
                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Bista, Diksha

Title:
Reconstructing the Pleistocene connectivity history of the Black Sea and the Caspian
Sea using strontium isotopes

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



                          

This electronic thesis or dissertation has been
downloaded from Explore Bristol Research,
http://research-information.bristol.ac.uk

Author:
Bista, Diksha

Title:
Reconstructing the Pleistocene connectivity history of the Black Sea and the Caspian
Sea using strontium isotopes

General rights
Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License.   A
copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode  This license sets out your rights and the
restrictions that apply to your access to the thesis so it is important you read this before proceeding.

Take down policy
Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research.
However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of
a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity,
defamation, libel, then please contact collections-metadata@bristol.ac.uk and include the following information in your message:

•	Your contact details
•	Bibliographic details for the item, including a URL
•	An outline nature of the complaint

Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible.



Reconstructing the Pleistocene
connectivity history of the Black Sea
and the Caspian Sea using strontium

isotopes

By

Diksha Bista

School of Geographical Sciences

University of Bristol

A thesis submitted to the University of Bristol in

accordance with the requirements of the degree of

Doctor of Philosophy

in the

Faculty of Sciences

September 2019

Word Count: 48,322

http://department.university.com
http://www.university.com
http://faculty.university.com




iii

Abstract

Quantifying the timing and nature of the connection between two hydrographic systems is critical
to understanding the impact of different drivers on basin hydrology. The evolution of the Black
Sea and the Caspian Sea is driven by a complex combination of tectonics and climate, resulting in
extreme water level fluctuations in these two basins and multiple connection and isolation events
between each other and the open ocean throughout their geological history.

The Quaternary connectivity history between the Black Sea and the Caspian Sea has previously
been reconstructed using palaeontological, phylogenetic and geochemical studies. However, these
records are often contradictory, lack precision, are rarely continuous and are commonly qualitative.
Strontium isotopic ratios (87Sr/86Sr ), by contrast, can provide a direct and quantitative means of
reconstructing the connectivity history between the two basins and the open ocean. The 87Sr/86Sr of
non-marine systems is sensitive to changing water sources and is incorporated and preserved in the
calcitic shells of aquatic organisms. The 87Sr/86Sr measured on well-preserved fossil carbonates
can therefore be used to obtain past 87Sr/86Sr of the basin and, consequently, to identify possible
water sources as the connectivity of the basin changes.

This study adds substantial new data to the very sparse Sr isotopic dataset that exists in the
modern Black Sea, Caspian Sea and the rivers that drain into them. A numerical box model
parameterized with these fluvial data is used to constrain the past hydrological budget of each basin
and to reconstruct the inter-basin connectivity required to produce palaeo salinity estimates and
the 87Sr/86Sr measured on fossil ostracods collected from sedimentological sections and deep sea
cores across the Black and Caspian Sea region.

The new 87Sr/86Sr records show that the Caspian Sea, in addition to present-day fluvial sources,
also received significant amount of water from the Amu Darya river throughout most of the
Pleistocene. The Caspian Sea also sustained a connection with the Arctic ocean in the earliest part
of the Pleistocene between 2.7 to ∼2 Ma. The overlapping 87Sr/86Sr values of the coeval Black
and Caspian seas during the early Pleistocene indicate that the two basins were connected during
the time, via both one way flow from the Caspian Sea into the Black Sea, as well as a two way
exchange between them. This Black- Caspian Sea connection was persistent until ∼380 ka, after
which Mediterranean input into the Black Sea began to dominate the 87Sr/86Sr signal of Black Sea
water. Although, the Caspian Sea may have continued to flow into the Black Sea until ∼150 ka,
divergence of the Caspian Sea and the Black Sea 87Sr/86Sr record suggests progressive isolation of
these basins from each other, while the Black Sea experienced increasing frequency of connection
with the Mediterranean Sea.

The timing of connection between the Black and the Caspian seas throughout the Pleistocene and
between Black and the Mediterranean seas prior to 500 ka appears to be unrelated to the glacial -
interglacial cyclicity, suggesting that tectonics was the primary control on the basin connectivity.
However, over the last 500 ka, the Black Sea connection to the Mediterranean Sea was mainly
driven by eustatic sea level changes at the Bosporus and the Black Sea connection to the Caspian
Sea was impacted by additional meltwater fuelled discharge, reflecting the glacial interglacial
cycle. This new connectivity record of the Black Sea and the Caspian Sea to each other and the
open ocean therefore provides new insight into the relative impact of climate and tectonics on the
evolution of these basins.
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Chapter 1

Introduction

Section 1.5.3 of this introductory chapter is adapted from part of a published paper (Krijgsman

et al., 2019), on which I am a co-author. My contribution to the paper was Section 4.4

“Geochemical proxies of inter-basinal connectivity”. The version presented here differs from

the published copy as, in addition to the Quaternary, it includes a review of the Miocene

connectivity history of the region using Sr isotopic ratios.

Krijgsman W.,Tesakov A., Yanina T., Lazarev S., Danukalova G., Van Baak C., Agustí J.,

Alçiçek M., Aliyeva E., Bista D., Bruch A., Büyükmeriç Y., Bukhsianidze M., Flecker R., Frolov

P., Hoyle T., Jorissen E., Kirscher U., Koriche S., Kroonenberg S., Lordkipanidze D., Oms O.,

Rausch L., Singarayer J., Stoica M., van de Velde S., Titov V., Wesselingh F., 2019, Quaternary

time scales for the Pontocaspian domain: Interbasinal connectivity and faunal evolution,

Earth-Science Reviews, 188 (1- 40).

1.1 Thesis motivation

Marginal basins are large bodies of water along the edges of continents that have a restricted

connection to the open ocean. Their close proximity to a continental landmass means that a

significant portion of the water in these basins comes from fluvial run-off. As such, the hydrology

of these basins is responsive both, to any changes in continental climatic conditions as well as

tectonic changes that influence the fluvial discharge they receive. Because of their restricted

communication with the global ocean, its buffering capacity is reduced. A marginal basin where
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the ocean buffering is either reduced or lacking, a clear continental drainage signal is recorded and

may, therefore provide a unique opportunity to study Earth history.

Marginal basins also provide a convenient platform on which to study biotic adaptability and

ecosystem stability. The presence and distribution of organisms within a basin is governed by

environmental parameters such as temperature, nutrients, oxygen and salt content, light availability

(Chapin III et al., 2011; Mudie et al., 2017). Marginal basins often experience rapid and extreme

changes in these parameters as a result of changing climatic and tectonic configuration (Krijgsman

et al., 2019; van Baak et al., 2017). Consequently, organisms residing within the basins are often

subjected to changing conditions and as such, usually develop wider environmental tolerance as

they adapt to the new environmental conditions (Chapin III et al., 2011). The evolution of biota

within these basins are rapid resulting in quick turnover events with new species colonizing the

basin while some species become extinct (Kideys, 2002; Reid and Orlova, 2002; Selifonova,

2008). Therefore, biodiversity of marginal basins can provide key insights into biotic evolution

and ecosystem functioning in a rapidly changing world like today.

The Black Sea, Caspian Sea, Sea of Azov and Aral Sea (Figure 1.1), collectively known as the

Pontocaspian basin, are relict of the ancient Paratethys Sea. Although today, some of these are

endorheic basins, all have been connected to the global ocean over the last few million years.

Consequently, the Pontocaspian basin is considered to be the last remnant of a marginal basin

system sandwiched between Eastern Europe and Western Asia. These basins contain rich sedi-

mentary archives in which to study long-term climatic and tectonic variation as well as biodiversity

fluctuations of the region.

1.1.1 Disentangling the climatic and tectonic signal

The catchment area of the Black and Caspian seas is ∼5 times (Kosarev and Kostianoy, 2008)

and ∼10 times (Kosarev and Yablonskaya, 1994), respectively, larger than the basin itself (Figure

1.1). As such, climate or tectonic changes over the catchment area have discernable impacts

on the fluvial discharge received by these basins and results in about two order of magnitude

water-level fluctuations (Krijgsman et al., 2019 and references therein). In addition, the hydrology

of these basins is also sensitive to the eustatic sea level variation and/or tectonics of the area as

they influence the connection to the open ocean (e.g., Esin et al., 2010; Le Pichon et al., 2001;
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Figure 1.1: Topographic map of the present-day Black and the Caspian seas with the extent of their
drainage area indicated by the solid black line. Topographic highs are shown in black and lows are
shown in white. Dashed white line indicates the Manych spillway that connected the Black Sea and
the Caspian Sea in the past (Yanina, 2014). Dashed blue line indicates the former course of the Amu
Darya river when it drained into the Caspian Sea (Boomer et al., 2000). North Anatolian Fault (NAF)
is indicated by yellow line. GC: Greater Caucasus and LC: Lesser Caucasus.

Ryan et al., 2003; Yanina et al., 2017). Consequently, the connection between both these basins

and the open ocean are governed by either eustatic sea level changes during glacial interglacial

cycles, climatic variation over the catchment area, tectonics in the region, or a combination of all

three (e.g. Kislov and Toropov, 2007; Kwiecien et al., 2009; Le Pichon et al., 2015; Rodionov,

1994; Yanina, 2014). The Pleistocene time scale consists of large changes in global climate

with amplified glacial - interglacial cycles (Lisiecki and Raymo, 2005) and in regional tectonics

(McHugh et al., 2008). Reconstructing the connectivity history of these basins during this period

can, therefore help disentangle the climatic and tectonic signal impacting the basins’ hydrology in

order to understand the long-term variation in these drivers.

1.1.2 Understanding the biodiversity fluctuations

The Black Sea and Caspian Sea are considered to be biodiversity hotspots (Reid and Orlova,

2002). The complex history of connection and isolation of the Black Sea, Caspian Sea and the

open ocean has resulted in unique endemic faunal assemblages in the region that are derived from

Paratethyan species, marine Mediterranean species and freshwater species (Zenkevitch, 1963).

The palaeontological evidence from the Black and Caspian seas show that the endemic faunal
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communities have waxed and waned since the Miocene (e.g. Dumont, 1998; Harzhauser et al.,

2002; Reid and Orlova, 2002), but have experienced rapid turnover events during the Quaternary

(Grigorovich et al., 2002). These faunal events are inherently linked to the connectivity history

of the basins, as connection of basins facilitates faunal exchange, while isolation promotes faunal

endemism. One of the motivations of this research is therefore to reconstruct the Pontocaspian’s

connectivity history and thereby, constrain one of the key abiotic drivers of faunal evolution in the

Black and Caspian seas.

1.2 PRIDE

This research was funded through the PRIDE Project, a European Union Marie Curie Initial Train-

ing Network. PRIDE (drivers of Pontocaspian RIse and DEmise) brings together sedimentology,

geochemistry, micropalaeontology, and molecular biology to study the changes in palaeoenviron-

ment and past faunal biodiversity in the Pontocaspian basins. PRIDE also involves climate as well

as lake level modelling to understand the abiotic causes and controls on these changes. The PRIDE

project also includes research on biodiversity modelling, heavymetal, andmicroplastic distribution

to evaluate the anthropogenic impact on the current biodiversity of the region. The overarching

goal of the PRIDE project is to understand the causes of natural biodiversity fluctuations recorded

in the recent geological archive in order to develop strategies that support and promote the preser-

vation of the current biodiversity in the area. Given that the connection between two basins is one

of the key abiotic controls on the evolution of the biota, as part of the PRIDE project, this PhD

focused on reconstructing the connectivity history of the Black Sea and the Caspian Sea during the

Pleistocene. This can then be used as a framework to understand the natural biodiversity fluctuation

and to establish faunal evolutionary rates in the region.

PRIDE research was carried out by 15 doctoral students, based in four different European coun-

tries, working in various sub-disciplines of geology, biology and climate science. Experienced

researchers, acting as supervisors, and project partners based in countries surrounding the Black

Sea and the Caspian Sea provided the necessary support and additional expertise in the area. To

achieve a holistic research, results from different sub-disciplines were shared and combined to-

gether. As such, this thesis incorporates data generated by or in concert with co-researchers within
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the PRIDE project. Contributions from other individuals to this thesis are clearly indicated at the

beginning of each chapter.

1.3 Geological evolution of the Black Sea and the Caspian Sea

The Black and Caspian seas are relict basins of the Tethys Ocean (Figure 1.2). The geological

evolution and the palaeogeographical reconfiguration during Mesozoic and Cenozoic (Rögl, 1998)

have placed these basins along plate margins and surrounded by active faults and rapidly rising

mountain ranges (Allen et al., 2004). The ongoing tectonics of the region, therefore controls the

gateway connecting these basins to each other and the open ocean.

Figure 1.2: Palaeogeographic map showing the progressive evolution of the Tethys Ocean into the
Mediterranean and the Paratethys. Palaeomaps are adapted from Scotese (2016).

The Tethys was a vast ocean that divided Laurasia from Gondwana during the Jurassic and

Cretaceous period providing a route for a circum-equatorial current (Figure 1.2A and 1.2B; Ricou

1995). Tectonic movements during the early Eocene restricted the Tethys Ocean (Figure 1.2C,

Steininger and Rögl, 1984) which eventually split into two marine realms separated by an orogenic

belt that stretched along the Alpine, Caucasus and PontideMountain range by the end of the Eocene

and the beginning of the Oligocene (Rögl, 1999). A southern Mediterranean branch was created

at the western end of the Tethys and a vast Paratethys Sea was formed in central Eurasia to the east

(Figure 1.2D, Rögl, 1997).
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Accelerated tectonic movement during the Miocene caused initial uplift of the Caucasus ∼15

Ma and progressive restriction of the Paratethys Sea, which eventually reorganized into Central

and Eastern Paratethys (Figure 1.3A, Rögl, 1998; Steininger and Rögl, 1984). Continued plate

movement and orogenic phases during the Late Miocene–early Pliocene significantly re-shaped

the palaeogeography of the Pontocaspian area (Figure 1.3B and C). While, the Mediterranean Sea

experienced a dramatic salinity crisis in the Messinian (MSC; 5.97 – 5.33 Ma), the Black and

Caspian seas showed a general trend of decreasing salinity indicating progressive disconnection

between the Paratethys realm and the Mediterranean Sea (van Baak et al., 2017, and references

therein). The fragmentation of the Eastern Paratethys into the Black Sea and the Caspian Sea

occurred when the strait connecting the two basins north of the Caucasian mountains (Figure 1.3B)

closed due to uplift of the Caucasus (Figure 1.3C, Popov et al., 2006).

Figure 1.3: Palaeogeographic map showing evolution of the Black Sea and the Caspian Sea since the
Middle Miocene until the last glacial period, adapted from Popov et al., 2006; Yanina, 2012. Darker
blue indicates saline conditions and pale blue indicates brackish and freshwater conditions.
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During the Early Pliocene, both the Black and Caspian seas experienced a sea level drop (Figure

1.3C, Jones and Simmons, 1997; Popov et al., 2006). The Black Sea transformed into a lake but

the water level drop in the Caspian Sea was comparatively more dramatic and resulted in the entire

basin occupying a much smaller area in the southern Caspian basin (Figure 1.3C, Popov et al.,

2006). Three major rivers that fed the Caspian during the Pliocene (Volga, Kura and Amu Darya;

Figure 1.1) formed deeply incised river valleys (Kroonenberg and Park, 2005) and deposited fluvial

and deltaic sediment in the Caspian basin (Abdullayev et al., 2012; Hinds et al., 2004; Reynolds

et al., 1998). This deltaic deposit is referred to as Pliocene Productive Series, which is the main

hydrocarbon reservoir unit (e.g., Hinds et al., 2004). During the Late Pliocene – early Pleistocene,

the Caspian Sea experienced another dramatic event as the surface area of the Caspian Sea increased

five fold (Figure 1.3D, Andrusov, 1912). This event is known as Akchagylian transgression in the

Caspian Sea. The Caspian Sea reached as far east as the Aral Sea (Boomer et al., 2000; Popov

et al., 2006), and is likely to have had ephemeral connections to the Black Sea (Figure 1.1D,

Danukalova, 1996). Drivers for this extreme sea level rise has been linked to overflow of marine

water in the Caspian Sea (Nevesskaya et al., 2003). The exact location of this marine connection

(Mediterranean Sea via the Black Sea, Arctic Ocean or Indian Ocean), however is still debated

(Grothe et al., 2018; van Baak et al., 2016b, 2019).

The Quaternary evolution of the Black and Caspian Sea shows large water level variation over

short periods (Figure 1.3E and F, Krijgsman et al., 2019). The Caspian Sea, in particular, has

experienced water level fall of ∼2 m from 1929 to 1978 and a subsequent rise of ∼2.7 m from 1978

to 1995, a rate significantly faster than the present-day global sea level rise (Figure 1.4, Beni et al.,

2013; Kroonenberg et al., 2000). The rapid change in the water level has mostly been linked to

global and regional climatic variation, resulting in periods of isolation with intermittent connection

between the two basins and the open ocean (Section 1.5, Krijgsman et al., 2019, and references

therein). However, the gateway connecting the Caspian Sea to the Black Sea (Manych strait, Figure

1.1) and the Black Sea to theMediterranean (Bosporus) are also affected by the Caucasus uplift and

active tectonics along the North Anatolian Fault (NAF, Figure 1.1), respectively (e.g., Le Pichon

et al., 2015; Ryan et al., 2003; Svitoch, 2013). As such, the Black and Caspian seas’ evolution and

the resultant connection between them and the open ocean during the Quaternary are governed by

a combination of climatic and tectonic drivers.
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Present day water level

Sea level in 1995

Figure 1.4: The Caspian Sea water level curve based on Brückner (1890), Karpychev (1998, 2001),
and Varushchenko et al. (1890). The dashed lines connecting the filled symbols are interpolations.
The continuous line from 1850 to 2000 show instrumental observations. The two horizontal lines are
Caspian Sea level in 1995 (dashed; -26.5 m) and today (solid; -27 m). Plot taken from Beni et al.
(2013).

1.4 Present-day configuration and hydrography

1.4.1 Black Sea

The Black Sea is a Mesozoic–Early Cenozoic marginal back-arc basin generated by the northwards

subduction of the Tethys Ocean (Nikishin et al., 2003; Okay et al., 1994). It stretches ∼1175 km E

- W (27◦27’ - 41◦42’E) and ∼800 km N - S (46◦33’ - 40◦56’ N) and has a total area of ∼436,400

km2 (Figure 1.5). The Black Sea is connected to the Marmara Sea in the west via the 30 km long

and 0.7 - 3.6 km wide Bosporus Strait, which has a depth of ∼35 m. The morphology of this strait

is controlled by the North Anatolian Fault (NAF; Figure 1.1), which runs through the Marmara

Sea and into the Aegean Sea (Armijo and Hubert, 1999; Şengör and Canitez, 1982; Şengör et al.,

2005). To the north, the Black Sea is connected to the Sea of Azov via the Kerch Strait (Figure

1.5), which is 41 km long and 4.5 to 15 km wide with a maximum depth of 15 m. The Black Sea

has a wide continental shelf with depth less than 200 m along the north and west coasts. This flat

bathymetric area is substantially narrower along the east and south coasts, where it rarely exceeds
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a width of 20 km. The Black Sea has a mean water depth of 1315 m and a maximum depth of

2258 m.

At present, the Black Sea has a restricted connection to theMediterranean through the intermediate

Marmara Sea (Figure 1.5). The Mediterranean water with salinity of ∼38 g/kg enters the Marmara

Sea at depths and mixing of this dense water with fresher surface water results in Marmara Sea

surface salinity of ∼22 g/kg (Beşiktepe et al., 1994). This Marmara Sea water with salinity of ∼22

g/kg then enters the Black Sea at greater depths. The Black Sea’s drainage area stretches from

eastern Europe to western Asia (Figure 1.1). Substantial run-off frommajor rivers like the Danube,

Don, and Dnieper creates a surface freshwater cap above the saline water and mixing between the

two occurs to a depth of 200 m induced by winds and winter circulation (Kosarev and Kostianoy,

2008). Consequently, the salinity of the basin changes from ∼17 – 18 g/kg at the surface to ∼22 - 24

g/kg at deeper depths (Cagatay et al., 2006; Cox and Faure, 1974). A strong vertical stratification

is maintained due to this density difference, limiting the exchange between the surface and deep

water and resulting in an anoxic environment below 100 -200 m water depth (Figure 1.5, Kosarev

and Kostianoy, 2008).

Currently, the Black Sea has a positive hydrological balance with freshwater input of ∼338 km3/yr

from fluvial sources, ∼300 km3/yr from precipitation and evaporative loss of ∼350 km3/yr (Özsoy

and Ünlüata, 1997). Although a positive hydrological budget results in an outflow from the

Black Sea, the exchange with the Mediterranean Sea via the Marmara Sea is largely driven by the

differences in density of each water body. The large freshwater influx in the Black Sea and a narrow

opening to the Marmara Sea result in an asymmetric exchange between them, with outflow of the

less saline water at the surface twice as much than the inflow of more saline water at deeper depths

(Esin et al., 2010). Because salinity of the Black Sea have varied through time (Schrader, 1978),

this density driven exchange and hence the connection with the adjacent basins can be expected to

change substantially as well. This has been observed in the Mediterranean Sea (Modestou et al.,

2017). Although the exchange between the Mediterranean and Atlantic Ocean today is driven by

density contrast between the two, salinity change in the Mediterranean Sea during Late Miocene

has prevented the exchange with Atlantic ocean even when these basins were fully connected

(Modestou et al., 2017).
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Figure 1.5: A) Bathymetric map of the Black Sea with fluvial sources. The thickness of the river is
proportional to the magnitude of the river discharge. B) Cross sectional schematic (not to scale) of
the Black Sea along the red line indicated in A showing inflow and outflow to the Mediterranean via
Marmara Sea and Sea of Azov and vertical salinity stratification. C) Mean annual surface salinity of
the Black Sea. Salinity data from WOA 2013 V2.

1.4.2 Caspian Sea

The Caspian Sea is the world’s largest inland body of water with a present-day surface area of

about 374 x 103 km2 and a lake level of ∼27 m below global sea level. The sea stretches ∼1200

km N - S (36◦ - 47◦N) and ∼195 - 435 km (46◦ - 56◦E). The basin is divided into three parts;

North, Middle and South basin (Figure 1.6A). These three basins are about the same size, but vary

significantly in depth and volume (0.5, 33.9 and 65.6%, respectively; Baidin and Kosarev, 1986).

The northern basin is very shallow with a maximum depth of only about 20 m. There is a gradual

increase in depth from north to south, reaching a maximum depth of 788 m in the Middle Caspian.

The South Caspian basin is the deepest part of the Caspian Sea reaching a maximum depth of 1024

m (averages ∼330 m). The Middle and South Caspian basins are separated by the Apsheron sill, a

structural high created during the regional convergence of Arabia and Eurasia plate (Allen et al.,
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2004). The Apsheron sill has a maximum water depth of about 160 – 180 m (Figure 1.6C) and

extends onshore from the eastern Greater Caucasus, through the Apsheron Peninsula to the Kopet

Dagh.

The basement of the South Caspian Basin is not exposed as it is covered by ∼ 20 km of sediments

(Allen et al., 2004), about half of which are fluvial and deltaic deposits of Pliocene –Quaternary age

(Ali-Zade et al., 1985). Deposition of large amounts of sediment in this basin has been interpreted

as both cause and effect of the high subsidence rate observed in the South Caspian Basin since

∼5.5 Ma (Allen et al., 2002; Brunet et al., 2003; Green et al., 2009). Consequently, even when the

Caspian Sea experiences major regression, such as during the Pliocene (Popov et al., 2006), the

South Caspian basin always remains subaqueous.

Today, the drainage basin of the Caspian Sea is about 10 times larger than the basin itself and

covers a large part of southern Russia (Figure 1.1). During parts of the Pleistocene, the drainage

area of the Caspian Sea also included the Amu Darya River, which flowed south-westward into

the Caspian (Boomer et al., 2000; Brunet et al., 2017) until early Holocene and today feeds the

Aral Sea. Currently, the Caspian Sea receives a total continental run-off of about 3.4 x 1011 m3/yr

(Shiklomanov et al., 1995) of which 82% is from the Volga river, 11.5% is from the western rivers,

including the Sulak, Samur, Kura, and Terek rivers, 3.5% is from the Iranian rivers and 3% is from

the Ural River (Figure 1.6A, Shiklomanov et al., 1995). Additional sources of water to the Caspian

Sea are from direct precipitation over the basin (1.3 x 1011 m3/yr) and shallow ground water

discharge (0.03 – 0.05 x 1011 m3/yr, Clauer et al., 2000). The Caspian Sea also loses about 4.3 x

1011 m3/yr of water by evaporation. Overall, the Caspian Sea today, has a positive hydrological

budget of 0.43 – 0.45 x 1011 m3/yr. However, the water balance of the Caspian Sea is extremely

sensitive to continental run-off and evaporation; relations between their intensities mostly control

the inter-annual changes in the water volume and the sea level of the basin (Figure 1.4).

Even though it is an isolated basin, the Caspian Sea has the average salinity of 12 g/kg. The high

fresh water discharge from the Volga produces water with a salinity less than 1 g/kg in the North

Caspian (Figure 1.6B). There is a steep salinity gradient from north to south where the salinity

changes from 1 - 2 to 9 - 10 g/kg in the Middle Caspian and reaches a salinity of ∼12 g/kg and

more in the South Caspian basin (Figure 1.6B). This salinity gradient depends upon the volume

of Volga discharge, its distribution, and water exchange between the North and Middle Caspian.

Compared to the surface salinity distribution, there is no vertical salinity gradient and salinity
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Figure 1.6: A) Bathymetric map of the Caspian Sea with fluvial sources. The thickness of the river
represents magnitude of the river discharge. B) Mean annual surface salinity of the Caspian Sea.
Salinity data from WOA 2013 V2. C) Cross sectional schematic (not to scale) along the red line
indicated in A and showing vertical salinity gradient.

below 100 m does not exceed 13 g/kg (Figure 1.6C). Because of the isolated nature of the basin,

there is no advection from other water bodies and the hydrological structure is controlled by winds,

heat exchanges at the sea surface and the resulting changes in density.

1.5 Published connectivity record of the Pontocaspian region

The history of Pontocaspian connectivity and isolation events have previously been identified on

the basis of faunal assemblages (e.g., Dumont, 1998; Grigorovich et al., 2003; Nevesskaya, 1965;
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Yanina, 2012, 2014; Yanko-Hombach et al., 2014; Yanko-Hombach et al., 2007), phylogenetic

studies (e.g., Audzijonyte, 2005; Fulton and Strobeck, 2010; Kvach, 2009; Palo and Väinölä,

2006; Väinölä et al., 2001) and geochemical studies (e.g., Badertscher et al., 2011; Bahr et al.,

2006; Grothe, 2016; Major et al., 2006; vanBaak et al., 2019;Wegwerth et al., 2014). These records

are rather fragmented and the resulting connectivity reconstruction is discontinuous. Additionally,

connectivity reconstructions by different authors and studies based on different proxy methods

generally provide contradictory results.

1.5.1 Palaeontological studies

Palaeontological studies investigating the connectivity history of the Black Sea and the Caspian

Sea have mainly used mollusc and bivalve assemblages (e.g., Buyukmeric and Wesselingh, 2016;

Svitoch, 2008; Yanina, 2012, 2014) but few studies have also used ostracod (e.g., Richards et al.,

2018; Stoica et al., 2013), foraminifera (e.g., Richards et al., 2014; Yanko-Hombach et al., 2014),

diatoms (Schrader, 1979), and dinocyst assemblages (Hoyle, 2019; Ivanova et al., 2014). All faunal

studies are based on the concurrent occurrence of similar or identical faunal assemblages in adjacent

basins. Theoretically, when connected, adjacent basins will develop similar ecological conditions

and will have similar biota because of the faunal exchange between them, but will develop endemic

faunawhen separated for long enough periods of time (Reid andOrlova, 2002). However, ecological

conditions suitable for faunal evolution (e.g. salinity, nutrient etc.) are primarily determined by

the hydrology of the basin and therefore, even when connected, two basins could have ecological

differences resulting in different faunal assemblages. It is probably for this reason that there is

disagreement between connectivity reconstruction based on different faunal groups (e.g. mollusc

and ostracods Nevesskaya et al., 1986; van Baak et al., 2013; Yanko-Hombach et al., 2013).

In addition, contradictory connectivity reconstruction also arises from lack of reliable stratigraphic

correlations between the Black Sea and Caspian Sea and the open ocean. In an open ocean setting,

faunal assemblages are typically used to constrain the age of the sediments. In the Black and

Caspian Sea, because of their complex geological evolution, faunal assemblages typically consist

of endemic faunas, which have been used to construct local and regional time scales for individual

basins (Krijgsman et al., 2019). Cross correlation between these basins without any additional

independent age constraints are difficult. The precise timing of these regional stages and their

correlation to the standard geological time scale (Hilgen et al., 2012), therefore vary from author
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to author (Krijgsman et al., 2019, and references therein). The connectivity reconstruction of the

Black and Caspian seas, which are conducted relative to these regional stages, generally show

different results (e.g., Nevesskaya, 2007; Yanina, 2012). Here, I provide a summary of faunal

based connectivity using the framework of regional stages by Krijgsman et al. (2019) and correlate

them broadly to the standard geological time scale (Figure 1.7E).

Prior to the fragmentation of theEastern Paratethys in theLateMiocene - early Pliocene (Figure 1.3),

the occurrence of marine fauna across the region suggests an enduring Mediterranean - Paratethys

connection until early Maeotian (Late Miocene) times (Nevesskaya et al., 2003). During late

Maeotian, the marine fauna in the Eastern Paratethys was replaced by brackish and freshwater

species indicating disconnection from the Mediterranean Sea during the time (Figure 1.7E, Popov

et al., 2006, 2010). The base of the Pontian (at ∼6.1 Ma; van Baak et al., 2016b) was marked

by reappearance of marine planktonic and benthic foraminifera, and marine diatom assemblages

indicating the reestablishment of a marine connection to Eastern Paratethys (Krijgsman et al.,

2010; Popov et al., 2006; Radionova et al., 2012; Stoica et al., 2013, Figure 1.7E). The Pontian

regional stage is tentatively correlated to the MSC of the Mediterranean (van Baak et al., 2017).

During most of the MSC, similar mollusc and ostracod species suggest that connection existed

between the Eastern Paratethys and the Mediterranean Sea, which was not connected to the open

ocean (Nevesskaya et al., 1986; Popov et al., 2006). The connection to the Mediterranean was

however, severed during the Stage 2 of the MSC (5.5 - 5.55 Ma) but presence of the Pontian Black

Sea species in the time equivalent of the Caspian Sea implies that the two basins were connected

at that time (Nevesskaya et al., 1986).

Freshwater taxa completely replaced previous Pontian fauna during the deposition of the Productive

Series (early Pliocene) in theCaspian Sea (Nevesskaya et al., 2003). However, in theBlackSea basin

“Pontian” type fauna and their descendants dominated throughout the Kimmerian (Figure 1.7E).

This has been interpreted as evidence for a prolonged period of separation of the two basins and

isolation from the open ocean (Nevesskaya et al., 2003). The base of the Akchagylian (Pliocene)

in the Caspian Sea was marked by the abrupt occurrence of marine foraminifera and ostracod

assemblages indicative of marine influx, suggesting a Caspian connection to the open ocean

(Richards et al., 2018). However, source of this marine water is much debated and could be either

Arctic Ocean or Mediterranean Sea (Krijgsman et al., 2019; Richards et al., 2018, and references

therein). After this short marine interval, the faunal assemblage of the upper Akchagylian Caspian
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Figure 1.7: The 87Sr/86Sr and δ18O data from the Black Sea (green), Caspian Sea (red) and Mediter-
ranean Sea (grey) for different time slices (A - D). Different symbols represent different archives;
ostracods (squares), mollusc (triangles), speleothem (circles), composite of carbonate precipitates (di-
amonds). The 87Sr/86Sr of the global ocean is from McArthur et al. (2012) and the global benthic
δ18O is from Lisiecki and Raymo (2005). The 87Sr/86Sr of the Mediterranean Sea is from Flecker et al.
(2015), of the Black Sea is from Grothe (2016), Major et al. (2006), and Wegwerth et al. (2014), of the
Caspian Sea is from Page (2004) and van Baak et al. (2019). The Sofular Cave δ18O record is from
Badertscher et al. (2011) and δ18O of the Black Sea over the last 30 ka are from Bahr et al. (2006)
and Major et al. (2006). E) Faunal based connectivity history between the Caspian Sea, Black Sea
and the Mediterranean Sea. Regional stages for the Black and Caspian seas are from Krijgsman et al.
(2019). Colour and direction of the arrow indicate the source water and direction of the input. Dashed
arrow represent ephemeral connection between the Caspian Sea and the Black Sea without any precise
timing. (Modified after Krijgsman et al., 2019).
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Sea suggests mostly an isolated basin (Nevesskaya et al., 2003). The presence of Akchagylian

molluscs in the northern coast of the Sea of Azov implies Caspian connections with the Sea of

Azov. However, the absence of Akchagylian molluscs in similar aged Kuyalnikian Black Sea

sediment, which hosted bivalves endemic to the Black Sea suggests a Black Sea isolated from both

the Mediterranean Sea and the Caspian-Azov during this time (Figure 1.7E, Nevesskaya et al.,

1986).

Sediment at the base of the Caspian’s Apsheronian succession (Calabrian) contains euryhaline

foraminifera Ammonia spp., suggesting the existence of another minor marine connection event

(Richards et al., 2018). Similar aged, Gurian fauna in the Black Sea are completely dissimilar with

only very limited species in common (e.g, one bivalve genus is thought to have migrated in the

Caspian Sea from the Black Sea during this interval; Nevesskaya, 2007). This has been interpreted

as indicating another prolonged isolation event both between the two basins and the open ocean

but with perhaps ephemeral connections between the Black and Caspian seas (Nevesskaya, 2007).

Middle and Late Pleistocene faunal records indicate multiple connectivity events between the

Black Sea, Caspian Sea and Mediterranean Sea (Figure 1.7E). The driver for this connectivity is

thought to have been the Pleistocene glacial- interglacial cycles (Svitoch, 2010; Yanina, 2014).

Consequently, connection between the Mediterranean Sea and the Black Sea have been suggested

during the interglacials due to eustatic sea level highs whereas connections between the Caspian

Sea and the Black Sea have been suggested during glacial periods due to sea level rise in the

Caspian Sea driven by input of glacial meltwater, resulting in overflow events to the Black Sea

(Yanina, 2014). However, without absolute independent age constraints, the resolution of these

studies maybe insufficient to support this hypothesis.

1.5.2 Phylogenetic studies

Endemic faunas in the Black and Caspian basins have both Paratethyan and open ocean lineages.

Commonly, these oceanic ancestors are thought to have reached the Pontocaspian basin via the

Mediterranean Sea. However, the Caspian Sea currently, also harbours some species (e.g. Pusa

Caspia - Caspian Seal, some genera of crustacean that have closest living relatives in the coastal

and estuarine waters of the Arctic Ocean (e.g. Davies, 1958; Holmquist, 1959; Mclaren, 1960;

Zenkevitch, 1963). This suggests that a connection between the Caspian Sea and the Arctic Ocean
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existed in the past which allowed for the transfer of these Arctic elements to the Caspian Sea.

Although phylogenetic studies largely agree on the Caspian-Arctic connection that resulted in

dispersal and subsequent diversification of Arctic taxa in the Caspian Sea, the timing and number

of these biologically determined connection episodes are keenly debated. Initially, based on

fossil morphology and identification, Mclaren (1960) suggested that the connection between the

Arctic Ocean and the Caspian Sea occurred during the Late Miocene. This idea was subsequently

revised using phylogenetic studies of Arctic taxa by various authors. Based on seal phylogeny,

Árnason et al. (2006) suggested a Pliocene connection whereas Árnason et al. (1995) and Palo

and Väinölä (2006) suggests a late Pliocene - early Pleistocene (2 – 3 Ma) connection and Fulton

and Strobeck (2010) suggested a more recent (∼1 Ma) connection. Studies of crustacean (Mysis

and Gammaracanthus) by Dooh et al. (2006) suggested a Pre-Pleistocene connection (3.5 - 2 Ma)

consistent with studies by Árnason et al. (1995) and Palo and Väinölä (2006). This diverse timing

of the connection could be because these studies used different DNA markers (e.g. nuclear DNA

and mitochondrial DNA) that have variable mutation rate (e.g., Árnason et al., 2006; Palo and

Väinölä, 2006). Additionally, dated phylogenetic studies may use external calibration points to

constrain the timing of the divergence. These external calibration points can include geological

events like Messinian Salinity Crisis or biogeographic separation events of other taxa, such as

cat and dog divergence at 55 (50–60) Ma or odontocetes and mysticetes divergence at 33 - 35

Ma (Árnason et al., 1995, 2006; Fulton and Strobeck, 2010; Palo and Väinölä, 2006), which

themselves have age uncertainties. Consequently, resulting age error associated with a molecular

clock is usually counted in hundreds of thousands of years. This means that the ages suggested by

these authors should be treated as estimations and not as exact ages or time range.

1.5.3 Geochemical studies

Compared to the palaeontological and phylogenetic studies, the hydrochemistry of a basin is directly

controlled by changing environmental conditions as the connectivity between basins changes.

Geochemical studies can, therefore give a more accurate record of the timing of the connection

and isolation between basins, providing sections are well dated by non-faunal methods and well

preserved archives are available.
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1.5.3.1 Proxy archives

Proxy archives used for connectivity reconstruction in the Pontocaspian include cave speleothems

(Badertscher et al., 2011), organic matter (Vasiliev et al., 2013, 2017) and biogenic carbonates

preserved in the sedimentary succession (e.g. Bahr et al., 2006; Major et al., 2006; Vasiliev

et al., 2010). Calcareous organisms like molluscs, ostracods, foraminifera, corals etc are most

suitable for geochemical studies because they precipitate their carbonate shell in equilibrium with

the surrounding water (Rosenthal and Katz, 1989; Turpen and Angell, 1971). The diversity of

these organisms mean that they can be found in various aquatic settings and are therefore usually

present in fossil records making them an ideal archive for past environmental changes. The most

environmentally and geographically diverse species that precipitate calcium carbonate in both fresh

and marine environment are ostracods.

Ostracods (Figure 1.8) are bivalved micro-crustaceans with an exoskeleton composed of low-

magnesium calcite. They are generally 0.2 to 1 mm in length and weigh between 20 and 200

mg (Rosenthal et al., 2006). Unlike other shell forming microorganisms, ostracods have up-to 8

moulting stages during their life cycle until they reach maturity. During moulting, they shed their

previous calcitic exoskeleton and form a new one very quickly within a few hours to several days.

Once calcification of the valve is complete, there are no changes in valve chemistry, preserving the

geochemical signal of the ambient water (Chivas et al., 1985; Holmes, 1996; Holmes et al., 1992).

A B

C D

Cyprideis torosa Loxoconcha bulgaria

Figure 1.8: Side view of two different species of living ostracods from Sea of Azov (A and B; Drapun
et al., 2017) and of fossil ostracods from the Black Sea (C and D).

Ostracods occupy virtually all the known aquatic ecosystems from fresh water to highly saline

water and even occur in semi-terrestrial habitats such as soils with leaf litter (de Deckker and

Forester, 1988; Delorme, 1989; Viehberg and Mesquita-Joanes, 2012). Their carapace has a
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high preservation potential because they are formed of a stable carbonate phase. Consequently,

compared to other biogenic carbonates, ostracods have the most complete fossil record extending

back to Ordovician (at least 450 Ma) and are ideal as a biostratigraphy tool, palaeoenvironment

and palaeoclimate proxies (Boerner et al., 2013; Boomer et al., 2003; Chivas et al., 1985; Decrouy

et al., 2011a,b; Holmes, 1996; Holmes et al., 1992, and references therein).

1.5.3.2 Isotopic systems that monitor connectivity

There are three main geochemical proxies that have been used to reconstruct the past hydrography

of the Black Sea and the Caspian Sea; oxygen isotopes (δ18O), Sr isotopes (87Sr/86Sr ) and hydrogen

isotopes (δD). A brief summary of the background is described below along with the synthesis of

the published data for the Pontocaspian region.

1.5.3.2.1 Oxygen isotopes

The oxygen isotopic composition (δ18O) of a marginal marine or lacustrine basin depends on

several factors, such as, the isotopic composition of precipitated and evaporated water, as well as

the isotopic composition of different source waters entering the basin i.e river run-off and ocean

inflow (Craig, 1965; Craig et al., 1963; Dansgaard, 1964; Gat and Gonfiantini, 1981; Stuiver,

1970). In principle, higher δ18O of the basin water indicates input and mixing with isotopically

heavy marine water (enriched in 18O), whereas lower δ18O of the basin water indicates increased

input of isotopically light freshwater (depleted in 18O, Gilfillan, 1934). The sources of isotopically

depleted freshwater in marginal basins include precipitation derived from high latitudes and high

altitudes, glacial run-off, and inland river discharge, and reflect the broad latitudinal change in δ18O

driven by the global hydrological cycle (Dansgaard, 1964). Biogenic carbonates from foraminifera

are commonly used archives for δ18O in the open ocean (Shackleton, 1967). However, because

species-specific vital effects fractionate the two main stable isotopes of oxygen (18O and 16O)

differently (Rohling and De Rijk, 1999), teasing apart the individual signals that impact the δ18O

of a basin is quantitatively complex and open to interpretation. This is particularly problematic

when trying to reconstruct past connectivity in basins where fossil fauna are extinct today, forcing

reliance on the untestable assumption that nearest living relatives will have the same vital effect

fractionation. No δ18O from biogenic archives are available for the Pontocaspian over the last 3

Ma.
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Analternative archive for δ18Ois calcareous speleothems. During calcite precipitation, speleothems

capture the oxygen isotopic signature of the cave drip-waters with a temperature dependent frac-

tionation between the drip-waters and the deposited calcite (McDermott, 2004). In a carefully

chosen site, cave moisture is derived from the local precipitation sourced from an adjacent water

bodies and consequently, speleothems of such caves can record and preserve the isotopic signal

of the basin water. However, the original signal of the basin water is affected by kinetic frac-

tionation (evaporation/condensation), cave temperature, atmospheric circulation, and temperature

dependent fractionation during calcite precipitation (Fairchild et al., 2006; McDermott, 2004).

