dependent manner, indicating that 

the rate of rise remains constant for an initial, brief part of the rising portion.  This shoulder is 

apparent even at 1mg/ml NB, becoming particularly pronounced at the higher concentrations.  

 

The effect of NB on the first derivative of membrane potential with time was examined across 

the range of postnatal ages studied. The maximum and minimum values of dV/dt were each 

plotted against postnatal age and the resulting relationship was examined via a linear fit 

(Figure 6.4.C). As with the relationship between AP height/AP width and age (Chapter 3: 

Active Dynamics), the linear fit represented an approximation to the changing dynamics, as 

the relationship would be expected to be sigmoidal over the entire trajectory of development.   

 

For Max AP dV/dt, a positive correlation was found - i.e. the rising part of the AP becomes 

steeper with age - for all internals except the highest dose of NB, where the correlation broke 

down and did not reach significance. This result implies that high doses (10mg/ml) of NB 

destroy the correlation between rising phase and postnatal age.  

 

Internal Solution Age: Max AP dV/dt Correlation Slope Intercept 

Standard Internal 0.58 13.41 -5.86 

1mg/ml NB+Al.546 0.72 54.41 -447.94 

5mg/ml NB+Al.546 0.66 12.24 -38.88 

10mg/ml NB Does not reach significance -0.78 34.96 

Sucrose 0.63 14.54 -21.78 

Table 6.4: Linear relationship between postnatal age and AP maximum dV/dt (rate of rise) 

across cells patched with different internal solutions. All data sets except 1mg/ml NB+Al.546 

constitute data from cells aged P3-P11.  1mg/ml NB+Al.546 data is from cells aged P9-P11 

only. 
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Figure 6.4: The first derivative of membrane potential with time illuminates the effects 

of Neurobiotin (NB) on the active dynamics. A: Representative action potential (AP) (black 

line) with its corresponding first derivative with time, dV/dt (red line). The maximum rate of 

rise, Max AP dV/dt, occurs at the steepest point of the rising part of the AP. The maximum 

rate of fall, Min AP dV/dt, occurs at the steepest point of the falling part of the AP. B: Phase 

plots of the mean AP from cells aged P9-P11 patched with each internal solution. Pale red 

line represents the phase plot from Standard Internal. Both the rising and falling parts of the 

AP are affected by the application of NB, but some interesting dynamics occur at the start of 

the phase plot (inset). C:  The max rate of rise and rate of fall plotted against age for each 

internal solution. Each circle represents an individual cell. Correlation assessed using 

Pearson’s correlation coefficient. NB appears to diminish the correlation. 
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For Min AP dV/dt, the correlation was negative, i.e. the falling part of the AP became steeper 

with age, again for all internals except 10mg/ml NB, where the correlation did not reach 

significance: the correlation between falling phase and age was destroyed by high doses of 

NB.  

 

Internal Solution Age: Min AP dV/dt Correlation Slope Intercept 

Standard Internal -0.62 -3.55 1.51 

1mg/ml NB+Al.546 -0.73 -9.10 66.98 

5mg/ml NB+Al.546 -0.59 -1.43 0.60 

10mg/ml NB Does not reach significance -0.06 -4.65 

Sucrose -0.61 -2.77 -1.30 

Table 6.5: Linear relationship between postnatal age and AP minimum dV/dt (rate of fall) 

across cells patched with different internal solutions. All data sets except 1mg/ml NB+Al.546 

constitute data from cells aged P3-P11.  1mg/ml NB+Al.546 data is from cells aged P9-P11 

only. 

 

The relationship between Max AP dV/dt (rate of rise) and the magnitude of Min AP dV/dt 

(rate of fall) was then investigated for the effect of NB (Figure 6.5). By definition, this 

relationship was expected to go through the origin, since when the steepest part of the upward 

slope is equal to zero, the downwards slope must be the same, i.e. there is no slope.  Such a 

relationship was also expected to be linear - that APs that are steeper on the way up will 

generally be steeper on the way down also; a linear relationship was plotted, simplified to 

y=mx since, in this case, c=0.  However, the slope of this relationship and its variation with 

the inclusion of NB was of interest: the ratio of these two values could indicate whether the 

rising component or falling component of the average AP dominated its shape. Such a result 

can be used to infer whether NB primarily affects the Na+ channels or the K+ channels 

(Hodgkin and Huxley 1952).  Max AP dV/dt is associated with the population of Na+ ion 

channels, as they are generally understood to be responsible for the rising phase of the AP 

(Bahrey and Moody 2002, Baranauskas 2007). Accordingly, Min AP dV/dt is associated with 

the population of K+ channels as they are generally held to be responsible for the falling phase 

of the AP (Niday, Hawkins et al. 2017, Vivekananda, Novak et al. 2017).    

 

Across the full age range of P3-P11 (Figure 6.5.A) NB was found to affect the slope, as 

assessed via Pearson’s correlation coefficient.  For cells patched with Standard Internal, 
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1mg/ml NB or Sucrose, the slope was consistent at ~0.24 (dimensionless units).  With the 

application of higher doses of NB - 5mg/ml and 10mg/ml - the slope became 0.16, which 

indicated that the rising phase of the AP was steeper than the falling phase, seemingly 

following normal developmental patterns, whilst the falling phase was affected. Since the 

rising phase of the AP has been associated with sodium channels This result implies that 

potassium channels are disproportionally affected by the application of NB.  

 

Examining the same relationships in the age range P9-P11 (Figure 6.5.B) a decrease in slope 

with higher doses of NB is again observed (Table 6.6).  

 

Internal Solution Max AP dV/dt: Min AP dV/dt 

Correlation (P9-P11) 

Slope Intercept 

Standard Internal 0.83 0.26 0 

1mg/ml NB+Al.546 0.86 0.23 0 

5mg/ml NB+Al.546 0.97 0.14 0 

10mg/ml NB 0.96 0.18 0 

Sucrose 0.97 0.21 0 

Table 6.6: Linear fit to the ratio of Max AP dV/dt to Min AP dV/dt (rate of rise : rate of fall) 

across cells patched with different internal solutions at P9-P11.The slope decreases at higher 

doses of NB. 

 

These examinations of the first derivative of the AP waveform with time allow for better 

understanding of the way that NB affects cell dynamics. Although the ‘shoulder’ present 

within the phase plots indicates some specific effects on the activation of some sodium 

channels responsible for the rise of the AP, the steepness of the AP waveform in the rising 

phase with higher doses of NB indicates that NB primarily has a detrimental effect on 

potassium channels, dulling the dynamics responsible for the falling phase of the AP.  
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Figure 6.5: Ratio of Max dV/dt (rate of rise) to magnitude of Min dV/dt (rate of fall) 

across internal solutions.  A: Data between ages P3 and P11. Small red circles = P3, large 

blue circles= P11. By definition, a linear fit goes through the origin. Slope represents the 

balance of rate of rise and rate of fall: shallow slope indicates that the rate of rise dominates, 

whereas a steep slope indicates the rate of fall dominates. Correlation analysed using 

Pearson’s correlation coefficient. Data show no real decrease in correlation with the addition 

of Neurobiotin (NB), but a decrease in slope, indicating that NB primarily affects the rate of 

fall, or the downslope of the AP. B: Data between ages P9 and P11, showing that it is the 

addition of NB and not a difference in age that causes the change in Max dV/dt: Min dV/dt 

ratio. Again, with the application of NB, the balance is shifted towards Max dV/dt, 

symptomatic of an effect primarily on the downslope of the AP. 
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Membrane potential as a function of time under the influence of Neurobiotin 

The effect of NB on the membrane potential of the neuron (Vm), prior to any injection of 

current aside from the holding current (HC) was examined. Should NB have any effect on 

Vm, we might expect such an effect to increase over the course of the experimental protocol, 

as NB diffuses through the cellular cytoplasm and interacts on a molecular level with the 

voltage-gated ion channels (Mills and Sey 1998). Vm prior to current injection was therefore 

measured for each cell longitudinally across the course of the current-step experimental 

protocol, a period of typical duration 110-220s. Logically, if an effect of NB on Vm was 

present, however subtle, it would be expected to become more pronounced as NB diffuses out 

of the pipette and into the cell where it can interact with the cellular membrane. Therefore, a 

recurrent Vm gradient over time may indicate a NB-based effect. 

 

For each cell, the average value of Vm found by taking the mean membrane potential in the 

first 100ms before the current-step injection. This value was averaged across cells of the same 

age and plotted against the time course of the experiment (1 cycle of 11 current injections =11 

seconds, typically cycles were repeated 10-20 times, so the entire current-step protocol = 110-

220 seconds). Average Vm traces were aligned to allow for clear comparison of the gradients 

(Figure 6.6). Any effect of NB on the resting membrane potential would be observed in a 

gradient of the membrane potential over cycle number, corresponding to a time-dependent 

effect on the cell membrane properties, and such an effect would be expected to be replicated 

across all ages measured. No consistent gradient in the membrane potential / experimental 

time course plot was observed; Vm remained relatively steady throughout current-step 

protocol experiments for all patched cells, regardless of internal solution or age (Figure 5.7). 

However, a weakness in this analysis is that we did not define significance in the gradient a 

priori. In any future work, these results could be used to define a sensible range of gradients, 

against which statistically significant variations could be compared. This analysis also suffers 

from only considering the period of the current-step protocol, which generally did not extend 

much beyond 3 minutes.  It is possible that the effects of NB only become apparent after 

longer time-scales.  

 

With these caveats, no evidence was found that NB has any effect on Vm prior to the active 

dynamics triggered by current injection. This supports the hypothesis that NB affects the 

voltage-gated ion channel dynamics, and not the intrinsic properties of the developing cortical 

neuron.  
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Figure 6.6: The diffusive effect of Neurobiotin on the resting membrane potential over 

the course of the current-step protocol. A: Mean Vm over the time course of the current 

step protocol experiment for cells patched at all ages using the internal solutions with 

different concentrations of NB. Data are aligned at the start for ease of gradient comparison.  

