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ABSTRACT 

 

Karst landscapes cover 12% of Earth’s continental land area and are often characterised by their 

nutrient-poor soils. The karst critical zone of south west China, home to 35 million people, is being 

intensively farmed, despite its highly-degraded and nutrient-limited soils. Phosphorus, a key nutrient for 

plant growth, is thought to be a limiting nutrient in karst soils as a result of negligible concentrations 

found in limestone bedrock and the influence of anthropogenic farming practices. This research sought 

to understand if organic acid exudates from mycorrhizal fungi, found in >80% of plants, altered the 

uptake of phosphorus by primary producers in karst soils. To answer this, a sequence of plant-based 

experiments were conducted using soils collected from Chenqi subcatchment, Guizhou Province. Oxalic 

acid treatments were added to soils to simulate the action of organic acids exuded by mycorrhizal fungi, 

to identify if non-labile phosphorus was being broken down into labile species. SEM EDS analysis of 

soil from Chenqi was used to identify the phosphorus species present in the soil, to better our 

understanding of the phosphorus cycle in karst environments. The results indicate that soils in Chenqi 

subcatchment are severely limited with respect to phosphorus, and that this impacts detrimentally upon 

the overall health and growth of plants. Statistical analysis suggests that oxalic acid does not significantly 

increase the concentration of phosphorus taken up by plants in karst soils. This research is part of the 

NERC-NSFC-Newton funded SPECTRA project, investigating soil processes and ecological services in 

the karst critical zone of south west China, an international project involving research institutions in the 

UK and China. The results of this research will be collated with other SPECTRA project findings, to be 

used in improving understanding and management of the response, resilience and recovery of the south 

west China karst.  
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1.0.  INTRODUCTION 

 

Almost 35 million people in south west China rely upon karst environments as a source of food and 

potable water, and with these fragile landscapes subject to rapid degradation and desertification, there 

is significant uncertainty over the future of sustainable farming in rural karst areas. Karst environments 

are known to cover 12% of the Earth’s continental area (Hartmann et al., 2014), and are often 

characterised by nutrient-poor soils of varying depths, as a result of the underlying carbonate bedrock 

that is highly susceptible to erosion and chemical weathering processes (Bull, 2005).  

Human activity has shaped many karst environments across the world, with increased rates of 

deforestation required to meet commercial farming needs resulting in soil erosion and degradation, 

which can take hundreds of years to recover and revegetate. As a direct consequence of soil erosion, 

many karst regions have nutrient-poor soils which limit primary production. Traditionally, mineral 

fertilisers comprising of nitrogen, phosphorus and potassium (known as NPK fertilisers) have been 

applied to improve total crop yield, however this also results in eutrophication of freshwater systems 

(Simmons, 2000). Eutrophication, the process of the pollution of waters by elevated concentrations of 

nutrients such as nitrogen and phosphorus, alters the primary productivity of an ecosystem and can 

cause impacts such as deoxygenation of waters (Simmons, 2000). A balance must be struck between 

ensuring adequate nutrient concentrations in karst soils and limiting the impact of eutrophication of 

freshwater ecosystems. To achieve this, more sustainable methods of increasing nutrient availability in 

soils is required, in place of the traditional excess application of NPK fertilisers which is used to alleviate 

issues associated with nutrient-limited soils as are characteristic of karst environments.  

Phosphorus is of particular concern in karst regions, given its role as a primary limiting nutrient in marine, 

freshwater and terrestrial environments (Elser et al., 2007). In many cases, phosphorus is present in 

soils, but is held in a non-bioavailable form that cannot be used by plants for key processes such as 

growth an reproduction (Holford, 1997; Schachtman et al., 1998). The low concentrations of bioavailable 

phosphorus in soils augments the aforementioned use of NPK fertilisers to boost soil concentrations. 

Karst environments, such as the south west China karst, are often subject to elevated rates of soil 

erosion which in turn removes phosphorus from the terrestrial environment. Erosion and runoff of 

sediments, primarily consisting of topsoil and phosphorus-rich fertilisers, are not only wasteful and costly 

but also drives eutrophication of freshwater (and subsequently marine) ecosystems. In addition to the 

considerations regarding eutrophication, the excess application of phosphorus in fertilisers is 

problematic due to the finite and complex nature of phosphorus as a natural resource (Childers et al., 

2011). Phosphorus reserves are being rapidly depleted, due to the increases in agricultural production 

required to meet the demands of global population growth; in the USA, one of the largest exporters of 
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phosphorus, it is thought that domestic phosphorus reserves will be depleted in the next 15 to 25 years 

(Stewart et al., 2005). Given this rapid depletion of global phosphorus reserves, there is a need for 

increased research and understanding of how phosphorus in soils can be accessed and used more 

efficiently, reducing the need for superfluous application of fertilisers.    

One method by which phosphorus concentrations in soils can be increased, is through the action of 

mycorrhizal fungi. These fungi inhabit the root systems of over 80% of all plants (Smith and Read, 2008; 

Wang et al., 2010), and release chelating compounds such as oxalic, lactic and malic acids. These 

compounds have been shown to break down non-labile and non-bioavailable phosphorus, such as 

apatite, into soluble and available inorganic species which can subsequently be used by primary 

producers (Jones, 1998; Yadav and Tarafdar, 2003). There is limited understanding of some of the 

interactions between mycorrhizal fungi, organic acids and phosphorus, but there is evidence to suggest 

that the addition of oxalic acid to soil or rock can increase the concentration of bioavailable phosphorus 

suitable for uptake by plants and other primary producers (Kpomblekou-A and Tabatabai, 2003; 

Panhwar et al., 2013).  

The SPECTRA project is a NERC-Newton Fund international research project, which brings together 

scientists from the UK and China. SPECTRA has a key focus upon soil processes and ecological 

services in the karst critical zone of zone of south-west China, with a key aim of better understanding 

the resilience, recovery and response of the south China karst to anthropogenic perturbation and 

activity. The four workpackages within SPECTRA are interlinked, and cover the following ideas: 

• Soil erosion and redistribution  

• Distribution of biota, including plants, fungi and microbes 

• Rock weathering, and subsequent elemental release and processes surrounding soil formation 

• Soil nutrient pools and fluxes, including phosphorus, nitrogen and organic carbon 

These findings from these workpackages will combine to generate a wide range of data on the south 

China karst, including biogeochemical cycles, ecosystem structure and interactions and geological 

formations and processes. It is crucial that biogeochemical cycling of carbon, nitrogen and phosphorus 

in karst ecosystems is better understood if these environments are to be managed in a sustainable 

manner. Soil degradation and nutrient exhaustion must be controlled if there is to remain a future in 

agricultural production in such highly-degraded environments. It is hoped that this improved 

understanding of such a complicated environment can be used to inform policy-making and 

management of the south China karst ecosystem, to both restore and protect the environment in addition 

to optimising agricultural yields and ensuring sustainable livelihoods for the 35 million inhabitants.  
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As part of the SPECTRA project, this research aims to fill some gaps in the current literature and fill the 

knowledge base surrounding phosphorus in karst environments. Interactions between organic acids and 

phosphorus in karst regions have been poorly explored, and there is little understanding of the role of 

organic acids in mobilising phosphorus in otherwise nutrient-limited regions. This research seeks to 

understand if oxalic acid, known to be exuded from mycorrhizal fungi, can increase the uptake of 

phosphorus by plants in soils sampled from the karst critical zone of south west China. To answer this 

question, a suite of plant-based experiments was designed to determine the impact of oxalic acid on 

phosphorus uptake by Erigeron acris seedlings, using soils sampled from the Chenqi subcatchment, 

located in Guizhou Province. Furthermore, SEM EDS imaging of soil samples was employed to identify 

the presence of phosphorus in soils from Chenqi, and to establish the species of phosphorus most 

commonly found in karst environment soils. Given the primary land-use of karst regions such as Chenqi 

as areas of subsistence and commercial agriculture, analysis of the overall plant health and growth 

quality were also assessed as such a factor is important in maintaining livelihoods for many people living 

in the south west China karst.   



 

23 
 

2.0.  CURRENT LITERATURE 

 

As is outlined in Section 1.0., there are several motivations for conducting research into phosphorus 

limitation in karst critical zones that are heavily relied upon for agricultural cultivation. To better 

understand these motivations and to provide an insight into the current literature, the following sections 

will explore a range of topics, including: the phosphorus cycle; the role of mycorrhizal fungi in plant-

nutrient interactions, and karst regions and the complex pressures associated with them. 

 

2.1. PHOSPHORUS IN THE NATURAL ENVIRONMENT 

 

2.1.1. PHOSPHORUS: STRUCTURE, FORM AND ABUNDANCE  

Phosphorus, a key nutrient for all living organisms, is a naturally-occurring mineral found in the earth's 

crust, with the current abundance measured at 0.12% (Hanrahan et al., 2004). It is essential for growth 

and maintenance of living cells (Elser et al., 2007; Smits et al., 2012), in particular in the formation of 

ribonucleic acid (RNA) and deoxyribonucleic acid (DNA), structuring phospholipids and cell membranes, 

and the formation of metabolic agents such as adenosine diphosphate (ADP) and adenosine 

triphosphate (ATP), the most common biomolecule in the natural world (Magid et al., 1996; Marschner, 

1995; Schlesigner, 1991; Stewart and Tiessen, 1987).  

Phosphorus is held in a variety of forms within the natural environment: organic, soluble inorganic, 

insoluble inorganic and surface adsorbed (Dalai, 1977; Larsen, 1967). Phosphorus is cycled between 

rock, soil and water, with its form and abundance dependent on soil type, plant species and other 

environmental and anthropogenic influences (Anderson and Magdoff, 2005; Bieleski, 1973; Chien and 

Menon, 1995). Most phosphorus in the natural environment is held in rocks and soils, with low 

concentrations found in water; mineral forms of phosphorus, such as apatite, have a very low solubility 

in water, and therefore are more commonly associated with the terrestrial landscape (Hanrahan et al., 

2004). In relation to uptake by primary producers, phosphorus can be found in either bioavailable or 

non-bioavailable species; bioavailable phosphorus refers to phosphorus held in a labile form, which can 

be immediately accessed and used by primary producers. Conversely, non-bioavailable species of 

phosphorus are those found in the non-labile form, and so must undergo transformative biochemical 

processes to become bioavailable, labile species, that subsequently can be used by primary producers. 

With most phosphorus in the natural environment held in non-bioavailable particulate form, it is 

commonplace that phosphorus is the main nutrient that limits primary production (Schindler, 1977; Smith 

et al., 1986).  
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In natural environments, the weathering of rock is the dominant source of phosphorus for living 

organisms (Smits et al., 2012). Phosphorus is present as apatite, vivianite, wavellite and phosphorites 

(Budavari, 1989; Hanrahan et al., 2004); the most important of these weathered minerals is apatite 

(Guidry and Mackenzie, 2000; Peltzer et al., 2010; Smits et al., 2012; Walker and Syers, 1976), as it 

accounts for >95% of all phosphorus found in the earth's crust (Hallberg, 1992; Jahnke, 1992; 

Schlesigner, 1991; Stevenson, 1986). The apatite reservoir refers to multiple compounds, including: 

fluoroapatite, hydroxyapatite, carbonate-hydroxyapatite and francolite (Van Straaten, 2002). Different 

forms of apatite are characterised by the other elements present within the structure; those with a higher 

carbonate content, such as francolite, will solubilise more easily than others, thus releasing more plant-

available phosphorus into the soil (Anderson et al., 1985). Igneous rocks are rich in fluoroapatite, whilst 

authigenic carbonate-fluoroapatite is the main phosphorus-bearing mineral in sedimentary rocks 

(Filippelli, 2008). 

Table 1 - The uses of mined phosphorus, and the associated proportion of the global total used for each purpose. Data sourced from 

Prud’homme (2010) and Schröder et al. (2010). 

 

 

 

 

 

 

 

Phosphorus deposits are located across the world and are mined to serve a range of agricultural, 

domestic and industrial purposes, as are displayed in Table 1. There are deposits and reserves of 

phosphorus located in all continents excluding Antarctica, but these are rapidly depleting. Stewart et al 

(2005) state that, by using average phosphorus mine production data from 1997-2001, they estimate 

that world deposits will last until 2095, and world reserves will last until the year 2345. Such predictions 

work on the basis of fixed socio-economic factors, and therefore given the projections in population 

growth over the 21st Century, these estimations are likely to overpredict the longevity of the resources. 

As a limiting nutrient in most soils, phosphorus is usually mined and subsequently added to soils as 

mineral fertilisers; given its finite nature, a more sustainable attitude to phosphorus within soils and 

agriculture must be adopted before resources are too severely depleted.  

Phosphorus Use Proportion of Mined Phosphorus (%) 

Mineral Fertiliser 82 

Animal Feed 7 

Detergents 5 

Speciality Applications (e.g. lighting; food-

grade phosphorus; lighting; metal treatment) 
4 

Food Additives 1-2 
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Previous research indicates that the total phosphorus concentration found in soils ranges from 100 to 

3000mg kg-1 (Condron et al., 2005), but only 1 to 5% of this is thought to be in a soluble, bioavailable 

form (Hayman, 1975; Molla et al., 1984; Pierzynski et al., 2005). Therefore, interactions between 

recalcitrant fractions and the surrounding environment occur in order to release bioavailable phosphorus 

into the soil (Condron et al., 2005; George et al., 2002; Tang et al., 2006; Tarafdar and Jungk, 1987). 

Often, this involves the action of soil microorganisms, which alter the soil environment to promote the 

solubilisation of inorganic phosphorus (Taha et al., 1969); some higher plants have also evolved to 

better absorb phosphorus from nutrient-limited soils (Ozanne, 1980), which are further explained in 

Section 2.2. The concentration of phosphorus in the soil solution phase in most soils is frequently less 

than that of many micronutrients such as iron, manganese and copper (Epstein, 1972; Fried and 

Broeshart, 1967). The soil macronutrient ions, excluding phosphorus, are usually found in soils in 

concentrations of 10-3M to 10-4M, whilst phosphates are often found to have the lowest concentrations, 

measuring 10-6M (Goldstein, 1986). It is therefore unsurprising that phosphorus is the main limiting 

nutrient for plants, and it is this deficiency in soil solution phosphorus that remains predominantly 

responsible for preventing the maximum agricultural yield from being obtained (Goldstein, 1986).  
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2.1.2.  ORGANIC AND INORGANIC PHOSPHORUS 

Phosphorus is held in a diverse range of forms within the natural environment, encompassing both 

organic and inorganic species (Dalai, 1977; Larsen, 1967). The respective abundances and 

concentrations of these species is related to characteristics of the terrestrial or freshwater environment, 

such as pH, soil phosphorus concentration and soil type (Anderson and Magdoff, 2005; Bieleski, 1973; 

Chien and Menon, 1995). In most soils, phosphorus originates from the weathering of apatite minerals, 

where phosphorus is bound to calcium, iron, chlorine or a hydroxide group (Pierzynski et al., 2005). 

Weathering of soils increases the abundance of aluminium- and iron-bound phosphorus species, in 

addition to higher concentrations of organic phosphorus (Pierzynski et al., 2005).  

Organic phosphorus refers to any phosphorus species containing a covalent bond to carbon; these 

organic compounds are classified based on the nature of the phosphorus bond within their structure 

(Condron et al., 2005). Between 30 and 90% of phosphorus found in soils is held in the organic form 

(Harrison, 1987; Oberson et al., 1996; Stevenson, 1986), which itself is not bioavailable. Most forms of 

phosphorus are not immediately bioavailable, and so can only be used by primary producers having 

undergone mineralisation or another biochemical process (Stewart and Tiessen, 1987). It is these 

processes that create the phosphorus cycle and see the transition of phosphorus between organic and 

inorganic phases. 

The organic phosphorus fraction within soils is made up of a range of compounds: orthophosphate 

esters, phosphonates and anhydrides are all prevalent, depending on the nature of the phosphorus 

bond (Condron et al., 2005). In most soils, orthophosphate esters, in particular monoesters, are the 

dominant form of organic phosphorus; they often account for 100% of the total organic phosphorus 

(Condron et al., 2005). Orthophosphate diesters are another commonly-found form of organic 

phosphorus, referring to nucleic acids and phospholipids that originate from decayed plant material 

(Cade-Menun et al., 2000; Condron et al., 2005). Although typically comprising less than 10% of the 

total organic phosphorus within cultivated agricultural soils, they can constitute more than 50% of the 

organic phosphorus pool within some forest soils (Cade-Menun et al., 2000). Nucleic acids and 

phospholipids are some of the few species of organic phosphorus that are immediately bioavailable, 

and can be used by primary producers without mineralisation occurring (McKercher and Tollefson, 

1978). 

A further species within the organic phosphorus fraction, microbial biomass comprises between 3 and 

24% (Brookes et al., 1984), and includes sugar phosphates, phosphoproteins and mononucleotides 

(Stevenson and Cole, 1999). Although microbial biomass phosphorus represents only a minor fraction 

of the organic component, it remains a key actor in phosphorus recycling (Kwabiah et al., 2003). 

Microbial biomass uses biochemical processes to convert phosphorus from organic to inorganic 
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species, which are found to be bioavailable and thus available for uptake by primary producers (Stewart 

and Tiessen, 1987).  

Inorganic phosphorus is the most commonly bioavailable form of phosphorus found within most soil 

systems, and is therefore of vital importance when considering primary production and agriculture 

(Pierzynski et al., 2005). Orthophosphate (PO4
3-) is the main inorganic phosphorus fraction found in soils 

solution, of which the main ionic forms are HPO4
2- and H2PO4

- . These ions are considered to be the 

primary source of phosphorus for plants and microorganisms, given their bioavailable state (Condron et 

al., 2005; Pérez Corona et al., 1996). The orthophosphate ions that are taken up by primary producers 

for use in growth and reproduction must be continually replenished to maintain soil health; this involves 

the desorption and dissolution of inorganic phosphorus and the mineralisation of organic phosphorus 

(Condron et al., 2005). Due to their nature as a soluble and labile species, orthophosphate ions are 

relatively reactive within soils, and therefore often involved in other biochemical cycling processes which 

reduces the soils bioavailable phosphorus concentration. Through balancing these biochemical 

processes, a steady concentration of bioavailable phosphorus in soil solution can be maintained.   

There are three main groups that soil inorganic phosphorus is categorised into: primary phosphorus 

minerals, secondary phosphorus minerals and sorbed phosphorus (G.M. et al., 2000; Stevenson, 1986). 

Primary phosphorus minerals refers to the apatite groups, outlined in Section 2.1.1., whilst secondary 

minerals are phosphorus species that are bound to calcium, iron or aluminium ions through precipitation 

(Pierzynski et al., 2005). Secondary phosphorus minerals are formed when bioavailable inorganic 

phosphorus species react with metal ions in soil solution. The ions present in soil solution vary 

depending on soil pH: iron, aluminium and manganese are present in acid soils, whilst calcium is more 

prevalent in alkaline soils, although other regional factors can affect the soil elemental composition. The 

final form of phosphorus found within terrestrial environments is sorbed phosphorus, present as clays 

and aluminium or iron oxide compounds (G.M. et al., 2000). These species are insoluble, and so slowly 

released into the soil solution (Mengel and Kirkby, 1987); their abundance and form is dictated by 

specific regional characteristics, such as soil pH (Pérez Corona et al., 1996). The interaction between 

soil pH and sorption/desorption processes results in these reactions equilibrating with the soil solution 

(Pierzynski et al., 2005). Research suggests that bioavailable orthophosphate adsorbs to the surface of 

hydrous metal oxides and clay minerals, through displacement of the OH- ion or water molecule 

(Sposito, 1986).  

