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Thesis Abstract 

Genome-wide association studies (GWAS) have successfully identified thousands of 

single nucleotide polymorphisms (SNPs) associated with complex traits and diseases 

of human. Meta-analysis of multiple GWASs has become a popular method since it 

increases the statistical power and reduces false positive findings. In the genetic 

field, fine mapping is a process of identifying independently associated variants 

within a genomic region, which improves our understanding of the causal 

mechanisms underlying human diseases. However, data sharing among different 

studies is usually unavailable for meta-analysis of a large number of studies. Fine 

mapping of genetic variation under the current meta-analysis system is 

administratively onerous and time consuming. Therefore, statistical approaches 

which can process fine mapping analysis using meta-analysis summary statistics are 

assuming increasing importance.  

This thesis is concerned with the development of two fine mapping methods using 

meta-analysis summary statistics: Sequential Sentinel SNP Regional Association 

Plots (SSS-RAP) and haplotype-based regional association analysis program 

(HAPRAP). SSS-RAP detects SNPs with independent effects conditional on the top 

associated signal using meta-analysis summary statistics and summary pair-wise 

SNPs haplotype frequencies obtained from reference genotype panel. I 

demonstrate that SSS-RAP is as powerful as conditional analysis and ten model 

selection methods in individual-level. I applied SSS-RAP to meta-analysis of 

Electrocardiography (ECG) traits, gallbladder disease (GBD) traits and GIANT BMI 

database. In addition, HAPRAP is an empirical EM style approach, which extends 

multiple regression and conditional analysis to meta-analysis levels. I demonstrate 

that HAPRAP is statistically outperforming existing methods in meta-analysis level. I 

applied HAPRAP to meta-analysis for ECG traits. Finally, I discuss the position of 

SSS-RAP and HAPRAP in genetic fine mapping and future direction of genetic fine 

mapping.  
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CHAPTER 1. INTRODUCTION 

1.1. Background of human genetics 

Human genetics is the study of inheritance as it occurs in human beings. Here, I will 

give a brief overview of the human genetics concepts, including human genome, 

Deoxyribonucleic Acid (DNA), gene, gene expression, genetic variation and genetic 

disorder.  

1.1.1. Human genome  

The human genome is composed of approximately 3 billion base pairs 

(International Human Genome Sequencing Consortium, 2004). The human genome 

is composed of 23 pairs of chromosome (Figure 1-1). 22 autosomes and the one 

pair of sex-determining chromosomes: X/X (female) or X/Y (male). Each 

chromosome set has one inherited from the mother and the other from the father.   
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Figure 1-1. Human Genome 

(http://www.edinformatics.com/math_science/human_genome.htm).  

1.1.2. Deoxyribonucleic Acid (DNA) 

Human genome is encoded by deoxyribonucleic acid (DNA). DNA is a double 

stranded biopolymer composed of nucleotides. Each nucleotide includes a ribose 

sugar, phosphate group and one of four nitrogenous bases: Thymine (T), Cytosine 

(C), Guanine (G) or Adenine (A) (Levene, 1919). The nucleotides are paired up to 

one another (noted as base pair) in a chain by covalent bonds between the sugar of 

one nucleotide and the phosphate of the next, resulting in a backbone. According 

to base pairing rules, A will only bind with T and C will only bind with G.  

1.1.3. Genes 

The term gene together with the laws of inheritance was illustrated by Gorger 

Mendel around 150 years ago (MENDEL, 1950). His famous experiment on pea 

plant hybridization illustrated that a certain genomic region controlled the 

inheritabilities of some phenotypic characteristics, such as seed shape and pod 

colour. A simple definition of gene is a region of DNA that encodes for a protein. 

The pathway is DNA transcript to RNA and ribonucleic acids (RNA) translate to 

amino acid. The Encyclopaedia of Genetic Elements (ENCODE) consortium have 

recently updated definition of a gene as “a union of genomic sequences encoding a 

coherent set of potentially overlapping functional products” (Gerstein et al., 2007). 

This definition takes into account the considerable genomic complexity in the 
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human genome, for example, the non-genic regions of the genome which shows 

high conservation and the enrichment of non-coding RNA.  

1.1.4. Gene expression 

Gene expression is a procedure in which DNA and genes are used to synthesise 

gene products, i.e. ribonucleic acid (RNA) and proteins. The Central Dogma of 

Molecular Biology described this process as a one-way system consists of two steps: 

firstly DNA is transcribed into RNA, and secondly RNA is translated into proteins 

(Crick, 1970). 

Transcription 

Transcription is the first step in gene expression. In this step, the linear nucleotide 

sequence of DNA is copied by a RNA polymerase into a linear nucleotide sequence 

in RNA (Strachan and Read, 2011). RNA is classified into several categories based on 

functions: if the gene is translated (as explained below) into a protein, the gene 

product is called messenger RNA (mRNA); otherwise, the gene product is called 

non-coding RNA (ncRNA), i.e. transfer RNA (tRNA) or ribosomal RNA (rRNA) (Storz, 

2002). 

Translation 

After DNA has been transcribed into mRNA, the linear nucleotide sequence of 

mRNA will be decoded by cellular ribosome three bases at a time. This process will 

produce a linear sequence of amino acids, and then amino acids will bind into a 
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protein. Recently, with the understanding of open reading frames (ORF), the new 

estimate of the number of protein-coding genes are ~ 21,000 (Clamp et al., 2007).   

 

Alternative splicing  

The underlying assumption for the above process is called the one gene-one 

enzyme hypothesis, which assumes that a single gene encodes for one RNA or one 

protein. In fact, it is possible for a single gene to produce multiple functional 

transcripts, which is called alternative splicing. There are several different ways 

where alternative splicing forms, i.e. alternative 5-prime donor, 3-prime acceptor 

sites and exon skipping (Black, 2003). Chen et al estimated that ~ 90% of genes 

within human genome go through alternative splicing (Chen et al., 2012).  

1.1.5. Genetic Variation 

The sequence of human genome is changeable during generations (Strachan and 

Read, 2011). The change of sequence, called genetic variation, are normally caused 

by a number of sources: i.e. errors during DNA replication or environmental 

exposures. Genetic variation provides the basis of natural selection mutations 

(Duret, 2009). Mutations can either neutral, beneficial or deleterious to people / 

causal to diseases (Chapter 1.3.1).   

The human genome is highly analogous: 99.9% of the entire genome of two 

unrelated individuals are the same at the nucleotide level (Collins and Mansoura, 

2001). The remaining 0.01% genome was classified into three main categories: 
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single nucleotide polymorphisms (SNPs), Insertions and deletions (termed INDELs) 

and structural variation.   

Single nucleotide polymorphisms 

Single nucleotide polymorphisms (SNPs) are genomic variants changing only one 

single nucleotide base. Approximately 90% of sequence variants in human are SNPs 

(Collins et al., 1998). In human genome, SNPs occur approximately once every 1000 

bases averagely (Wang et al., 1998). In fact, SNPs are tend to be clustered in the 

genome instead of randomly distributed (Koboldt et al., 2006).  

SNPs fall either within or outside protein-coding regions in the human genome. 

There are three possible effects on the translation of a protein sequence of SNPs 

within protein-coding regions:  

1. Silent or synonymous SNPs are variants which change the nucleotide 

sequence, but do not modify the amino acid sequence of a protein.  

2. Missense or non-synonymous SNPs are variants which modify the 

nucleotide sequence and the amino acid sequence.  

3. Nonsense SNPs are variants which change the nucleotide sequence so that 

the codon is substituted by a codon encoding for a premature stop. The 

consequence of a nonsense SNP is usually producing of a shorter and 

unfinished protein or longer, completely destroys function  

Although coding variants are important, recent estimates of human exome only 

accounts for little more than 1% of DNA in the human genome (Maher, 2012). On 
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the other hand, SNPs falling outside exon regions are called non-coding SNPs. SNPs 

occur in non-coding regions more frequently than in coding regions, in general, 

where natural selection is acting and fixating the allele of the SNP that constitutes 

the most favourable genetic adaptation (Barreiro et al., 2008). Non-coding SNPs 

have no effect on the translation of a protein sequence. However, the activity and 

expression of protein-coding genes can be regulated by a variety of DNA elements 

called regulome, i.e. promoter, enhancer, transcriptional regulatory sequences, 

regions of chromatin structure and histone modification (ENCODE Project 

Consortium et al., 2012). It is thought that changes in the regulation of gene activity 

can disrupt protein production and cell processes and result in disease (ENCODE 

Project Consortium et al., 2012). Mapping the position of these regulatory elements 

and how they influence gene transcription could show associations between 

variations in the expression of certain genes and the development of diseases 

(ENCODE Project Consortium, 2004).  

As described above, the primary goal of the ENCODE project is to determine the 

role of the remaining component of the genome, much of which was traditionally 

regarded as "junk" (Maher, 2012). 

Insertions and deletions 

Insertions and deletions (also note as INDELs) are the second most common class of 

genetic variation in human genome (Montgomery et al., 2013). They are defined as 
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a gain/loss of up to 50 nucleotide bases. Similar to SNPs, INDELS can fall within or 

outside of protein-coding regions of the human genome as well.  

INDELs that fall within protein-coding regions have two possible effects on the 

translation of a protein sequence: 

1. INDELs consisting of a number of nucleotides that cannot be evenly divided 

by three will cause a shift in Open Reading Frame (ORF), which is called 

frame-shifting (FS). FS will result in translation of a different amino acid 

sequence. 

2. INDELs consisting of a number of nucleotides that can be evenly divided by 

three will not cause a shift in ORF, which is called non-frame-shifting (NFS). 

NFS will not alter the translation of the remaining protein sequence.  

In addition, INDELs outside protein-coding regions, i.e. intronic and intergenic 

regions, are called non-coding INDELs. They will not cause any downstream effect 

on the translation of a protein sequence. But, same as non-coding SNPs, non-coding 

INDELs can affect the regulation and splicing, which could be associated with the 

development of diseases. 

Structural variation 

Structural variations are large variation with in the human genome. Both copy 

number variants (CNVs), inversions and translocations are in this category 

(Weischenfeldt et al., 2013).  



8 
 

1. CNVs occur when a segment of DNA sequence appears in variable number 

of copies compared to the reference genome.  

2. Inversions occur when a segment of DNA sequence is reversed in direction 

in comparison to the rest of the chromosome.  

3. Translocations occur when a segment of DNA has modified its position 

within the genome 

Based on their feature, large structural variations are often cause serious 

phenotypic consequences, which include human diseases such as Down’s 

syndrome-where an extra copy of chromosome 21 is appeared; and DiGeorge 

syndrome-where a part of chromosome 22 is deleted.  

1.1.6. Genetic disorder 

One key research field in human genetics is to understand the inheritance of 

disorders as it occurs in human beings. A genetic disorder is a disease caused by 

abnormalities of the human genome. It can be classified into two classes based on 

the number of gene involved in the disorder.  

Monogenic disorder 

A monogenic disorder is the result of a single mutated gene. In reality, monogenic 

disorders are often linked to serious phenotypes, so they are tend to be rare in the 

population.  
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They normally show familial aggregation with Mendelian pattern (term Mendelian 

disease) of inheritance model, which include:  

1. Autosomal dominant, where only one mutated copy of the gene will be 

needed for a person to be affected by an autosomal disorder. Each affected 

patient usually has one affected parent. The chance that a child inherits the 

mutated gene is 50%. Autosomal dominant disorders sometimes have 

reduced penetrance, which means the percentage of individuals who inherit 

the mutation develop the disease is less than 100%, i.e. Huntington's 

disease (Kay et al., 2014).  

2. Autosomal recessive, where two mutated copies of the gene are needed for 

a person to be affected by an autosomal disorder. In the family pedigree, an 

affected child usually has unaffected parents who carry a single copy of the 

mutated gene (called carriers). For a child of two carriers, the chance of 

him/her affected by the disorder is 25%. Example of autosomal recessive 

disorder includes wet versus dry earwax (Yoshiura et al., 2006) (Rodriguez 

et al., 2013). 

3. X-linked disorders, which are caused by variation on the X chromosome. 

Males and females are both influenced by these disorders. But males will 

affected by them more seriously since male have only one copy of the X 

chromosome. Examples of X-linked dominant disorders includes Rett 

syndrome (Chattopadhyay and Arora, 2014) and Aicardi syndrome 

(Prontera et al., 2013). For X-linked recessive disorders, the sons of a man 
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with an X-linked recessive disorder will not inherit the disorder, but his 

daughters will inherit one copy of the variant. For a woman carrier, the 

chance of her son/daughter will carry the copy of the variant is 50%. 

Example of X-linked recessive disorder incudes some serious diseases, i.e. 

hemophilia A (Aledort et al., 2014) 

4. Y-linked disorders, where are caused by mutations on the Y chromosome. 

This disorder can only be passed from the men to their sons. Y-linked 

disorders are rare. A typically Y-linked disorder is infertility (Krausz and 

Chianese, 2014)                                                                                

Individual monogenic diseases are relatively rare, and affect fewer than 200,000 

people for each disorder. However, the most famous database for Mendelian 

disorders-Oline Mendelian Inheritance in Man (OMIM) have involved 5188 

phenotypes, of which the molecular basis is known until early 2014 

(http://www.ncbi.nlm.nih.gov/omim).  

Polygenic inheritance  

The majority of human diseases and traits with high prevalence are polygenic 

inheritance (term multifactorial or complex inheritance), i.e. cardiovascular disease, 

cancer and so on. They can be caused by the effects of multiple genes together with 

the effect of environmental and behavioural factors. Unlike monogenic disorder, 

researchers cannot classify their pattern of inheritance simply into several 
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categories. Polygenic inheritance patterns normally follow a normal (bell-shaped) 

distribution curve. It shows continuous variation 

In early 1900s, Fisher claimed that the heritability of quantitative human traits can 

be explained by Mendelian patterns of inheritance if they were the result of a 

combination of variation at many genetic loci and the interaction between loci, 

including the influence of environmental factors which affect these traits (Fisher, 

1918) (Plomin et al., 2009).  

An classic example of polygenic inheritance is the human skin colour. Globally, we 

can observe continuous variation in skin colours. The colour of the skin is the result 

of pigments, such as melanin. As far as we know, the skin colour is controlled by at 

least three separate genes, each with their own alleles. Assume that three 

"dominant" capital letter genes (A, B and C) control dark pigmentation because 

more melanin is produced. The "recessive"alleles of these three genes (a, b & c) 

control light pigmentation because lower amounts of melanin are produced. The 

words dominant and recessive are placed in quotation marks because these pairs of 

alleles are not truly dominant and recessive as in some of the garden pea traits that 

Gregor Mendel studied. A genotype with all "dominant" capital genes (AABBCC) has 

the maximum amount of melanin and very dark skin. A genotype with all 

"recessive" small case genes (aabbcc) has the lowest amount of melanin and very 

light skin. Each "dominant" capital gene produces one unit of color, so that a wide 

range of intermediate skin colors are produced, depending on the number of 

"dominant" capital genes in the genotype. For example, a genotype with three 
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"dominant" capital genes and three small case "recessive" genes (AaBbCc) has a 

medium amount of melanin and an intermediate skin color. This latter genotype 

would be characteristic of a mulatto. In the following cross between two mulatto 

genotypes (AaBbCc x AaBbCc), each parent produces eight different types of 

haplotypes and these haplotypes combine with each other in 64 different ways 

resulting in a total of seven skin colours. The skin colours can be represented by the 

number of capital letters, ranging from zero (no capital letters) to six (all capital 

letters). 

 

1.2. Population genetics concepts  

Population genetics is the study of the distributions and changes of allele frequency 

in a population. Changes of allele frequency can be either caused by chromosomal 

recombination during meiosis or by mutations (Hartl, 2007).  

1.2.1. Allele frequencies 

Allele frequency, which is the core concept in population genetics, represents the 

proportion of a particular alleles (of a genetic variant) at a given locus in the allele 

pool of a certain population (Klug, 2012). 

Hardy-Weinberg Equilibrium (HWE) 

Hardy-Weiberg Equilibrium is a common assumption for population genetics, which 

states that frequencies of allele and genotype-which is the genetic makeup of a 
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person-in a population will remain constant from one generation to next 

generation given that there is no other evolutionary influence. Other influences 

include non-random mating, mutation, selection, genetic drift, gene flow 

and meiotic drive. But in fact, one or more of these influences are typically present 

in real populations (Ewens, 2004). In a simple example of one single locus with 

two alleles, A and a. Assume the allele frequency of allele A is: 

!(#) = &  

And allele frequency of allele a is:  

!(') = ( 

Under HWE, the estimated genotype frequencies then become: 

!(##) = 	&* for the AA homozygotes, 

!('') = 	(* for the aa homozygotes, 

!(#') = 	2&( or !('#) = 	2&( for the heterozygotes. 

The sum of three genotypes is: 

&* + 2&( + (* = 	 (&	 + ()* 

Since the sum of the frequencies of allele A and a are equal to 1: 

& + ( = 1 

Then the sum of the genotypes will be equal to 1 as well. These genotype 

proportions (p2, 2pq, and q2) are called the Hardy-Weinberg proportions.  
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Calculation of allele frequencies 

For biallelic SNPs (where the locus only has two alleles), the allele frequencies of 

the locus can be calculated as a reverse calculation of HWE genotype proportions:  

If f(AA), f(Aa) and f(aa) are the three genotype frequencies at a locus with two 

alleles, then the frequency p of the A-allele and the frequency q of the a-allele are 

obtained by calculating alleles counts. Because each homozygote AA consists only 

of A-alleles, and because half of the alleles of each heterozygote Aa are A-alleles, 

the total frequency p of A-alleles in the population is calculated as follows: 

& = !(##) +
1
2
!(#') = !./(0/123	4!	# 

In the same way, the frequency q of the a-allele can be calculated as:  

( = !('') +	
1
2
!(#') = !./(0/123	4!	' 

As explained above p and q sum to 1, so: 

( = 1 − &	 

& = 1 − ( 

Based on allele frequencies, genetic variants can be classified into several 

categories: variants with minor allele frequencies (MAF) > 1% are called common 

variants; variants with MAF < 1% are normally called rare variants. More specifically, 

Alharbi et al have defined the rarer variants with MAF between 0.1%- 5% as 

“paucimorphism” (Alharbi et al., 2005).  
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1.2.2. Disease-variant Hypothesis and 

missing heritability 

Thousands of genome-wide association (GWA) studies (details in Chapter 1.3.4) 

have been carried out with the common disease common variant (CDCV) 

hypothesis. It assumes that common genetic variants, each with small effect (Reich 

and Lander, 2001), sum up to account for a reasonable proportion of the variance 

in the phenotype (Lander, 1996). In addition, as discussed above the selective 

disadvantage conferred by highly penetrant monogenic mutations results in their 

frequency within the population remaining low (Figure 1-2).  
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Figure 1-2. Relationship between allele frequencies of genetic variants and 

penetrance of diseases/traits. 

Typically, only variants with minor allele frequency (MAF) greater than 1% are 

followed up in such studies. There are two reasons for this cut-off:  

Firstly, there is an inverse relationship between sample size and the MAF that 

maximizes the power to detect a true association (Figure 1-3) (Gorlov et al., 2008).  

 

Figure 1-3. Relationship between power and sample size with different MAF (Gorlov 

et al., 2008) 

Secondly, as listed in Table 1-1, SNP genotyping panels are typically designed for 

common SNPs, therefore they contain a relatively small number of rare variants 

(Asimit and Zeggini, 2010). These common variants explain at most 5%–10% of the 

heritable component of disease (Maher, 2008).  

Platform 

Affymetrix 

500k 

Affymetrix 

6.0M 

Illumina 

370k 

Illumina 

550k 

Illumina 

610k 

Illumina 

1.2M 

MAF<0.05 55k 106k 9k 32k 35k 62k 

MAF<0.01 17k 35k 1k 7k 8k 22k 

Table 1-1. Approximate-low frequency / rare variant GWAS platform content. K 
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means thousand and M means million (Asimit and Zeggini, 2010).  

To address the “missing heritability” problem, researchers further developed 

Fisher’s polygenic inheritance theory (Chapter 1.1.6), which assume that may small 

genetic effects (most of them not reach the genome-wide significance) working 

together influence the total heritability of complex traits in human populations 

since 2010. Based on this theory, Peter Visscher’s lab developed a user friendly 

method called Genome-wide Complex Trait Analysis (GCTA), which estimate the 

proportion of variance for complex traits using a restricted maximum likelihood 

model (REML) (Yang et al, 2011). The same group estimated the proportion of 

variance for human height explained by SNPs across the whole genome on 3,925 

unrelated individuals using REML, and validated the estimation method with 

simulations based on the observed genotype data. The analysis show that 45% of 

variance can be explained by considering all SNPs simultaneously. They concluded 

that most of the heritability is not missing but has not previously been detected 

because the individual effects are too small to pass stringent significance tests (Yang 

et al, 2010). This method together with the example on height open a door for 

population genetics field. Another major application of the polygenic inheritance 

theory is polygenic score. The first successful application of polygenic score analysis 

to GWAS data was in schizophrenia. Later in 2013, Frank Dudbridge estimated the 

power and predictive accuracy of polygenic risk score (Dudbridge, 2013). 

Furthermore, Speed et al claimed that if variance explained is correlated with MAF, 

the estimates of heritability and genetic covariance can be biased and developed a 
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method, LDAK, to address such issue (Speed et al, 2012). Utilising a similarly idea, 

Benjamin Neale’s group developed an approach, LD Score regression, that 

quantifies the contribution of each SNP by examining the relationship between test 

statistics and linkage disequilibrium (LD). The LD Score regression intercept can be 

used to estimate a more powerful and accurate correction factor than genomic 

control. The model is a simple fixed effect model, which regress test statistics 

(square of Z score) from GWAS against LD score (Bulik-Sullivan et al, 2015 a). 

Another advantage of such setting is that LD score regression can be applied to 

meta-analysis summary statistics directly. The meta-analysis data is also the major 

resource I will going to use in my work, which I will explained in more detail in 

Chapter 1.3.6. The LD score regression model was further developed so that it can 

process the bivariate genetic correlation analysis later on (Bulik-Sullivan et al, 2015 

b). 

In contrast to common variants, rare variants have larger effects than common ones. 

As shown in Figure 1-4, the advantage of testing rare variants association is that the 

effects of rare variants tend to be larger than those of higher frequency SNPs 

(Bodmer and Bonilla, 2008). In addition, the identification of rare variants may 

facilitate pinpointing causality. It will be easier to infer causality at a locus that 

contains both common and rare disease-associated variants.  
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Figure 1-4. Comparison of odds ratio between rare and common variants (Bodmer 

and Bonilla, 2008).  

1.2.3. Linkage disequilibrium, haplotypes 

and haplotype phasing  

A central issue in population genetics is whether it is possible to map causal genes 

to diseases. Linkage disequilibrium (LD) plays a key role in this issue.  

Linkage disequilibrium 

LD refers to correlation between neighboring alleles, reflecting combination of 

alleles (noted as haplotypes) descended from single, ancestral chromosomes (Reich 

et al., 2001). Several factors will affect the degree of linkage disequilibrium, which 

including genetic linkage, selection, the rate of recombination, the rate 

of mutation, genetic drift, non-random mating, and population structure. To 
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estimate the amount linkage disequilibrium, we used the difference between 

observed allelic frequencies and the expected allelic frequencies from a randomly 

distributed population.  

If the haplotype frequencies of several genetic variants fit the expected proportions, 

they are noted as in linkage equilibrium to each other. 

Haplotypes and haplotype phase 

In population genetics field, a haplotype is a combination of alleles at a certain 

genomic region (or loci) (Reich et al., 2001). A haplotype can be one locus, several 

loci, or even an entire chromosome depending on the length of genomic region we 

are interested in and number of recombination events that have occurred inside 

the region. 

For a simplest model containing two SNPs, SNP A and SNP B, the haplotype will be 

A1B1, A1B2, A2B1 and A2B2 with haplotype frequencies X11, X12, X21 and X22 

respectively. The allele frequencies of A1 A2 B1 and B2 are p1, p2 q1 and q2 

respectively (Table 1-2).  

�  A1 A2 Total 

B1 X11=p1q1+D X21=p2q1-D q1 

B2 X12=p1q2-D X22=p2q2+D q2 

Total p1 p2 1 

Table 1-2. Example of a 2X2 haplotype table 

If SNP A and SNP B are in LD, X11 is equal to p1 * q1+D, where D is the quantity of 
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linkage disequilibrium between the two SNPs. A more common measure of LD is 

called D’, which is the normalized D (Lewontin, 1964).  D’ is represented as:  

D7 =
8

89:;
 

Where 89:; = <
min(&1 ∗ (1, &2 ∗ (2) 	Bℎ/1	8 < 0
min(&1 ∗ (2, &2 ∗ (1) 	Bℎ/1	8 > 0

 

Another commonly used measure of LD is called r2 (Hill and Robertson, 1968). R2 is 

the correlation coefficient between a pair of SNPs, which is equal to: 

.* = 	
8*

&1 ∗ &2 ∗ (1 ∗ (2
 

For a certain GWAS, if individual-level genotype data is available, the four haplotype 

frequencies (denoted as X11, X12, X21 and X22 in this chapter) can be easily 

calculated using programs such as PLINK (Purcell et al., 2007), CubeX (Gaunt et al., 

2007) and MIDAS (Gaunt et al., 2006).  

For the same 2 SNPs model shown in Table 1-2, assume locus 1 has alleles A or T 

and the locus 2 has G or C. For each locus, there are three possible genotypes: AA, 

AT and TT for locus 1; GG, GC and CC for locus 2. For a certain individual, the 

genotype may not define the haplotype uniquely, since there are 10 possible 

genotypes but there are only 9 possible haplotypes at these two loci (Table 1-3). 

The double heterozygote A1B1-A2B2 have two possible genotypes (eithr AG-TC or 

AC-TG). This unknown middle cell is called haplotype uncertainty and the technique 

to infer the haplotype is therefore called haplotype phase.  

 

�  Locus 1 
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A1A1 A1B1 B1B1 

(AA) (AT) (TT) 

Locus 2 

A2A2 (GG) AG AG AG TG TG TG 

A2B2 (GC) AG AC 
AG TC or 

AC TG 
TG TC 

B2B2 (CC) AC AC AC TC TC TC 

Table 1-3. Haplotypes and haplotype uncertainty 

Haplotype phase can be generated through laboratory-based experimental 

methods, or it can be estimated using computational approaches. The lab-based 

methods need to spend extra fees to genotype members in the family. On the other 

hand, computational approaches can phase haplotypes accurately from genotypes 

without any further cost (haplotype phasing tool will be introduced in Chapter 2).  

Haplotypes phasing tools 

As described in Chapter 1, haplotype phasing is an important process to estimate 

the haplotype uncertainty. In this chapter, I shall describe some well-known 

computational haplotype phasing tools, including PHASE (Stephens et al., 2001), 

BEAGLE (Browning and Browning, 2007), MACH (Li et al., 2010) and IMPUTE2 

(Howie et al., 2009).  

PHASE 

PHASE is a haplotype phasing algorithm, which is useful for small genomic regions 

(up to coupe hundred SNPs) and small sample sizes (up to one thousand 
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individuals) but relatively slow compared to the other tools I shall describe below 

(Stephens et al., 2001) (Stephens and Scheet, 2005). PHASE was considered to be 

the gold standard amongst population-based haplotype phasing algorithms for a 

long time (Marchini et al., 2006) before updated tools were developed. Two 

important updates / refinements of PHASE algorithm is fastPHASE (Scheet and 

Stephens, 2006) and SHAPE-IT (Delaneau et al., 2012). FastPHASE is the first 

method that is capable of phasing genome-wide SNP array data. SHAPE-IT includes 

PHASE algorithm but much faster and can be applied to high-throughput 

genotyping chips data and whole genome sequencing data.  

BEAGLE 

BEAGLE is a hidden Markov model (HMM) based algorithm to infer haplotypes 

(Browning and Browning, 2007). It is faster and more accurate than fastPHASE for 

medium and large sample sizes (i.e. more than 1000 individuals) but it is not as 

accurate as fastPHASE for small sample sizes (100 or less individuals). This is 

because fastPHASE uses Expectation-Maximization (E-M) algorithm which is more 

accurate than the HMM when a small number of SNPs in a short gene are to be 

studied. When the number of SNPs in the model increase, the number of haplotype 

will increase rapidly. This will cause two problems, a) the haplotype frequencies of 

rare variants will be too small to estimate directly; b)the computational time will 

become intractable since all haplotypes need be considered (Browning and 

Browning, 2007).   



24 
 

MACH and IMPUTE2 

MACH (Li et al., 2010) and IMPUTE2 (Howie et al., 2009) are designed for genotype 

imputation of untyped variants (I will introduce imputation in the next section). 

However, these algorithms can also be used for haplotype phasing. These two 

methods can be used for much larger datasets than PHASE and can return more 

accurate results for large sample sizes when compared to fastPHASE. The accuracy 

of both methods can be improved by increasing the complexity of the model, for 

example increase the number of HMM states so that the methods can make better 

use of the information in the data. But that will cost more computational time 

(Browning and Browning, 2011).  

 

1.2.4. Genotype Imputation 

The success of HapMap and 1000 Genome project has enabled researches to 

identify tagging SNPs (smaller subset of SNPs) across the whole human genome. 

Using HapMap and 1000 Genome data as reference panel, we can now then impute 

the haplotypes, haplotype frequencies and allele frequencies of hundreds of 

thousands un-typed SNPs. This process is called genotype imputation. As, shown in 

Figure 1-5, for unrelated individuals in a population, the raw data consist of a set of 

genotyped SNPs that has a large number of SNPs without any genotype data (part 

a). Testing for association at just these SNPs may not lead to a significant 

association (part b). Imputation attempts to predict these missing genotypes. 
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Algorithms differ in their details but all essentially involve phasing each individual in 

the study at the typed SNPs. The figure highlights three phased individuals (part c). 

These haplotypes are compared to the dense haplotypes in the reference panel 

(part d). Strand alignment between data sets must be done before this comparison 

takes place. The phased study haplotypes have been coloured according to which 

reference haplotypes they match. This highlights the idea implicit in most phasing 

and imputation models that the haplotypes of a given individual are modelled as a 

mosaic of haplotypes of other individuals. Missing genotypes in the study sample 

are then imputed using those matching haplotypes in the reference set (part e). In 

real examples, the genotypes are imputed with uncertainty and a probability 

distribution over all three possible genotypes is produced. It is necessary to take 

account of this uncertainty in any downstream analysis of the imputed data. Testing 

these imputed SNPs can lead to more significant associations (part f) and a more 

detailed view of associated regions.  
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Figure 1-5. Example of genotype imputation (Marchini and Howie, 2010) 

Imputation has now become an essential process during GWAS studies. Imputation 

has the potential to increase the power of GWAS and provide a high resolution 

overview of an association signals across a locus (which is meaningful for fine 

mapping) and is particularly useful for combining the GWAS results across studies 

that rely on different genotyping platforms (i.e. meta-analysis) (Li et al., 2009).  

We can classify imputation tools into two categories: computationally intensive 

tools and computationally efficient tools.    
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Computationally intensive tools: MACH, minimac and 

IMPUTE2 

Computational intensive tools, such as MACH (Li et al., 2010) and IMPUTE2 (Howie 

et al., 2009), take into account all observed genotypes when imputing each missing 

genotype.  

Typically, tools that consider all available markers and all available haplotypes 

require intensive computation but do better at estimating missing genotypes, 

particularly for rare SNPs (Li et al., 2009). Both MACH and IMPUTE2 are based on 

coalescent models to impute the missing genotypes. These models are based on 

the fact that new haplotypes are developed from old haplotypes by the processes 

of mutation and recombination. Since mutations and recombination are quite rare 

inside small genomic regions, haplotypes tend to look similar to each other. So, for 

instance, if we see two haplotypes, e.g. 1000 and 0010 in a sample (where 0 and 1 

are the two possible alleles at the four loci), we have better chance of observing the 

haplotype 1010 (caused by recombination) or 1100 (caused by mutation) than 

observing the haplotype 1110 (caused by both a recombination and a mutation) 

(Browning and Browning, 2011). The approximate coalescent gives rise to a HMM, 

and its parameters are estimated with the use of iterative algorithms such as the 

stochastic E-M algorithm (Tregouet et al., 2004). One advantage of IMPUTE2 is that 

it can includes both HapMap and 1000 Genome as reference panel (Howie et al., 

2009).  
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Minimac (Howie et al., 2012) is a low memory, computationally efficient 

implementation of the MACH algorithm. Now, a two-step procedure is recommend. 

The first step is a pre-phasing step using MACH. This step is time consuming step 

but it is only need once. The second step is the actual imputation into phased 

haplotypes using minimac and is very fast (i.e. one million markers for 1000 

individuals using 100 reference haplotypes takes about an hour, and computing 

time increases linearly with all these parameters) 

(http://genome.sph.umich.edu/wiki/Minimac:_1000_Genomes_Imputation_Cookb

ook).  

Computationally efficient tools: PLINK and BEAGLE  

Computationally efficient tools, like PLINK (Purcell et al., 2007) and BEAGLE 

(Browning and Browning, 2007), typically only focus on genotypes for a small 

number of nearby markers when imputing each missing genotype. PLINK used an 

E-M algorithm for genotype imputation function while BEAGLE used an HMM 

model to impute the missing genotype.  

Performance comparison 

In a comprehensive comparison between BEAGLE, IMPUTE, MACH and PLINK, 

Nothnagel M et al concluded that BEAGLE, IMPUTE, and MACH yielded nearly 

identical trade-offs between imputation accuracy and efficacy whereas PLINK 

performed consistently poorer (Nothnagel et al., 2009). A more recent comparison 

made by “GoldenHelix” compared BEAGLE, IMPUTE2 and Minimac for accuracy, 
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computational time and memory usage (http://blog.goldenhelix.com/?p=1911). 

They concluded that IMPUTE2 is the most accurate method; however one of the 

disadvantages of the method was it’s the intensive memory usage. BEAGLE and 

Minimac use much less memory but need more computational time. Besides, 

pre-phasing will decrease the accuracy while save a lot of time. On the other hand, 

BEAGLE seems like the most user friendly program with good manual. So choosing 

the most appropriate imputation programme is a trade-off between imputation 

quality, computational time and memory usage.  

 

1.3. Mapping genetic variants to complex 
traits 

For each human being, on average approximately 3.5 million SNPs and 610,000 

INDELs have been identified in the whole genome averagely (Pelak et al., 2010). 

Characterising the relationship between genetic variants and complex human 

disease/trait susceptibilities will lead to a better understanding of the aetiologies of 

human diseases. Here I will explain the background knowledge of genetic mapping 

first.    
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1.3.1. Phenotypes and phenotype 

standardization 

In human genetics field, a phenotype is a composite of a human being’s observable 

characteristics or traits, i.e. type 2 diabetes or height.  

A phenotype is normally caused by the expression of human genes, the influence of 

environmental factors, and their interactions: 

Genotype (G) + environment (E) + genotype & environment interactions → 

phenotype (P) 

Almost all of the traits can fall into two major distinct classes: binary outcomes and 

continuous traits.  

Binary outcomes (disease status) 

Binary data is a data type which can take on only two possible values: i.e. “success” 

or “failure”, “yes” or “no”, “true” or “false” and “present” or “absent”. In the 

human genetics field, binary outcomes often represent the disease status. 

Numerically, these two values are normally coded as 0 and 1, where 0 means 

absent and 1 means present. Binary data is the simplest type of categorical data. 

Randomly selected binary variables follow the Bernoulli distribution. Regression 

analysis on/given outcomes that are binary variables is mainly accomplished 

through logistic regression. 
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Continuous traits (quantitative traits) 

Most of traits do not fall into discrete classes. Rather, when a certain population is 

analysed, a continuous distribution of phenotypes can be identified. These 

continuous values are called quantitative traits. Many human phenotypes can be 

classified into this class, which including height, weight, blood pressure and so on. 

Regression analysis on predicted traits that are continuous variables is majorly 

accomplished through linear regression. Most quantitative traits can be attributed 

to polygenic disorders, i.e. product of multiple genes and environmental factors. 

Quantitative traits from random selection need follows the approximately normal 

distribution so that linear regression can be used to analyse these traits. 

Standardization 

In probability theory, the normal (or Gaussian) distribution is a very common 

continuous probability distribution. The normal distribution is sometimes informally 

called the bell curve. For most of the statistical analysis in population genetics field, 

we need a phenotype which follows an approximate normal distribution. For raw 

phenotype data which are not normal distributed, we can standardise them using 

the following ways:   

1. Standard score, also called Z-score, is the number of standard deviations 

an observation is away from the mean. The use of “Z” is because the 

normal distribution is also called the “Z distribution”.  

The Z-score of a raw value x is 
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G =
H − I

J
 

Where μ is the mean of the population and σ is the standard deviation of 

the population. 

The value of z represents the difference between the observed value and 

the mean of the population in units of the standard deviation. Z is negative 

when the raw value is smaller than the mean and positive when bigger 

than the mean.  

One advantage of Z-score is that it does not have a unit, therefore we can 

compare traits with different units after we standardized them.  

2. Logarithm transformation, the logarithm of a number is the exponent to 

which the base must be raised to produce that number.  

3 = K; 	<=> L4MN(3) 

The logarithm transformation can only be applied when data are strictly 

positive. Two kinds of logarithms are used frequently: “natural” logarithms 

(irrational number e as its base) and base-10 logarithms. 

The log transformation can be used to make highly skewed distributions 

less skewed. This can be valuable both for making the data more 

interpretable and for helping to meet the assumptions of inferential 

statistics.  
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1.3.2. Association analysis for candidate 

genes 

Another classic method, which is still a useful follow-up approach nowadays, is the 

candidate gene analysis (Westaway et al., 2011). The scientists will select a gene (or 

a group of candidate genes) based on their biological knowledge and prior 

experience. Then they will sequence the gene (genes) for genetic variants in a 

group of people with / without a phenotype (or some relative phenotypes). Finally, 

they will try to identify the association between the variants and phenotypes. This 

approach is highly possible to be failed in certain genes and also lacks of replication 

since the knowledge on the molecular mechanisms of these phenotype is uncertain 

(Richardson et al., 2013). 

1.3.3. Genome-wide association study 

(GWAS) 

Genome-wide association study (GWAS) extend the association analysis approach 

to the whole human genome. The formal definition of GWAS is a statistical test 

which are performed using dense maps of common SNPs (or note as single 

nucleotide polymorphism-SNP) on a group of participants from a study. The study 

can be either a disease-based cases-control design or exposure-based cohort 

design.  

GWAS offered the opportunity for the “hypothesis-free” analysis to understand the 

disease pathophysiology, which will overcome the difficulties and obstacles of the 
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traditional candidate gene approach (Kitsios and Zintzaras, 2009). Since GWAS 

includes a huge amount of genetic markers, it is more likely to identify the truly 

causal variant or the proxy variants in strong LD with the causal variants. But the 

side effect of GWAS-multiple testing-will increases the chance of false positive 

findings. In statistics, the multiple comparisons, multiplicity or multiple testing 

problem occurs when one considers a set of statistical inferences simultaneously 

(Benjamini, 2010). Bonferroni correction is the most common way to counteract the 

problem of multiple testing (Bonferroni, 1936), which is simply divide the test-wise 

significance level (O) by the number of tests (N), the significance level after 

correction will be:  

OP =
O
Q

 

For GWAS, N is the number of SNPs involved in the test. So given the large multiple 

testing in GWAS, very few signals exceed the genome-wide significance threshold 

and those that do not exceed this stringent statistical requirement are generally 

neglected (Kitsios and Zintzaras, 2009).  

The first GWAS were proposed by Risch and Merikangas in 1996. This study showed 

that the tests between common genetic variants were better powered than linkage 

analysis to identify causal variants (Risch and Merikangas, 1996). Later, scientists 

found that genetic effects underlying complex traits and common human diseases 

are small, and their detection requires typing of single nucleotide polymorphisms 

(SNPs) in large samples (Cardon and Bell, 2001) (Colhoun et al., 2003). Then, the 

completion of the Human Genome Project provided a platform for identifying and 



35 
 

characterizing common genome-wide genetic variation (International Human 

Genome Sequencing Consortium, 2004). After that, GWASs have identified 

thousands of single nucleotide polymorphisms (SNPs) associated with human 

complex traits and diseases (Hindorff et al., 2009) (Manolio, 2010). The National 

Human Genome Research Institute has established a catalog of published GWAS 

studies (https://www.genome.gov/gwastudies). As of 01/10/14, the catalog 

includes 1788 publications and 12329 SNPs. 

1.3.4. Regression analysis  

In this section, I will explain the concepts of regression analysis since association 

analysis, such as GWAS, is highly related to it.   

Linear regression 

In statistics, linear regression is an approach for identifying the approximate linear 

relationship between a dependent variable (Y) and one or more explanatory 

variables (X or X1…Xn). The dependent variable should be a quantitative variable 

while the explanatory variable can be either continuous or categorical variable.  

In linear regression, data are modelled using a linear model. For example, the 

relationship between an explanatory variable X (i.e. a SNP) and a dependent 

variable Y (i.e. a certain phenotype) can be identified by a linear regression model:  

R = 	ST + HSU + V 
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Where ST is the intercept of the regression; SU is beta coefficient of the 

regression. V is the error variable (which means an unobserved random noise to 

the linear relation).  

Figure 1-6 shows an example of the simplest linear regression model. ỹ is the 

mean of the outcome variable. “Yi” is the predict value of the regression for event i. 

“yi” is the observed value of event i. yi − Yi is the residual about regression 

(noise). Yi − ỹ is the signal due to regression. The green line is the line of the best 

fit.  

 

Figure 1-6. Example of scatter plot and linear regression of a continuous 

explanatory variable. X is the predictor variable (independent variable) and Y is the 

outcome variable (dependent variable). The regression line is in green.  

Logistic regression 

On the other hand, logistic regression is a kind of generalized linear model (GLM). 

GLM is a flexible generalization of ordinary linear regression that allow for response 

variable that have distribution other than a normal distribution. Like linear 

regression, it also predicts the linear relationship between a response variables (Y) 
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and one or more explanatory variable(s) (X or X1…Xn). The dependent variable of 

logistic regression should be a categorical variable (i.e. binary disease status). 

Meanwhile, the explanatory variables can be either categorical or continuous 

variables.  

Logistic regression uses a link function to link response and explanatory variables. In 

genetic epidemiology field, the simplest link function is: 

ZQ(4[[\	.']^4) = 	ST + HSU + V 

Where LN is the natural logarithm. ST is the intercept of the regression; SU is 

beta coefficient of the regression. V is the error variable. The odds ratio is the odds 

of cases divided by the odds of controls for a disease, where odds of an outcome D 

is given by probability of D occur (P(D)) divided by probability of D not occur (P(not 

D)).  

Model fit: least squared method 

The least squared method is an approach to the approximate solution of over 

determined systems. “Least squares” means that the overall solution minimizes the 

sum of the squares of the errors made in the results of every single equation.  

Hypothesis test: testing the significance  

The next step is to test the significance of the association using a hypothesis test. 

For association analysis, we want to test whether there is an association between a 

SNP (or between a set of SNPs) and a trait, which means whether the slope (effect 

size =SU) is equal to zero.  
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So the null hypothesis H0 will be: 

SU = 0 

While the alternative hypothesis H1 will be:  

SU ≠ 0 

Normally the t statistics (details in Chapter 3) will be an intermediate parameter for 

the hypothesis test (either one-sided test or two-sided test). A large value of t 

statistic, either negative or positive, would provide evidence against the null 

hypothesis. Therefore, the decision rules to reject H0 if the absolute value of t is 

greater than the critical value of the student’s distribution on n-2 degrees of 

freedom for a specified confidence level (95%, 99% or even more confident).  

Assumption of regression analysis 

The following are the major assumptions of regression analysis: 

1. Lack of measurement error is important.  

2. Linearity, which means the mean of the dependent variable is a linear 

function of the explanatory variables. 

3. Equal variance of errors, where the different dependent variables have the 

same variance in their error, regardless of the predictor variables.   

4. Lack of multicollinearity in the explanatory variables. If two or more 

explanatory variables are in a strong correlation to each other, this will 
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cause a problem called multicollinearity for standard least squares 

estimation approaches.  

Example of regression analysis: testing the association of a 

SNP and a trait 

For association analysis of a certain SNP A, the linear relationship between its 

genotypes and a quantitative phenotype can be represented using a regression 

model. In the example shown in Figure 1-7, I used an additive model, which assume 

the effect of the phenotype will increase / decrease a certain amount with the 

increase of per rare allele. The genotypes are coded as 0, 1 and 2 for TT, TA and AA 

respectively. Each dot represents the effect on the phenotype of an individual with 

one of the genotypes. The slope of the green line (line of the best fit) is the beta 

coefficient. The baseline is the intercept of the regression model.   

 

Figure 1-7. Example of association analysis between a biallilic SNP and a 

quantitative phenotype. TT, TA and AA are the three genotypes of SNP A. The green 

line is the line of the best fit. The red line is the line of baseline effect.  
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1.3.5. Meta-analysis of Genome-wide 

association analysis 

One problem with GWAS is that many stand-alone GWAS studies lack sufficient 

power to obtain precise results (Zeggini and Ioannidis, 2009) (Cambon-Thomsen, 

2003)  so the synthesis of available open resources and data pooling remains 

important. In statistics, a meta-analysis refers to methods that compare and 

combine results from different studies. Meta-analysis is normally done by 

identification a weighted average of a common measure of effect size (in regression 

analysis effect size means beta coefficient). The major advantage of meta-analysis is 

that it increases the sample size so that the precision and accuracy of estimates can 

be improved. More importantly, the statistical power to detect an effect will 

increase as well. Commonly used software for meta-analysis include METAL (Willer 

et al., 2010) and STATA (StataCorp, 2013) and PLINK.  

Numerous examples of meta-analyses have identified disease and quantitative trait 

susceptibility loci that small individual level studies did not identify reliably 

(Ioannidis et al., 2006). It is, therefore, desirable to utilize the published and 

on-going studies.  

Data synthesis models for meta-analysis 

There are several data synthesis approaches for meta-analysis. Two of them are 

widely for GWAS meta-analysis: 

1. Fixed effect model is the most popular approach for synthesizing GWAS data 

since it is the most powerful approach for discovering phenotype-genotype 
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association (Pfeiffer et al., 2009). The assumption for fix effect model is that the 

true effect of each risk allele is the same in each individual study. This 

assumption is quite hard to achieve, but fixed effect model will maximizing 

discovery power compared to random effect model (Pereira et al., 2009). 

For fixed effect model, the weight of each study is: 

Weight	(We) =
1

SEh
* 

Where SEi is the standard error of effect size for each study “i”. Based on this 

weighting system, bigger studies will get more weight than smaller ones. 

Summary effect then will be: 

Summary	effect =
∑(We ∗ effect)

∑We
 

2. Random effect model assumes the true treatment effect varies between 

studies. Random effect models are not designed for discovering association 

since they will return far more limited power than fixed effect models. However, 

random effect models will performance better than fixed effect models when 

the aim is to synthesize heterogeneous studies and estimate the average effect 

size of the associated variant and its uncertainty across different populations 

(Ioannidis et al., 2007).  

For random effect model, the weight of each study is: 

Weight	(We) =
1

(SE* + I*)
 

Where SEi is the standard error of effect size for each study “i” and I2 is the 

heterogeneity term of the meta-analysis. The definition of heterogeneity is 

variation between the true intervention effects underlying the different studies. 
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Heterogeneity can cause by difference between patients, intervention, 

outcome definition and design of each study of the meta-analysis.  

An example of a meta-analysis results is shown in Table 1-4:  

ID  A1       A2      
 Frequencies 

of A1       
b se       p       N     

SNP1 A   G 0.8493  0.0024  0.0055  0.6653   129850  

SNP2 C G 0.0306  0.0034  0.0115  0.7659   129799  

SNP3 A   C 0.5128   0.0045   0.0038   0.2319    129830 

Table 1-4. An example of meta-analysis summary statistics. For each SNP, A1 is the 

alternative allele and A2 is the risk allele.  

 

Polygenetic inheritance, missing heritability, estimating heritability using REML, 

LDSC etc 

1.3.6. Genetic fine mapping 

Current GWAS studies have identified a huge amount of genomic regions that cover 

causal variants for different complex traits. Although GWAS studies have much 

greater resolution than linkage analysis, it is still difficult to know the uncertainty 

between statistical “distance” and physical distance. We need further analysis to 

refine the location of causal variants as sharply as possible so that follow-up 

functional studies and hypotheses regarding mechanism can be processed 

(McCarthy and Hirschhorn, 2008). The process of this kind of further analysis is 

often noted as “genetic fine mapping.” As shown in Figure 1-8, this terminology is a 

holdover from family-based linkage analysis.  
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Figure 1-8. Relationship between linkage analysis, association analysis and fine 

mapping. TDT refers to transmission disequilibrium test, which is a family based 

association test for unrelated families. It is out of the range of this thesis. For details 

please read the paper (Spielman et al., 1993).   

There is strong LD throughout most of the genome (International HapMap 

Consortium, 2005), so a genotyped proxy variant and the untyped causal variant 

could be tens of thousands base pairs away from each other, and the region in 

between them could contain tons of alleles, none of which are strongly correlated 

with the causal allele. Moreover, it is quite often that some variants show more or 

less equivalent evidence of association for a certain association signal. It is also 

possible that multiple independent association signals exist at a certain locus, for 

example, protein tyrosine kinase 2b (PTK2B) associated with Alzheimer’s disease 

(Lambert et al., 2013). For a set of potential causal variants, fine mapping, which 

utilises the LD pattern across a region, to test which variant (or subset of variants) is 

(are) most likely to explain the signal of association.  

Fine mapping can not only help narrow down the list of possible causal variants and 

simplify future functional studies, but also increase the power of association if the 
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dense set of SNPs use for the GWAS is reasonably high (Wiltshire et al., 2008) 

(Sanna et al., 2011). In my point of view, common and rare variants that are poorly 

represented in common genotyping arrays (which means an array with low density 

but cover the whole genome) may account for a large proportion of trait heritability. 

Ignoring these variants might exclude identification of casual trait associated loci so 

that we are underestimating the heritability. Fine mapping (using either a high 

density gene centric genotyping array or a high coverage sequencing data of 

candidate regions) should be the logical next step after GWAS. 

1.4. Existing model selection approaches for 
identifying independent SNPs 
associated with polygenic traits 

As explained above, the major aim of genetic fine mapping is to identify the “casual” 

(or state more clearly the independent) variant(s) in a candidate genomic region. To 

achieve this aim, we need to select a subset of possible causal variants (term 

independent SNP) from the entire association analysis results. For such selection 

procedure, there are four types of statistical approaches exist:   

1. Select SNPs for follow up based on their ranked beta coefficient of the single 

regression analysis (i.e. the most significant SNP, the second most significant 

SNP and so on) 

2. An approximate Bayesian procedure, based on posterior probabilities that each 

marker is the causal marker. 
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3. A Least absolute shrinkage and selection operator (Lasso), which is a shrinkage 

based selection method for linear regression. 

4. A stepwise procedure, which recalculates regression coefficient conditional on 

the most (second most etc.) significant SNP of a genomic region to find out the 

independent effect SNPs.  

The first strategy has drawbacks since the selected markers for follow up are based 

on statistical significance (rather than the real functional variant). There is high 

chance that the causal SNP is excluded from the follow up study because of 

experiments cost, time issue or labor intensive. So I do not recommend using this 

strategy anymore.  

On the other hand, the Bayesian analyses produce an estimate of the probability of 

association. Bayesian methods can combine information from both GWAS results, 

SNP information derived from bioinformatics databases, empirical SNP weights, and 

the researchers’ subjective prior opinions. There are different ways to implement 

Bayesian procedures (Wellcome Trust Case Control Consortium et al., 2012) (Valdar 

et al., 2012) (Thompson et al., 2013). The advantage of the Bayesian analysis is that 

Bayes factors, although not as well known as p value, for different SNPs can be 

compared quantitatively. For instance, for a certain genomic region, if we assume a 

certain number of causal SNPs in the selected set of SNPs, it is straightforward to 

calculate the posterior probability that any particular SNP is causal taking into 

consideration data from the fine-mapping analysis (Wellcome Trust Case Control 
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Consortium et al., 2012). There are two problems that may prevent a researcher 

using Bayesian approach: firstly, these approaches are relying on have a reasonable 

prior distributions which can be difficult to determine 

(http://www.bayesian-inference.com/priors). Bad prior distribution may lead to 

poor estimation of posterior distribution. Secondly, Bayesian approaches are 

normally computational expensive and time-consuming (Grzegorczyk, 2010).  

The third strategy a step-wise procedure, is the most commonly used one. Compare 

to Bayesian analysis, step-wise procedures are computational fast and easy to 

understand. In the following section, I will introduce some popular step-wise based 

fine mapping methods used for complex human traits.  

The third approach, LASSO, is a relevant new statistical method which is proposed 

by Tibshirani in 1996 (Tibshirani, 1996). The Lasso minimizes the residual sum of 

squares subject to the constraint on the sum of absolute value of coefficients. In 

2004, Efron et al. proposed the Least Angle Regression(LARS) (Efron et al, 2004) 

which is a computationally efficient model selection algorithm. There is a close 

connection between the LARS and the LASSO. A simple modification of the LARS 

algorithm can yield all the LASSO solutions. Due to their popularity and usefulness, 

the LASSO and the LARS have drawn intensive research interest in the statistical 

field. Later in 2005, the Elastic Net proposed by Zou and Hastie (Zou and Hastie, 

2005) uses a novel regularization penalty. The naive Elastic Net uses a combination 

of the LASSO and the Ridge regression penalty. However, the Elastic Net uses a 
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scaled version of the naive Elastic Net estimate to reduce the over shrinking of 

parameters. It has been shown that the Elastic Net outperforms the LASSO (Zou and 

Hastie, 2005). In a GWAS (SNP based association analysis) point of view, The above 

LASSO methods can be used to identify genetic variants that associated with 

variation in the phenotypes. Some successful model selection methods using LASSO 

or using combination of Bayesian approach and LASSO have been developed since 

then (Wu et al, 2009, Li et al, 2011, Motyer et al, 2011).  

 

1.4.1. Stepwise regression and 

Conditional analysis 

Stepwise regression is a classic scheme for sequentially adding or removing 

variables from the model. In genetic field, conditional analysis, which is the most 

commonly used model selection method, has been used as a tool to identify 

secondary association signals at a locus (Lango Allen et al., 2010) (Schizophrenia 

Psychiatric Genome-Wide Association Study (GWAS) Consortium, 2011) (Psychiatric 

GWAS Consortium Bipolar Disorder Working Group, 2011).. A more general and 

comprehensive strategy would be to perform a conditional analysis, starting with 

the top associated SNP, across the whole genome followed by a stepwise 

procedure of selecting additional SNPs, one by one, according to their conditional P 

values.  
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A more common and expended strategy would be to perform a conditional analysis 

as follows: 

1. Firstly, test the association between a trait and test SNPs conditional on the 

most significant associated SNP, across a certain genomic region  

2. Then, follow a stepwise procedure of selecting additional SNPs, one by one, 

according to their conditional P values.  

3. Finally combine all the reminder SNP in the model and process a step-wise 

regression to remove SNPs highly correlated to each other. 

Such a strategy would allow the discovery of more than two associated SNPs at a 

locus (Galarneau et al., 2010) (Trynka et al., 2011). 

1.4.2. Model selection approaches 

Model selection is a way of selecting a good statistical model from a group of 

candidate models. The word “good” is kind of a balance between fitness and 

simplicity of the model. Consider the specificity, we need to include the main 

effects and interactions in the model. On the other hand, parsimonious will reduce 

the computational time of our analysis.  

In order to select the best model, we firstly need a criterion or benchmark to 

compare the models. We also need a search strategy. 
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Possible criteria 

1. The coefficient of determination (R2), which measures the goodness of fit of a 

statistical model. It is not a good criterion since it always increase when extra 

explanatory variables are added to the model. Adjusted R2 is an attempt to 

take account of the phenomenon of the R2. It is better than R2 but it penalized 

bigger models.  

2. Mallow’s Cp (Mallows, 1973), which is used to assess the fit of a regression 

model that has been estimated using ordinary least squares.  

3. Akaike’s Information Criterion (AIC), named for Akaike Hirotugu, is a measure 

of the relative quality of a statistical model (Akaike, 1974). It offers a relative 

estimate of the information lost when a given model is used to represent the 

whole data.  

For any statistical model, the AIC value is: 

#pq = 2r − 2ZQ(Z) 

Where k is the number of parameters in the model and L is the maximized 

value of the likelihood function of the model. LN is the nature logarithm.  

4. Bayesian Information Criterion (BIC), which was first developed by Schwarz 

(Schwarz, 1978), is a criterion for selection among a finite set of models. It is 

partly based on the likelihood function and is closely related to AIC. In 

comparison to BIC, AIC penalizes the number of parameters less strongly.  

For a large statistical model, the BIC value is: 
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spq = 	−2 ∗ ZQ(Z) + r ∗ ZQ(1) 

Where n is the sample size. k is the number of free parameters to be estimated. 

L is the maximized value of the likelihood function of the model. LN is the 

nature logarithm.  

Search strategies  

1. Best subset, where search all possible models and take the model with highest 

R2, lowest Cp or other information criteria.  

2. Stepwise (forward, backward or both), where choose an initial model and plus 

or minus one parameter from the model until the best model is found. It is 

useful when number of predictors is large.  

3. Greedy, where take the biggest jump (up or down) in the selected criterion

1.5. Materials 

In this section I will briefly overview the sample datasets, bioinformatics tools, 

scripting programme and statistical tools I am going to use in this work.  

1.5.1. British Women’s Heart and Health 

Study (BWHHS) 

The British Women's Heart and Health Study is a prospective cohort study of 

cardiovascular disease in older British women (Chapter 9.13 BWHHS). The samples 

were randomly selected from British women aged 60-79 and were drawn from 23 
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towns in England, Scotland and Wales. Most of them are European originals. 

Information was collected using general practitioner record reviews, a 

self-completed questionnaire, research nurse interview, and physical examinations. 

The study aims to provide information about the existing patterns of treatment for 

heart disease, and further the understanding of risk factors and disease prevention. 

In total, 7173 participants were approached and information pertinent to 

approximately 60% of participants (4286) is available. 20% of women had a doctor 

diagnosis of either myocardial infarction, angina, heart failure, stroke, or peripheral 

vascular disease. 50% of participants were hypertensive and more than 25% of 

them were obese. 50% have a total cholesterol level greater than 6.5 nmol/l. For all 

4286 participants, 3800 have DNA samples (Lawlor et al., 2003). The structure of 

BWHHS is shown in Figure 1-9. 
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Figure 1-9. Structure of the BWHHS study 

BWHHS “Metabochip” 

Of the available BWHHS participants, 2024 were genotyped using the Illumina 

Cardio-Metabochip (called “Metabochip”). The Metabochip is a custom genotyping 

array design for fine mapping additional loci associated with cardiovascular disease 

(CVD) related traits. It covers ~200,000 SNPs which are selected based on the 

knowledge of previous GWAS studies for type 2 diabetes, coronary artery disease, 
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myocardial infarction, body mass index, glucose and insulin levels, lipid levels and 

blood pressure (Voight et al., 2012).  