 

 

The influence of Neurobiotin on pre-active-dynamics variables 

Properties of the cell that can be described as ‘intrinsic’ but are closely related to the active 

dynamics responsible for the changing AP waveform were then examined, namely the AP 

threshold, and the two measures of the input resistance: the steady state resistance (Rss) and 

the extrapolated resistance (Rxtr).  These values were obtained via methods described in 

Chapter 3: Active Dynamics; briefly, The AP threshold was defined by a dV/dt of 10.5mV/s 

where the subsequent membrane potential reached a minimum value of -35mV.  The input 

resistance was found from the first ‘step’ in the current-step protocol. This step involved the 

injection of a current of -16pA that hyperpolarised the cell, producing a hyperpolarised 

voltage trace, the deviation of which was related to the input resistance via simple application 

of Ohm’s law (V=IR). The steady state resistance was calculated as the minimum of the trace, 

divided by the magnitude of the current injection, whereas the extrapolated input resistance 

was calculated via a voltage calculated from the extrapolated minimum of the fitted 

exponential decay curve. The data was averaged across the repeat cycles (typically 10-12 

cycles in a current-step protocol), separately for each of the two measures. 

 

Changes in AP threshold with age were examined for each internal solution data set (Figure 

6.7.A). Each data set was analysed for correlation via a linear fit evaluated with Pearson’s 

correlation coefficient, but no significant correlations were found. Therefore, no evidence for 

age-dependence of AP threshold for cells patched with any internal was found. The AP 
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threshold in cells aged P9-P11 across the five internal solutions was also analysed (Figure 

6.7.B). As before, a one-way ANOVA was applied to check for variance between internal-

groups, but no evidence was found for any change to the AP threshold with the application of 

NB.     

 

Average hyperpolarised membrane potentials for cells patched with each internal solution 

were qualitatively examined across three grouped age ranges: P3-P5, P6-P8 and P9-P11 

(Figure 6.7.C). A general trend, across internal solutions, for the magnitude of the 

hyperpolarisation to decrease with age was observed. Although variation between the 

internal-solution groups was seen, no internal solution-dependent pattern to this variation was 

observed; cell to cell variationf appeared to be greater than any variation due to the 

application of NB. Therefore, no conclusions can be drawn on the effect of NB on voltage-

gated ion channel dynamics triggered by a hyperpolarising current injection. 

  

Analysis of input resistance revealed an apparent increase in input resistance with NB for both 

the steady state and extrapolated measures on cells aged between P9 and P11 (Figure 6.7.D, 

left column).   Since it was not clear whether the data were normally distributed, and the 

statistical tests used were done so under the assumption of a normal distribution, an 

Anderson-Darling test was applied to each data set prior to further statistical analysis. In each 

case, the null hypothesis of a normal distribution was returned. Via the application of a one-

way ANOVA and a Tukey-Kramer test a significant difference in the mean was detected 

between Standard Internal solution and 10mg/ml NB internal solution (steady state input 

resistance, P=0.0011; extrapolated input resistance P=0.0009).  
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Figure 6.7: Neurobiotin (NB) has no observable effect on AP threshold or magnitude of 

hyperpolarised membrane potential response. An effect on input resistance observed at 

high dose. A: No significant correlation between AP threshold and age is detected for any of 

the internal solution groups (Pearson’s correlation coefficient). B: The AP threshold of P9-

P11 cells patched with each internal solution. Empty circles represent cells, filled circles with 

error bars represent the mean with the standard error in the mean. A one-way ANOVA is 

performed and finds no significant difference between groups. C: The hyperpolarised 

membrane potential changes robustly with age, but no particular dose-dependent change with 

NB is detected. D: Input resistance of P9-P11 cells against internal solution, analysed with a 

one-way ANOVA and Tukey-Kramer test on the null hypothesis that the mean input 

resistance is the same across groups. Data tested for normal distribution by Anderson-Darling 

test.  A significant difference is detected between Standard Internal and 10mg/ml NB. 
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The effect of Neurobiotin on passive dynamics  

Should NB only act on the voltage-gated ion channels, no change to any of the passive 

dynamics parameters would be expected to be observed with the inclusion of NB in the 

internal solution. This is particularly important for the validity of the gap junction studies 

presented in Chapter 5: Gap Junctions and Morphology, as any influence of NB on the 

passive dynamics would invalidate these results. Data from cells patched with Standard 

Internal, 5mg/ml NB, 10mg/ml NB, and Sucrose were examined for passive dynamics across 

the age range P3-P11 (Figure 6.8). For all four of the parameters garnered from the 

coefficients of a two-exponential fit, Alpha1, Alpha2, tau1 and tau2, no variation was found 

across the range of internal solutions. A one-way ANOVA was performed but no statistically 

significant difference was detected. 

 

Passive dynamics data from ages P9 to P11 only was then examined to eliminate any age-

dependent effects when comparing internal solutions, including internal solution made with 

1mg/ml NB (Figure 6.9). Mean passive dynamics traces from all five internal solution data 

sets, averaged over cells between P9 and P11, were plotted, with the average P9-P11 trace 

from Standard Internal solution plotted underneath each subsequent trace for comparison 

(Figure 6.9.A). Variations in traces with internal solution were visible but no trend with 

increasing NB dose was found; it can therefore be presumed that this is due to variations 

unrelated to NB. The parameters drawn from the two-exponential fit were examined, but 

again no statistically significant evidence for any change in the passive dynamics with the 

application of NB was found.  
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Figure 6.8: Neurobiotin has no significant effect on any of the coefficients of passive 

dynamics decay between ages P3-P11 for any of the internal solutions tested across this 

age range.  Top left: Alpha1, first voltage coefficient of two compartment exponential voltage 

decay from cells aged P3 to P11, plotted against all five different internal solutions.  Empty 

circles are individual cells and filled circles with error bards are the mean and standard error 

in the mean.  Y axis is plotted in logarithmic scale.  Top right: Alpha2, the second voltage 

coefficient of exponential decay. Bottom left: tau1, first time coefficient of exponential decay.  

Bottom right: tau2, second time coefficient of exponential decay. All four coefficients were 

assessed with a one-way ANOVA and Tukey-Kramer test of significance. 
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Figure 6.9: Neurobiotin does not appear to have any significant effect on any of the 

coefficients of passive dynamics decay between ages P9-P11.  A: Mean passive dynamics 

traces from cells aged P9-P11, patched with different internals overlaid on top of the mean 

trace from cells patched with Standard Internal. B: Top left: Alpha1, first voltage coefficient 

of two compartment exponential voltage decay from cells aged P9 to P11, plotted against all 

five different internal solutions.  Empty circles are individual cells and filled circles with error 

bars are the mean with standard error in the mean. Y axis is plotted in logarithmic scale.  Top 

right: Alpha2, the second voltage coefficient of exponential decay. Bottom left: tau1, first time 

coefficient of exponential decay.  Bottom right: tau2, second time coefficient of exponential 

decay. All four coefficients were assessed with a one-way ANOVA and Tukey-Kramer test of 

significance. 
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Imaging cells patched with different concentrations of Neurobiotin  

Previous studies (Káradóttir and Attwell 2006) have suggested that to reliably ensure 

illumination of gap-junction-coupled cells (GJCC), a minimum concentration of 5-10mg/ml 

NB is needed, the implication being that gap junction coupling cannot be observed at lower 

doses. After cells had been patched and filled, slices were prepared and imaged using a 

confocal microscope as described in Chapter 5: Gap junctions and Morphology.  It was 

expected that the proportion of cortical slices containing evidence of gap junction coupling 

would differ between high and low concentrations of NB: that a higher dose of NB would 

mean more robust gap-junction detection, and that GJCC would not be visible at lower 

concentrations.  However, GJCC were detected in slices patched with the full range of NB 

concentrations (Figure 6.10).  

 

The subtler question of whether a decrease in NB leads to a proportional decrease in the 

number of observations of gap junction coupling was then addressed. Confocal images of 

acute slices were categorised as either ‘Visible GJCC’, ‘No Visible GJCC’, or ‘Ambiguous’, 

i.e. it could not be stated with any certainty whether GJCC were present or not. No evidence 

was found for a decrease in GJCC detection with a decrease in NB; approximately half of all 

slices imaged via confocal microscopy were found to have GJCC, regardless of whether those 

cells were patched with 10mg/ml, 5mg/ml or 1mg/ml NB (Table 6.7, Figure 6.11).  These 

data were further examined using Fisher’s Exact Test, finding no significant difference 

between the number of GJCC in each dosage-group (minimum P=0.35). Together, these 

results imply that a NB concentration of 1mg/ml, 0.1% w/v was sufficient to discern whether 

a patched neuron has gap junctions, without adverse effect.  

 

Internal Solution Slices with 

visible GJCC 

Slices with no 

Visible GJC 

Ambiguous 

slices  

Proportion of total 

slices with GJCC 

1mg/ml NB+Al.546 5 6 1 0.4167 

5mg/ml NB+Al.546 15 8 3 0.5769 

10mg/ml NB 2 3 0 0.4000 

 

Table 6.7: Confocal imaging of cells patched with different concentrations of NB showed that 

GJCC were visible in 40-56% of slices regardless of NB dose.  
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Figure 6.10: Neurobiotin allows the detection of gap-junction coupled cells, even at low 

concentrations.  A: Left, the mean AP waveform of cells aged P9-P11 patched with internal 

solution containing 1mg/ml NB with Alexa546, right, representative confocal images of cells 

patched with this concentration of NB.  White arrows point to gap junction coupled cells. B: 

As above, but with internal solution containing 5mg/ml NB with Alexa546.  Gap junction 

coupled cells are slightly brighter against background signal.  C: As above, but with internal 

solution containing 10mg/ml NB.  Gap-junction-coupled cells are noticeably brighter, but the 

AP has become lower amplitude and longer duration.   

