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Abstract

We present a collection of new algorithms and approaches to several aspects of
p-adic computation including:

• computing the Galois group of a polynomial defined over a p-adic field;
• computing the conductor of a 2-adic hyperelliptic curve of genus 2;
• representing p-adic numbers exactly using lazy arithmetic; and
• finding the roots of a system of polynomials in several variables over a p-adic

field.
In all cases, these algorithms are new or improve significantly on the previous

state of the art. Most are implemented in the Magma computer algebra system,
with source code freely available on the author’s website.

We have used these to prove the conductors of all genus 2 curves in
the L-functions and modular forms database (LMFDB), which were previously
conjectural, and have verified the Galois groups in the local fields database. We
have also produced tables of previously unknown Galois groups, also available on
the author’s website.
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Chapter I

Introduction

Since their introduction in 1897 by Hensel [36], the p-adic numbers have become a
fundamental tool in number theory. Eighty years later we see the rise in popularity
of computer algebra systems such as Maxima and Maple and, more recently,
Magma, Mathematica and SageMath. Of these, Magma and SageMath include
highly featured representations of p-adic numbers, fields and extensions, enabling
a wide range of p-adic computations.

In this thesis, we present a collection of new algorithms and approaches to
several aspects of p-adic computation. Each chapter deals with a separate aspect
and can be read independently of the others. Where necessary, a chapter may
begin with a foreword stating whether it has been published already and properly
attributing shared work.

In Chapter II we present a family of algorithms for computing the Galois group
of a polynomial defined over a p-adic field. Apart from the “naive” algorithm, these
are the first general algorithms for this task. As an application, we compute the
Galois groups of all totally ramified extensions of Q2 of degrees 18, 20 and 22,
tables of which are available online.

In Chapter III we give a brief re-exposition of the theory due to Pauli and
Sinclair of ramification polygons of Eisenstein polynomials over p-adic fields, their
associated residual polynomials and an algorithm to produce all extensions for a
given ramification polygon. We supplement this with an algorithm to produce
all ramification polygons of a given degree, and hence we can produce all totally

1



CHAPTER I. INTRODUCTION

ramified extensions of a given degree.
In Chapter IV we describe two new packages ExactpAdics and ExactpAdics2

for the Magma computer algebra system for working with p-adic numbers exactly,
in the sense that numbers are represented lazily to infinite p-adic precision. This
has the benefits of increasing user-friendliness and speeding up some computations,
as well as forcibly producing provable results. The two packages use different
methods for lazy evaluation, which we describe and compare in detail. The
intention is that this article will be of benefit to anyone wanting to implement
similar functionality in other languages.

In Chapter V we give an algorithm to compute the conductor for curves of
genus 2. It is based on the analysis of 3-torsion of the Jacobian for genus 2 curves
over 2-adic fields. We verify that the previously conjectural conductors in the
LMFDB are correct.

In Chapter VI we describe a new algorithm for finding the roots of a system of n
polynomials in n variables over a p-adic field. It is a generalization to multivariate
polynomials of an “OM algorithm” for univariate factorization specialized to root-
finding.

We assume the reader is familiar with the fundamentals of p-adic fields, such
as [60, Ch. I–V] or [46, Ch. II].

Non-Galois ramification theory and its relation to ramification polygons is given
an overview in Chapter IV §9.6. For a more in-depth discussion see [35] and [46,
Ch. III].
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Chapter II

Galois Groups

1 Introduction

In this article we consider the following problem, the p-adic instance of the forward
Galois problem: given a p-adic field K and a polynomial F (x) ∈ K[x] over that
field, what is its Galois group G := Gal(F/K)?

Over any field for which polynomial factorization algorithms are known, the
forward Galois problem can always be solved with the naive algorithm: explicitly
compute the splitting field of F by repeatedly adjoining a root of it to the base
field, and then explicitly compute the automorphisms of the splitting field. To
date, there is no general solution to the p-adic forward Galois problem other than
the naive algorithm.

This article presents a general algorithm. In practice, it can for example quickly
determine the Galois group of most irreducible polynomials of degree 16 over Q2

and has been used to compute some non-trivial Galois groups at degree 32. It has
been tested on polynomials defining all extensions of Q2, Q3 and Q5 of degree up
to 12, all extensions of Q2 of degree 14, and all totally ramified extensions of Q2

of degrees 18, 20 and 22, the latter three being new. See §13.

Our implementation is publicly available [27] and pre-computed tables of Galois
groups are available from here also.

3



CHAPTER II. GALOIS GROUPS

1.1 Overview of algorithm

Our algorithm uses the “resolvent method”. We now describe a concrete instance.
Suppose F (x) ∈ Qp[x] is irreducible of degree d, and therefore defines an

extension L/Qp of degree d.
The ramification filtration of this extension is a tower Lt = L/ . . . /L0 = Qp.

Let F1(x) ∈ Qp[x] be a defining polynomial for L1/Qp. By Krasner’s lemma, any
polynomial in Q[x] sufficiently close to F1 is also a defining polynomial, so we
may take F1 ∈ Q[x]. It is irreducible and so defines the number field L1/L0 = Q
which has a unique completion embedding into L1. Repeating this procedure up
the tower, we obtain the tower of number fields L = Lt/ . . . /L0 = Q such that L
embeds uniquely into L. We call L/Q a global model of L/Qp.

Let di := (Li : Li−1) = (Li : Li−1), then Gal(Li/Li−1) ≤ Sdi
and therefore

Gal(L/Q) ≤ W := Sdt o · · · o Sd1 . Observe also that naturally Gal(L/Qp) ≤
Gal(L/Q) since the left hand side is a decomposition group of the right hand side.

Suppose α1 ∈ L generates L/Q, and let α2, . . . , αd ∈ Q̄ be its Q-conjugates.
Suppose we choose some subgroup U ≤ W , find an invariant I ∈ Z[x1, . . . , xd]
such that StabW (I) = U and compute the resolvent

R(x) =
∏

wU∈W/U
(t− wU(I)(α1, . . . , αd)) ∈ Z[t]

by finding sufficiently precise complex approximations to α1, . . . , αd, giving a
complex approximation to R, whose coefficients we can then round to Z.

One can show that Gal(R/Q) = q(Gal(L/Q)) and hence Gal(R/Qp) =
q(Gal(L/Qp)) = q(Gal(F/Qp)) where q : W → SW/U is the action of W on the
cosets of U .

In particular, if we define s(G) to be the multiset of the sizes of orbits of the
permutation group G, and we let S be the multiset of the degrees of the factors of
R over K, then s(q(Gal(F/Qp))) = S.

We compute the set G of all transitive subgroups ofW , so that Gal(F/Qp) ∈ G.
If |G| > 1, we search through the subgroups U ≤ W in index order until we find one
such that {s(q(G)) : G ∈ G} contains at least two elements. We then compute the
corresponding resolvent R(t) ∈ Z[t], factorize it over Qp and let S be the multiset

4



1. INTRODUCTION

of degrees of factors, and replace G by {G ∈ G : s(q(G)) = S}. Observe that G is
now strictly smaller than it was before, and we still have Gal(F/Qp) ∈ G.

We repeat this process until |G| = 1, at which point this single group is the
Galois group and we are done.

In §2.4 we describe our precise formulation of this algorithm.
We have described one method of producing a global model, which results in

the group W (relative to which we compute resolvents) being a wreath product
of symmetric groups. It is better for W to be as small as possible, since this will
reduce the index (W : U) required, and hence also reduce degR. In §4 we discuss
some other constructions. The best constructions take advantage of the simple
structure of the Galois group of a “singly ramified” extension, something like Cd
for unramified extensions, Cdo (Z/dZ)× for tame extensions and Ck

p oH for wild
extensions. We can also produce global models for reducible F using global models
for its factors.

In this example, we deduced the Galois group by enumerating the set G of all
possibilities and then eliminating candidates. This is the “group theory” part of
the algorithm. We have other methods which avoid enumerating all subgroups of
W , and instead work down the graph of subgroups of W . These are discussed in
§5.

The function s taking a group and returning the multiset of sizes of its orbits is
a “statistic”, and there are other choices. These are discussed in §6. Some statistics
provide more information than others, and therefore can result in smaller indices
(W : U) being required, but this comes at the expense of taking longer to compute.

We search for U by enumerating all the subgroups of W of each index in turn
until we find one which is useful. There are other methods which try to avoid
computing all of these subgroups, of which there may be many. One method
restricts to a special class of subgroups; another method randomly generates a
fixed number of subgroups. These are given in §7.

1.2 Previous work

Over p-adic fields, there are some special cases where Galois groups can be
computed.

5



CHAPTER II. GALOIS GROUPS

• It is well known that the unramified extensions of K of degree d are all
isomorphic, Galois and have cyclic Galois group Cd. Hence if the irreducible
factors of F (x) all define unramified extensions, then the splitting field
of F (x) is unramified, Galois and cyclic with degree lcm{deg g : g ∈
Factors(F )}.

• Suppose L/K is tamely ramified. Then it has a maximal unramified subfield
U , and L/U is totally (tamely) ramified. It is well known that L = U( e

√
ζrπ)

where e = (L : U) for some uniformizer π ∈ K, ζ a root of unity generating
U and r ∈ Z. In this special form, it is straightforward to write down the
splitting field and Galois group of L/K. Furthermore, it is easy to compute
the compositum of tame extensions, and hence if each irreducible factor of
F (x) defines a tamely ramified extension, we can compute its Galois group.
See §2.2.

• Greve and Pauli have studied singly ramified extensions, that is extensions
whose ramification polygon has a single face, giving an explicit description
of their splitting field and Galois group [32, Alg. 6.1]. So in particular if
F (x) is an Eisenstein polynomial whose ramification polygon has a single
face, then we can compute its Galois group. An explicit description of this
algorithm appears in Milstead’s thesis [46, Alg. 3.23].

• In his thesis, Greve extends this to an algorithm for doubly ramified
extensions [31, §6.3], that is whose ramification polygon has two faces.
Essentially this uses the singly ramified algorithm for the bottom part, and
class field theory and group cohomology to deal with the elementary abelian
top part.

• Jones and Roberts [40] have computed all extensions of Qp of degree up to 12,
including their Galois group and some other invariants. These are available
online in the Local Fields Database (LFDB). Some of the methods they use
to compute Galois groups will feature in our general algorithm.

• Awtrey et al. have also considered degree 12 extensions of Q2 and Q3 [2];
degree 14 extensions of Q2 [3]; degree 15 extensions of Q5 [5]; and degree
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16 Galois extensions of Q2 [4]. The main new idea in these articles is the
subfield Galois group content of an extension L/K: the set of Galois
groups of all proper subfields of L/K. This invariant of Gal(L/K) is useful
in distinguishing between possible Galois groups, and is possible to compute
given a database of all smaller extensions.

The difficult case appears to be when the factors of F define wildly ramified
extensions whose ramification polygons have many faces.

Recently Rudzinski has developed techniques for evaluating linear resolvents
[56] and Milstead has used a combination of these techniques with the ones
mentioned above to compute some Galois groups in this difficult class [46].

Over global number fields K, the forward Galois problem has a number of
sophisticated solutions. These methods rely on being able to consider many
different localizations, a luxury we do not have in the local case.

• A theorem of Dedekind says that if F (x) ∈ K[x] is irreducible, and so defines
an extension L/K, and prime p / K is unramified in L, then the degrees of
the irreducible factors of F (x) mod p give the cycle structure of an element
of Gal(F ). This is also a corollary of the Tchebotarev density theorem.
This will quickly reveal if the Galois group is the full symmetric group (the
“generic case” which we expect to occur with any “random” polynomial) or
the alternating group. See [12].

• The version of the “Stauduhar method” [65] due to Fieker and Klüners [28]
which relies on being able to choose a prime p/K such that the splitting field
of F over the completion Kp is a fairly low degree unramified extension. This
allows for the computation in the splitting field approximately p-adically.

1.3 Algorithm notation

We shall be describing a highly parameterisable algorithm, and so we need
some notation for its parameters. A parameter has a name, which is a string
of characters, and possibly a sequence of arguments, which are themselves
parameters. For example Naive is a parameter with name “Naive” and no
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arguments, and ARM[Global[Symmetric], All[FactorDegrees,Index]] is a
parameter with name “ARM” and two arguments.

1.4 Mathematical notation

Roman capital letters K,L, . . . denote p-adic fields. The ring of integers of K is
denoted OK , a uniformizer is denoted πK and the residue class field is denoted
FK = OK/(πK). If u ∈ OK then ū = u+(πK) ∈ FK is its residue class. We denote
by vK the valuation of Q̄p such that vK(πK) = 1.

Calligraphic capital letters K,L, . . . denote number fields. The ring of integers
of K is OK.

As introduced in §2.4, e : W → W denotes a group homomorphism, and if
U ≤ W is a subgroup then qU : W → SW/U denotes the action of W on the left
cosets of U .

As introduced in §6, s denotes a function whose input is a permutation group
or a polynomial and whose output is anything. There is an equivalence relation ∼
on outputs such that if F (x) ∈ K[x] then s(Gal(F )) ∼ s(F ). There may also be a
partial ordering � on outputs such that if H ≤ G are groups then s(H) � s(G).

We may omit subscripts from the notation if they are clear from context.

1.5 A note on conjugacy

Recall that the Galois group of a polynomial G = Gal(F ) is defined to be the
group of automorphisms of the splitting field of F . Usually, we represent this as a
permutation group G ≤ Sd where d = deg(F ), such that writing the roots of F as
α1, . . . , αd in some order, then G acts as g(αi) = αg(i).

Since the order of the roots was arbitrary, G is only really defined up to
conjugacy in Sd.

Sometimes, we may know more about the roots of F . For instance, if F is
reducible, then G has multiple orbits. If we explicitly factorize F = ∏

i Fi, and let
di = deg(Fi), then we can specify that the first d1 roots α1, . . . , αd1 are the roots
of F1, the next d2 are the roots of F2 and so on. Letting W = Sd1 ×Sd2 × . . . then
G ≤ W ≤ Sd is defined up to conjugacy in W . We shall see more examples in §4.
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Almost everywhere in our exposition, when we talk of a group, we actually mean
the conjugacy class of the group inside some understood larger group. When we
talk of the collection of all groups with some property, we mean all the conjugacy
classes whose groups have that property. This is to simplify the exposition.

In the implementation, a conjugacy class is usually represented by a
representative group. An algorithm which returns all conjugacy classes with
some property may actually return several representatives for the same class.
Finding which groups generate the same class in order to remove duplicates can
be computationally difficult, and so whether or not to do this, and how, is usually
parameterised and usually the default is not to remove duplicates. See §11.

Henceforth, we shall typically only mention conjugacy when we have specific
strategies to deal with conjugate groups.

1.6 Compendium

Most of the rest of this article describes in full detail the possible parameters to
our algorithm, of which there are many. We now list the sections with the most
important or novel contributions.

• §2.4: Describes the absolute resolvent method, the main focus of this article.

• §3 and §4: Methods for producing “global models” for p-adic fields, which
are used to evaluate resolvents. Our constructions are more general than
previous similar efforts and so can produce more efficient models.

• §5.1 and §5.3: The main two ways we perform the group theory part of
deducing the Galois group. The former is to write down all possibilities and
then eliminate until one remains; the latter works down the graph of possible
groups using the notion of “maximal preimages of statistics” to efficiently
move down the graph without blowing up the number of possibilities.

• §6.5: The main “statistic” of a resolvent we compute is the multiset of degrees
of its factors. This is compared to the multiset of sizes of orbits of potential
Galois groups to deduce which are possible.

9
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• §8.3 and §9.1: Methods to produce groups from which to compute resolvents
which empirically are both fast to compute and give low-degree resolvents.

• §13: The implementation, timings, performance notes, etc.

2 Galois group algorithms

This article is mainly concerned with the absolute resolvent method, introduced
in §2.4. However, the algorithm is recursive, in that it may compute other Galois
groups along the way, and it may suffice to use other algorithms for this purpose.
Therefore, we briefly describe the other algorithms available in our implementation.

2.1 Naive

This explicitly computes a splitting field for F (x) and explicitly computes its
automorphisms.

This is the algorithm currently implemented in Magma for p-adic polynomials,
called GaloisGroup. Since the splitting field is computed explicitly, this is only
suitable when the Galois group is known in advance to be small, such as because
the degree is small.

2.2 Tame

This requires that the factors of F (x) all generate tamely ramified extensions Li/K.
The following lemma is well-known (e.g. [52, Theorem 7.2]), and allows us to put
any tame extension into a very nice form.

Lemma 2.1. If L/K is tamely ramified, with ramification degree e and residue
degree f , then L may be written as L = K(ζ, e

√
ζrπ) where ζ is a primitive (qf−1)th

root of unity, q = |FK |, π is a fixed uniformizer of K. K(ζ) is the maximal
unramified subextension of L.

Proof. It is well-known that U = K(ζ) is unramified of degree f , and unramified
extensions are unique, so this is the maximal unramified subextension.
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2. GALOIS GROUP ALGORITHMS

Then L/U is totally ramified, so a uniformizer α for L has monic minimal
polynomial E(x) = ∑e

i=0Eix
i ∈ OU [x] say of degree e. It is Eisenstein.

Suppose F (x) = ∑e
i=0 Fix

i ∈ OU [x] is also monic and Eisenstein of degree e,
and that v(F0 − E0) ≥ 2. Let H(x) = F (αx)α−e ∈ OL[x]. Then

v(H(1)) = v(F (α))− 1 = v(F (α)− E(α))− 1 = v

(
e−1∑
i=0

(Fi − Ei)αi
)
− 1.

For i = 0, we have v((F0 − E0)α0) ≥ 2 by assumption. For i ≥ 1 we have
v((Fi − Ei)αi) ≥ 1 + i/e, and hence v(H(1)) ≥ 1/e > 0. Also

v(H ′(1)) = v

(
e∑
i=1

iFiα
i−e
)
.

For i = e, we have v(i) = v(e) = 0 (since p - e by definition of tame), v(Fi) = 0,
v(αi−e) = v(1) = 0; and for 1 ≤ i < e we have v(i) ≥ 0, v(Fi) ≥ 1 and
v(αi−e) = i/e− 1. Hence the smallest term is the i = e term and so v(H ′(1)) = 0.
By Hensel’s lemma, we conclude that H(x) and hence F (x) has a root in L.

In particular, since ζ̄ generates F×U , there exists r such that F (x) = xe− ζrπ is
of the correct form, and hence L = U( e

√
ζrπ) as claimed.

We deduce that any tame extension of a p-adic field may be identified by the
three integers (f, e, r). Algorithm 2.7 shows how to compute r. The following
lemma (a slight extension of [32, Theorem 2.3]) tells us the normal closure and
Galois group of such an extension.

Lemma 2.2. Suppose L = K(ζ, α) where α = e
√
ζrπ as above. Then L/K is

Galois if and only if e | qf − 1 and e | r(q − 1).
The Galois closure has parameters (f̂ , e, r̂) where f̂ is the smallest multiple of

f satisfying these conditions with r̂ = r(qf̂ − 1)/(qf − 1).
If L/K is Galois, then the Galois group is generated by the automorphisms

σ : ζ iαj 7→ ζqi+ajαj

τ : ζ iαj 7→ ζ i+bjαj

where a = r(q − 1)/e and b = (qf − 1)/e.

11
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Proof. Let U = K(ζ). Since L = U( e
√
ζrπ), then L/U is Galois if and only if U

contains primitive eth roots of unity, which is if and only if e | qf − 1. Gal(U/K)
is generated by ζ 7→ ζq, and therefore L/K is Galois if and only if L/U is Galois
and L also contains e

√
ζqrπ, which is iff L contains e

√
ζ(q−1)r, which is iff e | r(q−1).

These arguments also show that if L/K is not Galois, then the Galois closure
is got by adjoining eth roots of unity and eth roots of ζ(q−1)r. Since p - e, these
only increase the residue degree. If we change the residue degree f to a multiple f̂ ,
then the corresponding ζ̂ is a (qf ′ − 1)th root of unity, and ζ = ζ̂(qf̂−1)/(qf−1), and
so r becomes r̂ = r(qf̂ − 1)/(qf − 1). Hence the Galois closure is got by changing
f to its smallest multiple such that the result is Galois.

The group Gal(U/K) is generated by σ : ζ i 7→ ζqi. If L/K is Galois, we
can lift σ to Gal(L/K) by mapping α = e

√
ζrπ to e

√
ζqrπ = ζaα. Noting that

ζb is a primitive eth root of unity, we find that τ generates Gal(L/U). Since
we have a generator for Gal(L/U) and a coset representative of a generator for
Gal(L/K)/Gal(L/U), together these generate Gal(L/K).

Algorithm 2.3 (Galois closure of tame extension). Given (f, e, r) defining a tame
extension, and q, returns the parameters for its Galois closure.
1: for f̂ = f, 2f, 3f, . . . do
2: r̂ ← r(qf̂ − 1)/(qf − 1)
3: if e | qf̂ − 1 and e | r̂(q − 1) then
4: return f̂ , e, r̂

5: end if
6: end for

If F (x) is reducible, and so defines several tame extensions, we need to take
their compositum in order to compute Gal(F ).

Lemma 2.4. If L0/K and L/K are tame, with parameters (f0, e0, r0) and (f, e, r),
then L0/K may be embedded into L/K if and only if f0 | f , e0 | e and
r ≡ r0(qf − 1)/(qf0 − 1) mod gcd(e0, q

f − 1).
If L1, . . . , Lk/K are tame with parameters (fi, ei, ri) then a compositum of

them all is given by parameters (f, e, r) where e = lcm{ei}, f is the smallest
multiple of lcm{fi} such that there exists r such that r ≡ ri(qf − 1)/(qfi − 1)
mod gcd(ei, qf − 1) for all i.

12
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Proof. Clearly if L0 embeds into L then the residue and ramification degrees must
divide each other. Suppose so. Then L0 embeds into L iff e0

√
ζr0

0 π ∈ L. Writing
ζ0 = ζ(qf−1)/(qf0−1) and dividing by e0

√
ζrπ, then this occurs iff e0

√
ζr0(qf−1)/(qf0−1)−r

∈ L. This is a root of unity, and so this holds iff there exists i such that e0i ≡
r0(qf − 1)/(qf0 − 1)− r mod qf − 1, which is to say that r ≡ r0(qf − 1)/(qf0 − 1)
mod gcd(e0, q

f − 1). This proves the first claim.
For the second claim, letting L be the field defined by the parameters, then by

construction L is the smallest tame field such that Li embeds into L, and hence is
a compositum.

Algorithm 2.5 (Compositum of tame extensions). Given parameters (fi, ei, ri)
defining tame extensions, and q, returns parameters (f, e, r) of a compositum.
1: f0 = lcm{fi}
2: e = lcm{ei}
3: for f = f0, 2f0, 3f0, ... do
4: if r ≡ ri(qf − 1)/(qfi − 1) mod gcd(ei, qf − 1) is solvable for all i (via

CRT) then
5: r ← a solution
6: return f, e, r

7: end if
8: end for

Corollary 2.6. In particular, L0 ∼=K L if and only if f0 = f , e0 = e and
r0 ≡ r mod gcd(e, qf − 1). Hence, there are gcd(e, qf − 1) isomorphism classes
of extensions L/K of residue degree f and ramification degree e.

Algorithm 2.7 (Compute r). Given a tame extension L/K, returns its unique r
parameter satisfying 0 ≤ r < g = gcd(e, qf − 1).
1: U = maximal unramified subextension
2: F (x) = Eisenstein polynomial defining L/U
3: ζ̄ = a generator of F×U
4: a = (qf − 1)/g
5: b = ζ̄a

6: c = (F0/π)a ∈ FU
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7: return logb c

To see that this algorithm is correct, note that we are trying to find r ≡ r0

mod g where F0/π ≡ ζ̄r0 . Now r ≡ r0 mod g if and only if qf −1 | (r−r0)a if and
only if ζ̄(r−r0)a = 1 if and only if br ≡ c. Also note that the final discrete logarithm
is in a group of order g, so is quick to compute (e.g. by exhaustion) even when q
is large.

We now present the algorithm to compute the Galois group of a polynomial
F (x) whose factors define tame extensions. First we factorize F , compute the
extensions Li/K corresponding to its factors, and find the parameters (fi, ei, ri).
Next, we use the above lemmas to find parameters for the compositum of the
Galois closure of these fields, and write down generators for this group as functions
on (i, j) representing ζ iαj. We use these to produce generators for the group as
permutations on roots of F , observing that ζi = ζci and αi = ζc

′
iαe/ei for ci and c′i

as given in the algorithm.

Algorithm 2.8 (Galois group: tame). Given a polynomial F (x) whose factors
define tame extensions, returns its Galois group.
1: (F1, . . . , Fk)← factorization of F
2: (fi, ei, ri)← parameters of extensions defined by each Fi (Alg. 2.7)
3: (f, e, r)← parameters of Galois closure of compositum (Alg. 2.5 and 2.3)
4: a← r(q − 1)/e ∈ Z
5: b← (qf − 1)/e ∈ Z
6: s← the function (i, j) 7→ (qi+ aj mod qf − 1, j)
7: t← the function (i, j) 7→ (i+ bj mod qf − 1, j)
8: for i = 1, . . . , k do
9: ci ← (qf − 1)/(qfi − 1)
10: c′i ← (ciri − r)/ei
11: x← ((ci, 0), (c′i, e/ei))
12: X ← the orbit of x under iterating s and t (size di = fiei = degFi)
13: σi ← the permutation of X induced by s
14: τi ← the permutation of X induced by t
15: end for
16: σ ← (σ1, . . . , σk) ∈ Sd1 × . . .× Sdk
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17: τ ← (τ1, . . . , τk) ∈ Sd1 × . . .× Sdk

18: return 〈σ, τ〉

2.3 SinglyRamified

This computes the Galois group of F (x) provided it is irreducible and defines
an extension whose ramification filtration contains a single segment. Such an
extension is called singly ramified.

When the extension is tamely ramified, we can use the Tame algorithm.
Otherwise the extension is totally wildly ramified and we use an algorithm due
to Greve and Pauli [32, Alg. 6.1]. An explicit description is given by Milstead [46,
Alg. 3.23].

2.4 ARM: Absolute Resolvent Method

The absolute resolvent method is the focus of the remainder of this article and is
based on the following simple lemma.

Lemma 2.9. Suppose G := Gal(F ) ≤ W ≤ Sd where d = degF , and take any
U ≤ W . Now Sd acts on Z[x1, . . . , xd] by permuting the variables, so suppose I ∈
Z[x1, . . . , xn] such that StabW (I) = U (we say I is a primitive W -relative U-
invariant). Letting α1, . . . , αd be the roots of F , define βwU = wU(I)(α1, . . . , αn)
(this is well-defined since I is fixed by U) and define the resolvent R(t) :=∏
wU∈W/U(t − βwU). Then R(t) ∈ K[t]. If R is squarefree, then its Galois group

corresponds to the coset action of G on U . That is, letting q : W → SW/U be the
coset action, then identifying wU ↔ βwU we have Gal(R) = q(G).

Proof. Writing R(t) := R̃(α1, . . . , αd; t) where

R̃(x1, . . . , xd; t) :=
∏

wU∈W/U
(t− wU(I)(x1, . . . , xd))

then the t-coefficients of R̃ are fixed by W (the action of W re-orders the product)
and hence by G. We conclude that the t-coefficients of R are fixed by G too, and
hence by Galois theory R(t) ∈ K[t].
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If R is squarefree, then there is a 1-1 correspondence between the cosets {wU}
of W/U and the roots {βwU} of R. Take g ∈ G, then

g(βwU) = g(wU(I)(α1, . . . , αd))

= wU(I)(g(α1), . . . , g(αd)))

= wU(I)(αg(1), . . . , αg(d))

= gwU(I)(α1, . . . , αd)

= βgwU

so the action of G on the roots of R corresponds to the coset action, as claimed.

Therefore, if we have someW containing G and a means to compute resolvents
R for U ≤ W , then since Gal(R) = q(G) is a function of G, we can deduce
information about G by finding some information about Gal(R). Specifically
how we compute resolvents and deduce information about G is controlled by two
parameters.

Parameters.
• A resolvent evaluation algorithm (§3) selects a fixed groupW ≤ Sd such that
G ≤ W , and thereafter is responsible for evaluating the resolvents R(t) from
selected U ≤ W and invariants I ∈ Z[x1, . . . , xd].

• A group theory algorithm (§5) is responsible for deducing the Galois group
G by choosing a suitable U , and then using the resolvent R returned by the
resolvent evaluation algorithm to gather information about G.

In fact, we generalize the situation a little. The resolvent evaluation algorithm
actually selects a group homomorphism e : W → W such that: G ≤ W ≤ Sd;
W ≤ Sd′ ; given U ≤ W , Gal(R) is the coset action of e(G) on U ; and we can
evaluate resolvents relative to W . We call e an overgroup embedding. This
generalization allows for more freedom in global models, as explained in §4.

Algorithm 2.10 (Galois group: absolute resolvent method). Given a polynomial
F (x) ∈ K[x], returns its Galois group.
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1: Initialize the resolvent evaluation algorithm.
2: Let e : W →W be the overgroup embedding selected.
3: Initialize the group theory algorithm.
4: If we have determined the Galois group, then return it.
5: Let U be a subgroup of W .
6: Let I be a primitive W-relative U -invariant.
7: Let R be the resolvent corresponding to I.
8: Use R to deduce information about the Galois group.
9: Go to step 4.

The resolvent algorithm controls steps 1, 2 and 7. The group theory algorithm
controls steps 3, 4, 5 and 8. Step 6 could also be parameterised, but we find it is
sufficient to use the algorithm due to Fieker and Klüners [28, §5], implemented as
the intrinsic RelativeInvariant in Magma.
Remark 2.11. Using resolvents to compute Galois groups is not new. Stauduhar’s
method [65] for polynomials over Q computes resolvents relative to Sd by
computing complex approximations to the roots. This was improved by Fieker and
Klüners [28] to a “relative resolvent method” which allows the overgroup W to be
made smaller at each iteration until it equals G. Over Qp, an absolute resolvent
method has been used by Jones and Roberts [40] to compute the Galois group of
fields of degree up to 12, computing resolvents in W = Sd2 o Sd1 corresponding to
a subfield of degree d1.

2.5 Sequence

This algorithm takes as parameters a sequence of other algorithms to compute
Galois groups. It tries each algorithm in turn until one succeeds. This is mainly
useful to deal with special cases first (e.g. Tame or SinglyRamified) before
applying a general method (e.g. ARM).

3 Resolvent evaluation algorithms

These are used as part of the ARM (absolute resolvent method) algorithm for
computing Galois groups. They are responsible for selecting an overgroup

17
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embedding e : W → W such that G ≤ W and thereafter evaluating resolvents
relative to W . If R is a resolvent with respect to U ≤ W , and q : W → SW/U is
the corresponding coset action, then e must satisfy Gal(R) = q(e(G)).

Currently there is one option, Global, described below.

3.1 Global

Definition 3.1. A global model for a p-adic field K is an embedding i : K → K

where K is a global number field such that K is a completion of K and i is the
corresponding embedding.

If L/K is an extension of p-adic fields, and i : K → K is a global model for
K, then a global model for L/K extending i is a global model j : L → L of L
such that j|K = i.

Similarly a global model for F (x) ∈ K[x] extending i is ∏k Fk where
F = ∏

k Fk is the factorization over K of F into irreducible factors, Lk/K are the
corresponding extensions, ik : Lk → Lk are global models for Lk/K extending i,
and Lk ∼= K(x)/(Fk(x)).

We shall often refer to K itself as the global model, instead of the embedding
i.

The Global algorithm computes a global model K for K and a global model
F(x) ∈ K[x] for the input F (x) ∈ K[x] extendingK. At the same time, it computes
the required overgroup embedding e : W → W such that not only G ≤ W but
also Gal(F/K) ≤ W and e(G) is the decomposition group.

For irreducible F defining L/K of degree d and F defining L/K of degree
d′ = sd then we will typically have a tower L/K′/K such that (L : K′) = d,
(K′ : K) = s and K′ has s completions i1, . . . , is : K′ → K extending i,
extending uniquely to s completions j1, . . . , js : L → L. See Figure 1. Then
Gal(L/K) ≤ Sd oSs, with the decomposition groups of the s completions j1, . . . , js

being the embedding of Gal(L/K) into the s copies of Sd in SdoSs. Hence Gal(L/K)
acts on L as the diagonal embedding of Gal(L/K) into Ssd ≤ SdoSs, and e : W →W
will be such a diagonal embedding.

Definition 3.2. In this scenario, we say j1, . . . , js : L → L is a global model for
L/K extending i of index s.
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K

K′

L

K

L

i

i1, . . . , is

j1, . . . , js

d

s

d

Figure 1: A typical global model extension.

Remark 3.3. We allow s > 1 to give our global model constructions more freedom.
The RootOfUnity and SinglyWild constructions (§4) would not be possible in
general if we restricted to s = 1.

The algorithm then can evaluate resolvents as follows. For each complex
embedding c : K → C, we compute the roots of c(F) to high precision. Letting
α̃1, . . . , α̃d′ be these roots, we compute

R̃c(t) :=
∏

wU∈W/U
(t− wU(I)(α̃1, . . . , α̃d′))

which is an approximation to c(R(t)) ∈ C[t].
We can always arrange for F(x) to be monic and integral, so that its roots

are integral, and therefore R(t) ∈ OK[t]. Firstly, suppose that K = Q (so
K = Qp), then we know R(t) ∈ Z[t] and therefore assuming we have computed
R̃(t) sufficiently precisely, then we can compute R(t) by rounding its coefficients
to the nearest integer.

More generally, for each coefficient Ri of R(t) we take the vector (R̃c,i)c which
should be a close approximation to (c(Ri))c. Since Ri are integral, (c(Ri))c is an
element of the Minkowski lattice ∏c c(OK), which is discrete, and therefore we
can deduce Ri by rounding (R̃c,i)c to the nearest point in the lattice. This can be
done using lattice basis reduction techniques such as LLL.

Parameters.
• A global model algorithm (§4) which specifies how to produce a global model

for F (x).

Algorithm 3.4 (Resolvent: Global). Given a global model F(x) ∈ K[x] and
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subgroup U ≤ W , returns the corresponding resolvent R(t).
1: Choose a Tschirnhaus transformation T ∈ Z[x] (see Rmk. 3.5).
2: Choose a complex floating point precision, k decimal digits (see Rmk. 3.6).
3: Compute complex approximations to the roots of c(F) for each complex

embedding c : K → C.
4: Compute R̃c(t) = ∏

wU∈W/U(t− wU(I)(T (α̃1), . . . , T (α̃d′))).
5: Round (R̃c,i)i to the nearest point of the Minkowski lattice of OK, and let Ri

be the corresponding element of OK.
6: If R(t) ∈ K[t] is not squarefree, go to Step 1.
7: Return R(t).

Remark 3.5. In Step 1, a Tschirnhaus transformation is any randomly selected
polynomial in Z[x]. Its purpose is to ensure that R(t) is squarefree. Indeed,
if R(t) is not squarefree, then there is some coincidence between its roots, and
therefore some unintended structure between the roots of F . By transforming the
roots, we should destroy this structure.

Such a transformation always exists [30]. In practice, it suffices to use T (x) = x

initially, and thereafter to choose a random polynomial of small degree and
coefficients, increasing the degree and coefficient bound at each iteration.

Remark 3.6. It is important in Step 2 that we choose a complex floating point
precision k such that the rounding step produces the correct answer. We do this
as follows.

First, we find an upper bound on the absolute valuations of the roots of c(F)
for each complex embedding c. In principle this could be done by analyzing the
polynomials which define the global model and bounding their roots in terms
of the coefficients, but in our current implementation we instead compute the
complex roots to some default precision (30 decimal digits) and take the size of the
largest root as our bound. It is possible although unlikely that the latter approach
introduces enough precision error that this bound is incorrect, and hence this part
of the implementation does not yield proven results.

Using this upper bound, we can follow through the computation of R̃c to get
upper bounds on its coefficients. By increasing the bounds by a small fraction at
each computation, we can absorb the effect of any complex precision error. We
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then select a precision so that the absolute errors on the coefficients R̃c,i are less
than half the shortest distance between two elements of the Minkowski lattice. We
then add a generous margin to the precision (say 20 decimal digits) so that we can
check in the code that we are in fact very close (say within 10 decimal digits) of
an integer point.

Remark 3.7. The choice to approximate the roots of F in the complex field C is
somewhat arbitrary. We could instead pick a prime ` such that F has a small
splitting field over Q` and approximate the roots `-adically. Making such a change
usually improves the reliablility and precision requirements. The theory of the
Minkowski lattice carries over into this setting.

4 Global model algorithms

Given a polynomial F (x) ∈ K[x] and a global model i1, . . . , ir : K → K, a
global model algorithm computes a global model F(x) for F (x) extending K.
It also computes an overgroup embedding e : W → W such that G ≤ W and
Gal(F/K) ≤ W and e(G) ≤ Gal(F/K) is the action of G on the roots of F .

Note that for ease of notation we typically describe the algorithms in the case
of a single completion, i.e. r = 1. It is usually trivial to extend these to r > 1
by repeating the same procedure for each completion individually and combine
them with the Chinese remainder theorem to ensure the right properties hold with
respect to all completions simultaneously.

4.1 Symmetric

Given irreducible F (x) ∈ K[x], this finds a polynomial F(x) ∈ K[x] sufficiently
close to F (x) (along all embeddings i1, . . . , ir) that they have the same splitting
field overK. Generically we expect that Gal(F/K) = Sd, since we are not imposing
any further restriction of F , and therefore the corresponding overgroup embedding
is taken to be the identity e : Sd → Sd.

To find such a polynomial, we pick some precision parameter k ∈ N. We take
for each ij some polynomial Fj(x) ∈ K[x] which “approximates F (x) along ij”
meaning that ij(Fj(x))−F (x) has coefficients of valuation at least k. Next we use
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the Chinese remainder theorem on Fj mod pkj to find F such that ij(F(x))−F (x)
has coefficients of valuation at least k, and then we check that F is a global model.
If not, we increase k. By keeping k small, we limit the size of the coefficients of
F , which in turn limits the precision required in the complex arithmetic later.

Algorithm 4.1 (Global model: Symmetric). Given irreducible F (x) ∈ K[x],
global model i1, . . . , ir : K → K corresponding to p1, . . . , pr, computes F(x) ∈ K[x]
such that for all j = 1, . . . , r, ij(F(x)) defines a field isomorphic to that generated
by F .
1: L← the field generated by F .
2: for all k = 1, 2, 4, 8, . . . do
3: for all j = 1, . . . , r do
4: Fj ← an approximation to F (x) along ir to precision k
5: end for
6: F ← CRT

{
(Fj, pkj ) : j = 1, . . . , r

}
7: if ij(F(x)) are all irreducible and have roots in L then
8: return F(x)
9: end if
10: end for

Parameters.
• An optional Galois group algorithm (§2), which is used to compute the

Galois group of F . This does not help with computing resolvents, but the
information is stored in our representation of the embedding e : W → W
so that the group theory algorithms can cut down their work. This can be
useful when Symmetric appears as part of a larger global model algorithm;
e.g. in RamTower[Symmetric] (§4.3), the Symmetric global model algorithm
runs only on polynomials defining a singly ramified extension, and therefore
RamTower[Symmetric[SinglyRamified]] will compute the Galois group of
each piece in the tower.

4.2 Factors

This factorizes F (x) = ∏
k Fk(x) into irreducible factors over K, produces a global

model Fk(x) for each factor, and then the global model is F(x) = ∏
k Fk(x).
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If ek : Wk → Wk are the corresponding overgroup embeddings for the factors,
then the overgroup embedding is the direct product ∏k ek : ∏kWk →

∏
kWk.

Parameters.
• A global model algorithm (§4), which is used to compute the global model

for each factor.

4.3 RamTower

Assuming F (x) is irreducible and defines an extension L/K, this finds the
ramification filtration L = Lt/ . . . /L0 = K of L/K. For each segment Lk/Lk−1,
it produces a global model extending the global model of the segment below it.
Then the global model is the final model in this iteration.

If ek : Wk → Wk are the overgroup embeddings corresponding to the model
for each segment, then the overgroup embedding for F is the wreath product
(et o · · · oe1) : (Wt o · · · oW1)→ (Wt o · · · oW1). In the case where the global model for
Li/Li−1 is of index s > 1, then the corresponding wreath product will also include
a diagonal embedding.

Parameters.
• A global model algorithm (§4), which is used to compute the global model

for each segment.

4.4 D4Tower

Assuming F (x) is irreducible and defines an extension L/K with Galois group
D4 = C2 o C2, this finds the unique quadratic subfield K ⊂ M ⊂ L, finds a
symmetric global model for M/K and then a symmetric global model for L/M
extending it. The overgroup embedding is the identity e : C2 o C2 → C2 o C2.

See §13.6 for an application.

4.5 RootOfUnity

Assuming the splitting field L of F over K is unramified, and therefore generated
by a primitive nth root of unity ζ, we define the global model to be L = K(ζ).
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We naturally identifyW = Gal(L/K) with a subgroup of (Z/nZ)×, identifying
i mod n with ζ 7→ ζ i. The subgroup W = 〈q〉 ≤ W is the decomposition group,
i.e. Gal(L/K), and we define K′ to be its fixed field. Let i1, . . . , is be all the
embeddings K′ → K, where s = (K′ : K) = (W : W ). For each of these, we get
unique embeddings j1, . . . , js : L → L giving our model of index s.

Now W naturally faithfully acts on |W| = (L : K) = sd elements of (Z/nZ)×,
where i mod n is now identified with ζ i. Separating these elements out into orbits
under W (i.e. the cosets of W , of size d), we find that we can identify W as a
subgroup of Sd oSs. Under this identification, the s embeddings j1, . . . , js : L → L

correspond to the s copies of Sd in the wreath product, and so the corresponding
overgroup embedding e : W → W is the restriction of the diagonal embedding
Sd → Ssd → Ssd o Ss = Sd o Ss.

Parameters.
• Minimize which is true or false. When false, we use n = qd − 1. When true,
n is the smallest divisor of qd − 1 not dividing qc − 1 for any c < d.

• Complement which is true or false. When true, we search for a complement
to W — i.e. a subgroup H ≤ W such that H ∩W = 1 — of smallest index
possible, and then replace L by the fixed field of H. By design, this still has
a completion to L, but now we have sd = (W : H) and therefore s is as small
as possible.

Remark 4.2. The complement option usually finds a perfect complement, i.e.
such that 〈H,W 〉 =W , and hence s = 1 (which is optimal). For example, suppose
K = Q and K = Qp, p ≤ 7 and d ≤ 50, then there is a perfect complement unless:
p = 2 and 8 | d; or p = 3 and d = 9; or p = 7 and d ∈ {5, 8}.
Remark 4.3. The Grunwald–Wang theorem of class field theory [1, Ch. X, §2]
implies that if K is a completion Kp, and L/K is cyclic, degree d, then there is
L/K cyclic of degree d which completes to L. There is an exception at primes p | 2
and degrees 8 | d, for which (L : K) = 2d is sometimes necessary.

4.6 RootOfUniformizer

Assuming F is irreducible of degree d over K and defines a totally tamely ramified
extension L/K, then by Lemma 2.1 we have L = K( d

√
π) for some uniformizer
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π ∈ K. Taking a sufficiently precise approximation to π (along all embeddings
K → K), we may assume that π ∈ K, and we define the global model to be
L = K( d

√
π). Each embedding of K → K extends uniquely to L → L.