2.1.3.  THE PHOSPHORUS CYCLE 

Phosphorus is cycled between terrestrial and freshwater systems, in both organic and inorganic 

fractions. It is controlled by the requirements of the environment and its biota, which results in variation 

in total phosphorus concentration between different ecosystems with contrasting environmental 
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pressures. To allow for uptake by their root systems, plants require phosphorus to be held in the 

bioavailable form, often taking the form of inorganic orthophosphate (Shen et al., 2011). Phosphorus 

held in non-bioavailable and non-labile species, such as calcium, aluminium or iron phosphates 

cannot be used by plants or microorganisms, and so require biological or chemical breakdown to 

bioavailable forms (Adeloju et al., 2016).  

As is illustrated in Figure 1, the phosphorus cycle comprises a series of inputs and outputs, linked 

together through natural and anthropogenic processes. Primary phosphorus minerals form the bulk of 

the input of phosphorus (Pierzynski et al., 2005), as it is the only naturally-occurring source. Apatite is 

the most commonly found primary phosphorus mineral in soils, accounting for >95% of phosphorus in 

the earth’s crust (Hallberg, 1992; Jahnke, 1992; Schlesigner, 1991; Stevenson, 1986). As is outlined in 

Section 2.1.1., apatite minerals are found in a range of species, depending on the other elements in the 

mineral structure. Chemical weathering of non-bioavailable apatite releases inorganic phosphorus 

species into the soil solution, which is then cycled between inorganic and organic forms as a result of 

interaction between natural and anthropogenic processes.  

The dominant anthropogenic pathway for phosphorus to enter the soil environment, is the addition of 

mineral fertilisers to soil. Most mineral fertilisers contain nitrogen, phosphorus and potassium, and so 

are commonly referred to as NPK fertilisers; these nutrients are most limited in soils and therefore added 

artificially to boost productivity. The phosphorus in NPK fertiliser originates from primary phosphorus 

minerals found in rock phosphate, which is crushed and added to fertiliser compounds. Adding 

phosphorus in the form of mineral fertilisers immediately increases the concentration of phosphorus 

found in the soil solution (Pierzynski et al., 2005). Initially, the phosphorus is primarily involved with 

adsorption and precipitation process, both of which produce non-bioavailable phosphorus species; 

these processes are, initially, easily reversible and so phosphorus can rapidly be made available for 

uptake by plants or can be lost due to surface runoff and leaching (Pierzynski et al., 2005). Over time, 

the solid phosphorus forms produced due to adsorption and precipitation processes may be converted 

to less soluble forms, resulting in bioavailable phosphorus concentrations in soil decreasing further 

(Pierzynski et al., 2005). Mineral fertilisers must be continually applied to maintain sufficiently high 

concentrations of phosphorus to ensure soils and plants will not be limited with respect to phosphorus.  
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There are further pathways by which phosphorus is added to soil, many of which are naturally-occurring 

processes influenced by anthropogenic activity. For example, the breakdown of plant residues, animal 

biosolids and faecal matter can contribute organic phosphorus, which can be accessed by primary 

producers via mineralisation to produce a bioavailable form of phosphorus; this will be discussed further 

in this section. The deposition of atmospheric dust, often in the form of wind-blown loess, contributes 

bioavailable inorganic phosphorus to soils and freshwaters. Loess is a clastic sediment, formed through 

the accumulation of wind-blown dust; the loess is characterised by a dominance of quartz within its 

chemical structure, but the composition varies depending on the dust source and other processes  

Figure 1 - Schematic of the phosphorus cycle in terrestrial and freshwater environments. Blue outlines show inputs of phosphorus 

to the terrestrial ecosystem; green outlines show different phosphorus species and yellow outlines show output of phosphorus 

from the terrestrial ecosystem. Diagram adapted from Celi and Barberis (2005) and Pierzynski et al (2000).  
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Figure 2 – Schematic of the current understanding of phosphorus cycling between soil horizons (A, B and C). Phosphorus fractions 

are shown in each soil horizon, in addition to the biogeochemical cycles associated with their transformations:  

A: Dissolution  B: Plant Uptake   C: Runoff and Erosion  D: Leaching  

Data for diagram sourced from: Celi and Barberis (2005); Pierzynski et al (2005) and Ippolito et al (2010). 
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occurring post-accumulation (Pye, 1995). Although a natural process, wind-blown loess can be 

influenced by climate-driven desertification or through open-karst mining; both desertification and mining 

can increase wind-blown dust, which could in turn increase the concentrations of phosphorus, and other 

elements, present at the deposition site.  

In contrast to phosphorus input processes to soils, there are also multiple pathways by which 

phosphorus is lost from soils. Identified by yellow outlines in Figure 1, phosphorus is either actively 

removed from soils due to anthropogenic activity or lost via natural processes. Pierzynski et al (2005) 

argue that crop harvest is the greatest contributor to phosphorus loss from soils, but that runoff and 

erosion are also significant, and are far more environmentally detrimental given the action of 

eutrophication. Eutrophication is defined as “the addition of mineral nutrients to an ecosystem, generally 

raising the net primary productivity” (Simmons, 2000, p. 185), and is usually attributed to sewage effluent 

or fertiliser runoff from farmland. The impact of eutrophication is often seen in the form of deoxygenation 

of water as a result of increased bacterial activity and growth, and can occur in freshwater and salt water 

ecosystems (Foy and Withers, 1995; Simmons, 2000). Through improving understanding of the 

interactions between fertilisers and the surrounding ecosystem, more targeted methods of fertiliser 

application could be adopted in mainstream farming practice, subsequently reducing phosphorus loss 

from soils and better protecting aquatic ecosystems from eutrophication. The final mechanism of 

phosphorus loss from soils is the process of leaching, whereby soluble nutrients are lost from soils due 

to rain and excess irrigation. In sandy soils, leaching of nutrients to groundwater is seen as a significant 

issue, but can be difficult to monitor or trace if there is limited knowledge of the local subsurface geology 

or hydrology.  

Further to the input and output mechanisms for phosphorus in soils, there are several important 

biochemical processes which control the cycling of phosphorus between different forms. Mineralisation 

is a key process in phosphorus cycling in soils. It refers to a process where inorganic phosphorus is 

released from organic phosphorus held in the soil. Inorganic phosphorus can either be released from 

organic phosphorus components in the soil, or due to the decomposition of plant and microbial matter 

held in the soil matrix (Condron et al., 2005). Despite significant research into this area, the process of 

mineralisation is still poorly understood; it is thought that mineralisation rate is controlled by extracellular 

and periplasmic enzymes (Frossard et al., 2000; Magid et al., 1996; Stewart and Tiessen, 1987). 

Extracellular enzymes are those produced and secreted by a cell, which performs a function outside of 

the cell itself; periplasmic enzymes are found to function between the cytoplasmic membrane and the 

cell envelope, within the periplasmic space (Beacham, 1979). Periplasmic and extracellular enzymes 

are produced by the plant roots, mycorrhizae and soil microorganisms according to their demand for 

phosphorus in relation to the availability of soil inorganic phosphorus (Dalai, 1977; McGill and Cole, 

1981; Olander and Vitousek, 2000; Sinsabaugh, 1994). Organic phosphorus species can also be broken 
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down by organic acids, such as citric, lactic and oxalic acid, which are secreted by some soil 

microorganisms (Louw and Webly, 1959), such as endomycorrhizal and ectomycorrhizal fungi. This 

process is discussed further in Section 2.3. Agricultural cultivation of soils has been found to enhance 

mineralisation rates, with previous studies indicating that organic phosphorus concentrations can 

decrease by 81% in soils that have undergone 60 to 90 years of cultivation (Tiessen et al., 1983). Given 

the involvement and action of plants and microorganisms in mineralisation, the process is highly 

influenced by soil temperature and moisture; it is found to be most rapid when soils are warm and moist 

but well-drained (Pierzynski et al., 2005).  

Immobilisation involves the biological conversion of inorganic phosphorus to organic phosphorus via 

two major pathways (Condron et al., 2005). In the first instance, inorganic phosphorus is removed from 

the soil solution and associated solid-phase pools; this occurs during the microbial decomposition of 

organic residues that have a high carbon to phosphorus ratio (>300) (Condron et al., 2005). Some of 

this phosphorus will be subsequently released as organic phosphorus compounds in detritus following 

cell death and lysis (Alexander, 1977). Immobilisation also involves inorganic phosphorus, that has been 

removed from the soil by plant uptake, being returned in the organic fraction in leaf litter and root debris, 

in addition to animal excrement and manure (Alexander, 1977; Condron et al., 2005). This process can 

be interrupted and the system balance altered depending on phosphorus fertiliser inputs to the system; 

the rate of organic phosphorus accumulation in soils declines as equilibrium becomes established 

between organic phosphorus inputs and mineralisation rates (Condron and Goh, 1989).  

Figure 1 highlights several other mechanisms which control the phosphorus cycle, including precipitation 

of inorganic phosphorus, adsorption of bioavailable phosphorus species and desorption of phosphorus 

from soils. Precipitation is the process of bioavailable phosphorus reacting with elements in the soil to 

form phosphate minerals. In acid soils, phosphorus generally binds to iron, aluminium and manganese, 

whilst it is preferentially bound to calcium in alkaline soils (Pérez Corona et al., 1996). This process 

forms the basis of phosphorus stripping from sewage treatment, whereby aluminium and iron ions are 

used to remove excess phosphorus from waters (Cooper et al., 1993; Jenkins et al., 1971). It is a more 

permanent process than the temporary change in species seen in adsorption and desorption processes. 

Adsorption and desorption are contrasting mechanisms, which involve the binding of inorganic 

bioavailable phosphorus to soil particles, rendering it non-bioavailable (Pierzynski et al., 2005). 

Desorption is the opposite process, whereby inorganic bioavailable phosphorus species are released 

from their adsorbed state into the soil, increasing the bioavailable phosphorus pool.  

The inputs and outputs, in addition to the internal biogeochemical cycles, of the phosphorus cycle are 

relatively well understood as a result of literature contributing to a wide knowledge base. Finer-scale 

cycling processes remain very poorly explored and understood, with only a small number of papers 
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exploring phosphorus cycling in relation to soil horizons. Horizons vary depending on a large number of 

factors, including organic inputs, climate and underlying bedrock but usually maintain the pattern of an 

A horizon at the surface, underlain by the B horizon, which in turn is underlain by the C horizon and 

subsequently the bedrock (Bridges, 1993). Figure 2 highlights this structure and layout of soil horizons, 

whilst illustrating the current knowledge in relation to phosphorus cycling between soil horizons. It is 

understood that anthropogenic inputs, such as fertiliser and animal manure, affect phosphorus 

concentrations in the A horizon most significantly. Uptake of phosphorus by biota is most likely to occur 

in the A horizon, as a result of root depths and the bioavailability of phosphorus from fertilisers. In highly-

degraded environments, where soils may be thin and nutrient-poor, plant roots can extend down into 

the B and C horizons to uptake phosphorus from the soil solution pools (Ippolito et al., 2010). 

Phosphorus can also be removed from all horizons via leaching, whilst the A horizon is also at risk of 

phosphorus loss due to runoff and erosion due to entrainment of phosphorus-rich sediments in overland 

flow (Pierzynski et al., 2005). Organic and inorganic phosphorus species are known to be inputted at 

the soil surface (the A horizon); as is shown in Figure 1, there is a good understanding of the 

biogeochemical processes responsible for transformations of phosphorus species within soils. What 

remains poorly understood if these cycles are linked to soil horizons, and if so, how these vary across 

the soil profile. Given the wide range of soil types and associated characteristics, it is likely that these 

cycles will vary both spatially and temporally, making it a complex area of research to conduct.  

The phosphorus cycle, although a collection of natural processes, have been highly influenced by 

human activity; agriculture is the dominant anthropogenic forcing on the phosphorus cycle, with farming 

practices increasing both the inputs and outputs of phosphorus in the environment. Soils given over to 

agricultural practices are often found to have higher total phosphorus concentrations than non-

agricultural soils (George et al., 2004), however in most cases, these concentrations of phosphorus are 

still below the optimum levels required for plant cultivation (Adeloju et al., 2016). To counterbalance the 

deficit in bioavailable phosphorus in agricultural soils, inorganic phosphorus fertilisers are added to 

boost total soil phosphorus; although primarily used to ameliorate the bioavailable phosphorus deficit, 

such fertilisers also increase insoluble, non-bioavailable phosphorus, which raises total soil phosphorus 

concentrations (Richardson et al., 2001; Sanyal and DeDatta, 1991). Research indicates that only 10-

20% of the phosphorus applied in mineral fertilisers is actually bioavailable and therefore able to be 

used by plants, with the remaining phosphorus converted into non-bioavailable organic and inorganic 

species (Holford, 1997). Given the effect of fertiliser runoff on aquatic ecosystems, it is key that the 

management of soil nutrients allows for the optimum concentration of 0.003 to 0.3 mg P L-1 to be present 

within cultivated soils (Pierzynski et al., 2005), whilst preventing the concentration of total P found in 

surface waters from exceeding 0.03mg P L-1, which has been acknowledged as the threshold for the 

detrimental eutrophication of freshwaters (Pierzynski et al., 2005). This challenge has given rise to an 
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ever-growing area of research, exploring methods for increasing phosphorus uptake by plants through 

methods other than increased surface application of mineral fertilisers.  
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2.2.  PHOSPHORUS AND PLANTS – ROLES AND INTERACTIONS 

Like all living organisms, plants require phosphorus as a key nutrient for the storage and reproduction 

of genetic material, in addition to playing a role in metabolic processes such as growth and cell 

reproduction; the element forms part of the deoxyribose-phosphate backbone of DNA and RNA, which 

carry the genetic material for all living organisms (Elser et al., 2007; Smits et al., 2012) Phosphorus is 

required for growth in primary producers, as it forms much of the structure of cell membranes and 

proteins; it therefore acts to inhibit primary production when the nutrient is limited in the environment 

(Hanrahan et al., 2004). In most soils, phosphorus is the main limiting nutrient for primary production, 

either directly, or indirectly by limiting nitrogen fixation (Vitousek and Howarth, 1991). Phosphorus 

limitation in soils results in a high demand for mineral fertilisers, which provide bioavailable phosphorus 

to plants. Phosphorus resources are finite and rapidly-depleting, and given the increase of global 

phosphorus cycling by 400% since the industrial revolution (Falkowski et al., 2000), greater 

understanding of the mechanisms used by plants to acquire bioavailable phosphorus is required to 

ensure the future of sustainable agriculture (Smits et al., 2012; Stutter et al., 2015).   

Plants use a variety of mechanisms to augment uptake of phosphorus from soils which are limited by 

bioavailable phosphorus (Atwell et al., 1980).  These mechanisms include alterations to the root system, 

through development of highly-branched roots, with fine root hairs to increase the surface area of the 

root system (Richardson et al., 2001). The formation of symbiotic relationships with mycorrhizal fungi is 

considered to be another mechanism that has been adapted to increase the availability of phosphorus 

in soils; such fungi exude compounds from roots that can either directly or indirectly increase soil 

phosphorus availability and uptake (Raghothama, 1999; Richardson, 1994; Richardson et al., 2001; 

Schachtman et al., 1998). An example of root exudates that indirectly increase phosphorus uptake is 

the secretion of phosphatase compounds, which are used in mineralisation, to release bioavailable 

phosphate from organic phosphorus compounds in soils (Raghothama, 1999). The role of mycorrhizal 

fungi in influencing phosphorus uptake by plants will be discussed further in Section 2.3.  

Phosphorus, nitrogen and other nutrient ions are taken up by plants via three processes: root 

interception, mass flow, and diffusion (Barber, 1984). Root interception refers to the process by which 

soil nutrients are absorbed when the root comes directly into contact with the nutrient ions. The rate of 

interception is governed by root volume, and is therefore subsequently influenced by both the plant 

species and the presence of mycorrhizal fungi, as they act to increase the surface area of the root 

system (Barber, 1984; Bolan, 1991). Plants also uptake nutrients via mass flow, whereby nutrients are 

taken up during the absorption of water by a plant; this process is controlled by the volume of water 

absorbed, and the nutrient concentration in the water (Bolan, 1991). Previous research indicates that 

ions that are less easily retained by soils, such as nitrate, chloride and sulphate, which are taken up by 
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mass flow; phosphate and potassium are readily retained by soils, and are therefore less likely to be 

taken up by plants via mass flow (Barber, 1984; Bolan, 1991). Diffusion of nutrient ions into the root 

system occurs in the absence of other uptake methods; the uptake of selective nutrients by plant roots 

creates a concentration gradient between the soil and the root surface. There then occurs net movement 

of nutrients from soil to the root surface, from an area of high nutrient concentration to low nutrient 

concentration. Phosphorus uptake by diffusion may be too low to meet the requirements of the plant if 

soils have a low solubility or high fixation capacity for phosphorus (Gerke, 1992; Hoberg et al., 2005; 

Sale and Mokwunye, 1993). 

It is thought that in the case of phosphorus, diffusion is the dominant process for uptake by roots. Root 

interception is limited by the volumetric capacity of the roots themselves, as many annual crops have 

root systems with a volume of <1% of the overall soil volume (Bolan, 1991). This dictates that the uptake 

of phosphorus will be <1% of available soil phosphorus, which is far less than most plants require (Bolan, 

1991). Mass flow is unable to transport adequate levels of phosphorus to plants, given the low 

concentrations of phosphorus that are found in calcareous soils (Chapin, 1980).  

As a result of the very low concentrations of both total and bioavailable phosphorus found in most soils, 

phosphorus is considered the primary limiting nutrient in almost all cultivated soils. Phosphorus limitation 

in plants can present itself in a number of ways, including the stunting of growth or poor formation of 

leaves and shoots (Schertz, 1921). The clearest indication of phosphorus limitation in plants is the 

presence of purple-brown mottling on the leaves, in addition to purple discolouration of the plant stems 

and shoots (Schertz, 1921). These symptoms can occur in any plant species, however are most 

noticeable on plants with green or variegated foliage. In plant species which are naturally have purple 

or brown mottling, it is important to be able to determine whether the discolouration can be attributed to 

the species itself, or whether phosphorus limitation is the cause of the colouring.  

Previous research concludes that the phosphorus concentration of plant leaves and shoots is equal to 

the concentration found in plant roots when cultivated in non-nutrient-limited soils (He et al., 2015). 

However, if soils are limited with respect to phosphorus, it has been found that plant roots tend to have 

higher phosphorus concentrations than the above-surface plant biomass (Chapin, 1980). It is thought 

that in phosphorus-limited soils, plants prioritise the growth of additional roots over the growth of further 

leaves and shoots; this allows for greater exploration of the soil environment, with the intention of 

acquiring additional phosphorus to prevent nutrient deficiency within the plant (Chapin, 1980; He et al., 

2015). Phosphorus has no gaseous phase and can only be taken up through plant roots systems, and 

therefore increasing the phosphorus uptake potential through expanding the overall surface area of the 

root system allows for a better chance of plant survival, despite the nutrient-limited soil. 
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2.3.  ECTOMYCORRHIZAL AND ENDOMYCORRHIZAL FUNGI IN PLANTS 

One of the oldest and most significant adaptations of plants in order to increase nutrient uptake is the 

formation of symbiotic relationships between mycorrhizal fungi in soils and plant roots (Smith and Paul, 

1990); such associations occur in over 80% of plant species (Smith and Read, 2008; Wang et al., 2010). 

Mycorrhizal fungi are found in most soils (Abbott and Robson, 1982; Jasper et al., 1989) and fall into 

two distinct categories: ectomycorrhizae and endomycorrhizae. Ectomycorrhizae (ECM) are 

characterised by mycelium sheaths around plant root systems, and are mainly found in temperate forest 

conditions (Bolan, 1991); in contrast, endomycorrhizae (EDM) form external networks of hyphae within 

the soil matrix, and are associated with most plant species (Bolan, 1991). The most commonly found 

EDM species are the vesicular-arbuscular mycorrhizae (Bolan, 1991).  