 

 

 

 

 

 

 

Neurobiotin +Streptavidin Alexa 488 
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Figure 6.11: The concentration of Neurobiotin used does not appear to affect the rate of 

gap junction detection.  A: The number of patched cells exhibiting gap junction coupling for 

each of the three NB concentrations; 1mg/ml, 5mg/ml and 10mg/ml.  For each of the three 

concentrations, approximately half of the patched cells were accompanied by gap-junction-

coupled cells.  Cells were labelled as ‘ambiguous’ if it was unclear if gap-junction coupling of 

neurons had occurred, for example, when the soma of the patched cell was removed with the 

patch pipette, meaning the primary cell couldn’t be identified, or when removal of the patch 

pipette resulted in leakage of some NB. No difference in the proportions of GJCC was 

observed between internal solution concentration groups (Fisher’s exact test, P=0.46, P=1, 

P=0.35).  B: Representative examples of confocal images exhibiting (L-R) no visible gap 

junction coupled cells, visible gap junction coupled cells (white arrow), and ambiguous gap 

junction coupling.    
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6.4 Discussion  

Neurobiotin affects active dynamics 

Neurobiotin is a useful tool for investigation of the morphology of cortical neurons.  In 

particular, its relatively small size, having a molecular weight of just 322.8g/Mol, gives it the 

unusual ability to traverse intercellular gap junctions and illuminate secondary GJCC (Penn, 

Wong et al. 1994).  However, as has been demonstrated in this chapter, NB is not an innocent, 

inert molecule. The effects of NB on AP waveform, in particular AP width, are striking, as 

well as consistent over the age ranges investigated. Measurement of the effects of NB within a 

restricted age group of P9 to P11 cells returned statistically significant effects on both the 

height and width of the AP.   

 

Analysis of the first derivative of membrane potential with time demonstrated that NB affects 

the voltage-gated ion channel dynamics responsible for both the rise and fall of the AP, with a 

larger effect on the falling section. These results are indicative of a major effect on K+ 

voltage-gated ion channels, slowing the repolarisation of the action potential. These results 

were particularly apparent in the latter stages of the period studied; NB appears to suspend the 

AP waveform in their immature form. 

 

Although NB primarily appeared to affect K+ channels, some interesting dynamics were 

apparent in the rising section, in the form of a rise-time delay, or ‘shoulder’ effect in the AP 

phase plane diagram.  This result implies that NB has a minor effect on (some) sodium 

voltage-gated ion channels. Specifically, this shoulder in the phase plane appears after an 

initial phase of increasing gradient that tracks that of Standard Internal, implying that NB has 

a limiting effect on the activation kinetics of voltage-gated sodium ion channels after they are 

first activated. It may be that this effect occurs due to time-dependent kinetics. Alternatively, 

it may be that only certain types of sodium channels are affected by NB, but that the sodium 

channels responsible for the initial active dynamics remain unaffected.  

 

With such a clear effect of NB on the active dynamics of the excitatory neuron, it was 

necessary to explore its wider effects on the dynamics of the cell that do not involve the 

voltage-gated ion channels. However, no consistently concentration-dependent effect on 

intrinsic properties (obtained by applying hyperpolarising currents), nor on passive dynamics 

(obtained by applying a short current pulse) were observed. Therefore, for the purposes of the 

data presented in this thesis, there is no reason to discount passive dynamics data based on the 

presence of NB inside the internal solution.  Additionally, longitudinal analysis of Vm over 
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the period of the current-step protocol showed no apparent diffusion-dependent changes, 

though a statistically significant range was not defined a priori, and the time period analysed 

was brief. Input resistance showed a possible change with NB at high concentrations, but no 

evidence of a dose curve was detected in these input resistance data. Presumably, NB affects 

the input resistance insofar as it affects the ion channels, but it does not affect the membrane 

properties that also contribute to the input resistance. 

 

To compensate for the additional osmotic pressure of the NB dye, a corresponding reduction 

in KMeSO4 to is necessary to keep the internal solution osmolarity at 2853 mOsm, and 

therefore in equilibrium with the cytoplasm of the cell.  This begs the question of whether the 

addition of NB or the reduction of KMeSO4 was responsible for the change in active 

dynamics. However, by inclusion of a Sucrose control internal solution, it was demonstrated 

that the reduction of KMeSO4 results in neuronal active dynamics indistinguishable from that 

of cells patched with Standard Internal, leaving the addition of NB as the remaining culprit 

behind AP waveform change. 

 

Application of computational models to Neurobiotin concentration data 

Since it has been shown that the addition of NB to the internal solution only affects the active 

dynamics of the cells studied, it can be hypothesised that multi-parameter-optimised Hodgkin-

Huxley-style computational models could be applied to these experimental data.  This would 

allow the relative effects of NB to be attributed to different voltage-gated ion channels 

responsible for the AP waveform. For example, given the increased width of the APs with the 

higher doses of NB, it may be hypothesised that NB primarily interferes with the fast 

potassium channels, with effects on other voltage-gated channels being minimal by 

comparison.  With Hodgkin-Huxley models of varying fast potassium channel conductance, 

gK, a negative correlation between NB concentration and gK would be expected, indicating a 

reduction in the flow of potassium ions in and/or out of the cell. Should this hypothesis be 

proved correct, a specific effect of NB on the fast potassium channels of neonatal excitatory 

neurons in the barrel cortex would be implicated. 

 

Use of Neurobiotin in imaging experiments 

With NB an essential constituent of much neuroscience research, it is useful to establish what 

is a ‘safe’ concentration to use.  The dose dependency curve of NB presented in this chapter 

showed no significant difference between the active dynamics of cells of similar ages patched 

with Standard Internal and with a low concentration NB Internal (1mg/ml). These results 
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therefore recommend that this concentration is not exceeded in experiments that require the 

electrophysiological characteristics of the patched cell to be preserved.  Post-hoc confocal 

imaging of brain slices with patched and dye-filled cells showed no difference in the fraction 

of cells that can be identified as exhibiting gap-junction coupling across the concentrations of 

NB used. Aside from the increase in brightness, there is nothing left to recommend using 

higher concentrations of NB when 1mg/ml will suffice, though ample time to allow dye 

diffusion is a necessity.  However, the analysis presented in this thesis only attempted to make 

a binary measure of whether gap junction coupled cells are visible at all (yes or no?), not a 

measure of the number of gap junction coupled cells. For a continuous measure of gap 

junction coupling, which might allow more thorough statistical analysis, it cannot be 

confirmed if this low NB concentration will be sufficient.  

 

6.5 Summary 

To summarise this chapter: use high concentrations of NB in your current-clamp 

electrophysiology experiments at your peril. A dose of 1mg/ml was found to be adequate to 

detect some gap junction coupled cells, though it may not be sufficient to identify them all. A 

dose higher than that will likely affect the AP waveform, as the probable result of interactions 

between the NB molecule and the proteins within potassium channels, but also as a result of 

some effects on some voltage-gated sodium channels. Given that the interaction is most likely 

potassium-channel based, Neurobiotin shows no significant effects on dynamics that are 

merely characteristic of the lipid bilayer cell membrane, such as capacitive time constants.   
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7. Multi-parameter 

Optimisation of 

Conductance-Based 

Hodgkin-Huxley Models  
 

Key Findings 

1. Voltage-comparison based methods of parameter optimisation of Hodgkin-Huxley 

models are vulnerable to noise, with complex error functions, whereas current-

comparison based methods of parameter optimisation produce single-value 

optimisations that are less vulnerable to noise 

2. Algebraically rearranging the ion-channel gating variables, and using simple 

numerical methods to solve them, reduces the computational cost of current-based 

methods of parameter optimisation, increasing efficiency of multi-parameter 

optimisation even further.  

3. Pseudo-inverse matrix algebra methods allow for fast, simultaneous calculation of 

estimates of multiple parameters. 

4. A minimum of two compartments is necessary to create realistic Hodgkin-Huxley 

neuronal models. 

 

7.1 Introduction 

As has been shown in previous chapters, the dynamical systems of the cortical neuron 

undergo massive changes over the course of development.  Some of these transformations are 

married to changes in cell morphology or membrane capacitance, while others are associated 

with the delicate homeostatic balance of ion channel populations, but what is clear is that the 

presented experimental techniques and statistical analysis alone are insufficient to peel apart 

the nonlinear dynamics of neuronal behaviour over such a period of flux. To understand the 

underlying biophysical molecular mechanisms of neuronal development, and make 

predictions that can be tested in future experiments, computational models are needed. 
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The shape of the AP can be modelled as a changing voltage over time, determined by the 

interaction of time-dependent biophysical parameters (Hodgkin and Huxley 1952, Ermentrout 

and Terman 2010). However, a wise choice of model, and the corresponding choice of model 

optimisation methodology, is crucial for accurate and unambiguous neuronal modelling.   

 

The Hodgkin-Huxley model 

Since the 1950s, the Hodgkin-Huxley model of neuronal membrane potential has been used 

by electrophysiologists and computational neuroscientists to provide a description of the non-

linear dynamical interplay of ion channels behind the shape of the AP (Hodgkin and Huxley 

1952).  The classic Hodgkin-Huxley model is a differential equation describing the change in 

membrane potential, V, over time, t, in terms of the currents in and out of the cell. The terms 

of the equation include the injected current, Iinj, and the leak across the membrane, but also 

the contributions of the voltage-gated ion channels. Each ionic current is determined by the 

Nersnt potential for its corresponding ionic species, otherwise known as the reversal potential, 

and by probabilistic gating variables that determine whether each specific ion channel being 

open or closed, themselves a function of voltage and time.  The coefficients are constrained 

by the capacitance of the cell membrane, C, which is generally taken as 1µFcm-2.  