Letting ζ be a primitive dth root of unity, then clearly K( d
√
π, ζ) is the normal

closure and its Galois group W (which is a function of Gal(K(ζ)/K) which may
be computed explicitly) acts faithfully on the d elements d

√
π, ζ d
√
π, . . ., ζd−1 d

√
π.

We take W =W and the overgroup embedding to be the identity map.

4.7 SinglyWild

Suppose F (x) ∈ K[x] defines a singly wildly ramified extension L/K of degree
d = pk. That is, a totally wildly ramified extension whose ramification polygon
has a single face. By the results of Greve [32, Theorem 7.3], there is a Galois tame
extension T/K such that LT/K is the Galois closure of L/K. In particular LT/T
is Galois with group Ck

p . Moreover, T depends only on the ramification polygon
and its residual polynomials. We now describe a construction for a global model
for L/K.

Let T /K be a global model for T/K which is Galois and let K′ be the fixed
field of the decomposition group, so Gal(T /K′) = Gal(T/K).

Assume (see Remark 4.4) that ζp ∈ T , then LT/T is a Kummer extension
and so LT = T ( p

√
a1, . . . , p

√
ak) for some ai ∈ T . The fact that LT/K is Galois is

equivalent to saying the group 〈a1, . . . , ak〉 ≤ T×/(T×)p is stabilized by Gal(T/K).
By taking sufficiently precise approximations, we may assume ai ∈ T . Assume

ζp ∈ T also. Now there is no reason to expect that 〈a1, . . . , ak〉 ≤ T ×/(T ×)p is
stabilized by Gal(T /K′), and hence T ( p

√
a1, . . . , p

√
ak)/K is probably not Galois.

Define
A =

{
ai11 · · · a

ik
k : 0 ≤ i1, . . . , ik < p

}
⊂ T

and observe that A is a set of representatives for 〈a1, . . . , ak〉 ≤ T×/(T×)p. For
g ∈ Gal(T /K′) and a ∈ A define g · a to be the unique b ∈ A such that g(a) ≡ b

mod (T×)p.
For a ∈ A define

a′ =
∏

g∈Gal(T /K′)
g−1(g · a) ∈ T
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and
A′ = {a′ : a ∈ A} ⊂ T .

By definition (g ·a) ≡ g(a) mod (T×)p and so g−1(g ·a) ≡ a and so a′ ≡ a(T :K).
If we further assume (see Remark 4.4) that p - (T : K) then A′ is also a set of
representatives.

Observe that if g, h ∈ Gal(T /K′) then by definition gh(a) ≡ (gh · a) and
g(h(a)) ≡ (g · (h · a)) and so gh · a = g · (h · a). We deduce

h(a′) = h(
∏
g

g−1(g · a))

=
∏
g

h((gh)−1(gh · a)) changing variables g 7→ gh

=
∏
g

g−1(g · (h · a))

= (h · a)′.

So A′ is stabilized by Gal(T /K′).
Also observe that if a, b ∈ A then by definition g(ab) ≡ (g · ab) and g(ab) =

g(a)g(b) ≡ (g ·a)(g · b) and so g ·ab ≡ (g ·a)(g · b) mod (T×)p. Now since all these
terms are in A then in fact

g · ab ≡ (g · a)(g · b) mod 〈ap1, . . . , apk〉 ⊆ (T ×)p.

We deduce (ab)′ ≡ a′b′ mod (T ×)p and so

〈A′〉 (T ×)p = 〈a′1, . . . , a′k〉 (T ×)p.

Therefore letting
N = T

(
p

√
a′1, . . . ,

p

√
a′k

)
then N /T is the Kummer extension corresponding to 〈A′〉 (T ×)p/(T ×)p and N /K′

is Galois.
By construction we have Gal(N /K′) = Gal(LT/K) and so by letting L be the

subfield of N fixed by Gal(LT/L) then L/K is a global model for L/K.
Each embedding i : K → K extends to s = (K′ : K) embeddings i1, . . . , is :
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K′ → K, extending uniquely to j1, . . . , js : L → L.
We take W = Gal(LT/K), W = W oGal(K′/K) and e : W →W the diagonal

embedding.

Remark 4.4. This construction relies on two assumptions which do not hold in
general: ζp ∈ T and p - (T : K′) = (T : K).

Define K0 to be the extension of K containing ζp and whose residue degree is
a sufficiently large power of p. Then K(ζp) is a global model for K(ζp) and then
taking any global model for K0/K(ζp) (which is unramified) we get a global model
for K0/K.

The assumptions now hold for LK0/K0, and hence we can produce a global
model for LK0/K.

Now considering any extension L/K, we can produceK0/K in this manner such
that the assumptions hold for any singly ramified piece of L/K, and therefore we
can produce a global model for LK0/K, and hence compute Gal(LK0/K). Letting
H be the subgroup Gal(LK0/L), then Gal(L/K) is the image of the coset action
on H.

Remark 4.5. We could take N itself to be the global model instead of L, since
L/K and LT/K have the same Galois closure.

Remark 4.6. Due to time constraints, we have not implemented SinglyWild in
this generality. We have only implemented the special case p = 2 and (T : K) = 1,
for which the assumptions trivially hold. See §13.9.

4.8 Select

This selects between several different global model algorithms. It takes as
parameters pairs of expressions and global model algorithms, and a final “default”
global model algorithm. An expression may have some free variables, and must
evaluate to either true or false. The first such expression to evaluate to true, we
use the corresponding global model algorithm. If none are true, we use the default.

The expressions may have the polynomial F as a free variable. They may also
have some derived information about F , such as unram which is true iff F defines
an unramified extension, tame which is true iff F defines a tame extension, and so
on.
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For example, the algorithm

Select[unram,RootOfUnity][tame,RootOfUniformizer][SinglyWild]

is equivalent to RootOfUnity, RootOfUniformizer or SinglyWild depending on
whether F defines an unramified, tame, or wild extension.

5 Group theory algorithms

The job of a group theory algorithm is to decide, given the overgroup embedding
e : W → W , which subgroups U ≤ W to form resolvents from, and to use those
resolvents to deduce the Galois group G ≤ W .

We recommend now reading the definition of statistic at the start of §6. A
statistic is our means of comparing groups with resolvents.

5.1 All

This algorithm proceeds by writing down all possible Galois groups G (up to W -
conjugacy), and then eliminating possibilities until only one remains.

Parameters.
• A statistic algorithm (§6) which determines which properties of the Galois

groups G and resolvents R to compare.
• A subgroup choice algorithm (§7) which determines how we choose a

subgroup U .

The subgroup choice algorithm is used to choose a subgroup U . Then, given a
resolvent R, we use the statistic algorithm to compute a statistic s(Gal(R)) and
see for which G in the list of possible Galois groups this equals s(q(e(G))) where
q is the coset action of W on W/U . We eliminate the G for which the statistics
differ. We are done when only one G remains.

Remark 5.1. The parameters must be chosen correctly to ensure that the
algorithm terminates, otherwise it is possible that the subgroup choice algorithm
cannot find a useful subgroup for the given statistic. Lemma 5.4 implies the
algorithm terminates for the HasRoot statistic (or any more precise statistic such
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as FactorDegrees) and the Tranche:All or Tranche:Index subgroup choice
algorithm.

5.2 Maximal

This algorithm avoids the need to enumerate all possible Galois groups. We start
at the top of the directed acyclic graph of subgroups of W and work our way
down, at each stage either proving that a current group under consideration is not
the Galois group, and so moving on to its maximal subgroups, or proving that the
Galois group is not a subgroup of some of the maximal subgroups of a group under
consideration.

Parameters.
• A statistic algorithm (§6).
• A subgroup choice algorithm (§7).
• Descend (see later in this section).
• Usefulness (see later in this section).

Specifically, at all times we have a set P of subgroups of W such that we know
that the Galois group is contained in at least one of them. We call this the pool.
Initially we have P = {W}. If for some resolvent R and P ∈ P we find that their
statistics do not agree, i.e. s(R) 6∼ s(q(e(P ))), then we record that G 6= P . We
also test if the statistic is consistent with the Galois group being a subgroup of P .
If this latter test fails, i.e. s(R) 6� s(q(e(P ))), then we remove P from the pool.
We also perform the same tests on all maximal subgroups Q < P ∈ P .

Having processed a resolvent in this way, we may decide to modify P further,
which is controlled by the Descend parameter, which is one of the following:

• Eager: As soon as there is some P ∈ P such that the Galois group is not P ,
replace P by its maximal subgroups.

• Steady: When all P ∈ P are known not to be the Galois group, replace the
whole pool by the set of maximal subgroups of its elements.

The Usefulness algorithm is used by the subgroup choice algorithm to
determine whether a potential subgroup U ≤ W is useful, and so worthy of
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consideration. Unlike with the All group theory algorithm, where one can always
tell whether a subgroup U will provide any information, in the Maximal algorithm
we cannot because we do not know all the possibilities of what will occur. Hence
we have to use a more heuristic approach and choose one of the following:

• Necessary: A subgroup is useful if either: there exist two pool groups
P1, P2 ∈ P , both of which might be the Galois group, and whose statistics
differ; or there exists a pool group P ∈ P , which might be the Galois group,
and a maximal subgroup Q < P , which might contain the Galois group,
whose statistics differ.

These properties are necessary to make any progress with this algorithm,
but do not guarantee progress. This is the same as the definition of useful
in the Maximal2 algorithm.

• Generous: As with Necessary, but Q can be a maximal subgroup of a
different pool group.

• Sufficient: As with Generous, but we require the statistic of P to be
inconsistent with being a subgroup of Q, i.e. s(q(e(P ))) 6� s(q(e(Q))).

A useful group under this definition does not always exist, but when it does
the algorithm is guaranteed to make progress.

• All: Everything is useful.

We have determined the Galois group when P contains one group, and we have
deduced that the Galois group is not contained in any of its maximal subgroups.

5.3 Maximal2

Note that a shortcoming of the Maximal algorithm is that it is not always possible
to tell if a subgroup U ≤ W will provide any information, and so its behaviour
is more heuristic than principled. Another problem is that it only ever rules
groups out of consideration which cannot contain the Galois group, and therefore
all groups P with G ≤ P ≤ W will be considered in the pool P at some point;
if there are many such groups, this can get inefficient. The Maximal2 algorithm
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avoids both of these problems by positively identifying groups which do contain
the Galois group.

Parameters.
• A statistic algorithm (§6).
• A subgroup choice algorithm (§7).

As before, we have a pool P of subgroups, at least one of which contains the
Galois group. Suppose there is a group U ≤ W such that s(q(e(P ))) 6∼ s(q(e(Q)))
for some P ∈ P and maximal Q < P (such a group is useful) and we form the
corresponding resolvent R. There are two possibilities.

If s(R) ∼ s(q(e(P ))) then s(q(e(Q))) ≺ s(R), so s(R) 6� s(q(e(Q))), so G 6≤ Q,
and so we can rule Q out of consideration.

Otherwise s(R) 6∼ s(q(e(P ))) and so G 6= P . In the Maximal algorithm at this
point we would do something like replace P in the pool by its maximal subgroups.
Instead, we find the set X ′′ of subgroups Q′′ < q(e(P )) which are maximal among
those such that s(Q′′) ∼ s(R); we refer to these as the maximal preimages
in q(e(P )) of s(R). Then we let X = {P ∩ e−1(q−1(Q′′)) : Q′′ ∈ X ′′}. By
construction, if G ≤ P then G ≤ Q′ for some Q′ ∈ X and so we can replace
P in the pool by X. Typically X is much smaller than the number of maximal
subgroups of P .

Suppose now that we have eliminated all maximal subgroups of all P ∈ P from
consideration. Then we know that G = P for some P ∈ P . We are now in the
scenario of the All algorithm, and so can now eliminate groups from the pool by
finding U ≤ W such that s(q(e(P1))) 6∼ s(q(e(P2))) for some P1, P2 ∈ P . Such a
U is also said to be useful.

We have deduced the Galois group when the pool contains a single group, and
we have ruled all of its maximal subgroups out of consideration.

We can use any statistic which has an equivalence relation (as required for All)
and a partial ordering (as required for Maximal) and an algorithm for computing
maximal preimages. For the latter, in general we have a “naive” algorithm, which
simply works down the subgroups of P until ones with the correct statistic are
found.
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Algorithm 5.2 (Maximal preimages: Naive). Given a group P , a statistic s and
a value v of s, returns the maximal preimages of v in P .
1: if v ∼ s(P ) then
2: return {P}
3: else if v ≺ s(P ) then
4: return ⋃maximal Q < P maximal preimages of v in Q
5: else
6: return ∅
7: end if

Some statistics are stronger than others; for example the NumRoots statistic,
which counts the number of fixed points of a group, implies the HasRoot statistic,
which is true if a group has a fixed point. These implications are made explicit
in our code. Hence, if one statistic implies a second, and we have an efficient
algorithm for finding maximal preimages of the second (this is currently the case
for statistics HasRoot (§6.1) and FactorDegrees (§6.5)), we can use the latter to
get closer to the maximal preimages of the former. As a final resort, we use the
naive algorithm.

Algorithm 5.3. (Maximal preimages: General) Given a group P , statistic s and
a value v of s, this returns the maximal preimages in P of v.
1: X ← {P}
2: S ← statistics implied by s with an efficient algorithm
3: for s′ ∈ S do
4: X ← ⋃

Q∈X maximal preimages in Q due to s′

5: end for
6: return ⋃Q∈X maximal preimages in Q of v (using naive algorithm)

5.4 RootsMaximal

This is essentially the same as Maximal2 using the HasRoot statistic. The pool
P always contains one group P , and the subgroup choice algorithm is to choose
any maximal subgroup Q < P which might still contain the Galois group, and use
U = e(Q). This works because of this well-known result:
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Lemma 5.4. G ≤ Q if and only if the resolvent R has a root.

Proof. G ≤ Q if and only if e(G) ≤ e(Q) (assuming e is injective) if and only
if q(e(G)) has a fixed point, where q : W → SW/e(Q) is the coset action. Since
Gal(R) = q(e(G)), this occurs if and only if R has a root.

Therefore, if R has a root we can change the pool to {Q}, and otherwise we
can rule Q out from consideration.

Remark 5.5. This is the group theory part of Stauduhar’s original algorithm over
Q [65]. It is included more as a demonstration of the generality of our framework
than for utility.

5.5 Sequence

This takes as parameters a sequence of group theory algorithms. Each one is used
in turn until either the Galois group is deduced or the subgroup choice algorithm
runs out of subgroups to try.

If the same algorithm appears consecutively with different parameters, then the
state of the algorithm (such as the pool of possible Galois groups) is maintained
so that information is not lost.

This allows us, for example, to first use a cheap statistic on a limited number
of subgroups — aiming to deduce easy Galois groups quickly — before trying a
more expensive statistic.

6 Statistic algorithms

A statistic algorithm is a means of comparing the Galois group of a polynomial
with a permutation group. Specifically it is a function which takes as input a
permutation group or a polynomial and outputs some value. There must be an
equivalence relation on these values, which we denote ∼. A statistic function s

must satisfy the following property: s(R) ∼ s(Gal(R)) for all polynomials R. For
most statistics, ∼ is equality.
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Using this, if we are given a polynomial R(x) (such as a resolvent) and
a permutation group G and we find that s(R) 6∼ s(G), then we know that
Gal(R) 6= G. This is the basis of the All (§5.1) group theory algorithm.

Optionally, statistics can also support a partial ordering, denoted �, which
must respect the partial ordering due to subgroups. Specifically, the following
must hold: for all groups G,H, if H ≤ G then s(H) � s(G). Statistics supporting
this operation may be used in the Maximal (§5.2) and Maximal2 (§5.3) group
theory algorithms.

Optionally, ordered statistics can also provide a specialised algorithm to
compute maximal preimages, as defined in §5.3.

6.1 HasRoot

s(G) is true if it has a fixed point, and otherwise is false. Correspondingly, s(R)
is true if it has a root (in its base field K).

If H ≤ G and G has a fixed point, then so does H, so we define v1 � v2 to be
v2 =⇒ v1.

The maximal subgroups with a fixed point are point stabilizers. Two point
stabilizers are conjugate if they stabilize a point in the same orbit, and so we
deduce the following algorithm to compute maximal preimages.

Algorithm 6.1. (Maximal preimages: HasRoot) Given a group P and a value
v ∈ {true, false}, returns the maximal preimages of v in P .
1: if v = true then
2: return {StabP (x) for some x ∈ o : o ∈ Orbits(P )}
3: else
4: return {P}
5: end if

6.2 NumRoots

s(G) is the number of fixed points of G. Correspondingly, s(R) is the number of
roots of R.
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If H ≤ G then H has at least as many fixed points as G, so � in this case is
the usual ≤ on integers.

6.3 Factors

This takes a parameter, which is another statistic s′. Then s(G) is the multiset
{s′(G′)} where G′ runs over the images of G acting on each of its orbits (so the
degree of G′ is the size of the corresponding orbit). Correspondingly, s(R) is the
multiset {s′(R′)} where R′ runs over the irreducible factors of R.

6.4 Degree

s(G) is the degree of the permutation group G and s(R) is the degree of R.
If H ≤ G, then they are permutation groups of equal degree, so v1 � v2 is

v1 = v2.

6.5 FactorDegrees

s(G) is the multiset of sizes of orbits of G. Correspondingly, s(R) is the mulitset
of degrees of irreducible factors of R.

This is equivalent to Factors[Degree] but is more efficient because it does
not require the explicit computation of the orbit images of G on its orbits.

Additionally, it supports ordering as follows: we know that if H ≤ G then
the orbits of H form a refinement of the orbits of G; that is, the orbits of G are
unions of orbits of H. Hence, given two multisets v1 and v2 of orbits sizes, we
check combinatorially if one is a refinement of the other. This is an application
of the binning Algorithm 12.5 where the items are v1, the bins are v2, and a valid
binning {d1,i} for bin d2 has ∑i d1,i = d2.

We provide an algorithm to compute maximal preimages of this statistic. First,
in case the group G is intransitive, we embed G into a direct product D and find
maximal preimages there. For each preimage H, and d ∈ D we see if any Hd∩G is
a preimage. Observing that if n ∈ ND(H) and g ∈ G then Hndg ∩G = (Hd ∩G)g,
it suffices to only consider coset representatives of ND(H)\D/G.
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Algorithm 6.2 (Maximal preimages: FactorDegrees). Given a groupG of degree
d and a multiset v of integers such that ∑ v = d, returns all maximal preimages
of v in G up to conjugacy.
1: S ← ∅
2: Embed G ⊂ D = G1 × . . .×Gr (Algorithm 12.1)
3: for maximal preimages H of v in D (Algorithm 6.3) do
4: for double coset representatives d of ND(H)\D/G do
5: H ′ ← Hd ∩G
6: if H ′ has orbits of sizes v then
7: S ← S ∪ {H ′}
8: end if
9: end for
10: end for
11: return S

To find maximal preimages in direct products, we first find all the ways in
which v may be written as a union, with each component corresponding to a direct
factor. Then by Lemma 8.2, the maximal preimages in D are direct products of
the maximal preimages in each (transitive) factor.

Algorithm 6.3 (Maximal preimages: FactorDegrees: Direct products). Given
a direct product G = G1× . . .×Gr and v as above, returns all maximal preimages
of v in G up to conjugacy.
1: S ← ∅
2: for multisets (v1, . . . , vr) of integers such that ∑ vi = degGi and

⋃
i vi = v do

3: for i = 1, . . . , r do
4: Si ← maximal preimages of vi in Gi (Algorithm 6.4)
5: end for
6: for (H1, . . . , Hr) ∈

∏
i Si do

7: S ← S ∪ {H1 × . . .×Hr}
8: end for
9: end for
10: return S

To find maximal preimages in transitive groups, we embed G into a wreath
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product W , and solve the problem there. As with Algorithm 6.2, a loop over coset
representatives lifts these to all preimages in G.

Algorithm 6.4 (Maximal preimages: FactorDegrees: Transitive). Given a
transitive group G and v as above, returns all maximal preimages of v in G up to
conjugacy.
1: S ← ∅
2: Embed G ⊂ W = Gr o . . . oG1 (Algorithm 12.2)
3: for maximal preimages H of v in W (Algorithm 6.6) do
4: for double coset representatives w of NW (H)\W/G do
5: H ′ ← Hw ∩G
6: if H ′ has orbits of sizes v then
7: S ← S ∪ {H ′}
8: end if
9: end for
10: end for
11: return S

Remark 6.5. Sometimes, if the wreath product W is very large compared to G,
the number of double cosets to check makes Algorithm 6.4 infeasible. In this case,
we use the naive algorithm instead.

For wreath products, we work recursively so that we only need to consider a
single wreath product A o B. By Lemma 8.4, the maximal preimages correspond
to choosing a partition X for B, and for each X ∈ X a partition YX for A, with
v = {|X| |Y | : Y ∈ YX , X ∈ X}. We can think of v as the areas of a d×e rectangle
which has a series of vertical cuts (corresponding to the sizes of X ), and each piece
(X) having a further series of horizontal cuts (corresponding to the sizes of YX).
We call this a “rectangle division” (see Figure 2). For each such division, we find
all possible corresponding partitions of A and B, and take all combinations to
construct the partitions for A oB.

Algorithm 6.6. Given a wreath product G = Wr o . . . oW1 and v as above, returns
all maximal preimages of v in G up to conjugacy.
1: if r = 0 then
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Figure 2: A rectangular division of a 5 × 4 rectangle, represented as
{(3, {2, 1, 1}), (2, {4})}, with areas {8, 6, 3, 3}.

2: return {G}
3: end if
4: A← Wr o . . . oW2

5: B ← W1

6: S ← ∅
7: for rectangle divisions {(wi, {hi,j : j}) : i} of degA × degB into areas v

(Algorithm 12.4) do
8: SB ← maximal preimages of {wi : i} in B (naive Algorithm 5.2)
9: for i do
10: SA,i ← maximal preimages of {hi,j : j} in A (recursively)
11: end for
12: for HB ∈ SB do
13: X ← Orbits(HB)
14: for bijections m : X → {i} so that |X| = wm(X) do
15: for (HA,1, . . .) ∈

∏
i SA,i do

16: H ←
(∏

xHA,m(X (x))
)
oHB

17: S ← S ∪ {H}
18: end for
19: end for
20: end for
21: end for
22: return S
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We use the naive algorithm to find the maximal preimages of transitive and
primitive groups. Since we are mainly dealing with groups close to p-groups, we
expect that they have plenty of block structure and therefore the factors in any
such wreath product are small enough to use the naive algorithm.

6.6 NumAuts

s(G) is the index (NG(S) : S) where S := StabG(1), assuming G is transitive. s(R)
is the number of automorphisms |Aut(L/K)| where R is irreducible and defines
the extension L/K.

Observe that if G = Gal(R/K), then S = Gal(R/L), NG(S) is (by definition)
the largest subgroup of G in which S is normal, and hence its fixed field is
the smallest subfield M of L/K such that L/M is normal. Hence Gal(L/M)
is Aut(L/K), and so Aut(L/K) ∼= NG(S)/S.

As we shall see in Lemma 6.7, if H ≤ G then s(G) | s(H). Hence v1 � v2 is
v2 | v1.

6.7 AutGroup

s(G) is the group NG(S)/S where S := StabG(1) as a regular permutation group of
degree (NG(S) : S); it requires G to be transitive. Correspondingly, s(R) requires
R to be irreducible, and is Aut(L/K) where L is the field defined by R.

v1 ∼ v2 iff v1 and v2 are groups of the same degree and are conjugate in the
symmetric group of this degree.

The test for ordering uses the following lemma, which says that as the Galois
group gets smaller, the automorphism group gets larger. Hence v1 � v2 is defined
as follows: v1 must have degree at least the degree of v2, and v2 must be conjugate
to a subgroup of v1.

Lemma 6.7. Suppose G′ ≤ G acts transitvely on a set X. Fix x ∈ X and define
S := StabG(x), N := NG(S), A := N/S and define S ′, N ′, A′ similarly with
respect to G′. Then A is naturally isomorphic to a subgroup of A′.
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Proof. By definition

N = {n ∈ G : s ∈ S =⇒ sn ∈ S}

= {n ∈ G : s ∈ S =⇒ (sn)(x) = x}

= {n ∈ G : s ∈ S =⇒ s(n(x)) = n(x)}

= {n ∈ G : s ∈ S =⇒ s ∈ StabG(n(x))}

= {n ∈ G : S ⊆ StabG(n(x))}

= {n ∈ G : S = StabG(n(x))} by orbit-stabilizer theorem

= {n ∈ G : n(x) ∈ Fix(S)}

= {n ∈ G : n(y) ∈ Fix(S)} for any y ∈ Fix(S) by symmetry

= {n ∈ G : y ∈ Fix(S) =⇒ n(y) ∈ Fix(S)}

= StabG Fix(S)

is the group of elements of G which permute the fixed points of S := StabG(x).

Since G is transitive, for each y ∈ Fix(S) there exists n ∈ G such that n(x) = y,
and hence n ∈ N . We deduce that N acts transitively on Fix(S), and in particular
the orbit-stabilizer theorem implies that

|A| = (N : S) = |Fix(S)| .

Similarly, since G′ is also transitive then N ∩ G′ = StabG′ Fix(S) acts
transitively on Fix(S), and so the orbit-stabilizer theorem implies

|N ∩G′| = |StabN∩G′(1)| |Fix(S)| ,

but noting that the stabilizer is actually S ′ then we deduce

(N ∩G′ : S ′) = (N : S).

The isomorphism theorems imply

(N ∩G′)/(S ∩G′) ∼= (N ∩G′)S/S ≤ N/S,
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but noting that S ′ = S ∩ G′ then the previous paragraph implies that we have
equality, and hence naturally

(N ∩G′)/(S ∩G′) ∼= N/S =: A.

Finally, note that

N ∩G′ = StabG′ Fix(S) ≤ StabG′ Fix(S ′) =: N ′

so that
(N ∩G′)/(S ∩G′) ≤ N ′/S ′ =: A′.

6.8 Tup

This statistic takes as a parameter a tuple (s1, . . . , sk) of statistic algorithms. Then
s(G) = (s1(G), . . . , sk(G)) and similarly for s(R). Also v1 ∼ v2 iff v1,i ∼ v2,i for all
i, and similarly for �.

6.9 GalGroup

s(G) is G itself, and s(R) is Gal(R), computed using a Galois group algorithm (§2)
which is a parameter. Since Galois groups as permutation groups are only defined
up to relabelling, then v1 ∼ v2 iff they have the same degree d and are conjugate
inside Sd.

6.10 Order

s(G) is the order of G. We do not supply a means to compute s(R), and so this
statisitic is mainly useful in §11 to dedupe groups up to conjugacy.
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7 Subgroup choice algorithms

A subgroup choice algorithm decides, given the current state of a group theory
algorithm (§5) for the absolute resolvent method, which subgroup U ≤ W to form
a resolvent from next.

7.1 Tranche

Parameters.
• A subgroup tranche algorithm (§8), which produces a sequence U1, U2, . . .

of sets of subgroups of W one at a time, which we call tranches. Given
the current tranche, U , we see by inspecting each element in turn if there is
U ∈ U such that U is useful by some measure (see Remark 7.1). If so, we
use one such U . If not, we declare the tranche useless and move on to the
next one.

• A subgroup priority algorithm (§10), which, given a tranche U , sorts it
according to some priority. We then take U to be the first useful element
according to this order. The default is Null, which does nothing; empirically,
if we try to prioritize so that the most useful groups are considered first, we
spend more time prioritizing than we save.

Remark 7.1 (On usefulness). In the All group theory algorithm, we have a
pool P of all possible Galois groups, and therefore we know all of the possible
outcomes of using the group U to form a resolvent: i.e. the resolvent has one
of the Galois groups {q(e(P )) : P ∈ P} and so we measure one of the statistic
values S = {s(q(e(G))) : P ∈ P}. If S contains multiple elements, then U is
useful because we will certainly cut down the list P . Additionally, we define |S|
to be the diversity of U and ∑

v∈S −pv log2 pv to be the information in U ,
where pv = |{P ∈ P : s(q(e(P ))) ∼ v}| / |P| (this is the entropy of the random
variable s(q(e(P ))) ∈ S when P ∼ Unif(P); it may be useful to consider other
distributions). These are both measures of usefulness, noting that U is useful iff
its diversity is greater than 1 iff its information is greater than 0, and can be used
to prioritize.

In the Maximal group theory algorithm, the best definition of useful is more
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difficult to establish and is left as a parameter; see §5.2. Usefulness for Maximal2
is defined in §5.3.

7.2 Stream

Parameters.
• A subgroup stream algorithm (§9), which produces a sequence U1, U2, . . .

of possibly infinite sequences of subgroups ofW one at a time, which we call
streams. The main difference between a stream and a tranche is that the
elements of a stream may be generated one at a time, whereas a tranche is
generated wholesale. Given the current stream U , we inspect each element
in turn to see if there is a U ∈ U such that U is useful. We use the first
such U . If there is none, we move on to the next stream.

• An integer limit: we only try at most this many items from each stream
before moving on to the next one.

8 Subgroup tranche algorithms

A subgroup tranche algorithm takes a permutation group W ≤ Sd and returns a
sequence of tranches U1,U2, . . ., sets of subgroups of W . The idea is that we
want to run through some of the subgroups of W in some order, but that we won’t
ever actually enumerate all of them, and so it may be more efficient to produce
tranches according to this order.

8.1 All

Produces a single tranche containing all subgroups of W .

8.2 Index

For each divisor n | |W |, produces a tranche containing all the subgroups of W of
index n.

Parameters.
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• A filtering expression in the free variable idx (the index n), which evaluates
to true or false. We only produce tranches for the indices n such that the
expression is true. By default, we use all n.

• A sorting expression in the free variable idx, which evaluates to some sortable
value. We sort the indices n according to this expression. By default, we
sort by n itself.

There are algorithms to produce the subgroups of a group with a given index.
For example, the Subgroups intrinsic in Magma has a IndexEqual parameter for
this purpose.

8.3 OrbitIndex

Definition 8.1. For U ≤ W ≤ Sd, the orbit index of U in W is the index
(W : U ′) where

U ′ = StabW Orbits(U) = {w ∈ W : X ∈ Orbits(U), x ∈ X =⇒ w(x) ∈ X}

and is denoted (W : U)orb. The remaining orbit index of U in W is
(W : U)/(W : U)orb = (U ′ : U). If X is a partition of {1, . . . , d}, then it is a
subgroup partition for W if there exists U ≤ W such that X = Orbits(U).
The index (W : X ) of a subgroup partition X is (W : StabW (X )).

For each divisor n | |W | and r | n, produces a tranche containing all the
subgroups of W of index n and of remaining orbit index r.

Parameters.
• A filtering expression, similar as in Index (§8.2). This has free variables

idx (the index n), ridx (the remaining index r) and oidx (the orbit index
m := n

r
). By default we use all (n, r) pairs.

• A sorting expression, similar as in Index, with the same free variables as the
filtering expression. By default, we sort by (n, r) lexicographically (i.e. first
by index, then by remaining index).

To produce the tranche corresponding to a given (n, r), we compute the
subgroup partitions X of {1, . . . , d} such that (W : StabW (X )) = m := n

r
, and
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then compute the subgroups of StabW (X ) of index r. To efficiently compute the
subgroup partitions of W of a given index, we use the special form of W . If
W is a wreath product, direct product, or symmetric group, then we can use the
algorithms in the rest of this section to reduce the problem to computing subgroup
partitions of smaller groups. For these smaller groups, we compute the subgroup
partitions by explicitly enumerating all the subgroups.

Lemma 8.2 (Partitions of direct products). Suppose Wi ≤ Sdi
for i = 1, . . . , k

(each symmetric group acting on a disjoint set) and W = W1 × · · · ×Wk. If Xi is
a partition for Wi of orbit index mi then

⋃
iXi is a partition for W of orbit index∏

imi. Every partition for W is of this form.

Proof. By definition mi = (Wi : StabW (Xi)). Now

StabW (
⋃
i

Xi) =
∏
i

StabWi
(Xi)

and the result follows. Take any U ≤ W , and consider its projections Ui to Wi,
and let Xi = Orbits(Ui), then clearly X = ⋃

iXi.

Algorithm 8.3 (Partitions of direct products). Given Wi ≤ Sdi
for i = 1, . . . , k

and an integer m | ∏i |Wi|, this returns all the partitions for W = W1 × · · · ×Wk

of index m.
1: if k = 0 then
2: return {∅}
3: end if
4: S ← ∅
5: for all m1 | gcd(m, |W1|) do
6: S1 ← partitions of W1 of index m1

7: S2 ← partitions of W2 × · · · ×Wk of index m2 = m
m1

8: S ← S ∪ {X1 ∪ X2 : X1 ∈ S1,X2 ∈ S2}
9: end for
10: return S

Lemma 8.4 (Partitions of wreath products). Suppose A,B are permutation
groups, let X be a subgroup partition for B, and for each X ∈ X let YX be a
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subgroup partition for A. Then Z = {X × Y : X ∈ X , Y ∈ YX} is a subgroup
partition for W = A o B, its index is (B : X )∏X∈X (A : YX)|X|, and all subgroup
partitions are of this form up to conjugacy.

Proof. IfA acts on {1, . . . , d} andB acts on {1, . . . , e}, then elements of AoB can be
defined as elements of the cartesian product Ae×B acting on {1, . . . , e}×{1, . . . , d}
as

(a1, . . . , ae, b)(x, y) = (bx, axy).

This implies the group operation is

(a′1, . . . , a′e, b′)(a1, . . . , ae, b) = (a′b1a1, . . . , a
′
bdad, b

′b).

Suppose Z is defined as above, and take any (x, y), (x′, y′) ∈ X × Y ∈ Z.
Choose b ∈ StabB(X ) such that b(x) = x′, which is possible since StabB(X ) acts
transitively on X by definition of a subgroup partition. Choose ax ∈ StabA(YX)
such that ax(y) = y′, and choose all other ax′′ ∈ StabA(YX′′) for x′′ ∈ X ′′ arbitrarily
(e.g. the identity). Defining g = (a1, . . . , ae, b) then g(x, y) = (bx, axy) = (x′, y′)
and by construction g ∈ StabW (Z). We conclude that StabW (Z) acts transitively
on each element of Z, and so Z is a subgroup partition of W as claimed.

Expressing AoB as a semidirect product AeoB, then StabW (Z) is the subgroup
 ∏
x∈{1,...,e}

StabA(YX (x))
o StabB(X )

where X (x) is the X ∈ X such that x ∈ X. The index (W : Z) follows.
Suppose G ≤ W . We want to show that a conjugate of G has orbits of the

form Z. Letting π : A o B → B be the natural projection (a1, . . . , ae, b) 7→ b, let
X = Orbits(π(G)), which is a subgroup partition of B. For each X ∈ X , fix a
representative xX ∈ X, and for each x ∈ X, fix some gx = (ax,1, . . . , ax,e, bx) ∈ G
such that π(gx)(xX) = x. Define âx = ax,xX

and ĝ = (â1, . . . , âe, id) ∈ W then by
construction

g−1
x ĝ(x, y) = (xX , y).

Define YX such that {xX} × Y is an orbit of SX := StabG({xX} × {1, . . . , d}) for
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each Y ∈ YX . We claim that

Orbits(Gĝ) = Z = {X × Y : Y ∈ YX , X ∈ X}.

Note that if gĝ(x, y) = (x′, y′) then π(gĝ)(x) = π(g)(x) = x′ and so X (x) =
X (x′) = X say. For any (x, y), (x′, y′) with x, x′ ∈ X ∈ X , then there exists
g ∈ G such that gĝ(x, y) = (x′, y′) iff there is g such that (g−1

x′ ggx)g−1
x ĝ(x, y) =

g−1
x′ ĝ(x′, y′), i.e. such that (g−1

x′ ggx)(xX , y) = (xX , y′). This occurs iff there is
g ∈ SX such that g(xX , y) = (xX , y′), which occurs iff Y(y) = Y(y′) = Y say, in
which case (x, y), (x′, y′) ∈ X × Y . This proves the claim.

Algorithm 8.5 (Partitions of wreath products). Given A ≤ Sd, B ≤ Se and an
integer m | |A|e |B|, this returns all the partitions for A o B of index m up to
conjugacy.
1: S ← ∅
2: for all m′ | m do
3: S ′ ← partitions for B of index m′

4: for all X ∈ S ′ do
5: for all factorizations of m

m′
of the form ∏

X∈X m
|X|
X do

6: for all X ∈ X do
7: SX ← partitions for A of index mX

8: end for
9: for all (YX)X ∈

∏
X SX do

10: include {X × Y : X ∈ X , Y ∈ YX} in S
11: end for
12: end for
13: end for
14: end for
15: return S

Remark 8.6. The preceding algorithm may produce multiple representatives per
conjugacy class. With a little more care, we can return just one as follows.

Having chosen X , we partition it into B-conjugacy classes Xi = {Xi,j}.
Then we consider all factorizations of m/m′ of the form ∏

Xi
m
|Xi,1|
i , and then

47



CHAPTER II. GALOIS GROUPS

all factorizations of mi of the form ∏
Xi,j∈Xi

mXi,j
with mi,1 ≤ mi,2 ≤ . . .. Hence

we have a factorization of m/m′ of the form ∏
X∈X m

|X|
X as above. Note that this

includes all factorizations of this form exactly once up to reordering conjugate
blocks X ∈ X .

For such a factorization, we partition Xi further into classes Xi,j = {Xi,j,k}
such that mi,j := mXi,j,k

is constant within a class. Similar to before, we let Si,j =
{Yi,j,`} be all partitions for A of index mi,j, and consider all (Yi,j,`k)i,j,k ∈

∏
i,j,k Si,j

with `1 ≤ `2 ≤ . . .. Note that this includes all (YX)X ∈
∏
X SX as above precisely

once up to reordering conjugate blocks X ∈ X .
Letting Z = {Xi,j × Y : Y ∈ Yi,j,`k} be the corresponding partition, then

all such Z are not conjugate in A o B, and they cover all conjugacy classes up to
reordering conjugate blocks of X . Define S ≤ Sd o Se to be the group isomorphic
to 1d o

∏
i 1|Xi| o S|Xi,1| which reorders conjugate blocks of X , where 1d denotes the

trivial subgroup of Sd. Then we find all Z up to A o B conjugacy by finding all
S-conjugates of Z up to A oB conjugacy as follows.

Let H0 = StabAoB(Z), then we want all S-conjugates of H0 up to A o B
conjugacy. Note that if n ∈ NS(H0) and g ∈ A oB then Hnsg

0 ∼AoB Hs
0 so it suffices

to consider double coset representatives s of NS(H0)\S/(A oB)∩ S. Compute Hs
0

for all such s and dedupe by A oB-conjugacy.

Lemma 8.7 (Partitions of symmetric groups). Any partition X of {1, . . . , d} is a
subgroup partition for Sd and it has orbit index d!/∏X∈X |X|!.

Proof. Indeed StabSd
(X ) = ∏

X∈X SX .

Algorithm 8.8 (Partitions of symmetric groups). Given integers d ≥ 0,m | d!,
returns all partitions for Sd of index m up to conjugacy.
1: if d = 0 then
2: return {∅}
3: end if
4: S ← ∅
5: for all d1 = 0, . . . , d do
6: if d!/d1!(d− d1)! | m then
7: S2 ← partitions of Sd−d1 of index md1!(d− d1)!/d! up to conjugacy
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8: S ← S ∪ {{1, . . . , d1} ∪ X2 : X2 ∈ S2}
9: end if
10: end for
11: return S

9 Subgroup stream algorithms

Similar to tranche algorithms, a subgroup stream algorithm takes a permutation
group W ≤ Sd and returns a sequence of streams U1,U2, . . ., which are (possibly
infinite) sequences of subgroups of W .

Unlike tranches, which are generated in one go, streams are generated one item
at a time, and so are typically used for randomly-generated items.

9.1 Index

For each divisor n | |W |, generates a stream of random subgroups of W of index
n.

As with the Index tranche algorithm, this takes as parameters filtering and
sorting expressions to control which indices n are used and in what order.

We generate a random subgroup of a given index by repeatedly adjoining a
random element until the correct index is found. If the correct index is passed,
we start over from the trivial subgroup. If we start over too many times (this is a
parameter), we give up and assume there is no such group, and therefore terminate
the stream.

Algorithm 9.1 (Random subgroup of index). Given a group W and integers n
and m, tries m times to generate a random subgroup U of W of index n and
returns it, otherwise returns null.
1: for i ∈ 1, . . . ,m do
2: U ← trivial subgroup of W
3: repeat
4: u← random element of W
5: U ← 〈U, u〉.
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6: if n - (W : U) then
7: Go to next i
8: end if
9: until (W : U) = n

10: return U
11: end for
12: return null

The algorithm also takes a “dedupe” parameter (§11). If it is not Null, then
each stream also records the set of conjugacy classes of subgroups it has returned,
and only returns subgroups not previously seen. There is a parameter which
controls the number of times we have to have generated a subgroup already seen
before assuming we have generated them all and therefore terminating the stream.

10 Subgroup priority algorithms

A subgroup priority algorithm takes a tranche U of subgroups of W and returns
an ordering on them.

10.1 Null

Does nothing.

10.2 Random

Randomizes the order.

10.3 Reverse

Takes another priority algorithm as a parameter. Orders according to this, and
then reverses it.
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10.4 Expression

This is an expression, which is evaluated for each U ∈ U and the tranche is sorted
by this key.

The expression may have the following free variables:

• Index: the index (W : U).
• OrbitIndex: the orbit index (W : U)orb (see Definition 8.1).
• Diversity: the diversity (see Remark 7.1).
• Information: the information (see Remark 7.1).

11 Deduping algorithms

At various places in our algorithms we have sets of groups which we may want to
“dedupe”, that is, remove the duplicates up to conjugacy in some larger group. A
deduping algorithm takes as input a group W and returns some representation of
the set of its conjugacy classes. A subgroup of W can be coerced to its conjugacy
class, and a conjugacy class can be hashed so that it can be stored in a hash table.
In particular, a set may be implemented as a hash table, and so conjugacy classes
can be efficiently deduped.

There are efficient algorithms to test if two subgroups are conjugate (e.g.
implemented as the IsConjugate intrinsic in Magma) and this is how we test
for equality of two conjugacy classes with the same hash.

In fact, deduping tends to take more time than it saves, so we usually use the
None algorithm, which does not dedupe.

Remark 11.1. In particular, we can dedupe our pool P of candidate Galois groups
in our group theory algorithms. If we do not dedupe, then we can still detect that
there is one conjugacy class in P by choosing some P ∈ P and then testing if
each other P ′ ∈ P is conjugate to P . This requires only |P| conjugacy tests, in
comparison to |P|2 tests for a naive deduping algorithm.
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11.1 None

This does not perform any deduping. That is, each conjugacy class is assigned a
distinct hash when generated, so no two classes have the same hash, even if they
are equal.

11.2 Pairwise

At the other extreme, each conjugacy class is given the same hash. Therefore
generating a set of conjugacy classes requires checking if each pair is conjugate.