BWHHS “Cardiochip” 

Of the available BWHHS participants, 3443 were genotyped using 50 k HumanCVD 

BeadChip (called “Cardiochip”) (Illumina, San Diago, CA). The CardioChip consists of 

~50,000 SNP markers that capture genetic regions across ~2,100 genes identified as 

being associated with CVD from the literature (Keating et al., 2008). 

1.5.2. HapMap and the 1000 Genome 

Project 

HapMap 

The aim of the international HapMap project is to determine the common patterns 

of DNA sequence variation within the human genome (a haplotype map, so called 

“HapMap”) and to makes these precious data freely available in the public domain. 

Using the haplotype map in a genomic region, scientists can then identify tagging 

SNPs that could be used as representatives to represent haplotypes uniquely 

(http://hapmap.ncbi.nlm.nih.gov) (Chapter 9.13 HapMap). Moreover, HapMap 

provides a landscape of precious linkage disequilibrium (LD) information of human, 

which is the foundation for fine-scale analysis of genomic variation. It enhances our 

ability to fine map associations between common variants and complex diseases / 

traits (Slatkin, 2008). 
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The original HapMap project genotyped more than one million of common genetic 

variants (SNPs) in 270 individuals from four human populations (Chinese, Japanese, 

European and Nigerian) (International HapMap Consortium, 2003). The allele 

frequencies and the degree of association (LD) between these SNPs were also 

measured for each population. At the time of writing, HapMap (Phase 3) has 

identified ~ 1.6 million SNPs in 1,184 individuals from 11 different populations 

(International HapMap 3 Consortium et al., 2010). In Chapter 3, I will use the 

genotype data of HapMap Utah Residents with Northern and Western European 

ancestry (CEU) and Toscana in Italia (TSI) population to process an admixture 

population simulation.  

1000 Genomes 

The 1000 Genome project has similar goals to the HapMap project, which is to 

provide a well-annotated haplotype reference map (1000 Genomes Project 

Consortium et al., 2010) (Chapter 9.13 1000 Genomes). In contrast to the HapMap 

project, the 1000 Genomes project has sequenced more than 1000 individuals from 

26 different populations in order to enable them to discover low frequencies 

variants (MAF between 1% and 5%). The 26 populations used within the 1000 

Genomes project are from many different locations around the world. They can be 

classified into 5 super populations: African, admixed American, East Asian, 

European and South Asian. In order to reduce costs, the 1000 Genomes project 

opted to use low-coverage whole genome sequencing (WGS) (~5X). Although 

variants with low frequencies can be identified using low-coverage WGS, but with 
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such limited sample size and coverage issues, the approach is limited to detecting 

variants with a population allele frequency of ~1% (1000 Genomes Project 

Consortium et al., 2010). In this work, genotype and haplotype data of 1000 

Genome CEU and British in England and Scotland (GBR) population will be used as 

reference genotype data in Chapter 5 for a performance comparison of fine 

mapping methods. I will also use them as a reference panel to impute genotypes of 

BWHHS individuals in Chapter 6.  

1.5.3. Avon Longitudinal Study of Parents 

and Children (ALSPAC) 

The Avon Longitudinal Study of Parents and Children (ALSPAC), which is also known 

as Children of the 90s, is a population-based cohort study (Fraser et al., 2013) 

(Chapter 9.13 ALSPAC). The major aim of the study is to establish a 

trans-generational, prospective, observational birth cohort and use it to understand 

how genetic and environmental characteristics influence health and development. 

More than 14000 mothers were enrolled during their pregnancy in 1991 and 1992, 

and the health and development of their children has been followed in great detail 

ever since (Golding et al., 2001). The study maintains a huge amount of genetic and 

phenotypic data, including genetic, epigenetic, biological, psychological, social and 

other environmental exposures from across participant life course (Boyd et al., 

2013). In this work, 9233 ALSPAC individuals were genotyped using the Illumina 

HumanHap550 quad genome-wide SNP genotyping platform (Illumina, San Diego). 
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ALSPAC individual-level genotyped data will be used as a reference panel for fine 

mapping atopic dermatitis associated loci in Chapter 6.  

1.5.4. Meta-analysis of cardiovascular 

disease traits 

The University College-London School-Edinburgh-Bristol (UCLEB) consortium is 

comprised of a set of population-based prospective studies with dense CVD related 

phenotypes ((Chapter 9.13 UCLEB)). All participating studies have genotyped their 

individuals using a new high-resolution custom SNP array (“Metabochip”, see 

Section 2.1.1). The array have a much higher SNP densities in genomic regions 

linked to cardiovascular and metabolic diseases / traits.  

The overall aims of the UCLEB consortium include, a) follow-up studies of genomic 

regions reported to be associated with CVD traits by previously GWAS studies and 

understand the unknown mechanisms for healthcare; b) to fine map functionally 

relevant SNPs inside these regions; c) to estimate the CVD risks for individuals and 

population separately based on individual SNPs and their interactions; d) to 

understand the mechanisms leading to altered CVD risk factor profiles; e) to 

process Mendelian Randomisation to identify the causal role in CVD of a range of 

cardiovascular biomarkers to inform public health policy and help develop new 

preventative therapies, i.e. new drug targets (Shah et al., 2013b).   
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1.5.5. Meta-analysis of gallbladder disease 

The meta-analysis of gallbladder disease is a collaboration based project between 

Candidate gene association resource (CARe) consortium (Musunuru et al., 2010a) 

(Chapter 9.13 CARe) and UCLEB consortium. It consists of three independent 

cohorts: the Atherosclerosis Risk in Communities Studies (ARIC), BWHHS and 

Women’s Health Initiative (WHI). ARIC is a prospective epidemiology study 

designed for atherosclerosis and cardiovascular disease (CVD) researches. In total, it 

has recruited 15,792 individuals between 1987 and 1989 (The ARIC investigators, 

1989). The WHI is a National Institutes of Health (NIH) study and has recruited 

161,808 women with ages between 50 and 79 years. The aim of WHI study is to 

prevent diseases (i.e. heart diseases) in women (The Women’s Health Initiative 

Study Group, 1998).Participants from these three cohorts were genotyped using 

the “Cardiochip” (see Section 2.1.1)   

1.5.6. Meta-analysis of Atopic Dermatitis 

The EArly Genetics and Lifecourse Epidemiology (EAGLE) Consortium is a 

collaboration between various cohorts and aims to investigate the genetic basis of a 

range of phenotypes in antenatal and early life and childhood (Paternoster et al., 

2012). The participating cohorts within the EAGLE consortium includes: the 

Australian Asthma Genetics Consortium (AAGC) replication cohort, the Avon 

Longitudinal Study of Parents and Children (ALSPAC), BAMSE, British 1958 birth 

cohort (B58C), the Children’s Hospital of Philadelphia (CHOP), the Copenhagen 
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Prospective Study on Asthma in Childhood (COPSAC), Danish National Birth Cohort 

(DNBC), the European Community Respiratory Health Survey (ECRHS), Generation 

R, Genetics of Overweight Young Adults (GOYA) women’s study, the Danish 

Glostrup Cohort (Health2006), KORA, LISA/GINI, Manchester Asthma and Allergy 

Study (MAAS), the Norwegian Mother and Child Cohort Study (MoBa), the Northern 

Finland Birth Cohort 1966 (NFBC66), Northern Finland Birth Cohort 1986 (NFBC86), 

Netherlands Twin Register (NTR), PIAMA, QIMR discovery cohort, Western 

Australian Pregnancy (Raine) cohort, SAPALDIA, the Department of Twin Research 

and Genetic Epidemiology at King’s College London (TwinsUK). Meta-analysis 

summary results of the EAGLE consortium of Atopic Dermatitis were conducted by 

Paternoster and colleagues. I will use them together with the ALSPAC genotype 

data to run a regional association analysis in Chapter 6.  

1.5.7. Meta-analysis of Body Mass Index 

The Genetic Investigation of ANthropometric Traits (GIANT) consortium is an 

international collaboration based consortium 

(http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium) 

(Chapter 9.13 GIANT). It aims to identify genetic loci that modulate human body 

size and shape, including height and measures of obesity. The GIANT consortium 

consist of investigators from many different cohorts, institutions, countries, and 

studies, and the results represent their combined efforts (i.e. meta-analysis 

summary statistics). The primary analysis has been meta-analysis of GWAS data and 

other large-scale genetic data sets. Anthropometric traits that have been reported 
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by GIANT include body mass index (BMI), height, and traits related to waist 

circumference (such as waist-hip ratio adjusted for BMI, or WHRadjBMI). So far, the 

GIANT consortium has identified more than hundreds genomic regions with 

common genetic variants that are associated with anthropometric traits. The GIANT 

meta-analysis summary results of BMI (Speliotes et al., 2010) will be used for a 

further fine mapping analysis in Chapter 4.  

1.6. Bioinformatics tools 

1.6.1. Variants database: dbSNP 

The National Centre for Biotechnology Information (NCBI) dbSNP database is a 

general catalogue of genetic variation (mainly single nucleotide variations and small 

INDELs) which is open access to the public (Sherry et al., 1999) (Sherry et al., 2001). 

The web link of dbSNP database is http://www.ncbi.nlm.nih.gov/projects/SNP/. The 

dbSNP database is the central repository for genetic variation and contains both 

polymorphisms and clinical mutations. At the time of writing, the most up-to-date 

database (dbSNP Build 140) contained ~249 million variant submissions (ss#s), of 

which ~161 million are unique positions in the genome (rs#s) and ~45 million have 

been validated (data obtained from 

http://www.ncbi.nlm.nih.gov/projects/SNP/snp_summary.cgi).  

Day et al summarized that data quality is a big issue for dbSNP since various studies 

provide evidence for a high number of false positive ‘multisite’ variants which arise 

because of genotyping errors associated with paralogous (duplicated) genes (Day, 
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2010). Although the number of submissions to dbSNP has increased over the last 

few years, it is estimated that up to 8.3% of the unique coding variants could be 

false positives (Musumeci et al., 2010).  

 

1.6.2. SNP Annotation tools: Variant Effect 

Predictor (VEP) and SNP Annotation 

and Proxy Search (SNAP) 

Variant Effect Predictor (VEP) 

Variant Effect Predictor (VEP) is a tool to predict the consequences of genomic 

variants and annotate variants onto known transcripts (McLaren et al., 2010). The 

VEP web interface is: http://www.ensembl.org/Homo_sapiens/Tools/VEP 

VEP will be used to annotate variants significantly associated with Atopic Dermatitis 

in Chapter 6.   

SNP Annotation and Proxy Search (SNAP) 

SNP Annotation and Proxy Search (SNAP) is a bioinformatics query tool for SNPs to 

identify and annotate nearby SNPs in LD (called proxies) based on HapMap and 

1000 Genome (Johnson et al., 2008). It can be used to find proxy SNPs as well as 

pairwise LD information. Moreover, it can be used to visualize the regional 

association analysis among variants with in a genomic region.  
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1.6.3. Batch Coordinate Conversion 

(LiftOver) 

Batch coordinate conversion (liftOver) converts genome coordinates and genome 

annotation files between assemblies (http://genome.ucsc.edu/cgi-bin/hgLiftOver). 

To conduct a LiftOver, we need an input file called BED file. An example of the BED 

file is shown in Table 1-5.  

Chr Start POS End POS Name 

chr7 127471196 127472363 Region 1 

chr7 127472363 127473530 Region 2 

chr7 127473530 127474697 Region 3 

chr7 127474697 127475864 Region 4 

chr7 127475864 127477031 Region 5 

chr7 127477031 127478198 Region 6 

chr7 127478198 127479365 Region 7 

chr7 127479365 127480532 Region 8 

chr7 127480532 127481699 Region 9 

Table 1-5. Example of BED file. 

In addition, a chain file that links different assemblies (i.e. hg18 and hg19) is 

needed. Both files can be downloaded from the UCSC webpage. The code of 

LiftOver were shown in Chapter 9.1.1.  
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1.6.4. Linkage disequilibrium tools: 

Haploview, CubeX and MIDAS 

Haploview 

Haploview is a tool developed by the Broad Institute (Barrett et al., 2005). It is 

designed for analysing and visualizing haplotypes and LD. As illustrated in Figure 

1-10, the interface of Haploview is simple and user friendly. In this work, I used 

Haploview as a tool to draw linkage disequilibrium (LD) plots. The input of 

Haploview can be either HapMap haplotypes data or our own data in a PLINK input 

format (e.g. PED and MAP file).  

 

Figure 1-10. Haplotype interface and example of a LD plot. 
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CubeX 

CubeX is a tool to estimate the pairwise haplotype frequencies using cubic exact 

solutions (Gaunt et al., 2007). As shown in Figure 1-11, the inputs to CubeX are the 

number of individuals of each genotype for the 3x3 genotype table. The output will 

be all possible haplotype frequencies for the two test SNPs. CubeX will be used in 

Chapter 3 to calculate the haplotype frequencies (X11) from reference genotype 

panel (i.e. HapMap and BWHHS individual-level genotype data).  

 

 

Figure 1-11. Web-based tool of CubeX.  

MIDAS 

Multiallelic Interallelic Disequilibrium Analysis Software (MIDAS) is a software for 

LD analysis with a comprehensive graphical users interface. It illustrates the 

patterns of LD between all types of multiallelic and biallelic markers (Gaunt et al., 

2006) (Figure 1-12). In this work, MIDAS will be used in Chapter 3 and Chapter 4 to 

represent the LD patterns of pair-wise LD.  
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Figure 1-12. Example of MIDAS results plot 

1.6.5. Functional prediction tools: 

FATHMM and RegulomeDB 

Functional Analysis through Hidden Markov Models 

(FATHMM) 

The Functional Analysis through Hidden Markov Models (FATHMM) is a 

high-throughput n algorithm capable of predicting the functional, molecular and 

phenotypic consequences of protein missense variants using hidden Markov 

models (HMMs) representing the alignment of homologous sequences and 

conserved protein domains (Shihab et al., 2013). In this work, FATHMM will be used 

in Chapter 7 for functional prediction of coding SNPs associated with QTc interval.  
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RegulomeDB 

RegulomeDB is an approach and database that guides interpretation of regulatory 

variants in the human genome. RegulomeDB uses high-throughput, experimental 

data sets from ENCODE (ENCODE Project Consortium et al., 2012) and other 

sources. It also includes computational predictions and manual annotations to 

identify putative regulatory potential and to identify putative functional variants 

(Boyle et al., 2012). The RegulomeDB scoring system was listed in Table 1-6. 

RegulomeDB will be used in Chapter 7 for functional prediction of non-coding SNPs 

associated with QTc interval.  

Score Supporting data 

1a eQTL + TF binding + matched TF motif + matched DNase Footprint + DNase peak 

1b eQTL + TF binding + any motif + DNase Footprint + DNase peak 

1c eQTL + TF binding + matched TF motif + DNase peak 

1d eQTL + TF binding + any motif + DNase peak 

1e eQTL + TF binding + matched TF motif 

1f eQTL + TF binding / DNase peak 

2a TF binding + matched TF motif + matched DNase Footprint + DNase peak 

2b TF binding + any motif + DNase Footprint + DNase peak 

2c TF binding + matched TF motif + DNase peak 

3a TF binding + any motif + DNase peak 

3b TF binding + matched TF motif 

4 TF binding + DNase peak 

5 TF binding or DNase peak 

6 other 

Table 1-6. The RegulomeDB score system. 
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1.7. Statistical genetics tools and 
programming languages 

1.7.1. PLINK  

PLINK is an open source C/C++ tool set for handling and analysing GWAS data in 

computational efficient manner (Purcell et al., 2007). The original functions such as 

data management (PED/MAP files, BED/BIM/FAM files and data filtering), 

population stratification (principal component analysis), summary statistics 

(estimating allele frequencies) and association analysis (for both binary traits and 

quantitative traits) will be used in the next few chapters. More importantly, I will 

use some of the updated functions included in version 1.07, such as LD calculation 

(estimating LD block, calculating LD measures D’ and r2), multimarket haplotype 

analysis (haplotype phasing) and conditional analysis (for fine mapping 

individual-level data). I will use these functions for my novel methods development 

in Chapter 3 and Chapter 5.   

1.7.2. GCTA conditional and joint SNP 

effect analysis 

Genome-wide Complex Traits Analysis (GCTA) is a multiple function tools originally 

designed to estimate the proportion of phenotypic variance explained by genome 

wide SNPs for complex traits (Yang et al., 2011). It has now been extended for many 

other analyses to understand the genetic architecture of complex traits. In this 

work, I will focus on its conditional and joint genome-wide association analysis, 



67 
 

which can use summary-level statistics from a meta-analysis of genome-wide 

association studies (GWAS) and estimate linkage disequilibrium (LD) from a 

reference sample with individual-level genotype data. The command and options of 

the conditional and joint SNP effect analysis can be found in the following webpage: 

http://www.complextraitgenomics.com/software/gcta/massoc.html  

1.7.3. R and Python 

R is an implementation of the S programming language and is a free software 

environment for both high-level programming, statistical analysis and plotting 

graphics (http://www.r-project.org/). With the help of Rstudio 

(https://www.rstudio.com/), it has now become one of the most popular and user 

friendly language all over the world. In this work, R will be used in four respects: 

data managing, graphics plotting, processing statistical analyses and novel 

algorithm scripting.  

On the other hand, Python is a widely used high-level programming language 

(https://www.python.org/). It is attractive since supports programming paradigms, 

including object-oriented, imperative and functional programming. Python can also 

be used with a wide range of third-party tools such as “matplotlib” and “RPy2”.   

In this work, Python will be used in three respects: transforming data format, 

programming web-based tools and scripting a novel E-M algorithm.  
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1.8. Major aims and objectives 

As I described in Section 1.4, applying existing variable selection methods, such as 

conditional analysis and model selection approaches, requires individual level data. 

Single GWAS lack power to obtain accurate association results (Zeggini and 

Ioannidis, 2009). Meta-analysis of multiple GWAS studies is a good way to increase 

the power of the association analysis. But pooling of individual genotype and 

phenotype data are normally not available from meta-analyses. As a consequence, 

the bulk of this thesis concerns the development of two novel 

approaches/algorithms so that meta-analysis results can be used directly for fine 

mapping analysis. Both methods will combine statistical concepts of regression 

analysis with population genetics concepts of allele frequencies, LD, haplotypes and 

haplotype frequencies. Furthermore, these two methods will be applied to real 

meta-analysis summary statistics to identify secondary signals associated with 

complex traits of human beings.        

1.8.1. Objectives 

l Use concepts of pair-wise LD and simple regression analysis to develop an 

approximate conditional analysis methods using meta-analysis summary data  

l Investigate the performance of the approximate conditional analysis and 

compare it with conditional analysis and model selection methods  
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l Apply the approximate conditional analysis to cardiovascular disease (CVD) 

related meta-analysis to identify independent effect SNPs in the candidate 

regions 

l Extend multiple regression analysis to group level and use E-M algorithm to 

develop an approximate joint SNP effect approach using meta-analysis 

summary statistics 

l Perform an independent benchmark to compare the performance of the 

approximate joint SNP effect approach against other existing fine mapping 

methods.  

Identify independent SNPs of 12 complex quantitative traits and 2 disease 

outcomes using the approximate joint SNP effect approach to identify more 

multiple SNPs associated with these traits / diseases.   
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CHAPTER 2. SEQUENTIAL 
SENTINEL SNP REGIONAL 

ASSOCIATION PLOTS 
USING META-ANALYSIS 
SUMMARY STATISTICS 

2.1. Introduction 

Genome wide association studies (GWAS) have been successful in identifying over 

twelve thousand SNPs involved in the development of human complex traits and 

disease outcomes (Hindorff et al., 2009) (Manolio, 2010). A considerably larger 

number of SNPs show significant associations (with respect to the genome-wide 

significance threshold) with these traits, but this can be caused either by the own 

effect of these SNPs or they are in LD with the causal variant (i.e. SNPs shown in 

Table 8-1). Moreover, with the increasing in sample size and the number of 

meta-analyses of multiple GWASs carried out, an increasing number of genetic 

variants associated with different traits will be identified consequently. With these 

in mind, fine mapping, which is an approach taken to identify secondary association 

signals at a certain genomic region, will become statistically feasible and a 

potentially powerful tool in the future. However, there is an untested assumption of 

GWAS which contradicts this idea and therefore slowed down the development of 

fine mapping approaches.  
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2.1.1. One Limitation of single SNP 

model GWAS, conditional analysis 

and model selection approaches 

For GWAS, a single SNP model is usually used to test the association between 

phenotypes and genotypes. The most significant (noted as top-hit) SNP will 

represent the association of a genomic region such as a gene and/or a linkage 

disequilibrium (LD) block. In the following situations, this untested assumption may 

not be met: Firstly, this design does not take into account the possibility of multiple 

casual variants at a region. Secondly, the real causal variant maybe untyped or with 

low imputation quality; and the best genotyped (or imputed) SNP with LD to the 

real causal variant may not capture the total amount of variation at the region. 

Therefore, a GWAS based on a single SNP model will result in an underestimate of 

the total variation that could be explained at a locus (Yang et al., 2012). 

To detect multiple potentially causal sites for GWAS, several statistical stepwise 

procedures exist for identify SNP independence using individual level data, which 

include statistical packages for conditional analysis (Purcell et al., 2007) and model 

selection criteria such as Akaike information criterion (AIC), Bayesian information 

criterion (BIC), Mallows’ Cp, Cross-validation, adjusted r2 and stepwise regression 

(Smith et al., 2010a). Among these methods, conditional analysis is the most 

commonly used tool and considered the gold standard for fine mapping when using 

individual-level data. 
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2.1.2. Meta-analysis and limitation of 

current meta-analysis system 

As previously described in Chapter 1, meta-analysis of multiple GWASs has been 

shown to increase the power to detect genetic variants associated with complex 

disease risk traits such as blood lipids (Teslovich et al., 2010) (Asselbergs et al., 2012) 

and Electrocardiographic (ECG) traits (Arking et al., 2006) (Pfeufer et al., 

2009) (Newton-Cheh et al., 2009) (Marroni et al., 2009) (Gaunt et al., 2012). The 

common meta-analysis design requires different research groups to manage 

individual level analyses of the same phenotype and then collaborate on detailed 

meta-analyses of this phenotype (Seminara et al., 2007). In fact, meta-analysis 

provides an improved platform for regional fine mapping with respect to GWAS. 

Meta-analysis summary statistics 

For a certain SNP, the most notable information one gets from a meta-analysis is the 

effect size of the SNP (noted as beta coefficient, beta or b), standard error of the 

effect size (SE) and the p value against the null hypothesis in regards to the SNP’s 

association with the trait under analysis (p). Beta represents the overall effect of the 

SNP, where p value shows the level of significance of the SNP. On the other hand, 

the risk allele (A2), alternative allele (A1) and allele frequencies of the risk allele 

gives one the idea of the proportion of a particular allele within a population of N 

individuals.  
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Limitation of conventional meta-analysis system 

Meta-analysis has proven to be a powerful method to identify disease susceptibility 

and quantitative trait loci which single GWAS did not identify or provide enough 

evidence due to lack of power (Ioannidis et al., 2006). As abovementioned, 

meta-analysis is based on collaboration, so data sharing is an issue amongst 

different institutes. Normally only standard summary statistics (as shown in Table 

1-4) might be available for researchers needed data in the trait(s) of interest. 

Unfortunately, statistical approaches like conditional analysis and model selection 

methods are only applicable when individual-level data is available.  Before I 

developed the novel method SSS-RAP (Zheng et al., 2013), if analysts from different 

institutes wanted to fine mapping a candidate region, they needed to processed 

conditional analysis in each single study and combined summary results together 

through a second round of meta-analysis.  As we can imagine, it normally takes 

months for a single round of conditional analysis under the current meta-analysis 

system (Zheng et al., 2013). 

To overcome the limitation of GWAS and increase the efficiency and accuracy of fine 

mapping under the current meta-analysis system, a biological point of view is 

necessary. Haplotypes, which contain all LD information for a certain genomic 

region, will be a good choice. Using rule of thumb “Simpler the better”, I started 

analyzing the simplest haplotypes, ones which contained two SNPs. Digging the 

correlations between pair-wise SNPs, especially correlation between top significant 

SNP and a query dependent SNP, became the first priority of this project.   
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2.1.3. Haplotype, haplotype frequency 

and r2 measure of linkage 

disequilibrium from open access 

resources  

For a meta-analysis combining data from a major ancestral group, for example, East 

Asian, the individual-level data will, most of the time, not be available. We are not 

able to estimate haplotype, haplotype frequencies and LD correlation (r2) without 

individual level data. But through utilizing available resources such as the 

International HapMap Consortium (International HapMap 3 Consortium et al., 2010) 

and the 1000 Genome project (1000 Genomes Project Consortium et al., 2010) 

access to reliable individual level data can be possible. These open resources 

provide users with hundreds of well-defined references with individual-level phased 

haplotypes for each ancestral group. Previous studies have proven that a reference 

panel from the same population as the meta-analysis individuals will share similar 

LD correlation between a pair of SNPs (Ke et al., 2004). Under this assumption, two 

loci haplotype frequencies can be estimated freely using these data. 

2.1.4. Limitation of considering r2 as the 

standard of SNP independence  

As discussed in chapter 3.1.2, fine mapping under the current meta-analysis system 

is time consuming. Since r2 is a good representative of LD correlation and easy to 

calculate, some of the early meta-analysis papers used the LD correlation (r2) as the 
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only standard to test SNP independence. But r2 is a measure of pair wise LD, which 

cannot take into account the correlation among multiple SNPs. Besides, I 

hypothesized that, even in the two SNPs model, only considering the r2 would not 

be adequate to detect the independent signals between the two loci. I used the 

following examples to prove the hypothesis: (i) Two SNPs in Low LD and (ii) Two 

SNPs in linkage equilibrium (which means there is no LD between the two SNPs).  

Two SNPs in Low LD 

In this section, I would prove that even if two SNPs are in low LD to each other, one 

can still be dependent to the other. Here I listed some real case example from two 

published papers (Gaunt et al., 2012) (Shah et al., 2013b), which, in my point of 

view, will be the best observational proof for my assumption. As illustrated in Table 

2-1, I listed the conditional analysis p values of some pairs of SNPs reported in the 

above two papers. Amongst all these pairs, the conditional analysis suggested that 

these SNPs are dependent to each other although their r2 is lower than 0.15 

traits gene top hit 

query 

dependent 

SNP 

r2 

conditional 

analysis  

p-value 

QTc NOS1AP rs7534004 rs4657154 0.144 0.116 

PR SCN5A rs12053903 rs7374540 0.172 0.198 

QRS SCN5A rs7374540 rs11710077 0.113 0.166 

HDL CETP rs3764261 rs12708967 0.111 0.066 

TG LPL rs3735964 rs7016529 0.002 0.224 

TG LPL rs3735964 rs1121923 0.002 0.608 
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Table 2-1. Examples of query dependent SNPs with low LD (r2<0.223) to the top hits 

but dependent on the top hits 

Two SNPs in linkage equilibrium (No LD) 

I simulated one extreme case of two SNPs in linkage equilibrium. In this case, I 

assumed that SNP1 (allele frequency of minor allele=0.3) and SNP2 (allele 

frequency of minor allele =0.4) were two significant SNPs associated with a trait and 

there is no LD between them (Figure 2-1 a). Then I estimated the haplotype 

frequencies between SNP1 and SNP2 (Figure 2-1 b). Then I introduced a hidden SNP, 

SNP3, with allele frequency of minor allele equal to A or Ā. Since the haplotype of 

SNP3 is known, I listed the haplotype frequencies between SNP1~SNP3 and 

SNP1~SNP2 in Figure 2-1c and d. Using these information, I calculated A, Ā, D and 

D-bar. Interestingly, both A andĀ was 0.28. This means when allele frequency of 

minor allele of SNP3 is 0.28, this SNP will be in LD to both SNP1 and SNP2 although 

there is no LD between SNP1 and SNP2.  

This special case proves that even if two SNPs are in linkage equilibrium, both of 

them can still be in LD with a third SNP. If the third SNP is the untested causal signal, 

only considering the LD between the two tested, significant SNPs will be 

problematic.  
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Figure 2-1. A special case using the three SNPs model. a, the three SNPs model; b, 

rs327 and rs328 are in linkage equilibrium; c and d, estimating allele frequencies for 

rs263 with certain haplotype frequencies. Values at the bottom of each grid are the 

haplotype frequencies. D and D bar were the LD measures between rs263 and 

rs327/rs328 

2.1.5. Aims and objectives 

At the time I wrote this chapter, the step-wise regression analysis (Efroymson, 

1960)-the most widely used method for identify SNP independence-required 
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individual-level genotype data, which is normally not achievable in the current 

meta-analysis system (Seminara et al, 2007). On the other hand, I also proved that 

only consider LD relationship (r2) is not a ideal way of identifying SNP independence. 

Before the end of 2012, this is a blank area in genetic fine mapping field, which 

worth digging more. So in this chapter, I shall describe the development of a novel 

fine mapping method, which shall only use meta-analysis summary statistics. It 

should be highly automated and computational fast. The method is called 

sequential sentinel SNP regional association plots (SSSRAP, pronounced 

(es,es,es-rap)), which is a step-wise elimination method to detect the independent 

effect of query dependent SNPs conditional on the top significant signals. The 

dependence between top signal and the test SNPs shall be shown be depicted in a 

plot. The method shall be applicable to group-level data as well as individual-level 

data. It shall only require meta-analysis summary information and the haplotype 

frequencies information estimated from a reference panel. In addition, different 

functions shall be developed so that the method can be applicable to both 

quantitative (i.e. continuous) traits and binary (i.e. disease) outcomes.  

Objectives 

l Develop a novel fine mapping method using meta-analysis summary statistics 

of complex quantitative / disease traits  

l Investigate how the standard error of beta depends on minor allele frequency  
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l Compare the performance of the program against the performance of ten 

existing fine mapping methods using samples from 1) BWHHS individual-level 

data, 2) 1000 Genome individual-level data and 3) several simulated datasets 

l Develop a user friendly web-based tool for the novel method 

2.2. Methods and Materials  

2.2.1. Formulation of problems: linking 

meta-analysis summary statistics to 

pair-wise linkage disequilibrium 

measures 

For a pair of SNPs significant associated with a complex trait, for example lipids, it is 

not possible to detect whether the two SNPs are independent of each other using 

the meta-analysis summary statistics (single SNP effects) directly. As illustrated in 

Figure 2-2, the haplotype and haplotype frequencies of two SNPs can be used to 

link the observed beta (marginal SNP effect) of the top hit (top significant SNP) to 

the dependent effect (noted as the transformed beta) of the query dependent SNP 

by using a 2x2 table transformation. Then for the query dependent SNP, I compared 

the observed beta and its transformed beta. If two betas are statistically different, 

then I concluded that the query dependent SNP is independent conditional on the 

top hit and vice versa. The assumptions and notations of the SSSRAP program were 

listed in Table 2-2. The flow chart of the whole SSSRAP program was illustrated in 

Figure 2-4. 
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Figure 2-2. Two SNPs 2x2 haplotype table and regression coefficient transformation  

Assumption: 

l Linkage disequilibrium between pair wise SNPs (or it will be meaningless to test 

the SNP independence) 

l For disease outcomes, the log odds increase equally with each addition of the 

minor allele (for each SNP) 

l For quantitative traits, the difference of effect between homozygous wild type 

genotype and heterozygous genotype is equal to the difference of effect between 

heterozygous genotype and homozygous mutant genotype 

l Participants are from the same population in the meta-analysis I applied 

l The top hit selected for the first phase tags a single causal signal. 

l Although the observed beta and transformed beta are not totally independent of 

each other, I still use the two samples unpaired T test.  

l Assume normal distribution of the phenotype, so I need to do the normalization 

of the phenotypes  

Definitions: 

p1 and p2 represent the major and minor allele frequency of the top significant SNP 

q1 and q2 are the major and minor allele frequency of the possible dependent SNP 

X11, X12, X21, X22 represent the four haplotype frequencies for the two respective SNP 
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loci    

Oddsmaj and Oddsmin represent the disease odds of each major and minor allele 

respectively 

‘e’ and ‘b’ represent the effect per minor allele and per major allele for the top hit 

respectively. 

βobs_top is the observed beta of the top hit  

βtrans is the beta estimation of the possible dependent SNP  

Oddsmaj_top and Oddsmin_top are the odds of major and minor allele for the top hit 

respectively 

Oddsmaj_trans and Oddsmin_trans are the odds of major and minor allele for the possible 

dependent SNP respectively 

‘m’  is the number of SNPs in the test group 

SEobs is the observed standard error for each possible dependent SNP 

SEtrans is the transformed standard error for each possible dependent SNP 

SEsim is the simulated standard error for each possible dependent SNP 

Notes: 

 X11 should be smaller than both p1 and q1 

Table 2-2. Assumptions and notations 

2.2.2. Relating regression coefficient to 

minor allele frequencies and 

haplotype frequencies 

As explained in Chapter 1, in the association analysis field, regression coefficient 

(beta) is the core value of the genetic association analysis, which is the gradient of 

the regression line of a single SNP model analysis.  

For disease outcomes, the regression coefficient for a specific SNP is the nature 

logarithm of the odds ratio:  
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β = LN	(Odds	Ratio) = LN }
~��Ä	ÅÇ	ÉeÑÅÖ	Üááàáà

~��Ä	ÅÇ	ÉÜâÅÖ	Üááàáà
ä (1) 

As illustrated in Figure 2-2, for a pair of SNPs, the observed beta of the top hit, 

noted as βobs_top, can be transformed into the estimated beta of the query 

dependent SNP, noted as βtrans, through the 2x2 table transformation.  

Using equation 1, theβobs_top and βtrans can be extended to:  

βÅãÄ_çÅé = LN(OddsÉeÑ	 _çÅé/OddsÉÜâ_çÅé) (2) 

βçÖÜÑÄ = LN(	OddsÉeÑ _çÖÜÑÄ	/	OddsÉÜâ _çÖÜÑÄ		) (3) 

Where Oddsmaj_top and Oddsmin_top are the odds of major and minor allele for the 

top hit respectively; Oddsmaj_trans and Oddsmin_trans are the odds of major and minor 

allele for the query dependent SNP respectively.  

The above odds of alleles can be represented by the four haplotype frequencies X11, 

X12, X21 and X22:  

 βçÖÜÑÄ = LN(
ê**∗~��Äëíì	 _îïñóêU*∗~��Äëòô_îïñ

ê**óêU*
/
ê*U∗~��Äëíì	 _îïñóêUU∗~��Äëòô_îïñ

ê*UóêUU
)	(4) 

The haplotype frequencies X22, X12 and X21 can be represented as a combination of 

the allele frequeices p1, p2, q1 and q2 and haplotype frequency X11:   

βçÖÜÑÄ = LN(
(é*ö*óêUUõéUöU)∗à

úïùû_îïñóéUö*õêUUóéUöU

ö*
/

(é*öUõêUUóéUöU)∗à
úïùû_îïñóêUU

öU
)		(5) 

For quantitative traits, beta of a locus is the slope of the regression line. For a pair 

of SNPs, the top hit beta is: 

βÅãÄ_çÅé = e − b 
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Where e represents the effect per allele of homozygous mutant genotype and b 

represents the effect per allele of homozygous wild type genotype (Figure 2-3). 

Assume the effect of homozygous mutant genotype (AA) is 2e, meanwhile the 

effect of homozygous wild type genotype (TT) is 2b. The slope of the regression line 

(beta) will be e-b. 

 

Figure 2-3. Example of a linear trend line for a single locus. The grey dots are 

phenotype values (QTc interval) for 2686 participations, the black dashed line is the 

linear trend line, the x axis is the genotypes of SNP rs4657139, y-axis is the 

normalized QTc interval (normalized by Z score).  

As illustrated in Figure 2-2, the beta transformation formula becomes: 

βçÖÜÑÄ =
e ∗ N ∗ X22 + b ∗ N ∗ X12

N ∗ X22 + N ∗ X12
−
e ∗ N ∗ X21 + b ∗ N ∗ X11

N ∗ X21 + N ∗ X11
	(6) 

Where N is the number of participants, X11, X12, X21 and X22 are the four haplotype 

frequencies for this pair of SNPs. 

N cancels, and representing X22, X12 and X21 using p1, q1 and X11, gives:  
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βçÖÜÑÄ = 	βÅãÄ_çÅé ∗ }
¢UUõéU

UõöU
+

¢UU

öU
ä (7) 

2.2.3. Estimating standard errors of 

transformed betas  

To estimate the standard error of the transformed beta for each query dependent 

SNP, I separated the total uncertainty (where is the reason of the beta getting a 

specific standard errors) to two parts: phenotype uncertainty and haplotype 

uncertainty. The phenotype uncertainty is the errors caused by the randomness of 

the phenotype. The haplotype uncertainty, as illustrated in Chapter 1, is the 

proportion of the middle cell haplotype phase is unknown in a 3 × 3 table for a 

biallelic marker (Table 1-2). I assessed both phenotype uncertainty and haplotype 

uncertainty separately using a simulated dataset. The dataset was a group of SNPs 

that significantly associated with three ECG traits and three lipid traits in BWHHS 

(Table 8-1A and 9-1B). These data was chosen since previous reported multiple 

association signals in these regions, and these regions are genotyped using a 

high-throughput chip. The phenotypes of these traits were standardized using a Z 

score, which made the unit of the betas the same among these traits, so that I can 

combine them together for this simulation. For the phenotype uncertainty, I 

transformed the 95% CI of observed beta for each possible dependent SNP through 

the 2x2 contingency table directly and get the “95% confidence limit” of 

transformed beta (noted as SEtrans). To explain the haplotype uncertainty of the 

transformed beta, standard errors (noted as SEsim) were derived from a distribution 

generated by 10,000 simulations.  
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2.2.4. Two tailed t test and stepwise 

elimination  

Extending the pair-wise SNPs situation to a model containing ‘m’ loci, I estimate the 

transformed beta (different formula for disease outcomes or quantitative traits) for 

each pair of top significant SNP and query dependent SNPs. So I will derive ‘m-1’ 

transformed betas (from βtrans_1, to βtrans_m-1).  

For each query dependent SNP “i” (i =1 … m-1), the difference between its observed 

beta (βobs_i) and its transformed beta (βtrans_i) will be quantified using an unpaired 

two tailed t test. The reason of choosing the two tailed t test is that the effect of 

SNPs can be either risk increasing or protective. 

As the estimation results suggested in Results section and Figure 2-8, the observed 

standard error for the query dependent SNP (SEobs_i) will be used instead of the 

standard error of its beta estimation (SEtrans_i). The t statistics of this two tailed t test 

becomes:  

Ti = 
£ïùû_íõ£î§òìû_í

•¶ßïùû_í	®ó¶ßïùû_í	®
 

The t-statistics will then be transformed to t test p values using R code: 

2 x pt (-abs (t-statistics), df = N-1), 

Then a step-wise elimination procedure is used to remove SNPs highly dependent 

on the top hit. The p-value threshold will be set (for example: 0.01) and SNPs with t 

test p value higher than the threshold will be removed from the model. For the 

remaining SNPs, the SNP with the lowest t test p-value will be used as the second 
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independent SNP and it will be used as the top hit for the next phase step-wise 

elimination (Figure 2-4).  

Although the remaining SNPs are significant conditional on the top hit, the top hit 

may still have minor effect on them. To remove the effects of the top hit from the 

next phase elimination, I adjust the “observed” beta as follows: 

βÅãÄ_Ü�â©Äçà�
(™óU) = βÅãÄ

(™) − βçÖÜÑÄ
(™)  

Whereβobs_adjusted, βobs and βtrans are adjusted observed beta, unadjusted observed beta and 

transformed beta of the SNP. “g” is the number of current phase of elimination, 

whereas g+1 is the next phase of elimination 

The step-wise elimination will be continued until all SNPs with independent effects 

are detected (Figure 2-4).  
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Figure 2-4. Flowchart of the SSSRAP approach
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2.2.5. SSS-RAP web-based tool 

A web-based implementation of the SSS-RAP program was developed using Python CGI (for 

details please see Appendix, Chapter 9.3). I illustrated the homepage in Figure 2-5. The URL 

is: http://apps.biocompute.org.uk/sssrap/sssrap.cgi 

 

Figure 2-5. Homepage of SSS-RAP programme.  

2.2.6. Sample datasets 

The BWHHS sample data 

The SSS-RAP program was applied to the analysis of BWHHS individual level data (Gaunt et 

al., 2012) (Shah et al., 2013a) for three ECG traits (PR interval, QRS duration and QTc interval) 

and two lipid traits (triglycerides and HDL cholesterol). SNPs selected for the performance 

comparison were listed in Table 8-1A and 9-1B.  

To prepare the input data required, I controlled the quality of data for individuals with 
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missing genotypes and phenotypes using PLINK code --geno and –prune. I standardized 

phenotype using Z score, which is explained in Chapter 1. Using PLINK, I calculated MAF, 

conducted an association test using the additive SNP model and estimated haplotype 

frequencies for each pair of SNPs.  

Using model selection methods, I aim to identify one subset of SNPs providing the best fit to 

the data among all the possible models. The model selection methods were selected using a 

number of criteria in R (http://www.r-project.org/, 2.14.1), which included Akaike 

information criterion (AIC), Bayesian information criterion (BIC), Mallows Cp, Cross 

Validation, leave-one-out-cross-validation (LOOCV), adjusted r2, stepwiseAIC, stepwiseBIC, 

stepwiseCp, stepwise regression with p value threshold of 0.05. The concepts of these 

methods were explained in Chapter 1. I listed the data and R code I used in Chapter 9.1.2. 

Besides, the conditional analyses were run in PLINK with a p-value cut-off value of 0.001.  

Admixed population simulation using 1000 Genome data  

To analyse whether minor departures of LD (e.g. two sub-populations in one major ethnic 

group) affect the SSS-RAP assumption of one ancestral group, I combined the genotype data 

of HapMap unrelated Utah Residents (CEPH) with Northern and Western European ancestry 

(CEU) unrelated individuals and the Toscana in Italia (TSI) individuals. SNPs associated with 

PR interval and QRS duration in the ECG meta-analysis were selected (Gaunt et al., 2012). I 

applied SSS-RAP to the summary statistics (betas and SEs) of the meta-analysis and allele 

frequencies and haplotype frequencies estimated using individual-level genotypes of CEU 

individuals as well as the admixed population of CEU and TSI. Then I compared the results of 

these two designs. 
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Simulation to test relationship between r2 and beta 

I conducted several simulated datasets to test the relationship between r2 and beta. For the 

top hit, I assumed that it has a MAF of 0.1. To test whether the method performed 

differently with different marginal SNP effects, I set three different marginal effects for the 

top hit: 0.5, 1 and 4. For the query dependent SNP, I varied allele frequencies and r2, 

increasing 0.01 per time in the range of 0.5 to 1 for allele frequencies and in the range of 0 

to 1 for r2.   

Admixed population simulation 

For the BWHHS genotype data of LPL gene, I imputed the region using IMPUTE2. The 

HapMap genotypes were used as a reference panel for the imputation. I selected three SNPs 

with varying associations with triglyceride (TG): rs328, which is a well replicated top 

significant signal associated with TG; rs327, which is a significant SNP associated with TG 

and rs263, which is a bystander SNP not associated with TG. For these three SNPs, I used the 

four commonest haplotypes among them (Figure 2-6). We assume the frequencies of these 

four haplotypes change 0.1 each time. Haplotype 1 is the commonest haplotypes with 

frequency change between 0.5 to 0.8. The frequencies of the other three haplotypes are 

changing between 0.1 to 0.4. Totally there are 55 possible haplotype frequencies 

combination. Amongst these haplotype frequencies combinations, 20 were not in perfect LD 

(Table 2-3). These 20 combinations were used in this simulation. I simulated the genotypes 

for 10000 individuals for each set of these 20 haplotype frequencies combinations. The 

phenotypes for the 10000 individuals were estimated using the true effect plus a random 

baseline effect. These 20 simulated populations were noted as “pop_1”. The whole process 
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was repeated again and the second 20 simulated populations were noted as “pop_2”. Then 

for both pop_1 and pop_2, I picked the first population and combined them together as an 

admixture population. Using the same way, I created 210 admixed populations.  

 

Figure 2-6. The three SNPs model for the admixed population simulations. I assumed rs328 

was the top hit, rs327 was an independent effect SNP and rs263 was a by stand SNP. Alleles 

in red means they were the effect / minor alleles. 

 

ID haplotype 1 haplotype 2 haplotype 3 haplotype 4 
5401 0.5 0.4 0 0.1 
5311 0.5 0.3 0.1 0.1 
5302 0.5 0.3 0 0.2 
5221 0.5 0.2 0.2 0.1 
5212 0.5 0.2 0.1 0.2 
5203 0.5 0.2 0 0.3 
5131 0.5 0.1 0.3 0.1 
5122 0.5 0.1 0.2 0.2 
5113 0.5 0.1 0.1 0.3 
5104 0.5 0.1 0 0.4 
6301 0.6 0.3 0 0.1 
6211 0.6 0.2 0.1 0.1 
6202 0.6 0.2 0 0.2 
6121 0.6 0.1 0.2 0.1 
6112 0.6 0.1 0.1 0.2 
6103 0.6 0.1 0 0.3 
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7201 0.7 0.2 0 0.1 
7111 0.7 0.1 0.1 0.1 
7102 0.7 0.1 0 0.2 
8101 0.8 0.1 0 0.1 

Table 2-3. Possible haplotype frequencies combination for the 3 SNPs model 

2.3. Results 

2.3.1. Estimating standard errors of 

transformed betas  

Previously in Chapter 3.2.3, I have explained my way of finding out the appropriate standard 

errors for the beta produced by SSS-RAP (noted as transformed beta). Here is the result of 

my hypothesis that minor allele frequency (MAF) has a major influence on the standard 

error of beta. 

Relationship between minor allele frequencies and standard error 

of beta 

As shown in Figure 2-7, with smaller numbers of individuals in the variant allele group (i.e. 

lower MAF), the errors (both observed SEs and simulated SEs) on estimates are wider, which 

can also be supported in a statistical way: the residual variance of the regression is a 

function of the inverse of the variance in X, which is a function of square of MAF. .  
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Figure 2-7. The influence of minor allele frequency on the standard error of beta. 

a, relationship between the observed standard errors and the minor allele frequencies 

(MAF). b, relationship between the simulated standard errors and MAFs 

Standard error of SSS-RAP betas 

The total uncertainty (which is represented by the SE) of SSS-RAP beta was combination of 

the phenotypic uncertainty (transformed SE) and haplotypic uncertainty (simulated SE). I 

tested the relationship between the observed SE and both transformed SE and simulated SE 

in different r2 ranges. When the r2 is between 0 and 0.5, the observed SE of the possible 

dependent SNP was similar to the simulated SE and total SE (Figure 2-8a and 3-7b). In 

contrast, when r2 is between 0.5 and 1, the observed SE was more similar to the 
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transformed SE and total SE (Figure 2-8e and 3-7f). So for the query dependent SNP, the 

observed SE of the single SNP regression is an appropriate representative of the SE of the 

SSS-RAP beta.  

 

Figure 2-8. Comparison of the observed standard errors to the simulated standard errors and 

the transformed standard errors in different r2 ranges 

2.3.2. Relationship between r2 and beta 

estimation  

I illustrate the relationship between r2 and the two beta estimations in the r2 simulation I 

mentioned in Methods section. As shown in Figure 2-9, beta estimation value varies with 

different r2, and the shapes of these two beta estimations are similar when the observed 
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beta is smaller than 1.  

  

Figure 2-9. Relationship between r2 and beta estimate of the possible dependent SNP for a 

given major allele frequency of the top hit and observed beta for the top SNP. Different colors 

refer to different intervals of major allele frequency of the possible dependent SNP (called 

q1): red for 0.5< q1 <=0.6, blue for 0.6< q1 <=0.7, green for 0.7< q1 <=0.8, yellow for 0.8< q1 

<=0.9 and grey for 0.9< q1 <1. 
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2.3.3. Example of a SSS-RAP plot 

The SSS-RAP plot can visually show the relationship between each pair of SNPs. Figure 2-10 

illustrated an example of the SSS-RAP plot. The top hit is the one on the right side with a bar 

of the observed beta only, whereas 6 test SNPs were in the left side. For each test SNP, the 

SSS-RAP plot compared the difference between the observed betas and the transformed 

betas. If two bars were overlap, this will suggest that the test SNP have some dependence 

conditional on the top hit. Otherwise, it suggests that the test SNP has certain level of 

independent effect conditional on the top hit. In this example, all test SNPs are suggested to 

be independent conditional on the top hit. However, the plot did not correct the multiple 

testing. In reality, we need to check whether the SSS-RAP p-value is smaller than the p value 

cut-off to conclude the independence of the test SNPs.  

 

Figure 2-10. Example of a SSS-RAP plot 
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2.3.4. Performance comparisons of SSS-RAP, 

model selection methods and conditional 

analysis using BWHHS individual level 

data 

The SSS-RAP program was used to analyse significant SNPs associated with lipid traits and 

ECG traits in BWHHS individual level data, which include SNPs in the lipoprotein lipase (LPL) 

(associated with both triglyceride and HDLc), cholesteryl ester transfer protein (CETP) 

(associated with HDLc), sodium channel, voltage-gated, type V, alpha subunit (SCN5A) 

(associated with PR interval and QRS duration) and nitric oxide synthase 1 (neuronal) 

adaptor protein (NOS1AP) associated with QTc interval (Table 2-4). Since the purpose of this 

analysis is a performance comparison rather than a discovery study (in which we need to be 

very careful about false positive), we selected a quite loose p value threshold so that we can 

include more SNPs into this analysis. Results from SSS-RAP were compared with ten different 

model selection criteria and conditional haplotype analysis.  

genes quantitative traits mean SD  N significant SNPs p-value threshold 

LPL TG (mmol/l) 1.873 1.251 3175 10 1x10-03 

LPL HDLc (mmol/l) 1.660 0.453 3169 10 1x10-04 

CETP HDLc (mmol/l) 1.658 0.455 3035 17 1x10-05 

NOS1AP QTc interval (msec) 0.419 0.024 2686 24 1x10-04 

SCN5A PR interval (msec) 0.159 0.023 2867 6 1x10-02 

SCN5A QRS duration (msec) 0.091 0.015 2980 9 1x10-02 

Table 2-4. Summary information of BWHHS participants. P-value threshold is the cut off 

value of the SNP significant test. Abbreviations: mean, mean of quantitative traits; SD, 

standard deviation of quantitative traits; TG, triglycerides; HDL-C, high-density lipoprotein 
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cholesterol, QTc = QT/√(RR interval); N, participants after exclusion with missing genotypes 

and phenotypes. 

BWHHS ECG traits:  

For three ECG traits, I set the t test p-value of 0.05 as the elimination standard for SSS-RAP.  

Generally, the SSS-RAP program selected the same optimal SNPs model as conditional 

analysis in all ECG traits. For NOS1AP loci associated with QTC interval and SCN5A SNPs 

associated with PR interval, the SNPs selected by SSS-RAP were also chosen by the other ten 

model selection methods (Figure 2-11 and Figure 2-12a). For SCN5A SNPs associated with 

QRS interval, BIC, CV, stepwise BIC and stepwise regression (Figure 2-12b) selected SNP 

rs10154914 instead of top hit rs7374540. This SNP is in some LD with the top hit (r2=0.153).  

BWHHS lipids traits: 

For the three lipids traits, I set a t test p value of 0.01 as the threshold for backward 

elimination. As shown in Figure 2-12c, 3-11d and 3-11e, the results were consistent among 

the ten model selection methods, conditional analysis and SSS-RAP. The only exception was 

the top hit of LPL associated with TG, rs3735946. Stepwise AIC stepwise Cp, stepwise BIC and 

stepwise regression selected a coding SNP, rs328, instead (Figure 2-12c). Rs328 is in strong 

LD with top hit rs3735946 (r2=0.911). Thus this finding is inconclusive in that this exception 

actually points to a ‘real’ independent signal. 
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Figure 2-11. Comparison of model selection approaches, conditional analysis and SSS-RAP 

using BWHHS individual level data in NOS1AP region. All the methods and criteria used to 

select NOS1AP loci most likely to be tightly associated with QTc interval. For all the methods, 

cross (×) denotes inclusion in the best model. Top hit is represented by yellow background in 

LD plot. The P value cut-off of 0.05 was used in this analysis. 
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Figure 2-12. Comparison of model selection approaches, conditional analysis and SSS-RAP 

using BWHHS individual level data in other regions. All the methods and criteria used to 

select: a, SCN5A loci most likely to be independently associated with PR interval, the P value 

cut-off of 0.05 was used in this analysis; b, SCN5A loci most likely to be independently 

associated with QRS duration, the P value cut-off of 0.05 was used in this analysis; c, LPL loci 



101 
 

most likely to be independently associated with a TG variant, the P value cut-off of 0.01 was 

used in this analysis; d, LPL loci most likely to be independently associated with a HDL 

variant, the P value cut-off of 0.01 was used in this analysis; e, CETP loci most likely to be 

tightly associated with a HDL variant , the P value cut-off of 0.01 was used in this analysis. 

For all the methods, cross (×) denotes inclusion in the best model. 

2.3.5. Applying SSS-RAP to an admixed 

population using 1000 Genomes Project 

data 

For the analysis conducted on an admixed population using the 1000 Genome Project data, 

the principal components analysis (PCA) applied by the HapMap Consortium indicated that 

CEU and TSI populations are from a relatively homogeneous ancestry and can be grouped 

together under larger group of ‘European ancestry’ (International HapMap 3 Consortium et 

al., 2010).  

In both populations SSS-RAP selected the same sets of independent SNPs in SCN5A for both 

PR interval and QRS duration (Table 2-5). Therefore, the minor departures in LD did not have 

a major effect to the SSS-RAP results. 

�  Step-wise stage CEU only CEU+TSI 

SCN5A - PR 

step 1 rs7372712 rs7372712 

step 2 rs7374540 rs7374540 

step 3 rs7624535 rs7624535 

step 4 rs12053903 rs12053903 

SCN5A - QRS 
step 1 rs7374540 rs7374540 

step 2 rs6797133 rs6797133 
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step 3 rs1805126 rs1805126 

step 4 rs7624535 rs7624535 

Table 2-5. Test of one ancestral group assumption for SSS-RAP. The SSS-RAP was applied 

using meta-analysis summary statistics of SCN5A associated with two traits. The reference 

panel was either HapMap CEU unrelated individuals or HapMap CEU plus TSI individuals. 

The SNPs in Step 1 to Step 4 refer to the independent SNPs selected by step-wise procedure 

1 to 4.  

2.3.6. Applying SSS-RAP to 210 simulated 

populations  

The performance of SSS-RAP and conditional analysis were compared using 210 admixed 

populations using simulations (Chapter 3.2.3). For the three SNPs in this simulation, the top 

hit rs328 and the secondary independent signal rs327 was identified as independent by both 

method in all 201 populations. Interestingly, the performance of eliminating bystander SNP, 

were different for these two methods. In this simulation, the bystander SNP, rs263, was 

eliminated in 68.6% (144/210) of the simulations when applying the SSS-RAP algorithm 

(Figure 2-13a). In contrast, the conditional analysis did not eliminate the bystander SNP from 

any of the admixture populations (Figure 2-13b).  
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Figure 2-13. SSS-RAP and conditional analysis results for the three SNPs haplotype simulation. 

a, represents the result for SSS-RAP. b, represents the result for conditional analysis. Since 

both methods working well for identifying the independent signals, so I only shown the 

difference in eliminating bystander SNPs in this plot. For each cell, light grey means the 

bystander SNP was eliminated by the method, which means the method return a result fit 

our setting perfectly. Dark grey the bystander SNP was not eliminated by the method, which 

means the method fail to achieve its function. 

2.4. Discussion 

In this chapter, I have utilized the basic concepts of LD measure (r2) of pair-wise SNPs and 

regression coefficient (beta) to solve the problem of detecting independent SNPs conditional 

on the top hit using summary statistics from meta-analysis and reference genotype panel. 
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2.4.1. Advantages of SSS-RAP 

Scope of SSS-RAP 

Before the SSS-RAP program was developed, the researchers had to perform the conditional 

analysis at the level of individual studies; and then summary statistics from each of the 

individual-level studies are combined together through a second round of meta-analysis (Ma 

et al., 2010). Meta-analysis nowadays combines more and more single GWASs together, 

which makes the abovementioned process administratively laborious and time consuming 

(Zheng et al., 2013). The SSS-RAP algorithm extends the scope of fine mapping to 

group-level and enabled determining multiple associated variants using meta-analysis 

results directly.  

Accuracy and inherent automation of SSS-RAP 

Comparison between SSS-RAP and model selection methods 

In the performance comparison using BWHHS individual-level data, all SNPs selected by 

SSS-RAP were chosen by most of the established model selection methods (Smith et al., 

2010a) (Figure 2-11 and Figure 2-12). Only two top hits which were classified as 

‘independent’ by SSSRAP were not replicated by the model selection methods. These 

methods chose SNPs in LD with the top hit instead. These differences can be attributed to 

the downsides of the other methods and not to SSS-RAP, since, (i) the results of SSS-RAP and 

conditional analysis were highly consistent using the individual-level data and (ii) SSS-RAP 

considers the biological correlation-LD, whereas model selection methods only consider the 

statistical correlation of the SNP models. 



105 
 

Comparison between SSS-RAP and conditional analysis  

Among all the SNPs which were tested using BWHHS individual-level data and meta-analysis 

summary datasets (Figure 2-11 and Figure 2-12), 95.44% (293/307) of SSS-RAP results were 

consistent with conditional analysis results. This proves the highly accurate nature of 

SSS-RAP. Further analysing the inconsistent results, only two independent SNPs (rs1805126 

and rs11710077) selected by conditional analysis which were not included in the SSS-RAP 

results. For SCN5A associated with PR interval, the coding SNP rs1805126 (D1819) was 

statistical significant conditional on the top hit rs7372712. But it is in strong LD with the 

second independent signal, rs12053903 (r2=0.827). Similarly, rs11710077 is in modest LD 

with the second independent effect SNP rs6797133 (r2=0.386) associated with QRS duration. 

As abovementioned, conditional analysis is administratively burdensome and time 

consuming. For the ECG meta-analysis, only the association analysis conditional on the top 

associated SNP at the loci were processed. So these two SNPs were still included in the 

model. In contrast, SSS-RAP is a step-wise elimination method. Like other step-wise 

regression strategy (Knüppel et al., 2012), it not only considers the independence 

conditional on the top SNP, but also considers the correlation between each possible 

independent effect SNP; and consequently excluded these two SNPs, which highlighted a 

major advantage over previous methods is the inherent automation in SSS-RAP.  

Population structure causes genome wide LD between unlinked loci, which will cause 

statistical confounding in GWAS based fine mapping (Segura et al., 2012), so an additional 

performance comparison was conducted using admixture populations. Both SSS-RAP and 

conditional analysis shows the ability to detect the secondary signal in an admixture 
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population. Moreover, SSS-RAP shows the ability to eliminate bystander SNPs where 

conditional analysis failed to eliminating the bystander SNPs in any case (Figure 2-13). So I 

suggested that SSS-RAP is a more suitable fine mapping approach for admixture population 

analyses. This comparison illustrates the potential value of SSS-RAP when conducting fine 

mapping analysis using admixture populations who belong to the same ancestral group (e.g. 

European).  