In general form, the Hodgkin-Huxley model can be expressed as: 

𝐶
𝑑𝑉(𝑡)

𝑑𝑡
= 𝐼𝑖𝑛𝑗(𝑡) − ∑ 𝐼𝑖

𝑁{𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠}

𝑖=1

 

(7.1) 

Where Ii is the current contribution from each of the N channels, which can be written as 

 

𝐼𝑖 = 𝑔𝑖𝑄𝑖
𝑥(𝑉(𝑡) − 𝐸𝑖) 

(7.2) 

Where gi is the maximal conductance of that ion channel, Ei is the reversal potential of that 

ionic species, and both are scaled by the specific ion channel probability, Qi, which is raised 

to the power, x, of the number of gates within the ion channel. In practice, the Hodgkin-

Huxley equation is more typically given in a form that specifies the voltage-gated ion channel 

contributions modelled, for example, in a simple form that includes contributions from Na+ 

and K+ channels and a leak current: 

 

𝐶
𝑑𝑉(𝑡)

𝑑𝑡
=  𝐼𝑖𝑛𝑗(𝑡) −  𝑔𝑁𝑎𝑀3𝐻(𝑉(𝑡) − 𝐸𝑁𝑎) − 𝑔𝑘𝑁4(𝑉(𝑡) − 𝐸𝑘) − 𝑔𝐿(𝑉(𝑡) − 𝐸𝑙) 

(7.3) 
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Many of these parameters can be found from experiment, or can be estimated: the injection 

current, Iinj, is controlled by the experimentalist, the membrane potential as a function of time, 

V(t) is measured during the experiment, and the reversal potentials, Ei, can be calculated from 

the chemical compositions of internal solutions and external artificial cerebral spinal fluid 

(ACSF). M is the sodium channel activation gating variable, H is the sodium channel 

inactivation gating variable, and N is the potassium ion channel gating variable. Each of the 

ion channel gating variables are unitless values between 0 and 1.  The ion channel gating 

variables are themselves determined by time dependent nonlinear differential equations of the 

form:  

 

 

(7.4) 

 

(7.5) 

 

(7.6) 

Where, for each gating variable, the parameters were determined by kinetic equations of the 

form (Pospischil, Toledo-Rodriguez et al. 2008, Ermentrout and Terman 2010): 

𝛼𝑀(𝑉(𝑡)) =
−0.1 ∙ (35 + 𝑉(𝑡))

𝑒(−0.1∙(35+𝑉(𝑡)) − 1
 

(7.7) 

𝛽𝑀(𝑉(𝑡)) = 4 ∙ 𝑒− 
60+𝑉(𝑡)

18  

(7.8) 

𝛼𝐻(𝑉(𝑡)) = 0.07 ∙ 𝑒− 
60+𝑉(𝑡)

20  

(7.9) 

𝛽𝐻(𝑉(𝑡)) =
1

𝑒(−(30+𝑉(𝑡))/10) + 1
 

(7.10) 

𝛼𝑁(𝑉(𝑡)) =
−0.01 ∙ (50 + 𝑉(𝑡))

𝑒(−0.1∙(50+𝑉(𝑡)) − 1
 

(7.11) 

𝛽𝑁(𝑉(𝑡)) = 0.125 ∙ 𝑒− 
60+𝑉(𝑡)

80  

(7.12) 

𝑑𝑀(𝑡)

𝑑𝑡
= 𝛼𝑀(𝑡) ∙ (1 − 𝑀(𝑡)) − 𝑏𝑀(𝑡) ∙ 𝑀(𝑡)) 

𝑑𝐻(𝑡)

𝑑𝑡
= 𝛼𝐻(𝑡) ∙ (1 − 𝐻(𝑡)) − 𝑏𝐻(𝑡) ∙ 𝐻(𝑡)) 

𝑑𝑁(𝑡)

𝑑𝑡
= 𝛼𝑁(𝑡) ∙ (1 − 𝑁(𝑡)) − 𝑏𝑁(𝑡) ∙ 𝑁(𝑡)) 
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This leaves the maximal conductances, gi, and their associated ion-channel gating functions to 

be found. Together, these factors describe the flow of charge through each type of ion 

channel. 

 

This version of the equation models the cell as a single isopotential, homogeneous 

compartment. It neglects any geometric effects on the biophysics, for example, axial 

resistance between the soma and dendrites, or soma and axon. It also neglects any synaptic or 

network contributions, but considers the neuron a single, isolated unit.  

 

 

  

Figure 7.1: A simple model of a neuron that considers only a single compartment.  

The time-dependent voltage across the membrane (V(t)), mitigated by the capacitance (C), is 

modelled as the sum of the injected current, I(t), and the currents from the through K, Na and 

Leak channels.  

 

The Hodgkin-Huxley equation can be expanded to model more subtle and precise dynamics 

by the inclusion of additional, specific voltage-gated ion channels, and by the inclusion of 

additional compartments, separated by defined resistances. Whilst this can aid the 

understanding of how the cell works, it can have an exponential effect on the complexity; as 

with all models, what is sought is not perfection, but a reasonable approximation that can 

generate predictions to be tested in experiments.  

 

Conductance-based Hodgkin-Huxley style models can be used to implicate the contributions 

from different ion channels in the changing shape of the AP waveform, and observe how the 

relative dominance of each voltage-gated channel changes across maturation. Indeed, the 

results from Chapter 3: Active Dynamics have already indicated a change in dominance 

between sodium and potassium channels over the maturation period studied. Conductance-

based models can also be used to infer the contribution of ‘leak’ currents that correspond to 

the passive dynamics when no voltage-gated activation taken place; such dynamics were 

themselves shown to be development-dependent in Chapter 4: Passive Dynamics.  
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Assumptions of the Hodgkin Huxley model 

Like all mathematical models of real phenomena, the Hodgkin-Huxley model contains 

implicit assumptions: all compartments are assumed to be isopotential, leak currents are 

assumed to be isotropic across the membrane, and all ionic currents are assumed to flow only 

through ion channels, with each ion channel being absolutely specific to each ionic species. 

The instantaneous current-voltage relationship is assumed to be linear, with no amendments 

made for temperature dependent resistances or local intracellular or extracellular 

electrochemical gradients (Yamada 1998).   

 

Parameter optimisation 

Whilst Hodgkin-Huxley equations can be used to computationally model the highly dynamic 

and nonlinear event that is the firing of an action potential, the fact that the parameters under 

investigation are changing with age, and experimental data can be noisy, adds a layer of 

complexity to the modelling. With such a complex parameter environment, potentially 

changing with every passing day, it is a worthwhile endeavour to assess the success of 

different parameter optimisation techniques, prior to their application on real data (Geit, 

Schutter et al. 2008, Wulfram Gerstner 2009, Friedrich, Vella et al. 2014). Once the 

assessment of optimisation techniques is performed thoroughly, Hodgkin-Huxley style 

models can be fit with confidence to the action potential recordings obtained during 

experiments. The established method of such evaluation is to create an artificial data set, and 

then test the ability of different parameter optimisation techniques to find a target parameter, 

or parameters.   

    

The solution discussed in this thesis, based on work by Lepora et al.(Lepora, Overton et al. 

2012), which itself was based on previous work (Morse, Davison et al. 2001), does not 

attempt to solve voltage-based parameter optimisation, but instead turns the problem around, 

to be one instead of balancing currents. This turns the problem from a difficult solution via a 

multi-parameter differential equation to a simple linear sum, producing solutions that are not 

only more accurate, but are also much more computationally efficient.  

 

The error landscape 

When examining parameter optimisation techniques, a useful tool for both computation and 

intuitive demonstration is the error landscape.  This visual representation of optimisation can 

show clearly the problems with different methods.  An error landscape plots the difference 

between the target data and the modelled data, or the error function, against the value of one 
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or more parameters. This plot reaches a minimum when the parameter or parameters from the 

model equal that from the data.  The simplest error landscapes are (usually) the best; in these 

the difference between the data and the model converges to zero at a single point where the 

parameters match perfectly. Less successful error landscapes are characterised by their 

roughness, where local minima in error can point to incorrect parameter values, which appear 

indistinguishable from the true values.  

 

Much previous work has been devoted to the development of algorithms that address the issue 

of rough-error landscapes – error landscapes that have many local minima.  Evolutionary 

algorithms, such as the genetic algorithm explore the error environment and iteratively 

improve the estimation of the parameters. Increasingly sophisticated versions of such 

algorithms work to avoid constraint in local minima by including random jumps, but intrinsic 

to evolutionary algorithms is high computational cost; exploring the entire, multidimensional 

landscape takes time and computational power (Geit, Schutter et al. 2008, Brookings, Goeritz 

et al. 2014).  

 

The problem of parameter optimisation can be reframed by considering it not of finding the 

lowest error, but on creating the smoothest landscape, that being the error landscape in which, 

no matter the degree of dimensionality, there is only one minimum; in this way, a successful 

error landscape becomes trivial as it points to a single minimum, without ambiguity. 

 

Beyond considerations of roughness and smoothness (i.e of the number of local minima), 

error landscapes can raise larger theoretical questions of neuronal homeostasis (Marder and 

Goaillard 2006).  As has been remarked upon in previous chapters, the biophysical properties 

of the developing neuron change dramatically in the first two postnatal weeks, yet neurons 

still manage to survive, communicate and build functional networks. This implies a degree of 

flexibility in the biophysical properties of the neuron; in multidimensional error landscapes, 

this may manifest as shallow valleys of near-equal error for slightly different parameter 

values, where the slightly-too-large contribution of one parameter compensates for the 

slightly-too-small contribution of another, and the same patterns of behaviour can still be 

seen.  

 

An error landscape can be plotted across the range of whatever parameter, for example 

sodium ion channel maximal conductance, is being tested; the minimum in the landscape 

represents the minimum error that can be found over that range of maximal conductances, and 

the location of this minimum should be at the best fitting parameter for the model, where the 
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output membrane potential supplied by the model is a close enough fit to the data to return an 

accurate estimate of the current.  This presents a problem: how can we be sure that the 

minimum we find in an error landscape is the absolute minimum error over all possible values 

of that parameter, which may stretch to infinity in both negative and positive dimensions?  

Certainly, most work requires a sanity check of the parameters returned, but even with a 

‘sensible’ range established, however arbitrarily, the absolute minimum of the resultant error 

landscape may still be difficult to decipher. Much time and effort has been devoted to 

improving algorithms to avoid local minima in the error landscape that could provide false 

positives; indeed, some beautiful mathematics for solving this problem, in ever more 

complicated iterations has been provided (Toth, Kostuk et al. 2011, Vavoulis, Straub et al. 

2012). 

 

The position of the peak of the action potential might seem like a simple yet effective method, 

certainly a method that would be of low computational workload, as it only requires the 

comparison of one data point, that of the position of the apex of the action potential. 

However, it could be argued that this method relies too much on the timing of the spike; the 

spike waveform might be a perfect replica of our target action potential, but if it is not at the 

same time, the model and target data won’t match.  Conversely, a spike that had a completely 

different shape, demonstrating completely different dynamics, but happened to have its apex 

at the same point, would be deemed a perfect match.  The error landscape would go to zero at 

this point, and that value of the conductance would be returned as the ‘correct’ value. 

