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Abstract 

 

In exploration of the environment, intrinsic and extrinsic factors such as the probability 

and the reward value associated with stimuli can modulate behaviour. Response times are 

decreased to stimuli that are more rewarding or more likely to appear, and increased to those 

less rewarding or less likely. It is unclear how these effects interact and how similar the effects 

are across response modalities. In this thesis these effects were investigated first separately and 

then concurrently, and across both saccadic and manual responses.  The effect of probability 

was found to be sensitive to the temporal features of the paradigm; an effect on manual 

responses was seen with longer inter-stimulus intervals (ISI), compared to the saccadic effect 

with shorter ISIs. The effect of reward was stronger in manual responses than saccadic 

responses – possibly a result of slower dopaminergic activation within the reward system. The 

temporal dynamics are postulated to be the reason there is no evidence for a correlation between 

saccadic and manual responses across the experiments. When manipulations of reward and 

probability were combined, the probability modulations dominated the effect on responses.  It 

is suggested that this is due to the nature of probabilistic information being an intrinsic feature 

of the environment that is not affected by the individual observer utility or internal state. 

Furthermore, no effect of reward was found in healthy older adults with the same paradigm. 

No correlation between reward and probability effects across participants was found, 

suggesting that these factors affect different accumulators within a decision-making model 

framework. The paradigm developed in this thesis provides a feasible way in which to study 

reward and probability effects in Parkinson’s patients with deep-brain stimulators to the 

subthalamic nucleus.  
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CHAPTER 1  

This thesis is about how the reward associated with a stimulus and the probability of a 

stimulus occurring in a particular place affects behaviour. 

In order to support survival, animal behaviour should not be random but rather should be 

shaped by properties of the animal’s environment and by the goals of the animal.  One way to 

operationalise the ‘goals’ of the animal is to study the reward associated with a particular 

response.  The reward is not an intrinsic property of the environment but rather is a combined 

property of the environment and the organism, after all a stimulus does not have a reward 

associated with it if there is no organism.  However some properties of the environment exist 

independent of the presence of the organism: they are a physical property of the environment.  

One such example is the probability of a stimulus being in a particular place.  Despite these 

two types of information being very different they must be combined and coordinated to shape 

action.  To illustrate this imagine the task faced by honey bees (Apis mellifera) hunting for a 

new nest. Nest-site scouts will search for a potential new nest in different patches of the 

environment (Seeley et al., 2012). Two distinct factors affect the scout’s chances of being able 

to find a new nest site and recruit the rest of the swarm. First, the probability of there being a 

place to nest at all in a particular patch is intrinsic to the environment, regardless of whether 

the scout investigates the area. Prior knowledge of the probability could be gained from other 

nest-site scouts recruiting to the swarm, or from previous visits to the area. Second, once a 

potential nest has been found the reward and quality associated with the nest site is ascertained 

by the scout. But this factor is not intrinsic to the environment: it depends on the attributes 

deemed most rewarding to the bee and is relative to the previous nest sites encountered. 

Additionally, when the nest-scout returns to advertise their potential nest site to the rest of the 

swarm by means of the waggle dance, the rewarding attributes of the nest site conveyed in the 
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dance could be judged relatively to the nest sites being advertised by other scouts (Seeley et 

al., 2012). As a result, in searching for a new nest-site a scout has to combine information about 

the probability of there being a potential nest-site in an area and the rewarding attributes of the 

nest-site or the area it is located in. This is important in terms of reducing the amount of time 

and energetic cost associated with the search.  

In this thesis I investigate these issues using simple visual stimuli and simple manual and 

eye movement responses in humans.  In a series of experiments I investigate the effect of 

probability on both manual and saccadic responses and then I investigate the effect of reward 

on manual and saccadic responses.  In a final experimental chapter I investigate how these two 

factors interact. This introductory chapter follows this same format.  In the first section I discuss 

the previous literature on probability effects.  In the second section I discuss effects of reward 

and in a final section I discuss the neural basis of these effects with a particular focus on 

Parkinson’s disease, as one of the aims of this thesis was to develop a paradigm that would be 

suitable for testing this particular population.  

 

 

1.1  Probability 

1.1.1 Saccades 

Humans (and other animals) make eye movements to stabilise the retinal image or to 

point the fovea (the primary axis of the eye) to a region of ‘interest’ (Gilchrist, 2011). Retinal 

stability is maintained by the vestibulo-ocular reflex which moves the eye to compensate for 

head movements (Gilchrist, 2011). One class of movements made by the eye are saccades, 

where the eye jumps to point the fovea to a region of ‘interest’ (Gilchrist, 2011). There is a 

dramatic reduction in visual ability at locations away from the fovea so saccadic eye 



 

13 

 

movements are made very frequently across a wide range of tasks (Gilchrist, 2011). The 

metabolic costs of making saccadic eye movements frequently are low, due to their being 

generated by six extraocular muscles and the eyeball being light and mobile: thus the costs are 

balanced by the benefits of minimal time to make saccades and maximising the number of 

fixation locations (Gilchrist, 2011). There are additional costs associated with moving the head 

rather than the eyes, so the frequent use of saccades may be optimal for the visual system 

(Gilchrist, 2011).  

One way to conceptualise this saccadic behaviour is as a decision-making process, which 

can be regarded as an internal process which produces behaviour that manifests in the motor 

output of a human or animal (Ludwig, 2011). In the case of saccades in response to sensory 

stimulation, the eye movement response may be direct (e.g. in a visually guided saccade task) 

or more arbitrary and symbolic (Ludwig, 2011). Whatever the complexity of the sensory-motor 

mapping, we make decisions to move the eyes and where/when to move them (Ludwig, 2011). 

One of the primary parameters of saccades is the latency: the time taken to initiate a saccade. 

Often in experimental studies this is taken to be the time between the onset of the event being 

responded to (e.g. appearance of a target) and the start of the eye movement in response 

(Gilchrist, 2011). Studying saccade latencies is useful tool to study saccadic decision-making 

as they can be thought of as a composite of the time to process the visual stimulus, the 

accumulation of a decision process, and the final motor execution (Gilchrist, 2011). The affect 

of modulating several decision-related variables (such as strength of sensory evidence, prior 

probability and reward value) can be manifested in the saccadic latencies.  However, even when 

the stimulus and response are constant, latencies vary on a trial-by-trial level (Gilchrist, 2011; 

Ludwig, 2011).  
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1.1.2 Saccades and attention 

Saccadic eye movements are important for directing the eye to an area in the 

environment, and are therefore tightly coupled to the cognitive necessity to improve the 

processing of sensory information from a specific location in space.  More generally this 

process of improving the processing of some part of the sensory information is known as spatial 

attention and is one of the cornerstone processes of psychology (James, 1890; Posner, 1980).  

The relationship between attention generally and saccadic eye movements specifically remains 

controversial (Kristjánsson, 2011), however, in normal behaviour the two are clearly linked.  