Computational time of SSS-RAP 

As discussed above, conditional analysis using the conventional meta-analysis system is time 

consuming, which will normally take months for each round. Compared to conditional 

analysis, SSS-RAP is simple to use and yields results speedily. For SSS-RAP, there are no 

computationally unfeasible and/or expensive processes such as iterations and simulations 

thus the analysis usually takes a few seconds for each genomic region. Table 2-6 shows some 

examples of the number of SNPs in each model and the computational time of each analysis 

(the analysis result include the conducting of result table and the SSS-RAP plot) using a 

computer with 2.53GHz CPU and 2 GB RAM. 

Loci traits number of SNPs computational time (Second) 

SCN5A PR 6 2.54 

SCN5A QRS 10 3.1 

ABCG5-8 GBD 10 3.99 

NOS1AP QTc 60 4.26 

Table 2-6. Computational time of SSS-RAP 

The web-based tool and visualization  

As a user friendly program, SSS-RAP provides a lot of options for different user requests. Not 
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only can the users carry out analyses by using the SSS-RAP source code written in R, but also 

can use the web-based interface to analyze regions with less than 20 SNPs. As illustrated in 

Figure 2-10, SSS-RAP also provides a plot which shows the difference between expected beta 

and observed beta in the context of a regional association plot as well as the t test p-value. 

The plot shows the dependence effect of each test SNP “borrowed” from the top hit and 

helps the users to pick out the statistical independent effect SNPs easily. 

2.4.2. Assumptions and limitations of SSS-RAP 

One ancestry assumption 

Different racial and ethnic and ancestral categories of human show differences arise directly 

through differing allele frequencies, which will influence LD patterns and haplotype 

frequencies (Race, Ethnicity, and Genetics Working Group, 2005). So the major assumption 

of SSS-RAP program is that participants of both the meta-analysis and the reference 

genotype panel are from one major ancestral group. Although I have proven that minor 

departure of LD will not affect the result of SSS-RAP significantly in section 3.3.5, users need 

to avoiding using meta-analysis results from trans-ethnic analysis.  

Assumption of the top hit 

When applying SSS-RAP, I assume that the most significant SNP inside a genomic region 

represents a tag of a single causal signal or is itself the causal site. Conditional analysis 

shares the same assumption of the top hit. To fit this assumption better, it would be 

necessary to impute the genotypes before progressing to the meta-analysis so that the 

possibility of detecting the causal signal or a suitable proxy signal will be higher.  
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Limiting conditions for SSS-RAP and conditional analysis 

The results of the admixed population simulation suggested that SSS-RAP and conditional 

analysis performs quite well if the top hit is the only independent effect SNP in the genomic 

region. If there are two or more independent loci in the region, SSS-RAP will eliminate most 

of the dependent SNPs. However, it is impossible to explain which loci are truly independent 

for the remaining SNPs. In fact, only haplotype-based analyses may be able to discriminate 

between causal sites, for example in the (most likely infrequent) situation where one 

“bystander” efficiently represents two separate causal sites themselves in LD (Figure 2-14).  
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Figure 2-14. An example of one ‘bystander’ efficiently represents two separate causal sites 

themselves in LD. In Model 1, bystander C shows the most signal. However, the haplotype 

effect scores are not consistent with C being causal because not all C bearing haplotypes 

show the same effect score. On the other hand, effect scores A=B=1 would be consistent 

with observed haplotype effects. In Model 2, C shows the most signal (same as in model 1). 

In this model, the haplotype effect score are consistent with C being causal, whereas A and B 

would not be. 
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2.4.3. Conclusion  

In this chapter, I have successful develop a novel fine mapping method, SSS-RAP, using 

meta-analysis summary statistics directly. I compared the performance of SSS-RAP to 

conditional analysis and model selection methods, most of the results are consistent among 

these methods, which proves the accuracy of SSS-RAP. A user-friendly web interface was 

developed by the same time. During the development of SSS-RAP, I also verified the linear 

relationship between MAF and the standard error of beta. Last but not least, the limitation 

of SSS-RAP made me realized that a haplotype-based fine mapping method was needed, 

which will be discussed in Chapter 5.  
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CHAPTER 3. FINE MAPPING OF 
CARDIOVASCULAR DISEASE 

REALTED TRAITS AND 
APPLICATION OF SSS-RAP 

3.1. Introduction 

Cardiovascular diseases (CVD), mainly coronary heart disease (CHD), stroke and rheumatic 

heart disease, are the leading cause of mortality and morbidity globally. The World Health 

Organization (WHO) reports that CVD deaths increased from 14.4 million in 1990 to 17.5 

million in 2005. Among the CVD deaths, 7.6 million were caused by CHD and 5.7 million by 

stroke (WHO, 2009). The WHO further estimate that there will be about 20 million CVD 

deaths in 2015, accounting for 30% of deaths worldwide (WHO, 2005). CVD is the largest 

current contributor to global mortality and will continue increasing its percentage mortality 

in the future (WHO, 2009).  

Finding the biological mechanisms of CVD and developing prevention strategies are of 

paramount importance. 

Classic family and twin studies provide evidence that there is a heritable component 

contributing to CVD (Lloyd-Jones et al., 2004) (Marenberg et al., 1994) (Murabito et al., 2005) 

(Bachmann et al., 2012). In contrast to the above candidate gene approach analyses, GWAS 

provides a hypothesis free method of discovering novel molecular mechanisms of CVDs.  

Previous GWAS studies investigating the impact of CVD looked at a range of different traits 

including Electrocardiography, body mass index and gallbladder disease. To contribute to this 
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cut-edge research field, I shall briefly introduce the background of these traits and the 

relative GWAS studies for these traits in the following section.  

3.1.1. Electrocardiography (ECG)  

Human heart beats regularly over a period of time. ECG is a quantitative measure of 

the electrical activity of the heart beating. It is measured by electrodes attached to the 

surface of the skin and recorded or displayed by a monitoring device external to the body 

(Cooper, 1986).  

As shown in Figure 3-1, ECG traces the cardiac cycle, the quantitative measurement of ECG 

includes PR interval, QRS axis, QRS duration and QT interval (Hurst, 1998).  

Electrocardiographic traits are important in predicting CVD morbidity and mortality (Lawlor 

et al., 2003) (Gaunt et al., 2012). A prolongation of QTc interval or QRS duration are linked to 

heritable determinants of risk of arrhythmias and sudden death (Mann, 2008). The 

mechanism of the common genetic variants contribute to ECG traits are unclear. Recent 

GWASs and meta-analyses successfully identified several genomic regions associated with 

ECG traits (www.genome.gov/gwastudies) although the causality unusually remain 

unknown.  



113 
 

 

Figure 3-1. ECG waves and intervals.  

PR interval 

The PR interval is a measurement of the period from the beginning of the P wave to the 

beginning of the QRS duration. The PR interval represents ventricular depolarization. 27 

SNPs were previously reported to be associated with PR interval (Pfeufer et al., 2010) (Smith 

et al., 2011) (Butler et al., 2012) (Jeff et al., 2013). As illustrated in Table 8-2, SNPs in SCN5A 

and SCN10A region got the strongest signals. SCN10A gene encodes the voltage-gated 

sodium channel Nav 1.8, which is essential for pain at low temperatures (Zimmermann et al., 

2007). Moreover, the neighboring SCN5A gene encodes the main cardiac sodium channel, 

Nav 1.5. The mutations in SCN5A is related to Brugada syndrome, long-QT syndrome, dilated 

cardiomyopathy, cardiac conduction disease, idiopathic ventricular fibrillation and atrial 
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fibrillation (Remme et al., 2008). Moreover, Pfeufer A et al reported that there are more 

than one signal associated with PR interval within this region (Pfeufer et al., 2010).  

QRS duration 

QRS duration, also called QRS complex, reflects the rapid depolarization of the right and left 

ventricles. The ventricles have a large muscle mass compared to the atria, so the QRS 

duration usually has much larger amplitude than the P-wave. As listed in Table 8-3, 9 SNPs 

were previously reported to be associated with QRS duration (Jeff et al., 2013). In addition, 

Gaunt TR et al claimed that SNP rs7374540 in SCN5A is associated with QRS duration as well 

(Gaunt et al., 2012).  

QT interval 

The QT interval is measured from the beginning of the QRS complex to the end of the T wave. 

It represents ventricular repolarization and varies with heart rate and, for clinical relevance, 

requires a correction for this, giving the QTc.  

QTc =
≠Æ

√∞∞
 

RR is the interval from the onset of one QRS duration to the onset of the next QRS duration, 

measured in seconds, often derived from the heart rate (HR):  

RR =
60
±∞

 

Totally 77 SNPs are associated with QT interval (Arking et al., 2006) (Pfeufer et al., 2009) 

(Newton-Cheh et al., 2009) (Nolte et al., 2009) (Marroni et al., 2009) (Kim et al., 2012) 

(Smith et al., 2012) (Jeff et al., 2013). As shown in Table 8-4 A and B, SNP rs12143842, which 

is 6kb 5’ of NOS1AP, got the strongest association with QT interval. NOS1AP (CAPON) is the 
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C-terminal PDZ domain ligand to neuronal nitric oxide synthase and it affects NMDA 

receptor-gated calcium influx (Jaffrey et al., 1998). NOS1AP expression in human left 

ventricular heart tissue (Arking et al., 2006). Common genetic vairants inside NOS1AP are 

linked to sudden cardiac death in European population (Kao et al., 2009). Moreover, 

Newton-Cheh C et al claimed that, except top hit rs1214382, there are two additional 

independent SNPs associated with QT interval, rs12029454 and rs16857031.  

3.1.2. Body mass index (BMI) 

The BMI is a well-known index of measuring human obesity. It is defined as the body mass 

of a person divided by the square of his/her height. Its unit is kg/m2.  

BMI=	
mass

(height)*
 

As represented in Figure 3-2, the BMI provides a simple numeric measure of people’s level 

of adiposity. A BMI less than 18.5 may indicate underweight. The BMI range between 18.5 

and 25 are optimal weight. A BMI over 25 and under 30 is classified as overweight, whereas 

the BMI over 30 suggests the person is obese.  
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Figure 3-2. Body mass index chart. The scope of underweight, normal, overweight and obese 

are shown (http://en.wikipedia.org/wiki/File:Body_mass_index_chart.svg).  

Obesity is one of the leading cause of preventable death in industrialised world (Richardson 

et al., 2013). The prevalence of obesity is increasing worldwide. In 2003 to 2004, the 

percentage of overweight and obese population in US was 66% and 32% respectively 

(Ogden et al., 2006). It is associated with an increased risk of diseases such as type 2 

diabetes, heart disease, metabolic syndrome, hypertension, storks and so on (Frayling et al., 

2007). Understanding its genetic influences will enhance insight into molecular pathogenesis. 

19 studies identified approximately 150 SNPs associated with BMI. As listed in Table 3-1, 
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multiple SNPs near Fat mass and obesity associated (FTO) and melanocortin 4 receptor 

(MC4R) gene were reported to be associated with BMI (Thorleifsson et al., 2009).  

Chr Position Gene lead SNP Risk Allele beta p-Value 

16 53769677 FTO rs6499640 A 5.25 4.00E-13 

16 53816275 FTO rs8050136 A 8.04 1.00E-47 

18 57884750 MC4R rs12970134 A 4.38 1.00E-12 

Table 3-1. FTO and MC4R SNPs reported to be associated with BMI in the GIANT 

meta-analysis 

3.1.3. Gallbladder disease (GBD) 

The prevalence of gallstones is 10% - 40% in developed countries (Johnston and Kaplan, 

1993). Gallstones lead to gallbladder disease (GBD), a major cause of morbidity, hospital 

admission, surgical intervention and economic burden. Causes of morbidity include biliary 

colic, cholecystitis, choledocholithiasis and pancreatitis (Kalloo and Kantsevoy, 2001). In 

developed countries, most gallstones are formed of cholesterol. In contrast, pigment stones 

can be found in regions where bacterial and parasitic infections of the biliary tree, and 

hemolysis occur (Wang and Afdhal, 2004). Therefore, it will be interesting to see the 

relationship between lipids traits loci and GBD loci. Genome-wide association studies 

identified coding variant rs11887534 (D19H) in ABCG5 and ABCG8 region as the leading SNP 

affecting GBD (Buch et al., 2007). The head-to-head gene pair ABCG5 and ABCG8 together 

encode a heterodimeric transporter responsible for apical cholesterol secretion from both 



118 
 

hepatocytes and enterocytes. Rodriguez et al suggested multiple independent signals 

associated with GBD in this region (Rodriguez et al., 2014). 

3.1.4. Aims and objectives 

In chapter 3, I developed SSS-RAP and determined its accuracy using the performance 

comparison of conditional analysis, model selection methods and SSS-RAP. SSS-RAP is design 

for group-level data, so I shall focus on its application in group level in this chapter. Before 

the real case applications, I shall compare the SSS-RAP meta-analysis results to its 

individual-level results using different data sets as reference panel. For the CVD related 

traits I introduced above, SSS-RAP shall be applied to the candidate regions that have been 

associated with multiple signals by previous GWASs and meta-analysis, such as NOS1AP and 

SNC5A associated with ECG traits, FTO, MC4R and other regions associated with BMI as well 

as ABCG5 and ABCG8 region associated with GBD.  

Objectives 

1. Verification of the performance of SSS-RAP in meta-analysis level using summary 

statistics of ECG traits and GBD outcomes. Compare the meta-analysis level results with 

its individual-level results using different data sets as reference panel, for example, data 

from a specific study and publically available data 

2. Discover the relationship between correlation coefficient, effect size and p value using 

GBD meta-analysis data 

3. Fine mapping the genetic variants in NOS1AP and SCN5A regions associated with ECG 

condition traits using meta-analysis level data 
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4. Developing a transformation method so that the GIANT BMI meta-analysis summary 

statistics can be applied to SSS-RAP 

5. Detecting LD pattern of SNPs significantly associated with GBD in the meta-analysis and 

identifying independent signals of GBD outcomes in ABCG5 and ABCG8 region using 

SSS-RAP 

3.2. Methods and Materials  

3.2.1. Sample datasets 

The BWHHS individual-level genotypes 

Among all the BWHHS individuals, I used genotype data of 3445 individuals who were 

genotyped using the Human cardiovascular disease (HumanCVD) BeadChip (Illumina, San 

Diego, CA). MAF were calculated using PLINK option --freq and haplotype frequencies were 

calculated using MIDAS (Gaunt et al., 2006). 

Meta-analysis of ECG traits 

The summary statistics of ECG meta-analysis were used (Gaunt et al., 2012). The analysis 

results of PR interval, QRS duration and QTc interval were used here. All the significant SNPs 

for this meta-analysis were listed in Table 8-5.  

GIANT BMI meta-analysis summary statistics 

The GIANT consortium released the summary data for their meta-analysis of GWASs. For 

BMI meta-analysis, this includes approximately 2.8 million SNPs in up to 123856 individuals 

in discovery panel and additional 125931 individuals in the follow-up study. The summary 
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results of this meta-analysis were downloaded from the consortium webpage 

(http://www.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_fil

es). The summary results were consisted of the following information for each SNP: marker 

ID, allele 1, allele2, allele frequency of Allele 1, p values and number of observations. The 

standard errors of the betas were not included in the summary results so were calculated 

analytically. 

Meta-analysis of GBD outcomes 

The meta-analysis of GBD genotyped 15213 women of European ancestry (3216 cases and 

11997controls) using the Human cardiovascular disease (HumanCVD) BeadChip (Illumina, 

San Diego, CA), which containing up to ~53000SNPs. The odds ratios with p values for 

development of GBD were generated (Rodriguez et al., 2014).  

3.2.2. Applying SSS-RAP to meta-analysis of 

ECG traits and performance comparison 

of SSS-RAP in group level 

Fine mapping of ECG traits 

The SSS-RAP program was applied to the summary statistics of the meta-analysis on the ECG 

traits (Gaunt et al., 2012). I selected three quantitative ECG traits (PR interval, QRS duration 

and QTc interval) and decide to fine map three gene regions containing SNPs associated (p< 

5x10-4) with these traits.  
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Performance comparison of SSS-RAP using meta-analysis data 

and different reference panels 

Utilizing these meta-analysis data, I generated four data-sets using different combinations of: 

BWHHS individual level data (as the “in-house” component of the meta-analysis, individual 

level data were available), meta-analysis summary data (i.e. group-level betas and standard 

errors) and HapMap LD information (haplotype frequency X11 from HapMap individual level 

data). The compositions of these data-sets are described in Table 3-2.  

Number of 

data-set 
beta and SE MAF Haplotype freq (X11) 

1 
BWHHS individual level 

data 

BWHHS individual level 

data 

BWHHS individual level 

data 

2 Meta-analysis  
BWHHS individual level 

data 

BWHHS individual level 

data 

3 Meta-analysis  
BWHHS individual level 

data 
HapMap 

4 Meta-analysis  HapMap HapMap 

Table 3-2. Content of combination of different data-sets, X11 represents the haplotype 

frequencies of two major alleles of pair-wise SNPs. Meta-analysis means data selected from 

meta-analysis summary data. Internal data means a single study was involved in the 

meta-analysis. HapMap means data calculated using HapMap CEU individual level data. 

3.2.3. Applying SSS-RAP to GIANT 

meta-analysis of BMI  

To utilise the summary statistics of GIANT meta-analysis of BMI, I need to find a way to 

simulate the betas and the standard errors of betas, which is not listed in the original 

summary results.  
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Simulation of the standard errors 

As explained in Chapter 3.3.1, there is a clear positive correlation between minor allele 

frequency and standard error of beta (Figure 2-7). Fortunately, the standard errors of betas 

of 32 significant SNPs were found from the BMI meta-analysis paper (Speliotes et al., 2010). 

Using these data, I was able to simulate a relationship between SE and MAF for these 32 

SNPs (Figure 3-3). Identifying the general relationship between SE and MAF will be an 

interesting follow up topic.  

As shown in Figure 3-3, a power function fitted the relationship between SE and MAF with 

the least error (R2 = 0.6486). Since I only found SE for a relative small number of SNPs for the 

GIANT BMI dataset, I expected a relatively noisy relationship between MAF and SE. However, 

it is an interesting attempt for meta-analysis with missing data. Using this power function, I 

simulated the standard errors of betas for the 2,284,195 SNPs using the minor allele 

frequencies provided by the database. 

 

Figure 3-3. Predicting standard error using minor allele frequency. X-axis is the minor allele 

frequencies of obtained from the meta-analysis. Y-axis is the standard error. The relationship 

between MAF and SE are empirical and not perfect.   
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Beta prediction 

The P-value provided in the GIANT BMI dataset was transformed from the t statistic. Here I 

use the reverse process to get the t statistic from the p-value (degree of freedom is N-2, 

where N is the number of individuals). Then I was able to simulate Beta directly using the 

existing data:  

beta = 	t	statistics	X	SE	of	beta	 

Where the standard error of beta were calculated using the prediction formula in Figure 3-3. 

The flow chat of the whole beta prediction process was illustrated in Figure 3-4.  

 

Figure 3-4. Flow chart of the beta prediction  

Using the above process, I simulated Betas with their standard errors in order to run SSS-RAP 

(See discussion for details). In addition, I used the R package “NCBI2R” 

(http://cran.r-project.org/web/packages/NCBI2R/index.html) to estimate LD correlation (r2) 

from HapMap and used Biomart web tool (http://www.biomart.org/) to find the coordinates 

for the SNPs. I then performed SSS-RAP on the remaining SNPs. T test p-value of 0.1 was set 

as the threshold of elimination for this dataset. 

The SSS-RAP program was applied to the adjusted summary statistics of this meta-analysis. 

32 significant SNPs for BMI were selected as 32 top hits. To take into account the possibility 
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of long distance LD, all SNPs inside the region of ±5Mb (million base pair) away from each 

top hit were picked out for a further SNP independent test.  

3.2.4. SSS-RAP analysis of GBD traits and 

identifying of relationship between GBD 

associated SNPs and lipids associated 

SNPs 

Independent SNP identification 

Within the ABCG5-8 region 360 SNPs were analyzed. After excluded SNPs with perfect LD 

(r2=1), a total of 118 SNPs remained in the model. I analyzed the remaining SNPs using 

SSS-RAP. Using this approach 10 out of the 118 SNPs remained significant as signals in the 

meta-analysis (Table 8-6). Both HapMap and BWHHS individual level genotypes were used as 

reference panel for performance comparison. 

Relationship of GBD associated SNPs and lipids associated SNPs 

Since most gallstones are formed of cholesterol, I investigate the relationship between GBD 

and plasma lipids level in this section. From the 95 loci previously reported to be 

independently associated with blood lipid levels (28), it was possible to subject 63 to a test 

using IBC array data (Table 8-7).  

The quantile-quantile (QQ) plots for GBD meta-analysis p value of these 63 were performed 

in R using the ‘ggplot2’ package 

(http://cran.r-project.org/web/packages/ggplot2/index.html). 

To test whether the relationship between GBD and blood lipids traits was not by random 
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chance, I designed a simulation. The null hypothesis was that in QQ plots and compared 

with appropriate random sampling of equivalent numbers of SNPs in the IBC chip, the 

distribution of significance values would be no different for a trait-selected set of SNPs 

compared with a random set. However, considering the association of gallstones with 

obesity and their constitution of cholesterol, I hypothesized either a general difference of 

distribution, and/or that the leading SNPs for the trait would also show nominal significance 

for GBD. 

For the simulation, I firstly ordered the 63 p-values ascendingly and then I calculated the 

observed p value and expected p value:  

µK\∂ = 	−L4MUT(∑∂) 

Expt∂ = 	−L4MUT(
1
Q
) 

Where N is total the number of SNPs and n represent the current SNP inside 1 to N. Obsn is 

the observed p value of SNP n, Exptn is the expected p value of SNP n.  

Then the median number of the p values of 63 SNPs were calculated as follows:  

median = 	
median	of	observed	p	value
median	of	expected	p	value

 

In comparison with this median, I drew a distribution of median log10p values generated by 

10,000 simulations using random sampling of 63 loci for each set of simulations. These 

simulations were performed in R. Representations of the histogram of median estimates was 

performed using the ‘hist’ function in the basic package of R 

(http://stat.ethz.ch/R-manual/R-devel/library/graphics/html/hist.html). 
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3.3. Results 

3.3.1. Applying SSS-RAP program to ECG 

meta-analysis summary results and four 

data combinations 

After applying SSS-RAP to meta-analysis of ECG traits, I found that generally the results of 

SSS-RAP are highly consistent with conditional analysis results using group-level results.  

NOS1AP associated with QTc interval 

For SNPs associated with QTc interval in NOS1AP region, conditional analysis of the 

meta-analysis selected 3 SNPs from 3 different LD blocks. In individual-level, SSS-RAP only 

detected two SNPs. In group-level, SSS-RAP return same SNPs model using meta-analysis 

results with BWHHS MAF and haplotype frequencies. When using HapMap MAF and 

haplotype frequencies instead of BWHHS ones, 3 more SNPs were detected, showing some 

uncertainty (Figure 3-5).  
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Figure 3-5. Comparison between SSS-RAP and conditional analysis using meta-analysis data 

in ECG traits. Linkage disequilibrium and haplotype block structure were linked to related 

SNPs in NOS1AP SNPs associated with QTc interval. For both methods, cross (x) denotes 

inclusion in the best model. 

SCN5A associated with PR interval and QRS duration 

In SCN5A region, there were four SNPs associated with PR interval after conditioning on the 

top significant signal. SSS-RAP using any data sets did not select SNP rs1805126. I have 

explained the reason of this departure in Chapter 3.4.1. For the remaining three SNPs, 

SSS-RAP also selected them in group level. In individual-level, SSSRAP only selected two of 

them (Figure 3-6 a).  
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For SNPs associated with QRS duration in SCN5A region, first round conditional analysis 

selected 5 SNPs. Using meta-analysis summary statistics, SSS-RAP detect four of them: SNP 

rs11710077 was omitted by SSS-RAP, which have been explained in Chapter 3.4.1. In contrast, 

SSS-RAP only selected 2 SNPs using individual-level data (Figure 3-6 b).  

 

Figure 3-6. Comparison between SSSRAP and conditional analysis using meta-analysis data 

in ECG traits. Linkage disequilibrium and haplotype block structure were linked to related 

SNPs in (a) and (b), SCN5A loci associated with PR interval and QTc interval respectively. 

Cross (x) denotes inclusion in the best model for each data combination. 

3.3.2. SSS-RAP analysis of GIANT 

meta-analysis of BMI 

As mentioned in Chapter 4.2.3, I tested the independence of SNPs near the 32 significant 

signals identified by the original meta-analysis paper. The results for the regions with 
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secondary signals are shown in Table 3-3. SSS-RAP identified 5 regions with more than one 

association signals inside each region.  

SNP NOTE GENE CHR POS_37 REF_ALLELE FREQ SSS-RAP_P 

rs887912 top hit FANCL 2 59305625 T 0.325 0 

rs12986742 independent snp1 FANCL 2 58975143 C 0.5 3.00E-08 

rs11688816 independent snp2 FANCL 2 63053048 A 0.5417 2.54E-08 

rs206936 top hit NUDT3 6 34828553 T 0.7417 0 

rs2033529 independent snp1 NUDT3 6 40348653 G 0.2583 8.78E-09 

rs10767664 top hit BDNF 11 27694241 G 0.825 0 

rs1519480 independent snp1 BDNF 11 27675712 C 0.3667 3.52E-10 

rs12444979 top hit GPRC5B 16 19935389 A 0.1333 0 

rs11074446 independent snp1 GPRC5B 16 20255123 C 0.175 1.14E-09 

rs571312 top hit MC4R 18 57838401 A 0.2833 0 

rs17773471 independent snp1 MC4R 18 57977377 T 0.3333 4.39E-08 

rs7227255 independent snp2 MC4R 18 58055731 G 0.9833 1.75E-10 

Table 3-3. Genes that found extra independent effect SNPs by SSS-RAP program in GIANT BMI database. 

Top hits are found from previous paper, 2nd-6th means the second to sixth independent effect SNPs. 

3.3.3. SSS-RAP analysis of GBD associated 

SNPs and analysis of loci associated with 

lipids traits 

LD pattern of SNPs significantly associated with GBD 

For the ten SNPs significantly associated with GBD, I sketched the LD pattern among them 

and try to find out the relationship between correlation coefficient (r2) and effect size (and r2 

vs p values as well).  

The top associated SNP rs4953023 is in perfect LD (r2=1) with the coding variant rs11887534 

(representing an Aspartic acid to Histidine change at amino acid residue 19: D19H) that was 

associated with cholesterol gallbladder stones in previous GWAS and linkage studies 

(Grünhage et al., 2007) (Katsika et al., 2010). Rs4953023 is in intron 3 of ABCG8. It yields 
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both the highest significance (P=3.57x10-48) and the highest effect size (beta=0.763) in the 

meta-analysis study. Figure 3-7A shows r2 between each of the ABCG5 and 8 SNPs 

significantly associated with GBD in meta-analysis and the top hit rs4953023. As shown in 

the figure, there are almost no LD between them. In addition, the effect sizes and p values of 

the other 9 SNPs are not comparable to those of the top hit. This observations support 

rs4953023 is likely independent of the other ABCG8 SNPs that are significantly associated 

with GBD in the meta-analysis study.  

One of the ABCG8 SNPs, rs4299376, was found to be significantly associated with GBD (P= 

3.10 x 10-18) in our study with a lower effect size (beta=0.283) observed. This SNP is in some 

LD with a coding SNP rs4148211 (BWHHS r2 =0.209). Rs4148211 (a Cysteine to Tyrosine 

change at residue 54: C54Y) is reported to be associated with GBD in a Taiwanese study (Kuo 

et al., 2008). Moreover, in HapMap CEU population, the observed LD between this pair of 

SNPs is r2=0.161, D’=1. Our results support that these two SNPs may be in one LD block and 

may represent the same functional mechanism or (unknown) causal SNP. 

Identifying the LD pattern step wisely, I removed the top hit from the SNPs model. Figure 

3-7B shows LD between rs10439467 in intron 10 of ABCG5, and other ABCG5/8 SNPs except 

top hit rs4953023. Rs10439467 appears to mark a novel independent effect that does not 

appear to have been directly represented or captured in earlier chip-based analyses. There is 

essentially no LD between this SNP with rs6720173 E604Q (r2 = 0.095 in Europeans in 

HapMap), which is the only reported coding SNP for GBD in ABCG5. This confirmed its 

independence of effect on GBD. Besides, four other significant SNPs in the ABCG5 region 

were no longer retained as independent predictors, respectively rs4953019 (p=4.61x10-11, 
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effect size=0.3406, r2=0.352), rs10208987 (p=4.77x10-14, effect size=-0.3782, r2=0.352), 

rs10201851 (p=1.54x10-09, effect size=-0.2629, r2=0.196) and rs4148189 (p=8.66x10-09, effect 

size=0.2538, r2=0.196).  

Figure 3-7C shows LD between the remaining three SNPs with rs6720173 (E604Q) (P=3.23 x 

10-11, beta = 0.256). Two significant SNPs rs2278357 (r2=1, P=1.10 x 10-9, beta =0.233) and 

rs4245786 (r2=0.234, P=1.88 x 10-5, beta = -0.142) are in LD with E604Q. The previous 

possible independent SNP rs10439467, is in very low LD with E604Q (r2 = 0.095 in 

Europeans in HapMap).  

 

Figure 3-7. Comparison between r2 values and P values and between r2 values and effect 

sizes for key SNPs associated with GBD 
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(A) LD between the top hit rs4953023 and the ABCG5 and 8 SNPs significantly associated 

with GBD in meta-analysis 

 

(B) LD between rs10439467 in intron 10 of ABCG5, and other ABCG5/8 SNPs except top hit 

rs4953023 
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(C) LD between coding SNP rs6720173 (E604Q) and other ABCG5/8 SNPs 
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SSS-RAP analysis of SNPs associated with GBD 

Here I compared the performance of SSS-RAP in individual-level and group-level using GBD 

outcomes. As shown in Table 3-4, when applying SSS-RAP to individual-level data, only two 

SNPs were detected. In addition, as shown in Chapter 4.3.3 LD pattern section, I found four 

SNPs, rs4953023, rs4299376, rs10439467, rs6720173, as possible independent effect variants. 

Similarly, SSS-RAP detected the same four SNPs as independent in ABCG5 and 8 region when 

using BWHHS individual-level genotypes as reference panel (Table 3-4). Moreover, when 

using meta-analysis summary statistics and HapMap genotypes as reference panel, five SNPs 

were detected. The extra SNP rs4953019 is in modest LD (HapMap CEU D’ =1, r2 =0.312) with 

the coding SNP rs6720173. This result suggest that these two SNPs are in one LD block and 

may represent the same functional mechanism. 

dataset reference panel phase 1 phase 2 phase 3 phase 4 phase 5 

BWHHS BWHHS rs4953023 rs4299376    

meta-analysis BWHHS rs4953023 rs4299376 rs10439467 rs6720173  

meta-analysis HapMap rs4953023 rs6720173 rs10439467 rs4299376 rs4953019 

Table 3-4. Comparison of performance of SSS-RAP in individual-level, meta-analysis level and 

different reference panels in GBD traits. 

Detecting relationship between GBD and blood lipids 

Figure 3-8A shows the QQ plots for the meta-analysis p value of 63 SNPs listed in Table 8-7. 

These SNPs represents 63 independent loci previously reported to associate with plasma 

lipid levels. The observed p values was significantly different than the expectations. Out of 

63 SNPs, 59 showed an observed p value above the expected p value in a QQ plot. This is in 

accordance with a combined effect of these SNPs both on GBD and on plasma lipid levels 
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variation. 

To test whether the significant of the 63 SNPs were not by random chance, I simulated a 

median distribution (Chapter 4.2.4) Figure 3-8B shows results for simulations analysing the 

median log10p value of 10,000 samples of groups of 63 random SNPs in IBC. The 10000 

random simulations got a distribution with mean of 1.07 (median =1.06) and standard 

deviation of 0.19. In contrast, the observed median value for the 63 lipid-associated loci was 

1.494. A median p value greater than that observed for the lipid loci set, was only appeared 

in 1.7% of random samplings. So the histogram in Figure 3-8B conformed the significance of 

p values I observed by the QQ plot shown in Figure 3-8A.  

Further linkage between GBD and blood lipids can be found in Table 8-7. The loci influencing 

either LDLc or triglycerides showed the most outstanding associations with GBD. Specifically, 

these were rs4299376 in ABCG5/ABCG8; rs2081687 in CYP7A1 (the proxy SNP in the 

meta-analysis rs8192870 has an r2 = 0.925 with rs2081687, P=0.0031 for GBD); rs1260326 in 

GCKR (P=0.00013); rs5756931 in PLA2G6 (the proxy SNP in the meta-analysis rs4820314 r2 = 

0.8 P=0.0048 for GBD); rs2479409 in PCSK9 (P=0.021) and rs1532085 in LIPC (P=0.036). 

This analysis is quite similar to a Mendelian Randomization (MR) approach, which is a 

method of using measured variation in genes of known function to examine the causal effect 

of a modifiable exposure on disease in non-experimental studies (Davey Smith and Ebrahim, 

2003). So there is a possibility to process a formal MR to further corroborate the causal gene. 

However, it is out of the scope of this work.  
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Figure 3-8. Pathway analysis relating GBD with SNPs associated with plasma lipid levels  

(A). GBD QQ plot for SNPs representing 63 independent loci reported in a published study to 

influence plasma lipid levels.  

B 

A 
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(B). Simulation of the median log10 p value when sampling 63 SNPs at random from the IBC 

array meta-analysis, 10,000 random samplings. The observed median was 1.49. The median 

observed for the lipid set was 1.06 (mean = 1.07, SD = 0.19). 

3.4. Discussion 

3.4.1. Comparing the performance of SSS-RAP 

using different resources 

I compared the performance of SSS-RAP using data-sets generated with parameters from 

different resources.  

When applying SSS-RAP to individual-level data of both quantitative traits (ECG) and binary 

outcomes (GBD), only part of the strong independent signals were detected compare to the 

conditional analysis results of meta-analysis. Flister et al suggested that single GWAS lack of 

power to test whether multiple causal SNPs underlie the same genomic region (Flister et al., 

2013). The result of the current analysis support such suggestion.  

As I have explained in the Chapter 3.2, the input data set of SSS-RAP contains four 

parameters: betas, standard errors of betas (SE), minor allele frequencies (MAF) and 

haplotype frequencies betas. Beta and SEs will normally be included in the meta-analysis 

summary results. However, MAFs and the haplotype frequencies (i.e. X11) will rarely be 

provided by the meta-analysis, especially the haplotype frequency. So I mimicked three 

group level situation (Table 3-2), where the meta-analysis betas and standard errors were 

available, but MAF and haplotype frequency (X11) need to be calculated from either internal 

(BWHHS) or external sources (HapMap). SSS-RAP results were closer to the conditional 
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analysis results when using BWHHS individual-level genotypes. On the other hand, this 

performance comparison also shown that results using HapMap individual-level genotypes 

as reference panel are less accurate than results using BWHHS genotypes as reference panel. 

The reason of such difference is because open access data (HapMap and 1000 Genome) 

have a limited sample sizes (less than 200 for each population) 

(http://hapmap.ncbi.nlm.nih.gov/groups.html) 

(http://www.1000genomes.org/category/frequently-asked-questions/population). Based on 

our simulation, we suggest the sample size of 1000 can lead us to an accurate LD estimation.  

Besides, in all cases, it is important that the allele and haplotype frequencies are from a 

population ancestrally matched to those in the meta-analysis. 

3.4.2. SSS-RAP analysis of ECG traits 

NOS1AP associated with QTc interval 

Numerous studies have reported association of common variation in NOS1AP with QTc 

interval (Newton-Cheh et al., 2009), and my fine mapping results suggest 3 independent 

effect SNPs. NOS1AP gene encodes a cytosolic protein that binds to neuronal nitric oxide 

synthase (nNOS). The protein has a carboxyl-terminal (C-terminal) PDZ binding domain. 

C-terminal PDZ binding domain interacts with NOS1 to accelerate cardiac repolarization by 

inhibition of L-type calcium channels in the heart and ventricular cells (Chang et al., 2008). 

SCN5A associated with PR interval and QRS duration 

Using the meta-analysis results of the European population, I identified 4 and 5 possible 

independent effect SNPs in the voltage-gated, sodium channel type V, alpha subunit 
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(SCN5A) gene are associated with PR interval and QRS duration respectively, broadly 

consistent with previous reports (Pfeufer et al., 2009) (Newton-Cheh et al., 2009) (Pfeufer et 

al., 2010). 

The two top SNPs with most significances, rs7372712 and rs7374540 for PR interval and QRS 

duration respectively, were not in LD (r2=0.02 in HapMap Europeans). Rs7372712 is located 

in an LD block in the 5’ region of SCN5A, which was replicated by the original meta-analysis 

(Gaunt et al., 2012). Additionally, rs7372712 is in very weak LD with the coding variants in 

SCN5A reported to influence ECG traits, specifically rs1805126 (D1819) and rs1805124 

(H558R) in Europeans (HapMap r2=0.003 and r2=0.011, respectively). This finding replicated 

the claim that variations in the 5’ end of SCN5A may influence on both PR interval and QRS 

duration.  

The secondary independent SNP associated with PR interval is SNP rs12053903. It share a LD 

block with other previously reported SNP (rs6763048) effects in the 3’ end of SCN5A (Bulter 

et al, 2012).The D’ between these two SNPs are 1 and the r2 between them are 0.068 (the 

1000 Genome CEU population).  

3.4.3. Meta-analysis of GIANT BMI dataset 

Among all the significant SNPs I tested for BMI association using GIANT database, at least 

two independent effects have been observed previously for MC4R (Speliotes et al., 2010): 

top hit rs571312 and a coding SNP rs2229616 (V103I). In a separate gene-focused study, 

Loos et al (Loos et al., 2008) reported another MC4R SNP, rs17700633, as an independent 

effect SNP additional to the top hit, rs17782313 (HapMap r2=1 to rs571312), for an 
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association of obesity. Rs17700633 is essentially in linkage equilibrium with the coding SNP 

rs2229616 in MC4R. These 3 SNPs were also detected by SSS-RAP program (Table 3-3), which 

again proves the accuracy of SSS-RAP program.  

In addition, Speliotes EK et al (Speliotes et al., 2010) reported that several BMI-significant 

SNPs explained a substantial proportion of the association with the most significant SNP for 

the gene transcript in conditional analyses. These significant associations included 

TMEM160, SLC39A8 and SH2B1. The SSS-RAP program did not identify any other 

independent SNPs except the top hit for these genes as well, which conformed the previous 

finding.   

Fine mapping of ABCG5/8 region 

GBD is a common disease in western countries, with more than 700,000 cholecystectomies 

performed in the U.S.A per year at a cost of ~ $6.5 billion (Shaffer, 2006). This fine mapping 

analysis, using both LD pattern and SSS-RAP, shows that a multiple number of SNPs are 

independently associate with GBD risk in women of European ancestry. The pathway 

analysis shows that a huge amount of genotypes which associate with plasma lipid levels 

also associate with risk of GBD.  

The leading SNP, rs4953023 (P=3.87x10-38, effect size=0.7003) is in perfect LD with the 

previously studied SNP rs11887534 (D19H in ABCG8). The coding variant D19H is believed to 

be a functional SNP which increases cholesterol secretion and hence the risk of 

super-saturation of bile (Katsika et al., 2010). The second SNP in ABCG8, rs4299376, tags an 

independent effect, probably reflecting a previously reported coding variant on GBD in 

Taiwanese, C54Y (r2=0.2 between rs4299376 and rs4148211 in Europeans) (Liu et al., 2002). 
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Two other independent SNPs were identified in ABCG5, rs10439467 in intron 10 and 

rs6720173 (coding variant E604Q). The ABCG5/ABCG8 transporter is the most proximal 

element of the cholesterol regulatory system to biliary cholesterol, and the identification of 

further new functional alleles at this locus emphasizes that any approach which might 

reduce cholesterol secretion without compromising TC and LDLc levels, could be useful in 

GBD prevention. 

The comparison analysis of 63 independent loci for blood lipid levels and GBD, shows that a 

huge amount of SNPs influencing blood lipid levels influence GBD risk as well. I further 

analysis this finding separately by principal trait, LDLc, total cholesterol, HDLc or triglycerides. 

I found that a large number of loci influencing either LDLc or triglycerides, indicates the most 

prominent associations with GBD (rs4299376 in ABCG5/ABCG8; rs2081687 in CYP7A1; 

rs1260326 in GCKR; rs5756931 in PLA2G6; rs2479409 in PCSK9 and rs1532085 in LIPC). 

Relationship between correlation coefficient, beta and p value 

I found it difficult to find a simple mathematical relationship between r2, beta and p value 

through the LD pattern of ABCG5-8 region. But this piece of work became the start point of 

developing novel fine mapping methods using group-level data. The idea of utilizing LD 

pattern and processing stepwise selection were used to the development of SSS-RAP and 

another novel method I should explained in Chapter 5.  

3.4.4. Conclusion  

Firstly, when applied SSS-RAP to meta-analysis summary statistics, the results of SSS-RAP is 

highly consistent with the conditional analysis results, which proved its accuracy in 
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meta-analysis level. Moreover, I detected totally 12 SNPs (in NOS1AP and SCN5A) associated 

with QTc interval and PR interval. For the GIANT BMI meta-analysis, I found a suitable way to 

transform meta-analysis p values to meta-analysis betas and identified 17 regions with 

multiple association to BMI. For the ABCG5-8 region associated with GBD, I identified four 

possible independent signals using both LD pattern and SSS-RAP. Last but not least, the idea 

of utilizing LD pattern and processing stepwise selection were used to the development of a 

novel fine mapping method which I should explain in the next chapter.   
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CHAPTER 4. HAPLOTYPE-BASED 
GROUP-LEVEL ASSOCIATION 

ANALYSIS USING AN E-M 
ALGORITHM 

4.1. Introduction 

In Chapter 3, I illustrated the limitation of GWASs and difficulties of fine mapping analysis in 

the current meta-analysis system. This motivated the development of the novel fine 

mapping method, SSS-RAP. It can detect SNPs with independent effects which are 

conditional on the strongest associated signal. The data used by SSS-RAP includes regression 

coefficients (betas), standard errors of the coefficient (SE) and minor allele frequencies (MAF) 

from meta-analysis and pairwise haplotype frequencies (X11) from a reference genotype 

panel (Zheng et al., 2013). I demonstrated its power and accuracy to detect secondary 

association signals in real life meta-analyses in Chapter 4. However, SSS-RAP is only 

applicable to pair-wise SNP comparisons and thus fine mapping multiple association loci at a 

group-level remains a problem.  

4.1.1. Multiple regression 

The classic method of testing multiple signals associated with a specific trait is multiple 

regression analysis (the term was first used by Pearson in 1908). The general purpose of 

multiple regression analysis is to understand the relationship between several predictor 

variables (also known as independent variables) and one criterion variable (dependent 
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variable).  In the genetic fine mapping field, multiple regression is focused on testing the 

association between one trait and multiple genetic variants, especially SNPs. The regression 

model will be: 

Y = 	βT +	βU ∗ HU +	S* ∗ H* …	S∂ ∗ H∂ + /	(0) 

Where Y is the phenotype, HU …H∂ are the n covariates (SNPs) in the model. βU …β∂ are 

the beta coefficients of the n SNPs. “e” is the error of the regression model.  

As explained in Chapter 1.3.2, single regression uses least squares approach to estimate the 

regression line. Multiple regression uses the same approach to find the regression line 

amongst multiple variants, but the regression line cannot be visualized in the two 

dimensional space.   

Assumptions of multiple regression 

There are several assumptions for multiple regression:  

Firstly, the general assumption is that the relationship between SNPs is linear. This 

assumption can hardly be confirmed. Fortunately, multiple regression analyses are not 

mainly affected by minor deviations from this assumption.  

Secondly, the residuals should be normally distributed. So it is necessary to check the 

distributions of the phenotypes of interest.  

Thirdly, as illustrated in Equation (0), for a multiple SNPs model, it is quite common that any 

of the SNPs are strongly correlated with each other, or even if one SNP is in perfect LD with 

other SNPs. In this situation, the genotype matrix will suffer the wrong condition due to the 

presence of collinearity. The covariates will be confounded with one or more of the others 

and the precision of the estimation will become very poor.  
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The variance inflation factor (VIF) quantifies the severity of multi-collinearity in an linear 

least squares regression analysis. It provides an index that measures how much the variance 

(the square of the estimate's standard deviation) of an estimated regression coefficient is 

increased because of collinearity (Kutner et al, 2004).  

Consider a linear model with k independent variables:  

Y = β0 + β1 X1 + β2 X2 + ... + βj X j + ... + βk Xk + ε. 

Where Xj is the covariance of j’s variable of the linear model. VIF is defined as: 

VIF =
1

(1 − ∞ø
*)
	 

Where Rj
2 is the multiple R2 for the regression of Xj on the other covariates (a regression that 

does not involve the response variable Y). This identity separates the influences of several 

distinct factors on the variance of the coefficient estimate (Kutner et al, 2004). A large VIF 

value, for example bigger than 10, will indicate a collinearity problem in the regression 

model.  

Finally, since the entire individual-level data is needed to process the multiple regression, it 

is not applicable for meta-analysis level data. Novel statistical methodology is needed to 

process approximate multiple regression using meta-analysis summary statistics directly. 

4.1.2. Current state of art: GCTA conditional 

and joint effect analysis  

To extend the scope of multiple regression to meta-analysis level, Yang J et al developed 

GCTA conditional and joint effect analysis (Yang et al., 2012). Since GCTA contains many 

functions, I only focused on its conditional and joint effect analysis, so GCTA in this chapter 
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only represent the GCTA conditional and joint effect analysis.  

To process multiple regression at the group-level, GCTA separated the task into two steps. 

Firstly, GCTA built a linkage between the multiple regression and the single regression. It 

creates equations to convert the marginal effects (and SEs of marginal effects) to joint 

effects (and SEs of joint effects) using single SNP regression summary statistics and 

individual-level genotype data. Then for a meta-analysis of multiple studies, pooled 

individual-level genotypes of the whole discovery set are normally unavailable. So GCTA 

builds the approximate variance-covariance matrix of SNP genotypes using the allele 

frequencies from meta-analysis and LD correlations (r) between pair-wise SNPs from a 

reference panel. This variance-covariance matrix is then used by the least-squares approach 

to calculate the approximate joint SNP effects.  

Assumptions and limitations of GCTA conditional and joint 

effect analysis 

There are several assumptions for GCTA: firstly, the quantitative traits or disease outcomes 

are affected by multiple genetic variants. Secondly, the assumption of additive model of the 

genotypes was made. Moreover, the genotype matrix was adjusted by MAF. This is under 

the assumption that rarer variants have a larger effect size. In addition, the method also 

assumes HWE for all SNPs in the model. Finally, the method assumes that the LD correlation 

between a pair of SNPs should be similar in the meta-analysis and the reference panel (Ke et 

al., 2004).  

For the final assumption, it has been demonstrated that combination of allele frequencies 

and pair-wise LD correlation may not always be biologically possible at the multiple-loci level, 
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since three-locus systems may place additional constrains on the maximum and minimum 

values for the pair-wise LD terms (Robinson et al., 1991).  

4.1.3. Haplotypes and haplotype phasing 

In Chapter 1, I gave a brief overview of haplotypes. In this chapter, I should describe how to 

utilize haplotype information and how to phase the haplotypes using 

statistical/computational tools.  

In population genetics, haplotype information can be used in many analyses, for example, 

disease/quantitative traits mapping (Rieder et al., 1999) and inferring population histories 

(Harding et al., 1997).   

Current genotyping methods such as microchip or next generation sequencing do not 

provide haplotype information. The cost of experimental haplotype phasing is very 

expensive (Browning and Browning, 2009). So haplotypes are normally phased by statistical 

algorithms. Two major algorithms have been used for haplotype phasing in this Chapter are 

Expectation-Maximization (E-M) algorithm and approximate coalescent and hidden Markov 

model (HMM) algorithm.  

Since the novel method I developed is an E-M algorithm approach, I will explain the details 

of the E-M algorithm in the next section. For haplotype inferring, E-M algorithm is one of the 

earliest statistical approach (Excoffier and Slatkin, 1995). PLINK (Purcell S et al, 2007) 

contains a haplotype phasing function using an E-M algorithm. The E-M approach runs well 

for a small number of genetic variants, for example 10 SNPs. However, for a large numbers of 

markers, the E-M algorithm becomes time consuming and suffers a loss of accuracy by using 

suboptimal model for haplotype frequencies. Some examples of haplotype phasing software 



148 
 

using the E-M algorithm include Arlequin (Excoffier and Lischer, 2010) and PL-EM (Qin et al., 

2002). 

Moreover, the approximate coalescent model (McVean and Cardin, 2005) assumes that 

novel haplotypes are derived from old haplotypes by mutation and recombination, so that 

haplotypes in a small region tend to look similar. Furthermore, the HMM is a model in which 

the observations are conducted by an unobserved probabilistic process (Eddy, 2004). The 

coalescent-based methods and HMMs were applied by many statistical phasing approaches 

such as PHASE (Stephens et al., 2001), MACH (Li et al., 2010), IMPUTE2 (Howie et al., 2012) 

and BEAGLE (Browning and Browning, 2007). In each of these methods, the approximate 

coalescent are lead to an HMM, and the parameters are estimated using iterative algorithms 

such as E-M algorithm. Along with all of these HMM methods, MACH outperformed other 

methods for smaller sample sizes and BEAGLE outperform for large sample size (Browning 

and Browning, 2011).  

As illustrated in Figure 4-1, for a specific population, the coinheritance of SNP alleles on the 

haplotypes leads to linkage disequilibrium amongst multiple loci (International HapMap 

Consortium, 2003). So theoretically, haplotypes are a better representation of LD than 

utilizing statistical correlation between pair-wise (r2) SNPs. 



149 
 

 

Figure 4-1. Example of haplotypes among four loci for different populations. In this example, 

four SNPs within 1 MB are selected. The above haplotype is the ancestral haplotype for 

these four SNPs. The four bottom haplotypes are the existing haplotypes of the ancestral 

haplotype after N generations. The haplotype frequencies are represented in the left side. 

As illustrated, the LD information for different populations is represented by the haplotypes.  

4.1.4. Expectation-Maximization algorithm 

In the statistical field, an E-M algorithm is an iterative method for detecting the value of the 

unobserved parameters that maximize the likelihood of the observed incomplete data 

(Dempster et al., 1977). Typically the models will involve latent variables except the 

unknown parameters and known observations.  

The E-M algorithm can be applied in two respects. In the first case, if I cannot directly 

calculate the parameters directly due to the problems or limitations of the analysis, I have to 

use latent variables to link the observations and unknown parameters. In the second 

situation, I can calculate the unknown parameters but the latent variables can be simplified 
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with the likelihood function.  

As illustrated in Figure 4-2, the E-M algorithm starts with setting random initial values for the 

unobserved variables. Then a numerical equation is built between the observed and 

unobserved variables. This process is called expectation (E step), which is usually the most 

difficult step of the E-M algorithm. The computational efficiency of the whole algorithm will 

highly depend on this step. Then I found the maximum likelihood of the expectation. This 

process is called maximization (M step). For the E step and M step, the expected values and 

the maximization do not need to be completed explicitly, but rather need only compute 

sufficient statistics for the completions. The E-M process will be kept until the latent 

variables converge to fixed points.  
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Figure 4-2. An overview of the E-M algorithm. After initialization, the E-step and the M-step 

are iterated until the unobserved values have converged. Iteration “i” means the iteration 

number.  

Advantages and limitations of E-M algorithm 

Compared to other optimization methods such as gradient descent (Yuan, 1999) or 

Newton-Raphson method (Ypma, 1995), the EM algorithm is simple and easy to implement. 

It does not usually require heavy preparatory analytical work and it is easy to program. Since 

the E-M algorithm is simple, it is computationally fast which is a very important 

characteristic for mining large datasets and only requires modest computer memory 

compared to other methods. In addition, the EM algorithm is numerically very stable. 

Moreover, the fitted values for the complete data are usually conducted during the E step, 

so there is no need of further calculation.  

The E-M algorithm can only provide a local maximum of the objective parameter after 

converged. So it will always be helpful to process the E-M algorithm using multiple initial 

starting values to find the global maximum. For similar reasons, random initial parameters 

are useful to break symmetry in models as well. 

4.1.5. Aims and Objectives 

At the time I wrote this chapter, multiple regression (with a step-wise procedure) was still 

the gold standard of identifying SNP independence in individual-level. In meta-analysis level, 

the development of methods such as SSS-RAP (Zheng et al, 2013) and GCTA conditional and 

joint SNP effect analysis (Yang et al, 2012) fill the blank of process approximate conditional 
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analysis using meta-analysis summary statistics. The core concept of these methods are 

rebuilding LD structure using the allele frequencies in meta-analysis and LD correlations 

between pair-wise SNPs from a reference sample. However, I have a concern that utilizing 

allele frequencies and pair-wise LD correlation may lose LD information at the multiple-loci 

level since three-locus systems may place additional constraints on the maximum and 

minimum values for the pair-wise LD terms (Robinson et al., 1991). In contrast, haplotypes, 

which represent a specific sets of alleles observed on part of a chromosome, are the best 

way to represent LD among multiple loci. Fine mapping using haplotypes may pick up the LD 

information that is not detected using pairwise LD measures. However, it will be a challenge 

to develop such a fine mapping tool since the statistical system of haplotype is not as well 

established as the pair-wise correlation system. I should introduce an E-M style algorithm to 

utilise haplotype information as latent variables to link marginal SNP effects to joint SNP 

effects using meta-analysis summary statistics and develop the method using a E-M style 

algorithm (Dempster et al., 1977) definitely has the advantage of being simple, robust and 

easy to implement.   

In this chapter, I shall describe the development of the E-M style algorithm haplotype 

regional association program (HAPRAP, pronounced (hap-rap)) software: a step-wise 

elimination program to detect the independent effect SNPs of a genomic region. The joint 

effects of the independent SNPs will be conducted after the best model is decided. The 

method shall be applicable to both individual-level data and meta-analysis summary 

statistics. When applying HAPRAP to meta-analysis summary statistics, the haplotypes will 

be phased from reference panel with individual-level genotypes. In addition, the method 
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shall be applicable to both quantitative traits and binary (disease) outcomes.  

Objectives 

l Develop a haplotype-based fine mapping method using an E-M style algorithm in 

complex quantitative / disease traits meta-analysis 

l Compare the performance of the algorithm against the performance of existing fine 

mapping methods using sample datasets from 1) BWHHS individual-level data, 2) 1000 

Genome individual-level data, 3) simulated meta-analysis data. 

4.2. Methods and Materials 

4.2.1. Overview of the methodology 

The article presents an empirical method, HAPRAP, to estimate partial SNP effects using 

meta-analysis summary results. Given the assumption that haplotypes and haplotype 

frequencies in the reference panel are the same as those in the GWAS meta-analysis, 

HAPRAP uses haplotype effects to transform summary level marginal SNP effects to partial 

SNP effects. 

To achieve the goal, HAPRAP has four steps (Figure 4-3): firstly, we initialize, generating 

random starting values for the partial SNP effects Jo(0)(S) and resulting haplotype effects 

Q(0)(H) (step 1).  In step 2, we built an equation to adjust marginal SNP effects E(g)(S) based 

on haplotype effects Q(g)(H) and haplotype frequencies p(H). In step 3, the estimated 

haplotype effects Q(g)(H) are themselves adjusted based on the deviation between the 

adjusted marginal SNP effects E(g)(S) and the observed marginal SNP effects O(S). The 
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program iterates between Step 2 and Step 3 until the adjusted marginal SNP effects E(g)(S) 

are equal to the observed marginal SNP effects O(S) within 10 decimal places. In the last step, 

we inverse transform the final estimated haplotype effects Q(g)(H) to the partial SNP effects 

Jo(g)(S). The notation of the HAPRAP algorithm is described in Table 4-1. 

 

Figure 4-3. Schematic diagram of HAPRAP.   

Assumptions 
1. An additive model accounts for haplotype effects. For each SNP, the common allele is 

assigned as the baseline allele (with respect to trait); the rare allele is assigned as the 
“effect” allele. 

2. The reference panel represents the same LD structure as the meta-analysis sample 
Definitions 
Constant vectors and matrix –observed data and inputs 
S = {Sj} is the set of j SNPs. 
H = {Hn} is the set of n haplotypes. 
M represents the n x j haplotype matrix, where M= {Mnj}.  
p(H) represents the n x 1 vector of the haplotype frequencies of the n haplotypes.  
O(S) represents the observed marginal SNP effects from GWAS / meta-analysis  

Random initial values for the iteration 
Jo(0)(S) is a j x 1 vector which represents the random initial partial SNP effects of the j SNPs.  

Q(0)(H) represents a n x 1 vector of the random initial haplotype effects of the n haplotypes.  
Variables in the g iteration – output for the g iteration 
E(g)(S) represents the j x 1 vector of the adjusted marginal SNP effects of the j SNPs in the g 
iteration. Whereas g represents the number of the current iteration and g+1 is the next 
iteration.  
Q(g)(H) represents the n x 1 vector of the adjusted haplotype effects of the N haplotypes in 
the g iteration.  
Jo(g)(S) represents the partial SNP effects for the j SNPs on the g iteration.  
X(g) is the SNP with the greatest deviation between the observed marginal SNP effect and 
the estimated marginal SNP effect in the g iteration 
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Table 4-1. Notation of HAPRAP algorithm 

Step 1. Initial values for partial SNP effects and transformation to haplotype effects: We 

set up a random set of initial partial effects for ‘j’ SNPs in the model, denoted Jo(0)(S1), 

Jo(0)(S2)… Jo(0)(Sj). They are then transformed to the initial haplotype effects of the ‘n’ 

haplotypes, Q(0)(H1), Q(0)(H2)…Q(0)(Hn), using the following matrix multiplication: 

M ∗ Jo(T)(S) = Q(T)(H)	(1) 

Where M represents the n x j haplotype matrix. These initial haplotype effects are used as 

starting values in the first cycle of the iteration. 

 

Figure 4-4. The SNPs-haplotypes matrix for HAPRAP. The iteration of HAPRAP is built based on a 

matrix summarising the haplotypes and haplotype frequencies for a certain population. “0” in the 

matrix means the haplotype contains the common allele for the relevant SNP, whereas “1” means 

the haplotype contains the rare allele for the relevant SNP. The small arrow (from left to right) is the 

marginal SNP effects estimation step shown in equation (2). The large arrow (from right to left) is the 
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haplotype effects adjustment step shown in equation (3) (4) and (5). 

 

Step 2. The marginal SNP effects adjustment step: In a typical allelic association analysis 

(additive model), we treat the common allele as the “baseline” allele (with respect to trait) 

whereas the rare allele is the “effect” allele. The marginal SNP effect is the mean difference 

in phenotypes between the “effect” and “baseline”. Extending this idea to an additive 

haplotype model, for a certain SNP (called SNP A), we can divide haplotypes into two groups: 

“rare allele haplotypes”, Hrare, are haplotypes containing the rare allele of SNP A, which 

have real effects on the trait; “common allele haplotypes”, Hcommon, are haplotypes 

containing the common allele of SNP A, which represent the baseline. As in the single-SNP 

model, the difference in between the phenotypic mean in individuals with haplotypes 

containing the rare allele (the rare haplotype effect) and the phenotypic mean in those with 

the common allele (the common haplotype effect) is calculated. We get: 

Marginal SNP effect of SNP A= Effect of Hrare – Effect of Hcommon 

We adjust the haplotypic effects in each group to account for their relative frequencies.  