11.3 ClassFunc

Each conjugacy class is given a hash based on some properties of the groups in
the class. A parameter controls which hash function to use, and can for example
be one of:

• Let c : W → Z be a class function for elements of W , i.e. c(w1) = c(w2)
iff w1 ∼W w2. Then the hash for U ⊂ W is the multiset {c(u) : u ∈ U}.
A better hash is the multiset of pairs (c(u),m) where u runs over conjugacy
classes of elements of U , and m is the size of the class. Computing the class
function c itself is prohibitively slow for larger W .

• For transitive permutation groups of small enough degree, its T-number.

• Fix a sequence Ni of normal subgroups of W . Then the hash of U ⊂ W is
the sequence |W ∩Ni|.

11.4 Tree

We represent the conjugacy classes as a decision tree, whose nodes represent sets of
conjugacy classes, and whose leaves are single conjugacy classes. Then a conjugacy
class is represented by the corresponding leaf node, which is given a unique integer
ID which is its hash. Specifically, this tree has three types of nodes:

• A leaf node, which represents a single conjugacy class. These are always the
leaves of the tree. Attached to the node is a group representing the class.
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• A decision node, which has at least two child nodes. Attached to the node
is a decision function which takes a group and returns which child node its
conjugacy class belongs to.

• An ambiguous node, which has at least two child nodes, which are all leaf
nodes.

The tree is dynamic, in that it is initially empty and gets populated
automatically as conjugacy classes are generated from groups. That is, given a
group G ≤ W , we find its class as follows:

• If the tree is empty, replace it by the tree with a single leaf representing the
class of G. Otherwise, traverse the tree starting at the root node as follows.

• If the node is a leaf, representing the class of G′, test if G is conjugate to G′.
If so, we have found the leaf representing the class of G and so we are done.
Otherwise, we have a new class. If we can find a function which distinguishes
between the classes of G and G′, then replace the leaf node with a decision
node with two child leaf nodes for G and G′. Otherwise, replace the leaf node
with an ambiguous node with two child leaf nodes. Either way, we have a
new leaf representing the class of G and we are done.

• At a decision node, use its decision function on G to traverse to one of its
children.

• Otherwise we are at an ambiguous node, in which case check to see if G is
conjugate to any of the groups G′ representing its child leaves. If so, we have
found its class. If not, add a new leaf to the node representing the class of
G.

Our decision functions use machinery already developed, namely a subgroup
choice algorithm (§7) and a statistic function (§6), which are parameters. Given
a pair of groups G,G′ ≤ W to distinguish, we use the subgroup choice algorithm
to search for a subgroup U such that s(q(G)) 6∼ s(q(G′)) where s is the statistic
and q is the coset action of W on U . Then s ◦ q is the decision function. If we run
out of groups U to try, then we fail to find a decision function and so fall back on
using an ambiguous node instead.
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12 Auxillary algorithms

A collection of algorithms used elsewhere in this article.

12.1 Group embeddings

Algorithm 12.1 (Embed into direct product). Given G ≤ Sd, returns s ∈ Sd and
transitive G1, . . . , Gr such that ∑i degGi = d and Gs ≤ G1 × . . .×Gr.

The algorithm finds the image of the group acting on each of its orbits, then
takes the direct product.
1: X1 = {x1,1, . . .}, . . . , Xr ← Orbits(G)
2: D ← G|X1 × . . .×G|Xr

3: s← permutation sending xi,j to
∑
i′<i |Xi′|+ j.

4: return D, s−1

Algorithm 12.2 (Embed into wreath product). Given transitive G ≤ Sd, returns
s ∈ Sd and primitive G1, . . . , Gr such that ∏i degGi = d and Gs ≤ Gr o . . . oG1.

We choose a minimal non-trivial block-partition of G and use this to embed G
into A oB with the same block structure. We then recurse on B.

Note that, unlike with the direct product case, there is not a canonical “best”
(smallest) choice for the factors. Indeed, suppose we are given a group of the
form (A1 × . . .×Ae) oB ≤ Sd o Se, then we could embed it into A oB where A =
〈As1

1 , . . . , A
se
e 〉 for any si ∈ Sd. Minimizing A is difficult. However, something cheap

to compute is: for each i > 1, choose gi ∈ G such that gi(1) ∈ {d(i−1)+1, . . . , di},
and then reorder (d(i − 1) + 1, . . . , di) to (gi(1), . . . , gi(d)) (i.e. let si permute
j 7→ gi(j)− d(i− 1)). If the best A is cyclic Cd, this is guaranteed to find it.
1: if G is primitive then
2: return G, id

3: end if
4: P ← minimal partition of G
5: Fix an ordering (B1, . . . , Be) on P
6: Fix an ordering (xi,1, . . . , xi,d) on each Bi

7: for i = 1,. . . ,e do
8: gi ← an element of G such that gi(x1,1) = gi(xi,1)
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9: end for
10: s← the permutation gi(x1,j) 7→ di+ j

11: G′ ≤ Sd o Se ← Gs

12: q : G′ → Se the quotient
13: b : Se → Sd o Se the canonical lift such that b(σ)(id+ j) = σ(i)d+ j

14: B ← q(G′)
15: A ← ∅
16: for each generator g of G do
17: g′ ← gb(q(g))−1

18: A ← A∪ {j 7→ g′((i− 1)d+ j)− (i− 1)d : i = 1, . . . , e} ⊂ Sd

19: end for
20: A ≤ Sd ← 〈A〉
21: (Wr, . . . ,W1), s′ ← embedding of B into a wreath product
22: return (A,Wr, . . . ,W1), sb(s′)

12.2 Combinatorial

Algorithm 12.3 (Linear divisions). Given n ∈ N and multiset N ⊂ N, returns
all subsets M ⊂ N such that ∑M = n.

We represent multisets of integers as a sorted sequence, with the largest element
first. We loop over possible choices of the first division, and then recurse to assign
the rest. An additional optional parameter L is such a sequence, and restricts any
returned M to be at most L in the lexicographic ordering (i.e. if M 6= L, then at
the first place they disagree, M must be smaller). The default L is {n}, which is
no restriction.
1: S ← ∅
2: for distinct m1 ∈ N do
3: if m1 ≤ min(n, L1) then
4: for linear divisions (m2, . . .) of n−m1 from N−{m1} with limit (L2, . . .)

if m1 = L1 or else limit (m1,m1, . . .) do
5: Append (m1,m2, . . .) to S
6: end for
7: end if
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8: end for
9: return S

Algorithm 12.4 (Rectangle divisions). Given w, h ∈ Z and multiset A ⊂ Z,
returns all multisets {(wi, {hi,j})} such that ∑iwi = w, ∑j hi,j = h for each i and
{wihi,j : i, j} = A. See Figure 2.

As with the previous algorithm, multisets are represented as sorted sequences.
We loop over possible choices of the first division, and then recurse to assign
the rest. Optional parameter L = (wL, {hL,j}) limits the allowed divisions, with
default (w, {h}).
1: S ← ∅
2: for distinct divisors w1 of some a ∈ A do
3: if w1 ≤ min(w,wL) then
4: for linear divisions (h1,1, h1,2, . . .) of h from {a/w1 : a ∈ A,w1 | a} with

limit hL,j if w1 = wL or else no limit do
5: for rectangle divisions {(w2, {h2,j}), . . .} of width w−w1, height h,

areas A− {w1h1,j}, limit (w1, {h1,j}) do
6: Append (w1, {h1,j}, . . .) to S
7: end for
8: end for
9: end if
10: end for
11: return S

Algorithm 12.5 (Binning). Suppose we are given integers (m1, . . . ,mr) and
(n1, . . . , ns) such that we have mi indistinguishable copies of some item i, and
nj indistinguishable copies of some bin j. A binning is some (m′1, . . . ,m′r) with
0 ≤ m′i ≤ mi for all i. Suppose we are given a function V such that when
V ((m′1, . . . ,m′r), j) is true, we define the binning to be valid for bin j. Suppose
we are given a function S such that whenever (m′1, . . . ,m′r) is valid for bin j and
0 ≤ m′′i ≤ m′i, then S((m′′1, . . . ,m′′r), j) is true. Such a binning is semi-valid. A
total valid binning is a sequence of length s, whose jth entry is a multiset of nj
valid binnings for bin j, and such that all of these binnings sum to (m1, . . . ,mr).
This algorithm returns all total valid binnings.
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Optionally, a partial semi-valid binning B can be given (like a total valid
binning, except the binnings are only semi-valid and only sum to at most m1, . . . ,

mr) and this algorithm only returns total valid binnings which extend it.
Optionally, a limit N can be given (defaulting to∞) and this algorithm returns

at most this many total binnings.
This algorithm works by choosing an item and considering all bins it could

be added to. For each choice, we add this to the partial semi-valid binning, and
recursively find all the total binnings extending it.

In order to avoid duplicated effort, we only add item i to a bin if either it
makes the binning equal to the largest or exceed the largest, when comparing the
ith entry in each binning.

Since items are assigned in order, they should be given to the algorithm in
whatever order is likely to lead to a contradiction quickest (in terms of not being
semi-valid). This usually means the “largest” items should come first, because
these will “fill” the bins quicker.

1: (Check semi-valid)
2: if B is not semi-valid then
3: return ∅
4: end if

5: (Base case: nothing more to bin)
6: if mi = 0 for all i then
7: if B is a total valid binning then
8: return {B}
9: else
10: return ∅
11: end if
12: end if

13: (General case)
14: R ← ∅
15: i← min{i : mi 6= 0}
16: mi ← mi − 1
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17: (Put an item i into one of the j bins)
18: for j = 1, . . . , k do
19: B = Bi (a set of multiset binnings of size nj)
20: B′ ← the set of binnings in B with entry i set to 0
21: for b′ ∈ B′ do

22: (Increase the highest value)
23: m′′i ← the largest value of bi among all b ∈ B agreeing with b′ away

from the ith entry
24: b0 ← b′ with the ith entry set to m′′i
25: b← b′ with the ith entry set to m′′i + 1
26: R ← R∪ all total valid binnings extending B with b0 replaced by b in

Bi

27: (Increase the next one down)
28: b−1 ← b′ with the ith entry set to m′′i − 1
29: if b−1 ∈ B then
30: R ← R∪ all total valid binnings extending B with b−1 replaced by

b0 in Bi

31: end if
32: end for
33: end for
34: return R

13 Implementation

These algorithms have been implemented [27] for the Magma computer algebra
system [8]. Our main GaloisGroup routine takes two arguments: a polynomial
over a p-adic field, and a string describing the parameterization of the algorithm
to use.

The polynomial itself can be in one of the following three forms:

• The usual “inexact” p-adic polynomial type built in to Magma, which uses
capped-precision arithmetic. At the present time, some routines such as
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polynomial factoring do not always produce correct results, particularly if
the inputs are given to small precision.

• The “exact” p-adic polynomial type made available by the ExactpAdics
package (see Chapter IV). This uses infinite-precision arithmetic and its
routines are designed to give provably correct results (modulo coding errors)
and hence our algorithm also yields provably correct results except for
Remark 3.6.

• Fixing the Galois group G (and perhaps the ramification filtration and
some related data) of some unspecified normal extension L/K, we represent
subfields of L/K by the subgroup H of G fixing them, we represent
irreducible polynomials over K by the conjugacy class of subgroups [H]
of G fixing the fields defined by its roots, and we represent a product of
irreducible polynomials by the set of its factors. This allows us to test how
well our algorithms can find a given Galois group G without needing an
explicit polynomial with this Galois group.

Unless otherwise stated, we use the exact form.
Our algorithm is by design highly modular, with each piece of the

parameterization as independent as possible from the rest. This means that if
one has a new algorithm for evaluating resolvents for instance, one simply needs
to implement this algorithm satisfying a particular interface, and then add a line
of code to the parameterization parser.

The main omission from our implementation is that the SinglyWild global
model algorithm is not fully implemented, which means that for wild extensions
our global model will usually use symmetric groups. Over Q2 with a 2 × . . . × 2
ramification filtration this is not a problem, but for coarser filtrations, S8 is much
larger than C3

2 for example, and S7 is much larger than C7, and so our global
models are far from optimal. A special case of SinglyWild has been implemented
and is discussed specifically in §13.9.

All experiments reported on in this section were performed on a 2.7GHz Intel
Xeon. Any timings are given in core-seconds. Tables of Galois groups have been
produced from all runs in this section and are available from the implementation
website [27].
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13.1 Some particular parameterizations

Six parameterizations we will consider are named A0, B0, A1, B1, A2 and B2 and
are all of the form

[Tame,
SinglyRamified,
ARM[Global:Factors:RamTower:INNER_MODEL, GROUP_ALG]

]

where INNER_MODEL depends on the letter part of the name, and GROUP_ALG
depends on the number part.

This parameterization means that we will try three algorithms in turn: Tame
(§2.2; only works on polynomials whose factors define tame extensions), Singly-
Ramified (§2.3; only works on irreducible polynomials defining singly ramified
extensions) and ARM (§2.4; absolute resolvent method). The absolute resolvent
method evaluates resolvents using a global model which first factorizes the
polynomial, then finds the ramification tower of the field defined by each factor,
then finds a global model for each segment of the tower using the INNER_MODEL.

For the A parameterizations, the inner model is Symmetric whereas for the B
parameterizations it is

Select
[unram, RootOfUnity[Minimize:True, Complement:True]]
[tame, RootOfUniformizer]
[Symmetric:SinglyRamified]

which uses RootOfUnity, RootOfUniformizer or Symmetric depending on whe-
ther the segment is unramified, tame or wild. In the unramified case, we find a
complement to minimize the size of the global model, and in the wild case we use
the SinglyRamified algorithm to find the Galois group of the segment.

Finally, the GROUP_ALG controls the group theory part of the algorithm and
depends on the number part of the parameterization name:

0. All[FactorDegrees]:Index.
This writes down All possible Galois groups (§5.1), and then tries to
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eliminate possibilities based on the FactorDegrees statistic (§6.5), which
finds the multiset of the degrees of the factors of a polynomial. We consider
making resolvents from all groups of each Index (§8.2).

1. All[FactorDegrees]:OrbitIndex[If:le[val[ridx],1]].
Like the previous, but now only makes resolvents from groups such that
vp(r) ≤ 1 where r is the remaining orbit index (§8.3). Empirically, these
groups usually yield as much information as all groups of the same index,
although not always: see §13.4.

2. Maximal2[FactorDegrees]:OrbitIndex[If:le[val[ridx],1]].
Like the previous, but instead of writing down all possible Galois groups, we
work down the graph of possible Galois groups using the Maximal2 algorithm
(§5.3).

We shall also consider the following parameterization, called 00.

[Tame,
SinglyRamified,
ARM[Global:Factors:Symmetric, MaximalRoots]

]

It is the same as A0 but uses a Symmetric global model for each factor and the
MaximalRoots group theory algorithm. Hence this parameterization is similar to
Stauduhar’s original absolute resolvent method [65].

13.2 Up to degree 12 over Q2, Q3 and Q5

The local fields database (LFDB) [40] tabulates data about all extensions of degree
up to 12 over Qp for all p including a defining polynomial, residue and ramification
degrees, Galois and inertia groups, and the Galois slope content which summarizes
the ramification polygon of the Galois closure.

We have run our algorithm with the eight paramaterizations Naive, 00 and A0
to B2 on all defining polynomials from the LFDB of degrees 2 to 12 over Q2, Q3 and
Q5. We also ran with the parameterization A0 but using the inexact polynomial
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representation, which we denote A0*. In all cases, the Galois group agrees with
that reported in the LFDB.

The mean run times of these are given in Tables 1, 2 and 3. In each case,
the times within 10% of the smallest are shown in bold. Counts marked with an
asterisk (*) represent a random sample of all possibilities. Times marked with a
numeric superscript mean that the algorithm failed to find the Galois group for
this many polynomials; these are not included in the mean. A dash (—) means the
corresponding algorithm was not tried. A cross (×) means the corresponding runs
were prohibitively slow. Times preceded by ≈ are the mean of a small number
of runs, the rest being prohibitively slow. This notation is reused in subsequent
tables.

Over Q2, we have also run the algorithm on a selection of reducible polynomials
whose irreducible factors have a given set of degrees. For example, we consider all
pairs F1, F2 ∈ K[x] of quadratic polynomials defining quadratic fields over Q2 and
run the algorithm on F (x) = F1(x)F2(x+1). Note that the offset x+1 ensures that
F (x) is squarefree in case F1 = F2. Mean run times are given in Table 1, where
for example degree “2 + 2 = 4” means products of quadratics. In all cases, we
have verified that the number and sizes of orbits of the returned group is correct,
and that the action of the group on each of its orbits agrees with the Galois group
reported in the LFDB. Furthermore, in the cases where F1 = F2, then the Galois
group is the diagonal embedding of Gal(F1) into Gal(F1) × Gal(F1), which again
has been verified against the LFDB.

Observe that A0* is generally faster than A0, suggesting there is some overhead
due to using exact arithmetic. However, this overhead is around a factor of two in
the worst case and usually less, so not too significant.

There is little variation in timings between the six parameterizations A0 to B2.
This suggests that for small degrees, there is little overhead in writing down all
possible Galois groups G ≤ W , or in enumerating all subgroups of W of a given
index.

Unsurprisingly, the run time increases in both the degree d and in vp(d), the
latter being the number of wild ramification breaks possible.

Not displayed in the table is that the variance in these run times is low. In
particular, the maximum run time is always within a factor of 3 of the mean, and
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Deg # Run time (seconds)
Naive 00 A0* A0 B0 A1 B1 A2 B2

2 3 0.04 0.11 0.07 0.10 0.11 0.12 0.12 0.11 0.11
3 10 0.05 0.07 0.04 0.06 0.06 0.06 0.06 0.05 0.06
4 5 0.10 0.10 0.05 0.08 0.08 0.08 0.12 0.09 0.09
5 2 0.08 0.16 0.10 0.15 0.16 0.15 0.16 0.14 0.16
6 75 0.66 0.29 0.13 0.31 0.33 0.34 0.32 0.30 0.32
7 2 0.12 0.17 0.10 0.15 0.18 0.19 0.15 0.16 0.17
8 8 0.10 0.09 0.06 0.09 0.08 0.09 0.08 0.08 0.08
9 795 ≈ 400 ≈ 100 — 0.63 0.64 0.67 0.66 0.66 0.73
10 6 0.14 0.09 0.08 0.09 0.09 0.09 0.10 0.09 0.10
11 2 0.15 0.16 0.11 0.17 0.17 0.18 0.19 0.21 0.20
12 785 × × — 1.52 1.57 1.90 2.24 2.21 2.54

Table 2: Mean run times for some parameterizations on polynomials defining
fields of given degrees over Q3. There were 11 polynomials of degree 12 for which
A0, A1 and A2 did not succeed due to a bug in Magma; these are not included in
timings.

Deg # Run time (seconds)
Naive 00 A0* A0 B0 A1 B1 A2 B2

2 3 0.04 0.11 0.07 0.12 0.28 0.11 0.11 0.12 0.11
3 2 0.09 0.14 0.10 0.15 0.15 0.15 0.15 0.20 0.16
4 7 0.03 0.07 0.04 0.07 0.07 0.08 0.07 0.09 0.08
5 26 0.12 0.05 0.02 0.05 0.06 0.05 0.06 0.05 0.06
6 7 0.07 0.09 0.05 0.08 0.08 0.08 0.09 0.08 0.08
7 2 0.12 0.17 0.10 0.15 0.16 0.16 0.16 0.15 0.21
8 11 0.07 0.09 0.05 0.08 0.07 0.08 0.08 0.07 0.09
9 3 0.12 0.11 0.09 0.15 0.13 0.13 0.13 0.13 0.13

10 258 ≈ 100 × — 2.09 1.93 3.00 2.76 16.02 11.87
11 2 0.15 0.17 0.11 0.18 0.17 0.17 0.19 0.18 0.44
12 17 0.16 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.08

Table 3: Mean run times for some parameterizations on polynomials defining
fields of given degrees over Q5.
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13. IMPLEMENTATION

is usually less.
For small degrees, the simple parameterization 00 is comparable to the other

parameterizations. However it quickly becomes infeasible as the degree increases,
taking for example about 50 seconds at degree 8 over Q2.

The same is true for the Naive algorithm. Indeed, for small degrees this is
often the fastest but becomes infeasibly slow above degree about 10.

13.3 Degree 14 over Q2

There are two types of wildly ramified extensions L/K = Q2 of degree 14: those
with e(L/K) = 2 and those with e(L/K) = 14. In the former case, L is a ramified
quadratic extension of the unique unramified extension U/K of degree 7. In the
latter case, L is a ramified quadratic extension of the unique (tamely) ramified
extension T = K( 7

√
2)/K of degree 7. We refer to these as Type 14u and Type

14t respectively.
Using the AllExtensions intrinsic in Magma we have generated all such

extensions. There are 510 of each type up to U - or T -conjugacy, and after deduping
by K-conjugacy there are 78 of Type 14u and 510 of Type 14t (these were already
distinct because Aut(T/K) is trivial).

We have run our algorithm on all of these. The timings are given in Table 1
separately for the two types.

As a point of comparison, [3] uses a degree 364 resolvent relative to W = S14

and a few other invariants to compute the same Galois groups, taking around 20
hours per polynomial whereas our algorithm takes around 2 seconds. Our results
are consistent with [3, Table 3].

We see that for Type 14t, using a more sophisticated global model RootOf-
Uniformizer for T/K in the B parameterizations instead of Symmetric in the
A parameterizations makes a marked improvement to the run-time. Even when
we do use Symmetric, we get an improvement for using more sophisticated group
theory, comparing A0, A1 and A2.

In contrast, for Type 14u using a more sophisticated global model RootOfUnity
actually made the run time worse. In this case, with parameterization B0, most
of the run time is spent computing complex approximations to resolvents, despite
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CHAPTER II. GALOIS GROUPS

generally using fewer resolvents and using a lower complex precision. This suggests
that the implementation of RootOfUnity needs to be optimized.

We have verified that the order of the Galois group is correct using class field
theory as follows. Let M = U for Type 14u and M = T for Type 16t and let N be
its normal closure, so N = U or N = T (ζ7). Let GN = Gal(N/K) = C7 or C7oC3.
Now since L/M is quadratic and wildly ramified, so is LN/N . Compute the unit
group A = N× and norm group B = NLN/N(LM×) ≤ A and the intersection
C = ⋂

g∈GN
g(B) ≤ A. The class field of C is the normal closure of L/K and

therefore in particular (A : C)(N : K) = |Gal(L/K)|. We have checked that this
relationship holds in all cases.

Note that up to S14-conjugacy, there is only one transitive subgroup of C2 oC7

or C2 o (C7 o C3) of each possible order. Hence verifying the order of the Galois
group is the same as verifying the group itself up to S14-conjugacy.

13.4 Degree 16 over Q2

Recall (e.g. [53] or Chapter III) that to an extension of p-adic fields, we can
attach a ramification polygon, which is an invariant of the extension. By attaching
further residual information such as the residual polynomials of each face of the
ramification polygon, we can form a finer invariant.

Using the pAdicExtensions package [26], which implements these invariants,
we generated all possible equivalence classes of the finest such invariant, called
the fine ramification polygon with residues and uniformizer residue in
Chapter III, for totally ramified extensions of degree 16 of Q2.

For each class, we selected at random one Eisenstein polynomial generating a
field with this invariant, giving us a sample of 447 polynomials.

We divide these polynomials into three types. Writing L = Lt/ . . . /L0 =
K = Q2 for the ramification filtration of the field they generate, then Type 16a
polynomials have (Li : Li−1) = 2 for all i (and hence t = 4), Type 16b polynomials
are those remaining with (Li : Li−1) | 4 for all i, and Type 16c are the rest (so
(Li : Li−1) = 8 or 16 for some i). There are 64, 253 and 130 polynomials of each
type respectively.

In total, there are 4,008,960 degree 16 extensions of Q2 inside Q̄2 of Type 16a,
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A0 B0 A1 B1 A2 B2
Type 16a (64 polynomials)
Number failed 0 0 4 4 4 4
Mean run time 53.65 54.54 17.47 18.21 7.25 7.59
Median run time 27.87 28.64 16.69 17.00 6.06 6.34
Maximum run time 311.86 252.39 31.57 56.59 22.99 21.76
Type 16b (253 polynomials)
Number failed 0 0 7 7 7 7
Mean run time 304.97 288.25 42.37 34.90 25.47 29.40
Median run time 18.20 14.77 12.25 10.38 8.02 7.65
Maximum run time 4016.19 3721.84 432.85 1182.44 1063.16 1616.56
Type 16c (130 polynomials)
Number failed — — 23 23 4 23
Mean run time — — 133.29 195.59 115.38 150.83
Median run time — — 10.50 1.58 1.43 1.36
Maximum run time — — 2502.06 7949.19 12432.12 4368.25

Table 4: Run times in seconds for a selection of parameterizations on a sample
of polynomials defining fields of degree 16 over Q2 divided into three types.

1,857,120 of Type 16b and 155,024 of Type 16c [63].
Per an earlier remark, we do not have SinglyWild global models implemented

and so use the less efficient Symmetric instead. We expect run times for Types
16b and 16c to be worse than Type 16a, since the former will work relative to
groups like W = S4 o S4 or S2 o S8 which are larger than W = S2 o S2 o S2 o S2 of
the latter. We expect that with SinglyWild fully implemented, the overgroup for
Types 16b or 16c will be smaller not larger than for Type 16a, and that Types
16b and 16c will therefore actually become the easier classes. See §13.9 for some
evidence supporting this claim.

Our algorithm has been run on these polynomials with the 6 parameterizations
A0 to B2. Table 4 summarizes the results, with the polynomials grouped by type.
Mean timings are also given in Table 1 for comparison. Some of these runs failed
to find the Galois group, because the parameterization ran out of resolvents to try;
the number of failures is given in the table. The timings only include successful
runs. To give an idea of the variance in run time, we report the median and
maximum time as well as the mean.
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The run times are significantly higher at degree 16 than lower degrees, and
there are now pronounced differences between the parameterizations, with those
numbered 0 being the slowest and numbered 2 being the fastest.

As predicted, Type 16a polynomials are the fastest. For this type, the median
is usually close to the mean and the maximum is not much larger, indicating this
is a low-variance regime. Elsewhere, the median is smaller and the maximum is a
lot higher, so the variance is greater.

Among Type 16a, four polynomials failed on parameterizations A1 to B2. They
fail because forming resolvents from groups whose remaining orbit index is at most
2 is not sufficient to distinguish these Galois groups. Our parameterizations A1
to B2 could be modified to fall back on the A0 or B0 behaviour if they run out
of groups to try, thus getting most of the efficiency of the more sophisticated
parameterizations, but retaining the generality of A0. These polynomials are

f1 = x16 + 4x14 + 12x12 + 2x8 + 8x7 + 8x5 + 4x4 + 8x2 + 2

f2 = x16 + 4x14 + 4x12 + 8x11 + 2x8 + 16x7 + 8x6 + 16x5 + 4x4 + 2

f3 = x16 + 16x15 + 8x14 + 16x13 + 4x12 + 2x8 + 16x7 + 16x5 + 4x4

+8x2 + 16x+ 6

f4 = x16 + 16x15 + 4x12 + 8x10 + 16x9 + 2x8 + 16x7 + 16x5 + 4x4

+16x3 + 40x2 + 32x+ 6.

Under these parameterizations, the Galois group of f1 and f2 is deduced to be
one of 16T896 or 16T920, of order 512. The Galois group of f3 is deduced to be
16T294 or 16T334, of order 128. The Galois group of f4 is deduced to be 16T970
or 16T1000, of order 512. The correct Galois groups, computed using A0, are
16T896, 16T920, 16T334 and 16T1000 respectively.

The results are consistent in the sense that for each polynomial, the same group
was found for each of the six parameterizations.

Among Type 16a, the smallest Galois groups found were 16T151 and 16T177 of
order 64 = 26, and the largest are 16T1704, 16T1709, 16T1712, 16T1727, 16T1739,
16T1741, 16T1742, 16T1743 and 16T1744 of order 8192 = 213. The smallest cases
have been verified using the Naive algorithm.
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J # Groups
1 2 433, 434
3 4 98, 101, 588, 592
5 8 4332, 4342, 5882, 5922

7 16 4334, 4344, 5884, 5924

9 32 452, 1472, 51214, 65614

11 64 4338, 4348, 51216, 5888, 5928, 65616

13 128 43316, 43416, 51232, 58816, 59216, 65632

15 256 982, 1012, 1474, 58862, 59262, 656124

17 512 43332, 43432, 51264, 58896, 59296, 656192

18 1024 454, 14712, 512252, 656756

Total 2046 456, 983, 1013, 14718, 43363, 43463,
512378, 588189, 592189, 6561134

Table 5: Totally ramified Galois groups of degree 18 over Q2.

13.5 Degree 18 over Q2

Using the pAdicExtensions package [26], we have generated all ramification
polygons of totally ramified extensions L/Q2 of degree 18. These have vertices
of the form

(1, J), (2, 0), (18, 0)

where the discriminant valuation is 18 + J − 1. Note that these extensions are of
the form L/T/Q2 where T/Q2 is the unique tame extension of degree 9 and L/T
is quadratic.

For each polygon, we have generated a set of polynomials generating all
extensions with this ramification polygon, and run our algorithm on them all with
parameterizations A0 to B2. There are 2046 polynomials in total.

Mean timings are given in Table 1. Note that the B parameterizations are far
quicker than A as a result of using the RootOfUniformizer global model instead
of Symmetric for T/Q2.

In Table 5 we give the number of polynomials for each ramification polygon
(parameterized by J) and the count of the T-numbers of their Galois groups.

The smallest Galois group is 18T45 ∼= C2× (C9oC6) and the largest is 18T656
= C2 o (C9 o C6). Note that these are the smallest and largest possible using only
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that Gal(T/Q2) = C9 o C6 and Gal(L/T ) = C2.
Noting that L/T is Galois and T/Q2 has only the trivial automorphism, then

Aut(L/Q2) ∼= C2 and so each L/Q2 has 9 conjugates inside Q̄2. The number of
polynomials generated times 9 is equal to the number of extensions of degree 18 in
Q̄2, from which we deduce we have exactly one polynomial per isomorphism class.

13.6 Degree 20 over Q2

As in §13.5, we have generated all ramification polygons of totally ramified
extensions L/Q2 of degree 20. These have vertices

(1, J0), (2, J1), (4, 0), (20, 0) or (1, J0), (4, 0), (20, 0)

and the discriminant has valuation 20 + J0 − 1. For each we have produced a set
of generating polynomials, 511,318 in total. We have computed the Galois groups
of all of these polynomials, an account of which is given later in this section.

By [48, Theorem 1] there are 259,968 isomorphism classes of such extensions
L/Q2 so we have over-counted by a factor of about 2.

The counts of Galois groups are given in Table 6. Note than when there is
no vertex (2, J1) in the ramification polygon there are two cases: either there is a
point (2, J1) in the fine ramification polygon (cf. Chapter III) with J1 = 2

3J0 and
we prefix J1 with “=”; or there is no such point and we write J1 = ∗.

Finding the Galois groups. We ran our algorithm with parameterization B2
on these polynomials with a time limit of 15 minutes per polynomial. All but
1700 polynomials succeeded. This took an average of 10.0 seconds per polynomial,
about half of this time spent on the failed cases.

We then ran with parameterization B5-500-1000 (described below) on the
remainder with a time limit of 5 minutes per polynomial. All but 217 polynomials
succeeded, taking an average of 225.5 seconds per polynomial, about 30% of this
time spent on the failed cases.

These remaining polynomials all have a global model of the form W = S4 o F5,
that is they define a field L/T/Q2 where T = Q2( 5

√
2)/Q2 is tame degree 5

and L/T is singly ramified degree 4. These fall into two types: Type A has
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J0 J1 # Groups
1 ∗ 1 173
3 =2 1 471
3 ∗ 2 77, 80
5 2 8 305, 3092, 3122, 3322, 351
5 ∗ 2 61, 282
7 2 16 305, 3063, 3092, 3122, 3172, 330, 3322, 3382, 351
7 ∗ 4 173, 282, 472, 683
9 2 32 8478, 8508, 8518, 8548

9 =6 4 4714

9 ∗ 8 772, 802, 3172, 3382

11 2 64 1292, 1312, 1322, 1372, 4062, 4222, 4344, 4434, 4442,
4474, 4484, 4492, 8478, 8508, 8518, 8548

11 6 32 8478, 8508, 8518, 8548

11 ∗ 8 1732, 2822, 4722, 6832

13 2 128 4178, 4358, 4378, 4418, 52016, 53016, 90832, 91032

13 6 64 1294, 1314, 1324, 1374, 4064, 4224, 4444, 4494, 8478,
8508, 8518, 8548

13 ∗ 16 1734, 2824, 4724, 6834

15 2 256 3052, 3066, 3094, 3124, 3174, 3302, 3324, 3384, 3512,
4064, 4178, 4224, 4344, 4358, 4378, 4418, 4434, 4444,
4474, 4484, 4494, 52016, 53016, 84716, 85016, 85116, 85416,
90832, 91032

15 6 128 3054, 3098, 3128, 3328, 3514, 4348, 4438, 4478, 4488,
84716, 85016, 85116, 85416

15 =10 16 68, 67815

15 ∗ 32 192, 19412, 1956, 52612

17 2 512 84764, 85064, 85164, 85464, 908128, 910128

Table 6: (continued overleaf)
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J0 J1 # Groups
17 6 256 3054, 30612, 3098, 3128, 3178, 3304, 3328, 3388, 3514,

4068, 4228, 4348, 4438, 4448, 4478, 4488, 4498, 84732,
85032, 85132, 85432

17 10 128 4118, 4168, 4198, 4208, 51216, 51416, 90732, 91132

17 ∗ 32 1732, 2822, 47214, 68314

19 2 1,024 3054, 30612, 3098, 3128, 3178, 3304, 3328, 3388, 3514,
4068, 41716, 4228, 4348, 43516, 43716, 44116, 4438, 4448,
4478, 4488, 4498, 52032, 53032, 84796, 85096, 85196, 85496,
908192, 910192

19 6 512 41732, 43532, 43732, 44132, 52064, 53064, 908128, 910128

19 10 256 1318, 1378, 19516, 40624, 4118, 4168, 4198, 4208, 42224,
51216, 51416, 52648, 90732, 91132

19 ∗ 64 1734, 2824, 47228, 68328

21 2 2,048 1294, 1314, 1324, 1374, 40628, 42228, 43432, 44332, 44428,
44732, 44832, 44928, 51564, 51664, 52064, 53064, 847192,
850192, 851192, 854192, 908384, 910384

21 6 1,024 3058, 30624, 30916, 31216, 31716, 3308, 33216, 33816, 3518,
40616, 41732, 42216, 43416, 43532, 43732, 44132, 44316,
44416, 44716, 44816, 44916, 52064, 53064, 84764, 85064,
85164, 85464, 908128, 910128

21 10 512 41132, 41632, 41932, 42032, 51264, 51464, 907128, 911128

21 =14 64 47116, 67848

21 ∗ 128 774, 804, 1294, 1324, 19416, 31712, 33812, 44412, 44912,
52648

22 2 4,096 41764, 43564, 43764, 44164, 515128, 516128, 9081536, 9102048

23 6 2,048 1298, 1318, 1328, 1378, 40656, 42256, 43464, 44364, 44456,
44764, 44864, 44956, 515128, 516128, 520128, 530128, 847128,
850128, 851128, 854128, 908256, 910256

23 10 1,024 13116, 13716, 19532, 40648, 41148, 41648, 41948, 42048,
42248, 51296, 51496, 52696, 907192, 911192

Table 6: (continued overleaf)
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J0 J1 # Groups
23 14 512 84764, 85064, 85164, 85464, 907128, 911128

23 ∗ 128 1738, 2828, 47256, 68356

25 6 4,096 847512, 850512, 851512, 854512, 9081024, 9101024

25 10 2,048 164, 194, 19424, 19560, 19684, 511192, 512192, 514192,
518192, 526168, 528168, 907384, 911384

25 14 1,024 30648, 31732, 33016, 33832, 40696, 42296, 44432, 44932,
526128, 84764, 85064, 85164, 85464, 907128, 911128

25 ∗ 256 612, 28244, 683210

26 6 8,192 417128, 435128, 437128, 441128, 515256, 516256, 9083072,
9104096

27 10 4,096 416128, 420128, 511256, 514512, 9061024, 907512, 9091024,
911512

27 14 2,048 12916, 13116, 13216, 13716, 19432, 19632, 406112, 422112,
444112, 449112, 526224, 528224, 847128, 850128, 851128,
854128, 907256, 911256

27 =18 256 47164, 678192

27 ∗ 512 778, 808, 1298, 1328, 19432, 31756, 33856, 44456, 44956,
526224

29 10 8,192 416256, 420256, 511512, 5141024, 9062048, 9071024, 9092048,
9111024

29 14 4,096 435128, 441128, 516256, 530512, 9061024, 908512, 9091024,
910512

29 18 2,048 12932, 13132, 13232, 13732, 19464, 19664, 406224, 422224,
444224, 449224, 526448, 528448

29 ∗ 512 1738, 28224, 472120, 683360

30 10 16,384 4216, 261240, 632768, 6333840, 634768, 94610752

31 14 8,192 30532, 30964, 31264, 33264, 35132, 411128, 417128, 419128,
434192, 437128, 443192, 447192, 448192, 512512, 515256,
518256, 520512, 847256, 850256, 851256, 854256, 9061024,
907512, 908512, 9091024, 910512, 911512

Table 6: (continued overleaf)

73



CHAPTER II. GALOIS GROUPS

J0 J1 # Groups
31 18 4,096 847512, 850512, 851512, 854512, 9071024, 9111024

31 20 4,096 41164, 41664, 41964, 42064, 511128, 518128, 9072048, 9111536

33 14 16,384 8471024, 8501024, 8511024, 8541024, 9062048, 9072048,
9082048, 9092048, 9102048, 9112048

33 18 8,192 435256, 441256, 516512, 5301024, 9062048, 9081024, 9092048,
9101024

33 20 8,192 411128, 416128, 419128, 420128, 511256, 518256, 9074096,
9113072

34 14 32,768 417256, 435256, 437256, 441256, 515512, 516512, 6321024,
6341024, 9086144, 9108192, 94614336

35 18 16,384 8471024, 8501024, 8511024, 8541024, 9062048, 9072048,
9082048, 9092048, 9102048, 9112048

35 20 16,384 4216, 261240, 6323840, 633768, 634768, 94610752

37 18 32,768 30564, 309128, 312128, 332128, 35164, 411256, 417256,
419256, 434384, 437256, 443384, 447384, 448384, 5121024,
515512, 518512, 5201024, 8471536, 8501536, 8511536, 8541536,
9064096, 9073072, 9083072, 9094096, 9103072, 9113072

37 20 32,768 411256, 416256, 419256, 420256, 511512, 518512, 6331024,
6341024, 9078192, 9116144, 94614336

38 18 65,536 417512, 435512, 437512, 441512, 5151024, 5161024, 6322048,
6342048, 90812288, 91016384, 94628672

39 20 65,536 411512, 416512, 419512, 420512, 5111024, 5181024, 6332048,
6342048, 90716384, 91112288, 94628672

40 20 131,072 188, 208, 4216, 186120, 189120, 261240, 5101920, 5171920,
5191920, 5231920, 5241920, 5291920, 6323840, 6333840,
6343840, 90626880, 90926880, 94653760

Table 6: (continued overleaf)
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J0 J1 # Groups
Total 511,318 164, 188, 196, 208, 4248, 613, 68, 7715, 8015, 12978, 13190,

13278, 13790, 17330, 186120, 189120, 194180, 195114, 196180,
261720, 28290, 305120, 306105, 309240, 312240, 317140,
33035, 332240, 338140, 351120, 406630, 4111440, 4161440,
4171440, 4191440, 4201440, 422630, 434720, 4351440, 4371440,
4411440, 443720, 444562, 447720, 448720, 449562, 47185,
472225, 5101920, 5112880, 5121920, 5141920, 5152880, 5162880,
5171920, 5182880, 5191920, 5201920, 5231920, 5241920,
5261396, 528840, 5291920, 5301920, 63211520, 63311520,
63411520, 678255, 683675, 8475760, 8505760, 8515760, 8545760,
90642240, 90742240, 90834560, 90942240, 91042240, 91134560,
946161280

Table 6: Totally ramified Galois groups of degree 20 over Q2.

Gal(L/T ) = C2 oC2, there are 199 of these; and Type B has Gal(L/T ) = S4, there
are 18 of these.

We ran with parameterization B5-500-1000-D4 (described below) on the Type
A polynomials, which all succeeded. This took an average of 161.60 seconds per
polynomial.

The 18 Type B polynomials were the most difficult. Using a parameterization
involving the statistic Factors[Tup[Degree,NumAuts]] (which on polynomials is
the multiset over factors of the tuple of the degree of the factor and the number
of automorphisms of the field it defines) we were able to find the Galois group of
9 of these polynomials, but this took about 21

2 hours per polynomial.
Instead, we know from [32, Theorem 7.3] that the normal closure of L/T is

tamely ramified over L. In particular, if we let K = Q2( 3
√

2, ζ3) then K/Q2 is
Galois with Galois group S3 and LK/T is the normal closure of L/T , and hence
Gal(LK/TK) ∼= C2

2 . Note also that (LK : K) = 20 and hence F is irreducible over
K and so the splitting field of F overQ2 equals the splitting field of F overK equals
the normal closure of LK/K. We use the parameterization C2 introduced in §13.9
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to find G0 := Gal(F/K) = Gal(LK/K). Then if G := Gal(F/Q2) = Gal(L/Q2)
then we know that G0 / G ≤ S4 o S5, such that G/G0 ∼= Gal(K/Q2) ∼= S3 and
the image of G under the quotient S4 o S5 → S5 is Gal(T/K) ∼= F5. For each G0,
we compute that there is a unique group G with these properties (either 20T282
or 20T683, 9 of each), and hence we have found the Galois group. Computing
G0 took an average of 66.51 seconds per polynomial. About 80% of this time
was spent constructing the global model, which is now much slower since we are
working over an extension K/Q2.

Parameterization B5-500-1000.

[Tame,
SinglyRamified,
ARM[Global:Factors:RamTower:Select

[unram, RootOfUnity[Minimize:True, Complement:True]]
[tame, RootOfUniformizer]
[Symmetric:SinglyRamified],

[All[FactorDegrees, OrbitIndex[If:and[le[val[ridx],1],le[idx,500]]]],
All[FactorDegrees, Stream[1000, Index]]

]
]

]

This is the same as B2 except for the group theory part. Whereas in B2 we
use the Maximal2 group theory algorithm and OrbitIndex to choose groups, this
parameterization uses the All algorithm (it does not take long to enumerate
all possible subgroups in our application) and initially chooses groups using
OrbitIndex up to index 500, and then uses Stream[1000,Index] to try up to
1000 random subgroup of each index.

Parameterization B5-500-1000-D4 This is the same as B5-500-1000 except
that the global model construction is modified. Symmetric:SinglyRamified is
replaced by D4Tower so that in our application for Type A polynomials we get
W =W = C2 o C2 o F5 instead of S4 o F5.
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J # Groups
1 2 34, 35
3 4 342, 352

5 8 344, 354

7 16 348, 358

9 32 3416, 3516

11 64 62, 3762

13 128 3432, 3532, 3764

15 256 3464, 3564, 37128

17 512 34128, 35128, 37256

19 1024 34256, 35256, 37512

21 2048 34512, 35512, 371024

22 4096 64, 374092

Total 8190 66, 341023, 351023, 376138

Table 7: Totally ramified Galois groups of degree 22 over Q2.