This link is perhaps most strongly argued for in the ‘premotor theory of attention’ which 

postulates that spatial attention does not result from a dedicated control mechanism, but comes 

from a weaker activation of the same frontal-parietal circuits that determine motor behaviour 

toward specific spatial locations (Rizzolatti & Craighero, 2010). Support for this position 

comes from experiments showing that when unexpected imperative stimuli were located in the 

opposite hemifield to where attention was located, reaction times were longer than when 

attention and the stimuli were in the same hemifield (Rizzolatti & Craighero, 2010). This so 

called ‘meridian effect’, can be easily accounted for by the premotor theory of attention: 

attention derives from preparation to move the eyes towards the cued location and 

reprogramming an eye movement is more complex than reprogramming an eye movement in 

the same hemifield (Rizzolatti & Craighero, 2010). Evidence for a causal relationship between 

eye movements and attention was further corroborated by experiments with individuals who 

could not make saccades towards a cued position because of a constrained extreme eye 

deviation or a peripheral palsy (Rizzolatti & Craighero, 2010). The modification in the eye 

movement abilities were paralleled by a modification in the ability to orient visuospatial 

attention; when the eyes cannot move to a particular location the attention cannot shift either 

(Rizzolatti & Craighero, 2010). 
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1.1.3 Saccades and Hicks Law 

The uncertainty of where we need to attend and move our eyes to in the environment is 

increased by the number of possible locations there are. This is formalised in Hick’s law which 

states that manual reaction times increase logarithmically with the number of alternative stimuli 

(Hick, 1952). This effect has been found in saccadic reaction times but only when there is a 

transformation between the stimulus and the response (Kveraga, Boucher,& Hughes, 2002; 

Lee, Keller, & Heinen, 2005; Ludwig, 2011). In an experiment by Kveraga et al. (2002), they 

found only antisaccades (saccades directed away from a target) and not prosaccades (directed 

towards a target) followed Hick’s law. This finding suggests that saccades made under response 

uncertainty must not require the process of response selection (Kveraga et al., 2002). However, 

Lee and colleagues (2005) argued that the task used in this experiment was not similar to that 

used by Hick and others where a particular key on a keyboard was associated with the location 

of a particular visual stimulus, requiring a stimulus-response transformation. They found that 

Hick’s law held in their experiment where participants were required to make a saccade to the 

remembered location of a visual target whose colour was specified by a central cue, thus 

requiring a stimulus-response transformation (Lee et al., 2005). 

 

1.1.4 Saccades and target probability 

In addition to the number of possible alternative stimuli in our environment changing, 

the relative probability of those alternatives occurring can also change. A non-saccadic 

example of this would be in the framework of receiving a medical diagnosis, where the various 

alternative causes for a set of symptoms are each associated with relative probabilities of those 

causes (Ludwig, 2011). This is formalised in Bayes’ rule, which combines the current evidence 

(likelihood) with the prior probability of some event (Ludwig, 2011). In the same way that the 
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number of alternatives can affect behaviour, the probabilities also have an effect. Lamb and 

Kaufman (1965) found that Hick’s law does not hold for unequally likely alternatives and 

across different response modalities it has been demonstrated that more frequently occurring 

stimuli are responded to faster (Carpenter & Williams, 1995; Kaufman & Levy, 1966; Lamb 

& Kaufman, 1965; Mowbray, 1964). The probability effect is particularly well established for 

a saccadic response (Basso & Wurtz, 1997; Carpenter & Williams, 1995; Dorris & Munoz, 

1998; Jóhannesson, Haraldsson, & Kristjánsson, 2013; Koval, Ford, & Everling, 2004; Liu et 

al., 2010, 2011; Noorani & Carpenter, 2013). For example, it has been shown that for two target 

locations, decreasing the prior probability of a target occurring in a location increases the 

saccadic reaction time (Carpenter & Williams, 1995). This experiment was conducted using a 

range of relative probabilities from .95 to .05, and a linear relationship was found between the 

logarithm of the prior probability and the median saccadic response times. As is common in 

psychophysical experiments, data were collected from only two participants with very large 

numbers of trials. Additionally, it should be noted that the effect of prior probability on saccadic 

response times was not instantaneous; Carpenter and Williams (1995) reported hours of 

practice for the participants in the experiment before the modulations in saccadic reaction time 

were complete and stable.  

 

1.1.5 Complex studies of probability effect 

A number of studies further investigated the probability effect with more complex tasks. 

It has been found that both absolute and relative target position are affected by probability 

manipulations (Miller, 1998). For a spatially occurring visual target, Miller (1998) found that 

a change in both relative and absolute target position produced the same effect of the 

probability of alternatives, where one location in a sequence of four letters had a higher 
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probability of containing the target letter, and the sequence itself was occasionally offset (Liu 

et al., 2010).  Several studies have used a pro and antisaccade task alongside a probability 

manipulation (Koval et al., 2004; Liu et al., 2010). In a prosaccade task, participants are told 

to look from a fixation point to a target as soon as it appears. In contrast in an antisaccade task 

participants are asked to look in the opposite direction from the stimulus, suppressing the 

automatic response of looking towards it (Munoz & Everling, 2004; Noorani & Carpenter, 

2013). Antisaccades have longer latencies, are prone to errors, and may employ different 

cognitive processes.  This combination of effects has been referred to as the antisaccade cost 

(Liu et al., 2010). Although the probability effect was documented in these studies in the 

prosaccade conditions, it was not seen in the antisaccade conditions (Koval et al., 2004; Liu et 

al., 2010). In Koval and colleagues (2004) study, more prosaccade errors were made when the 

participant was required to make an antisaccade away from the high probability location, 

supporting the hypothesis that errors in antisaccade tasks are a result of an increased level of 

motor preparation. However, Liu and colleagues (2010) found that the antisaccade cost was 

only present in antisaccades away from the high probability location. They proposed that higher 

location probability demands more attention, creating increased difficulty in inhibiting the 

automatic prosaccades (Liu et al., 2010). This also provides an explanation as to why 

prosaccades to lower probability locations take longer to be executed. Researchers have argued 

that inhibition plays a crucial role in the suppression of a prosaccade in an antisaccade task 

(Everling & Fischer, 1998; Liu et al., 2010). It should be noted however that Liu and 

colleagues’ (2010) task was not a typical antisaccade task but involved target uncertainty; the 

correct location had to be determined with an odd-one-out visual search task (Jóhannesson et 

al., 2013).  