The δ18O record from the cave at the southern coast of Black Sea has been used to reconstruct

the connectivity of the Black Sea with Mediterranean Sea and the Caspian Sea for the last 700 ka

(Badertscher et al., 2011).

1.5.3.2.2 Compound specific hydrogen isotopes

Plant biomarkers retain the hydrogen isotopic composition of the water (δD ) used at the time of

biosynthesis with additional physical and biosynthetic fractionations (Leaney et al., 1985; Luo and

Sternberg, 1992; Roden and Ehleringer, 1999). In a continental setting, the δD value of long-chain

n-alkanes, which form part of the protective layers on higher plant leaves (Eglinton and Hamilton,

1967) can, therefore provide information about the terrestrial precipitation and evaporation condi-

tions (e.g. Sachse et al., 2006). Similarly, in aquatic settings, unicellular eukaryotic haptophyte

algae synthesise alkenones (long strait chain ketones), recording the hydrogen isotopic composition

of the water. The δD of the alkenones can reflect the variability of the basin hydrology and has been

used to investigate the changes in hydrology of the Black Sea during the Late Miocene (Vasiliev

et al., 2013).

1.5.3.2.3 Strontium isotopes

Strontium (Sr) has four naturally occurring isotopes; 84Sr (0.56%),86Sr (9.87%), 87Sr (7.04%) and
88Sr (82.53%). Of these four isotopes, 84Sr, 86Sr, 88Sr are stable whereas 87Sr is produced due to

radioactive decay of rubidium-87 (87Rb). Minerals incorporate Rb and Sr during their formation

and if the system remains closed with respect to these elements, then the amount of 87Sr increases

over time as radioactive 87Rb decays, changing the abundance of 87Sr relative to the abundance of

stable 86Sr.
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Strontium is an alkali earth element with ionic radius of 1.18 Å, similar to that of Calcium (1

Å) and partition preferentially into plagioclase feldspar. Comparatively, Rb is an alkali metal

with a larger ionic radius (1.52 Å), similar to that of the potassium (1.38 Å) and hence, readily

incorporates into K-bearing minerals including muscovite, biotite, and alkali feldspars. During

the fractional crystallization of mantle derived magma, Sr is removed from the liquid phase and is

concentrated primarily in early-formed calcic plagioclase, while Rb is concentrated in the residual

magma and eventually enters potassium-rich minerals. The continental crust, which accumulated

from the magma produced by differentiation of the Earth’s mantle via partial melting and crystal

fractionation processes, therefore largely consists of minerals enriched in Rb. The crust developed

a higher Rb/Sr ratio than the upper mantle which in time led to a higher 87Sr/86Sr ratios in the

continental crust than the upper mantle (e.g., Elderfield, 1986; Faure and Powell, 1972b). As

such, the older crustal rocks have evolved to a higher present-day 87Sr/86Sr values than the recently

formed crustal rocks (Figure 1.9A).

Figure 1.9: A) Sr isotopic evolution of the Earth over geologic time. The crust evolution lines shown
in the figure represent only two representation of evolution lines. The 87Sr/86Sr evolution of the
continental crust, in fact, corresponds to a wide range of Rb–Sr ratios and ages found in different parts
of the continental crust. The shaded area shows the space occupied by Figure 1.10, which contains
Phanerozoic seawater Sr isotope curve. B) The modern isotopic composition and flux of Sr from
different input sources into the ocean (after Davis et al., 2003; Holland, 1984; Palmer and Edmond,
1989). Figures modified from Banner (2004).

The continental crust and the upper mantle are the two primary sources of Sr and therefore, the

input from both these two main Sr reservoirs influences the isotopic composition of Sr in the

ocean (Figure 1.9B). Continental crustal rocks provide dissolved Sr to the ocean through chemical

weathering of old silicate lithologies and supplies waters with typically a high 87Sr/86Sr ratios

(∼0.711), but with low strontium concentrations delivered via river input (Palmer and Edmond,

1989). The upper mantle supplies low 87Sr/86Sr to the ocean primarily via hydrothermal activity at

mid ocean ridges, submarine weathering of basalts, and chemical weathering of continental basalts
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(e.g., Elderfield, 1986; Faure and Powell, 1972a). Changes in the balance between these two major

input sources have resulted in a varying budget of dissolved strontium in ocean water through time

(Figure 1.10).

At any given time however, the global ocean is homogeneous with respect to strontium isotopic

ratio (87Sr/86Sr) because it has a long residence time (∼106 years) relative to the ocean mixing

time of 3000 yrs (McArthur et al., 2012; Veizer, 1989). As a result, long term variation in oceanic
87Sr/86Sr has been used as a stratigraphic tool for carbonates formed in openmarine settings (Figure

1.10, Elderfield, 1986; McArthur et al., 2012) and can provide open ocean age with a precision of

up to ±3 Ma (El Meknassi et al., 2018).

However, oceanic 87Sr/86Sr cannot be used as a stratigraphic tool in isolated or semi-isolated

basins like the Black and Caspian seas. In these basins, the 87Sr/86Sr can deviate from the global

ocean curve (e.g., El Meknassi et al., 2018; Ingram and Sloan, 1992) reflecting substantial input

from continental sources (e.g., fluvial run-off and groundwater), which generally have 87Sr/86Sr

significantly different from the oceanic ratio (Palmer and Edmond, 1989). While 87Sr/86Sr may not

be useful as a dating tool in the Black and Caspian seas, it can be used to assess the relative input

of different source water into the basin, if the isotopic signature (Sr concentration and 87Sr/86Sr )

of those sources are known.

Figure 1.10: Oceanic Sr isotopic ratio (McArthur et al., 2012) over time with the isotopic ratio of the
present-day Black Sea and the Caspian Sea and their fluvial sources (Clauer et al., 2000; Palmer and
Edmond, 1989). Note the x-axis scale change.

The Sr concentration and isotopic ratio of a river depends on its catchment geology and therefore

usually varies between drainage basins (Krom et al., 1999; Stein et al., 1997). Although the data

are limited, the fluvial Sr concentration and ratios in the Black Sea and the Caspian Sea appear to
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be substantially lower than the modern to Pleistocene oceanic values (Figure 1.10). The 87Sr/86Sr

of three major fluvial sources of the Black Sea, measured for the Danube, and estimated for the

Don and Dnieper (Palmer and Edmond, 1989), have values lower than both, the oceanic ratio and

one existing measurement of modern Black Sea water (Cox and Faure, 1974). The Caspian Sea

has main fluvial discharge from Volga, Kura, and Ural. Although dominated by Volga river signal,

the Caspian Sea has a 87Sr/86Sr reflecting a mixture of all these fluvial sources (Clauer et al.,

2000). Given that the 87Sr/86Sr of a basin is simply a product of the input and mixing of different

water sources (Albarède and Michard, 1987; Ingram and Sloan, 1992; Reinhardt et al., 1998), the

variation in 87Sr/86Sr of the basin reflects the variation in its water sources. These changes can be

preserved in the shells of calcareous organisms living in the water.

Strontium is chemically similar to calcium and is therefore easily incorporated in the carbonate

crystal lattice. Unlike oxygen and hydrogen isotopes, the uptake of Sr by biogenic precipitates

occurs at geochemical equilibrium with the water, as such they preserve the 87Sr/86Sr of the basin

water unaltered by phase change, any local temperature variation or biological processes (Banner,

2004; Reinhardt et al., 1999). Consequently, the 87Sr/86Sr measured on fossil carbonate from two

(or more) sub-basins can be used to trace changes in input sources as the connectivity between

basins changes. At its simplest, the 87Sr/86Sr record of the basins will show similar values during

periods of connectivity, whereas the 87Sr/86Sr record of the two basins will diverge from each other

and adjust to their cumulative fluvial signal during periods of isolation. It is this direct response

to connectivity and isolation that makes Sr isotopes a powerful connectivity tool. This, however,

requires an independent age model for each basin to constrain the timing and duration of these

events.

1.5.3.3 Existing geochemical records of connectivity

The geochemical evidence of the connectivity between the Black Sea, the Caspian Sea and the

open ocean is limited. The only high-resolution and continuous record is from the Black Sea for

the last 30 ka (Bahr et al., 2008; Major et al., 2006). Very few data are available for strontium,

oxygen and hydrogen isotopes prior to the last glacial period. Where these recods are available,

they are fragmented, focus on very short time frames and are mostly from the Black Sea. Here,

I synthesise the available geochemical data that underpins the existing connectivity history of the

Black and Caspian seas since the Miocene.
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1.5.3.3.1 Connectivity record during the Miocene

Grothe (2016) produced an 87Sr/86Sr record for the Black Sea and the Caspian Sea between 6.2

- 5 Ma to investigate the connection between the Black Sea, Caspian Sea and the Mediterranean

prior to and during the Messinian Salinity Crisis (MSC; Figure 1.7D). Before 6.1 Ma, measured Sr

isotopic ratios from the Black Sea and the Caspian Sea are similar but are substantially lower than

Mediterranean Sea ratios which are close to or within error of coeval ocean water values (Figure

1.7, Flecker et al., 2015, and references therein). Similarity in the 87Sr/86Sr indicates the Black and

Caspian seas were a single basin prior to 6.1 Ma and their dissimilarity with the coeval ocean water

value suggests that Pontocaspian region was not connected to the Mediterranean Sea and the open

ocean (Grothe, 2016). One high 87Sr/86Sr data only from the Caspian Sea 6.1 Ma may indicates a

brief connection to the open ocean (Figure 1.7D). This geochemical evidence of marine influx is

supported by ostracod biostratigraphy (Krijgsman et al., 2010; Stoica et al., 2013). There are no
87Sr/86Sr data from the Black Sea at the time to ascertain whether the Caspian Sea’s connection to

the open ocean was via the Black Sea. The Black Sea connection to the Mediterranean at about

6.1 Ma, however, is supported by compound specific hydrogen isotopes measured in the aquatic

biomarkers (Vasiliev et al., 2015) collected from the Black Sea. The hydrogen isotope record

in the Black Sea decreases sharply and reaches the typical present-day ocean values at ∼6.1 Ma,

indicating an influx of marine water with lower hydrogen isotopic composition into the Black Sea

(Vasiliev et al., 2015).

The decreasing 87Sr/86Sr of the Mediterranean Sea (Figure 1.7D, Flecker et al., 2015; Roveri et al.,

2014) during the MSC indicate progressive disconnection from the open ocean. Based on the

concurrent increasing trend observed in the 87Sr/86Sr record of the Black Sea and the Caspian Sea,

Grothe (2016) suggests progressive connectivity between the Mediterranean and the combined

Black-Caspian Sea basin throughout the MSC. However, time equivalence of the MSC stage 2 and

3 is not available in the Black Sea due to hiatus in the key Black Sea section.

The 87Sr/86Sr data available during the Lago Mare period at the end of the MSC are only from

the Caspian Sea (Figure 1.7D, Grothe, 2016). The Caspian data show values similar to those

of the Mediterranean, which had brackish - freshwater salinities during this time (McCulloch

and De Deckker, 1989; Müller and Mueller, 1991). There is also evidence of faunal exchange

between the sub-basins of Paratethys and the Mediterranean (Cosentino et al., 2007; Londeix

et al., 2007; Rouchy et al., 2001; Stoica et al., 2016), therefore implying a connection between the
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Mediterranean, Black and Caspian seas during the Lago Mare. Finally at the onset of Pliocene, the

Mediterranean Sr isotopic values adjusted back to the oceanwater values indicating its reconnection

to the open ocean. The Black Sea value suggests that its connection to the Mediterranean Sea was

severed at approximately the same time (Figure 1.7D). No data are available for the Caspian Sea.

1.5.3.3.2 Connectivity record over the last 3 Ma

van Baak et al. (2019) generated a Caspian Sea 87Sr/86Sr record (Figure 1.7D) for the Pliocene -

Pleistocene boundary (3.2 - 2 Ma). There are no coeval data from the Black Sea for this period.

Based on the low values prior to 2.7 Ma, van Baak et al. (2019) suggested that the Caspian Sea

was an isolated basin dominated by local rivers. The rapid increase in Sr isotopic ratios at 2.7

Ma and subsequent stabilisation of Sr isotopic ratios that are consistent with LGM Black Sea has

been attributed to progressively connection between the Black Sea and the Caspian Sea during

this period with an additional source of radiogenic 87Sr/86Sr from the open ocean (van Baak et

al., 2019). Given that sediments of this age also contains cold water foraminifera, these authors

suggests that the ocean water derived from the Arctic via a marine connection with the Caspian

Sea, consistent with genetic studies of Caspian Seals and crustaceans (Palo and Väinölä, 2006).

The only long connectivity record in the region is a speleothem oxygen isotopic covering the last

700 ka (Badertscher et al., 2011). The speleothem was obtained from the Sofular Cave, located 10

km from the southern coast of the Black Sea (Figure 1.7C). Badertscher et al. (2011) correlated the

evolution of the δ18O of the Sofular Cave with the δ18O of the Black Sea and suggest that -8.5‰ is

the characteristic δ18O value for the Black Sea when it is connected to the Mediterranean Sea.

The Sofular Cave δ18O record shows twelve episodes when the values are close to or surpasses

δ18O of -8.5 ±1‰ (Figure 1.7C), interpreted as twelve separate connectivity episodes between

the Black Sea and the Mediterranean Sea (Badertscher et al., 2011). These authors also interpret

δ18O excursions towards isotopically depleted values of -15‰ or lower as reflecting inflow from the

Caspian Sea and identify six separate episodes of Caspian overspill into the Black Sea (Badertscher

et al., 2011).

A 87Sr/86Sr record from the Black Sea between 133.5 and 122.5 ka shows that the Black Sea

connection to the Mediterranean Sea during the Eemian was most likely at 128.1 ± 0.7 ka based on

the deviation of the Black Sea’s 87Sr/86Sr towards coeval oceanic value (Figure 1.7B, Wegwerth

et al., 2014). These authors suggest that the increased 87Sr/86Sr observed in the Black Sea during
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the 131.5–130.5 ka reflects an increased influx from the Amu Darya river during the deglaciation

entering the Caspian Sea and finally connecting the Black Sea with the Caspian Sea via Manych

depression. This interpretation assumes that the AmuDarya has a radiogenic 87Sr/86Sr as a result of

its source catchment in the Himalayas (Palmer and Edmond, 1989). However, there are no Caspian

Sea 87Sr/86Sr from this time period or 87Sr/86Sr data for the Amu Darya to test this hypothesis.

Currently, the Black Sea is connected to the Mediterranean Sea via the Marmara Sea and the

strontium isotopic ratio of the present-day Black Sea is 0.7093 (Cox and Faure, 1974), much higher

than the oceanic ratio (0.709175, McArthur et al., 2012). However, this value is based on only

one measurement. The strontium isotopic record for the last 30 ka shows that the Black Sea was

an isolated basin during the Last Glacial Maximum (Figure 1.7A, Major et al., 2006). This is

consistent with the oxygen isotopic record from the western Black Sea (Bahr et al., 2006, 2008;

Major et al., 2006) during the time. Increased 87Sr/86Sr along with the depleted (negative) δ18O

during the last termination (18 – 16 ka) has been suggested to result from increased freshwater input

into the Black Sea, either from the northern Black Sea rivers or Caspian Sea overspill caused by

high melt water delivered via the Volga or northern Black Sea rivers (Bahr et al., 2006, 2008; Major

et al., 2006). The final shift of the 87Sr/86Sr and δ18O in the Black Sea towards the present-day

values at 9.4 ka marks the most recent connection of the Black Sea to the open ocean. However,

there are studies conducted in the Black Sea that provide slightly different timings for the last

Black Sea-Mediterranean connection. For example, Ryan (1997) suggests ∼7.1 ka for Black Sea -

Mediterranean connection based on erosional surfaces in the Black Sea, Aksu et al. (2002) suggests

∼10.5 ka based on micropaleontology and stable isotope data from the Aegean Sea, Marmara Sea,

and south-western Black Sea, Bahr et al. (2006, 2008) suggests 8 – 9 ka based on stable isotope

and XRF data from the western Black Sea (Figure 1.7A) and Piper and Calvert (2011) suggests

∼9.3 ka connection based on elemental geochemistry. These disagreements between the studies

arise due to the use of different age models (Krijgsman et al., 2019, and references therein).

Although, there is a clear scientific interest in reconstructing the connectivity history of the Black

Sea and the Caspian Sea, the available geochemical records are fragmented and often contradictory

as a result of both, methods and age models. In addition, these record are usually only available for

one basin. The interpretation of these records is further hampered by the poor constraints on the

modern hydrologic and geochemical system. Very little is known regarding the spatial variability

of the modern water (for example there is only one 87Sr/86Sr for the modern Black Sea water)
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and there are no isotopic measurements of the key rivers (e.g. Don, Dnieper and Amu Darya).

Consequently, to understand the connectivity history in the region, better constraints on modern

water and rivers, complete record from both Black and Caspian seas with independent age model

and better quantification on the nature of the connection between the Black Sea, Caspian Sea and

the open ocean is required.

1.6 Research questions

There are two main aims of this thesis; 1) constraining the Sr isotopic characteristic of modern

inputs to the Black Sea and the Caspian Sea to test the existing assumptions and 2) reconstructing

the connectivity history of the Black and the Caspian Sea for the last 3 million years.

1.6.1 Constraining modern input sources of Sr in the Black and Caspian seas and

testing existing assumptions about Sr isotopes in marginal and freshwater

basins

Although there have been several previous studies that used 87Sr/86Sr on fossil ostracods as a

palaeoenvireonmental proxy and to reconstruct the connectivity history, the effectiveness of the

methodology depends on the basin water being homogeneous with respect to Sr isotopic ratio.

This is particularly important for marginal basin settings with significant continental run-off. At

present, the Black and Caspian seas have complex hydrodynamic settings (Section 1.4.1 and 1.4.2).

However, there are no empirical studies demonstrating homogeneous behaviour of Sr isotopes in

either of these basins or the reliability of ostracods for incorporating and preserving the primary

water signal in such settings. The first aim of this thesis is, therefore to test existing assumptions

about Sr isotopic ratio in the Black and Caspian seas by generating more Sr isotopic data for the

region. This allows me to examine the spatial distribution of Sr isotopic ratio in these basins as

well as their fluvial sources. More explicitly, this thesis will try to answer the following questions;

1. Is the strontium isotopic signal in the Black and Caspian seas spatially homogeneous?

2. Does the strontium isotopic signal in the Black and Caspian seas vary with water depth?

What influence does the density stratification have on Sr isotopic variability in the water

column?
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3. Are fossil ostracods a robust archive for preserving the primary 87Sr/86Sr of ambient water

in the Black and Caspian seas?

1.6.2 Reconstruction of the connectivity history between the Black Sea, Caspian

Sea and the open ocean for the last 3 Ma

Evidence for connectivity and isolation of the Black Sea, Caspian Sea and the open ocean are

fragmented, sparse and often contradictory (Section 1.5). The available palaeontological evidence

of the connectivity between the Black Sea and the Caspian Sea is typically low resolution and

provides no clear boundary between connection and isolation events (Section 1.5.1). Similarly, the

timings of the connection between the Caspian Sea and the Arctic Ocean, which resulted in the

presence of several Arctic sister species in the Caspian Sea is highly debated. Although Sr isotopic

data are a more direct means of reconstructing connectivity of basins like today’s Pontocaspian

system, there are no Sr isotopic data available for most of the Pleistocene (Figure 1.7), during which

there were large climatic variations associated with high amplitude glacial interglacial cycles and

the active uplift of the Caucasus Mountains. Without records that allows us to disentangle both

the drivers and timing of the connection and isolation events, it is not possible to determine the

rate of faunal evolutionary response (Section 1.5.2). This thesis will try to address the following

questions.

4. Does the geochemical system suggest a Caspian connection to the Arctic Ocean and if so,

when did this connection occur?

5. How did the Sr isotopic ratio evolve in the Black and Caspian seas over the last 3 million

years and what is its implication for the Quaternary connectivity history of the two basins to

each other and the open ocean?

6. What was the nature of connection (one way flow or two way exchange) between the Black

Sea, Caspian Sea and the open ocean during the Pleistocene?

7. Does the geochemical evidence of the connectivity and isolation between the Black Sea,

Caspian Sea and the open ocean match the faunal evidence?
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Figure 1.11: Map of the Black Sea and the Caspian Sea showing location of previously published Sr
isotopic ratio of water (coloured dots) and fossil carbonates (black diamonds). White dots (water) and
white diamonds (fossil ostracods) represent the sampling locations for this study. Bottom panel shows
the previously published Sr isotopic record for the open ocean, Mediterranean Sea, Black Sea and the
Caspian Sea over the last 7 Ma. Grey shaded area shows the time slices focused in this study. Colour
gradient at the top right hand side of the diagram indicates the range of 87Sr/86Sr measured to date.

1.7 Thesis outline

This thesis consists of eight chapters. The general background, thesis motivation and the research

questions are presented here as Chapter 1. Chapter 2 provides information regarding samples,

sampling locations, and the analytical method used during the project to produce Sr isotopic data.

Chapter 3 explores the assumption of basin homogeneity with respect to strontium isotopes in

highly stratified, marginal marine or isolated lacustrine systems. This chapter will include the Sr

isotopic analysis of the Black and Caspian seas and river water samples from across the region

(Figure 1.11). This chapter also explores the robustness of ostracods as palaeo archives of the
87Sr/86Sr by comparing 87Sr/86Sr measured in ostracods collected from modern sediment with the
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87Sr/86Sr of the bottom water at the same sites in both Black Sea and the Caspian Sea. The new
87Sr/86Sr measurements from the modern water is then incorporated in the numerical box model

to constrain the fluvial signal of the region.

Chapter 4 provides descriptions of the numerical model used in this study and of Sr source end

members in the region. This chapter also tests the validity of the model for the present-day

configuration. The model described in this chapter is then adapted in subsequent results chapters

to constrain the past hydrological budget of the Black Sea and the Caspian Sea and to explain the
87Sr/86Sr measured on fossil ostracods.

Chapter 5 presents 87Sr/86Sr records of the Caspian Sea during the early Pleistocene (Figure 1.11)

and discusses their implications for the connectivity between the Caspian Sea and the Arctic Ocean.

Chapter 6 presents the 87Sr/86Sr record of the Black Sea during the last 1.2 Ma (Figure 1.11) and

discusses the connectivity history between the Black Sea, the Mediterranean Sea, and the Caspian

Sea during this interval.

Chapter 7 presents additional new Sr isotopic record from the Caspian Sea between 2.2 Ma to

∼200 ka and together with the 87Sr/86Sr record from Chapter 6 discusses the Pleistocene evolution

of the Black and Caspian seas.

Chapter 8 provides a synthesis of the all 87Sr/86Sr records produced during this project (including

data used in Chapter 5, 6 and 7) together with the previously published geochemical, faunal,

phylogenetic data (Section 1.5) to reconstruct the connectivity history of the Pontocaspian region

over the last 3 Ma. This chapter also provides the key findings from this study and answers the

research questions posed in Section 1.6.1 and 1.6.2.
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Chapter 2

Methodology

This chapter describes the sampling locations, materials and methods used in this study. First I

focus on the sampling sites and methodology for collecting both present-day water samples and

modern and fossil ostracods. Detailed descriptions of the chemical procedures and measurement

techniques employed to obtain the results is described next. Finally, this chapter concludes with a

table that lists additional datasets used in the result chapters.

2.1 Sampling sites and sample collection

In order to constrain the 87Sr/86Sr of modern water and to test spatial variability (Section 1.6.1)

water samples from across the Black and Caspian seas region and within the basins were required

(Figure 1.11). Sampling locations were selected to cover a wide horizontal and vertical range

within the basin. This was however restricted by availability of offshore cruises as well as cruise

tracks. When possible, river water samples were collected at both, the mouth as well as upstream

of the river. Logistical difficulties prevented sampling full length of the rivers.

In order to reconstruct the connectivity history of the Black and the Caspian seas during the

Pleistocene (Section 1.6.2), well-dated fossil samples from both basins were required (Figure

1.11). It was not in the scope of this project to generate age models. Sedimentary sections/cores

from the region were therefore, only selected for sampling if an age model independent of faunal

dating method was available or would be generated during the course of the PRIDE project. Given

the complex connectivity history of the Black Sea and the Caspian Sea, a high resolution study is

required. However, the scope of this study was to generate longer time scale connectivity history
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and as such compromise was made regarding the resolution of the data. It is acknowledged that in

doing so, finer details of the Black Sea, Caspian Sea connectivity history will be missed.

2.1.1 Present-day water and modern sediment

2.1.1.1 Sampling locations

Black Sea river-water samples were collected from the Dnieper, Don, Rioni and other minor rivers

along the coast of Georgia (Figure 2.1, Table 2.1). Black Sea water samples were collected in the

eastern Black Sea along the coast of Georgia from the beach. Water samples were also collected

offshore along the coast of Romania and Bulgaria in the western Black Sea (Figure 2.1) during the

GeoEcoMar cruise MN167 on the Mare Nigrum in May 2017. Caspian river water samples were

collected from Kura and Volga (Figure 2.1). Offshore Caspian Sea water samples were collected

during a cruise off the Kazakhstan coast onboard the KAPE research vessel, Elen, in June 2017.

The Aral Sea water samples were collected by Dr. Georg Schettler, GFZ, Germany in 2009 (for

sampling method see Schettler et al., 2013).

Wherever possible, surface sediment samples were collected from the same Black and Caspian sea

locations as the water samples. These sediment samples were collected for modern ostracods.

2.1.1.2 Water samples

All river surface water samples were collected within a few metres of the riverbank. During

the Mare Nigrum cruise, Black Sea water samples were collected from the surface and, in some

cases, intermediate depths using CTD rosette. Bottom water was collected immediately above the

sediment surface using a multi corer (Mark II-400). In the Caspian Sea, surface water samples

and samples from ∼20 m depths were collected using a single Niskin bottle. Logistical difficulties

prevented from collecting water sample more than 20 m water depth. In situ temperature and

conductivity measurements were obtained when suitable meters were available. This was possible

for the offshore water samples collected from research vessels. However, hand held probes were

not available during most of the river water sampling.

Prior to the fieldwork, all equipment was acid cleaned and wrapped securely with parafilm and/or

cling film for transportation to the field site. At the sampling site, beakers used for sample collection
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Figure 2.1: Location map of the sampling sites in the Black Sea and the Caspian Sea with major
river represented by blue lines. Yellow dots show offshore locations for water and modern sediment
samples (Table 2.1), yellow boxes show locations where only water samples were collected and red
diamonds show section and core locations studied in this project (Table 2.2). Black lines define the
country boundaries.

were rinsed multiple times with the sample water prior to sample collection. Syringes and filter

tips were also rinsed three times with pure deionized water (>18.2 MΩ) and once with the sample

water, prior to collection. For water sample filtration, 0.45 µm pore size filters were used.

At each location, 50 ml of water was filtered through the 0.45 µm pore size sterile MCE (mixed

cellulose ester) filter and was collected in an acid-cleaned HDPE centrifuge tube. The samples

were acidified with a few drops of high purity nitric acid, gently shaken to homogenize and sealed

with parafilm before transportation. Once in the laboratory, the water samples were stored at 4◦C

until further analysis.

2.1.1.3 Modern sediment samples

A Van Veen Grab Sampler was used to collect sediment from offshore Black Sea and the Caspian

Sea water sampling sites. Once onboard the research vessel, about 50 g of sediment was taken from

the top 2 cm at each location and collected in pre-labelled zip-lock plastic bags for transportation.

Sediment samples were stored at 4◦C until further analysis.
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Table 2.1: Latitude and Longitude of all the sampling sites for water and modern ostracod samples
shown in Figure 2.1. Location, water depths, temperature and salinity for each samples are included in
Appendix G.

Sample
type

Location Country Latitude
[N]

Longitude
[E]

No. of
samples
collected

No. of
samples
analyzed

Water Black Sea Along the coast of Romania & Bulgaria 66 30

Modern
ostracod

Black Sea Along the coast of Romania & Bulgaria 24 10 (6 lo-
cations)

Water Black Sea Along the coast of Georgia 8 8

Water Caspian Sea Along the coast of Kazakhstan 43 12

Modern
ostracod

Caspian Sea Along the coast of Kazakhstan 26 12 (6 lo-
cations)

Water Caspian Sea Along Absheron peninsula in Azerbai-
jan

3 3

Water Azov Sea Russia 47.08833 39.24778 3 1

Water Aral Sea 45.08334 58.33631 20 5

Water Dnieper River Ukraine 46.53733 32.53658 4 3

Water Don River Russia 47.11027 39.31222 4 2

Water Chorokhi River Georgia 41.60472 41.57611 2 2

Water Natanebi River Georgia 41.91167 41.77833 2 2

Water Rioni River Georgia 42.1975 41.6622 1 1

Water Enguri River Georgia 42.39319 41.56089 1 1

Water Pichori River Georgia 42.13711 41.75948 1 1

Water Palliastomi Lake Georgia 42.0929 41.70799 2 2

Water Supsa River Georgia 42.02139 41.75333 1 0

Water Kura River Azerbaijan 40.1203 48.0853 2 1

Water Volga River Russia 45.59962 47.90989 9 3

2.1.2 Fossil ostracods

In order to reconstruct the connectivity history of the Black Sea and the Caspian Sea over the last

3 Ma, sediment samples were obtained from four different locations in the Black Sea; two sections

in Guria, Georgia and two DSDP cores (Figure 2.1). For the Caspian Sea, sediment samples were

collected from the Goychay and Hajigabul sections in Azerbaijan. Sampling location are provided
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in Figure 2.1 and Table 2.2.

Table 2.2: Latitude and Longitude of all the geological sections from which fossil ostracods were
picked. Location are shown in Figure 2.1.

Location Section Latitude
[N]

Longitude
[E]

No. of
samples col-
lected

No. of
samples an-
alyzed

Guria, Georgia Khaverbeti 41.95361 41.91417 37 16

Guria, Georgia Tsikhisperdi 41.960 41.94083 12 8

Black Sea DSDP 379 43.00483 36.01133 93 72

Black Sea DSDP 380 42.0990 29.61367 17 3

Taman Zhelezniy Rog 45.11513 36.76076 12 12

Azerbaijan Goychay 40.69628 47.76239 107 78

Azerbaijan Hajigabul 40.12703 48.87269 200 23

2.1.2.1 Guria (Khaverbeti and Tsikhisperdi sections), Black Sea

Two lithological sections in the Guria region, which is located in the western part of Georgia within

the Rioni basin, were studied in this project; Khaverbeti section and Tsikhisperdi section (Figure

2.1, Table 2.2). The Khaverbeti section spans about 166 m and is divided into three main parts

(Figure 2.2, Kirscher et al., 2017). The bottom of the section consists of fine grained sandstones

with calcareous fossils, the middle part consists of marly intervals with rare fine grained sandstone

levels and is overlaid by calcarenitic sandstones with abundant microfauna at the top (Figure 2.2).

The Tsikhisperdi section, which lies stratigraphically below Khaverbeti section, is about 10 m thick

and is a succession of calcarenites and mudstones with abundant fauna (Figure 2.2).

Sampling fieldwork was conducted in October 2016 but showed that parts of the Khaverbeti

section were difficult to access as they were covered with heavy vegetation of Gurian lowlands. A

fragmented sedimentary log was constructed and samples were selected on the basis of fine grained

lithology and/or presence ofmacro fauna (e.g. molluscs and gastropods). For the correct correlation

with existing log, samples were also taken close to previously sampled sites for palaeomagnetic

measurements (Kirscher et al., 2017). A total of 49 sediment samples were collected in Guria

(Khaverbeti and Tsikhisperdi sections) and of these, 24 samples were analysed for Sr isotopic ratio

(Figure 2.2).
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Figure 2.2: Correlation of sedimentary log generated in this study with Kirscher et al. (2017) for the
Guria sections. Sampled stratigraphic levels are indicated by dots (red: analysed for 87Sr/86Sr and
black: not analysed). B: Brunhes, J: Jaramillo, O: Olduvai.

The palaeomagnetic age model for the Guria section was produced by Kirscher et al., 2017.

The sections were interpreted as indicating Pleistocene age that includes the lower most part of

the Brunhes chron as well as the Matuyama chron including the Jaramillo and Olduvai normal
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polarity subchrons. Ages of the samples picked for ostracods were calculated assuming constant

sedimentation rate between chron boundaries. The upper boundary of the Olduvai was not reached

in the Tsikhisperdi section and as such age estimation for individual samples based on sedimentation

rate was not possible for this section. Samples taken from the stratigraphic level that correlates

with the base of the Olduvai subchron, allows for tentative age estimation of around 2 Ma for

samples collected from this section.

The Pleistocene age interpretation of the Guria section based on the palaeomagnetic data has been

recently cast into doubt by unpublished data based on ostracod assemblages, which suggests that

the this sedimentary succession may be as old as the Late Miocene age (see Chapter 8 for details).

2.1.2.2 DSDP 379A and 380/380A, Black Sea

Deep Sea Drilling Project (DSDP) samples used in this study are from two cores (379A and

380/380A) collected during DSDP Leg42B in 1975. DSDP site 379A was drilled on the abyssal

plain of the central Black Sea, at a water depth 2165 m (Figure 2.1, Table 2.2). The drilling

recovered 624.5 m of sediment mainly composed of dark greenish-grey to dark grey terrigenous

mud with intercalations of thin sandy silt to sand laminae (Ross et al., 1978a). The core is divided

in nine units (Figure 2.3). Subunit 1 (0 - 0.3 m) consists of nannofossil ooze principally composed

of the coccolith Emiliania huxleyi. Unit 1 was dated as Holocene on the basis of 14C dating and

presence of coccolith ooze (Ross, 1978). Unit 2 (0.3 – 0.7 m) is a sapropel that consists of ∼40 -

50%organicmatter by dryweight with occasional thin nannofossil beds and fine layers of aragonite.

Unit 3 (0.7 – 65m) is dark greenish grey detrital silty clay to clayey silt (Figure 2.3). Streaks and

patches of silt and fine sand and coarser sediment layers with graded bedding within unit 3 suggests

occurrence of turbidity current deposits. Unit 4 (65 – 100 m) consists of a dark greenish grey

to medium grey mud characterized by the first appearance of marine diatoms, foraminifera, and

nannofossils after the Holocene deposits. This unit is linked to MIS 5 (Ross, 1978; Schrader,

1978). A thin layer of fresh-water diatoms during this marine period indicates a brief freshwater

interval. Unit 5 consists of a 0.3 m of intensely compact sapropel layer. Unit 6 (100 - 225 m) is

a dark greenish-gray terrigenous mud that resembles unit 3 with high content of clay, quartz, and

detrital carbonates (Ross et al., 1978a). Diatom assemblages within this subunit suggest that the

sediment was deposited in a fresh-water environment with one brief marine invasion (Schrader,

1978). Cold climate was indicated by pollen analyses, and the marine invasion is interpreted as a
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short interstadial period (Ross, 1978). Unit 7 (225 – 273 m) is a diatomaceous nannofossil-rich

terrigenous mud deposited under brackish marine condition in a warm climate indicated by pollen

and has been linked to MIS 11 (Ross, 1978). Unit 8 (275 -553 m) and unit 9 (453 – 625.6 m)

are terrigeneous mud with common occurrences of turbidities and intercalations of carbonate rich

layers, respectively (Ross et al., 1978a). The palaeomagnetic measurement on core 379A together

with the biostratigraphic tie points for MIS 5 and MIS 11 showed that the entire core spans around

1.2 Ma (Figure 2.3, van Baak et al., 2016a).

Figure 2.3: Age-depth correlation for DSDP core 379A with lithological units (Ross et al., 1978a),
diatom-based sea-surface salinity (Schrader, 1978). Stacked δ18O record of benthic foraminifera from
Lisiecki and Raymo (2005). Red dots indicate the sediment sampling depth. Figure modified after van
Baak et al., 2016a.

DSDP site 380/380A was recovered from near the Bosporus (Figure 2.1) at a water depth of 2107

m and maximum drilling penetration depth of 1073.5 mbsf (Figure 2.4). DSDP site 380/380A is

the composite of two holes at the same location. Hole 380, drilled to 370.5 mbsf, was abandoned
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because of an injury onboard (Ross et al., 1978b) and Hole 380A was drilled 100 ft south and

100 ft east of the hole 380. Hole 380A recovered sediments from 332.5 m down to 1073.5 m

(Ross et al., 1978b). Five main lithological units are distinguished for the core 380/380A (Figure

2.4). Unit 1 (0 - 332.5 m) consists of terrigeneous mud correlated to Hole 379A (Ross et al.,

1978b). Unit 2 (332.5 - 446.5 m) consists of intercalations of lacustrine chalk and aragonitic muds

indicating isolated basin conditions and intervals of marine connection, respectively (Hsu et al.,

1978). Unit 3 (446.5 - 644.5 m) represents freshwater environment indicated by lacustrine chalk

and mud (Ross et al., 1978b). Unit 4 (644.6 - 969 m) represents sediments older than those found

in the Hole 379A (Ross et al., 1978b) and consist of a wide variety of sediment types composed of

sideritic and diatomaceous sediments, terrigeneous mud, calcite and diatoms. Coarse clastics and

stromatolitic dolomite found at the bottom of the Unit 4 was originally taken as proof of the Black

Sea dessication during the Messinian Salinity Crisis (MSC, Hsu and Giovanoli, 1979). However,

based on dinoflagellate cysts Grothe et al. (2014) recently suggested older than the MSC age for

this deposit. Unit 5 (969 - 1073.5 m) is mostly black shale with tuffaceous and zeolitic siltstones

and sandstones (Ross et al., 1978b). Seismic studies in the southwestern part of the Black Sea

indicate two large mass transport deposits (Tari et al., 2015), which can be correlated to 114 - 260

mbsf and 500 - 640 mbsf (or 560 - 860 mbsf) in Hole 380A (Tari et al., 2015; van Baak et al.,

2016a).

The palaeomagnetic age for core 380/380A was generated by van Baak et al. (2016a) showed that

the core spans the last 8 Ma of Black Sea sediment history. However, because of the mass transport

complex in this core (Figure 2.4), the correlation to the Geomagnetic Polarity Time Scale (GPTS)

is difficult and multiple age interpretations are possible. 40Ar/ 39Ar dating on an interbedded

volcanic ash-layer at 706 m, however provides an absolute tie-point at 4.36 ± 0.19 Ma (van Baak

et al., 2016a).

These DSDP cores are stored in the Bremen Core Repository. Total of 93 samples (40cc each)

from DSDP core 379A and 17 samples from the 380A were requested from the Bremen Core

Repository. Sample selection was based on fine-grained lithology, presence of ostracods, and high

calcite content. Core 379A was prioritised in this study because of its continuous succession of

the Pleistocene sediment and a more robust age model. Of the requested samples, 72 samples from

core 379 and 3 samples from 380/380Awere selected for Sr isotopic analysis. The age of individual

samples are calculated assuming a constant sedimentation rate between chron boundaries.
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Figure 2.4: Age-depth correlation for DSDP core 380/380A with lithological units (Ross et al., 1978b)
and diatom based sea surface salinities (Schrader, 1978). Two mass transport deposits (MTDs) within
the drilled intervals (Tari et al., 2015) are indicated by orange bars. Black dots indicate sampling depth
and red dots indicate samples that were analysed for Sr isotopic ratio. Figure modified after de Leeuw
et al. (2018) and van Baak et al. (2016a).

2.1.2.3 Zheleznyi Rog section, Black Sea

The Zheleznyi Rog section, located in the Taman Peninsula, Russia, exposes about 500 m Neogene

sedimentary succession (Figure 2.1). The section shows a clear cyclicity of dark grey clays

alternating with light-gray marls with thin intercalations of diatomitic levels (Figure 2.5, Vasiliev

et al., 2011). Magnetostratigraphic age constraints for the entire section was provided by Vasiliev

et al., 2011 and show Late Miocene age. The section has been previously studied for Sr isotopic

ratio by Grothe (2016). Even though this section is older than main temporal focus of this

study, samples from this section were readily available for early laboratory training on Sr isotopic

analysis. Samples used in this study were collected by Elisabeth L. Jorissen, Utrecht University

for sedimentological study of the Late Miocene Black Sea as part of the PRIDE project. Twelve
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Figure 2.5: Detailed sedimentary log for the Zheleznyi Rog section between stratigraphic level 124 and
137 m and its correlation with longer sedimentary log by Vasiliev et al. (2011). Sampled stratigraphic
levels are indicated by dots dashes.
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samples between stratigraphic level 124 and 137 m were selected for Sr isotopic analysis (Figure

2.5).

2.1.2.4 Goychay section, Caspian Sea

The Goychay section is located to the west of Baku, Azerbaijan within Goychay village (Figure

2.1, Table 2.2). The 2200 m section is exposed along the Göy River. The section is characterized

by three lithological units (Figure 2.6, Forte et al., 2013; Lazarev et al., 2019). Unit 1 (0 m –

675 m) consists of grey clay alternating with rare centimetre-scale layers of brownish silts and

coarse sands (Forte et al., 2013; Lazarev et al., 2019). Unit 2 (675 m - 1050 m) is composed of

brownish-grey muds recurrently alternating with yellowish-brown silts and conglomeratic sands

with coarser and thicker sand beds towards the top (Forte et al., 2013; Lazarev et al., 2019). Unit

3 (1050 m - 2200 m) is dominated by coarse conglomerates but with occasional interbeds of both

sand and finer grained intervals (Forte et al., 2013; Lazarev et al., 2019). The palaeomagnetic age

model of the section constrained by micro (ostracods and foraminifera) and macro (mollusc) fauna

has been produced by S. Lazarev, Utrecht University as part of his PRIDE PhD research project

(Lazarev et al., 2019). The section spans 2.58 Ma to ∼1.2 Ma (Figure 2.6).