13.7 Degree 22 over Q2

As in §13.5, we have generated all ramification polygons of totally ramified
extensions L/Q2 of degree 22, these have vertices of the form

(1, J), (2, 0), (22, 0),

and for each we have produced a set of generating polynomials. Again, we have
precisely one polynomial per isomorphism class, 8190 in total.

Timings with parameterizations B0 to B2 are given in Table 1 and counts of
Galois groups are given in Table 7.

The Galois groups range from 22T6 ∼= C2 × F11 to 22T37 = C2 o F11, where
F11 = C11 o C10 = Gal(T/Q2) is the Galois group of the unique tame extension
T/Q2 of degree 11.

13.8 Degree 32 over Q2

A degree 16 extension of Q2 typically has a ramification filtration of the form
2 × 2 × 2 × 2, so that we typically find its Galois group as a subgroup of
W = C o42 = C2 o C2 o C2 o C2. Now |W | = 215 and the Galois group has order
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at least 16 = 24, so the Galois group is index at most 211 in W . For a typical
extension of degree 32, the Galois group is a subgroup of W = C o52 of index up to
231−5 = 226. Since determining G ≤ W using the absolute resolvent method tends
to be more difficult as the index (W : G) increases, we expect that computing
the Galois group of a degree 32 polynomial is in general far more difficult than at
degree 16.

Consider
f1(x) = x16 + 2x8 + 16x5 + 32x3 + 10

which is Eisenstein, defining an extension with a 2×2×2×2 ramification filtration,
and whose Galois group is 16T1722 of index 4 = 22 in C o42 .

Now consider f1(x2), which is also Eisenstein and defines an extension with a
2× . . .×2 ramification filtration. Using the A2 parameterization, we can compute
its Galois group to be 32T2752023 of index 27 in C o52 . This took about 116 seconds,
which breaks down as follows.

Run time (seconds) Share of run time
Start resolvent algorithm 34.81 29.9%
Choose subgroup 68.99 59.3%
Compute resolvent 2.12 1.8%
Process resolvent 8.25 7.1%
Other 2.25 1.9%
Total 116.42

Here, “start resolvent algorithm” includes initially factorizing the polynomial,
finding the extensions defined by the factors, finding their ramification filtrations,
and computing a corresponding global model. “Choose subgroup” means time
spent by the subgroup choice algorithm choosing a subgroup U ≤ W from which
to form a resolvent. “Compute resolvent” is the time spent computing a resolvent
R(x) given an invariant for the subgroup U . “Process resolvent” is the time spent
by the group theory algorithm deducing information about the Galois group from
a resolvent, and so in particular includes finding the degrees of the factors of the
resolvent and computing maximal preimages. “Other” is everything else, including
intializing the group theory algorithm and computing invariants.
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This used 82 resolvents in total: 68 of degree 2, 3 of degree 4, 7 of degree 8 and
4 of degree 32. The maximum complex precision used was 2735 decimal digits.

Note that the A0 or A1 parameterizations are prohibitively slow on this
problem: there are millions of transitive subgroups of C o52 to enumerate (using
Magma’s database of transitive groups, there are 2,737,535 S32-conjugacy classes
of transitive 2-groups of degree 32). Even if we did this once and re-used the list of
subgroups, computing s(q(e(P ))) for every possible P to determine if U is useful
would be extremely time consuming.

Similarly, define
f2(x) = x16 + 32x+ 2

which is Eisenstein with Galois group 16T1638 of index 8 = 23 in C o42 . Using A2,
we find the Galois group of f2(x2) is 32T2583443 of index 210 in C o52 . This took
about 125 seconds, which breaks down as follows.

Run time (seconds) Share of run time
Start resolvent algorithm 23.28 18.6%
Choose subgroup 91.44 73.0%
Compute resolvent 1.39 1.1%
Process resolvent 6.84 5.5%
Other 2.37 1.9%
Total 125.32

This used 104 resolvents in total: 82 of degree 2, 9 of degree 4, 7 of degree 8, 2
of degree 16 and 4 of degree 32. The maximum complex precision used was 4056
decimal digits.

In both cases, the run time is dominated by time spent choosing subgroups
U ≤ W , suggesting that this should be the focus for future improvement. The next
most dominant part is time spent starting the resolvent algorithm, but this part
is essentially independent of the Galois group. Very little time is spent actually
computing resolvents, which is perhaps surprising given that this is the part spent
using complex embeddings of global models.
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13.9 A special case of SinglyWild

We have implemented SinglyWild in the special case p = 2 for totally wildly
ramified extensions L/K which are Galois. Hence Gal(L/K) ∼= Ck

2 where
(L : K) = pk.

We now define three more parameterizations C0, C1 and C2 which are the
same as B0, B1 and B2 except that the Symmetric global model is replaced by
SinglyWild. That is, INNER_MODEL is

Select
[unram, RootOfUnity[Minimize:True, Complement:True]]
[tame, RootOfUniformizer]
[SinglyWild].

It is well-known (e.g. [60, Ch. IV, §2, Prop. 7]) that for such an extension L/K
there is an injective group homomorphism Gal(L/K)→ F+

K , and hence Gal(L/K)
is isomorphic to a subspace of FK/Fp. In particular, (FK : Fp) ≥ k and so K/Qp

has residue degree at least k.
Using the pAdicExtensions package [26], we have generated defining

polynomials which between them generate all extensions of the form L/U/Q2 where
U/Q2 is unramified of some degree and L/U is singly wildly ramified and Galois
of some degree.

For example when k = 2 and (U : Q2) = 4, then the global model in C0
gives the overgroup W = C2

2 oC4 of order 210, which is somewhat smaller than the
overgroup W = S4 o C4 of order 214 · 34 from B0.

We have run our algorithm with the 9 parameterizations A0 to C2 on these
polynomials. Mean timings are given in Table 8.

Except at degree 8, the C parameterizations are by far the quickest.

14 Future work

14.1 Improvements

Here are some avenues for improvement to the absolute resolvent method.
Note that thanks to the modular design of the implementation, it is quite
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Deg k # Run time (seconds)
A0 B0 C0 A1 B1 C1 A2 B2 C2

8 2 4 0.53 0.56 0.61 0.57 0.57 0.66 0.62 0.58 0.68
12 2 28 2.36 2.34 0.71 3.41 3.73 0.64 4.57 4.79 0.66
16 2 140 × × 1.23 80.021 23.271 0.95 × × 0.98
24 3 8 × × 12.55 × × 12.75 × × 12.42
32 3 120 — — 40.49 — — 31.34 — — 23.68

Table 8: Mean run times for a selection of parameterizations on polynomials
defining fields of the form L/U/Q2 where U/Q2 is unramified and L/U is singly
wildly ramified with Galois group Ck

2 . At degree 32, there were four polynomials
which did not succeed due to a bug in Magma; these are not included in the mean.

straightforward to make improvements to one aspect of the algorithm in isolation
from the rest. The items at the top of the list should yield the best improvements.

• The quality of the global model and embedding e : W →W determines the
number and degree of resolvents required to deduce the Galois group. Hence,
it is worth putting in effort to make W and W as small as possible. We can
ask: given an extension L/K of local fields, then among all global models
L/K how small can Gal(L/K) get in comparison to Gal(L/K)? And can we
compute L/K? The first question is answered for abelian L/K by class field
theory (see Remark 4.3).

• On larger examples, the run time is currently dominated by time spent
computing subgroups U ≤ W from which to form resolvents. Our current
approaches involve constructing a list of candidate U independent of the
state of the algorithm and then testing to see which of these are useful. A
better approach would be to construct U directly.

As an example of this, suppose e : W → W is the identity, then G ≤ U if and
only if the corresponding resolvent has a root in K. Hence if G1, G2 ≤ W

are two potential Galois groups and without loss of generality G1 6≤ G2 then
choosing U = G1 will distinguish between these two groups. This is the
principle behind the RootsMaximal algorithm but has the disadvantage that
if (W : G) is large, then (W : U) will also be large at some point.

81



CHAPTER II. GALOIS GROUPS

Hence we ask: given G1 6= G2 and some statistic algorithm s, then among all
U such that a resolvent for U distinguishes between G1 and G2 with respect
to s, which has the smallest index (W : U)? And can we compute U?

A heuristic approach could be to start with U = G1 and keep adjoining
random elements of W , only adjoining an element if the resulting U is still
useful.

• In §13.6, to find the hardest 18 Galois groups we found it was easier to
first compute the Galois group over some small Galois extension known to
lie in the splitting field. This helped because we could find a much more
compact global model. This strategy could be formalized and built in to our
algorithm.

• In this article we have defined many statistics, but FactorDegrees turned
out to be most useful. This is largely because there are good algorithms for
factorizing p-adic polynomials, and also because we have a quick algorithm
for computing maximal preimages of this statistic. Other statistics either
do not contain as much information (e.g. HasRoot) or are much slower to
compute (e.g. AutGroup). Are there statistics which are fast to evaluate and
for which we can quickly compute maximal preimages?

• Similarly, can we get a better algorithm by using a relatively cheap statistic
initially, and then swapping to a more expensive one after a certain amount
of effort?

• The subfields of the extension L/K correspond to subgroups H ≤ G of the
Galois group G = Gal(L/K) containing StabG(1). In turn, these correspond
to block partitions of G. Using ideas from [37], we could compute the
subfields of L/K, from which we get a corresponding directed acyclic graph
whose nodes correspond to subfields, the nodes being labelled with the degree
of the field, and with edges corresponding to inclusion. Given a resolvent R
defining L/K, this DAG is a statistic for R. The corresponding statistic on
groups is the DAG of block partitions.
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14.2 Ramification filtration

The core tool at the centre of the absolute resolvent method is being able to
compute resolvents, a resolvent being nothing more than a polynomial defining
a certain subfield of the splitting field of the original polynomial F (x) ∈ K[x].
By measuring ramification information from resolvents, we can also deduce the
inertia group G0 ≤ G = Gal(F/K) and indeed the whole ramification filtration
(G0, 0), (G1, u1), . . . , (Gt, ut) where ui are the ramification breaks and Gi / G are
the corresponding ramification groups.

By way of example, one way to compute the inertia group is as follows. First,
compute the Galois group G. Now find all normal subgroups G0 / G such that
G/G0 is cyclic, and G1 / G and G0/G1 cyclic where G1 is a Sylow p-subgroup
of G0. These are candidate inertia groups. Now if R is a resolvent for U ≤ W ,
then Gal(R/K) ∼= q(e(G)) and Gal(R/K)0 ∼= q(e(G0)) (the isomorphism is the
same) where q : W → SW/U is the coset action. Hence by measuring information
about Gal(R/K)0 (such as the ramification degree of the extensions defined by the
factors of R) we can eliminate candidate G0.

The main challenge in extending this to computing the full ramification
filtration will be in finding the ramification breaks ui. Using that the upper
numbering of ramification breaks is consistent with respect to a fixed ground field
K, then the upper ramification breaks of any extension defined by a factor of a
resolvent R are a subset of the upper ramification breaks of G. Hence, by choosing
the right resolvents we will eventually see all upper breaks.

Of course, in analogue with our algorithms to compute the Galois group itself,
we could avoid computing all possible inertia groups G0 by instead working down
the graph of normal subgroups of G.
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Chapter III

Generating Extensions

Foreword

This chapter has been published separately as an article [25].
When testing our algorithm for computing Galois groups, it is convenient to

have a supply of interesting example polynomials. Pauli and Sinclair [53] give an
algorithm to produce Eisenstein polynomials generating extensions with a given
ramification polygon and residual polynomials, but no public implementation. We
have an implementation [26].

In this chapter, we present their results again using simplified notation which
we think yields more illuminating proofs of the main results. The only parts
which are new are the algorithms to enumerate all possible (equivalence classes of)
invariants (§2.4, §5.2) and the concept of weak validity (§2.3) which makes these
enumeration algorithms practical.

As noted in §7, the invariants implemented in our package are actually more
general than those described in this chapter or in [53] (but they are weaker, not
stronger). Again, this is mainly to aid the enumeration of all possibilities.

1 Introduction

We fix a p-adic field K and an integer n ≥ 1 and consider the problem of
enumerating all the extensions L/K of degree n. In their paper [53], Pauli and
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Sinclair describe some invariants of L/K and give an algorithm to produce all
extensions with a given set of invariants. The algorithm works by producing a
set of Eisenstein polynomials generating all extensions for a given invariant, and
then determining which pairs of polynomials produce isomorphic extensions so
that only one extension per isomorphism class is returned. The finer the invariant
used, the smaller the set of polynomials produced, and so easier this pairwise
search becomes.

In §2–6 we give a brief re-exposition of the invariants they describe, using
slightly different notation which we hope is easier to follow. For each invariant,
we give its definition, prove that it is an invariant, determine which Eisenstein
polynomials f(x) generate an extension with the given invariant, and give an
algorithm to enumerate all possiblities for the invariant.

In §2 we look at the ramification polygon. This is not studied directly in [53],
which actually starts with a slightly finer invariant. However the ramification
polygon is more widely known, which is why we start with it. In §3 we look at
the “fine ramification polygon” which is the finer invariant studied in [53, §3], in
which it is called the “ramification polygon”.

In §4 we look at the “fine ramification polygon with residues” which attaches a
residue to each point in the polygon. This is equivalent to a pair of a ramification
polygon and the invariant A of [53, §4], but is notationally simpler: A is expressed
as a set of residual polynomials, but this structure is actually mostly irrelevant to
studying them.

In §5 we extend this invariant to include some information about the constant
coefficient of the Eisenstein f(x). This is essentially the object A∗ of [53, Eq. 4.2],
although it is not explicitly identified as an invariant.

In §6 we consider, as in [53, §5], transformations to the Eisenstein polynomial
f(x) which preserve the extension L/K, allowing us to reduce the number of such
polynomials we need to enumerate in order to find all extensions.

We reiterate that the main results in this article are not new, and are all
essentially from [53]. Exceptions to this are made in the footnotes. We do however
use different notation and present the proofs in a different manner.

Many of the ideas here were studied by Monge [47] to produce, given a totally
ramified extension L/K, a finite set of Eisenstein polynomials each generating
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L/K, forming an invariant for L/K. The same ideas were also used by Sinclair
to count the number of extensions with a given invariant [63], the count being
the number of extensions within an algebraic closure. Monge has also counted
the number of extensions of a given degree up to isomorphism [48] using class field
theory to count cyclic extensions, and a group theory argument to count conjugacy
classes of subgroups.

The invariants and algorithms described here have been implemented [26]
in the Magma computer algebra system [8]. In §7 we give a few notes on the
implementation. For convenience, our package also provides an implementation of
[63, Lemma 4.4] to count the number of extensions L/K in some algebraic closure
K̄ with a given invariant.

1.1 Notation

K is a finite extension of Qp. Fix a uniformizer π ∈ K, and let v denote the
valuation on K̄ such that v(π) = 1. We denote by OK the ring of integers of K,
FK = OK/(π) the residue class field, and for x ∈ OK we let x̄ be its residue class.

For x, y ∈ OK̄ , we say x ≡ y iff v(x − y) > 0. For x, y ∈ K̄, we say x ∼ y iff
x = y = 0 or v(x− y) > v(x) = v(y).

2 Ramification polygon

2.1 Definition

For a monic Eisenstein polynomial f(x) = ∑n
i=0 fix

i ∈ K[x] of degree n, with a
root α ∈ K̄, its ramification polynomial is

r(x) := α−nf(αx+ α) ∈ L[x], L := K(α).

Note that it is monic and r(0) = 0. Expanding out we find

r(x) =
n∑
j=1

rjx
j where rj =

n∑
i=j

(
i

j

)
fiα

i−n for 0 < j ≤ n.
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Observing that nv(
(
i
j

)
fiα

i−n) ≡ i mod n, by the ultrametric property of the
valuation we deduce that

Rj := nv(rj) =
n

min
i=j

n(B(i, j) + Fi − 1) + i,

where B(i, j) := v
(
i
j

)
and Fi := v(fi).

We define the ramification points of f to be

P = {(j, Rj) : 1 ≤ j ≤ n,Rj <∞}

and we define the ramification polygon of f to be the lower convex hull of these
points, denoted P . That is, it is the Newton polygon of r(x). Note that Rj, and
hence P , can be computed directly from f without explicitly computing r.

2.2 Invariant

It is well-known that the ramification polygon P is actually an invariant of the
field L/K. One way to see this is to observe that if α̂ is any uniformizer for L/K,
then α̂ = x0 + x1α + . . . + xn−1α

n−1 with xi ∈ OK , v(x0) > 0, v(x1) = 0 (since
OL = OK [α]), so for any K-embedding σ : L→ K̄,

α̂− σα̂ =
n−1∑
i=0

xi(αi − σαi)

= (α− σα)(x1 +
n−1∑
i=2

xi(αi−1 + . . .+ σαi−1))

∼ x1(α− σα)

and therefore
α̂− σα̂
α̂

∼ α− σα
α

and in particular these have the same valuation. Since these, over all σ, are the
roots of the ramification polynomials corresponding to α̂ and α, and they have the
same valuations, then the Newton polygons of the ramification polynomials are
the same.

It is related to the ramification filtration of Gal(L/K) if L/K is Galois (e.g.
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[60, Ch. IV]), and more generally to the ramification filtration of the Galois set
Γ(L/K) = {σ : L → K̄} of K-embeddings of L (e.g. [35]). The vertices of the
polygon correspond to subfields of L/K which themselves correspond to fixed fields
of elements of the ramification filtration of Γ(L/K):

ΓV := {σ ∈ Γ : x ∈ OK =⇒ v(σx− x) > V } = {σ ∈ Γ : v(σα− α) > V }.

2.3 Validity

From facts about ramification, or alternatively directly from facts about valuations
of binomial coefficients, one can show that the interior vertices of P are of the form
(ps, ∗), and that there is a vertex at (pvp(n), 0). Hence we notate a ramification
polygon by listing its vertices like so:

P = [(ps0 , J0), . . . , (psu , Ju = 0), (n, 0)]

where s0 = 0 and su = vp(n).
Any polygon of the above form is called a potential ramification polygon.

Any such polygon arising from an Eisenstein f(x) ∈ K[x] is called a valid
ramification polygon (over K). We now consider which potential ramification
polygons are valid.

Observing that P is the graph of a function [1, n] → Q, we let P also denote
this function.

A potential polygon P is valid if and only if there is Eisenstein f(x) with
v(fi) = Fi such that Rpst = Jt for 0 ≤ t ≤ u and such that Rj ≥ P (j) for
all 1 ≤ j ≤ n. Automatically we have Rj ≥ 0 for all j, which rules the face
[(psu , 0), (n, 0)] out of consideration. From facts about valuations of binomials, we
actually have that if ps < j < ps+1 then Rj ≥ Rps ≥ P (ps) > P (j), and hence
the only points (j, Rj) lying in P with 1 ≤ j ≤ psu are of the form (ps, Rps). We
deduce that P is valid if and only if Rps ≥ P (ps) for all s with equality whenever
s = st.

Fix some s, then Rps ≥ P (ps) if and only if for all ps ≤ i ≤ n we have

n(B(i, ps) + Fi − 1) + i ≥ P (ps)
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which may be rewritten as

Fi ≥ `P (i, s) :=
⌈
P (ps)− i

n

⌉
−B(i, ps) + 1.

Suppose this is true for s = st, then we have equality Rpst = P (pst) = Jt =:
atn+ bt with 1 ≤ bt ≤ n1 if and only if we have equality for i = bt, i.e. pst ≤ bt ≤ n

and
Fbt = `P (bt, st) = at −B(bt, pst) + 1.

We deduce that P is valid if and only if pst ≤ bt ≤ n and there are F0, F1, . . . , Fn

∈ Z satisfying:

F0 = 1

0 < i < n =⇒ Fi ≥ 1

Fn = 0

ps ≤ i ≤ n =⇒ Fi ≥ `P (i, s)

Fbt = `P (bt, st).

Each condition is either a lower bound or an equality for some Fi. Hence this
system is consistent if and only if the equalities for the same Fi match, and if the
lower bounds are satisfied by the equalities. Hence P is valid if and only if2

pst ≤ bt

bt = n =⇒ `P (n, st) = 0 (Ore 1)

`P (n, s) ≤ 0 (Ore 2)

bt < n =⇒ `P (bt, st) ≥ 1 (Ore 3)

br = bt < n =⇒ `P (bt, st) = `P (br, sr) (Consistency)

ps ≤ bt < n =⇒ `P (bt, st) ≥ `P (bt, s). (Bounding)

1Other authors use 0 ≤ bt < n, but we can often avoid special cases with this definition.
2This is essentially [53, Prop. 3.9].
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2. RAMIFICATION POLYGON

Furthermore, if P is valid, then f(x) has P as its ramification polygon if and
only if Fbt = `P (bt, st) for all t and Fi ≥ `P (i, s) whenever ps ≤ i ≤ n.3

Note that the three “Ore conditions” are so-called because they imply

min(nB(bt, pst), nB(n, pst)) ≤ Jt ≤ nB(n, pst)

which for t = 0 is the bound min(nv(b0), nv(n)) ≤ J0 ≤ nv(n) discovered by Ore
[51].

We define P to be weakly valid4 if it satisfies these same conditions but with
s restricted to {st}, i.e.

pst ≤ bt

bt = n =⇒ `P (n, st) = 0 (Ore 1)

`P (n, st) ≤ 0 (Ore 2)

bt < n =⇒ `P (bt, st) ≥ 1 (Ore 3)

br = bt < n =⇒ `P (bt, st) = `P (br, sr) (Consistency)

psr ≤ bt < n =⇒ `P (bt, st) ≥ `P (bt, sr). (Bounding)

Noting that `P (i, st) = at +
⌈
bt−i
n

⌉
−B(i, pst) + 1 is actually a function of i and

the vertex (pst , Jt = atn + bt), we deduce that if the vertices of P are a subset of
the vertices of P̂ and P̂ is weakly valid, then P is also weakly valid. In particular
if P is valid, then removing vertices gives a weakly valid polygon.

2.4 Enumeration

We can use the Ore bounds to enumerate all possible ramification polygons P
for a given degree n. We perform a branching algorithm to assign all possible
combinations of vertices. The state of a branch is a paritally-assigned polygon P
and an integer 0 ≤ S ≤ vp(n). First, we branch over each J0 = 0, 1, . . . , nv(n)
satisfying the Ore bound, and set the state to P = [(1, J0), (pvp(n), 0), (n, 0)] and

3This is essentially [53, Prop. 3.10].
4This is new.
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S = 1. Given the state P = [(ps0 = 1, J0), . . . , (psk , Jk), (pvp(n), 0), (n, 0)] and
sk < S < vp(n) we consider adding a vertex of the form (pS, ∗) to P or not. Hence
we branch: either we don’t add a vertex, in which case the state of the branch
becomes P and S + 1; otherwise we branch for each possible new vertex (pS, J)
with 0 < J < P (pS), in which case the state becomes P + (ps, J) and S + 1.
Finally, if we are given the state P and S = vp(n) then we have decided on all
vertices for P , and so we check it is valid and if so, output it.

This algorithm is quite impractical but can be made practical by terminating
a branch if the current P is not weakly valid. We know that removing vertices
from a valid polygon preserves weak validity, so if P is not weakly valid it can not
be augmented to a valid one.5

For example, to compute all 340 ramification polygons of degree 16 over Q2

would require considering around 300,000 branches, but can reduce this to 1602
branches by terminating using weak validity. The 4948 ramification polygons of
degree 32 are found with 29,730 branches instead of around 600,000,000. Our
implementation computes these in around 3 and 160 seconds respectively.

2.5 Template

Suppose we write fi = ∑
0≤k≤∞ f̂i,kπ

k for fi,k ∈ FK , where ·̂ : FK → OK is a choice
of representative. A template is a collection of sets Xi,k ⊂ FK defining a set of
monic polynomials6

X =
{
xn +

n−1∑
i=0

xi
∞∑
k=0

f̂i,kπ
k : fi,k ∈ Xi,k

}
⊂ K[x].

For example, the template for all Eisenstein polynomials has Xi,0 = {0},
X0,1 = F×K , otherwise Xi,k = FK .

5This algorithm is similar to one described in Sinclair’s thesis [62, §3.3]. It is not clear if that
algorithm is correct because it does not seem to use our concept of weak validity, which appears
necessary for building up polygons one vertex at a time. Furthermore, tables [64] produced from
their implementation are missing some polygons. For example, the tables for degree 8 extensions
of Q2 are missing the polygon [(1, 7), (2, 6), (4, 4), (8, 0)], which is the ramification polygon of
x8 + 2x7 + 2x6 + 2x4 + 2.

6Enumerating Eisenstein polynomials via templates is used throughout [53], and in particular
in Algorithm 6.1.
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Given a valid ramification polygon P , a template consisting precisely of the
Eisenstein polynomials with ramification polygon P is given by the template for
Eisenstein polynomials with additionally Xi,k = {0} for all ps ≤ i, k < `P (i, s),
and Xbt,`P (bt,st) = F×K for all t.

Given a finite template, one can enumerate all of its polynomials by
enumerating the cartesian product of the Xi,k.

One can show as a consequence of Krasner’s lemma that if f, f̂ ∈ K[x] are
Eisenstein and f − f̂ has coefficients of valuation more than 1 + 2J0/n then they
generate the same field. Therefore a template can be made finite by setting
Xi,k = {0} for k > 1 + 2J0/n, and its polynomials will between them generate
the same set of extensions. In §6 we shall see how to make the template even
smaller.

3 Fine ramification polygon

3.1 Definition

We define the set

P∗ = P ∩ P = {(j, Rj) ∈ P : P (j) = Rj}

to be the fine ramification polygon of f . It is not strictly a polygon itself,
but its lower convex hull is P , and so this is a finer quantity than the ramification
polygon because it can include points in the interiors of the faces. As discussed,
all points (j, ∗) for j ≤ pvp(n) in P∗ are of the form (ps, ∗) and so we denote P∗ by

P∗ = [(ps0 = 1, J0), . . . , (psu , Ju = 0), . . . , (n, 0)].

Note that the quantities u, st and Jt may be different to their earlier meaning in
the context of the plain ramification polygon, since there may now be extra points
between the vertices. Also note that there are possibly some extra points between
(psu , 0) and (n, 0).
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3.2 Invariant

We shall see in §4.2 that P∗ is an invariant of L/K.

3.3 Validity

A potential fine ramification polygon P∗ is valid if and only if there are Fi ∈ Z
such that Rj = J for all points (j, J) ∈ P∗ and for all j without a point above j
we have Rj > P (j).

First we consider the horizontal face. For psu ≤ j ≤ n we need that Rj = 0 if
and only if (j, 0) ∈ P∗. Observe that rj ≡

(
n
j

)
and therefore Rj = 0 if and only if

B(n, j) = 0. Hence the condition for this range of j is that (j, 0) ∈ P∗ if and only
if B(n, j) = 0.

For the remaining points (ps, ∗), the analysis is almost identical to the case
with the plain ramification polygon, the only difference being that we require
Rps > P (ps) whenever there is not a point (ps, ∗) ∈ P∗. Following the same steps,
we deduce the following conditions:

F0 = 1

0 < i < n =⇒ Fi ≥ 1

Fn = 0

ps ≤ i ≤ n =⇒ Fi ≥ `P∗(i, s)

Fbt = `P∗(bt, st)

where
`P∗(i, st) := at −B(i, pst) + 1 + 1[i < bt]

and for (ps, ∗) 6∈ P∗

`P∗(i, s) :=
⌊
P (ps)− i

n

⌋
−B(i, ps) + 2.

Observing that these conditions are essentially identical to those from the
previous section, up to the redefinition of `P∗ , then we similarly find that P∗
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is valid if and only if7

B(n, j) = 0 ⇐⇒ (j, 0) ∈ P∗ (Tame)

pst ≤ bt

bt = n =⇒ `P∗(n, st) = 0 (Ore 1)

`P∗(n, s) ≤ 0 (Ore 2)

bt < n =⇒ `P∗(bt, st) ≥ 1 (Ore 3)

br = bt < n =⇒ `P∗(bt, st) = `P∗(br, sr) (Consistency)

ps ≤ bt < n =⇒ `P∗(bt, st) ≥ `P∗(bt, s). (Bounding)

If P∗ is valid, then f(x) has P∗ as its fine ramification polynomial if and only
if Fbt = `P∗(bt, st) for all t and Fi ≥ `P∗(i, s) whenever ps ≤ i ≤ n.8

We define P∗ to be weakly valid if these conditions hold only for s ∈ {st}.
As before, weak validity is preserved under removing points from P∗.

Enumerating the possible fine ramification polygons and producing their
templates is essentially the same as for plain ramification polygons.

4 Residues

4.1 Definition

We define ρj to be the leading α-adic coefficient of rj. Recall that if Rj := nv(rj) =
an+ b then rj ∼

(
b
j

)
fbα

b−n. Hence

ρj ≡ rjα
−Rj ≡

(
b

j

)
(φbπFb)(−φ0π)−1−a

where φi ≡ fiπ
−Fi .

We refer to −φ0 as the uniformizer residue of α (with respect to π)

7This is essentially [53, Prop. 3.9], which is slightly mis-stated because it does not include
the Ore 2 condition in the case that there is no point (ps, ∗) ∈ P∗.

8This is essentially [53, Prop. 3.10].
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because αn ∼ −f0 ∼ (−φ0)π.
We extend the points of the fine ramification polygon to include the residues

(j, Rj, ρj), giving the fine ramification polygon with residues9

P∗res = [(ps0 = 1, J0, γ0), . . . , (psu , 0, γu), . . . , (n, 0, 1)].

4.2 Invariant

If the ramification polygon P has a face ((j0, Rj0), (j1, Rj1)) of width w = j1 − j0

and slope (Rj1 −Rj0)/w = −h/e, we define its residual polynomial to be

A(x) ≡ r−1
j1

w/e∑
i=0

rj0+ieα
jh−Rj0xi ≡

∑
(j,Rj ,ρj)∈P∗res

j0≤j≤j1

ρjx
(j−j0)/e ∈ FK [x].

It is well-known that the w roots α−σα
α

of r of valuation h/e satisfy

A((α−σα
α

)e/αh) ≡ 0.

Observe that A, being monic, is determined by its roots. Recalling that if
we choose another uniformizer of α̂ ∈ L = K(α) then α̂−σα̂

α̂
∼ α−σα

α
, these are

the roots of r(x) and r̂(x), and we deduce that if Â is the corresponding residual
polynomial then Â(x) ≡ A(δhx) where α̂ ∼ δα.

Firstly this implies that a coefficient of Â is zero if and only if the corresponding
coefficient of A is zero. This implies that P∗ = P̂∗ is an invariant of L/K.

Furthermore, this implies that ρ̂j ≡ ρjδ
−Rj for (j, Rj, ρj) ∈ P∗res. Therefore,

given P∗res and P̂∗res, we consider them equivalent if they are equal as fine
ramification polygons and if there exists δ ∈ F×K such that ρ̂j ≡ ρjδ

−Rj . Then
equivalence classes are an invariant of L/K.10

Note that ρ̂j ≡ ρjδ
−Rj if and only if r̂j ∼ rj when α̂ ∼ δα. Therefore being

equivalent is the same thing as v(rj − r̂j) > P (j) for all 1 ≤ j ≤ n.

9In [53], the equivalent notion of residual polynomials is studied instead, but this additional
structure is not actually used.

10This is equivalent to the invariant A of [53, §4.1].
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4.3 Validity

Given a fine ramification polygon with residues P∗res, then it is valid if and only
if: (a) it is valid as a fine ramification polygon; (b) for (j, 0, ρj) ∈ P∗res we have
ρj ≡ rj ≡

(
n
j

)
; and (c) there are φi ∈ F×K such that for each t

γt ≡
(
bt
pst

)
(φbtπ

Fbt )(−φ0π)−1−at ≡ β(bt, pst)φbt(−φ0)−1−at

where β(i, j) ≡
(
i
j

)
π−B(i,j).

Eliminating φi from these latter equations for 0 < i ≤ n, we find they are
soluble if and only if there is φ0 ∈ F×K such that11

bt = n =⇒ γt ≡ β(n, pst)(−φ0)−at−1

bt = br < n =⇒ γt
γr
≡ β(bt, pst)
β(br, psr)(−φ0)ar−at .

If P∗res is valid, then f(x) has P∗res as its fine ramification polygon with residues
if and only if φ0 is a solution to these equations and

φbt ∼ γtβ(bt, pst)−1(−φ0)at+1

for each t.

4.4 Enumeration

Given P∗, we can enumerate all possible P∗res extending it by initially having γt
unset for all t. Similar to our branching algorithm for enumerating ramification
polygons, we branch for each t over the possible values of γt.

We can make this practical by terminating a branch if the current partial
assignment of γt is not weakly valid, where a partial assignment is weakly valid
if there exists φ0 ∈ F×K such that the above conditions involving only the assigned
γt are true.

11This is essentially [53, Prop. 4.5], which is slightly mis-stated because it misses the conditions
in the case bt = n.

97



CHAPTER III. GENERATING EXTENSIONS

Suppose we have assigned γ0, . . . , γt−1 so far and are branching over possibilities
for γt. We can restrict the algorithm to produce one representative P∗res per class
by considering γt equivalent to γ̂t if there exists δ ∈ F×K such that δ−Jk ≡ 1 for
k < t and γ̂t ≡ γtδ

−Jt , and only branching over representatives of equivalence
classes.

4.5 Template

The choice of φ0 means there is not a template (by our definition) for Eisenstein
polynomials corresponding to P∗res. This will be fixed in the next section by
including φ0 in the invariant.

5 Uniformizer residue

5.1 Invariant

We now consider the extent to which the pair (P∗res, φ0) is an invariant of L/K.
We have seen that changing uniformizer α → α̂ ∼ δα changes ρj → ρ̂j ∼ δ−Rjρj.
Since by definition αn ∼ −φ0π, we find that φ0 → φ̂0 ∼ δnφ0.

Therefore we say (P∗res, φ0) and (P̂∗res, φ̂0) are equivalent if there is δ ∈ F×K such
that ρ̂j ∼ δ−Rjρj for all (j, Rj, ρj) ∈ P∗res and φ̂0 ∼ δnφ0. Equivalence classes are
an invariant for L/K.12

By the preceding section, φbt is determined for all t by the choice of
representative. Therefore considering (P∗res, φ0, {φbt : t}) does not give a finer
invariant.

5.2 Validity and enumeration

Suppose we are given a valid P∗res, then the valid φ0 which extend this are precisely
the solutions to the system of the previous section. Hence to enumerate them all,
we find the solutions.

If we want to find representatives of equivalence classes, note that (P∗res, φ0)
and (P∗res, φ̂0) are equivalent if there is δ such that δ−g = 1 and δn = φ̂0/φ0 where

12This is equivalent to the invariant A∗ of [53, §4.2].
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g = gcdt Jt = gcd(j,Rj)∈P∗ Rj. We use this criterion to test for equivalence, and so
choose one φ0 per equivalence class.

5.3 Template

The template for Eisenstein polynomials corresponding to (P∗res, φ0) is the template
for P∗res with the changes X0,1 = {φ0} and

Xbt,`P∗ (bt,st) = {γtβ(bt, pst)−1(−φ0)at+1}.

6 Change of uniformizer

So far we have studied the change of uniformizer α→ α̂ ∼ δα̂ and the effect of δ̄.
We now consider smaller perturbations, i.e. α̂ = α(1 + uαm) for m > 0, u ∈ OL.
These will allow us to considerably reduce the size of our templates.

Letting f̂(x) be the minimal polynomial for α̂ then

f(α̂)− f̂(α̂) = f(α̂) = αnr( α̂
α
− 1) = αnr(uαm)

and
f(α̂)− f̂(α̂) =

n−1∑
i=0

(fi − f̂i)α̂i.

Writing
Sm(x) ≡ α−Cmr(αmx) ∈ FK [x]

with Cm as large as possible, and writing Cm = cmn+ dm with 0 ≤ dm < n then

Sm(u) ≡ (fdm − f̂dm)αdm−n−Cm ≡ (fdm − f̂dm)(−φ0π)−1−cm .

For m > 0, Sm only consists of terms from points on faces of P∗ with negative
slope, i.e. the points (pst , Jt), and hence Sm only has terms at powers of p and so
is additive. Therefore it defines a Fp-linear map Sm : FK → FK .

By changing uniformizer α → α̂ we change fdm,1+cm by (−φ0)1+cmSm(u).
Therefore if we restrict the template by setting Xdm,1+cm to be a set of coset
representatives of F+

K/(−φ0)1+cmSm(F+
K), then it will produce the same set of fields.
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Observe that since Cm is strictly increasing in m (in fact Cm is essentially
the Hasse-Herbrand transition function; see e.g. [60, 35]) then this change to the
template is independent to the changes made for any higher m, and so we can
make all of these changes independently.

In particular, if m is higher than the negative of the slope of the steepest face
of P then Sm(x) = x is surjective, and so we may set Xdm,1+cm = {0}. In this
region Cm = J0 + m, and so this sets all but finitely many Xi,k = {0}. Note that
this change is independent of φ0 (unlike for smaller m) and therefore can be used
when enumerating polynomials from simpler invariants like P or P∗.

7 Implementation notes

7.1 Representation of invariants

Our representation of a ramification polygon is a little more general than is
presented in this paper. We actually represent a polygon as a list

[(x0, J0,∼0, ρx0), (x1, J1,∼1, ρx1), . . . , (n, 0, ∗, ρn)]

where xi = pi for i ≤ vp(n). That is, we have a point for every power of p. The
relation ∼i specifies that Rxi

∼i Ji where ∼i is =, ≥ or >. Hence if ∼i is = then
(xi, Ji) is a point of the (fine) ramification polygon; if it is > then it is not; if it is
≥ then it is unspecified.

In particular, for the plain ramification polygon, ∼i is = at the vertices and ≥
elsewehere. For the fine ramification polygon, ∼i is = or >.

The residues ρxi
may be unspecified. Where they are specified, they must be

non-zero and ∼i must be =.
The arguments from earlier sections are simply modified to yield validity and

equivalence conditions for this more general object. One way in which this is useful
is that we can now specify one residue at a time, and check for validity at each
step, and therefore the branching algorithms for enumerating these invariants may
be implemented.
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7.2 Consistency of roots

Checking for equivalence of ramification polygons with residues requires solving a
system of equations of the form xki = ai.

We compute the extended GCD

K := gcd(k1, k2, . . .) =
∑
i

biki

so that
xK =

∏
i

xbiki =
∏
i

abi
i =: A

and
ai = xki = xK(ki/K) = Aki/K .

We deduce the system is solvable if and only if ai = Aki/K and xK = A is
solvable. Hence we can check for consistency and reduce the system to a single
equation.

To limit the solutions to F×K , we let q = |FK | and include xq−1 = 1 in the
system of equations.

7.3 Binomial coefficients

A little care is needed to compute with binomial coefficients π-adically.
One can see that

vp(k!) =
∞∑
i=1

⌊
k
pi

⌋
and from which we can compute

B(r, k) = e(K/Qp)(vp(r!)− vp(k!)− vp((r − k)!)).

By Wilson’s theorem, if k = ap+ b then the “p-unit” part of the factorial is

Up(k) :=
∏

1≤i≤k,vp(i)=0
i ≡ (−1)ab! mod p
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from which we can compute the “p-shifted factorial”

Sp(k) := k!/pvp(k!) ≡
∞∏
i=1

Up(
⌊
k
pi

⌋
) mod p

and hence
β(r, k) ≡ Sp(r)

Sp(k)Sp(r − k)γ
−vp(r

k)

where πe(K/Qp) ∼ γp (i.e. γ is the uniformizer residue of π with respect to p c.f.
§4.1).
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Chapter IV

Exact p-adics

Foreword

This chapter has been published separately as an article [22].

1 Introduction

When dealing with completed fields, such as R or Qp, it is generally quite difficult
to represent elements exactly. Instead, the commonest way to represent elements
is by specifying them to some pre-determined precision, and then performing
operations such as arithmetic to this precision also. This is the foundation of
floating point arithmetic. For example, one might represent the real number
e by its approximation 2.718281828 to a precision of 10 real digits. We say
such a representation is inexact because several real numbers can have the same
representation: e, 2.718281828 and 2.7182818281 all have the same representation
to 10 digits precision.

Such a representation is also usually zealous meaning that when an operation
is performed, such as multiplication, it is immediately computed to the required
precision. For instance, computing e × e will work to 10 digits precision and
actually compute 2.718281828 × 2.718281828 = 7.389056096. In fact, e × e =
7.389056098 . . ., demonstrating that precision errors can creep into the results, so
that they are in fact less precise than the precision claims.
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An often-suggested alternative to zealous arithmetic is lazy arithmetic, in
which an operation does not produce an answer per-se, but a “promise to produce
an answer to a desired precision”. That is, calling e × e would not produce the
approximation 2.718281828, but would produce a function which, when called with
an integer k, returns an approximation to e× e to k digits precision.

Such a function can be said to be an exact representation of a real number,
because no two distinct real numbers have the same representation: for a
sufficiently large precision k, the representing functions will return different
approximations.

These comments hold true for p-adic numbers too. For instance, an element
of Qp is generally represented in zealous, inexact arithmetic by its residue class in
Qp/p

kZp for some absolute precision k: e.g. 1 + 210Z2 might represent 1, 1 + 210

or 1 + 5× 2100.
There are numerous implementations of such p-adic arithmetic. FLINT [34]

provides some low-level arithmetic with elements of Qp, univariate polynomials
over Qp, and unramified extensions of Qp. Sage [57] and Magma [8] have more
fully-featured implementations, including arbitrary finite extensions of Qp and
higher-level routines for tasks such as factoring.

Also of note is an implementation in Mathemagix [38] of the so-called relaxed
p-adic arithmetic, which treats elements of Qp like an infinite sequence of
p-adic coefficients, somewhat like Fp((t)), and represents them by a truncated
sequence followed by a function to retrieve the next coefficient. This representation
is therefore exact, because for different numbers, these streams of digits must
eventually diverge. This has specific uses in p-adic recursion solving, and in
principle is useful in general, but is somewhat more complicated to implement
than the lazy arithmetic presented in this article, and as such is less fully featured.

A more in-depth description of different p-adic arithmetic systems is given by
Caruso [10].

In this article, we present two new implementations of two different lazy,
exact p-adic arithmetic systems. The implementations are written for the Magma
computer algebra system [8] which, as mentioned above, already has a fully-
featured implementation of zealous, inexact p-adic arithmetic. Our packages,
called ExactpAdics and ExactpAdics2, aim to use the inexact functionality
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already available as much as possible, in order to provide a more user-friendly
wrapper. This allows for rapid addition of new features to the exact arithmetic as
soon as they are available inexactly.

To the author’s knowledge, these are the first highly-featured, general-purpose
implementations of lazy p-adic arithmetic.

This article describes the rationale and the fundamental concepts behind the
packages, but does not constitute a user manual. The user manuals are available
online at [21] and [23] and the packages may be downloaded from here also.

At the time of writing, we recommend the typical user to use the ExactpAdics2
package (§6).