It is interesting that parallels have been drawn between the influence of prior probability 

and spatial attention (Liu et al., 2010). Prior probability can be categorised as a form of 
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expectation, which facilitates visual perception by biasing interpretation on the basis of known 

probabilistic information (Summerfield & Egner, 2009). Learned perceptual expectation about 

the environment such as spatial probability can guide attention towards a likely location of a 

relevant item, and the violation of expectation can be employed as a signal for attracting 

attention towards a potentially significant event (Summerfield & Egner, 2009). This often 

means that expectation and attention interact, and generally the behavioural effects of 

expectation and attention are similar; both attended and expected stimuli are detected and 

recognised more readily than unexpected or unattended (Summerfield & Egner, 2009). It is 

important to note however, that these similarities are not reflected in the neural activity in visual 

regions representing the stimulus, suggesting that despite interaction they are still governed by 

different processes (Summerfield & Egner, 2009). This will be further explored later in this 

introduction. 

 

1.1.6 Cueing  

One of the primary behavioural tasks used for measuring shifts in attention is also related 

to the effects of prior probability: the Posner cueing task. This task involves the use of a cue to 

attract participants’ attention to a location in space that contains a response target (Hayward & 

Ristic, 2013; Posner, 1980). It has been found that participant responses are faster when the 

cue indicates the side that the target is then presented on (Druker & Anderson, 2010). This has 

been called ‘probabilistic cueing’, as it is providing information about the likelihood of the 

target appearing in a certain spatial location on a trial-by-trial basis (Druker & Anderson, 

2010). These experiments involving cues constitute another temporal probability effect similar 

to that seen in simpler paradigms such as Carpenter and Williams’ (1995) study. Traditionally 

80% of the cues are valid and 20% of the cues are invalid; in effect this is very similar to a 
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simple probability manipulation of two targets either side of fixation being associated with 0.8 

and 0.2 prior probability (Posner, 1980). However, it is possible that the effect of probability 

is more local than global in paradigms where a cue is provided on a trial-by-trial basis. 

This leads to the consideration of generally whether the probability effect is a short-term 

process updated on the basis of recent sensory information, or is a long-term global process 

that happens over the course of experiments (Druker & Anderson, 2010; Walthew & Gilchrist, 

2006). Sometimes even without manipulations of prior probability, humans (Anderson, Yadav 

& Carpenter, 2008; Carpenter, 2001) and monkeys (Fecteau & Munoz, 2003) develop 

idiosyncratic motor biases to favour a particular response (Ludwig, 2011). For example, in 

Anderson et al. (2008) it is a preference for successive movements in the same direction 

(Ludwig, 2011). However, this can be interpreted as internally generated and misguided 

estimates of prior probability (Ludwig, 2011). Walthew and Gilchrist (2006) suggested that the 

search benefits for more probable locations resulted from short-term target location repetitions 

(‘repetition priming’), rather than learning of a spatial probability distribution (Druker & 

Anderson, 2010). They showed that when short-term target repetitions were restricted, there 

was no statistical learning effect (Druker & Anderson, 2010; Walthew & Gilchrist, 2006). 

However, Druker & Anderson (2010) found that if targets were near previous target locations 

(repetition priming) then responses were faster, and if they were near a high-probability region 

(probability cueing) then responses were also faster. They used probability distributions that 

were continuous across the display rather than a few arbitrary locations, thus producing fewer 

spatial repeats and allowing dissociation between the effects of high-probability location from 

that of repetition priming (Druker & Anderson, 2010). This suggests that statistical learning 

about the probabilities of stimuli can produce the probability effect, and this is supported by 

Liu (2010) and colleagues who showed that the probability effect was not simply repetition 
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priming but rather suggested that it was due to a long-term global process accumulating across 

trials. 

 

1.1.7 Robustness of these probability effects 

Despite being well established in the literature, there has been some discussion over 

whether the probability effect seen in some of the aforementioned studies is a reliable and 

robust effect. Jóhannesson and colleagues (2013) found no effects of probability on several 

simple pro and antisaccade tasks, and they only found a probability effect in more complex 

tasks when decisions based on visual search had to be made. Thus they hypothesised that 

probability manipulations affect the time taken to discern which stimulus is the target and 

which saccade type should be made, rather than a global effect on saccadic latency 

(Jóhannesson et al., 2013). This is supported by the observation that the task in Liu and 

colleagues (2010) experiment where probability effects on antisaccade cost were found was 

not a typical antisaccade task but involved target uncertainty (Jóhannesson et al., 2013). 

  

1.1.8 Probability and manual reaction times 

In humans, manual responses are also ubiquitously used to study behaviour, for example 

the in the previous discussion of Hick’s Law where manual reaction times increase 

logarithmically with the number of alternative stimuli (Hick, 1952). Much of the early literature 

showing the probability effect was conducted using manual responses: collecting data from 

simple button press responses is straightforward and effective (Kaufman & Levy, 1966; Lamb 

and Kaufman, 1965; Mowbray, 1964). However, given that many studies investigating the 

effect of prior probability on behaviour focus on either saccadic or manual responses, it is 
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important to address how far the results can be generalised by examining how similar these 

processes are and how they might interact.  

The premotor theory of attention postulates that processes involved in spatial attention 

and selection of motor responses share a common neural substrate (Eimer, Van Velzen, Gherri 

& Press, 2006; Rizzolatti, Riggio & Sheliga, 1994). It suggests that response-induced 

attentional shifts would be initiated both in the oculomotor system and when hand movements 

are being prepared (Eimer et al., 2006; Rizzolatti et al., 1994). Decision-making models for 

visuomotor behaviour generally propose that a visual event produces an internal response, 

rising with time until a decision threshold is reached and a motor response is initiated (Bompas 

& Sumner, 2008). From the pre-motor theory of attention, it could be postulated that a common 

source of information is used for all types of motor responses and that the same decision 

threshold would apply to all responses: response time would then be the sum of stimulus 

processing time and motor latency where the latter is the only source of difference between 

response types (Bompas & Sumner, 2008).  

However, behavioural data from both response modalities are needed to investigate the 

support for this theory. There have been some studies that directly compare responses to stimuli 

across the two modalities. Some of these studies have shown support for this theory, for 

example Taylor, Carpenter and Anderson (2006) found similar parameters in manual and 

saccadic response times for visual processing of contrast, supporting a common target detection 

stage preceding each type of reaction.  However, there is not a clear result across the scope of 

the literature. A classic debate in the literature concerns the relationship between motor and 

perceptual responses, rather than specifically saccadic responses (Bompas & Sumner, 2008; 

Tappe, Niepel & Neumann, 1994). One particular study by Tappe and colleagues (1994) 

compared a temporal order judgement task (TOJ) with a simple manual reaction time task. The 

TOJ task involved the participants lifting their index finger on either hand from two sensor 
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surfaces to indicate which stimulus they had perceived as the first one (Tappe et al., 1994). 

These types of task have been traditionally regarded as a valid measure for visual latency, as it 

refers to an event that is purely visual (until subjective sensation is generated) whereas reaction 

time tasks encompasses decision and motor processes in addition to sensory processing (Tappe 

et al., 1994). They found that TOJ responses were less affected than direct manual reaction 

times by spatial frequency of stimuli, leading to the conclusion that motor and perceptual 

responses share only partial processing (Bompas & Sumner, 2008; Tappe et al., 1994). 