Sampling fieldwork was conducted in May 2016. Few additional sediment samples was collected

by S. Lazarev and E. L. Jorissen during second fieldwork in April 2017, in which I did not

participate. Samples for ostracods were selected based on the fine-grained lithology and presence

of macrofauna and were collected at the same stratigraphic level as palaeomagnetic drill cores.

In total, 107 sediment samples were collected from the section, among which, 78 samples were

analysed Sr isotopic ratio (Figure 2.6).

2.1.2.5 Hajigabul section, Caspian Sea

The Hajigabul section is located in the north-eastern part of the Kura Basin in the Hajigabul

district, Azerbaijan, and is ∼113 km southeast of the Goychay section (Figure 2.1, Table 2.2).

The section crops out along the Hajigabul anticline, also known as the Hajigabul Mountain. The

section comprises of 2035 m of stratigraphic succession and is divided into four main sedimentary

units (Figure 2.7, Lazarev et al., 2019). Unit 1 (0 m - 205 m) is mostly composed of brownish

fine to coarse sands with alternating yellowish-brown and reddish clays and silts (Lazarev et al.,
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Figure 2.6: Age-depth correlation for the Goychay section with sampled stratigraphic levels indicated
by red dots. Modified after Lazarev et al. (2019).

2019). Unit 2 (205 m – 457 m) is composed of dark grey mud with millimetre-scale horizontal

laminations, made of brownish-grey mud and silts (Lazarev et al., 2019). Unit 3 (457 m - 1614

m) is composed of alternating dark-grey mud and fine to coarse-grained brownish sands. Top

part of the unit 3 contains abundant molluscs (Lazarev et al., 2019). Unit 4 (1614 m- 2050 m)

consists of yellowish-grey clay and silt. The palaeomagnetic age model of the section, constrained

by biostratigraphy has been produced by Lazarev et al. (2019) and show that the section contains

sediments deposited between 2.58 Ma and ∼300 ka (Figure 2.7).

Sediment samples for ostracods from the Hajigabul section were collected by S. Lazarev and

E. L. Jorissen as part of the sedimentological study, which is now in progress as part of the

PRIDE. Samples selection prioritised fine grained lithology and samples were collected at the

same stratigraphic level as palaeomagnetic drill cores (Lazarev et al., 2019). In total, 200 samples

were collected from the Hajigabul section, among which 23 samples were analysed for Sr isotopic

ratio.
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Figure 2.7: Age-depth correlation for the Hajigabul section with sampled stratigraphic levels indicated
by red dots. Modified after Lazarev et al. (2019).

2.2 Sample preparation and analyses

All reagents used in the following procedures, except methanol, were either ultraclean quality

(RomiL SpS) or produced in-house by sub-boiling distillation in a Savillex PFA jar from analytical

grade. Methanol was analytical grade. MilliQ deionized water was used throughout (>18.2 2

MΩ). Hotplates used for drying samples were situated within separate chambers and supplied with

filtered air to minimize contamination; no other materials or samples were allowed in the chamber

during drying periods.

2.2.1 Water samples

An aliquot of 3 ml from each water sample was transferred into an acid cleaned Teflon beaker

and dried down at 120◦C. Once dried, a few drops of concentrated nitric acid was added to the



2.2. Sample preparation and analyses 45

sample to remove any organics and dried again on the hotplate. About 500 µl of 3M HNO3 was

added to the samples and refluxed overnight prior to introducing them to chromatographic columns

composed of Eichrom Technologies Sr Resin.

2.2.2 Ostracod samples (modern and fossil)

Sediment samples collected from the sections or DSDP cores were dried at 50◦C for about 24 –

48 hours to remove interstitial water. This ensured easier washing and sieving. Modern surface

sediments were washed without drying. All sediment samples were washed through a 63 µm sieve

and the > 63 µm fraction were dried at 50◦C. Prior to picking, samples were dry sieved again to

retain the >150 µm fraction and ostracods were hand-picked under a light microscope using a fine

paintbrush.

Whenever possible, at least 5 ostracod valves were collected in acid cleaned 2 ml pre-labelled

centrifuge tubes. To minimize contamination and the effectiveness of the rigorous cleaning

procedure, valves without ornamentation were preferentially selected for the analysis. Ostracod

valve were rinsed three times using deionized water and subjected to 3 - 5 seconds in an ultrasonic

bath after every rinse to remove any loose clay particles. Samples were then cleaned twice with

methanol. If the valves were still intact, samples were subjected to ultrasonic bath again for

5 seconds between the two methanol rinses. The samples were then rinsed three times with

deionized water to remove any traces of methanol. At this stage, samples were checked under

the light microscope to see if there was any visible contamination. In presence of contamination,

samples were washed again with deionized water until clean.

After cleaning, 250 µl of deionized water was added the centrifuge tube and topped up with 50

µl of 0.5M of HNO3. The samples were ultrasonicated for 3 minutes. At this stage, if the valves

were not dissolved completely, 50 µl of 0.5M of HNO3 was added and ultrasonicated for another 3

minutes. Once dissolved samples were centrifuged at 12,000 RPM for 2 minutes. The solution was

then carefully pipetted out into an acid cleaned pre-labelled Savillex PFA beaker and dried at 120◦C

on a hot plate. Once dried, a few drops of concentrated HNO3 was added to the sample and dried

again at 120◦C. Samples were refluxed overnight with 520 µl of 3M HNO3. A 20 µl aliquot was

separated for elemental analysis whereas, remaining 500 µl was introduced to chromatographic
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columns composed of Eichrom Sr Resin for Sr separation. A flowchart illustrating the cleaning

procedure and chemistry prior to Sr separation is shown in Figure 2.8.

Figure 2.8: Flowchart of chemical procedure prior to Sr chromatographic extraction for water and
ostracod samples.

2.2.3 Column chemistry and Sr isotopic measurements

After washing and pre-conditioning 100 µl of the Sr resin in heat-shrinkable FEP columns, samples

were added to the resin bed. Resin was then washed four times with 500 µl of 3M HNO3. Finally
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the Sr fraction was extracted using 1.5 ml of deionized water and collected in a Savillex PFA beaker

and dried at 120◦C. Once dried, samples were refluxed with 2 drops of concentrated HNO3 until

ready for measurement.

Prior to the measurement, 30 µl of 0.33% H3PO4 was added to the samples and dried. Samples

were re-dissolved in 1 µl of 10% HNO3 and loaded onto a single rhenium filament with tantalum

chloride as an activator (Birck, 1986). The measurement was carried out using a Thermo-Finnegan

Triton thermal ionization mass spectrometer (TIMS). Sr isotopic measurements for the Zheleznyi

Rog samples were carried out in the isotope laboratory of Vrije University, Amsterdam. All other

sample measurements were carried out in the Bristol Isotope Group facilities at the University of

Bristol.

The mass spectrometer was operated in multi-dynamic mode and an 88Sr beam intensity is main-

tained between 5 and 8 V. 87Sr/86Sr ratio was corrected for mass fractionation to 86Sr/88Sr = 0.1194

using the exponential law (Nier, 1938). The 87Sr/86Sr value for each run was collected in 20 blocks

of 10 ratios. The internal precision within a run calculated using 2 standard error of the 200 mea-

surements is ∼4 - 12 ppm (Figure 2.9). External precision was calculated by repeated measurement

of NIST SRM 987 (strontium carbonate) and produces 87Sr/86Sr of 0.710247 ± 0.0000092 (2SD, n

= 67) during the course of the analysis. This is within error of the recommended value of 0.710248

(Thirlwall, 1991). Chemistry blank is negligible based on replicate measurement of standard NBS

987 with each batch of column chromatography (0.710247 ± 0.0000078, n = 36; Figure 2.10).

Sample reproducibility was examined by running duplicates on a few randomly selected samples

and showed 87Sr/86Sr values within error of each other for each sample (for details see data Tables

in Appendix B, C, and D).

2.2.4 Trace elements

Of 20 µl dissolved sample separated for trace element analysis (Sr, Ca, Mg and Mn), 5 µl aliquot

was taken from each sample and diluted to 2ml using 2% HNO3. The trace elemental analysis

was carried out on a Thermo Finnigan Element 2 high resolution sector-field inductively-coupled

plasma mass spectrometer (SF-ICP-MS).

Prior to analysis, the instrument was tuned across the elemental mass range in order to get the best

sensitivity using a 1 ppbmulti-element tuning solutionmade in-house from single element standard
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Figure 2.9: 87Sr/86Sr for all NIST SRM 987 standard runs during the course of this study (Feb 2016 -
Mar 2018). The error bars show 2 standard errors. Blue solid line corresponds to the literature value
of 0.71248 (Thirlwall, 1991). Black solid line shows average (0.710247) and dashed line shows the 2
standard deviation of 9.17x10−6 over 67 runs.

Figure 2.10: 87Sr/86Sr for all NIST SRM 987 standards that have gone through the column chromatog-
raphy during the course of this study (Feb 2016 - Mar 2018). The error bars show 2 standard errors.
Blue solid line corresponds to the literature value of 0.71248 (Thirlwall, 1991). Black solid line shows
average (0.710247) and dashed line shows the 2 standard deviation of 7.83x10−6 over 36 runs.

solutions. The machine is tuned on 7Li, 115In, 238U in low-resolution mode and 23Na, 39K, 56Fe in

medium resolution mode. Oxide formation was minimized by monitoring the 238U16O+/238U+ to

be less than 15%.

The intensity of the sample signal was blank corrected and converted into a concentration using a
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calibration curve obtained from a standard solution at five known concentration (0.5 ppb, 1 ppb,

50 ppb, 100 ppb and 500 ppb). 43Ca and 88Sr were measured in low-resolution mode, whereas
24Mg and 55Mn were measured in medium resolution mode. Each sample was measured for 20

runs with 1 (12s) pass using standard sample bracketing technique.

2.3 Micropalaeontology

Semi-quantitative micropalaeontology analysis on fossil ostracods and foraminifera was carried out

for the Goychay, Hajigabul and Guria sections by Prof. Marius Stoica and Lea Rausch, University

of Bucharest using standard micropalaeontological methods outlined in Stoica et al. (2013). 46

samples covering the 77.5 m - 1216.5 m stratigraphic intervals from the Goychay section, and

57 samples covering the 110 m - 1980 m stratigraphic interval from the Hajigabul section were

analysed. Similarly, 10 micropalaeontological samples covering the 0.25 m - 7.15 m stratigraphic

interval from the Tsikhisperdi section, and 37 samples from the Khvarbati section covering the

0.23 m - 163.5 m stratigraphic interval were analysed.

About 300 – 400 g from each sediment sample was dried to remove interstitial water. Once dried

samples were washed and sieved through 150 µm to retain the larger fraction. The dried residue

was handpicked using a ZEISS - GSZ light microscope. The material is housed in the Faculty of

Geology and Geophysics, Department of Geology at Bucharest University (Romania).

The ostracod taxonomic concept is mainly based on previous work by Hartmann (1966), Moore

(1961), and Morkoven (1962). Further information on ostracod taxonomy was provided by

Agalarova (1967), Agalarova et al. (1961), Jiříček (1985), Krstić (1973, 1985, 1990), Livental

(1929), Olteanu (1999a), and Yassini (1986) and the suprageneric classification was followed

using Horne et al. (2002) and Meisch (2000). Based on the taxonomic outcome from the ge-

ological sections, ostracod species were correlated to specific ecological requirements with the

goal of providing information on the palaeoenvironmental setting. The ecological preference of

individual species was obtained by comparing fossil ostracod communities with environmental

requirements of living species that closely resemble them. When no living analogues are present,

the environmental preference of the species can be inferred in several ways. The most traditional

concept, “taxonomic uniformitarianism” assumes that a fossil has had a similar ecological strategy

to its closest living relatives (Birks, 2008). Comparable morphological features of extant species
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imply similar functions and associated behaviours (Boucot, 2013). In this thesis, specific ecolog-

ical preference (in particular, salinity) of individual species was obtained following Neale (1988)

and Carbonel et al. (1988), who documents the environmental requirements of living non-marine

ostracod species. However, it should be noted that these salinity estimates rely on the untestable

assumption that the extinct fossil fauna and their nearest living relatives share the same environ-

mental preferences. In addition, these salinity preferences are 1) approximate at best, given the

transitional nature of the fauna, which survive between different salinity zones, 2) holistic because

of the salinity variation in diurnal, seasonal, and annual scale within the water column and 3) may

not have linear relationship with ostracod biodiversity as the abundance of species also depend

on other environmental factors like oxygen content and availability of nutrients in the water. In

order to classify the water salinity, salinity ranges according to the Venezian salinity classification

(1958) rather than specific values for ostracod assemblages are used in this thesis.

2.4 Dinoflagellate cysts

Dinoflagellate cyst (Dinocyst) assemblages were used to constrain the palaeoenvironment and

salinity conditions of the DSDP core 379A. Analysis was carried out by Tom Hoyle, Utrecht

University. In total, 32 samples between 45.54 and 614.14 mbsf were processed using cold HCl

(30%) to remove carbonates and cold HF (40%) to dissolve silicates. Samples were subjected to

an ultrasonic bath for five minutes and sieved through 125 µm and then through 10 µm mesh to

retain the fraction between 10 - 125 µm. Residues were mounted on slides using glycerine jelly

and sealed with lacquer. Counting was carried out at magnifications of x400 and x1000 using a

binocular transmitted-light microscope.

Dinocyst identifications were made using reference texts (Marret et al., 2004; Mudie et al., 2001,

2004, 2017; Rochon et al., 1999, 2002; Shumilovskikh et al., 2013; Soliman and Riding, 2017;

Sütő-Szentai, 2010; Wall and Dale, 1973; Wall et al., 1973; Zonneveld et al., 2013). Taxa that fell

along morphological gradients were grouped according to the dinocyst variability matrix of Hoyle

et al. (2019). A known number of Lycopodium clavatum spores were added to each sample prior

to processing in order to monitor concentrations.

Palynological data were processed using Psimpoll 4.27 (Bennett, 2008). Dinocyst data are repre-

sented as a percentage of the dinocyst sum, which includes all identified dinocysts (possessing an



2.5. Diagenesis of biogenic carbonate 51

archeopyle and cingulum) but excludes acritarchs, foraminiferal test linings, unidentified cysts and

any other algal or aquatic taxa.

2.5 Diagenesis of biogenic carbonate

The use of biogenic carbonates for palaeoenvironmental and palaeoclimatic interpretation based on

the geochemistry of their shell is only possible if the primary signal sought has not been modified

by diagenesis. The problems that arise from diagenetic alteration of foraminiferal calcite have been

elegantly demonstrated by Pearson et al. (2001) in his exploration of the "cool tropic paradox"

where the sea floor recrystallization of planktonic foraminifera modified the measured δ18O and

led to the interpretation of much reduced sea surface temperature during the Late Cretaceous and

Eocene. Diagenetic alteration of calcite shells can occur due to dissolution, overgrowth, infilling

or recrystallization and can happen both, as the shell settles through the water column from its

life position to the sea floor or at the burial site (Hemleben et al., 1977, 2012). Where these

alterations take place in a different environment, usually with a different geochemical signal from

where the organism originally calcified its shell, a secondary geochemical signal is incorporated.

The secondary signal can alter or override the primary geochemical signal of the water that

had been originally incorporated into the biogenic carbonate (e.g. Bennett et al., 2011; Elorza

and Garcıa-Garmilla, 1996; Keatings et al., 2002; Killingley, 1983). Stable oxygen isotopes

(δ18O ) are particularly vulnerable to this form of diagenesis and its ramification for incorrect

palaeoenvironmental reconstruction is well known (e.g. Banner and Kaufman, 1994; Pearson et

al., 2001; Schrag et al., 1995). Comparatively, the impact of diagenesis on the Sr isotopic ratio of

ostracod valves is less problematic for a number of reasons outlined below.

The non equilibrium fractionation of these isotopes during foraminifera test formation means that

any inorganic precipitation will have a different δ18O even if the diagenesis occurs in the same

environment . Similarly, preferential release of lighter isotopes during shell dissolutionwill alter the

primary oxygen isotopic signature preserved in calcite shells. By contrast, there is no preferential

isotopic selection during incorporation or release during dissolution for Sr isotopes (Reinhardt et

al., 1999). Ostracods are bottom dwellers and calcify their valve within few hours. As such, there

is no immediate change of environment associated with death, and therefore, no change in valve

chemistry even if the biogenic carbonate is modified (Turpen and Angell, 1971). However, once
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the moulted ostracod valves are buried in the sediment, the biogenic calcite may undergo partial

dissolution and recrystallization or crystallization of inorganic carbonate may adhere on the valve

(Bennett et al., 2011). These processes may affect the chemical composition of the valve as this

carbonate will contain a Sr isotopic ratio of the interstitial water, which may differ from the water in

which the ostracod dwelt. If the process of (re)crystallization occurs at shallow burial depths, then

the diagenetic Sr isotopic ratio is likely to be similar to the bottom water signal incorporated into

the original biogenic ratio because pore water at shallow sediment depth is likely to have similar

chemical composition as the bottom water where ostracods dwell (Elderfield and Gieskes, 1982).

Bennett et al. (2011) showed that the presence of neomophic calcite, an indicator of shallow burial

depth recrystallisation, appears not to significantly alter even the primary oxygen isotopic signal

of carboniferous ostracods.

Figure 2.11: Images of ostracods taken under the light microscope. Top panel shows the images of
ostracods that showed signs of secondary precipitation. Bottom panel shows images of ostracods that
were selected for Sr analysis. The scale bar represents 100 µm.

Potentiallymore problematic is the adsorption of non carbonateminerals on the valve surface, which

can also change the strontium isotopic signal of the ostracod valve analysed. Clay minerals, in

particular, are problematic as they are more adhesive than sand and are typical for the environments

that ostracods inhabit. Clay minerals tend to have high radiogenic strontium (Dasch, 1969),

typically substantially higher than the ocean water values (McArthur et al., 2012). Therefore, to

obtain a reliable strontium isotopic signal from ostracod valves, diagenetically unaltered ostracods

should be selected and careful pre-treatment should be carried out to remove any contaminant

material from the surface while leaving the composition of the ostracod valve calcite unaltered (see

Section 2.2.2).

Evaluation of the suitability of ostracod valves for isotopic analysis can be done by physically

assessing the ostracod valve under light microscope. This allows altered specimens to be identified
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and the degree of diagenesis can then be evaluated using scanning electron microscope (Bennett

et al., 2011; Keatings et al., 2002; Mischke et al., 2008).

In this study preliminary assessment of the valve for any secondary precipitation or adherent miner-

als was carried out under a light microscope. Only clean, transparent or translucent valves (Figure

2.11 bottom panel) were picked for isotopic analysis. Valves that appear opaque and or coloured

under a light microscope are likely to indicate secondary precipitation (Figure 2.11 top panel),

since living ostracods have translucent valves. SEM images provide a more detailed assessment of

both, the preservation state of the valve and the effectiveness of the cleaning procedure (Section

2.2.2).

Figure 2.12: A – F) Images of the modern ostracod valves under light microscope (A-C) and using
SEM imaging (D-F). G-H) Images of the fossil ostracod under light microscope (G-I) and using SEM
imaging (J-L). The scale bar represents 100 µm.

In some cases, complete ostracod carapaces (joined left and right valves) were found in the samples.
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All complete carapaces were split before picking, to ensure that they did not contain secondary

mineral precipitates. Light pressure between the glass slides was exerted to break the two valves.

Although this generally resulted in valve fragmentation, this also permitted the inside of the valve to

be cleaned for any sediment and organic remnants. Samples where light pressure did not dislocate

or fragment were discarded as these joined valves are likely to contain substantial recrystallised

minerals.

Figure 2.13: Light microscopy and SEM images of poorly preserved ostracods valves.

Amore detailed visual assessment of the valves and evaluation of the employed cleaning procedure

(Figure 2.8), was carried out using Scanning Election Microscope (SEM) imaging of ostracod

valves. All SEM images were taken at the Interface Analysis Centre, HHWills Physics Laboratory,

University of Bristol. Figure 2.12 shows images of modern and fossil ostracods from the Black

and Caspian Sea. Keatings et al. (2002) suggested that SEM images of ostracod valves that are

diagenetically altered show pits and surface etching, removal of surface layers, cracks and extreme

dissolved or re-crystallized surfaces. SEM images of the valves used in this study that appeared
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Figure 2.14: A- F) SEM images of the uncleaned ostracod valves. G - L) Images of the valves that have
undergone cleaning procedure. All valves appeared clear or translucent under the light microscope.
The scale bar represents 100 µm.

pristine under the light microscope also show well-preserved surface ornamentation with no or

very little surface etchings (Figure 2.12). Valves that appeared poorly preserved under the light

microscope showed heavily abraded and pitted surfaces in SEM images (Figure 2.13). SEM images

also show that valves which appear to be clean, clear and transparent under a light microscope may

have adherent particles that could impact the Sr isotopic ratio (Figure 2.14A - F). SEM images

of these samples before and after undergoing the cleaning procedure described in Section 2.2.2

suggests that the cleaning procedure employed during this study was effective at removing adherent

particles from valve surfaces (Figure 2.14 G - L).

Assessment of the ultrastructure of the calcite crystals in fossil ostracods from the Carboniferous

by Bennett et al. (2011) showed six stages of calcite diagenesis; 1) replacement of the original

calcite by neomorphic calcite, 2) growth of framboidal and euhedral pyrite replacing the dissolved
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carapace, 3) replacement by ferroan calcite, 4) replacement by ferroan dolomite, 5) siderite growth,

and 6) sphalerite and barite mineralization. However, the ultrastructure of most of the ostracod

valves used in this study shows well-preserved valves with unaltered laminated crystal structure and

no mineral replacement (Figure 2.15D, E, G, and H). Figure 2.15F and I, show features indicating

that these valves may have undergone a small degree of partial dissolution on the surface or very

early stages of neomorphic calcite formation (Bennett et al., 2011; Pearson and Burgess, 2008;

Pearson et al., 2001; Sexton et al., 2006), but without any substantial recrystallization.

Figure 2.15: SEM images of ostracod valves showing ultrastructures. The white scale bar represents
100 µm and black bar represents 20 µm, unless otherwise mentioned.

In summary, the physical assessment of fossil ostracod suggests there has been minimal diagenetic

alteration of the samples used in this study. Diagenetically modified specimens can be identified

under a light microscope and were avoided. Consequently, careful visual inspection and use of

washing protocol described in Section 2.2.2, which removes any adherent particles is sufficient to

ensure that the samples analysed in this study for Sr isotopic ratios reflect the primary signal of the

water.
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2.6 Additional data sources

In order to investigate the connectivity history of the Black Sea and the Caspian Sea, additional

datasets were required to complement the Sr isotopic record. These datasets consist of both

published and unpublished data. The unpublished datasets are provided by other ESRs within the

PRIDE project with their agreement. The list of complementary data used in this thesis is given in

Table 2.3.

Table 2.3: Various datasets used in this thesis to complement the Sr isotopic record.

Dataset Section/Location Age (Ka) Chapter used Reference:

87Sr/86Sr record open ocean 0 - 7000 all McArthur et al.

(2012)

Age model Guria Section Chapter 5 Kirscher et al.

(2017)

Age model Goychay Section Chapter 5 Lazarev et al.

(2019)

87Sr/86Sr record Jeirankechmez

Section

2000 - 2700 Chapter 5 van Baak et al.

(2019)

Salinity estimates Jeirankechmez

Section

2000 - 2700 Chapter 5 Richards et al.

(2018)

87Sr/86Sr record Karagoush Moun-

tain Section

1000 - 2000 Chapter 5 Page (2004)

Micropalaeontology

and salinity esti-

mates

Goychay Section 1300 - 2600 Chapter 5 M. Stoica and L.

Rausch, University

of Bucharest and

Lazarev et al.

(2019)

Age model DSDP 379/380 Chapter 6 van Baak et al.

(2016a)

87Sr/86Sr record Composite Black

Sea cores

0 – 30 Chapter 6 Major et al. (2006)
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Table 4.1 Continued:

Salinity DSDP 379 32 - 450 Chapter 6 Schrader (1978)

Salinity estimates DSDP 379 50 - 1200 Chapter 6 Hoyle (2019) and T.

Hoyle, Utrecht Uni-

versity

87Sr/86Sr record Core 22GC-8 127 - 133 Chapter 6 Wegwerth et al.

(2014)

Age model Hajigabul Section Chapter 7 Lazarev et al.

(2019)

Micropalaeontology

and salinity

Hajigabul Section 700 - 2140 Chapter 7 M. Stoica and L.

Rausch, University

of Bucharest and

Lazarev et al.

(2019)

Micropalaeontology Guria Section Chapter 8 M. Stoica and L.

Rausch, University

of Bucharest

87Sr/86Sr record Mediterranean Sea 5000 - 7000 Chapter 8 Flecker et al. (2015)

87Sr/86Sr record Zheleznyi Rog sec-

tion

5000 - 6800 Chapter 8 Grothe (2016)

87Sr/86Sr record Adzheveli section 5300 - 6100 Chapter 8 Grothe (2016)
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Chapter 3

Sr isotopic variation across the
present-day Black and Caspian seas

The open ocean is homogeneous with respect to strontium because its residence time water column

is much longer than the ocean mixing time. Similar homogeneity assumptions are made for the

Black Sea and the Caspian Sea, despite the fact that they are highly stratified, semi-isolated or

endorheic basins. However, there are no empirical data to demonstrate that the Black Sea and the

Caspian Sea are homogeneous with respect to strontium isotopes. This chapter, therefore, explores

the homogeneity assumption in the Black Sea and the Caspian Sea by examining the Sr isotopic

measurements of water samples from the Black and Caspian seas and river water samples from

across the region. This chapter also explores the robustness of ostracods as palaeo archives of

87Sr/86Sr by comparing 87Sr/86Sr measured in ostracods collected from modern sediment with the

87Sr/86Sr of the bottom water at the same sites in both Black Sea and the Caspian Sea. More

explicitly, this chapter will answer research questions 1, 2 and 3 outlined in Section 1.6.1;

1. Is the strontium isotopic signal in the Black and Caspian seas spatially homogeneous?

2. Does the strontium isotopic signal in the Black and Caspian seas vary with water depth?

What influence does the density stratification have on Sr isotopic variability in the water

column?

3. Are fossil ostracods a robust archive for preserving the primary 87Sr/86Sr of ambient water

in the Black and Caspian seas?
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Parts of this chapter are included in the manuscript intended for Earth and Planetary Science

Letters. This includes results and discussions regarding 87Sr/86Sr of the modern Black Sea water,

its fluvial sources and the Aral Sea water.

3.1 Introduction

The Sr concentration of ocean water is ∼40 times higher than average global river water (Palmer

and Edmond, 1989) and, as a result, marginal basins that are connected with the open ocean

generally have an oceanic Sr isotopic signal (e.g., Mediterranean Sea, Baltic Sea). However, the
87Sr/86Sr of a marginal basin can be seen to respond as a function of the balance between different

input sources such as fluvial discharge and exchange with the open ocean (Topper et al., 2011),

both of which control the Sr flux into the basin. Increased fluvial discharge combined with limited

oceanic exchange can deviate the 87Sr/86Sr of the marginal basin from the ocean water value toward

fluvial signal (Topper et al., 2011). In the Mediterranean Sea today, at least 25% increase in the

fluvial discharge can deviate 87Sr/86Sr away from the ocean water curve toward its fluvial signal

(Topper et al., 2011). However, the sensitivity of the 87Sr/86Sr in the marginal basin to the fluvial

signal depends on the magnitude of the exchange with the open ocean. An unrestricted exchange

(large oceanic input) results in an oceanic signal in the marginal basin. But, as the exchange with

the open ocean becomes more restricted, the 87Sr/86Sr of the marginal basin becomes increasingly

more sensitive to fluvial discharge.

Exchange of water between open ocean and marginal basins is controlled by the topography of

the gateway, the hydrological budget of the marginal basin, and the density difference between the

two water bodies. For the case of the Mediterranean Sea today, although the negative hydrological

budget plays a role, the exchange between the Atlantic Ocean and the Mediterranean Sea is mainly

controlled by outflow of the denser Mediterranean water at greater depths and surface inflow of

the less dense Atlantic water. However, there is no exchange of the water mass even when the

two basins are fully connected, if the two water masses lack density contrast. A recent study by

Modestou et al. (2017) showed that the 87Sr/86Sr of the Mediterranean Sea deviated away from

the oceanic value during Miocene when it was fully connected to the open ocean but there was no

density difference between the two water masses.
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It is generally assumed that the Sr isotopic ratio of the Black Sea and the Caspian Sea are

homogeneous even though the former is a marginal basin semi-isolated from the Mediterranean

Sea and the latter is an endorheic basin. Several studies have relied on this assumption to assess

changes in water geochemistry, its input sources and changes in palaeoenvironment of the basin

by measuring 87Sr/86Sr on fossil carbonates collected from one location (e.g. Grothe, 2016; van

Baak et al., 2019; Vasiliev et al., 2010; Wegwerth et al., 2014). However, there are no studies that

validate the Sr isotopic homogeneity assumption in the Black and Caspian seas and existing data

for modern water in these basins are severely limited. Only one 87Sr/86Sr measurement with large

uncertainty, from the Black Sea water has been published (Cox and Faure, 1974) and three from

spatially limited set of locations with poor details are available for the Caspian Sea (Clauer et al.,

2000). Consequently, it is difficult to assess whether these results represents a well-mixed basin

or a local signal influenced by fluvial discharge. In addition, no studies exist that demonstrate the

reliability of the biogenic archive in recording and preserving the primary Sr isotope ratio of the

ambient water in hydrological settings like the Black and Caspian seas.

Figure 3.1: Schematic figure showing sampling strategy to explore the spatial homogeneity assumption
and the validity of ostracods as palaeo archives.

This chapter tests the application of the Sr isotopes homogeneity assumption to the Black and

Caspian seas. It also evaluates the robustness of bottom-dwelling ostracods as archives for Sr

signal in the water column. Water samples were collected at a range of depths at different locations

across the Black Sea and the Caspian Sea to provide a clearer indication of the present–day spatial

variation in 87Sr/86Sr . The Sr isotopic ratios of river water samples were also collected to appraise

the fluvial sources (Figure 3.1), which have poorly constrained 87Sr/86Sr values. In addition,
87Sr/86Sr measured on ostracods collected from the modern sediment was compared to that of

the water at the same location to investigate the robustness of the ostracods for preserving the Sr
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isotopic signal of the water. This chapter provides a more comprehensive understanding of the

three-dimensional spatial distribution of the Sr isotopic systems in the Black Sea and the Caspian

Sea region. This insight is essential for validating the hydrological model presented in Chapter 4

and interpretion of fossil Sr isotopic data generated in this study (Chapter 5, 6, and 7).

3.2 Sampling sites and analytical methods

Water samples from the Caspian and Black seas were collected to cover a wide spatial and vertical

range within each basin (Figure 2.1 and Table 2.1). Of the 66 water samples collected from

the Black Sea, a representative sample of 30 were selected for analysis. In addition, ostracods

collected from the modern sediment at 6 locations were analysed. Of 43 water samples collected

from the Caspian Sea, 12 water samples from 6 locations and ostracods from modern sediment

were analysed in this study. Sr isotopic analysis was carried out following procedures outlined in

Section 2.2 and Figure 2.8.

3.3 Results

3.3.1 Sr isotopic ratio of rivers

The 87Sr/86Sr of the rivers feeding the Black Sea and Caspian Sea are shown in Figure 3.2 and are

listed in Table B.1. The 87Sr/86Sr of these rivers vary considerably, but are consistently lower than

the global average river water 87Sr/86Sr (Figure 3.2, Palmer and Edmond, 1989). The eastern Black

Sea rivers exhibit the lowest values, while the northern Black Sea rivers show the highest 87Sr/86Sr

(Figure 3.2A and B). The 87Sr/86Sr of the northern rivers (Don andDnieper) are significantly higher

than previous estimations provided by Palmer and Edmond (1989). Where multiple samples were

taken upstream of the river mouth, the Sr isotopic ratios show substantially variation.

Compared to the Black Sea rivers, the Caspian Sea rivers show lower 87Sr/86Sr values. Three

water samples along the Volga river are similar but show a slight increase upstream of the river and

agree with previously published value by Clauer et al. (2000) (Figure 3.2C). Also, the 87Sr/86Sr for

a water sample collected from the upstream Kura is consistent with the value provided by Clauer
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Figure 3.2: The 87Sr/86Sr of the Black Sea (A and B) and the Caspian Sea (C) rivers. Previously
published values are shown in diamonds with thick line (Clauer et al., 2000; Major et al., 2006; Palmer
and Edmond, 1989). Estimated 87Sr/86Sr based on the catchment geology for the Don and Dnieper are
shown with dotted line (Palmer and Edmond, 1989). Because of the wide range in the fluvial 87Sr/86Sr
in the region, the colour scale is neither linear nor continuous.

et al. (2000) for the same river. The water sample at Kura river mouth shows substantially higher

value than the upstream sample and is closer to the Caspian water sample (Clauer et al., 2000).

3.3.2 Sr isotopic ratio of basin water samples

The Sr isotope measurements for modern Black Sea water samples are shown in Figure 3.3 and are

listed in Table B.2. The 87Sr/86Sr values of the Black Sea surface water are lower than the modern

ocean 87Sr/86Sr but are consistent spatially as almost all data lie within error of each other (Figure

3.3D). A few slightly lower measurements are from off the coast of Georgia (Figure 3.3C and D).

The 87Sr/86Sr measured on intermediate and deeper water samples shows similar values to that of

surface water samples (Figure 3.3D and E)). The 87Sr/86Sr measured on ostracod valves collected

from grab samples are mostly consistent with the present-day water values (Figure 3.3E).
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Figure 3.3: A) The Sr isotopic ratio of the surface water across the Black Sea, with details along
the coast of Romania shown in (B) and along the coast of Georgia shown in (C). D) The 87Sr/86Sr of
the water at at different stations (surface: circles, intermediate depth: boxes, and bottom: triangles)
and modern carbonate shells (P. granulate: diamonds, H. rubra: hexagon, and benthic foraminifera:
inverted triangles). The dashed line represents the average 87Sr/86Sr of the Black Sea with uncertainty
(±2sd) highlighted by the grey bar. The pink bar indicates the 87Sr/86Sr of the modern ocean (McArthur
et al., 2012) and the unusually high previous Black Sea measurement is shown in red dot (Cox and
Faure, 1974). E) The 87Sr/86Sr of the water at different depths with carbonate samples taken from the
surface sediment (no sediment depth is implied).

The Sr isotope measurements for the Caspian Sea and Aral Sea water samples are shown in Figure

3.4 and are listed in Table B.3. The 87Sr/86Sr of the Caspian Sea surface waters measured off the

Kazakhstan coast in the Middle Caspian basin are within error of each other (Figure 3.4B and D).

Similar values are also observed in the two water samples collected off the coast of Azerbaijan

(Figure 3.4A and D). While no samples at greater depths were taken, those at 20 m show values

within error of the surface water at the same location. The 87Sr/86Sr values of water samples

collected from the Aral Sea are significantly higher than those of the Black Sea and Caspian Sea
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and also modern ocean water (Figure 3.4C).

Figure 3.4: The Sr isotopic ratio of the surface water across the Caspian Sea (A and B) and the
Aral Sea (C). D) The 87Sr/86Sr of the water at various stations (surface: circles, intermediate: boxes,
and bottom: triangles) and modern carbonate shells (C. acronasuta: diamonds, E. naphtascholana:
inverted triangles). The average 87Sr/86Sr of the Caspian Sea from this study is shown by dashed
horizontal line with two standard deviations highlighted by darker grey bar. The uncertainty (±2sd)
of previous measurements by Clauer et al. (2008) is shown by the lighter grey bar (E). The 87Sr/86Sr
of the water at various depths with carbonate samples taken from the surface sediment (no sediment
depth is implied). Values with thick outline represent previously published ratios.

3.4 Discussion

3.4.1 Fluvial Sr isotopic ratio

Most global river waters have high 87Sr/86Sr (Palmer and Edmond, 1989) because these rivers

erode continental crust, which has a dominance of granitic rocks and contain minerals like micas
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and K-feldspar with high 87Sr/86Sr (Brass, 1976). In contrast, the fluvial sources of the Black Sea

and Caspian Sea have lower 87Sr/86Sr values (Figure 3.2) because the geology of the catchment area

(Figure 3.5) includes Mesozoic and Paleogene carbonate deposits that have high Sr concentration

with low 87Sr/86Sr (Figure 1.10).

Figure 3.5: Lithological map of the Black and the Caspian seas’ drainage basin. Modified from
Hartmann and Moosdorf (2012).

3.4.1.1 Northern Black Sea rivers

Unlike the other rivers in the region, the Don and Dnieper rivers have unusually high 87Sr/86Sr

values (Figure 3.2A), which are significantly higher than previously published value of 0.7084

estimated by Palmer and Edmond (1989) based on each river’s catchment geology (Figure 3.6).

The major part of the catchment area of the Don and Dnieper includes substantial exposure of

Late Cretaceous carbonate and Palaeocene - Eocene limestones deposits (Figure 3.6, 1.10). Near

its mouth, the Don also cuts through the Late Carboniferous limestone and dolomite deposits.

Less than 10% of the area exposes plutonic rocks (Figure 3.6). Granitic rocks usually have high
87Sr/86Sr values and low concentrations (Brass, 1976). Given that ∼25% of the total catchment
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area of each river contains carbonate sedimentary deposits, the Sr signal of these rivers is expected

to be dominated by low 87Sr/86Sr of the carbonates, in accordance with values estimated by Palmer

and Edmond (1989).

Figure 3.6: Lithological map of the Don and Dnieper rivers’ catchment area. Green dots show the
water sampling locations. Modified from Hartmann and Moosdorf (2012).

One possible explanation of the higher than expected 87Sr/86Sr in the northern river water samples

collected in this study is that they may be representing local fluvial signal rather than the signal of

the entire catchment. Smaller rivers along the northern coast of the Sea of Azov erode plutonic

rocks (Figure 3.6). Therefore, these rivers should have radiogenic Sr isotopic ratio and may be

generating a radiogenic Sr signal within the Sea of Azov. The high 87Sr/86Sr measured at the Don

delta may be reflecting the Azov value rather than the Don river signal. The trend towards lower
87Sr/86Sr values upstream in the Don river (Figure 3.2A) may indicate decreasing influence of the

radiogenic Azov signal away from the delta mouth towards predicted low value of the Don river

(Palmer and Edmond, 1989). Compared to the Don, the Sr signal of the Dnieper does not show a

consistent pattern. The southern region of the Dnieper catchment and the catchment of Southern

Bug river, which drains into the same region, have large area of plutonic surfacial geology (Figure
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3.6). High 87Sr/86Sr values could be a mixture between the three source end members; Dnieper

river, Southern Bug and Black Sea. Therefore, further investigation is required to constrain the

fluvial signal of the Don and Dnieper river.

The high values measured in the Don and Dnieper rivers may also reflect the influence of anthro-

pogenic sources, such as fertilisers and sewage (e.g. Hosono et al., 2007; Nakano et al., 2005;

Pearce et al., 2015; Vitòria et al., 2004; Widory et al., 2004). The 87Sr/86Sr of sewage effluent

is likely to be high given the high Rb/Sr in biological matrices such as faeces and urine (Nirel

and Revaclier, 1999). A wide range of Sr isotopic ratios (0.7033 - 0.835) have been observed for

fertilisers because of wide variety of source materials used during manufacturing (Vitòria et al.,

2004). Strontium in fertilisers is associated with sulphates, phosphates or carbonates and the
87Sr/86Sr value will vary depending on their origin (e.g., Antich et al., 2000; Böhlke and Horan,

2000; Négrel and Roy, 1998; Vitòria et al., 2004). Without identifying the anthropogenic sources

and their correct 87Sr/86Sr composition, distinguishing between natural and human induced source

for the unusually high values in these northern rivers is currently not possible.

In summary, the new 87Sr/86Sr data for both, the Don and Dnieper rivers contradict the estimates

based on the catchment geology of each river. Possible reasons are presented for each case, but

it is currently not possible to confirm the Sr isotopic ratio of these rivers. Consequently, the

estimated values for these rivers provided by Palmer and Edmond (1989) are used in this thesis,

because it is the only value most likely to be representative of the catchment geology of the Don

and Dnieper. Detailed, greater spatial coverage isoscape studies of the catchment area for these

rivers are required.

3.4.1.2 Rivers draining the Caucasus

Eastern Black Sea rivers along the coast of Georgia show the some of the lowest 87Sr/86Sr observed

in the area (Figure 3.2A and B). A similar low values were also observed in the water samples from

the Kura river draining western side of the Caspian Sea (Figure 3.2C). Given that carbonates and

volcanic deposits, both of which have low Sr isotopic ratio, these low values are expected given

that these rivers drain the parts of the Caucasus Mountains, which mostly consist of metamor-

phic Cretaceous and Jurassic carbonate (Figure 1.10) and Cenozoic volcanic rocks (Mitchell and

Westaway, 1999).
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3.4.1.3 Volga river

The catchment area of the Volga river lies within the East European Platforms and consists of

Carboniferous and Cretaceous limestones (Figure 3.5). The 87Sr/86Sr of the Volga river shows low

values (Figure 3.2), which are consistent with the geology of its drainage area (Figure 1.10).