As an application, these packages have been used to implement the algorithm
in Chapter V to compute the 2-part of the conductor of a hyperelliptic curve of
genus 2 defined over a number field. This implementation is available from [24].
It uses such high-level p-adic routines as: computing the completion of a number
field at a finite place (§9.4); computing the factorization of a univariate polynomial
(§9.12) and the fields defined by its factors; and Hensel-lifting roots of a system of
multivariate equations (§9.9).

As another application, these packages can optionally be used with the
implementation of the algorithms described in Chapter II for computing the Galois
group of a p-adic polynomial. This is available from [27]. With either package
present the Galois group algorithm becomes provably correct, whereas otherwise
with inexact p-adics there is no such guarantee. We also find that the algorithms
run faster with exact p-adics, at least for reasonably high-degree inputs.

1.1 Terminology

Suppose K is a p-adic field (a finite extension of Qp), with ring of integers O = OK
and uniformizing element π = πK . The π-adic valuation is denoted val = valK
such that val(π) = 1.

When we refer to an inexact (representation of a) p-adic number x ∈ K, we
mean a conjugacy class x+πkO. We refer to k as the absolute precision of (the
representation of) the number.

Equivalently, it may be represented as πv(y+πrO) where y ∈ O and r ≥ 0. We
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refer to v as the weak valuation of x; it is a lower bound on the true valuation
of x. We refer to r as the relative precision; it bounds the number of non-zero
π-adic digits of x known. Note that v + r = k.

We say that x is weakly zero if y ∈ πrO, that is if the representation is of
the form πv+rO. Note:

• If x is not weakly zero, then it is not zero.
• If r = 0 then x is weakly zero.

We typically enforce the following normalizing condition: if r > 0 then y ∈ O×.
Now note:

• If x is not weakly zero, then its valuation is exactly v.
• x is weakly zero if and only if r = 0 (and if and only if k = v).

Magma’s builtin p-adics (FldPad, FldPadExact, etc.) are inexact in this sense,
and satisfy the normalizing condition. We note that prime p-adic fields — i.e. Qp

— as opposed to their elements, can themselves naturally be represented exactly
by the prime itself. Extensions of the form K(x)/(f(x)) are usually represented
inexactly via an inexact representation of the polynomial f(x) ∈ K[x]; however
we note that Magma does additionally have a builtin exact representation of
extensions, represented by a map m : Z → K[x] such that m(k) is a defining
polynomial to precision k. We refer to this latter representation as semi-exact,
since the field is represented exactly but its elements are represented inexactly.

The residue class field O/πO is denoted F = FK , and x̄ ∈ F denotes the residue
class of x ∈ O.

A polynomial f(x) = ∑d
i=0 fix

i ∈ K[x] of degree d is Eisenstein if val(f0) = 1,
val(fi) ≥ 1 for 1 ≤ i < d and val(fd) = 0. It is irreducible, its roots have valuation
1
d
, and so it defines a totally ramified extension K(x)/(f(x)) of degree d such that
x+ (f(x)) is a uniformizer.

A polynomial f(x) = ∑d
i=0 fix

i ∈ O[x] of degree d is inertial if val(fd) =
val(f0) = 0 and f̄(x) = ∑d

i=0 f̄ix
i ∈ F[x] is irreducible over the residue class field

F. It is irreducible, the residue classes of its roots generate an extension of F of
degree d, and so it defines an unramified extension K(x)/(f(x)).
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1.2 Comparison of zealous and lazy arithmetic

Precision

In zealous arithmetic, the user is generally required to choose a precision to work
at in advance. Then all computations are performed to that precision, and it
may happen that the precision chosen was not sufficient. In this case, the user
will probably start the computation over with a higher precision. This process
of manually increasing the precision of a computation can be burdensome for the
user. In lazy arithmetic, such precision decisions are made automatically as far as
possible.

Example 1.1. Here is a typical interactive Magma session, using its builtin lazy
arithmetic:

> // try to factorize at precision 10
> K := pAdicField(2, 10);
> R<x> := PolynomialRing(K);
> f := my_favourite_polynomial(R);
> Factorization(f);
error: ...
> // try to factorize at precision 20
> K := pAdicField(2, 20);
> R<x> := PolynomialRing(K);
> f := my_favourite_polynomial(R);
> Factorization(f);
error: ...
> // try to factorize at precision 40
> K := pAdicField(2, 40);
> R<x> := PolynomialRing(K);
> f := my_favourite_polynomial(R);
> Factorization(f);
[ <x^10 + ... >, ... ]

Using lazy arithmetic provided by our package, the equivalent session would
be the following. Note that there is no explicit mention of precision.
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> K := ExactpAdicField(2);
> R<x> := PolynomialRing(K);
> f := my_favourite_polynomial(R);
> Factorization(f);
[ <x^10 + ... >, ... ] ♦

In lazy arithmetic, each individual computation is performed to approximately
the smallest precision it can be, and so precisions are very “local” in the
computation. In zealous arithmetic, the precision is generally chosen once at the
start of a computation, so each operation is performed to the same precision, and so
precisions are more “global”. If there is a single operation requiring a high “global”
precision, this increases the precision that all other operations are performed to,
which is a performance hit compared to lazy arithmetic.

Example 1.2. An example comes from the conductor algorithm mentioned in
the introduction. One portion of this algorithm takes a polynomial f(x) ∈ Q2[x],
computes its factorization, chooses a factor g(x), computes the extension L/Q2

defined by g, and then finds a root of g in L. Usually, the precision required for
the factorization far exceeds that of the root-finding; however, because the root-
finding is over an extension L, if it were to be done at the same high precision as
the factorization, its run-time would often dominate. ♦

Correctness and provability

When a p-adic number x ∈ K is represented inexactly as a class x+ πkO, then it
can be ambiguous whether it is really representing x or the class itself. For many
operations, the distinction makes no difference; for example since

(x+ y) + πkO = (x+ πkO) + (y + πkO)

then addition works the same in either interpretation. For other operations,
Magma can produce potentially misleading answers; for example if x is represented
as 0 + πkO then Valuation(x) will return k, when in fact all we really know is
that val(x) ≥ k.
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Definition 1.3. Suppose F is a mathematical function and suppose F̃ is
a programmatic function intended to implement F , so it takes as inputs
representations of the inputs of F and returns as outputs representations of the
outputs of F . We say that F̃ represents F if for all possible inputs X to F and
representations X̃ of X, that F̃ (X̃) either does not return successfully or returns
a representation of F (X).

Hence if F̃ represents F , then its outputs depend only on the inputs being
represented, and not on the representation of the inputs themselves. In the case
of p-adic computation, this means that the output of F̃ should not depend on the
precision that its inputs were given to, and therefore is unambiguously a function
of the p-adic value, and not its representation.

As already indicated, the Valuation intrinsic in Magma does not represent the
valuation function. Also equality is not represented, because it actually is equality
of the representation: if x = 1 and y = 1 + 210 are both represented by 1 + 210Z2

then x eq y will be true. In fact, it is not possible to determine that two p-adic
numbers are equal when given to any finite precision, and it is only possible to tell
that they are unequal if they are given to sufficiently large precision.

As another example, given a polynomial f(x) represented as f̃(x) = (1 +
π10O)x2 + (0 + π10O), the Roots intrinsic in Magma will return a double root
r̃ = 0+π10O in K. This is correct as a function of the representations themselves,
since f̃(r̃) = 0 + π10O represents 0, but if f(x) = x+ 211 then it is irreducible and
therefore has no roots in K. Similarly Factorization and GCD do not represent
factorization and greatest common divisor of p-adic polynomials.

In our packages, if the name of an intrinsic function is the name of a
mathematical function, then the intrinsic represents the function. For example, our
Valuation intrinsic (see Examples 4.1 and 5.8) will only return the true valuation
of the given number; if the input is weakly zero, it may try to increase its precision,
and could potentially do this forever (if the input is 0) or raise a precision error,
but it is guaranteed that if it returns, its return value is correct.

In some cases, such as Roots (§9.8) and Factorization (§9.12), the correctness
of the output is forced by the fact that the outputs are given exactly. That is,
if Roots returns a root (exactly), then it by definition comes with a program to
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compute an approximation to the root to arbitrarily high precision, and therefore
assuming the program is correct this is a proof that the root is correct. In the case
of Roots, it is Hensel’s lemma which provides this proof.

The intrinsics which do not represent a function, and therefore depend on
the representation, are given names which make this clear. The terms Weakly
and Definitely are used to denote tests which can give false positives or false
negatives; for example IsWeaklyZero is true if its input appears to be zero up to
some precision (but does not guarantee it is zero), and IsDefinitelyPrimitive
returns true if its input can be proven to be a primitive element (but if it returns
false, this does not imply that its input is not primitive). Similarly the term Weak
denotes non-representing functions, so WeakValuation returns the k in 0 + πkOK
and is therefore actually a lower bound on the true valuation; and WeakDegree
returns an upper bound on the degree of a polynomial, but which may be incorrect
if its top coefficient is actually zero.

Overheads

The main down-sides of lazy arithmetic are the extra time and memory overheads
introduced. In lazy arithmetic, p-adic values depend on other p-adic values, and all
these dependencies need to be kept in memory for the duration of a computation.
Each time an operation is performed, some dependency tracking and propagation
needs to occur, which entails some processing time overhead.

This said, we find that these overheads do not usually dominate the run-time
of lazy p-adic arithmetic unless one performs a large number of ordinarily very
fast operations, such as basic arithmetic. If this is the case, then one can consider
implementing the whole sequence of operations as a new atomic p-adic operation,
which therefore now only contributes a single node to the dependency graph.

1.3 Structure of this article

The first three sections describe the ExactpAdics package.
In §2 we describe the core data types and functionality provided by the package,

including a simplified description of the lazy evaluation of p-adic numbers.
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In §3 we describe the lazy evaluation scheme actually employed by the package,
which includes tracking dependencies between different p-adic values.

In §4 we describe “precision strategies”, which are a way of programatically
avoiding precision errors with minimal input from the user. This is not a core
feature, but greatly improves user-friendliness.

Next we describe the ExactpAdics2 package and compare.
In §5 we describe the core data types and functionality provided by the package,

including a description of the lazy evaluation scheme.
In §6 we compare the merits of the approaches taken by the two packages,

including timings on some problems of interest.

The remaining sections describe additional features which either improve user-
friendliness or provide more functionality. These features are mainly present in
both packages.

In §7 we describe additional structures which are not core functionality, namely
multivariate polynomials and tuples.

In §8 we describe our representation of valuations (defined in a generic sense)
of p-adic objects, and the operations available on them.

Finally in §9 we give an overview of additional features not covered elsewhere.
This is largely to demonstrate that these packages are of practical use, since they
include features such as root finding, factorization, residue classes and completions.
We also provide some implementation notes.

1.4 Pseudocode

As the package is written in Magma, we shall use a simplification of the Magma
language to demonstrate concepts1. As this article may be useful to implement
similar functionality in other languages, we summarise the syntax here.

Every variable has a type. For example a ring of integers has type RngInt,
an integer has type RngIntElt, a boolean (true or false) has type BoolElt and an
inexact p-adic field has type FldPad. New types are defined as

1Specifically, we omit ; and end, and imply code blocks through indentation. We also omit
{documentation} blocks from intrinsics and declare.
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type NAME[ELT]: PARENT

where NAME is the name of the type. The part in brackets is optional, but when
given the type ELT is also declared, and NAME is actually a structure with elements
of type ELT. The part after the colon is optional, but when given the new type is a
child of PARENT in the type hierarchy, and in particular the new type inherits the
attributes from PARENT.

A type has attributes, which are named pieces of data attached to instances of
the type. Attributes may be attached to a type by

attributes TYPE: ATTR1, ATTR2, ...

where TYPE is the name of the type, and ATTRn are the names of the attributes.
Instances of the type are created like x := New(TYPE), and its attributes are

accessed like x`ATTR.
There are three types of functions in Magma: function, procedure and

intrinsic, all declared in a similar fashion, such as:

function example(x, y : z := 0)
return x + y + z

The difference between the three is that a function returns a value, and should
not have any side-effects, a procedure does not return a value but can have side-
effects (in particular an input may be passed by reference like ~x and it becomes
modifiable), and an intrinsic is a function or procedure which forms the main
user-interface. The z:=0 part is an optional parameter named z whose default
value is 0. Furthermore, intrinsics may have type declarations on its inputs and
outputs, which allows overloading of intrinsics with the same name but different
type signatures. For example:

intrinsic ImportantExpression(
x :: RngIntElt,
y :: RngIntElt,
z :: RngIntElt)

-> FldRatElt

return (x^2 + y^2) / z^3

is an intrinsic taking three integers and returning a rational.
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Note that any pseudocode in this article is illustrative, and does not necessarily
match the code in the implementation. The pseudocode is presented as simply as
is possible to get the ideas across, whereas the real code will contain more checks
and optimizations.

2 ExactpAdics: Core structures and elements

2.1 Abstract base types

In ExactpAdics we have an abstract base type StrPadExact representing any kind
of exact p-adic structure or set, and such a set has elements of type PadExactElt:

type StrPadExact[PadExactElt]

We shall later have sub-types representing the field of p-adic numbers (§2.2),
rings of polynomials over p-adic numbers (§2.3), and more (§7).

Such a structure will always have an approximation which is an analogous
inexact structure:

attributes StrPadExact: approximation

Elements always have a parent structure to which they belong, as well as an
approximation and an update function:

attributes PadExactElt: parent, approximation, update

The approximation is an element of the approximation of the parent, and
so provides a finite-precision approximation to the element. The update function
provides the means to update the approximation arbitrarily precisely, and will be
described later in this section and in §3. Figure 1 illustrates the relationships
between these attributes.

We provide some universal intrinsics to retrieve the parent of an element, its
absolute precision and its weak valuation. The latter two are defined to be the
absolute precision and weak valuation of the approximation, and therefore can
change over time.

intrinsic Parent(x :: PadExactElt) -> StrPadExact

return x`parent
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PadExactElt

approximation

update

parent

StrPadExact

approximation

element of

element of

equal
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modifies

Figure 1: Illustration of the types StrPadExact and PadExactElt, their
attributes and the relationships between them.

intrinsic AbsolutePrecision(x :: PadExactElt) -> .
return AbsolutePrecision(x`approximation)

intrinsic WeakValuation(x :: PadExactElt) -> .
return WeakValuation(x`approximation)

First we describe the representations of p-adic fields and rings of univariate
polynomials.

2.2 p-adic fields

An exact p-adic field is represented by the type FldPadExact (compare the name
to the inexact FldPad type in Magma) which derives from StrPadExact (and so
inherits its attributes) and has some additional attributes:

type FldPadExact[FldPadExactElt]: StrPadExact

attributes FldPadExact: xtype, prime, defining_polynomial

The xtype attribute takes one of the special enumerated values:

• PRIME: the field is Qp for some p, and the prime attribute is p.
• INERT: the field is an unramified extension of another exact p-adic field K,

and the defining_polynomial attribute is an inertial polynomial f(x) ∈
K[x], defining the extension as K(x)/(f(x)).
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• EISEN: the field is a totally ramified extension of another exact p-adic field
K, and the defining_polynomial is an Eisenstein polynomial f(x) ∈ K[x],
defining the extension as K(x)/(f(x)).

The approximation field of an exact p-adic field is a corresponding inexact
field, which in Magma has type FldPad. For the PRIME field Qp, this is simply
pAdicField(p).

For extensions (INERT or EISEN) the situation is a little more complicated.
In essence, we want the approximation to be the extension defined by an
approximation of the defining_polynomial. The problem is that later we may
want a more precise approximation, and so we have two choices:

• Replace the approximation field with a more precise approximation
whenever it is required. This means that any element of the field may have
an approximation lying in an older approximation field, and so will need
to be coerced into the latest approximation field at some time.

• Use Magma’s built-in semi-exact representation of p-adic extensions (§1.1):
ext<K | m> where m is a map taking an integer and returning an
approximation of the defining_polynomial to that precision.

We use the second choice because the explicit coercion between different approxi-
mation fields in the first choice was found to add a performance hit. It also has
the benefit that we can talk of the approximation field, since it does not change
in time.

Elements of exact p-adic fields are represented by the type FldPadExactElt.
The meanings of its attributes are inherited from its parent type PadExactElt but
to be explicit:

• parent is the FldPadExact field to which it belongs;
• approximation is an element of the approximation field of its parent, and

is therefore a FldPadElt; and
• update is its update function, used to update the approximation.

We define coercion so that K ! <init, mkupdate> creates an element of K
whose initial approximation is init and whose update function is mkupdate(x)
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where x is the element being created, thus allowing the update function to refer
to x itself:

intrinsic IsCoercible(K :: FldPadExact, args :: Tup)
-> FldPadExactElt

x := New(FldPadExactElt)
x`parent := K
x`init := args[1]
x`update := args[2](x)
return true, x

We provide intrinsics to access basic information; intrinsics for inertia degree
and ramification degree are defined similarly:

intrinsic IsPrimeField(K :: FldPadExact) -> BoolElt

return K`xtype eq PRIME

intrinsic DefiningPolynomial(K :: FldPadExact)
-> RngUPolElt_FldPadExact

if IsPrimeField(K) then
error "not an extension"

else
return K`defining_polynomial

intrinsic BaseField(K :: FldPadExact) -> FldPadExact

return BaseRing(DefiningPolynomial(K))

intrinsic Degree(K :: FldPadExact) -> RngIntElt

return Degree(DefiningPolynomial(K))

intrinsic AbsoluteDegree(K :: FldPadExact) -> RngIntElt

if IsPrimeField(K) then
return 1

else
return Degree(K) * AbsoluteDegree(BaseField(K))
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2.3 Univariate polynomials

A univariate polynomial ring over a p-adic field is represented by the type RngUPol_
FldPadExact (analogous to the inexact type RngUPolElt[FldPad] in Magma)
which also derives from StrPadExact:

type RngUPol_FldPadExact[RngUPolElt_FldPadExact]
attributes RngUPol_FldPadExact: base_ring

Such a ring is defined by its base_ring, an exact p-adic field (i.e. of type
FldPadExact).

The approximation of such a ring must be the univariate PolynomialRing of
the approximation of the base_ring (i.e. of type RngUPol[FldPad]).

2.4 The update function

The update attribute of a PadExactElt is a means to increase the precision of
its approximation to a given absolute precision. Therefore it is natural to define
it as a procedure which takes as input an absolute precision k, and whose side-
effect is to replace the approximation by one whose precision is at least k. Using
this definition will result in a working implementation of exact p-adics, but as we
shall see in §3 it has some drawbacks and so in reality we use a slightly different
definition. For now, however, it suffices to think of the update function in this
way.

In the update function, instead of modifying the approximation of an element
directly, one should use the following intrinsic which first checks that the update
is consistent with the pre-existing approximation and in reality may perform more
checks:

intrinsic Update(x :: FldPadExactElt, xx :: FldPadElt)
assert IsWeaklyEqual(x`approximation, xx)
x`approximation := xx

Instead of calling the update function directly, we should use the following
intrinsic which ensures it is only called when required. In fact, since the update
function is not a function at all then this intrinsic will actually have a different
definition (§3.3), but with the same effect.
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intrinsic IncreaseAbsolutePrecision(x :: PadExactElt, n)
if not AbsolutePrecision(x) ge n then

x`update(n)

In practice, we don’t usually just want to increase the precision of an element,
but we want the approximation itself. Hence we also make available an intrinsic
Approximation to retrieve an approximation to an element to a certain absolute
precision. It simply has to increase the absolute precision of the element, then
return its approximation, perhaps with its precision decreased to the desired value.

intrinsic Approximation(x :: FldPadExactElt, n)
IncreaseAbsolutePrecision(x, n)
return ChangeAbsolutePrecision(x`approximation, n)

To increase the precision of an extension field, we just need to increase the
precision of its defining_polynomial correspondingly. This ensures that the next
time the semi-exact approximation field retrieves a defining polynomial, it will
already be available to the given precision. There is nothing to be done for PRIME
fields, since the prime is already represented exactly.

intrinsic IncreasePrecision(K :: FldPadExact, n)
if not IsPrimeField(K) then

IncreaseAbsolutePrecision(K`defining_polynomial, n)

The precision of a polynomial ring is the precision of its base ring, so to increase
one we just have to increase the other:

intrinsic IncreasePrecision(R :: RngUPol_FldPadExact, n)
IncreasePrecision(R`base_ring, n)

2.5 Examples

Example 2.1. Here is a definition of binary addition on two p-adic numbers. The
initial approximation is simply the sum of the approximations of the inputs. The
update function retrieves approximations to the inputs to the required precision,
adds them, and sets this as the new approximation for the sum.

intrinsic '+' (x :: FldPadExactElt, y :: FldPadExactElt)
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-> FldPadExactElt

init := x`approximation + y`approximation
mkupdate := function (z)

return procedure (n)
Update(z, Approximation(x, n) + Approximation(y, n))

return Parent(x) ! <init, mkupdate>

This example is an over-simplification compared to the true implementation in the
following ways:

• The update function is not quite as described. See §3.

• The initial approximation init is computed to the current precision of the
inputs, which may be overkill if they are both very precise. Instead, the
implementation adds together approximations to “first precision”, i.e.

init := ChangeAbsolutePrecision(x`approximation,
Min(WeakValuation(x)+1, AbsolutePrecision(x)))
+ ChangeAbsolutePrecision(y`approximation,
Min(WeakValuation(y)+1, AbsolutePrecision(y)))

As an optimization, most functions will compute the initial approximation
from the inputs to first precision if possible.

• It should be checked that the inputs have the same parent field, or can be
coerced to a common field. ♦

Example 2.2. Here we give a definition of binary multiplication, which is very
similar to addition. The main change is in computing the precision required in the
approximations.

intrinsic '*' (x :: FldPadExactElt, y :: FldPadExactElt)
-> FldPadExactElt

init := x`approximation * y`approximation
mkupdate := function (z)

return procedure (n)
Update(z, Approximation(x, n - WeakValuation(y))
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* Approximation(y, n - WeakValuation(x)))
return Parent(x) ! <init, mkupdate>; ♦

3 ExactpAdics: Dependency tracking

3.1 Motivation

So far we have described a simple scheme for implementing exact p-adics, but it
has drawbacks.

Example 3.1. Suppose we are given elements a, b ∈ Qp, and compute c =
a3 + a2b+ ab2 + b3, and wish to increase the absolute precision of c to 100.

We therefore require each of the summands a3, a2b, ab2, b3 to absolute precision
100. Now suppose that val(a) = 10 and val(b) = 0, so in fact we require the
summands to relative precisions 70, 80, 90, 100 respectively. Hence we require a
and b to these same relative precisions.

Therefore, if we increase the precision of each summand in turn to its required
value, then we will be updating a first to relative precision 70, then 80, then 90 —
i.e. absolute precisions 80, 90 and 100 — which is 3 separate updates. If updating
a is an expensive operation, then this could become a performance issue.

Clearly, the right thing to do in this situation is to observe that we only need
to update a once to absolute precision 100. With the current description of the
update function, this is not possible. ♦

Our solution is to split updates into two steps: the first step identifies which
other updates are required to occur first, we call these dependencies; the second
step actually performs the update. With this explicit separation, we can find all
of the dependencies of a calculation before satisfying any of them, allowing us to
remove any redundancy as in the above example.

In the example, c has 4 dependencies, namely the 4 summands. Each of these
summands in turn depends on one or both of a and b. There is redundancy in
these dependencies because a and b each appear three times, and therefore could
be merged.
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3.2 Getters

We encapsulate these ideas into a new type2:

type Getter

attributes Getter: state, get_dependencies, get_value

A Getter represents an exact p-adic computation with dependencies. The
state attribute is some getter-specific state which is passed by reference (and
hence is modifiable) into the other functions.

The get_dependencies attribute is a procedure(~state, ~deps) which
assigns to deps a list of dependencies. A dependency is a pair <x,n> where x
is some p-adic value (i.e. a PadExactElt, such as a p-adic number or polynomial)
and n is an absolute precision. Such a dependency should be interpreted as the
getter saying “I can’t compute my value until these values are to these absolute
precisions.” We say a dependency is satisfied if the absolute precision of x is at
least n.

The get_value attribute is a procedure(~state, ~value) which, assuming
that the dependencies previously reported are all satisfied, either assigns something
to value or doesn’t. If it does, then this is interpreted as the value of the
computation. If it doesn’t, then this is interpreted as the getter having more
dependencies, and so get_dependencies needs to be called again.

Evaluating a getter means getting the value from the get_value procedure. Of
course, this requires satisfying the dependencies reported by get_dependencies
first, and leads to a recursive dependency satisfaction algorithm which we describe
shortly.

3.3 Update function

With getters defined, we may now define precisely what an update function is:
it is a function taking as input an absolute precision n and returning a Getter.
This getter, when evaluated, will have the side-effect of increasing the absolute
precision of the element to n. The value of the getter is ignored.

2In the package it is actually called ExactpAdics_Gettr
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a3 + a2b+ ab2 + b3, 100

a3, 100 a2b, 100 ab2, 100 b3, 100

a2, 100 b, 80 a, 100 b2, 90a, 80 b, 100

a, 90 b, 90

Figure 2: The tree of dependencies of the motivating example (Example 3.1).

With this definition, IncreaseAbsolutePrecision would actually be defined
like so:

intrinsic IncreaseAbsolutePrecision(x :: PadExactElt, n)
if not AbsolutePrecision(x) ge n then

ignored := Evaluate(x`update(n))

Now to increase the absolute precision of a value, we just need to know how to
evaluate a getter.

3.4 Evaluating getters

To evaluate a getter requires conceptually three steps: first we retrieve its
dependencies from get_dependencies, then we satisfy those dependencies, then
we retrieve the value via get_value. If get_value did not return a value, then
we will need to repeat these steps.

Each of the dependencies is a pair <x, n> of a p-adic element and an absolute
precision. Calling x`update(n) returns a getter which, on evaluation, increases the
absolute precision of x to n, which we require. Hence we have reduced the problem
of evaluating the original getter to the problem of evaluating these dependent
getters. Recursing, we traverse the tree of dependencies all the way to its leaves.
Figure 2 illustrates this dependency tree for the motivating example (assuming a
and b themselves have no dependencies).

To avoid duplicated work, we want to combine all nodes for the same value
together, taking the maximum of their absolute values, resulting in a directed
acyclic graph such as in Figure 3.
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a3 + a2b+ ab2 + b3, 100

a3, 100 a2b, 100 ab2, 100 b3, 100

a2, 100

b, 100a, 100

b2, 90

Figure 3: The merged graph of dependencies of the motivating example (Example
3.1).

A sink in this graph is precisely a getter with no dependencies. Therefore it
may be evaluated and removed from the graph. Repeating, we will eventually
reach the source, which can also be evaluated, and we have succeeded.

In practice, we do not represent these dependencies as a tree at all, but we
take advantage of a simple fact: if the value x was created before value y, then x
cannot possibly depend on y. We therefore keep track of the order of creation of
elements by giving them a new attribute

attributes PadExactElt: id

to which we assign the value of a global counter when the element is created. We
now represent the nodes of the graph simply as an associative array, where the
node <x,n> is the value at the index x`id. Adding a new dependency into the
tree is a matter of checking if there is already a dependency for this x; if so, then
we should combine the old and new absolute precision in the array; if not, then we
add the new node into the array. Traversing the tree in dependency order is now
a matter of runnning through the indices of the array in sorted order.

We now present a version of this algorithm. The first procedure add_depen-
dencies takes a list of dependency pairs <x,n> and recursively adds them and all
their own dependencies into the array.

procedure add_dependencies(~array, todo_list)
while #todo_list gt 0 do

// pop an item from the todo list
x, n := Pop(~todo_list)
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// if this is a new dependency, or the target
// precision is greater than the existing one,
// and it is not already satisfied, then replace
// it and compute more dependencies to put in
// the todo list
if (x`id notin array or not n le array[x`id][2])
and not n le AbsolutePrecision(x)
then

getter := x`update(n)
array[x`id] := <x, n, getter>
getter`get_dependencies(~getter`state, ~deps)
for dep in deps do

Append(~todo_list, dep)

The procedure satisfy_dependencies takes a list of dependency pairs and
satisfies them all, first by calling add_dependencies to make an array of all
dependencies, and then by running through the dependencies in order and trying
to satisfy them. Here is one possible implementation:

procedure satisfy_dependencies(deps)
// initially compute all dependencies
array := AssociativeArray()
add_dependencies(~array, deps)
// keep trying until the graph is empty
while #array gt 0 do

// traverse the nodes in order
for i in Sort(Keys(array)) do

// do the update
getter := array[i][3]
getter`get_value(~getter`state, ~value)
if assigned value then

// success: remove the entry from the array
delete array[i]

else
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// failure: get more dependencies and start over
getter`get_dependencies(~getter`state, ~deps)
add_dependencies(~array, deps)
break

The implementation in the ExactpAdics package behaves a little differently:
if a particular node fails, then instead of immediately jumping back to the
bottom of the tree, we continue traversing it to the top, but skipping over nodes
which now have unsatisfied depdendencies. This is made possible by changing
add_dependencies to explicitly track the children and parents of each node in the
array, and altering satisfy_dependencies to:

procedure satisfy_dependencies(deps)
// initially compute all dependencies
array := AssociativeArray()
add_dependencies(~array, deps)
// keep trying until the graph is empty
while #array gt 0 do

// traverse the nodes in order
for i in Sort(Keys(array)) do

item := array[i]
if item has no children then

// do the update
getter := item[3]
getter`get_value(~getter`state, ~value)
if assigned value then

// success: remove the entry from the array
for each parent of item do

remove item as a child of parent
delete array[i]

else
// failure: get more dependencies
getter`get_dependencies(~getter`state, ~deps)
add_dependencies(~array, deps)

125



CHAPTER IV. EXACT P -ADICS

Observe the main differences are that we now need to check a node has no
children before processing it; when a node succeeds, we now need to remove it
from the list of children of each of its parents; and when it fails, we no longer
break out from looping over nodes.

Which of these two routines is better is arguable. The former routine may
suffer from updating an early element of the graph, and then discovering later
that the same element needs to be updated again, whereas the latter avoids this
problem by performing as many updates on the graph as possible before starting
over again. On the other hand, the latter routine may suffer from traversing the
whole graph needlessely if an early node failed and is a child of everything else.

In practice, on problems of interest, we found that the latter routine usually
performed better. That is, it was sometimes significantly faster and was rarely
significantly slower, which is why the latter is used in the current implementation.

We also now define the intrinsic which evaluates a getter:

intrinsic Evaluate(g :: Getter)
loop

g`get_dependencies(~g`state, ~deps)
satisfy_dependencies(~deps)
g`get_value(~g`state, ~value)
if assigned value then

return value

3.5 Lazy computations

Now that we have a way of representing computations with dependencies, we now
define some ways of combining and modifying them to produce more complex
computations, with dependency tracking still built-in.

For instance, Compose takes as input a getter g and a function f, and returns
a getter h such that Evaluate(h) = f(Evaluate(g)).

Similarly, ComposeProcedure takes as input a getter g and a procedure f,
and returns a getter h such that Evaluate(h) has the same side-effects as calling
f(Evaluate(g)).
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Similarly, ComposeGetter takes as input a getter g and a function f returning
a getter, and returns a getter h such that Evaluate(h) = Evaluate(f(Evaluate(
g))).

For added convenience, these compose functions can take a sequence of getters
instead a single getter. In this case, the arity of the function f must equal the length
of the sequence. For example Evaluate(Compose([g1,g2],f)) = Evaluate(f(
Evaluate(g1),Evaluate(g2))).

The intrinsic Flatten takes as input a sequence of getters, and returns the
getter whose value is the sequence of values of the input getters.

There are also intrinsics for defining null getters, which do nothing, and
for defining getters directly in terms of the get_value and get_dependencies
functions. It is also possible to define getters directly whose dependencies are
themselves getters, instead of <x,n> element-precision pairs.

The package also provides “lazy” versions of some intrinsics, which by
convention are given the suffix _Lazy, which returns a getter which when evaluated
has the same side-effects and return value as the non-lazy version.

For example the following intrinsic returns a getter g such that Evaluate(g)
has the same side-effects as calling IncreaseAbsolutePrecision(x, n) directly:

intrinsic IncreaseAbsolutePrecision_Lazy
(x :: PadExactElt, n) -> Gettr
if AbsolutePrecision(x) ge n then

return NullGetter()
else

return x`update(n)

Indeed, one could now define the non-lazy version as

intrinsic IncreaseAbsolutePrecision(x :: PadExactElt, n)
ignored := Evaluate(IncreaseAbsolutePrecision_Lazy(x,n))

Similarly, the intrinsic Approximation_Lazy(x, n) returns a getter whose
value is an approximation of x to absolute precision n.

Example 3.2. We can now present an implementation of binary addition using
these tools. Compare this with the earlier version (Example 2.1), presented in
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terms of the simplified representation where the update function was simply a
procedure; now it is a getter, built using ComposeProcedure and Approximation_
Lazy out of simpler getters.

intrinsic '+' (x :: FldPadExactElt, y :: FldPadExactElt)
-> FldPadExactElt

init := x`approximation + y`approximation
mkupdate := function (z)

return function (n)
return ComposeProcedure(

// lazily computes approximations to x and
// y to precision n
[ Approximation_Lazy(x, n)
, Approximation_Lazy(y, n) ],
// uses the approximations xx and yy to update
// the value of z
procedure (xx, yy)

Update(z, xx + yy)
)

return Parent(x) ! <init, mkupdate> ♦

Most update functions in the package are defined in a similar fashion: firstly
they lazily compute approximations to their inputs, and then they use these to
update the value. The exceptions to this are mainly when the precision required
of the input is not known immediately, and therefore some iteration is required; in
such a circumstance, the getter returned by the update function usually needs to
be defined directly in terms of its get_dependencies and get_value procedures.

4 ExactpAdics: Precision strategies

4.1 Motivating example

Suppose we want to compute the valuation of a p-adic number x. If the number
is not currently weakly zero, then this is straighforward: the valuation is the weak
valuation. Otherwise, we can’t immediately deduce the valuation.
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Therefore, we might try increasing the absolute precision of x. If the number is
now not weakly zero, then we are done. Otherwise, we might increase the absolute
precision further, and repeat this process for some time. At some point, if we don’t
discover the answer, we might give up.

How do we choose the amount to increase the absolute precision by? How long
do we go for before giving up? A simple answer might be to keep doubling the
precision forever until we succeed, but this would never terminate if x = 0.

On the other hand, the user may want the process to definitely terminate after
some amount of effort, and therefore give up after the precision has reached some
limit. Or, knowing more about the inputs, it may be more appropriate to increase
the precision linearly instead of exponentially, for example. We abstract away such
decisions into a precision strategy.

4.2 Definition

A precision strategy is a strictly increasing sequence of non-negative integers.
The sequence may be finite or infinite in length.

4.3 Representation

How such a sequence is represented is not too important. In the ExactpAdics
package, a precision strategy is represented as one of the following:

• A single non-negative integer n, which is a strategy of length 1: (n).

• A list of strategies, which is the contatenation of those strategies.

• A function m which takes an integer and either returns true and a larger
value, or returns false. It represents a sequence of integers as follows: let n0

be the previous value in the strategy; for i = 0, 1, . . ., if m(ni) is false, then
terminate the sequence, otherwise it is true and also returns ni+1, the next
element of the sequence.

• A string, which is interpreted as the global strategy with that name (see
below).
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• A tuple <"limit",n> which limits the remaining strategy to n; that is, it
will terminate when the strategy reaches n. More precisely, the first time
the strategy outputs a number m ≥ n, it instead outputs n itself and then
terminates.

• A tuple <"exp",e> which is equivalent to the function taking n to dnee. It
therefore represents an infinite sequence which grows exponentially.

• A tuple <"random"> which randomises the remaining strategy as follows: if at
time i the previous value was ni and the next value will be ni+1 > ni, then we
replace the next value with a uniform random element in {ni + 1, . . . , ni+1}.
This aims to dampen any potential issues arising from forcing precisions to
come from a small set of values, such as powers of 2.

We provide the user with a global array of named strategies, with procedures
to define and retrieve strategies with a particular name. Currently we define three
named strategies by default:

• "defaultLimit": <"limit", 100>, not a precision strategy in itself, but
can be mixed in to other strategies to limit them.

• "unlimitedDefault": [1, <"randomize">, <"exp", 2>], starts at 1 and
keeps doubling forever.

• "default": ["defaultLimit", "unlimitedDefault"], the same as the
previous strategy, but with the default limit applied.

4.4 Usage and conventions

Any function which makes a non-canonical decision about how to control the
precision of its inputs should take one or more precision strategies as parameters
to make this decision.

By convention, these parameters all have the word Strategy in their name,
to make their purpose clear. Where there are any precision strategies parameters,
there will be one with the name precisely Strategy. Its value is used as the default
value for the others. Its default value is the string "default", which refers to the
global strategy with this name. For example:
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intrinsic DoSomething( : Strategy := "default",
Strategy1 := Strategy,
Strategy2 := Strategy,
Strategy2b := Strategy2)

...

This means that for the typical user, it suffices to set a global strategy with the
name "default" and then forget about precision strategies. If it then turns out
that some computations are raising precision errors, the user can consider altering
the precision strategy.

Using a precision strategy whose maximum value is 100 is functionally very
similar to using inexact p-adics to precision 100. The difference is that in the
inexact case, all computations are done to this precision, whereas in the exact
case, if a computation can be done with less precision, then it will be.

4.5 Baseline precision

A function which takes a precision strategy parameter is free to use it in any
fashion. It is intended, of course, that it will be interpreted as a sequence of
precisions to try computations at, but there are different kinds of precision:

• Absolute precision: the integer k such that we know the value modulo πk;
that is, the approximation is of the form x+ πkO.

• Relative precision: the absolute precision minus the weak valuation; that is,
the integer r such that the approximation is of the form πv(x+ πrO).

If we interpret the entries of a precision strategy as absolute precisions, then
it may be that the p-adic number actually has a large negative valuation, and so
computing it to positive absolute precision is overkill. In a sense, the absolute
precision is relative to the valuation 0, and 0 is an arbitrary choice.

If we interpret them as relative precisions, then we lose repeatability because
the base-line for the relativeness can move: the weak valuation may increase in
time. To demonstrate the issue, suppose we are computing the valuation of x = 0,
initially known to absolute precision 10, and the precision strategy goes up to 100.
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Interpreting the strategy as relative precisions, we would increase the absolute
precision of x to 110. If we try to compute the valuation again, then we will increase
the absolute precision again to 210. There is the potential to keep increasing the
absolute precision of x indefinitely by repeatedly trying to compute its valuation.

We introduce a new kind of precision:

• Baseline precision: the absolute precision minus the “baseline valuation”.

The baseline valuation is any fixed valuation attached to the value. Hence it
may depend on the value, but does not change over time. By default, the baseline
valuation is set to the weak valuation of the value when it is initially created. If
the baseline valuation is set to 0, then we recover the absolute precision.

If we now interpret entries of the precision strategy as baseline precisions, then
we avoid the two problems described above.

Example 4.1. Hence, a reasonable implementation of a function to compute the
valuation is

intrinsic Valuation(x :: FldPadExactElt : Strategy:="default")
for n in Strategy do

IncreaseAbsolutePrecision(x, BaselineValuation(x) + n)
if not IsWeaklyZero(x) then

return WeakValuation(x)
error "precision error" ♦

5 ExactpAdics2: Core structures and elements

5.1 Overview

Recall that in the ExactpAdics package, our updates are performed in terms of
absolute precisions: an update function receives an absolute precision, and updates
the approximation accordingly. In order to do this, the update function must
compute the absolute precisions required of its dependencies, which are fed into
the dependency-tracking framework, and recursively the update functions of the
dependencies themselves must compute the absolute precisions required of their
dependencies.
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In the ExactpAdics2 package, we simplify this procedure by introducing a
proxy for absolute precision. This proxy is a single positive integer n which we
refer to as the epoch. At any given time, a p-adic object has a current epoch
meaning that its current approximation is associated to that epoch. The precision
of the current approximation must increase with the epoch.

Importantly, by definition the approximation of a p-adic object at epoch n

depends only on the approximations of its dependencies at epoch n. Hence a
p-adic object is represented by essentially two pieces of information: a list of the
other p-adic objects on which it depends; and an approximation function which
takes as input a list of approximations of its dependencies at some epoch n, and
returns an approximation which is taken to be the approximation of the object at
the same epoch.

Since the approximation function is only given the approximations of its
dependencies at a given epoch n, all it must do is return an approximation to the
best precision it can given its inputs. It is not aiming to return an approximation
to any specific precision.

For example, our representation of Qp has no dependencies, and its
representation at epoch n is the fixed-precision field pAdicField(p,2^n) whose
elements are of the form πv(y + πrZp) for r ≤ 2n. Hence the precision increases
exponentially with n, the intention being that one will, in a small number of
epochs, be able to increase the precision of a p-adic object to some desired absolute
precision. Since there are only a small number of possible epochs — the user is
highly unlikely to go beyond n = 20 — the dependency-tracking framework should
only be invoked relatively infrequently.

As we shall see in §5.6, the dependency-tracking itself is also quite
straightforward.

5.2 Abstract base types

As with ExactpAdics, this package uses the abstract types StrPadExact and
PadExactElt to represent p-adic structures (such a fields and rings) and elements
respectively. However, these are now also both subtypes of AnyPadExact, which
represents any p-adic object:
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type AnyPadExact

attributes AnyPadExact: id, dependencies,
approximations, get_approximation

type StrPadExact: AnyPadExact

type PadExactElt: AnyPadExact

attributes PadExactElt: parent

The id attribute, as before, is a unique integer used to identify the object. It
is assigned from a global counter, and so each object can only depend on objects
with smaller id. This is used to simplify dependency tracking.

The dependencies attribute is a list of other p-adic objects (i.e. of type
AnyPadExact) on which this one directly depends.

The approximations attribute is a list of approximations of the object. The
object at position n in the list is the approximation of the object at epoch n. It
is analogous to the approximation attribute in the ExactpAdics package, except
that we now record all approximations.

The get_approximation attribute is the approximation function, and is
analogous to the update function from the ExactpAdics package. It is a function
with two inputs: an epoch (a positive integer) and the list of approximations of
the dependencies at the given epoch. It must return the approximation of the
object at the given epoch.

The parent attribute of an element (a PadExactElt) is the structure (a Str-
PadExact) containing the element. The approximation of an element at epoch n
must be en element of the approximation of the parent at epoch n.

Figure 4 illustrates the relationships between these types and their attributes.

5.3 p-adic fields

The way in which p-adic fields and their elements are built on top of these base
types is identical to the ExactpAdics package:

type FldPadExact[FldPadExactElt]: StrPadExact

attributes FldPadExact: xtype, prime, defining_polynomial
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AnyPadExact

PadExactElt

approximations[1]
approximations[2]

...

dependencies

get_approximation

parent

StrPadExact

approximations[1]
approximations[2]

...

dependencies

get_approximation

element of

element of
element of

equal to

input
generates

input
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more
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Figure 4: Illustration of the types AnyPadExact, StrPadExact and PadExactElt,
their attributes and the relationships between them.

where the xtype is either PRIME indicating it is a prime p-adic field Qp, in which
case the prime attribute must be set to the prime p, or else it is INERT or
EISEN indicating an unramified or totally ramified extension, in which case the
defining_polynomial attribute must be set to the inertial or Eisenstein defining
polynomial.