For Hrare, the adjustment is as follows: 1) Rare haplotypes with (relatively) higher 

frequencies are expected to have larger influence, each haplotype effect (Q) is weighted by 

its frequency. 2) The weighted rare allele haplotype effects are summed. 3) The weighted 

sum of the rare allele haplotype effects is then normalised by the sum of the frequencies of 

the rare allele haplotypes. The effect of Hcommon is constructed in the same way. 

In HAPRAP iteration “g”, the marginal SNP effect, E(g)(S), is adjusted by taking into account 

the haplotype effects, Q(g)(H) and the haplotype frequencies p(H). For a certain SNP ‘i’, the 

haplotypes are divided into two groups: Q(g)(Hrare) and Q(g)(Hcommon). The adjusted 
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marginal SNP effect of SNP “i”, E(g)(Si), is computed by taking the difference between 

average effects from the two haplotype groups:  

E(g)(Si)=
∑Q(g)(Hrare)*p(Hrare)

∑ p(Hrare)
-
∑Q(g)(Hcommon)*p(Hcommon)

∑ p(Hcommon)
 (2)	

We tested the reliability of equation (2) by a simulation and found that given any set of 

partial SNP effects, application of equation (2) never generated nonzero effect estimates for 

SNPs that were simulated to have truly null effects (Text S2).    

 

Step 3. The haplotype effects adjustment step: In this step, the adjusted marginal SNP 

effects E(g)(S) are compared to the observed marginal SNP effects (called O(S)). Reconciling 

the difference between E(g)(S) and O(S) is important because it equates the marginal SNP 

effects observed from the meta-analytic data with those that would arise under the 

distribution of haplotypes in the reference panel. The SNP-note as X(g)-with the greatest 

deviation is adjusted for the next iteration g+1: 

E(¬óU)√Sê(¬)ƒ = E(¬)√Sê(¬)ƒ − O√Sê(¬)ƒ	(3) 

The other SNP effects remain the same to the next iteration: 

E(¬óU)(Se) = E(¬)(Se)	Where	i	 ≠	X(g) (4) 

Then the haplotype effect Q(g+1)(H) for SNP SX(g) will be weighted based on the above 

change and be used in the next iteration: 

Q(¬óU)(HÖÜÖà) = Q(¬)(HÖÜÖà) + E
(¬óU)(S¢) (5) 

Step 4. Convergence and the inverse matrix approach: After the adjusted marginal SNP 

effects, E(g)(S) are approaching the observed SNP effects, O(S), within 10 decimal places, 

Q(g)(H) are inverse transformed to j partial SNP effects using the generalized inverse matrix 
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multiplication:  

YõU ∗ Q(¬)(H) = Jo(¬)(S)	(6) 

We call these estimated partial SNP effects Jo(g)(S) “HAPRAP betas”.  

 

4.2.2. Estimating the standard error of HAPRAP 

betas using simulation based HAPRAP 

Pre-test of SNP significances 

Generating bootstrap standard errors can use computational resources intensively. To 

improve computational efficiency, we first pre-test the significance of the candidate SNPs 

using the HAPRAP betas and the standard errors of the meta-analysis betas (since the 

uncertainty of the effect of a given SNP is larger in a multivariate model than that in a single 

SNP model). SNPs with the highest p value will be step-wise eliminated from the model until 

all SNPs reach the p value threshold we set.  

For a model with multiple SNPs, the standard error of a specific SNP taken from an individual 

regression analysis is usually smaller than the multiple regression standard error for the 

same SNP, since multiple SNP models will create more uncertainties than signal SNP ones. 

Based on this assumption, a pre-significant test was processed to improve the 

computational time of HAPRAP.   

The pre-significant test uses HAPRAP betas and the standard errors of the observed SNP 

effects to conduce the t-statistics:  

T	statistic	 = 	
±#∑∞#∑	K/]'

standard	error	of	observed	SNP	effects
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The t-statistics were transformed to t test p values using R code: 

2 x pt (-abs (t-statistics), df=N-1) 

Where pt is the code to convert t-statistics to p-value, “df” is the degree of freedom, N is the 

sample size.  

After the t test p values were calculated, a hypothesis test is conducted to see whether the p 

value is smaller than the p value threshold, i.e. 5 x 10-8, if so, it will be very rare that the SNP 

is significant by chance. So the null hypothesis is that the SNP is significant and will be 

accepted. 

For the pre-significant test, the SNP with highest p value will be backwards eliminated from 

the model until every SNP in the model reaches the p value threshold after multiple testing 

correction. The problem of such pre-significant test is that the p value here will be more 

stringent than it should be so some SNPs with p values near the threshold will be eliminated.  

To calculate the standard errors of the remaining SNPs in the model after the pre-significant 

test, I developed a simulation based HAPRAP program (simHAPRAP).  

Population simulation using simHAPRAP 

As illustrated in Figure 4-5, the simulation starts by simulating a population with sample size 

equal to the total number of participants in the studies / meta-analysis. Genotypes are 

randomly generated based on the haplotypes and haplotype frequencies. For a quantitative 

trait, phenotypes are selected from a normal distribution with mean equal to zero and 

standard error equal to the deviation of the trait. For a disease outcome, binary phenotypes 

are selected from a binomial distribution which fits the probability of cases and controls of 

the trait.  
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Figure 4-5. Population simulation for simHAPRAP. 

SimHAPRAP program 

As illustrated in Figure 4-6, the simHAPRAP program is similar to HAPRAP except for several 

differences: Firstly, since genotypes and phenotypes are simulated, the haplotype effects are 

no longer used as latent variables. The random initial values of the marginal SNP effects are 

used directly to estimate joint SNP effects. The E-M algorithm is processed between 

estimated joint SNP effects and estimated marginal SNP effects. This means the E-step 

become linear regressions between the phenotype and genotype of each SNP respectively, 

whereas the M-step remains the same. After the estimated joint SNP effects converge, these 

effects are the optimal joint / independent SNP effects.  
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Figure 4-6. Flowchart for simHAPRAP. 

Stepwise backwards elimination  

The t-statistics are calculated using HAPRAP betas and simHR SEs, for each remaining SNP in 

the model: 

T	statistic	 = 	
±#∑∞#∑	K/]'

simHR	standard	error	
 

P values are transformed using the same way explained above. The SNP with the highest p 

value will be eliminated one by one until the optimal model is selected.  

4.2.3. Flowchart of HAPRAP program 

Figure 4-7 illustrates the workflow of the HAPRAP program in. The core of the program is the 

E-M algorithm. Other methods used in the program include: haplotype phasing tools, 

significant test, step-wise procedure and simHAPRAP program.  
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Figure 4-7. Workflow of HAPRAP program. 

4.2.4. HAPRAP web-based tool 

A web-based implementation of the HAPRAP program was developed using HTML and CSS 

language (Figure 4-8). The source code for this program is available to academic users on 

application to the authors. The webpage has been tested on an Ubuntu server running 

Apache 2 Web-server. The URL of HAPRAP home page is 
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http://apps.biocompute.org.uk/haprap  

 

Figure 4-8. HAPRAP web-based tool 

4.2.5. Sample datasets 

BWHHS individual-level dataset 

As described in the Chapter 2, 1980 BWHHS samples, which were genotyped by Illumina 

Cardio-MetaboChip were used for performance comparison (Shah et al., 2013b). I selected 

three genes associated with ECG traits and 14 genes associated with blood plasma traits. All 

the regions and associated traits are listed in Table 4-2. In total, 117 SNPs were selected 

within these regions. To prepare the input dataset for GCTA and HAPRAP, signal SNP model 

regression was conducted in R (code lm). MAF of the 117 SNPs were estimated using PLINK.  

Genomic regions Associated traits 

LIPC and LPL HDLc 

APOE, PVRL2, TOMM40, LDLR, SMARCA4, CELSR2 and APOB LDLc 
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APOE, LDLR, SMARCA4, PVRL2 and APOB TC 

NOS1AP QTc interval 

SCN5A and SCN10A PR interval 

Table 4-2. List of phenotypes and genotypes selected from BWHHS.  

To avoid the collinearity of the above multiple SNPs models, VIFs within each of the above 

genomic regions were estimated using R package 'car' (http://www.r-project.org/). All SNPs 

with VIF higher than 10 were eliminated one by one from the regression model until all 

remaining SNPs reached the VIF threshold.   

I phased the BWHHS unphased individual-level genotypes using PLINK. The haplotype letter 

(A, G, C or T) format was converted to numeric format (0 or 1) format using a python script I 

conducted (the script was attached in Chapter 9.5).  

1000 Genome individual-level dataset 

I used 1000 Genome individual-level data here for performance comparison. To increase the 

sample size, I combined 1000 Genome CEU unrelated individuals and British in England and 

Scotland (GBR) individuals. From the 117 selected SNPs, I removed SNPs not existing in 1000 

Genome and SNPs with VIF higher than 10. After filtering, 67 SNPs remained for the 

performance comparison. The principal-component analysis (PCA) of the 67 SNPs is 

illustrated in Figure 4-9. The PCA suggested that there is no population stratification 

between the CEU, GBR and BWHHS populations 
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Figure 4-9. The Multidimensional Scaling Plot of 1000 Genome CEU and GBP Population 

Together with BWHHS Individuals. Points in green are from the CEU population, points in red 

are from the GBR population and points in blue are from BWHHS. The three populations 

cluster together which suggests no population stratification between the populations.  

Simulations of artificial meta-analysis 

To conduct a performance comparison among existing methods and HAPRAP, simulations 

are needed.  

I conducted 2-SNPs models and 3-SNPs models for this simulation. There is no need to build 

any model containing more than 3 SNPs since no additional constraints on pair-wise 

disequilibrium values exist in a four loci situation, except those executed by the three loci 

combinations containing the two loci of interest (Robinson et al., 1991).   

The simulation starts with setting the parameters. To mimic complex three SNP models here, 

I firstly assumed that SNP1 is a top hit with independent effect of 1. SNP2 was set as 
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negative control without any independent effect. I used it to test whether the method can 

eliminate the bystander SNP. Moreover, SNP3 was set as a secondary signal with a small 

independent effect of 0.3. I set this effect size to test whether HAPRAP can detect this small 

effect even if the secondary SNP (SNP3) is in high LD to the top hit (SNP1). Since this 

approach is designed for common variants analysis, I set the MAFs as 0.4, 0.38 and 0.3 

respectively for SNP 1, 2 and 3 so that it will be easier to set different LD correlations 

between these SNPs.  

Using the same way described in Chapter 5.2.2 simHAPRAP section, I simulated the 

genotypes and phenotypes for 100,000 individuals for each model (Table 4-3) as a 

meta-analysis of 100,000 people. To calculate the marginal SNP effects (with standard 

errors), I conducted signal SNP model association test for each of the SNP. The MAF counts 

were estimated using PLINK. To mimic the situation that individual-level data sharing is 

unavailable for this meta-analysis. I only used meta-analysis summary statistics: the marginal 

SNP effects (with SE) and MAFs here. To test whether sample size of the reference genotype 

panel will affect the results, I randomly picked 10000, 5000, 1000, 500, 200, 175 or 150 

individual-level genotypes from the population pool. I used them as reference panel. The 

haplotypes were phased using PLINK function:  

plink	– file	data	– hap	mySNP. hlist	– hap − freq 

“data” file is the plink format data.ped and data.map file maintaining genotype information 

and mySNP.hlist as the following format:  

∗ ÀQ∑1	ÀQ∑2	ÀQ∑3 

Where the first character is an asterisk*, followed by a tab-delimited list of SNPs in the same 
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order as data.map.  

A. 2 SNPs Model 

model r2 between SNP1 and SNP2 

1 0.9 

2 0.8 

3 0.5 

4 0.2 

 

B. 3 SNPs Model 

model r2 between SNP1 and SNP2 r2 between SNP 1 and SNP3 

1 0.8 0.5 

2 0.8 0.3 

3 0.8 0.1 

4 0.5 0.5 

5 0.5 0.3 

6 0.5 0.1 

Table 4-3. Assumptions of Pair-Wise LD (r2) of SNPs Models for Population Simulations. A, 

four 2-SNPs models with different pair-wise r2 between SNP1 and SNP2. B, six 3-SNPs 

models with different pair-wise r2 between SNP1 & SNP2 and SNP1 & SNP3. 

4.2.6. Performance comparisons 

I tested the performance of HAPRAP against other existing methods, i.e. multiple regression 

(Generalized Linear Models coded as “glm” in R) and GCTA joint SNP effect analysis 

(http://www.complextraitgenomics.com/software/gcta/index.html). These approaches were 

applied to the following datasets.  
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BWHHS individual-level data 

I applied multiple regression, GCTA version1.2 and HAPRAP to BWHHS individual-level data.  

BWHHS summary statistics (marginal SNP effects, standard errors and MAFs) of the 117 SNPs 

and individual-level genotypes are used to process GCTA and HAPRAP. For multiple 

regression, which is the most established method for fine mapping, the joint SNP effects 

were estimated using the whole individual-level phenotypes and genotypes. For this reason, 

the results of multiple regression were assumed to be the “gold standard” for this 

comparison. I conducted two two-tailed t tests: the first one compared the HAPRAP betas to 

gold standard and second compared GCTA betas to gold standard. I drew histograms to 

check the distribution of these two sets of t-statistics. To compare the accuracy of HAPRAP 

and GCTA, I drew a QQ plot for the sorted and unsorted t-statistics.  

Moreover, I calculated the concordance correlation coefficients (noted as CCC) (Lin and 

Torbeck, 1998) between HAPRAP betas (or GCTA betas) and multiple regression joint SNP 

effects using a function in R package called “epiR” 

(http://cran.r-project.org/web/packages/epiR/epiR.pdf). CCC measures the agreement 

between two methods. It combines measures of both precision and accuracy to determine 

how far the betas deviate from the line of perfect concordance (the y=x line) 23. The method 

(HAPRAP or GCTA) with CCC estimates were closer to 1 got More tightly correlated with the 

gold standard. In addition, pair plots were drew between each pair of betas to compare the 

agreement between HAPRAP (GCTA) and multiple regression using a famous R graphic 

package “ggplot2” (http://cran.r-project.org/web/packages/ggplot2/index.html). 
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BWHHS summary statistics and 1000 Genome individual-level 

data 

I further compared the performance of HAPRAP and GCTA in the circumstance that only 

external genotypes are available. I used the BWHHS summary statistics (marginal SNP effects, 

standard errors and MAFs) of 67 SNPs and selected 1000 Genome CEU and GBP 

individual-level genotypes as reference panel. The same t test described in the above 

paragraph was conducted. Histograms and QQ plots were drawn for two sets of t-statistics 

as well. Scatter plots, CCC estimates and pair plots comparing multiple regression joint 

effects and HAPRAP betas or GCTA betas were conducted. 

An independent benchmark using simulated meta-analysis data 

I then compared the performance of HAPRAP and GCTA using the artificial meta-analysis I 

described in Chapter 5.1.5.  

In fact, the independent SNP effect I set (1, 0 and 0.3 for SNP1, 2 and 3 respectively) did not 

take into account the impact of sampling errors of the simulation, so I used multiple 

regressions joint SNP effects for the 100,000 individuals as gold standards in this comparison. 

For each model, I applied HAPRAP and GCTA using the summary statistics and the genotype 

reference panel for a specific sample size. Since multiple regression is not applicable to 

group-level data, so I applied multiple regression using individual-level phenotypes and 

genotypes from the reference panel. For each method, I repeated the process 1000 times. 

The mean and standard deviation of the 1000 replications were calculated. The difference 

between the mean of 1000 replications and the gold standards were noted as error of each 

method. The standard deviation of the 1000 replications was used to conduct the 95% CI. 
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Performance comparison for rarer variants using simulated 

meta-analysis data 

To test the performance of HAPRAP in rarer variant analysis, I performed a simulation for 

two SNPs with MAF < 0.1. I assumed that SNP1 has an independent SNP effect of 1 and SNP2 

is a bystander SNP without own effect. The minor allele frequencies of SNP1 and SNP2 are 

0.093 and 0.083 respectively. The pair-wise LD (r2) between the two SNPs is 0.9, which is 

extremely high. Sample size of the reference panel will be 10000, 5000, 1000, 500 and 100 

respectively.  

4.3. Results 

4.3.1. The independent benchmark of HAPRAP, 

GCTA and multiple regression using 

simulated meta-analysis data 

I compared the performance of three methods using simulated meta-analysis data. The 

comparison results were represented in Figure 4-10, Figure 8-1 and Table 8-8. These 

comparisons show that the sample size of the reference panel will affect the accuracy of all 

the methods. I found that with the increase of sample size of the reference genotype panel 

(N), the mean of the errors are nearer zero and the 95% CI of errors are narrower. A sample 

size of 500 or more will return relatively accurate results. When sample size is lower than 

175, which is the approximate number of Caucasians in the 1000 Genome project, the errors 

deviated too widely and it will be risky to rely on the conclusion of any analysis. In addition, 

the correlation between two SNPs increases with the increase of their pair-wise r2. This 
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increased difficulty of eliminating the bystander SNP will cause the mean and 95%CI of 

errors to become more deviated and wider.  

For the two SNPs models (Figure 4-10A, Figure 8-1A), the accuracies were similar between 

HAPRAP and GCTA when r2 is low to modest. When r2 is high (i.e. r2=0.8 and r2=0.9), HAPRAP 

outperforms GCTA in among different sample sizes of reference panels.  

For the three SNPs models (Figure 4-10B, Figure 8-1B), HAPRAP outperforms GCTA in almost 

all kinds of simulations I did. HAPRAP has major advantages against GCTA to estimate the 

independent effect of the secondary signal (SNP3) when r2 is high or modest.  

When comparing HAPRAP and GCTA results to multiple regression results using 

individual-level data of the reference panel (Figure 4-10C, Figure 8-1C), HAPRAP and GCTA 

both have a more accurate mean and narrower error bar compared to multiple regression.  
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Figure 4-10. Performance Comparison of HAPRAP, GCTA and Multiple Regression Using 

Meta-Analyses of the Simulated Populations. Error (represented as a bar) is defined as the 

difference between the multiple regression joint SNP effect and the mean (with 95% CI) of 

1000 replications. N is the number of individuals in the reference panel. (A) An example of 

the comparison between HAPRAP and GCTA for 2 SNPs with r2=0.8. (B) The comparison 

between HAPRAP and GCTA for3 SNPs, r2=0.8 between SNP1 and SNP2, and r2=0.5 between 

SNP1 and SNP3. (C) The comparison between HAPRAP, GCTA using meta-analysis data and 
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multiple regression using individual-level data from the reference panel. Two SNPs with r2 of 

0.5 were used here as an example. 

Performance comparison of rarer variants 

On the other hand, I compared the performance of HAPRAP against GCTA in rarer variants 

analysis. In the example of two SNPs with MAF < 0.1 and r2 = 0.9, HAPRAP outperform GCTA 

in different sample sizes (Table 4-4).  

SNP1 

 r2=0.9 

 HR_MEAN HR_SD Mreg_MEAN Mreg_SD GCTA_MEAN GCTA_SD 

10K 0.002579 0.011049 0.000874 0.239421 0.003993 0.03148 

5K 0.003626 0.015617 0.023512 0.344624 0.001064 0.04715 

1k 0.005342 0.038019 0.002425 0.804111 0.010605 0.112993 

500 0.014124 0.055718 0.001902 1.15045 0.052179 0.217501 

100 0.014404 0.122847 0.069349 2.682938 0.057968 0.292097 

SNP2 

 r2=0.9 

 HR_MEAN HR_SD Mreg_MEAN Mreg_SD GCTA_MEAN GCTA_SD 

10K 0.002847 0.012574 0.001868 0.249512 0.004604 0.03517 

5K 0.003952 0.017793 0.020453 0.359565 0.000881 0.052533 

1k 0.005489 0.043123 0.012581 0.843051 0.01035 0.124852 

500 0.014384 0.062825 0.013464 1.204385 0.054212 0.237283 

100 0.013037 0.154193 0.050376 2.783836 0.054051 0.324903 

Table 4-4. Performance Comparison of HAPRAP, GCTA and Multiple Regression Using a 

Simulated Population with Two Rare Variants. R2 is the pair-wise LD r2. N is the number of 

individuals in the genotypes reference panel. HR_MEAN (and HR_SD) are the means (and standard 

deviations (SD)) for differences between HAPRAP betas and multiple regression joint SNP effects. 

Mreg_MEAN (and Mreg_SD) are the means (and SDs) for differences between multiple regression 
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joint SNP effects of the reference panel and multiple regression joint SNP effects of the whole 

population. GCTA_MEAN (and GCTA_SD) are the means (and SDs) for differences between GCTA 

betas and multiple regression joint SNP effects.	

4.3.2. A performance comparison of HAPRAP 

against GCTA using BWHHS genotype 

data 

I conducted a performance comparison between HAPRAP and GCTA using the BWHHS 

individual-level data for 1980 individuals. As illustrated in Figure 4-11 A and B, the t-statistics 

for both HAPRAP against multiple regression and GCTA against multiple regression are 

normally distributed. The means of both t-statistics were near zero. The most deviated 

t-statistics were around 0.3 for both methods. After I converted t-statistics to t test p values, 

the most deviated p values were 0.746 and 0.785 for HAPRAP and GCTA respectively (Table 

8-9). This suggests that the results of HAPRAP and GCTA have no statistical differences 

compared to multiple regression results when individual-level data is available. As shown on 

the scatter plots in Figure 4-11 C and D, most of the t-statistics and p values were near the 

X=Y line, which means HAPRAP and GCTA are performing at approximately the same level 

when using the entire individual-level genotypes as a reference panel.   
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Figure 4-11. Performance comparison against HAPRAP and GCTA joint effect analysis using 

BWHHS unphased genotypes. I conducted a two tailed t-test to compare the difference 

between multiple regression (Mreg) joint SNP effects and HAPRAP / GCTA betas for all 117 

SNPs inside the region listed in Table 8-9. The entire BWHHS individual-level genotypes and 

phenotypes were used for the comparison. A histogram of T-statistics for Mreg betas vs 

GCTA betas (called GCTA T-statistics). B, histogram of T-statistics for Mreg betas vs HAPRAP 

betas (called HAPRAP T-statistics). C, QQ plot for GCTA T-statistics against HAPRAP 

T-statistics. D, QQ plot of GCTA against HAPRAP using -log10 (P) as a scale. The red line in C 

and D is the X=Y line. Detailed results were listed in Table 8-9. 
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Moreover, as shown in Figure 4-12 A and B, all the points of the scatter plots were close to 

the X=Y line, which suggests good correlations amongst the three methods. Mining further, I 

compared the concordance correlation coefficient analysis results. As illustrated in Table 4-5, 

HAPRAP had a slightly better agreement to multiple regression than GCTA (CCC estimate 

0.9982 for HAPRAP and 0.9978 for GCTA). The bias correction factor of HAPRAP is also closer 

to 1 than that of GCTA (bias correction factor 0.9997 for HAPRAP and 0.9996 for GCTA). For 

the pair plots shown in Figure 4-12 C (and results in Table 8-9), I found that most of HAPRAP 

betas are very close to gold standards (multiple regression joint SNP effects), whereas some 

of GCTA betas were apart from gold standards (multiple regression joint SNP effects). The 

above comparisons suggest that HAPRAP performs slightly better than GCTA when the 

individual-level genotypes are available for the entire cohort. 
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Figure 4-12. Performance Comparison of HAPRAP and GCTA Joint Effect Analysis Using 

BWHHS Unphased Genotypes.  

I drew scatter plots and pair plots to compare the differences between multiple regression 

(noted as Mreg), joint SNP effects and HAPRAP / GCTA betas for all 117 SNPs inside the 

region listed in Table 8-9. The entire BWHHS individual-level genotypes and phenotypes 

were used for the comparison. (A) Scatter plot of Mreg betas vs GCTA betas. (B) Scatter plot 
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of Mreg betas vs HAPRAP betas. The red line in (A) and (B) is the Y=X line. (C) Pair plot of 

Mreg betas, HAPRAP betas and Mreg betas. SNPs were sorted by Mreg betas in ascending 

order. The full circles represent the Mreg betas, clear triangles represent the HAPRAP betas 

and cross represent the GCTA betas. Detailed results were listed in Table 8-9. 

Methods Cohorts CCC  95% CI of CCC C.b 

HAPRAP vs Mreg BWHHS 0.9982 0.9975~0.9987 0.9997 

GCTA vs Mreg BWHHS 0.9978 0.9971~0.9984 0.9996 

HAPRAP vs Mreg 1000G 0.9922 0.9887~0.9946 0.9964 

GCTA vs Mreg 1000G 0.6129 0.5159~0.6944 0.7562 

Table 4-5. The Results of Concordance Correlation Coefficient Analysis. Notations: CCC 

represents the centre estimate of concordance correlation coefficient and 95% CI of CCC is 

the 95% confidence interval of the centre estimate. Closer the CCC estimates the better 

agreement of two methods. C.b refers to the bias correction factor, which is a measurement 

of how far the best-fit line deviates from a line at 45 degrees. No deviation from the 45 

degree line occurs when C.b = 1. 

4.3.3. A performance comparison of HAPRAP 

versus GCTA using 1000 Genome 

genotype data 

After further analysing the performance of HAPRAP and GCTA using BWHHS summary 

statistics and public available genotype data from 1000 Genome, I found that the t-statistics 

for both methods were normally distributed with means near zero. But the t-statistics 

deviated substantially this time (Figure 4-13 A and B). After I converted t-statistics to t test p 

values, the most deviated p value for HAPRAP was 0.412, which suggests that there are no 
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statistical differences between HAPRAP results and multiple regression results. In contrast, 

the most deviated t test p value for GCTA was 3.15x10-8, which suggests a significant 

difference between GCTA beta and multiple regression joint SNP effect of this SNP (Table 

8-10). So the GCTA results are not reliable in some cases when using 1000 Genome 

genotypes as reference panel.   

  

 

Figure 4-13. Performance comparison between HAPRAP and GCTA joint effect analysis using 

1000 Genome phased genotypes. The entire BWHHS summary statistics and 1000 Genome 

phased individual-level genotypes of 174 people (CEU and GBP) were used for the 

comparison. The histogram of T-statistics for GCTA and HAPRAP are normal distributed. 
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From C and D, some of the SNPs are apart from the X=Y line (red line), where HAPRAP got 

much larger t-test p values than HAPRAP. This suggests that when a small number of phased 

individual-level genotypes are available, HAPRAP performance better than GCTA. Detailed 

results were listed in Table 8-10. 

Furthermore, I found that the line of best fit for HAPRAP against multiple regression was 

again close to the Y=X line (Figure 4-14 A). In contrast, the line of best fit for GCTA against 

multiple regression had a large angle to the Y=X line (Figure 4-14 B). As the pair plots 

showed in Figure 4-13 C (and results in Table 8-10), HAPRAP betas were closer to multiple 

regression joint SNP effects than GCTA betas were. As represented in Table 4-5, CCC analysis 

results also suggest that HAPRAP got a much better agreement to multiple regression than 

GCTA (CCC estimate 0.9922 for HAPRAP and 0.6129 for GCTA). The bias correction factor of 

HAPRAP is much closer to 1 than that of GCTA as well (bias correction factor 0.9964 for 

HAPRAP and 0.7562 for GCTA). I then estimated the mean square error of the three 

methods (deviation between points and Y=X line). As shown in Table 8-10, HAPRAP’s mean 

square error (phased by SHAPEIT) is 10.84% lower than that of GCTA-COJO.  

These comparisons suggest that HAPRAP is much more reliable than GCTA when utilizing the 

1000 Genome individual-level genotypes together with meta-analysis summary statistics. 
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Figure 4-14. Performance Comparison Against HAPRAP and GCTA Joint Effect Analysis Using 

1000 Genome Phased Genotypes. (A) Scatter plot of Mreg t-statistics vs HAPRAP (SHAPEIT) 

t-statistics. (B) Scatter plot of Mreg t-statistics vs GCTA-COJO t-statistics. In (A) and (B), the 

longer light line is the Y=X line, the shorter dark line is the line of best fit. Inner zone and 

outer zone are the 95% confidence interval and prediction interval of the line of best fit 
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respectively. The full circles represent the Mreg betas, clear triangles represent the HAPRAP 

betas and cross represent the GCTA betas. Detailed results were listed in Table 8-10. 

4.4. Discussion 

In this chapter, I presented an EM style method, HAPRAP, which provides a new angle to 

perform regional association analysis using meta-analysis results. This method is built on the 

underlying biology of haplotypes, which lead to 3 significant advantages against GCTA-COJO: 

It is more accurate when LD measure r2 is high (i.e. r2 > 0.8) and sample size in the reference 

panel is low (i.e. N < 500). It is more accurate when analysing rare variants (i.e. MAF < 0.01) 

than methods using pair-wise LD; low MAF presents no barrier to performance 

Haplotype-based analyses lead to identification of the most informative SNP. The 

independent association SNP need not be the most strongly associated SNP within the 

genomic region.  

4.4.1. Advantages of HAPRAP 

From our independent benchmark, we proved that the performance of HAPRAP is 

comparable to multiple regression when all the individual-level phenotypes and genotypes 

are available.  

As mentioned in the introduction, most of the individual-level data will be not available 

when conducting a meta-analysis of published consortial data. We have proved in the 

independent benchmark that applying multiple regression to the available individual-level 

data, in a single accessible cohort, will return much less accurate results than using HAPRAP 

and GCTA-which utilize the same individual-level genotypes from one cohort but also make 
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use of the overall meta-analysis summary statistics. My performance comparison using the 

1000 Genomes Project data showed that HAPRAP’s mean square error was on average 10% 

lower than that of GCTA-COJO. Furthermore, the major difference between the two 

methods is that HAPRAP utilizes phased haplotypes whereas GCTA utilizes unphased 

genotypes.  

As I have mentioned in the introduction section, haplotypes contain more information than 

unphased genotypes. Thus, HAPRAP should have a theoretical advantage over GCTA for 

analysing individuals with accurate phased haplotypes. For instance, the 1000 Genome 

consortium (1000 Genomes Project Consortium et al., 2010) used Segmented HAPlotype 

Estimation and Imputation Tool (SHAPEIT) (Delaneau et al., 2013) to phase the genotypes 

with family information. I proved this advantage by using the admixture European 

population from the 1000 Genome data. Since the sample size of 1000 Genome data is still 

small (around 200 individuals for each major ethnic group), the risk of using it as a reference 

panel is relatively high. The errors of using the 1000 Genomes Project data as a reference 

panel are relatively high since the sample size is currently small (under the null, variance of 

LD correlation is 1/n with n being the sample size. Given n=200, the standard error of LD 

correlation estimate is ~0.07). However, for researchers not involved in the meta-analysis or 

those yet to use the data, it is still meaningful to use 1000 Genome data as a test dataset to 

get a general pattern for the multiple potentially associated SNPs in the region(s) of interest. 

With the development of open access genotype databases such as 1000 Genomes Project 

and HAPMAP phase 3 (International HapMap 3 Consortium et al., 2010), more and more 

free data will be available. HAPRAP’s accuracy advantage against GCTA will increase.  

In addition, GCTA adjusts genotypes based on MAFs of SNPs. The genotype for a certain SNP 

under the additive model will be 0-2p, 1-2p and 2-2p, where p is the reference allele 
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frequency of this SNP. This adjustment is due to the assumption that SNPs with lower MAF 

will have higher effects (Park et al., 2011), which will mislead the regression if this is the case. 

In contrast, HAPRAP uses haplotype frequencies instead of allele frequencies, which does 

not rely on the above assumption. This suggests that HAPRAP may have an advantage over 

GCTA for rare variants. The performance comparison of rarer variants also suggest that 

HAPRAP may have advantage against GCTA when MAF < 0.1. Moreover, we highlighted a 

rare variant in Apolipoprotein B (APOB), rs41288783, as an example in real world (Table S2). 

The SNP had a MAF of 0.0018 in BWHHS individuals. The joint SNP effect of this SNP 

estimated by HAPRAP is near to the gold standard comparing to the effect estimated by 

GCTA-COJO (gold standard: 0.731, HAPRAP: 0.705, GCTA-COJO: 0.449). 

4.4.2. Assumptions and limitations for HAPRAP 

There is an uncertainty when phasing haplotypes from genotypes. The haplotype phasing 

approach I selected is an E-M algorithm. It is not accurate especially when there are more 

than 10 SNPs in the model (Browning and Browning, 2011).  In fact, in the same paper, 

Browning SR et al illustrate that the phasing accuracy can be increased up to 98% by using 

hidden Markov model (HMM) haplotype phasing tools such as BEAGLE (Browning and 

Browning, 2009), IMPUTE2 (Howie et al., 2009) and MACH (Li et al., 2010). However, these 

tools are computationally expensive. I have opted to use empirical E-M algorithm here for 

two reasons. Firstly, the method is computationally fast. Secondly, it is almost impossible to 

identify 10 or more multiple associated SNPs in a specific genomic region and the errors 

caused by haplotype uncertainty are a minor issue in the step-wise elimination process.  

Moreover, if SNPs with a very high variance inflation factor (VIF) are included, HAPRAP will 

return extremely large betas for a pair of SNPs. So it is necessary to remove SNPs with VIF 
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higher than 10 step-wisely before applying HAPRAP.     

HAPRAP needs more time to finish the analysis than GCTA. The reasons for this are listed 

below. Firstly, HAPRAP needs time to phase haplotypes if the genotypes are unphased; 

secondly, it is time consuming to conduct the standard errors of the independent SNP effects 

using simHAPRAP. To improve the efficiency of HAPRAP, I developed the pre-significant test 

system to exclude insignificant SNPs from the model so that the only SNPs within the 

optimal model will be conducted.  For the 6 SNPs model of ABCG5-8 regions (Chapter 6), 

HAPRAP finished the pre-significant test within only 10 seconds but took another 622 

seconds (approximately 10 minutes) to calculate the standard errors of the remaining SNPs 

using simHAPRAP. I think it is still reasonable to use 10 minutes for a fine mapping analysis of 

a genomic region.  

Normally, two SNPs are unlikely to be in a strong LD if they are far away from each other. 

However, long-distance LD may occur during an extreme reduction in population size (note 

as a population bottleneck) (Zhang et al., 2004). For example, long-distance LD had been 

found over a few hundred kb in unrelated population (Sabeti et al., 2002). For convenience 

of analysis and simplicity of SNP models, I set a threshold of genomic regions of 1MB for 

HAPRAP so that it can process regional association analysis more efficiently. In some specific 

cases, two SNPs can be in strong LD even if they are more than 1MB to each other (Yang J et 

al, 2012). So I suggest checking long distance LD inside each chromosome after the optimal 

SNP models were identified by HAPRAP.  

4.4.3. Conclusion 

In this chapter, I have described the novel fine mapping method HAPRAP which I developed. 

This method uses haplotypes instead of genotypes to represent the LD correlation among 
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multiple SNPs. The method can be applied to both quantitative traits and disease outcomes. 

Compared to other related methods, the results of HAPRAP are highly consistent with 

multiple regression results using individual-level data. Moreover, HAPRAP consistently 

outperforms GCTA joint SNP effect analysis at group-level meta-analysis across different 

linkage disequilibrium (LD) correlations (r2) and sample sizes of reference panels. The E-M 

algorithm I have developed is computational fast but the standard error simulation needs 

time but still acceptable. This method is developed for region association analysis for SNPs 

within 1Mb.  
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CHAPTER 5. FINE MAPPING OF 
META-ANALYSIS 

GROUP-LEVEL DATA USING 
HAPRAP 

5.1. Introduction 

In Chapter 3, I have introduced the cardiovascular disease and the genetic variants 

associated with some CVD related phenotypes such as ECG traits and GBD traits. Other traits 

such as blood lipids traits and coagulation traits are also related to CVD risks. Identifying the 

genetic variants associated with these traits and interpreting the causality are of equal 

importance.  

5.1.1. Blood lipids traits  

Plasma lipids are mostly transported in a protein capsule. The major content of blood lipids 

are cholesterol and fatty acids. Cholesterol is an organic molecule which is an essential 

structural component of animal cell membranes that is required to establish proper 

membrane permeability and fluidity. Cholesterol also works as a precursor for the synthesis 

of steroid hormones, bile acids, and vitamin D (Hanukoglu, 1992). The liver cells normally 

produces more cholesterols than other cells in humans.  

Fatty acids are a kind of carboxylic acid with a long aliphatic tail. The tail can be either 

saturated or unsaturated. Most naturally synthesizing fatty acids have a chain of an even 

number of carbon atoms, from 4 to 28. Two important source of fatty acids are triglycerides 

and phospholipids. Fatty acids are important sources of energy for human beings since they 
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can yield large quantities of Adenosine triphosphate (ATP) when they metabolized. ATP is 

the most important element for intracellular energy transfer (Knowles, 1980). Many cell 

types can accept fatty acids as a source of energy, particularly, heart and skeletal muscle 

prefer fatty acids. The brain can use fatty acids as well (Marin-Valencia et al., 2013) 

Since lipids are not absorbed in water (such as bloodstream), lipoprotein molecules enable 

the transportation of cholesterol and triglycerides. In order of molecular size, lipoprotein 

can be categorized into chylomicrons, very low-density lipoprotein (VLDL), 

intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and high-density 

lipoprotein (HDL).The pathway of cholesterol and lipoprotein transport are shown in Figure 

5-1. 



189 
 

 

Figure 5-1. Cholesterol and lipoprotein transport pathways. Figure from PharmGKB 

(http://www.pharmgkb.org/pathway/PA2031) 

Blood lipids are modifiable risk factors for coronary artery disease (KANNEL et al., 1961) 

(Castelli, 1988). High lipid levels are also a leading cause of death (Lloyd-Jones et al., 2010). 

A lot of evidences have shown the association between lipid concentrations and 

cardiovascular disease incidence worldwide (Law et al., 2003) (Kuulasmaa et al., 2000) 

(Clarke et al., 2007). Plasma concentrations of total cholesterol (TC), low-density lipoprotein 

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) are 
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heritable risk factors for cardiovascular disease and targets for therapeutic intervention 

(Kathiresan et al., 2007). Environmental factors such as smoking, diet and physical activity all 

play a role in determining individual lipid profiles. Moreover, previous family studies suggest 

that genetic constitutions may contribute to half of the variation in these traits in many 

populations (Pilia et al., 2006) (Pollin et al., 2004). A previous GWAS study identified 95 loci 

associated with blood lipids, accounting for 10%~12% of total trait variance (Teslovich et al., 

2010). Recently meta-analysis of even more GWASs combining European and 

non-European-ancestry individuals identified 157 loci associated with lipid levels at P < 5 x 

10-8 (Global Lipids Genetics Consortium et al., 2013). 

HDL cholesterol 

Ranked by size, HDL is the smallest particles of the lipoprotein. HDL particles move fat acids 

and cholesterol out from cells, including within artery wall atheroma and transport it back 

to the liver for excretion or re-utilization. So the cholesterol carried within HDL particles 

(HDL-C) is sometimes called "good cholesterol". A person with higher levels of HDL-C tend to 

have a better cardiovascular health (Sirtori and Fumagalli, 2006), while those with low 

HDL-C cholesterol levels (especially less than 40 mg/dL or about 1 mmol/L) have increased 

rates for heart disease (Toth, 2005). Epidemiological studies have highlighted the 

antiatherogenic function of HDLC and showed that an increase of 1 mg/dL in HDLC levels is 

associated with a 2% and 3% decrease in risk of coronary artery disease in men and women, 

respectively. 

As shown in Table 8-11, previous GWASs have identified 107 SNPs associated with HDL-C. 

Some well-known gene such as Cholesteryl ester transfer protein (CETP), lipase hepatic (LIPC) 

and lipoprotein lipase (LPL) were fine mapped. CETP, which located on chromosome 16q21, 
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transfers cholesteryl esters between lipoproteins. CETP could be targeted in CETP deficient 

individuals to increase HDL-C levels (Agerholm-Larsen et al., 2000). To be able to identify 

suitable targets, it will be necessary to fine map these genomic regions. Multiple associated 

SNPs were identified using both European-descent based and African-descent based 

meta-analysis (Teslovich et al., 2010) (Buyske et al., 2012). LPL encodes lipoprotein lipase. It 

is expressed in cell types such as heart, muscle, and adipose tissue. LPL functions as a 

homodimer, and has the dual functions of triglyceride hydrolase and ligand/bridging factor 

for receptor-mediated lipoprotein uptake. LIPC, which encodes hepatic triglyceride lipase, is 

an important enzyme in HDL metabolism. It is mostly expressed in liver.  

LDL cholesterol 

LDL molecules can transport their content of many fat molecules into artery walls, attract 

macrophages, and thus drive atherosclerosis. So they are often noted as bad cholesterol for 

human beings. High concentrations of LDL cholesterol are associated with increased risk of 

coronary artery disease (CAD) and the leading cause of death in United States (Roger et al., 

2012). LDL-C level is influenced by the environment factors and genetic factors. Among the 

total variation, approximately 40%–50% of them is heritable (de Miranda Chagas et al., 

2011).  

As shown in Table 8-12, previous GWASs have identified 73 loci associated with LDL, which 

only explained 10%-12% of the total variance in LDL-C (Teslovich et al., 2010).  

A recently fine mapping study of five LDL cholesterol associated loci claimed that variants 

with the strongest association were often substantially different in effect allele frequencies 

and effect sizes from those identified by GWAS (Sanna et al., 2011). To explain the missing 

heritability and to replicate the GWASs results, fine mapping is needed for candidate gene 
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regions such as Apolipoprotein E (APOE), Poliovirus Receptor Related 2 (PVRL2), Translocase 

Of Outer Mitochondrial Membrane 40 Homology (TOMM40), Low-Density Lipoprotein 

Receptor (LDLR), Cadherin, EGF LAG Seven-Pass G-Type Receptor 2 (CELSR2) - 

Proline/Serine-Rich Coiled-Coil 1 (PSRC1) region and Apolipoprotein B (APOB).  

APOE is a gene with three major isoforms: ApoE2 (cys112, cys158), ApoE3 (cys112, arg158), 

and ApoE4 (arg112, arg158) (Ghebranious et al., 2005). These isoforms are defined by the 

combinations of two SNPs rs429458 and rs7412 (Table 5-1).  

�  rs429358 rs7412 

E2 T T 

E3 T C 

E4 C C 

Table 5-1. Three major isoforms of APOE gene 

E2 can be found in approximately 7% of the population 

(http://www.alzgene.org/meta.asp?geneID=83). E2 is associated with increased risk for 

atherosclerosis and Parkinson’s disease (Breslow et al., 1982) (Feussner et al., 1998) (Civeira 

et al., 1996) (Huang et al., 2004). For E3, it is the most common APOE genotype which can 

be found in approximately 79% of the population 

(http://www.alzgene.org/meta.asp?geneID=83). More important, E4 has been associated 

with disorders such as atherosclerosis (Federoff et al., 2012), Alzheimer's disease (Mahley, 

1988) (Corder et al., 1993), impaired cognitive function (Strittmatter et al., 1993) (Deary et 

al., 2002). Its prevalence is about 14% of the population 

(http://www.alzgene.org/meta.asp?geneID=83).  
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LDLR is a protein coding gene located in chromosome 19p3.2. It binds LDL and transport it 

into cells by endocytosis. Mutation in LDLR is also associated with hypercholesterolemia 

(http://www.genecards.org/cgi-bin/carddisp.pl?gene=LDLR).  

In addition, APOB is a protein-coding gene of Apolipoprotein B, which is a major protein 

constituent of chylomicrons, LDL and VLDL 

(http://www.genecards.org/cgi-bin/carddisp.pl?gene=APOB).   

Triglycerides (TG) 

TG is an ester derived from glycerol and three fatty acids. As a part of the plasma lipid, it 

helps enable the double sided transference of adipose fat and blood glucose from the liver. 

As other blood lipids, TG level is heritable risk factors for cardiovascular disease (Namboodiri 

et al., 1985) (KANNEL et al., 1961) (Miller and Miller, 1975).  

As shown in Table 8-13, totally 79 SNPs were found to be associated with TG from previous 

GWASs. I will fine mapping candidate genes such as Zinc Finger Protein 259 (ZNF259), 

Apolipoprotein A-V (APOA5), BUD13 Homolog (BUD13), LINC00900 long intergenic 

non-protein coding RNA 900 (LOC283143) and LPL (which is associated with HDL-C level as 

well) in this chapter. For example, the common LPL nonsense mutation S477X (rs328) in this 

region is known to be associated with TG. And multiple associated signals were found by the 

previous GWASs (Table 8-13).   

Total cholesterol (TC) 

Until now, 62 SNPs were proved to be associated with TC which explained 12.4% of the total 

heritability (Global Lipids Genetics Consortium, 2013). Table 8-14 listed the most recent 15 
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SNPs found to be associated with TC. Candidate genes such as APOE, LDLR, PVRL2 and APOB 

need further fine mapping.  

5.1.2. Coagulation 

Plasma levels of coagulation factors such as VII (FVII), VIII (FVIII) and von Willebrand factor 

(vWF) is the basis of hemostasis, which prevents life-threatening blood loss from damaged 

blood vessels. Both coagulation factors VII and VIII are produced in liver and play a key role 

in the initiation and propagation of fibrin formation (Smith et al., 2010b). Increased 

circulating levels of FVIII and vWF will increase risk of several thrombosis (Koster et al., 

1995) (Folsom, 2001). Deficiency in FVII and vWF are causality of Hemorrhagic complications 

(Cooper et al., 1997) (Acharya et al., 2004). X-linked deficiency in FVIII, which is called 

haemophilia A clinically, is associated with hemorrhagic complications as well (Antonarakis 

et al., 1987). Plasma levels of these factors will be influenced by both environmental and 

genetic factors (Conlan et al., 1993) (de Lange et al., 2001).  

Factor VII 

In the tissue-factor pathway, activated FVII is a catalyst for factor X (FX) activation, which 

converts prothrombin to thrombin. The heritability estimate of FVII is from 0.53 to 0.63 

(Smith NL et al, 2010). Table 8-15 shown 4 SNPs associated with FVII from previous GWASs.  

Factor VIII 

During the propagation process, activated FVIII can activates FX when the activated factor IX 

present. The heritability estimate of FVIII is from 0.4 to 0.61 (Smith et al., 2010b). Table 8-16 

shown 11 SNPs associated with FVII from previous GWASs.  
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Von Willebrand (vWF) 

Von Willebrand factor is produced by endothelial cells and megakaryocytes, andplays 

multiple roles in hemostasis. Firstly, it acts as an adhesion molecule that anchors platelets to 

exposed collagen after endothelial cell damage. Secondly, serves as a carrier protein for 

FVIII, therefore extending the half-life of FVIII. The heritability estimate of vWF is from 0.31 

to 0.75 (Smith et al., 2010b). Table 8-17 shown 11 SNPs associated with vWF from previous 

GWASs. 

To sum up, there are only a limited number of SNPs reported to be associated with 

coagulation factors. I will fine map the following genomic regions using HAPRAP and GCTA: 

F7, F10, PROCR, TRPC4AR and MYH7B for FVII; ABO, OBP2B, SURF4, C9orf96, ADAMTS13, 

CACFD1 and GBGT1 for FVIII; ABO, OBP2B, SURF4, C9orf96, ADAMTS13, CACFD1, MED22, 

SLC2A6 and GBGT1 for vWF.  

5.1.3. Other CVD related traits 

C-reactive protein (CRP) 

C-reactive protein, which is found in blood, is a pattern-recognition molecule of innate 

immunity. Low level of plasma concentrations of CRP is an independent predictor of 

diseases such as incident metabolic syndrome, type 2 diabetes, myocardial infarction, and 

stroke in both men and women (Ridker et al., 1997) (Pradhan et al., 2001) (Laaksonen et al., 

2004) (Ridker et al., 2002) (Han et al., 2002). CRP levels will be affected by both 

environmental factors, such as obesity, smoking and hormone-replacement therapy, and 

genetic factors (Hage and Szalai, 2007). Previous GWASs have provided insight into 

mechanisms underlying relationships between CRP, insulin resistance, metabolic syndrome, 
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and vascular events (Table 8-18). Further analysis is need for candidate genes such as APOE, 

CRP, NHF1A and C12orf43.  

Interleukin 6 (IL6) 

Interleukin 6 encodes a cytokine that works in inflammation and maturation of B cells. So its 

function is associated with several inflammation diseases such as diabetes mellitus and 

systemic juvenile rheumatoid arthritis 

(http://www.genecards.org/cgi-bin/carddisp.pl?gene=IL6).  

Bilirubin 

Bilirubin is a major component of bile and it is the breakdown product of heme catabolism.  

Increased levels of serum bilirubin is associated diseases such as gallstone disease. 

Moreover, the inverse correlation between bilirubin levels and atherosclerosis risk had been 

found and supported by meta-analysis (Hunt et al., 2001) (Djoussé et al., 2001) (Novotný 

and Vítek, 2003), which suggests that it can be protective.  

The heritability of bilirubin levels had been identified by family-based studies (Kronenberg 

et al., 2002) (Lin et al., 2003) (Clementi et al., 2007). Furthermore, linkage analyses 

identified the UGT region on chromosome 2q37.1 as the major genomic region for bilirubin 

levels (Kronenberg et al., 2002) (Lin et al., 2003).  

Pervious GWASs found 38 SNPs associated bilirubin, which is listed in Table 8-19. UGT and 

USP40 will be extremely interesting regions to follow-up.  
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Serum urate (surate) 

Uric acid is a heterocyclic compound with the formula C5H4N4O3. It is the end product of 

purine metabolism in humans. Urate is known as the salts forms from uric acid. 

Approximately 70% of urate disposal occurs via the kidneys. Impaired renal excretion leads 

to hyperuriccemia in 5~25% of the human population (Becker and Jolly, 2006). 

Hyperuricemia will lead to development of gout, which is an inflammatory arthritis, in about 

10% of the population.  

Until now, 68 SNPs were identified to be associated with urate by previous GWASs (Table 

8-20). SLC2A9 gene, which is the first gene to be found by GWASs, is a known fructose 

transporter (Manolescu et al., 2007).  

5.1.4. Atopic Dermatitis 

Atopic dermatitis, also called eczema, is a common chronic inflammatory skin diseases with 

prevalence of 20% in children and 3% in adults. It is commonly starts during infancy. Food 

allergy, asthma and rhinitis are often occurs in eczema patients. Its clinical characters 

includes dry skin, intense pruritus and age-related inflammatory lesisons (Bieber, 2008). Key 

components affecting the development of atopic dermatitis include change in skin barrier 

function and immunologic abnormalities. Further research is needed to identify the exact 

molecular mechanisms of atopic dermatitis.  

Atopic dermatitis is strongly inherited. Until now, 28 SNPs were reported to be associated 

with atopic dermatitis (Table 5-21). Specific genomic regions such as FLG in chromosome 1, 

C11orf30 in chromosome 11 need further investigation. 
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5.1.5. Aims and Objectives 

In the above section, I have listed the traits and their associated genomic regions I am 

interested in. I would conduct fine mapping to these candidate genes using meta-analysis 

summary results directly. In Chapter 5, I have presented the novel fine mapping method 

HAPRAP and compare its performance with other methods. In this chapter, I will focus on 

the application of HAPRAP and GCTA joint SNP effect analysis to these traits. Secondary 

association signals will be identified using meta-analysis summary results directly.   

Objectives 

l Further fine mapping the ECG traits and GBD traits  

l Fine mapping the four major blood lipids traits 

l Fine mapping coagulation traits 

l Fine mapping other CVD related traits including  

l Fine mapping another binary traits, atopic dermatitis.  

l Compare the difference of meta-analysis results between using fix effect model and 

random effect model  
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5.2. Methods and Materials 

5.2.1. Sample datasets 

BWHHS individual-level data 

BWHHS individual-level genotypes of 1980 elder ladies from 60-79 years old were used in 

this chapter as the reference genotype panel. The individual-level genotypes were 

genotyped using the Metabochip chip for these ladies. The BWHHS cohort was pre-phased 

using MACH (Li et al., 2010) and imputed using the 1000 Genomes CEU reference panel on 

the imputation tool minimac (Howie et al., 2012). 

UCLEB Meta-analysis of CVD related traits 

I used summary statistics of UCLEB meta-analysis on totally 14959 individuals.  

The UCLEB meta-analysis of ECG traits included three participating studies on totally 7106 

individuals: the BWHHS (Lawlor et al., 2003), the British Regional Heart Study (BRHS) 

(Shaper et al., 1981) and the Whitehall II study (WHII) (Marmot et al., 1991).  

The UCLEB meta-analysis of blood lipids traits included eight participating studies on totally 

14959 individuals: MRC NSHD (Wadsworth et al., 2006), ELSA (Marmot et al., 2003), ET2DS 

(Price et al., 2008), EAS (Fowkes et al., 1991), CAPS (Bainton et al., 1992), BWHHS, BRHS and 

WHII.  

The UCLEB meta-analysis of vWF and FVII included five participating studies on totally 9009 

individuals: EAS, CAPS, BWHHS, BRHS and WHII. Besides, FVIII meta-analysis included four 

independent studies on totally 5872 individuals: EAS, CAPS, BWHHS and BRHS. 
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For other traits, CRP included seven studies on totally 11545 individuals: ELSA, ET2DS, EAS, 

CAPS, BWHHS, BRHS and WHII. IL6 included six studies on totally 9541 individuals: ET2DS, 

EAS, CAPS, BWHHS, BRHS and WHII. Bilirubin included four studies on totally 6530 

individuals: ET2DS, CAPS, BWHHS and BRHS. Serum urate included two studies on 4242 

individuals: BWHHS, BRHS 

Meta-analysis of GBD 

I used meta-analysis summary statistics of a consortium analysis of gallbladder disease (GBD) 

(Rodriguez et al., 2014). The meta-analysis included three individual studies from both UK 

and USA: the Atherosclerosis Risk in Communities Study (ARIC) (The ARIC investigators, 

1989), the Whitehall I (WHI) (The Women’s Health Initiative Study Group, 1998) and the 

BWHHS. Totally 15213 individuals were included in this meta-analysis.  

EAGLE consortium meta-analysis of atopic dermatitis 

The EGALE consortium meta-analysis of atopic dermatitis was used in this section 

(Paternoster et al., 2012). Totally 119496 European individuals were involved in the 

meta-analysis. Details of individual studies involved in this meta-analysis were listed in 

Chapter 2.1.7).  

5.2.2. Fine mapping for GBD outcomes 

HAPRAP is appropriate to case-control studies. I demonstrated this by using meta-analysis 

summary statistics of the consortium analysis of gallbladder disease (GBD) and 

individual-level genotypes using the HumanCVD chip for 3078 BWHHS individuals. I selected 

two head to head genes, ABCG5 and ABCG8, as an example. This region has been previously 
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shown to contain multiple associated SNPs with GBD (Buch et al., 2007). Based on the 

summary statistics from the meta-analysis, eight SNPs were significantly associated with 

GBD in this region. Two of them were removed because of high VIF. I applied HAPRAP and 

GCTA to the remaining six SNPs with meta-analysis p values smaller than 5x10-5 (Table 8-22).   

5.2.3. Fine mapping for UCLEB meta-analysis of 

CVD related traits 

I applied HAPRAP using summary statistics from the UCLEB meta-analysis on totally 13 

different traits. I used 1980 BWHHS individuals of recent European ancestry, which is 

genotyped using MetaboChip, as a reference genotype panel. As I have mentioned above, 

BWHHS cohort is part of the UCLEB meta-analysis. The meta-analysis significant p value 

cut-off is 1 x 10-5. For quality control of SNPs, I used the most likely genotypes of the 

imputed SNPs and excluded SNPs with MAF <0.05. SNPs with VIF < 10 were selected for 

further fine mapping. 

For ECG traits, I focused on the NOS1AP region, which has been previously reported to be 

associated with QTc interval and SCN5A-SCN10A region associated with PR interval.  

For plasma lipids traits, I selected three regions associated with HDL-C: CETP-HERPUD1, LIPC 

and LPL associated with HDL; seven regions associated with LDL-C: APOE, PVRL2, TOMM40, 

LDLR-SMARCA4, CELSR2, APOB and PCSK9; five regions associated with TG: ZNF259, APOA5, 

BUD13, LOC283143 and LPL; four regions associated with TC: APOE, LDLR-SMARCA4, PVRL2 

and APOB.   

For coagulation traits, I chose five regions associated with FVII: F7, F10, PROCR, TRPC4AP 

and MYH7B; seven regions associated with FVIII: ABO, OBP2B, SURF4, C90rf96, ADAMTS13, 
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CACFD1 and GBGT1; nine regions associated with vWF: ABO, OBP2B, SURF4, C9orf96, 

ADAMTS13, CACFD1, MED22, SLC2A6 and GBGT1.  

For other traits, I selected IL6 gene associated with IL6; SLC2A9 gene associated with sUrate; 

four genes associated with CRP: APOE, CRP, HNF1A and C12orf43; three regions associated 

with bilirubin: UGT, USP40 and SLC22A3.   

Totally 394 meta-analysis significant SNPs passed the quality control process for the above 

regions. The SNPs, their genomic regions and their relative traits were listed in Table 8-23.  

For all the above traits, the p value threshold of the fine mapping analysis was 5 x10-5. 
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5.2.4. Fine mapping for Atopic Dermatitis  

I applied HAPRAP to summary statistics from the EAGLE genome-wide association 

meta-analysis of atopic dermatitis, made available to me by the EAGLE consortium. The 

meta-analysis was conducted using European only individuals and a fixed effect model. All 

SNPs reach the meta-analysis significance of p value < 5 x 10 -8 were selected for the further 

fine mapping analysis.  

9233 ALSPAC individuals were use as the genotype reference panel for HAPRAP. The EAGLE 

consortium aim to set more accurate conditional analysis p value threshold in each 

candidate region. To achieve that, the EAGLE consortium used the SNP spectral 

decomposition (SNPSpD) method to calculate the number of effective tests in each region 

(Nyholt, 2004) and the conditional analysis p-value threshold for each region were then 

calculated based on the number of effective tests. The p-value threshold provided by the 

EAGLE consortium were listed in Table 5-2.  

       Chr P value threshold       Start region End region 

1 6.45E-06 150250000 154500000 

2 9.29E-05 102777103 103277103 

3 9.85E-05 112180000 112641174 

3 9.82E-05 52838790 53338790 

4 1.30E-04 122993592 123493592 

5 0.00012 131741085 132150000 

6 6.31E-06 32325524 32825524 

6 1.14E-05 31216217 31716217 

8 1.60E-04 81090000 81340000 

10 7.34E-05 6020000 6288853 

10 8.03E-05 64119999 64619999 
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11 9.26E-05 65309266 65809266 

11 7.52E-05 76031593 76531593 

11 2.20E-04 128040000 128190000 

14 9.32E-05 35309126 35809126 

16 6.27E-05 10979589 11479589 

17 1.00E-04 40278131 40778131 

19 6.91E-05 8539722 9039722 

20 5.24E-05 62053115 62553115 

Table 5-2. P value threshold for each atopic dermatitis candidate region.  

5.3. Results 

5.3.1. Fine mapping of GBD outcomes 

I conducted the fine mapping analysis of loci associated with GBD using both HAPRAP and 

GCTA. Both methods identified rs4299376 and rs4953023 as independent effect SNPs (Table 

5-3). Besides, both methods return similar joint SNP effects and standard errors, which 

proved the suitability of HAPRAP in the case-control study.  