3.4.1.4 Aral Sea measurements constraining Amu Darya river

The 87Sr/86Sr values measured on water samples collected from the Aral Sea are high (0.709214

± 0.0000065), suggesting a radiogenic source feeding the Aral Sea. Today, Amu Darya and Syr

Darya are the two main fluvial sources for the Aral Sea (Figure 3.8). Amu Darya originates in

the Pamir Mountains and drains into the South (or Large) Aral Sea, and Syr Darya, which flows

from the Tien Shan mountains, to the north of the Pamirs, drains into the North (or Small) Aral

Sea (Figure 3.8, Asarin et al., 2010). South and North Aral Sea have been two distinct water

bodies since 1986 – 1987 as a result of water level fall induced by reduced fluvial discharge due to

unsustainable irrigation in the area (Micklin, 2010). After this separation, a channel formed that

connected the two basins, with water flow from the higher-level North Aral Sea to the lower-level

South Aral Sea. In 2005, the two basins were separated by construction of the Kok-Aral dam with

an outflow control structure (Micklin, 2010). Consequently, the Aral Sea water samples collected

in 2009 from the western basin of the South Aral Sea are likely to be heavily dominated by Amu

Darya river water. Even if they do represent a mixture of water from both rivers, Amu Darya

and Syr Darya have similar catchment geology, which includes metamorphosed Precambrian and

Paleozoic rocks at their mountainous headwaters and Neogene sedimentary deposits in the lower

reaches (Figure 3.8). The Sr isotopic ratios of both rivers are likely to be similar and high, reflecting

the geology of their catchment area with high 87Sr/86Sr. Consequently, the 87Sr/86Sr measured on

the Aral Sea water samples is likely to reflect the Sr isotopic ratio of the Amu Darya river and

as such, provides the first constraint on the Amu Darya river signal, for which previously only a

largely speculative estimation existed (Page, 2004; Wegwerth et al., 2014).

3.4.2 Homogeneity assumption within the Black Sea

The 87Sr/86Srmeasured onBlack Sea surfacewater samples ranges between 0.709128 and 0.709152

(Figure 3.3). All of the samples collected offshore are within error of each other. The samples
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Figure 3.7: Satellite image of the Aral Sea taken on August 2017 showing North and South Aral Basin
separated by Kok Aral Dam. Image adapted from NASA Earth Observatory Images.

Figure 3.8: Lithological map of the Amu Darya and Syr Darya catchments. Pink dot represents the
Aral Sea water sample location. Modified from Hartmann and Moosdorf, 2012.

taken from the beach in Georgia show lower values (Fig. 3). The average of all the offshore

measurements is 0.709143 ± 8 ppm (2SD, n= 13). This value is lower than, but within error of, the

previous single measurement of 0.7093± 0.0007, which has a large analytical error (Cox and Faure,
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1974). The measurement by Cox and Faure (1974) is also significantly higher than the present-day

ocean water value. Given that the major rivers draining the Black Sea have 87Sr/86Sr lower than

the ocean water, the high 87Sr/86Sr measured by Cox and Faure (1974) could be anomalous and

influenced by local geology. Although, specific sample location is not available, the cruise track

for R/V Atlantis II in April and May 1969, during which this water sample was collected, shows a

likely south eastern sampling location in the Black Sea (Ross et al., 1974).

The average Black Sea 87Sr/86Sr generated in this study is lower than the modern ocean ratio

(McArthur et al., 2012). Today, the Black Sea receives about 2 x 1011 m3/yr inflow from the

Mediterranean Sea and about 3.38 x 1011 m3/yr from fluvial discharge (Jaoshvili, 2003). Although

the fluvial input is almost twice as much as the marine inflow, the measured 87Sr/86Sr of the

Black Sea is much closer to this oceanic value compared to the weighted riverine 87Sr/86Sr of

0.708699 because of the comparatively higher concentration of Sr in oceanic water than the fluvial

Sr concentration. The sensitivity of the 87Sr/86Sr of the Black Sea with changing oceanic input

and fluvial discharge is explored in Chapter 4.

The Sr isotopic ratios measured on the water samples collected at depth in the Black Sea show

values that are within error of the surface water samples at the same location (Figure 3.3E). Today,

the Black Sea is anoxic at depths below 100 - 200mbecause of strong density stratification (Kosarev

and Kostianoy, 2008). Although there is strong water column stratification in the Black Sea today,

the consistency between deeper water (>500 m) and surface water 87Sr/86Sr values suggests that

Sr is relatively well mixed within the basin.

3.4.3 Homogeneity assumption within the Caspian Sea

The 87Sr/86Sr of the Caspian Sea surface water measured off the coast of Kazakhstan (Figure 3.4B)

and Azerbaijan (Figure 3.4B) show similar values that are consistent with previously published

Caspian Sea 87Sr/86Sr by Clauer et al. (2000, Figure 3.4D). The average 87Sr/86Sr of the Caspian

Sea measured in this study is 0.708191 ± 0.000009 (2SD, n= 6). This value reflects the dominant

influence of the Volga river, which provides ∼82% of the fluvial input into the Caspian Sea

(Shiklomanov et al., 1995). While there is additional input from the western (Sulak, Kura and

Terek; 11.5%) and Iranian (3.5%) rivers (Shiklomanov et al., 1995), they have low 87Sr/86Sr (Clauer

et al., 2000). Groundwater discharge, which has a similar Sr isotopic ratio to thermal spring water
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in the Caspian Sea (0.7085), has a Sr concentration several orders of magnitude higher than riverine

water (Table 4.1, Clauer et al., 2000, 2008) and therefore, elevates the 87Sr/86Sr of the Caspian

above that of the Volga signal.

Themeasured 87Sr/86Sr of thewater samples at 20mdepth shows values similar to that of the surface

water (Figure 3.4D). Samples below 20 m water depth were not collected in this study, however,

previously published deeper samples in the Caspian Sea (exact location unknown but likely to have

been taken from the South Caspian basin, Clauer et al., 2008) have 87Sr/86Sr values that are both,

higher and lower than the average 87Sr/86Sr measured in this study (Figure 3.4D). Although, Clauer

et al.’s data have a larger range, the average 87Sr/86Sr of the Caspian Sea (0.708187) is similar to

this study (Figure 3.4D).

Given the scatter in the 87Sr/86Sr of the Caspian data, more spatial data is required to confirm a

homogeneous Caspian Sea with respect to Sr isotopes. However, on the basin of the measurements

from this study and Clauer et al. (2008), the Caspian Sea is relatively well mixed, particularly

considering the influence of the Volga river in the north, from where most of the samples in this

study were obtained.

A basin is considered to be homogeneous with respect to an element if the residence time of that

element is larger than the water turnover time. For the Black Sea, the residence time of Sr is

∼16,600 yrs, much longer than the deep water turnover time of ∼2000 yrs (Ostlund and Dyrssen,

1986), while in the Caspian Sea, the residence time of the Sr is calculated to be ∼15,000 years

compared to the mixing time of ∼238 yrs. In both cases, these residence time suggests a well mixed

basin with respect to 87Sr/86Sr, consistent with the empirical study. However, the residence time of

an element depends on the inflow and outflow from the basin, as it changes the concentration and

the rate of input into the basin. Accordingly, the residence times of Sr in the Black and Caspian

seas in the past is likely to have been different than the present-day values, as the inflow to and

outflow from these basin have fluctuated considerably throughout their existence.

3.4.4 Validity of the ostracod archive

Of the 10 biogenic carbonate samples collected from the modern Black Sea sediment, 8 have Sr

isotope values that are within error of the measured bottom water value (Figure 3.3E). Two samples

show significantly lower values for ostracods compared to the bottom water; Station 33 and 36.
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Where more than one type or species of biogenic carbonate (e.g. benthic foraminifera and ostracod

valve, or valves from different ostracod species) from the same sample was analysed, Sr isotopic

ratios are within error of each other in all but 1 sample at Station 36.

Despite the lack of bottom water measurements, ostracods from three stations show values within

error of the average Caspian 87Sr/86Sr (Figure 3.4E). Modern ostracods from two locations (Station

68 and 69) show high values significantly higher than the average Caspian Sea water values. The
87Sr/86Sr measured on two different species of ostracods (Caspiolla acronasuta and Eucythere

naphtascholana) collected from the modern Caspian sediment shows similar values between each

other at three locations.

One possible explanation for these divergences of the ostracod 87Sr/86Sr from the water column

signal in both, the Black and Caspian seas, is that they may not be representing modern archives.

The sediment samples were taken from the surface grab, however these samples may include older

material mixed in or exposed at the surface by erosion, downslope transport or bioturbation. This

interpretation is supported by the presence of heavily reworked mollusc assemblage in the Caspian

Sea at these sites (Figure B.1). In the Black Sea, measured Sr isotope values, which differ from

overlying water, are consistent 87Sr/86Sr with the fossil Sr isotope data from ∼5 ka (Major et al.,

2006).

In summary, the 87Sr/86Sr measured on the different species of ostracods collected from the surface

sediment of the Black Sea and the Caspian Sea generally show similar 87Sr/86Sr values to the

surface water without any species-specific variation indicating that they can preserve primary Sr

signal of the water. Where there is a small difference between bottom water and biogenic carbonate
87Sr/86Sr, it is likely due to sediment reworking. Therefore, ostracods can be used as a good archive

to examine the past changes in the water chemistry of a basin in the past, assuming that ostracods

do not show any diagenetic alteration (Section 2.5) and a robust age model is available.

3.5 Conclusions

The additional new measurements of the 87Sr/86Sr generated in this study constrain the Sr isotopic

signal of the Black andCaspian sea rivers. The present-day fluvial sources showed values consistent

with their catchment geology, except the northern Black Sea rivers, Don and Dnieper. For these

rivers higher 87Sr/86Sr may either reflect anthropogenic sources like fertilisers and sewage or a
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local geological signal. The limited range of 87Sr/86Sr water collected within the Black Sea and the

Caspian Sea show that these basins are relatively well mixed with respect to Sr isotopic ratio. While

the basin 87Sr/86Sr is affected by fluvial discharge closer to river mouth and beaches, the signal

further offshore is consistent along the surface and at depth. The 87Sr/86Sr measured on modern

ostracods commonly shows similar values as to that of the bottom water at the same location except

where there is evidence of bioturbation or sedimentary reworking.
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Chapter 4

Numerical Box Model: A method to
constrain the hydrological budget

This chapter describes the numerical box model used to explore the hydrological budget in subse-

quent results chapters (Chapter 5, 6 and 7). Model parameters are constrained by published and

new 87Sr/86Sr isotopic data from Chapter 3. This chapter also tests the validity of the model by

comparing the observed 87Sr/86Sr and salinity of the present-day Black Sea with outputs generated

by a model that is configured for the present-day Black Sea.

4.1 Model description

The numerical box model used in this study is modified from Topper et al. (2011) and Modestou et

al. (2017). These authors used coupledmass balance equations forwater, salinity and the Sr isotopic

ratio to provide quantitative constraints on the hydrologic budget and inter-basin exchange required

to reproduce the observed 87Sr/86Sr and salinity during the Messinian Salinity Crisis. Here, a

similar approach was used for the Caspian Sea (Chapter 5 and 7) and the Black Sea (Chapter 6) to

constrain the inter-basin exchange required to produce observed 87Sr/86Sr and salinity estimates in

these basins.

All model calculations are performed assuming steady-state solutions, where the volume of the

water within the basin remains constant, i.e. total inflow into the basin is equal to the total outflow

(Figure 4.1). The Black Sea or the Caspian Sea is considered as a single box with changing input

sources and connection to the adjacent basins (for basin specific details see Chapters 5, 6 and 7).

The inflow, outflow, river run-off, evaporation, and precipitation contribute to the hydrological
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Figure 4.1: Diagram of the box model for the Black Sea and the Caspian Sea with arrows representing
all input and output fluxes; qBO: outflux from Black Sea to the open ocean, qOB: influx from the ocean
to the Black Sea, EB - PB: evaporation minus precipitation for the Black Sea and EC - PC : evaporation
minus precipitation for the Caspian Sea.

budget of the basin. However, only inflow, outflow, and river run-off affect the 87Sr/86Sr of the

basin because although evaporation and precipitation impacts salinity they have negligible affect

on Sr isotopes (Capo et al., 1998). The different sources of Sr and their present-day fluxes into the

Black and Caspian seas are discussed below.

4.1.1 Ocean water

Modern ocean Sr concentration is about 40 times higher than the average global river (Palmer and

Edmond, 1989). Although it varies slightly with depth, the accepted oceanic concentration is ∼

7.85 ± 0.03 ppm (Veizer, 1989 and references therein). During the last 3 million years, the Sr

isotopic ratio of the ocean water has increases slightly and ranges between 0.709060 to 0.709175.

For the modern ocean 87Sr/86Sr value is 0.709175 ± 0.000001 (McArthur et al., 2012).

At present, the Black Sea receives marine water from Mediterranean Sea. According to different

authors, the marine influx into the Black Sea ranges between 1.23 to 3.12 x 1011 m3/yr (Jaoshvili,

2003, and references therein). For modelling purposes here, an average value of ∼2 x 1011 m3/yr

was used.
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4.1.2 Fluvial run-off

The main present-day fluvial sources in the Pontocaspian region are the Danube, Don, Dnieper

and Volga. Palmer and Edmond (1989) provide the 87Sr/86Sr and Sr concentration for the three

major rivers of the Black Sea (Danube, Don and Dnieper), which together provides ∼75% of total

fluvial discharge into the Black Sea (Jaoshvili, 2003). The 87Sr/86Sr and Sr concentration for the

minor rivers along the eastern coast of the Black Sea, which provides ∼20% of the run-off into

the Black Sea, was measured in this study (Chapter 3). The remaining 5% comes from the other

minor river draining the southern coast of the Black Sea (Jaoshvili, 2003), for which there are no

Sr isotopic measurements. The 87Sr/86Sr of Volga river is from this study (Table 4.1) and for the

other Caspian rivers was provided by Clauer et al. (2000).

Jaoshvili (2003) compiled different estimations for the Black Sea fluvial discharge that ranged from

2.94 x 1011 to 4.74 x 1011 m3/yr . The mean value is 3.38 x 1011 m3/yr (Table 4.1). The Caspian

Sea is an isolated basin with total discharge of about 3.4 x 1011 m3/yr (Shiklomanov et al., 1995).

About 80% of this discharge is from the Volga, with mean annual run-off of 2.4 x 1011 m3/yr

(Table 4.1). The western rivers (Kura, Sulak, Samur, Terek) and the rivers along Iranian coast

make up about 11 and 3.5%, respectively, of the total fluvial input into the Caspian Sea (Table 4.1,

Shiklomanov et al., 1995).

4.1.3 Groundwater discharge

There are large discrepancies in estimates of groundwater discharge in the Caspian Sea, which

ranges from 0.3 to 49 km3/yr (Zektzer et al., 1973). With no direct measurements, the discharge

estimates are usually obtained as a residual term of the equation for the average long-term water

balance, and are therefore sensitive to uncertainties in all other parameters (Kostianoy and Kosarev,

2005).

Clauer et al. (2000) proposed that the Sr isotopic composition of the groundwater is likely to

be similar to that of thermal springs located at many sites along the west coast of the Caspian

Sea. Accordingly, a 87Sr/86Sr value of 0.7085 and a Sr concentration of 145 ppm are used for

the groundwater discharge into the Caspian Sea (Table 4.1). Clauer et al. (2000) also estimated a

groundwater discharge of ∼8 x 108 m3/yr into the Caspian Sea to balance the Sr isotopic ratio of

the current Caspian water. Even though there are large uncertainties associated with this approach
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(e.g. variability in the cumulative fluvial flux and the Sr signal), these estimates best explain

the present-day ratio of the Caspian Sea given the availability of the data. Therefore, a Caspian

groundwater discharge of 8 x 108 m3/yr is used in the model.

For the Black Sea, Jaoshvili (2003) suggested a groundwater discharge of ∼5% of surface inflow

(∼1.7 x 1010 m3/yr ) based on the estimates of groundwater contribution to the open ocean, the

Mediterranean Sea and the Atlantic Ocean. However, there are no direct measurements or estimates

for the Sr signal of this discharge in the Black Sea. Although it is acknowledged that groundwater

discharge impacts the chemical composition of the Black Sea water, constraining this parameter is

outside the scope of this study and not included in the calculation for the Black Sea. The potential

contribution of groundwater discharge on the Sr isotopic signal of the Black Sea water is discussed

in Section 4.3.

4.1.4 Dust

Airborne dust particles settling in the basin may also contribute to the Sr isotopic ratio of the

basin (Jacobson, 2004). The isotopic composition of the dust will have significant variability and

depends on the geology of the source region (Scheuvens et al., 2013). The average Sr isotopic

ratio for global dust is ∼0.725 (Grousset and Biscaye, 2005), which is significantly higher than the

global ocean water value (0.709175, McArthur et al., 2012). However, dust is not considered a

significant source of Sr to marine budgets (Frank, 2002; Goldstein and Hemming, 2003), as only a

small amount of Sr is transferred to seawater relative to the already high seawater Sr concentration.

Dust deposited in the Black Sea and the Caspian Sea is most likely to be a mixture of Saharan,

southwest Asian and local central Asian (Karakum desert and Aral Sea) dust sources (Hamidi et al.,

2013; Lee et al., 2006; Singer et al., 2003). All of these dust sources have higher than oceanic
87Sr/86Sr (Dewan et al., 2015; Grousset and Biscaye, 2005). However, there are no measurements

of the Sr contribution by dust deposition to these basins. The Sr concentration, although lower

than the oceanic value, is still higher in the Black Sea and the Caspian. Therefore, any impact it

has on the basin 87Sr/86Sr is likely to be small. Additionally, given the more significant Sr fluxes

in the Black and Caspian Sea (e.g., run-off and marine water), dust is likely to have a small impact

on the Sr budget of the basin and therefore is not included in this study.
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Figure 4.2: Schematic showing the present-day configuration of the Black Sea and the Caspian Sea
with inflows and outflows. The Black Sea receives input from the Mediterranean Sea (qOB), run-off
(RB) and precipitation (PB) and loses water from evaporation (EB) and outflow to the Mediterranean
Sea (qBO). Unlike the Black Sea, the Caspian Sea today, is an isolated basin and receives water
only from fluvial run-off (RC ), groundwater (GW) and precipitation (PC ) and loses water through
evaporation (EC ).

4.2 Main equations

An overview of the main equations for the present-day configuration of the Black Sea and the

Caspian Sea is presented here. These equations will be modified in subsequent chapters for various

connectivity scenarios. The equations are based on the principle of conservation of mass and

therefore describe inflow into and outflow from the basins (Modestou et al., 2017; Topper et al.,

2011).

4.2.1 Black Sea

For the present-day configuration, the Black Sea is represented by a box with inflow from the open

ocean and freshwater input from its fluvial sources and precipitation. The Black Sea also loses

water through evaporation and outflow to the Mediterranean Sea (Figure 4.2). In the steady state

situation, the Black Sea water budget is given by,

qBO = qOB + RB + PB − EB (4.1)

where, qOB refers to the flux from the open ocean to the Black Sea and qBO refers to the flux from

the Black Sea to the open ocean. Total river discharge, evaporation and precipitation fluxes of the

Black Sea are given by RB, EB and PB, respectively. Because evaporation and precipitation have

a negligible effect on the fractionation of Sr isotopes (Capo et al., 1998), and the Sr signal of the
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basin is controlled by its input sources, the Sr concentration, Sr isotopic ratio of the Black Sea can

be determined as follows, with subscripts O, RB and B referring to oceanic, Black Sea rivers and

Black Sea, respectively.

Sr concentration:

[Sr]B =
[Sr]O ∗ qOB + [Sr]RB ∗ RB

qOB + RB
(4.2)

where,

[Sr]RB =
[Sr]Rb1 ∗ Rb1 + [Sr]Rb2 ∗ Rb2 + ..... + [Sr]Rbn ∗ Rbn

RB

and [Sr]Rbn and Rbn refers to Sr concentration and discharge flux, respectively, of individual Black

Sea rivers.

Sr isotopic ratio:

( 87Sr
86Sr

)
B

=

( 87Sr
86Sr

)
O
∗ [Sr]O ∗ qOB +

( 87Sr
86Sr

)
RB
∗ [Sr]RB ∗ RB

[Sr]O ∗ qOB + [Sr]RB ∗ RB
(4.3)

and

( 87Sr
86Sr

)
RB

=

( 87Sr
86Sr

)
Rb1
∗ [Sr]Rb1 ∗ Rb1 +

( 87Sr
86Sr

)
Rb2
∗ [Sr]Rb2 ∗ Rb2 + ...

... +
( 87Sr
86Sr

)
Rbn
∗ [Sr]Rbn ∗ Rbn

[Sr]RB ∗ RB

where, the ratio of individual rivers is represented by
( 87Sr
86Sr

)
Rbn

.

The salinity of the Black Sea ([S]B) is driven by the inflow from and outflow to the Mediterranean

Sea which has a salinity of [S]O.

[S]B =
[S]O ∗ qOB

qBO
(4.4)

4.2.2 Caspian Sea

Unlike the Black Sea, the Caspian Sea is currently an isolated basin, therefore its water budget

is controlled by riverine input, groundwater discharge, evaporation and precipitation and the Sr

signal is controlled by its fluvial and groundwater inputs. Therefore, in a steady state situation,

EC = RC + GWC + PC (4.5)
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where, Caspian river, groundwater discharge, evaporation and precipitation fluxes are represented

by RC , GWC , EC and PC , respectively.

Sr concentration:

[Sr]C =
[Sr]RC1 ∗ Rc1 + [Sr]Rc2 ∗ Rc2 + .... + [Sr]Rcn ∗ Rcn + [Sr]GW ∗ GWC

RC + GWC
(4.6)

where and [Sr]Rcn and Rcn refers to Sr concentration and discharge flux, respectively, of individual

Caspian Sea rivers and [Sr]GW refers to the Sr concentration of the groundwater discharge.

Sr isotopic ratio:

( 87Sr
86Sr

)
C

=

( 87Sr
86Sr

)
Rc1
∗ [Sr]Rc1 ∗ Rc1 +

( 87Sr
86Sr

)
Rc2
∗ [Sr]Rc2 ∗ Rc2 + ...

... +
( 87Sr
86Sr

)
Rcn
∗ [Sr]Rcn ∗ Rcn +

( 87Sr
86Sr

)
GW
∗ [Sr]GW ∗ GWC

[Sr]RC ∗ RC + [Sr]GW ∗ GWC
(4.7)

where,
( 87Sr
86Sr

)
Rcn

and
( 87Sr
86Sr

)
GW

represents the Sr isotopic ratio of individual rivers and ground-

water discharge, respectively.

The Caspian Sea, despite being an isolated basin with only freshwater inputs, still has brackish

salinity today. The salinity of the Caspian Sea is negligible near the mouth of the Volga and

gradually increases towards the south, reaching ∼13 g/kg in the southern basin (Figure 1.6B,

Kostianoy and Kosarev, 2005). This high salinity is attributed to residual salt from the last oceanic

connection (Zenkevitch, 1963) and/or input from high solute content groundwater (Clauer et al.,

2008). However, there are no salinity constraints available for either of these components that can

be used for the modelling.

Table 4.1: Overview of model parameters used in this study.

Parameters Present-day values Reference:

Global Ocean
Salinity 35 g/kg
Sr concentration 7.85 ppm Veizer (1989)
Sr ratio 0.709175 McArthur et al. (2012)

Black Sea
Outflow to the Ocean 4 x1011 m3/yr Jaoshvili (2003)
Inflow from the Ocean 2 x1011 m3/yr Jaoshvili (2003)
Evaporation 3.3 x 1011 m3/yr Jaoshvili (2003)
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Table 4.1 Continued:

Precipitation 2.1x1011 m3/yr Jaoshvili (2003)
Salinity 17 g/kg Özsoy and Ünlüata (1997)
Sr concentration 1.77 ppm This study
Sr ratio 0.709143 This study

Caspian Sea
Salinity 12 g/kg Kostianoy and Kosarev (2005)
Evaporation 4.3 x 1011 m3/yr Clauer et al. (2000)
Precipitation 1.3 x 1011 m3/yr Clauer et al. (2000)
Sr concentration 4.13 ppm This study
Sr ratio 0.708191 This study

Danube
Water flux 2.06 x 1011 m3/yr Jaoshvili (2003)
Sr concentration 0.24 ppm Palmer and Edmond (1989)
Sr ratio 0.7089 Palmer and Edmond (1989)

Don
Water flux 2.94 x 1010 m3/yr Palmer and Edmond (1989)
Sr concentration 0.22 ppm Palmer and Edmond (1989)
Sr ratio 0.70840 (estimated) Palmer and Edmond (1989)

Dnieper
Water flux 4.3 x 1010 m3/yr Jaoshvili (2003)
Sr concentration 0.22 ppm Palmer and Edmond (1989)
Sr ratio 0.70840 (estimated) Palmer and Edmond (1989)

Rioni
Water flux 9.6 x 109 m3/yr Jaoshvili (2003)
Sr concentration 0.18 ppm This study
Sr ratio 0.70800 This study

Chorokhi
Water flux 8.7 x 109 m3/yr Jaoshvili (2003)
Sr concentration 0.11 ppm This study
Sr ratio 0.70585 This study

Enguri
Water flux 2.1 x 109 m3/yr Jaoshvili (2003)
Sr concentration 0.09 ppm This study
Sr ratio 0.70864 This study

Natanebi
Water flux 7.7 x 108 m3/yr Jaoshvili (2003)
Sr concentration 0.06 ppm This study
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Table 4.1 Continued:

Sr ratio 0.70570 This study
Volga

Water flux 2.4 x 1011 m3/yr Clauer et al. (2000)
Sr concentration 0.48 ppm Clauer et al. (2000)
Sr ratio 0.708053 This study

Western Rivers
Flux 3.91 x 1010 m3/yr Clauer et al. (2000)
Sr concentration 1.65 ppm Clauer et al. (2000)
Sr ratio 0.707795 Clauer et al. (2000)

Southern Rivers
Water flux 1.19 x 1010 m3/yr Clauer et al. (2000)
Sr concentration 0.85 ppm Clauer et al. (2000)
Sr ratio 0.708293 Clauer et al. (2000)

Groundwater
Flux 8 x 108 m3/yr Clauer et al. (2000)
Sr concentration 145 ppm Clauer et al. (2000)
Sr ratio 0.7085 Clauer et al. (2000)

Amu Darya
Flux 4 x 1010 m3/yr Asarin et al. (2010)
Sr concentration 1.42 ppm Clauer et al. (2000)
Sr ratio 0.709214 (for Aral Sea) This study

4.3 Model validation

Model validation was conducted using a present-day Black Sea configuration (Figure 4.2). Equa-

tions 4.1 to 4.4 were constrained by the present-day values (Table 4.1) and the model was run

with a stepwise increase in the Mediterranean influx and fluvial discharge to evaluate the resulting

changes in the 87Sr/86Sr and salinity of the Black Sea.

The model result (Figure 4.3) shows that Mediterranean input drives both the salinity and Sr

isotopic ratio in the present-day Black Sea. With present-dayMediterranean influx and total fluvial

flux, the model produces a salinity of 16.8 g/kg and 87Sr/86Sr of 0.709153. The modelled salinity

is in good agreement with the observed average Black Sea salinity of 17 g/kg (Özsoy and Ünlüata,

1997). If external uncertainty of ±9 ppm is assigned to the model result, the 87Sr/86Sr produced by

model is within error of the observed 87Sr/86Sr of 0.709143 ± 8ppm in the Black Sea. However,
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Figure 4.3: Model output for salinity and 87Sr/86Sr in the Black Sea with varying input from the open
ocean and its fluvial sources. The black dots represents the model generated salinity and 87Sr/86Sr with
present-day influxes for these sources. Present-day Mediterranean influx into the Black Sea is 2 x 1011
m3/yr and fluvial discharge is 3.38 x 10 11 m3/yr (Jaoshvili, 2003).

it should be noted that only three major rivers (Danube, Don, and Dnieper) and the rivers along

the eastern Black Sea are considered in this study because measurements for only these rivers are

available. Given that the model output for salinity and 87Sr/86Sr in the Black Sea are similar to the

observed value, despite the incomplete parameters incorporated in the model, the model used in

this study can be assumed to capture the main features of the hydrologic budget in the Black Sea.

4.4 Sr signature of the Pleistocene rivers

The model is adapted for different connectivity configurations in Chapters 5 and 6 to interpret

the 87Sr/86Sr measured on fossil ostracods. This requires constraints on the Sr concentration and
87Sr/86Sr of the rivers in the region during the Pleistocene. Sr concentration and 87Sr/86Sr of

a river depends on its catchment geology. Given the short geological time-scale of only a three

million years in this study, significant changes in the catchment geology of the major rivers draining

into the Black Sea and Caspian Sea are unlikely to have occurred, although it is acknowledged

that there are tectonically-active areas within the catchment. The Don, Dnieper and Volga drain

the stable Russian Platform and the drainage system for these rivers has been in place since the

middle Miocene (Matoshko et al., 2004). The drainage area of the Danube, however, includes
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the tectonically-active Carpathian Mountains. Most of uplift of the Carpathians took place during

the Middle Miocene during the last stage of continental collision (Sanders et al., 1999). Even

though locally, there is 4 - 5 km of exhumations along the Carpathians in the Quaternary, the

geology of the area mainly consists of high grade metamorphic granite (Matenco et al., 2016).

Therefore, any local exhumation is unlikely to have changed the catchment geology of the Danube,

and consequently the 87Sr/86Sr of the river water. As is the case for the Danube, some of the

minor rivers in the region drain parts of active regions including the Caucasus Mountains, which

have the highest uplift rate in the world (Mitchell and Westaway, 1999). However, the catchment

area of these rivers is comparatively small and, any changes in the characteristics of these rivers

on the overall Sr signal of the basin is likely to be insignificant. Given the study time-frame, it

is assumed that there are no extreme changes in the catchment geology of the rivers draining into

the Black Sea and the Caspian Sea. For purpose of modelling, the present-day 87Sr/86Sr and Sr

concentration of the rivers (Table 4.1) were therefore, used to constrain the Pleistocene fluvial Sr

isotopic signatures.

4.5 Additional fluvial input from the palaeo Amu Darya

In addition to current fluvial sources, geological evidence shows the presence of deltaic deposits on

the eastern margin of the South Caspian basin (Abreu and Nummedal, 2007; Brunet et al., 2017)

that indicates that the Caspian Sea was fed by another large river in the past. Amu Darya currently

flows into the Aral Sea but river incision in the Kara Kum area suggests that the Amu Darya

periodically flowed into the Caspian Sea until about 10 ka (Boomer et al., 2000; Micklin, 2010).

Therefore, inclusion of the Amu Darya in the numerical model is essential for better understanding

of the hydrological budget in the region. However, constraining the Amu Darya signal provides

one of the dominant sources of uncertainty for the model runs.

Amu Darya currently discharges about 7.6 km3/yr water into the Aral Sea (Asarin et al., 2010), but

this run-off is significantly affected by the divergence of river water for irrigation in the surrounding

area, which started in the 1960s. Prior to human interference, the discharge of Amu Darya into the

Aral Sea was about 40 km3/yr. Therefore, this latter value is used as a first order approximation

for Amu Darya discharge into the Caspian Sea in this study.
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The Sr concentration of the Amu Darya water was measured by Schettler et al., 2013. Although

there are no direct 87Sr/86Sr measurement for the Amu Darya, 87Sr/86Sr measured in the Aral Sea

water is used in this study to represent the Amu Darya signal (Section 3.4.1.4).

Figure 4.4: Geological map of the Amu Darya and Syr Darya catchment area represented in solid
black lines. The former course of Amu Darya is shown by blue dashed lines. Dashed black lines show
the present-day boundary of the Aral Sea. Colours represent the geological age of the deposits; Jurassic
(Blue); Cretaceous (green), Paleogene (orange), Neogene - Quaternary (yellow), magmatic, volcanic
rocks (red and reddish-blue). Map based on the International Geological Map of Europe IGME5000.

In contrast, to its current northern course into theAral Sea, during the Late Pliocene and Pleistocene,

Amu Darya flowed on a more westerly path across the lower Kara Kum Desert and reached the

Caspian Sea north of the Kopet Dag escarpment (Figure 4.4). This former course of Amu

Darya provided an additional catchment area, which currently is filled with Neogene - Quaternary

sedimentary deposits. Brunet et al. (2017) reviewed the evolution of the Amu Darya Basin and

showed that the palaeo Amu Darya river during its former course incised the Paleogene and

Cretaceous deposits. These are predominantly clastics with some carbonates and anhydrites. The

erosion of carbonates and anhydrite sediments by the AmuDarya during its former coursemay have

resulted in the river water with a lower 87Sr/86Sr. However, constraining this value for palaeo Amu

Darya, with it’s headwaters draining radiogenic western Himalayas and river channels draining

carbonate deposits, is not within the scope of this study. Present-day values for the Amu Darya

deduced from the Aral Sea samples (Chapter 3) were used in the model.
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In the following result chapters, equations 4.1 - 4.7 are adapted and modified for different connec-

tivity configurations to help explain the observed 87Sr/86Sr and salinity in the Black Sea and the

Caspian Sea during the last 3 Ma. These chapters provide further discussions on the box model,

and the implications of the modelling results.





89

Chapter 5

Strontium isotope constraints on
early Pleistocene Caspian
connectivity

Constraining the timing of connections between drainage basins is critical for understanding the

rates of biological adaptation. This chapter focuses on the land-lockedCaspian Sea, which contains

endemic fauna and species that have close living relatives in the coastal and estuarine waters of

the Arctic Ocean. Although the Caspian Sea experienced a complex connectivity history with

the adjacent Black Sea and Mediterranean Sea as well as the Arctic Ocean, the timings of these

connections is highly debated. This chapter explores the Early Pleistocene connectivity history

between the Caspian, the Black Sea and the Arctic Ocean by evaluating the Sr isotope ratio of

fossil ostracods from the Goychay (Caspian Sea) and Guria (Black Sea) sections. In particular,

this chapter will answer research question 4 and will also address research questions 5 and 6

outlined in Section 1.6.2;

4. Does the geochemical system suggest a Caspian connection to the Arctic Ocean and if so,

when did this connection occur?

5. How did the Sr isotopic ratio evolve in the Black and Caspian seas over the last 3 million

years and what is its implication for the Quaternary connectivity history of the two basins

to each other and the open ocean?

6. What was the nature of connection (one way flow or two way exchange) between the Black

Sea, Caspian Sea and the open ocean during the Pleistocene?
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This chapter was written with intention to submit to Geology. However, just prior to submission,

micropalaeontological analysis performed on the Gurian sections by L. Rausch and M. Stoica

(University of Bucharest) revealed ostracod assemblages of late Miocene age. This contradicts

the published age model (Kirscher et al., 2017) for the section, which suggested sediments were

of Pleistocene age. Together with the co-authors, it was decided that the submission of the paper

should be postponed until there is more certainty about the correct age model for the Gurian

section. This chapter presents the Sr isotopic data from the Gurian section in accordance with

the published age model representing Pleistocene Black Sea by Kirscher et al. (2017). However,

implications of a possible late Miocene age for the Gurian data on the connectivity history

between the Black Sea and the Caspian Sea will be further discussed in Chapter 6.

The age model for the Goychay section was provided by S. Lazarev, Utrecht University

and the micropalaeontological analysis, and interpretation of salinity constraints for the Caspian

Sea was provided by Prof. M. Stoica and L. Rausch, University of Bucharest. The age model

and the ostracod assemblage and distribution chart presented in this chapter are also included in

Lazarev et al. (2019):

S. Lazarev, E. L. Jorissen, S. van de Velde, L. Rausch, M. Stoica, F. P. Wesselingh, C.

G. C. van Baak, T. A. Yanina, E. Aliyeva, W. Krijgsman (2019)Magneto- biostratigraphic age

constraints on the palaeoenvironmental evolution of the South Caspian Basin during the

Early - middle Pleistocene (Kura Basin, Azerbaijan), Quaternary Science Reviews, 222, p.

105895.

5.1 Introduction

Today, the Caspian Sea harbours species whose sister taxa occur in coastal and estuarine waters of

the Arctic Ocean (e.g. Audzijonyte, 2005; Bowman and Long, 1968; Väinölä, 1995; Väinölä et al.,

2001) suggesting a Caspian connection to the Arctic Ocean in the past resulting in the transfer of

these polar elements in the Caspian. The only geochemical study that implies a Caspian-Arctic

connection is a published Pliocene - Early Pleistocene 87Sr/86Sr record from the Caspian Sea

by van Baak et al. (2019). These authors measured the 87Sr/86Sr of Caspian Plio-Pleistocene
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ostracod samples from the Jeirankechmez section (Figure 5.1) and attributed the rapid increase

in 87Sr/86Sr and presence of cold-water foraminifera between 2.7 and 2.4 Ma to an increased

connection between the Caspian and Black seas with additional marine influx from the Arctic

Ocean (Figure 1.7D). However, there is also an alternative potential fluvial source of elevated

radiogenic 87Sr/86Sr; the Amu Darya river. Amu Darya currently drains the western Himalayas

and enters the Aral Sea but previously deposited deltaic sediment on the eastern margin of the

South Caspian Basin throughout the Plio–Pleistocene (Abreu and Nummedal, 2007). Although

there are no direct Sr isotopic measurements for the Amu Darya River, the radiogenic signal of the

Aral Sea water, which Amu Darya currently drains into, reflects the Sr isotopic ratio of the Amu

Darya river (Chapter 3). This river could therefore also account for the high Sr isotope ratios in

the Caspian Basin.

This chapter combines new 87Sr/86Sr data ofmodernwater sampleswith those from the sedimentary

archive of the Black Sea and the Caspian Sea. Together with salinity constraints from Caspian

fossil assemblages, the87Sr/86Sr is incorporated in a numerical box model to constrain the relative

contributions of the three possible water sources, Black Sea, Amu Darya and Arctic Ocean, to the

Caspian basin and their connectivity between 2.6 and 1 Ma.

5.2 Methods

Water samples were collected from the Black Sea, Caspian Sea, upstream Kura river, and Aral

Sea (Figure. 5.1, Table 2.1). Early Pleistocene Caspian sediment samples were collected from the

Goychay section (Section 2.1.2.4) and the Black Sea samples were collected from Guria, Georgia

(Section 2.1.2.1) and DSDP core 380A (Figure 5.1, Table 2.2). Comparison is made with two

existing Caspian records from Jeirankechmez (van Baak et al., 2019) and Karagoush Mountain

section (Page, 2004).

Samples ages were calculated assuming constant sedimentation rates between tie-points identified

in the following age models: Goychay (Lazarev et al., 2019); Guria, (Kirscher et al., 2017); DSDP

380A (van Baak et al., 2016a). Page (2004) used chemostratigraphic correlation to identify the

boundary between Akchagylian and Apsheronian (1.8 Ma) at 100 m stratigraphic heights in the

Karagoush Mountain section. Page (2004) obtained a 40Ar/39Ar volcanic ash date of 1.93 Ma from

the sample taken at 36 m above the base of the section. Using these two tie-points, a sedimentation
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Figure 5.1: Location map of the study sites; Goychay, Jeirankechmez, Karagoush, Guria and DSDP
380A. Water samples were collected from the Black Sea, Caspian Sea, Kura River, and the Aral Sea.
Pale blue area shows the palaeogeographic extent of the Caspian Sea during the Akchagylian period,
with deep water shown in darker blue (modified from Vinogradov, 1967). Pale brown area indicates
topographic highs in the region. Dotted blue lines indicate former course of the Amu Darya (AD). Red
dotted arrows indicate possible pathway for the Caspian-Arctic connection.

rate of about 46 cm/ka was calculated. Page (2004) also indicates that the top of the section lies

at 0.99 Ma, but the basis for this is not clear. Therefore, I use the same sedimentation rate for the

samples younger than 1.8 Ma and calculate the age of each sample throughout the section.

Semi-quantitative micropalaeontological analysis of 46 sediment samples was conducted on the

fossil ostracods (Section 2.3). Sr isotopic ratios were determined for 78 samples from the Goychay

section and 24 samples from the Guria section following procedure outlined in Section 2.2.3. For

details regarding the sampling method and analysis, refer to Chapter 2.

The 87Sr/86Sr of water in a lacustrine or marginal marine basin is a function of the discharge, Sr

isotopic ratio and concentration of the contributing waters. The Early Pleistocene Caspian’s input

fluxes were investigated by integrating this Sr relationship using a box-model modified from Topper
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et al. (2011) and Modestou et al. (2017). Present-day hydrologic fluxes, fluvial Sr concentration

and 87Sr/86Sr were used (Table 4.1) because Early Pleistocene values are not available.

5.3 Results

5.3.1 Sr isotopic ratios

The Sr isotopic measurements from the Goychay and Guria sections are shown in Figure 5.2 and

are listed in Table C.1 and C.3. Sr isotope data from Early Pleistocene Black Sea samples (0.70831

– 0.70868) have substantially lower 87Sr/86Sr than present-day Black Sea water samples (0.709143

± 0.000008; Figure 5.2). Variation between samples is relatively small, indicating that the Black

Sea had a stable 87Sr/86Sr throughout this period. Most of the Caspian 87Sr/86Sr data from the

Karagoush (Page, 2004) and Jeirankechmez sections (van Baak et al., 2019) lies within a smaller

interval of the Black Sea range (Figure 5.2) which is higher than present-day Caspian Sea values

(0.708191 ± 0.000009; Figure 5.2). In contrast, the 87Sr/86Sr record of the more marginal Caspian

section at Goychay has a much greater range and fluctuates substantially above and below the Early

Pleistocene Caspian and Black Sea ranges (Figure 5.2). The lowest values are substantially lower

than the modern Caspian Sea ratio, but are similar to those measured for the Kura river (0.707688

± 0.000004; Figure 5.2). At its highest, the Goychay 87Sr/86Sr record approaches coeval open

ocean values and/or the values measured on Aral Sea water samples (0.709214 ± 0.000006; Figure

5.2), paralleling coeval deviations to higher ratios in the Jeirankechmez Section (Figure 5.2).