Research by Bompas and Sumner (2008) partially supports these differences between 

processes, but specifically investigating manual and saccadic reaction times. They found that 

the difference in reaction times to S-cone (blue cone) and luminance signals was larger for 

saccade latencies than for manual responses (Bompas & Sumner, 2008). This could suggest 

that saccadic responses can take better advantage of fast signals when they are available 

(Bompas & Sumner, 2008). This result is not compatible with the suggestion in Taylor et al. 

(2006) that the same target detection stage is used for manual and saccadic responses, but a 

less parsimonious decision-making model could maintain the hypothesis of a common 

collector stage where signals across all pathways are brought together but have different 

decision thresholds for different responses (Bompas & Sumner, 2008). However, aspects of 

their results violate other predictions proposed by this kind of model: for example, they found 

no evidence for a correlation between saccadic and manual reaction times, which would be 

expected if they both relied on the same combination of signals (Bompas & Sumner, 2008). 

Together these results suggest a more complex explanation beyond the premotor theory of 

attention for the similarities and differences between manual and saccadic responses, but do 

provide a strong rational for further investigation in this area. 



 

23 

 

1.2 Reward 

Rewards of different forms are an important motivation for the decisions we make in our 

lives. Given that rewards can be presented in various ways for multiple options, our brain has 

to integrate and compare rewards to come to a decision associated with the highest subjective 

value (Dreher & Tremblay, 2009). Rewards can differ in their form and are often grouped into 

the categories of primary (e.g. food, liquid) and secondary rewards (e.g. money) (Dreher & 

Tremblay, 2009). There can also be differences in reward attributes: often we have to trade off 

magnitude of reward, delay in receiving reward, and the probability of receiving the reward 

(Dreher & Tremblay, 2009).  

Reward is fundamental to motivation, learning and decision-making; scientists have used 

behavioural techniques, neuroimaging and electrophysiological recordings to begin to 

understand the mechanisms underlying reward processing and how it affects different areas of 

cognition (Dreher & Tremblay, 2009).  The network identified within the brain is described as 

the reward system, involving dopaminergic midbrain neurons, the ventral striatum, the 

prefrontal cortex, and the amygdala (Dreher & Tremblay, 2009). Electrophysiological data in 

monkeys has shown that dopaminergic neurons carry information about two parameters of 

reward: a reward prediction error signal (difference between expected and delivered reward) 

and a signal covarying with reward uncertainty (Dreher & Tremblay, 2009). This system is 

crucial in an unstable world as an important aspect of maximising reward in learning and 

tracking which options will be more profitable and how those payoffs change over time. 

Understanding of this system has partly arisen from neurological and psychiatric disorders (e.g. 

schizophrenia, Parkinson’s disease, drug addiction) where processing of reward is 

dysfunctional (Dreher & Tremblay, 2009). The neurological basis of reward will be discussed 

in more detail later in this introduction. 
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There are different ways in which rewards can be associated with stimuli and the actions 

that are required to obtain them. Some of the earlier studies of reward focus on classical 

(Pavlovian) conditioning, where the rewarding outcome follows the conditioned stimulus 

regardless of the behavioural reaction; over time a representation of the outcome is evoked by 

the stimulus and elicits a behavioural reaction  (Schultz, 2006). In contrast, studies of 

instrumental conditioning require the subject to execute a behavioural response to obtain the 

reward (Schultz, 2006). This reinforces stimulus-response links and allows participants to 

influence their environment and determine the rate of reward (Schultz, 2006). This theory 

supports the frequent use of performance-based (or at least directly task related) incentives in 

more recent paradigms investigating processing of reward.  

 

1.2.1 Reward effect on reaction times 

One way in which reward can affect behaviour is by modulating the time taken to respond 

to different stimuli in the environment. Optimisation of the reward we receive may involve 

diverting attentional resources to more highly rewarding stimuli, and under time constraints 

these same resources should be applied to those stimuli most likely to yield reward. This could 

manifest itself in how long we spend attending to more highly rewarding or more likely 

rewarding stimuli, or how quickly we react to it reappearing in our environment relative to 

other stimuli.  

Several studies have investigated the effect of reward value on response latencies in 

different modalities, both in primates and human participants (Bendiksby & Platt 2006; 

Takikawa, Kawagoe, Itoh, Nakahara & Hikosaka, 2002; Hickey & van Zoest, 2012; Lucas et 

al., 2013). Experimental data from primates has shown that mean saccadic latency was shorter 

in rewarded trials than in non-rewarded, in a task with four possible stimuli locations 
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(Takikawa et al., 2002). Furthermore, error trials were higher when the monkey was not 

rewarded, suggesting a higher motivational state when rewarded, and longer latencies were 

seen in non-rewarded trials shortly after a rewarded trial (Takikawa et al., 2002). This suggests 

a local process governing non-stationary reward processing, such that the reward value of the 

current trial (and therefore reaction time) is affected by the previous trials.  

Yamamoto, Kim and Hikosaka (2013) found that after training monkeys on a set of 

fractal objects, half of which were associated with high reward and the other with low reward, 

a gaze bias was developed. Even after reward was no longer delivered with the presentation of 

an object, first saccades were made to the highest value object and then to other high valued 

objects sequentially, generally avoiding fixating low valued objects (Yamamoto et al., 2013). 

Additionally, the objects associated with higher reward were fixated for longer than the lower 

valued objects (Yamamoto et al., 2013). In another primate study, Kawagoe, Takikawa and 

Hikosaka (1998) used a memory guided saccade task where the monkeys were required to 

make saccades to a remembered cue location. They found that latencies were shorter and peak 

velocities higher when saccades were followed by a reward than when they were not (Kawagoe 

et al., 1998). Saccades to the rewarded direction were also more accurate than those to the non-

rewarded locations; the frequency of error saccades were higher in the non-rewarded trials 

(Kawagoe et al., 1998). Research by Bendiksby and Platt (2006) has shown that increasing the 

magnitude of reward in blocks in a peripherally-cued saccade task decreases saccadic reaction 

times. These studies suggest that reward has an effect on several parameters of saccades 

(latency, velocity), the accuracy of saccadic responses, and oculomotor capture. They also 

suggest that the global magnitude of reward available within the experiment has an effect on 

behaviour as well as the relative rewards across different options.   

In human behavioural research, a visual search task was conducted where the participants 

had to orient to a target above or below a central fixation point, ignoring a salient distracter 
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presented slightly to left/right of the direct path between fixation and target (Hickey & van 

Zoest, 2012). Participants received a random reward magnitude for a correct response; when 

the distracter was associated with a rewarding outcome, it drew fast target-directed eye 

movements during saccadic flight, made target directed saccades generally slower and was 

more likely to capture the eyes to its location (Hickey & van Zoest, 2012).  