Evidence suggests that mycorrhizal fungi enhance the uptake of phosphorus by plants from soils where 

concentrations of bioavailable inorganic phosphorus are low (Abbott and Robson, 1982; Mosse, 1973; 

Tinker, 1978). In soils that contain limited bioavailable phosphorus, it is thought that mycorrhizae have 

the greatest impact in increasing the amount of phosphorus that is accessible to the plant (Hetrick, 

1989). Bolan (1991) outlines the different mechanisms used by mycorrhizal fungi to enhance the uptake 

of phosphorus by primary producers. Mycorrhizae increase the length and surface area of the root 

system (Rhodes and Gerdemann, 1975; Tinker, 1978), which in turn increases the volume of soil that 

can be accessed by the plant; this makes "positionally unavailable nutrients available" (Bolan, 1991, p. 

194). Further to this, the increased root length and surface area helps to shorten the diffusion distance 

between soil phosphorus and the plant, therefore augmenting the phosphorus uptake rate (Sanders and 

Tinker, 1973); mycorrhizal fungi are thought to double the absorption surface area for an individual plant 

(Gianinazzi-Pearson and Gianinazzi, 1983). In addition to an overall increase in root surface area, the 

development of mycorrhizal hyphae allows for access into smaller soil pores, which would be 

inaccessible by root hairs alone (Bjorkmann, 1949). 

In addition to increased exploration of the soil, it is thought that mycorrhizae cause greater movement 

of phosphorus into the plant roots. When examined in relation to non-mycorrhizal plants, mycorrhizae-

infected roots have been found to absorb more phosphorus, suggesting mycorrhizal hyphae have a 

higher affinity for phosphate ions (Bolan, 1991; Bolan et al., 1987; Cress et al., 1979). However, this is 

contested within the research community, with Karunaratne, Baker and Barker (1986) observing no such 

increased affinity for phosphorus within mycorrhizal roots. They concluded that infection of plant roots 

by mycorrhizae results in an increase in the number of uptake sites per unit area of plant root. Although 

no firm conclusions have been drawn about the specific action of mycorrhizal roots, there is evidence 

that the presence of mycorrhizal fungi results in an overall increase in plant growth (Hayman, 1983; 

Hetrick, 1989; Menge, 1983; Mosse, 1973). The current research struggles to quantify the increase in 
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growth that can be seen in mycorrhizal species (Hayman, 1983). Much of the research to date has used 

sterilised soils, which subsequently fails to consider the impact of the microflora of the soil, in addition 

to the influence of symbiotic relationships between multiple plant species found within the natural 

environment (Ames et al., 1984; Hetrick, 1989; Meyer, J.R., Lindermann, 1986).  

Mycorrhizal fungi also modify the rhizosphere to increase phosphorus uptake, through a range of active 

and passive methods (Bolan, 1991). ECM fungi exude hydrogen ions, chelating compounds and 

phosphatase enzymes, which have a solubilising effect on poorly-soluble phosphorus compounds such 

as apatite (Allen et al., 1981; Routien and Dawson, 1943). Such interactions between ECM fungi and 

mineral phosphorus are vital in ensuring soil solution phosphorus in nutrient-limited soils does not 

become severely depleted. Previous research has identified that mycorrhizal fungi increase phosphorus 

availability in soils through the solubilisation of inorganic phosphorus species or by the mineralisation of 

organic phosphorus (Bolan, 1991; Hetrick, 1989). Seeling and Zasoski (1993) found that this biological 

action is a significant factor in the solubilisation of organic phosphorus; when microbial action is removed 

through autoclaving or sterilisation of soils, organic phosphorus becomes undetectable in leachate water 

despite being the largest soluble phosphorus compound found in leachate from non-autoclaved or 

unsterilised soils (Condron et al., 2005; Seeling and Zasoski, 1993). Such findings indicate that 

mycorrhizal fungi are killed off during the sterilisation or autoclaving process, disabling them from 

interacting with phosphorus held in soils. This is considered to be a main limiting factor in laboratory-

based research in this field, given that most studies use sterilised or autoclaved soil samples in their 

experimental research; often, this is often due to licencing constraints enforced by regulatory bodies 

such as DEFRA, in relation to cultivating imported soils.  

Plant roots and mycorrhizal fungi exude low molecular weight organic acids (LMWOAs) such as citrate, 

malate and oxalate to modify the rhizosphere and increase nutrient uptake (Jones, 1998; Yadav and 

Tarafdar, 2003). LMWOAs have been found to influence the solubility and subsequent mineralisation 

rates of organic phosphorus within the rhizosphere environment (Chen et al., 2002; Fox and Comerford, 

1990; Hayes et al., 2000; Herbert and Bertsch, 1995). Previous research highlights a relationship 

between the presence and activity of mycorrhizal fungi, and a lowering of pH; Bonneville et al (2011) 

concluded that mycorrhizae cause significant acidification around plant roots, which in turn increases 

apatite dissolution rates. Depending on soil type, concentration and speciation of organic acid, it is 

thought that root exudation of LMWOAs such as malate, oxalate and citrate can lead to soil solution 

phosphorus concentrations that are 10 to 1000-fold greater than normal (Fox et al., 1990a, 1990b; Fox 

and Comerford, 1992; Jones and Darrah, 1994).  

There are a wide range of LMWOAs present within plant root systems, including oxalate, citrate and 

malate (Fox and Comerford, 1990; Froidevaux, L., Kälin, 1981; Jones, 1998; Routien and Dawson, 
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1943). These acids are able to complex metal ions in solution, and so cause the dissolution of soil 

minerals (Huang and Keller, 1972; Jones and Kochian, 1996; Pohlman and McColl, 1984); organic acids 

are able to cause a 2 to 4 fold increase in metal ion dissolution rate when compared with rainwater (Li 

et al., 2012). Oxalic acid is of particular interest, given it precipitates in the presence of Ca2+, which may 

be important when considering phosphorus release from calcium enriched minerals such as the apatite 

minerals (Jones, 1998; Li et al., 2012). Research conducted by Panhwar et al (2013) concluded that 

significantly higher rates of phosphorus uptake were seen in plants inoculated with phosphate-

solubilising bacteria and additional treatments of organic acids, in particular the addition of oxalic acid. 

Oxalic and malic acid treatments were added to aerobic rice plants inoculated with phosphate-

solubilising bacteria (PSB) at concentrations of 0, 10, 20, 30 mM. Significantly higher concentrations of 

solubilised phosphorus of 31.5% were found in PSB-inoculated aerobic rice which had been treated with 

20mM of oxalic acid (Panhwar et al., 2013).  

It is also important to consider how these findings from Panhwar et al (2013) are transferable to research 

using other soil types. Panhwar et al conducted research using Christmas Island Rock Phosphate, which 

comprises of the amorphous residues of calcium, aluminium and iron phosphates; the chemical 

composition of this rock phosphate is very different to previously-studied apatite compounds 

(Khasawneh and Doll, 1979; Palmer and Gilkes, 1983). Calcium-rich soils and sediments have a higher 

buffering capacity for LMWOAs, and therefore higher concentrations of LMWOAs would often need to 

be applied to produce the same chelating effect upon phosphorus compounds within the soil structure. 

Mobilisation of phosphorus from soils using LMWOAs is dependent not only on acid concentration, but 

also on a complex range of interactions including: diffusion rates, microbial degradation and sorption 

and desorption reactions (Cline et al., 1987; Jones and Darrah, 1994). Given the complexity of the acid-

phosphorus compound interactions, determining suitable LMWOA concentrations for soil treatments 

can be challenging and must include consideration of the soil type and composition.  
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2.4.  SPECTRA AND THE KARST CRITICAL ZONE OF SOUTH WEST CHINA 

 

 

Figure 3 - Chenqi catchment in 2016, showing the range of land-use types found within the catchment. In the foreground of the 

photo, there are signs of arable crop cultivation, with primary and secondary forest on the steeper hilly areas. Image c/o Dr Sophie 

Green, University of Exeter.  

Figure 4 - Landscape degradation in Chenqi catchment. The images highlight the desertification across the Chenqi subcatchment, 

including exposed bedrock and thin soils. Images c/o Dr Sophie Green, University of Exeter. 
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2.4.1  GLOBAL KARST ENVIRONMENTS 

Estimated to cover between 7% and 12% of Earth’s continental area (Hartmann et al., 2014), karst 

environments are characterised as landscapes that are shaped by erosion and chemical weathering of 

carbonate bedrock such as limestone or gypsum. Weathering processes result in complex subsurface 

drainage systems comprising of caves and sinkholes (Bull, 2005; Park and Allaby, 2013). Initially, all 

karst regions have active surface drainage controlled by fluvial systems; over time, this develops into a 

subsurface system whereby water is circulated through an underground network of caves and voids 

(Dreybrodt, 1988; Weary and Doctor, 2014). The specific dynamics of a subsurface drainage system is 

dependent upon how the regional geology has been shaped by tectonic activity (Song, 1999).  

The dynamic nature of karst geology and topography results in fluctuating soil depths; as is seen in 

Figure 5, thin, nutrient-poor soils are common where the bedrock is located close to the surface, whilst 

deeper soils are found in fissures and depressions in the bedrock (Bull, 2005; Song, 1999). Often, karst 

regions are dominated by thin soils, due to the significant deforestation that is employed to increase 

land area suitable for crop cultivation (Song, 1999); deforestation often leads to increased soil erosion 

and reduced vegetation cover, resulting in a highly degraded, desertified environment, that could take 

many years to recover and re-vegetate (Yuan, 2001).  

 

Phosphorus, in terms of both total and soluble phosphorus, is very limited in highly weathered soils, 

such as those that characterise karst environments (Kertesz and Frossard, 2015).  Phosphorus is highly 

immobile in calcareous soils (Niinemets and Kull, 2005), and is known to be the primary limiting factor 

for plant growth in karst environments (Jones, 1998; Tyler, 1992). The storage of nutrients, particularly 

that of phosphorus, is recognised as an important factor in aiding vegetation recovery in desertified karst 

regions (Du et al., 2011; Hofmeister et al., 2002; Piao et al., 2005; Rivera et al., 2010). This is due to 

calcareous soils with high pH being deficient in bioavailable phosphorus rather than nitrogen (Du et al., 

Figure 5 - Cross-section of a mature karst system, highlighting the variation in soil depths across a karst landscape. Soils are shown 

as yellow dotted areas, whilst blue blocked areas represent the underlying limestone. Adapted from Waltham and Fookes (2005). 
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2011; Hu et al., 2009; Liu et al., 2006; Niinemets and Kull, 2005). Previous studies have found low-

molecular-weight organic acids in “appreciable quantities” of 0.0001 – 0.1µmol g-1 (Li et al., 2012, p. 

195) in soils; in karst environments this may augment the dissolution of inorganic phosphorus phases, 

enhancing bioavailable phosphorus availability in the soil solution pool (Li et al., 2012).  

To counteract the shallow depths and poor nutritional content of karst soils, farmer often use nitrogen, 

phosphorus and potassium (NPK) fertilisers to promote crop production; although this boosts crop yields 

in many karst environments, it presents issues that threaten the hydrological and ecological stability of 

the karst. Soil erosion and overland flow leads to transportation of fertilisers into the water course or 

subsurface drainage system, subsequently polluting the groundwater (Ford and Williams, 2007). 

Groundwater pollution in karst environments is a prevalent issue, as karst aquifers are known to provide 

at least a partial source of potable water to a quarter of the global population (Ford and Williams, 2007). 

Karst aquifers, like all groundwater resources, are at risk of eutrophication through the over-fertilisation 

of arable land by NPK fertilisers and other anthropogenic actions. Increased understanding of nutrient 

cycling in karst environment is required, to allow for introduction and management of sustainable 

agricultural practices. 

 

2.4.2  THE KARST CRITICAL ZONE OF SOUTH WEST CHINA 

Subtropical karst terrain accounts for 0.34 million km2 in south west China, with the region subject to 

significant desertification (Yuan, 2001). Thin and nutrient-poor soils, coupled with large rocky outcrops 

leads to limited primary production and reduced vegetation cover (Bull, 2005; Wei et al., 2011; Yuan, 

2001) as is seen in Figure 6. Depending on specific regional characteristics and anthropogenic 

influences, highly degraded environments such as the south China karst can take many years to recover 

and re-vegetate. The desertification and landscape degradation experienced in south west China is 

caused by deforestation, overgrazing and intensified crop cultivation, which has subsequently influenced 

the region’s ecological and hydrological regimes (Liu et al., 2006; Yuan, 2001).  

73.6% of Guizhou Province lies within the highly-degraded south China karst (Critical Zone Exploration 

Network, 2016). The province is somewhat unusual, in that unlike other karst regions across the world, 

it has a relatively high, and ever-increasing population density (Baiping et al., 2006); as of 2016, the 

province has a total population of 35 million. Much of the karst region of south west China is used for 

agriculture, in particular the cultivation of arable crops; commonly-grown crops include soybeans, maize 

and rice, which are grown in rotation to reduce nutrient stripping from soils (University of Exeter, 2017). 

The agricultural landscape in the karst critical zone is generally confined to the base of the valleys and 

the surrounding lower hillslopes, where soils are comparatively deeper and less prone to erosive action. 

Given the poor nutrient concentrations found in the karst soils in Guizhou, NPK fertilisers are known to 
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be regularly applied by farmers to improved total crop yield. Data from the Chinese government indicates 

that NPK fertiliser application is increasing at a rapid rate, with an increase of 160 105 tons per year over 

the last 20 years. In 1996, 320 105 tons of fertiliser was applied to land across southwest China, and by 

2016 this figure measured 480 105 tons (Green et al., in press).  

With a population of 35 million people, Guizhou Province is of particular threat in relation to exhaustion 

of nutrients, poor crop yield and subsequent soil erosion. The large population generates further 

challenges that must be considered when developing methods for karst management and cultivation. 

With such a large population that relies so heavily upon subsistence agriculture, it is not possible to 

restrict farming in Guizhou as a method for restoring the landscape. Instead, methods must be adapted 

to consider the needs of those who live within the karst critical zone, whilst also safeguarding the soil 

and its nutrients for future generations. The rebuilding of the karst ecosystem is of relative urgency, 

given the reliance upon the landscape for agricultural production and subsequent economic 

development (Wei et al., 2005, 2011; Zhu et al., 2006). Studies have previously attempted to establish 

methods for restoration of the south China karst, in particular in examining the characteristics of soil 

microbes in karst regions regions (Yu et al., 2002). However, there remains a poor understanding of the 

relationship between microbial activity in karst soils and vegetation recovery.  It is hoped that the 

research conducted within the SPECTRA project will provide a better understanding of how nutrient-

limited karst regions, such as that found in Guizhou Province, can be better managed to improve 

ecosystem recovery and resilience.  

 

Figure 6 - Maize crops growing in Chenqi subcatchment in 2016. Crops are grown across all available land-surfaces, despite the thin 

soil depths and exposed outcrops of rock. Image c/o Dr Sophie Green, University of Exeter. 
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2.4.3. SPECTRA: SOIL PROCESSES AND ECOLOGICAL SERVICES IN THE KARST 

CRITICAL ZONE OF SOUTH WEST CHINA 

 

This research falls within the SPECTRA project, an international NERC-Newton-Funded project, that is 

investigating soil processes and ecological services within the karst critical zone of south west China. 

The project is a collaboration between researchers at a range of institutions in the UK and China: 

UK: University of Exeter; University of Bristol; Cranfield University; Rothamstead Research  

China: Chinese Academy of Sciences; Tianjin University; Peking University; Beijing Normal University 

 

A crucial focus of the SPECTRA project is to examine the response, resilience and recovery of the south 

China karst to natural and anthropogenic perturbations (University of Exeter, 2017). It is hoped that 

findings from the research can be used to enhance the sustainable development of Guizhou, one of the 

most economically-deprived provinces in China. 73.6% of Guizhou is classified as karst landscape 

(Baiping et al., 2006), and with a population of 35 million (2016), it has been recognised as a region 

which has significant socio-economic pressures, further exacerbated by the highly-degraded landscape. 

The project is focusing upon the geological, hydrological and ecological processes in the south China 

karst, and how these interact and control the soil fertility and function within the landscape. It is thought 

that improved understanding of the interactions between these processes will allow for the introduction 

of management techniques that help maximise the delivery of ecosystem services across south west 

China (University of Exeter, 2017).  
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2.5.  PLANT GROWTH EXPERIMENTS 

A significant limitation of soil-based research is the lack of experiments that have been conducted on 

native, unsterilised soils (Hetrick, 1989). The physical and chemical impact of soil autoclaving is poorly 

explored but is known to impact upon microflora likely present in the soil; soil microflora is thought to 

have a significant impact upon plant nutrient uptake (Hayman, 1983; Hetrick, 1989). The removal of soil 

microflora by sterilisation limits research, by failing to consider the role of inter- and intra-specific 

competition in plant communities (Hetrick, 1989). The primary reason for using sterilised soils in 

laboratory-based research is due to the guidelines and constraints enforced by regulatory bodies such 

as DEFRA in the UK. Soils imported from outside of Europe require an import licence, and to be labelled 

as biohazardous material, resulting in a requirement for specific laboratory conditions if the soils are to 

be used experimentally without prior sterilisation.  

A suite of experiments were conducted by Sainz and Arines  (1988) to explore the forms of phosphorus 

taken up by plants inoculated with mycorrhizal fungi in comparison to the species of phosphorus 

obtained by uninfected plants. The experiments were based on the principle of phosphorus fractionation, 

whereby a sequential extraction of phosphorus was conducted on the soils prior to cultivation, and again 

conducted once the plants have matured (Sainz and Arines, 1988). The difference in concentrations of 

different phosphorus fractions provided an insight into the forms of phosphorus acquired by plants, and 

how this differed when mycorrhizal fungi had been used to infect plant roots (Bolan, 1991). In their 

research, Sainz and Arines (Sainz and Arines, 1988) concluded plant species that were inoculated with 

mycorrhizal fungi, and those that remained uninfected both used the same source of inorganic 

phosphorus within the soil profile. In recent years, there has been little work that uses such a method to 

determine phosphorus uptake by plants; this may be due to the highly specific nature of the conclusions 

that can be drawn. The uptake of phosphorus will be specific to both the plant species chosen and the 

mycorrhizal fungi used for inoculation; furthermore, there are complications in relation to phosphorus 

cycling and leaching, making it difficult to determine the exact interactions between different forms of 

phosphorus within the soil environment.  

Further to exploring the influence of mycorrhizal fungi upon the uptake of phosphorus by primary 

producers, experimental sequences have been used to better understand the influence of autoclaving 

or sterilisation of soils on the availability of phosphorus in the soil solution. Through estimation of algal 

growth rather than through plant-based experiments, (Anderson and Magdoff, 2005) conclude that 

autoclaving of soils results in approximately 60% more bioavailable phosphorus than in non-autoclaved 

samples of soil. This research also found that the autoclaving process resulted in concentrations of 

soluble phosphorus up to 78% higher than in non-autoclaved soils. Anderson and Magdoff (2005) 

concluded that the changes in soluble phosphorus concentrations in autoclaved soils was as a result of 
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the increases in both temperature and pressure that occur in autoclaving. It is though that the high 

pressure and temperature converted phosphorus held in complex organic compounds into smaller 

bioavailable organic subunits (Anderson and Magdoff, 2005). The autoclaving process is also thought 

to break down phosphorus held in microbial cells into inorganic orthophosphate, which is also a soluble, 

bioavailable fraction (Anderson and Magdoff, 2005). The research conducted by Anderson and Magdoff 

(2005), although conclusive, was based on algal growth on soils rather than plant growth; there currently 

remains a gap in the available literature that targets the effect of autoclaving on phosphorus availability 

for uptake by different plant species. 