5.3.2 Micropalaeontology

The outcome of micropalaeontology is shown in Figure 5.3. The lowermost part of Unit 1 (between

77.5 m and 99.4 m) contains the foraminifera Ammonia sp. and is dominated by an ostracod

assemblage that comprises Cyprideis torosa, Loxoconcha eichwaldi, L. petasa, L. babzananica,

Eucythere naphtatscholana, Tyrrhenocythere bailovi, Amnicythere ex. gr. andrussovi, A. cymbula,

A. monotuberculata, A. alveotuberculata, and Cytherissa bogatschovi. This assemblage suggests

elevated salinities and indicates mesohaline conditions (5 - 10 g/kg). The rest of the Goychay

section contains a smaller number of taxa and combined with the disappearance of Ammonia sp.

suggests oligohaline environments (1 - 5 g/kg), which are interbedded with intervals dominated
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mainly by Ilyocypris bradyi, fragments and juveniles of Candona sp., and charophytic gyrogonites

indicating freshwater conditions. The section also contains intervals where no ostracods were

present within the sediment.

Microfossil data from Goychay can therefore be categorised into four distinct groups: (1) ostracods

and foraminifera that indicate a salinity range of 5 – 10 g/kg (mesohaline conditions); (2) ostracod

assemblages of 1 – 5 g/kg salinity (oligohaline conditions) (3) ostracod assemblages of salinities

<1 g/kg (freswater conditions); and (4) barren intervals (Figure 5.3). Low 87Sr/86Sr data in the

Goychay Section are always associated with microfossils that indicate freshwater conditions and

only mid-high 87Sr/86Sr are associated with oligo and mesohaline assemblages (Figure 5.2).

5.4 Discussion

The consistency of the Sr isotope records measured on the Jeirankechmez and Karagoush sections

suggests that they both reflect the Caspian’s Sr isotope evolution throughout the Early Pleistocene.

By contrast, the Goychay Section, which lies further from the present-day Caspian coast in the Kura

catchment (Figure 5.1), is much more variable with consistently lower values after 1.9 Ma. The

lowest values resemble those measured on modern Kura river water. The low 87Sr/86Sr samples

contain freshwater ostracod assemblages indicating lower salinities than coeval Jeirankechmez

samples at around 2.04 - 2.28Ma (Figure 5.2). These low 87Sr/86Sr values and freshwater conditions

are therefore, most likely to be the result of local river runoff as a result of progressive isolation

of this western margin from the main Caspian Basin. This isolation, which is also reflected in the

increasingly continental facies (Lazarev et al., 2019), is probably driven by on-going formation of

the Kura fold and thrust belt (Forte et al., 2013).

Although the low 87Sr/86Sr ratios in Goychay indicate that this marginal area became permanently

isolated from the main Caspian Basin around 1.9 Ma, earlier parts of its record has substantially

higher 87Sr/86Sr and salinities that broadly parallel the values observed in the Jeirankechmez

Section. These 87Sr/86Sr values are higher than the present-dayCaspian Sea (Figure 5.2). Today, the

Caspian is dominated by freshwater input from the Volga and this is reflected both in the 87Sr/86Sr

and the strong salinity gradient from north (∼1 g/kg) to south (∼12 g/kg). Minor freshwater

contributions from western (Sulak, Kura and Terek) rivers have substantially lower ratios, while

Iranian rivers are slightly higher than the Volga (Figure 5.2). The input of subterranean water,
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(g/kg)

1.0

Figure 5.3: Ostracod distribution pattern from the Goychay section, Azerbaijan along with estimated
palaeosalinity and palaeoenvironment represented by the ostracod assemblages.

which today has a much higher Sr isotope ratio and a Sr concentration several orders of magnitude

higher than present-day Caspian river water (Clauer et al., 2000), raises the Caspian’s Sr isotope
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ratio above the dominant Volga value. However, although complete dominance of subterranean

waters could theoretically account for the median Early Pleistocene Caspian 87Sr/86Sr (0.70848)

observed, it could not have generated the values above 0.7086 measured on both Goychay and

Jeirankechmez samples (Figure 5.2). The Caspian must therefore have had an additional, more

radiogenic, water source during the Early Pleistocene at least between 2.4 - 2.1 Ma.

One possibility is that this radiogenic signal is derived from the Amu Darya river influencing the

Caspian in the past (Section 3.4.1.4) and therefore could have elevated the Sr isotope ratio of the

Early Pleistocene Caspian Sea above its present-day ratio and that of the groundwater input.

An alternative source of radiogenic Sr is ocean water, which could have reached the Caspian either

via an Arctic connection or from the Mediterranean via the Black Sea. The Black Sea Sr isotope

record tests this latter hypothesis. Modern Black Sea water has a high 87Sr/86Sr, which is similar

to oceanic value (Figure 5.2) reflecting the influence of Black Sea-Mediterranean exchange. Influx

through the Bosporus today is ∼2 x 1011 m3/yr. Modelling the hydrologic budget of the Black Sea

illustrates that even with a Mediterranean flux of one order of magnitude lower, the oceanic Sr ratio

would still dominate the Black Sea signal because of its high Sr concentration (Appendix C.1). By

contrast, the 87Sr/86Sr of Early Pleistocene Black Sea samples are substantially lower than coeval

ocean water, suggesting that there was little or no Mediterranean-Black Sea exchange at the time.

Consequently, an ocean water Sr isotope signal cannot have reached the Caspian via the Black Sea

during the Early Pleistocene.

A Caspian connection to the Arctic Ocean has been advocated on the basis of genetic analysis

of some Caspian Sea taxa (e.g., the Caspian seal and crustacean genera) whose closest relatives

occur today in the coastal and estuarine waters of the Arctic Ocean (e.g. Davies, 1958; Väinölä

et al., 2001). However, the timing and number of these biologically-determined connections are

keenly debated and include the Late Miocene (Mclaren, 1960), Pliocene (Árnason et al., 2006),

late Pliocene - Early Pleistocene (2 – 3 Ma; Palo and Väinölä, 2006; Richards et al., 2018) to as

recent as 1 Ma (Fulton and Strobeck, 2010). The Sr isotopic ratio from the earliest part of the

Jeirankechmez Section demonstrates the onset of an episode of Caspian-Arctic connection at 2.7

Ma (van Baak et al., 2019), shortly before the higher Sr isotope ratios observed between 1.96 - 2.4

Ma (Figure 5.2).

Based on micropalaeontological evidence for falling salinity (Richards et al., 2018), van Baak et al.
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(2019) suggested that Arctic input ceased at ∼2.4 - 2.5 Ma, which was too early to account for these

high Sr data. However, declining salinity, even with continued input from the Arctic, can also be

achieved through salt export via outflow from the Caspian. The consistency between the 87Sr/86Sr

of the Black Sea and the main Caspian Basin sections (Figure 5.2) suggests a connection between

the two during the Early Pleistocene. Both, two-way flow between these two basins and one way

flow from the Caspian Sea into the Black Sea can explain the observed 87Sr/86Sr ratio (Figure

5.2). Given the narrower range of Caspian data relative to the Black Sea (Figure 5.2), one-way

flow from the Caspian to the Black Sea is a more likely scenario to explain the Sr isotope datasets.

This channel could have provided both a conduit for salt export from the Caspian to Black Sea and

a corridor for the observed faunal exchange between the two basins at this time (e.g. Krijgsman

et al., 2019 and references therein).

qAC

qCB

Black Sea Caspian Sea

A
rctic O

cean

EC - PC RC
Amu Darya (AD)

Groundwater (GW)

Figure 5.4: Spatial illustration of model configuration in a steady state situation with inflows into and
outflow from the Caspian Sea.

To evaluate whether Arctic input and/or Amu Darya discharge influenced the Caspian Sea during

the Early Pleistocene, the Caspian’s hydrologic budget was constrained using a box model. The

Caspian basin is treated as one box with its water budget regulated by various inflows into and

outflows from the basin. There are two possible pathways connecting the Early Pleistocene Caspian

basin to the Arctic Ocean in the north; via palaeo Volga channels or via former Turgay Seaway

(Richards et al., 2018). Given the current topography of these areas relative to the global sea

level, it is more likely that there was one-way flow from the Arctic Ocean into the Caspian basin.

Although a two way flow between the Caspian Sea and the Arctic Ocean is also possible, but in

this scenario, the outflow from the Caspian Sea to the Arctic Ocean has no impact on the 87Sr/86Sr

and the salinity of the Caspian Sea. The additional water influx from the Arctic Ocean and the

Amu Darya is compensated by the large increase in Caspian surface area and hence resulting in the
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outflow into the Black Sea, which at the time was not connected to the Mediterranean Sea. If we

consider the Caspian basin to be at constant sea level, then the water volume conservation equation

results in

qCB = qAC + RC + GW + AD + PC − EC (5.1)

where, qCB refers to one way flux from the Caspian into the Black Sea and qAC refers to the

one way flux from the Arctic Ocean into the Caspian Sea. RC , AD, GW, EC and PC refer to the

total present-day fluvial discharge (Volga, western and southern rivers), Amu Darya discharge,

groundwater discharge, evaporation and precipitation of the Caspian Sea, respectively. While all

seven fluxes have an effect on the water budget, only the first five changes the Sr isotopic ratio of

the Caspian basin. Therefore, Sr concentration, and Sr isotopic ratio of the Caspian basin can be

determined as follows, with subscript referring to Arctic (A), Caspian Sea rivers (RC), Amu Darya

(AD), Groundwater (GW) and Caspian Sea (C).

Sr concentration:

[Sr]C =
[Sr]A ∗ qAC + [Sr]RC ∗ RC + [Sr]AD ∗ AD + [Sr]GW ∗ GW

qAC + RC + AD + GW
(5.2)

and Sr isotopic ratio:

[87Sr/86Sr ]C =

(
[87Sr/86Sr ]A ∗ [Sr]A ∗ qAC + [87Sr/86Sr ]RC ∗ [Sr]RC ∗ RC

+ [87Sr/86Sr ]AD ∗ [Sr]AD ∗ AD + [87Sr/86Sr ]GW ∗ [Sr]GW ∗ GW

)
[Sr]A ∗ qAC + [Sr]RC ∗ RC + [Sr]AD ∗ AD + [Sr]GW ∗ GW

(5.3)

If the Arctic input is the only source of salt in the Early Pleistocene Caspian basin, salinity of the

basin is determined by

[S]C =
[S]A ∗ qAC

qCB
(5.4)

The box model was run with stepwise increases in the input from the Arctic Ocean and Amu Darya

into the Caspian Sea and constrained using the 87Sr/86Sr and the salinity estimates provided by

ostracod assemblages from Goychay and Jeirankechmez. Modelling output shows that both Arctic

and Amu Darya input increase the 87Sr/86Sr of the Caspian, but only an Arctic influx increases

the salinity (Figure 5.5). The lack of salinity variation associated with increased 87Sr/86Sr values

between 2.5 and 2.27 Ma suggests that oceanic input cannot be the sole driver of higher 87Sr/86Sr.
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Figure 5.5: Model generated contour lines for salinity (coloured dashed lines) and 87Sr/86Sr (grey
solid lines) in the Caspian Sea with varying input from the Arctic Ocean and Amu Darya. Rectangular
box represents the zoomed in area. Salinity and 87Sr/86Sr data from the Goychay and Jeirankechmez
falls within the colour shaded area representing different salinity ranges: 5 - 10 (blue), 1 - 5 (green), <1
(red) g/kg. The black dot indicates the 87Sr/86Sr of 0.70848 (the Early Pleistocene Caspian Sea median
value) and salinity of 7 g/kg which results from an Amu Darya flux of 4.6 x 1010 m3/yr and an oceanic
influx of ∼9.2 x 109 m3/yr .

Consequently, the paired salinity-Sr isotope data between 2.6 and 1.96 Ma probably reflects inflow

from both Arctic and Amu Darya (green and blue; Figure 5.5). With an Amu Darya flux of 4.6

x 1010 m3/yr , which is similar to its pre-irrigation discharge (Asarin et al., 2010), an oceanic

influx of only ∼9.2 x 109 m3/yr is required to increase 87Sr/86Sr from the present-day Caspian

value to the Early Pleistocene median value of 0.70848 (Figure 5.2 and 5.5) and salinities >5

g/kg. The episodic higher Sr isotope values observed in Goychay and Jeirankechmez sections

between 2.4 and 1.96 Ma (Figure 5.2) require an order of magnitude greater influx from both these

sources (Figure 5.5). Given the observed 87Sr/86Sr -salinity relationship in the Caspian record, it is

clear that the Amu Darya flowed into the Caspian throughout the Early Pleistocene. In addition, an

oceanic connection to the Arctic contributed a small influx at the beginning of the Early Pleistocene

(Richards et al., 2018; van Baak et al., 2019), which may have continued until 1.96 Ma. Additional

salinity constraints on younger samples from the main Caspian Basin are required to determine the
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duration of the Arctic-Caspian connection.

In summary, 87Sr/86Sr measurements from the modern Black Sea, Caspian Sea, and Aral Sea,

together with the Early Pleistocene Sr isotopic record from the Black and Caspian seas was

presented in this study. The Caspian received water from both the Arctic Ocean and Amu Darya

during the Early Pleistocene and is likely to have over-spilled into the Black Sea. This connectivity

record provides a framework against which faunal distributions can be used to evaluate the timing

and drivers of rapid evolutionary change.
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Chapter 6

The connectivity history of the
Black Sea over the last 1.2 million
years

The hydrological budget of the Black Sea is sensitive to global climate variation and tectonics as

they control its fluvial input and its connection to the Mediterranean Sea. Changes in these drivers

have resulted in the Black Sea experiencing multiple connection events with the Mediterranean

and Caspian seas throughout the Quaternary. However, the interpretation of existing, largely

faunal evidence for these connectivity events is contradictory, lacks precise timing and the records

are rarely continuous. This chapter provides a continuous record of the Black Sea’s connectivity

history over the last 1.2 Ma by examining the Sr isotopic ratios measured on fossil ostracods and

salinity estimates based on dinoflagellate cysts from the DSDP Site 379A. More explicitly, the

results from this chapter will address the research questions 5, 6 and 7 outlined in Section 1.6.2;

5. How did the Sr isotopic ratio evolve in the Black and Caspian seas over the last 3 million

years and what is its implication for the Quaternary connectivity history of the two basins

to each other and the open ocean?

6. What was the nature of connection (one way flow or two way exchange) between the Black

Sea, Caspian Sea and the open ocean during the Pleistocene?

7. Does the geochemical evidence of the connectivity and isolation between the Black Sea,

Caspian Sea and the open ocean match the faunal evidence?
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This chapter is written with intention to submit to Earth and Planetary Science Letters. The

version presented here differs from the manuscript as parts of introduction are included in

Chapter 1 and results and discussions regarding 87Sr/86Sr of the modern Black Sea water and

the fluvial sources are included in Chapter 3. The discussion regarding the 87Sr/86Sr of the

Aral Sea water used for constraining Amu Darya signal is included in Chapter 3. Analysis and

interpretation of dinocyst assemblages are provided by T. M. Hoyle, Utrecht University. The Sr

isotopic data for the last 400 ka presented in this chapter is also included in PhD thesis of T. M.

Hoyle.

T. M. Hoyle, 2019, Biotic change and landlocked seas: ecosystem responses to cli-

mate and sea level variability in the Plio-Pleistocene of the Pontocaspian basins, PhD thesis,

Utrecht University.

6.1 Introduction

Today, the Black Sea is a brackish water basin with a restricted connection to the Mediterranean

Sea and the recipient of substantial continental runoff (Jaoshvili, 2003; Özsoy and Ünlüata, 1997).

Its connection with the Mediterranean Sea is governed by the interplay between changes in sill

geometry at theBosporus, which is controlled by local tectonics associatedwith theNorthAnatolian

Fault (NAF), and eustatic sea level. Because its catchment is ∼five times the area of the basin

itself (Figure 6.1), the Black Sea also responds quickly to changes in climate that modify its fluvial

discharge. Consequently, subtle changes in both climate and tectonics produce a discernible impact

on the hydrology of the Black Sea, resulting a history characterised by episodic isolation from,

and reconnection with, the adjacent Mediterranean and Caspian Sea basins (e.g., Badertscher

et al., 2011; Jones and Simmons, 1997; Schrader, 1979; Svitoch et al., 2000; Zubakov, 1988).

Records of these connection and isolation events in the Black Sea therefore provide a rich archive

of information from which regional palaeoclimate and tectonics can be reconstructed.

Previously, connectivity and isolation events in the Black Sea have mainly been studied using

paleontological methods (e.g., Buyukmeric and Wesselingh, 2016; Yanina, 2012, 2014; Zenke-

vitch, 1963). Faunal-based connectivity studies rely on the assumption that similar or identical

assemblages in the different basins occur at the same time, when connected. Although physical
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connections between basins facilitate faunal exchange, the evolution of their biodiversity responds

to ecological conditions, which is primary controled by basin hydrography (evaporation – precipi-

tation, river discharge, circulation etc.), not the connectivity alone. Additionally, fauna do not have

an immediate evolutionary response to the changes in their environmental condition. As a result,

faunal biodiversity as a primary indicator of the nature and timing of connectivity episodes in

the Black Sea lacks precision and commonly results in conflicting interpretations (e.g., Krijgsman

et al., 2019; Stoica et al., 2016).

Several authors have used a variety of geochemical approaches, including Sr and oxygen isotopes,

to study Black Sea connectivity, particularly during the Late Pleistocene (e.g., Bahr et al., 2006,

2008; Constantinescu et al., 2015; Major et al., 2002, 2006; Piper and Calvert, 2011; Ryan,

1997) and during previous glacial termination at ∼128 kyr (Wegwerth et al., 2014). The longest

Pleistocene archive of geochemical data for the Black Sea is the 700 ka oxygen isotopic record

(δ18O ) of well-dated speleothems collected from Sofular Cave, located 10 km from the southern

coast of the Black Sea (Figure 6.1, Badertscher et al., 2011). Here, high δ18O values indicate

Mediterranean incursions, while low values reflect influx from the Caspian Sea. Although this

study identifies incursion events from extreme δ18Odata, most of the record comprises intermediate

values that are difficult to interpret (Figure 1.7). Additionally, speleothems primarily record the

isotopic composition of local precipitation rather than being a direct measurement of Black Sea

water (Section 1.5.3.2.1).

The chapter provides the 87Sr/86Sr of the Black Sea over the last 1.2 Ma, in order to reconstruct

the Black Sea’s hydrologic history over a much longer period than these previous studies (∼1 Ma).

This chapter also uses Sr isotopes to monitor the Black Sea response not just to Mediterranean

connection and isolation, but to all its major water sources, which, on this timescale, includes the

Caspian Sea. In a multi-endmember systemwhere more than one combination of source waters can

result in the same Black Sea Sr isotope ratio, we use new dinocyst- and published diatom-derived

palaeosalinity (Schrader, 1978) as an additional independent variable to discriminate between

different modelled source water solutions. Our Sr isotope record is constructed by analysing

ostracod valves from the core sediments of the Deep Sea Drilling project (DSDP) Hole 379A

(hereafter referred as core 379A) in the centre of the Black Sea (Figure 6.1).
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Figure 6.1: Map of the Black Sea and the Caspian Sea with section and core locations for this chapter.
The pale red area shows the catchment area of the Black Sea basin. Dashed blue line show the course
of palaeo Amu Darya river and dotted black line indicate the extent of ice sheet during the Late Saalian
(∼160 – 140 ka; Svendsen et al., 2004).

6.2 Material and methods

A total of 72 sediment samples (40cc each) were taken from the core 379A. Among them, 21

samples were barren of ostracods and 19 samples contained too few ostracod valves (Table D.1)

and as such the Sr isotope analysis (Section 2.2) were carried out on 32 samples ranging in age

between 28.7 ka and 1178 ka.

Among the sediment samples collected from core 379A for dinoflagellate cyst (dinocysts) analysis,

6 samples were completely barren. In total, 32 samples, which also included samples analysed

for Sr isotopes, were processed for dinocyst assemblages following the procedure outlined in

Section 2.4. Seven samples that contained dinocysts had no ostracods and therefore could not

be analysed for Sr isotopes. Salinity estimates based on dinocyst assemblages are provided by T.

Hoyle (Appendix D).

The sensitivity of 87Sr/86Sr and salinity of the Black Sea to different input sources is tested with a

numerical boxmodel outlined inChapter 4. Comparing the observed 87Sr/86Sr and palaeosalinity to

the model results allows to quantify the past conditions of the freshwater budget and the inter basin

connections. In the timescale of 1.2 Ma, the input sources to the Black Sea included continental

run-off, Mediterranean Sea and input from the Caspian Sea. All possible combinations of these
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three input sources in the Black Sea can be represented in four different connectivity configuration

and are shown in Figure 6.2 and are listed below;

A. Black Sea connected toMediterranean Sea; Input fromMediterranean Sea and fluvial sources

B. Isolated Black Sea; Input only from fluvial sources

C. Black Sea connected to Caspian Sea; Input from fluvial sources and Caspian Sea (with and

without Amu Darya river)

D. Black Sea connected to Caspian andMediterranean seas; Input fromfluvial sources, Mediter-

ranean Sea and Caspian Sea (with and without Amu Darya river)

The equations for each scenario used in the model are provided in Appendix D.

Figure 6.2: Schematic diagrams showing four connectivity scenarios between the Black Sea, Caspian
Sea and the global ocean that are used in the modelling.

Today, the Mediterranean connection results in inflow of saline water at depth over the Bosporus

Strait, while lower density fresher water caps the Black Sea and flows out as a surface current.

This results in a salinity structure that increases with depth, with surface waters of 17 - 18 g/kg

and deeper water salinities of 22 - 24 g/kg (Kostianoy and Kosarev, 2008). However, even when

totally isolated, the Black Sea retains salt from its last oceanic connection as this can neither be

precipitated nor flushed out of the system. Consequently, when the Black Sea is fed only by rivers,
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its salinity is low, but not entirely fresh (Yanchilina et al., 2017). On the basis of diatoms, Schrader

(1978) estimated salinities between 0 and ∼8 g/kg during the last glacial lake phase when the Black

Sea was isolated from the Mediterranean because of low eustatic sea level (Yanchilina et al., 2017).

A salinity of 8 g/kg is therefore, assumed in the model for the Black Sea when not connected to

the Mediterranean Sea. Similarly, Caspian Sea salinity of 12 g/kg is assumed for the model, given

its current salinity.

6.3 Results

6.3.1 87Sr/86Sr of the DSDP 379A

The Sr isotope ratios measured on the DSDP core 379A are presented in Figure 6.3 and Table

D.1. All 87Sr/86Sr values are lower than the range of coeval oceanic values (Figure 6.3, McArthur

et al., 2012, 0.709125 – 0.709175). The record shows an overall trend towards higher values with

time, but does not reach the present-day Black Sea value (Figure 6.3). The Sr isotope record is

characterised by periods of relatively stable Sr isotope ratios punctuated by short-lived excursions

in 87Sr/86Sr towards higher values (Figure 6.3).

6.3.2 Dinocyst assemblages

The dinocyst assemblages are divided into six species groups (Figure 6.3) that are key indicators of

changes in conditions within the upper water column; 1) Pyxidinopsis psilata (all variants of Hoyle

(2019), 2) Low salinity dinocysts with Paratethyan lineage (= Komewuia? sp. of Soliman and

Riding (2017), Caspidinium rugosum, Pterocysta cruciformis, cysts of Gonyaulax apiculata, Im-

pagidinium inaequalis and Impagidinium spongianum), 3)Pyxidinopsis “TW” (described byHoyle

(2019), 4) Spiniferites cruciformis (all variants), 5) Spiniferites sp, and 6) Marine indicators (=

Lingulodinium machaerophorum (processes >10 µm), Operculodinium centrocarpum sensu Wall

and Dale (1966), Tectatodinium pellitum, Pentapharsodinium dalei, Nemotophaeropsis labrynthus

and Polysphaeridium zoharyii). Ecological niches of these six species groups are discussed below.
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6.3.2.1 Pyxidinopsis psilata

Pyxidinopsis psilata is encountered in abundances up to 4% in surface sediments of the Black Sea

and Marmara Sea, in waters with surface salinity of ∼13 g/kg in the Caspian Sea and ∼18 g/kg in

the Black Sea (Mudie et al., 2017). However, it does not form a major part of these assemblages. P.

psilata (documented as Tectatodinium psilatum) shows abundances over 75% in recent sediments

from the Baltic Sea, with salinities around 7 g/kg, but does not generally occur in waters with

salinity below 3 g/kg (Dale, 1996; Kouli et al., 2001).

In the Black Sea geological record, relative abundances of P. psilata decrease from about 37% at

8.25 ka to <4% in the mid-late Holocene, across a period when an isolated Black Sea became

connected with the Mediterranean (Verleye et al., 2009). This supports the interpretation of P.

psilata as a cyst that, although formed under a range of salinities, only becomes dominant in

systems where salt content is low. It has also been suggested that P. psilata is a species that forms

"extraordinary blooms" only in certain years, perhaps in reaction to enhanced nutrient supply

(Brenner, 2005). In summary, assemblages dominated by P. psilata are considered to represent

surface salinities somewhere below 10 g/kg, although the exact manner in which this organism

responds to environmental drivers is actually not well understood.

6.3.2.2 “Low salinity dinocysts”

Of the low salinity dinocysts listed here, only Caspidinium rugosum, cysts of Gonyaulax apiculata

and Impagidinium inaequalis have been recovered from surface sediments (Mudie et al., 2017).

C. rugosum is most common (6%) in Caspian surface sediments at salinities of ∼13 g/kg but

also appears (>2%) in the Black Sea surface sediments at ∼17–18 g/kg and rarely in the Volga

andDanube deltas at <2 g/kg (Mudie et al., 2017). Appearance ofC. rugosum at higher abundances

Figure 6.3: The 87Sr/86Sr record (coloured circles) and dinocysts assemblages (grey bars) from the
DSDP cores 379A along with the coeval oceanic value (dark blue line, McArthur et al., 2012) over
the last 1.2 Ma. The coloured dots represent the five data groups, i.e. 87Sr/86Sr values higher than
0.7089 (blue), values between 0.7088 and 0.7089 (green), values about 0.7087 (yellow), values about
0.7086 (orange), and 87Sr/86Sr values lower than 0.7085 (red). Internal uncertainty for each individual
87Sr/86Sr measurement is between 4 and 38 ppm and external uncertainty on 36 repeat measurement on
NIST 981 standard is ∼8 ppm. Pale red bar represent the coeval 87Sr/86Sr of the Caspian Sea from the
Hajigabul (Chapter 7) and Karagoush Mountain section (Page, 2004). Model output range of 87Sr/86Sr
for different connectivity scenarios are indicated at the bottom of the figure. The right hand side shows
the connectivity interpretation based on the 87Sr/86Sr , salinity estimates (dinocysts - this study and
diatoms - Schrader, 1979), and model outputs.
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with P. psilata in sediments deposited in the deeper past could suggest a preference for salinities

below 10 g/kg, but this is purely speculative. I. inaequalis is found only rarely in the Volga delta

and cysts of Gonyaulax apiculata occur rarely in surface sediments in coastal lakes in “fresh”

waters (although quantification is not made).

Ecological tolerances for other “low salinity” taxa are inferred from their association with “low

salinity” fossil assemblages in the geological record, in particular the lateMiocene Pannonian Basin

and the late Quaternary Black Sea (Cziczer et al., 2009; Magyar and Geary, 2012; Rochon et al.,

2002; Soliman and Riding, 2017). Impagidinium spongianum and Komewuia? sp. of Soliman and

Riding (2017) both occur in the Miocene Pannonian basin with inferred “low salinities”, although

the exact salt content is poorly constrained (Soliman and Riding, 2017). Given the “Caspian

like” faunas associated with this setting we can potentially infer that salinities were somewhere

below ∼12–15 g/kg (Magyar and Geary, 2012; Rochon et al., 2002). However, this value remains

speculative and interpretations should remain open to alteration in the light of developing biological

research on the ecological tolerances of the Pontocaspian fauna.

6.3.2.3 Pyxidinopsis “TW”

Pyxidinopsis “TW” (thick walled; Hoyle et al., 2019) is a robust form of the genus Pyxidinopsis

and show similarity to Pyxidinopsis psilata of Soliman and Riding (2017) (their plate V, 9–12).

However, some of the specimen also closely resemble Komewuia? sp.A and Komewuia? sp.B

from the same authors. These species are observed in sediments from the late Miocene Pannonian

Basin (Soliman and Riding, 2017) and indicate low salinity conditions.

6.3.2.4 Spiniferites cruciformis

In the present-day, Spiniferites cruciformis is most abundant in salinities of 13 – 18 g/kg (Mudie

et al., 2017). However, this range is likely artificially limited by the availability of modern sampling

locations. The combination of surface occurrences and geological records suggest that this species

can survive in salinities of 0 – 38 g/kg (Kouli et al., 2001;Mudie et al., 2017), although its abundance

appears to be severely curtailed in elevated salinities such as those of the Mediterranean, where it

is only encountered in locations that are freshened by river input (Mudie et al., 2017).

S. cruciformis is apparently capable of proliferating at the lower end of its salinity range, repre-

senting <95% of assemblages in Lake Kastoria at inferred salinity of 0 g/kg (Kouli et al., 2001).



112 Chapter 6. The connectivity history of the Black Sea over the last 1.2 million years

However, this is at odds with the <5% occurrence in fresh water from (Leroy and Albay, 2010),

and suggests that either the relationship between abundance of S. cruciformis and salinity is not

linear, or that the motile form responds readily to water parameters other than salinity (such as

temperature or nutrient availability).

6.3.2.5 Spiniferites sp.

The Spiniferites sp. include specimens from the genus Spiniferites that could not be identified

to species level. The Spiniferites sp. contains both high and low salinity tolerant species (e.g.,

Richards et al., 2018; Soliman and Riding, 2017; Sütő-Szentai, 2010) and therefore, cannot be

used to determine palaeoenvironmental conditions by itself. Its occurrence along with Spiniferites

cruciformis and with marine influence indicators, is traditionally associated with “brackish” con-

ditions, occurring today in the Mediterranean, Black Sea, Caspian Sea and Aral Sea (Mudie et al.,

2017).

6.3.2.6 Indicators of marine influence

In its marine influenced state (such as the present-day), Black Sea dinocyst assemblages tend

to be characterised by species such as Lingulodinium machaerophorum (long processed forms),

Operculodinium centrocarpum and halophytic species of Spiniferites (e.g. S. mirabilis, S. ramo-

sus/hyperacanthus, S. belerius; Marret et al. (2009) and Mudie et al. (2004, 2010, 2017)). L.

machaerophorum has a wide tolerance of salinity from ∼8 to >35 g/kg but tends to show reduced

processes in lower salinities (Mertens et al., 2009, 2012). While short processed forms can reach

maximum abundance ( 75%) at ∼13 g/kg, forms with longer processes reach maximum abun-

dances (>80%) in Black Sea only at ∼17-18 g/kg (Mudie et al., 2017). It is therefore likely that

high representation of long processed forms of L. machaerophorum, along with species such as

Operculodinium cetrocarpum and Tectatodinium pellitum, probably indicate salinities somewhere

above 15 g/kg.

In order to constrain the marine and freshwater source end-member for modelling, the above

groups are interpreted for salinity estimates. Salinity estimates used in this study are based on a

combination of culture studies (Ellegaard et al., 2002; Lewis et al., 2018), and studies relating sea

bed sediment cyst assemblages with modern sea surface conditions (Mudie et al., 2017; Zonneveld

et al., 2013). In cases where no living analogue is known, or where maximum abundances are

observed in ancient sediments, estimates of contemporary sea surface conditions are inferred from
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the geological setting and associated fossils (Baltes, 1971; Cziczer et al., 2009; Kouli et al., 2001;

Leroy andAlbay, 2010; Soliman and Riding, 2017). However, these salinity estimates are tentative,

at best, given that there is no clear understanding of the ecological tolerance of the assemblages

or that they do not exhibit linear relationship with surface salinity. As such, Pyxidinopsis psilata

is assumed to indicate surface salinities somewhere below 10 g/kg, low salinity dinocysts are

considered to indicate salinities somewhere between 12 - 15 g/kg. Spiniferites cruciformis indicates

wide surface salinity range but traditionally are associated with brackish conditions with salinities

that can be between ∼13 – 18 g/kg, Spiniferites sp., and marine influence indicators imply higher

salinity conditions likely similar to the present-day Black Sea (∼16 – 18 g/kg).

The dinocyst assemblage shows that the Black Sea was mostly dominated by Pyxidinopsis psilata

over the last 1.2 Ma with frequent periods dominated by Spiniferites sp.. Dinocyst indicators of

marine influence occur during the last 500 ka and where the abundance is 60 – 70 % at 121 and

326 ka and coincides with the high 87Sr/86Sr .

6.4 Discussion

6.4.1 Evidence of episodic Black Sea anoxia

Ostracods are bottom dwelling, environmentally and geographically diverse species (Section

1.5.3.1) and their absence in the deep sea sedimentary succession could be the result of bot-

tom water anoxia. Although anoxic bottom water conditions prevent benthic colonisation of the

Black Sea at water depths greater than 100 m, surface dwelling organisms like dinoflagellates con-

tinue to thrive. The DSDP record shows at least 5 intervals in which samples contain dinocysts but

no ostracods (104 – 125 ka, 197 ka, 220 – 251 ka, 305 – 339 ka, 406 – 432 ka; Figure 6.3) indicative

of similar oxygen stratification to that experienced by the Black Sea today. These intervals are

characterised by the presence of Spiniferites sp., (Figure 6.3) and may indicate sufficient marine

input to create anoxia in the Black Sea (Hoyle, 2019), not dissimilar to today’s configuration.

These intervals began at around 420 ka and coincide approximately with interglacial MIS 5, 7, 9,

and 11 (Figure 6.3). The DSDP record also shows 6 samples, which contained ostracods, but no

dinocysts.
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6.4.2 Possible water sources feeding the Black Sea

The recurrence of particular Sr isotope values at different depths in the core (Figure 6.3) allows us

to categorise the entire 87Sr/86Sr record into five data groups, i.e. 1) 87Sr/86Sr values higher than

0.7089 (blue), 2) values between 0.7088 and 0.7089 (green), 3) values around 0.7087 (yellow), 4)

values ∼ 0.7086 (orange) and finally, 5) 87Sr/86Sr values lower than 0.7085 (red).

87Sr/86Sr values higher than 0.7089 (blue data)

Today, the 87Sr/86Sr of the Black Sea is lower than, but close to, the open ocean’s Sr ratio

reflecting substantial input from the Mediterranean Sea. The Sr isotopic record from the DSDP

core shows that the Black Sea did not reach the present-day value over the last 1.2 Ma (Figure 6.3).

However, given that the Mediterranean is the only direct water source that has 87Sr/86Sr higher

than 0.7089, values above this Sr isotope ratio in the DSDP record can be attributed to the Black

Sea receiving some marine input, but less than today’s influx. Modelling variable input from the

Mediterranean Sea and changes in the Black Sea’s fluvial flux (scenario A) produces 87Sr/86Sr

ranging between 0.7088 and 0.709148 (Figure 6.4A) encompassing the value represented by the

blue points (87Sr/86Sr >0.7089). However, changing the flux of the Mediterranean water also

impacts Black Sea salinity. A peak in Sr isotope data at 121 ka is associated with dinocyst

assemblages indicative of marine input (Figure 6.3). Although sample at 454 ka contains no

dinocysts, diatom based salinity estimates from this part of the core suggest salinities up to 14 g/kg,

less than today and consistent with a smaller Mediterranean flux.

Although the sample at 136 ka has the closest 87Sr/86Sr to coeval ocean water, dinocyst assemblage

in this sample indicates fresh water conditions. Wegwerth et al. (2014) observed unusually high
87Sr/86Sr (up to 0.70945) at ∼131 and 133 ka in core samples collected from the southeast Black

Sea (22GC-8, Figure 6.1). The authors suggested that these values were caused by high discharge

from

the Amu Darya into the Caspian Sea, which then overflowed into the Black Sea raising its Sr

isotope ratio to values higher than coeval seawater, without raising the salinity. However, our new

measurements of Aral Sea water suggest that Amu Darya has a Sr isotopic ratio of 0.709214; too

low to account for the Black Sea measurements Wegwerth et al. seek to explain. This mismatch

is enhanced by the recognition that Amu Darya is only one of several large rivers that feed the

Caspian, the largest of which, the Volga, has a very low Sr isotope ratio (Clauer, 1998; Clauer
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Figure 6.4: Model generated salinity (grey lines) and 87Sr/86Sr (black lines) in the Black Sea with
variation in input fluxes for different connectivity scenarios used in this study. Colour shaded area
represents the range of values of the five 87Sr/86Sr data groups. Note that scenario B and C do not have
salinity contours. This is because the model is run at steady state and in these scenarios, volume and
consequently salinity remain constant.

et al., 2000). Any Caspian overflow would have had a Sr isotope ratio that reflected all these inputs

resulting in input to the Black Sea that was lower than Amu Darya alone.

An alternative explanation is based on the observation that this short-lived interval of high Black

Sea Sr isotope ratios and fresh water dinocysts coincides with the abrupt transition from the Saalian
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glacial ofMIS 6 to theMIS 5 interglacial (Figure 6.3). Much of the Dnieper catchment was covered

by huge ice lobe formed during the Saalian (Figure 6.1, Svendsen et al., 2004). This appears to

have covered almost all the carbonate rocks exposed in the Dnieper catchment (Figure 6.5) while

not impacting the Don’s drainage basin. As a result, it is likely that the Dnieper’s Sr isotope

ratio was substantially higher than it is today during this interval, reflecting the predominantly

granitic basement of the exposed pro-glacial area. The age model is insufficiently precise to be

sure exactly how the two high Sr isotope ratios from this interval relate to this extremely abrupt

glacial - deglacial transition and there are two possible alternatives. One is that the rising Sr

isotope values observed between 160 and 130 ka reflect glacial encroachment leading up to MIS 6

(Figure 6.3). The other is that the highest Sr isotope ratio in our DSDP record and the even higher

values measured byWegwerth et al. (2014) are the product of greater erosion associated with rapid

deglaciation (Hinderer, 2001) or preferential release of 87Sr during early stage deglacial erosion

(Blum and Erelt, 1995). A similar glacially-driven shift towards higher Sr isotope ratios in the

Black Sea by northern rivers has also been proposed by Major et al. (2006) to explain two high
87Sr/86Sr values observed at ∼18 and ∼16 ka (Figure 6.6).

Values around 0.7087 (yellow data)

The four data represented in yellow in the DSDP record (Figure 6.3) have 87Sr/86Sr close to the

ratio that an isolated Black Sea would have, if the Black Sea fluvial fluxes were the same as

the present-day (Figure 6.4B, Major et al., 2006). The dinocyst assemblages in these samples

consistently, contain an Pyxidinopsis psilata, indicative of low salinity conditions. However, it

cannot be assumed that the present-day fluvial fluxes have remained constant, particularly during

periods when substantial climatic change has influenced both precipitation patterns across the

catchments (Bahr et al., 2006; Kwiecien et al., 2009; von Grafenstein et al., 1999) and the episodic

glaciation of the northern parts of the drainage basin (Astakhov, 2004; Svendsen et al., 2004).

Model output for an isolated Black Sea (scenario B) shows that extreme fluctuations in the fluvial

input can produce 87Sr/86Sr ranging between 0.7084 and 0.70885 (Figure 6.4B), potentially also

explaining the data with 87Sr/86Sr about 0.70885 (green data; Figure 6.3) and those with ratios of

0.7086 or lower (orange and red data; Figure 6.3). However, while both the green and orange data

points contain high concentrations of P. psilata (Figure 6.3), some of these samples, particularly

orange data points, also contain low salinity dinocysts with Paratethyan lineage. Therefore, the

data represented by green, orange and red could be the result of either, extreme changes in fluvial



6.4. Discussion 117

Figure 6.5: Lithological map of the Don and Dnieper river’s catchment area. The thick dashed line
shows the extent of ice sheet and Dnieper lobe during Late Saalian (∼160 – 140 ka; Svendsen et al.,
2004).

discharge or a possible connection with the Caspian Sea.

Values lower than 0.7086 (orange and red data)

The numerical model is used to evaluate the influence of Caspian input on the Sr isotope ratio of

the Black Sea. The 87Sr/86Sr data from the older Karagoush Mountain section (Page, 2004), that

spans ∼1.9 Ma to ∼1 Ma, are consistent within the range between 0.70842 and 0.7086 (Figure 6.3).

This range of values is substantially higher than the current Caspian Sea 87Sr/86Sr of 0.708191

(Chapter 3), indicating an additional radiogenic input from the Amu Darya river (Chapter 5). A

median 87Sr/86Sr of 0.70848 is assumed as the likely Sr isotope ratio of any Caspian input to the

Black Sea. An additional Amu Darya flux of ∼8.5 km3/yr can generate 87Sr/86Sr of 0.70848 in the

Caspian Sea (Figure C.2).

Assuming present-day Black Sea fluvial fluxes totalling about 3.38 x 1011 m3/yr, only a small

(∼5.5 x 1011 m3/yr) influx of Amu Darya-influenced Caspian water is required to produce a Black

Sea Sr isotope ratio compatible with the orange data (Figure 6.3 and 6.4C.i). The alternative
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hypothesis is that the lower ratios are driven by increased input from the Don and Dnieper relative

to the Danube. However, this would require a four-fold increase in the discharge from the northern

Black Sea rivers relative to the present-day flux (Figure 6.4B). While such increase in river flow

is possible during the deglaciation, these high discharge periods are likely to have been brief and

temporally associated with the glacial-interglacial transition. By contrast, the DSDP record shows

prolonged periods during which the Black Sea had the 87Sr/86Sr of ∼0.7086 (orange) particularly

between 900 – 700 ka and appears to be unrelated to glacial advances and retreats (Figure 6.3). It

is therefore more likely that the lower Sr isotope elements of the DSDP record (red and orange)

are a consequence of a Black Sea isolated from the Mediterranean Sea but receiving an additional

water source from the Caspian Sea.