Other studies with human participants have focused on manual responses rather than 

saccadic. Anderson, Laurent and Yantis (2011a) conducted experiments where the colour of 

the targets (red/green) signified high and low reward: high-reward targets were followed by 

high-reward on 80% of the trials and low reward on 20%, with the percentages reversed for 

low reward targets (Anderson et al., 2011a). They found that non-salient, task-irrelevant 

coloured stimuli previously associated with reward capture attention involuntarily as a 

consequence of reward learning (Anderson et al., 2011a). Slowing of response times during 

visual search is prolonged when a target appears in a location occupied by a high value 

distracter on the previous trial (Anderson et al., 2011a). This finding highlights the spatial 

component of the reward effect, and suggests that the subsequent act of disengagement leaves 

an inhibitory trace at the given spatial location (Anderson et al., 2011a). Further studies have 

extended these findings to show that the higher the magnitude of reward previously associated 

with a task-irrelevant distracter, the slower the visual search to the target (Anderson et al., 

2011b). Additionally, there was a trend in the training phase towards faster responses to higher 

rewarded stimuli (Anderson et al., 2011b). Together these studies in human participants have 

focused mainly on attentional processes, and suggest a stronger effect of reward on oculomotor 

capture and attention rather than saccadic or manual response times. Recent work by Dunne, 

Ellison and Smith (2015) however, suggests a significant facilitation of saccadic reaction times 

for eye-movements directed to a rewarded location in human participants, and a persistence of 

this effect for a short period of time after removal of rewards. They demonstrated that this 
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modulation of the oculomotor system does not extend to untrained tasks (exogenous attention 

and IOR), suggesting that it is possible to modulate the oculomotor system without affecting 

covert attention (Dunne et al., 2015).  

  

1.2.2 Attention and salience 

Many studies investigating the effect of reward on behaviour have addressed the effect 

of reward on the salience of objects and on attentional capture (Anderson et al., 2011a, 2011b; 

Dunne et al., 2015; Hickey & van Zoest, 2012; Theeuwes & Belopolsky, 2012). Generally 

these experiments have explored the modality of eye movements, as there is a tight coupling 

between saccadic eye movements and shifts of spatial attention (Theeuwes & Belopolsky, 

2012). Attentional mechanisms within the brain influence visual selection by prioritising one 

location in the visual field for perceptual enhancement or saccade planning (Markowitz, 

Shewcraft, Wong & Pesaran, 2011). Giving attentional priority to visual targets during 

selection is important as the visual field is constantly changing (Markowitz et al, 2011). Two 

processes drive visual selection in the oculomotor system: the first is sensory driven exogenous 

(“bottom-up”) attention which can be automatic and can result in the capture of attention by 

salient distracters (Markowitz et al., 2011). The second is goal-driven endogenous (“top-

down”) attention which is voluntary and supports the monitoring of peripheral targets or 

locations and can be based on previous experience (Markowitz et al., 2011). The interaction of 

these two processes was studied by Markowitz and colleagues (2011) in rhesus macaque 

monkeys (Macaca mulatta) by manipulating both the relative luminance and reward values of 

two targets. The monkeys performed eye movements for liquid rewards in a two alternative 

forced choice paradigm (Markowitz et al., 2011). They found that exogenous and endogenous 

attention changed linearly as a function of time after stimulus onset, whereby fast reaction 

times lead to stronger sensory-driven bias, and slow reaction times lead to stronger goal-driven 
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attentional bias (Markowitz et al., 2011). This may be because for monkeys to make a choice 

in each trial they have to integrate information about the luminance and reward values, perhaps 

by converting these into a “common currency” (Markowitz et al., 2011). Early on in a trial, 

subjective value of choosing the bright target is highly driven by exogenous attention, and over 

time endogenous attention increases weighting on the high reward magnitude target 

(Markowitz et al., 2011).  

Furthermore, other studies on the effect of reward on exogenous and endogenous 

attentional processes have suggested that associating reward with a stimulus can actually alter 

the salience of a stimulus (above and beyond its physical salience) in such a way that it can 

capture the eyes and disrupt ongoing goal-directed behaviour (Theeuwes & Belopolsky, 2012). 

They found that this effect was even sensitive to a modulation in the magnitude of the reward 

previously associated with the target (Theeuwes & Belopolsky, 2012). This is supported by the 

work of Anderson and colleagues (2011a, 2011b) using manual reaction times where they show 

similar effects of reward on attentional capture. Their results showed that participants took 

longer to find the target in a visual search task when a distracter previously associated with 

high reward was present relative to a distracter associated with low reward (Anderson et al., 

2011a, 2011b; Theeuwes & Belopolsky, 2012).  

It could be conjectured that the learned value of the stimulus may not have actually 

adjusted the attentional capture but may purely have increased to the time it takes to disengage 

attention from distracter stimulus after attention has been captured (‘attentional dwell time’) 

(Anderson et al., 2011b; Theeuwes & Belopolsky, 2012). However, Theeuwes and 

Belopolsky’s (2012) findings in eye movements suggest that as there were no differences of 

learned value on fixation durations following oculomotor capture, the time it takes to disengage 

the eyes does not have a significant role in the effects of reward. Together these results show 

that stimuli associated with reward capture the eyes, slow manual responses and thus disrupt 
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goal-directed behaviour; this suggests the effect of reward is automatic and not driven by 

strategic, top-down control (Theeuwes & Belopolsky, 2012).  

A theme across these studies in the idea that different signals from different sources 

(reward, perceptual salience etc.) converge in a common map to shape behaviour. Such a 

common Priority map (Fecteau & Munoz, 2006) provides a key mechanism by which signals 

about the importance of stimuli, such as reward value, can be coded in a common currency and 

lead to coordinated behaviour. 

 

1.2.3 Primary and Secondary rewards 

In the reward literature there are different definitions and opinions of what constitutes a 

sufficiently motivating reward. Generally monetary rewards are delivered in experiments with 

human participants, and appetitive rewards (i.e. juice) are given to non-human primates. 

Monetary rewards are defined as secondary rewards, whereas juice/water is a primary reward 

as it is a physiological requirement (Lamy, 2007). The assumption is that reward systems for 

physiological needs (primary rewards) may have adapted to process more abstract rewards such 

as money (secondary rewards) (McClure, Ericson, Laibson, Loewenstein & Cohen, 2007; cited 

in Lamy, 2007). The neurological and behavioural differences between receiving primary and 

secondary rewards have been studied partly to address whether parallels can be drawn between 

reward experiments on monkeys and humans. Some studies have actually directly compared 

primary and secondary rewards in human participants, with experiments using both monetary 

rewards and juice/water (McClure et al., 2007). These experiments often utilise paradigms 

involving delay discounting, which is the common finding that the value of a given reward 

declines with increasing delay in receiving the reward (Johnson & Bickel, 2002). In the 

framework of delay discounting, it has been found that primary rewards are less susceptible to 
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contextual framing than secondary rewards, meaning therefore that they have more rapid, 

stable temporal characteristics (McClure et al., 2007; cited in Lamy, 2007).  This suggests that 

one main difference between primary reward and secondary rewards is that discounting is less 

susceptible to contextual factors and more related to internal states (satiety and temperature) 

(McClure et al., 2007; cited in Lamy, 2007). However, similar activation of brain regions in 

the delay discounting task using fMRI was found for both primary and secondary rewards 

(McClure et al., 2007). 