In many previously-conducted plant-based experiments, which aim to quantify the growth of plants in a 

specific growth medium, a specific methodology is chosen to attribute the results to the nutrient 

concentration of the soil. In research conducted by Zhang et al (1997), which aimed to quantify the 

impact of LMWOAs exuded from root systems on the uptake of phosphorus in a specific growth medium, 

the seedlings were germinated in a quartz-based sand before repotting into the growing medium. This 

ensured that healthy seedlings were being transplanted into the growing medium, and so any change 

in the condition of the plants could likely be linked to deficiencies in the growth solution. Although growth 

solutions are not being used in this research project, the same method of transplanting healthy seedlings 

into experimental soils could be used, to ensure that any changes to the plant growth can be attributed 

to nutrient deficiencies in the soil, rather than unsatisfactory germination that could be associated to a 

range of issues such as unsuitable environmental conditions or simply a genetic issue with the seeds.   
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3.0.  RESEARCH AIMS AND OBJECTIVES 

 

3.1.  RESEARCH AIMS 

To investigate, using experimental methods, the role of oxalic acid exudates from mycorrhizal fungi in 

influencing the uptake of phosphorus from phosphorus-limited soils from the karst critical zone of south 

west China. 

 

3.2.  RESEARCH OBJECTIVES 

To examine, using scanning-electron-microscope analysis, the species of phosphorus found within 

calcareous soils from the karst critical zone of south west China. 

To better understand the role of acid exudates from vesicular-arbuscular mycorrhizae in the uptake of 

nutrients from soil. 

To examine the influence of organic acids in the breakdown of non-bioavailable phosphorus, and the 

subsequent mobilisation of bioavailable species.  

 

3.3.  RESEARCH QUESTION 

Is phosphorus uptake by primary producers in calcareous soils from karst regions controlled by organic 

acid exudates from mycorrhizal fungi? 
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4.0.  HYPOTHESES 

 

Based upon the state of the knowledge displayed in the current literature, a number of hypotheses were 

formed, which apply to the research conducted within this project. 

 

1. Soil samples collected from the karst critical zone of south west China will be limited with respect 

to phosphorus. 

a. Plants grown in untreated soils collected from the karst critical zone of south west China 

will indicate signs of phosphorus limitation.  

b. SEM EDS analysis of soil samples from south west China will show low phosphorus 

abundance. 

 

2. Plants grown in soils treated with oxalic acid will have a greater total plant biomass than plants 

grown in untreated soils.  

 

3. Plants grown in soils treated with oxalic acid will not present symptoms of phosphorus limitation. 

 

4. Plants grown in soils treated with the highest concentration of oxalic acid (40mM) will have a 

greater total biomass than plants grown in soils treated with 20mM or 0mM oxalic acid (Panhwar 

et al., 2013). 

 

5. Total phosphorus concentration in plant roots will be greater than the total phosphorus 

concentration of plant leaves and shoots (Chapin, 1980). 

 

 

  



 

49 
 

5.0.  METHODOLOGY 

 

5.1.  SITE SELECTION 

Guizhou Province, as is highlighted in Figure 7, within the karst landscape of south west China, is one 

of the most severely degraded and desertified environments in the world. Subtropical karst covers 0.34 

million km2 across south west China (Yuan, 2001), and accounts for 73.6% of the total area of Guizhou 

Province (Baiping et al., 2006). Karst environments are formed in regions underlain by calcium-rich rock 

such as limestone, gypsum or dolomite; such regions often experience high annual rainfall, which 

dissolves the relatively-soluble bedrock, forming the sinkholes and caves that are indicative of karst 

landscapes (Bull, 2005).   

 

In Guizhou Province, desertification is caused by a number of anthropogenically-driven factors, including 

deforestation, overgrazing and intensified arable crop cultivation, which has subsequently impacted 

upon the region’s ecological and hydrological regimes (Liu et al., 2006; Yuan, 2001).  Guizhou has a 

population of 35 million people, resulting in significant anthropogenic pressure being placed upon the 

karst environment as a resource for subsistence farming and socio-economic growth. These pressures 

must be considered when preparing management and policy for restoring degraded karst regions such 

as are located across Guizhou Province.  

Figure 7 - Global soil degradation state, including very degraded regions which are often associated with karst 

environments. Red ring shows location of Guizhou Province. Image taken from Banwart (2011).  
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Chenqi catchment (26°15’49.6188”N, 105°46’18.9696”E) , located in Puding County, Guizhou Province 

is one of the primary study areas for the work conducted within the SPECTRA research project (Critical 

Zone Exploration Network, 2016). Highlighted in Figure 8, Chenqi covers 1.29 km2 of karst landscape, 

with a catchment elevation of 1310 – 1470 m above sea level (Critical Zone Exploration Network, 2016). 

As is seen in Figure 3, Chenqi catchment contains both primary and secondary forest; primary forest 

refers to “naturally regenerated forest of native species, where there are no clear visible indications of 

human activities and the ecological processes are not significantly disturbed” (FAO, 2012, p. 7). 

Secondary forest are “forests regenerating largely through natural processes after significant removal 

or disturbance of original forest vegetation by human or  natural causes at a single point in time or over 

an extended period” (Chokkalingam and Jong, 2001, p. 21). Primary forest is cleared to make way for 

subsistence farming; in Chenqi, some of the deforested land is eventually recolonised as secondary 

forest, whilst the primary farmland that is too severely degraded becomes abandoned farmland. This is 

characterised by large rocky outcrops, where soils have become too thin for crop cultivation to occur, 

as is seen in Figure 4. 

There are two further dominant land-use types found in Chenqi subcatchment: cultivated farmland and 

abandoned farmland. Much of the farmland is currently being cultivated, to meet the needs of the local 

population, growing maize, rice and soybeans as the main crops. These crops are grown in rotation, in 

Figure 8 - Location of Chenqi subcatchment, within Guizhou province. Image obtained from Google Earth LANDSAT. 
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part to reduce nutrient stripping from the soils. Over time, as a result of farming practices, soil erosion 

and the nature of karst environments, the soil in areas given over to farming become too thin and 

nutrient-poor to be used successfully for arable cultivation. These areas are then abandoned and tend 

to “re-wild” with native species. Over time, the lack of intensive agriculture tends to improve the nutrient 

concentrations found in the soil, in addition to creating deeper soils through allowing plant biomass to 

rot back into the soil rather than being removed, as occurs in intensive agricultural practices. In the long 

term, these areas of abandoned farmland could once again be considered for active cultivation, however 

at present, the area remains abandoned and unable to be cultivated.  
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5.2.  DEFRA LICENSING AND SOIL AUTOCLAVING 

The soil samples collected from Chenqi catchment in 2016 were classified as biohazardous material 

and were therefore held under DEFRA licence PHL 103615/198219/4. In accordance with the licence, 

all soils were autoclaved prior to use in any experimental work; the licence states that all samples must 

be autoclaved prior to plant life being grown on them, unless there is access to a laboratory that has 

clearance for cultivating plants on licenced soils. 

Autoclaving is the process of sterilisation by high temperature and high-pressure steam, with the aim of 

inhibiting microbial activity within the soils (Razavi darbar and Lakzian, 2007; Shaw et al., 1999; Trevors, 

1996). In accordance with the DEFRA licence, soils collected from Chenqi catchment must be 

autoclaved at 121°C and 15 pounds per square inch (PSI) for a minimum of 30 minutes, to become 

registered as unlicensed material that is free of microbial activity. All autoclave bags must be marked 

using autoclave tape prior to being autoclaved; this tape must be checked after the autoclaving process 

is complete. In accordance with the DEFRA licence, any autoclave tape that has not darkened after 

undergoing an autoclave cycle should be run again in the autoclave, to ensure thorough sterilisation.  
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5.3.  PETROGRAPHIC THIN SECTIONS 

Petrographic sections are thin sections of rock, soil or bone that can be analysed using a petrographic 

microscope or scanning electron microscope (SEM). Samples are usually impregnated within epoxy 

resin, before being ground and polished to expose crystals for analysis. SEM analysis can produce an 

elemental map of the sample; this is a microscopic image that reveals the size, shape and spatial 

distribution of different elements within the sample (Goldstein et al., 2017). Elemental analysis of a 

sample can also be conducted using energy-dispersive X-ray spectroscopy (EDS), which is able to 

characterise the chemical composition of a sample (Goldstein et al., 2017).  

In this research project, SEM imaging and SEM EDS analysis will allow for elemental identification of 

the forms of phosphorus present in the soil samples from Chenqi. SEM EDS analysis will be used to 

highlight the chemical composition of any phosphorus present in the Chenqi samples; this analysis 

technique can identify the chemical elements bound to phosphorus-containing species in the soil. It can 

also be used to highlight the distribution of phosphorus species across the soil horizons, in addition to 

the density to which it is found in the soil matrix.  

Petrographic thin sections of the karst soils were created using autoclaved soil samples taken from a 

soil pit in an area of abandoned farmland in the Chenqi subcatchment. Samples of soil from the A 

horizon, soil rock and rock-soil interface were autoclaved at 121°C for 30 minutes, before being dried at 

40°C for 48 hours, to become listed as unlicensed material. The soil samples collected from Chenqi in 

2016 have a high clay content, which results in high water retention; therefore, the soils were dried in a 

drying cabinet at 40°C for 48 hours, to prevent soil moisture from inhibiting complete impregnation by 

epoxy resin.  

 

5.3.1. MOUNTING THIN SECTIONS 

Epofix™ cold-setting embedding resin was used to impregnate the soil samples. Epofix™ resin uses a 

two-part system, comprising of resin and hardener; this resin was chosen due to its low viscosity and 

ability to penetrate the low porosity soil samples. The Epofix™ is mixed by volume, in a ratio of 15 parts 

resin to 2 parts hardener. The epoxy must be mixed for 3-5 minutes prior to use, to produce the best 

results for impregnation; the resin must be left to stand for 5 minutes after mixing, to allow any bubbles 

to evacuate prior to use.   

Aluminium sample rings were sealed to a glad slide using double-sided tape, and a small sample of the 

autoclaved soil arranged using tweezers. A thin layer of mixed epoxy resin was used to cover the soil 

samples. As little epoxy as possible should be used, to increase the chance of air successfully 

evacuating the sample, therefore producing the highest quality thin section. A needle was used to press 
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down the soil particles, to ensure that they were properly attached to the tape; the needle can also be 

used to pop bubbles held within the resin matrix. Vacuum impregnation is required to effectively produce 

petrographic thin sections using highly porous samples, such as the soils collected from Chenqi. Using 

a vacuum to impregnate the samples ensures that any air trapped within the soils is evacuated, allowing 

the resin to better penetrate the sample. This should produce a thin section that will better withstand the 

grinding and polishing stages of sample preparation. The samples were run in the vacuum for 5 minutes, 

to allow for the evacuation of air; samples were then removed from the vacuum and left to set for 24 

hours. The thin sections were then removed from the glass slides using a razor blade, before undergoing 

the grinding and polishing process.  

 

5.3.2. GRINDING 

Grinding is used to remove the top layer of tape adhesive and epoxy resin from the thin section, to 

expose the impregnated crystals prior to being polished. Four grades of grinding paper are used, ranging 

from 240 to 1200; the coarsest paper (240) is used first, working up to the 1200 for the final grinding.  

Deionised water was used on the grinding paper for lubrication, whilst the thin section mount was placed 

into a mount holder, to aid the grinding process. Times allocated for each stage of grinding are 

highlighted in Table 2. Between each stage of grinding, the samples were cleaned with deionised water 

and allowed to dry thoroughly.  

Table 2 - Recommended time period required for grinding petrographic thin sections using different grades of grinding paper. 

Information taken from School of Earth Sciences, University of Bristol. 

Grinding Paper Time (minutes) 

240 3 

400 5 

600 8 

1200 10 

 

After each stage of grinding, the sample surface must be examined using a microscope, to ensure that 

the soil samples were not scratched, and there were no deep grooves or lesions in the epoxy. Any such 

faults in the resin can make it difficult to conduct thorough analysis using the SEM.  
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5.3.3. POLISHING 

In the production of petrographic thin sections, polishing is used as the final stage to prepare the sections 

for analysis using the SEM. An automatic polisher was used, with a sequence of diamond polishing 

cloths ranging from 9µM to 1µM. Before polishing, and between each change in polishing cloth grade, 

the thin sections must be cleaned in a beaker of deionised water in an ultrasonic bath for five minutes, 

to remove any larger grade particles that could contaminate the polishing cloths or damage the thin 

section itself. The sequence of diamond polishing cloths are used for varying lengths of time, as is 

outlined in Table 3. 

 

Table 3 - Recommended time period required for polishing petrographic thin sections using different polishing cloths. Actual time 

used is included, as polishing times were adjusted based on the fragility of the samples. Information taken from School of Earth 

Sciences, University of Bristol.  

Polishing Cloth (µM) Recommended time (minutes) Time used (minutes) 

9 5-10 5 

3 30-45 40 

1 5 5 

 

To produce the best polished finish on such soft samples as those collected from Chenqi, the automatic 

polisher was set to the minimum pressure of 5 N (H. Goodes, personal communication, 31st May 2018). 

Conditions were set on the automatic polisher to shorten the polishing time, so as to further preserve 

the sample; the head and plate were set to rotate in opposite directions, which shorten the polish time, 

in addition to reducing pressure on the sample as a whole. MetaDi lubricant was used, in addition to the 

polishing compounds, to provide lubrication between the thin section ring and the polishing plate. After 

polishing, the sections were carbon-coated using a carbon-evaporator; this is to avoid the effects of 

charged particles on the sample surface, and to produce a higher-quality elemental map using SEM 

EDS analysis.   

 

5.3.4. SEM EDS ANALYSIS 

SEM EDS analysis sees the examination of the elemental composition of a rock, soil or bone sample 

using X-ray analysis at very high resolutions, producing in-depth images which highlight surface 

topography. For the sections made using Chenqi soils, SEM imaging and SEM EDS analysis methods 

were run, to produce elemental spectrum data and SEM images of the soil samples. An elemental 
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spectrum of each soil horizon was produced, which provides a breakdown of the occurrence of different 

elements within the sample. For each soil horizon, SEM maps were produced, to identify the presence 

of different elements within the soil; iron and aluminium were chosen for identification and analysis, 

given that iron-bound and aluminium-bound species of phosphorus are commonplace in many soils. 

This was identified through research of the current literature in Section 2.1.1. 

Due to low porosity of the samples, only small areas of the soils in each section were fully impregnated 

by the epoxy resin, meaning only small areas of the section were viable for analysis. Using the SEM, 

the whole section was visually examined, and the largest least damaged area was chosen for analysis. 

It was not deemed necessary to analyse each cluster of soil individually, given the amount of time that 

SEM analysis takes and the comparatively small part this analysis plays within the overall research 

project. 
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5.4.  PLANT EXPERIMENTS 

A sequence of plant growth experiments were designed, to better understand the relationship between 

soil phosphorus content, oxalic acid exudates and phosphorus uptake by primary producers. Erigeron 

acris was chosen for the experiments, based on information obtained through the SPECTRA project. 

The Chenqi subcatchment was surveyed by SPECTRA researchers in 2016, to identify all plant species 

growing within the study site (J. Dungait, personal communication, October 2017). In accordance with 

the DEFRA licence assigned to the Chenqi soils, plants grown on the soils must grow wild in the UK, 

and not be considered an invasive species. The list of plant species in the understory of Chenqi was 

cross-referenced with information obtained from the RHS to identify species suitable for growth in lab-

based experiments. Erigeron acris, a member of the daisy family, was considered the most suitable test 

plant, given its short growth period and its widespread presence across the UK.  

As is shown in Figure 9, the experiments began with growing Erigeron acris seeds in seed compost, 

before being potted on into Chenqi soils once the seedlings have grown and stabilised. This method 

was chosen, as it would allow for better understanding of the overall plant growth within karstic soils; by 

conducting germination and the initial growth to occur in autoclaved seed compost, before potting on, it 

allows for the influence of the nutrient-poor Chenqi soils to be identified. If seeds had been planted 

initially into the Chinese soils, and failed to grow, then it would not have been possible to attribute the 

lack of growth to specific factors. It could have been that the mycorrhizal fungi in the soils had been 

killed off in the autoclaving process, that there is no bioavailable phosphorus, or that the growth 

conditions themselves were unfavourable, and so the seeds would never have germinated. This method 

of planting and replanting, when coupled with rigorous monitoring of conditions and plant growth, 

generate a better understanding of the uptake of phosphorus by primary producers in karstic soils.  

Due to the nature of the DEFRA licence assigned to the Chenqi soils held at the University of Bristol, all 

soil samples were autoclaved prior to being used for cultivation of Erigeron acris. Autoclaving was 

carried out using the method outlined in Section 5.2. Non-autoclaved soils could only be used for 

experimental research in a licensed facility; such a licence is not held for the University of Bristol, and 

so all soils were autoclaved prior to use. The experimental design was altered to accommodate this 

requirement of the licence, and so rather than investigating the natural action of the mycorrhizal fungi in 

the Chenqi soils, organic acids were used in some soil treatments to replicate the action of the organic 

acids exuded by mycorrhizal fungi. There is uncertainty as to whether the mycorrhizal fungi originally 

found to have colonised the soil will still be present, given that the soils have remained in storage since 

2016, when they were collected from Chenqi subcatchment. The seed compost and potting compost 

used for the initial germination process, and as a growth medium for the control samples was also 
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autoclaved prior to planting, to ensure than mycorrhizal fungi from external sources were not introduced 

to the roots of the Erigeron acris seedlings.  

 

 

Once autoclaved, the seed compost was dried at 40°C for 12 hours, to remove excess moisture acquired 

in the autoclaving process. Seed plug trays were filled with autoclaved seed compost, and 4-6 seeds 

sown per cell. A thin layer of soil was added on top of the seeds, and the trays were watered using tap 

water. As shown in Figure 10, propagator lids were placed over the trays, to limit evapotranspiration 

from the plants and evaporation from the soils, further to maintaining a more stable temperature; the 

trays were placed under growth lamps that remained on for 12 hours in each 24 hour period, running 

from 7am to 7pm. 

 

Figure 9 - Experimental design for plant growth experiments, including outline of oxalic acid treatments. potting compost was used 

as a control experiment for 10-14 weeks to ensure the maintenance of suitable growing conditions. 
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Environmental factors were monitored throughout the growth period: 

• Temperature – the laboratory was regulated at a temperature of 15-25C for the duration of the 

experiments. 

• Solar radiation – a plant growth lamp was used to regulate the incoming solar radiation for the 

plants. Plants were placed 50cm below the growth lamp. 

• Soil moisture – soils were checked every day to ensure that they did not dry out or had become 

waterlogged. Given the high clay content of the Chenqi soils, a spray bottle was often used to 

water the plants, to prevent the soils becoming waterlogged.  

 

The seeds were germinated and left to grow for 5 weeks, before reaching a sufficient size to be potted 

up into larger seed trays. Seedlings were potted into potting compost, and any very small seedlings, or 

those that had failed to grow properly were discarded. This step was included to ensure that when 

seedlings were planted into the Chenqi soils, they were all of a similar size and stage of growth. Given 

the size and stability of the seedlings, the propagator lids were removed at this stage, but the plants 

remained under the growth lamp for 12 hours of each 24-hour period.  

 

 

After 8 weeks of growth, the seedlings became stable enough to be potted on into the Chenqi soils, as 

can be seen in Figure 11. The Chenqi soils were prepared using different organic acid treatments; oxalic 

acid was selected as the most appropriate organic acid to be used in the experimental sequence, given 

evidence found in the current literature as to the effectiveness of oxalic acid in similar experiments, such 

as Panhwar et al (2013).  