 

Parameter optimisation of the maximal conductance-based Hodgkin Huxley style models of 

active neuronal dynamics in excitatory cortical neurons is the main focus of this chapter, 

which begins with a brief ‘wish-list’ for successful optimisation, before examining how well-

established voltage-based techniques address this list. It then proceeds to explore current-

based techniques, before presenting new work that aids computational efficiency whilst 

reducing the influence of noise on parameter optimisation and fitting. These current-based 

techniques are expanded to optimise multiple parameters simultaneously. The models are then 

considered against real data, and evaluated for how they may be made sufficiently realistic to 

be able to return accurate estimates of the ion channel proportions. This chapter does not 

attempt to present new methods of exploring an error function between (synthetic) data and 

model; instead, it attempts to create the smoothest and most accurate error function possible, 

so that the methods of optimising parameters during model fitting become trivial.  
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7.2 Methods 

All the work presented in this chapter was done using MATLAB. Original scripts were 

written for purpose, based on published work (Lepora, Overton et al. 2012).  

Criteria for successful parameter optimisation 

Prior to testing different methods of calculating error functions for their effects on 

multiparameter optimisation, it was useful to define what successful optimisation would look 

like. The ideal optimisation technique is one that fulfils the following criteria: 

- The optimisation should return a single value of each maximal conductance 

optimised 

- The returned values should be in good agreement (±5%) with the synthetic data 

target values 

- The maximal conductances should be determined simultaneously 

- Sensible initial conditions should not be required  

- The maximal conductances should be found within a convenient amount of time 

- The protocol should robustly avoid grossly incorrect combinations of variables 

that result in the same overall membrane potential profile (spiking pattern).  

 

Producing an artificial data set with target conductances of known values 

To test the ability of both voltage and current-based parameter optimisation techniques, it was 

necessary to create an artificial data set, where the parameters under question, the maximal 

conductances were of known value. The majority of ‘data’ within this chapter is artificial 

data, produced from a simulation of spiking behaviour for the purpose of developing and 

evaluating parameter optimisation methods.  

 

The first artificial dataset was created from a simple version of the Hodgkin-Huxley equation 

(Equation 7.3). The reversal potentials and ion channel gating variables were taken from 

literature (Ermentrout and Terman 2010), though the values of these were arbitrary; the value 

of specific controlled variables was of little importance. The maximal conductance values 

used in the first target action potential are listed in Table 7.1: 

 
 

gNa  (mS/cm3) gK  (mS/cm3) gL (mS/cm3) 

Target: 120 36 0.3 

 

Table 7.1: Target values of maximal conductances from artificial data set 1.   
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These values were inserted into equation 7.3, and solved within a MATLAB script via the 

ordinary differential equation solver ‘ode45’ to produce a time dependent membrane 

potential, V(t), providing the target data.  When the injected current, Iinj was zero, only 

equilibration dynamics were observed. Only when Iinj was nonzero and above a certain 

threshold could the output be identified as an action potential. For the first target data set, a 

current injection of duration 10ms was used, enough to produce a single spike. Noise was 

added via the MATLAB command ‘awgn’ – ‘add white Gaussian noise’. The amount of 

noise was not constant over the target data set; when no current is being injected the signal to 

noise ratio was 50:1, during the current injection the signal to noise ratio was 65:1.  The 

combination of these noise inputs produced an artificial data set that is far noisier than any 

seen in real experimental data; this excessiveness was to test the limits of parameter 

optimisation.   

 

Figure 7.2: A noisy artificial target action potential, created from the simple version of the 

Hodgkin-Huxley model (Equation 7.3) with Gaussian white noise added.  

 

This artificial target dataset was used to test the error functions returned by the voltage-based 

methods (and their resultant effect on parameter optimisation) against the current based 

methods.  

An artificial target data set of repetitive spiking behaviour 

To test current-based methods of producing an error function for parameter optimisation 

further, artificial target data sets were needed that resembled the experimental data. Using the 

same version of the Hodgkin-Huxley equation (Equation 7.3), the artificial target data set was 

adjusted by the extending the current injection to 500ms, to replicate the experimental 

conditions.  As expected, this resulted in a spike train. Noise was added as described above. 
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Figure 7.3: A noisy artificial target spike train, created from the simple version of the 

Hodgkin-Huxley model (Equation 7.3), with Gaussian white noise added. The high spiking 

frequency shown was not observed experimentally in developing excitatory cortical neurons.  

 

However, this membrane potential output was observed to have a spiking frequency far higher 

than what was seen in experiments with young, regular-spiking excitatory neurons. 

Adjustments made to the balance of maximal conductances resulted in ‘bunching’ of spikes, 

which was not a phenomenon observed routinely in experiments. No variation of any of the 

terms in this version of the Hodgkin Huxley model could create the lower frequency 

consistent spiking observed in experiment. This presented a problem, since a synthetic target 

data set resembling real data was desired to allow much smoother translation of any 

developed parameter optimisation techniques to real data. It also confirmed that a two 

voltage-gated ion-channel Hodgkin-Huxley model was insufficient to replicate the dynamics 

of a regular spiking excitatory neuron; as has been previously reported (Pospischil, Toledo-

Rodriguez et al. 2008). 

 

Realistic artificial datasets 

To address this problem, and create a realistic target data set, an additional term was included 

in the Hodgkin Huxley model: a small, slow, non-inactivating potassium current, mediated by 

an ion channel gating variable, P. This slow K+ current was incorporated into the synthetic 

target data simulation via the Hodgkin Huxley equation, now amended to be written as: 

 

𝐶
𝑑𝑉𝑚

𝑑𝑡
=  𝐼𝑖𝑛𝑗(𝑡) − 𝑔𝑁𝑎𝑀3𝐻(𝑉 − 𝐸𝑁𝑎) −  𝑔𝑘𝑁4(𝑉 − 𝐸𝑘) − 𝑔𝑚𝑃(𝑉 − 𝐸𝑘) − 𝑔𝐿(𝑉 − 𝐸𝑙) 

(7.13) 

The addition of this slow K+ current allowed for greater control over the spiking properties, 

bringing them closer to what is seen in experimental data. Again, the maximal conductances 
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used to create this waveform were arbitrary, since parameter optimisation techniques should 

not rely on sensible initial choices, and, as before, Gaussian white noise was included in the 

creation of the artificial target data set of this more realistic spiking pattern (Figure 7.4).  

 

In addition, to create a more realistic artificial target data, the following criteria were set: 

1. The parameter values must be physically possible. 

2. Known input variables (Iinj and the reversal potentials) must have values that match 

those that are used in the laboratory. 

3. The membrane potential output must resemble the real data attained in the laboratory.  

 

 

 

 

Figure 7.4: A realistic artificial target data set is created by the addition of a slow 

potassium current. The spiking frequency and threshold of the artificial target data (red line) 

more closely resemble that of the real experimental data (black line). 

 

 

 gNa  (mS/cm3) gK  (mS/cm3) gM  (mS/cm3) gL  (mS/cm3) 

Target 15.00 0.44 0.026 0.015 

 

Table 7.2: Target values of maximal conductances from artificial data set 2.  All units are 

arbitrary. 
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Testing the ability to find a target parameter 

In order to evaluate the effectiveness of different techniques for producing error functions that 

allow parameter optimisation to find the correct target parameter(s), it was necessary to input 

a range of values for the parameter(s) in question, where only one value was correct. The 

function of the parameter range against the amount of error between data and model could 

therefore be used to construct the resulting error landscape. For example, a matrix of values of 

maximal sodium conductance, gNa, that varied over a sensible range around the target value 

could create an equal number of very similar spiking traces.  However, only one such output 

trace would contain the correct value of gNa in its construction. An error landscape could then 

be constructed by plotting the difference between model simulation and target data as a 

function of gNa.  

 

7.3 Results 

Comparison of different voltage-based metrics of parameter optimisation 

Using the first artificial target data set, describing a single action potential, a range of 

different voltage-based techniques for producing an error function were first assessed: 

1. ABS-error: The absolute error between model and data traces, simply taking one value 

of the voltage from the other across the whole trace. 

2. PEAK error: comparison of the position of the maximum voltage in the action 

potential trace. 

3. AHP error: after-hyperpolarisation error, comparison of the position of the minimum 

voltage in the action potential trace; the trough immediately after the action potential 

peak. 

4. RMS error: Root mean squared error (RMS), comparison of the simulated data to the 

target data via the calculation of the root mean squared difference between data and 

model at each time point. 

5. PHP error: Phase-plane error, the difference between plots of the first derivative of 

voltage with time against time (for examples of phase plane traces, see Figure 7.11.B, 

or Figure 6.4). 

 

For each of the target conductances, gNa = 120 mS/cm3, gK = 36 mS/cm3 and  

gL = 0.3 mS/cm3, a matrix of values surrounding the target was created.  The difference 

between model simulation and target data was then plotted as a function of each conductance 

(Figure 7.5), also referred to as an error landscape.  The value of the conductance estimate 
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was then calculated by simply finding the minimum of the error landscape matrix (using the 

MATLAB command ‘min’).  Each of the voltage-based error landscapes plotted failed to 

produce a single trivial minimum at the correct sodium conductance value.  The resultant 

error landscapes were either rough with many local minima (ABS and RMS), trivial but 

inaccurate (PEAK) or flat, (PHP and AHP error). Only the two rough error landscapes (ABS 

and RMS) had minima close to the target values.  Without the use of genetic algorithms, more 

complicated versions of this error landscape from real experimental data would produce a 

difficult problem in trying to find the correct minima that corresponded to the correct 

parameters. This difficulty would be amplified if multiple parameters were attempted to be 

found simultaneously. In addition, these methods were all measured to take more than 2 

minutes to return their estimation of the target value of gNa. 

 

Figure 7.5: Error landscapes for different voltage-based parameter optimisation 

techniques. A: Error as a function of maximal sodium conductance, gNa B: Error as a 

function of potassium conductance, gK. 