Other methods of engaging the reward system in behavioural experiments have been 

explored, with some researchers focusing on abstract positive feedback as a proxy for primary 

or secondary rewards; it has been shown that this can activate the same brain structures as 

primary rewards (Ullsperger & Von Cramon, 2003). There is support for the use of hypothetical 

rewards in delay discounting research, where no systematic difference was found in discount 

rate between real and hypothetical monetary rewards (Johnson & Bickel, 2002). However, this 

may be specific to the delay discounting research, and not generalisable across other reward 

based paradigms.  

 

1.2.4 Reward and punishment 

It could be argued that if addressing the effect of reward associated with stimuli, the most 

interesting contrast to investigate might be between a highly rewarded stimulus and a stimulus 

associated with loss of reward/punishment. However, it has been postulated that rewards and 

punishments represent opponent processes and are unlikely to be governed by a common 

substrate (Schultz, Dayan, & Montague, 1997). In the decision-making literature the theory of 

negativity bias (Taylor, 1991; cited in Wächter, Lungu, Liu, Willingham & Ashe, 2009) 

suggests that motivation would be stronger when people are punished rather than rewarded, 

but behavioural experiments suggest this is not the case. A study by Wächter et al. (2009) 
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investigating the effect of reward and punishment on procedural learning in a serial reaction 

time task (SRT) found support for this theory behaviourally. They looked specifically at 

procedural learning as it is the foundation of many motor skills and arguably other forms of 

learning (Squire, 2004; cited in Wächter et al., 2009); procedural learning is also thought to be 

dependent on the basal ganglia which mediates the effect of reward and punishment (Wächter 

et al., 2009). Individual reaction time criteria were established for each participant after a test 

block: one group of participants were rewarded for fast responses, one group punished for 

responses slower than the criterion, and a final control group were not rewarded or punished 

for desired/undesired behaviour (Wächter et al., 2009). Reward and punishment were 

categorised as monetary gain and loss respectively. Learning the sequence of stimuli in the task 

enabled the participants to reduce their reaction time, therefore the procedural learning was 

linked to the reward/punishment delivered (Wächter et al., 2009). They found that only the 

reward group showed enhanced implicit learning of the motor sequence; the punishment group 

did not learn any better than the control participants (Wächter et al., 2009). This suggests that 

reward and punishment may be governed by different motivational systems.  

 

1.2.5 Probability, Magnitude and Expected value of Reward 

The reward value associated with a stimulus can differ in several ways. For example, the 

probability, magnitude or the expected value of reward received can be manipulated. The 

expected value of future rewards is the sum of possible reward magnitudes where each is 

weighted by its probability (Tobler, Fiorillo & Schultz, 2005). Milstein and Dorris (2011) 

found reward magnitude to have a stronger effect on choice and saccadic reaction times in non-

human primates than reward probability, and that expressing reward as expected value had a 

greater effect than either measure separately. They observed that reward probability only had 
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an effect on saccadic reaction times when the magnitude of reward was similar across stimuli 

(Milstein & Dorris, 2011). It is logical that expected value would have the strongest effect on 

behaviour, as making decisions based on expected value maximises reward intake over time 

(Milstein & Dorris, 2007). However, the difference observed between the effect of reward 

magnitude and probability could be very specific to studying non-human primates, due to the 

fact that monkeys were given reward immediately after each trial rather than later in the 

experiment as in human economic experiments (Milstein & Dorris, 2011). Additionally, the 

nature of a probability manipulation in these paradigms means that the distribution has to be 

experienced and updated over the course of the experiment; in comparison, gaining information 

about the reward magnitude is more instantaneous even in human studies (Milstein & Dorris, 

2011).  

 

1.2.6 Reward Context 

Understanding the effect of reward on saccadic and manual reaction times requires 

exploring whether it is the absolute or relative value of each reward stimulus that elicits the 

effect. In the economic literature, prospect theory posits that value (or utility) of an action is 

relative to the other available options (Kahneman & Tversky, 1979). Neurological experiments 

in nonhuman primates have shown absolute value of reward to influence decision-making by 

increasing global motivation: the more reward available overall, the more motivation to 

respond (Roesch & Olson, 2004; cited in Milstein and Dorris 2011). However, it is important 

to note that this research deployed primary rewards (juice) rather than the secondary rewards 

used in the economic literature. In an experiment with rhesus monkeys, Milstein and Dorris 

(2011) found that motivation, defined as the average reward per trial, had no effect on saccadic 

reaction times: when the reward magnitudes were 1x, 1.5x and 2x their initial amount, the SRTs 

were unchanged. The relative expected subjective value of a stimulus compared to other stimuli 
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had a large effect (Milstein & Dorris, 2011). This is supported by their work in humans 

demonstrating that saccade preparation is spatially allocated based on the relative value of 

potential targets (Milstein & Dorris, 2007, 2011). Allocating time and resources towards more 

profitable options relative to others may be more adaptive than being globally motivated by the 

prospect of reward.   

 

1.2.7 Time course of reward effect 

An additional parameter of the reward effect is the time course of its persistence. 

Learning about the rewarding characteristics of the environment could have an evolutionary 

advantage when revisiting a specific area, and this may persist even after the properties of the 

environment have changed. Theeuwes and Belopolsky (2012) found that more saccades were 

made to a task-irrelevant stimulus that was associated with high monetary reward than to the 

low reward distracters. Crucially, they found that the high rewarded distracters continued to 

increase exogenous capture of the eyes even after the stimulus no longer predicted reward 

(Theeuwes & Belopolsky, 2012). This suggests a long-term global mechanism governing 

attentional processes related to reward, indicating a need for relative consistency of reward 

values within behavioural experiments investigating this phenomena. Other studies have 

supported this finding in different response modalities, for example Stankevich and Geng 

(2015) found that a stimulus feature (colour) paired with reward produced an attentional bias 

towards the rewarded colour, indexed by manual reaction time (Dunne et al., 2015). The 

magnitude of the effect was reduced but not extinguished when rewards were removed from 

the task; this result suggests that rewards have a long-term effect on exogenous capture 

(Stankevich & Geng, 2015). There has been some investigation into whether the persistence of 

the effect of reward on learning in the oculomotor system transfers to other cognitive tasks 

(Dunne et al., 2015). This is an interesting area for discussion as there is a possibility that 
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rewards can be used to help patients with brain injuries to compensate for neuropsychological 

problems (Dunne et al., 2015). There is evidence for patients with spatial neglect that 

asymmetric reward distribution in space can bias visual exploration and target selection 

towards the neglected hemisphere (Lucas et al., 2013). However, although it has been found 

that facilitation of saccadic reaction times towards rewarded locations persist for some time 

after the removal of rewards, this does not transfer to untrained tasks that engage the 

oculomotor system (exogenous attentional orienting and IOR) (Dunne et al., 2015).  