Samples from the A, B and C horizons were collected from Chenqi during a site visit in 2016. These 

horizons were chosen for this suite of experiments to identify whether a specific soil horizon was a 

Figure 10 - Experimental setup for plant experiments. Plants trays were covered by propagator lids and situated under growth lamps 

in a temperature-controlled laboratory.  
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greater source of phosphorus to plants and biota than others. These samples were selected and 

analysed separately to help understand the issues surrounding legacy phosphorus from fertiliser 

applications. As outlined in Section 5.1., much of the Chenqi subcatchment was subjected to intensive 

agricultural cultivation with regular applications of NPK fertilisers. Through sampling of the A, B and C 

horizons it allows for examination of phosphorus in soil samples, in terms of both legacy and naturally-

occurring compounds. Biogeochemical cycling processes, such as leaching, could be identified through 

examination of different soil horizons, in addition to the impact of the underlying bedrock on phosphorus 

concentrations up the soil profile. In the Chenqi subcatchment, the A horizon sample measures from 0 

– 23 cm depth, the B horizon from 24 – 32 cm and the C horizon from 33 – 52 cm depth; these relatively 

shallow depths indicate the very thin nature of the soils found in this highly-degraded karst region. 

As shown in  

 

Table 4, oxalic acid was applied at concentrations of 20 and 40mM, in addition to seedlings being 

planted into soils with no oxalic acid added; soils were treated with acid and left for 5 days, as is 

commonplace in experiments using organic acids in soils, such as Panhwar et al (2013) . This gave time 

for the acids to react with any phosphorus present in the soil, in addition to rebalancing the pH of the 

soil, thus preventing damage to the seedlings through highly acidic soil pH. Oxalic acid concentrations 

of 20mM and 40mM were chosen for this suite of experiments, in addition to a set of plants grown in 

untreated Chenqi soils, which were recorded as 0mM oxalic acid. These concentrations were chosen 

based on the data presented by Panhwar et al (2013), where concentrations of 0 – 30mM of oxalic and 

malic acids were investigated. This study found that 20mM was the optimum concentration of oxalic 

acid for dosing soils, in order to increase phosphorus uptake by plants; therefore 20mM oxalic acid was 

selected for this experiment, in addition to a higher concentration of 40mM. The karstic nature of the 

soils collected from Chenqi means that they have a high buffering capacity, due to the presence of a 

calcium-carbonate rich bedrock. This high buffering capacity meant that a higher concentration of oxalic 

acid was also selected for these experiments, to examine if higher concentrations of oxalic acid were 

more effective in highly buffered soils. Further increases in oxalic acid could not be tested in this 

experimental suite, given the volume of soil available for experiments and need for experimental 

repeats.  

Soil moisture data for each horizon was recorded when the soil samples were collected in 2016; this 

data, displayed in Table 5, coupled with the mass of soil in each pot, was used to calculate the 

appropriate volume of oxalic acid that should be added to each soil sample. Soil moisture data was 

recorded for each soil horizon when the samples were collected from Chenqi in 2016. This data, 

displayed in Table 5, coupled with the mass of soil required to fill each individual pot, was used to 
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calculate the appropriate volume of oxalic acid to be added to each soil sample. This method was 

chosen, in order to restore the soil to the same soil moisture as was found during sample collection; 

ensuring that experimental soil moisture was matched to field recordings of soil moisture was important 

in preventing soils becoming waterlogged. The Chenqi soils have a very high clay percentage, and 

therefore are poorly-draining soils; if soils had been dosed with acid in addition to being rehydrated with 

deionised water, it is likely that the plants would have become waterlogged and growth and health would 

have been detrimentally affected. For those soils being treated with 0mM of oxalic acid, deionised water 

was used in place of the oxalic acid to restore soil moisture, to ensure that there was continuity in soil 

moisture between different samples. To prevent cross-contamination of soils by varying acid 

concentrations, all pots receiving the oxalic acid concentration were grouped in the same plant trays. 

This would prevent any leached acid being taken up by other plants or absorbed into other soil samples.  

 

 

 

 

Table 4 - Soil treatments for experimental sequence, including the concentration of oxalic acid that was applied to specific soils.  

Soil Horizon Potting Compost A A A B B B C C C 

Oxalic Acid Treatment 

(Yes/No) 
N N Y Y N Y Y N Y Y 

Oxalic Acid Concentration 

(mM) 
- - 20 40 - 20 40 - 20 40 

Number of Replicates 3 3 3 3 3 3 3 3 3 3 

Figure 11 - Erigeron acris seedlings after 8 weeks of growth, prior to potting up into the Chenqi soils that have undergone the 

treatments outlined in Table 4. 
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Code C 0A 20A 40A 0B 20B 40B 0C 20C 40C 
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Table 5 - Soil moisture values for A horizon, Rock Soil and Soil-Rock Interface for samples collected from Chenqi in 2016. 

Soil Horizon Soil Moisture (%) 

A Horizon 32.4 

B – Soil Rock 34.1 

C – Rock-Soil Interface 37.4 

 

In the process of repotting the seedlings from the potting compost into the Chenqi soils, excess potting 

compost had to be removed from the roots. This was to ensure that once transplanted into the Chenqi 

soils, the Erigeron acris would be solely using the nutrients within the Chenqi soils. The roots of the 

Erigeron acris were very delicate at the time of repotting, and so it was decided the soil could not be 

washed out of the roots, as it could cause additional damage to the root systems. Therefore, it was 

decided that the potting compost should be removed by hand from the roots. Plants were not watered 

for 3-4 days prior to reporting, to ensure the soils were dry and would be more easily removed from the 

roots. As much soil was removed by hand as possible, before a brush was used to remove the remaining 

soil where possible. The seedlings were selected for the repotting based on their size and stage of 

growth; although having been cultivated for the same length of time, there was distinct variation in size 

between the seedlings. Many of the seedlings were of a very similar size, with a small number of small 

and large “outlier” seedlings. These “outliers” were discarded, and those of a similar size chosen for 

potting up, as can be seen in Figure 12. 

Figure 12 - Erigeron acris seedlings potted up into the Chenqi soils. Seedlings have been grouped according to the oxalic acid 

concentration applied to the soils, to prevent cross contamination. 
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Once the soil was removed from the roots, each seedling was weighed, and the mass recorded, to allow 

for plant biomass change before and after cultivation in the Chenqi soils to be examined. Each plant 

was labelled, using a code system that provides information on oxalic acid concentration, soil horizon 

and number of repeats. The Erigeron acris were replanted into the Chenqi soil, and then watered and 

placed back into the same growing conditions as previously mentioned, including the use of growth 

lamps; propagator lids were no longer required, due to the stability of the seedlings. The control 

seedlings were also subjected to the same method and treatment, whereby they were transplanted from 

potting compost to potting compost. Their mass was recorded prior to transplanting into the new potting 

compost, so that biomass measurements could also be analysed for the control samples. 

The seedlings were left to grow for 5 weeks, before reaching a sufficient size to undergo the proposed 

biogeochemical analysis. At this point, a final examination of the plant health and growth quality was 

undertaken, to determine any visual signs of phosphorus deficiency in the seedlings, such as purple 

discolouration of the stems or purple-brown mottling of the plant leaves. The final biomass of each plant 

was also recorded, with all soil removed via rinsing in deionised water prior to being weighed. The 

Erigeron acris were then prepared for acid digestion, as is outlined in Section 5.5.2.  

 

 

 



 

65 
 

5.5.  BIOGEOCHEMICAL ANALYSIS 

 

5.5.1  PLANT HEALTH AND GROWTH QUALITY 

Throughout the growing process, the plants were examined for overall health and growth quality, to 

determine the impact of nutrient-limited soils on plant quality. Phosphorus limitation in soils can manifest 

itself as visible signs on plant leaves and stems; purple or red-brown mottling on plant leaves and shoots 

is an indicator of a limitation of phosphorus in the plant biomass, which can in turn cause stunted growth 

of the plant.  

 

For the Erigeron acris grown in this experimental sequence, plants were examined multiple times a 

week for signs of phosphorus limitation, and any visible signs were recorded and photographed. A 

control sample of Erigeron acris were grown alongside the samples cultivated in Chenqi soils; these 

control plants were grown in potting compost and were compared to the plants in Chenqi soils to assess 

the plant health and overall quality of growth. 

 

5.5.2.  PLANT BIOMASS CHANGE  

The change in total plant biomass was analysed through recording the mass of each seedling before 

and after cultivation in Chenqi soils. Before planting into the Chenqi soil samples, the whole seedling 

was weighed, with all soil brushed from the roots. At the end of the growing period, the seedlings were 

removed from the Chenqi soils, and the roots washed thoroughly to remove all soil traces. Seedlings 

were individually weighed, including the leaves, shoots and roots, and the difference calculated as a 

proportion of the initial mass, to determine the percentage change in mass for each seedling. This 

method of analysis was chosen, as it removed the requirement for all the seedlings to have the same 

mass prior to being planted in the Chenqi soils.  

 

5.5.3. DIGESTION OF PLANT SAMPLES 

Total phosphorus within the plant roots, leaves and stems of the Erigeron acris was examined 

quantitatively, using the Gallery Plus, an automated photometric analyser. At the end of the growing 

term, after the mass of the seedlings had been recorded, the subsurface biomass was separated from 

the leaves and shoots, to allow for the root matter to be analysed separately. The plant biomass was 

then placed in a drying cabinet at 80° C for 48 hours, to remove all moisture in preparation for grinding. 

The dried samples were ground to a fine powder in preparation for undergoing acid digestion.  
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A wet acid digestion method was used to extract phosphorus from the dried plant biomass, in 

preparation for the samples to undergo total phosphorus analysis on the Gallery Plus. The wet digestion 

method was taken and adapted from Allen (Allen, 1989), and is commonly used for preparation of plant 

or soil samples to undergo total phosphorus or total nitrogen analysis. The method is based around a 

heated digestion using an acid-based reagent; the digestion regent is made up using the following 

method. 

 

Sulphuric acid-hydrogen peroxide procedure (Allen, 1989) 

 

Reagents: 

1. Sulphuric acid (concentrated) 

2. Hydrogen peroxide (30%) 

3. Selenium powder 

4. Lithium sulphate (monohydrate) 

 

Add 0.42g of selenium powder and 14g of lithium sulphate to 350ml of 30% hydrogen peroxide and mix 

well. Slowly add 420ml of concentrated sulphuric acid whilst cooling the mixture. The reagent must then 

be stored at 2°C and will remain stable for 4 weeks.  

 

To conduct the wet digestion of the plant matter using the sulphuric acid-hydrogen peroxide reagent, 

the following method was observed: 

1. Weigh 0.2g ± 0.001g of finely-ground plant material or soil into a 100ml conical flask. 

2. In a fume cupboard, add 4.4ml of the digestion reagent to each flask, and begin to heat at 200°C 

on a hot plate. Heat at 200°C for 45 minutes, before increasing the temperature to 360°C for 3 

hours. All flasks must be covered by a watch glass throughout the digestion process.  

3. 1 hour after increasing the temperature to 360°C, add an additional 4.4ml of reagent to each 

digestion vessel. Return to the hotplate and allow to digest for another 2 hours, or until the 

digested matter has turned a sandy-brown colour.  

4. Remove the flasks from the hotplate and allow to cool fully.  

5. Add 50ml of deionised water to each flask and allow to stand. 

6. Using Whatman 42 filter papers, filter the samples into 100ml volumetric flasks.  

7. Add enough deionised water to the volumetric flasks to make each sample up to 100ml. Invert 

the flasks several times to ensure it is well mixed, then decant into labelled sample tubes.  
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5.5.4.  GALLERY PLUS ANALYSIS OF DIGESTED PLANT MATTER 

Total phosphorus of the digested plant biomass was analysed using the Gallery Plus automated 

photometric analyser. Initially, the samples were run using the “Phosphorus High” test, for which the 

Gallery Plus was calibrated using a phosphorus standard. The calibration data is displayed in Figure 

13, which was accepted due to the R-squared value of 0.9987, demonstrating a strong correlation 

between the phosphorus standard and the associated absorbance values. The digested plant samples 

were first analysed using the “Phosphorus High” test, however on examination, the data showed that a 

number of the digested plant samples contained concentraitons of phosphorus too low to be recognised 

using the “Phosphorus High” test. The samples were then run again on the Gallery Plus, using the 

“Phosphorus Low” test, to try to quantify samples with much lower concentrations of phosphorus. Again, 

the Gallery Plus was calibrated using a phosphorus standard, with the calibration curve for “Phosphorus 

Low” shown in Figure 14. An R-squared value of 0.9989 was calculated for the calibration data for 

“Phosphorus Low”, which was accepted before the digested plant biomass samples were run on the 

Gallery Plus. By running all the samples through both the “Phosphorus High” and “Phosphorus Low” 

test on the Gallery Plus, it was possible to capture quantitative results for plant biomass samples 

containing high or extremely low concentrations of total phosphorus.  
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Figure 13 - Calibration curve for "Phosphorus High" test on the Gallery Plus automated photometric autoanalyser. An R-squared 

value of 0.9987 was generated for the calibration data and was therefore accepted prior to analysing the digested plant biomass 

samples.  
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Figure 14 - Calibration curve for "Phosphorus Low" test using the Gallery Plus automated photometric autoanalyser. An R-squared 

value of 0.9989 was calculated for the calibration data and was therefore accepted prior to running the “Phosphorus Low” analysis 

on the plant biomass samples.  
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5.5.3.  SAMPLE CODES 

A coding system was used to refer to the samples undergoing biogeochemical analysis using the Gallery 

Plus automated photometric autoanalyser.  The coding system provides information referring to the soil 

horizon, oxalic acid concentration, repeat number and whether the sample was taken from the above-

ground plant (leaves and stems) or the roots. Figure 15 shows how sample codes have been assigned 

to each of the samples run through biogeochemical analysis methods. Note that a full list of sample 

codes and related characteristics can be found in Table A1 in Appendix A.  

 

 

 

 

 

 

 

 

 

 

Figure 15 - System for assigning sample codes. The sample codes will be used throughout this work to refer to specific samples 

and groups of samples with similar characteristics. A comprehensive list of all sample codes and characteristics can be found in 

Appendix A.  

Refers to the concentration of oxalic 

acid applied to the soils prior to 

planting the seedlings. In the case of 

the control samples grown on potting 

compost, no oxalic acid was applied 

to the soil. 

Possible values: 0, 20, 40 

The Chenqi soil horizon used 

for cultivation of the seedlings.  

Possible values: A, B, C 

The repeat number assigned to the seedling. 

There were three repeats for each soil treatment. 

Possible values: 1, 2, 3  

This refers to whether the sample was 

taken from the above-ground plant 

(leaves and stems) or the roots.  

Possible values: P, R 
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6.0. RESULTS 

 

6.1.  SEM EDS IMAGING AND ANALYSIS 

SEM EDS analysis was used in this research to produce spectrum data and elemental maps for each 

of the soil horizons collected in Chenqi. Spectrum data was generated for each of the horizons, whilst 

elemental maps were produced for a range of elements within each of the soil horizons. The elemental 

maps use colour to highlight the presence of a specific element or elements in a sample; the lighter an 

area of the elemental map, the higher the concentration of the specified element. Elemental maps can 

also be layered using the SEM EDS software, allowing for the user to identify if there are multiple 

elements present in one area of the sample; for example, layering phosphorus and iron elemental maps 

can be used to identify if ferric phosphate compounds are present in the sample. As with single element 

analysis, the lighter coloured areas of the map show a higher concentration of the compounds. 

  

6.1.1. A HORIZON 

Figure 16 illustrates the spectrum data that was generated from the SEM EDS analysis of the A horizon 

sample taken from Chenqi in 2016. The data highlights that the soil composition is dominated by several 

elements, including silicon, oxygen, aluminium, titanium and manganese. The spectral analysis does 

not indicate anything above background concentrations of phosphorus, as would be expected in such a 

phosphorus-limited karst region. The dominant binding for phosphorus in the soils of this region is with 

iron as ferric phosphate, as is indicated by the data presented in Appendix B. Given the low levels of 

iron identified in the spectral analysis, it is unlikely that there will be high concentrations of phosphorus 

present in the A horizon soil.  

The following section displays results of SEM EDS analysis on A horizon soils. Several elements were 

analysed using SEM EDS, however there is a primary focus on phosphorus, calcium, iron and 

aluminium, given the prior knowledge of phosphorus binding that is laid out in the current literature. 

Titanium and manganese was also analysed, and this data can be seen in Appendix C.  
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An SEM EDS map of phosphorus of the A horizon is shown in Figure 17. The lighter-coloured areas of 

the map indicate the presence of phosphorus in the sample; there is one cluster of a phosphorus-

containing compound in the sample, measuring approximately 40-50µm diameter. In addition to this 

larger cluster, there is some indication of phosphorus scattered in the background matrix of the soil, 

although given the scarcity of the light-coloured areas in the sample, it indicates that phosphorus is very 

limited within the A horizon sample from Chenqi. The phosphorus that has been visually identified in 

this sample has not shown up as brightly coloured, and therefore is understood to only be present in 

low concentrations.  

 

 

Figure 16 - SEM EDS spectrum analysis of the A horizon soil, collected from Chenqi in 2016. Elemental labels have been added to 

each of the peaks on the spectrum, to indicate the specific element at their associated absorbance levels.  
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Figure 1Figure 18 includes two SEM EDS maps, which highlight the presence of calcium within the A 

horizon soil sample from Chenqi. Image A shows any calcium that is present within the sample, with the 

lighter green areas indicative higher concentrations of calcium. Examples of the areas of high calcium 

concentration have been highlighted in 18A using white circles; there appears to be a relatively high 

density of calcium species within the A horizon sample, When layered up with a phosphorus map to 

create image 18B, there are indications of the presence of some calcium-bound phosphorus species. 

These have been circled in white and are characterised in these SEM EDS maps as being areas of 

bright ‘glowing’ colour. In image 18B, there appears to be a very low concentration of calcium-bound 

phosphorus species in the A horizon sample; those species identified are very small and are distributed 

throughout the soil sample.  

 

 

 

Figure 17 - SEM EDS map of phosphorus in the A horizon of the Chenqi soils collected in 2016. White circles have been used to 

highlight examples of phosphorus presence within the sample.  
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Figure 18 - Figure 18A is an SEM EDS image of calcium in the A horizon of the Chenqi soils, collected in 2016. White circles have 

been used to highlight examples of calcium species present within the sample. Figure 18B is a combined SEM EDS image, whereby 

18A has been overlain with the phosphorus map from Figure 17; this allows for the identification of calcium-bound phosphorus 

species within the Chenqi A horizon sample.   
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Figure 19 encompasses two SEM EDS maps, both focusing on the presence of iron within the A horizon 

soil sample. Image A shows iron presence within the sample, with those areas of lighter red indicating 

a high iron concentration; there is a large cluster of iron to the left-hand side of the map, in addition to 

scattering of small, low-concentration iron particles throughout the soil matrix. There are some small 

particles with a higher concentration of iron, which have been outlined by white circles in image A of 

Figure 19. Layered SEM EDS elemental maps are used to identify compounds through the principles of 

colour-mixing; the blue coloured phosphorus map is layered on top of the red iron map to create image 

B in Figure 19. Any areas of magenta can be identified as iron-bound phosphorus, given the mixing of 

red (iron) with blue (phosphorus). The areas in image A identified as having high concentrations of iron 

are those that are bound to phosphorus; some of these have been circled in white in image B, further to 

the large cluster of iron-bound phosphorus located on the left-hand side of the image.  
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Figure 19 - Figure 19A is an SEM EDS map of iron in the A horizon of the Chenqi soils collected in 2016. White circles have been 

used to highlight examples of iron presence within the sample. Figure 19B is the SEM map of iron from Figure 19A with the map of 

phosphorus from Figure 17 overlain; this allows for the identification of iron-bound phosphorus species within the A horizon sample.  

A 
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Figure 20 shows two SEM EDS maps, which examine the presence of aluminium within the A horizon. 