A larger Caspian overspill of about 1.4 x 1011 m3/yr can explain the three higher red Sr isotope

values (∼0.70855). However, Caspian water that has the 87Sr/86Sr of 0.70848, cannot account for

the lowest red values, which are closer to 0.70835 (Figure 6.3). These lowest DSDP Sr isotope

data require the additional fresh water source to have had an even lower Sr isotope ratio. In this

instance, the Caspian overspill with the present-day fluvial sources (i.e without Amu Darya input)

and Sr isotope ratio that is dominated by the Volga would be a better fit (Figure 6.4C.ii). There

are two possible mechanisms by which this could be achieved. Either input from Amu Darya to

the Caspian varied even before the rivers discharge was modified by irrigation (Asarin et al., 2010;

Micklin, 2010), or the Volga River drained directly into the Black Sea instead of the Caspian during

these intervals. The redirection of Volga, which is the dominant water source of the Caspian Sea,

to the Black Sea would result in extreme change in the 87Sr/86Sr of the Caspian Sea. The current

data do not constrain which of these two is more likely.

Values between 0.7088 and 0. 7089 (green data)

It is possible that the Black Seawas an isolated basin when its Sr isotope ratios were between 0.7088

and 0.7089 (e.g. green data). Although the dinocyst assemblage indicates isolated conditions

between 28 – 72 ka (Figure 6.3), to achieve these Sr isotope values, which are very close to the

Danube 87Sr/86Sr (Figure 6.3), there would need to be extreme reduction in discharge from the

northern Black Sea rivers (Figure 6.3, Figure 6.4B). Three of the four green samples between

400 - 150 ka indicate diatoms based salinities between 10 – 15 g/kg (Schrader, 1978) whereas,

the forth (326 ka) contains marine assemblages (Figure 6.3). This requires some marine input.

Model output demonstrates that Mediterranean inflow is almost close to zero to produce a Black
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Sea 87Sr/86Sr between 0.7088 and 0.7089 (green data, Figure 6.4A). An alternative solution is that

the Black Sea received influxes from both the Mediterranean and the Caspian seas (connectivity

scenario D). In this scenario, a Mediterranean flux >5.8 x 1010 m3/yr is required to raise the Sr

isotope ratio to ∼0.70885 and to produce salinities greater than 10 g/kg in the Black Sea when

it is also in receipt of Caspian Sea water with a lower Sr isotope ratio (Figure 6.4D.ii). Similar

arguments may also be applicable to the green data points at 977 and 650 ka although the salinity

constraints are less substantial.

6.4.3 Evolution of the Black Sea over the last 1.2 Ma

The combination of the Sr isotopic record and the available diatom and new dinocyst based salinity

estimates of the DSDP core show clear evidence of a complex connectivity history involving

both the Mediterranean and Caspian Sea throughout the last 1.2 Ma (Figure 6.6). Despite this

complexity there is an overall transition in the relative dominance of these sources at around 500 ka,

when a strong signal of Caspian Sea input is replaced by more frequent Mediterranean incursions

(Figure 6.6). However, the detail of the Black Sea’s connectivity history needs to be interpreted

with care because even relatively small marine incursions can dominate both the Sr and the salinity

record, overprinting an enduring Caspian signal. The combined interpretation of the dinocysts and

isotope datasets suggests that from 1.2 Ma – 380 ka, the Black Sea was dominated by Caspian Sea

input with two short episodes of isolation and twominor marine incursions from theMediterranean

(Figure 6.6). From 380 ka to present, the Black Sea oscillated between an isolated basin to one

connected to the Mediterranean with only two intervals of Caspian input around 200 and 170 ka

(Figure 6.6).

This interpretation of the timing of marine-influenced intervals in the Black Sea suggests that over

the last ∼500 ka all the major interglacial peaks can be associated with a eustatic sea-level driven

inundation over the Bosporus (Figure 6.6). The variability in the Sr isotope and dinocyst response

to each of these incursions results largely from the degree of connectivity of the Black with the

Mediterranean and Caspian. This means that when there was a Mediterranean incursion into an

isolated Black Sea such as during MIS 5 and 9, it resulted in a clear marine signal in the Sr and

dinocyst data (Figure 6.3). The more complex Sr and biotic response during MIS 7 and 11 may be

the product of smaller marine influxes into a basin already receiving additional fresh water from

either the Caspian Sea and/or the Black Sea rivers (Figure 6.6). A similar relationship can be

seen during glacial periods MIS 2 to MIS 10 when these low eustatic sea level episodes coincide
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Figure 6.6: Reconstruction of the Black Sea connectivity history over the last 1.2 Ma based on the
87Sr/86Sr of the DSDP core 379A together with the oxygen isotope based reconstruction by Badertscher
et al. (2011) and faunal based reconstruction provided in Krijgsman et al. (2019).

with times when the Sr isotope and dinocyst data indicate no marine waters entered the Black Sea.

These intervals are typically characterised by Sr and dinocyst assemblages that are compatible with

an entirely isolated (yellow) Black Sea (Figure 6.6).

Prior to 500 ka, the record of marine incursions into the Black Sea were much less frequent and

appears to be unrelated to glacial-interglacial cyclicity (Figure 6.6). The tectonic signal controls the

connectivity when the amplitude of eustatic change is insufficient to breach the gateway threshold.

Given than the Bosporus lies within the activeNorthAnatolian Fault Zone (NAFZ), which currently

has a displacement velocity of ∼20mm/yr (Hubert-Ferrari et al., 2002), it is likely that both the

location and the evolution of the Black Sea - Mediterranean gateway is intrinsically controlled by

the tectonics of NAF on geological timescales. Although eustatic sea level rise during interglacial
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may have driven the Black Sea - Mediterranean connection during MIS 5, 7, 9 and 11, the marine

incursion prior to MIS 11 was likely to have been driven by a combination of climatic fluctuation

and active tectonics of the area. The periodicity of Caspian-Black Sea connectivity also seems to

be unrelated to glacial-interglacial cycles and is therefore likely to be controlled by the tectonics

associated with the uplift of the Caucasus and the formation and migration of the Manych foredeep

(Mikhailov et al., 1999).

This broader interpretation fits well with the fragmentary connectivity history deduced from

extreme fluctuations in the existing oxygen isotopic record from the Sofular Cave (Badertscher

et al., 2011). Given the uncertainty in the age model for the DSDP core, the relative scarcity of the

Sr isotope and dinocyst data constraints, and the growth discontinuities in the stalagmite record, the

coincidence of the high δ18O values (> -8.5 ±1‰) interpreted as marine incursions (Badertscher

et al., 2011) with Sr and dinocyst indicators of Mediterranean input is very good, particularly

from ∼300 ka onwards (Figure 6.6). Both interpretations also identify Caspian overspill events

at around 170 and 600 ka (Figure 6.6). However, a much higher resolution Sr-dinocyst record is

required to test the hypothesis that these connectivity events are brief incursions as represented by

the speleothem data (Figure 6.6).

The Sr isotope and dinocyst reconstruction also fits well with published palaeontological evidence

for Mediterranean incursions over the last 400 ka (Figure 6.6). However, the timing of Caspian-

Black Sea connections and separation events deduced from these data is much less consistent with

the new geochemical connectivity interpretation (Figure 6.6). For example, the distinctly different

faunal assemblages prior to 800 ka between the Black Sea (Gurian Stage) and the Caspian Sea

(Apsheronian Stage) suggest isolation with only ephemeral connections between the two basins

(Krijgsman et al., 2019, and references therein) at a time when much of the Sr and dinocyst data

indicate an enduring contribution of Caspian Sea water to the Black Sea (Figure 6.6). Even taking

into account the challenges of dating some of the faunal evidence, there is an apparent contradiction

here. One possible explanation is that the Caspian-Black Sea connection during this period did not

result in homogenised environmental conditions across the two basins for full faunal exchange.

6.5 Conclusion

The newly obtained fluvial measurements (Chapter 3) were incorporated in a numerical box model

(Chapter 4) to constrain the source end-members for Black Sea water in order to explain the Sr
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isotopes and dinocysts based salinity variation observed in the DSDP record over the last 1.2

Ma. The combination of empirical measurements and modelled Sr and salinity proves to be a

powerful tool for disentangling complex connectivity histories with multiple water sources. The

data show that the Black Sea was connected to the Caspian Sea for most of the period prior to

500 ka, whereas more frequent Black Sea - Mediterranean connection took place after 500 ka.

Although, the Black Sea may have sustained a connection with the Caspian during the last 500

ka, the DSDP data cannot differentiate this as the Caspian input may be masked by a marine

dominated signal with high salinity and radiogenic Sr isotopic ratio in the Black Sea. Relating the

connectivity events to the climatic and tectonic drivers shows that while eustatic sea level variation

may have controlled the connection between the Black Sea and the Mediterranean Sea in MIS 5, 7,

9 and 11, and combination of tectonics and climate may have driven the Black Sea- Mediterranean

connection prior to MIS 11. However, to disentangle the role of climate and tectonics during each

glacial-interglacial cycle, a much higher resolution study is required.
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Chapter 7

Sr isotopic record of the Hajigabul
section, Azerbaijan: Implications
for the Pleistocene connectivity
between the Black Sea and Caspian
Sea

Aconnectivity history framework focusing on theEarly PleistoceneCaspian Sea and thePleistocene

Black Sea was established in Chapter 5 and Chapter 6, respectively. This chapter provides

additional new Sr isotopic data from the Caspian Sea (Hajiqabul section) and helps expand the

connectivity history developed in the previous chapters. The age model indicates that the section

spans most of the Pleistocene including an interval that is younger than previously studied Caspian

Sea sections (Goychay section- Chapter 5 and Karagoush section, Page, 2004). This interval

overlaps with the Black Sea data described in Chapter 6. This chapter therefore describes this

Caspian Sr record and explores the evolution of the Caspian-Black Sea connectivity during the

Middle to Late Pleistocene and mainly addresses research questions 5 and 6 outlined in Section

1.6.2;

5. How did the Sr isotopic ratio evolve in the Black and Caspian seas over the last 3 million

years and what is its implication for the Quaternary connectivity history of the two basins

to each other and the open ocean?

6. What was the nature of connection (one way flow or two way exchange) between the Black

Sea, Caspian Sea and the open ocean during the Pleistocene?
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The age model for the Hajigabul section was constructed and provided by S. Lazarev, PRIDE

ESR at Utrecht University. The micropalaeontological analysis, the ostracod assemblages and

associated salinity constraints were provided by L. Rausch (PRIDE ESR) and Prof. M. Stoica,

the University of Bucharest. Both, the age model and the ostracod assemblage chart included in

this chapter are from Lazarev et al. (2019):

S. Lazarev, E. L. Jorissen, S. van de Velde, L. Rausch, M. Stoica, F. P. Wesselingh, C.

G. C. van Baak, T. A. Yanina, E. Aliyeva, W. Krijgsman (2019)Magneto- biostratigraphic age

constraints on the palaeoenvironmental evolution of the South Caspian Basin during the

Early - middle Pleistocene (Kura Basin, Azerbaijan), Quaternary Science Reviews, 222, p.

105895.
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Figure 7.1: Location map of the study sites; Hajigabul, Goychay, Jeirankechmez, and Karagoush
sections. Pale blue area shows the palaeogeographic extent of the Caspian Sea during the Apsheronian
period, with fluvial plains shown in yellow (modified from Krijgsman et al., 2019). Pale brown area
indicates topographic highs in the region. Dotted blue lines indicate former course of the Amu Darya
(AD). Pale red area indicates catchment area of the Kura river.
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7.1 Materials and methods

Sediment samples were collected from the Hajigabul section, which lies ∼55 km from the present-

day Caspian coastline within the Kura catchment (Figure 7.1). The section is substantially closer to

the Caspian Sea than the Goychay section (∼155 km) but further away than the Karagoush section

(∼5 km, Figure 7.1). 23 sediment samples from the Hajigabul section (Chapter 2, Section 2.1.2.5)

were picked for ostracods and analysed for their Sr isotopic ratio (Section 2.2.3).

The magnetostratigraphy of the Hajigabul section (Lazarev et al., 2019) allowed age estimates

of individual samples to be calculated assuming constant sedimentation rates between chron

boundaries. However, the top of the section did not reach the upper boundary of the Bruhnes

chron (Figure 2.7). Therefore, to calculate the age of the samples that fall within this chron, a

chronological constraint is required for the top of the section. Sedimentology and palaeontology

studies indicate two flooding events in the section are at ∼1714 m and ∼1842 m (Lazarev et al.,

2019). These events are considered to be the upper Bakunian and lower Khazarian flooding

events, respectively, based on the presence of euryhaline foraminifera and bivalve assemblages

that are specific to each event in other parts of the Caspian Sea (Yanina, 2014). According to

U-Th, thermoluminescent and electron spin resonance data, lower Khazarian deposits are dated at

approximately MIS 10 - 6 (364 - 190 ka, Shkatova, 2010; Zastrozhnov et al., 2018). Therefore

samples that lie within the Bruhnes chron but below the identified Khazarian flooding event, i.e.

samples between 1641 - 1842 (Figure 2.7), are considered to have age between 781 and 364 ka.

The youngest Hajigabul sample at 1842.5 m falls within the Khazarian flooding event and as such

is considered have an age between 364 to 190 ka. Consequently, the age of the upper six samples

of the Hajigabul section are substantially less certain than those constrained by the palaeomagnetic

results. This age uncertainty are illustrated by the use of horizontal bars on the data plot (e.g.

Figure 7.2).

Semi-quantitative micropalaeontological analysis of 57 sediment samples was conducted on the

fossil ostracods and foraminifera. Sampleswere processed following themethod outlined in Section

2.3.
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Figure 7.2: A) The Sr-isotope record for the Hajigabul (coloured boxes) and Goychay (coloured
circles) sections plotted with coeval oceanic 87Sr/86Sr (blue horizontal bar; McArthur et al., 2012), the
87Sr/86Sr values of the present-day Caspian Sea (dashed horizontal line) and its major water sources.
Internal uncertainty for each individual 87Sr/86Sr measurement on Hajigabul samples is between 4 and
14 ppm and external uncertainty on 36 repeat measurement on NIST 981 standard is ∼8 ppm.The grey
shaded area indicates the range of 87Sr/86Sr of the Black Sea from the Guria section. Six youngest
data from the Hajigabul section have uncertain ages and therefore are indicated by coloured bars. B)
Previously published Sr-isotope record for the Jeirankechmez (coloured triangles; van Baak et al.,
2019) and Karagoush Mountain sections (white diamonds; Page, 2004).

7.2 Results

7.2.1 Sr isotopic ratios

The Sr isotopic measurements of fossil ostracods collected from the Hajigabul section are shown

in Figure 7.2 and listed in Table E.1. The range of 87Sr/86Sr data from the Hajigabul section are

consistent with the Goychay section (Chapter 5) and with the previously published Sr isotopic

record from the coeval Karagoush Mountain section (Page, 2004) and Jeirankechmez section (van

Baak et al., 2019). These values are significantly lower than the coeval oceanic 87Sr/86Sr ratio and

but are mostly higher than the present-day Caspian Sea value (Figure 7.2). The record also shows

two episodes with the 87Sr/86Sr values lower than the present-day Caspian Sea ratio at 1.15 and

1.73 Ma. These low values are close to Sr isotopic ratio of the nearby Kura river water (Chapter
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3) and resemble the similar low 87Sr/86Sr observed in Goychay section at ∼2.04 and ∼2.28 Ma

(Chapter 5) and the late Pliocene Jeirankechmez data (Figure 7.2, van Baak et al., 2019).

7.2.2 Micropalaeontology

The micropalaeontology of the Hajigabul section shows frequent variations in ostracod and

foraminifera assemblages (Figure 7.3). The bottom part of the section (211 m – 453m) showsmod-

erately dense, but taxonomically diverse species indicative of oligohaline (1 - 5 g/kg) to mesohaline

(5 - 18 g/kg) assemblages (Figure 7.3). The interval between 453 m - 755 m contains the high

abundant euryhaline Cyprideis torosa and also contains foraminifera, mainly species of Ammonia,

Cibicides and Cassidulina; these are indicative of marine salinity conditions. Between 755 m –

1701m, the section contains ostracod assemblages suggesting oligohaline environments (1 - 5 g/kg)

indicated by the presence of Cyprideis torosa, Tyrrhenocythere azerbaidjanica, and Xestoleberis

chanakovi alternating with numerous freshwater intervals containing Ilyocypris bradyi, Eucypris

sp., Candona sp. and Darwinula stevensoni. The top part of the section (1714 - 1980 m) shows in-

creased ostracod diversity and the assemblages indicate rapid and frequent environmental changes,

altering between mesohaline and oligohaline conditions.

Microfossil data from Hajigabul section can therefore be categorised into three salinity conditions;

1) mesohaline conditions (between 5 – 18 g/kg) indicated by the presence of foraminifera, 2)

oligohaline (between 1 – 5 g/kg), and 3) freshwater salinity (Figure 7.2, Lazarev et al., 2019).

These are similar to the salinity ranges interpreted from ostracod assemblages at the Goychay

section (Chapter 5). The samples with anomalously low Sr values observed at 1120 m and 1439 m

(1.73 and 1.15 Ma) contain freshwater assemblages, while the higher 87Sr/86Sr are associated with

both salinities between 1 - 5 g/kg (green) and 5 - 18 g/kg (blue, Figure 7.2). Unlike the Goychay

section, the Hajigabul only contains one brief barren interval between 498 and 520 m, close to the

base of the section (Figure E).

7.3 Discussion

7.3.1 Hajigabul data constraining Caspian between 2.2 Ma - 300 ka

The similarity in the range of Sr isotopic values in the Hajigabul and Goychay sections suggests

that these two sections experienced broadly similar condition. Although the highest 87Sr/86Sr from

the Hajigabul does not reach the highest 87Sr/86Sr observed in the Goychay section (Figure 7.2),
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1

Figure 7.3: Ostracod distribution pattern from the Hajigabul section, Azerbaijan along with estimated
palaeosalinity and palaeoenvironment represented by the ostracod assemblages.
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the two lowest Sr isotopic ratios from the Hajigabul section at 1.15 and 1.73 Ma are consistent with

the low values observed at Goychay. Both sections lie within the Kura catchment (Figure 7.1), it is

therefore likely that the freshwater conditions associated with the low 87Sr/86Sr values (Figure 7.2),

and the similarity with these low 87Sr/86Sr and the Kura river ratio (Chapter 3) indicates episodic

enhanced local river influence during these intervals. By comparison, the coeval 87Sr/86Sr from the

section closer to the present-day Caspian coastline, the KaragoushMountain section, is consistently

higher than these low 87Sr/86Sr intervals from the Hajigabul and Goychay suggesting that the low

values may be the results of isolation of these lower reaches of the Kura river catchment from the

main Caspian basin. The difference in the duration of these isolated intervals in each section may

be due to the relative proximity of the palaeo Caspian Sea. As such the more westerly Goychay

section experienced a more enduring period of isolation between 1.9 - 1.4 Ma, while Hajigabul

was isolated for a shorter interval around 1.73 Ma. It is not possible to infer Caspian Sea lake level

change from this transact of sites because of the likely influence of tectonics of the Caucasus in the

region. However, the higher than the present-day 87Sr/86Sr and salinities >1 g/kg in the Hajigabul

section indicates that this section was part of the main Caspian basin for most of the Middle - Late

Pleistocene (Figure 7.2) .

The base of the Hajigabul section (samples between 2.1 to 1.98 Ma), show intermediate 87Sr/86Sr

values of ∼0.7084 but a high salinity conditions ( 5 - 18 g/kg). Although the coeval 87Sr/86Sr

from the Goychay section shows similar values, the micropalaeontology suggest a lower salinity

conditions (1 - 5 g/kg) during this period (Figure 7.2). The discrepancy could be due to the

sampling resolution and that the samples with high salinity condition were not captured from the

Goychay section. However it is more likely that the discrepancy in salinities between the two

sections may be the result of asynchronous evolution of the fauna in these proximal location of the

Goychay section (Lazarev et al., 2019). This is supported by the later turnover of mollusc species

on Goychay relative to the Hajigabul section (Lazarev et al., 2019). The Sr - salinity combination

observed during this interval in the Hajigabul section, however, is consistent with themore enduring

Caspian - Arctic connection interpreted in Chapter 5. However, there are no samples between 1.98

and 1.86 Ma from the Hajigabul section to confirm the timing of termination for this connection.

Both, the Karagoush mountain and the Hajigabul sections show that the Pleistocene 87Sr/86Sr

remained higher than present-day Caspian values after 1.9 Ma and micropalaeontology from

Hajigabul section shows salinity condition between 1 - 5 g/kg in the Caspian Sea. There are

multiple scenarios that could result in this combination of Sr - salinity conditions in the Caspian
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Sea. Each of these scenarios is discussed below and its potential feasibility is evaluated.

1) There is a possibility that the Arctic connection to the Caspian Sea may have continued even

after 1.96 Ma. If this was the case, analogous to the condition between 2.7 - 1.96 Ma, the Sr -

salinity conditions could be achieved with inflow from Arctic Ocean and Amu Draya but outflow

to the Black Sea. However, there is no palaeontological or phylogenetic evidence that supports a

continued Arctic connection.

2) If the Arctic connection was severed at∼1.96Ma, the observed Sr-salinity combination observed

in the Hajigabul section could be achieved by continued input of radiogenic water from the Amu

Darya but no outflow to the Black Sea, trapping the salt in the basin, assuming there is no change in

evaporation minus precipitation. This scenario, however would require no change in the Caspian

volume to maintain consistent salinity in the basin. Sedimentological evidence from the Hajigabul

section however, indicates repetitive shallowing trends, from distal offshore settings to coastal and

continental environments (Figure 2.7), implying a reduction in Caspian lake level at least locally.

3) The most likely scenario to explain the observed Caspian Sr- salinity combination is a continued

inflow from Amu Draya to maintain higher than present-day 87Sr/86Sr combined with a two way

exchange with the Black Sea, which contains salt that was exported prior to 2 Ma (Chapter 5). The

Black Sea 87Sr/86Sr from the Guria section (if it is of the Pleistocene age) shows similar overlapping

values with the Hajigabul and Karagoush sections’ 87Sr/86Sr (Figure 7.2), which would support a

two way exchange between the two basins. However only, the interval of 1.2 Ma to ∼200 ka has an

equivalent Black Sea record (DSDP 379A- Chapter 6) with less speculative age constraints. This

interval from the Hajugabul section and DSDP 379A (Chapter 6) and such as, coeval record from

Hajigabul and DSDP core 379A is discussed in the detail below.

7.3.2 Evolution of the Black Sea and Caspian Sea between 1.2 Ma to 200 ka

The first isolation of the Black Sea from the Caspian Sea observed in the Sr isotopic record

is at ∼1.13 Ma (Chapter 6). This coincides with the isolation of Hajigabul section from the

main Caspian basin at ∼1.15 Ma (Figure 7.4). It may be the case that at this time, change in

the hydrological budget of the region or tectonic uplift resulted in either an absolute or relative

Caspian water level drop, isolating the Hajigabul area from the main Caspian basin and severing

the connection between the Black Sea and the Caspian Sea. The DSDP record shows that the

Black Sea received inflow from the Caspian Sea almost continuously between 1.2 Ma to ∼700 ka

(Chapter 6). The overlapping Caspian values from the Karagoush and Hajigabul sections with the
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DSDP record, particularly between 1 Ma and 1.1 Ma (Figure 7.4), further supports this idea that

the two way exchange between the Black Sea and the Caspian Sea existed during this period. The

first Mediterranean input into the Black Sea is observed at 977 ka (Chapter 6). Although the Black

Sea 87Sr/86Sr suggests Caspian inflow into the basin, there are no 87Sr/86Sr data from this brief

marine influenced interval from the Caspian Sea to document it’s impact in the Caspian Sea.

Figure 7.4: The Caspian Sr-isotope record from the Hajigabul (coloured boxes), Karagoush sections
(white diamonds; Page, 2004) and the coeval Black Sea 87Sr/86Sr record from the DSDP 379A (grey
circles) plotted with coeval oceanic 87Sr/86Sr (dark blue horizontal bar; McArthur et al., 2012) and
present-day 87Sr/86Sr values of the present-day Caspian seas (dashed horizontal line) and their major
water sources. Data points with dashed boundary have uncertain ages.

Three of the six youngest samples after 800 ka from the Hajigabul section contain foraminifera

implying increased salinity (between 5 - 18 g/kg) in the Caspian Sea at some point between 781 and

200 ka . These samples are taken from an interval which shows facies that are clearly indicative

of a water level rise event in the Caspian Sea (Lazarev et al., 2019). Additionally, the presence of

molluscs assemblages similar to the Black Sea (Lazarev et al., 2019) indicates that the input of the

saline water into the Caspian Sea is likely to have been derived from the Black Sea, which may have

been connected to the Mediterranean Sea at this time. The DSDP record shows Mediterranean-

Black Sea-Caspian connection was not continuous, but rather occurred in at least, three separate

events around 647 ka, 454 ka and ∼250 ka. Given the age uncertainty of the Hajigabul samples

younger than 800 ka, it is possible that the samples with salinity between 5 - 18 g/kg may represent
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inflow of the marine influenced Black Sea water to the Caspian Sea during these same episodes

(Figure 7.4).

Although the saline inflow from the Mediterranean could explain the high salinities (between 5

- 18 g/kg) in the Caspian Sea, the 87Sr/86Sr of these samples are lower than previously observed

values in the Hajigabul section and are much closer to the present-day Caspian 87Sr/86Sr. A

numerical model (Chapter 4) is therefore, used to investigate if the Mediterranean-Black-Caspian

Sea connection could produce the 87Sr/86Sr and salinity observed in the Caspian Sea during these

intervals. This model set up differs from that used in Chapter 5 and 6 because it includes two

way exchange both, between the Black Sea and Mediterranean, and between the Black Sea and the

Caspian Sea. Therefore, when the Caspian Sea and Black Sea are connected with each other and

the open ocean, the water volume conservation equation results in ,

Black Sea : qBO = qOB + qCB + RB + PB − EB − qBC

Caspian Sea : qCB = qBC + RC + PC − EC

where, qOB and qBO refers to inflow and outflow between Black Sea and the open ocean, respec-

tively and qCB and qBC refers to flux from the Caspian Sea into the Black Sea and flux from the

Black Sea to the Caspian Sea, respectively. Total river discharge, evaporation and precipitation

fluxes of the Black Sea are given by RB, EB and PB, respectively and for the Caspian Sea are

given by RC , EC and PC , respectively. The Sr concentration and Sr isotopic ratio of the Black Sea

and Caspian Sea can be therefore be determined as follows, with subscripts O, RB, B, C and RC

referring to oceanic, Black Sea rivers, Black Sea, Caspian Sea and Caspian Sea rivers, respectively.

Sr concentration in the Black Sea :

[Sr]B =
[Sr]O ∗ qOB + [Sr]C ∗ qCB + [Sr]RB ∗ RB

qOB + qBC

Sr concentration in the Caspian Sea :

[Sr]C =
[Sr]B ∗ qBC + [Sr]RC ∗ RC

qCB



7.3. Discussion 133

Sr isotopic ratio in:

Black Sea :
( 87Sr
86Sr

)
B

=

( 87Sr
86Sr

)
O
∗ [Sr]O ∗ qOB +

( 87Sr
86Sr

)
C
∗ [Sr]C ∗ qCB +

( 87Sr
86Sr

)
RB
∗ [Sr]RB ∗ RB

[Sr]O ∗ qOB + [Sr]C ∗ qCB + [Sr]RB ∗ RB

Caspian Sea :( 87Sr
86Sr

)
C

=

( 87Sr
86Sr

)
B
∗ [Sr]B ∗ qBC +

( 87Sr
86Sr

)
RC
∗ [Sr]RC ∗ RC

[Sr]B ∗ qBC + [Sr]RC ∗ RC

Salinity of the Black Sea results from mixing of oceanic water and saline Caspian water, whereas

the salinity of the Caspian Sea is resultant of the Black Sea input. Therefore,

Black Sea : [S]B =
[S]O ∗ qOB + [S]C ∗ qCB

qBO

Caspian Sea : [S]C =
[S]B ∗ qBC

qCB

The model result shows that both, 87Sr/86Sr and salinity in the Caspian Sea is governed by the input

from the Black Sea and can produce the low 87Sr/86Sr and the salinity between 5 - 18 g/kg observed

in the Hajigabul section (Figure 7.5B). This is because the Black Sea water is influenced by the

oceanic 87Sr/86Sr and salinity resulting from its connection to the Mediterranean Sea. However,

in a scenario where all three basins (Mediterranean, Black and Caspian seas) are connected, the

Caspian Sea can only produce an 87Sr/86Sr close to the present-day value if Amu Darya did not

drain into the Caspian Sea or its discharge was very low (<10 km3/yr). A small oceanic input of

∼8 x 1010 m3/yr into the Black Sea, which also receives water from the Caspian Sea, produces the
87Sr/86Sr between 0.7089 and 0.7090 observed in the DSDP record (Figure 6.4) at 647 ka, 454 ka.

Consequently, Black Sea input between 2 x 1010 m3/yr and 3 x 1010 m3/yr is required to produce

the 87Sr/86Sr between 0.70825 and 0.70835 and salinity of ∼15 - 18 g/kg observed in the Hajigabul

section of the Caspian Sea.

In summary, the evolution of the Caspian Sea during the Pleistocene was influenced by several

additional input sources that do not feed it today. These include Arctic Ocean, Amu Darya river

and the Black Sea and the Mediterranean water that reached the Caspian Sea via the Black Sea.

The first clear evidence of separation of the Caspian from the Black Sea is ∼1.15 Ma. However, a

longer Black Sea record is required to test this. The first marine input in the Black Sea is observed
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Figure 7.5: A) Schematic showing the connectivity configuration between the Mediterranean, Black
and Caspian seas. B) Model generated contour lines for salinity (grey solid lines) and 87Sr/86Sr (black
solid lines) in the Caspian Sea with varying Mediterranean input into the Black Sea and the Black Sea
influx into the Caspian Sea. Amu Darya discharge is kept at 5 km3/yr. Blue shaded area indicate the
salinity and 87Sr/86Sr combination observed from Hajigabul section in three samples younger than 781
ka.

at 977 ka but this signal is not visible in the Caspian Sea because of low sampling resolution.

There is clear evidence of Mediterranean influenced water reaching the Caspian Sea via the Black

Sea between 650 to 250 ka, but the timing for these events are not well constrained. There is also

evidence that, although Amu Darya continuously flowed into the Caspian Sea, its discharge was

∼10% of the pre-irrigation flux between 250 to 650 ka.
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Chapter 8

Synthesis and conclusions

This chapter brings together the key findings of this study in order to assess the two main

goals outlined in Section 1.6.1 and 1.6.2. Here I summarize the results from Chapter 3, which

evaluates the three-dimensional spatial distribution of Sr isotopic systems in the Black Sea

and the Caspian Sea. The results discussed in Chapter 5, 6, and 7 together with existing

87Sr/86Sr based connectivity evidence from the Black Sea and the Caspian Sea (Section

1.5) are then synthesised to provide an overview of the Miocene to present-day connectivity

history reconstruction between them and the open ocean. Finally this chapter outlines several re-

maining questions, which impact our understanding of the connectivity of the Pontocaspian region.

This chapter includes palaeontological analysis of ostracods collected from the Guria section,

Georgia. This analysis, ostracod distribution chart and tentative age for the Gurian samples have

been provided by L. Rausch (PRIDE ESR) and Prof. M. Stoica, University of Bucharest.

8.1 Modern Sr isotopic data across the Black and Caspian seas

Bygenerating amuchmore substantialmodern Sr isotopic data across theBlack Sea and theCaspian

Sea than previously had been available, it has been possible to evaluate existing assumptions about

Sr isotopic behaviour and distribution in the marginal marine and endorheic systems. The 87Sr/86Sr

of the water collected from offshore Black and Caspian seas shows values that are consistent

spatially and with depth indicating that both basins are well mixed with respect to Sr isotopes. The
87Sr/86Sr isotopes closer to river mouths may be impacted by the fluvial discharge and can show

values that deviate from the average basin ratio. This is because these marginal, semi-isolated

systems are more sensitive to their water sources compared to the open ocean setting where the
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oceanic 87Sr/86Sr can penetrate up estuaries.

This study also provides the first Sr isotopic measurements for the rivers draining along the eastern

Black Sea, and two major northern Black Sea rivers (Don and Dnieper), and for the Aral Sea water

as well as generates additional new measurements for the Kura and Volga rivers that drains into

the Caspian Sea. The 87Sr/86Sr of the Aral Sea water, for the first time, constrains the Sr isotopic

signal of the Amu Darya river water, which until now, has been the subject of speculation.

Modern ostracods collected from surface sediment were also analysed for their Sr isotopic ratios

and the results were compared to the bottom water 87Sr/86Sr at the same location. These data

suggest that bottom dwelling ostracods preserve the 87Sr/86Sr of the overlying water in a well

mixed basin and therefore, can be used as a reliable archives for the past Sr isotopic ratio of the

basin. Consequently, the Sr isotopic data for the modern system provides a framework in which

we can interpret the past Sr isotopic records for the Black and Caspian seas and reconstruct the

connectivity history between these two basins and the open ocean.

8.2 Connectivity history between the Black Sea, Caspian Sea and the

open ocean

TheMiocene to Quaternary evolution of the Black and Caspian seas is dominated bymajor changes

in basin water levels driven by both the tectonics of the region, which controls the gateways be-

tween adjacent basins (Mediterranean Sea or Arctic Ocean) and by regional and global climate,

which impacts the fluvial discharge to each system. Numerous scientific studies, using a variety

of methods, have been dedicated to understanding the connectivity history of these basins over

time (Section 1.5). However, palaeontology based reconstructions are typically low resolution and

identify no clear boundaries between connection and isolation events. Phylogenetic studies also

have large uncertainties associated with the timing of connection. Although geochemical studies

provide a more direct approach for connectivity reconstruction, previously published geochemical

data are fragmentary (see Chapter 1) and in places contradict palaeontological evidence of con-

nectivity. This study generates several Pleistocene Sr isotopic records from the Black and Caspian

seas, using fossil ostracods collected from (well) dated sedimentary successions (Chapters 5, 6,

and 7). The data are combined with existing 87Sr/86Sr based connectivity evidence from the Black

Sea and the Caspian Sea (Section 1.5.3) to provide a more longer and a more complete connectivity

history between these basins and the open ocean since the Miocene (Figure 8.1). Given that the
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ostracod assemblages of the Guria section in Georgia indicate a much older, Late Miocene age

for the section compared to the published palaeomagnetic based Pleistocene age, this chapter also

considers the implications of the Guria Sr record assuming it has a Late Miocene age.

Figure 8.1: The previously published 87Sr/86Sr records from the Black Sea (green; Grothe, 2016),
Caspian Sea (orange; Grothe, 2016; Page, 2004; van Baak et al., 2019) and Mediterranean Sea (grey;
Flecker et al., 2015) over the last 7 Ma. The 87Sr/86Sr of the global ocean is shown as a blue line
(McArthur et al., 2012). Grey area indicate intervals where there are no published 87Sr/86Sr data for
Black and Caspian seas. Faunal based connectivity history during this period is shown with coloured
arrows (Krijgsman et al., 2019; Popov et al., 2006). Colour and direction of the arrow of indicate the
source water and direction of the input. Dashed arrows represent ephemeral connections between the
Caspian Sea and the Black Sea without any precise timing. Labelled solid lines indicate the duration of
the Pleistocene sections studied here to address Quaternary data gap. The Black Sea and the Caspian
Sea regional stages are plotted against standard geological time scale (Krijgsman et al., 2019).
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8.2.1 An alternative age for the Guria section and its implications for the Late

Miocene connectivity history of the Pontocaspian region

The Guria section (Figure 8.4) is a composite of two sections; Khvarbeti section and Tsikhisperdi

section (Section 2.2). The new ostracod assemblages from the Tsikhisperdi section show a moder-

ately diverse oligohaline (salinity <5 g/kg) to mesohaline (5 – 15 g/kg) faunal assemblage (Figure

8.2). Within the lower part of the section (0.25 m - 3.45 m) the occurrence of C. tocorjescui

(Figure 8.2) was first been described by Hanganu in1962 from the Pontian (Late Miocene) strata

of the Dacian Basin (Central Paratethys). Since then, this species has been recognized by different

authors in several places in Paratethys within the Pontian (Krstić, 1990; Olteanu, 1999a; Stoica

et al., 2013) or Kimmerian (Vekua, 1975). The common ostracod species from the Tsikhisperdi

are comparable to Pontian assemblages known from the Ramnicu Sarat and Badislava sections

in the Dacian Basin (Floroiu et al., 2012; Stoica et al., 2013), the Zheleznyi Rog section on the

Taman Peninsula of the Russian Black Sea margin and the Lago-Mare deposits from Cuevas del

Almanzora section in the Vera Basin of the Spanish Mediterranean margin (Stoica et al., 2016).

*

* ***
*

*
** *

*

Figure 8.2: Ostracod distribution pattern from the Guria section (Tsikhisperdi section), Georgia.
Common occurring species are indicated by asterisks.

Faunal assemblage from the Khvarbeti section resembles the fauna described in the Tsikhisperdi
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Figure 8.3: Ostracod distribution pattern from the Guria section (Khvarbeti section), Georgia. Com-
mon occurring species are indicated by asterisks. The base of the Kimmerian is uncertain (van Baak
et al., 2017) in the Black Sea.
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section but with a higher faunal diversity (Figure 8.3). These assemblages also indicate an oligo-to

mesohaline environment (salinity between 5 to 15 g/kg). Within the lower part of the section

Loxocorniculina djaforovi and Euxinocythere naca can be found (Figure 8.3), both of which are

well-known from Upper Miocene deposits from the Pannonian Basin (Cziczer et al., 2009; Krstić,

1972; Olteanu, 1989; Sokac, 1989), the Dacian Basin, Black Sea and Caspian Sea (Agalarova,

1967; Agalarova et al., 1961; Olteanu, 1989, 1999b; Schneider, 1949; Vekua, 1975) as well as

from the Lago-Mare successions around the Mediterranean (Cosentino et al., 2007; Stoica et al.,

2016). As such, the species within the lower part of the section (approx. 80%) are indicative

of a Pontian age, while the assemblages above 93 m are likely to be of Kimmerian age (Figure

8.3). Therefore, the ostracod assemblages from the Khvarbeti and Tsikhisperdi sections suggests a

Pontian - early Kimmerian age (between 6.1 to ∼5.3 Ma, Marius Stoica and Lea Rausch, personal

communication).

In the light of the biostratigraphic constraints provided by ostracod assemblages, the palaeomagnetic

polarity pattern of the Guria section was also revisited and is found to be also compatible with

the GPTS for the Late Miocene (Wout Krijgsman, personal communication). Resolving the age

contradiction between the new ostracod based age model and existing pollen based age model

(Kirscher et al., 2017) is currently underway. Here, no assumptions were made regarding the likely

age for the section and only the implications of the different ages on the Sr isotopic record from

the Guria section were considered.

A Late Miocene age makes the Guria section coeval with the Black Sea Zheleznyi Rog section

(Grothe, 2016). Consistently, the Sr isotopic records from the two sections show similar values

(Figure 8.4, this study; Grothe, 2016). These values are also similar to the Caspian Sea Adzhiveli

section between 5.5 and 6 Ma (Figure 8.4, Grothe, 2016) and suggests the Black Sea and the

Caspian Sea were part of a single Pontocaspian basin during this time possibly with two way

exchange between them.

Hiatuses in key sections from the Black Sea and the Caspian Sea results in problematic age models

for these basins (e.g. Chang et al., 2014; Krijgsman et al., 2010; Popov et al., 2016; Radionova and

Golovina, 2011; van Baak et al., 2016b). As such, correlation between the Black Sea data with the

MSC substages (e.g. Stage 2 - acme interval, Stage 3 - PLG) is difficult. However, at the larger

scale of the MSC, the 87Sr/86Sr isotopic data from the Mediterranean clearly shows a decreasing

trend indicating its progressive isolation from the global ocean during the Stage 1 (Figure 8.4). The

concurrent increase in the Pontocaspian 87Sr/86Sr may suggest an influence of the Mediterranean
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Figure 8.4: The Late Miocene 87Sr/86Sr record from the Black Sea (green; this study, Grothe, 2016),
Caspian Sea (orange; Grothe, 2016) and Mediterranean Sea (grey; Flecker et al., 2015) along with
coeval oceanic 87Sr/86Sr shown in blue line. The Black Sea and the Caspian Sea regional stages
are plotted against standard geological time scale (Krijgsman et al., 2019). Note the uncertain upper
boundary for the Pontian regional stage. Faunal based connectivity history during this period is shown
by coloured arrows (Krijgsman et al., 2019). Colour and direction of the arrow of indicate the source
water and direction of the input.

water into the Pontocaspian basin. The isolation of the Mediterranean Sea during the MSC acme

interval (Stage 2) fits well with the observation of rising salinity in the basin (Roveri et al., 2014)

but can be tentatively correlated to episodes of declining salinity in the Pontocaspian basin (van

Baak, 2015; van Baak et al., 2016b). This suggests that there may not be a connection between the

two at the time. Given that the Mediterranean has alternative fluvial sources of very low 87Sr/86Sr,

the decreasing 87Sr/86Sr values in the Mediterranean during the acme interval is independent of

the Pontocaspian input.