 

Optimisation Method 
gNa  

(mS/cm3) 
gK 

(mS/cm3) 
gL 

(mS/cm3) 
Time to find gNa 

Target 120 36 0.3 - 

ABS (Trace) Comparison 122.25 35.15 0.301 134.7s 

Peak Comparison 124.50 32.65 0.275 137.3s 

AHP Comparison 160.00 20.00 0.090 134.8s 

RMS Comparison 122.25 34.30 0.301 137.6s 

Phase Plane Comparison 80.00 20.40 0.207 135.8s 

 

Table 7.3: Assessment of different voltage-based optimisation techniques to find the target 

conductances. 
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Current-based methods of parameter optimisation to a single spike,  

single parameter 

An alternative to voltage-based methods of error function creation and parameter 

optimisation, that could robustly provide more accurate estimates of the ion channel 

conductances, in less time, was desired.   Therefore, a current balancing method, where the 

error is equivalent to a current residual between input and output currents, was explored 

(Lepora, Overton et al. 2012). The Hodgkin Huxley equation can be expressed as a linear sum 

that compares the passive currents (the injected current and the capacitive current across the 

membrane) to the active currents (the currents through the ion channels): 

  

𝐼𝑖𝑛𝑗(𝑡) − 𝐶
𝑑𝑉𝑚

𝑑𝑡
≈  𝐼𝐾 + 𝐼𝑁𝑎 + 𝐼𝑀 + 𝐼𝐿 

(7.14) 

Where the term INa is an array of values due to the variation of the maximal conductance gNa, 

as before. The error function is then calculated as the residual current: the root mean squared 

difference between the passive and active currents.   

 

𝐼𝑟𝑒𝑠 =  √
1

𝑁
∑(𝐼𝑎𝑐𝑡 − 𝐼𝑝𝑎𝑠)

2
 

(7.15)  

 From equation 7.2, we know that each current in the sum can be expressed as: 

 

𝐼𝑖 = 𝑔𝑖𝑄𝑖
𝑥(𝑉(𝑡) − 𝐸𝑖) 

(7.2) 

Where the current is scaled by the value of the ion channel gating probability, Q.  

For the simple version of the Hodgkin-Huxley equation, the ion channel gating variables used 

were M, N and H. 

 

Integral forms of ion channel gating probabilities provide faster and more 

accurate estimates of the residual current 

Given the limitations of the voltage-based methods of parameter optimisation of models to 

noisy synthetic data, the residual current method was applied to the same data, initially using 

inbuilt MATLAB ordinary differential equation solvers to provide time-dependent values of 

M, N and H. However, the functionality of these inbuilt solvers, and the estimations within, 

led to inaccurate predictions of the target conductances. Therefore, different approaches to 

determining the time-dependent values of M, N and H were considered, that would not be 
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reliant on the solvers, namely, algebraic rearrangement of the differential equations into 

integral form. It was predicted that robustness to noise would be improved by integral form, 

since noise is suppressed by integration and amplified by differentiation. Additionally, by 

taking on the work of computation through algebraic rearrangement, the overall 

computational time was predicted to be lessened.  

 

Following on from previous work (Lepora, Overton et al. 2012), the ion channel activation / 

inactivation gating variables, M, N, and H, were rearranged from differential to integral form.  

Each gating variable was expressed in the Hodgkin-Huxley model as a time varying 

differential equation, for example, gating variable M is described by equation 7.4: 

 

 

(7.4) 

With substitution and rearrangement, this can be expressed in the form  

 

 

(7.16) 

Where   

 

  (7.17) 

In this form, it can be solved with the help of an integrating factor: 

 

𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡 

Giving:    

 

(7.18) 

 

Which can be rearranged to: 

 

(7.19) 

 

 

 

 

𝑑𝑀(𝑡)

𝑑𝑡
= 𝛼𝑀(𝑡) ∙ (1 − 𝑀(𝑡)) − 𝑏𝑀(𝑡) ∙ 𝑀(𝑡)) 

𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡
𝑑𝑀(𝑡)

𝑑𝑡
+ 𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡𝑀(𝑡) ∙ 𝛾𝑀(𝑡) = 𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡𝛼𝑀(𝑡) 

𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡
𝑑𝑀(𝑡)

𝑑𝑡
+ 𝑀(𝑡) ∙

𝑑

𝑑𝑡
𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡 = 𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡𝛼𝑀(𝑡) 

𝑑𝑀(𝑡)

𝑑𝑡
+ 𝑀(𝑡) ∙ 𝛾𝑀(𝑡) = 𝛼𝑀(𝑡) 

𝛾𝑀 = 𝛼𝑀(𝑡) + 𝑏𝑀(𝑡) 
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This can be solved by using chain rule in reverse 

   

 

 

 

(7.20) 

Allowing the gating variable to be expressed as a function of time: 

 

 

(7.21) 

The algebraic rearrangement can be applied to the other gating variables to give: 

 

 

(7.22) 

 

 

(7.23) 

These integral equations were solved numerically, by use of the trapezium rule method of 

integration, though other numerical integration techniques would be equally suitable. Their 

solutions were plotted as a function of time (Figure 7.6). 

 

 

Figure 7.6: The gating variables, M, H and N, as a function of time for an artificial noisy 

target data set of a single action potential. 

 

The active currents through the ion channels are defined in terms of these gating variables. 

Rearranging the differential equations behind the gating variables into integral form before 

solving them numerically has the effect of reducing the contribution of noise to the 

optimisation. Hence, for the noisy single action potential defined from the first artificial target 

∫
𝑑

𝑑𝑡
𝑀(𝑡)𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡𝑑𝑡 = ∫ 𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡 ∙ 𝛼𝑀(𝑡)𝑑𝑡 

𝑀(𝑡) ∙ 𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡 + 𝑐 = ∫ 𝑒∫ 𝛾𝑀(𝑡)𝑑𝑡 ∙ 𝛼𝑀(𝑡) 𝑑𝑡 

𝑴(𝒕) = 𝒆− ∫ 𝜸𝑴(𝒕)𝒅𝒕 (∫ 𝒆∫ 𝜸𝑴(𝒕)𝒅𝒕 ∙ 𝜶𝑴(𝒕) 𝒅𝒕 + 𝒄 ) 

𝑵(𝒕) = 𝒆− ∫ 𝜸𝑵(𝒕)𝒅𝒕 (∫ 𝒆∫ 𝜸𝑵(𝒕)𝒅𝒕 ∙ 𝜶𝑵(𝒕) 𝒅𝒕 + 𝒄 ) 

𝑯(𝒕) = 𝒆− ∫ 𝜸𝑯(𝒕)𝒅𝒕 (∫ 𝒆∫ 𝜸𝑯(𝒕)𝒅𝒕 ∙ 𝜶𝑯(𝒕) 𝒅𝒕 + 𝒄 ) 
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data set, smooth error functions with single minima were returned (Figure 7.7). As with the 

voltage-based methods, the value of the conductance estimate in each case was found simply 

by finding the minimum of the output matrix. These produced good estimates of all the target 

conductances (within 5% of the target values), with the time taken to return an estimate of 

gNa reduced to just under 36s. 

 

 

Figure 7.7: Error landscapes for single-parameter optimisation using current-based 

methods. Landscapes show the residual error from fitting to an artificial noisy single spike.  

A: the error as a function of sodium conductance, gNa. B: the error as a function of potassium 

conductance gK.  

 

 

 gNa 
(mS/cm3) 

gK 
(mS/cm3) 

gL 
(mS/cm3) 

Time to 
find gNa 

Target 120 36 0.3 - 

Residual Current 120.45 35.95 0.3 35.9s 

 

Table 7.4: Assessment of the current-based optimisation technique to find the target 

conductances. 

Current-based methods of parameter optimisation to a single spike,  

multiple parameters 

The next criterion to be addressed was that of being able to find multiple conductances 

simultaneously. For noiseless action potentials created using the simple version of the 

Hodgkin-Huxley equation, the error as a function of both gNa and gK was visualised quite 

easily by plotting the error functions for both sodium and potassium conductances on x and y 

axes, with the residual error on the z axis, allowing a three-dimensional error function to be 

plotted (Figure 7.8).  This returned values of the conductances of gNa = 119.85 mS/cm3 and 
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gK = 35.94 mS/cm3, in good agreement with the targets of gNa = 120 mS/cm3 and gK = 36 

mS/cm3. 

 

Figure 7.8: Multi-parameter error function for noiseless artificial target data, optimised 

for both gNa and gK. Units of conductances are mS/cm3.The single minimum occurs at 

values of the two conductances that are in good agreement (<5%) of the target.  

 

When noise was included, the multidimensional error function continued to return a minimum 

of error at a reasonably good estimate of both sodium and potassium conductances (gNa = 

121.22 mS/cm3, gK = 36.53 mS/cm3), though the position of the minimum was more difficult 

to visualise (Figure 7.9).  

 

 

Figure 7.9: Multi-parameter error function for noisy artificial target data optimised for 

both gNa and gK. Units of conductances are mS/cm3. The single minimum occurs at values 

of the two conductances that are in good agreement (<5%) of the target. 
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Current-based methods of parameter optimisation to a realistic artificial data set 

The more realistic version of the Hodgkin-Huxley model included a slow potassium current, 

which prevented high frequency spiking. In order to compute this additional ionic current,  

Im = gm P(V-EK), the gating variable P was rearranged into integral form in much in the same 

way as was done for ion channel gating variables M, N and H.   

 
 

(7.24) 

However, when computing P, the exponential phrases in the integral form reached values so 

large that they could not be computed by the simple numerical methods (trapezium rule) that 

had been previously used. This was identified as an issue of computational power, and was 

solved by dividing the numerical integration of the function P into time-bound ‘chunks’.  This 

necessitated the calculation of the integration constant at the start of each ‘chunk’ of P, but 

was otherwise not computationally expensive. The ion channel gating variables could then be 

computed and plotted as a function of time, as before (Figure 7.10).  

  

 

Figure 7.10: Gating variables as a function of time, including a slow potassium gating 

variable, P.  

 

Limits of the error landscape method of multi-parameter optimisation  

With the inclusion of gK, gM and gL, the dimensionality of error landscape expanded to 5D. 