The approximations of a p-adic field must be fixed-precision inexact p-adic
fields, such as pAdicField(2,20) in Magma (representing Q2, whose elements
have relative precision at most 20). However, two such fields in Magma are
considered to be different, even if they only differ in their precision, and yet we will
need to coerce approximate p-adic numbers between different approximate p-adic
fields representing the same exact field, which will be manual and slow. Hence we
define

attributes FldPadExact: infinite_precision_approximation

which is a semi-exact approximation of the field defined via a map, as described
in §1.1. The approximations are then fixed-precision versions of this infinite-
precision field produced via the ChangePrecision intrinsic in Magma. Since
Magma now understands all of these approximations to come from a common
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underlying field, it performs coercion between them for free.

5.4 Univariate polynomials

The way in which rings of univariate p-adic polynomials and their elements are
defined is again identical to the ExactpAdics package:

type RngUPol_FldPadExact[RngUPolElt_FldPadExact]
attributes RngUPol_FldPadExact: base_ring

It is defined by its base_ring, a p-adic field (a FldPadExact). The
approximation of such a ring at epoch n is the univariate polynomial ring over
the approximation at epoch n of the base ring.

5.5 Examples

Example 5.1. Here we present a constructor for exact p-adic fields. It has no
dependencies, and the precision of the approximation field is exponential in the
epoch.

intrinsic ExactpAdicField(p :: RngIntElt)
-> FldPadExact

K := New(FldPadExact)
K`dependencies := []
K`get_approximation := function (n, xds)

return pAdicField(p, 2^n)
return K ♦

Example 5.2. Here we present an implementation of binary addition of p-adic
numbers (cf. Example 3.2).

intrinsic '+' (x :: FldPadExactElt, y :: FldPadExactElt)
-> FldPadExactElt

z := New(FldPadExactElt)
z`parent := x`parent
z`dependencies := [x, y]
z`get_approximation := function (n, xds)
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return xds[1] + xds[2]
return z ♦

In fact, most purely arithmetic functions are this simple to implement.

Example 5.3. Here we present an implementation of polynomial resultant. Since
the resultant depends on the degree of the polynomials, we need to ensure that the
approximations of the inputs have the correct degree using EnsureAllApproxima-
tionsAreFullDegree, similar to as in Remark 5.7.

intrinsic Resultant (
f :: RngUPolElt_FldPadExact,
g :: RngUPolElt_FldPadExact)

-> RngUPolElt_FldPadExact

EnsureAllApproximationsAreFullDegree(f)
EnsureAllApproximationsAreFullDegree(g)
h := New(RngUPolElt_FldPadExact)
h`parent := f`parent
h`dependencies := [f, g]
h`get_approximation := function (n, xds)

return Resultant(xds[1], xds[2])
return h ♦

5.6 Generating approximations

We now describe how we generate the approximations of a p-adic object from its
dependencies and get_approximation function.

Suppose we are given a p-adic object and an epoch n, and we wish to compute
the approximation of the object at the given epoch. The intrinsic BringToEpoch
does this for us:

intrinsic BringToEpoch(x :: AnyPadExact, n :: RngIntElt)
if #x`approximations lt n then

for d in x`dependencies do
BringToEpoch(d, n)

xds := [d`approximations[n] : d in x`dependencies]
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xx := x`get_approximation(n, xds)
x`approximations[n] := xx

First it checks if there is already an approximation at this epoch. If not, we run
through the dependencies and bring these up to the same epoch recursively. Now
we can construct a list of approximations of the dependencies at this epoch, pass
this to get_approximation to produce the required approximation, and update
the approximations list accordingly.

We also supply the intrinsic EpochApproximation which returns the
approximation at a given epoch:

intrinsic EpochApproximation(x :: AnyPadExact, n :: RngIntElt)
BringToEpoch(x, n)
return x`approximations[n]

The true implementation of BringToEpoch is slightly more complicated. The
following subsections explain how.

Saving the approximation

Instead of simply saving the output of get_approximation as a new approximation
directly, we assign it using a generic intrinsic called SetApproximation, which
performs some checks. This includes checking that the approximation is of the
right type; that, if it is an element, the approximation is an element of the
approximation of its parent; and that the approximation is consistent with the
current best approximation attached to the object.

Furthermore, our package assumes that if an object has an approximation at
epoch n, then it has approximations for all lower epochs. So what do we do if
we are jumping from epoch 1 to 10, for example, how do we set the intermediate
approximations? For each subtype of AnyPadExact, there must be an intrinsic
InterpolateEpochs implemented which takes as input a p-adic object, a range
of epochs, and an approximation at the top epoch. It must return a list of
approximations for the intermediate epochs.

Example 5.4. The default implementation uses the approximation function to
generate the intermediate values, provided we exceed the min_epoch. This is
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usually sufficient for structures. Note that the dependencies are guaranteed to be
at the top epoch already.

intrinsic InterpolateEpochs(x :: AnyPadExact,
n1 :: RngIntElt, n2 :: RngIntElt, xx :: FldPadElt)

if n1 ge x`min_epoch then
return [x`get_approximation(n, xds)

where xds := [d`approximations[n] : d in x`dependencies]
: n in [n1..n2-1]]

else
error "not implemented: InterpolateEpochs with min_epoch>1"

♦

Example 5.5. For p-adic numbers, we coerce the approximation into the
approximations of the parent field at the intermediate epochs.

intrinsic InterpolateEpochs(x :: FldPadExactElt,
n1 :: RngIntElt, n2 :: RngIntElt, xx :: FldPadElt)

return [x`parent`approximations[n] ! xx : n in [n1..n2-1]] ♦

Now if SetApproximation is setting some approximation for a high epoch, it
will use InterpolateEpochs to fill in the gaps.

Minimum epoch

Example 5.6. Suppose we are implementing division of two p-adic numbers. Here
is what looks like a reasonable implementation:

intrinsic '/' (x :: FldPadExactElt, y :: FldPadExactElt)
require IsDefinitelyNonzero(y)
z := New(FldPadExact)
z`parent := x`parent
z`dependencies := [x, y]
z`get_approximation := function (n, xds)

return xds[1] / xds[2]
return z
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Note, however, that even though we checked that y is non-zero, we are not
guaranteed that all of its approximations are not weakly zero. If some of them
are, then the division inside get_approximation may raise an error. ♦

To solve this, we have IsDefinitelyNonzero return a second value, which is
the smallest epoch at which an approximation for y is not weakly zero. Note that
since approximations may not become less precise as epoch increases, this implies
that all approximations for y are not weakly zero above this epoch. We can then
set the new attribute

attributes AnyPadExact: min_epoch

to this epoch.
The meaning of min_epoch is that it is the smallest epoch for which the

get_approximation function should be called, and hence in our example, the
division will only use non weakly zero approximations to y.

To use min_epoch, we simply need to insert the following line into BringTo-
Epoch

n := Max(n, x`min_epoch)

which ensures that the epoch we are updating to is at least min_epoch.

Remark 5.7. For the particular case of division, and similar functions, we can take
a different approach and implement it like so:

intrinsic '/' (x :: FldPadExactElt, y :: FldPadExactElt)
EnsureAllApproximationsAreNonzero(y)
z := New(FldPadExactElt)
z`parent = x`parent
z`dependencies := [x, y]
z`get_approximation := function (n, xds)

return xds[1] / xds[2]
return z

where, as the name suggests, the intrinsic EnsureAllApproximationsAreNonzero
ensures that all approximations of y are not weakly zero. This is achieved by first
calling IsDefinitelyNonzero to check y is nonzero and find an epoch at which

140



5. EXACTPADICS2: CORE STRUCTURES AND ELEMENTS

its approximation is not weakly zero, and then by using InterpolateEpochs and
SetEpochs to interpolate this approximation down to epoch 1.

Maximum epoch

Analogous to min_epoch, there is also

attributes AnyPadExact: max_epoch

which is the maximum epoch at which get_approximation should be called.
The intention here is that the user can set the maximum epoch on a p-adic

object as a way of limiting the precision to which computations involving that
object are performed.

The BringToEpoch intrinsic is modified to insert a check that the target epoch
is not greater than the max_epoch, if it is set. If so, it will raise a precision error:

if assigned x`max_epoch and n gt x`max_epoch then
error "precision error: max_epoch exceeded"

We also supply the intrinsic CanBringToEpoch which is the same as Bring-
ToEpoch except that instead of raising a precision error when the max_epoch is
reached it returns false, and otherwise returns true to signal success.

5.7 Precision strategies

At present, we do not provide functionality analogous to the precision strategies
(§4) of the ExactpAdics package. The only method for controlling precision
currently available to the user is the max_epoch attribute described in §5.6, which
will cause an error to be raised if a computation requires too much precision.

Therefore currently, any functions which need to increase the precision of its
inputs do so simply by trying each epoch in order. Hence, there are no Strategy
parameters in this package, and instead we can think of the sequence 1, 2, . . . as
the default strategy where the values are now epochs, not precisions.

Example 5.8. Valuation is implemented like this (cf. Example 4.1):

intrinsic Valuation(x :: FldPadExactElt) -> Val_FldPadElt

for n in 1,2,... do
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BringToEpoch(x, n)
if not IsWeaklyZero(x) then

return WeakValuation(x) ♦

6 Comparison of ExactpAdics and ExactpAdics2

6.1 Complexity of updates

Compare the procedures satisfy_dependencies (§3.4) of ExactpAdics and
BringToEpoch (§5.6) of ExactpAdics2, which are the underlying means in each
package of generating an approximation to a p-adic object.

In the latter, we satisfy each dependency recursively immediately. In the
former, we perform a backwards pass to gather all dependencies together, followed
by a forwards pass to satisfy dependencies.

The rationale for the behaviour of the former was discussed in §3.1, and it
comes down to the fact that the same p-adic object may appear multiple times
in a dependency with different absolute precisions. By performing the backwards
pass first, we can merge all such dependencies into one. On the other hand, in
BringToEpoch all dependencies are being brought to the same epoch, and therefore
we can satisfy each dependency immediately without risk of it needing to be
brought to a higher epoch later.

Additionally, in ExactpAdics, satisfying a dependency is allowed to fail (i.e.
the get_value procedure of a Getter is allowed to not return a value), which
triggers a new backwards pass to find dependencies of this failed update, and an
extra forwards pass will have to occur to satisfy these. Hence there is in principle no
bound on the amount of dependency tracking required to update a single element,
whereas in ExactpAdics2 we do a single pass.

This is a necessary feature of the design of ExactpAdics: because the update
function must update its target object to a given absolute precision, we must allow
it the freedom to take a guess at the precision required of its dependencies, and
then try a better guess if it turns out this was too low. This is because there are
some operations where it is difficult or impossible to determine the dependency
precisions in advance.
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On the other hand, in ExactpAdics2, because there is a looser relationship
between precisions and epochs, the get_approximation function is not aiming for
any specific precision. Instead, it simply needs to produce an approximation to
the best precision it can.

6.2 Number of updates

In ExactpAdics2, an “update” can occur at each epoch. Since precisions are
exponential in the epoch (recall §5.1 and Example 5.1), then typically there are
only a small number of epochs ever considered, rarely going beyond epoch 20.
This limits the number of times the dependency tracking framework ever needs
to consider a single object, and so the time spent doing dependency tracking is
essentially a small constant times the number of variables in a computation.

On the other hand, in ExactpAdics one can in principle increase the precision
of an element by 1 many times, and each time the dependency tracking code will
be invoked, so there is essentially no bound on the time spent doing this. To
mitigate this, one could modify the package so that elements can only increase
their precisions by large jumps, such as doubling each time.

6.3 Implementing new functions

To implement a new low-level operation in ExactpAdics, such as addition of
two p-adic numbers, requires implementing a Getter which (a) can compute
the precisions to which its dependencies are required; and (b) compute an
approximation, given approximations of its dependencies. To do the same in
ExactpAdics2 only requires (b), and therefore implementing new functionality
in the latter is often much quicker.

Furthermore, actually computing the dependency precisions can be slow:

Example 6.1. Let h(x) = f(x)g(x) be a product of two polynomials. Suppose
we want to compute an approximation to h with the absolute precision of the kth
coefficient (hk) at least ak. Then we need fi to absolute precision maxj ai+j−val(gj)
and gj to absolute precision maxi ai+j − val(fi).
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Computing these absolute precisions is of the same order of complexity as
performing the multiplication itself. On the other hand, the multiplication is
implemented in a low level compiled language such as C, whereas our Exact-
pAdics package is implemented in the high-level interpreted language Magma,
and so computing these absolute precisions can be far more expensive. ♦

6.4 Precision optimality

By design, all computations in ExactpAdics are performed to as little precision as
is possible to get the answer. In ExactpAdics2, we perform all computations
starting from the same initial precision and keep doubling this precision as
necessary. Hence the latter is not optimal in terms of precision used, but is typically
within a factor of 2 of optimal.

It is possible for ExactpAdics2 to be worse than this. Suppose x is cheap
to compute approximations for, but loses a lot of precision along the way, so if
it has an approximation in pAdicField(p,2^n) then its precision is significantly
less than 2n. Also suppose that y is expensive to compute, and does not lose
any precision. Let z = x + y. Now because x loses a lot of precision, so does z,
and therefore computing an approximation to z requires a relatively high epoch.
Computing the approximation to y at this epoch is expensive, but also unnecessary
because it achieves this required precision at an earlier epoch.

In a sense, the epoch is not really a proxy for the precision of an element, but
a proxy for the worst precision of all the dependencies of the element.

For most common applications, the amount of precision lost tends to be
bounded and small as epoch increases, and so this effect is minimal.

6.5 Precomputing dependencies

In §9.1 we describe a generic optimization technique which can make updating
the approximations of a selected p-adic object much quicker. This is done by
pre-computing some of its dependency graph so that it can be traversed more
efficiently.

This optimization opportunity is only possible in ExactpAdics2. Even if
ExactpAdics were redesigned to make the list of dependencies of an object explicit,
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so that a piece of the dependency graph could be precomputed, we would still need
to do a backwards pass to find the minimal precision required of each dependency.

6.6 Precision strategies

In ExactpAdics, whenever a function needs to increase the precision of an object
in a non-canonical way, it does so according to a precision strategy (§4), giving
fine control over each precision tried.

On the other hand, ExactpAdics2 currently has no such functionality other
than setting the max_epoch parameter on an object (§5.7). When a function needs
to increase the precision of an object in a non-canonical way, it repeatedly increases
the epoch by 1. In practice, precision strategies in ExactpAdics will usually just
repeatedly double the precision, which behaviour is almost the same as increasing
the epoch by 1 in ExactpAdics2. In principle, the package could have strategies
to control which epochs are used, but this is not yet implemented.

6.7 Timings

Dependency tracking

In this section, we describe an experiment designed to stretch the dependency
tracking capabilities of our packages. This involves performing a computation
which involves thousands of intermediate variables, but the steps themselves are
cheap to compute.

In this experiment, we define x1 = 1, x2 = 2 ∈ Q2 and for i = 3, . . . , 10000 we
define xi = xji +xki

for some randomly chosen ji, ki ∈ {1, 2, . . . , i− 1}. Finally we
define y = ∑10000

i=1 xi. We time how long it takes to compute y to absolute precision
2n for n = 1, . . . , 16, taking the total time — this emulates a typical sequence
of increasing the absolute precision of y 16 times. We repeat this 10 times with
different random choices and take the mean.

This experiment is repeated using a number of different p-adic implementations,
with the mean timings given in Table 1. Note that the random choices are made
in advance and so are not timed, and we use the same random seed in each
experiment, so precisely the same sequence of operations is being compared.
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Experiment Time (sec)
(1) Builtin 0.949
(2) ExactpAdics 174.284 = 6.907 + 167.377
(3) ExactpAdics2 7.330 = 0.400 + 6.930
(4) ExactpAdics2 (opt: default) 7.047 = 0.528 + 6.519
(5) ExactpAdics2 (opt: fast) 2.006 = 0.460 + 1.546

Table 1: Timings for a highly dependent computation over different
implementations, including two optimizations.

Experiment (1) uses the builtin inexact p-adics available in Magma, and so is
a reasonable lower bound on what we can expect to achieve. Experiments (2) and
(3) use the ExactpAdics and ExactpAdics2 packages, respectively. These timings
are broken into two parts, the first part being the time to construct y, and the
second part being the time to increase its precision to 2, 4, . . . , 216. We can see
that the latter package outperforms the former significantly on both counts.

Experiments (4) and (5) are the same as (3), except we use the optimization
techniques described in §9.1 to make y directly depend only on x1 and x2.
Experiment (4) uses the default version, which gives a small speed-up. Experiment
(5) uses the “fast” version, which forgets the intermediate variables and uses the
get_approximation functions directly, and achieves a significant speed-up.

Real-world example

We compute the 2-part of the conductor of the hyperelliptic curve

C : y2 = −2x6 − 15x4 − 37x2 − 30

using our implementation of [18] mentioned in §1. This implementation can use
either of our packages for its underlying p-adic computations. The curve has
discriminant ∆ = −216 · 3 · 5 and conductor N = 210 · 3 · 5.

When using ExactpAdics, this takes 146 seconds, compared to 33 seconds for
ExactpAdics2. The time spent in the dependency-tracking portion of code, which
includes actually computing approximations, is 124 and 25 seconds respectively,
with 22 and 12 seconds respectively left over to other computations.
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With ExactpAdics, this 124 seconds spent in dependency tracking is divided
equally between generating approximations and tracking dependencies (this
includes calling the update function and computing dependencies). About half of
the latter is spent computing dependencies, most of the rest being logic comparing
absolute precisions.

In fact, of the whole 146 seconds, 39 seconds is spent just constructing our
representation of a valuation of a univariate polynomial. Individually this is fast,
but we construct 240,000 of them throughout the algorithm. This demonstrates
the benefit of using epochs instead of fine absolute precisions in ExactpAdics2.

Note that the number of times the dependency tracking framework is invoked is
about 54,000 and 40,000 for the two packages. Given the same algorithms are used
in both packages, we expect these numbers to be similar. In this case we do not
appear to have the potential issue that the framework is invoked too often. The
number of p-adic objects created is about 11,000 and 7,000 for the two packages.

6.8 Conclusions

Given the above arguments and evidence, we currently recommend the typical user
to choose ExactpAdics2 over ExactpAdics.

On the other hand, if more of the internal workings were implemented at a
lower level than the Magma language and optimized, then it may be that Exact-
pAdics could be made comparably fast. Indeed, much of the comparative slowness
in ExactpAdics comes from the need for a lot of simple arithmetic to compute
absolute precisions, which is typically slow in an interpreted language such as
Magma.

7 Additional structures

So far we have described the representation of p-adic numbers and univariate
polynomials over p-adic fields. We now briefly describe two more structures
provided by the package.
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7.1 Multivariate polynomials

A multivariate polynomial ring over a p-adic field is represented by the type
RngMPol_FldPadExact (analogous to the inexact type RngMPolElt in Magma)
which derives from StrPadExact:

type RngMPol_FldPadExact[RngMPolElt_FldPadExact]
attributes RngMPol_FldPadExact: base_ring, rank

Such a ring is defined by its base_ring, an exact p-adic field (i.e. of type
FldPadExact), and by its rank, the number of indeterminates.

An approximation of such a ring must be the multivariate PolynomialRing of
an approximation of the base_ring of the same rank.

7.2 Cartesian products

The cartesian product of a number of exact p-adic structures is itself an exact p-
adic structure, and has the type SetCart_PadExact analogous to the type SetCart
for general cartesian products.

type SetCart_PadExact[Tup_PadExact]
attributes SetCart_PadExact: components

Such a cartesian product is defined by its components, a list of exact p-adic
structures.

An approximation of this structure must be the cartesian product (a SetCart)
of an approximations of its components.

Why do we define this specialised form of cartesian products, when a general
one exists already? The difference is that a standard tuple of exact p-adic
values treats the component values as completely independent objects, whereas
the exact tuple links them together in the sense that they have a single common
update/approximation function. Therefore, the exact tuple is an appropriate
choice for a collection of p-adic values which belong to some conceptually higher
structure.

Example 7.1. Suppose we wish to implement a Hensel-lifting routine which takes
as input a sequence F ∈ K[x1, . . . , xn]n of n multivariate polynomials of rank n
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over some p-adic field K and a sequence X ∈ Kn of n elements of K such that we
can apply Hensel’s lemma to deduce there is a root Y ∈ Kn of F close to X, and
returns the sequence Y (as in §9.9).

To update the components of Y we perform a Hensel-lifting routine which is
essentially some n× n linear algebra depending on F and X, the important point
being that this computes all components of Y to some precision simultaneously;
it is not possible to compute one component of Y to high precision in isolation.
Therefore it makes sense to represent Y as a tuple with a single update function.

By comparison, if we represented Y as a sequence of independent values, then
each component would still need to maintain its own approximation to the whole
vector Y in order to perform Hensel lifting. Worse still, increasing the precision
on one component would perform Hensel lifting, but then only update that one
component even though the information is available to update all components.
Therefore, increasing the precision of all components of Y would be n times too
slow. ♦

8 Valuations

In our packages, the valuation of a p-adic element PadExactElt is intended
to be the finest measure available of the valuation of the components of the
element. Because there are many different types of p-adic elements (e.g. numbers,
polynomials, tuples), there are as many different types of valuations, all needing
to be represented somehow. There are some operations common to all valuations,
such as addition, so we define a new abstract type to represent all types of
valuation:

type Val_PadExactElt

and we shall later define sub-types corresponding to each p-adic structure.
Note that the difference of two valuations is also a valuation, corresponding to

the division of two p-adic elements with those valuations. Therefore, all kinds of
precisions — absolute, relative and baseline — are also valuations.

In the packages, we use valuations of subtype of Val_PadExactElt to represent
all valuations (including weak valuations) and all precisions. In particular, the

149



CHAPTER IV. EXACT P -ADICS

input to an update function is a valuation in this form, representing the intended
absolute precision.

attributes Val_PadExactElt: value

The value field of a valuation contains the actual value of the valuation, whose
representation is element-dependent.

8.1 Valuations of p-adic numbers

Ordinarily we think of the valuation of a p-adic number as an integer, except that:

• The valuation of zero is not an integer, it takes the special value ∞.

• Multiplication of two valuations is not a useful concept: it has no description
in terms of the arithmetic of p-adic numbers.

• On the other hand addition and infimum do make sense: the valuation of the
product of p-adic numbers is the sum of their valuations, and the valuation
of their sum is lower-bounded by the minimum of their valuations.

• Multiplication and division of a valuation by an integer or rational number
also does make sense, since it corresponds to exponentiation of a p-adic
number.

• It is useful to be able to talk about the valuation of elements in an extension,
and these may be rational numbers.

• Subtraction is useful to define, since a relative or baseline precision is the
difference of two valuations. In particular, we also need to include the symbol
−∞ := 0−∞.

• Supremum is also a useful operation: if we increase the absolute precision of
a p-adic number several times, then its final absolute value is the maximum
of the intermediate absolute precisions.

We deduce that the standard ring of integers (Z,+,×) is not a useful structure
for valuations to reside in; instead, we define the set Z := Q∪ {±∞}, elements of
which we represent with the type:
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type Val_FldPadElt: Val_PadExactElt

The value attribute is either an integer (a RngIntElt in Magma), a rational
number (a FldRatElt) or ±∞ (a Infty).

The following operations are supported:

• Addition: Defined for all pairs of elements of Z, except ∞ + (−∞) is left
undefined and will cause an error.

• Subtraction: Defined for all pairs of elements of Z. In particular, ∞−∞
is defined to be 0; this is because the p-adic number 0 represented to
infinite p-adic absolute precision has infinite weak valuation, and so ∞−∞
should be its relative precision, which is 0. While an arbitrary collection of
additions and subtractions is not associative by these definitions, in practice
if subtraction is only used to compute precisions, then the results will be
well-defined.

• Infimum and supremum (which are the operations meet and join in the
Magma language).

• Multiplication and division by rational numbers (which we term scaling).

• Equality, inequality, and orderings =, 6=,≤, <,≥, >. In particular, Z is
totally ordered.

• An operation called diff which is defined as follows: x diff y is x if x > y
and otherwise is −∞. Note that it is the lowest valuation z such that
z join y = x join y. It has a natural interpretation in our context: if
we require an element to have precision x and its current precision is y then
x diff y is the lowest valuation z such that increasing the precision to z
suffices. Whilst defining such an operation for single p-adic numbers may
seem like overkill, it turns out to be useful for aggregates.

8.2 Valuations of aggregate structures

All other p-adic structures in the package are aggregate structures, in the sense
that they represent, perhaps recursively, a collection of p-adic numbers. As defined
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at the top of the section, a valuation in the package is the finest possible description
of the components of a p-adic element, and therefore we represent valuations of an
aggregate as an analogous aggregate of valuations. Specifically:

• Univariate polynomials: A polynomial f(x) = ∑∞
i=0 fix

i ∈ K[x] over a
p-adic field K may be more simply thought of as the infinite sequence
(f0, f1, . . .) of its coefficients, which is zero for all but finitely many
places. Correspondingly, its valuation we represent as the infinite sequence
(val(f0), val(f1), . . .), which is ∞ at all but finitely many places. If we
subtract two such valuations pointwise, the result is an infinite sequence
which is 0 at all but finitely many places. Most generally then, a valuation
of a univariate polynomial is an infinite sequence which takes the same value
at all but finitely many places.

In the package, we define the new type AssocDflt which represents an
associative array with a default value; that is, it has a default value so that
if a key is not in the array, then the value of the array at that key is the
default. These are useful for representing functions which are constant at all
but finitely many places.

Valuations of univariate polynomials are represented by the type:

type Val_RngUPolElt_FldPad: Val_PadExactElt

whose value is a default associative array AssocDflt whose keys are non-
negative integers i and whose values are Val_FldPadElts.

• Multivariate polynomials: A polynomial

f(x1, . . . , xr) =
∑

e∈{0,1,...}r

fex
e1
1 · · ·xer

r ∈ K[x1, . . . , xr]

of rank r over K can be thought of as the map e 7→ fe taking exponent
vectors to the corresponding coefficient. As with univariate polynomials, this
map is zero almost everywhere. In analogue with univariate polynomials, we
represent the valuation of a multivariate polynomial with the type:

type Val_RngMPolElt_FldPad: Val_PadExactElt
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whose value is a default associative array AssocDflt whose keys are
exponent vectors e and whose values are the corresponding Val_FldPadElts.

• Tuples: Valuations of tuples Tup_PadExactElt of exact p-adic elements are
represented by the type:

type Val_Tup_PadExactElt: Val_PadExactElt

whose value is a corresponding tuple of valuations, representing the
valuations of the components of the tuple.

These valuations all support the following operations:

• Addition, subtraction, scaling, infimum (meet), supremum (join), diff:
These are all defined point-wise.

• Equality and inequality: two valuations are equal iff they are equal point-
wise.

• Ordering: two valuations are ordered if that ordering applies point-wise.

Note that while the set Z = Q ∪ {±∞} of valuations for p-adic numbers is
totally ordered — and this ordering is respected by the ordering, infimum and
supremum operations — the valuations for aggregate p-adic elements are only
partially ordered. For example two tuples in Q2

2 may have valuations (1, 2) and
(2, 1) and so are not ordered relative to each other, or they may have valuations
(1, 2) < (2, 2). This partial ordering is respected by infimum and supremum; for
example x join y is the unique smallest valuation greater than or equal to both
x and y.

Example 8.1. Suppose a univariate polynomial of degree 5 is known to absolute
precision x = (3, 5, 8, 10, 13, 2,∞,∞, . . .). The infinite precisions indicate that
we know that coefficients 6 upwards are precisely zero. Also suppose we want
to increase its absolute precision to at least y = (10, 10, . . .). Then it suffices to
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increase it to

y diff x = (10 diff 3, 10 diff 5, 10 diff 8, 10 diff 10,

10 diff 13, 10 diff 2, 10 diff ∞, . . .)

= (10, 10, 10,−∞,−∞, 10,−∞, . . .)

and so we see it suffices to only increase the precisions of coefficients 0, 1, 2 and
5. ♦

9 Additional features

We now describe some of the high-level features available in our packages, including
notes on how they are implemented. The majority of these features are in both
packages, but any pseudo-code in this section will be as in ExactpAdics2.

9.1 Precomputing dependencies

Suppose d = (d1, . . . , dk) are p-adic objects, and x is some complicated expression
in d, such as in §6.7. Hence x does not depend directly on d, it depends on
some intermediate expressions which recursively ultimately depend on just d.
To compute an approximation for x requires traversing its dependency graph,
including all these intermediate expressions, which will be time-consuming. If we
do not care about the intermediate expressions, then it could be more efficient to
compute approximations to x directly from d.

In the ExactpAdics2 package, we provide an intrinsic WithDependencies
which takes a p-adic object x and a list d of other p-adic objects and returns
a copy of x whose direct dependencies are precisely d. The basic idea is that
we pre-compute the piece of the dependency graph between x and d, which the
get_approximation function can traverse efficiently.

Specifically, starting from x, we recursively traverse its dependencies, gathering
them together to form the set of all of its dependencies. Whenever we reach a
dependency lying in d, we terminate that branch of the recursion, so that we only
find the dependencies between x and d. Next, we sort these dependencies by id
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into a list. Since the ids are assigned sequentially, this also sorts according to
dependency.

With its default behaviour, WithDependencies also incorporates information
about the min_epoch of each dependency into this list: specifically the list is now a
list of pairs (y,m) wherem is the maximum min_epoch of y or anything depending
on y. Having precomputed this list, we can define get_approximation to traverse
this list in order: given an epoch n, for each (y,m) in the list, we compute an
approximation to y at epoch max(n,m) from its dependencies, which will already
be at this epoch, and update y accordingly.

WithDependencies also has a Fast parameter which performs a more
aggressive optimization. Note that the default behaviour still explicitly deals with
all intermediate dependencies (y,m), and in particular each such y is updated
in the usual manner, which involves a number of consistency checks. The “fast”
version ultimately forgets these dependencies entirely and instead just remembers
the get_approximation function attached to each one. These are called directly,
one by one, with the approximations they return just appended to a temporary list,
which is used as input when calling the next one, and so on. The last item in this
list will be the approximation to x returned by get_approximation. As a result,
there is no cacheing or consistency checking of each intermediate approximation,
which can be a significant speed-up. The final answer, which is used to update x,
is still checked in the usual manner so we do not lose any safety.

Note that because the “fast” algorithm does not allow cacheing of intermediate
variables, the min_epoch of the created object must be the maximum of the
min_epochs of all dependencies. Similarly its max_epoch must be the minimum of
those of its dependencies.

Furthermore, the “fast” algorithm assumes that the approximations of the
intermediate variables are all as produced by get_approximation. Therefore
division, which can change the approximations of its dependencies (Remark 5.7),
should not be an intermediate expression. For this reason, the Fast parameter is
false by default because it is not guaranteed to be safe. We also give division (and
other intrinsics with the same issue) a Safe parameter which, when true, does not
use this trick and is therefore safe to be an intermediate expression, at the cost of
a potentially higher min_epoch.
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Timings demonstrating the benefits of using this optimization technique are
given in §6.7. As noted in §6.5, this generic optimization is not possible in Exact-
pAdics.

9.2 Valuation comparison

A common p-adic operation is to compare the valuation of a p-adic number x with
some given valuation v. Consider the following code:

if Valuation(x) gt 10 then
...

The first thing this does is compute the valuation of x precisely, and then compare
the answer with 10. However, this is overkill: since there is no canonical way to
increase the precision of x in order to find its valuation (which may be very high),
then Valuation will proceed according to some precision strategy, and therefore
could never return an answer, or could raise a precision error.

We provide the following intrinsic:

intrinsic ValuationGe(x, n)
IncreaseAbsolutePrecision(x, n)
return WeakValuation(x) ge n

so that ValuationGe(x, n) is functionally very similar to Valuation(x) ge n
except that now there is a canonical way to increase the precision of x in order to
get the answer, and it is guaranteed to produce a result with as little precision as
required.

In reality, the definition of ValuationGe is made a little more complex by
checking if the answer is already known without increasing the precision of x.

We similarly provide analogues ValuationEq, ValuationNe, ValuationLt,
ValuationGe and ValuationGt for the other comparison operators.

9.3 Residue class fields and higher quotients

Since Magma’s inexact p-adics includes some functionality around residue class
fields, we make similar functionality available in our package.
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The intrinsic function ResidueClassField takes as input an exact p-adic field
K (type FldPadExact) and returns its residue class field F (type FldFin) and the
quotient map q : O → F.

This is implemented by computing the residue class field of the approximation
field of K (i.e. ResidueClassField(K`approximation)), which returns F and the
quotient map q̃ : Õ → F where Õ is the integer ring of the approximation field.
Then q may be defined in terms of q̃: given x ∈ K, increase the absolute precision
of x to at least 1, and then call q̃(x̃).

The quotient map q̃ also comes with a partial inverse, an embedding q̃−1 : F ↪→
Õ, which we similarly extend to a partial inverse q−1 : F ↪→ O. In this case, q−1(x)
is always given to absolute precision 1, and cannot have its absolute precision
increased; in a sense, it refuses to choose among the many possible pre-images. In
order to force such a choice, the intrinsic WeakApproximation is provided, which
takes as input an exact p-adic number, and returns another exact p-adic number
which is equal to the input up to the precision of the input.

In a completely analogous manner, the intrinsic Quotient(K, n) returns the
ring O/πnO and the quotient map q, which again has a partial inverse. Hence
Quotient(K, 1) and ResidueClassField(K) are equivalent, except that the
latter represents the result as a field, and not a more general ring.

9.4 Completions of number fields

Magma’s inexact p-adics includes some functionality around taking completions
of number fields at finite primes, so we make similar functionality available in our
package.

The procedure ExactCompletion takes as input a number field F and a finite
place p of F , and returns the completion K := Fp as an exact p-adic field, and the
embedding map e : F ↪→ K.

This is implemented around the builtin intrinsic Completion which takes the
same inputs, and returns the completion K̃ as a semi-exact p-adic field, and
the embedding ẽ : F ↪→ K̃. Then K is simply an exact p-adic field whose
approximation is K̃, and e : F ↪→ K returns an element whose update function
uses ẽ to embed the input element of F into K̃ to sufficiently high precision.
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9.5 Newton polygons

The following definitions and results are standard, if not the notation.

Definition 9.1. If f(x) = ∑d
i=0 fix

i ∈ K[x] is a polynomial over a p-adic field K,
then its Newton polygon N (f) is the lower convex hull in Q×Q of the points
(i, val(fi)). It can also be interpreted as the graph of a function [0, d] → Q, also
denoted by N (f). By definition, this function is continuous, convex and piece-wise
linear. If F is a face of the Newton polygon, i.e. a line segment from (i0, v0) to
(i1, v1), then its width is w(F) = w = i1 − i0 and its slope is s(F) = v1−v0

i1−i0 .
Writing s(F) = −h

e
in lowest terms, then the ramification degree of the face is

e(F) = e, and the residual polynomial is r(F)(x) = ∑w/e
i=0 fie+i0π

ih−v0 ∈ FK [x].

Lemma 9.2. If F is a face of N (f), then f has precisely w(F) roots in Kalg

of valuation −s(F). Writing −s(F) = h/e in lowest terms, if r is such a root,
then reπ−h has valuation 0 and r(F)(reπ−h) = 0. Furthermore the roots r of
valuation h/e are in e-to-1 correspondence with roots (possibly repeated) of r(F)(x)
via r 7→ reπ−h.

Hence the Newton polygon and related quantities provide much information
about the roots of a polynomial, and so are invaluable in scenarios such as root-
finding or factorization of polynomials.

We provide an intrinsic

intrinsic NewtonPolygon(f :: RngUPolElt_FldPadExact

: Support:=<0,Degree(f)>)
-> NwtnPgon

which takes as input a p-adic polynomial f and returns its Newton polygon. Since
computing this involves computing the valuations of some of its coefficients, which
may initially be weakly zero, it takes a Strategy parameter. It also takes a
Support parameter which is a pair of integers representing a range, and the
returned value will be a sub-polygon of the full Newton polygon supported on
at least this range; this can be useful if, for example, the polygon might have a
single root at 0, and so it suffices to get the piece of the Newton polygon on [1,∞).

The Newton polygon is computed as follows. We loop through precisions in
the Strategy and for each one, compute a corresponding approximation xf of f.
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Figure 5: Computation of a section of a Newton polygon (heavy line) from
lower and upper weak Newton polygons. Circles indicate the weak valuations of
weakly zero coefficients, crosses indicate valuations of non weakly zero coefficients.
Observe that since each end of the leftmost piece of the Newton polygon is at
a vertex of the lower polygon, then these must also be vertices of the Newton
polygon; contrast with the rightmost piece, in which the face could extend further
to the left.

We compute the lower weak Newton polygon of xf, defined to be the lower
convex hull of the points (i, wi) where wi is the weak valuation of the ith coefficient
of xf. We also compute the upper weak Newton polygon of xf, defined to
be the lower convex hull of the points (i, wi) such that the ith coefficient of xf
is not weakly zero, and therefore wi = val(fi). The lower weak Newton polygon
lies below the Newton polygon, which in turn lies below the upper weak Newton
polygon. Therefore if the weak polygons overlap anywhere, then that overlap is
a section of the Newton polygon (see Figure 5). If this section includes all of the
Support then we are done, otherwise we move on to the next precision in the
strategy.

9.6 Ramification polygons and transition functions

The ramification filtration of Gal(L/K), the Hasse-Herbrand transition function
and the upper-numbering of ramification groups are all standard, and appear for
instance in Serre [60, Ch. IV]. The theory extends to non-Galois extensions [35],
which we summarise now.
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Definition 9.3. Given a finite extension L/K of p-adic fields, its Galois
set Γ(L/K) is the set of K-embeddings of L into a normal closure — this
is a generalization of the Galois group. For σ ∈ Γ, we define val(σ) :=
minx∈OL

valL(σx − x) and Γv := {σ ∈ Γ : val(σ) ≥ v} for v ≥ 0. The
(lower) ramification breaks of L/K are the v at which the function v 7→ |Γv|
is discontinuous. We define the transition function

φL/K(v) = 1
e(L/K)

∫ v

0
|Γt| dt

which is continuous, piecewise linear, increasing and hence bijective [0,∞) →
[0,∞), and letting ψL/K be its inverse, we define Γu = Γψ(u). This defines the
upper ramification numbering. We define Lu = Lv to be the fixed field of
Γu = Γv (where u = φ(v)).

The following lemma summarizes some key apsects of the theory. In particular,
the upper numbering is well-behaved under changing the top field and fixing
the base field, much in the way that the lower numbering is well-behaved under
changing the base field. It also shows that the Galois correspondence generalizes
to the sets Γu.

Lemma 9.4 ([35, Prop. 2, Rmk. 3, Prop. 3]).
(a) If M/L/K then φM/K = φL/K ◦ φM/L.
(b) Also ΓuL/K = {σ|L : σ ∈ ΓuM/K}, and in particular ΓuL/K are restrictions of

elements of Gal(L/K)u.
(c) (L : Lu) = |Γu| and so in particular Lu is the subfield of L fixed by

Gal(L/K)u.

Computing quantities such as the transition function and upper/lower
ramification breaks of an extension L/K is therefore of use when considering the
Galois action of inertia or higher ramification groups. To compute these, we use
ramification polygons, detailed decriptions of which appear in [32, §4–5] and [53,
§3]. We summarize the key points here.

Definition 9.5. Suppose U/K is unramified, degree d, f(x) ∈ U [x] is Eisenstein
degree e, defining the totally ramified L/U , with uniformizer π ∈ L such that
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f(π) = 0. Then the ramification polygon of L/K is the Newton polygon of the
polynomial f(x + π) (which is supported on [1, e]) with an additional horizontal
face supported on [e, ed].

Lemma 9.6. The lower ramification breaks of L/K are v where −v is a slope of
a face of the ramification polygon. The corresponding |Γv| is the abscissa of the
right hand vertex of the corresponding face. Letting v0 = 0 < . . . < vt be the lower
breaks in sorted order and si = |Γvi

|, and letting u0 = 0 < . . . < ut be the upper
breaks (i.e. ui = φL/K(vi)) then

ui+1 − ui
vi+1 − vi

= si
e(L/K)

gives a means to compute any one of these three sequences from the other two.

Proof. Since OL = OU [π], for σ ∈ Γ(L/U) = Γ(L/K)1 we have val(σ) =
val(σ(π) − π) > 0. Now σ(π) − π are precisely the roots of f(x + π), and so
by Lemma 9.2 their valuations correspond to faces of the ramification polygon.
Specifically, if −v is the slope of the face and w its width, then there are w elements
σ ∈ Γ(L/U) such that val(σ) = v. Accumulating these widths from the left gives
the sizes of Γv, as claimed, for v > 0. The extra horizontal face by construction
has slope 0 and vertex at ed = (L : K) = |Γ| = |Γ0|. The formula relating vi, si, ui
follows from the definition of φL/K as an integral.

Hence the slopes and abscissa of vertices of faces of the Newton polygon
correspond to (vi, si) and the vertices of the transition function correspond to
(vi, ui), and there is a bijective correspondence between these sequences. Therefore
we can compute transition functions from Newton polygons and vice versa,
provided we represent the transition function by its vertices. We introduce a
new type to do so:

type HasseHerbTransFunc
attributes HasseHerbTransFunc: vertices

It is easy to evaluate the transition function at a given v or its inverse at u by
interpolating between the vertices. If we have the transition functions φL/K and
φM/L, then φM/K = φL/K ◦φM/L has as its lower breaks the union of: (a) the lower

161



CHAPTER IV. EXACT P -ADICS

breaks of φM/L; and (b) φ−1
L/K applied to the lower breaks of φL/K . The upper

breaks are similar, and hence we have the vertices of φM/K and therefore deduce
a function to compose transition functions.

Now if we are given such an M/L/K say, with M/L and L/K each defined
by an Eisenstein polynomial over an unramified extension, then we can compute
the ramification polygons of M/L and L/K via the definition above. From
this, we can compute the transition functions φM/L and φL/K . From these
and the composition routine described above, we can compute φM/K and from
this compute the ramification polygon of M/K. In this manner, we deduce
an intrinsic RamificationPolygon to compute the ramification polygon of an
arbitrary extension of p-adic fields and TransitionFunction to compute the
corresponding transition function.

9.7 Hensel’s lemma for univariate root-finding

Recall Hensel’s classic lemma.

Lemma 9.7 (Hensel). Suppose f(x) ∈ O[x], a ∈ O such that v(f(a)) ≥ s > 0 =
v(f ′(a)). Then there exists a unique b ∈ K such that f(b) = 0 and v(a − b) ≥ s.
More precisely, defining a′ := a− f(a)/f ′(a) then v(f(a′)) ≥ 2s and v(f ′(a′)) = 0,
so iterating a 7→ a′ then a→ b.

We refer to the iteration process in Hensel’s lemma as “Hensel lifting”. It can
be generalized to non-integral inputs:

Lemma 9.8. Suppose f(x) ∈ K[x], where K is a p-adic field, and a ∈ K such
that among all roots b of f , v(a − b) is maximised precisely once. Then iterating
a 7→ a− f(a)/f ′(a) yields a→ b.

Proof. The generalization is actually reducible to the original version.
Consider the polynomial f(x+a). Its roots are b−a where b is a root of f , and

so its Newton polygon measures the number of times each v(a− b) occurs. Hence
the hypothesis is equivalent to saying that the first face of the Newton polygon of
f(x+ a) has width 1.