SNP 

          �  HAPRAP �  GCTA 

 CHR  POS     MAF  �  BETA SE p value �  BETA SE p value 

rs4299376  2  43926080     0.315  
 
-0.223 0.033 8.86x10-12 

 
-0.221 0.033 1.92x10-11 

rs4953023  2  43927504     0.066  �  0.688 0.054 5.87x10-38 �  0.712 0.053 5.50x10-41 

 Table 5-3. HAPRAP and GCTA joint effect analysis of identifying two independent effect 

SNPs associated with gallbladder disease in ABCG 5 and 8 regions. 

5.3.2. Fine mapping for ECG traits 

I processed the fine mapping analysis using UCLEB meta-analysis results of ECG traits. For 

NOS1AP gene associated with QTc interval, I identified three jointly associated SNPs: 
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rs10429888, rs16857031 and rs10918859 using HAPRAP (Table 5-4). In contrast, GCTA only 

detected the top hit, rs12143842, as independent. 

For SCN5A-10A region associated with PR interval, I identified three independent effect 

SNPs: rs12635898, rs73056438, rs6801957 using HAPRAP. In comparison, GCTA identified 

the same three SNPs as HAPRAP.  

5.3.3. Fine mapping for lipids traits 

I performed the fine mapping analysis using UCLEB meta-analysis results of plasma lipids 

traits. As shown in Table 5-5, totally 41 SNPs in 14 loci have multiple association SNPs for 

four lipids traits: 5 SNPs in 2 loci associated with HDL-C; 9 SNPs in 4 loci associated with 

LDL-C; 19 SNPs in 4 loci associated with TG and 8 SNPs in 3 loci associated with TC. 

5.3.4. Fine mapping for coagulation traits 

I conducted the fine mapping analysis using UCLEB meta-analysis results of coagulation 

traits. As shown in Table 5-6, totally 50 SNPs in 15 loci have multiple association SNPs for 

four lipids traits: 2 SNPs in F7 gene associated with FVII; 13 SNPs in 5 loci associated with 

FVIII and 35 SNPs in 9 loci associated with vWF. 
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SNP Chr. Location (bp) Nearest gene Ref Allele MAF 

UCLEB meta-analysis �  HAPRAP, haplotypes from BWHHS 

BETA Std Err P �  BETA Std Err P 

rs10429888 1 162024987 NOS1AP A 0.1291 4.0402 0.6642 1.18x10-9  3.7071 0.642 8.07x10-9 

rs16857031 1 162112910 NOS1AP G 0.1469 2.8277 0.6276 6.61x10-6 
 

2.8386 0.6082 3.104x10-6 

rs10918859 1 162169268 NOS1AP A 0.1784 3.5747 0.5825 8.41x10-10 �  2.5991 0.5553 2.913x10-6 

             

rs12635898 3 38601069 SCN5A-10A A 0.3909 2.5793 0.4753 5.73x10-8  2.9567 0.4916 1.84x10-9 

rs73056438 3 38646478 SCN5A-10A A 0.3572 2.6866 0.5318 4.38x10-7  3.7213 0.5575 2.66x10-11 

rs6801957 3 38742319 SCN5A-10A A 0.4526 3.9874 0.4243 5.61x10-21  4.4573 0.4492 4.69x10-23 

Table 5-4. Summary of multiple associated SNPs at NOS1AP for QTc interval and SCN5A-10A for PR interval. The UCLEB meta-analysis betas 

are the marginal SNPs effects of the SNPs. For the HAPRAP analysis, UCLEB meta-analysis summary statistics and individual-level haplotypes 

from 1980 BWHHS individuals were used. The HAPRAP betas are the independent SNP effects of the SNPs. Chr represents the chromosomes 

of the SNPs. MAF represent the minor allele frequencies of the SNPs. The Standard errors are noted as Std Err and the P values are noted as P. 
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Locus Chr independent SNP traits Allele Freq Beta P HAPRAP Beta HAPRAP P GCTA Beta GCTA P 
CETP 16 rs12708967 HDL C 0.3016 -0.0617 1.87E-33 -0.0386 5.89E-07 -0.0367 7.25E-12 
CETP 16 rs3764261 HDL A 0.4449 0.0822 7.35E-80 0.0795 1.42E-36 0.0589 1.26E-36 
CETP 16 rs5883 HDL A 0.1264 0.0566 7.49E-10 0.095 7.52E-15 0.0913 1.35E-21 
LIPC 15 rs1077834 HDL G 0.2593 0.049 2.54E-23 0.0327 0.002136 0.033149 1.26E-05 
LIPC 15 rs261338 HDL A 0.2205 0.0517 3.35E-21 0.0225 0.055035 0.023354 0.006117 
LPL 8 chr8:19868772 HDL G 0.3227 0.0399 3.98E-19 0.0377 3.42E-10 0.037656 9.08E-17 
LPL 8 chr8:19959564 HDL G 0.3155 0.0302 1.88E-11 0.0271 4.02E-06 0.027087 2.11E-09 

APOE 19 rs769449 LDL A 0.2098 0.2097 9.61E-32 0.1671 7.52E-18 0.1739 6.03E-22 
APOE 19 chr19:50103919 LDL A 0.1762 -0.484 9.00E-107 -0.4606 2.02E-79 -0.4603 1.17E-93 
PVRL2 19 rs7254892 LDL A 0.1303 -0.4105 3.84E-34 -0.3762 1.27E-19 -0.39478 3.45E-31 
PVRL2 19 rs6857 LDL A 0.2414 0.2042 1.37E-35 0.1912 1.25E-26 0.196799 6.18E-33 

TOMM40 19 rs2075650 LDL G 0.2243 0.2018 3.40E-33 0.1917 3.04E-26 0.205764 2.38E-34 
TOMM40 19 chr19:50092587 LDL A 0.2384 -0.3502 2.98E-24 -0.3207 3.36E-15 -0.35984 3.56E-25 

LDLR 19 rs6511720 LDL A 0.202 -0.1922 3.59E-27 -0.1868 2.58E-19 -0.18776 1.08E-25 
LDLR 19 rs2738447 LDL A 0.4291 -0.0608 7.68E-07 -0.0525 0.000205 -0.05341 1.48E-05 

CELSR2 1 chr1:109618715 LDL G 0.2823 -0.1502 7.73E-26 -0.1264 5.73E-08 -0.12102 3.09E-09 
CELSR2 1 chr1:109618768 LDL G 0.3629 -0.1127 5.66E-19 -0.0279 0.17683 -0.0364 0.044382 
APOB 2 rs41288783 LDL A 0.2504 0.9996 1.36E-06 0.9255 1.46E-05 0.993053 4.29E-05 
APOB 2 rs1367117 LDL A 0.369 0.1163 1.15E-20 0.0819 2.95E-08 0.090326 3.44E-12 
APOB 2 chr2:21124828 LDL A 0.2278 -0.1629 7.52E-23 -0.1286 1.93E-11 -0.13141 2.64E-14 

ZNF259 11 rs6589566 TG G 0.2199 0.1362 7.91E-27 0.1458 8.76E-36 0.144344 1.30E-29 
ZNF259 11 chr11:116160810 TG A 0.2184 0.1387 7.02E-27 0.1485 3.61E-35 0.146956 9.83E-30 
APOA5 11 chr11:116167541 TG A 0.2187 0.1359 1.74E-26 0.1449 1.71E-34 0.144304 3.62E-29 
APOA5 11 chr11:116168917 TG G 0.211 0.1444 4.18E-27 0.1539 7.29E-34 0.153089 6.94E-30 
BUD13 11 chr11:116137710 TG A 0.2205 0.1311 1.19E-25 0.1408 3.76E-32 0.139785 1.03E-28 
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BUD13 11 rs10790162 TG A 0.2194 0.1356 1.23E-26 0.1452 2.02E-35 0.14429 1.43E-29 
LOC283143 11 chr11:116031077 TG A 0.2293 0.09 2.32E-14 0.1855 1.69E-16 0.154655 6.24E-23 
LOC283143 11 chr11:116038377 TG C 0.3288 0.0775 2.34E-06 -0.442 1.67E-27 0.490813 2.87E-85 
LOC283143 11 chr11:116063637 TG A 0.3275 0.0442 2.25E-09 0.0611 1.41E-07 0.036298 6.22E-05 
LOC283143 11 chr11:116083427 TG G 0.3533 0.0507 6.44E-06 -0.1791 1.01E-17 0.317944 3.31E-81 
LOC283143 11 rs7350481 TG A 0.212 0.1193 2.62E-19 -0.1867 1.92E-05 -0.06491 0.026156 
LOC283143 11 chr11:116099040 TG A 0.1983 0.1556 1.36E-13 0.2278 2.07E-11 0.427106 4.90E-47 
LOC283143 11 chr11:116109242 TG G 0.2243 0.1175 1.46E-22 -0.1986 8.31E-07 0.026689 0.369999 
LOC283143 11 chr11:116112578 TG A 0.2171 0.1298 1.16E-24 0.319 1.03E-18 0.183769 1.55E-12 
LOC283143 11 chr11:116115504 TG G 0.3046 -0.0494 1.13E-08 -0.0685 9.05E-11 -0.05613 1.92E-08 
LOC283143 11 chr11:116116667 TG A 0.2301 0.1178 1.19E-16 0.3036 1.15E-13 0.221831 1.15E-22 
LOC283143 11 chr11:116117338 TG G 0.2297 0.1125 2.27E-21 0.1353 7.93E-06 0.146775 3.02E-07 

LPL 8 rs10096633 TG A 0.2527 -0.0939 1.39E-23 -0.0606 6.76E-10 -0.06653 7.81E-11 
LPL 8 chr8:19914551 TG A 0.3402 -0.074 1.26E-24 -0.0527 2.80E-13 -0.05441 3.59E-12 

APOE 19 rs769449 TC A 0.2102 0.2101 2.87E-26 0.1397 3.55E-09 0.157471 2.54E-14 
APOE 19 chr19:50103919 TC A 0.1763 -0.3898 2.38E-56 -0.4014 4.10E-44 -0.38812 9.75E-53 
APOE 19 rs439401 TC A 0.3931 -0.0605 9.87E-06 -0.0827 1.03E-06 -0.06557 4.79E-06 
LDLR 19 rs6511720 TC A 0.2019 -0.2254 7.35E-30 -0.2194 2.68E-21 -0.2206 3.44E-28 
LDLR 19 rs2738447 TC A 0.4287 -0.0664 1.31E-06 -0.0563 0.000179 -0.05779 2.57E-05 

PVRL2 19 rs7254892 TC A 0.131 -0.3109 1.05E-16 -0.2778 4.58E-10 -0.29576 4.04E-15 
PVRL2 19 rs6857 TC A 0.2435 0.1949 1.05E-26 0.1852 3.83E-20 0.189344 3.29E-25 
APOB 2 rs41288783 TC A 0.2021 1.0301 8.06E-07 0.9495 2.16E-05 1.02417 1.40E-05 
APOB 2 rs1367117 TC A 0.3691 0.1195 6.62E-18 0.0842 6.50E-08 0.092005 1.54E-10 
APOB 2 rs541041 TC G 0.2491 -0.1635 7.42E-22 -0.133 9.29E-13 -0.13569 1.25E-14 

Table 5-5. Independent effect SNPs identified by HAPRAP in four lipids traits. 
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Locus Chr independent SNP traits Allele Freq Beta P HAPRAP Beta HAPRAP P GCTA Beta GCTA P 
F10 13 rs563964 FVII A 0.4867 4.9929 1.42E-34 4.2915 2.07E-14 4.30832 3.01E-24 
F10 13 rs547138 FVII A 0.5802 3.9481 1.09E-20 2.8342 9.25E-07 2.82781 1.24E-10 
ABO 9 chr9:135138971 FVIII A 0.2984 16.206 1.49E-36 19.6925 1.28E-42 18.6836 7.26E-46 
ABO 9 rs507666 FVIII A 0.3517 14.3829 7.07E-74 16.0027 1.26E-70 15.5104 3.64E-82 

OBP2B 9 rs12554449 FVIII A 0.4635 5.6209 5.41E-06 11.8967 9.28E-16 9.82115 1.27E-14 
OBP2B 9 chr9:135112913 FVIII G 0.2947 15.9482 2.54E-35 9.5292 9.64E-10 13.2242 1.11E-22 
OBP2B 9 chr9:135118367 FVIII A 0.4615 -7.5723 1.17E-31 -14.4936 2.72E-51 -11.0948 2.05E-52 
OBP2B 9 chr9:135118593 FVIII G 0.3745 -5.3952 4.94E-13 -10.2517 1.06E-26 -9.19467 5.49E-29 

ADAMTS13 9 chr9:135282263 FVIII A 0.3108 13.2123 6.50E-08 15.3184 2.07E-09 14.2103 7.82E-09 
ADAMTS13 9 chr9:135294712 FVIII G 0.2858 10.6838 6.04E-12 12.5936 7.69E-13 11.6782 7.58E-14 
ADAMTS13 9 rs4962153 FVIII A 0.3336 9.4932 3.28E-24 10.4451 5.90E-26 10.0274 1.48E-26 

CACFD1 9 chr9:135319775 FVIII A 0.3352 9.4455 6.10E-24 9.5931 1.84E-21 9.5006 3.98E-24 
CACFD1 9 chr9:135323177 FVIII A 0.2165 15.3003 5.37E-06 16.7279 1.97E-05 15.7311 3.12E-06 
GBGT1 9 chr9:135032145 FVIII A 0.3639 5.0703 3.71E-11 6.2262 2.47E-12 5.94377 1.50E-14 
GBGT1 9 chr9:135055347 FVIII A 0.2985 10.7287 7.37E-21 12.117 2.72E-21 11.7318 6.86E-24 

ABO 9 rs8176725 vWF A 0.2909 0.127 2.03E-47 0.1334 3.10E-49 0.131433 1.89E-47 
ABO 9 chr9:135123327 vWF A 0.3427 -0.0661 1.98E-26 -0.0681 6.32E-19 -0.07385 2.81E-28 
ABO 9 chr9:135126784 vWF A 0.4653 -0.0982 4.34E-85 -0.0812 1.24E-26 -0.08735 5.44E-46 
ABO 9 chr9:135142543 vWF A 0.3462 -0.0683 7.66E-29 -0.0879 8.96E-15 -0.07837 2.31E-20 
ABO 9 chr9:135146954 vWF A 0.4419 0.0731 7.12E-49 0.123 1.94E-55 0.10824 2.35E-70 
ABO 9 chr9:135171669 vWF G 0.3879 -0.0555 5.55E-24 -0.0402 2.26E-11 -0.04406 6.97E-15 

OBP2B 9 chr9:135106483 vWF A 0.2786 -0.0439 3.59E-07 -0.0612 4.49E-06 -0.06161 2.83E-10 
OBP2B 9 chr9:135111124 vWF A 0.31 0.0755 5.82E-25 -0.091 6.53E-09 -0.02766 0.00478 
OBP2B 9 chr9:135118367 vWF A 0.4551 -0.0945 1.03E-77 -0.1723 1.88E-123 -0.1428 7.27E-129 
OBP2B 9 chr9:135118379 vWF G 0.2806 0.1838 2.85E-74 0.1443 2.19E-15 0.141907 6.01E-30 
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OBP2B 9 chr9:135118558 vWF C 0.3619 -0.076 1.58E-38 -0.17 1.26E-100 -0.1399 2.07E-94 
SURF4 9 chr9:135225708 vWF A 0.285 -0.0589 2.71E-13 -0.0369 7.95E-06 -0.03924 1.72E-06 
SURF4 9 chr9:135227493 vWF A 0.3191 0.1338 2.41E-77 0.1291 4.25E-82 0.128935 4.86E-68 

C9orf96 9 chr9:135244970 vWF A 0.3044 -0.0601 9.39E-15 -0.0656 9.88E-16 -0.05218 2.94E-10 
C9orf96 9 chr9:135254869 vWF A 0.2796 -0.0545 2.33E-09 -0.0627 3.28E-11 -0.05006 1.25E-07 
C9orf96 9 chr9:135256970 vWF A 0.3159 0.1284 1.42E-68 0.103 1.82E-21 0.087128 9.29E-19 
C9orf96 9 chr9:135257905 vWF A 0.403 0.04 8.99E-14 -0.0437 6.80E-10 -0.01397 0.024119 
C9orf96 9 chr9:135258289 vWF C 0.3085 -0.0364 7.95E-07 -0.0413 1.01E-07 -0.03377 1.56E-05 
C9orf96 9 chr9:135260359 vWF C 0.2954 0.138 1.18E-55 0.0607 3.04E-07 0.066674 2.04E-09 

ADAMTS13 9 chr9:135282263 vWF A 0.2832 0.1803 5.03E-21 0.2063 5.97E-28 0.192827 3.43E-23 
ADAMTS13 9 chr9:135294712 vWF G 0.2728 0.106 1.91E-17 0.131 2.27E-25 0.119081 2.67E-21 
ADAMTS13 9 rs4962153 vWF A 0.3155 0.1248 8.98E-66 0.1357 5.01E-77 0.130568 1.82E-70 

CACFD1 9 rs739468 vWF A 0.3141 0.1241 2.83E-65 0.1255 1.99E-70 0.124649 4.92E-65 
CACFD1 9 chr9:135323177 vWF A 0.2176 0.1434 2.62E-07 0.1619 8.25E-09 0.150061 8.16E-08 
MED22 9 rs621907 vWF A 0.276 -0.0497 1.48E-07 -0.044 4.72E-06 -0.04566 1.60E-06 
MED22 9 chr9:135201989 vWF A 0.2708 0.1688 1.81E-32 0.1653 1.20E-30 0.166274 5.45E-31 
SLC2A6 9 chr9:135326625 vWF A 0.287 0.1811 3.99E-21 0.1763 5.26E-21 0.177274 4.93E-19 
SLC2A6 9 chr9:135328419 vWF A 0.2654 -0.0623 1.63E-10 -0.0596 1.95E-08 -0.06953 2.09E-12 
SLC2A6 9 chr9:135329780 vWF G 0.3176 -0.0421 3.94E-09 -0.0649 3.86E-05 -0.03313 0.008265 
SLC2A6 9 chr9:135330021 vWF A 0.3823 0.0437 8.94E-15 0.096 8.40E-39 0.077087 1.94E-31 
SLC2A6 9 chr9:135333468 vWF C 0.3361 -0.0512 7.70E-15 -0.06 8.89E-06 -0.07193 9.20E-11 
SLC2A6 9 chr9:135337653 vWF G 0.2576 -0.0502 2.19E-06 -0.0479 1.32E-05 -0.05566 2.23E-07 
SLC2A6 9 chr9:135338906 vWF C 0.341 -0.0375 3.18E-09 -0.0276 1.95E-05 -0.03408 1.05E-07 
GBGT1 9 chr9:135032145 vWF A 0.3536 0.0588 1.90E-22 0.071228 1.26E-31 0.067896 4.75E-29 
GBGT1 9 chr9:135055347 vWF A 0.2828 0.1144 1.97E-36 0.130282 7.80E-45 0.125969 1.35E-41 

Table 5-6. Independent effect SNPs identified by HAPRAP in three coagulation traits. 
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5.3.5. Fine mapping for other CVD related 

traits 

I run the fine mapping analysis using UCLEB meta-analysis results of other CVD 

related traits. For il6 and surate, I did not find any additional signals expect the top 

hits rs7518199 (associated with il6) and rs9998811 (associated with surate). 

As shown in Table 5-7, totally 10 SNPs in 4 loci have multiple association SNPs for 

bilirubin and crp: 3 SNPs in UGT region associated with bilirubin and 7 SNPs in 3 loci 

associated with crp. 
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Locus Chr independent SNP  traits Allele Freq Beta P HAPRAP Beta HAPRAP P GCTA Beta GCTA P 

UGT 2 rs28899170 bilirubin A 0.4362 2.4878 9.74E-157 1.2848 1.29E-13 1.29489 2.54E-12 

UGT 2 rs17862875 bilirubin A 0.4291 2.5304 5.68E-159 1.3552 9.75E-15 1.37247 2.24E-13 

UGT 2 rs11568318 bilirubin A 0.3609 -1.5878 1.31E-17 -0.7261 3.71E-05 -1.22312 1.21E-10 

CRP 1 rs1205 crp A 0.3857 -0.1662 1.60E-26 -0.0781 2.44E-05 -0.08849 1.30E-06 

CRP 1 rs3091244 crp A 0.4039 0.1865 1.33E-34 0.1412 3.77E-15 0.140156 3.72E-15 

CRP 1 rs11579148 crp A 0.1826 -0.3538 2.16E-08 -0.247 4.73E-05 -0.31971 6.32E-07 

HNF1A 12 chr12:119901371 crp G 0.3712 -0.1649 1.20E-25 -0.1834 3.87E-30 -0.17498 2.29E-28 

HNF1A 12 rs2245407 crp A 0.197 -0.1345 4.47E-06 -0.1959 1.98E-10 -0.17043 7.74E-09 

C12orf43 12 chr12:119926624 crp A 0.187 -0.1428 6.71E-06 -0.1957 6.41E-09 -0.17379 5.01E-08 

C12orf43 12 chr12:119927499 crp G 0.3574 -0.1581 6.83E-23 -0.1729 5.46E-27 -0.16637 5.30E-25 

Table 5-7. Independent effect SNPs identified by HAPRAP in crp and bilirubin.  
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5.3.6. Fine mapping for Atopic Dermatitis 

For the fine mapping analysis of Atopic Dermatitis, I applied HAPRAP to 

meta-analysis results. Four genomic regions with more than one independent SNPs 

were determined: six SNPs were identified in chromosome 1 (region from 

150250000 to 154500000); two independent SNPs in chromosome 4 (region from 

122993592 to 123493592), chromosome 5 (region from 131741085 to 132150000) 

and chromosome 10 (region from 6020000 to 6288853) (Table 5-21). Other twelve 

regions showed no evidence for secondary signals.  
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Chr SNP beta SE pval N HAPRAP beta HAPRAP SE HAPRAP pval 

Chr1 1q21.2_SNP1 -0.0771 0.012585032 9.20E-10 102760 -0.06658198 0.0125 1.00301E-07 

Chr1 1q21.3_SNP1 0.2755 0.030093897 5.75E-20 96795 0.162593083 0.033 8.36123E-07 

Chr1 1q21.3_SNP2 -0.1139 0.015825028 6.31E-13 102760 -0.07749054 0.0161 1.48835E-06 

Chr1 1q21.3_SNP3 0.4764 0.042608896 5.55E-29 93326 0.469246255 0.0428 5.94072E-28 

Chr1 1q21.3_SNP4 0.2961 0.031383212 4.12E-21 96795 0.169504985 0.035 1.28091E-06 

Chr1 1q21.3_SNP5 0.0783 0.012288311 1.93E-10 102760 0.073674469 0.0122 1.55707E-09 

Chr4 4q27_SNP1 0.0758 0.012616106 1.94E-09 102761 0.054018999 0.0135079 6.36371E-05 

Chr4 4q27_SNP2 -0.0897 0.015254395 4.20E-09 102762 -0.0673655 0.0163327 3.71707E-05 

Chr5 5q31.1_SNP1 0.1271 0.015100459 4.03E-17 102761 0.10440521 0.018192895 9.56E-09 

Chr5 5q31.1_SNP2 0.0986 0.014370354 7.14E-12 101294 0.072118769 0.016450248 1.17E-05 

Chr10 10p15.1_SNP1 0.0736 0.012177861 1.54E-09 103065 0.058452566 0.014549342 5.89E-05 

Chr10 10p15.1_SNP2 0.1778 0.03176829 2.23E-08 97099 0.146938916 0.034499725 2.05E-05 

Table 5-21. Genomic regions with multiple SNPs associated with Atopic Dermatitis using fixed effect model meta-analysis results. I used 

chromosome location instead of the SNP ID here since the results are unpublished data. 
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5.4. Discussion 

5.4.1. Fine mapping of ABCG5-8 region 

The analysis I conducted for ABCG5 and 8 region associated with GBD replicated the 

conclusion in the previous meta-analysis (Rodriguez et al., 2014). Rs4953023, which is the 

top hit of the GBD meta-analysis, is in perfect LD with a previously associated SNP 

rs11887534 (Buch et al., 2007). Rs4299376 is only 1424 base pair apart from the top hit. 

These two SNPs are in weak LD with r2 equal to 0.047 (1000 Genome CEU population). 

5.4.2. Fine mapping of NOS1AP region 

For NOS1AP associated with QTc interval, the first independent SNP rs10429888 is in strong 

LD with a previously associated SNP rs12143842 (r2=0.646 in 1000 Genome CEU), this SNP 

was indicated as the most significant SNP in two previous reports (Newton-Cheh et al., 

2009; Pfeufer et al., 2009). Meanwhile, the second independent SNP rs10918859 is in 

moderate LD with two previously reported SNPs rs4657178 (r2=0.467 in 1000 Genome CEU) 

and rs12029454 (r2=0.168 in 1000 Genome CEU). Moreover, conditional on rs12143842, 

both were reported to be secondary signals in separate studies: rs4657178 in Pfeufer’s 

study (Pfeufer et al., 2009) and rs12029454 in Newton-Cheh’s study (Newton-Cheh et al., 

2009). In addition, there is evidence of correlations between the third independent SNP, 

rs16057031, and two different previously reported SNPs rs10494366 (r2=0.168 in 1000 

Genome CEU) and rs288058 (r2=0.152 in 1000 Genome CEU) (Arking et al., 2006; Marroni et 
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al., 2009). SNP rs10494366 was the first well-replicated NOS1AP SNP reported to be 

associated with QT interval. 

5.4.3. Fine mapping of SCN5A-10A region 

For SCN5A-10A region associated with PR interval, the top associated SNP rs6801957 was 

identified as significant SNP by a previous GWAS study (Butler et al., 2012). Other two SNPs 

are not included in 1000 Genome project, but one of them, rs73056438 was genotyped by 

the ALSPAC in 8365 individuals. So I used ALSPAC individual-level genotype data to calculate 

the LD between rs73056438 and other 6 SNPs reported to be associated with PR interval in 

SCN5A-10A region (the 6 SNPs were listed in Table 8-2). None of the previous reported SNPs 

were in LD with this SNP which suggest that it may represent a novel independent 

associated SNP.  

5.4.4. Fine mapping of candidate regions 

associated with Atopic Dermatitis 

As listed in the introduction section, previous GWAS have identified 28 SNPs associated with 

Atopic Dermatitis (Table 8-21). The region of chromosome 1 where HAPRAP identifies 6 

independent signals is a locus known to be associated with atopic dermatitis. Several rare 

loss of function FLG mutations have been shown to be strongly associated with atopic 

dermatitis (Palmer et al., 2006) (Rodríguez et al., 2009) and previous GWAS signals in this 

region have been shown to be tagging these Loss-of-Function variants (Paternoster et al., 

2012). The variants identified by HAPRAP may therefore tag the haplotypes that these rare 

FLG mutations fall on, or could represent additional independent signals. The EAGLE 
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consortium is carrying out further analysis in this region to determine if there are any novel 

independent associations. In chromosome 4, there was only one SNP, rs17389664, was 

found to be associated with atopic dermatitis (Ellinghaus et al., 2013). In this study, I found 

that 4q27_SNP1 is in modest LD to rs17389664 (ALSAPC r2=0.55). There is almost no LD 

between the other SNP 4q27_SNP2 and rs17389664 (ALSAPC r2=0.079), which suggest a 

secondary signal in this region. On the other hand, there are 2 known independent signals in 

chromosome 5: rs2897442 and rs848 (Paternoster et al., 2012). In this study, I found two 

proxy SNPs which replicated these two signals: 5q31.1_SNP1 is in modest LD with rs848 

(ALSAPC r2=0.281), 5q31.1_SNP2 is in modest LD with rs848 (ALSAPC r2=0.186) and 

5q31.1_SNP2 is in strong LD with rs2897442 (ALSAPC r2=0.912). Moreover, two independent 

SNPs in chromosome 10 are novel findings in this meta-analysis. Further replication analysis 

is needed to test these two signals.  

The SNPs consisted with previous findings confirm the accuracy of the meta-analysis results 

and fine mapping using HAPRAP program. Further analysis is necessary for new findings in 

chromosome 1, 4 and 10.  

5.4.5. Conclusion  

In this chapter, I focused on applying the method I developed, HAPRAP, to meta-analysis 

results of several quantitative traits and diseases outcomes. The fine mapping of ECG traits 

and GBD outcomes are highly consistent to previous conditional analysis of meta-analysis. 

The fine mapping of blood lipids traits, coagulations traits and other CVD related traits 

found some novel independent effect SNPs. The fine mapping of atopic dermatitis outcomes 
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confirmed the previous evidences and enhanced the understanding of its genetic and 

molecular mechanisms of atopic dermatitis. 



219 
 

CHAPTER 6. CONCLUSIONS 
AND FUTURE DIRECTION 

There has been an increasing number of national and international collaborations in the 

field of complex disease genetics. The collaboration of large consortia have resulted in an 

increasing number of large-scale meta-analyses to be carried out for a range of complex 

traits such as BMI (Speliotes et al, 2010), lipids traits (Rodriguez et al, 2015) and ECG traits 

(Gaunt et al, 2012). These meta-analyses have successfully increased the statistical power to 

detect novel genetic variants associated with complex human traits. Moreover, an 

increasing number of the world’s leading international consortia such as the GIANT 

consortium, are willing to share their meta-analysis summary statistics, either through 

making the data publicly available or by sharing the data in a collaborative basis. Table 6-1, I 

lists a set of consortia which provide meta-analysis summary data publicly. These summary 

data are unique and informative resources which can lead us to better understand the 

genetic basis of different diseases/traits. 

Trait 
Consortium / 
database Reference 

Sample 
size 

Age-related macular 
degeneration (AMD) 

AMD Gene 
Consortium Fritsche et al, 2013, Nat Genet 77100 

Rheumatoid Arthritis  BIRAC and YEAR Stahl et al, 2010, Nat Genet 25708 
Coronary artery disease CARDIOGRAM Schunkert, et al, 2011, Nat Genet 76995 
Atopic Dermatitis EAGLE Lavinia, et al, 2015 Nat Genet 40835 
Birth Head Circumference EGG Taal, et al, 2012, Nat Genet 10768 
Asthma GABRIEL Moffatt, et al, NEJM, 2010 26475 
BMI GIANT Yang, et al, 2012, Nature 169811 
Extrem_BMI GIANT Berndt, et al, 2013, Nat Genet 263407 
Extrem_height GIANT Berndt, et al, 2013, Nat Genet 263407 
Extrem_WHR GIANT Berndt, et al, 2013, Nat Genet 263407 
Height GIANT Wood, et al, 2014,Nat Genet 253288 
hip circumference GIANT Shungin, et al, 2015, Nature 224459 
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Obesity GIANT Berndt, et al, 2013, Nat Genet 263407 
Overweight GIANT Berndt, et al, 2013, Nat Genet 263407 
waist circumference GIANT Shungin, et al, 2015, Nature 224459 
waist-to-hip ratio (WHR) GIANT Shungin, et al, 2015, Nature 224459 
Lipids GLGC Willer, et al, 2013, Nat Genet 188577 
Crohn's disease. IBD Franke, et al, 2010, Nat Genet 21389 
Ulcerative colitis  IBD Anderson, et al, 2011, Nat Genet 25865 
Celiac Disease  ImmunoBase Trynka, et al, 2011, Nat Genet 24242 
Juvenile Idiopathic Arthritis  ImmunoBase Hinks, et al, 2013, Nat Genet 15872 
narcolepsy ImmunoBase Faraco, et al, 2013, PLoS Genet 12307 
Primary Biliary Cirrhosis  ImmunoBase Liu JZ, et al, 2012, Nat Genet 11375 
Psoriasis  ImmunoBase Tsoi LC, et al, 2012, Nat Genet 33394 

Multiple Sclerosis  
ImmunoBase / 
IMSGC 

International Multiple Sclerosis Genetics 
Consortium, 2013, Nat Genet 38589 

Metabolites MuTHER Shin, et al, 2014, Nat Genet 7824 
Sporadic amyotrophic lateral 
sclerosis SLAGEN Fogh, et al, 2014, HMG 13225 
Type 1 Diabetes T1D Base Copper, Unpublished 13254 

Table 6-1. A list of consortium with public available meta-analysis summary data  

As explained in Chapter 1, utilising publicly available summary statistics has become 

widespread in the complex trait genetics field. The below are some of the well-known and 

widely used examples – as mentioned in the previous chapter: 

1. LD score regression using meta-analysis summary statistics for heritability analysis 

(Bulik-Sullivan BK et al, 2015 a) and genetic correlation analysis (Bulik-Sullivan BK et al, 

2015 b). 

2. Mendelian randomisation approach which can be applied to identify causal relationship 

using public available data (Burgess et al, 2015).  

3. GCTA conditional and joint SNP effect analysis (Yang et al, 2012) using meta-analysis 

summary statistics to process an approximately conditional analysis 
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Under such trend of utilising meta-analysis summary statistics, I developed two user-friendly 

statistical methods, namely SSS-RAP (Zheng et al, 2013) and HAPRAP (Zheng et al, 2015), 

which are two model selection approaches using meta-analysis summary statistics directly. I 

then applied these two methods to certain complex traits and compared them to existing 

state-of-the-art tools. As described in chapter 2 and 4, these two method make better use 

of the meta-analysis summary statistics and their accuracy and performance are better than 

the existing state-of-the-art tools.  

6.1. Selecting independent SNPs using Sequential 
Sentinel SNP Regional Association Plot  

In this thesis, I designed and developed the Sequential Sentinel SNP Regional Association 

Plot (SSS-RAP) program (Zheng et al, 2013) which utilises the concept of pair-wise LD to 

calculate SNP effects conditional on the most significant signals (defined as ones with the 

lowest p values). It was our first try to filling the holes present in fine mapping analysis using 

meta-analysis summary results. The performance of SSS-RAP is comparable to other model 

selection methods at individual-level. Although the method has been published few years 

ago, it is still valuable since 1) it only requires summary-level meta-analysis data and 

summary LD information, which is an advantage over all other model selection methods at 

current; 2) it is computationally fast, which only need a few seconds to finish an 

approximately step-wise regression procedure. So it is a quick, convenient and a visually 

presented method for testing SNP ‘independence’ . 
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6.2. Haplotype based model selection using 
Haplotype regional association analysis 
Program. 

The bulk of this thesis concerns itself with the design and development of Haplotype 

regional association analysis (HAPRAP). This method incorporates the biological concept of 

haplotypes and an empirical expectation-maximisation (E-M) algorithm incorporating the 

relationship between marginal SNP effects and joint SNP effects. The results of HAPRAP 

were highly consistent with multiple regression results using individual-level data. In 

meta-analysis level, it is the most accurate approach for identifying SNP independence at 

current. I summarise below its advantages over other tools, both in biological and statistical 

point of view:  

In a biological point of view, HAPRAP inherits the core concept of using haplotypes to 

represent LD from SSS-RAP and extend it to multiple loci situation. The core advantage of 

HAPRAP is that it is the first approach to insert haplotype based analysis concepts to SNP 

based analysis and utilizes this nested design to identify SNP independence – using 

meta-analysis summary results. In fact, in individual level, haplotype based association 

analysis has already proved its advantage against single marker analysis. As demonstrated 

by previous simulation studies, statistical approaches based on haplotypes can be a more 

powerful method to characterize the genetic background of complex diseases compare to 

single maker LD analysis (Akey J et al, 2001). In meta-analysis level, HAPRAP, showed its 

accuracy advantage against GCTA-COJO, which inherits the pair-wise correlation concept 

from multiple regression. Moreover, from a statistical point of view, the core formula of 
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HAPRAP (see Chapter 5.2.1, equation 2) starts from a very simple concept of a single 

regression between a SNP and a trait, which assumes an additive model, treats the common 

allele as the “baseline” allele (with respect to trait) and assumes the rare allele is the “effect” 

allele. HAPRAP then extends this concept to a more complex SNP-haplotype matrix. 

However, the model is an EM style algorithm which is empirical. Although it is possible that 

the EM algorithm may not convergence may not be possible, so I cannot exclude the 

situation that HAPRAP will not converge. However, in hundreds of thousands of simulation 

and real case examples we performed, I did not find any situation where HAPRAP did not 

converge. Algorithms are often used effectively where the biological model is well 

understood, but the statistical model is too complex to generalise to all scenarios. For 

instance, a recent fine mapping method, probability identification of causal SNPs (PICS), 

used an empirical constant in its core algorithm to estimate the expected mean of the 

association signal at a SNP (Farh et al., 2015). I believe, with further development of 

haplotype-based analyses - especially with advancements on including haplotypes in 

appropriate statistical models - the importance of HAPRAP algorithm will increase in the 

future. 

6.3. Future directions  

In this section, I will describe possible extension of SSS-RAP and HAPRAP programme and 

potential extensions of the fine mapping approaches.   
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6.3.1. Further development of SSS-RAP: fine 

mapping for untyped SNPs  

In an association analysis of a specific region, the real causal SNP may not be directly 

genotyped because of chosen SNP array coverage. Nowadays, imputation is a widely used 

method that increases the density of SNP data available from an array. But the quality of 

imputation is highly dependent on the density of the original genotype data and the quality 

of the reference panel being used (Marchini and Howie, 2010). The causal SNP may still not 

be detected, even after imputation. Therefore, to test whether there is an untested and 

“significant” SNP associated with a trait, and to determine how it relates to directly 

genotyped SNPs that show significance, I am working on an idea that develops a “hidden 

sentinel SNP shadow LD pattern” approach using the SSS-RAP program. This method will 

extend our knowledge of the associations between typed/imputed SNPs in a region and 

phenotypes, to all SNPs in a genomic region. More importantly, there will be no extra 

genotyping cost, which makes this method more attractive.  

6.3.2. Further development of HAPRAP 

As I alluded to before, HAPRAP can be a useful tool in four aspects. In this section, I will 

describe the possible extension of HAPRAP in these aspects:  

1) HAPRAP provides a good platform for the functional annotation of casual variants using 

variant prediction tools such as FATHMM (Shihab et al., 2015). One of the key purposes of 

fine mapping is to select the variant that is most likely to be the casual SNP for further 

functional studies. Therefore, a logical follow-up to HAPRAP would be to find biological links 
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for those SNPs that are reported to be associated with complex traits (Schaub et al., 2012). 

Ideally, this process should be an automated procedure and be feasibly carried out on 

multiple SNPs. To identify possible functional consequences of the independent SNPs, 

functional prediction tools such as FATHMM (Shihab et al., 2013) and RegulomeDB (Boyle et 

al., 2012) can be used to functionally annotate the SNPs with independent effects (as 

identified by HAPRAP). This process can be further extend to SNPs with very high LD (eg: 

r2 >= 0.8) to the independent SNPs identified using tools such as SNAP (Johnson et al., 2008).  

2) HAPRAP provides an automated model selection procedure, which can be used for allelic 

score estimating. Although HAPRAP is developed for analysing meta-analysis summary data, 

it can be used using individual-level too. As mentioned in Chapter 7.2, haplotype-based 

analysis maintain advantages over multiple regression using individual-level data, so 

HAPRAP can be used as a convenient automated step-wise selection procedure in 

individual-level as well. As mentioned in Chapter 1, allele scores (also called genetic risk 

scores, gene scores, or genotype scores) are a convenient way of summarizing a large 

number of genetic variants associated with a risk factor. It is calculated as the total number 

of risk factor increasing alleles for an individual (unweighted score), or the sum of weights 

for each allele corresponding to estimated genetic effect sizes (weighted score) (Burgess S 

et al, 2012). The most important procedure of allelic score estimating is to select a subset of 

SNPs which represents most of the total variance explained while keeping with the 

stringency criteria. Furthermore, HAPRAP is also a suitable model selection approach for the 

genome-wide allelic score of biological intermediates and mining the phenome (Evans et al., 
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2013), which can be used in Mendelian randomization and will lead to “Hypothesis-Free” 

causality (Evans and Davey Smith, 2015).  

3) HAPRAP provides a good SNP selection procedure for two-sample Mendelian 

randomisation (MR) approach using publicly available data to estimate the causal effect of 

the risk factor on an outcome (Burgess et al, 2015). In the current two-sample MR 

framework, if the test SNPs are in LD with each other, their effects are merged together to 

build a combined effect using the LD correlation matrix (cite). HAPRAP provides an 

alternative way, which can be used as a SNP selection procedure and only the best fit model 

are then be used for the MR. Compared to other model selection approaches, HAPRAP 

requires the same summary information, which will have been corrected for the two-sample 

MR already. As presented in Chapter 5.4, HAPRAP is the most accurate method when using 

public available genotypes (such as the 1000 Genome project data) as a reference panel. So 

combining HAPRAP with MR will lead to a more accurate and robust causal relationship 

between two or more traits. 

4) HAPRAP’s unique function of identifying SNP independence for rare variants. As explained 

in Chapter 1, rare variants tends to have larger effects than common variants (Bodmer and 

Bonilla, 2008). One limitation of rare variant analysis is the lack of a rare variant catalog with 

reference genotypes. For common variants, publicly available genotype resources such as 

the HapMap (www.hapmap.org/) and 1000 Genome Project 

(http://www.1000genomes.org/) databases exist. These reference genotypes help identify 

‘tag SNPs’ within a group of SNPs in high LD. I believe that, with further additions to the 

1000 Genomes Project (1000 Genomes Project Consortium et al., 2010) with other publicly 
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available whole genome sequencing projects, the reference genotypes for rare variants will 

be better established in the future (Asimit and Zeggini, 2010). For example, the UK10K 

project (http://www.uk10k.org/) is another publicly available whole genome sequencing 

dataset that can be used as an LD reference. UK10K has a larger sample size than the 1000 

Genome datasets, and may have better LD structure (Timpson et al., 2014; Taylor et al., 

2015). The novel genotype reference panel for rare variants will provide a good foundation 

for further statistical and bioinformatics analysis, especially for fine mapping of rare variants.  

6.4. Conclusion 

For many complex human traits and diseases (e.g. cardiovascular disease, atopic dermatitis), 

GWAS studies and meta-analysis of multiple GWAS studies have successfully identified 

multiple loci associated with common traits. Using the two methods I developed, we can 

carry out fine mapping in genomic regions with possible secondary signals using 

meta-analysis summary results. As explained in this chapter, future development of this 

work will focus on three aspects: i) Genetic refinement of association signals, fine mapping 

of rare variants will be possible in the near future when we have a fuller understanding of 

haplotype pattern pertaining to rare variants, ii) Phenotypic refinement of association 

signals, improved phenotype definition by increasing the specificity of phenotype (e.g. 

detailed metabolic phenotypes instead of lipid traits) which will increase the power of 

detecting association signals; and iii) Following up association signals with functional 

analysis, since correlated loci are not necessarily a biological agent for disease. Functional 

data, such as expression information and functional annotation, can certainly support and 
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inform the efforts of finding casual signals. New methodologies and approaches in these 

three aspects will improve our understanding of common complex human diseases.  
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CHAPTER 8. APPENDIX 

8.1. Supplementary Notes 

8.1.1. Codes for LiftOver 

The code to run liftOver is as follows: 

liftOver input.bed hg18ToHg19.over.chain.gz output.bed unlifed.bed 

Where input.bed is the input file, hg18ToHg19.over.chain.gz is the chain file and output.bed 

is the output file with SNP information after lift over.  

8.1.2. R codes used for model selection 

methods 

Firstly, I created a data frame called “dataframe”, which contain genotype and phenotype 

information. Then I created a linear model called “linear” using the following code: 

linear <- lm(phenotype~., dataframe) 

The R packages I used for the first four model selection approaches are “leap” and 

“bestglm”. The R codes are:  

1. AIC:  bestglm(dataframe, IC=”AIC”) 

2. BIC:  bestglm(dataframe, IC=”BIC”)  

3. Cross Validation:  bestglm(dataframe, IC=”CV”)  

4. LOOCV:  bestglm(dataframe, IC=”LOOCV”) 

The R package I used for the next two methods is called “leap”. I created a regression model 

using the following code:  



253 
 

subset <- regsubsets(y~., dataframe,nvmax=snpno.,really.big=T) 

5. Mallows Cp:  plot(subset, scale=”Cp”) 

6. Adjusted r2:  plot(subset, scale=”adjr2”) 

For the next three methods, I used the basic R code “step” 

7. StepwiseAIC: step(linear, dataframe, direction=”both”, k=2, trace=0) 

8. stepwiseBIC:  step(linear, dataframe, direction=”both”, k=log(nrow(dataframe)), 

trace=0) 

9. stepwiseCp:  step(linear, dataframe, direction=”both”, 

scale=(summary(linear)$sigma)^z, trace=0) 

For the last methods, I used the basic linear model “lm” 

10. stepwise regression with p value threshold = 0.05:  

model_0 <- lm (phenotype~., dataframe) 

summary(model_0) and knock out the SNP with highest p value (i.e. snp1) 

model_1 <- update(model_0,~.-snp1) 

summary(model_1)  

 and so on 

Until all reminding SNPs in the model reach the p value threshold of 0.05 

8.1.3. Funding section of the samples 

BWHHS 
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British Heart Foundation and the Department of Health Policy Research Programme 
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863 program (2012AA02A201); the National Natural Science Foundation of China 

(30890032,31161130357); the Shenzhen Key Laboratory of Transomics Biotechnologies 
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(CXB201108250096A); the Shenzhen Municipal Government of China (grants 

ZYC200903240080A and ZYC201105170397A); Guangdong Innovative Research Team 

Program (no. 2009010016); BMBF grant 01GS08201 to H.Le.; BMBF grant 0315428A to R.H.; 

the Max Planck Society; Swiss National Science Foundation 31003A_130342 to E.T.D.; Swiss 

National Science Foundation NCCR ‘Frontiers in Genetics’ grant to E.T.D.; Louis Jeantet 

Foundation grant to E.T.D.; Biotechnology and Biological Sciences Research Council (BBSRC) 

grantBB/I021213/1 to A.R.-L.; German Research Foundation (Emmy Noether Fellowship KO 

4037/1-1) to J.O.K.; Netherlands Organization for Scientific Research VENI grant 

639.021.125 to K.Y.; Beatriu de Pinos Program grants 2006BP-A 10144 and 2009BP-B 00274 

to M.V.; Israeli Science Foundation grant 04514831 to E.H.; Genome Que´bec and the 

Ministry of Economic Development, Innovation and Trade grant PSR-SIIRI-195 to P.Aw.; 

National Institutes of Health (NIH) grants UO1HG5214, RC2HG5581 and RO1MH84698 to 

G.R.A.; R01HG4719 and R01HG3698 to G.T.M; RC2HG5552 and UO1HG6513 to G.R.A. and 

G.T.M.; R01HG4960 and R01HG5701 to B.L.B.; U01HG5715 to C.D.B. and A.G.C.; 32GM8283 

to D.Cl.; U01HG5208 to M.J.D.; U01HG6569 to M.A.D.; R01HG2898 and R01CA166661 

to .E.D.; UO1HG5209, UO1HG5725 and P41HG4221 to C.Le.; P01HG4120 to E.E.E.; 

U01HG5728 to Yu.F.; U54HG3273 and U01HG5211 to R.A.G.; R01HL95045 to S.B.G.; 

U41HG4568 to S.J.K.; P41HG2371 to W.J.K.; ES015794, AI077439, HL088133 and HL078885 

to E.G.B.; RC2HL102925 to S.B.G. and D.M.A.; R01GM59290 to L.B.J. and M.A.B.; 

U54HG3067 to E.S.L. and S.B.G.; T15LM7033 to B.K.M.; T32HL94284 to J.L.R.-F.; DP2OD6514 

and BAA-NIAID-DAIT-NIHAI2009061 to P.C.S.; T32GM7748 to X.S.; U54HG3079 to R.K.W.; 

UL1RR024131 to R.D.H.; HHSN268201100040C to the Coriell Institute for Medical Research; 
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a Sandler Foundation award and an American Asthma Foundation award to E.G.B.; an IBM 

Open Collaborative Research Program award to Y.B.; an A.G. Leventis Foundation 

scholarship to D.K.X.; a Wolfson Royal Society Merit Award to P.Do.; a Howard Hughes 

Medical Institute International Fellowship award to P.H.S.; a grant from T. and V. Stanley to 

S.C.Y.; and a Mary Beryl Patch Turnbull Scholar Program award to K.C.B. E.H. is a faculty 

fellow of the Edmond J. Safra Bioinformatics program at Tel-Aviv University. E.E.E. and D.H. 

are investigators of the Howard Hughes Medical Institute. M.V.G. is a long-term fellow of 

EMBO. 
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The UK Medical Research Council (Grant ref:74882), the Wellcome Trust (Grant  ref:  
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programme grant (ref RG/10/12/28456). 



257 
 

CARe 

The following parent studies, funded by the listed National Institutes of Health grants, have 
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contract NO1-AG-1-2109; the Intramural Research Program of the Division of Cancer 

Epidemiology and Genetics; contracts from the Division of Cancer Prevention, National 

Cancer Institute and EU FP6 funding (contract no LSHM-CT-2003-503041); GlaxoSmithKline; 

the Faculty of Biology and Medicine of Lausanne, Switzerland; the Intramural Research 

Program of the National Institute on Aging (NIA); Cancer Research United Kingdom; the UK 

Medical Research Council (including grants G0000649, G0000934 and G0601261); the 

Wellcome Trust (including Strategic Award 076113, grants 068545/Z/02 and 

076467/Z/05/Z); the NIHR through the Biomedical Research Centres at Oxford, King's 
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American Diabetes Association including a Smith Family Foundation Pinnacle Program 

Project Award #7-03-PPG-04R; the Academy of Finland (grants 118065 and 124243); 
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part of LMUinnovativ; the Helmholtz Center Munich; the Sigrid Juselius Foundation; 
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University of Bristol; Linné grant from Swedish Research Council; Wallenberg Foundation; 

Folkhälsan Research Foundation; University of Southampton; Netherlands Organisation of 

Scientific Research NWO (nr. 175.010.2005.011); Erasmus Medical Center and Erasmus 

University, Rotterdam; Netherlands Organization for the Health Research and Development 
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the European Commision (DG XII) and the Municipality of Rotterdam. G.R.A. and K.L.M. are 

Pew Scholars for the Biomedical Sciences; A.L.E. is supported by a Sarnoff Cardiovascular 

Research Foundation Fellowship; C.M.L. is a Nuffield Department of Medicine Scientific 

Leadership Fellow; S.A.M. is supported by a Life Sciences Research Fellowship; M.K. is 
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Vandervell Foundation Research Fellow; C.J.W. is supported by an American Diabetes 

Association postdoctoral fellowship; and E.Z. is a Wellcome Trust-RD Fellow (grant number 

079557). 

8.2. Supplementary Tables 

rs ID Gene related traits BP p value beta SE A1 A2 MAF 

rs301 LPL TG 19861214 0.000315 -0.14132 0.029565 G A 0.2334 

rs320 LPL TG 19863357 0.000167 -0.13672 0.028204 C A 0.2665 

rs327 LPL TG 19863816 0.000211 -0.13304 0.028075 C A 0.2709 

rs328 LPL TG 19864004 6.60E-05 -0.23155 0.042525 G C 0.09638 

rs331 LPL TG 19864685 0.000228 -0.1378 0.028386 A G 0.2608 

rs12679834 LPL TG 19864713 7.30E-05 -0.22967 0.042504 G A 0.09654 

rs3208305 LPL TG 19867928 0.000179 -0.13575 0.027777 T A 0.2819 

rs3735964 LPL TG 19868325 3.23E-05 -0.22732 0.041032 A C 0.1033 

rs13702 LPL TG 19868772 0.000244 -0.13271 0.027704 G A 0.283 

rs17482753 LPL TG 19876926 8.99E-05 -0.22475 0.042387 A C 0.09685 

rs263 LPL HDL-C 19857092 9.61E-05 0.127327 0.033651 A G 0.1682 

rs320 LPL HDL-C 19863357 2.56E-06 0.127149 0.028236 C A 0.2665 



259 
 

rs327 LPL HDL-C 19863816 2.16E-06 0.126428 0.028103 C A 0.2709 

rs328 LPL HDL-C 19864004 7.80E-06 0.179427 0.042637 G C 0.09638 

rs331 LPL HDL-C 19864685 1.08E-06 0.131653 0.028414 A G 0.2608 

rs12679834 LPL HDL-C 19864713 8.11E-06 0.179219 0.042613 G A 0.09654 

rs3208305 LPL HDL-C 19867928 3.05E-07 0.135128 0.027797 T A 0.2819 

rs3735964 LPL HDL-C 19868325 8.40E-06 0.174595 0.041142 A C 0.1033 

rs13702 LPL HDL-C 19868772 2.81E-07 0.135123 0.02772 G A 0.283 

rs17482753 LPL HDL-C 19876926 1.23E-05 0.175461 0.042493 A C 0.09685 

rs12708967 CETP HDL-C 55550712 7.31E-08 -0.17187 0.033029 G A 0.1834 

rs3764261 CETP HDL-C 55550825 2.41E-19 0.251125 0.027175 A C 0.3318 

rs12720918 CETP HDL-C 55551713 2.74E-08 -0.1521 0.028181 G A 0.2272 

rs17231506 CETP HDL-C 55552029 6.07E-19 0.249239 0.027296 G A 0.2774 

rs1800775 CETP HDL-C 55552737 5.09E-11 0.174275 0.025822 A C 0.4913 

rs711752 CETP HDL-C 55553712 1.97E-11 0.182519 0.026059 A G 0.4376 

rs708272 CETP HDL-C 55553789 1.67E-11 0.182834 0.026028 A G 0.4377 

rs1864163 CETP HDL-C 55554734 1.31E-11 -0.19809 0.029044 A G 0.258 

rs11508026 CETP HDL-C 55556829 4.95E-11 0.179469 0.026061 A G 0.4379 

rs12720922 CETP HDL-C 55558386 6.87E-12 -0.22576 0.033227 A G 0.1807 

rs9939224 CETP HDL-C 55560233 6.36E-11 -0.20887 0.031698 A C 0.2044 

rs1532625 CETP HDL-C 55562802 1.93E-12 0.18948 0.025966 A G 0.4448 

rs1532624 CETP HDL-C 55562980 1.76E-12 0.1897 0.025959 A C 0.4446 

rs11076175 CETP HDL-C 55563879 1.76E-11 -0.22426 0.033539 G A 0.175 

rs7499892 CETP HDL-C 55564091 1.51E-11 -0.22431 0.0335 A G 0.175 

rs11076176 CETP HDL-C 55564947 3.81E-07 -0.16652 3.36E-02 C A 0.1708 

rs289714 CETP HDL-C 55564952 6.75E-06 -0.14556 0.033076 G A 0.1784 

Table 8-1A. Significant SNPs for lipids traits in BWHHS individual level data. Beta is 

standardized by Z score: Z = (beta – mean of beta) / SD of beta  

rs ID Gene related traits BP p value beta SE A1 A2 MAF 

rs4657139 NOS1AP QTC  160296531 1.43E-05 0.132798 0.028522 A T 0.3382 
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rs10918594 NOS1AP QTC  160297312 2.67E-06 0.148328 0.028922 C G 0.32295 

rs16847548 NOS1AP QTC  160301898 7.57E-09 0.199317 0.033488 G A 0.20365 

rs6702936 NOS1AP QTC  160303783 7.60E-05 0.134953 0.030263 G A 0.28235 

rs10918602 NOS1AP QTC  160304324 5.95E-05 0.145625 0.030414 G A 0.27585 

rs10800279 NOS1AP QTC  160304902 1.88E-05 0.142141 0.030371 G A 0.2768 

rs1415257 NOS1AP QTC  160328668 4.42E-05 0.11301 0.028231 G A 0.3483 

rs11579850 NOS1AP QTC  160333846 3.36E-05 0.112479 0.028182 C A 0.34905 

rs10494365 NOS1AP QTC  160350613 2.41E-06 0.19626 0.042214 C G 0.1154 

rs10494366 NOS1AP QTC  160352309 4.66E-05 0.112812 0.028241 C A 0.3487 

rs12733821 NOS1AP QTC  160353315 3.33E-05 0.118197 0.028416 G C 0.3438 

rs4657154 NOS1AP QTC  160374743 7.54E-05 0.11784 0.030417 A G 0.26455 

rs1932933 NOS1AP QTC  160384670 6.42E-05 0.116762 0.028077 A G 0.3524 

rs945708 NOS1AP QTC  160385526 6.35E-05 0.121033 0.02806 A G 0.3556 

rs7534004 NOS1AP QTC  160413333 2.36E-09 0.221772 0.037865 A G 0.15135 

rs12039600  NOS1AP QTC  160426106 3.42E-09 0.256379 0.042757 A G 0.11575 

rs4657166 NOS1AP QTC  160427963 7.96E-06 0.12918 0.029425 C G 0.30135 

rs10918859 NOS1AP QTC  160435892 2.89E-07 0.181159 0.035478 A G 0.1802 

rs10800352 NOS1AP QTC  160439313 2.60E-07 0.171028 0.032977 G A 0.21555 

rs6664702 NOS1AP QTC  160471531 3.30E-06 0.14518 0.031613 G A 0.2444 

rs10399680 NOS1AP QTC  160480119 1.86E-06 0.151172 0.031224 G A 0.2552 

rs6427664 NOS1AP QTC  160481097 7.15E-07 0.161283 0.031781 A G 0.2435 

rs7522678  NOS1AP QTC  160487168 2.05E-06 0.162986 0.03369 A C 0.201 

rs10919035 NOS1AP QTC  160510636 3.38E-05 0.16676 0.039938 A G 0.1357 

rs12053903    SCN5A PR interval 38568397 0.000971 0.092152 0.028258 G     A        0.3177 

rs10154914      SCN5A PR interval 38607634 0.002144 -0.09657 0.033078 A     T        0.19625 

rs7374540    SCN5A PR interval 38609146 0.00347 0.077644 0.02672 C     A         0.3872 

rs1805124    SCN5A PR interval 38620424 0.008284 -0.07446 0.030758 G     A        0.2386 

rs13084981    SCN5A PR interval 38621003 0.003756 0.125451 0.042554 A     G        0.109 

rs7372712    SCN5A PR interval 38661196 0.001374 0.100148 0.033059 A     G        0.19695 
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rs7374540 SCN5A QRS duration 38609146 0.00023 0.100261 0.026201 C A 0.3849 

rs9861242 SCN5A QRS duration 38584338 0.000387 0.122806 0.029793 A G 0.24415 

rs1805126 SCN5A QRS duration 38567410 0.000849 0.099815 0.027581 G A 0.32195 

rs10154914 SCN5A QRS duration 38607634 0.000907 -0.11625 0.032319 A T 0.1987 

rs9833086 SCN5A QRS duration 38585475 0.001754 0.103007 0.028261 G A 0.279 

rs7624535 SCN5A QRS duration 38640206 0.002231 -0.09719 0.031806 C A 0.2022 

rs12053903 SCN5A QRS duration 38568397 0.003086 0.087244 0.027786 G A 0.31575 

rs11710077 SCN5A QRS duration 38632903 0.003849 -0.10804 0.031893 A T 0.2097 

rs12491987 SCN5A QRS duration 38624048 0.00536 -0.10805 0.043181 A G 0.1018 

Table 8-1B. Significant SNPs for ECG traits in BWHHS individual level data. Effect sizes are 

shown as beta estimates from linear regression models for increasing copy of the coded 

allele and are on the standard deviation scale. 