Projections of this multidimensional error landscape could be plotted, but this presented a 

non-trivial problem. An additional limitation was identified in that the success of the error 

landscape method of multi-parameter optimisation rested on the assumption that the 

difference between each iteration of the conductance variable in any one dimension is large 

enough to produce a discernible change in the gradient of the landscape. As more accurate 

𝑷(𝒕) = 𝒆− ∫ 𝒃𝒑(𝒕)𝒅𝒕 (∫ 𝒆∫ 𝒃𝒑(𝒕)𝒅𝒕 ∙ 𝜶𝒑(𝒕) 𝒅𝒕 + 𝒄 ) 
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values of the conductances are approached, focusing in on the nadir of the landscape, the 

presence of smooth ‘basin’ becomes apparent, the gradient of which is too smooth for the 

error landscape method to distinguish a single minimum. 

 

To obtain a single set of values for multiple unknown parameters, finding the value of the 

conductances through the minima of the error landscape method had to be abandoned as the 

primary method of computation: it no longer returned a single value as the absolute minimum. 

Other mathematical techniques are needed to compute the location of the minimum. 

 

Matrix methods of parameter optimisation 

Algebraic matrix methods, as previously presented, (Lepora, Overton et al. 2012), can be 

employed to find the values of multiple conductances simultaneously. The basis of these 

methods is that they rely upon the calculation of the probabilistic voltage across n ion 

channels, denoted Ai. Ai is the time dependent voltage (V(t)-Ei) multiplied by the 

corresponding ion channel gating probabilities. For example, ANa = M3H(V(t)-ENa).  

 

The active current contributions can be described as 

 

(7.25) 

Viewing each current, Ii in terms of its ion-channel gating variable, potential difference and 

maximal conductance, this can be written as: 

 

(7.26) 

Via the substitution: 

      𝐴𝑖 =  𝑄𝑁(𝑉(𝑡) − 𝐸𝑖) 

(7.27) 

 

The contribution from active currents can be written as a sum of matrices, in the form: 

𝐼𝑎𝑐𝑡(𝑡) = ∑ 𝐴𝑖(𝑡)

𝑛

𝑖=𝑐ℎ𝑎𝑛𝑛𝑒𝑙

�̅�𝑖 

(7.28) 

Allowing us to state, via the equivalency between passive and active currents at the 

confluence of target maximal conductances, that 

  𝐼𝑎𝑐𝑡 =  𝐼𝑁𝑎 + 𝐼𝑘 + 𝐼𝑚 = ∑ 𝐼𝑖

𝑛

𝑖=𝑐ℎ𝑎𝑛𝑛𝑒𝑙

 

𝐼𝑎𝑐𝑡 = ∑ 𝑄𝑁(𝑉(𝑡) − 𝐸𝑖)𝑔𝑖

𝑛

𝑖=𝑐ℎ𝑎𝑛𝑛𝑒𝑙
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𝐼𝑝𝑎𝑠(𝑡) = ∑ 𝐴𝑖(𝑡)

𝑛

𝑖=𝑐ℎ𝑎𝑛𝑛𝑒𝑙

�̅�𝑖 

(7.29) 

All the constituent parts of Ai can be either measured experimentally or calculated.  

Therefore, by taking the pseudoinverse of Ai(t), and multiplying it by the passive current, an 

expression for the maximal conductances can be retrieved: 

𝐼𝑝𝑎𝑠(𝑡) ∙ 𝐴𝑖
#(𝑡) = ∑ �̅�𝑖

𝑛

𝑖=𝑐ℎ𝑎𝑛𝑛𝑒𝑙

 

(7.30) 

Where 

𝐴𝑖
# = 𝑝𝑠𝑒𝑢𝑑𝑜𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑜𝑓 𝐴𝑖 

 

Then the conductance of each current can be found via the summation of the resultant 

conductance matrix over time. In short, matrix algebra allows for unambiguous and quick 

computation of all four maximal conductances, gNa, gK, gM and gL, in a few short lines of 

code. 

 

 gNa 
(mS/cm3) 

gK 
(mS/cm3) 

gM 
(mS/cm3) 

gL 
(mS/cm3) 

Target 15.00 0.44 0.026 0.015 

Current Based Matrix Method 14.98 0.44 0.025 0.016 

 

Table 7.5: The estimates of the maximal conductances returned, simultaneously, from 

current-based methods of parameter optimisation. Multi-parameter optimisation is 

performed on noisy and realistic artificial target data.  

 

With the values of the maximal conductance parameters derived, they can be checked by 

substitution into the differential form of the Hodgkin Huxley equation to produce a modelled 

membrane potential output as a function of time. (Figure 7.11.A). This can be assessed for 

goodness of fit using, for example, phase plane comparison methods (Figure 7.11.B).  
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Figure 7.11: The maximal conductances returned by the matrix current-based method 

of parameter optimisation. A: The returned maximal conductances produce a spiking 

pattern that is very similar to that of the artificial target data. B: Goodness of fit can be 

quantitively assessed via, for example, phase plane comparison methods. 

 

7.4 Discussion 

Hodgkin-Huxley style models of neuronal conductances can be used to model neuronal 

spiking behaviour but robust multi-parameter optimisation is needed to accurately replicate 

the subtle changes in action potential waveform with development.  Voltage based methods of 

multi-parameter optimisation produce non-trivial error functions, or landscapes, that are easily 

disrupted by the inclusion of noise. This chapter has shown by comparison that residual 

current based methods perform better than voltage based methods (absolute (trace) 

comparison, peak comparison, AHP comparison, RMS error, phase plane error) when tested 

against synthetic target data, returning better estimates of multiple parameters in less time, 

providing support to previous work (Lepora, Overton et al. 2012).  

 

Using MATLAB, this work was further developed by writing the differential equations of the 

ion channel gating variables into integral form, and numerically evaluating the result.  In 

doing this, the computational expense of solving the differential equations is removed, and 

smooth error landscapes with single minima are returned. As more maximal conductances are 

attempted to be found, matrix inversion methods perform well at simultaneously returning 

good estimates of the parameters in question.     

 

Physical interpretations of the multi-parameter error landscape  

As neuronal models approach realism, the shape of the error function close to the target 

maximal conductance(s) becomes a shallow basin. Physical interpretations of this basin can 

be considered, for example, it might be representative of the homeostatic mechanisms to 
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allow neurons to function over a constrained range of variables (O'Leary, Williams et al. 

2013). It could therefore be hypothesised that any model neuron whose parameters falls 

within this basin would be able to exhibit robust spiking behaviour despite deviation from a 

single minimum. Alternatively, the limits of the basin could be representative of the limits of 

the residual current technique: the error bars on the returned values of the maximal 

conductances.   

 

Two-compartment models require an axial current 

The current-based multi parameter optimisation technique presented here was successful at 

finding the target maximal conductances in artificial data sets but was unsuccessful when 

applied to real experimental data. Though the model was able to return time-dependent 

functions of the gating variables and the currents through the neuron, the estimations made 

were unfortunately too unrealistic to be able to produce spiking behaviour from real 

experimental data (Figure 7.12). This indicates that the version of the Hodgkin-Huxley model 

used was not sufficiently complex to capture all the behaviour present in real data. 

 

The parameter optimisation techniques developed here assumed a neuron that could be 

modelled with a single compartment. As was demonstrated in Chapter 4: Passive Dynamics, 

single compartment models of the neuron cannot adequately capture the biophysics; a 

minimum of two compartments are needed. A second compartment that represented the 

dendritic arbour, for example, would require a different geometry, with a much larger surface 

area. Although it may be presumed that the dendritic morphology supports active currents, the 

presence of a second compartment could be modelled most simply by assuming that the 

dendritic compartment is passive, and that an axial resistance exists between compartments. 

The addition of a passive axial current to the Hodgkin-Huxley model represents further work 

to be undertaken.   
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Figure 7.12: Multi-parameter optimisation performed on real experimental data returns 

unphysiological maximal conductances, indicating that an additional current is needed. 

A: Ion channel gating variables, as a function of experimentally measured membrane 

potential and time. B: Estimates of the currents through the neuron. C: The spiking pattern 

produced by the returned maximal conductances is not comparable with the experimental 

data.   

 

 

 

 

 

 

Figure 7.13: A two-compartment model of the neuron that includes a passive dendritic 

compartment and an axial current. 
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7.5 Summary 

The use of conductance-based Hodgkin-Huxley models relies on robust parameter fitting. 

This chapter presents an addition to previous work on current-based methods of multi-

parameter optimisation, that rearranges the ion channel gating variables into integral form to 

reduce the influence of noise on estimates of maximal conductance parameters and improve 

computational efficiency. Error landscapes visually demonstrate the benefit of such methods 

over widely used voltage-based parameter optimisation, though the shape of error landscape 

minima raises philosophical questions about homeostasis in neuronal biophysics. With higher 

dimensionality optimisation, matrix methods of computation come to the fore as the preferred 

method of maximal conductance optimisation. 
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8. Discussion 
 

The excitatory cells within the immature mouse barrel cortex have long been used as a model 

of neuronal development (Osterheld-Haas and Hornung 1996, Larsen and Callaway 2006, 

Ashby and Isaac 2011, Li, Fertuzinhos et al. 2013).  Though applications of electrophysiology 

and mathematical models of neuronal spiking behaviours have been used to explain behaviour 

of mature neurons, characterisation of the biophysical changes underpinning neuronal 

development has thus far evaded the field. When considering the covariant, interrelated and 

complex biophysical changes during development, the question arises of why they are 

necessary at all, why the neuron is not born with an ‘optimum’ balance of biophysical features 

that produce the behaviours seen in mature brains. Thorough description of neuronal spiking, 

biophysics of the cell membrane, and neuron morphology, then subsequent observation of 

how these observables vary with respect to age and to one another, is necessary to begin 

addressing this question, before mathematical models can be employed to make appropriate 

predictions.  

 

Focussing on neurons found in this region between postnatal days P3 and P11, this thesis 

presents a biophysical view of the development of such cortical neurons, accounting for 

morphological growth, differentiation and cell-type, early networks of gap junctions, 

changing input resistance and membrane capacitance, increasing surface area, and changing 

proportions of ion channels that result in an action potential that grows in height whilst 

decreasing in width (or duration).  The overall effect is a neuron that undergoes many 

perturbations throughout its maturation.  