 

1.3 Probability and reward 

1.3.1 Modelling reward and probability effects 

In order to understand the effect of reward and probability on response times and how 

they might interact, it is important to examine the neurological and computational processes 

governing these effects. A dominant framework for modelling response time variability 

alongside error rates are accumulator models (Brown & Heathcote, 2008; Carpenter & 

Williams, 1995; Ratcliff, 1978). Within these models evidence for a given response rises over 

time from some baseline level until it reaches a threshold after which the response is generated. 

In many of these models, such as the diffusion model, the threshold is a relative one as it 

corresponds to a certain amount of net evidence in favour of one particular alternative relative 

to another (Ludwig, 2011). Carpenter and Williams (1995) developed the LATER (linear 

approach to threshold with ergodic rate) model specifically for saccadic responses. Within 

LATER the presence of a target causes a signal in a decision unit to rise linearly at rate r from 

an initial value (so) to a threshold whereby a saccade is made (Carpenter & Williams, 1995). 

The rate of accumulation is assumed to vary randomly between subsequent saccades, according 

to a Gaussian distribution. These types of models can be thought of as simplified decision-field 
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models; in these models the relevant parameters of movements towards the various response 

alternatives are coded in a continuous and dynamic activation field (Ludwig, 2011). At a 

physiological level, each accumulator can be thought of as representing the mean activity of 

neural populations encoding each alternative (Wong & Wang, 2006).  The alternative targets 

in many experimental paradigms are well separated, so modelling choice and latency variability 

using accumulator models instead of a full decision-field is sufficient (Ludwig, 2011). Using 

the LATER model, it was shown that the effect of prior probability on reaction time is best 

accounted for by a change in the difference between the starting point of the accumulator and 

the threshold (Carpenter & Williams, 1995). The lower the probability of an alternative, the 

greater the distance between the starting point and the threshold and thus the longer the time 

taken to respond. Marshall, Bogacz and Gilchrist (2012) have argued from a computational 

perspective that this change is best implemented in a change in the baseline rather than the 

threshold. This suggestion is supported by neurophysiological evidence (Forstmann et al., 

2008). 

The effect of reward on saccadic latency can also be accounted for in terms of 

accumulator models of saccade production (Dunne et al., 2015). Neurological research in 

primates suggests that oculomotor neurons representing the location of an expected reward 

show heightened activity (Dunne et al, 2015; Platt & Glimcher, 1999; Dorris & Glimcher, 

2004). As with probability, in principle this activity increase could be reflected in a shift in the 

baseline activity level, shortening the distance between baseline and execution threshold and 

resulting in faster saccadic latencies (Dunne et al, 2015). This is supported by the behavioural 

data in Dunne and colleagues (2015), where it was found that rewards modulated saccade 

latency in a stimulus-driven task but did not affect exogenous orienting or IOR. However, other 

human behavioural data do not support this interpretation. Liston and Stone (2008) found 

manipulating reward frequency (and in fact prior probability) in a saccadic task affected the 
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internal perceptual response which is more consistent with an effect on the rate of accumulation 

in the decision-making model framework (Ludwig, 2011). 

  

1.3.2 Dopaminergic system 

The neural substrate of reward has long been associated with dopamine. Dopaminergic 

neurons (which appear to carry an essential signal for reward based learning) are an important 

part of the basal ganglia system and project most heavily within the basal ganglia (Shultz, 1998; 

Hikosaka, 2007). The majority of midbrain dopamine neurons (75-80%) show phasic 

activations with latencies of <100ms and durations of <200ms following temporally 

unpredicted food and liquid rewards in primates (Schultz, 2010). As reward can be quantified 

by probability distributions of value, predictions of rewards involve the expected value and 

variance of the distribution (Schultz, 2010). The physiological data supports the previously 

discussed effects of reward probability and reward magnitude; in experiments with primates, 

dopamine responses do not differ between reward probability and magnitude as long as the 

expected value is identical (Schultz, 2010). It is postulated that dopamine neurons encode 

reward prediction error, the difference between the predicted reward and the actual reward 

received (Hikosaka, 2007). This means that a larger obtained reward than expected results in 

an increased response and a smaller reward than expected results in response suppression 

(Ludwig, 2011). It could be concluded from this that the prediction error enables learning of 

the rewards available over time in an unstable environment (Ludwig, 2011; Shultz, 1998).  

Several of the studies focusing on how reward affects responses times have investigated 

the neural substrates of reward, particularly in non-human primates. Bendiksby and Platt 

(2006) found that increasing rewards reduced saccadic reaction times in macaques, and for 

many neurons in lateral parietal area (LIP) (suggested to be homologous to areas of human 
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parietal cortex) visual responses were modulated by expected reward size. Interestingly, 

neuronal responses were positively correlated with reaction times independent of reward size, 

which is consistent with re-orienting of attention to the target; this suggests that motivation 

(reward) and attention independently contribute to the responses (Bendiksby & Platt, 2006). 

This result is somewhat conflicting to previously discussed studies showing that reward affects 

attentional capture (Theeuwes & Belopolsky, 2012), highlighting the importance of 

understanding the neural processes underlying behaviour. Additionally, it calls into question 

how we can really disentangle the effects of attention and motivation, and what these processes 

really are.  

The neurophysiological data from the reward system also supports the difference 

between processing of reward and punishment, as previously discussed. The majority of 

dopamine neurons are either depressed in their activity in response to aversive stimuli (in 

primate studies), or not even activated (Schultz, 2010). Furthermore, if a dopamine activation 

is shown in response to punishment, it is temporally slower in comparison to the reward 

activation (Schultz, 2007). Although aversive stimuli in primate studies (electric shocks/puffs 

of air) are quite different to a monetary loss in human behavioural experiments, the 

neurological currency could be as similar as it is with juice/monetary rewards. 

The research on the reward system in humans and non-human primates corroborates the 

majority of behavioural data suggesting that the relative reward value rather than absolute value 

has a clear effect on responses. In study on macaques, nearly half of the striatal neurons 

measured shifted the processing for one reward relative to the other reward values available in 

a block (Cromwell, Hassani, & Schultz, 2005). Supporting this, Elliott, Agnew and Deakin 

(2008) used functional magnetic resonance imaging (fMRI) in humans to investigate the role 

of the medial orbitofrontal cortex in reward processing, and found the response to the same 

perceptual stimulus was greater when it predicted the more valuable of two rewards. This 
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suggests sensitivity within the reward processing structures in the brain to the relative value of 

rewards, which could be manifested in saccadic and manual response times.  