Image A indicates some aluminium particles in the sample, most of which are <50µm in size; these 

areas are circled in white in image A. There is additional scatter of aluminium particles through the 

background matrix of the soil, however given the darker green colour of these particles, it can be 

assumed they are a lower aluminium concentration than those particles circled in white. There is no 

aluminium present in the 50µm diameter cluster on the left-hand side of the image; the data from Figure 

19 indicates that this cluster is purely iron-bound phosphorus. Image B in Figure 20 is a layered SEM 

EDS elemental map, where the phosphorus map from Figure 17 has been layered over the aluminium 

map shown in image A. Any turquoise coloured areas of image B are indicative of aluminium-bound 

phosphorus; there appears to be minimal aluminium-bound phosphorus in the A horizon sample.  
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Figure 20 - Figure 20A is an SEM EDS map of aluminium in the A horizon of the Chenqi soils collected in 2016. White circles have 

been used to highlight examples of aluminium presence within the sample. Figure 20B is the SEM map from Figure 20A with the 

map of phosphorus from Figure 17 overlain; this allows for the identification of aluminium-bound species within the A horizon.  

 

A 
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Figure 21 is a layered SEM EDS elemental map, which includes iron, aluminium and phosphorus maps. 

It seeks to identify any compounds that contain both iron and aluminium-bound phosphorus, as these 

phosphorus species have been identified as most abundant in Chenqi soils, as can be seen in Appendix 

B. In Figure 21, there appears to be no indication that any species which include both iron-bound and 

aluminium-bound phosphorus are present, as there are no areas that show blending of the colours used 

on the three respective elemental maps. As is present in Figure 19B, there is evidence of clusters of 

iron-bound phosphorus, in addition to the small areas of aluminium-bound phosphorus, as is seen in 

Figure 20B. However, these remain separate, and there are no obvious clusters that include both iron- 

and aluminium-bound phosphorus species.  

  

 

Figure 21 – A layered SEM EDS map of phosphorus (Figure 17), iron (Figure 18A) and aluminium (Figure 19A) in the A horizon of the 

Chenqi soils collected in 2016. The maps have been overlain to identify any compounds that contain both iron-bound and aluminium-

bound phosphorus. 
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6.1.2. B HORIZON 

A petrographic thin section of soil taken from the B horizon of the Chenqi samples was produced 

according to the method laid out in Section 5.3. On inspection using the SEM, it was found that the 

sample had not successfully impregnated with epoxy resin, due to the texture of the soil sample. Multiple 

attempts were made at producing a thin section, but none yielded a large enough surface of polished 

sample to be analysed using SEM EDS. Therefore, the decision was made to forgo analysis of the B 

horizon of the Chenqi soils, and instead focus on the samples collected from the A and C horizons.  

 

 

6.1.3. C HORIZON 

Figure 22 is a spectrum of SEM EDS data, which gives an understanding of the elemental composition 

of the C horizon of soil, collected from Chenqi in 2016. The spectrum data indicates that there is a very 

similar composition for both the A horizon and C horizon soils collected form Chenqi; silicon remains 

the dominant element in the C horizon, with high concentrations of aluminium, titanium, manganese and 

oxygen also present within the sample. In contrast to the A horizon sample, there is also a high 

concentration of chromium in the C horizon sample. In terms of phosphorus, the C horizon sample 

presents the same trend as the A horizon; there is almost negligible background concentrations of 

phosphorus in the C horizon.  

  

Figure 22 - SEM EDS spectrum analysis of the C horizon, collected from Chenqi in 2016. Elemental labels have been added to each 

of the peaks on the spectrum, to indicate the specific element at their associated absorbance levels. 
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The following results section displays the findings from the SEM EDS analysis on the C horizon soils 

from the Chenqi subcatchment. To provide a comparison with the A horizon, phosphorus, calcium, iron 

and aluminium are the focus of the analysis, however other elements were also selected for SEM EDS. 

The results of this additional analysis can be found in Appendix D.  

The limitation of phosphorus in the C horizon sample becomes further apparent from the data presented 

in Figure 23. The SEM EDS map shows there to be only trace amounts of phosphorus present within 

the C horizon sample; these trace levels are circled in white in Figure 23. The C horizon of any soil is 

largely unaffected by surface applications of mineral fertilisers, given that the C horizon sits at around 

50cm depth. The phosphorus identified using Figure 22 and Figure 23 is therefore likely to be naturally-

occurring, and given the nature of the karst soils, it is highly-limited in its concentration. White circles 

have been used in Figure 23 to highlight any phosphorus particles; these particles are very small and 

appear to be randomly distributed in the soil sample. There are no larger clusters, which were present 

in the sample in the A horizon (Figure 17). 

 

  

Figure 23 - SEM EDS map of phosphorus in the C horizon of the Chenqi soils collected in 2016. White circles have been used to 

highlight examples of phosphorus presence within the sample. 
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Calcium-bound phosphorus species were also analysed for in the C horizon soils from Chenqi. The 

elemental data presented in the spectrum in Figure 22 indicates that there is some calcium present 

within the sample, but it is at a lower concentration than Aluminium or Silica species. Figure 24 presents 

the SEM EDS analysis for the C horizon soil in relation to calcium species. Figure 24A shows calcium 

species in the C horizon, with the lighter and brighter areas indicating high concentrations of calcium. In 

the C horizon, there appears to be a very low density of calcium.  

Figure 24A was overlain with the phosphorus map from Figure 23, to produce the map in Figure 24B. 

This image can be used to highlight calcium-bound phosphorus species in the C horizon of the Chenqi 

soil sample. There appears to be very low densities and concentrations of calcium-bound phosphorus 

within the C horizon sample; all calcium-bound phosphorus that has been identified in this sample is in 

the form of small particles (<5µm diameter) spread through the soil sample.  
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Figure 24 – Figure 24A is an SEM EDS map of calcium in the C horizon of the Chenqi soils collected in 2016. White circles are used 

to highlight examples of calcium presence within the soil sample. Figure 24B is the calcium map from Figure 24A, overlain within 

the SEM EDS map of phosphorus from Figure 23; this image allows for identification of calcium-bound phosphorus species within 

the C horizon.  

A 

B 
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The concentration of iron was also examined for the C horizon of the soils collected from Chenqi. The 

spectrum data in Figure 22 indicates that there is a relatively low concentration of iron present in the C 

horizon, but that this concentration is higher than that of phosphorus. Figure 25 is an SEM elemental 

map of iron in the C horizon sample; Figure 25A shows there are small particles of iron evenly distributed 

throughout the soil matrix. There are a range of different sized iron particles, ranging from approximately 

30µm diameter, down to less than 5µm diameter. 

The map from Figure 25A was overlain by the phosphorus map in Figure 23, to generate the map shown 

in Figure 25B. This map can be used to identify iron-bound phosphorus species that are present in the 

C horizon of the Chenqi soil sample. The layering of the blue phosphorus map and the red iron map 

result in any iron-bound phosphorus species being highlighted by a magenta colour on the SEM map. 

In Figure 25B, there are no iron-bound phosphorus species that can be visually identified. All the iron 

species identified in Figure 25A remain red coloured in Figure 25B, indicating they are simply iron 

particles, and are not bound to phosphorus in this soil sample.   
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Figure 25 - Figure 25A is an SEM EDS map of iron in the C horizon of the Chenqi soils collected in 2016. White circles have been 

used to highlight examples of iron presence within the sample. Figure 25B is the map from Figure 25A, with the SEM EDS map of 

phosphorus from Figure 23 overlain; this allows for identification of iron-bound phosphorus within the sample obtained from the C 

horizon.  

A 

B 
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Aluminium was also examined for in the C horizon of the Chenqi soil samples, and the results are 

displayed in Figure 26. Figure 26A is the aluminium SEM EDS map for aluminium, where any particles 

of aluminium can be identified by a light green colour. There is evidence of aluminium particles within 

the C horizon, with some larger pieces having been circled in white in Figure 26A. Further to these larger 

particles, there are also <1µm particles of aluminium evenly distributed throughout the C horizon sample. 

This reinforces the conclusions drawn from the spectrum data (Figure 22), in that aluminium is one of 

the main elemental constituents of the C horizon.  

The C horizon was also examined for the presence of aluminium-bound phosphorus, to better 

understand what species of phosphorus are held within the Chenqi soils. Figure 26B shows some 

indication of very small amounts of aluminium-bound phosphorus being present in the C horizon; these 

phosphorus species appear as a turquoise colour in Figure 26B and have been circled in white to aid 

identification. The particles of aluminium-bound phosphorus present in the sample are likely to be in 

very low concentrations, given the relatively dark colour they appear to be in Figure 26B. The layered 

SEM map also indicates that there is aluminium within the soil sample that is not bound to phosphorus; 

there is also evidence that phosphorus is present in the sample that is not bound to aluminium.  
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Figure 26 - Figure 26A is an SEM EDS elemental map of aluminium in the C horizon of the Chenqi soils collected in 2016. White 

circles have been used to highlight examples of aluminium presence in the C horizon. Figure 26B is the SEM EDS map of aluminium 

with the SEM EDS map of phosphorus from Figure 23 overlain, to allow for identification of aluminium-bound phosphorus in the 

sample taken from the C horizon.  

B 
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Figure 27 is a multi-layered SEM map that seeks to identify any relationships between iron-bound and 

aluminium-bound phosphorus. The figure clearly shows that there is iron and aluminium within the C 

horizon, but very little of either element is bound to phosphorus. The iron particles appear as red in 

Figure 27, whilst aluminium is green and phosphorus is blue. Iron and aluminium appear to be prevalent 

within the soil, although the iron particles are much larger than the aluminium particles identified by the 

SEM analysis. There is an even distribution of both iron and aluminium in the sample, and there appear 

to be no areas where both aluminium and iron are present within the same particle or compound. 

Phosphorus is far more limited than iron and aluminium in the C horizon, with very few particles being 

identified by the SEM. There are two small pieces of phosphorus that can be identified in Figure 27, 

both of which have been highlighted in a white circle. The bright blue colour of these particles indicates 

that the phosphorus is neither iron, nor aluminium bound, as there is no mixing with the colours from 

those respective SEM maps. The phosphorus identified by this SEM analysis is either in the mineral 

form, or bound to another element, such as calcium; further analysis is required to confirm the nature of 

the phosphorus species in this soil horizon.   

Figure 27 - SEM EDS map of phosphorus, iron and aluminium in the C horizon of the Chenqi soils. The phosphorus map, taken from 

Figure 23 has been overlain with the iron map from Figure 25A, and the aluminium elemental map from Figure 26A. The layering of 

different elemental maps allows for identification of any species containing phosphorus, iron and aluminium. White circles have 

been used to highlight the phosphorus particles identified in this sample. 
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6.2.  PLANT HEALTH AND GROWTH QUALITY 

Throughout the process of growing the Erigeron acris for analysis of the uptake of phosphorus, the plant 

health and overall growth quality was monitored and recorded. Phosphorus deficiency in plants is often 

characterised by purple-brown mottling or discoloration to the leaves, as can be seen in Figure 29. 

The control plants, grown in potting compost throughout the experiment, can be used for comparison 

with the plants grown in the Chenqi soils, to assess the overall plant health and quality of growth. Figure 

28 shows photos of the control plants, taken at the end of the experimental process. The control plants 

remained healthy throughout the experiments, with dark green leaves and consistent sprouting of new 

shoots and leaves. There were no visible indications of phosphorus limitation in the control plants, such 

as purple-brown mottling on the leaves, or a purple discolouration of the stems.  This indicates that, at 

no point during the experiments, were the control plants limited with respect to phosphorus.  

 

 

  

Figure 28 - Erigeron acris grown in potting compost, as a control sample for the experiment. These images are taken after 12 weeks 

of growth, however all plants were monitored throughout the experimental process for visible signs of phosphorus deficiency, such 

as purple coloured stems and purple-brown mottling on the leaves.  
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The Erigeron began to show some signs of phosphorus deficiency after being planted in the Chenqi 

soils for 3 weeks; this was mainly manifesting itself as faint purple mottling appeared at the base of the 

stems. This was present across the A, B and C horizon soils, for the 20µM and 40µM Oxalic acid 

treatments, in addition to the untreated Chenqi soil. There was no clear difference in the mottling 

between the different soil horizons or acid treatments, but all experimental treatments showed signs of 

phosphorus deficiency. 

After the full growth term of 12 weeks, prior to the plant biomass being digested and processed for 

further analysis, the plants were fully examined for phosphorus deficiency. As was found in the earlier 

stages of growth, phosphorus deficiency was identified in all the Chenqi soil horizons under the 20µm 

and 40µm oxalic acid treatments, in addition to the soils which received no acid treatment. The Erigeron 

acris grown in Chenqi soils that were untreated with acid displayed signs of phosphorus deficiency on 

all the plant stems, in addition several leaves having purple tips or undersides. Evidence of this can be 

seen in Figure 29, which capture phosphorus deficiency in plants grown in Chenqi soils with no 

additional application of oxalic acid. 

 

 

 

 

 

 

Figure 29 - Erigeron acris grown in Chenqi soils with no additional treatments of oxalic acid applied. Signs of phosphorus deficiency 

are visible and take the form of purple-brown mottling on the leaves, in addition to a dark purple colour appearing on the stems and 

shoots.  
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The Erigeron acris grown in Chenqi soils treated with an application of 20µm oxalic acid also showed 

some indications of phosphorus deficiency. Plants grown with 20µm oxalic acid showed visual signs of 

being healthier and less affected by phosphorus limitation in the soil. The plant leaves were darker green 

than those plants grown with no oxalic acid treatment, with the plants treated with 20µm oxalic acid 

bearing a closer resemblance to the control plants, which grew very well and showed no indication of 

phosphorus limitation. Although the overall plant health and growth quality of the plants grown using 

20µm oxalic acid was better, there remained some indications of phosphorus limitation. Although a dark 

green colour, the leaves still showed some indication of phosphorus limitation, with dark purple-brown 

mottling across the top surface and underside of several leaves on the plants. This mottling can be seen 

in the central image of Figure 30, with the purple discolouration of the stems visible in the right-hand 

photo. The same discolouration and indications of phosphorus limitation could be seen across plants 

grown in all three soil horizons treated with 20µm oxalic acid.  

 

  

Figure 30 - Erigeron acris grown on Chenqi soils treated with 20µM oxalic acid. The plants show obvious signs of phosphorus 

deficiency, including purple mottling to the leaves, and discoloration of the stems and shoots. 
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40µm oxalic acid was used as a treatment for Chenqi soils, across all three soil horizons. The Erigeron 

acris grown in these soils presented similar overall plant health and growth quality to those to those 

plants grown in soils treated with 20µm oxalic acid. The leaves of the plants took on a dark green colour, 

the same as those grown in the control experiments and in the soils treated with 20µm oxalic acid. As 

can be seen in Figure 31, there remained some evidence of the phosphorus limitation, in that a very 

small number of leaves on the plants had purple-brown mottling and discolouration on the surface and 

underside of the leaves. Most of the stems and shoots of the plants took on a purple colour, once again 

indicating the depletion of phosphorus in the growth medium. There were no signs of phosphorus 

limitation on the plants grown in the potting compost as control samples; this indicates that the purple 

mottling is related to the low natural concentrations of phosphorus found in the Chenqi soils, as opposed 

to a natural colouring of the plant that develops over time. There was a visible difference in plant health 

between the soils treated with 40µm oxalic acid and the Chenqi soil that were not treated with oxalic 

acid, however there was no noticeable difference in the health or growth of the plants treated with 20µm 

oxalic acid.  

 

  

Figure 31 - Erigeron acris grown on Chenqi soils with an additional 40µm oxalic acid treatment applied. The plants show signs of 

phosphorus limitation and deficiency, such as purple-brown mottling of the leaves, in addition to the stems taking on a dark purple 

colour. 
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6.3.  PLANT BIOMASS CHANGE 

The data was collected for all soil horizons and treatments, for each of the repeat seedlings planted; 

this data is presented in Figure 32, and shows the mean average biomass change for each soil 

treatment. Range bars indicate the maximum and minimum values of biomass change recorded for 

seedlings grown in each of the soil treatments 

The results presented in Figure 32 indicate there is no obvious relationship between the concentration 

of oxalic acid applied to soils and the total biomass change observed. The control sample (C) showed 

a negligible mean change in total plant biomass, although there is a negative range bar that indicates 

at least one of the seedlings lost biomass during the growth period. There was no limitation of 

phosphorus in the control sample soils, and therefore there is no clear explanation for the negative 

change in biomass. There is a wide spread of data for the Chenqi soils, ranging from the highest mean 

plant biomass change of 101% for plants grown in the 0A soils, to -40% for plants grown in the 40C 

soils. In addition to the overall spread of data between each of the soil treatments, there is also a large 

range of values generated for most of the soil treatments. Soil treatments 0A, 0C, 20B, 20C and 40A 

show the biggest range between the maximum and minimum values of plant biomass change. These 

treatments have ranges in data values of >100%, resulting in overlap in the results for many of the 

samples.  
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Figure 32 - Plant biomass change for seedlings in Chenqi soils, calculated as: (Final Plant Mass - Initial Plant Mass)/Initial Plant Mass 

x 100. The green markers indicate the mean average biomass change for plants grown in each soil treatment. Range bars indicate 

the total range of values for each of the soil treatments.  
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There is no clear trend between the concentration of oxalic acid applied to Chenqi soils and the total 

plant biomass change, in that there is no increase in plant biomass with increasing concentrations of 

oxalic acid, as was originally hypothesised. 0A shows the highest mean plant biomass change, followed 

by 20B and 20C. Those soil treatments with the lowest mean plant biomass change are 40C and 40B, 

both of which saw a negative change in plant biomass; these soil treatments also had a much smaller 

range in values. Further to exploring the influence of oxalic acid concentration on the plant biomass 

change, there is also the opportunity to examine how different soil horizons respond to the application 

of oxalic acid. From the data in Figure 32 it is apparent that there is no trend in the horizon to which acid 

is applied, and the mean plant biomass change. In soils where no oxalic acid was applied (0A, 0B, 0C), 

the A horizon soil had the highest plant biomass change, and the B horizon the lowest change. In soil 

samples 20A, 20B and 20C, which were treated with 20mM oxalic acid, it was found that 20B seedlings 

had the greatest increase in plant biomass, although the range bars overlap with those for 20A and 20C 

seedlings. For soils treated with 40mM oxalic acid, plants grown in the A horizon saw the greatest 

increase in plant biomass, whilst those in the C horizon on average lost biomass during the growth 

period. For 40B and 40C, the range bars are predominately overlapping, with both soil treatments 

showing that mass loss had occurred for some of the seedlings cultivated. The data presented in Figure 

32 show a large amount of overlap between different soil treatments, and therefore statistical analysis 

techniques are required to better examine the results, to determine if any trends are statistically 

significant.  

 

Table 6 - t-Test results for plant biomass change. The t-Test seeks to identify if the mean values of two variables/samples are 

significantly different. A two-tailed t-Test means results must satisfy one of the following criteria: the t Stat < -t Critical two-tail or t 

Stat > t Critical two-tail. If either test is satisfied, then the null hypothesis (μ1 - μ2 = 0) is rejected, and it can be concluded that the 

variable means differ significantly. 