Suppose this is true, then in particular the first face has integral slope and
so there exist j, k ∈ Z so that g(x) := πjf(πkx + a) has integral coefficients,
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val(g0) > 0 and val(g1) = 0. Note that g0 = g(0) and g1 = g′(0) so the original
version of Hensel’s lemma applies to g and 0. By linearity, Hensel lifting on g is
equivalent to Hensel lifting on f .

Remark 9.9. Krasner’s lemma is a corollary of this form of Hensel’s lemma.

We provide an intrinsic IsHenselLiftable which takes as input a polynomial
f(x) ∈ K[x] and an element a ∈ K and returns true if this generalized version of
Hensel’s lemma can be applied to find a root b of f close to a. If so, it also returns
that root.

The algorithm proceeds by computing f(x+ a) to sufficient precision to see if
the first face of its Newton polygon has width 1 or not. If so, then the returned
root has as its initial approximation the approximation of a truncated to a certain
precision determined by Hensel’s lemma, and its update function performs the
Hensel lifting iteration above.

intrinsic IsHenselLiftable(
f :: RngUPolElt_FldPadExact,
a :: FldPadExactElt)

-> BoolElt, FldPadExactElt

// first determine if Hensel's lemma is applicable
// try successively precise approximations
for n in 1,2,... do

// get an approximation of f and a
xf := EpochApproximation(f, n)
xa := EpochApproximation(a, n)
// approximate f(x+a)
xf2 := Evaluate(xf, x + xa)
// this Newton polygon is computed from the *weak*
// valuations, so is not necessarily correct
np := NewtonPolygon(xf2)
face := Faces(np)[1]
// if the first face has width 1 and the right hand
// vertex is correct, then there really is a face of
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// width 1
if Width(face) eq 1
and not IsWeaklyZero(Coefficient(xf, 1))
then break
// if the face has higher width, and both vertices
// are correct, then there really is a face of this
// width
elif Width(face) ne 1
and not IsWeaklyZero(Coefficient(xf, 0))
and not IsWeaklyZero(Coefficient(xf, EndVertices(face)[2][1]))
then return false
// else we cannot conclude whether the first face
// has width 1 or not
else continue

// if we get this far, then a is Hensel liftable
// we omit the implementation of Hensel lifting
root := ...
return true, root

9.8 Univariate root finding I

Magma provides an intrinsic Roots to find all of the roots of a univariate
polynomial over an inexact p-adic field. As discussed in §1.2, perhaps confusingly
these are roots “up to precision”, so for example given the polynomial x2 + 210Z2

over Q2, it will return the root 0 + 210Z2 with multiplicity 2. In a sense this is
misleading, because it could be that the polynomial is actually x2 +211 to absolute
precision 10, and this polynomial does not have any roots. Hence, one should not
interpret the existence of roots of an inexact polynomial to necessarily be roots of
any lift of that polynomial to something more precise.

On the other hand, a Roots intrinsic for exact polynomials should only return
genuine roots of the full-precision polynomial. We can use the inexact Roots
intrinsic and IsHenselLiftable to achieve the desired result:

intrinsic Roots(f :: RngUPolElt_FldPadExact) -> []
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for n in 1,2,... do
// get an approximation to f
xf := EpochApproximation(f, n)
// compute the roots of f up to precision
xroots := Roots(xf)
// check that the roots are all Hensel liftable
roots := []
for xroot in xroots do

// the roots must be distinct, up to precision,
// to have a chance of succeeding; if not, go
// to the next precision in the strategy
if Multiplicity(xroot) ne 1 then

continue n
// see if an approximation to the root is
// Hensel liftable to a genuine root of f
ok, root := IsHenselLiftable(f, xroot)
// if not, then go to the next precision
if not ok then

continue n
// if we get this far, we have a root
Append(~roots, root)

// if we get this far, we have a full set of roots
return roots

// if we get this far, we have run out of things to try
error "precision error"

Note that this can only succeed if all of the roots over the base field are simple,
because Hensel’s lemma can only detect simple roots. This is the best possible:
if f has a root r of multiplicity m, then to any precision this is indistinguishable
from f having an irreducible factor of degree m, all of whose roots are very close
to r. For example, over Q2, the root 1 to multiplicity m is indistinguishable to
high precision from an irreducible factor whose roots are 1 + 210000 m

√
2. Hence it is

not possible to prove that a polynomial to any finite precision has repeated roots.
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9.9 Hensel’s lemma for multivariate root finding

We are now interested in solving square systems of multivariate polynomials,
namely we wish to find the roots of systems of n polynomials f(x) =
(f1(x), . . . , fn(x)) ∈ K[x]n in n variables x = (x1, . . . , xn). A root of such a system
is an element r ∈ Kn such that f(r) = 0.

The following multivariate version of Hensel’s lemma is well-known:

Lemma 9.10. Suppose f(x) ∈ O[x]n is a system of n polynomials in n variables,
a ∈ On, val(f(a)) ≥ s > 2t = 2 val(det J(f)(a)) where J(f)i,j = dfi

dxj
. Then there

is a unique b ∈ Kn so that f(b) = 0 and val(a−b) ≥ s−t. More precisely, defining
a′ = a−f(a)J(f)(a)−1, then val(det J(f)(a′)) = t and v(f(a′)) ≥ 2(s−t); therefore
iterating a 7→ a′ then a→ b.

We can state a slightly more general version, which says that if we can apply
a linear change to the equations, perhaps over an extension, such that Hensel’s
lemma applies, then Hensel’s lemma also applies to the original system over the
base field:

Lemma 9.11. Suppose f(x) ∈ K[x] is a system of n polynomials in n variables,
a ∈ Kn, L/K a finite extension, M,N ∈ GLn(L), ã := Ma ∈ OnL, f̃ :=
Nf(M−1x) ∈ OL[x]n, val(f̃(ã)) ≥ s > 2t = val(det J(f̃)(ã)). Then a Hensel
lifts to a unique root of f in K.

Proof. Define ã = Ma, ã′ = ã−f̃(ã)J(f̃)(ã)−1. We know that iterating ã 7→ ã′ then
ã→ b̃ ∈ L a root of f̃ . By linearity we find ã′ = Ma′ where a′ = a−f(a)J(f)(a)−1.
We conclude that a→ b such that Mb = b̃, and since a′ ∈ K, then b ∈ K also.

In the package, we provide an intrinsic IsHenselLiftable which takes as input
such a system f and a near-root a and returns true if Hensel’s lemma is applicable.
If so, it also returns the Hensel-lifted root itself. It also optionally accepts two
vectors µ, ν ∈ Qn which define the diagonal matrices M and N with diagonal
entries πµ and πν , and uses the more general version of Hensel’s lemma. This
allows us to implicitly rescale the equations and variables, so that the inputs need
not be integral.
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It should be possible to determine whether there exists any such µ and ν

so that Hensel’s lemma is applicable, and therefore recover a completely general
and parameterless version of multivariate IsHenselLiftable in analogue with the
univariate case. The theory for this has not been completely worked out yet.

Remark 9.12. An algorithm to actually compute the roots or factors of such a
square system is work in progress (see Chapter VI).

9.10 Hensel’s lemma for univariate factorization

Suppose f(x) ∈ K[x] is a monic univariate polynomial of degree n = n1 + n2.
Consider the problem of finding a factorization f(x) = g(x)h(x) where deg(g) =
n1, deg(h) = n2 and g and h are monic. By treating the n coefficients of
1, x, . . . , xn−1 in f(x)− g(x)h(x) as multivariate polynomials in the n1 coefficients
of g and the n2 coefficients of h, we have a system of n multivariate polynomials
in n variables to solve.

We conclude that there is a version of Hensel’s lemma applicable to this
situation, provided that a given near-factorization f(x) ≈ g(x)h(x) is sufficiently
accurate. How accurate this needs to be is controlled by the determinant of the
Jacobian matrix J in Hensel’s lemma. In this case, the first n1 rows of J correspond
to d(f−gh)

dgi
= xih(x), and the next n2 rows correspond to d(f−gh)

dhi
= xig(x), with the

columns being the coefficients of these polynomials. This is precisely the matrix
defining the resultant, and so we conclude that det(J) = Res(g, h).

For example, we get the following version of Hensel’s lemma for factorization,
although more general versions analogous to those in previous sections are also
possible.

Lemma 9.13. Suppose f(x), g(x), h(x) ∈ O[x] are monic of degrees n = n1 +
n2, n1, n2 such that val(f − gh) ≥ s > 2t = 2 val(Res(g, h)). Then g, h Hensel-lift
uniquely to a factorization of f .

Suppose we are given f(x) and g(x) but not h(x) and want to determine if
g(x) is Hensel liftable to a factor of f(x). It seems natural to define h := f div g
and apply Hensel’s lemma to this. The following lemma shows that this is indeed
the best choice for h:
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Lemma 9.14. If f(x), g(x) ∈ K[x] have degrees n and n1 ≤ n and g is monic, then
among polynomials h(x) ∈ K[x] of degree n2 = n − n1, val(f − gh) is maximized
by h = f div g.

Proof. By definition, f − g(f div g) = f mod g =: h0. Consider arbitrary
h = f divg+d, then f−gh = f−g(f divg)−gd = h0−gd. Define B = val(h0)+1
and suppose there exists d so that val(h0) − gd ≥ B. In particular d 6= 0. Fix d
of smallest degree, and let m be this degree. Then the (m + n1)th coefficient of
f − gh is −dm and so val(dm) ≥ B. Define d′ = d− dmxm, then val(h0)− gd′ ≥ B

and deg d′ < deg d, a contradiction.

The package provides an intrinsic IsHenselLiftable which takes as input two
polynomials f and g and returns true if g is Hensel-liftable to a factor of f . If
so, it also returns the factor itself. In analogue with the multivariate version of
IsHenselLiftable, this intrinsic takes parameters which implicitly re-scale the
polynomials and the variable x before applying Hensel’s lemma.

9.11 Univariate factorization by Newton polygon

An easy application of Hensel’s lemma for univariate factorizations is to factor a
polynomial according to its Newton polygon.

Recall that the slopes of faces of the Newton polygon of a polynomial f(x)
correspond to valuations of roots of f(x), with the width of the face corresponding
to the number of roots with this valuation. If two roots of f(x) come from the same
irreducible factor, then they are Galois conjugate and so have the same valuation;
we conclude that each face of the Newton polygon corresponds to a factor of f
whose degree is the width of the face.

In fact, we can prove this fact directly using a version of Hensel’s lemma for
factoring, seen in the previous section: it is not hard to see that with a suitable
choice of rescaling on f and x that we may choose g so that Hensel’s lemma is
applicable. Specifically, we rescale so that the selected face of the Newton polygon
of f becomes horizontal and incident with the x-axis, and take for g the polynomial
formed from the coefficients of f corresponding to the face.

The package provides a routine NewtonPolygonFactorization which takes
as input a univariate polynomial f and returns its factorization according to
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its Newton polygon. It is implemented essentially by first computing the
NewtonPolygon of f , and then for each face constructing a suitable g and calling
IsHenselLiftable to produce a factor.

9.12 Univariate factorization into irreducibles I

We also provide an intrinsic Factorization which returns the full factorization
of a polynomial f(x) into irreducible factors.

It is implemented in a very similar fashion to Roots as described in §9.8: it
calls Magma’s builtin Factorization routine on an approximation to f(x), and
then checks if each factor returned is Hensel liftable using IsHenselLiftable.

9.13 Univariate root finding and factorization into irre-
ducibles II

Our Roots and Factorization intrinsics actually have a parameter Alg to select
between two different algorithms. We have already described Alg:="Builtin"
(§9.8, §9.12) which is a wrapper around the builtin intrinsics for inexact p-adics.

With the parameter Alg:="OM", which is now the default, we use our own
implementation of an “OM algorithm” for computing “Okutsu invariants” of the
input polynomial, which identifies its irreducible factors and some properties of the
extensions they define. From these, we can use “single factor lifting” to generate
arbitrarily precise approximations to the factors. The algorithm is essentially that
described in [62, Ch. VI].

Remark 9.15. Although not usually presented as such, “single factor lifting” is
nothing but Hensel’s lemma in disguise. Recall in 9.10 that we expressed factoring
f(x) = g(x)h(x) as a multivariate system of equations whose coefficients are the
n1 = deg(g) coefficients of g and the n2 = deg(h) coefficients of h.

We can instead write g(x) = xn1 + ∑
i<n1 g

′
iXg,i(x) and h(x) = xn2 +∑

i<n2 h
′
iXh,i(x) where X∗,i(x) ∈ K[x] are fixed monic polynomials of degree i, and

instead consider f(x) = g(x)h(x) as a system of equations in the variables g′i and
h′i. Essentially, we have chosen bases for the vector spaces of monic polynomials
of degrees n1 and n2 different from the usual 1, x, x2, . . .. This is a linear change
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of variables of the sort considered in Lemma 9.11.
The OM algorithm builds up such a basis for each factor, and the point in the

algorithm at which an irreducible factor is identified is precisely the point at which
Hensel’s lemma, in terms of this basis, can be invoked.

Remark 9.16. The same algorithm is also made available as an intrinsic Exactp-
Adics_Factorization which can take an inexact p-adic polynomial. This can be
used independently of the package.
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Chapter V

Conductors of Genus 2 Curves

Foreword

This chapter has been published separately as an article [18] co-authored with Tim
Dokchitser. Sections 4 to 6 (except 4.1) represent my contribution, they are mainly
to do with the wild conductor exponent and the implementation. The remaining
sections are by Tim Dokchitser, they are mainly to do with the tame conductor
exponent.

1 Introduction

One of the main arithmetic invariants of a curve C/Q (or over a number field) is
its conductor. It is a representation-theoretic quantity measuring the arithmetic
complexity of C, and it is particularly important in the considerations that involve
Galois representations or L-functions of curves.

In practice, the conductor is difficult to compute. It is defined as a product
N = ∏

p p
np over primes p, so the problem is computing the local conductor

exponents np; these are functions of C/Qp. For elliptic curves (genus 1), the
problem of computing np is solved with Tate’s algorithm [66] and Ogg-Saito
formula [50, 58]. In genus 2 and p 6= 2 there is an algorithm of Liu [44] via
the Namikawa–Ueno classification [49], and for hyperelliptic curves of arbitrary
genus there is a formula for the conductor [19], again for p 6= 2.
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CHAPTER V. CONDUCTORS OF GENUS 2 CURVES

As the global conductor N requires the knowledge of np for all primes p,
including p = 2, it is currently only provably computable for elliptic curves, and
for quotients of modular curves using modular methods (see e.g. [29]). In practice,
one can guess N from the functional equation of the L-function (see e.g. [14, 7]),
but this approach is conditional on the conjectural analytic continuation of the
L-function, and is basically restricted to reasonably small N .

In this paper, we propose an (unconditional) algorithm to compute the
conductor for curves of genus 2. The case to consider is p = 2, so from now on C
will be a non-singular projective curve of genus 2, defined over a finite extension
K of Q2. Recall that the conductor exponent is the sum of the tame and wild
parts (see §2),

n2 = n = ntame + nwild.

The difficult one is the wild part, which is the Swan conductor of the l-adic Tate
module of the Jacobian J/K of C/K, for any l 6= 2. We will take l = 3 and use
that nwild can be computed from the action of Gal(K̄/K) on the 3-torsion J [3].
The equations defining J [3] as a scheme are well-known in genus 2 (see §4.1 or [9])
and we use Gröbner basis machinery to convert them essentially to a univariate
equation of degree 80 = |J [3] \ {0}|. The problem then becomes to compute the
Galois group of this polynomial, and enough information about the inertia action
on the roots to reconstruct the conductor. This is the core of the paper (§4).
In particular, we discuss how to guarantee that the results are provably correct
(§4.3).

As for the tame part, it can be computed from the regular model of C/K,
which is in principle accessible: take any model of C over the ring of integers of K,
and perform repeated blowups until it becomes regular1. However, the algorithm
to compute a regular model is currently only partially implemented in Magma [8],
and so we complement our algorithm with a result that determines ntame from
elementary invariants, in the majority of the cases (Theorem 3.1).

An alternative approach to getting the conductor would be to find a Galois
extension F/K where C acquires semistable reduction and a semistable model

1Then ntame = 4 − 2da − dt, where da (‘abelian part’) is the sum of genera of reduced
components of the special fibre of the model, and dt (‘toric part’) is the number of loops
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over F , and analyse the action of inertia of F/K on the model. From this one can
determine the l-adic representation VlJ , in particular the conductor exponent; see
e.g. [16, §6]. Moreover, that there are more compact polynomials defining such
an F in the case of genus 2, p = 2 than the degree 80 3-torsion polynomial. For
example, there is the monodromy polynomial of Lehr-Matignon in the potentially
good reduction case, of degree 16 [42, §3]. However, the splitting field of any such
polynomial would have ramification degree no less that that of K(J [3])/K, by the
Serre-Tate theorem [61, Cor. 2]. So such a field (and the model of C over it) would
be still prohibitively large to compute, and our algorithm avoids this.

Regarding Gröbner bases, the algorithm would be accelerated by an algorithm
to solve multivariate systems of equations p-adically (see Remark 5.1). This is
also work in progress. Finally, it should be possible to extend the algorithm to
compute the conductor to function fields of characteristic 2 as well, by modifying
the equations of the curve and its 3-torsion in §4.1 appropriately.

This algorithm has been implemented as a Magma package [24], and has been
used to verify all of the genus 2 curves in the LMFDB (§6).

2 Notation

Throughout the paper, we use the following notation:

K,L, ... local fields, of residue characteristic p
K,L, ... global fields
GK = Gal(K̄/K), the absolute Galois group of K
IK < GK its inertia group
T Zl-module with an action of GK , with l 6= p

V the associated l-adic representation T ⊗Zl
Ql

V̄ the reduction T ⊗Zl
Fl

Gu upper numbering of ramification groups
Gv lower numbering of ramification groups
n = ntame + nwild conductor exponent

We are interested in the situation that J/K is an abelian variety, T = TlJ is
its l-adic Tate module, V = VlJ and V̄ = J [l] is its l-torsion. Recall that the
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conductor exponent of such a representation is given by (see e.g. [67])

n(V ) =
∫ ∞
−1

codim V Gu
Kdu,

with
ntame(V ) =

∫ 0

−1
and nwild(V ) =

∫ ∞
0

.

For u > 0, Gu
K is pro-p, and [67, §6]

codim V Gu
K = codim V̄ Gu

K .

Our approach is that we will compute ntame(V ) as the codimension of inertia
invariants V IK , and the wild conductor exponent as

nwild(V ) =
∫ ∞

0
codim J [l]G

u
Kdu,

and replacing GK by Gal(K(J [l])/K).

3 Tame conductor exponent

Let K be any non-Archimedean local field, J/K a g-dimensional abelian variety,
and l a prime different from the residue characteristic of K. Write T = TlJ

for the l-adic Tate module of J/K and V = VlJ = TlJ ⊗Zl
Ql, both viewed as

representations of the inertia group IK < GK .
Recall2 that there is a canonical filtration on T coming from the toric part and

the abelian part of J over a field where it acquires semistable reduction. With
respect to this filtration, IK acts on T as

χ ∗ N

0 ρ ∗
0 0 χ̂

 (3.1)

2These are ‘standard’ facts that we found a little hard to locate in the literature, but they are
summarised in [11] §2.10: for the existence of a Gal(K̄/K)-stable filtration that forces the Galois
group action to be upper-triangular see [11, p.13, 2nd half]; for the fact that the representations
on the graded pieces χ and ρ are independent of l see [11, p.13, bottom], and for the maps
between them and the monodromy pairing [11, pp. 12,14]. See also forthcoming paper [17].
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2

2
1

1n
0

In,m

0

0

Un,m,r

1 1

1× 1
1 0

1× In
0 0

In × Im

Figure 1: The 7 stable reduction types for genus 2.

with χ : IK → GLt(Zl), ρ : IK → GL2a(Zl) continuous with finite image (t=‘toric’,
a=‘abelian’, 2t+2a = rkZl

T = 2g), and χ̂ the dual of χ. The ‘monodromy matrix’
N has Z-coefficients, and χ factors through GLt(Z) as well. In particular, χ⊗Ql is
self-dual with determinant of order 1 or 2. Consequently, the same holds for ρ⊗Ql,
as det (3.1) = 1 by the Weil pairing.

Now, we specialise to the case when J = JacC is the Jacobian of a genus 2
curve and l = 3. We will explain in §4 how to compute the image I of IK in
Aut J [3] and the dimension of inertia invariants dim J [3]I .

We can also compute t and a using a theorem of Liu [43, Thm 1] that determines
the stable type of C/K from the Igusa invariants of the curve. There are 7 possible
stable types in genus 2, in other words possibilities for stable reduction. (For
elliptic curves there are 2 types of stable reduction — good and multiplicative.)
They are listed as cases I, II, ..., VII in Liu’s theorem, and in the notation of [20]
they are denoted 2, 1n, In,m, Un,m,r, 1 × 1, 1 × In, In × Im. The special fibres
are shown in Figure 1, with numbers above the components indicating geometric
genus.

Of these, types 2 and 1× 1 have t = 0, a = 2 (potentially good reduction of J),
types 1n and 1 × In have t = a = 1 (mixed), and In,m, Un,m,r and In × Im have
t = 2, a = 0 (potentially totally toric reduction).

The main result of this section recovers the tame conductor exponent of J/K
from the invariants I, dim J [3]I and t, when this is possible:

Theorem 3.1. Let K be a non-Archimedean local field of residue characteristic
6= 3 and C/K a genus 2 curve with Jacobian J/K. Write
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I = image of inertia IK < GK in Aut J [3] (so I < Sp4(F3)),
d = dim(V3J)I (so 0 ≤ d ≤ 4),
d̄ = dim J [3]I (so 0 ≤ d̄ ≤ 4),
t = potential toric dimension of J (so 0 ≤ t ≤ 2),
f = 4− d = ntame(V3J) = ntame(J/K) (so 0 ≤ f ≤ 4).

Then d̄ ≥ d and so f ≥ 4− d̄. Moreover,

1. If d̄ = 0 then f = 4.

2. If d̄ = 4 then d = 4− t and f = t.

3. Suppose J has potentially good reduction (t= 0). If |I|= 3 and d̄= 2 then
f=4; in all other cases, f is the smallest even integer ≥ 4−d̄.

4. If (t, |I|) ∈ {(1, 3), (2, 3), (1, 2), (1, 6)} then f is not uniquely determined as
a function of t, I and d̄.

5. If (t, |I|) = (2, 9) then f = 4; in all other cases not covered, f = 3.

Proof. Write T = T3J , V = V3J . Note that after tensoring (3.1) with Q3 and a
suitable change of basis, both ∗’s can be made 0 and N a t× t identity matrix. In
particular,

V IK = χI ⊕ ρI , f = 4− dimχI − dim ρI . (3.2)

If V has an IK-invariant subspace of dimension d, its intersection with T gives a
rank d saturated sublattice of T , whose reduction contributes at least dimension
d to J [3]I . This shows that d̄ ≥ d, and implies (1).

(2) By Raynaud’s semistability criterion [33, Prop 4.7], J is semistable if J [m]
is unramified for some m ≥ 3 coprime to the residue characteristic. Here IK acts
trivially on J [3], and so J is semistable. In other words, f = t and d = 4− t.

For the remainder of the proof, we assume d̄ ∈ {1, 2, 3}.
(3) By Serre-Tate’s theorem [61, Cor. 2], J has good reduction over K(J [3]);

that is, IK acts on V3J through I. By Poincare duality, this representation has
even-dimensional inertia invariants, in other words d is even. As d ≤ d̄ ∈ {1, 2, 3},
the only possibility for f = 4 − d not to be the smallest even integer ≥ 4 − d̄ is
when d = 0 and d̄ ∈ {2, 3}. Suppose we are in that case.
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Consider the possibilities for I < Sp4(F3). Note that 3 divides |I|, for otherwise
the classical representation theory of I agrees with its modular representation over
F3, implying d = d̄. Also note that C3 × C3 is not a quotient of I, as the residue
characteristic of K is not 3, and tame inertia is cyclic. Computing in Magma
[8], we find that that Sp4(F3) has 162 conjugacy classes of subgroups, of which 5
satify the three properties (a) order multiple of 3, (b) no C3 × C3-quotient, and
(c) d̄ ∈ {2, 3}. Call them H1, H2, H3 ∼= C3, H4 ∼= C6 and H5 ∼= SL2(F3).

By the classification of integral Cp-lattices [13, 54], there are two
indecomposable Z3[C3]-lattices, up to isomorphism: the trivial lattice of rank 1,
and a lattice Λ of rank 2 on which the generator of C3 acts as

(
−1
−1

1
0

)
; every finite

rank Z3[C3]-lattice is a direct sum of these. If I ∼= C3, then as d = 0, we must
have T ∼= Λ⊕ Λ, and it has d̄ = 2 as claimed.

It remains to show that I ∈ {H4, H5} with d = 0 is impossible. Suppose we
are in this case, and let z ∈ I be the unique central element of order 2. As above,
the classical representation theory of the group 〈z〉 ∼= C2 agrees with its modular
representation over F3. In both H4 and H5 the action of z on V̄ = J [3] has two +1
and two −1 eigenvalues. The same is therefore true for V ; moreover, V = V +⊕V −

and T = T+ ⊕ T− decompose into the two 2-dimensional eigenspaces for z and
this decomposition induces the one on J [3].

The group SL2(F3) has 3 one-dimensional complex representations factoring
through SL2(F3)/Q8 ∼= C3, three faithful 2-dimensional ones in which z acts as
−1, and a 3-dimensional one with z acting as +1. Thus, when I is H4 and H5,
the space T+ must be a representation of the unique C3 quotient of I. It has no
trivial subrepresentations (as d = 0), so T+ ∼= Λ as a Z3[C3]-module. But then

d̄ = dim(Λ⊗ F3)C3 + dim(T− ⊗ F3)I = 1 + 0,

contradicting the assumption d̄ ∈ {2, 3}.

(4) The following curves give examples over Q2 that prove that f is not a
function of t, I and d̄, as claimed. (In each case, f can be determined by computing
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the regular model.)

t I d̄ f C/Q2

1 C3 3 1 y2 = x6 + 4x4 + 2x3 + 4x2 + 1
1 C3 3 3 y2 = 4x6 − 20x4 − 8x3 + 21x2 + 22x+ 13
2 C3 2 2 y2 = x6 + 6x4 − 7x2 + 16
2 C3 2 4 y2 = 5x6 + 4x3 − 12
1 C2 2 2 y2 = −x6 + 6x4 − x2 − 8
1 C2 2 3 y2 = x6 − 6x4 + x2 + 8
1 C6 1 3 y2 = x6 − 6x4 + 5x2 + 8
1 C6 1 4 y2 = x6 − 31x4 − 25x2 − 32

(5) To deal with all the remaining cases, first suppose that J has totally toric
reduction over K(J [3]), in other words t = 2. In the notation of (3.1), we have a
homomorphism

χ : I −→ GL2(Z) (↪→ GL2(Z3))

whose image we denote by Ī and whose kernel is C1 or C3. Finite subgroups of
GL2(Z) are contained in D4 or D6. Of those, D3, D6 only occur as inertia groups in
residue characteristic 3, and C2

2 , C4, C6, D4 have an element acting as −1, forcing
d̄ = 0 (case (1)).

The remaining possibilities are

Ī ∈ {C1, C2, C3}, I ∈ {C1, C2, C3, C6, C9}.

We have excluded I = C1 (case (1)) and I = C3 (case (4)). When I = C9, its
image Ī ∼= C3 has no invariants, and so f = 4 (proving the case (t, |I|) = (2, 9)).

The only remaining case is Ī = C2, acting with eigenvalues +1,−1 (otherwise
d̄ ∈ {0, 4} again). In this case, the full action on T is of the form


1 0 ∗ 0
0 −1 0 ∗
0 0 1 0
0 0 0 −1
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in some basis, with non-zero ∗’s. This has one-dimensional invariants, and so
f = 3, as claimed.

Finally suppose t = 1, so that IK acts on T as
χ ∗ ∗ 6= 0
0 a b ∗
0 c d ∗
0 0 0 χ


As before, write ρ for the representation IK →

(
a
c
b
d

)
. Because I is not one of the

already excluded groups C1, C2, C3, C6, the image of IK under ρ̄ = ρ mod 3 is not
C1 or C2. But any other subgroup of GL2(Z3) of finite order is either D3, which
cannot be a local Galois group, or ρ̄(I) has no invariants on F2

3. Hence ρ̄IK = 0,
and J [3]IK = χIK has either dimension 0 (case (1)) or dimension 1 with f = 3, as
claimed.

4 Wild conductor exponent

Recall that we wish to compute

nwild =
∫ ∞

0
codim J [3]Gu

du

where G = GK . Note, however, that GK acts on J [3] through its finite quotient
Gal(K(J [3])/K) so we may equally well take G = Gal(K(J [3])/K) or any quotient
in between.

The integrand here is decreasing, non-negative, integral and left-constant, so if
we denote by u1 = 0, u2, . . . , ut the jump points in the integrand, then we get

nwild =
t∑
i=2

(ui − ui−1) codim J [3]Gui .

Let Z ∈ J [3] be a 3-torsion point and let L = K(Z) be the extension
it generates. Then Z is fixed by Gu if and only if L is fixed by Gu. Since
Gu / G, this occurs if and only if any K-conjugate of Z is fixed by Gu. If
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û = û(L/K) = inf{u : L fixed by Gu} denotes the highest upper ramification
break of L/K, then this occurs if and only if û ≤ u.

Hence, if Z1, . . . , Zm are representatives of the K-conjugacy classes of J [3],
generating extensions Li/K with highest upper ramification break ûi then letting
u0 = −1 < u1 = 0 < . . . < ut be the sorted elements of {−1, 0, û1, . . . , ûm} we
deduce

nwild =
t∑
i=2

(ui − ui−1)
2g − log3

∑
j:ûj≤ui

(Lj : K)


since 2g = dim V and (Lj : K) is the number of K-conjugates of Zj.
We proceed by finding the extensions Li/K explicitly, from which we compute

nwild via this equation.

4.1 Equation for 3-torsion of genus 2 curves

As before, let C/K be a curve of genus 2, with Jacobian J . The linear system for
the canonical divisor on C yields a standard model

C : y2 = f(x), deg f = 5 or 6.

The following statement is well-known (see e.g. [9] proof of Lemma 3); in fact, it
works over any field of characteristic 6= 2, 3.

Proposition 4.1. Non-zero elements of J [3] are in 1-1 correspondence with ways
of expressing f in the form

f = (z4x
3 + z3x

2 + z2x+ z1)2 − z7(x2 + z6x+ z5)3, zi ∈ K̄, (∗)

and this correspondence preserves the action of GK.

Explicitly, suppose D is a divisor on C,

D = (P1) + (P2)− (∞1)− (∞2), Pi = (Xi, Yi)

for which 3D is principal, say 3D = div g. Then g ∈ 〈1, x, x2, x3, y〉. After a
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(unique) re-scaling, say

g = y + b3x
3 + b2x

2 + b1x+ b0.

The norm

NormK(C)/K(x)(g) = (b3x
3+b2x

2+b1x+b0 − y)(b3x
3+b2x

2+b1x+b0+y)
= (b3x

3+b2x
2+b1x+b0)2 − f.

is a function on P1 whose divisor 3(X1) + 3(X2)− 6(∞) is a cube, and so

(b3x
3 + b2x

2 + b1x+ b0)2 − f = c2(x2 + c1x+ c0)3,

as stated. In this form,

X1,2 = roots of x2+c1x+c0 = 0, Yi =−b3X
3
i −b2X

2
i −b1Xi−b0.

We view (∗) as giving a system of 7 equations in the 7 variables zi.

4.2 Finding the 3-torsion fields

Our goal, then, is to find the (K-isomorphism classes of) fields L/K generated by
the (K-conjugacy classes of) solutions Z to the system of equations (∗).

A general tool used to solve systems of polynomial equations such as this
is to compute a Gröbner basis for the polynomial ideal generated by the
polynomials. Generically, a reduced sorted minimal Gröbner basis with respect
to the lexicographic ordering on variables will be a finite sequence of polynomials
such that the first is univariate, the second is a polynomial in two variables, and
so on. Then to solve the system, we first find a root of the first polynomial; then
we substitute this value into the second polynomial, yielding a polynomial in one
variable, and we find a root of this; we repeat this procedure. In the end, this will
produce a sequence of roots which together are a solution to the system.

For our system in particular, the 80 roots come in pairs of the form

(Z1, Z2, Z3, Z4, Z5, Z6, Z7), (−Z1,−Z2,−Z3,−Z4, Z5, Z6, Z7),
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and so generically there are 40 distinct values for Z7, for each of these there is a
unique value for Z6 and Z5 and two distinct values for Z4, and for each of these
there is a unique value for Z3, Z2 and Z1.

In this generic case, the Gröbner basis described above will be a sequence of 7
polynomials B1, . . . , B7 ∈ K[z1, . . . , z7] such that Bi ∈ K[zi, . . . , z7], degzi

Bi = di

where d = (1, 1, 1, 2, 1, 1, 40).
Following the above discussion on solving systems using Gröbner bases, we

first factorize B7 ∈ K[z7] (of degree 40), let g be one of its irreducible factors, let
M/K be the extension it defines, and let Z7 ∈ M be a root of g. Substituting
this into B6 ∈ K[z6, z7] we get B6(z6, Z7) ∈ M [z6], which is linear, and let Z6

be its root. Similarly we let Z5 be the root of B5(z5, Z6, Z7) ∈ M [z5]. Next,
B4(z4, Z5, Z6, Z7) ∈M [z4] is quadratic, so we factorize it, let h be one of its factors,
let L/M be the extension it defines, and let Z4 ∈ L be a root of h. Continuing, we
find unique Z3, Z2 and Z1 which together produces a solution Z = (Z1, . . . , Z7).
Repeating this for all factors g and h we find all solutions Z of the system (up to
conjugacy) and the extensions L/K which they define.

If we are not in this generic case, then the Groeber basis is not of this form and
there is some coincidence in the coordinates of some solutions of the 7 equations.
If we apply a random Möbius transformation x 7→ ax+b

cx+d to the defining polynomial
f(x) then the curve it defines is isomorphic to the original but the solutions Z
have moved, probably to the generic case. In practice, a small number of Möbius
transformations is ever necessary to put the solutions into the generic case.

Remark 4.2. An algorithm of this sort would work with any ordering on
{z1, . . . , z7}. This ordering was chosen because it allows us to factor a degree-40
polynomial followed by a quadratic, which is somewhat faster than just factoring
a degree-80 polynomial required for other orderings.

4.3 Provability

In practice, however, computing a Gröbner basis of this sort is difficult. Gröbner
basis algorithms require exact fields, so in practice we represent K as a completion
of a number field K at some place p | 2, and f(x) ∈ K[x].

The best known algorithm over number fields (and indeed the only algorithm
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which appears to run in feasible time on our problem) computes the basis modulo
many primes and finds the global basis via the Chinese remainder theorem. The
problem here is that a priori we cannot determine the size of the coefficients, and
so a heuristic is used to decide if we have used enough primes to get the answer.
The result is that the algorithm does not yield provable results. Nevertheless, it
is possible to prove the output of the previous algorithm as follows.

If the Gröbner basis algorithm was correct, then any Z = (Z1, . . ., Z7) should
be a solution to the original system of 7 equations (∗) over K. With the following
version of Hensel’s lemma, we can show that Z is indeed very close to a unique
genuine solution, and we can say how close.

The following version of Hensel’s lemma is standard (see e.g. [41] Thm. 23 with
t = det Jf (b), s = vf(b) and vJ∗f (b)f(b) ≥ s).

Theorem 4.3 (Hensel’s lemma for multivariate systems). Suppose K is a local
field and F = (F1, . . . , Fm) ∈ OK [z1, . . . , zm] is a system of m equations in m

variables over OK and Z = (Z1, . . . , Zm) ∈ OmK . Let s = mini vK(Fi(Z)) and
let t = vKJ(F )(Z) where J(F ) denotes the Jacobian determinant of F (the
determinant of the m × m matrix whose (i, j)th entry is ∂Fi

∂zj
). If s > 2t then

there is a unique Z ′ ∈ OmK such that F (Z ′) = 0 and mini vK(Z ′i − Zi) ≥ s− t.

Since evaluating resultants, Jacobians and polynomials are just basic
arithmetic, these operations can be performed provably, and hence applying
Hensel’s lemma we prove that each Z is indeed close to a unique solution Z ′

of the system of equations. Furthermore, Hensel’s lemma gives us a method to
compute Z ′ to any prescribed precision. We expect that Z = Z ′ but we do not
prove so.

It remains to check that these solutions Z ′ generate the fields L and that they
are distinct up to K-conjugacy.

Recall that we have L/M/K with M = K(Z7), g(x) ∈ K[x] the minimal
polynomial for Z7, and L = M(Z4), h(x) ∈ M [x] the minimal polynomial for
Z4. We also have Z ′7, Z ′4 ∈ L and want to prove that L = K(Z ′7, Z ′4). Since we
expect that Z ′7 = Z7, then we expect Z ′7 is closer to Z7 than any other root of
g, and so by Krasner’s lemma we conclude that M = K(Z7) ⊂ K(Z ′7). Another
application of Krasner’s lemma on h and Z ′4 implies that L = M(Z4) ⊂ M(Z ′4).
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Combining these, we deduce L = M(Z4) ⊂ M(Z ′4) ⊂ K(Z ′4, Z ′7) ⊂ L and hence
L = K(Z ′4, Z ′7) = K(Z ′).

To check Krasner’s lemma on a polynomial h ∈ K[x] and some Z ∈ K̄, note
that it is equivalent to check that there is a root of h(x+Z) of higer valuation than
all others. It is well-known that the Newton polygon of a polynomial measures the
valuations of its roots, and therefore Krasner’s lemma is applicable if and only if
the Newton polygon of h(x + Z) has a vertex with abscissa 1. This condition is
explicitly checkable.

Finally, if Z7 is a root of a factor g of B7 and Y7 is a root of a different factor of
B7, then g(Z7) = 0 6= g(Y7), so if we check that v(g(Z ′7)) > v(g(Y ′7)) then we have
proven that Z ′7 6= Y ′7 . Performing a similar check on pairs of Z ′4 determines that
they are different. Together, this will prove that each pair of solutions is distinct.

By performing all these checks with large enough precision, we can determine
whether or not the Z are a genuine set of distinct solutions generating the right
fields. If any of these checks fails, then the Gröbner basis algorithm was incorrect,
and we should try the algorithm again with a lower heuristic chance of failure.

Remark 4.4. There is a conceptually simpler method for provability. Letting
I / K[z1, . . . , z7] be the ideal generated by the original system (∗), and letting
J be the ideal generated by the Gröbner basis, then we wish to prove that I = J .
Since J is generated by a Gröbner basis, there is a normal form for reduction
modulo J and hence we can check that each generator of I is zero mod J and
so deduce I / J . Additionally we know a priori that I has precisely 80 solutions,
and from the structure of the Gröbner basis that J has precisely 80 solutions.
Combined, this implies I = J .

We call this the global proof method to distinguish it from the local proof
method above. In practice, unless the coefficients of f(x) are very small, the
global method takes much longer than the local method. Over Q, with small
coefficients, the global method is typically around twice as quick, but this benefit
quickly diminishes as the field degree increases.
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4.4 Tame conductor exponent revisited

In order to compute the tame conductor exponent using Theorem 3.1, we require
d̄ = dim J [3]G0 and |I|. In previous sections we have already seen an algorithm to
compute dim J [3]Gu for any u having already computed Lj/K, so this is easy as a
side-effect of previous work.

For |I|, consider e = lcmj e(Lj/K), which again is easy to compute from Lj/K.
Clearly it is a divisor of |I|. The following lemma shows that e is a good enough
guess at |I| in the sense that the statement of Theorem 3.1 depends only on t, e
and d̄.

Lemma 4.5. Let S = {1, 2, 3, 4, 5, 6, 9, 10, 12, 18}. If e ∈ S or |I| ∈ S then
|I| = e. If e = 80 then |I| = 160. If e ∈ {8, 24} then |I| ∈ {8, 24}. Otherwise
e ∈ {16, 32, 48, 64} and |I| ∈ {16, 32, 48, 64, 96, 128, 192, 384}.

Proof. Properties of the Weil pairing imply that I < Sp4(F3). Letting W be the
2-Sylow subgroup of I, ramification theory implies W / I and I/W cyclic. The
lemma is proven by checking all groups I consistent with these facts.

5 The algorithm

We use the following algorithm to compute the highest upper ramification break
û(L/K). It takes as input the extension L/K and returns the sequence (ui, vi, si)ti=0

where v0 = −1 < v1 < . . . < vt are the breaks in the ramification filtration of L/K
in the lower numbering, ui are the corresponding breaks in the upper numbering,
and si = |Γvi

| are the sizes of the corresponding ramification subsets of the Galois
set Γ of K-embeddings L→ K̄. In particular, û(L/K) = ut.

See Chapter III for the definition of the ramification polynomial (the coefficients
of which have valuation ri in the algorithm), the ramification polygon P and its
connection to the ramification filtration of L/K. See Chapter IV, §9.6 for the
connection of this filtration to the upper and lower ramification breaks and the
Galois set Γ.
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1: (Compute the ramification polygon of L/U)
2: U ← the maximal unramified subextension of L/K
3: e← (L : U)
4: E ← a defining Eisenstein polynomial for L/U
5: ri ← mine−1

j=i v(Ej
(
j
i

)
) + j

e
for i = 1, . . . , e

6: P ← the lower convex hull of the points (i, ri) for 1 ≤ i ≤ e

7: (Compute ui, vi and si = |Γvi
|)

8: u0 ← −1
9: v0 ← −1
10: s0 ← (L : K)
11: t← the number of faces of P
12: for all i = 1, . . . , t do
13: F ← the ith face of P from the right
14: vi ← the negative of the gradient of F
15: si ← the abscissa of the right hand vertex of F
16: ui ← ui−1 + si−1

s0
(vi − vi−1)

17: end for
18: return ((ui, vi, si))ti=0

Now we present the final algorithm, which takes a polynomial f(x) ∈ K[x] of
degree 5 or 6 over a number field K defining a hyperelliptic curve y2 = f(x), and a
prime ideal p of K dividing 2, and returns the conductor exponent np of the curve
at p.