Chr Position Gene lead SNP Risk Allele beta p-Value 

1 40433771 MFSD2 rs3103778 G 6.3 9.00E-06 

2 66756976 MEIS1 rs3891585 A 2.13 1.00E-11 

2 66772000 MEIS1 rs11897119 C 1.36 5.00E-11 

2 215341890 VWC2L rs7604827 C 6.54 5.00E-06 

3 37574024 ITGA9 rs267567 A 2.73 4.00E-11 

3 38624253 SCN5A rs3922844 T 4.54 5.00E-43 

3 38633923 SCN5A rs11708996 C 3.04 6.00E-26 

3 38681394 SCN5A rs6763048 A 2.62 4.00E-12 

3 38767315 SCN10A rs6801957 T 3.36 9.00E-09 

3 38774832 SCN10A rs6800541 C 3.77 2.00E-74 

3 65486388 MAGI1 rs1524976 A 8 8.00E-06 

3 187456709 BCL6 rs3733017 G 10.07 6.00E-06 

4 86641149 ARHGAP24 rs7692808 A 2.01 6.00E-20 

4 86683560 ARHGAP24 rs11732231 C 2.28 3.00E-09 

5 172480336 NKX2-5, C5orf41 rs251253 C 1.49 9.00E-13 

6 130550063 Intergenic rs10447419 A 8.65 2.00E-06 
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7 116186241 CAV1, CAV2 rs3807989 A 2.3 4.00E-28 

7 116191301 CAV1 rs11773845 A 2.29 4.00E-12 

10 26294828 MYO3A rs16926523 A 9.55 4.00E-06 

11 12159661 MICAL2 rs1994318 A 6.79 2.00E-06 

11 75909619 WNT11 rs4944092 G 1.19 3.00E-08 

12 24788339 SOX5, C12orf67 rs11047543 A 2.09 3.00E-13 

12 114802138 TBX5 rs1895585 A 3.19 1.00E-19 

12 115346424 TBX5, TBX3 rs1896312 C 1.95 3.00E-17 

15 39573535 Intergenic rs12595668 G 6.26 9.00E-06 

15 39576560 Intergenic rs746265 C 6.27 8.00E-06 

Table 8-2. Previous GWAS findings of PR interval 

Chr Position Gene lead SNP Risk Allele beta p-Value 

1 185794883 HMCN1 rs13375391 A 5.82 9.00E-06 

4 100137494 ADH6;LOC100507053 rs6820368 C 9.9 6.00E-06 

5 101403586 OR7H2P - SLCO4C1 rs6861497 A 2.34 5.00E-06 

6 124951063 NKAIN2 rs504008 C 2.7 3.00E-06 

6 128194473 THEMIS rs12194062 T 5.16 5.00E-06 

11 67715028 RPS3AP40 - OR7E1P rs308309 C 4.39 5.00E-06 

12 69523923 CPM - CPSF6 rs10784762 T 2.38 6.00E-06 

14 85737169 RNU7-51P - RNU3P3 rs1867082 A 2.82 1.00E-06 

16 85961562 IRF8 - FENDRR rs17444745 A 6.4 7.00E-06 

Table 8-3. Previous GWAS findings of QRS interval 

Chr Position Gene lead SNP Risk Allele beta p-Value 

1 6279370 RNF207 rs846111 C 1.75 1.00E-16 

1 162033890 OLFML2B - MIR4654 rs12143842 T 3.15 2.00E-78 

1 162085685 NOS1AP rs10494366 ? 4.9 1.00E-10 

1 162112910 NOS1AP rs16857031 G 2.63 1.00E-34 

1 162133117 NOS1AP rs12029454 A 2.98 3.00E-45 

1 162195738 NOS1AP rs4657175 ? 1.71 1.00E-09 
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1 162210610 NOS1AP rs4657178 T 2.19 7.00E-33 

1 169073346 RPL29P7 - ATP1B1 rs1320976 A 2.06 2.00E-10 

1 169099483 ATP1B1 rs10919071 A 2.05 1.00E-15 

2 40757791 SLC8A1 - LDHAP3 rs13017846 G 0.07 8.00E-14 

2 46176962 PRKCE rs6751349 A 1.22 8.00E-06 

2 179248420 OSBPL6 rs7580640 C 3.64 3.00E-06 

3 3147981 IL5RA rs17879755 C 5.64 2.00E-06 

3 8250790 GRM7 - LMCD1-AS1 rs9866825 A 1.18 8.00E-06 

3 38589163 SCN5A rs11129795 A 1.27 5.00E-14 

3 38593393 SCN5A rs12053903 C 1.23 1.00E-14 

3 71115751 FOXP1 rs7616330 A 1.72 6.00E-06 

3 73540618 PDZRN3 rs4557101 C 1.72 4.00E-06 

4 15964863 FGFBP2 rs4698433 T 7.23 6.00E-06 

4 16893893 LDB2 rs1483012 G 6.02 7.00E-06 

4 16908004 LDB2 - MTND5P4 rs6819013 A 6.06 6.00E-06 

4 27194071 STIM2 - MRPL51P1 rs13149020 A 10.69 8.00E-06 

4 72126889 SLC4A4 rs2579330 C 1.36 1.00E-06 

4 76030921 PARM1 - RCHY1 rs1426063 A 1.18 8.00E-06 

4 95643957 PDLIM5 - BMPR1B rs10027628 C 1.81 6.00E-06 

5 3092192 C5orf38 - IRX1 rs6873793 C 1.47 1.00E-06 

5 64417678 CWC27 - RPEP1 rs7729539 C 2.59 1.00E-06 

5 73276903 ARHGEF28 - ENC1 rs6894385 C 9.92 1.00E-06 

5 102759658 C5orf30 - NUDT12 rs17155315 G 4.73 7.00E-06 

5 126032964 RPLP1P7 - LMNB1 rs1546498 C 7.69 2.00E-06 

6 67885919 NUFIP1P - BAI3 rs9342616 A 6.92 1.00E-06 

6 118653204 SLC35F1 - BRD7P3 rs12210810 C 3.13 2.00E-17 

6 118680374 SLC35F1 - BRD7P3 rs11970286 T 1.64 2.00E-24 

6 118788652 CEP85L rs11752626 G 1.56 2.00E-06 

6 118993632 CEP85L rs11756438 A 1.4 5.00E-22 
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7 100881403 CLDN15 rs3757458 A 8 2.00E-06 

7 150622162 ABP1 - KCNH2 rs2968864 C 1.4 8.00E-16 

7 150623137 ABP1 - KCNH2 rs2968863 T 1.35 2.00E-15 

7 150637863 ABP1 - KCNH2 rs4725982 T 1.58 5.00E-16 

7 150669976 KCNH2 rs3778872 C 1.77 3.00E-06 

7 154509324 DPP6 - PAXIP1 rs12666280 C 8.93 2.00E-06 

10 30834632 HNRNPA1P32 - LYZL2 rs11008099 A 2.74 9.00E-06 

11 2484803 KCNQ1 rs2074238 T 7.88 3.00E-17 

11 2486120 KCNQ1 rs16928297 G 1.25 2.00E-06 

11 2489342 KCNQ1 rs12296050 T 1.44 3.00E-17 

11 2502319 KCNQ1 rs12576239 T 1.75 1.00E-15 

11 2752609 KCNQ1 rs231906 A 1.51 2.00E-06 

13 63436800 RPL32P28 - OR7E156P rs2204037 A 1.38 5.00E-07 

13 102553248 FGF14 rs9557754 G 1.23 8.00E-06 

15 50873344 TRPM7 rs2414059 A 1.24 2.00E-06 

16 8503222 RPS26P51 - TMEM114 rs8045405 G 11.38 9.00E-06 

16 11691753 LITAF - SNN rs8049607 T 1.23 5.00E-15 

16 58566304 CNOT1 rs37060 ? 1.52 1.00E-07 

16 58567238 CNOT1 rs37062 G 1.75 3.00E-25 

16 58622178 CNOT1 rs7188697 A 1.66 7.00E-25 

17 15193056 MIR4731 - TEKT3 rs1380181 A 1.97 3.00E-07 

17 33324382 LIG3 rs2074518 T 1.05 6.00E-12 

17 68494992 CALM2P1 - SOX9 rs17779747 T 1.02 6.00E-12 

18 74735135 MBP rs11663697 G 13.71 9.00E-06 

20 47982128 ZFAS1 - KCNB1 rs237450 A 6.86 5.00E-06 

21 37935669 CLDN14 rs9984896 A 2.85 5.00E-06 

Table 8-4 A. Previous GWAS findings of QTc interval. QTc = QT / SQRT (RR interval) 

 

Chr Position Gene lead SNP Risk Allele beta p-Value 
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1 162014632 OLFML2B - MIR4654 rs2880058 G 0.19 2.00E-10 

1 162033890 OLFML2B - MIR4654 rs12143842 T 0.18 1.00E-83 

2 157552860 GPD2 - RPLP0P7 rs7601713 A 0.16 2.00E-06 

2 179641975 TTN rs12476289 A 0.29 2.00E-06 

3 61794054 PTPRG rs652889 A 0.15 8.00E-07 

3 122368347 PARP15 - EIF4BP8 rs2650951 A 0.29 1.00E-06 

3 194327098 TMEM44 rs789852 A 0.25 7.00E-07 

4 35410631 RPL31P31 - SEC63P2 rs1533317 A 0.14 2.00E-06 

4 118332255 TRAM1L1 - RPSAP35 rs4318720 A 0.28 8.00E-07 

4 148974602 ARHGAP10 rs6845865 G 0.19 7.00E-07 

5 5897694 KIAA0947 - HMGB3P3 rs7728043 G 0.14 1.00E-06 

6 118667522 SLC35F1 - BRD7P3 rs11153730 C 0.09 2.00E-29 

7 37076854 ELMO1 rs10488031 A 0.26 2.00E-06 

12 20531756 PDE3A rs1348582 G 0.2 1.00E-06 

13 48162558 GNG5P5 - NAP1L4P3 rs2478333 A 0.17 4.00E-08 

14 96122408 TCL6 rs8015016 G 0.18 5.00E-07 

Table 8-4 B. Previous GWAS findings of QT interval. Betas were calculated using unadjusted 

QT interval. 

rs ID Gene related traits BP p value beta SE Ancestral allele 

rs12039600 NOS1AP QTC 160426106 7.12E-23 0.256379 0.042757 G 

rs7534004 NOS1AP QTC 160413333 7.89E-22 0.221772 0.037865 G 

rs10918859 NOS1AP QTC 160435892 3.48E-20 0.181159 0.035478 G 

rs10800352 NOS1AP QTC 160439313 6.12E-20 0.171028 0.032977 A 

rs10918594 NOS1AP QTC 160297312 4.49E-18 0.148328 0.028922 C 

rs7522678 NOS1AP QTC 160487168 5.44E-18 0.162986 0.03369 C 

rs4657139 NOS1AP QTC 160296531 3.80E-17 0.132798 0.028522 A 

rs6664702 NOS1AP QTC 160471531 1.28E-16 0.14518 0.031613 T 

rs12733821 NOS1AP QTC 160353315 4.92E-16 0.118197 0.028416 C 

rs10494366 NOS1AP QTC 160352309 1.70E-15 0.112812 0.028241 T 
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rs11579850 NOS1AP QTC 160333846 3.66E-15 0.112479 0.028182 G 

rs1415257 NOS1AP QTC 160328668 4.10E-15 0.11301 0.028231 C 

rs1415262 NOS1AP QTC 160312759 1.07E-14 0.094877 0.028348 C 

rs5000342 NOS1AP QTC 160319684 1.24E-14 0.103484 0.029562 A 

rs945708 NOS1AP QTC 160385526 1.50E-14 0.121033 0.02806 T 

rs1932933 NOS1AP QTC 160384670 1.69E-14 0.116762 0.028077 T 

rs6660701 NOS1AP QTC 160307530 2.28E-14 0.11512 0.028491 C 

rs4657166 NOS1AP QTC 160427963 1.26E-13 0.12918 0.029425 C 

rs880296 NOS1AP QTC 160395070 1.63E-13 0.137104 0.033702 C 

rs4233385 NOS1AP QTC 160314369 1.63E-13 0.0956 0.02914 C 

rs10918762 NOS1AP QTC 160385608 1.96E-13 0.136572 0.033563 A 

rs4657154 NOS1AP QTC 160374743 5.03E-12 0.11784 0.030417 N/A 

rs7515045 NOS1AP QTC 160310334 2.00E-11 0.097078 0.030498 C 

rs6427664 NOS1AP QTC 160481097 2.97E-10 0.161283 0.031781 G 

rs6702936 NOS1AP QTC 160303783 3.06E-10 0.134953 0.030263 A 

rs4531275 NOS1AP QTC 160453174 2.08E-09 0.082086 0.029558 C 

rs6659759 NOS1AP QTC 160304233 3.26E-09 0.133713 0.030227 T 

rs12128479 NOS1AP QTC 160534747 3.33E-09 0.156116 0.046353 A 

rs10800366 NOS1AP QTC 160470520 4.75E-09 0.075289 0.029399 C 

rs10800397 NOS1AP QTC 160503714 1.14E-08 0.049591 0.033375 C 

rs10918602 NOS1AP QTC 160304324 1.16E-08 0.145625 0.030414 T 

rs10458392 NOS1AP QTC 160358734 1.47E-08 0.112882 0.033224 N/A 

rs10399680 NOS1AP QTC 160480119 1.57E-08 0.151172 0.031224 T 

rs3923368 NOS1AP QTC 160463154 3.10E-08 0.061292 0.028797 T 

rs10800404 NOS1AP QTC 160521736 3.26E-08 0.053004 0.033504 G 

rs16860185 NOS1AP QTC 160560694 6.37E-08 0.150212 0.044952 G 

rs7513132 NOS1AP QTC 160432057 7.03E-08 0.080609 0.028532 A 

rs10800279 NOS1AP QTC 160304902 7.03E-08 0.142141 0.030371 T 

rs10918936 NOS1AP QTC 160469112 7.57E-08 0.073848 0.028029 A 
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rs16857031 NOS1AP QTC 160379534 8.78E-08 0.101452 0.037934 C 

rs10800409 NOS1AP QTC 160527339 1.23E-07 0.156484 0.039781 C 

rs16847548 NOS1AP QTC 160301898 1.34E-07 0.199317 0.033488 T 

rs4657161 NOS1AP QTC 160422913 1.81E-07 0.065083 0.027944 G 

rs12135795 NOS1AP QTC 160416389 1.98E-07 0.065083 0.027944 A 

rs3927640 NOS1AP QTC 160422437 2.71E-07 0.065326 0.027953 A 

rs10753765 NOS1AP QTC 160418397 3.86E-07 0.06545 0.027937 G 

rs4557949 NOS1AP QTC 160477578 4.44E-07 0.047958 0.027479 A 

rs12734991 NOS1AP QTC 160461200 4.65E-07 0.066225 0.027712 C 

rs12026452 NOS1AP QTC 160396910 6.12E-07 0.129928 0.039262 G 

rs12022557 NOS1AP QTC 160322208 6.64E-07 0.086869 0.032799 G 

rs10918615 NOS1AP QTC 160316051 7.21E-07 0.084062 0.03284 G 

rs4145621 NOS1AP QTC 160485312 1.44E-06 0.041182 0.027544 C 

rs12742393 NOS1AP QTC 160491210 1.95E-06 0.047436 0.027862 A 

rs2661818 NOS1AP QTC 160531438 2.35E-06 0.043966 0.027617 C 

rs10919035 NOS1AP QTC 160510636 3.32E-06 0.16676 0.039938 C 

rs7540690 NOS1AP QTC 160380841 1.08E-05 0.116906 0.033688 G 

rs4298709 NOS1AP QTC 160503206 1.19E-05 0.040409 0.027957 G 

rs12729882 NOS1AP QTC 160508661 1.45E-05 0.037635 0.027877 A 

rs12733377 NOS1AP QTC 160519067 2.60E-05 0.035871 0.027888 G 

rs16857019 NOS1AP QTC 160379274 8.82E-05 0.098496 0.045361 G 

rs7372712 SCN5A PR interval 38661196 6.21E-10 0.00302 0.000488 C 

rs12053903 SCN5A PR interval 38568397 4.59E-09 0.002158 0.000368 C 

rs7374540 SCN5A PR interval 38609146 9.50E-08 0.001864 0.000349 A 

rs1805126 SCN5A PR interval 38567410 2.07E-06 0.001745 0.000368 A 

rs7624535 SCN5A PR interval 38640206 4.33E-06 -0.00194 0.000421 T 

rs6768664 SCN5A PR interval 38659470 4.75E-06 -0.00156 0.00034 A 

rs7373102 SCN5A PR interval 38655632 5.32E-06 -0.00155 0.00034 C 

rs7374540 SCN5A QRS  38609146 5.87E-09 0.100261 0.026201 A 
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rs9861242 SCN5A QRS  38584338 1.59E-08 0.122806 0.029793 A 

rs1805126 SCN5A QRS  38567410 6.93E-08 0.099815 0.027581 A 

rs11710077 SCN5A QRS  38632903 1.80E-07 -0.10804 0.031893 A 

rs9833086 SCN5A QRS  38585475 2.05E-07 0.103007 0.028261 A 

rs12053903 SCN5A QRS  38568397 1.97E-06 0.087244 0.027786 C 

rs6797133 SCN5A QRS  38631037 8.73E-06 -0.05357 0.026626 G 

rs7624535 SCN5A QRS  38640206 5.17E-05 -0.09719 0.031806 T 

rs9832895 SCN5A QRS  38636537 5.60E-05 -0.02167 0.025544 C 

rs7373102 SCN5A QRS  38655632 6.45E-05 -0.05577 0.025538 C 

Table 8-5. Significant SNPs for ECG traits in meta-analysis 

Marker Name Allele1 Allele2 beta SE P-value 

rs4953023 a g 0.7003 0.0542 3.87E-38 

rs10439467 t c 0.4272 0.0585 2.81E-13 

rs4148191 a c 0.511 0.0759 1.61E-11 

rs4953019 a g 0.3652 0.0544 1.84E-11 

rs6720173 c g 0.2636 0.0407 9.75E-11 

rs2278357 t c 0.2424 0.0406 2.30E-09 

rs6756629 a g 0.5371 0.0966 2.71E-08 

rs4148189 t c 0.2521 0.0465 5.96E-08 

rs4299376 t g 0.194 0.0359 6.44E-08 

rs10208987 t g -0.2704 0.0527 2.90E-07 

rs4077440 a g -0.2483 0.0526 2.38E-06 

rs6709904 a g -0.3612 0.0779 3.58E-06 

rs10201851 t c -0.2083 0.046 6.04E-06 

Table 8-6. The significant SNPs of the GBD meta-analysis. 

rsID Locus lipids effect size CA effect size  direction leading trait  CA p value MAF proxy r2 with proxy 

rs1084651 LPA 1.95 0.0443 same direction HDL 0.2921 0.16 (A) (A) 

rs11869286 STARD3 -0.48 -0.0176 same direction HDL 0.5955 0.34 (A) (A) 

rs12967135 MC4R -0.42 0.0333 opposite direction HDL 0.5422 0.23 rs1943226 0.188 
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rs1532085 LIPC 1.45 -0.1122 opposite direction HDL 0.03656 0.39 (A) (A) 

rs16942887 LCAT 1.27 -0.0259 opposite direction HDL 0.7018 0.12 rs2292318 0.915 

rs1800961 HNF4A -1.88 0.1497 opposite direction HDL 0.0848 0.03 (A) (A) 

rs1883025 ABCA1 -0.94 0.0031 opposite direction HDL 0.9312 0.25 (A) (A) 

rs2652834 LACTB -0.39 0.0507 opposite direction HDL 0.1896 0.2 rs11071721 0.442 

rs2972146 IRS1 0.46 0.0329 same direction HDL 0.3256 0.37 rs2943634 0.774 

rs3136441 LRP4 0.78 -0.0428 opposite direction HDL 0.3594 0.15 rs2070850 1 

rs3764261 CETP 3.39 0.0259 same direction HDL 0.444 0.32 (A) (A) 

rs386000 LILRA3 0.83 -0.0491 opposite direction HDL 0.2069 0.2 rs103294 0.832 

rs4129767 PGS1 -0.39 -0.0364 same direction HDL 0.2487 0.49 rs4082919 0.967 

rs4846914 GALNT2 -0.61 -0.0608 same direction HDL 0.05724 0.4 (A) (A) 

rs6065906 PLTP -0.93 0.071 opposite direction HDL 0.07487 0.18 rs6073952 0.877 

rs7134375 PDE3A 0.4 0.0187 same direction HDL 0.5553 0.42 rs10841495 0.243 

rs7134594 MVK -0.44 0.0057 opposite direction HDL 0.9127 0.47 (A) (A) 

rs7241918 LIPG -1.31 -0.0521 same direction HDL 0.2255 0.17 rs2156552 0.948 

rs7255436 ANGPTL4 -0.45 -0.036 same direction HDL 0.253 0.47 rs2278236 1 

rs838880 SCARB1 0.61 -0.0323 opposite direction HDL 0.352 0.31 rs838878 0.961 

rs11220462 ST3GAL4 1.95 -0.0629 opposite direction LDL 0.2014 0.14 rs8177375 0.121 

rs1367117 APOB 4.05 -0.0311 opposite direction LDL 0.358 0.3 (A) (A) 

rs1800562 HFE -2.22 0.016 opposite direction LDL 0.801 0.06 (A) (A) 

rs2479409 PCSK9 2.01 0.0776 same direction LDL 0.02155 0.3 (A) (A) 

rs3757354 MYLIP -1.43 -0.0129 same direction LDL 0.8653 0.22 rs7770341 0.157 

rs4299376 ABCG5/8 2.75 0.194 same direction LDL 6.44E-08 0.3 (A) (A) 

rs4420638 APOE 7.14 0.0002 same direction LDL 0.9977 0.17 (A) (A) 

rs6029526 TOP1 1.39 -0.0186 opposite direction LDL 0.5594 0.47 rs753381 0.818 

rs629301 SORT1 -5.65 -0.0196 same direction LDL 0.7141 0.22 (A) (A) 

rs6511720 LDLR -6.99 -0.0318 same direction LDL 0.5239 0.11 (A) (A) 

rs7206971 OSBPL7 0.78 0.0457 same direction LDL 0.1569 0.49 rs7214993 0.493 

rs8017377 NYNRIN 1.14 0.0315 same direction LDL 0.4356 0.47 rs6573766 0.118 
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rs10128711 SPTY2D1 -1.04 -0.0163 same direction TC 0.6457 0.28 rs11024739 1 

rs10401969 CILP2 -4.74 -0.0488 same direction TC 0.6094 0.07 (A) (A) 

rs11065987 BRAP -0.96 0.0334 opposite direction TC 0.2933 0.42 rs17696736 0.696 

rs1169288 HNF1A 1.42 0.045 same direction TC 0.4132 0.33 (A) (A) 

rs12027135 LDLRAP1 -1.22 -0.0305 same direction TC 0.5597 0.45 (A) (A) 

rs12916 HMGCR 2.84 0.0003 same direction TC 0.9914 0.39 (A) (A) 

rs2000999 HPR 2.34 0.0878 same direction TC 0.02439 0.2 (A) (A) 

rs2072183 NPC1L1 2.01 -0.0326 opposite direction TC 0.3871 0.25 (A) (A) 

rs2081687 CYP7A1 1.23 0.0976 same direction TC 0.003077 0.35 rs8192870 0.925 

rs2290159 RAF1 -1.42 -0.0382 same direction TC 0.3466 0.22 rs9817675 0.857 

rs2902940 MAFB -1.38 0.0111 opposite direction TC 0.7313 0.29 rs6029247 0.108 

rs3177928 HLA 2.31 -0.0547 opposite direction TC 0.2847 0.16 rs17496549 0.646 

rs492602 FLJ36070 1.27 -0.063 opposite direction TC 0.2218 0.49 (A) (A) 

rs6882076 TIMD4 -1.98 0.0602 opposite direction TC 0.2622 0.35 (A) (A) 

rs1042034  -5.99 -0.0172 same direction TG 0.6511 0.22 (A) (A) 

rs11613352 LRP1 -2.7 -0.045 same direction TG 0.2571 0.23 rs11172134 0.802 

rs11649653 CTF1 -2.13 -0.0179 same direction TG 0.5786 0.4 (A) (A) 

rs11776767 PINX1 2.01 -0.0367 opposite direction TG 0.249 0.37 rs4841317 0.125 

rs1260326 GCKR 8.76 -0.123 opposite direction TG 0.0001345 0.41 (A) (A) 

rs12678919 LPL -13.64 0.0592 opposite direction TG 0.5069 0.12 (A) (A) 

rs1495741 NAT2 2.85 -0.0047 opposite direction TG 0.893 0.22 rs1961456 0.524 

rs17145738 MLXIPL -9.32 0.0747 opposite direction TG 0.1188 0.12 (A) (A) 

rs174546 FADS1-2-3 3.82 0.0526 same direction TG 0.3409 0.34 (A) (A) 

rs2068888 CYP26A1 -2.28 -0.0309 same direction TG 0.3302 0.46 rs4418728 1 

rs2131925 ANGPTL3 -4.94 0.0662 opposite direction TG 0.04468 0.32 rs1748197 1 

rs2247056  -2.99 -0.004 same direction TG 0.8998 0.25 rs2523589 0.563 

rs2929282 FRMD5 5.13 -0.0737 opposite direction TG 0.1577 0.05 rs10438303 0.237 

rs2954029 TRIB1 -5.64 -0.0283 same direction TG 0.3696 0.47 (A) (A) 

rs439401  -5.5 0.0116 opposite direction TG 0.7225 0.36 (A) (A) 
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rs442177 KLHL8 -2.25 -0.0484 same direction TG 0.1333 0.41 rs3775214 0.964 

rs5756931 PLA2G6 -1.54 0.0932 opposite direction TG 0.004772 0.4 rs4820314 0.802 

rs645040 MSL2L1 -2.22 -0.0516 same direction TG 0.3991 0.22 (A) (A) 

rs964184 APOA1 16.95 0.0248 same direction TG 0.6875 0.13 rs12286037 0.588 

Table 8-7. Associations between GBD and 63 independent loci previously reported to be 

associated with lipid levels (Teslovich et al., 2010). (A) This was not necessary, as it was 

directly genotyped
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2 SNPs Model 

SNP1, independent effect =1 

 N 10K 5K 1k 500 100 

r2=0.9 

HR_MEAN 0.001666247 0.002327979 0.007662525 0.008899966 0.148657148 

HR_95%CI 0.03435748 0.052061965 0.118976878 0.192076277 1.452488811 

Mreg_MEAN 0.0011124 0.003888542 0.017189593 0.019894365 0.037589728 

Mreg_95%CI 0.302178051 0.438952618 0.977343389 1.423197341 3.544468234 

GCTA_MEAN 0.006184591 0.007119836 0.003234032 0.006265411 0.145259253 

GCTA_95%CI 0.04179361 0.06197972 0.146828738 0.226757081 0.832076091 
       

r2=0.8 

HR_MEAN 0.002121781 0.002142119 0.001136835 0.005149754 0.077632799 

HR_95%CI 0.026408551 0.037983395 0.090456528 0.131271477 0.974071684 

Mreg_MEAN 0.002743894 0.002354297 0.010080058 0.008472605 0.033431403 

Mreg_95%CI 0.206969633 0.303471321 0.70384088 0.987939529 2.321674632 

GCTA_MEAN 0.002421276 0.002634457 0.000516333 0.007229987 0.061184005 

GCTA_95%CI 0.029119613 0.042309561 0.1012824 0.144272179 0.469159452 
       

r2=0.5 
HR_MEAN 0.02039984 0.021877524 0.022225636 0.023238884 0.039157148 

HR_95%CI 0.015308343 0.02207482 0.050166436 0.07516596 0.189840069 
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Mreg_MEAN 0.018866975 0.022878874 0.026078252 0.018654087 0.018842517 

Mreg_95%CI 0.130271489 0.192942335 0.433039972 0.626248877 1.396102366 

GCTA_MEAN 0.020159147 0.021325037 0.021749437 0.024257734 0.044669467 

GCTA_95%CI 0.01746593 0.024185728 0.056048713 0.083885424 0.212847225 
       

r2=0.2 

HR_MEAN 0.000736617 0.001160796 0.002188218 0.002976302 0.01212241 

HR_95%CI 0.008099122 0.011357692 0.027778145 0.036623104 0.102899236 

Mreg_MEAN 0.000237719 0.000323408 0.00609236 0.002675935 0.006000273 

Mreg_95%CI 0.102455541 0.150891858 0.341759957 0.515294816 1.165054397 

GCTA_MEAN 0.000550163 0.000216059 0.00114004 0.001770056 0.012727879 

GCTA_95%CI 0.008818049 0.01245593 0.02935433 0.039496618 0.104033652 

       

SNP2 independent effect =0 

�  N 10K 5K 1k 500 100 

r2=0.9 

HR_MEAN 0.001835105 0.002595134 0.007604252 0.008275996 0.089215875 

HR_95%CI 0.036466382 0.055232839 0.125693975 0.202003308 1.554200319 

Mreg_MEAN 0.002038094 0.004222709 0.023000853 0.020897789 0.002356261 

Mreg_95%CI 0.304112805 0.448800685 1.001041864 1.432890469 3.554742134 

GCTA_MEAN 0.006633267 0.007693014 0.002847673 0.005344696 0.146204386 
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GCTA_95%CI 0.044497118 0.065976995 0.155660822 0.239707121 0.859037502 
      

 

r2=0.8 

HR_MEAN 0.002449701 0.002529292 0.00067627 0.004615229 0.032919587 

HR_95%CI 0.029803049 0.042859084 0.101745378 0.146867437 1.076762496 

Mreg_MEAN 0.002580834 0.001357546 0.007358458 0.003344505 0.032221692 

Mreg_95%CI 0.209929017 0.301991991 0.712796003 0.980119523 2.362155958 

GCTA_MEAN 0.002797201 0.0031074 0.000142086 0.006755521 0.060804859 

GCTA_95%CI 0.032917926 0.047824888 0.114117941 0.161942213 0.504183156 
      

 

r2=0.5 

HR_MEAN 0.013077255 0.015084665 0.014951476 0.015361469 0.029779187 

HR_95%CI 0.021624925 0.03108006 0.070312245 0.105250278 0.255825539 

Mreg_MEAN 0.01525414 0.012402253 0.024679445 0.023732623 0.038305434 

Mreg_95%CI 0.135916085 0.201657702 0.446067545 0.646961436 1.424609007 

GCTA_MEAN 0.012707242 0.014261407 0.014023917 0.016310952 0.035405846 

GCTA_95%CI 0.024676355 0.034059399 0.078691106 0.117506658 0.285186833 
      

 

r2=0.2 

HR_MEAN 0.001519921 0.002343901 0.003135982 0.003716353 0.007051808 

HR_95%CI 0.018636056 0.026023183 0.06388167 0.083218802 0.217541001 

Mreg_MEAN 0.000155018 0.000107109 0.004444034 0.007841599 0.017722129 

Mreg_95%CI 0.102218767 0.151394016 0.35169023 0.510821493 1.110035301 
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GCTA_MEAN 0.001474759 0.00089392 0.000461927 0.000195873 0.007573781 

GCTA_95%CI 0.020460327 0.028823312 0.06784384 0.090931083 0.220967026 

 

3 SNPs model, r^2 between SNP1 and SNP2 is 0.8, r^2 between SNP1 and SNP3 are showed below 

SNP1, independent effect = 1 

 

SNP1 and SNP3 r2=0.5 
 

SNP1 and SNP3 r2=0.3 
 

SNP1 and SNP3 r2=0.1 

N HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

10K 0.071443 0.01935 0.078972 0.213202 0.081914 0.021935 

 

0.001721 0.020938 0.000277 0.215446 0.002296 0.024751 

 

0.005022 0.018532 0.001694 0.208788 0.004359 0.022345 

5K 0.070608 0.028433 0.074086 0.310041 0.081747 0.032022 

 

0.001092 0.032178 0.002968 0.306323 0.00073 0.037117 

 

0.003776 0.028718 0.001068 0.297912 0.003042 0.034279 

1k 0.06793 0.068689 0.088521 0.741105 0.077826 0.080734 

 

0.004513 0.07476 0.001779 0.666349 0.005727 0.086409 

 

0.00339 0.063829 0.006353 0.672172 0.000589 0.075138 

500 0.063203 0.101107 0.069358 1.067519 0.071937 0.111674 

 

0.005411 0.10432 0.031336 0.989216 0.007633 0.121729 

 

7.15E-05 0.094294 0.007536 0.992912 0.002123 0.11466 

200 0.022049 0.203736 0.012563 1.573526 0.02683 0.240872 

 

0.021471 0.185104 0.009987 1.584888 0.02954 0.224464 

 

0.012762 0.160332 0.028184 1.598921 0.023415 0.19711 

175 0.03782 0.232971 0.005792 1.77176 0.044612 0.273101 

 

0.021517 0.193962 0.018654 1.679401 0.025672 0.228139 

 

0.014471 0.170772 0.013852 1.682086 0.02369 0.209402 

150 0.02396 0.25229 0.007221 1.914583 0.032194 0.294921 

 

0.045519 0.92051 0.002511 1.921594 0.038327 0.262136 

 

0.025197 0.236012 0.023125 1.906707 0.040697 0.286419 

100 0.004375 0.852442 0.063161 2.372521 0.013907 0.420461 �  0.08198 1.688698 0.090395 2.348012 0.050037 0.357962 �  0.097025 0.268564 0.059514 1.952315 0.096202 0.296018 

                     

SNP2, independent effect = 0 

 

SNP1 and SNP3 r2=0.5 
 

SNP1 and SNP3 r2=0.3 
 

SNP1 and SNP3 r2=0.1 

N HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 
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10K 0.085864 0.024096 0.09158 0.260677 0.092715 0.030336 

 

0.00245 0.026358 0.000652 0.230533 0.002878 0.031761 

 

0.006713 0.022435 0.002014 0.212812 0.005322 0.027041 

5K 0.084704 0.035927 0.083006 0.368303 0.092962 0.045254 

 

0.001911 0.040477 0.005273 0.32278 0.001516 0.047413 

 

0.0054 0.034904 0.002654 0.315865 0.003957 0.041322 

1k 0.082365 0.086355 0.088306 0.863651 0.090444 0.11312 

 

0.003393 0.09166 0.000757 0.733818 0.004959 0.107433 

 

0.006199 0.077115 0.005876 0.707974 0.002631 0.09041 

500 0.078792 0.122422 0.07441 1.24979 0.085522 0.154602 

 

0.002934 0.131336 0.030136 1.094274 0.005001 0.154346 

 

0.004201 0.11365 0.015362 1.045262 0.001601 0.13792 

200 0.019562 0.236565 0.027676 1.879106 0.018457 0.303018 

 

0.015501 0.220523 0.023563 1.75621 0.022655 0.271515 

 

0.006207 0.188442 0.043528 1.671417 0.017751 0.231827 

175 0.036375 0.267425 0.012954 2.084913 0.037855 0.346152 

 

0.0148 0.234985 0.026581 1.852227 0.016841 0.281142 

 

0.00682 0.203172 0.010224 1.790115 0.016837 0.24819 

150 0.019694 0.287601 0.000411 2.289741 0.023012 0.367297 

 

0.0092 0.970629 0.008168 2.065278 0.031093 0.313083 

 

0.017137 0.267554 0.03141 1.982361 0.033987 0.324516 

100 0.057824 0.920113 0.002247 2.803695 0.046178 0.493073 �  0.034349 1.896017 0.108352 2.51097 0.03735 0.42203 �  0.125322 0.306481 0.084049 2.064166 0.120576 0.345898 

                     

SNP3, independent effect = 0.3 

 

SNP1 and SNP3 r2=0.5 
 

SNP1 and SNP3 r2=0.3 
 

SNP1 and SNP3 r2=0.1 

N HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

10K 0.000559 0.013875 0.001203 0.167766 0.005967 0.020456 

 

0.001627 0.017335 0.000217 0.129061 8.87E-05 0.021013 

 

0.003715 0.017521 0.000383 0.109942 0.000112 0.019982 

5K 0.000168 0.020337 0.006579 0.244004 0.005478 0.029927 

 

0.00189 0.026149 0.001215 0.181278 0.000721 0.030983 

 

0.003571 0.027068 0.000398 0.15904 7.9E-05 0.029661 

1k 0.000423 0.048175 0.004815 0.559304 0.00439 0.07414 

 

0.001874 0.057104 0.00599 0.440201 0.000268 0.067839 

 

0.005076 0.05987 0.003218 0.358797 0.00135 0.066914 

500 0.001545 0.065773 0.006644 0.793359 0.003692 0.103288 

 

0.002031 0.085586 0.003048 0.613382 7.44E-05 0.103486 

 

0.006198 0.087614 0.000279 0.523932 0.001958 0.099037 

200 0.002655 0.109118 0.03065 1.28247 0.006053 0.169914 

 

0.00746 0.134306 0.001086 0.982017 0.005463 0.162139 

 

0.00419 0.140486 0.001762 0.82159 0.002676 0.157305 

175 0.002338 0.119988 0.012632 1.394103 0.004393 0.193872 

 

0.006821 0.144407 0.003303 1.010778 0.004826 0.177088 

 

0.009793 0.146709 0.023451 0.891007 0.001172 0.165214 

150 0.003984 0.119375 0.004589 1.529762 0.004772 0.191016 

 

0.006389 0.15406 0.021492 1.140249 0.002143 0.184736 

 

0.008203 0.160133 0.000956 1.003118 0.002862 0.179848 
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100 0.019004 0.16694 0.067913 1.793368 0.016858 0.25738 �  0.007147 0.315199 0.02881 1.349366 0.004199 0.232238 �  0.019815 0.148227 0.021706 1.095973 0.018954 0.181625 

                     

                     

3 SNPs model, r^2 between SNP1 and SNP2 is 0.5, r^2 between SNP1 and SNP3 are showed below 

SNP1, independent effect = 1 

 
SNP1 and SNP3 r2=0.5 

 
SNP1 and SNP3 r2=0.3 

 
SNP1 and SNP3 r2=0.1 

N HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

10K 0.002967 0.011306 0.003693 0.14216 0.00134 0.013487 

 

0.002058 0.010132 0.000282 0.13391 0.001713 0.012016 

 

0.005049 0.011402 0.001047 0.136532 0.000869 0.014064 

5K 0.003593 0.01675 0.000196 0.216511 0.000826 0.018758 

 

0.002526 0.014923 0.001695 0.189744 0.001344 0.017683 

 

0.004687 0.016598 0.005547 0.202362 0.001253 0.020857 

1k 0.004979 0.03748 0.009001 0.478326 0.001466 0.042888 

 

0.003308 0.033886 0.000837 0.42827 0.00066 0.039691 

 

0.005785 0.037467 0.018376 0.451182 2.84E-05 0.046784 

500 0.008366 0.053872 0.030902 0.680628 0.004171 0.061572 

 

0.005471 0.05152 0.002232 0.611297 0.002761 0.057796 

 

0.007548 0.054742 0.010261 0.619745 0.002957 0.068763 

200 0.015664 0.091586 0.035961 1.111772 0.016034 0.109201 

 

0.008398 0.080934 0.00407 0.976986 0.007091 0.098099 

 

0.010459 0.091034 0.008501 1.005677 0.011382 0.115428 

175 0.020079 0.102031 0.000426 1.175271 0.020785 0.115194 

 

0.01516 0.088932 0.005235 1.078919 0.015724 0.10892 

 

0.011194 0.096569 0.007069 1.102921 0.01206 0.121923 

150 0.023365 0.121295 0.006161 1.217457 0.023712 0.137196 �  0.014484 0.096039 0.009355 1.177267 0.014081 0.115882 �  0.013506 0.105475 0.003759 1.146685 0.015483 0.134107 

                     

SNP2, independent effect = 0 

  

SNP1 and SNP3 r2=0.5 
 

SNP1 and SNP3 r2=0.3 �  
 

SNP1 and SNP3 r2=0.1 �  

N HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

10K 0.005335 0.031744 0.001524 0.165943 0.002171 0.032676 

 

0.002866 0.020751 0.002963 0.204698 0.005029 0.031283 

 

0.008174 0.01927 0.002284 0.162963 0.001701 0.024635 
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5K 0.006336 0.047868 0.002997 0.242945 0.001022 0.048058 

 

0.003519 0.030284 0.003015 0.284677 0.004683 0.04391 

 

0.007256 0.02827 0.001465 0.238482 0.002656 0.036918 

1k 0.00701 0.100369 0.004341 0.537551 0.001246 0.104788 

 

0.003705 0.067285 0.006813 0.627475 0.004252 0.100525 

 

0.007309 0.063579 0.010852 0.519195 0.00314 0.08256 

500 0.013831 0.148917 0.019065 0.786398 0.002959 0.15037 

 

0.005697 0.10332 0.009217 0.936886 0.003919 0.14763 

 

0.007902 0.091604 0.00081 0.775495 0.001821 0.119975 

200 0.022976 0.243415 0.027964 1.245634 0.011116 0.25225 

 

0.002403 0.161332 0.018789 1.500344 0.009981 0.244727 

 

0.005543 0.150336 0.009055 1.174585 0.002733 0.198077 

175 0.031973 0.261772 0.012531 1.399636 0.020975 0.274807 

 

0.013452 0.180892 0.000335 1.563804 0.002154 0.271318 

 

0.0045 0.157985 0.018221 1.301526 0.001541 0.20679 

150 0.027984 0.310561 0.018124 1.475033 0.017212 0.304352 �  0.010222 0.192267 0.021124 1.701797 0.005019 0.280361 �  0.007534 0.172231 0.029494 1.374553 0.005823 0.226009 

                     

SNP3, independent effect = 0.3 

 

SNP1 and SNP3 r2=0.5 �  

 

SNP1 and SNP3 r2=0.3 �  
 

SNP1 and SNP3 R r2sq=0.1 �  

N HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

 

HR_MEAN HR_95%CI Mreg_MEAN Mreg_95%CI GCTA_MEAN GCTA_95%CI 

10K 0.002248 0.024303 0.000444 0.17825 0.000404 0.026254 

 

0.000519 0.019124 0.000176 0.178497 0.003276 0.030012 

 

0.006345 0.017912 0.001184 0.134354 9.21E-05 0.023356 

5K 0.002591 0.037651 0.005817 0.259285 0.001128 0.04049 

 

0.000342 0.026012 0.005459 0.255805 0.003267 0.041753 

 

0.00581 0.027432 0.002536 0.18532 0.000138 0.035817 

1k 0.002004 0.079591 0.002428 0.567777 0.001139 0.091392 

 

0.000241 0.062349 0.006501 0.572443 0.004311 0.09958 

 

0.003768 0.061173 0.004633 0.417322 0.003319 0.076687 

500 0.006028 0.118724 0.052431 0.815189 0.001748 0.125692 

 

0.000414 0.090867 0.01073 0.855641 0.004453 0.143809 

 

0.002437 0.085001 0.003017 0.631975 0.004808 0.112559 

200 0.008509 0.186178 0.007775 1.316778 0.000498 0.208051 

 

0.004602 0.139791 0.03704 1.347114 0.012931 0.221147 

 

0.001143 0.140412 0.000993 0.947095 0.002521 0.179897 

175 0.012829 0.20391 0.042233 1.423342 0.003982 0.232144 

 

0.00199 0.154465 0.024355 1.380328 0.011807 0.251986 

 

0.00372 0.15131 0.007127 0.992171 0.004315 0.195721 

150 0.006318 0.238321 0.0112 1.621696 0.001548 0.255486 �  0.00227 0.17163 0.011046 1.476126 0.014893 0.267052 �  0.001402 0.158987 0.012859 1.161024 0.002415 0.203338 

Table 8-8. Performance Comparison of HAPRAP, GCTA and Multiple Regression using Artificial Meta-Analyses of the Simulated Populations. A, 

errors of HAPRAP, GCTA and multiple regression in 2-SNPs models; B, errors of HAPRAP, GCTA and multiple regression in 3-SNPs models. “r2”is 
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the pair-wise LD r2. N is the number of individuals in the genotypes reference panel. HR_MEAN (and HR_95%CI) are the means (and width of 95% 

confidence intervals (CI)) for differences between HAPRAP betas and multiple regression joint SNP effects. Mreg_MEAN (and Mreg_95%CI) are 

the means (and width of 95% CIs) for differences between multiple regression joint SNP effects of the reference panel and multiple regression 

joint SNP effects of the whole population. GCTA_MEAN (and GCTA_95%CI) are the means (and width of 95% CIs) for differences between GCTA 

betas and multiple regression joint SNP effects. 

 

BWHHS individual-level data 

 
single SNP regression 

 
multiple regression 

 
HAPRAP 

 
GCTA 

genomic regreions and traits SNP beta SE pavl N �  beta SE pval �  beta SE pavl �  beta SE pavl 

APOE_TC rs769449 0.148  0.058  1.09E-02 1962 
 

0.097  0.058  9.60E-02 
 

0.102  0.060  8.78E-02 
 

0.104  0.059  7.65E-02 

APOE_TC chr19:50103919 -0.516  0.072  1.08E-12 1951 
 

-0.504  0.072  4.23E-12 
 

-0.502  0.071  2.05E-12 
 

-0.501  0.073  8.26E-12 

APOE_LDL rs769449 0.174  0.053  9.81E-04 1909 
 

0.111  0.052  3.34E-02 
 

0.117  0.053  2.80E-02 
 

0.120  0.053  2.44E-02 

APOE_LDL chr19:50103919 -0.632  0.065  6.35E-22 1898 
 

-0.617  0.065  6.66E-21 
 

-0.615  0.065  1.48E-20 
 

-0.615  0.067  3.67E-20 

NOS1AP_QTc chr1:160291611 6.169  1.193  2.55E-07 1981 
 

4.530  1.663  6.50E-03 
 

4.368  1.747  1.25E-02 
 

4.420  1.676  8.36E-03 

NOS1AP_QTc chr1:160297312 3.235  0.840  1.21E-04 1980 
 

-2.122  1.822  2.44E-01 
 

-2.394  1.989  2.29E-01 
 

-1.976  1.807  2.74E-01 

NOS1AP_QTc rs12143842 5.299  0.919  9.41E-09 1981 
 

4.262  1.928  2.71E-02 
 

4.583  2.119  3.06E-02 
 

4.056  1.900  3.28E-02 

NOS1AP_QTc rs16857031 3.098  1.111  5.36E-03 1981 
 

2.815  1.591  7.70E-02 
 

2.926  1.676  8.10E-02 
 

2.797  1.595  7.95E-02 

NOS1AP_QTc rs10918740 3.168  0.818  1.12E-04 1981 
 

-1.167  1.619  4.71E-01 
 

-1.202  1.721  4.85E-01 
 

-1.053  1.631  5.19E-01 

NOS1AP_QTc chr1:160426106 5.868  1.242  2.49E-06 1981 
 

-0.817  2.945  7.82E-01 
 

-0.775  3.383  8.19E-01 
 

-0.408  2.817  8.85E-01 
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NOS1AP_QTc chr1:160427963 3.544  0.855  3.55E-05 1981 
 

0.893  1.421  5.30E-01 
 

0.715  1.597  6.54E-01 
 

0.922  1.419  5.16E-01 

NOS1AP_QTc chr1:160431793 4.938  1.103  8.04E-06 1981 
 

-0.610  2.413  8.01E-01 
 

-0.644  2.666  8.09E-01 
 

-0.793  2.362  7.37E-01 

NOS1AP_QTc chr1:160435892 5.306  1.038  3.48E-07 1981 
 

3.019  2.295  1.89E-01 
 

3.135  2.662  2.39E-01 
 

2.824  2.259  2.11E-01 

NOS1AP_QTc chr1:160477234 4.295  0.898  1.86E-06 1981 
 

2.069  1.773  2.43E-01 
 

2.135  1.993  2.84E-01 
 

2.047  1.758  2.44E-01 

NOS1AP_QTc rs10919024 4.615  1.163  7.44E-05 1981 
 

-0.738  1.948  7.05E-01 
 

-0.861  2.137  6.87E-01 
 

-0.574  1.940  7.67E-01 

SCN5A10A_PR chr3:38619266 -3.379  0.977  5.53E-04 1896 
 

-2.881  0.983  3.41E-03 
 

-2.922  0.972  2.67E-03 
 

-2.953  0.987  2.77E-03 

SCN5A10A_PR chr3:38634956 2.607  0.867  2.68E-03 1895 
 

2.132  0.876  1.50E-02 
 

2.123  0.862  1.39E-02 
 

2.110  0.881  1.66E-02 

SCN5A10A_PR chr3:38719374 2.460  0.814  2.55E-03 1895 
 

0.707  1.040  4.96E-01 
 

0.738  1.045  4.80E-01 
 

0.735  1.046  4.83E-01 

SCN5A10A_PR chr3:38742319 3.283  0.825  7.13E-05 1896 
 

2.670  1.196  2.57E-02 
 

2.719  1.210  2.48E-02 
 

2.627  1.199  2.84E-02 

SCN5A10A_PR chr3:38762595 -2.398  0.824  3.64E-03 1894 
 

0.075  1.156  9.48E-01 
 

0.158  1.173  8.93E-01 
 

0.040  1.162  9.72E-01 

LIPC_HDL rs1077834 0.064  0.017  1.86E-04 1963 
 

0.010  0.039  7.90E-01 
 

0.023  0.039  5.49E-01 
 

0.018  0.036  6.08E-01 

LIPC_HDL rs8033940 0.055  0.015  3.45E-04 1963 
 

0.017  0.028  5.44E-01 
 

0.010  0.029  7.38E-01 
 

0.014  0.027  6.04E-01 

LIPC_HDL rs12914035 -0.066  0.020  1.29E-03 1955 
 

-0.048  0.021  2.45E-02 
 

-0.050  0.021  1.73E-02 
 

-0.048  0.021  2.51E-02 

LIPC_HDL rs261338 0.070  0.019  1.73E-04 1964 
 

0.073  0.044  9.66E-02 
 

0.065  0.046  1.54E-01 
 

0.063  0.043  1.40E-01 

LIPC_HDL rs261336 0.053  0.019  4.96E-03 1963 
 

-0.040  0.038  2.89E-01 
 

-0.038  0.040  3.33E-01 
 

-0.035  0.038  3.52E-01 

LPL_HDL chr8:19852310 0.041  0.021  4.45E-02 1963 
 

0.002  0.035  9.57E-01 
 

0.000  0.039  9.94E-01 
 

0.006  0.034  8.63E-01 

LPL_HDL chr8:19855067 0.046  0.027  8.27E-02 1964 
 

0.046  0.044  2.98E-01 
 

0.044  0.048  3.59E-01 
 

0.034  0.043  4.28E-01 

LPL_HDL chr8:19857947 0.060  0.019  1.58E-03 1963 
 

-0.009  0.038  8.07E-01 
 

-0.009  0.041  8.34E-01 
 

-0.004  0.037  9.14E-01 

LPL_HDL chr8:19861214 0.035  0.017  4.01E-02 1963 
 

0.018  0.047  6.92E-01 
 

0.016  0.051  7.58E-01 
 

0.006  0.046  8.95E-01 
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LPL_HDL chr8:19862322 0.027  0.016  8.48E-02 1964 
 

-0.061  0.036  8.84E-02 
 

-0.063  0.040  1.19E-01 
 

-0.053  0.035  1.31E-01 

LPL_HDL chr8:19868772 0.050  0.016  1.60E-03 1963 
 

-0.011  0.046  8.11E-01 
 

-0.008  0.052  8.81E-01 
 

-0.003  0.045  9.43E-01 

LPL_HDL rs1569209 0.029  0.027  2.95E-01 1962 
 

-0.159  0.067  1.76E-02 
 

-0.149  0.081  6.62E-02 
 

-0.134  0.062  3.07E-02 

LPL_HDL rs10096633 0.076  0.022  7.17E-04 1964 
 

0.206  0.059  5.30E-04 
 

0.204  0.069  3.27E-03 
 

0.188  0.057  9.22E-04 

LPL_HDL chr8:19914551 0.050  0.016  2.54E-03 1964 
 

0.041  0.047  3.86E-01 
 

0.041  0.052  4.32E-01 
 

0.039  0.047  4.13E-01 

LPL_HDL chr8:19919284 0.051  0.014  3.78E-04 1963 
 

0.041  0.020  4.30E-02 
 

0.041  0.020  4.13E-02 
 

0.040  0.020  4.81E-02 

LPL_HDL chr8:19959564 0.009  0.016  5.69E-01 1952 
 

0.007  0.022  7.62E-01 
 

-0.003  0.022  8.77E-01 
 

0.004  0.022  8.52E-01 

LPL_HDL rs9644568 0.036  0.022  9.96E-02 1964 
 

-0.013  0.037  7.34E-01 
 

-0.003  0.040  9.49E-01 
 

-0.006  0.036  8.65E-01 

LPL_HDL chr8:19983329 0.009  0.028  7.53E-01 1964 
 

-0.063  0.046  1.66E-01 
 

-0.066  0.054  2.20E-01 
 

-0.070  0.045  1.22E-01 

LDLR_TC rs6511720 -0.059  0.060  3.31E-01 1967 
 

0.171  0.105  1.02E-01 
 

0.179  0.109  1.01E-01 
 

0.170  0.104  1.03E-01 

LDLR_TC chr19:11067575 0.019  0.038  6.25E-01 1967 
 

-0.036  0.047  4.47E-01 
 

-0.028  0.047  5.46E-01 
 

-0.026  0.046  5.70E-01 

LDLR_TC chr19:11068516 -0.140  0.097  1.47E-01 1968 
 

0.021  0.125  8.69E-01 
 

0.025  0.121  8.34E-01 
 

0.020  0.122  8.67E-01 

LDLR_TC rs2228671 -0.139  0.059  1.79E-02 1967 
 

-0.314  0.129  1.52E-02 
 

-0.313  0.131  1.72E-02 
 

-0.300  0.126  1.74E-02 

LDLR_TC rs2738447 -0.006  0.039  8.76E-01 1937 
 

-0.033  0.052  5.20E-01 
 

-0.030  0.051  5.57E-01 
 

-0.027  0.051  6.00E-01 

LDLR_TC rs5742911 -0.044  0.042  2.91E-01 1967 
 

0.016  0.056  7.73E-01 
 

0.010  0.056  8.61E-01 
 

0.008  0.055  8.82E-01 

SMARCA4_TC rs8099996 -0.039  0.040  3.27E-01 1968 
 

-0.044  0.085  6.04E-01 
 

-0.037  0.086  6.69E-01 
 

-0.034  0.083  6.84E-01 

SMARCA4_TC rs8102273 -0.034  0.041  4.05E-01 1967 
 

-0.050  0.118  6.70E-01 
 

-0.063  0.121  6.01E-01 
 

-0.067  0.116  5.62E-01 

SMARCA4_TC chr19:11044837 -0.016  0.044  7.21E-01 1968 
 

0.095  0.095  3.20E-01 
 

0.101  0.095  2.88E-01 
 

0.104  0.095  2.73E-01 

SMARCA4_TC chr19:11056030 -0.036  0.049  4.58E-01 1968 
 

0.041  0.079  6.02E-01 
 

0.049  0.081  5.41E-01 
 

0.047  0.078  5.49E-01 
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SMARCA4_TC chr19:11059187 -0.071  0.061  2.46E-01 1967 
 

-0.116  0.104  2.66E-01 
 

-0.123  0.107  2.51E-01 
 

-0.121  0.103  2.41E-01 

PVRL2_TC rs7254892 -0.333  0.115  3.80E-03 1968 
 

-0.311  0.115  7.06E-03 
 

-0.313  0.118  7.89E-03 
 

-0.317  0.115  6.01E-03 

PVRL2_TC rs6857 0.124  0.052  1.62E-02 1961 
 

0.115  0.052  2.58E-02 
 

0.113  0.053  3.35E-02 
 

0.115  0.052  2.59E-02 

APOB_TC chr2:21079258 -0.124  0.050  1.31E-02 1968 
 

-0.054  0.082  5.09E-01 
 

-0.045  0.080  5.71E-01 
 

-0.039  0.081  6.33E-01 

APOB_TC chr2:21085700 -0.104  0.039  8.33E-03 1968 
 

0.048  0.085  5.77E-01 
 

0.039  0.091  6.67E-01 
 

0.043  0.081  5.95E-01 

APOB_TC chr2:21091291 -0.118  0.077  1.24E-01 1968 
 

0.144  0.157  3.58E-01 
 

0.082  0.189  6.63E-01 
 

0.085  0.150  5.71E-01 

APOB_TC rs41288783 0.743  0.464  1.09E-01 1968 
 

0.760  0.463  1.01E-01 
 

0.704  0.686  3.05E-01 
 

0.766  0.467  1.01E-01 

APOB_TC rs10199768 0.126  0.040  1.84E-03 1968 
 

-0.045  0.096  6.38E-01 
 

-0.034  0.105  7.43E-01 
 

-0.035  0.089  6.95E-01 

APOB_TC chr2:21099811 -0.175  0.074  1.81E-02 1968 
 

-0.185  0.186  3.21E-01 
 

-0.145  0.273  5.94E-01 
 

-0.128  0.169  4.49E-01 

APOB_TC rs1367117 0.187  0.042  7.31E-06 1968 
 

0.084  0.104  4.20E-01 
 

0.096  0.130  4.59E-01 
 

0.083  0.103  4.22E-01 

APOB_TC chr2:21119728 -0.160  0.172  3.52E-01 1968 
 

-0.040  0.214  8.51E-01 
 

0.019  0.268  9.43E-01 
 

-0.035  0.209  8.66E-01 

APOB_TC chr2:21120715 -0.240  0.054  9.67E-06 1962 
 

-0.144  0.147  3.27E-01 
 

-0.121  0.224  5.91E-01 
 

-0.155  0.133  2.43E-01 

APOB_TC rs17398765 0.249  0.070  4.15E-04 1968 
 

0.186  0.088  3.52E-02 
 

0.177  0.090  4.87E-02 
 

0.186  0.088  3.54E-02 

APOB_TC rs541041 -0.198  0.051  9.80E-05 1967 
 

0.004  0.142  9.76E-01 
 

-0.003  0.183  9.85E-01 
 

-0.008  0.135  9.55E-01 

APOB_TC chr2:21158700 0.169  0.042  5.45E-05 1967 
 

0.092  0.107  3.93E-01 
 

0.047  0.123  7.04E-01 
 

0.083  0.106  4.29E-01 

APOB_TC chr2:21162840 -0.257  0.071  3.15E-04 1967 
 

-0.059  0.179  7.42E-01 
 

-0.033  0.242  8.90E-01 
 

-0.039  0.167  8.16E-01 

APOB_TC chr2:21181140 -0.153  0.042  3.28E-04 1968 
 

0.082  0.126  5.16E-01 
 

0.015  0.171  9.30E-01 
 

0.058  0.121  6.30E-01 

APOB_TC chr2:21254166 0.119  0.041  3.29E-03 1967 
 

-0.078  0.103  4.51E-01 
 

-0.057  0.145  6.93E-01 
 

-0.072  0.099  4.66E-01 

APOB_TC chr2:21257334 -0.104  0.045  2.05E-02 1968 
 

-0.026  0.113  8.18E-01 
 

0.001  0.146  9.96E-01 
 

-0.001  0.108  9.95E-01 
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APOB_TC chr2:21284866 0.160  0.045  3.79E-04 1960 
 