 

The predictions of increased surface area with maturation returned by the passive dynamics 

recordings were in pleasing agreement with the increase in neuronal size and complexity 

observed in confocal images of neuronal morphology. The nonlinear relationship between 

surface area and postnatal age that begins to emerge corresponds to previous reports of a 

critical period in neuronal development, specifically the massive increase in the number of 

dendritic spines (Ashby and Isaac 2011). These observed changes in passive dynamics, and 

hence surface area, were shown in this thesis to be free from the contribution of gap-junction-

coupled cells, though a possible development-dependence of gap-junction-coupled cells was 

detected. 
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How are we to interpret these findings? The lack of linearity in both action potential 

waveform development and, potentially, neuronal surface area growth as a function of 

membrane capacitance, points towards homeostatic mechanisms, where biophysical 

phenomena compensate for one another (O’Leary and Wyllie 2011, O'Leary, Williams et al. 

2013, O'Leary, Williams et al. 2014).  Such compensation allows the neuron to survive and 

thrive whilst undergoing extreme changes in position, shape and function. Within this 

homeostasis hypothesis, we can hypothesise that the specific and highly complex patterns of 

action potentials fired by mature neurons do not happen by happy coincidence. Instead, we 

can think of the period of neuronal maturation as a time when neurons are exploring a state-

space of different biophysical parameters, finding the combinations of factors that allow them 

to communicate efficiently, whilst not breaching the limits of their survival and basic 

function. As their communication improves, first aided by gap junctions, later by synaptic 

plasticity (Todd, Kristan et al. 2010), the active inputs drive gene expression that further tune 

their biophysics and the resultant activity. The broad shape of the immature action potential 

can therefore be thought not as an unfortunate consequence of an immature network, but as 

the most sensible starting point for a developing neuron, where both Hebbian and spike-time-

dependent plasticity are aided by the highest probability of spike coincidence between it and 

its neighbours (Egger, Feldmeyer et al. 1999, Connors 2017). 

 

This work also presents an improved method of optimising the parameters of simple 

conductance-based Hodgkin-Huxley models (Hodgkin and Huxley 1952, Morse, Davison et 

al. 2001, Lepora, Overton et al. 2012), resulting in models that can be more finely tuned to the 

changing biophysical properties of the maturing neuron, whilst resisting vulnerability to 

experimental noise. This improvement was achieved by the application of previously reported 

current-comparison methods (Lepora, Overton et al. 2012) in place of more traditional 

voltage-comparison methods, and expanded upon by improving the computational efficiency 

through the derivation of algebraic expressions for the ion-channel gating variables. 

Combined with established matrix-algebra methods, this allowed target parameters from 

artificial data sets to be found with high accuracy and speed.  

 

Hodgkin-Huxley models were optimised against realistic synthetic data not to provide a 

complete phenomenological description of a single cell, but to provide predictions of broad 

dynamical trends that could be tested against data from real regular-spiking cortical neurons. 

Whilst the computational work presented here aimed for simplicity in all models, comparison 

with real experimental data illuminated the necessity of a minimum of two compartments in 

Hodgkin-Huxley models, as the gross simplifications inherent in single compartment models 
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strayed too far from realism, making experimental predictions impossible. Though 

complicated combinations of ion channels were avoided, the necessity of at least three 

voltage-gated ion channels was demonstrated, as without an initiating sodium current, a fast 

hyperpolarising potassium current, and a modifying slow potassium current, the diversity of 

spiking behaviours couldn’t hope to be replicated.  

 

Quite by accident, the widely used tracer molecule Neurobiotin was noticed to have an 

adverse dose-dependent effect on the biophysics of the neurons studied, evident in the effects 

it had on the action potential waveform.  Such a result has been reported, both anecdotally and 

in the literature (Xi and Xu 1996, Schlösser, ten Bruggencate et al. 1998), but has, to the best 

of our knowledge, never been investigated for dose dependency. To researchers, the attraction 

of Neurobiotin over other similar tracer molecules has been its ability to traverse gap-

junctions and illuminate gap-junction coupled networks of cells (Rörig, Klausa et al. 1996, 

Montoro and Yuste 2004, Todd, Kristan et al. 2010); it has been asserted previously that for 

such networks to be robustly detected, relatively large quantities of Neurobiotin are needed, 

of concentrations of 5mg/ml or more (Káradóttir and Attwell 2006). Contravening this, we 

find that low doses of Neurobiotin (1mg/ml) can robustly detect gap junction-coupled cells, 

without detrimental effect to the active dynamics. We hope that this finding will inform future 

experimentalists who may also wish to collect concurrent electrophysiological and 

morphological data. 

 

There are weaknesses in the approach presented in this thesis to be considered and improved 

upon, if possible, in future work. Within this experimental approach, the discretisation of the 

age and therefore implied development of the mouse pups used set a limitation on the 

precision of the results that can be asserted: each age reported comes with an error bar of ±24 

hours. This uncertainty can be assuaged in future experiments by not only considering the age 

of the pups, but also their weight and brain size, and using these additional factors to inform 

our measure of ‘postnatal development’. An additional consideration is that it may be that the 

age of the cell, rather than the age of the animal that is important. Though these different 

measures are correlated, they are not necessarily the same. Meanwhile, the ongoing migration 

of cells, particularly in younger ages, provided a complicating factor; should cells be 

considered ‘barrel cortex cells’ if they are merely passing through to more external cortical 

layers? To address this, the lower limit of development for these studies could be set to the 

period at which neuronal migration to the barrel cortex is thought to be complete, but this may 

exclude the first two postnatal weeks that are so dynamic, and so interesting (Osterheld-Haas 

and Hornung 1996).  
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The experimental methodology of ex-vivo slice work is unfortunately no more than a proxy 

for true neuronal action.  The damage done to the cortex can be minimised through fast and 

careful dissection of the brain, but ex-vivo slice electrophysiology will fundamentally sever 

and disrupt functional networks. For this reason, in vivo electrophysiology, in either awake or 

anesthetised animals will always be preferable, though it does introduce a great many other 

challenges, for example, ensuring consistent levels of sedation (Margrie, Brecht et al. 2002, 

Miquelajauregui, Kribakaran et al. 2015) and parsing intrinsic and passive dynamics from 

active dynamics under the effects of constant synaptic activity.  

 

It is a large and rather obvious caveat of this thesis that synaptic events are not considered. 

The synaptic inputs to developing neurons can be presumed to increase in strength and 

frequency over maturation, as cortical networks form, and sensory experiences rise in number 

and complexity. Synaptic plasticity studies are numerous (Harris-Warrick and Marder 1991, 

Nadim and Bucher 2014, Leighton and Lohmann 2016), and indicate critical periods of 

accelerated synaptic input, shifting the parameter state-space that limits the other biophysical 

parameters, such as action potential waveform. Moreover, the geometrical effects of synapses 

on neuronal biophysics has not been touched upon, despite the established knowledge that 

plasticity drives the growth of axonal boutons and dendritic spines in a great diversity of 

shapes; this diversity of geometries at even the smallest levels has consequences for the 

electric signals sent, and hence the information encoded (Major, Larkman et al. 1994, Biess, 

Korkotian et al. 2007, Rowan, DelCanto et al. 2016). 

 

This thesis considers only one species and does not explore how the patterns of maturation are 

replicated across mammals. Certainly, it would be interesting to see what features of neuronal 

maturation are conserved, what aspects are prioritised in animals that reach maturity quickly, 

and which lead to the biggest cognitive deficits when disrupted. From this, intra-species 

homeostatic limits could be inferred, and related to both environment and evolution.  

 

Regarding more attainable future work, the barrel cortex lends itself to studies of sensory 

deprivation, since whiskers can be trimmed, and tactile somatosensory input removed without 

great distress to the animal (Sun 2009, Ashby and Isaac 2011, Barrera, Chu et al. 2013). 

Whether the neurons within the barrels of trimmed whiskers remain in their immature state, 

firing low-amplitude and broad action potentials, or they mature into hyperexcitable cells that 

compensate for the lack of thalamocortical afferent connections with increased activity, could 

be investigated in future experiments.    
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The biophysical development of cortical neurons could be further investigated via comparison 

of the data presented here with mouse models of disrupted development. Indeed, such work 

has already been done by examining development in autistic spectrum disorder subtype 

Fragile-X syndrome in genetic knock-out mice (Domanski 2013). The comparison of 

development under the influence of Fragile-X, versus wild-type, may enlighten the particular 

mechanisms that decide regular spiking behaviour, and therefore effective and efficient 

neuronal communication. Paired with a computational approach, such investigations could 

elucidate which ion channels may be particularly affected by this disorder, or other 

conditions.  

 

The above suggestions for future work address specific perturbations in development that 

could be investigated, but further work could delve into the present data and examine the 

subtleties of action potential waveform phase-plots in more depth, particularly if 

computational methods were included. Such analysis could illuminate how the waveform of 

the AP is influenced not only by the type and proportion of ion channels, but also by the 

coherence of their dynamics and their synchronisation, as has been previously suggested 

(Naundorf, Wolf et al. 2006). The cooperative dependency of voltage-gated ion channels is an 

interesting problem for computational and experimental neuroscientists alike to consider. It 

could lead to investigations of the electrostatic interplay between ion channels and other 

features of neurons over development, and address suggestions that the initiation and 

propagation of the action potential is determined not by simplistic input-output circuitry, but 

by geometrically defined electrical dipoles (Telenczuk, Fontaine et al. 2017). 

 

From the work presented in this thesis and the literature referenced, how are we to describe 

the developing neocortex in simplistic terms? One could imagine the functional networks of 

neurons, like those found within the barrel cortex, as musicians in an orchestra that have 

never played together before. Starting with spontaneous and short bursts of activity, they 

gradually tune their frequencies. They begin simple coherent rhythms, before moving onto 

complex synchronised patterns of communication. The information does not come from one 

individual alone, though each individual’s contribution is crucial. Rather, the collective 

determines the output of the individual, and vice versa.  They learn and grow by listening to 

one another. 
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