Although the absolute age for the base of the Kimmerian in the Black Sea is not recognised, it

has been suggested to be ∼5.5 Ma (Krijgsman et al., 2010) based on regional stages correlation

between the Black and the Dacian Basin (Central Paratethys). If this was the case, the top of

the Khvarbeti section, which contains Kimmerian ostracod assemblages, is younger than 5.5 Ma
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and may be tentatively correlated with the Lago Mare period (Stage 3) of the MSC. During this

stage 3 interval, the 87Sr/86Sr from the Black Sea (Guria) and the Caspian Sea (Adzhiveli, Grothe,

2016) are similar to the Mediterranean 87Sr/86Sr values (Figure 8.4). In contrast to the stage 2, the

occurrence of brackish – freshwater conditions in the Mediterranean Sea and evidence of faunal

exchange between the Black Sea and the Mediterranean Sea (Cosentino et al., 2007; Londeix et al.,

2007; Rouchy et al., 2001; Stoica et al., 2016) indicates that the Mediterranean, Black and Caspian

seas were all connected during this period. Finally at the onset of the Pliocene, the Mediterranean

Sr isotopic values adjust back to oceanic values indicating reconnection to the open ocean (Figure

8.4). One 87Sr/86Sr data from the Black Sea at ∼5.1 Ma (Grothe, 2016) suggests that there was

no input from the Mediterranean or the open ocean to the Black Sea (and possibly to the Caspian

Sea) during this time presumably because the connection with the Mediterranean had been severed

at some point at, or just after the Mio - Pliocene boundary. Faunal evidence also suggests no

connection between the Black Sea and the Caspian Sea at this time (Nevesskaya et al., 2003; Popov

et al., 2006).

A review of all Sr isotopic data from the Black Sea over the past 7 million years shows that
87Sr/86Sr from the Guria section has reoccurred more than once since the Late Miocene (Figure

8.5). Most of the Guria 87Sr/86Sr ranges between 0.7084 and 0.7085 and these values reappear at

about ∼1 Ma in the DSDP core 379A, in the DSDP 380A (age somewhere between 1.8 and 4.2

Ma) and again in the Zheleznyi Rog section between 6 and 5 Ma (Figure 8.5). Therefore, despite

the age uncertainty surrounding the Guria section, these reoccurring values may suggest that the

Black Sea had a persistent 87Sr/86Sr value resulting from enduring supply of river water from their

sources throughout the early Pleistocene. Although this requires empirical testing, if this was the

case, model results suggest that this 87Sr/86Sr value can be produced in the Black Sea if the basin

was isolated from the Mediterranean but received an input from the Caspian Sea (Figure 6.4).

The similarity of the Black Sea 87Sr/86Sr with the Caspian Sr isotopic values from the Miocene

Adzheveli section (Grothe, 2016), Early Pleistocene Karagoush section (Page, 2004) and Hajigabul

section (Chapter 7) also suggests that the Black Sea may have been connected to the Caspian Sea,

but was isolated from the Mediterranean Sea during this time.

8.2.2 Pliocene connectivity history

No geochemical data are available for the Black and Caspian seas for the Pliocene (Figure 8.1).

Sedimentological (Section 1.3) and palaeontological (Section 1.5.1) evidence suggests a prolonged
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Figure 8.5: The Black Sea Sr isotopic record over the last 7 Ma with Guria 87Sr/86Sr plotted according
to both Pleistocene and LateMiocene agemodel. The green shaded bar highlights the range of 87Sr/86Sr
that consistency reoccurs between Late Miocene and early Pleistocene.

isolation of the Black Sea and the Caspian Sea from each other and the open ocean. This has yet

to be tested with the Sr isotopic data.

8.2.3 Pleistocene connectivity history

The Caspian connection to the Arctic Ocean at the Plio - Pleistocene boundary resulted in a rapid

rise in the 87Sr/86Sr of the Caspian Sea, which may have contributed to the dramatic increase

in the Caspian surface area (van Baak et al., 2019). The timing of this northern connection to

the Arctic Ocean is broadly consistent with the phylogenetic studies of Caspian Seals (Árnason

et al., 1995, 2006; Dooh et al., 2006; Palo and Väinölä, 2006), and the crustaceanMysis (Väinölä,

1995; Väinölä et al., 2001) both of which, suggest an early Pleistocene connection resulting in

the transfer of Arctic taxa to the Caspian Sea. New data from this study suggests that the Arctic

connection lasted longer than previously thought (van Baak et al., 2019), spanning the interval

from 2 .7 Ma to ∼1.96 Ma (Chapter 5). Although there are no coeval data from the Black Sea

during this period of Caspian-Arctic connection, the 87Sr/86Sr of the Black Sea may have had

a 87Sr/86Sr within the range of 0.7084 and 0.7086 (Figure 8.5 and Section 8.2.1), which can be

achieved with an additional Caspian inflow. If this was the case, both one way flow from the

Caspian Sea into the Black Sea or a two way exchange between the two basins is possible and

can explain the Caspian 87Sr/86Sr data. Existing (Karagoush section, Page, 2004) as well as new

(Hajigabul section, Chapter 7) data from the Caspian Sea and from the Black Sea (Pleistocene

Guria section, Chapter 5, older samples from DSDP 379A, Chapter 6) show overlapping 87Sr/86Sr

values indicating a prolonged connection between the two basins but isolated from the open ocean

through most of the early Pleistocene until ∼1 Ma. Considering the higher salinity conditions (>5
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g/kg) in the Caspian Sea during this time (Chapter 7), two way exchange between the two basins is

a more feasible mechanism to maintain the Caspian salinity, after the severance of marine inflow

from the Arctic Ocean (Chapter 7), instead of a one way flow which removes salt from the Caspian

Sea resulting in a declining salinity.

An enduring connection between the Black Sea and the Caspian Sea however, contradicts the

palaeontological data, which suggests that the Caspian Sea Akchagylian (early Pleistocene) mol-

luscs extended only as far as the Sea of Azov and not into the Black Sea basin during the

Kuyalnikian (Danukalova, 1996; Nevesskaya et al., 1986). Similarly, mollusc assemblages sug-

gest only ephemeral connections between the Apsheronian Caspian Sea and Gurian Black Sea

(Nevesskaya, 2007), while the geochemical data suggest a enduring connection between the two

basins. A more detailed comparison between the faunal and geochemical is currently not possible

as the timing of these faunal events are not provided. However, a general incompatibility between

faunal and geochemical evidence of connectivity can arise due to evolutionary lag experienced by

biota. Once the connection is established, faunal ecosystems require time to adapt and evolve in

new environmental conditions (Fleitmann et al., 2009) and as such, the evolution of fauna is not

always synchronous with the timing of the connection. Therefore, although faunal assemblages of

the two basins are not accurate or direct proxy for reconstructing connectivity history, these data

together with the geochemical evidence of the connection can be used to evaluate the evolutionary

rate of the fauna within a basin.

The 87Sr/86Sr record of the Black Sea and the Caspian Sea show progressive divergence from each

other after about 1 Ma (Figure 8.6). The first isolation of the Black Sea from the Caspian Sea is

observed at ∼1.1 Ma and this is followed by progressively more isolation events during the last

∼500 ka. Similarly, the first Mediterranean and Black Sea connection is observed at 1 Ma (Figure

8.6) with more frequent Black Sea - Mediterranean connection after 500 ka. Although, the Black

Sea was progressively more connected to the Mediterranean over the last 1 Ma, the connection

with the Caspian Sea was still active until ∼150 ka, which marks the last influence of the Caspian

water on the 87Sr/86Sr values of the Black Sea (Figure 8.6). Consequently, the last 1 Ma of the

Black Sea and the Caspian Sea record shows the most dynamic connectivity history in the region

with the Black Sea connection to the Mediterranean Sea, or to the Caspian Sea or to both with

intervals of isolation from both (Figure 8.6). The Black Sea - Mediterranean connection, when it

exists, is likely to always permit two way exchange, unless changes in climatic conditions resulted

in a negative Black Sea hydrological budget and a resulting drop in the Black Sea water level below
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Figure 8.6: The Pleistocene connectivity history between the Black Sea, Caspian Sea and the open
ocean based on the 87Sr/86Sr record from the Black Sea (green data; this study) and the Caspian Sea
(orange data; this study, Page, 2004; van Baak et al., 2019) along with coeval oceanic 87Sr/86Sr shown
in blue line. Colour shaded area reflects the timing of the connectivity and isolation events. The Black
Sea and the Caspian Sea regional stages are plotted against standard geological time scale (Krijgsman
et al., 2019). Faunal based connectivity history during this period is shown by coloured arrows. Colour
and direction of the arrow indicate the source water and direction of the input. Key connectivity events
are highlighted at the bottom of the figure.

the Bosporus sill height during these periods.

Faunal evidence of the connectivity history over the last 500 ka suggests overflow events from
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the Caspian Sea into the Black Sea via Manych strait occurred during glacial periods as the

Caspian water level rose due to increased fluvial discharge fed by glacial melt water (Popov, 1983;

Yanina, 2014). Additionally, Mediterranean incursions to the Black Sea due to eustatic sea level

rise was suggested during interglacial periods (Hoyle, 2019; Krijgsman et al., 2019). Although,

faunal evidence agrees with the 87Sr/86Sr record of Mediterranean-Black Sea connection during

interglacials, it does not fully agree with the Black Sea and the Caspian connection only during

glacial periods (Figure 8.6). In addition to the Mediterranean, the 87Sr/86Sr record shows that the

Black Sea was also connected to the Caspian Sea during interglacial MIS 7 (∼200 ka) and the later

part of MIS 11 (∼380 ka). Given the dominant Mediterranean signal, the ecological conditions in

the Black Sea were likely to have been more similar to that of the Mediterranean Sea and as such,

organisms from the Mediterranean Sea survived while those from the Caspian Sea are unlikely to

have been able to tolerate the higher salinity conditions during these periods. However, it should

be noted that neither faunal nor geochemical data over the last 500 ka have sufficient resolution to

study this disagreement in detail.

The long term connectivity history between the Black Sea, Caspian Sea and the open ocean show

that both, climate and tectonics control the gateways connecting these basins, particularly prior

to 500 ka. Climate variation during the glacial - interglacial cycles over the last 500 ka was the

dominant driver for the Black Sea, Mediterranean connectivity, while the connection between

Black Sea and the Caspian Sea is likely to have been a combination of climate as well as tectonics.

The 87Sr/86Sr from the Black Sea shows large variability indicating rapid and frequent changes in

the hydrological budget over the last 500 ka. As such, to disentangle the impact of high amplitude

glacial - interglacial cyclicity on the connectivity history of the Pontocaspian basin over the last

500 ka, a much higher resolution study is required.

8.3 Answering the research questions

1. Is the strontium isotopic signal in the Black and Caspian seas spatially homogeneous?

Although the existing Sr isotopic dataset has been greatly expanded during this study, sample

coverage is still not complete. However, these data suggest that the spatial distribution of the
87Sr/86Sr across the Black Sea and the Caspian Sea is largely homogeneous with respect to

Sr isotopic ratio. However, the 87Sr/86Sr values near the river mouth and along the beaches

can be impacted by the local fluvial signal. This suggests that brackish marginal basin or
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endorheic basins are more sensitive to fluvial input than the marine system. The 87Sr/86Sr

of the fluvial sources of the Black Sea and the Caspian Sea vary substantially. As such,

caution should be applied when interpreting the 87Sr/86Sr data collected from the site with

potential fluvial dominance.

2. Does the strontium isotopic signal in the Black andCaspian seas vary with water depth?

What influence does the density stratification have on Sr isotopic variability in thewater

column?

The 87Sr/86Sr of the deeper water collected from the Black Sea is consistent with the surface

water indicating a well mixed signal even at location with bottom water anoxia. However,

only two stations with anoxic deep water were sampled during this study. Although these

values indicate a homogeneous Black Sea, a more detailed study with more sampling sites

within the anoxic Black Sea is required. Similarly, a lack of deep water samples from

the Caspian Sea hinders in the interpretation of conservative behaviour of 87Sr/86Sr in the

Caspian Sea. However, the limited measurements from this study and by Clauer et al. (2008)

show that the Caspian Sea is also relatively well mixed with depth, particularly considering

the influence of the Volga river in the north. However, again a more thorough study of Sr

isotopic behaviours in both basins is essential.

3. Are fossil ostracods a robust archive for preserving the primary 87Sr/86Sr of ambient

water in the Black and Caspian seas?

The 87Sr/86Sr measured on the modern ostracods are commonly within error of the bottom

water at the same location without any species-specific variation. This suggests that

ostracods can preserve primary Sr signal of the ambient water and can be used as a good

archive to examine the past basin environment, providing they are well preserved without

any post mortem diagenetic alteration.

4. Does the geochemical system suggest a Caspian connection to the Arctic Ocean and if

so, when did this connection occur?

The potential gateway for the marine input into the Caspian Sea during the early Pleistocene

has been amuch debated topic (Ali-zadeh andAliyeva, 2016; Krijgsman et al., 2019; Popov et

al., 2006). There are two potential directions of marine connection between the Caspian Sea
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and the global oceans have been proposed previously; from the west (via the Mediterranean

and Black Sea) and from the north (Arctic Ocean). The Black Sea 87Sr/86Sr from the Guria

section (if it is of the Pleistocene age) indicate little or noMediterranean-Black Sea exchange

at the time, thus eliminating the marine input into the Caspian Sea from the Mediterranean

via the Black Sea. Consistent with the phylogenetic studies (e.g., Árnason et al., 1995,

2006; Palo and Väinölä, 2006; Väinölä, 1995) and studies by Richards et al. (2018) and van

Baak et al. (2019), the 87Sr/86Sr of the Caspian Sea supports a northern marine connection

between the Caspian Sea and the Arctic Ocean (Chapter 5 and Figure 8.7).

Figure 8.7: Paleogeographic map of the Black Sea and the Caspian Sea during the early Pleistocene.
The current drainage area for the Black Sea is shown in pale green and for the Caspian Sea is shown in
pale red. Pale blue area shows the extent of the Caspian Sea during the Akchagylian period (modified
from Vinogradov, 1967). Dotted blue lines indicate former course of the Amu Darya. Red dashed
arrows indicate possible pathway for the Caspian-Arctic connection with the minimum present-day
elevation which needs to be crossed for marine water to enter the Caspian drainage. The shaded area
with dashed black lines indicate the likely extent of the Scandinavian and Barents ice sheets during the
early Pleistocene.

van Baak et al. (2019) suggested that this Caspian-Arctic connection was formed due to

isostatic loading and started at the onset of the Northern Hemisphere Glaciation at ∼2.7
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Ma. The result from this study shows that the connection lasted until ∼1.96 Ma, longer than

previously assumed and that the Caspian Sea also sustained a connection to the Black Sea

during the time (Chapter 5). The pathway for Caspian-Arctic connection, however, is still

unknown. Two possible options have been previously proposed (Richards et al., 2018). The

first possible pathway is via the Volga river as the ocean water reaches the Volga catchment

area, which extends northwards to 60◦N (Figure 8.7). Although, the current topographic

height of the upper Volga region is about 113 m above global sea level, this is the shortest

route for the Arctic marine water to reach the Caspian Sea. The second potential pathway

for the marine water into the Caspian Sea is via the Ob river, east of the Ural Mountains and

into the Aral Sea, which during the early Pleistocene was part of the Caspian Sea (Figure

8.7). This pathway provides the lowest water divide between the West Siberian Plain and the

Aral Sea at only 50 m above global sea level (Astakhov, 2006) and may be more plausible

as it follows the Turgay pass that traces a former gateway connecting the Arctic Ocean and

the Tethyan Ocean during the Paleogene (Akhmetiev et al., 2012).

5. How did the Sr isotopic ratio evolve in the Black and Caspian seas over the last 3 million

years and what is its implication for the Quaternary connectivity history of the two

basins to each other and the open ocean.

The 87Sr/86Sr record from the Caspian Sea over the last 3 Ma shows that the 87Sr/86Sr values

in this basin was always higher than the present-day 87Sr/86Sr value suggesting additional

radiogenic water fed the Caspian Sea in the past. Larger variability observed in the Caspian

Sea prior to 2Ma suggests multiple water sources fromArctic ocean, Black Sea and the Amu

Darya river, while the Caspian Sea shows a much narrower range in the 87Sr/86Sr values after

2 Ma. This range is similar to the coeval Black Sea 87Sr/86Sr values implying an enduring

connection between the two basins with possibly an additional fluvial discharge from the

Amu Darya river into the Caspian Sea.

The 87Sr/86Sr record from the Black Sea however, shows an opposing trend. The 87Sr/86Sr

is consistent until ∼1 Ma, implying that, in addition to the fluvial sources, the Black Sea

only received additional water from the Caspian Sea prior to 1 Ma. However, the Black Sea
87Sr/86Sr record shows a larger variability and moves towards increasing ratios over the last

1 Ma suggesting more frequent connections with the Mediterranean Sea with intervals of

isolation from both, the Mediterranean and the Caspian Sea.
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6. What was the nature of connection (one way flow or two way exchange) between the

Black Sea, Caspian Sea and the open ocean during the Pleistocene?

The Caspian connection to the Arctic Ocean is likely to have been a one way flow from the

ocean into the basin. Between 2.7 Ma to ∼2 Ma, the Caspian possibly may have overspilled

into the Black Sea (Figure 8.7). However between 2 Ma to ∼1 Ma the Black Sea and the

Caspian Sea, when connected, probably experienced a two way exchange between them

(Figure 8.8). The resolution of the data in this study however is not sufficient to tease apart

the nature of the Black Sea and Caspian connection over the last 1 Ma. A two way exchange

existed between Mediterranean and the Black Sea over the last 500 ka. The Black Sea

may have overflowed into the Marmara Sea during eustatic low stands during this period.

However, determining these outflow events is outside the scope of this study and requires a

Pleistocene 87Sr/86Sr record from the Marmara Sea.

7. Does the geochemical evidence of the connectivity between the Black Sea, Caspian Sea

and the open ocean match the faunal evidence?

Geochemical evidence of Mediterranean - Black Sea connection during interglacials over

the last 500 ka is consistent with the faunal evidence. However, geochemical record provides

more details regarding the connectivity history of the Black Sea, Caspian Sea and the open

ocean than previous faunal based connectivity reconstruction. Although, differing in some

aspects, these data compliment each other and can therefore be used to evaluate faunal

evolutionary response to the basin connectivity.

8.4 Limitations and outstanding issues

The Sr isotopic record from the Black and Caspian Sea generated in this study is the first complete

record from both basins for the Pleistocene. This study also provides quantitative constraints on the

timing and nature of connectivity and isolation events and helps to disentangle the role of climatic

and tectonic drivers on the connectivity between the Black Sea, Caspian Sea and the open ocean.

However, some outstanding issues still remain and require further investigation to get a continuous

long-term connectivity history of the region. A few issues and unanswered questions are listed

below.
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Figure 8.8: Map of the Black Sea and the Caspian Sea with current drainage area for the Black
Sea shown in pale green and for the Caspian Sea shown in pale red. Pale blue area represent the
palaeogeographic extent of the Caspian Sea during the Apsheronian period (modified from Krijgsman
et al., 2019). Blue dashed arrows indicate possible pathways for the Mediterranean, Black Sea and the
Caspian Sea connection during the Pleistocene. Solid black line shows the extent of ice sheet during
the last glacial maximum (∼20 ka) and dashed black line shows the extent of ice sheet during the Late
Saalian (∼160 – 140 ka; Svendsen et al., 2004). Red lines indicate active faults in the region with
numbers in brackets showing the present shortening or slip rate in mm/yr, followed by finite shortening
or strike-slip in kilometres (Allen et al., 2004). Abbreviation are as follows: North Anatolian Fault
(NAF), East Anatolian Fault (EAF), Ashgabat Fault (AF).

1. The most pressing issue regarding the reconstruction of the connectivity history in the Black

Sea and the Caspian Sea is the lack of robust age models. As already discussed earlier and

shown by contradictory age estimates for the Guria section, the Black and Caspian Sea region

suffers from the serious lack of independent absolute dated age models for the sections and

as such, cross correlation of regional stages with each other and to the standard geological

time scale remains difficult and uncertain. While significant progress has beenmade recently

(Krijgsman et al., 2019, and references therein), stratigraphic and geochronologic data for

the Caspian Sea and the Black Sea still consist of large uncertainties.

2. The 87Sr/86Sr measured on the Aral Sea water samples was used to constrain the Sr isotopic
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ratio of the Amu Darya river in this study. However, the actual 87Sr/86Sr of the Amu Darya

water may be higher than 0.709214 (Chapter 3). This is because, although the Aral Sea

water is dominated by the input from the Amu Darya river, there is an additional source of Sr

into the basin via the groundwater discharge. The average Sr concentration of groundwater

discharge in the Aral Sea region is significantly higher (∼18 ppm) than that of the Amu

Darya river water (1.42 ppm, Schettler et al., 2013). Although no 87Sr/86Sr values are

available for Aral Sea groundwater, it is likely to be lower, given that this water interact

with the underlying sedimentary rocks which are mostly formed of Mesozoic carbonate.

Consequently, the measured 87Sr/86Sr of the Aral Sea water is likely to provide a lower limit

of the constraint on the Sr isotopic ratio of the Amu Darya river water.

3. The numerical box model used in this study captures the main features of the hydrologic

budget in the Black Sea and the Caspian Sea and constrains the inter-basin exchange required

to reproduce the observed 87Sr/86Sr and salinity during the Pleistocene. However, the model

is performed in a steady state scenario and therefore, is only able to capture a snapshot of an

event when the volume of the water within the basin remains constant. A transient model,

with changing water budget and as such, changing sea level (water volume) is required to

investigate the connectivity history between these basins. Additionally, because of the lack

of palaeo data, the model used in this study assumes present-day values for evaporation and

precipitation over the basins, and the Sr signal (Sr concentration and Sr isotopic ratios) for

rivers. Given that these parameters are likely to have fluctuated in the past over glacial-

interglacial timescales, using present-day values in the model only provides a first order

approximation of the past hydrological budget of the Black Sea and the Caspian Sea.

4. The sedimentological evidence suggests a dramatic sea level drop in the Caspian Sea and

isolation of the Black and Caspian Sea during the Pliocene. However, the entire period

between 3 to 5 Ma lack any geochemical data. This is because regressive stages are prone

to erosion and consequently, there are no onshore sedimentary successions representing this

period in the region. Deep sea cores from the regions are also hard to come by. Although

there are possibilities of using industrial wells to retrieve the Pliocene record, these also

bear the problem of drilling contaminations for any geochemical analysis (Meilijson et al.,

2019). Consequently, our understanding of this regressive stage in the Black and Caspian

Sea remains elusive.
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5. The isostatic loading by the Northern Hemisphere Glaciation at the Plio- Pleistocene bound-

ary have been suggested by van Baak et al. (2019) as the driver for the connection between

the Caspian Sea and the Arctic Ocean. Logically, the Pleistocene glaciation which shows in-

creasingly more intense glaciations as suggested by larger amplitude benthic oxygen isotopic

record (Lisiecki and Raymo, 2005) during the Pleistocene, should have reestablished the

Caspian connection to the Arctic ocean in the north. However, Sr isotopic records from the

Caspian sea during the Pleistocene do not suggest a direct marine connection. The question

therefore remains, why was the Caspian-Arctic gateway not impacted by the Pleistocene

glaciations? One explanation is that the post-glacial rebound may have increased the height

of the Caspian - Arctic gateway. Alternatively, there may have been an additional drivers

that controlled the connection between the Caspian Sea and the Arctic Ocean during Plio-

Pliestocene boundary. However, the current available record is not sufficient to answer this

assumption.

8.5 Recommendations for future work

8.5.1 Young sedimentary archive

Besides the recovery of Quaternary sediments from deep sea sediment cores, young sedimentary

archives in the Caspian can be found in few places on land as a result of rapid uplift of the

mountains in the area. Early to mid Pleistocene sedimentary deposits are found mainly within the

Kura basin, located to the south-east of the Great Caucasus (Figure 8.9). The Kura depression

facilitated sedimentary deposition while the active orogeny and uplift of the Caucasus have resulted

in the exposure of these deposits, especially along the Kura Thrust Fold Belt (KTFB; Figure

8.9). Consequently, continuous exposure of the Pleistocene sedimentary record can be found in

Azerbaijan dating up-to about 200 ka (Lazarev et al., 2019). Exposure of Pleistocene deposits can

also be found north of the Greater Caucasus, in Dagestan (Arslanov et al., 2016; Yanina, 2013;

Yanina and Svitoch, 1990). However, sampling these deposits is difficult because of the unstable

political condition in the country. In the south eastern Caspian region, uplift of the Kopet Dag

(Figure 8.9) has resulted in the exposure of Quaternary sedimentary deposits in Turkmenistan

(Torres, 2007). Like Dagestan, political instability makes sampling in the area difficult. Mid

to late Pleistocene sedimentary deposits for the Caspian Sea can be found in southern Russia

along the Volga river (Arslanov et al., 2016; Yanina, 2012). By contrast with the tectonic driver
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for exposure elsewhere, this is because the Volga river erodes and exposes the young sediments

deposited on the north Caspian lowland during Caspian highstands. However, the exposed sections

are not continuous and as such there is much debate regarding the stratigraphy of the northern

Caspian region and the number of transgression and regression stages that characterise the mid -

late Pleistocene period (e.g., Krijgsman et al., 2019; Yanina, 2012; Yanina, 2013; Yanko-Hombach

et al., 2014; Yanko-Hombach et al., 2013).

Figure 8.9: Geological map of the Black Sea and the Caspian Sea. Colours represent the geological age
of the deposits; Purple (Triassic); Jurassic (Blue); Cretaceous (green), Paleogene (orange), Neogene
- Quaternary (yellow), magmatic, volcanic rocks (red and reddish-blue). Map based on the Based on
USGS world geological maps (https://certmapper.cr.usgs.gov/data/apps/world-maps/ ). Area enclosed
by dotted rectangle shows the Kura Fold Thrust Belt (KFTB). Abbreviation are as follows: Rioni
basin(RB), Kura basin (KB).

Terrestrial exposure of Pleistocene sediment in the Black Sea region is much harder to come by.

This is because subaerial exposure of Pleistocene deposits by active orogeny is limited to the

Azov-Kuban region and Rioni basin (Figure 8.9). The Taman and Crimean peninsulas, which

are at the north western tip of the Greater Caucasus and connects the Black Sea with the Sea of

Azov, are plausible locations for younger Black Sea sedimentary archives (Chepalyga et al., 1989;

Saintot and Angelier, 2000; Tesakov et al., 2007). Similarly, uplift of the Caucasus has resulted in

the exposure of Pliocene and Pleistocene sedimentary deposits of the Rioni depression in western

Georgia (Adamia et al., 2010; Molostovsky, 1997). The Guria section (Chapter 5) is one of the
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Black Sea Pleistocene exposures. However, recently the age of this section has been brought into

question (Section 8.2.1).

8.5.2 Constraints on anthropogenic inputs

In semi-isolated and isolated basins like the Black and Caspian seas, a significant portion of the

water comes from continental runoff. Measuring the correct 87Sr/86Sr of the river water is therefore,

essential to understanding the hydrological system of these basins. One of the issues of generating

strontium isotopic ratios of the modern river water is the potential influence of anthropogenic

sources such as fertilisers and sewage on the 87Sr/86Sr values (e.g. Hosono et al., 2007; Nakano

et al., 2005; Pearce et al., 2015; Vitòria et al., 2004; Widory et al., 2004). As such, river water

influenced by anthropogenic sources can significantly modify the 87Sr/86Sr of the basin, resulting

in potential biases when estimating modern as well as past input sources into these basins.

A wide range of 87Sr/86Sr (0.7033- 0.835) have been measured on fertilisers, reflecting variation

in the type and source of the raw materials (e.g., Böhlke and Horan, 2000; Négrel and Roy, 1998;

Vitòria et al., 2004). Identifying the 87Sr/86Sr composition of the fertilisers used in the area is one

way to distinguishing between natural strontium signal of the rivers and impact of human induced

source on the 87Sr/86Sr values. However, this requires an exhaustive study of all the anthropogenic

sources in the region. Another approach to mitigate the anthropogenic impact on the 87Sr/86Sr ratio

is to measure pre-industrial strontium isotopic signature of the river water. This can be achieved

by analysing strontium isotopes on pre-industrial biogenic carbonates collected from well dated

sediment cores from the rivers.

8.5.3 Coeval Black Sea and Caspian Sea record for the MSC

The Messinian Salinity Crisis is one of the most dramatic events in the region and the role of

the Paratethys and its interaction with the Mediterranean during the MSC has been previously

highlighted by Krijgsman et al. (2010), Marzocchi et al. (2016), and Stoica et al. (2016). However,

high-resolution records from both basins are still missing particularly for the Stage 2 and Stage 3

of the MSC. Recently, a research project within another Marie Curie ITN project SALTGIANT

has aimed to revisit the Lago-mare interval in the Mediterranean Sea in order to understand

the hydrological and palaeoenvironmental variation during this stage. Concurrent studies in the

Black and Caspian seas are necessary to understand the interaction between the Paratethys and

Mediterranean region during the time.
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8.5.4 High resolution record

The climatic variation over the last 1 Ma contain high amplitude glacial-interglacial cycles. There-

fore, in addition to tectonic controls, the connectivity between the Black Sea, Caspian Sea and the

open ocean can result from both, eustatic sea level rise during interglacials as well as meltwater

driven lake level rise during glacial periods. In order to tease apart the impact of individual signals

on the connectivity between basins, a much higher resolution study is required. However, this study

demonstrates that combination of Sr isotopic ratios, faunal records and numerical box modelling

provides constraints on the hydrologic budget of the region and as such is an excellent tool for

reconstructing the connectivity history of the Black Sea, Caspian Sea and the open ocean.
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within the PRIDE ITN, who actively collaborated through this project. The integrated study 

was carried out in order to determine the forcing mechanisms driving the cyclic lithological 

changes observed along the 100 m long Pontian interval. Specifically, I logged the section by 

performing detailed sedimentological observations and provided the 12 sediment samples 

used by Diksha for Sr isotopic analyses. 

 

Contact email: e.l.jorissen@uu.nl 

 

Sincerely, 

Elisabeth L. Jorissen 
 

 



190

 
 
 
 
To whom it may concern, 

 

We, Lea Rausch and Prof. Dr. Marius Stoica, hereby give permission to Diksha Bista to use 

data generated by me for her thesis. Specifically, we counted 46 samples of washed sediment 

for ostracod analysis. Both Marius Stoica and myself have been working with Neogene 

ostracod assemblages from the Paratethys for an extended period of time as proved by our 

publication record.  

After analysing the material, I explained the results to Diksha and pointed out the important 

details that made us consider the age and the paleoenvironmental signature of the assemblage 

implicated by certain species. We provided Diksha with a distribution table and we together 

discussed the potential implications of this data, following which Diksha wrote up the results 

for publication and I assessed the text for accuracy. These data were generated for the purpose 

of indicating the age of the Tsikhisperdi-and the Khvarbati section in the Rioni subbasin in 

Georgia. We are colleagues who actively collaborate through the PRIDE ITN. 

Contact email: leanrausch@gmail.com 

 

Sincerely, 

Lea Rausch and Prof. Marius Stoica 



191

Appendix B

The content of this appendix belong to Chapter 3.

Table B.1: Site locations, temperature, salinity and Sr isotopic ratio with 2σ standard error of the
fluvial sources in the region.

Field

ID

Location Lat [N] long [E] Temp

(◦C)

Sal

(g/kg)

87Sr/86Sr Error

(x 10−6)

St. 003 Kura delta 39.40502 49.36538 0.708182 4.81
St. 004 Kura upstream 40.12028 48.08528 0.707688 4.39
St. 007 Dnieper river 46.68881 32.81876 18.2 0.31 0.710220 5.33
St. 008 Dnieper delta 46.53733 32.53658 0.710080 4.99
St. 009 Dnieper gulf 46.54662 32.14368 17.5 0.5 0.710060 4.80
St. 011 Chorokhi river 41.60472 41.57611 14.2 0.12 0.705854 4.37
St. 013 Chorokhi upstream 41.59000 41.60194 15.2 0.07 0.705653 4.88
St. 015 Natanebi upstream 41.91167 41.77833 16.5 0.05 0.705481 5.53
St. 016 Natanebi river 41.91222 41.76889 16.2 0.02 0.705702 6.50
St. 017 Enguri river 42.39320 41.56089 20.2 0.12 0.708640 5.11
St. 018 Palliastomi Lake 42.08119 41.70482 21.7 18.68 0.708937 4.29
St. 019 Palliastomi Lake 42.09290 41.70799 19.9 0.75 0.708265 3.53
St. 020 Palliastomi Lake 42.12253 41.73241 19.1 1.39 0.708672 4.42
St. 021 Pichori river 42.13711 41.75948 17.6 0.13 0.707346 5.26
St. 027 Rioni delta 42.19750 41.66222 20.2 0.15 0.708000 14.37
St. 081 Sea of Azov 47.08833 39.24778 0.709178 5.17
St. 082 Don delta 47.11028 39.31222 0.709170 4.84
St. 092 Don upstream 47.22964 40.03950 0.709157 4.82
St.088 Volta delta 45.74874 47.89408 0.708052 4.15
St. 091 Volga upstream 47.01889 47.44667 0.708047 4.35
St. 097 Volga upstream 49.54360 45.08047 0.708055 4.84
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Table B.2: Site locations, water depth, temperature, salinity and Sr isotopic ratio with 2σ standard
error across the Black Sea.

Station Name Water

depth (m)

Lat [N] long [E] Temp

(◦C)

Sal

(g/kg)

87Sr/86Sr Error (x

10−6)

St. 012 0 41.58222 41.56667 22.3 18.72 0.709143 4.7
St. 014 0 41.77250 41.75583 22.2 16.68 0.709128 6.2
St. 022 0 42.12556 41.64944 21.7 17.16 0.709088 3.4
St. 023 0 42.10861 41.67056 22.5 17.56 0.709131 4.1
St. 024 0 42.07250 41.70722 22 17.62 0.709130 4.6
St. 025 0 42.01722 41.75028 19.1 1.31 0.708227 5.5
St. 026 0 42.03454 41.73816 22.7 17.62 0.709134 4.3
St033 Surface 0 44.50848 29.34632 12.77 15.94 0.709152 4.6
St033 Bottom 42.5 44.50848 29.34632 6 18.5 0.709147 5.8
St034 Surface 0 44.82365 29.65432 11.5 14.39 0.709143 5.0
St034 Bottom 23.4 44.82365 29.65432 6.32 18.36 0.709145 5.2
St036 Surface 0 45.03992 30.04095 14.33 12.87 0.709142 4.7
St036 Bottom 34.7 45.03992 30.04095 5.9 18.29 0.709145 4.7
St037 Surface 0 44.67305 29.81687 13.67 16.11 0.709146 4.3
St037 25m 24.7 44.67305 29.81687 7.81 18.11 0.709145 3.8
St037 Bottom 53.5 44.67305 29.81687 6.48 18.4 0.709140 4.7
St038 Surface 0 44.59153 30.10050 14.1 14.97 0.709141 4.8
St038 Bottom 65.3 44.59153 30.10050 6.4 18.41 0.709139 5.6
St039 Surface 0 44.46740 30.31027 14.41 15.46 0.709146 4.4
St039 21m 21 44.46740 30.31027 7.59 17.63 0.709146 5.2
St039 54m 54 44.46740 30.31027 6.75 18.45 0.709149 5.4
St039 78m 78.1 44.46740 30.31027 7.73 18.79 0.709145 4.8
St041 Surface 0 44.34152 30.52328 12.94 17.75 0.709144 4.1
St041 28m 28 44.34152 30.52328 8.42 18.22 0.709138 5.0
St041 60m 60 44.34152 30.52328 7.32 18.53 0.709145 3.4
St041 Bottom 95.6 44.34152 30.52328 8.24 19.11 0.709150 5.0
St043 Surface 0 43.85260 30.05995 13.76 18.01 0.709139 3.7
St043 Bottom 89.6 43.85260 30.05995 7.7 18.65 0.709146 4.4
St047 Surface 0 43.77280 28.73985 15.27 16.5 0.709136 4.5
St047 Bottom 46.1 43.77280 28.73985 8 18.67 0.709141 8.7
St049 Surface 0 42.49305 28.66172 15.47 18.47 0.709144 4.4
St049 500m 500 42.49305 28.66172 8.88 22.03 0.709148 4.4
St049 1000m 1000 42.49305 28.66172 8.96 22.28 0.709147 5.0
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Table B.2 Continued:

St052 Surface 0 43.16897 28.98323 0.709140 4.7
St052 1000m 1000 43.16897 28.98323 0.709152 4.1
St053 Surface 0 43.36750 28.81597 16.26 17.94 0.709145 5.6
St053 Bottom 74.8 43.36750 28.81597 7.8 18.58 0.709143 4.6

Table B.3: Site locations, water depth, temperature, salinity and Sr isotopic ratio with 2σ standard
error across the Caspian Sea.

Station Name Water
depth
(m)

Lat [N] long [E] Temp (◦C) Sal
(g/kg)

87Sr/86Sr Error (x
10−6)

St059 Surface 0 44.50904 49.99442 21.9 4.8 0.708189 3.6
St059 Bottom 19 44.50904 49.99442 0.708199 5.6
St066 Surface 0 43.75634 50.75752 21.08 10.2 0.708194 4.3
St066 20m 20 43.75634 50.75752 0.708202 5.5
St068 Surface 0 43.72398 50.57025 21.22 10.3 0.708191 4.0
St068 20m 20 43.72398 50.57025 0.708193 5.1
St070 Surface 0 43.59659 50.27940 19.75 11.4 0.708197 4.6
St070 20m 20 43.59659 50.27940 0.708202 5.7
St071 Surface 0 43.23659 51.25584 16.86 11.3 0.708186 7.5
St071 Bottom 20 43.23659 51.25584 0.708197 6.3
St074 Surface 0 43.49924 51.01059 21.53 10.4 0.708186 5.8
St074 20m 20 43.49924 51.01059 0.708197 5.0
St074 20m 20 43.49924 51.01059 0.708196 4.1
A2 0 45.08208 58.39103 25 0.709214 8.4
A49 2.5 45.08334 58.33631 27 0.709212 6.5
A43 12.5 45.07456 58.33446 0.709221 5.5
A61 5 45.10433 58.35492 0.709207 7.1
A63 5 45.09694 58.34881 0.709216 5.4
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Table B.4: Location and Sr isotopic ratio with 2σ standard error for the Caspian Sea water samples
shown in Figure 3.4 in Chapter 3.

Location Field
ID

Water
depth
(m)

Lat [N] long [E] Ost. Species 87Sr/86Sr Error
(x
10−6)

Black Sea St033 42.5 44.50848 29.34632 Ost 0.709119 14.3
Black Sea St036 34.7 45.03992 30.04095 P. granulata 0.709127 8.2
Black Sea St036 34.7 45.03992 30.04095 H. rubra 0.709138 6.0
Black Sea St039 78.1 44.46740 30.31027 P. granulata 0.709146 6.4
Black Sea St039 78.1 44.46740 30.31027 H. rubra 0.709145 5.2
Black Sea St043 89.6 43.85260 30.05995 P. granulata 0.709139 5.5
Black Sea St043 89.6 43.85260 30.05995 Foram 0.709142 5.4
Black Sea St047 46.1 43.77280 28.73985 Hi. rubra 0.709137 4.8
Black Sea St053 74.8 43.36750 28.81597 P. granulata 0.709141 5.4
Black Sea St053 74.8 43.36750 28.81597 Foram 0.709145 4.7
Caspian
Sea

St059 8 44.72741 50.22056 E. naph-
tascholana

0.708199 4.6

Caspian
Sea

St066 44.3 43.75634 50.75752 E. naph-
tascholana

0.708200 5.7

Caspian
Sea

St066 44.3 43.75634 50.75752 C. acrona-
suta

0.708197 3.9

Caspian
Sea

St068 101 43.72398 50.57025 E. naph-
tascholana

0.708232 4.6

Caspian
Sea

St068 101 43.72398 50.57025 C. acrona-
suta

0.708209 10.3

Caspian
Sea

St069 142 43.69947 50.46807 E. naph-
tascholana

0.708353 4.5

Caspian
Sea

St069 142 43.69947 50.46807 C. acrona-
suta

0.708233 4.2

Caspian
Sea

St069 142 43.69947 50.46807 C. acrona-
suta

0.708222 4.9

Caspian
Sea

St070 249 43.59659 50.27940 E. naph-
tascholana

0.708197 4.0

Caspian
Sea

St070 249 43.59659 50.27940 C. acrona-
suta

0.708200 4.9

Caspian
Sea

St074 41.8 43.49924 51.01059 E. naph-
tascholana

0.708199 5.0

Caspian
Sea

St074 41.8 43.49924 51.01059 C. acrona-
suta

0.708211 5.1
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Figure B.1: Sediment fraction larger than 1 mm from Station 68 and 69 of the Caspian Sea. The
fraction contains heavily broken mollusc and gastropods shells indicating sediment reworking.
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Appendix C

The content of this appendix belong to Chapter 5.
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Figure C.1: Sr isotopic ratio of the Caspian Sea (left panel) and the Black Sea (right panel) with
increasing oceanic influx. The shaded areas represent the change in Sr isotopic ratio with two ocean
87Sr/86Sr between 0.709068 (2.6 Ma) and 0.709137 (1 Ma). Present day value for the oceanic input
into the Black Sea (2 x 1011 m3/yr ) is shown in dashed vertical line. Black Sea is more sensitive to the
oceanic input because the Sr ratio of its fluvial fluxes is higher (0.708774) than that from the Caspian
Sea.
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Figure C.2: Sr isotopic ratio of the Caspian Sea with increasing Amu Darya influx. Without any
oceanic input, about 6.8 x 1011 m3/yr from the Amu Darya is required to increase the Sr ratio to
0.70899.

Table C.1: Stratigraphic level, age and Sr isotopic ratio with 2σ standard error for the Goychay section
(40.696275 N, 47.762389 E).