Variable 

1 

Variable 

2 
t Stat 

t Critical two-

tail 
t Stat < - t Critical two-tail t Stat > t Critical two-tail 

0A 20A 1.526889 4.30265273 No No 

0A 40A 1.057727 2.776445105 No No 

20A 40A -0.4205 2.776445105 No No 

0B 20B -1.51112 2.776445105 No No 

0B 40B 1.966577 2.776445105 No No 

20B 40B 2.273063 2.776445105 No No 

0C 20C -0.44895 2.776445105 No No 

0C 40C 1.572535 2.776445105 No No 

20C 40C 1.967578 2.776445105 No No 
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Two-tailed t-tests were used as the primary form of statistical analysis, to identify if the difference 

between the mean averages of two different variables were statistically significant. The t-test is prefaced 

by an f-test, which identifies whether the variance in the spread of data is equal or unequal, and 

subsequently the appropriate t-test that should be used for analysing the data set; the results of the F-

tests can be found in Appendix E. The results of the t-tests are displayed in Table 6, and as a two-tail t-

test has been used, there are two conditions that could be fulfilled to show statistical significance 

between two variable means. The influence of oxalic acid concentration on plant biomass was analysed 

using the t-tests, and conclusions drawn based on whether one or both conditions were met. In all 

combinations of soil treatments tested using the t-test, there was no statistically significant difference 

found between the mean of the two variables. This shows that although some soil treatments saw a 

higher mean biomass change than others, it is not possible to say conclusively that there is a relationship 

between the concentration of oxalic acid and the increase in plant biomass observed.  
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6.4.  TOTAL PHOSPHORUS CONCENTRATION IN PLANT BIOMASS 

Figure 33 displays the results of the Gallery Plus analysis on the plant biomass, where total phosphorus 

concentration was measured in the plant leaves and roots of seedlings grown in each of the 

experimental soil treatments. The samples were run on the Gallery Plus using both the “Phosphorus 

High” and “Phosphorus Low” tests, but the “Phosphorus Low” test was found to provide a better 

coverage of data given the low concentrations of total phosphorus found in the plant biomass. A small 

number of the samples could not be detected using the “Phosphorus Low” test, and therefore results 

from the “Phosphorus High” test were used to fill in gaps in the final data. 

 

Figure 33 - Total phosphorus concentration in plant biomass, measured in mg kg-1. Green markers indicate samples of above-surface 

biomass (leaves and shoots), whilst brown markers indicate samples of subsurface biomass (roots). The mean average total 

phosphorus concentration has been plotted, with range bars to indicate the minimum and maximum values measured for each 

sample. 

 

There are a number of trends and patterns in the data presented in Figure 33. Samples CP and CR are 

seedlings grown in the control soil, an autoclaved potting compost. The mean average phosphorus 

concentration for the leaves and shoots is 33.9 mg kg-1 whilst for the roots it is 33.3 mg kg-1 (3.s.f.); the 

range for the control root samples is far smaller than the range for the control leaves and shoots, which 
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has a maximum concentration of 88.3 mg kg-1. Excluding the seedlings grown in 40A soil, there is a 

general trend observed that the total phosphorus concentration of the root material is higher than the 

corresponding leaf and shoot biomass. In some soil treatments, such as 20B and 20C, this difference 

is more profound, whilst in others it is only a small variation in phosphorus concentration, such as the 

0C soils. In terms of overall range in the dataset, the seedlings grown in 0A soils contained 0 mg kg-1 of 

phosphorus, which was the lowest concentration recorded. It is unclear whether the sample contains no 

phosphorus, or if the concentration is negligible or too low to be picked up in analysis. The highest 

concentration of phosphorus was found in the 20B soils, in the root matter, where the mean 

concentration measured 80.3 mg kg-1.  

 

Figure 34 - Total phosphorus concentration in leaves and shoots of the samples, measured in mg kg-1. The mean average total 

phosphorus concentration is indicated by the markers, with range bars used to illustrate the maximum and minimum values. 

 

Figure 34 shows the results of total phosphorus analysis for the leaf and shoot samples grown on each 

of the soil treatments, whilst Figure 35Error! Reference source not found. displays the total 

phosphorus concentration of the roots of the seedlings. The seedlings grown on B horizon soils with 

20mM oxalic acid have the highest concentration of phosphorus found in the leaf and shoot matter, 

however the 20B soils also present the largest range; given this large range in data, it is difficult to draw 

any firm conclusions about trends in the data. Similarly, seedlings grown in the B horizon soil treated 

with 20mM oxalic acid also have the highest concentration of phosphorus in the root matter, as is shown 
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in Figure 35Error! Reference source not found.. The root matter data shows a smaller range in values 

than the leaf and shoot material, however it is one of the largest ranges of values in the root data, and 

is overlapped with all but three of the other samples. The lowest concentration of phosphorus in root 

matter was recorded for the seedlings grown in 0A soils, followed by 40A and 40C soils. There was no 

phosphorus recorded in the 0A sample, although it may be a negligible concentration that was too small 

to be detected by the Gallery  Plus. 

 

Figure 35 - Total phosphorus concentration in root matter of the samples, measured in mg kg-1. The mean average total phosphorus 

concentration is indicated by the markers, with range bars used to illustrate the maximum and minimum values. 

 

Although there are visible trends that can be observed in the data sets presented in Figure 33, Figure 

34 and Figure 35 it is important that the data is analysed to test for statistical significance. Table 7 

presents the results of the statistical testing for the total phosphorus concentrations of plant biomass, 

which is plotted in Figure 34. A t-test was used to test if the difference between the mean averages of 

two variables are statistically significant; a t-test can be run for equal or unequal variance in the data, 

and so an f-test was first conducted for each pair of variables, to establish the type of distribution in 

the data set. The f-test analysis is located in Appendix F and was used to choose the appropriate t-

test for each of the pairs of variables analysed in Table 7. To identify statistical significance using a t-

test, one or more of the conditions must be fulfilled. Of all the pairs of variables tested, none were 

found to have a statistically significant difference between them. Therefore, although some patterns 

are present within the dataset, it is not possible to draw firm conclusions from them given the lack of 
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statistical significance.   
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Table 7 - t-Test results for total phosphorus concentration in plant biomass. The t-Test seeks to identify if the mean values of the 

two variables/samples are significantly different. A two-tailed t-Test requires the results to satisfy at least one of the following criteria, 

in order to reject the null hypothesis: the t Stat < -t Critical two-tail or t Stat > t Critical two-tail. If either test is satisfied, then the null 

hypothesis (μ1 - μ2 = 0) is rejected, and it can be concluded that the variable means differ significantly. 

Variable 

1 

Variable 

2 
t Stat 

t Critical two-

tail 
t Stat < - t Critical two-tail t Stat > t Critical two-tail 

0AP 20AP -1.20228 4.30265273 No No 

0AP 40AP -1 4.30265273 No No 

20AP 40AP 0.023319 2.776445105 No No 

0BP 20BP -0.80509 4.30265273 No No 

0BP 40BP 0.873067 4.30265273 No No 

20BP 40BP 1.004644 4.30265273 No No 

0CP 20CP 0.69263 2.776445105 No No 

0CP 40CP 1.500581 4.30265273 No No 

20CP 40CP 1.277525 4.30265273 No No 

0AR 20AR -2.13902 4.30265273 No No 

0AR 40AR -1 4.30265273 No No 

20AR 40AR 1.59268 2.776445105 No No 

0BR 20BR -2.06164 2.776445105 No No 

0BR 40BR -0.97467 4.30265273 No No 

20BR 40BR -0.60349 4.30265273 No No 

0CR 20CR -0.07812 3.182446305 No No 

0CR 40CR 0.889721 3.182446305 No No 

20CR 40CR 0.724708 4.30265273 No No 
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7.0.  DISCUSSION 

The wide range of data generated in this research project can be collated to draw conclusions relating 

to the presence of phosphorus in soils from the karst critical zone of south west China, and how oxalic 

acid exudates influence phosphorus uptake by primary producers. These findings can be directly linked 

back to the hypotheses laid out in Section 4.0.  

The results from the SEM EDS mapping can be used to draw firm conclusions about the nature of the 

Chenqi soils, and the presence and forms of phosphorus found within them. The Chenqi samples used 

in this research project were collected from soil pits in areas of abandoned farmland; prior to being 

abandoned, this land was cultivated, growing soybeans, maize and peanuts for both subsistence and 

commercial farming purposes. From personal communications between SPECTRA researchers and 

local farmers, it is understood that NPK fertilisers were used in abundance throughout this active 

agricultural period to increase soil solution phosphorus concentrations which would in turn improve crop 

yield. These were applied to the soil surface and either dug into the top layers of soil, or in the presence 

of crops left to infiltrate the soil when precipitation occurred. Data gathered as part of the SPECTRA 

project indicates that the use of fertilisers across southwest China has been increasing since the mid 

1990s, and is set to continue its increase given the growing population across this region (Green et al., 

in press). Despite the increase in NPK fertiliser application across the south west China karst, the SEM 

EDS imaging and spectral analysis identified negligible concentrations of phosphorus in the A and C 

horizon samples. Although phosphorus-containing fertilisers were applied whilst this land was used for 

agriculture, legacy phosphorus does not appear to have been retained in the soils in non-bioavailable 

forms. The lack of phosphorus present from the SEM EDS imaging indicates that naturally-occurring 

phosphorus is limited in the Chenqi soils, in addition to there being no legacy phosphorus present from 

the application of mineral fertilisers in the past.  

The Chenqi subcatchment and associated karst landscape are both highly weathered environments, 

which directly links to the phosphorus limitation identified from the SEM EDS imaging. Figure C1 in 

Appendix C shows an SEM EDS map of titanium in the A horizon of the Chenqi soils; there is an 

unusually high abundance of titanium within the soil sample, which indicates that the soil is highly 

weathered. Titanium, present in soil as titanium oxide, is highly resistant to weathering and is therefore 

considered a proxy indicator for whether a soil is highly weathered. As soils are weathered, 

concentrations of more soluble nutrients such as phosphorus decrease, whilst the proportion of titanium 

is seen to increase (Porder et al., 2007). When using titanium as a proxy for soil weathering, the whole 

soil profile must be analysed, to ensure that anthropogenic sources of titanium are not simply 

responsible for polluting the A horizon; unusually high concentrations of titanium at depth confirms that 

soils are weathered. A similarly high abundance of titanium is also present in the C horizon soils (see 
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Appendix D), which further proves the original hypothesis that soils in the Chenqi subcatchment are 

highly weathered, which is in-part responsible for the phosphorus limitation that has identified from this 

research. Phosphorus in soil is susceptible to leaching and erosion, resulting in depletion in highly 

weathered environments; karst regions are often characterised by their highly weathered soils, and have 

therefore been found to be limited with respect to phosphorus (Bull, 2005; Kertesz and Frossard, 2015). 

Of the phosphorus that was identified using the SEM-EDS imaging, the majority was held in the form of 

iron-bound and aluminium-bound species. In the A-horizon, the dominant form of phosphorus was iron-

bound, in addition to a small number of species that appeared to remain unbound. The iron-bound and 

aluminium-bound species identified in the A horizon have likely originated through the precipitation of 

H2PO4
- and HPO4

2- species with iron or aluminium cations (Pierzynski et al., 2005). Both iron and 

aluminium are found in natural abundance (82,000 ppm and 41,000 ppm respectively) in the Earth’s 

crust and are subsequently found in high concentrations in many soils. SEM EDS analysis of calcium 

within the Chenqi soils showed the high concentrations of calcium species, which was expected given 

the origin of the soils being a karst environment underlain by limestone bedrock. Despite the high 

concentration of calcium species within the A horizon soils, Figure 24B highlighted the negligible 

concentrations of calcium-bound phosphorus species. In such karst environments, it would be expected 

that the majority of phosphorus species would be in the calcium-bound form, however in the A horizon 

soils sampled from Chenqi subcatchment iron-bound phosphorus was found to be in far higher 

concentrations than calcium-bound or aluminium-bound species. The unbound phosphorus species 

identified in the SEM-EDS analysis is likely held as either organic phosphorus or inorganic primary 

apatite minerals. As illustrated in Figure 1, organic phosphorus originates from detrital plant and animal 

matter, humic substances and microbial biomass (Cade-Menun et al., 2000; Condron et al., 2005), whilst 

inorganic primary phosphorus minerals take the form of apatitie originating from the weathering of the 

underlying bedrock (Bieleski, 1973; Dalai, 1977; Stevenson, 1986).  

The results from the SEM EDS analysis of the A and C horizons of Chenqi soils are in accordance with 

the data generated from a sequential extraction previously conducted on the soil samples by a student 

completing a summer internship, Sheena Ramgulam (School of Earth Sciences, University of Bristol_, 

which is presented in Appendix B. The extraction used the method outlined by (Ruttenberg, 1992), and 

concluded that the most prevalent form of phosphorus in the Chenqi soils was iron-bound phosphorus 

This form is itself non-bioavailable, however there are known interactions between phosphorus phases 

that could have increased the concentration of bioavailable phosphorus in the soil solution. Given that 

the majority of phosphorus found in the Chenqi soils is iron or aluminium bound in nature, desorption 

can be assumed to be one of the key processes in maintaining bioavailable phosphorus in soil solution 

in Chenqi. Desorption sees the release of phosphorus from soil-bound metal ions, such as aluminium 

and iron, converting non-bioavailable species into organic bioavailable forms of phosphorus (Pierzynski 
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et al., 2005). This conclusion is drawn based on the understanding of phosphorus cycling that is laid out 

in the current literature, however there remains some interactions which are still poorly understood. For 

example, the factors which control desorption, adsorption and mineralisation of phosphorus have not 

yet been explored in full, making it difficult to draw firm conclusions on the species of phosphorus used 

most commonly by plants. These gaps in the overall phosphorus cycle make it difficult to understand 

how the interaction of different cycling processes alters depending on environmental pressures.  

The data obtained from the soil fractionation also indicate very low concentrations of calcium-bound 

phosphorus species; this mirrors the results of the SEM EDS analysis, in that low densities and 

concentrations of calcium-bound phosphorus were identified in both the A and C horizons of the Chenqi 

soils. Despite it mirroring the SEM EDS analysis, the fractionation remains an interesting result given 

the high concentration of calcium within the soil sample, but negligible concentration of calcium-bound 

phosphorus species. There are a number of explanations for the findings from the SEM EDS and 

fractionation, in relation to the high iron-bound phosphorus concentration and low calcium-bound 

phosphorus concentration. Firstly, the findings may be explained by the nature of the environment in 

which they have been found. The Chenqi subcatchment in Guizhou is a highly-weathered karst 

environment, and it is possible that the state of weathering has influenced the phosphorus species found 

in the soil samples. Previous research indicates that in unweathered environments, inorganic 

phosphorus is more commonly associated with calcium and magnesium compounds; conversely, in 

highly weathered environments, iron-bound and aluminium-bound phosphorus compounds are the 

dominant fractions (Cross and Schlesinger, 2001; Ippolito et al., 2010; Lajtha and Bloomer, 1988; Lajtha 

and Schlesinger, 1988). Given the highly-weathered and degraded nature of the soils sampled from the 

Chenqi subcatchment, it is perhaps unsurprising that the majority of the soil inorganic phosphorus is 

held in iron bound compounds.  

The findings from the fractionation and SEM EDS analysis may also be explained by the extraction 

method used to generate the fractionation data. Although the Ruttenberg (1992) fractionation method is 

widely used for phosphorus analysis in soils and sediments, it has been critiqued for generating 

phosphorus concentrations up to 14% lower than the Hedley fractionation scheme (1982) (Levy and 

Schlesinger, 1999; Ruttenberg, 1992). Although this bias may also increase the concentration of iron-

bound phosphorus in the soil sample, it may also work to increase the calcium-bound and aluminium-

bound phosphorus species. There are a large range of phosphorus extraction and fractionation method 

which can be employed for different soil types (e.g. Chang and Jackson, 1957; Condron et al., 1990; 

Hedley et al., 1982; Hieltjes and Lijklema, 1980; Williams et al., 1967). Extensive research has been 

conducted into the limitations of these different extraction methods; Williams et al (1980) tested a wide 

range of extraction methods and found that some phosphorus-containing compounds are insoluble with 

all reagents used in the extraction methods. For example Crandallite, a calcium- and aluminium-bound 
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phosphorus compound) remains insoluble in all reagents used. Ruttenberg also uses these tested 

reagents within the phosphorus extraction method and therefore it must be considered that some of the 

calcium-bound and aluminium-bound phosphorus was held in compounds such as Crandallite, which 

are insoluble with respect to the extraction reagents. This may provide an explanation for lower 

concentrations of calcium-bound and aluminium-bound phosphorus than would perhaps be expected 

for a soil sampled from a karst environment.  

Further to the SEM EDS analysis and the fractionation data, the concentration of phosphorus in plant 

biomass can be used as a reflection on the availability of phosphorus in soils and provide a stronger 

understanding of nutrient availability in complex, highly weathered karst environments. The data 

produced through total phosphorus analysis using the Gallery Plus autoanalyser was tested for 

statistical significance using t-tests, which confirm whether the difference between the mean averages 

of two variables is statistically significant or not. None of the combinations of soil treatments tested for 

variability registered any statistical significance, and therefore all interpretation and analysis of the raw 

data can only be conducted via identifying visual trends, with a hope to researching these ideas further 

in future work to generate statistically significant datasets.  

A general trend observed from the dataset presented in Figure 30 is the relationship between the 

phosphorus concentration of leaves and shoots compared to the total phosphorus concentration found 

in plant roots. In the case of all but one soil treatment, the root matter had a consistently higher 

concentration of total phosphorus than the corresponding leaves and shoots. Such a pattern could be 

attributed to several factors, in particular the accumulation of phosphorus in roots, when plants are 

grown in phosphorus-limited soils. Chapin (1980) noted that in plants grown in soils considered to be 

nutrient deficient, phosphorus concentrations were found to be higher in the roots than the above-ground 

biomass. It is thought that this is an adaptation by some plants, to encourage the growth of larger root 

systems, to explore more of the soil profile to acquire much-needed phosphorus (Chapin, 1980). This is 

backed up by the results observed in the plant health and growth quality qualitative assessment, the 

results of which are presented in Section 6.2. Phosphorus deficiency in plants is usually highlighted by 

a purple-brown mottling on the leaves and stems of the plant, in addition to the stunting of growth in 

more serious cases of phosphorus limitation. All seedlings grown on Chenqi soils, including those 

treated with oxalic acid, showed obvious signs of phosphorus limitation. Plants had purple and brown 

mottling across the leaf surface, in addition to a dark purple discolouration occurring at the base of the 

stems and on new shoots. In contrast, the control seedlings, grown on autoclaved potting compost 

known to contain an adequate phosphorus concentration, presented no symptoms of phosphorus 

limitation, as can be seen in Figure 25. These findings link to several of the hypotheses originally laid 

out in Section 4.0.; it can be accepted that the Chenqi soils are limited with respect to phosphorus, and 

that this limitation has likely caused for the concentrations in plant roots to be greater than the 
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concentrations of phosphorus found in leaves and shoots. This perhaps provides an insight into the 

adaptive capacity of plants growing in such nutrient-poor regions, and how simple methods of qualitative 

analysis can be used in partnership with biogeochemical techniques to answer complex research 

questions.  

A further interesting observation from both the analysis of plant health and of total phosphorus 

concentration, is that soils treated with oxalic acid still cultivated seedlings that presented signs of 

phosphorus limitation and did not contain significantly higher concentrations of phosphorus than those 

soils which remained untreated. The purple-brown mottling indicative of phosphorus limitation was 

present on seedlings grown in soils treated with 20mM and 40mM oxalic acid, despite the known links 

between oxalic acid exudates and increased uptake of phosphorus by primary producers (Panhwar et 

al., 2013). The statistical analysis of the data generated from total phosphorus analysis shows there not 

to be a statistically significant difference between the phosphorus concentration of plants grown in 

untreated soils and those treated with either 20mM or 40mM oxalic acid. In the research conducted by 

Panhwar et al (2013), treatments of 20mM oxalic acid was found to be most effective in increasing the 

uptake of phosphorus by plants, however the soils used were not limited with respect to phosphorus. 

The Chenqi soils are known, because of this research, to be limited with respect to phosphorus; it is 

therefore important to consider that perhaps the Chenqi soils are simply too severely phosphorus limited 

for treatments of oxalic acid to significantly increase phosphorus uptake by primary producers. Given 

the very low abundance of phosphorus found using the SEM EDS imaging, and the low concentrations 

found by sequential extraction work (conducted by Sheena Ramgulam, School of Earth Sciences, 

University of Bristol), it is possible that phosphorus concentrations in the Chenqi soils are too depleted 

to be positively affected by oxalic acid treatments. If so, then other methods of management for such 

nutrient-limited soils will require developing in the future, as applications of oxalic acid may not mobilise 

sufficient phosphorus for high-quality crop cultivation.  