-0.076  0.121  5.30E-01 
 

-0.067  0.152  6.61E-01 
 

-0.089  0.115  4.42E-01 

APOB_TC chr2:21300158 -0.191  0.052  2.66E-04 1968 
 

-0.117  0.122  3.38E-01 
 

-0.084  0.156  5.92E-01 
 

-0.112  0.120  3.51E-01 

APOB_TC chr2:21305109 -0.077  0.050  1.27E-01 1968 
 

0.164  0.109  1.33E-01 
 

0.147  0.135  2.77E-01 
 

0.159  0.104  1.25E-01 

APOB_TC chr2:21305192 -0.185  0.050  2.25E-04 1966 
 

-0.057  0.087  5.12E-01 
 

-0.077  0.089  3.89E-01 
 

-0.049  0.084  5.58E-01 

APOB_TC chr2:21305332 0.168  0.041  4.45E-05 1966 
 

0.090  0.109  4.10E-01 
 

0.068  0.128  5.97E-01 
 

0.088  0.101  3.85E-01 

APOB_TC rs10198972 -0.099  0.096  3.03E-01 1968 
 

0.063  0.138  6.48E-01 
 

0.089  0.208  6.68E-01 
 

0.071  0.135  5.99E-01 

APOB_TC rs312049 0.143  0.039  2.89E-04 1967 
 

0.012  0.086  8.85E-01 
 

0.031  0.102  7.58E-01 
 

0.023  0.082  7.79E-01 

APOB_TC rs7571647 -0.243  0.063  1.14E-04 1968 
 

-0.084  0.112  4.54E-01 
 

-0.093  0.117  4.28E-01 
 

-0.097  0.109  3.74E-01 

PVRL2_LDL rs6859 0.061  0.036  8.97E-02 1914 
 

0.012  0.039  7.65E-01 
 

0.012  0.038  7.51E-01 
 

0.010  0.039  7.88E-01 

PVRL2_LDL rs283813 -0.113  0.069  9.96E-02 1911 
 

0.066  0.090  4.61E-01 
 

0.073  0.095  4.43E-01 
 

0.067  0.090  4.56E-01 

PVRL2_LDL rs7254892 -0.464  0.104  9.18E-06 1915 
 

-0.503  0.135  1.92E-04 
 

-0.509  0.144  4.16E-04 
 

-0.505  0.135  1.73E-04 

PVRL2_LDL rs6857 0.151  0.047  1.36E-03 1909 
 

0.126  0.051  1.44E-02 
 

0.123  0.051  1.72E-02 
 

0.126  0.052  1.45E-02 

TOMM40_LDL rs157580 -0.139  0.036  1.41E-04 1905 
 

-0.146  0.039  1.99E-04 
 

-0.146  0.038  1.13E-04 
 

-0.144  0.040  2.93E-04 

TOMM40_LDL rs2075650 0.147  0.050  3.02E-03 1915 
 

0.066  0.053  2.16E-01 
 

0.064  0.054  2.36E-01 
 

0.072  0.053  1.79E-01 

TOMM40_LDL chr19:50092587 -0.503  0.107  2.49E-06 1915 
 

-0.554  0.108  2.88E-07 
 

-0.550  0.112  9.89E-07 
 

-0.550  0.109  4.21E-07 

TOMM40_LDL chr19:50095056 0.109  0.108  3.13E-01 1914 
 

0.051  0.109  6.37E-01 
 

0.045  0.111  6.87E-01 
 

0.052  0.110  6.34E-01 

LDLR_LDL rs6511720 -0.061  0.055  2.63E-01 1914 
 

0.163  0.094  8.25E-02 
 

0.172  0.097  7.80E-02 
 

0.164  0.094  8.08E-02 

LDLR_LDL chr19:11068102 -0.098  0.043  2.35E-02 1914 
 

-0.024  0.067  7.20E-01 
 

-0.036  0.066  5.89E-01 
 

-0.032  0.066  6.22E-01 

LDLR_LDL rs2228671 -0.142  0.053  7.89E-03 1914 
 

-0.267  0.112  1.74E-02 
 

-0.253  0.115  2.80E-02 
 

-0.248  0.111  2.54E-02 
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LDLR_LDL rs2738447 -0.002  0.036  9.52E-01 1885 
 

-0.019  0.041  6.48E-01 
 

-0.018  0.042  6.75E-01 
 

-0.016  0.041  6.91E-01 

LDLR_LDL rs5742911 -0.037  0.038  3.23E-01 1914 
 

0.019  0.048  6.95E-01 
 

0.011  0.049  8.29E-01 
 

0.011  0.048  8.25E-01 

SMARCA4_LDL rs1529729 0.028  0.035  4.21E-01 1914 
 

0.006  0.045  8.97E-01 
 

0.005  0.046  9.11E-01 
 

0.006  0.045  8.89E-01 

SMARCA4_LDL rs3786725 -0.041  0.038  2.80E-01 1915 
 

-0.052  0.084  5.36E-01 
 

-0.051  0.084  5.40E-01 
 

-0.053  0.085  5.29E-01 

SMARCA4_LDL chr19:11044837 -0.030  0.040  4.52E-01 1915 
 

0.047  0.089  5.98E-01 
 

0.045  0.087  6.03E-01 
 

0.049  0.088  5.77E-01 

SMARCA4_LDL chr19:11056030 -0.060  0.044  1.80E-01 1915 
 

-0.008  0.074  9.15E-01 
 

-0.007  0.074  9.20E-01 
 

-0.008  0.072  9.15E-01 

SMARCA4_LDL chr19:11059187 -0.079  0.055  1.56E-01 1914 
 

-0.067  0.096  4.85E-01 
 

-0.069  0.097  4.78E-01 
 

-0.069  0.094  4.65E-01 

CELSR2_LDL chr1:109600244 -0.051  0.036  1.59E-01 1914 
 

0.067  0.052  1.97E-01 
 

0.066  0.052  2.11E-01 
 

0.063  0.051  2.17E-01 

CELSR2_LDL rs4970834 -0.135  0.045  2.96E-03 1915 
 

0.012  0.084  8.85E-01 
 

0.016  0.086  8.48E-01 
 

0.011  0.084  8.99E-01 

CELSR2_LDL chr1:109618715 -0.150  0.043  5.04E-04 1915 
 

-0.091  0.087  2.92E-01 
 

-0.095  0.090  2.91E-01 
 

-0.092  0.086  2.87E-01 

CELSR2_LDL chr1:109618768 -0.120  0.038  1.65E-03 1914 
 

-0.096  0.069  1.65E-01 
 

-0.094  0.071  1.85E-01 
 

-0.093  0.069  1.75E-01 

CELSR2_LDL chr1:109622407 -0.165  0.062  8.07E-03 1914 
 

-0.065  0.083  4.34E-01 
 

-0.070  0.081  3.87E-01 
 

-0.069  0.083  4.08E-01 

APOB_LDL chr2:21079258 -0.148  0.046  1.22E-03 1915 
 

-0.084  0.073  2.50E-01 
 

-0.088  0.077  2.52E-01 
 

-0.076  0.073  2.99E-01 

APOB_LDL chr2:21085700 -0.117  0.036  1.10E-03 1915 
 

0.034  0.074  6.42E-01 
 

0.045  0.077  5.59E-01 
 

0.027  0.072  7.10E-01 

APOB_LDL chr2:21093423 0.139  0.037  1.43E-04 1915 
 

-0.022  0.074  7.62E-01 
 

0.003  0.076  9.67E-01 
 

-0.019  0.072  7.88E-01 

APOB_LDL rs12713956 -0.114  0.065  7.89E-02 1915 
 

0.088  0.129  4.97E-01 
 

0.046  0.174  7.91E-01 
 

0.090  0.122  4.61E-01 

APOB_LDL rs41288783 0.797  0.416  5.54E-02 1915 
 

0.807  0.416  5.23E-02 
 

0.715  0.493  1.47E-01 
 

0.806  0.419  5.42E-02 

APOB_LDL chr2:21103221 -0.204  0.089  2.27E-02 1915 
 

0.108  0.119  3.66E-01 
 

0.100  0.134  4.56E-01 
 

0.100  0.120  4.06E-01 

APOB_LDL rs1367117 0.194  0.038  3.34E-07 1915 
 

0.215  0.086  1.29E-02 
 

0.198  0.096  3.81E-02 
 

0.199  0.085  1.91E-02 
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APOB_LDL rs17398765 0.231  0.064  3.26E-04 1915 
 

0.159  0.081  5.03E-02 
 

0.149  0.084  7.42E-02 
 

0.156  0.080  5.10E-02 

APOB_LDL chr2:21124828 -0.224  0.049  5.29E-06 1914 
 

-0.138  0.125  2.70E-01 
 

-0.099  0.180  5.85E-01 
 

-0.138  0.118  2.42E-01 

APOB_LDL chr2:21162840 -0.243  0.065  1.77E-04 1914 
 

0.009  0.143  9.49E-01 
 

0.001  0.199  9.98E-01 
 

0.009  0.137  9.46E-01 

APOB_LDL chr2:21167284 0.141  0.040  3.93E-04 1915 
 

-0.057  0.086  5.07E-01 
 

-0.050  0.095  5.95E-01 
 

-0.050  0.084  5.49E-01 

APOB_LDL chr2:21181140 -0.142  0.039  2.25E-04 1915 
 

0.102  0.090  2.56E-01 
 

0.079  0.117  5.01E-01 
 

0.083  0.087  3.41E-01 

APOB_LDL rs4635554 0.098  0.037  8.83E-03 1904 
 

-0.091  0.081  2.60E-01 
 

-0.072  0.110  5.13E-01 
 

-0.077  0.078  3.26E-01 

APOB_LDL chr2:21257334 -0.119  0.041  3.50E-03 1915 
 

-0.042  0.108  6.99E-01 
 

-0.049  0.128  7.02E-01 
 

-0.035  0.103  7.37E-01 

APOB_LDL chr2:21292834 -0.200  0.048  2.79E-05 1915 
 

-0.189  0.109  8.24E-02 
 

-0.163  0.135  2.28E-01 
 

-0.174  0.107  1.05E-01 

APOB_LDL chr2:21303769 0.136  0.041  9.21E-04 1910 
 

0.021  0.088  8.07E-01 
 

0.009  0.119  9.40E-01 
 

0.010  0.085  9.03E-01 

APOB_LDL chr2:21305109 -0.130  0.046  4.37E-03 1915 
 

0.063  0.094  4.99E-01 
 

0.066  0.112  5.52E-01 
 

0.058  0.090  5.22E-01 

APOB_LDL chr2:21305192 -0.181  0.045  7.10E-05 1913 
 

-0.042  0.073  5.63E-01 
 

-0.055  0.072  4.42E-01 
 

-0.042  0.072  5.54E-01 

APOB_LDL rs7571647 -0.228  0.057  6.79E-05 1915 �  -0.041  0.095  6.66E-01 �  -0.039  0.111  7.24E-01 �  -0.039  0.094  6.76E-01 

Table 8-9. Performance Comparison of HAPRAP and GCTA Using BWHHS Summary Statistics and BWHHS Individual-level Genotypes.
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BWHHS summary statistics together with 1000 Genome individual-level data 

 
single SNP analysis 

 
HAPRAP 

 
Multiple regression 

 
GCTA 

genomic region and traits SNP beta SE pavl N �  beta SE pavl �  beta SE pavl �  beta SE pavl 

NOS1AP_QTc rs4657166 3.544  0.855  3.55E-05 1981 
 

1.347  1.084  2.14E-01 
 

1.160  0.992  2.42E-01 
 

8.923  1.030  4.54E-18 

NOS1AP_QTc rs16857031 3.098  1.111  5.36E-03 1981 
 

2.434  1.388  7.97E-02 
 

1.985  1.294  1.25E-01 
 

7.895  1.272  5.38E-10 

NOS1AP_QTc rs10918859 5.306  1.038  3.48E-07 1981 
 

3.234  1.201  7.16E-03 
 

3.277  1.152  4.51E-03 
 

8.062  1.179  8.14E-12 

LPL_HDL rs10096633 0.076  0.022  7.17E-04 1964 
 

0.149  0.044  7.59E-04 
 

0.123  0.047  8.56E-03 
 

0.249  0.062  6.45E-05 

LPL_HDL rs35237252 0.050  0.016  2.54E-03 1964 
 

0.065  0.047  1.65E-01 
 

0.023  0.046  6.12E-01 
 

0.108  0.048  2.53E-02 

NOS1AP_QTc rs10429888 6.169  1.193  2.55E-07 1981 
 

4.297  1.739  1.35E-02 
 

4.084  1.639  1.28E-02 
 

6.636  1.740  1.37E-04 

LPL_HDL rs343 0.046  0.027  8.27E-02 1964 
 

-0.001  0.046  9.77E-01 
 

-0.001  0.040  9.90E-01 
 

0.059  0.049  2.26E-01 

TOMM40_LDL rs157580 -0.139  0.036  1.41E-04 1905 
 

-0.169  0.037  5.49E-06 
 

-0.164  0.037  8.61E-06 
 

-0.124  0.037  6.94E-04 

CETP_HDL rs5880 -0.058  0.031  6.25E-02 1964 
 

0.036  0.034  2.80E-01 
 

0.001  0.034  9.83E-01 
 

0.040  0.038  2.95E-01 

TOMM40_LDL rs61679753 -0.503  0.107  2.49E-06 1915 
 

-0.572  0.102  2.69E-08 
 

-0.568  0.107  1.24E-07 
 

-0.470  0.108  1.22E-05 

CETP_HDL rs11076174 -0.104  0.025  4.59E-05 1964 
 

-0.079  0.032  1.44E-02 
 

-0.082  0.029  4.75E-03 
 

-0.064  0.032  4.22E-02 

LDLR_TC rs2738447 -0.006  0.039  8.76E-01 1937 
 

-0.003  0.049  9.45E-01 
 

-0.033  0.052  5.20E-01 
 

-0.009  0.053  8.63E-01 

APOB_LDL rs17398765 0.231  0.064  3.26E-04 1915 
 

0.131  0.080  1.00E-01 
 

0.114  0.070  1.05E-01 
 

0.143  0.069  3.89E-02 

HERPUD1_HDL rs3764261 0.103  0.015  2.29E-11 1963 
 

0.075  0.021  4.83E-04 
 

0.077  0.020  1.23E-04 
 

0.084  0.020  3.66E-05 

LDLR_TC rs6511721 0.019  0.038  6.25E-01 1967 
 

-0.014  0.046  7.54E-01 
 

-0.036  0.047  4.47E-01 
 

-0.021  0.047  6.56E-01 

HERPUD1_HDL rs2562126 -0.021  0.021  3.09E-01 1963 
 

0.011  0.022  6.06E-01 
 

0.005  0.022  8.10E-01 
 

0.012  0.022  5.95E-01 
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HERPUD1_HDL rs7205692 -0.046  0.020  2.01E-02 1964 
 

-0.044  0.023  5.21E-02 
 

-0.035  0.023  1.27E-01 
 

-0.029  0.024  2.29E-01 

LPL_HDL rs301 0.035  0.017  4.01E-02 1963 
 

0.008  0.020  7.08E-01 
 

-0.009  0.045  8.46E-01 
 

0.001  0.023  9.61E-01 

LDLR_TC rs6511720 -0.059  0.060  3.31E-01 1967 
 

0.237  0.124  5.56E-02 
 

0.171  0.105  1.02E-01 
 

0.196  0.108  7.07E-02 

HERPUD1_HDL rs12920974 -0.077  0.016  1.38E-06 1963 
 

-0.058  0.020  4.58E-03 
 

-0.056  0.020  4.97E-03 
 

-0.051  0.019  8.47E-03 

APOB_TC rs17398765 0.249  0.070  4.15E-04 1968 
 

0.134  0.083  1.06E-01 
 

0.142  0.077  6.73E-02 
 

0.158  0.075  3.61E-02 

PVRL2_LDL rs7254892 -0.464  0.104  9.18E-06 1915 
 

-0.443  0.101  1.29E-05 
 

-0.444  0.105  2.41E-05 
 

-0.424  0.106  6.32E-05 

LDLR_LDL rs2228671 -0.142  0.053  7.89E-03 1914 
 

-0.137  0.066  3.73E-02 
 

-0.149  0.060  1.33E-02 
 

-0.140  0.057  1.37E-02 

CETP_HDL rs1864163 -0.105  0.016  1.71E-10 1964 
 

-0.047  0.028  9.18E-02 
 

-0.054  0.024  2.56E-02 
 

-0.051  0.027  5.86E-02 

SMARCA4_TC rs8099996 -0.039  0.040  3.27E-01 1968 
 

-0.033  0.083  6.87E-01 
 

-0.044  0.085  6.04E-01 
 

-0.032  0.087  7.11E-01 

LIPC_HDL rs261338 0.070  0.019  1.73E-04 1964 
 

0.060  0.020  2.47E-03 
 

0.059  0.019  1.88E-03 
 

0.062  0.019  1.11E-03 

LDLR_TC rs73015030 -0.140  0.097  1.47E-01 1968 
 

0.014  0.138  9.17E-01 
 

0.021  0.125  8.69E-01 
 

0.034  0.125  7.88E-01 

SMARCA4_TC rs73015007 -0.016  0.044  7.21E-01 1968 
 

0.096  0.098  3.31E-01 
 

0.095  0.095  3.20E-01 
 

0.105  0.097  2.79E-01 

PVRL2_TC rs7254892 -0.333  0.115  3.80E-03 1968 
 

-0.315  0.113  5.44E-03 
 

-0.311  0.115  7.06E-03 
 

-0.299  0.116  1.03E-02 

APOB_TC rs1367117 0.187  0.042  7.31E-06 1968 
 

0.108  0.049  2.70E-02 
 

0.109  0.048  2.24E-02 
 

0.113  0.046  1.51E-02 

APOE_LDL rs769449 0.174  0.053  9.81E-04 1909 
 

0.123  0.053  2.03E-02 
 

0.111  0.052  3.34E-02 
 

0.115  0.053  3.04E-02 

APOE_TC rs769449 0.148  0.058  1.09E-02 1962 
 

0.107  0.060  7.49E-02 
 

0.097  0.058  9.60E-02 
 

0.100  0.059  8.77E-02 

SCN5A10A_PR rs6801957 3.283  0.825  7.13E-05 1896 
 

3.244  0.851  1.42E-04 
 

3.061  0.824  2.08E-04 
 

3.106  0.832  1.90E-04 

SMARCA4_TC rs11668477 -0.036  0.049  4.58E-01 1968 
 

0.041  0.075  5.87E-01 
 

0.041  0.079  6.02E-01 
 

0.045  0.075  5.43E-01 

APOE_LDL rs7412 -0.632  0.065  6.35E-22 1898 
 

-0.614  0.069  1.57E-18 
 

-0.617  0.065  6.66E-21 
 

-0.614  0.067  4.45E-20 
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APOE_TC rs7412 -0.516  0.072  1.08E-12 1951 
 

-0.500  0.076  6.55E-11 
 

-0.504  0.072  4.23E-12 
 

-0.501  0.073  9.25E-12 

LDLR_TC rs2228671 -0.139  0.059  1.79E-02 1967 
 

-0.343  0.134  1.07E-02 
 

-0.314  0.129  1.52E-02 
 

-0.310  0.126  1.39E-02 

CELSR2_LDL rs7528419 -0.150  0.043  5.04E-04 1915 
 

-0.127  0.054  1.79E-02 
 

-0.125  0.053  1.80E-02 
 

-0.124  0.050  1.34E-02 

SMARCA4_TC rs17248720 -0.071  0.061  2.46E-01 1967 
 

-0.111  0.108  3.06E-01 
 

-0.116  0.104  2.66E-01 
 

-0.115  0.094  2.21E-01 

APOB_TC rs1800481 -0.240  0.054  9.67E-06 1962 
 

-0.186  0.053  4.69E-04 
 

-0.181  0.057  1.36E-03 
 

-0.182  0.057  1.40E-03 

APOB_LDL rs1713222 -0.224  0.049  5.29E-06 1914 
 

-0.164  0.049  8.21E-04 
 

-0.159  0.051  1.86E-03 
 

-0.161  0.052  1.86E-03 

SMARCA4_LDL rs11668477 -0.060  0.044  1.80E-01 1915 
 

-0.034  0.056  5.45E-01 
 

-0.026  0.067  7.01E-01 
 

-0.027  0.057  6.29E-01 

SMARCA4_LDL rs17248720 -0.079  0.055  1.56E-01 1914 
 

-0.037  0.082  6.51E-01 
 

-0.043  0.084  6.13E-01 
 

-0.048  0.070  4.92E-01 

SMARCA4_LDL rs3786725 -0.041  0.038  2.80E-01 1915 
 

-0.021  0.042  6.15E-01 
 

-0.019  0.043  6.47E-01 
 

-0.023  0.041  5.75E-01 

CETP_HDL rs289715 0.038  0.022  7.88E-02 1964 
 

0.010  0.025  6.92E-01 
 

0.014  0.022  5.32E-01 
 

0.011  0.022  6.30E-01 

SCN5A10A_PR rs55824920 2.607  0.867  2.68E-03 1895 
 

2.088  0.872  1.68E-02 
 

2.171  0.868  1.25E-02 
 

2.048  0.877  1.95E-02 

LIPC_HDL rs12914035 -0.066  0.020  1.29E-03 1955 
 

-0.054  0.020  7.87E-03 
 

-0.051  0.021  1.37E-02 
 

-0.054  0.021  8.60E-03 

APOB_LDL rs1367117 0.194  0.038  3.34E-07 1915 
 

0.103  0.046  2.41E-02 
 

0.126  0.043  3.65E-03 
 

0.119  0.043  5.82E-03 

CELSR2_LDL rs11577931 -0.165  0.062  8.07E-03 1914 
 

-0.056  0.080  4.84E-01 
 

-0.060  0.076  4.29E-01 
 

-0.074  0.072  3.03E-01 

SMARCA4_TC rs8102273 -0.034  0.041  4.05E-01 1967 
 

-0.066  0.115  5.64E-01 
 

-0.050  0.118  6.70E-01 
 

-0.074  0.119  5.35E-01 

PVRL2_TC rs6857 0.124  0.052  1.62E-02 1961 
 

0.112  0.054  3.67E-02 
 

0.115  0.052  2.58E-02 
 

0.104  0.052  4.57E-02 

SCN5A10A_PR rs62242769 -3.379  0.977  5.53E-04 1896 
 

-3.450  1.064  1.21E-03 
 

-2.931  0.979  2.79E-03 
 

-3.197  0.983  1.15E-03 

PVRL2_LDL rs6857 0.151  0.047  1.36E-03 1909 
 

0.134  0.049  6.08E-03 
 

0.138  0.047  3.17E-03 
 

0.123  0.048  9.94E-03 

CETP_HDL rs118146573 -0.098  0.022  5.60E-06 1964 
 

-0.075  0.036  3.54E-02 
 

-0.056  0.032  8.53E-02 
 

-0.067  0.035  5.20E-02 
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LDLR_LDL rs5742911 -0.037  0.038  3.23E-01 1914 
 

-0.010  0.042  8.07E-01 
 

0.012  0.043  7.87E-01 
 

-0.004  0.040  9.29E-01 

HERPUD1_HDL rs9938160 0.022  0.015  1.60E-01 1964 
 

-0.019  0.017  2.79E-01 
 

-0.012  0.016  4.67E-01 
 

-0.019  0.017  2.65E-01 

LPL_HDL rs74304285 0.041  0.021  4.45E-02 1963 
 

-0.028  0.043  5.13E-01 
 

-0.003  0.034  9.24E-01 
 

-0.024  0.042  5.70E-01 

LPL_HDL rs4333617 0.051  0.014  3.78E-04 1963 
 

0.045  0.020  2.15E-02 
 

0.040  0.019  4.17E-02 
 

0.029  0.019  1.25E-01 

LDLR_TC rs5742911 -0.044  0.042  2.91E-01 1967 
 

-0.023  0.051  6.55E-01 
 

0.016  0.056  7.73E-01 
 

-0.016  0.052  7.52E-01 

CETP_HDL rs5883 0.118  0.031  1.64E-04 1962 
 

0.089  0.029  2.39E-03 
 

0.090  0.032  4.26E-03 
 

0.070  0.033  3.32E-02 

APOB_LDL rs41288783 0.797  0.416  5.54E-02 1915 
 

0.705  0.206  6.39E-04 
 

0.731  0.413  7.70E-02 
 

0.449  0.429  2.96E-01 

LPL_HDL rs9644568 0.036  0.022  9.96E-02 1964 
 

-0.010  0.036  7.76E-01 
 

-0.012  0.035  7.19E-01 
 

-0.040  0.044  3.64E-01 

LPL_HDL rs269 0.060  0.019  1.58E-03 1963 
 

0.024  0.045  5.94E-01 
 

0.023  0.035  5.07E-01 
 

-0.006  0.042  8.89E-01 

NOS1AP_QTc rs12143842 5.299  0.919  9.41E-09 1981 
 

1.610  1.441  2.64E-01 
 

1.586  1.332  2.34E-01 
 

0.540  1.369  6.93E-01 

LPL_HDL rs13702 0.050  0.016  1.60E-03 1963 
 

-0.013  0.050  7.91E-01 
 

0.013  0.044  7.73E-01 
 

-0.026  0.046  5.66E-01 

LPL_HDL rs314 0.027  0.016  8.48E-02 1964 
 

-0.079  0.032  1.30E-02 
 

-0.041  0.034  2.39E-01 
 

-0.087  0.032  6.74E-03 

LPL_HDL rs7015766 0.009  0.028  7.53E-01 1964 �  -0.113  0.043  8.72E-03 �  -0.106  0.042  1.17E-02 �  -0.232  0.061  1.28E-04 

Table 8-10. Performance Comparison of HAPRAP and GCTA Using BWHHS Summary Statistics and 1000 Genome Individual-Level Genotypes.
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Chr Position Gene lead SNP Risk Allele beta p-Value 

1 40028180 MACF1,PABPC4 rs4660293 G 0.48 4.00E-10 

1 182168885 ZNF648 rs1689800 G 0.47 3.00E-10 

1 230294916 GALNT2 rs2144300 T 1.11 3.00E-14 

1 230295691 GALNT2 rs4846914 G 0.61 4.00E-21 

1 230304988 GALNT2 rs10489615 G 0.02 4.00E-09 

2 21198900 APOB rs11902417 G 0.02 4.00E-07 

2 21206183 APOB rs6754295 C 0.07 4.00E-08 

2 21225281 APOB rs1042034 C 0.9 1.00E-30 

2 165540800 COBLL1 rs12328675 C 0.68 3.00E-10 

2 227100698 IRS1 rs2972146 C 0.46 2.00E-09 

4 103188709 SLC39A8 rs13107325 T 0.84 7.00E-11 

5 53298025 ARL15 rs6450176 A 0.49 5.00E-08 

6 34552797 C6orf106 rs2814944 A 0.49 4.00E-09 

6 139829666 CITED2 rs605066 C 0.39 3.00E-08 

6 161089817 LPA rs1084651 A 0.56 3.00E-08 

7 72982874 MLXIPL rs17145738 T 0.57 1.00E-09 

7 80340622 CD36 rs2366858 C 0.03 6.00E-10 

7 130433384 KLF14 rs4731702 T 0.59 1.00E-15 

8 9183358 PPP1R3B rs9987289 A 1.21 6.00E-25 

8 9185146 PPP1R3B rs2126259 A 0.11 1.00E-06 

8 9187242 PPP1R3B rs1461729 T 0.04 7.00E-09 

8 19819328 LPL rs325 T 0.05 8.00E-26 

8 19819439 LPL rs326 T 0.02 1.00E-08 

8 19819724 LPL rs328 G 0.17 9.00E-23 

8 19832646 LPL rs17482753 T 2.02 3.00E-11 

8 19844222 LPL rs12678919 G 2.25 1.00E-97 

8 19847690 LPL rs10503669 T 0.04 8.00E-43 

8 19865175 LPL rs2083637 G 0.11 6.00E-18 
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8 116599199 TRPS1 rs2293889 T 0.44 6.00E-11 

8 126490972 TRIB1 rs2954029 T 0.61 6.00E-19 

9 15289578 TTC39B rs471364 C 0.08 3.00E-10 

9 15296034 TTC39B rs643531 C 0.01 7.00E-09 

9 15305378 TTC39B rs581080 C 0.72 1.00E-13 

9 107620835 NIPSNAP3A,NIPSNAP3B,ABCA1 rs9282541 A 0.37 6.00E-26 

9 107647220 ABCA1 rs4149268 C 0.82 1.00E-10 

9 107647655 ABCA1 rs3890182 A 0.1 3.00E-10 

9 107653426 ABCA1 rs12686004 T 0.02 2.00E-18 

9 107657070 ABCA1 rs3905000 G 0.11 9.00E-13 

9 107664301 ABCA1 rs1883025 T 0.94 2.00E-33 

11 10388782 ADM,AMPD3 rs2923084 G 0.41 5.00E-08 

11 46743247 LRP4,NR1H3 rs3136441 C 0.78 3.00E-18 

11 47286290 NR1H3 rs7120118 G 0.04 4.00E-08 

11 48518893 MADD, FOLH1 rs7395662 G 0.07 6.00E-11 

11 61569830 FADS1,FADS2,FADS3 rs174546  T 0.73 2.00E-22 

11 61570783 FADS1, FADS2, FADS3 rs174547 C 0.09 2.00E-12 

11 61571348 FADS1 rs174548 G 0.01 1.00E-12 

11 61597212 FADS2, FADS3 rs174570 G 0.06 4.00E-06 

11 116617240 Intergenic rs11216126 C 0.03 3.00E-34 

11 116648917 APOA1,APOC3,APOA4,APOA5 rs964184 G 1.5 5.00E-47 

11 122522375 UBASH3B rs7941030 G 0.31 3.00E-08 

12 20473758 PDE3A rs7134375 A 0.4 4.00E-08 

12 57792580 LRP1 rs11613352 T 0.46 2.00E-08 

12 109840940 MYO1H,KCTD10,UBE3B,MMAB,MVK rs9943753 G 0.02 3.00E-06 

12 109895168 MMAB,MVK rs2338104 C 0.07 1.00E-10 

12 110000193 MMAB,MVK rs7134594 C 0.44 7.00E-15 

12 111414461 MYL2 rs12229654 G 0.03 3.00E-23 

12 112645401 C12orf51 rs2074356 T 0.04 7.00E-37 
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12 113409176 OAS3 rs2072134 A 0.02 6.00E-06 

12 123796238 SBNO1 rs4759375 T 0.86 8.00E-09 

12 124460167 CCDC92,ZNF664 rs4765127 T 0.44 3.00E-10 

12 125261593 SCARB1 rs838880 C 0.61 3.00E-14 

15 58674695 LIPC rs4775041 C 1.38 3.00E-20 

15 58678512 LIPC rs10468017 T 0.1 8.00E-23 

15 58683366 LIPC rs1532085 A 1.45 3.00E-96 

15 58694020 Intergenic rs16940212 T 0.02 1.00E-24 

15 58723426 LIPC rs1077835 A 0.17 2.00E-14 

15 58723675 LIPC rs1800588 T 0.14 2.00E-32 

15 58726744 LIPC rs261334 G 0.03 5.00E-22 

15 63396867 LACTB rs2652834 A 0.39 9.00E-09 

16 56985139 CETP rs9989419 G 0.04 1.00E-32 

16 56988044 CETP rs173539 T 0.25 4.00E-75 

16 56990716 CETP rs247617 A 0.06 1.00E-44 

16 56993324 CETP rs3764261 A 3.39 7E-380 

16 56995236 CETP, NUP93, SLC12A3, HERPUD1 rs1800775 A 3.09 4.00E-93 

16 56997233 CETP rs1864163 G 4.12 7.00E-39 

16 57005479 CETP rs1532624 C 0.21 9.00E-94 

16 57012379 CETP rs12708980 C 0.04 2.00E-28 

16 67708897 GFOD2,LCAT rs12449157 G 0.02 2.00E-07 

16 67902070 CTCF, PRMT8 rs2271293 G 0.13 8.00E-16 

16 67928042 LCAT rs16942887 A 1.27 8.00E-33 

16 68013471 LCAT rs255049 G 0.05 3.00E-08 

16 68024995 LCAT rs255052 A 0.74 1.00E-07 

16 81534790 CMIP rs2925979 T 0.45 2.00E-11 

17 2428508 Intergenic rs9891572 A 0.05 2.00E-07 

17 37813856 STARD3 rs11869286 C 0.51 3.00E-14 

17 66875294 ABCA8 rs4148008 G 0.42 2.00E-10 
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17 76403984 PGS1 rs4129767 G 0.4 5.00E-09 

18 47159090 LIPG rs7240405 A 2.27 5.00E-10 

18 47160953 LIPG rs7241918 G 1.31 3.00E-49 

18 47167214 LIPG rs4939883 T 0.14 7.00E-15 

18 47181668 LIPG rs2156552 T 0.03 2.00E-12 

18 57849023 RPS3A,MC4R rs12967135 A 0.42 7.00E-09 

19 8433196 ANGPTL4 rs7255436 C 0.45 3.00E-08 

19 8469738 ANGPTL4 rs2967605 T 0.12 1.00E-08 

19 11342703 LOC55908 rs12979813 T 0.02 2.00E-09 

19 11347493 DOCK6,LOC55908 rs737337 C 0.64 3.00E-09 

19 11350488 

TSPAN16,SPC24,RAB3D,LOC55908,KANK

2,DOCK6 rs2278426 ? 0.14 3.00E-09 

19 45376284 PVRL2, TOMM40, APOE rs519113 C 0.02 8.00E-11 

19 45395266 TOMM40, APOE rs157580 G 0.06 4.00E-07 

19 45422946 APOE,APOC1,APOC2 rs4420638 G 1.06 4.00E-21 

19 54792761 LILRA3,LILRB2 rs386000 C 0.83 4.00E-16 

20 43042364 HNF4A rs1800961 T 1.88 1.00E-15 

20 44554015 PLTP rs6065906 C 0.93 2.00E-22 

20 44576502 PLTP rs7679 C 0.07 4.00E-09 

21 32060490 Intergenic rs13046373 C 0.02 4.00E-06 

22 21932068 UBE2L3 rs181362 T 0.46 1.00E-08 

Table 8-11. Genetic variants reported to be associated with HDL-C by previous GWASs 

Chr Position Gene lead SNP Risk Allele beta p-Value 

1 25775733 TMEM57,LDLRAP1 rs12027135 A 1.1 1.00E-10 

1 55496039 PCSK9 rs11206510 T 3.04 4.00E-11 

1 55504650 PCSK9 rs2479409 G 2.01 2.00E-28 

1 55505647 PCSK9 rs11591147 T 0.47 2.00E-44 

1 55625548 PCSK9 rs17111684 A 9.01 2.00E-17 

1 63025942 ANGPTL3,DOCK7 rs2131925 G 1.59 3.00E-18 
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1 63118196 DOCK7 rs10889353 C 0.06 8.00E-06 

1 109817590 CELSR2, PSRC1, SORT1 rs12740374 T 0.23 2.00E-42 

1 109817838 CELSR2 rs660240 A 0.04 1.00E-26 

1 109818306 CELSR2,PSRC1,SORT1 rs629301 G 5.65 1.00E-170 

1 109818530 CELSR2,PSRC1,SORT1 rs646776 C 0.16 3.00E-29 

1 109822166 CELSR2,PSRC1 rs599839 G 0.16 1.00E-33 

1 207875175 CR1L rs4844614 A 0.1 2.00E-07 

1 220973563 MOSC1 rs2642442 T 1.09 6.00E-11 

1 234858597 IRF2BP2,TOMM20 rs514230 A 1.13 9.00E-12 

2 21232195 APOB rs693 A 0.12 1.00E-21 

2 21241505 APOB rs12713956 G 4.86 4.00E-08 

2 21263900 APOB rs1367117 A 4.05 4.00E-114 

2 21286057 APOB rs515135 T 0.16 5.00E-29 

2 21288321 APOB rs562338 G 4.89 6.00E-22 

2 44065090 ABCG5 rs6756629 G 0.16 3.00E-10 

2 44072576 ABCG5,ABCG8 rs4299376 G 2.75 2.00E-47 

2 44073881 ABCG8 rs6544713 T 0.15 2.00E-20 

2 44074431 ABCG8 rs4245791 G 5.97 1.00E-09 

5 74625487 HMGCR rs7703051 A 18 1.00E-08 

5 74648603 HMGCR rs12654264 T 0.1 1.00E-20 

5 74651084 HMGCR rs3846662 G 0.08 2.00E-11 

5 74655726 HMGCR rs3846663 T 0.07 8.00E-12 

5 74656539 HMGCR rs12916 C 2.45 5.00E-45 

5 156390297 TIMD4,HAVCR1 rs6882076 T 1.67 2.00E-22 

5 156398169 TIMD4, HAVCR1 rs1501908 G 0.07 1.00E-11 

6 16127407 IDOL rs3757354 T 1.43 1.00E-11 

6 16197194 MYLIP,GMPR rs2142672 C 0.01 2.00E-08 

6 26093141 HFE,HIST1H4C rs1800562 A 2.22 6.00E-10 

6 32412435 HLA rs3177928 A 1.83 2.00E-15 
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6 33143948 B3GALT4 rs2254287 G 1.91 5.00E-08 

6 116312893 FRK rs9488822 T 0.89 3.00E-09 

6 160578860 LPA rs1564348 C 1.95 2.00E-17 

7 21607352 DNAH11 rs12670798 C 1.26 7.00E-10 

7 44579180 NPC1L1 rs2072183 A 1.17 4.00E-11 

8 9183358 PPP1R3B rs9987289 T 2.22 7.00E-15 

8 59388565 CYP7A1 rs2081687 A 0.95 4.00E-09 

8 145043543 PLEC1 rs11136341 G 1.4 4.00E-13 

10 113933886 GPAM rs2255141 A 1.08 2.00E-09 

11 61569830 FADS1,FADS2,FADS3 rs174546 T 1.71 1.00E-21 

11 61597212 FADS2, FADS3 rs174570 G 0.11 4.00E-13 

11 116603724 APOA1, APOA4, APOA5, APOC3 rs12272004 C 0.18 5.00E-13 

11 116607437 BUD13, ZNF259, APOA5,APOA4,APOC3,APOA1 rs1558861 T 0.03 2.00E-06 

11 116648917 APOA1,APOC3,APOA4,APOA5 rs964184 G 2.85 1.00E-26 

11 126243952 ST3GAL4 rs11220462 A 1.95 1.00E-15 

12 112072424 BRAP rs11065987 G 0.97 2.00E-09 

12 121388962 HNF1A rs2650000 A 0.07 2.00E-08 

12 121416650 HNF1A rs1169288 C 1.42 1.00E-15 

14 24883887 CBLN3,KIAA0323 rs8017377 T 1.17 4.00E-11 

16 56993324 CETP rs3764261 T 1.45 9.00E-13 

16 72108093 HP,HPR,DHX38 rs2000999 A 2 2.00E-22 

17 45425115 OSBPL7 rs7206971 T 0.87 4.00E-09 

19 11195030 LDLR rs11668477 G 0.13 2.00E-07 

19 11200008 LDLR rs17249141 T 32.93 2.00E-17 

19 11202306 LDLR rs6511720 T 6.99 4.00E-117 

19 11210912 LDLR rs2228671 G 0.14 4.00E-14 

19 11238473 LDLR rs2738459 C 0.02 7.00E-06 

19 19407718 CSPG3,CILP2,PBX4 rs10401969 C 3.11 7.00E-22 

19 19658472 NCAN,CILP2 rs16996148 G 3.32 3.00E-09 
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19 19789528 NCAN rs2304130 G 0.12 3.00E-06 

19 45395266 TOMM40, APOE rs157580 G 0.11 2.00E-19 

19 45403412 APOE rs1160985 C 6.77 2.00E-21 

19 45412079 APOE rs7412 ? 12.3 2.00E-09 

19 45422946 APOE,APOC1,APOC2 rs4420638 G 7.14 9.00E-147 

20 39091487 MAFB rs2902940 G 0.98 1.00E-08 

20 39228784 MAFB rs6102059 T 0.06 4.00E-09 

20 39672618 TOP1 rs6029526 T 1.41 3.00E-19 

23 66942625 AR rs5031002 A 0.3 2.00E-07 

Table 8-12. Genetic variants reported to be associated with LDL-C by previous GWASs 

Chr Position Gene lead SNP 

Risk 

Allele 

beta p-Value 

1 62931632 DOCK7 rs1167998 C 0.09 2.00E-12 

1 62996838 DOCK7,ANGPTL3 rs1168013 G 0.04 6.00E-08 

1 63025942 ANGPTL3,DOCK7 rs2131925 G 4.94 9.00E-43 

1 63049593 ANGPTL3 rs1748195 C 7.12 2.00E-10 

1 63118196 ANGPTL3 rs10889353 C 0.13 2.00E-09 

1 63191777 ANGPTL3, DOCK7, ATG4C rs12130333 T 0.11 2.00E-08 

1 230294916 GALNT2 rs2144300 C 4.25 8.00E-07 

1 230295691 GALNT2 rs4846914 G 0.08 7.00E-15 

2 21204025 APOB rs6544366 T 0.04 2.00E-07 

2 21206183 APOB rs6754295 C 0.08 3.00E-08 

2 21208211 APOB rs7557067 G 0.08 9.00E-12 

2 21225281 APOB rs1042034 C 5.99 1.00E-45 

2 21232195 APOB rs693 A 0.08 2.00E-07 

2 27598097 GCKR rs4665972 T 0.07 1.00E-08 

2 27730940 GCKR rs1260326 T 8.76 6.00E-133 

2 27741237 GCKR rs780094 T 8.59 6.00E-32 

2 27743154 GCKR rs780092 G 0.05 5.00E-27 
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2 27748624 GCKR rs1260333 C 0.05 2.00E-19 

2 165513091 COBLL1 rs10195252 C 2.01 2.00E-10 

2 227100698 IRS1 rs2972146 C 1.89 2.00E-08 

3 135926622 MSL2L1 rs645040 G 2.22 3.00E-08 

4 88030261 AFF1,KLHL8 rs442177 G 2.25 9.00E-12 

5 55854153 C5orf35 rs6867983 T 0.02 3.00E-06 

5 55861786 ANKRD55,MAP3K1 rs9686661 T 2.57 1.00E-10 

5 156390297 TIMD4,HAVCR1 rs6882076 G 2.63 4.00E-12 

6 31265490 HLA rs2247056 T 2.99 2.00E-15 

7 72129667 TYW1B rs13238203 T 7.91 1.00E-09 

7 72856269 MLXIPL rs2240466 G 0.14 1.00E-12 

7 72856430 BAZ1B, BCL7B, TBL2, MLXIPL rs1178979 A 0.05 2.00E-12 

7 72864869 MLXIPL rs714052 G 0.16 3.00E-15 

7 72982874 MLXIPL rs17145738 G 7.91 9.00E-59 

7 72987354 TBL2, MLXIPL rs2286276 T 0.07 1.00E-15 

7 73020337 MLXIPL rs3812316 C 10.5 1.00E-10 

8 10683929 PINX1,XKR6 rs11776767 C 2.01 1.00E-08 

8 11045161 XKR6, AMAC1L2 rs7819412 G 0.04 3.00E-08 

8 18272881 NAT2 rs1495741 G 2.97 4.00E-14 

8 19819724 LPL rs328 G 0.19 2.00E-28 

8 19827848 LPL rs10105606 C 0.07 4.00E-26 

8 19830921 LPL rs10096633 G 0.17 2.00E-18 

8 19844222 LPL rs12678919 G 13.64 2.00E-115 

8 19847690 LPL rs10503669 T 0.09 7.00E-39 

8 19848080 LPL rs17410962 G 0.11 7.00E-09 

8 126477978 Intergenic rs2001945 C 0.04 1.00E-20 

8 126486409 TRIB1 rs17321515 G 0.08 4.00E-17 

8 126490972 TRIB1 rs2954029 T 5.64 3.00E-55 

10 65027610 JMJD1C rs10761731 T 2.38 3.00E-12 
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10 94839642 CYP26A1 rs2068888 A 2.28 2.00E-08 

11 61569830 FADS1,FADS2,FADS3 rs174546 T 3.82 5.00E-24 

11 61570783 FADS1, FADS2, FADS3 rs174547 C 0.06 2.00E-14 

11 61571348 FADS1 rs174548 G 0.03 5.00E-14 

11 116584987 BUD13,ZNF259,APOA5,APOA4,APOC3,APOA1 rs4938303 T 0.07 4.00E-21 

11 116586283 APOA1,APOC3,APOA4,APOA5 rs7350481 G 0.24 1.00E-49 

11 116603724 APOA1, APOA4, APOA5, APOC3 rs12272004 C 0.18 5.00E-13 

11 116607437 LOC440069, MGC13125 rs1558861 C 17 2.00E-26 

11 116619073 APOA1, APOC3, APOA4, APOA5, ZNF259, BUD13 rs28927680 G 0.26 2.00E-17 

11 116648917 APOA1,APOC3,APOA4,APOA5 rs964184 G 16.95 7.00E-240 

11 116652207 APOA5, APOA4, APOC3, APOA1 rs12286037 T 25.82 1.00E-26 

11 116652423 APOA,APOC rs6589566 C 0.21 5.00E-14 

11 116654435 ZNF259, APOA1, APOC3, APOA4, APOA5, BUD13 rs603446 T 0.09 2.00E-86 

11 116732512 APOA1,KIAA0999,LOC645044 rs2075292 G 8.7 5.00E-08 

12 57792580 LRP1 rs11613352 T 2.7 4.00E-10 

12 124460167 CCDC92,ZNF664 rs4765127 G 2.42 1.00E-08 

15 42683787 CAPN3 rs2412710 A 7 2.00E-08 

15 44245931 FRMD5 rs2929282 T 5.13 2.00E-11 

15 58674695 LIPC rs4775041 C 3.62 2.00E-08 

15 58683366 LIPC rs1532085 G 2.99 2.00E-13 

16 30918487 CTF1 rs11649653 G 2.13 3.00E-08 

16 56993324 CETP rs3764261 A 2.88 1.00E-12 

16 56995236 CETP rs1800775 C 2.1 3.00E-13 

19 19407718 CSPG3,CILP2,PBX4 rs10401969 C 7.83 2.00E-29 

19 19658472 NCAN,CILP2 rs16996148 G 6.1 3.00E-09 

19 19662220 NCAN,CILP2,PBX4 rs17216525 T 0.11 4.00E-11 

19 19789528 CILP2,ZNF101 rs2304130 G 0.07 4.00E-08 

19 45414451 APOE,APOC1,APOC2 rs439401 T 5.5 1.00E-30 

19 45422587 APOC1 rs12721054 G 0.1 3.00E-19 
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19 45422946 APOE cluster rs4420638 G 2.4 3.00E-13 

20 44554015 PLTP rs6065906 C 3.32 5.00E-18 

20 44576502 PLTP rs7679 C 0.07 7.00E-11 

22 38546033 PLA2G6 rs5756931 C 1.54 4.00E-08 

Table 8-13. Genetic variants reported to be associated with triglycerides by previous GWAS 

studies 

Chr Position Gene lead SNP Risk Allele beta p-Value 

1 23.77 ASAP3 rs1077514 C −0.03 6.00E-09 

2 169.83 ABCB11 rs2287623 G 0.027 4.00E-12 

2 203.53 FAM117B rs11694172 G 0.028 2.00E-09 

2 234.68 UGT1A1 rs11563251 T 0.037 1.00E-09 

3 58.38 PXK rs13315871 A −0.036 4.00E-08 

6 39.25 KCNK17 rs2758886 A 0.023 3.00E-08 

6 135.41 HBS1L rs9376090 C −0.025 3.00E-09 

7 1.08 GPR146 rs1997243 G 0.033 3.00E-10 

9 2.64 VLDLR rs3780181 G −0.044 7.00E-10 

10 17.26 VIM-CUBN rs10904908 G 0.025 3.00E-11 

11 118.49 PHLDB1 rs11603023 T 0.022 1.00E-08 

12 9.08 PHC1-A2ML1 rs4883201 G −0.035 2.00E-09 

17 7.09 DLG4 rs314253 C −0.023 3.00E-10 

22 35.71 TOM1 rs138777 A 0.021 5.00E-08 

22 46.63 PPARA rs4253772 T 0.032 1.00E-08 

Table 8-14. Novel genetic variants reported to be associated with total cholesterol by 

previous GWASs 

Chr Position Gene lead SNP Risk Allele beta p-Value 

7 4411209 SDK1 - SNORD13P2 rs10488360 ? NR 7.00E-06 

1 4315204 C1orf174 - AJAP1 rs966321 ? NR 8.00E-06 

3 7982827 GRM7 - LMCD1-AS1 rs4591494 ? NR 9.00E-06 

13 113760034 F7 rs561241 ? NR 5.00E-16 
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Table 8-15. Genetic variants reported to be associated with FVII by previous GWASs 

Chr Position Gene lead SNP Risk Allele beta p-Value 

3 1.85E+08 VPS8 rs4686760 G 0.15 1.00E-06 

5 1.12E+08 EPB41L4A rs379440 G 0.34 1.00E-06 

12 90609017 dessert rs10745527 G 0.16 5.00E-06 

19 5582535 SAFB2 rs732505 A 0.25 9.00E-06 

2 30526780 LBH rs6708166 A 0.17 1.00E-06 

9 1.37E+08 VAV2 rs12344583 G 0.2 8.00E-06 

17 31737421 ACCN1 rs1354492 A 0.16 2.00E-06 

6 90310966 ANKRD6 rs6454764 T 0.31 5.00E-06 

9 81310680 KRT18P24 rs1757948 G 0.15 7.00E-06 

18 25569058 CDH2 rs2298574 G 0.27 6.00E-06 

12 1.04E+08 STAB2 rs7306642 A 0.3 3.00E-06 

Table 8-16. Genetic variants reported to be associated with FVIII by previous GWASs 

Chr Position Gene lead SNP Risk Allele beta p-Value 

3 1.85E+08 VPS8 rs4686760 G 0.15 1.00E-06 

5 1.12E+08 EPB41L4A rs379440 G 0.34 1.00E-06 

12 90609017 dessert rs10745527 G 0.16 5.00E-06 

19 5582535 SAFB2 rs732505 A 0.25 9.00E-06 

2 30526780 LBH rs6708166 A 0.17 1.00E-06 

9 1.37E+08 VAV2 rs12344583 G 0.2 8.00E-06 

17 31737421 ACCN1 rs1354492 A 0.16 2.00E-06 

6 90310966 ANKRD6 rs6454764 T 0.31 5.00E-06 

9 81310680 KRT18P24 rs1757948 G 0.15 7.00E-06 

18 25569058 CDH2 rs2298574 G 0.27 6.00E-06 

12 1.04E+08 STAB2 rs7306642 A 0.3 3.00E-06 

Table 8-17. Genetic variants reported to be associated with vWF by previous GWASs 

Chr Position Gene lead SNP Risk Allele beta p-Value 
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1 40064961 PABPC4 rs12037222 A 0.05 6.00E-11 

1 66086194 LEPR rs10889569 T 0.05 9.00E-09 

1 66089782 LEPR rs6700896 T 14.8 3.00E-14 

1 66102257 LEPR rs1805096 A 0.11 2.00E-09 

1 66105944 LEPR rs1892534 A 0.17 7.00E-21 

1 66161461 LEPR rs4420065 C 0.09 4.00E-62 

1 154418879 IL6R rs4537545 T 11.5 2.00E-14 

1 154426264 IL6R rs4129267 C 0.08 2.00E-48 

1 154426970 IL6R rs8192284 ? 0.1 2.00E-08 

1 159649700 CRP, APCS, DARC, FCER1A, DUSP23, OR10J1, OR10J5, OR10J3, OLFML2B, IFI16, FCRL6 rs16827466 T 0.42 4.00E-73 

1 159655518 CRPP1, CRP rs726640 ? 0.44 2.00E-13 

1 159674933 CRP rs876537 C 0.29 1.00E-09 

1 159676171 CRP rs16842559 T 0.11 4.00E-21 

1 159678816 CRP rs2794520 C 0.16 2.00E-186 

1 159684665 CRP rs3091244 ? 0.2 6.00E-28 

1 159685136 CRP rs3093059 G 0.16 4.00E-21 

1 159692573 CRP, APCS, DARC, FCER1A, DUSP23, OR10J1, OR10J5, OR10J3, OLFML2B, IFI16, FCRL6 rs2808634 T 0.15 3.00E-10 

1 159698549 CRP rs7553007 A 20.7 8.00E-44 

1 247601595 NLRP3 rs12239046 C 0.05 1.00E-15 

2 27730940 GCKR rs1260326 T 0.07 5.00E-40 

2 27741237 GCKR rs780094 A 0.14 7.00E-15 

2 113841030 IL1F10, IL1RN rs6734238 G 0.11 9.00E-10 

2 113841030 IL1F10 rs6734238 G 0.05 2.00E-17 

5 131839618 IRF1 rs4705952 G 0.04 1.00E-08 

6 93852252 NR rs1408282 A 0.41 1.00E-06 

6 117114025 GPRC6A rs6901250 A 0.04 5.00E-08 

7 22732839 IL6 rs2097677 A 0.1 4.00E-11 

7 72971231 BCL7B rs13233571 C 0.05 4.00E-09 

8 9183358 PPP1R3B rs9987289 A 0.07 3.00E-13 
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12 103483094 ASCL1 rs10745954 A 0.04 2.00E-11 

12 103495151 Unknown rs10778213 G 0.12 1.00E-10 

12 121402932 HNF1A rs7305618 T 0.27 1.00E-08 

12 121420260 HNF1A rs7979473 A 0.12 1.00E-10 

12 121420807 HNF1A rs1183910 G 0.15 2.00E-124 

12 121424861 HNF1A rs7310409 A 0.15 7.00E-17 

12 121435587 HNF1A, OASL, C12orf43 rs2259816 T 0.14 3.00E-10 

12 121439433 HNF1A rs1169310 A 0.13 2.00E-08 

14 73019236 RGS6 rs4903031 G 0.03 5.00E-06 

15 60894965 RORA rs340029 T 0.03 4.00E-09 

16 51158710 SALL1 rs10521222 C 0.1 9.00E-13 

18 12821593 PTPN2 rs2847281 A 0.03 2.00E-08 

19 45395619 APOE rs2075650 G 0.12 2.00E-21 

19 45403412 TOMM40 rs1160985 C 0.13 4.00E-13 

19 45410002 APOE rs769449 ? 0.26 9.00E-21 

19 45422946 APOC1 rs4420638 A 0.24 9.00E-139 

20 43042364 HNF4A rs1800961 C 0.09 2.00E-09 

21 40465534 PSMG1 rs2836878 G 0.03 2.00E-07 

Table 8-18. Genetic variants reported to be associated with CRP by previous GWASs. 

Chr Position Gene lead SNP Risk Allele beta p-Value 

1 64868352 RNU7-62P rs11208446 A 0.12 9.00E-06 

1 82074852 RP5-837I24.4 rs11809789 A 0.4 6.00E-06 

1 159856429 CCDC19 rs2501324 ? 0.14 2.00E-10 

2 81872922 AC013262.1 rs12052359 A 0.22 7.00E-06 

2 88315793 KRCC1 rs12714207 T 0.03 5.00E-07 

2 160867059 PLA2R1 rs2667011 ? 0.04 2.00E-13 

2 190643649 ORMDL1 rs7606224 ? 0.1 2.00E-06 

2 234264848 DGKD rs1550532 ? 0.04 3.00E-19 

2 234406655 USP40 rs6704644 ? 0.08 8.00E-08 
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2 234639310 UGT1A1 rs11891311 ? 0.14 1.00E-41 

2 234668570 UGT1A1 rs887829 T 0.57 1.00E-69 

2 234669144 UGT1A1 rs4148323 ? 0.14 3.00E-139 

2 234672639 UGT1A1 rs6742078 T 0.23 5E-324 

2 234673309 UGT1A rs4148325 ? 0.17 5.00E-62 

2 234698790 LOC339766 rs2361502 ? 0.1 7.00E-23 

3 72023700 RP11-648C16.1 rs2135319 A 0.19 4.00E-06 

4 125993502 Intergenic rs1986655 A 0.02 2.00E-06 

4 155389247 DCHS2 rs17031671 ? 0.12 6.00E-11 

6 26116982 HIST1H2BC rs12206204 T 0.18 8.00E-07 

6 33060822 Intergenic rs6928954 ? 0.08 1.00E-06 

7 22756463 AC073072.5 rs10155981 T 0.13 2.00E-07 

7 80599357 SEMA3C rs4236644 A 0.02 2.00E-06 

8 445601 C8orf42 rs17665859 ? 0.09 5.00E-07 

8 112976141 AC068954.1, RP11-58O3.2 rs12549576 G 0.3 1.00E-06 

8 137768892 Intergenic rs16906293 ? 0.09 6.00E-06 

9 16034538 Intergenic rs3008706 ? 0.06 5.00E-07 

9 133765656 Intergenic rs10901296 ? 0.09 3.00E-07 

11 2936952 SLC22A18 rs16928809 A 0.06 1.00E-07 

12 21017875 SLCO1B3 rs2417940 ? 0.06 7.00E-19 

12 21074122 SLCO1B3 rs2117032 C 0.13 3.00E-14 

12 21331549 SLCO1B1,LST-3TM12,SLCO1A2 rs4149056 C 0.05 7.00E-13 

12 21368722 SLCO1B1 rs4363657 ? 0.06 5.00E-08 

13 70454960 KLHL1 rs11843309 T 0.21 7.00E-06 

13 111818832 ARHGEF7 rs4773330 A 0.04 8.00E-06 

14 46029687 Intergenic rs7140958 ? 0.09 2.00E-07 

16 14045399 ERCC4 rs4781563 A 0.16 2.00E-06 

21 34168573 C21orf49 rs2154427 ? 0.1 1.00E-06 

23 153554404 G6PD rs766420 G 0.18 9.00E-09 
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Table 8-19. Genetic variants reported to be associated with Bilirubin by previous GWASs. 