Sample

ID

Strat.

level (m)

Ostracod used Age (Ma) Age er-

ror (Ma)

87Sr/86Sr Error (x

10−6)

GO1 77.5 Few fragments 2.5592 0.0042 0.708427 4.3
GO3 81 Few fragments 2.5565 0.0042 0.708415 8.0
GO4 93.6 4 valves 2.5468 0.0042 0.708419 9.2
GO11 184.3 Few fragments 2.4770 0.0042 0.708455 7.2
GO12 186.7 Few fragments 2.4752 0.0042 0.708490 1.5
GO12.1 187 7 valves 2.4749 0.0042 0.708512 5.3
GO13 191 2 valves + fragments 2.4718 0.0042 0.708505 5.2
GO13 191 Few fragments 2.4718 0.0042 0.708511 5.2
GO14 194.8 2 valves + fragments 2.4689 0.0042 0.708490 6.1
GO15 198 Few fragments 2.4665 0.0042 0.708304 9.0
GO15.1 199 5 valves 2.4657 0.0042 0.708492 4.9
GO15.1 199 5 valves 2.4657 0.0042 0.708492 4.9
GO17 204 7 valves 2.4618 0.0042 0.708489 5.9
GO17 204 1 valve + fragments 2.4618 0.0042 0.708493 4.9
GO18 231 1 valve + fragments 2.4411 0.0042 0.708482 6.1
GO20 242.2 6 valves 2.4325 0.0042 0.708536 5.8
GO27 336.4 Few fragments 2.3600 0.0042 0.708670 4.7
GO27 336.4 Few fragments 2.3600 0.0042 0.708670 4.8



199

Table C.1 Continued:

GO31 445.5 6 valves 2.2761 0.0042 0.708991 4.5
GO31.1 446.7 Few fragments 2.2752 0.0042 0.708774 3.9
GO31.2 449.25 Few fragments 2.2732 0.0042 0.708792 5.9
GO32.1 454.6 1 valve + fragments 2.2691 0.0042 0.708279 6.7
GO33 460 Few fragments 2.2649 0.0042 0.707804 6.5
GO35.2 509.8 Few fragments 2.2266 0.0042 0.708225 5.7
GO35.3 511.05 5 valves 2.2257 0.0042 0.708477 5.4
GO35.4 511.8 4 valves + fragments 2.2251 0.0042 0.708487 4.8
GO35.5 513.3 2 valves + fragments 2.2239 0.0042 0.708475 4.6
G036 516.3 Few fragments 2.2216 0.0042 0.708511 5.6
GO39 571.9 6 fragments 2.1788 0.0042 0.708099 5.5
GO43 651 3 valves + fragments 2.1270 0.0000 0.708489 4.6
GO45 700 Few fragments 2.0970 0.0107 0.708643 5.2
GO 45.1 703 7 valves 2.0950 0.0107 0.708694 4.1
GO46 703.5 2 valves + fragments 2.0950 0.0107 0.708717 4.3
GO47.1 758 Few fragments 2.0510 0.0109 0.708536 4.6
GO47.2 765 Few fragments 2.0450 0.0109 0.707716 4.9
GO56 849 6 fragments 1.9770 0.0112 0.708592 5.5
GO57 868.1 4 valves + fragments 1.9620 0.0113 0.708543 6.8
GO59 903 6 fragments 1.9362 0.0085 0.708247 7.5
GO70 1074.6 Few fragments 1.8255 0.0042 0.708082 5.7
GO75 1099 Few fragments 1.8097 0.0036 0.708021 5.8
GO96 1182.9 2 valves + fragments 1.7592 0.0024 0.708005 6.8
GO96 1182.9 1 valves + fragments 1.7592 0.0024 0.708010 7.4
G0104 1305.8 Few fragments 1.6890 0.0026 0.708018 4.3
G0104 1305.8 Few fragments 1.6890 0.0026 0.708017 7.5
G0108 1360.5 Few fragments 1.6577 0.0027 0.708059 7.1
GO120 1720 Few fragments 1.4523 0.0033 0.708224 5.1
GO126 1902.7 Few fragments 1.3479 0.0036 0.708324 5.3
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Table C.2: Stratigraphic level, age and Sr isotopic ratio for theKaragoushMountain section (40.240633
N, 49.54445 E; Page, 2004). Age for each sample was calculated in this study based on tentative tie-
points provided by Page, 2004. No measurement errors for Sr isotopic ratios were provided by Page
(2004).

Sample ID Strat. level (m) Age (Ma) 87Sr/86Sr

K006 6.5 2.00 0.708500
K013 15.8 1.98 0.708510
K018 22.2 1.97 0.708500
K026 32.3 1.95 0.708480
K029 35.3 1.94 0.708470
K031 37.1 1.94 0.708480
K066 69.6 1.87 0.708480
K070 73.5 1.86 0.708460
K083 84.7 1.83 0.708470
K100 99.6 1.80 0.708450
K106 103.9 1.79 0.708470
K108 105.6 1.79 0.708460
K116 112.3 1.77 0.708540
K120 115.6 1.77 0.708450
K137 129.8 1.74 0.708510
K138 130.6 1.73 0.708510
K152 152.2 1.69 0.708430
K155 155.8 1.68 0.708550
K157 158.2 1.67 0.708540
K163 165.4 1.66 0.708630
K164 166.6 1.66 0.708630
K168 172 1.64 0.708480
K172 176.2 1.63 0.708480
K194 201.6 1.58 0.708550
K199 207.9 1.57 0.708510
K212 223.3 1.53 0.708460
K223 236.3 1.50 0.708470
K225 238.7 1.50 0.708460
K234 248.8 1.48 0.708470
K243 257.9 1.46 0.708480
K244 258.9 1.45 0.708490
K250 265.2 1.44 0.708530
K251 265.5 1.44 0.708620
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Table C.2 Continued:

K254 270.9 1.43 0.708450
K255 272.4 1.43 0.708440
K257 275.5 1.42 0.708470
K262 281.7 1.41 0.708470
K263 283.5 1.40 0.708590
K264 285.3 1.40 0.708470
K274 302 1.36 0.708530
K278 308.9 1.35 0.708470
K280 312.2 1.34 0.708590
K283 317.3 1.33 0.708470
K284 318.9 1.32 0.708560
K285 321.6 1.32 0.708490
K310 353.5 1.25 0.708480
K312 356.8 1.24 0.708480
K314 360.2 1.23 0.708470
K316 363.6 1.23 0.708480
K317 365.2 1.22 0.708470
K318 366.9 1.22 0.708490
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Table C.3: Stratigraphic level, age and Sr isotopic ratio with 2σ standard error for the Guria sections.

Section Sample ID Strat.
level (m)

Ostracod used Age
(Ma)

87Sr/86Sr Error
(x10−6)

Tsikhisperdi KH038 0.25 5 valves + fragments 2.13 0.708510 8.7
Tsikhisperdi KH040 2.15 5 valves + fragments 2.06 0.708550 6.1
Tsikhisperdi KH042 3.45 Few fragments 2.01 0.708450 4.5
Tsikhisperdi KH044 5 5 valves + fragments 1.96 0.708430 5.3
Tsikhisperdi KH045 5.5 3 valves 1.94 0.708430 1.2
Tsikhisperdi KH048 7.44 5 valves + fragments 1.87 0.708520 5.7
Tsikhisperdi KH049 8.3 7 valves 1.84 0.708520 5.7
Khvarbeti KH025 1.55 5 valves + fragments 1.76 0.708610 5.0
Khvarbeti KH027 3.25 5 valves + fragments 1.75 0.708563 5.1
Khvarbeti KH030 6.35 5 valves + fragments 1.74 0.708521 5.1
Khvarbeti KH030 6.35 5 valves 1.74 0.708523 5.3
Khvarbeti KH032 15 5 valves + fragments 1.69 0.708490 5.2
Khvarbeti KH033 18 8 valves 1.68 0.708311 5.5
Khvarbeti KH033 18 5 valves 1.68 0.708307 9.3
Khvarbeti KH022 64 6 valves + fragments 1.45 0.708500 5.1
Khvarbeti KH021 68 4 valves 1.43 0.708500 5.2
Khvarbeti KH019 76 5 valves + fragments 1.39 0.708680 4.9
Khvarbeti KH018 79.5 4 valves 1.37 0.708580 8.9
Khvarbeti KH017 82 5 valves + fragments 1.36 0.708497 5.7
Khvarbeti KH013 102 3 valves + fragments 1.26 0.708330 8.2
Khvarbeti KH010 110 4 valves + fragments 1.22 0.708440 5.9
Khvarbeti KH009 117.1 5 valves + fragments 1.18 0.708600 5.1
Khvarbeti KH008 117.7 4 valves 1.18 0.708540 2.4
Khvarbeti KH007 118 2 valves + fragments 1.18 0.708460 5.4
Khvarbeti KH006 118.5 4 valves 1.18 0.708460 6.1
Khvarbeti KH005 120 4 valves + fragments 1.17 0.708560 5.6
Khvarbeti KH003 137 6 valves 1.08 0.708600 4.9
Khvarbeti KH001 142 5 valves 1.06 0.708790 5.3
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Appendix D

The content of this appendix belong to Chapter 6.

Model equations

The equations underlying the model for the different connectivity scenarios are presented here.

Overview of the parameter, their description and values are presented in Table 4.1. The model is

performed in a steady state, therefore volume remains constant.

Scenario A

In a steady state,

qBO = qOB + RB + PB − EB (D.1)

Sr concentration:

[Sr]B =
[Sr]O ∗ qOB + [Sr]RB ∗ RB

qOB + RB
(D.2)

Sr isotopic ratio:

( 87Sr
86Sr

)
B

=

( 87Sr
86Sr

)
O
∗ [Sr]O ∗ qOB +

( 87Sr
86Sr

)
RB
∗ [Sr]RB ∗ RB

[Sr]O ∗ qOB + [Sr]RB ∗ RB
(D.3)

Salinity:

[S]B =
[S]O ∗ qOB

qBO
(D.4)

Scenario B

In a steady state,

EB = RB + PB (D.5)
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Sr concentration:

[Sr]RB =
[Sr]Rb1 ∗ Rb1 + [Sr]Rb2 ∗ Rb2 + ..... + [Sr]Rbn ∗ Rbn

RB
(D.6)

Sr isotopic ratio:

( 87Sr
86Sr

)
RB

=

( 87Sr
86Sr

)
Rb1
∗ [Sr]Rb1 ∗ Rb1 +

( 87Sr
86Sr

)
Rb2
∗ [Sr]Rb2 ∗ Rb2 + ...

... +
( 87Sr
86Sr

)
Rbn
∗ [Sr]Rbn ∗ Rbn

[Sr]RB ∗ RB
(D.7)

Salinity remains constant.

Scenario C

In a steady state,

EB = RB + PB + qCB (D.8)

Sr concentration:

[Sr]B =
[Sr]C ∗ qCB + [Sr]RB ∗ RB

qCB + RB
(D.9)

Sr isotopic ratio:

( 87Sr
86Sr

)
B

=

( 87Sr
86Sr

)
C
∗ [Sr]C ∗ qCB +

( 87Sr
86Sr

)
RB
∗ [Sr]RB ∗ RB

[Sr]C ∗ qCB + [Sr]RB ∗ RB
(D.10)

Salinity remains constant.

Scenario D

In a steady state,

qBO = qOB + qCB + RB + PB − EB (D.11)

Sr concentration:

[Sr]B =
[Sr]O ∗ qOB + [Sr]C ∗ qCB + [Sr]RB ∗ RB

qOB + qCB + RB
(D.12)
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Sr isotopic ratio:

( 87Sr
86Sr

)
B

=

( 87Sr
86Sr

)
O
∗ [Sr]O ∗ qOB +

( 87Sr
86Sr

)
C
∗ [Sr]C ∗ qCB +

( 87Sr
86Sr

)
RB
∗ [Sr]RB ∗ RB

[Sr]O ∗ qOB + [Sr]C ∗ qCB + [Sr]RB ∗ RB

(D.13)

Salinity:

[S]B =
[S]O ∗ qOB + [S]C ∗ qCB

qBO
(D.14)
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Appendix E

The content of this appendix belong to Chapter 7.

Table E.1: Stratigraphic level, age and Sr isotopic ratio with 2σ standard error for the Hajiqabul
section (N40.127033, E48.872699).

Sample ID Strat. level (m) Ostracod used Age (Ma) 87Sr/86Sr Error

DS 5.1 520.6 3 fragments 2.1 0.708293 5.2
DS 16.1 616 6 valves 2.1 0.708349 4.6
DS 18.1 647.6 4 valves 2.1 0.708510 4.6
DS 22.1 700 7 valves 2.0 0.708458 5.5
DS 25.1 740.4 7 valves 2.0 0.708264 6.0
DS 26.1 750 6 valves 2.0 0.708467 5.5
DS 41.1 955 3 valves +fragments 1.9 0.708720 4.8
DS 53.1 1120 8 valves 1.7 0.707730 5.0
DS 58.1 1180 6 valves 1.6 0.708487 4.3
DS 65.1 1245 6 valves 1.5 0.708693 4.4
DS 75.1 1335 7 valves 1.3 0.708662 5.1
DS 83.1 1415 2 valves + fragments 1.2 0.708624 5.7
DS 86.1 1439 Fragments 1.1 0.707801 13.8
DS 88.1 1465 8 valves 1.1 0.708387 4.3
DS 89.1 1490 8 valves 1.1 0.708456 4.3
DS 93.1 1564 7 valves 0.9 0.708486 4.7
DS 96.1 1590 7 valves 0.9 0.708396 4.6
DS 97.1 1701 7 valves 0.6 0.708438 4.3
DS 99.1 1714 7 valves 0.6 0.708251 5.7
DS 100.1 1719.7 7 valves 0.6 0.708353 4.5
DS 104.1 1741 7 valves 0.5 0.708549 4.4
DS 110.1 1770 7 valves 0.5 0.708654 4.9
DS 113.1 1842.5 7 valves 0.3 0.708268 4.8
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Appendix F

The content of this appendix belong to Chapter 8.

Table F.1: Core depth, age and Sr isotopic ratio with 2σ standard error for the DSDP core 380A.

Site Hole Core Sec. Top
depth
(cm)

Bot.
depth
(cm)

Core
depth
(m)

Age (Ma) 87Sr/86Sr Error
(x10−6

380 A 9 6 78.5 81 416.78 0.75 0.708569 8.70
380 A 34 3 136 140 640.86 between 1.8 and 4.2 0.708517 6.50
380 A 51 6 44 48 806.34 5.65 0.708584 7.32
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Table F.2: Stratigraphic level, age and Sr isotopic ratio for the Zheleznyi Rog section (N45.115137,
E36.760768).

Sample ID Strat.
level (m)

Strat. level cor-
responding to
Vasiliev et al.,
2011

Age
(Ma)

Ost species 87Sr/86Sr Error
(x10−6)

ZR 281 1.6 137 5.85 Caspiolla 0.708572 11
ZR 288 3 134.5 5.83 Caspiocypris alta 0.708569 9
ZR 295 4.4 132.8 5.83 Caspiocypris alta 0.708563 8
ZR 300 5.4 132.5 5.82 Caspiocypris alta 0.708554 24
ZR 304 6.2 130.5 5.82 Cyprideis torose 0.708409 9
ZR 305.5 6.6 130.1 5.81 Cyprideis torose 0.708479 7
ZR 307 6.9 130.1 5.81 Caspiocypris alta 0.708585 9
ZR 311 7.7 129 5.81 Caspiocypris alta 0.708577 10
ZR 316 8.8 128 5.80 Caspiocypris alta 0.708593 7
ZR 321 9.9 127 5.80 Caspiocypris alta 0.708605 11
ZR 329 11.55 125 5.79 Caspiocypris alta 0.708586 8
ZR 330 11.8 124.5 5.79 Caspiocypris alta 0.708564 11
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Appendix G

Table G1: Location of the water and modern sediment samples collected during this study. The list

also include where the water or sediment samples were taken for other analysis; Sr: Sr isotopic ratio,

DNA: Dinoflagellate phylogenetic, Ost: Ostracod micropaleontology, Paly: Palynology, Dino: Dinocysts,

HM/MO: Heavy metal and microplastic. Samples for Sr isotopic analysis, Dinoflagellate phylogenetic, and

Dinocysts are stored in School of Geographical Sciences, University of Bristol (PI: Prof. Rachel Flecker,

ESR: Diksha Bista and Manuel Sala Perez), samples for ostracod micropaleontology are stored in the

Department of Geology, University of Bucharest (PI: Prof. Marius Stoica, ESR: Lea Rausch), samples

palynology are stored in Utrecht University (PI: Dr. Francesca Sangiorgi, ESR: Thomas M. Hoyle), samples

for heavy metal and microplastic are stored in GiMaRIS (PI: Arjan Gittenberger, ESR: Anouk D’Hont).

This table covers several pages and as such the header will not be repeated.



Sr DNA Sr Ost Paly Dino HM/MP
Caspian St.	001 27/04/16 0 40.29994 49.77321 Yes
Caspian St.	002 30/04/16 0 40.78167 49.55417 Yes
Kura	 St.	003 04/05/16 0 39.40502 49.36538 Yes
Kura St.	004 05/05/16 0 40.12028 48.08528 Yes
Kura St.	005 05/05/16 0 39.94694 48.34667 Yes
Dnieper St.	007 14/05/16 0 46.68881 32.81876 18.2 0.31 Yes
Dnieper St.	008 17/05/16 0 46.53733 32.53658 Yes
Dnieper St.	009 16/05/16 0 4 46.54662 32.14368 17.5 0.5 Yes
Southern	
Bug St.	010 17/05/16 0 46.74633 31.93933 19.7 3.2 Yes
Chorokhi St.	011 01/10/16 0 41.60472 41.57611 14.2 0.12 Yes
Black	Sea St.	012 01/10/16 0 41.58222 41.56667 22.3 18.72 Yes
Chorokhi St.	013 01/10/16 0 41.59 41.60194 15.2 0.07 Yes
Black	Sea St.	014 01/10/16 0 41.7725 41.75583 22.2 16.68 Yes
Natanebi St.	015 01/10/16 0 41.91167 41.77833 16.5 0.05 Yes
Natanebi St.	016 01/10/16 0 41.91222 41.76889 16.2 0.02 Yes
Enguri St.	017 02/10/16 0 42.3932 41.56089 20.2 0.12 Yes
Black	Sea St.	018 03/10/16 0 42.08119 41.70482 21.7 18.68 Yes Yes

Paliastomi St.	019 03/10/16 0 42.0929 41.70799 19.9 0.75 Yes Yes Yes

Paliastomi	 St.	020 03/10/16 0 42.12253 41.73241 19.1 1.39 Yes Yes Yes
Pichori St.	021 03/10/16 0 42.13711 41.75948 17.6 0.13 Yes
Black	Sea St.	022 04/10/16 0 42.12556 41.64944 21.7 17.16 Yes
Black	Sea St.	023 04/10/16 0 42.10861 41.67056 22.5 17.56 Yes

Station	
Name

River	
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Date

Sample	
depth	
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Depth	
(m) Lat	[N] long	[E] Temp

Sal	
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sample	taken	

for Sediment	sample	taken	for
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Black	Sea St.	024 04/10/16 0 42.0725 41.70722 22 17.62 Yes Yes
Black	Sea St.	025 04/10/16 0 42.01722 41.75028 19.1 1.31 Yes
Black	Sea St.	026 04/10/16 0 42.03454 41.73816 22.7 17.62 Yes

Rioni	Delta St.	027 05/10/16 0 42.1975 41.66222 20.2 0.15 Yes
Supsa	
River St.	028 05/10/16 0 42.02139 41.75333 19.3 0.77 Yes

MN	167	
CT03 Black	Sea

St030	
Surface 10/05/17 0 34 44.13043 28.77142 13 15.2 Yes Yes Yes Yes Yes Yes

MN	167	
CT03 Black	Sea

St030	
Bottom 10/05/17 34 34 44.13043 28.77142 8 18.13 Yes

MN	167	
PO01 Black	Sea

St031	
Surface 11/05/17 0 13 44.65598 29.04415 14.5 13.1 Yes Yes Yes Yes Yes Yes

MN	167	
PO01 Black	Sea

St031	
Bottom 11/05/17 13 13 44.65598 29.04415 11.5 16 Yes

MN	167	
PO02 Black	Sea

St032	
Surface 11/05/17 0 20 44.62003 29.10027 15 13 Yes Yes Yes Yes Yes Yes

MN	167	
PO02 Black	Sea

St032	
Bottom 11/05/17 20 20 44.62003 29.10027 9.8 17 Yes
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MN	167	
PO04 Black	Sea

St033	
Surface 11/05/17 0 42.5 44.50848 29.34632 12.77 15.94 Yes Yes Yes Yes

MN	167	
PO04 Black	Sea

St033	
Bottom 11/05/17 42.5 42.5 44.50848 29.34632 6 18.5 Yes

MN	167	
SG01 Black	Sea

St034	
Surface 12/05/17 0 23.4 44.82365 29.65432 11.5 14.39 Yes Yes Yes Yes Yes Yes

MN	167	
SG01 Black	Sea

St034	
12m 12/05/17 12 23.4 44.82365 29.65432 6.47 18.22 Yes

MN	167	
SG01 Black	Sea

St034	
Bottom 12/05/17 23.4 23.4 44.82365 29.65432 6.32 18.36 Yes

MN	167	
SU01 Black	Sea

St035	
Surface 12/05/17 0 14.7 45.07112 29.7382 8.33 17.23 Yes Yes Yes Yes Yes Yes

MN	167	
SU01 Black	Sea

St035	
Bottom 12/05/17 14.7 14.7 45.07112 29.7382 6.95 17.6 Yes

MN	167	
SU03 Black	Sea

St036	
Surface 12/05/17 0 34.7 45.03992 30.04095 14.33 12.87 Yes Yes Yes Yes Yes Yes
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MN	167	
SU03 Black	Sea

St036	
Bottom 12/05/17 34.7 34.7 45.03992 30.04095 5.9 18.29 Yes

MN	167	
SG04 Black	Sea

St037	
Surface 13/05/17 0 53.5 44.67305 29.81687 13.67 16.11 Yes Yes Yes Yes Yes Yes

MN	167	
SG04 Black	Sea

St037	
12m 13/05/17 12.5 53.5 44.67305 29.81687 13.7 16.17 Yes

MN	167	
SG04 Black	Sea

St037	
25m 13/05/17 24.7 53.5 44.67305 29.81687 7.81 18.11 Yes

MN	167	
SG04 Black	Sea

St037	
32m 13/05/17 32 53.5 44.67305 29.81687 6.12 18.28 Yes

MN	167	
SG04 Black	Sea

St037	
45m 13/05/17 45.5 53.5 44.67305 29.81687 6.45 18.4 Yes

MN	167	
SG04 Black	Sea

St037	
Bottom 13/05/17 53.5 53.5 44.67305 29.81687 6.48 18.4 Yes

MN	167	
SG05 Black	Sea

St038	
Surface 13/05/17 0 65.3 44.59153 30.1005 14.1 14.97 Yes Yes Yes Yes Yes Yes

MN	167	
SG05 Black	Sea

St038	
Bottom 13/05/17 65.3 65.3 44.59153 30.1005 6.4 18.41 Yes
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MN	167	
SG14 Black	Sea

St039	
Surface 13/05/17 0 78 44.4674 30.31027 14.41 15.46 Yes Yes Yes Yes Yes Yes

MN	167	
SG14 Black	Sea

St039	
21m 13/05/17 21 78 44.4674 30.31027 7.59 17.63 Yes

MN	167	
SG14 Black	Sea

St039	
54m 13/05/17 54 78 44.4674 30.31027 6.75 18.45 Yes

MN	167	
SG14 Black	Sea

St039	
70m 13/05/17 70 78 44.4674 30.31027 7.69 18.78 Yes

MN	167	
SG14 Black	Sea

St039	
78m 13/05/17 78.1 78 44.4674 30.31027 7.73 18.79 Yes

MN	167	
EUXRO01 Black	Sea

St040	
Surface 13/05/17 0 80 44.70642 30.72617 13.22 17.24 Yes Yes Yes Yes Yes Yes

MN	167	
EUXRO01 Black	Sea

St040	
Bottom 13/05/17 80 80 44.70642 30.72617 7.81 18.76 Yes

MN	167	
SG06 Black	Sea

St041	
Surface 14/05/17 0 95.6 44.34152 30.52328 12.94 17.75 Yes Yes Yes Yes Yes Yes

MN	167	
SG06 Black	Sea

St041	
15m 14/05/17 15 95.6 44.34152 30.52328 12.08 18.14 Yes

MN	167	
SG06 Black	Sea

St041	
28m 14/05/17 28 95.6 44.34152 30.52328 8.42 18.22 Yes



Sr DNA Sr Ost Paly Dino HM/MP
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Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

MN	167	
SG06 Black	Sea

St041	
60m 14/05/17 60 95.6 44.34152 30.52328 7.32 18.53 Yes

MN	167	
SG06 Black	Sea

St041	
Bottom 14/05/17 95.6 95.6 44.34152 30.52328 8.24 19.11 Yes

MN	167	
EUXRO03 Black	Sea

St042	
Surface 14/05/17 0 74.2 43.97117 29.9535 14.01 16.21 Yes Yes Yes Yes Yes Yes

MN	167	
EUXRO03 Black	Sea

St042	
Bottom 14/05/17 74.2 74.2 43.97117 29.9535 7.71 18.71 Yes

MN	167	
CT06 Black	Sea

St043	
Surface 15/05/17 0 89.6 43.8526 30.05995 13.76 18.01 Yes Yes Yes Yes Yes Yes

MN	167	
CT06 Black	Sea

St043	
8m 15/05/17 8 89.6 43.8526 30.05995 13.12 16.69 Yes

MN	167	
CT06 Black	Sea

St043	
40m 15/05/17 40 89.6 43.8526 30.05995 8.86 18.35 Yes

MN	167	
CT06 Black	Sea

St043	
65m 15/05/17 64.5 89.6 43.8526 30.05995 8.09 18.4 Yes

MN	167	
CT06 Black	Sea

St043	
Bottom 15/05/17 89.6 89.6 43.8526 30.05995 7.7 18.65 Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)

Station	
Depth	
(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

MN	167	
MA03 Black	Sea

St044	
Surface 15/05/17 0 85.6 43.77132 29.8985 13.7? 17.5? Yes Yes Yes Yes Yes Yes

MN	167	
MA03 Black	Sea

St044	
Bottom 15/05/17 85.6 85.6 43.77132 29.8985 7.9 18.7 Yes

MN	167	
CT05 Black	Sea

St045	
Surface 15/05/17 0 65.2 43.9771 29.51373 14.47 16.4 Yes Yes Yes Yes Yes Yes

MN	167	
CT05 Black	Sea

St045	
18m 15/05/17 18 65.2 43.9771 29.51373 9.44 17.67 Yes

MN	167	
CT05 Black	Sea

St045	
41m 15/05/17 41 65.2 43.9771 29.51373 7.53 18.48 Yes

MN	167	
CT05 Black	Sea

St045	
53m 15/05/17 53.4 65.2 43.9771 29.51373 6.65 18.46 Yes

MN	167	
CT05 Black	Sea

St045	
Bottom 15/05/17 65.2 65.2 43.9771 29.51373 6.67 18.46 Yes

MN	167	
MA04 Black	Sea

St046	
Surface 16/05/17 0 68.9 43.76843 29.40482 14.24 16.68 Yes Yes Yes Yes Yes Yes

MN	167	
MA04 Black	Sea

St046	
Bottom 16/05/17 68.9 68.9 43.76843 29.40482 7.82 18.76 Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)

Station	
Depth	
(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

MN	167	
MA08 Black	Sea

St047	
Surface 16/05/17 0 46.1 43.7728 28.73985 15.27 16.5 Yes Yes Yes Yes Yes Yes

MN	167	
MA08 Black	Sea

St047	
Bottom 16/05/17 46.1 46.1 43.7728 28.73985 8 18.67 Yes Yes Yes Yes Yes Yes

MN	167	
TZ17 Black	Sea

St048	
Surface 17/05/17 0 31.8 43.985 28.70167 15.87 16.46 Yes Yes Yes Yes Yes Yes

MN	167	
TZ17 Black	Sea

St048	
Bottom 17/05/17 31.8 31.8 43.985 28.70167 8.89 18.1 Yes

MN	167	
BG	506 Black	Sea

St049	
Surface 20/05/17 0 1280 42.49305 28.66172 15.47 18.47 Yes

MN	167	
BG	506 Black	Sea

St049	
500m 20/05/17 500 1280 42.49305 28.66172 8.88 22.03 Yes

MN	167	
BG	506 Black	Sea

St049	
1000m 20/05/17 1000 1280 42.49305 28.66172 8.96 22.28 Yes

MN	167	
BG	502 Black	Sea

St050	
Surface 21/05/17 0 45.6 42.5254 27.9772 15.21 17.7 Yes

MN	167	
BG	502 Black	Sea

St050	
Bottom 21/05/17 45.6 45.6 42.5254 27.9772 8.2 18.26 Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)

Station	
Depth	
(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

MN	167	
BG	303 Black	Sea

St051	
Surface 22/05/17 0 38.8 43.16688 28.31803 14.91 17.91 Yes

MN	167	
BG	303 Black	Sea

St051	
35m 22/05/17 35 38.8 43.16688 28.31803 8.79 18.36 Yes

MN	167	
BG	307 Black	Sea

St052	
Surface 22/05/17 0 1199.5 43.16897 28.98323 Yes

MN	167	
BG	307 Black	Sea

St052	
1000m 22/05/17 1000 1199.5 43.16897 28.98323 Yes

MN	167	
BG	203 Black	Sea

St053	
Surface 23/05/17 0 74.8 43.3675 28.81597 16.26 17.94 Yes

MN	167	
BG	203 Black	Sea

St053	
Bottom 23/05/17 74.8 74.8 43.3675 28.81597 7.8 18.58 Yes

KZ	St001	
Caspian	
Sea

St054	
Surface 16/06/17 0 8 44.56675 50.25877 21.6 4.5 Yes Yes Yes Yes Yes

KZ	St001		
Caspian	
Sea

St054	
Bottom 16/06/17 8 8 44.56675 50.25877 21.6 4.6 Yes

KZ	St002	
Caspian	
Sea

St055	
Surface 16/06/17 0 10 44.62352 50.27237 21.7 4.6 Yes Yes Yes Yes Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)

Station	
Depth	
(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

KZ	St002	
Caspian	
Sea

St055	
Bottom 16/06/17 8.5 10 44.62352 50.27237 18.9 5.2 Yes

KZ	St003
Caspian	
Sea

St056	
Surface 16/06/17 0 12.4 44.67247 50.24539 22.2 4.5 Yes Yes Yes Yes Yes

KZ	St003
Caspian	
Sea

St056		
Bottom 16/06/17 8 12.5 44.67247 50.24539 20.7 5.04 Yes

KZ	St005	
Caspian	
Sea

St057	
Surface 16/06/17 0 8 44.72741 50.22056 22.3 3.8 Yes Yes Yes Yes Yes

KZ	St005	
Caspian	
Sea

St057	
Bottom 16/06/17 7.3 8 44.72741 50.22056 22.1 5.1 Yes

KZ	St006
Caspian	
Sea

St058	
Surface 16/06/17 0 8.7 44.70099 50.00237 22 3.9 Yes Yes Yes Yes Yes

KZ	St006
Caspian	
Sea

St058	
Bottom 16/06/17 8 8.7 44.70099 50.00237 Yes

KZ	St007
Caspian	
Sea

St059	
Surface 16/06/17 0 19 44.50904 49.99442 21.9 4.3 Yes Yes Yes Yes Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)

Station	
Depth	
(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

KZ	St007
Caspian	
Sea

St059	
Bottom 16/06/17 19 19 44.50904 49.99442 Yes

KZ	St014
Caspian	
Sea

St060	
Surface 17/06/17 0 20 43.79776 50.93914 17.24 11.1 Yes Yes Yes Yes

KZ	St014
Caspian	
Sea

St060	
Bottom 17/06/17 20 20 43.79776 50.93914 Yes Yes

KZ	St015
Caspian	
Sea

St061	
Surface 17/06/17 0 31 43.8919 50.83564 18.02 10.9 Yes Yes Yes Yes

KZ	St016
Caspian	
Sea

St062	
Surface 17/06/17 0 25 44.13609 50.76331 17.23 11.2 Yes Yes Yes Yes Yes

KZ	St016
Caspian	
Sea

St062	
Bottom 17/06/17 20 25 44.13609 50.76331 Yes

KZ	St017
Caspian	
Sea

St063	
Surface 17/06/17 0 20 44.2447 50.66578 16.8 11.3 Yes Yes Yes Yes Yes

KZ	St018
Caspian	
Sea

St064	
Surface 17/06/17 0 19 44.273 50.44154 15.2 8.9 Yes Yes Yes Yes Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)

Station	
Depth	
(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

KZ	St018
Caspian	
Sea

St064	
Bottom 17/06/17 19 19 44.273 50.44154 Yes

KZ	St019
Caspian	
Sea

St065	
Surface 17/06/17 0 18.2 44.34685 50.18977 21.6 8.7 Yes Yes Yes Yes Yes

KZ	St019
Caspian	
Sea

St065	
Bottom 17/06/17 18 18.2 44.34685 50.18977 Yes

KZ	St021	
Caspian	
Sea

St066	
Surface 18/06/17 0 44.3 43.75634 50.75752 21.08 10.2 Yes Yes Yes Yes Yes

KZ	St021	
Caspian	
Sea

St066	
Bottom 18/06/17 20 44.3 43.75634 50.75752 Yes

KZ	St022
Caspian	
Sea

St067	
Surface 18/06/17 0 61.8 43.74141 50.67633 21.5 10.1 Yes Yes Yes Yes Yes

KZ	St022
Caspian	
Sea

St067	
20m 18/06/17 20 61.8 43.74141 50.67633 Yes

KZ	St023
Caspian	
Sea

St068	
Surface 18/06/17 0 101 43.72398 50.57025 21.22 10.3 Yes Yes Yes Yes Yes

KZ	St023
Caspian	
Sea

St068	
20m 18/06/17 20 101 43.72398 50.57025 Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)

Station	
Depth	
(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

KZ	St024
Caspian	
Sea

St069	
Surface 18/06/17 0 142 43.69947 50.46807 20.34 11.4 Yes Yes Yes Yes Yes

KZ	St024
Caspian	
Sea

St069	
20m 18/06/17 20 142 43.69947 50.46807 Yes

KZ	St025
Caspian	
Sea

St070	
Surface 18/06/17 0 249 43.59659 50.2794 19.75 11.4 Yes Yes Yes Yes Yes

KZ	St025
Caspian	
Sea

St070	
20m 18/06/17 20 249 43.59659 50.2794 Yes

KZ	St026
Caspian	
Sea

St071	
Surface 19/06/17 0 23.7 43.23659 51.25584 16.86 11.3 Yes Yes Yes Yes Yes

KZ	St026
Caspian	
Sea

St071	
Bottom 19/06/17 20 23.7 43.23659 51.25584 Yes

KZ	St027
Caspian	
Sea

St072	
Surface 19/06/17 0 20.5 43.52945 51.17069 14.24 11.4 Yes Yes Yes Yes Yes

KZ	St027
Caspian	
Sea

St072	
Bottom 19/06/17 20 20.5 43.52945 51.17069 Yes

KZ	St028
Caspian	
Sea

St073	
Surface 19/06/17 0 26.9 43.50589 51.08473 19.5 10.8 Yes Yes Yes Yes Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)

Station	
Depth	
(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

KZ	St028
Caspian	
Sea

St073	
20m 19/06/17 20 26.9 43.50589 51.08473 Yes

KZ	St029
Caspian	
Sea

St074	
Surface 19/06/17 0 41.8 43.49924 51.01059 21.53 10.4 Yes Yes Yes Yes Yes

KZ	St029
Caspian	
Sea

St074	
20m 19/06/17 20 41.8 43.49924 51.01059 Yes

KZ	St030
Caspian	
Sea

St075	
Surface 19/06/17 0 35.6 43.7827 50.77468 22.05 10.2 Yes Yes Yes Yes Yes

KZ	St031
Caspian	
Sea

St076	
Surface 20/06/17 0 14.4 43.7827 50.77468 21.86 9.1 Yes Yes Yes Yes Yes

KZ	St031
Caspian	
Sea

St076	
Bottom 20/06/17 14 14.4 44.61348 50.12604 Yes

Sea	of	
Azov St081 24/08/17 0 47.08833 39.24778 23.6 Yes
Don	delta St082 24/08/17 0 47.11028 39.31222 24.8 Yes

103
Sea	of	
Azov St083 0 Yes

106
Sea	of	
Azov St084 0 Yes
Don	
upstream St085 26/08/17 0 47.1177 39.43064 Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)

Station	
Depth	
(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

Volga	
delat St086A 29/08/17 0 1.3 45.59962 47.90989 Yes Yes Yes Yes Yes Yes Yes

Volta	delta St086B 29/08/17 0 1.3 45.59962 47.90989 Yes Yes Yes Yes Yes Yes Yes
Volga	
delat St087A 29/08/17 0 1.1 45.68362 47.9031 Yes Yes Yes Yes Yes Yes Yes

Volta	delta St087B 29/08/17 0 1.1 45.68362 47.9031 Yes Yes Yes Yes Yes Yes Yes
Volga	
delat St088A 29/08/17 0 1.3 45.74874 47.89408 Yes Yes Yes Yes Yes Yes Yes

Volta	delta St088B 29/08/17 0 1.3 45.74874 47.89408 Yes Yes Yes Yes Yes Yes Yes
Volga	
upstream St089A 31/08/17 0 14.2 47.10806 47.3125 20.6 Yes Yes Yes
Volga	
upstream St089B 31/08/17 0 14.2 47.10806 47.3125 20.6 Yes Yes Yes
Volga	
upstream St090A 31/08/17 0 11 47.01861 47.4325 20.7 Yes Yes Yes
Volga	
upstream St090B 31/08/17 0 11 47.01861 47.4325 20.7 Yes Yes Yes
Volga	
upstream St091A 31/08/17 0 6.2 47.01889 47.44667 21.8 Yes
Volga	
upstream St091B 31/08/17 0 6.2 47.01889 47.44667 21.8 Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
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Sample	
depth	
(m)
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(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

12
Don	
upstream St092 0

47.22964
æ 40.0395 Yes

15
Don	
upstream St093 0

47.54776
æ 41.97201 Yes

18 St094 0 48.4541
æ44.3618
1 Yes

19
Volga	
upstream St095 0 48.42905 44.94628 Yes

20
Volga	
upstream St096 0

48.06179
æ 46.12112 Yes

23
Volga	
upstream St097 0 49.5436 45.08047 Yes

A1/A7? Aral	Sea St005 12.5 Yes
A2 Aral	Sea St002 0 45.08334 58.33631 25 Yes
A3 Aral	Sea St002 5 45.08239 58.39014 Yes
A4 Aral	Sea St002 10 45.08514 58.38756 Yes
A6 Aral	Sea St002 20 45.08975 58.38261 Yes
A9 Aral	Sea St002 33 45.08117 58.88314 Yes
A28 Aral	Sea St005 18 45.10847 58.37219 Yes
A43 Aral	Sea St008 12.5 45.07456 58.33446 Yes
A45 Aral	Sea St008 18 45.07456 58.33446 Yes
A46 Aral	Sea St009 5 45.09381 58.34044 Yes
A46 Aral	Sea St010 7.5 45.09381 58.34044 Yes
A47 Aral	Sea St010 12.5 45.08334 58.33631 Yes
A49 Aral	Sea St010 2.5 45.08334 58.33631 27 Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)

Station	
Depth	
(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

A53 Aral	Sea St013 5 Yes
A553 Aral	Sea St016 Yes
A59 Aral	Sea St020 10 45.10722 58.35983 Yes
A61 Aral	Sea St022 5 45.10433 58.35492 Yes
A62 Aral	Sea St023 5 45.09569 58.34628 Yes
A63 Aral	Sea St024 5 45.09694 58.34881 Yes
A64 Aral	Sea St025 5 45.09156 58.34144 Yes

1

Aral	
Sea/Groun
dwater

Well	5-
1-II 43.80611 58.76333 Yes

2

Aral	
Sea/Groun
dwater

Well	
804-2-II 43.925 58.68139 Yes

3

Aral	
Sea/Groun
dwater

Well	
807-1-II 43.90278 58.7025 Yes

4

Aral	
Sea/Groun
dwater

Well	
803-1-II 44.03361 58.62528 Yes

5?

Aral	
Sea/Groun
dwater Art	-	1 Yes

6

Aral	
Sea/Groun
dwater

Well	
802-1-II 44.015 58.60694 Yes
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Station	
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/Basin Field	ID

Collection	
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Sample	
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(m)
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(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

7

Aral	
Sea/Groun
dwater

Well	
802-2-II 44.015 58.60694 Yes

8

Aral	
Sea/Groun
dwater

Well	2-
1-II 44.10056 58.65111 Yes

9

Aral	
Sea/Groun
dwater

Well	1-
1-II 44.15056 58.65917 Yes

10

Aral	
Sea/Groun
dwater Art	-	2 Yes

11

Aral	
Sea/Groun
dwater

Well	5-
1-I 44.21472 58.49139 Yes

18

Aral	
Sea/Groun
dwater

Well	3-
1-III 44.01528 59.09139 Yes

19

Aral	
Sea/Groun
dwater

Well	5-
1-III 44.0325 59.09528 Yes

23

Aral	
Sea/Groun
dwater

Well	2-
1-III 43.90361 59.01861 Yes



Sr DNA Sr Ost Paly Dino HM/MP
Station	
Name

River	
/Basin Field	ID

Collection	
Date

Sample	
depth	
(m)
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(m) Lat	[N] long	[E] Temp

Sal	
(g/kg)

Water	
sample	taken	

for Sediment	sample	taken	for

25

Aral	
Sea/Groun
dwater

Well	
115-1 43.50417 58.98167 Yes

26

Aral	
Sea/Groun
dwater

Well	
115-2 43.50417 58.98167 Yes

27

Aral	
Sea/Groun
dwater

Well	46-
2 43.78472 59.02389 Yes
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