A further explanation for statistical analysis results, is despite the findings in the current literature, oxalic 

acid may not be the optimum organic acid for the Chenqi soils. Although oxalic acid is identified as the 

most effective organic acid in Panhwar et al (2013), it should be recognised that other organic acids 

could produce more bioavailable phosphorus in severely nutrient-limited soils. Previous research has 

sought to identify the most effective chelating compound to be added to soils for increasing phosphorus 

uptake (Hue, 1991; Panhwar et al., 2013), however no studies have focused upon karstic soils. The 

specific chemical composition of karstic soils, and severely limited concentration of phosphorus found 

in Chenqi may result in oxalic acid not being the most effective organic acid or chelating compound for 

soils in the karst region of south west China. Furthermore, the concentrations of oxalic acid used for soil 

treatments may have been too low to chelate phosphorus compounds, which resulted in the physical 

indications of phosphorus limitation observed in the Erigeron acris grown in the suite of experiments.  
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The concentrations of oxalic acid chosen for dosing Chenqi soils were based on research conducted by 

Panhwar et al (2013), which explored the addition of LMWOAs to rock phosphate to increase 

phosphorus uptake by aerobic rice species. Although Panhwar et al concluded that 20mM oxalic acid 

was the most effective LMWOA for increasing total phosphorus uptake by plants, it is important to 

consider how this research can be transferred to this project. Chenqi subcatchment is part of the wider 

south west China karst, and is characterised by calcium-carbonate rich soils; these soils have a high 

buffering capacity, and therefore may require a higher concentration of LMWOAs to be applied in order 

to mobilise phosphorus fractions for uptake by biota. In contrast, the rock phosphate used by Panhwar 

et al was less calcium-rich, and therefore is likely to have a lower buffering capacity for LMWOAs; this 

would result in lower concentrations of LMWOAs acting to mobilise more phosphorus than would be 

mobilised in soils with a high buffering capacity. It should therefore be considered that increased 

concentrations of oxalic acid used in dosing of the Chenqi soils could result in an increased mobilisation 

of phosphorus compounds and would therefore produce plants with a higher total biomass than was 

observed in plants grown in 20mM or 40mM oxalic acid. It is also likely these plants would present with 

fewer or no symptoms of phosphorus limitation, such as the purple-brown mottling on the leaves which 

was observed in the plants grown in this suite of experiments.  

One of the key research aims of this research and of the overarching SPECTRA project is to better 

understand ecosystem resilience and restoration, and to develop methods by which karst critical zones, 

such as Chenqi subcatchment, can be managed for socio-economic benefit. Therefore, analysis of the 

change in total plant biomass over the duration of the growing period is important, as it links back to the 

primary land-use across Chenqi, that of subsistence and commercial arable farming. The results 

presented in Figure 32 indicate there is no obvious relationship between the concentration of oxalic acid 

applied in soil treatments and the change in total plant biomass. The control sample, C, saw no change 

in biomass over the cultivation period, whilst all but two of the Chenqi soils saw an increase in plant 

biomass for their associated Erigeron acris seedlings. The negligible change in average biomass for the 

control seedlings is somewhat unexpected, given that the potting compost used as a control was not 

limited with respect to phosphorus. The negligible change in biomass may be explained by the 

methodology; when potting up seedlings between the seed compost and the final soil treatments, excess 

soil was removed by hand, to prevent possible root damage that may occur through washing. Traces of 

soil in the roots could have increased the ‘before’ mass, which would not have been captured in ‘after’ 

mass measurements, as seedlings were washed to remove all soil. Therefore, the control seedling 

biomass may have increased but gone unrecorded, due to the inclusion of minor soil traces in the 

‘before’ plant mass values. Statistical analysis of the data used to assess if increasing oxalic acid 

concentrations could increase plant biomass, as a result of increasing bioavailable phosphorus for 

uptake by primary producers. The t-test analysis used shows there to be no statistically significant 
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difference between the mean biomass changes of any of any two treatments, however this may be 

linked to the large range in values generated for each of the soil treatments, resulting in overlapping 

range bars for many of the soil treatments. A larger number of repeats could help to isolate outliers, 

producing smaller data ranges, which may remove the noise from the data and highlight statistically 

significant results.  
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8.0.  LIMITATIONS AND FUTURE WORK 

 

The research conducted in this project is subject to several limitations, which have subsequently 

generated ideas for novel future research. The primary limitation of this research is that plant growth 

experiments were only conducted using autoclaved soil samples, as a result of the DEFRA licence 

assigned to the soils imported to the UK from Chenqi catchment. The licence outlines that the soils 

cannot be used for plant cultivation, unless they have been autoclaved or otherwise sterilised to produce 

unlicensed material. Non-autoclaved Chenqi soils could only have been used for plant cultivation 

experiments if conducted within a fully-licensed facility; such a facility was unavailable at the University 

of Bristol. Conducting the same experimental procedure using non-autoclaved soils would provide an 

interesting comparison to the data generated from this research. For example, if differences in total 

phosphorus concentration of seedlings grown in soils with no oxalic acid (0A, 0B and 0C samples) were 

found between autoclaved and non-autoclaved soils, it could highlight the action of mycorrhizal fungi in 

non-autoclaved soils. The University of Exeter is currently in the process of obtaining a licence from 

DEFRA to conduct this experimental sequence using non-autoclaved soils, starting in Autumn 2018; the 

results of the experiments using autoclaved and non-autoclaved soils will both feed back into the 

SPECTRA project, where they will be used to inform on potential management strategies to increase 

phosphorus availability in karst soils.  

In future, an additional suite of experiments should be run using the Chenqi soils and increased 

concentrations of oxalic acid. The calcium-carbonate rich nature of the soils sampled from Chenqi 

results in a high buffering capacity, which may act to neutralise the oxalic acid treatment applied to soils. 

This would prevent the chelation of phosphorus species, and therefore could have influenced the results 

observed. In future, higher concentrations of oxalic acid should also be used to account for the buffering 

action of the soils. Such an experiment could include concentrations ranging from 0mM to 100mM, in 

either 10mM or 20mM increments. Depending on the volume of soil available for planting experiments, 

the LMWOA used could also be compared; in Panhwar et al (2013) a range of organic acids were 

compared, however this experiment did not focus on karst soils and therefore there is the potential for 

a comparison of LMWOA application in nutrient-limited karstic soils.  

Further to the aforementioned suite of experiments using non-autoclaved soils, research could be 

conducted into identifying the species of phosphorus being acquired by primary producers in both 

autoclaved and non-autoclaved soils. This comparison assumes that the non-autoclaved soils maintain 

a presence of mycorrhizal fungi, which may exude organic acids to break down non-bioavailable 

phosphorus forms. A sequential extraction of phosphorus, according to the Ruttenberg (1992) method, 

could be conducted both before and after the cultivation of Erigeron acris seedlings, to determine the 
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change in concentrations of different forms of phosphorus. This may identify both the species of 

bioavailable phosphorus most readily acquired by plants, in addition to the non-bioavailable forms most 

readily converted to bioavailable species.  

A further limitation of the research was only analysing one sample from the A horizon and the C horizon 

of the Chenqi soils. The clay-rich nature of the Chenqi soils resulted in difficulty achieving complete 

impregnation by the epoxy resin. The method for impregnation was altered during the research project, 

but more work could be done in future on impregnating clay-rich soils, to allow for analysis of more 

samples of the Chenqi soils. This would ensure that the results were of a representative sample of the 

soil, rather than highlighting localised chemical or geological phenomenon.  

Furthermore, this analysis only examined soils samples collected from abandoned farmland in Chenqi; 

these soils were used throughout this research but could be made more comprehensive through 

analysing samples from the other land-use types: primary forest, secondary forest and cultivated 

farmland. Through comparing SEM EDS data for each land-use, understanding of phosphorus cycling 

interactions in varying land-use types could be improved, which could result in more effective 

management techniques for karst regions such as Chenqi.  

A limitation that must be considered when drawing conclusions about phosphorus cycling in karst 

regions such as Chenqi, is the highly-specific nature of the research conducted, and therefore its 

applicability to other regions must be critically evaluated. Through only analysing soils from abandoned 

farmland in Chenqi, it is difficult to draw conclusions about the subcatchment as a whole, given that 

land-use type is known to influence phosphorus cycling and availability. By including soil samples from 

the primary and secondary forest, in addition to active farmland, a more comprehensive understanding 

of phosphorus cycling in karst may be established. It is hoped that research being conducted by other 

SPECTRA project researchers in the UK and China will be fed back into the project as a whole and will 

be used to better determine phosphorus cycling and interactions across the karst critical zone of south 

west China.  
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9.0.  CONCLUSION 

A number of conclusions can be drawn based on the research conducted in this project, which can be 

linked back to the research aims and objectives and hypotheses laid out in Section 3.0 and 4.0 

respectively. These findings can be used to answer important questions about the karst critical zone of 

south west China, in addition to being fed back into the SPECTRA project and used to develop methods 

of management for such nutrient-poor regions.  

A range of quantitative and qualitative research methods were developed to answer the primary 

research question: “Is phosphorus uptake by primary producers in calcareous soils from karst regions 

controlled by organic acid exudates from mycorrhizal fungi?”. Plant-based experiments were conducted, 

with the plant health monitored, in addition to changes in biomass recorded over the growth period. Total 

phosphorus concentrations of the plant matter were analysed, to try to prove a number of hypotheses 

relating to phosphorus availability and the action of oxalic acid exudates in karstic soils. These research 

experiments all used soils collected from Chenqi subcatchment in Guizhou Province, south west China, 

from an area of abandoned farmland that was once used for subsistence and commercial farming.  

The results of this research suggest that oxalic acid exudates from mycorrhizal fungi do not result in a 

significant increase in phosphorus uptake by primary producers. Results suggest that oxalic acid does 

not cause a significant increase in plant biomass when compared to soils with no oxalic acid treatment 

applied. There is also no significant difference in the total phosphorus concentrations in plants grown in 

soils treated with oxalic acid, compared to those which remain untreated. Furthermore, there is evidence 

to suggest that the soils in Chenqi are severely limited with respect to phosphorus, and that this nutrient 

deficiency impacts upon the growth quality and overall health of plants cultivated in Chenqi. SEM EDS 

analysis detected low concentrations of phosphorus in all soils horizons, and observations of plant 

health during the plant growth experiments indicate that plants grown in Chenqi soils are deficient in 

phosphorus.  These results, coupled with the understanding that oxalic acid does not significantly 

increase phosphorus uptake, perhaps suggest that the soils in Chenqi subcatchment are too severely 

limited with respect to phosphorus to be affected by the addition of oxalic acid. Although low 

concentrations were identified using SEM EDS analysis, it is likely to be insufficient for maintaining 

healthy plant growth.  

This research project was limited by several factors, most importantly the licencing attached to the 

Chenqi soils, and subsequently the requirement that they must be autoclaved prior to any experimental 

work. This limited the exploration into the specific role of mycorrhizal fungi and resulted in the addition 

of oxalic acid as a proxy for the natural organic acid exudates released from mycorrhizal fungi to 

increase phosphorus bioavailability. Further research is planned at a licenced facility at the University 

of Exeter, which will use the same experimental design as this project, but will use non-autoclaved soils, 
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in an effort to identify the presence and role of naturally-occurring mycorrhizal fungi in Chenqi soils. This 

research, in addition to the continued works at the University of Exeter, will feed back into the SPECTRA 

project findings.  

The research laid out in this thesis is part of the overarching SPECTRA project, which plans to use 

biogeochemical research techniques to improve the resilience and recovery of nutrient-limited karst 

landscapes across south west China. Nutrient-limited karst environments, such as those in and around 

Chenqi catchment, are under continued environmental, social and economic strain. It is only through 

projects such as SPECTRA that insight into the complex interactions of nutrients within desertified karst 

regions can be improved. The future of karst critical zones relies upon increased research into how they 

can be managed, to provide a livelihood for those currently living there, whilst not depleting or degrading 

the natural resources so that future generations are impacted negatively. 
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11.0.  APPENDICIES 

 

APPENDIX A: SAMPLE CODES FOR TOTAL PHOSPHORUS CONCENTRATION 

ANALYSIS 

Table A1 – Sample codes used for identifying individual plant samples for total phosphorus analysis using the Gallery Plus 

automated photometric analyser 

Code Soil Horizon Oxalic Acid Conc (mM) Repeat Number Plant/Root? 

C1P 

Potting Compost 

0 

1 
Plant 

C1R Root 

C2P 
2 

Plant 

C2R Root 

C3P 
3 

Plant 

C3R Root 

0A1P 

A 

1 
Plant 

0A1R Root 

0A2P 
2 

Plant 

0A2R Root 

0A3P 
3 

Plant 

0A3R Root 

0B1P 

B 

1 
Plant  

0B1R Root 

0B2P 
2 

Plant 

0B2R Root 

0B3P 
3 

Plant 

0B3R Root 

0C1P 

C 

1 
Plant 

0C1R Root 

0C2P 
2 

Plant 

0C2R Root 

0C3P 
3 

Plant 

0C3R Root 

20A1P 

A 

20 

1 
Plant 

20A1R Root 

20A2P 
2 

Plant 

20A2R Root 

20A3P 
3 

Plant 

20A3R Root 

20B1P 

B 

1 
Plant 

20B1R Root 

20B2P 
2 

Plant 

20B2R Root 

20B3P 3 Plant 



 

124 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

20B3R Root 

20C1P 

C 

1 
Plant 

20C1R Root 

20C2P 
2 

Plant 

20C2R Root 

20C3P 3 Plant 

40A1P 

A 

40 

1 
Plant 

40A1R Root 

40A2P 
2 

Plant 

40A2R Root 

40A3P 
3 

Plant 

40A3R Root 

40B1P 

B 

1 
Plant 

40B1R Root 

40B2P 
2 

Plant 

40B2R Root 

40B3P 
3 

Plant 

40B3R Root 

40C1P 

C 

1 
Plant 

40C2P Root 

40C2R 2 Root 

40C3P 
3 

Plant 

40C3R Root 
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APPENDIX B: SEQUENTIAL EXTRACTION OF PHOSPHORUS 

The following data is the result of a sequential extraction conducted by Sheena Ramgulam, a summer 

intern student in the School of Earth Sciences, University of Bristol. The sequential extraction was 

conducted using the method outlined in Ruttenberg (1992).  

Table B1 – Raw data from sequential extraction of phosphorus, conducted by Sheena Ramgulam, School of Earth Sciences, 

University of Bristol, according to the method proposed by Ruttenberg (1992). All values are given in mg L-1.  

 Extraction 1 Extraction 2 Extraction 3 Extraction 4 Extraction 5 

Exchangeable or 

loosely-sorbed 

phosphorus 

Iron-bound 

phosphorus 

Authigenic apatite, 

calcium-bound 

phosphorus and biogenic 

apatite 

Detrital apatite 

and other 

inorganic 

phosphorus 

Organic 

phosphorus 

Concentration (mg L-1) 

A Horizon 0.001471769 

 

153.3291667 

 

0.006815151 

 

0.036296757 

 

0.002870036 

 

B Horizon 0.008589377 

 

180.0097222 

 

0.003137236 

 

0.008053388 

 

0.003537185 

 

C Horizon 0.004431373 

 

167.9 

 

0.002235329 

 

0.007928853 

 

0.003463991 

 

 

Table B2 – Sequential extraction of phosphorus, with data displayed as a percentage of the total phosphorus. 

 Extraction 1 Extraction 2 Extraction 3 Extraction 4 Extraction 5 

Exchangeable or 

loosely-sorbed 

phosphorus 

Iron-bound 

phosphorus 

Authigenic apatite, 

calcium-bound 

phosphorus and biogenic 

apatite 

Detrital apatite 

and other 

inorganic 

phosphorus 

Organic 

phosphorus 

Proportion of Total Phosphorus (%) 

A Horizon 0.000959578 

 

99.96906066 

 

0.004443409 

 

0.023665117 

 

0.001871235 

 

B Horizon 0.004771 

 

99.98704839 

 

0.001742589 

 

0.004473283 

 

0.001964742 

 

C Horizon 0.002639009 

 

99.98924502 

 

0.001331202 

 

0.004721859 

 

0.002062906 
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APPENDIX C: SEM EDS MAPS – A HORIZON 

SEM EDS elemental mapping of sample of A horizon soil collected from Chenqi in 2016. The following 

elemental analysis was not directly related to the presence of phosphorus within the soils, but instead 

provides additional information about the nature of the karst soils.  

 

Figure C1 – SEM EDS map of titanium present within the A horizon of the soils collected from Chenqi in 2016. Light blue areas are 

those with a high titanium concentration.  
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Figure C2 – SEM EDS maps of manganese in the A horizon soil collected from Chenqi subcatchment in 2016. Areas of high 

manganese concentration are a lighter red/pink colour, while dark red/brown colours indicate background or negligible 

concentrations of manganese.  
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APPENDIX D: SEM EDS MAPS – C HORIZON 

 

Figure D1 – SEM EDS analysis of titanium in the C horizon of the Chenqi soils. Areas of bright blue represent high concentrations 

of titanium, whilst the darker blue/grey colour indicates background concentrations of titanium.  

 

Figure D2 – SEM EDS analysis of manganese in the C horizon of the Chenqi soils. Areas of light red or pink indicate high 

concentrations of manganese, whilst the darker red show background levels of manganese in the sample. 
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APPENDIX E: F-TEST RESULTS – PLANT BIOMASS 

 

Table E1 – F-test results for total plant biomass change. F-tests were completed to establish if the variance between two samples 

was equal or unequal, and therefore the type of two-tailed t-test required. If F > F-Critical, then the null hypothesis (σ12 = σ22) is 

rejected, and the variances of the two samples considered unequal.  

Variable 1 Variable 2 F F-Critical Results 

0A 20A 21.92228 19 Unequal 

0A 40A 2.279568 19 Equal 

20A 40A 9.616856 19 Equal 

0B 20B 14.67548 19 Equal 

0B 40B 1.650098 19 Equal 

20B 40B 8.893699 19 Equal 

0C 20C 1.299001 19 Equal 

0C 40C 7.489277 19 Equal 

20C 40C 9.728578 19 Equal 
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APPENDIX F: F-TEST RESULTS – TOTAL PHOSPHORUS CONCENTRATION 

Table F1: F-test results for total phosphorus concentration data. F-tests were completed to establish if the variance between two 

samples was equal or unequal, and therefore the type of two-tailed t-test that would be required. If F > F-Critical, then the null 

hypothesis (σ12 = σ22) is rejected, and the variances of the two samples can be considered unequal.  

Variable 1 Variable 2 F F-Critical Result 

0AP 20AP 65535 19 Unequal 

0AP 40AP 65535 19 Unequal 

20AP 40AP 1.286876 19 Equal 

0BP 20BP 11.5668 19 Equal 

0BP 40BP 33.68275 19 Unequal 

20BP 40BP 389.6016 19 Unequal 

0CP 20CP 2.19132 19 Equal 

0CP 40CP 130.5089 19 Unequal 

20CP 40CP 59.55722 19 Unequal 

0AR 20AR 65535 19 Unequal 

0AR 40AR 65535 19 Unequal 

20AR 40AR 5.425126 19 Equal 

0BR 20BR 3.743963 19 Equal 

0BR 40BR 1.542669 18.51282 Equal 

20BR 40BR 2.426939 199.5 Equal 

0CR 20CR 3.462452 18.51282 Equal 

0CR 40CR 585.6336 199.5 Unequal 

20CR 40CR 2027.728 161.4476 Unequal 

 

 

 