1: (Apply Möbius transformations to f(x) until its 3-torsion points are in general
position)

2: repeat
3: choose a, b, c, d ∈ Z so that ad− bc 6= 0
4: f̃ ← f(ax+b

cx+d)(cx+ d)6

5: F = (Fi)7
i=1 ← coefficients of

(z1 + z2x+ z3x
2 + z4x

3)2 + z7(z5 + z6x+ x2)3 − f̃(x)

6: B = (Bi)i ← Gröbner basis of F
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7: until B is in generic form

8: (Find the fields defined by each Z7)
9: K ← Kp

10: S ← empty sequence
11: C ← empty sequence
12: (gi)i ← irreducible factorization of B7(x) over K
13: for all gi do
14: M ← the extension of K defined by gi
15: Z7 ← a root of gi in M
16: Z6 ← the root of linear B6(x, Z7) over M
17: Z5 ← the root of linear B5(x, Z6, Z7) over M

18: (Find the fields defined by each Z4)
19: (hi)i ← irreducible factorization of B4(x, Z5, Z6, Z7) over M
20: for all hi do
21: L← the extension of M defined by hi
22: Z4 ← a root of hi in L
23: Z3 ← the root of linear B3(x, Z4, Z5, Z6, Z7) over L
24: Z2 ← the root of linear B2(x, Z3, Z4, Z5, Z6, Z7) over L
25: Z1 ← the root of linear B1(x, Z2, Z3, Z4, Z5, Z6, Z7) over L

26: (Check the solutions are valid with Hensel’s lemma)
27: assert Z is Hensel liftable to a solution of F
28: Z ′ ← the Hensel-lifted solution (we expect Z ′ = Z)

29: (Check the solutions generate the right fields with Krasner’s lemma)
30: assert the Newton polygon of gi(x+ Z ′7) has a vertex above 1
31: assert the Newton polygon of hj(x+ Z ′4) has a vertex above 1

32: (Check the solutions are distinct)
33: for (Y ′7 , Y ′4) ∈ C do
34: assert vK(gi(Z ′7)) > vK(gi(Y ′7)) or vK(hi(Z ′4)) > vK(hi(Y ′4))
35: end for
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36: append (Z ′7, Z ′4) to C

37: (Save L)
38: append L to S
39: end for
40: end for

41: (Compute the tame and wild exponents from S)
42: d̄← the function u 7→ log3(1 +∑

L∈S:û(L/K)≤u(L : K)) (= dim V̄ Gu)
43: e← lcmL∈S e(L/K)
44: t← potential toric dimension of J
45: if d̄(0) = 0 then
46: ntame ← 4
47: else if d̄(0) = 4 then
48: ntame ← t

49: else if t = 0 then
50: if e = 3 and d̄(0) = 2 then
51: ntame ← 4
52: else
53: ntame ← smallest even integer ≥ 4− d̄(0)
54: end if
55: else if (t, e) ∈ {(1, 3), (2, 3), (1, 2), (1, 6)} then
56: ntame ← the tame exponent, computed from a regular model
57: else if (t, e) = (2, 9) then
58: ntame ← 4
59: else
60: ntame ← 3
61: end if
62: u0, . . . , ut ← the sorted elements of {û(L/K) : L ∈ S} ∪ {−1, 0}
63: nwild ←

∑t
i=2(ui − ui−1)(4− d̄(ui))

64: return nwild + ntame

Remark 5.1. Note that the approach to solving the system of 7 equations in 7
variables is to compute a Gröbner basis globally, and then solve this system
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locally. This is the only global aspect of the algorithm, and becomes the bottleneck
when the global coefficients become large. An alternative approach is to solve the
system of equations directly locally, perhaps using a Montes-type algorithm similar
to univariate factorization algorithms which split the system into several smaller
systems. This is the subject of ongoing research (see Chapter VI).

Remark 5.2. Recalling Remark 4.4, if we wish to use the global proof method
instead, then we can skip over lines 22–36 and instead insert after line 7 a check
that each element of F reduces to 0 modulo B.

6 Implementation

The algorithms described in this paper have been implemented [24] in the Magma
computer algebra system [8] using the exact p-adics packages of Chapter IV. The
implementation, modulo bugs, produces provable results at every step.

The LMFDB [45] contains the 66,158 genus 2 hyperelliptic curves defined over
Q computed by Booker et al [7]. Of these, all but 1113 have discriminant of 2-
valuation less than 12 and therefore their conductor exponent at 2 is computable
via Ogg’s formula. Our algorithm has been run on the 1113 remaining curves, using
the global proof method (see Remark 4.4). The computation took 9.4 core-hours
in total on a 2.7GHz Intel Xeon, averaging 30 core-seconds per curve.

For all but 6 of these curves, the fast tame conductor algorithm of §3 succeeds,
and so we compute an entire conductor exponent at 2. For 4 of the remaining
6 curves, a regular model was quickly computed by Magma (taking at most 10
seconds) and therefore the tame exponent was deduced this way. For the remaining
2 curves (labelled 3616.b.462848.1 and 18816.d.602112.1 in the LMFDB) a
regular model was computed by hand. In all of these cases, the exponent agrees
with the unproven results of [7] and therefore we have proven the conductors for
all curves in the LMFDB.

The run-time of the algorithm is usually dominated by the factorization of
the degree-40 polynomial over K, at least when the defining polynomial f(x) has
fairly small coefficients. When these coefficients grow, the (global) Gröbner basis
algorithm dominates the run-time.
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Figure 2: Run-time versus conductor exponent on LMFDB curves. Thick line is
mean run-time, thin gray lines are 20-percentiles.

This gives some impetus towards developing a fully local algorithm as suggested
in Remark 5.1, since this will be independent of global coefficient sizes.

The implementation has also been tested on some curves defined over quadratic
number fields. These results were confirmed by Schembri [59] by finding a
corresponding Bianchi modular form whose level squared equals the conductor and
proving the expected relationship between their L-functions using Faltings-Serre.

The run-time does not appear to grow much with the conductor exponent, as
evidenced by Figure 2 summarizing the run-times of the algorithm on the LMFDB
curves.
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Chapter VI

Solving Multivariate Systems

1 Introduction

In this article we consider the following problem: given a system F ∈
K[x1, . . . , xn]n of n polynomials in n variables over a p-adic field K, what are
its roots in Kn?

Note that generically we expect such a system to have finitely many roots,
although it could have infinitely many [6, 55]. This article presents an algorithm
which will find all roots of a system assuming it has finitely many and that they
are all distinct.

Our algorithm is essentially an “OM algorithm” for factoring univariate
polynomials over p-adic fields (see e.g. [62, Ch. VI]), but specialised to root-finding
and then generalized to multivariate polynomials. We expect that our algorithm
can also be generalized to factoring multivariate systems, or more generally still to
decomposing p-adic schemes of arbitrary dimension. In this vein, Dokchitser has
considered the case of a single equation in two variables [15].

Although presented in terms of p-adic fields, we expect that this whole article
generalizes directly to any Henselian discrete valuation fieldK, with the restriction
that Algorithm 6.1 requires the residue class field to be finite (cf. Remark 6.4).

The following definition is important.

Definition 1.1. In this article, a root of F is a vector r ∈ (K̄×)n such that
F (r) = 0. A polynomial is a Laurent polynomial; that is, we allow negative
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exponents.
These definitions imply that v(r) ∈ Qn and allow us to freely multiply or divide

our polynomials by a monomial without altering its roots, which simplifies things.
We expect that some minor modifications will allow us to find all roots allowing
zero coordinates.

As a specific point of motivation, consider the algorithm in Chapter V for
computing the 2-part of the conductor of a genus-2 hyperelliptic curve. A key
part in this algorithm is finding the extensions of Q2 defined by the 80 roots
(corresponding to 3-torsion) of a system of 7 polynomials in 7 variables. The
current method is to compute a Gröbner basis over Q and then use univariate p-
adic factoring, but the global step can be expensive. It would be better to factorize
the system p-adically directly.

1.1 Layout of article

In §2 we describe Hensel’s lemma, which gives the terminating condition of our
algorithms.

In §3–§5 we define Newton polytopes and residual systems and give their
main properties. These are a generalization of Newton polygons and residual
polynomials in the univariate case (see e.g. Chapter IV §9.5 or the related
literature on ramification polygons e.g. Chapter III or [32, 53]).

In §6 we give a root-finding algorithm and prove its correctness. It may be
slow when the residue class field is large (Remark 6.4).

In §7 we describe an alteration to our earlier algorithm making it more efficient
over large residue class fields.

Finally in §8 we give a worked example.

1.2 Notation

We fix a p-adic field K (i.e. a finite extension of Qp). The ring of integers of K
is denoted O, and we fix a uniformizing element π and the valuation v such that
v(π) = 1. The residue class field is F = Fq = O/(π) the finite field of order q. If
x ∈ O then x̄ = x+(π) ∈ F is its residue class. If x ∈ K× then x# = x/πv(x) ∈ O×.
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For vectors a ∈ Kn, we define v(a) = (v(a1), . . . , v(an)) and min v(a) =
mini v(ai). We let ai...j denote the sub-vector (ai, . . . , aj).

2 Hensel’s lemma

The following multivariate version of Hensel’s lemma is well-known. We include a
proof for completeness.

Definition 2.1. If F ∈ K[x1, . . . , xn]n then its Jacobian is Jac(F ) = det(M) ∈
K[x1, . . . , xn] whereM ∈ K[x1, . . . , xn]n×n is defined pointwise byMi,j = dFi/dxj.

Lemma 2.2 (Multivariate Hensel’s lemma). Suppose F ∈ O[x1, . . . , xn]n is an
integral system of n polynomials in n variables, and a ∈ On. Let t = v(Jac(F )(a))
and suppose there is s > 2t such that min v(F (a)) ≥ s. Then there is b ∈ On such
that min v(a − b) ≥ s − t, min v(F (b)) ≥ 2(s − t) and v(J(F )(b)) = t. In this
situation, there is a unique r ∈ On such that F (r) = 0 and min v(a − r) ≥ s − t
for all i.

Proof. Define
b = a+ πud

for some d ∈ On and u ∈ Z to be determined later. Then

Fi(b) ≡ Fi(a) + πu
∑
j

F
(j)
i (a)dj mod π2u

where F (j)
i denotes the partial derivative of Fi with respect to xj.

Assume s ≥ u and let c = −F (a)/πu. Then c ∈ On and min v(c) ≥ s− u. We
deduce that min v(F (b)) ≥ 2u if and only if

∑
j

F
(j)
j (a)dj ≡ ci mod πu.

Letting Mi,j = F
(j)
i (a), then we know that t = v(detM) <∞ and hence M is

invertible. Let d = M−1c. Then min v(d) ≥ min v(c) − v(detM) ≥ s − u − t, so
letting u = s− t we deduce d ∈ On as required.
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Assuming s > 2t then s − t > t, and since min v(a − b) ≥ s − t > t, then
v(J(F )(a)− J(F )(b)) > t, and we deduce v(J(F )(b)) = t.

We can now replace a by b and s by 2(s − t) > s and repeat. Iterating this
process, we get a Cauchy sequence whose limit r is a root of F .

If we define a0 = a and s0 = s and perform this iteration, we find a1, a2, . . .

and si = 2(si−1 − t) = 2is− (2i − 1)t such that min v(ai − r) ≥ si − t = 2i(s− t).
This procedure is known as Hensel lifting and can be used to produce an
approximation to r to any desired precision.

The case t = 0, s = 1 gives the following corollary.

Corollary 2.3. If r̄ is a simple root of F̄ , then r is uniquely liftable to a root of
F .

Our algorithm will consist of a sequence of invertible changes of variables until
we can apply Hensel’s lemma or this corollary, at which point we have a root of
the transformed system and, by inverting the changes of variables, the original
system.

3 Newton polytopes and dual polyhedra

In this section, F (x) ∈ K[x1, . . . , xn] denotes a single multivariate polynomial.
Defining xe = ∏

i x
ei
i , it may be written

F (x) =
∑
e

Fex
e.

Definition 3.1. The Newton polytope of F is the lower convex hull of

{(e1, . . . , en, v(Fe)) : Fe 6= 0} ⊂ Qn+1.

It can be viewed as (the graph of) a convex function

∆ : ∆∗ → Q

where ∆∗ is the convex hull of {e : Fe 6= 0} ⊂ Qn.
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Each piecewise linear component of ∆ is a face, and can be viewed as a
restriction P = ∆|P ∗ . We define EP = {e ∈ P ∗ ∩ Zn : v(Fe) = ∆(e)} to be
the exponents of terms of F which lie in P .

Given s ∈ Qn, then we define ∆s : ∆∗ → Q by ∆s(e) = ∆(e) + s · e. Defining
P ∗s = {e ∈ ∆∗ : ∆s(e) is minimized} then Ps = ∆|P ∗s is a face of ∆.

Remark 3.2. In some contexts, such as when working over non-local fields, ∆∗

itself is called a Newton polytope (e.g. [55]).

Lemma 3.3. (a) If r ∈ K̄n then the Newton polytope of F (rx) is ∆v(r). (b) If r
is a root of F then dimPv(r) > 0.

Proof. (a) Indeed F (rx) = ∑
e(Fere)xe and v(Fere) = v(Fe) + v(r) · e. (b) By the

ultrametric property applied to the terms of F (r) = ∑
e Fer

e = 0 then v(Fe)+v(r)·e
is minimized at least twice, and so P ∗v(r) contains at least two points.

Definition 3.4. If P = ∆|P ∗ is a face of ∆, then its dual polyhedron is the set
of w ∈ Qn such that

∆w(e) ≤ ∆w(e′)

for all e ∈ P ∗, e′ ∈ ∆∗, with equality if and only if e′ ∈ P ∗. The dual polyhedron
of Ps is denoted Hs. The union of dual polyhedra of faces of non-zero dimension
is called the dual variety of ∆.

Remark 3.5. The dual variety is in fact a tropical variety [39]. We do not exploit
this structure in our algorithm.

Lemma 3.6. (a) The dual polyhedra of different faces are disjoint. (b) A face is
orthogonal to its dual polyhedron. (c) If r is a root of F then v(r) ∈ Hv(r).

Proof. (a) Suppose P1 6= P2 and so without loss of generality P1 6⊆ P2 so there
exists e1 ∈ P1 \ P2 and e2 ∈ P2. Suppose w is an element of both dual polyhedra.
Then ∆w(e1) ≤ ∆w(e2) and ∆w(e2) < ∆w(e1) which is a contradiction.

(b) If P is a face with dual H and e, e′ ∈ P ∗ then by definition

∆(e′)−∆(e) = w · (e− e′)
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2 0
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Figure 1: The Newton polytope of F (x, y) = 4 + x + 2xy + y2 + xy2 ∈ Q2[x, y]
and its dual variety.

for w ∈ H and so if w,w′ ∈ H then

(w − w′) · (e− e′) = 0.

(c) Hv(r) is the set of w such that ∆w is minimized precisely on P ∗v(r), which is
true for w = v(r).

Example 3.7. Consider F (x, y) = 4 + x+ 2xy+ y2 + x2y2 ∈ Q2[x, y]. Its Newton
polytope is given in Figure 1 alongside its dual variety. For the Newton polytope
∆, we draw the domain P ∗ of each of its faces P (there are 2 of dimension 2, 5 of
dimension 1, 4 of dimension 0) and give the value ∆(e) at its vertices. The two faces
of dimension 2 are labelled A and B, and their dual polyhedra are also labelled.
Observe that v(F1,1) = 1 > ∆(1, 1) = 0 so the xy term of F does not contribute
to ∆, and so EA = {(1, 0), (0, 2), (1, 2)} and EB = {(0, 0), (1, 0), (0, 2)}. ♦

4 Residual systems

Definition 4.1. If P is a face of the Newton polytope of F , then its leading
terms are the polynomial

leadP F =
∑
e∈EP

F#
e x

e.
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The content of F is the term

contF = πmine v(Fe)xmine e1
1 · · ·xmine en

n

and we define F# = F/ contF .
The proto-residual polynomial of P is

(leadP F )# ∈ F[x1, . . . , xn].

Lemma 4.2. Let R0 be the proto-residual polynomial of P , with dual polyhedron H
and suppose r is a root of F such that v(r) ∈ H. Let δ = r/πv(r). Then R0(δ̄) = 0.

Proof. Since
0 = F (r) =

∑
e

(Feπv(r)·e)δe,

letting w = mine v(Fe) + v(r) · e then

0 =
∑
e

Feπv(r)·e−wδe =
∑

e : v(Fe)+v(r)·e=w
F#
e δe = leadP F (δ̄).

Since leadP F and R0 differ only by a monomial multiplier, the result follows.

We now consider a system F = (F1, . . . , Fm) ∈ K[x1, . . . , xn]m ofm polynomials
in n variables, and fix faces Pj : P ∗j → Q of the Newton polytopes ∆j : ∆∗j → Q
with dual polyhedra Hj and intersection H = ⋂

iHi.
For any polytope P we let 〈P 〉 = 〈e− e′ : e, e′ ∈ P 〉 denote the vector space

parallel to P .

Definition 4.3. The faces P1, . . . , Pm are axis aligned if 〈P ∗1 , . . . , P ∗m〉 = Qd ×
{0}n−d for some 1 ≤ d ≤ n.

In this situation, since each Hj is orthogonal to Pj then H = {ŵ}×Ĥ for some
ŵ ∈ Qd and Ĥ ⊂ Qn−d.

Definition 4.4. If ŵ ∈ Zd then the faces are integrally axis aligned. If
ŵ ∈ Q× Zd−1 then the faces are almost integrally axis aligned.
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Lemma 4.5. Let R0(x) ∈ F[x1, . . . , xn]m be the system of proto-residual
polynomials of P1, . . . , Pm. If the faces are axis aligned then R0(x) ∈
F[x1, . . . , xd]m.

Proof. Fix e′ ∈ P ∗j . For any e ∈ P ∗j we have e′ − e ∈ Qd × {0}n−d and
therefore e′i = ei for all d < i ≤ n. Now leadP ∗j Fj only includes terms
for e ∈ EPj

⊂ P ∗j , and so is of the form G(x1, . . . , xd)x
e′d+1
d+1 · · ·xe

′
n
n . Hence

(leadPj
Fj)# = G# ∈ K[x1, . . . , xd].

Lemma 4.6. Suppose that the faces are almost integrally axis aligned, and
ŵ1 = a/b in lowest terms. Let R0 ∈ F[x1, . . . , xd]m be the system of proto-residual
polynomials. Then R0(x) = R(xb1, x2, . . . , xd) for some R ∈ F[x1, . . . , xd]m.

Proof. Fix e′ ∈ EPj
, then for all e ∈ EPj

we have

v(Fj,e) + v(r) · e = v(Fj,e′) + v(r) · e′

so in particular

a
b
(e1 − e′1) = v(Fj,e′)− v(Fj,e)−

∑
1<i≤d

ŵi(ei − e′i) ∈ Z

and so e1 ≡ e′1 mod b.

Definition 4.7. The residual system of (P1, . . . , Pn) is R(x).

Lemma 4.8. If r is a root with v(r) ∈ H, then

R
(
rb1/π

a, r2/πŵ2 , . . . , rd/πŵd

)
= 0.

In particular, the residue class field of K(r1, . . . , rd) contains a root of R.

Proof. Follows trivially from Lemma 4.2 and Definition 4.7.

5 Change of variables

In this section, we show that given faces P1, . . . , Pm there is always an invertible
change of variables such that the transformed faces are almost integrally axis
aligned, and therefore we can always define residual systems.
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Lemma 5.1. For M ∈ GLn(Z), define (xM)j = ∏
i x

Mi,j

i . (a) Then x 7→ xM is
an action of GLn(Z) on the set of all monomials xZn. (b) (xM)e = xMe. (c) For
F (x) ∈ K[x1, . . . , xn], defining FM(x) = F (xM) then FM

Me = Fe. (d) Its Newton
polytope is ∆M : M∆∗ → Q : Me 7→ ∆(e). (e) If r is a root of F then rM−1 is a
root of FM . (f) If H is the dual polyhedron of face P : P ∗ → Q, then MP ∗ is a
face of ∆M and M−1H is its dual polyhedron.

Proof. (a) (xM)Nk = ∏
j(xM)Nj,k

j = ∏
j(
∏
i x

Mi,j

i )Nj,k = ∏
i x

∑
j
Mi,jNj,k

i =∏
i x

(MN)i,k

i = (xMN)k. (b) (xM)e = ∏
j(xM)jej = ∏

j(
∏
i x

Mi,j

i )ej = ∏
i x

∑
j
Mi,jej

i =
xMe. (c) FM(x) = F (xM) = ∑

e Fex
Me. (d) Follows from (c). (e) FM(rM−1) =

F ((rM−1)M) = F (r) = 0. (f) Follows from (d) and (e).

We now fix a system F (x) ∈ K[x1, . . . , xn]m and faces P1, . . . , Pm of the Newton
polytopes ∆1, . . . ,∆m with duals H1, . . . , Hm with intersection H = ⋂

iHi. Let
d = dim 〈P1, . . . , Pm〉.

Lemma 5.2. There existsM ∈ GLn(Z) such thatMP ∗1 , . . . ,MP ∗n are axis aligned.

Proof. Choose a basis {a1, . . . , ad} ⊂ 〈P1, . . . , Pm〉. By multiplying by a suitable
integer, we may assume ai ∈ Zn. Let A = (a1 . . . ad) ∈ Zn×d.

Let B0 = (b1 . . . bd) ∈ Zn×d be a Q-saturation of A (i.e. satisfying
〈a1, . . . , ad〉Q = 〈b1, . . . , bd〉Q and 〈b1, . . . , bd〉Z = 〈a1, . . . , ad〉Q ∩ Zn; equivalently
det(BT

0 B0) = ±1).
Then Zn/ 〈b1, . . . , bd〉Z ∼= Zn−d (as Z-modules). Let bd+1, . . . , bn ∈ Zn be the

preimages of the standard basis for Zn−d under such an isomorphism and let
B = (b1 . . . bn) ∈ Zn×n.

Then by construction Zn/ 〈b1, . . . , bn〉Z ∼= Z0 so B ∈ GLn(Z). Let M = B−1.
Fix e′j ∈ P ∗j , then by construction if e ∈ P ∗j then e − e′j ∈ 〈b1, . . . , bd〉Q, so
M(e− e′j) ∈ Qd × {0}n−d, and so MP ∗j ⊂Me′j + Qd × {0}n−d.

Lemma 5.3. There exists M ∈ GLn(Z) such that MP ∗1 , . . . ,MP ∗n are almost
integrally axis aligned.

Proof. By Lemma 5.2, without loss of generality they are axis aligned. Then the
intersection of the dual polyhedra is H = {ŵ} × Ĥ for ŵ ∈ Qd and H ⊂ Qn−d.
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Observe that if M0 ∈ GLd(Z) and we extend it with 1 on the diagonal to M ∈
GLn(Z) then MP ∗1 , . . . ,MP ∗n are still axis aligned, and M−1H = {M−1

0 ŵ} × Ĥ.
It remains to find M0 such that M−1

0 ŵ ∈ Q× Zd−1.
Write ŵi = ai/ci in lowest terms, let c = lcmi ci and find b1 ∈ Zd such that

b1 · ŵ = 1/c.
Let g = gcdi b1,i, then 1/gc = ∑

i(b1,i/g)wi ∈ Z/c, and so g = 1. Hence the
matrix with the single column b1 is saturated and so Zd/ 〈b1〉 ∼= Zd−1. Let b∗2, . . . , b∗d
be preimages under such an isomorphism of the standard basis for Zd−1.

Write b∗i · ŵ = hi/c and let bi = b∗i − hib1. Then bi · ŵ = 0 and bi ≡ b∗i mod b1,
so b2, . . . , bd are still the standard basis for Zd−1, and hence B0 = (b1 . . . bd) ∈
GLd(Z).

Let M0 = B−1
0 . By construction M−1

0 ŵ = B0ŵ = (1/c, 0, . . . , 0) ∈ Q× Zd−1 as
required.

6 Algorithm I

We now present our root-finding algorithm. The inputs b and B exist mainly for
recursion; to find all roots set b = 0 and B = Qn. One can think of b as an
approximation to a root of F , and B as measuring how good that approximation
is. The proof of Lemma 6.2 motivates the steps of the algorithm.

Algorithm 6.1. Given a square system F (x) ∈ K[x1, . . . , xn]n without repeated
roots, a vector b ∈ Kn, and an open polyhedron B ⊆ Qn, returns the roots r of F
in Kn such that v(r − b) ∈ B.
1: Let m = v(b) ∈ Zn.
2: Let G(x) = F (πmx)# ∈ O[x1, . . . , xn]n.
3: Let t = v(J(G)(π−mb)).
4: Let A = Q≥t+m1+1 × · · · ×Q≥t+mn+1.
5: if min v(G(π−mb)) > 2t and B ⊂ A then
6: Hensel lift π−mb to a root π−mr of G.
7: if v(r − b) ∈ B then
8: Return {r}.
9: else
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10: Return ∅.
11: end if
12: end if
13: for i = 1, . . . , n do
14: Let ∆i : ∆∗i → Q be the Newton polytope of Fi(x+ b).
15: Let Pi be the set of its faces.
16: Let Hi = {H ∩B : P ∈ Pi, H dual to P} \ {∅}.
17: end for
18: Let H = {⋂ni=1Hi : Hi ∈ Hi} \ {∅}.
19: Let S = ∅.
20: for H ∈ H do
21: Let Hi ∈ Hi uniquely such that ⋂iHi = H.
22: Let Pi ∈ Pi be the corresponding faces.
23: Use the proof of Lemma 5.2 to find M ∈ GLn(Z) such that M−1H =

{ŵ} × Ĥ for some ŵ ∈ Qd and Ĥ ⊂ Qn−d. In particular MP ∗i is the
domain of a face of the Newton polygon of Fi(xM + b).

24: if ŵ ∈ Zd then
25: Let R(x) ∈ F[x1, . . . , xd]n be the residual system.
26: for roots δ̄ ∈ Fd of R do
27: Let b′ = b+ (πŵ1δ1, . . . , π

ŵdδd, 0, . . . , 0)M .
28: Let B′ = M(Q>ŵ1 × · · · ×Q>ŵd

× Ĥ).
29: Recursively let S ′ be the roots r of F such that v(r − b′) ∈ B′.
30: Let S = S ∪ S ′.
31: end for
32: end if
33: end for
34: Return S.

Lemma 6.2. If this algorithm terminates, then it returns the set of all roots
r ∈ Kn of F such that v(r − b) ∈ B.

Proof. Lines 1 to 12: This is the terminating condition. By Hensel’s lemma with
s = 2t + 1, if min v(G(π−mb)) > 2t then there is a unique root π−mr of G such
that min v(π−mb− π−mr) ≥ t+ 1. Equivalently, there is a unique root r of F such
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that v(r − b) ∈ A. If also B ⊂ A then there is at most one root of F such that
v(r − b) ∈ B, and so we return either {r} or ∅.

If the terminating condition does not hold, we proceed to improve our bounds
b and B on the roots of F .

Lines 13 to 17: Observe that r is a root of Fi(x) if and only if r − b is a root
of Fi(x+ b), and hence the dual variety of ∆i gives the possible values of v(r− b).
We conclude that if r is a root of Fi and v(r − b) ∈ B then there exists a unique
H ∈ Hi such that v(r − b) ∈ H.

Line 18: It follows that if r is a root of F and v(r− b) ∈ B then there exists a
unique H ∈ H such that v(r − b) ∈ H.

Line 20: In this for loop, we restrict attention to just those roots such that
v(r−b) ∈ H. By the preceding comments, we will consider all roots precisely once
at some point in this loop.

Line 23: Having selected M ∈ GLn(Z), then we know that r is a root of F
with v(r − b) ∈ H if and only if (r − b)M−1 is a root of F (xM + b) with

v((r − b)M−1) ∈M−1H = {ŵ} × Ĥ. (∗)

Line 24: In particular r, b ∈ Kn and so v((r − b)M−1) ∈ Zn and so ŵ ∈ Zd.
Hence we safely ignore cases where ŵ 6∈ Zd.

Line 26: In this for loop, we restrict attention to just the roots such that

(r − b)M−1
1...d /π

ŵ = δ̄. (∗∗)

By Lemma 4.8
R
(
(r − b)M−1

1...d /π
ŵ
)

= 0

and therefore we will consider all roots precisely once at some point in this loop.
Lines 27 to 30: The conditions (∗) and (∗∗) are precisely equivalent to

v((r − b)M−1 − (πŵ1δ1, . . . , π
ŵdδd, 0, . . . , 0)) ∈ Q>ŵ1 × · · · ×Q>ŵd

× Ĥ

which in turn is precisely equivalent to v(r − b′) ∈ B′. We deduce that in Line 29
we find all roots currently under consideration, which we accumulate into S.
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Remark 6.3. In the terminating condition, it suffices to find any m ∈ Zn such that
π−mb ∈ On, min v(G(π−mb)) > 2t and B ⊂ A. Our choice of m appears to be
sufficient to guarantee the algorithm terminates (cf. Conjecture 6.6).

Remark 6.4. Note that the residual system R(x) does not necessarily define a
zero-dimensional variety, and therefore can have many roots in Fd. Therefore, this
algorithm is only suitable when |F|n is small, and is only possible because the
residue class field of K happens to be finite.

Worse still, it is unlikely that this algorithm can be generalized to factoring,
because factoring can be viewed as root-finding in K̄, whose residue class field F̄
is not finite. We deal with this in §7.

Remark 6.5. Instead of requiring ŵ ∈ Zd, we can perform the stricter check
H ∩ Zn 6= ∅. Furthermore, we may replace H by the convex hull of H ∩ Zn,
which may have a lower dimension.

Conjecture 6.6. Assuming F does not have repeated roots, this algorithm
terminates.

Justification. Suppose the algorithm does not terminate for some inputs F , b and
B. Since each loop is finite, this can only occur if there is infinitely nesting
recursion. Fix a single infinite sequence of nested calls to the algorithm, and let
(b, B) = (b0, B0), (b1, B1), . . . be the parameters in each call.

Observe that if H ⊂ Bi in one iteration, with M−1H = {ŵ} × Ĥ, then
M−1Bi+1 = Q>ŵ1 × · · · ×Q>ŵd

× Ĥ lies strictly above H along each of the first d
coordinates. By Lemma 3.3 we have d > 0.

This probably implies that (b0, b1, . . .) is a Cauchy sequence, and so has a limit
r, and this is necessarily a root of F . In particular, m = v(bi) is eventually
always equal to v(r), and so G(x) = F (π−mx) is eventually constant, and so
t = v(J(G)(bi)) is eventually constant, and so A is eventually constant. Eventually
we will have min v(G(π−mb)) > 2t and probably Bi ⊂ A. Since this is the
terminating condition, we deduce that this recursion eventually terminates, which
contradicts our initial assumption.
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7 Algorithm II

We present a modified version of the previous algorithm which does not always
compute all roots of the residual system, but instead finds the irreducible
components of the variety it defines. We therefore learn some non-linear
information about some p-adic coefficients of the roots, which is represented as
new equations in new variables. Hence, the number of variables increases at each
iteration.

Definition 7.1. If Z is a polynomial ideal, then we write Z(x) = 0 as shorthand
for: z(x) = 0 for all z ∈ Z.

Algorithm 7.2. Given a square system F (x) ∈ K[x1, . . . , xn]n without repeated
roots, an open polyhedron B ⊆ {0}m × Qn−m for some 0 ≤ m ≤ n, and a finite
set Z of ideals of F[x1, . . . , xm], returns the roots r of F in Kn such that v(r) ∈ B
and Z(r̄1...m) 6= 0 for all Z ∈ Z.
1: for i = 1, . . . , n do
2: Let ∆i : ∆∗i → Q be the Newton polytope of Fi(x).
3: Let Pi be the set of its faces.
4: Let Hi = {H ∩B : P ∈ Pi, H dual to P} \ {∅}.
5: end for
6: Let H = {⋂ni=1Hi : Hi ∈ Hi} \ {∅}.
7: Let S = ∅.
8: for H ∈ H do
9: Let Hi ∈ Hi uniquely such that ⋂iHi = H.
10: Let Pi ∈ Pi be the corresponding faces.
11: Use the proof of Lemma 5.2 to find M ∈ GLn(Z), block diagonal with

first block Im, such that M−1H = {ŵ} × Ĥ for some ŵ ∈ {0}m × Qd−m

and Ĥ ⊂ Qn−d. In particular MP ∗i is the domain of a face of the Newton
polygon of Fi(xM).

12: if ŵ ∈ Zd then
13: Let R(x) ∈ F[x1, . . . , xd]n be the residual system.
14: Let J1, . . . , Jt be the prime decomposition of 〈R〉.
15: for i = 1, . . . , t do
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16: Let J = 〈Ḡ〉 = Ji for some G ∈ O[x1, . . . , xd]k.
17: Let J = {Jj : j < i}.
18: if dim J = 0 then
19: if Ḡ has one root then
20: Let δ̄ ∈ Fd be the root.
21: if Z(δ̄1...m) = 0 for some Z ∈ Z then
22: Go to next i.
23: else if d = n and Jac(R)(δ̄) 6= 0 then
24: Hensel lift δ to a root of F ((πŵx)M)#, and hence a root

r of F .
25: S = S ∪ {r}.
26: Go to next i.
27: end if
28: else
29: Go to next i.
30: end if
31: end if
32: Let m ∈ O[y1, . . . , yk]d such that R = m̄(Ḡ).
33: Let Cj = cont leadMPj

Fj(xM) for j = 1, . . . , n.

34: Let F ′(x, y) =
 F ((πŵx)M)− C(x) · (m(G(x1...d))−m(y))
y −G(x1...d)

 ∈
K[x, y]n+k.

35: Let B′ = {0}d × Ĥ ×Qk
>0.

36: Let Z ′ = J ∪ {ZF[x1, . . . , xd] : Z ∈ Z}.
37: Recursively let S ′ be the set of roots r of F ′ such that v(r) ∈ B′ and

Z(r̄1...d) 6= 0 for all Z in Z ′.
38: Let S = S ∪ {(πŵr1...n)M : r ∈ S ′}.
39: end for
40: end if
41: end for
42: Return S.

Lemma 7.3. If this algorithm terminates, then it returns the set of all roots
r ∈ Kn of F such that v(r − b) ∈ B.
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Proof. Lines 1 to 13: This is essentially identical to the previous algorithm.
We compute Newton polytopes, branch over intersections of dual polyhedra
(restricting to just the roots with corresponding valuations), perform a change
of variables, and check the valuation is integral.

Lines 14 to 17: We know that R(r̄1...d/π
ŵ) = 0 and therefore there is some

unique 1 ≤ i ≤ d such that if 1 ≤ j ≤ i then Jj(r̄1...d/π
ŵ) = 0 if and only if

i = j. Hence, we loop over the possibilities for i and restrict attention to the
corresponding roots, namely those such that J(r̄1...d/π

ŵ) = 0 and Z(r̄1...d/π
ŵ) 6= 0

for Z ∈ J .
Lines 18 to 31: This is the terminating condition. If dim J = 0 then J has

finitely many roots in F̄d; since J is prime, these roots are distinct and Galois
conjugate. Hence, if J has multiple roots, then these do not lie in Fd, and therefore
we can safely discard this case. If δ̄ is the root and Z(δ̄1...m) = 0 for some Z ∈ Z,
then noting that δ̄1...m = r̄1...m we may safely discard this case. Otherwise if
d = n and J(R)(δ̄) 6= 0 then δ̄ is a simple root of R(x) = F ((πŵx)M)# and so by
Corollary 2.3, δ lifts uniquely to a root of F ((πŵx)M)# and hence we find a root
r of F , which we include in S and then terminate this case.

Lines 32 to 38: The map r 7→ (rM−1
/πŵ, G(rM−1

/πŵ)) gives a 1-1
correspondence between roots of F and roots of F ′. The roots S ′ of F ′ are precisely
those corresponding to the roots of F currently under consideration. Hence, we
include all roots of F currently under consideration in S.

Conjecture 7.4. Assuming F does not have repeated roots, this algorithm
terminates.

Justification. The key feature is our construction of F ′(x, y). By definition
m̄j(Ḡ) = Rj = (leadMPj

Fj(xM))/Cj, and leadMPj
Fj(xM) is some of the terms

of Fj((πŵx)M), and therefore by subtracting Cj(x) · m(G(x)) we cancel out at
least the leading p-adic coefficient of each of these leading terms. Hence y −G(x)
captures what we already know, and F ((πŵx)M)−C(x) · (m(G(x))−m(y)) allows
us to look one p-adic coefficient deeper into the equations.

There are numerous ways we can try to make this more efficient.

Remark 7.5. If dim J = 0 and Ḡ has one root δ̄ which is not Hensel liftable, then
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instead of producing a new system with k = d extra variables, we can perform a
linear change of variables xi 7→ xi + δ̄ just as in Algorithm I.

Remark 7.6. If J contains a polynomial of the form U(xe) where U is univariate and
irreducible, then either degU > 1 and so J has no roots in Fd and we can terminate
this branch, or else we can perform a linear change of variables xe 7→ xe + δ where
δ̄ is the root of U as in the previous remark.

Remark 7.7. We can reduce Z as follows: if there exists Z ∈ Z such that Z/〈Z\Z〉,
then we can remove Z from Z.

Similarly, if we explicitly track an ideal S/F[x1, . . . , xm] such that S(r̄1...m) = 0,
and find Z ∈ Z such that 〈Z, S〉 = 〈1〉 then Z can be removed from Z. When
recursing, we include J in S.

Remark 7.8. There is a choice of generating set Ḡ for J , which will affect k.
Typically Ḡ will be a Gröbner basis.

Remark 7.9. As this algorithm iterates, we add more new polynomials to our
system. These polynomials are known exactly and have a particular form, so we
should be able to compute Newton polytopes etc. more efficiently than for generic
polynomials.

8 Worked example

Consider the system

F (x) =
 x2 + x+ y + 27
x2 + 4x+ y − 3

 ∈ Q3[x, y]2

which by considering F2 − F1 = 3(x − 10) has the single root (10,−137) ∈ Q2
3 of

valuation (0, 0). We now use Algorithm 7.2 to draw the same conclusion.

Definition 8.1. We use the notation 〈p1, . . . , pk〉 to denote the interior of the
convex hull of {p1, . . . , pk}, for pi ∈ Qn. We use 〈p1, . . . , pk : d1, . . . , d`〉 to denote
the open polyhedron 〈p1, . . . , pk〉+ d1Q>0 + . . .+ d`Q>0.

Computing Newton polytopes and dual polyhedra (Figure 2), we deduce
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1

0

0 0

3

0

0 0

Figure 2: Newton polytopes and dual varieties of F (x, y). Dual variety of F1 is
dashed, F2 is dotted, and the intersection is solid.

that v(r) is in one of: H1 = 〈(0, 0)〉, H2 = 〈(1, 1)〉, H3 = 〈(0, 0), (1, 1)〉,
H4 = 〈(0, 0) : (0, 1)〉, H5 = 〈(0, 0) : (−1,−2)〉.

Case 1: v(r) ∈ H1. Then v(r) = (0, 0) and we get the residual system

R(x) = F (x, y) =
 x2 + x+ y

x2 + x+ y

 ∈ F3[x, y]2

and 〈R〉 is prime already.
We take G(x, y) = x2 + x + y ∈ Q3[x, y], so that 〈Ḡ〉 = 〈R〉, and take

m(z) = (z, z) ∈ Q3[z]2 so that m̄(Ḡ) = R.
We construct the new system

F ′(x, y, z) = (F (x)−m(G) +m(z), z −G) =


z + 27
z + 3x− 3
z − x2 − x− y

 ∈ Q3[x, y, z]3

and recursively look for its roots r′ such that v(r′) ∈ B′ = {0}2 ×Q>0.
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From the dual variety, we deduce that the only possibility is v(r′) = (0, 0, 3),
giving the residual system

R′(x, y, z) = F ′(x, y, 27z)# =


z + 1
x+ 2
x2 + x+ y

 ∈ F3[x, y, z]3.

Now 〈R′〉 = 〈x+ 2, y + 2, z + 1〉 is already prime, zero dimensional, and has a
single root (1, 1, 2) ∈ F3

3. We can apply Corollary 2.3 to deduce there is a unique
root r′ of F ′ close to (1, 1, 27 · 2) ∈ Q3

3, the first two coordinates of which give a
unique root r of F (x, y) close to (1, 1).

Case 2: v(r) ∈ H2. Hence v(r) = (1, 1) and we get the residual system

R(x) = F (3x, 3y)# =
 x+ y

x+ y + 2

 ∈ F3[x, y]2.

But 〈R〉 = 〈1〉 and so this has no roots.

Case 3: v(r) ∈ H3. As in Remark 6.5, we observe that H3 ∩ Z2 = ∅ to deduce
there are no roots in this case.

Case 4: v(r) ∈ H4. That is, v(r1) = 0 and v(r2) > 0. The residual system is
(x+ 1, x+ 1) and so we produce the new system

F ′(x, y, z) =


F1 − x(x+ 1− z)
F2 − x(x+ 1− z)
z − x− 1

 =


y + 27 + xz

3x+ y − 3 + xz

z − x− 1


and look for its roots r′ with valuation in B′ = {0} ×Q2

>0.
Considering dual varieties, we deduce v(r′) is in one of H ′1 = 〈(0, 1, 1)〉,

H ′2 = 〈(0, 3, 3)〉, H ′3 = 〈(0, 0, 0), (0, 1, 1)〉, H ′4 = 〈(0, 1, 1), (0, 3, 3)〉, H ′5 =
〈(0, 3, 3) : (0, 1, 0)〉, H ′6 = 〈(0, 3, 3) : (0, 0, 1)〉.
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Case 4.1: v(r′) ∈ H ′1. That is, v(r′) = (0, 1, 1), giving residual system
(xz + y, xz + x+ y + 2, x+ 1) which has no roots.

Case 4.2: v(r′) ∈ H ′2. That is, v(r′) = (0, 3, 3), giving residual system
(xz + y + 1, x+ 2, x+ 1) which has no roots.

Case 4.3: v(r′) ∈ H ′3. This contains no integral points, so there are no such
roots.

Case 4.4: v(r′) ∈ H ′4. Note that H ′4 ∩Z2 = {(0, 2, 2)} so v(r′) = (0, 2, 2), giving
residual system (xz + y, x+ 2, x+ 1) which has no roots.

Case 4.5: v(r′) ∈ H ′5. This gives the residual system (xz+ 1, x+ 2, x+ 1) which
has no roots.

Case 4.6: v(r′) ∈ H ′6. This gives the residual system (y + 1, x+ 2, x+ 1) which
has no roots.

Case 5: v(r) ∈ H5. With M = ( 0 1
1 2 ), we get the residual system (x + 1, x + 1)

and produce

F ′(x, y, z) =


F1(y, xy2)− y2(x+ 1− z)
F2(y, xy2)− y2(x+ 1− z)
z − x− 1

 =


y + 27 + y2z

4y − 3 + y2z

z − x− 1


and look for roots r′ of F ′ with v(r′) ∈ {0} ×Q<0 ×Q>0.

Computing dual varieties, we find that v(r′) ∈ 〈(0, 0, 0) : (0,−1, 1)〉. With
M = ( 1 −1

0 1 ), we get the residual system (y + 1, y + 1, x+ 1). We would ordinarily
now add two new variables and equations, but as we already have a variable
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8. WORKED EXAMPLE

z = x+ 1 we only need to add w = y + 1 to produce

F ′′(x, y, z, w) =


zF ′1(x, y/z, z)− y(y + 1− w)
zF ′2(x, y/z, z)− y(y + 1− w)
F ′3(x, y/z, z)
w − y − 1

 =


27z + yw

3y − 3z + yw

z − x− 1
w − y − 1


and look for roots r′′ of F ′′ with v(r′′) ∈ H ′′ = {0}2 ×Q2

>0.
The intersection of the dual varieties is 〈(0, 0, 0, 3)〉 ∪ 〈(0, 0, 0, 3) : (1, 0, 0, 0)〉

which does not meet H ′′. We conclude there are no such roots.

We have considered all cases. Only one case led to a root, and we conclude
that F has one root r, with r1 ≡ r2 ≡ 1 mod 3 and r2

1 + r1 + r2 ≡ 2 · 33 mod 34,
which agrees with r = (10,−137).
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