Chr Position Gene lead SNP Risk Allele beta p-Value 

1 145723645 PDZK1 rs1967017 T 3.33 4.00E-08 

1 145723739 PDZK1 rs1471633 A 0.06 1.00E-29 

1 150950062 ARNT rs4970988 A 0.03 1.00E-07 

1 155151493 TRIM46, PKLR rs11264341 T 0.05 6.00E-19 

2 27730940 GCKR rs1260326 T 0.07 1.00E-44 

2 27741237 GCKR rs780094 T 0.07 5.00E-06 

2 27742603 GCKR rs780093 T 5.15 4.00E-17 

2 121306440 INHBB rs17050272 A 0.04 2.00E-10 

2 148716428 ORC4L, ACVR2A rs2307394 T 0.03 2.00E-08 

2 170204846 LRP2 rs2544390 C 0.08 4.00E-08 

2 203337001 BMPR2 rs12468226 A 0.04 3.00E-06 

3 53100214 SFMBT1, MUSTN1 rs6770152 T 0.04 3.00E-16 

4 9915741 SLC2A9 rs11722228 T 0.16 7.00E-24 

4 9922167 SLC2A9 rs16890979 T 0.34 7.00E-168 

4 9926967 SLC2A9 rs13129697 G 22.21 2.00E-242 

4 9934744 SLC2A9 rs737267 C 0.88 3.00E-09 

4 9935910 GLUT9 rs6855911 A 0.32 2.00E-16 

4 9944052 SLC2A9 rs12498742 A 0.37 1E-700 

4 9966380 SLC2A9 rs7442295 C 0.35 3.00E-70 

4 9966380 SLC2A9,WDR1 rs7442295 A 0.02 2.00E-15 

4 81169912 FGF5 rs11099098 T 0.03 7.00E-07 

4 89052323 ABCG2 rs2231142 T 0.22 1.00E-134 

4 89054667 ABCG2 rs4148155 G 0.12 1.00E-13 

5 39902365 DAB2 rs11954519 A 0.03 4.00E-06 

5 55811092 ANKRD55 rs456867 T 0.04 3.00E-06 

5 72431482 TMEM171 rs17632159 C 0.04 4.00E-11 

6 7102084 RREB1 rs675209 T 0.06 1.00E-23 
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6 25813150 SLC17A1 rs1165196 G 6.21 5.00E-25 

6 25821616 SLC17A1, SLC17A3 rs1165151 T 0.09 7.00E-70 

6 25870542 SLC17A3 rs1165205 ? 0.09 4.00E-29 

6 43272188 SLC22A7 rs4149178 A 0.03 1.00E-06 

6 43804571 VEGFA rs729761 T 0.05 8.00E-16 

6 116310287 FRK rs1933737 T 0.03 7.00E-07 

6 134773554 Intergenic rs9321453 T 0.14 1.00E-09 

7 72857049 BAZ1B, MLXIPL rs1178977 A 0.05 1.00E-12 

7 151406005 PRKAG2 rs10480300 T 0.04 4.00E-09 

8 23777006 STC1 rs17786744 A 0.03 1.00E-08 

8 76478768 HNF4G rs2941484 T 0.04 4.00E-17 

9 33180362 B4GALT1 rs10813960 T 0.03 4.00E-07 

10 52646093 A1CF, ASAH2 rs10821905 A 0.06 7.00E-17 

10 61469538 SLC16A9 rs1171614 T 0.08 2.00E-28 

11 64334114 SLC22A11 rs2078267 T 0.07 9.00E-38 

11 64359221 SLC22A12 rs12800450 T 1.19 3.00E-16 

11 64440920 SLC22A12 rs506338 C 0.23 2.00E-31 

11 64478063 NRXN2, SLC22A12 rs478607 A 0.05 4.00E-11 

11 64525216 Intergenic rs589691 T 0.15 9.00E-08 

11 64546391 MEN1,SF1,MAP4K2,PYGM,RASGRP2,CDC42BPG,NRXN2 rs606458 T 0.18 6.00E-11 

11 64557054 MAP4K2 rs493573 A 0.8 2.00E-17 

11 65560620 OVOL1, LTBP3 rs642803 T 0.04 3.00E-13 

11 119235404 USP2 rs2195525 T 0.03 2.00E-06 

12 48173352 HDAC7 rs4760636 T 0.03 6.00E-06 

12 52251272 ACVR1B, ACVRL1 rs7976059 T 0.03 2.00E-09 

12 57809456 R3HDM2,INHBC rs1106766 T 5.16 2.00E-11 

12 57844049 INHBC, INHBE rs3741414 T 0.07 2.00E-25 

12 112007756 ATXN2, PTPN11 rs653178 T 0.04 7.00E-12 

12 121416988 HNF1A rs2244608 A 0.04 8.00E-08 
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12 122625992 B3GNT4 rs7953704 A 0.03 3.00E-08 

13 72345505 DACH1 rs584480 T 0.02 9.00E-06 

15 73082366 ADPGK rs4777542 T 0.03 2.00E-07 

15 76158983 UBE2Q2, NRG4 rs1394125 A 0.04 3.00E-13 

15 99271135 IGF1R rs6598541 A 0.04 5.00E-15 

16 69563890 NFAT5 rs7193778 T 0.05 8.00E-10 

16 79734987 MAF rs7188445 A 0.03 2.00E-09 

17 53364788 HLF rs7224610 A 0.04 5.00E-17 

17 59465697 BCAS3, C17orf82 rs2079742 T 0.04 1.00E-08 

17 74283669 QRICH2, PRPSAP1 rs164009 A 0.03 2.00E-07 

18 57872989 MC4R rs12955983 A 0.04 2.00E-06 

19 7199803 INSR rs1035942 A 0.03 1.00E-07 

Table 8-20. Genetic variants reported to be associated with urate by previous GWASs. 

Chr Position Gene lead SNP Risk Allele beta p-Value 

1 152300817 FLG rs3126085 A 1.22 6.00E-12 

1 152442289 FLG rs6661961 T 0.34 9.00E-11 

2 102971865 IL1RL1, IL18R1, IL18RAP rs13015714 G 1.27 8.00E-18 

2 112003867 LOC100505634 rs2271404 G 1.17 3.00E-07 

3 33065339 GLB1 rs7613051 A 1.29 6.00E-21 

3 112376308 CCDC80, LOC100630917 rs12634229 G 1.29 2.00E-19 

5 131995843 IL13, RAD50 rs1295686 A 1.38 2.00E-17 

5 132049027 KIF3A rs2897442 C 1.11 4.00E-08 

6 31272321 HLA-C rs9368677 G 1.36 1.00E-17 

6 31499603 BAT1 rs3853601 G 1.13 2.00E-06 

6 32074804 CREBL1, TNXB, rs12153855 T 1.58 3.00E-14 

6 32158319 GPSM3 rs176095 T 1.4 8.00E-20 

6 32308908 C6orf10 rs9469099 G 1.61 5.00E-19 

7 3128789 CARD11 rs4722404 G 1.18 8.00E-09 

8 81308150 ZBTB10 rs7000782 A 1.09 1.00E-06 
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8 129427518 MIR1208 rs7815944 A 1.16 4.00E-07 

10 64398466 ZNF365 rs10995251 C 1.28 6.00E-20 

10 64560470 ADO, EGR2 rs1444418 A 1.17 2.00E-07 

11 7968359 OR10A3, NLRP10 rs878860 G 1.31 2.00E-22 

11 65513107 OVOL1 rs593982 C 1.23 6.00E-07 

11 65551957 OVOL1 rs479844 G 1.14 1.00E-13 

11 76270683 C11orf30,LRRC32 rs7130588 G 1.29 4.00E-13 

11 76301316 C11orf30 rs7927894 A 1.22 8.00E-10 

11 76332210 C11orf30 rs11236809 G 1.24 3.00E-06 

16 11210415 CLEC16A rs9923856 A 1.17 6.00E-06 

19 8789381 ACTL9 rs2164983 A 1.16 7.00E-09 

20 52807221 CYP24A1, PFDN4 rs16999165 T 1.19 2.00E-08 

22 37258503 NCF4 rs4821544 C 1.09 6.00E-06 

Table 8-21. Genetic variants reported to be associated with atopic dermatitis by previous 

GWASs. 

SNP     A1  A2      freq    b       se      p      N 

rs6720173 C G 0.1583 0.2561 0.0386 3.23E-11 15213 

rs10208987 C A 0.0799 0.3782 0.0502 4.77E-14 15213 

rs4148189 A G 0.1139 0.2538 0.0441 8.66E-09 15213 

rs4245786 G A 0.2425 0.1423 0.0333 1.88E-05 15213 

rs4299376 C A 0.3154 -0.2829 0.0325 3.10E-18 15213 

rs4953023 A G 0.0658 0.7625 0.0523 3.57E-48 15213 

Table 8-22. SNPs significantly associated with GBD in the GBD meta-analysis 
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Marker ID A1 A2 Freq beta StdErr P.value N CHR traits Gene 

rs10429888 A G 0.3558 4.0061 0.6687 2.09E-09 7105 1 QTC interval OLFML2B(dist=31343),NOS1AP(dist=14594) 

rs10918594 C G 0.5689 2.8147 0.4769 3.59E-09 7101 1 QTC interval OLFML2B(dist=37044),NOS1AP(dist=8893) 

rs12143842 T C 0.4025 3.726 0.517 5.70E-13 7097 1 QTC interval OLFML2B(dist=40246),NOS1AP(dist=5691) 

rs16857031 C G 0.6309 2.8037 0.6321 9.19E-06 7104 1 QTC interval NOS1AP 

rs10918740 T C 0.4521 2.78 0.4663 2.49E-09 7105 1 QTC interval NOS1AP 

rs12039600 A G 0.3555 4.2885 0.709 1.46E-09 7106 1 QTC interval NOS1AP 

rs4657166 C G 0.5729 2.3324 0.4936 2.30E-06 7105 1 QTC interval NOS1AP 

rs72633699 T C 0.3724 3.6318 0.6375 1.22E-08 7105 1 QTC interval NOS1AP 

rs10918859 A G 0.3783 3.5549 0.5865 1.35E-09 7106 1 QTC interval NOS1AP 

rs4657178 T C 0.4091 2.5549 0.5192 8.61E-07 7103 1 QTC interval NOS1AP 

rs10919024 A C 0.6366 3.3784 0.6591 2.97E-07 7105 1 QTC interval NOS1AP 

rs7645178 A G 0.5828 1.9978 0.4512 9.51E-06 6902 3 PR interval SCN5A 

rs41312411 C G 0.6545 2.8977 0.5877 8.18E-07 6904 3 PR interval SCN5A 

rs12635898 A C 0.3909 2.5793 0.4753 5.73E-08 6807 3 PR interval SCN5A 

rs62242769 A G 0.3687 -2.3914 0.5032 2.01E-06 6902 3 PR interval SCN5A 

rs55824920 T C 0.4144 2.4975 0.4449 1.97E-08 6898 3 PR interval SCN5A 

rs6795580 C G 0.4609 -2.271 0.4298 1.27E-07 6902 3 PR interval SCN5A 

rs9818148 T G 0.6118 -2.4408 0.4792 3.52E-07 6883 3 PR interval SCN5A 

rs41312045 C G 0.2839 5.4286 1.179 4.14E-06 6903 3 PR interval SCN5A 

rs73056438 T C 0.3572 2.6866 0.5318 4.38E-07 6902 3 PR interval SCN5A 

rs6599230 T C 0.3604 -2.6812 0.5272 3.66E-07 6894 3 PR interval SCN5A 

rs6773331 A T 0.1946 -8.1823 1.5691 1.84E-07 6903 3 PR interval SCN5A 

rs4131768 A G 0.5796 -2.0936 0.4482 2.99E-06 6904 3 PR interval SCN5A(dist=4010),SCN10A(dist=43663) 

rs182475051 T C 0.388 -2.6333 0.4812 4.46E-08 6902 3 PR interval SCN5A(dist=34328),SCN10A(dist=13345) 

rs11129800 T C 0.4677 2.9887 0.4149 5.86E-13 6902 3 PR interval SCN10A 

rs9990137 A G 0.5727 -2.4132 0.441 4.45E-08 6902 3 PR interval SCN10A 
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rs73062575 T G 0.2642 5.2862 1.1925 9.29E-06 6900 3 PR interval SCN10A 

rs6801957 T C 0.4526 3.9874 0.4243 5.61E-21 6903 3 PR interval SCN10A 

rs10428168 T C 0.5829 -2.499 0.4411 1.46E-08 6902 3 PR interval SCN10A 

rs12636123 T G 0.528 -2.5996 0.423 7.98E-10 6902 3 PR interval SCN10A 

rs7553796 A C 0.4426 -0.0635 0.0093 8.14E-12 9528 1 il6 IL6R 

rs7518199 A C 0.5524 0.0883 0.0092 9.49E-22 9533 1 il6 IL6R 

rs4072391 T C 0.2896 -0.0581 0.0119 1.03E-06 9540 1 il6 IL6R 

rs9998811 A G 0.4517 -0.0226 0.0023 5.53E-23 4242 4 sUrate SLC2A9 

rs7696092 A C 0.5487 -0.0203 0.0023 3.40E-19 4241 4 sUrate SLC2A9 

rs2741029 T G 0.5653 2.0051 0.0955 5.84E-98 6521 2 bilirubin UGT1A8 

rs7608713 A G 0.4166 -0.9284 0.1042 5.11E-19 6530 2 bilirubin UGT1A10,UGT1A8 

rs17868322 A G 0.3576 1.603 0.2346 8.36E-12 6526 2 bilirubin UGT1A10,UGT1A8 

rs28899170 A C 0.4362 2.4878 0.0933 9.74E-157 6522 2 bilirubin UGT1A10,UGT1A6,UGT1A7,UGT1A8,UGT1A9 

rs1604144 T C 0.4403 -1.1735 0.0988 1.58E-32 6493 2 bilirubin UGT1A10,UGT1A6,UGT1A7,UGT1A8,UGT1A9 

rs17862875 A G 0.4291 2.5304 0.0942 5.68E-159 6530 2 bilirubin UGT1A10,UGT1A3,UGT1A4,UGT1A5,UGT1A6,UGT1A7,UGT1A8,UGT1A9 

rs11568318 A C 0.3609 -1.5878 0.1859 1.31E-17 6501 2 bilirubin UGT1A10,UGT1A3,UGT1A4,UGT1A5,UGT1A6,UGT1A7,UGT1A8,UGT1A9 

rs11563251 T C 0.3683 -1.237 0.1435 6.64E-18 6518 2 bilirubin UGT1A1,UGT1A10,UGT1A3,UGT1A4,UGT1A5,UGT1A6,UGT1A7,UGT1A8,UGT1A9 

rs7586006 T G 0.6176 -0.7347 0.1316 2.39E-08 6529 2 bilirubin UGT1A10(dist=3576),HJURP(dist=59959) 

rs10209214 T C 0.554 -0.9548 0.0953 1.24E-23 6523 2 bilirubin UGT1A10(dist=5632),HJURP(dist=57903) 

rs1115381 T C 0.4221 -0.9004 0.1025 1.53E-18 6483 2 bilirubin USP40(dist=35418),UGT1A8(dist=21006) 

rs2741027 A G 0.4346 2.0055 0.0954 3.60E-98 6530 2 bilirubin USP40(dist=48144),UGT1A8(dist=8280) 

rs491098 C G 0.199 -21.5146 0.5994 3.64E-282 8737 13 FVII F7 

rs3093253 A G 0.1906 -22.3575 0.6249 2.33E-280 8739 13 FVII F7 

rs563964 T C 0.4867 4.9929 0.4071 1.42E-34 8735 13 FVII F10 

rs547138 A T 0.5802 3.9481 0.4233 1.09E-20 8733 13 FVII F10 

rs867186 A G 0.8115 7.3879 0.724 1.89E-24 8738 20 FVII PROCR 

rs17406518 A C 0.8102 5.5107 0.7059 5.85E-15 8737 20 FVII PROCR(dist=34011),MMP24(dist=15280) 
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rs1058003 A G 0.5948 2.1242 0.4231 5.16E-07 8739 20 FVII TRPC4AP 

rs6060230 T C 0.187 7.3503 0.7349 1.50E-23 8738 20 FVII TRPC4AP(dist=8690),EDEM2(dist=13852) 

rs11906160 A G 0.1953 5.4717 0.6851 1.38E-15 8738 20 FVII MYH7B 

rs7261167 A G 0.184 7.4098 0.7441 2.32E-23 8738 20 FVII MYH7B 

rs8176725 A G 0.3073 11.5058 1.1053 2.25E-25 5867 9 FVIII ABO 

rs2073827 C G 0.4723 -7.761 0.645 2.42E-33 5868 9 FVIII ABO 

rs8176694 T C 0.6578 -5.455 0.8213 3.10E-11 5861 9 FVIII ABO 

rs8176644 T C 0.2984 16.206 1.2834 1.49E-36 5871 9 FVIII ABO 

rs507666 A G 0.3517 14.3829 0.791 7.07E-74 5871 9 FVIII ABO 

rs630014 A G 0.4934 -8.2094 0.6295 7.19E-39 5870 9 FVIII ABO 

rs11244061 T C 0.3287 13.2379 0.9874 5.47E-41 5872 9 FVIII ABO(dist=3351),SURF6(dist=43571) 

rs633862 T C 0.5037 -7.4347 0.6316 5.49E-32 5864 9 FVIII ABO(dist=4814),SURF6(dist=42108) 

rs554710 T C 0.6048 -5.4182 0.6924 5.09E-15 5869 9 FVIII ABO(dist=31218),SURF6(dist=15704) 

rs1179011 A G 0.5708 4.8883 0.6587 1.16E-13 5860 9 FVIII ABO(dist=35753),SURF6(dist=11169) 

rs11244084 T C 0.3075 9.818 1.2502 4.07E-15 5871 9 FVIII ABO(dist=40380),SURF6(dist=6542) 

rs10901262 A G 0.3857 4.6887 0.7122 4.60E-11 5870 9 FVIII ABO(dist=41486),SURF6(dist=5436) 

rs11244034 T C 0.3318 4.119 0.8678 2.07E-06 5870 9 FVIII OBP2B 

rs12554449 T G 0.5365 5.6209 1.2358 5.41E-06 2871 9 FVIII OBP2B 

rs3761823 C G 0.3494 3.679 0.7977 3.99E-06 5864 9 FVIII OBP2B(dist=2184),ABO(dist=43751) 

rs185852900 A G 0.3202 7.1986 0.9549 4.77E-14 5869 9 FVIII OBP2B(dist=18035),ABO(dist=27900) 

rs2013075 T C 0.2941 13.6835 1.2919 3.25E-26 5859 9 FVIII OBP2B(dist=18525),ABO(dist=27410) 

rs182267720 T C 0.3206 7.2223 0.9875 2.59E-13 5869 9 FVIII OBP2B(dist=29716),ABO(dist=16219) 

rs9411470 A G 0.663 4.552 0.8636 1.36E-07 5772 9 FVIII OBP2B(dist=35357),ABO(dist=10578) 

rs10901250 A G 0.3184 6.848 0.965 1.28E-12 5869 9 FVIII OBP2B(dist=36998),ABO(dist=8937) 

rs11244049 T C 0.7053 15.9482 1.2859 2.54E-35 5855 9 FVIII OBP2B(dist=38464),ABO(dist=7471) 

rs7857390 A G 0.4615 -7.5723 0.6468 1.17E-31 5872 9 FVIII OBP2B(dist=43918),ABO(dist=2017) 

rs10901253 T C 0.6255 -5.3952 0.7465 4.94E-13 5871 9 FVIII OBP2B(dist=44144),ABO(dist=1791) 
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rs28715750 T C 0.7242 -6.9293 1.5568 8.55E-06 5871 9 FVIII SURF4 

rs3118660 A T 0.3031 -5.8465 1.0295 1.36E-08 5871 9 FVIII SURF4 

rs3758348 C G 0.3395 11.0928 0.9249 3.82E-33 5869 9 FVIII SURF4 

rs62575992 T C 0.3169 -4.8132 0.9725 7.44E-07 5871 9 FVIII C9orf96 

rs77926044 T C 0.2999 -5.4358 1.1644 3.04E-06 5871 9 FVIII C9orf96 

rs17474001 T C 0.3357 10.7113 0.9439 7.65E-30 5870 9 FVIII C9orf96 

rs3124747 A G 0.4066 3.2712 0.6822 1.62E-06 5872 9 FVIII C9orf96 

rs41302673 T G 0.6826 10.0792 1.1259 3.48E-19 5872 9 FVIII C9orf96 

rs36219252 A G 0.3108 13.2123 2.4447 6.50E-08 5872 9 FVIII ADAMTS13 

rs72779205 A G 0.3266 -5.5328 0.9186 1.71E-09 5868 9 FVIII ADAMTS13 

rs3118671 T G 0.3394 -5.567 0.8268 1.66E-11 5867 9 FVIII ADAMTS13 

rs41296094 T C 0.7142 10.6838 1.5532 6.04E-12 5872 9 FVIII ADAMTS13 

rs28645493 C G 0.683 9.6009 1.1685 2.10E-16 5869 9 FVIII ADAMTS13 

rs652600 A G 0.6 -3.8721 0.6977 2.87E-08 5869 9 FVIII ADAMTS13 

rs2769073 T C 0.3292 -3.9742 0.8797 6.25E-06 5871 9 FVIII ADAMTS13 

rs2769074 T C 0.3017 -5.1076 1.0782 2.17E-06 5872 9 FVIII ADAMTS13 

rs4962153 A G 0.3336 9.4932 0.9352 3.28E-24 5872 9 FVIII ADAMTS13 

rs3124764 T C 0.3352 9.4455 0.9361 6.10E-24 5872 9 FVIII CACFD1 

rs41302667 A G 0.3114 9.1834 1.1719 4.65E-15 5869 9 FVIII CACFD1 

rs2073936 T C 0.2165 15.3003 3.3628 5.37E-06 5871 9 FVIII CACFD1 

rs3094381 A G 0.3029 -5.0661 1.0744 2.42E-06 5872 9 FVIII CACFD1 

rs35434910 A T 0.3639 5.0703 0.7664 3.71E-11 5869 9 FVIII GBGT1(dist=3023),OBP2B(dist=38342) 

rs7022409 T C 0.4266 -3.5256 0.6606 9.47E-08 5871 9 FVIII GBGT1(dist=3969),OBP2B(dist=37396) 

rs6597604 A G 0.5998 3.5731 0.6914 2.36E-07 5870 9 FVIII GBGT1(dist=10479),OBP2B(dist=30886) 

rs186686586 T C 0.363 -3.5115 0.7691 4.98E-06 5869 9 FVIII GBGT1(dist=21428),OBP2B(dist=19937) 

rs12378537 T C 0.2985 10.7287 1.1452 7.37E-21 5872 9 FVIII GBGT1(dist=26225),OBP2B(dist=15140) 

rs11244031 A G 0.471 -4.1714 0.6391 6.71E-11 5865 9 FVIII GBGT1(dist=36863),OBP2B(dist=4502) 
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rs4783961 A G 0.5096 -0.0309 0.0041 2.74E-14 14310 16 HDL CETP 

rs1800775 A C 0.4856 0.0682 0.004 5.99E-64 14312 16 HDL CETP 

rs1864163 A G 0.3016 -0.0729 0.0045 8.18E-58 14312 16 HDL CETP 

rs9929488 C G 0.3016 -0.0549 0.0046 4.52E-33 14311 16 HDL CETP 

rs118146573 A G 0.1848 -0.081 0.0059 2.73E-42 14324 16 HDL CETP 

rs11076174 T C 0.8517 -0.0496 0.0075 2.99E-11 14326 16 HDL CETP 

rs7205804 A G 0.4449 0.0692 0.0041 2.33E-64 14315 16 HDL CETP 

rs5883 T C 0.1264 0.0566 0.0092 7.49E-10 13528 16 HDL CETP 

rs289714 A G 0.7721 -0.0628 0.0053 1.51E-32 14315 16 HDL CETP 

rs289715 A T 0.1796 0.0383 0.0063 1.06E-09 14319 16 HDL CETP 

rs289719 T C 0.3415 0.0442 0.0044 5.22E-24 14309 16 HDL CETP 

rs5880 C G 0.1224 -0.0794 0.0088 3.01E-19 14325 16 HDL CETP 

rs2562126 A G 0.1946 -0.0307 0.0058 1.52E-07 14324 16 HDL HERPUD1 

rs9938160 T C 0.6614 0.0223 0.0044 4.54E-07 14321 16 HDL HERPUD1(dist=6797),CETP(dist=11245) 

rs9989419 A G 0.4105 -0.0498 0.0042 4.67E-33 14312 16 HDL HERPUD1(dist=7346),CETP(dist=10696) 

rs193695 A G 0.3749 -0.0482 0.0043 1.10E-29 14313 16 HDL HERPUD1(dist=7363),CETP(dist=10679) 

rs72786786 A G 0.3375 0.0671 0.0044 2.36E-52 14308 16 HDL HERPUD1(dist=7721),CETP(dist=10321) 

rs12448528 A G 0.2635 -0.0581 0.0051 3.09E-30 12079 16 HDL HERPUD1(dist=7762),CETP(dist=10280) 

rs7205692 A G 0.7897 -0.035 0.0056 3.37E-10 14323 16 HDL HERPUD1(dist=9121),CETP(dist=8921) 

rs12920974 T G 0.3171 -0.0479 0.0045 3.18E-26 14318 16 HDL HERPUD1(dist=15232),CETP(dist=2810) 

rs12708967 T C 0.7623 -0.0617 0.0051 1.87E-33 14324 16 HDL HERPUD1(dist=15418),CETP(dist=2624) 

rs3764261 A C 0.3502 0.0822 0.0043 7.35E-80 14317 16 HDL HERPUD1(dist=15531),CETP(dist=2511) 

rs1077834 T C 0.7407 0.049 0.0049 2.54E-23 14322 15 HDL LIPC 

rs8033940 A G 0.3197 0.0381 0.0045 4.29E-17 14289 15 HDL LIPC 

rs12914035 A G 0.7965 -0.0299 0.0056 1.08E-07 14295 15 HDL LIPC 

rs261338 A G 0.2205 0.0517 0.0055 3.35E-21 14323 15 HDL LIPC 

rs261336 A G 0.7849 0.0463 0.0055 4.41E-17 14325 15 HDL LIPC 
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rs74304285 A G 0.1991 0.0384 0.0057 2.36E-011 14323 8 HDL LPL 

rs343 A C 0.1441 0.0503 0.0072 3.50E-012 14320 8 HDL LPL 

rs269 T G 0.7683 0.0395 0.0052 4.19E-014 14322 8 HDL LPL 

rs301 T C 0.7228 0.0396 0.0048 1.36E-016 14324 8 HDL LPL 

rs314 A G 0.3161 0.0315 0.0045 2.13E-012 14326 8 HDL LPL 

rs13702 T C 0.6773 0.0399 0.0045 3.98E-019 14324 8 HDL LPL 

rs1569209 T G 0.8564 0.0638 0.0071 2.30E-019 14319 8 HDL LPL(dist=5400),SLC18A1(dist=172196) 

rs10096633 T C 0.1833 0.059 0.006 7.51E-023 14326 8 HDL LPL(dist=6151),SLC18A1(dist=171445) 

rs35237252 A C 0.2903 0.0397 0.0047 2.32E-017 14323 8 HDL LPL(dist=45501),SLC18A1(dist=132095) 

rs4333617 A G 0.552 0.029 0.0041 2.23E-012 14323 8 HDL LPL(dist=50234),SLC18A1(dist=127362) 

rs191343955 T C 0.6845 0.0302 0.0045 1.88E-011 14279 8 HDL LPL(dist=90514),SLC18A1(dist=87082) 

rs9644568 A G 0.1878 0.0489 0.006 2.74E-016 14324 8 HDL LPL(dist=103812),SLC18A1(dist=73784) 

rs7015766 T C 0.1348 0.054 0.0077 2.44E-012 14311 8 HDL LPL(dist=114279),SLC18A1(dist=63317) 

rs405509 T G 0.4909 0.088 0.0119 1.34E-13 14056 19 LDL APOE 

rs769449 A G 0.2098 0.2097 0.0179 9.61E-32 14048 19 LDL APOE 

rs7412 T C 0.1762 -0.484 0.022 9.00E-107 13226 19 LDL APOE 

rs445925 A G 0.1951 -0.3159 0.0192 1.10E-60 14057 19 LDL APOE(dist=2990),APOC1(dist=2281) 

rs6859 A G 0.4382 0.0725 0.0119 1.22E-09 14044 19 LDL PVRL2 

rs283813 A T 0.1673 -0.1163 0.0234 6.69E-07 14007 19 LDL PVRL2 

rs7254892 A G 0.1303 -0.4105 0.0337 3.84E-34 14057 19 LDL PVRL2 

rs6857 T C 0.2414 0.2042 0.0164 1.37E-35 13154 19 LDL PVRL2 

rs157580 A G 0.5781 -0.0952 0.0124 1.32E-14 13264 19 LDL TOMM40 

rs2075650 A G 0.7757 0.2018 0.0168 3.40E-33 14057 19 LDL TOMM40 

rs61679753 A T 0.2384 -0.3502 0.0345 2.98E-24 14057 19 LDL TOMM40 

rs115881343 T C 0.1332 0.1703 0.0369 3.96E-06 14047 19 LDL TOMM40 

rs6511720 T G 0.202 -0.1922 0.0178 3.59E-27 14056 19 LDL LDLR 

rs1010679 T C 0.7191 -0.0933 0.0142 4.99E-11 14054 19 LDL LDLR 
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rs2228671 T C 0.2086 -0.1489 0.0176 2.50E-17 14053 19 LDL LDLR 

rs2738447 A C 0.4291 -0.0608 0.0123 7.68E-07 13175 19 LDL LDLR 

rs5742911 A G 0.6383 -0.069 0.0137 4.99E-07 12044 19 LDL LDLR 

rs1529729 T C 0.5331 0.0562 0.0119 2.13E-06 14056 19 LDL SMARCA4 

rs3786725 A G 0.3492 -0.0577 0.0127 5.91E-06 14055 19 LDL SMARCA4 

rs73015007 A G 0.3076 -0.0814 0.0136 1.89E-09 14055 19 LDL SMARCA4(dist=10879),LDLR(dist=16201) 

rs11668477 A G 0.7264 -0.1145 0.0144 1.58E-15 14057 19 LDL SMARCA4(dist=22072),LDLR(dist=5008) 

rs17248720 T C 0.2004 -0.1904 0.0179 1.76E-26 14056 19 LDL SMARCA4(dist=25229),LDLR(dist=1851) 

rs10858082 A G 0.5594 -0.0662 0.012 3.94E-08 14048 1 LDL CELSR2 

rs4970834 T C 0.2572 -0.1294 0.0151 1.16E-17 14055 1 LDL CELSR2 

rs7528419 A G 0.7177 -0.1502 0.0143 7.73E-26 14014 1 LDL CELSR2 

rs11102967 T C 0.6371 -0.1127 0.0127 5.66E-19 14043 1 LDL CELSR2 

rs11577931 A G 0.8197 -0.1384 0.0203 9.29E-12 14054 1 LDL CELSR2(dist=2506),PSRC1(dist=1292) 

rs1042031 T C 0.2499 -0.0934 0.0155 1.55E-09 14057 2 LDL APOB 

rs693 A G 0.5209 -0.096 0.0119 6.18E-16 14057 2 LDL APOB 

rs113549125 T G 0.4476 0.101 0.012 3.17E-17 14052 2 LDL APOB 

rs12713956 A G 0.8264 -0.0978 0.0207 2.43E-06 14056 2 LDL APOB 

rs41288783 A G 0.2504 0.9996 0.2069 1.36E-06 7498 2 LDL APOB 

rs12691202 T C 0.1406 -0.143 0.0299 1.68E-06 14057 2 LDL APOB 

rs1367117 A G 0.369 0.1163 0.0125 1.15E-20 14055 2 LDL APOB 

rs17398765 A G 0.8217 0.1077 0.0223 1.33E-06 14057 2 LDL APOB(dist=3806),LOC645949(dist=639555) 

rs1713222 A G 0.2278 -0.1629 0.0166 7.52E-23 14056 2 LDL APOB(dist=4378),LOC645949(dist=638983) 

rs71435594 T C 0.173 -0.1832 0.0223 2.34E-16 14055 2 LDL APOB(dist=42390),LOC645949(dist=600971) 

rs111526071 T C 0.3312 0.0966 0.0131 1.53E-13 14048 2 LDL APOB(dist=46834),LOC645949(dist=596527) 

rs97458 A G 0.6588 -0.0947 0.0129 1.76E-13 14057 2 LDL APOB(dist=60690),LOC645949(dist=582671) 

rs4635554 T G 0.6305 0.0755 0.0126 2.07E-09 13975 2 LDL APOB(dist=122714),LOC645949(dist=520647) 

rs507627 T C 0.3019 -0.1048 0.0137 1.83E-14 14057 2 LDL APOB(dist=136884),LOC645949(dist=506477) 
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rs365946 T G 0.2383 -0.1226 0.0157 6.44E-15 14055 2 LDL APOB(dist=172384),LOC645949(dist=470977) 

rs11900894 A C 0.704 0.0824 0.0139 2.91E-09 14024 2 LDL APOB(dist=183319),LOC645949(dist=460042) 

rs436566 T C 0.2483 -0.1014 0.0156 7.91E-11 14056 2 LDL APOB(dist=184659),LOC645949(dist=458702) 

rs35239705 A G 0.2626 -0.0955 0.0147 9.29E-11 14054 2 LDL APOB(dist=184742),LOC645949(dist=458619) 

rs7571647 A G 0.1921 -0.1497 0.0191 3.96E-15 14056 2 LDL APOB(dist=209689),LOC645949(dist=433672) 

rs769449 A G 0.245 -0.3076 0.0224 4.34E-43 11537 19 crp APOE 

rs75627662 T C 0.2961 -0.1641 0.0184 5.00E-19 11543 19 crp APOE 

rs439401 T C 0.4055 0.0986 0.0154 1.36E-10 11544 19 crp APOE(dist=1801),APOC1(dist=3470) 

rs1205 T C 0.3857 -0.1662 0.0156 1.60E-26 11538 1 crp CRP 

rs3091244 A G 0.4039 0.1865 0.0152 1.33E-34 11539 1 crp CRP 

rs11579148 T C 0.1826 -0.3538 0.0632 2.16E-08 11545 1 crp CRP(dist=35023),DUSP23(dist=31357) 

rs12815613 A G 0.6248 0.115 0.0157 2.35E-13 11542 12 crp HNF1A-AS1 

rs2244608 A G 0.6288 -0.1649 0.0157 1.20E-25 11543 12 crp HNF1A 

rs1169286 T C 0.5511 -0.1237 0.0148 5.79E-17 11541 12 crp HNF1A 

rs2245407 A C 0.197 -0.1345 0.0293 4.47E-06 11543 12 crp HNF1A 

rs12427353 C G 0.2851 0.1176 0.0186 2.46E-10 11541 12 crp HNF1A 

rs1169300 A G 0.3559 -0.1562 0.0161 2.58E-22 11543 12 crp HNF1A 

rs1169303 A C 0.504 -0.1204 0.0146 1.98E-16 11541 12 crp HNF1A 

rs1169307 T C 0.411 0.1146 0.0151 2.70E-14 11540 12 crp HNF1A 

rs3751152 C G 0.3672 0.0981 0.0158 5.29E-10 11515 12 crp C12orf43 

rs3751151 A T 0.4398 0.0924 0.0155 2.72E-09 11533 12 crp C12orf43 

rs73214128 T C 0.187 -0.1428 0.0317 6.71E-06 11542 12 crp C12orf43 

rs1169314 A G 0.6426 -0.1581 0.016 6.83E-23 11528 12 crp C12orf43 

rs2264779 T C 0.5901 0.1157 0.0151 1.66E-14 11538 12 crp C12orf43 

rs6589566 A G 0.7801 0.1362 0.0127 7.91E-27 13636 11 TG ZNF259 

rs35120633 A G 0.2184 0.1387 0.0129 7.02E-27 13636 11 TG ZNF259 

rs3741298 T C 0.6958 0.0962 0.0079 9.36E-34 13631 11 TG ZNF259 
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rs12287066 T G 0.2187 0.1359 0.0128 1.74E-26 13636 11 TG APOA5 

rs662799 A G 0.789 0.1444 0.0134 4.18E-27 13635 11 TG APOA5 

rs6589567 A C 0.2551 0.0836 0.0101 8.67E-17 13635 11 TG APOA5(dist=7540),APOA4(dist=20742) 

rs61905108 A C 0.205 0.1322 0.0149 6.09E-19 13579 11 TG BUD13 

rs180326 T G 0.5978 0.0499 0.0066 4.87E-14 13608 11 TG BUD13 

rs10488699 T C 0.2205 0.1311 0.0125 1.19E-25 13633 11 TG BUD13 

rs17440824 T C 0.2581 0.0504 0.0096 1.52E-07 13634 11 TG BUD13 

rs10790162 A G 0.2194 0.1356 0.0127 1.23E-26 13636 11 TG BUD13 

rs1263151 T C 0.5069 0.0344 0.0063 4.00E-08 13631 11 TG BUD13 

rs2041967 A G 0.7046 0.0385 0.0082 2.52E-06 13635 11 TG BUD13(dist=1435),ZNF259(dist=4127) 

rs499790 T C 0.2473 0.0766 0.0104 1.50E-13 13628 11 TG LOC283143(dist=888821),BUD13(dist=99147) 

rs481843 T C 0.2293 0.09 0.0118 2.32E-14 13610 11 TG LOC283143(dist=894949),BUD13(dist=93019) 

rs486394 A C 0.6314 0.0405 0.0069 4.31E-09 13632 11 TG LOC283143(dist=895404),BUD13(dist=92564) 

rs11820504 T C 0.71 0.0442 0.0083 8.80E-08 13614 11 TG LOC283143(dist=898524),BUD13(dist=89444) 

rs509728 C G 0.3288 0.0775 0.0164 2.34E-06 13635 11 TG LOC283143(dist=902249),BUD13(dist=85719) 

rs112064887 A T 0.4339 0.0317 0.0064 6.01E-07 13357 11 TG LOC283143(dist=903370),BUD13(dist=84598) 

rs61906105 A G 0.7955 0.1128 0.0144 4.09E-15 13635 11 TG LOC283143(dist=919610),BUD13(dist=68358) 

rs12417015 A G 0.822 0.1098 0.0216 3.79E-07 13636 11 TG LOC283143(dist=919858),BUD13(dist=68110) 

rs12799766 A G 0.3275 0.0442 0.0074 2.25E-09 13633 11 TG LOC283143(dist=927509),BUD13(dist=60459) 

rs1145210 T C 0.3881 -0.0337 0.0067 5.48E-07 13630 11 TG LOC283143(dist=928084),BUD13(dist=59884) 

rs11216103 A G 0.2102 0.1027 0.0128 1.16E-15 13636 11 TG LOC283143(dist=943570),BUD13(dist=44398) 

rs12221682 C G 0.6467 0.0507 0.0112 6.44E-06 13622 11 TG LOC283143(dist=947299),BUD13(dist=40669) 

rs11216107 T C 0.624 0.0439 0.0068 1.04E-10 13636 11 TG LOC283143(dist=948745),BUD13(dist=39223) 

rs7350481 T C 0.212 0.1193 0.0133 2.62E-19 13636 11 TG LOC283143(dist=955365),BUD13(dist=32603) 

rs75273015 A G 0.1983 0.1556 0.021 1.36E-13 13632 11 TG LOC283143(dist=962912),BUD13(dist=25056) 

rs180360 A G 0.6525 -0.0374 0.0072 1.81E-07 13603 11 TG LOC283143(dist=968070),BUD13(dist=19898) 

rs12279180 T C 0.7757 0.1175 0.012 1.46E-22 13636 11 TG LOC283143(dist=973114),BUD13(dist=14854) 
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rs1558860 A C 0.2171 0.1298 0.0127 1.16E-24 13636 11 TG LOC283143(dist=976450),BUD13(dist=11518) 

rs61905084 T C 0.6954 -0.0494 0.0086 1.13E-08 12101 11 TG LOC283143(dist=979376),BUD13(dist=8592) 

rs57232565 T C 0.2301 0.1178 0.0142 1.19E-16 12828 11 TG LOC283143(dist=980539),BUD13(dist=7429) 

rs10466533 A G 0.7703 0.1125 0.0119 2.27E-21 13613 11 TG LOC283143(dist=981210),BUD13(dist=6758) 

rs56321069 A T 0.3342 -0.0394 0.0073 7.09E-08 13630 8 TG LPL 

rs74304285 A G 0.2715 -0.0549 0.0089 7.71E-10 13633 8 TG LPL 

rs343 A C 0.2252 -0.0734 0.0113 9.07E-11 13632 8 TG LPL 

rs253 T C 0.4634 -0.0332 0.0063 1.22E-07 13634 8 TG LPL 

rs269 T G 0.7065 -0.0547 0.0081 1.92E-11 13633 8 TG LPL 

rs285 T C 0.4789 -0.0447 0.0063 1.44E-12 13564 8 TG LPL 

rs314 A G 0.3594 -0.0561 0.0069 5.50E-16 13636 8 TG LPL 

rs10096633 T C 0.2527 -0.0939 0.0094 1.39E-23 13636 8 TG LPL(dist=6151),SLC18A1(dist=171445) 

rs117604010 A G 0.2032 -0.1255 0.0243 2.41E-07 13636 8 TG LPL(dist=23626),SLC18A1(dist=153970) 

rs17411024 A G 0.2556 -0.0638 0.0094 1.37E-11 13636 8 TG LPL(dist=27364),SLC18A1(dist=150232) 

rs894210 A G 0.5217 0.0477 0.0063 3.01E-14 13634 8 TG LPL(dist=41073),SLC18A1(dist=136523) 

rs35237252 A C 0.3402 -0.074 0.0072 1.26E-24 13633 8 TG LPL(dist=45501),SLC18A1(dist=132095) 

rs7005359 A G 0.7006 -0.0444 0.0081 3.51E-08 13458 8 TG LPL(dist=45923),SLC18A1(dist=131673) 

rs4333617 A G 0.5393 -0.0448 0.0064 1.74E-12 13634 8 TG LPL(dist=50234),SLC18A1(dist=127362) 

rs10103634 A G 0.3849 -0.0381 0.0067 1.36E-08 13631 8 TG LPL(dist=65842),SLC18A1(dist=111754) 

rs6586891 A C 0.5952 0.0454 0.0067 9.34E-12 13214 8 TG LPL(dist=89828),SLC18A1(dist=87768) 

rs9644568 A G 0.2589 -0.0759 0.0093 3.46E-16 13634 8 TG LPL(dist=103812),SLC18A1(dist=73784) 

rs11985911 T C 0.4096 0.0416 0.0066 2.36E-10 13634 8 TG LPL(dist=107318),SLC18A1(dist=70278) 

rs28597716 A G 0.6981 -0.0452 0.008 1.61E-08 13636 8 TG LPL(dist=111917),SLC18A1(dist=65679) 

rs7015766 T C 0.2168 -0.0769 0.012 1.37E-10 13622 8 TG LPL(dist=114279),SLC18A1(dist=63317) 

rs80336612 T C 0.5686 0.0334 0.0065 2.33E-07 13635 8 TG LPL(dist=115452),SLC18A1(dist=62144) 

rs13265868 A G 0.4573 -0.0292 0.0064 4.52E-06 13636 8 TG LPL(dist=118257),SLC18A1(dist=59339) 

rs8176725 A G 0.2909 0.127 0.0088 2.03E-047 9004 9 vWF ABO 
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rs512770 A G 0.3427 -0.0661 0.0062 1.98E-026 9007 9 vWF ABO 

rs2073826 T G 0.4653 -0.0982 0.005 4.34E-085 9008 9 vWF ABO 

rs8176694 T C 0.6722 -0.0694 0.0065 6.58E-027 8993 9 vWF ABO 

rs8176765 A C 0.774 0.1583 0.0166 1.35E-021 9000 9 vWF ABO 

rs8176632 T C 0.3112 0.0714 0.0073 1.47E-022 9007 9 vWF ABO(dist=1917),SURF6(dist=45005) 

rs8176630 T C 0.3462 -0.0683 0.0061 7.66E-029 9003 9 vWF ABO(dist=2092),SURF6(dist=44830) 

rs11244061 T C 0.3074 0.1714 0.0077 1.07E-110 9009 9 vWF ABO(dist=3351),SURF6(dist=43571) 

rs558240 A G 0.4419 0.0731 0.005 7.12E-049 9006 9 vWF ABO(dist=6503),SURF6(dist=40419) 

rs554710 T C 0.6121 -0.0555 0.0055 5.55E-024 9006 9 vWF ABO(dist=31218),SURF6(dist=15704) 

rs75444660 A G 0.7149 0.1815 0.0112 3.90E-059 9009 9 vWF ABO(dist=31845),SURF6(dist=15077) 

rs1179011 A G 0.5773 0.0577 0.0052 2.54E-028 8986 9 vWF ABO(dist=35753),SURF6(dist=11169) 

rs11244084 T C 0.2852 0.1423 0.0098 7.65E-048 9008 9 vWF ABO(dist=40380),SURF6(dist=6542) 

rs12379461 A G 0.4368 0.0246 0.0054 5.50E-06 8249 9 vWF OBP2B 

rs12554449 T G 0.4139 -0.0488 0.0083 3.54E-09 5934 9 vWF OBP2B 

rs10793957 T G 0.679 0.0422 0.0068 5.39E-10 9008 9 vWF OBP2B(dist=3303),ABO(dist=42632) 

rs185852900 A G 0.3037 0.073 0.0075 1.78E-22 9003 9 vWF OBP2B(dist=18035),ABO(dist=27900) 

rs2013075 T C 0.2747 0.1616 0.0102 5.78E-57 8995 9 vWF OBP2B(dist=18525),ABO(dist=27410) 

rs138683771 A C 0.7267 0.1357 0.0193 1.90E-12 9007 9 vWF OBP2B(dist=20935),ABO(dist=25000) 

rs182267720 T C 0.3025 0.0839 0.0078 3.36E-27 9005 9 vWF OBP2B(dist=29716),ABO(dist=16219) 

rs11793768 A G 0.2786 -0.0439 0.0086 3.59E-07 9009 9 vWF OBP2B(dist=32034),ABO(dist=13901) 

rs7855466 T C 0.31 0.0755 0.0073 5.82E-25 9001 9 vWF OBP2B(dist=36675),ABO(dist=9260) 

rs7025839 A G 0.2864 -0.0412 0.0087 1.88E-06 9008 9 vWF OBP2B(dist=39562),ABO(dist=6373) 

rs7857390 A G 0.4551 -0.0945 0.0051 1.03E-77 9009 9 vWF OBP2B(dist=43918),ABO(dist=2017) 

rs77693339 T C 0.7194 0.1838 0.0101 2.85E-74 9006 9 vWF OBP2B(dist=43930),ABO(dist=2005) 

rs12554339 A C 0.6381 -0.076 0.0059 1.58E-38 9006 9 vWF OBP2B(dist=44109),ABO(dist=1826) 

rs1179034 T C 0.7184 -0.05 0.0088 1.62E-08 9006 9 vWF SURF4 

rs3118660 A T 0.285 -0.0589 0.0081 2.71E-13 9008 9 vWF SURF4 
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rs28406995 A G 0.2858 -0.0397 0.0089 7.41E-06 9008 9 vWF SURF4 

rs56343119 A C 0.3191 0.1338 0.0072 2.41E-77 9009 9 vWF SURF4 

rs34399743 A G 0.2879 -0.04 0.0087 4.64E-06 9008 9 vWF C9orf96 

rs62575992 T C 0.3044 -0.0601 0.0078 9.39E-15 9008 9 vWF C9orf96 

rs77926044 T C 0.2796 -0.0545 0.0091 2.33E-09 9008 9 vWF C9orf96 

rs17474001 T C 0.3159 0.1284 0.0073 1.42E-68 9007 9 vWF C9orf96 

rs3124747 A G 0.403 0.04 0.0054 8.99E-14 9008 9 vWF C9orf96 

rs190371202 T G 0.6915 -0.0364 0.0074 7.95E-07 9008 9 vWF C9orf96 

rs41302673 T G 0.7046 0.138 0.0088 1.18E-55 9009 9 vWF C9orf96 

rs34265876 T C 0.7107 -0.0394 0.0088 6.99E-06 9009 9 vWF ADAMTS13 

rs34024143 T C 0.3046 -0.0415 0.0074 2.07E-08 9009 9 vWF ADAMTS13 

rs36219252 A G 0.2832 0.1803 0.0192 5.03E-21 9009 9 vWF ADAMTS13 

rs72779205 A G 0.3121 -0.0425 0.0073 6.38E-09 9005 9 vWF ADAMTS13 

rs3118671 T G 0.3272 -0.0565 0.0065 5.52E-18 9002 9 vWF ADAMTS13 

rs41296094 T C 0.7272 0.106 0.0125 1.91E-17 9009 9 vWF ADAMTS13 

rs28645493 C G 0.7061 0.1328 0.0091 3.09E-48 9006 9 vWF ADAMTS13 

rs592514 A T 0.7019 -0.0448 0.0077 5.69E-09 9008 9 vWF ADAMTS13 

rs652600 A G 0.6075 -0.042 0.0055 2.30E-14 9005 9 vWF ADAMTS13 

rs2769073 T C 0.3147 -0.0459 0.007 4.81E-11 9007 9 vWF ADAMTS13 

rs4962153 A G 0.3155 0.1248 0.0073 8.98E-66 9009 9 vWF ADAMTS13 

rs739468 T G 0.3141 0.1241 0.0073 2.83E-65 9008 9 vWF CACFD1 

rs78534112 A G 0.2369 0.1044 0.0155 1.59E-11 9001 9 vWF CACFD1 

rs41302667 A G 0.2895 0.1276 0.0091 3.12E-44 9006 9 vWF CACFD1 

rs2073936 T C 0.2176 0.1434 0.0279 2.62E-07 9008 9 vWF CACFD1 

rs3094381 A G 0.2863 -0.0455 0.0085 8.40E-08 9009 9 vWF CACFD1 

rs621907 T C 0.276 -0.0497 0.0095 1.48E-07 9009 9 vWF MED22 

rs512050 T C 0.2782 -0.0484 0.0093 2.08E-07 9009 9 vWF MED22 
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rs117119759 A G 0.2708 0.1688 0.0142 1.81E-32 9009 9 vWF MED22 

rs41307428 T C 0.287 0.1811 0.0192 3.99E-21 9008 9 vWF SLC2A6 

rs3094378 A G 0.2828 -0.0425 0.0087 1.07E-06 9009 9 vWF SLC2A6 

rs3124762 A C 0.6735 -0.0442 0.0067 3.05E-11 9006 9 vWF SLC2A6 

rs41297217 A G 0.2982 -0.0553 0.0086 1.29E-10 8228 9 vWF SLC2A6 

rs41309954 A C 0.2654 -0.0623 0.0097 1.63E-10 9005 9 vWF SLC2A6 

rs3124760 T C 0.6824 -0.0421 0.0072 3.94E-09 9005 9 vWF SLC2A6 

rs2073935 T G 0.3823 0.0437 0.0056 8.94E-15 9002 9 vWF SLC2A6 

rs3094326 C G 0.3361 -0.0512 0.0066 7.70E-15 9008 9 vWF SLC2A6 

rs78602133 T C 0.2816 -0.0447 0.0098 5.06E-06 9009 9 vWF SLC2A6(dist=3244),TMEM8C(dist=32188) 

rs72779222 T C 0.7424 -0.0502 0.0106 2.19E-06 9007 9 vWF SLC2A6(dist=3556),TMEM8C(dist=31876) 

rs4259477 C G 0.341 -0.0375 0.0063 3.18E-09 8982 9 vWF SLC2A6(dist=4809),TMEM8C(dist=30623) 

rs3094324 T C 0.3763 0.0289 0.0056 2.92E-07 8998 9 vWF SLC2A6(dist=5874),TMEM8C(dist=29558) 

rs2157780 C G 0.6126 -0.0298 0.0055 7.73E-08 9006 9 vWF SLC2A6(dist=8845),TMEM8C(dist=26587) 

rs183925556 A G 0.3568 0.0299 0.006 7.16E-07 9007 9 vWF SLC2A6(dist=9592),TMEM8C(dist=25840) 

rs77771223 T C 0.2989 -0.0454 0.0082 3.14E-08 9008 9 vWF SLC2A6(dist=12170),TMEM8C(dist=23262) 

rs3094325 A G 0.2792 0.0797 0.0136 4.63E-09 8989 9 vWF SLC2A6(dist=16601),TMEM8C(dist=18831) 

rs186264304 A G 0.6815 0.0805 0.0072 1.00E-28 9009 9 vWF SLC2A6(dist=18859),TMEM8C(dist=16573) 

rs28615587 T G 0.3962 0.0288 0.0054 1.01E-07 9009 9 vWF SLC2A6(dist=20870),TMEM8C(dist=14562) 

rs35434910 A T 0.3536 0.0588 0.006 1.90E-22 9006 9 vWF GBGT1(dist=3023),OBP2B(dist=38342) 

rs34187118 T C 0.2956 -0.0512 0.0081 2.04E-10 9009 9 vWF GBGT1(dist=3150),OBP2B(dist=38215) 

rs7022409 T C 0.4214 -0.044 0.0052 3.11E-17 9008 9 vWF GBGT1(dist=3969),OBP2B(dist=37396) 

rs4284147 T C 0.3549 -0.0377 0.006 2.91E-10 9007 9 vWF GBGT1(dist=7838),OBP2B(dist=33527) 

rs35333961 A G 0.4014 0.0413 0.0054 2.67E-14 9006 9 vWF GBGT1(dist=16864),OBP2B(dist=24501) 

rs7028259 T C 0.6627 -0.0336 0.0064 1.65E-07 9007 9 vWF GBGT1(dist=22347),OBP2B(dist=19018) 

rs12378537 T C 0.2828 0.1144 0.0091 1.97E-36 9009 9 vWF GBGT1(dist=26225),OBP2B(dist=15140) 

rs7039497 A G 0.2845 -0.0497 0.0087 1.04E-08 9008 9 vWF GBGT1(dist=30630),OBP2B(dist=10735) 
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rs11244031 A G 0.4642 -0.0481 0.0051 1.88E-21 9002 9 vWF GBGT1(dist=36863),OBP2B(dist=4502) 

rs10901243 C G 0.4289 0.0275 0.0052 1.22E-07 8998 9 vWF GBGT1(dist=39074),OBP2B(dist=2291) 

rs405509 T G 0.4903 0.0605 0.0132 4.58E-06 14594 19 TC APOE 

rs769449 A G 0.2102 0.2101 0.0198 2.87E-26 14586 19 TC APOE 

rs7412 T C 0.1763 -0.3898 0.0246 2.38E-56 13758 19 TC APOE 

rs439401 T C 0.3931 -0.0605 0.0137 9.87E-06 14594 19 TC APOE(dist=1801),APOC1(dist=3470) 

rs445925 A G 0.1949 -0.2479 0.0214 4.71E-31 14595 19 TC APOE(dist=2990),APOC1(dist=2281) 

rs6511720 T G 0.2019 -0.2254 0.0199 7.35E-30 14594 19 TC LDLR 

rs6511721 A G 0.5154 0.0636 0.0131 1.13E-06 14591 19 TC LDLR 

rs73015030 A G 0.1544 -0.1665 0.0349 1.91E-06 14595 19 TC LDLR 

rs2228671 T C 0.208 -0.1759 0.0196 2.89E-19 14591 19 TC LDLR 

rs2738447 A C 0.4287 -0.0664 0.0137 1.31E-06 13704 19 TC LDLR 

rs5742911 A G 0.6387 -0.0735 0.0153 1.52E-06 12541 19 TC LDLR 

rs8099996 A G 0.6059 -0.0646 0.0135 1.82E-06 14590 19 TC SMARCA4(dist=1667),LDLR(dist=25413) 

rs8102273 T C 0.6486 -0.0696 0.0141 7.98E-07 14591 19 TC SMARCA4(dist=7089),LDLR(dist=19991) 

rs73015007 A G 0.3066 -0.0974 0.0151 1.03E-10 14593 19 TC SMARCA4(dist=10879),LDLR(dist=16201) 

rs11668477 A G 0.7273 -0.1431 0.016 3.08E-19 14595 19 TC SMARCA4(dist=22072),LDLR(dist=5008) 

rs17248720 T C 0.2001 -0.2253 0.0199 1.29E-29 14594 19 TC SMARCA4(dist=25229),LDLR(dist=1851) 

rs7254892 A G 0.131 -0.3109 0.0375 1.05E-16 14595 19 TC PVRL2 

rs6857 T C 0.2435 0.1949 0.0182 1.05E-26 13684 19 TC PVRL2 

rs1042031 T C 0.2505 -0.0849 0.0172 7.75E-07 14595 2 TC APOB 

rs693 A G 0.5211 -0.1044 0.0132 2.22E-15 14595 2 TC APOB 

rs2854725 T G 0.8361 -0.1384 0.0254 5.03E-08 14588 2 TC APOB 

rs41288783 A G 0.2021 1.0301 0.2088 8.06E-07 8671 2 TC APOB 

rs10199768 T G 0.4616 0.1065 0.0133 9.36E-16 14592 2 TC APOB 

rs12714102 C G 0.168 -0.1499 0.0237 2.61E-10 14592 2 TC APOB 

rs1367117 A G 0.3691 0.1195 0.0139 6.62E-18 14593 2 TC APOB 
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rs72653053 T C 0.8791 -0.2604 0.0574 5.80E-06 14595 2 TC APOB 

rs1800481 A G 0.228 -0.1779 0.0184 5.15E-22 14552 2 TC APOB 

rs17398765 A G 0.8211 0.1133 0.0247 4.55E-06 14595 2 TC APOB(dist=3806),LOC645949(dist=639555) 

rs541041 A G 0.7509 -0.1635 0.017 7.42E-22 14593 2 TC APOB(dist=28030),LOC645949(dist=615331) 

rs61539677 A G 0.6288 0.11 0.0139 3.09E-15 14589 2 TC APOB(dist=38250),LOC645949(dist=605111) 

rs71435594 T C 0.1739 -0.1728 0.0249 3.67E-12 14593 2 TC APOB(dist=42390),LOC645949(dist=600971) 

rs97458 A G 0.6576 -0.1047 0.0143 2.48E-13 14595 2 TC APOB(dist=60690),LOC645949(dist=582671) 

rs12477249 A G 0.3721 0.087 0.0139 3.49E-10 14591 2 TC APOB(dist=133716),LOC645949(dist=509645) 

rs507627 T C 0.302 -0.1082 0.0152 1.09E-12 14595 2 TC APOB(dist=136884),LOC645949(dist=506477) 

rs11903224 C G 0.2968 0.0973 0.0154 2.58E-10 14533 2 TC APOB(dist=164416),LOC645949(dist=478945) 

rs380240 T C 0.2386 -0.1425 0.0175 3.41E-16 14592 2 TC APOB(dist=179708),LOC645949(dist=463653) 

rs436566 T C 0.2488 -0.0911 0.0173 1.47E-07 14594 2 TC APOB(dist=184659),LOC645949(dist=458702) 

rs35239705 A G 0.2632 -0.1021 0.0164 5.11E-10 14592 2 TC APOB(dist=184742),LOC645949(dist=458619) 

rs386397 A G 0.3535 0.0735 0.014 1.60E-07 14591 2 TC APOB(dist=184882),LOC645949(dist=458479) 

rs10198972 A G 0.1477 -0.1453 0.0328 9.42E-06 14595 2 TC APOB(dist=186266),LOC645949(dist=457095) 

rs312049 T C 0.5705 0.0609 0.0132 4.33E-06 14592 2 TC APOB(dist=208999),LOC645949(dist=434362) 

rs7571647 A G 0.1925 -0.1547 0.0212 3.05E-13 14594 2 TC APOB(dist=209689),LOC645949(dist=433672) 

Table 8-23. 394 SNPs selected for fine mapping analysis in the UCLEB meta-analysis of CVD related traits 
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8.3. Supplementary Figures 
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Figure 8-1. Performance comparison of HAPRAP, GCTA and multiple regression using artificial 

meta-analyses of the simulated populations. Error (represented as a bar) is defined as the 

difference between the gold standard and the mean (with 95% CI) of 1000 replications. N is 

the number of individuals in the reference panel. A, the comparison against HAPRAP and 

GCTA for the 2-SNPs models with r2=0.8. B, the comparison against HAPRAP and GCTA for 

the 3-SNPs models. C, the comparison among HAPRAP, GCTA using meta-analysis data and 

multiple regression using individual-level data from the reference panel.  

 