 

1.3.3 Neurological basis and computational model of prior probability 

The neural basis of the effect of prior probability on motor preparation has been studied 

in primates (Basso & Wurtz, 1997; Dorris & Munoz, 1998). Neural activity in the superior 

colliculus (SC) preceding target selection was found to increase as the probability increased 

(Basso & Wurtz, 1997; Dorris & Munoz, 1998; Liu et al., 2011). This may be produced by 

descending cortical influences, as suggested by Liu (2011) and colleagues who found that, in 

humans, transcranial magnetic stimulation (TMS) disrupted the effect of location probability 

when TMS was applied over frontal eye fields (FEF). This is supported by research in monkeys 

where populations of LIP neurons were found to represent the log of the prior probability of a 

specific target in their initial firing rate (Platt & Glimcher, 1999; Yang & Shadlen, 2007); the 

neurons of FEF have receptive fields encoding visual and saccadic locations in a similar way 

to LIP. This research suggests that FEF plays a crucial role in modulating the effects of target 

location probability on saccade execution (Liu et al., 2011).  

A computational model of the encoding of prior probability in the brain corroborates 

these experimental findings. As discussed previously, the LATER model of saccadic response 

updates the starting point of the accumulator based on the probabilistic evidence for a particular 

alternative (Carpenter & Williams, 1995). This is formalised in Bayes rule, which combines 

current evidence with the prior probability of some event (Ludwig, 2011). In this proposed 

model of the cortico-basal ganglia circuit Bayes theorem is hardwired (Bogacz, 2009; Bogacz 

& Larson, 2011). Cortical integrators (populations of LIP neurons) selective for a particular 

alternative represent log of prior probability in their initial firing rate, developed from the 
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evidence of neurological recordings in probabilistic behavioural tasks with monkeys (Bogacz, 

2009; Platt & Glimcher, 1999; Yang & Shadlen, 2007). The log of prior probability is updated 

according to the new sensory evidence, and the basal ganglia re-normalises the cortical activity 

such that all probabilities of alternatives sum to 1 (Bogacz, 2009). This depends critically on 

the subthalamic nucleus (STN) which inhibits the neurons selective for less likely responses 

(through indirect but prominent projections via the output nuclei and thalamus). Within the 

model, the log transform is necessary because of a biological constraint imposed by the 

neurons: multiplication and division cannot be computed between integrators, but summation 

and subtraction can (Bogacz, 2009). Carpenter and Williams (1995) study supports this model, 

as median saccadic reaction time is shown to be proportional to the log of the prior probability. 

As the saccadic reaction time is also proportional to the threshold minus the starting point, and 

the starting point is the decision variable that is assumed to vary as probability of an alternative 

changes, it follows that the starting point (represented by initial firing rate of neurons) should 

be proportional to the negative log of the probability (Carpenter & Williams, 1995). This model 

will be discussed in relation to the effect of deep brain stimulation in the STN of Parkinson’s 

patients in the final section of the introduction, but first I will address the interaction between 

reward and probability effects. 
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1.3.4 The relationship between reward and probability 

From the existing literature, prior knowledge about the reward of an event seems to have 

a similar effect to prior knowledge about the likelihood of the event occurring. These processes 

could therefore be interlinked and it could be suggested that experiencing a stimulus more 

frequently than another could be intrinsically rewarding. Comparing effects of reward and 

probability cues have been studied using a random dot motion paradigm, where a perceptual 

decision is required (Mulder, Wagenmakers, Ratcliff, Boekel & Forstmann, 2012). In these 

types of tasks, participants are required to maintain fixation on a central cross before a cue is 

presented, and then decide the direction of motion of a cloud of randomly moving white dots 

on a black background (Mulder et al., 2012). An increased number of decisions were made to 

the side cued more probable or rewarding, and the reaction times were faster (Mulder et al., 

2012). This was quantified by fitting the drift diffusion model (an accumulator model) which 

assumes that for two-alternative forced choice decisions, sensory evidence in favour of one of 

the alternatives begins to accumulate from a starting point z; when the accumulation process 

(at drift rate v) reaches a threshold value (a), a response is initiated (Mulder et al., 2012). They 

found that the response bias for reward and probability was best accounted for by a change in 

the starting point of the accumulator (Mulder et al., 2012). Using 3T functional MRI, they 

showed the frontoparietal network to be involved in changing the starting points in both 

manipulations of probability and reward (Mulder et al., 2012). Supporting these neurological 

similarities between probability and reward processing, Nakahara, Nakamura and Hikosaka 

(2006) state that prior knowledge about the reward associated with an alternative leads to a bias 

in the excitability of SC neurons, which might be reflected in the elevated starting point in the 

LATER model for saccadic responses.  As previously discussed, neural activity in the superior 

colliculus (SC) preceding target selection has also been found to increase as the probability 

increased (Basso & Wurtz, 1997; Dorris & Munoz, 1998; Liu et al., 2011). In addition, a study 
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investigating both prior knowledge of reward value or probability shapes perception and action 

in parallel, and suggests that a shared sensory weight amplifies perceptual experience while 

biasing motor action driven by attention and expected value (Liston & Stone, 2008). These 

results suggest that the effects of reward and probability on decision-making processes across 

different response modalities may be governed by the same system or overlap in some way. 

Several studies that have been discussed on the effects of reward have linked the 

influence of associating reward with a target to increasing attentional capture (e.g. Theeuwes 

& Belopolsky, 2012). Additionally, prior probability of a stimulus is often classified as 

expectation, which can guide attention towards a likely location of a relevant item 

(Summerfield & Egner, 2009).  However, the similarities between attention and expectation 

are not reflected in the neural activity in visual regions representing the stimulus, and some 

neurophysiological research has shown that reward (defined as ‘motivation’) and attention  

contribute independently to influence the  responses (Bendiksby & Platt, 2006; Summerfield 

& Egner, 2009). One way in which reward and probability may contribute to attention (but not 

directly change it) is by increasing the salience of the target that is associated with high reward 

value or prior probability. Many studies in the reward literature have linked reward associations 

with increasing salience, which is defined as the physical, ‘bottom-up’ distinctiveness of an 

object relative to other objects in the environment (Fecteau & Munoz, 2006). Although there 

has not been a strong argument for the effect of prior probability on salience, studies have 

shown that in a Posner cueing style task, the cue acts as a salient event which enhances the 

behavioural benefit associated with capture of attention (Fecteau, Bell & Munoz, 2004). 

Additionally, it was found that these goal-driven changes in behaviour were associated with an 

increase in pre-target and target related activity, and weaker activity related to inhibition of 

return (Fecteau et al, 2004). Therefore it could be postulated that global knowledge of the prior 
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probability of the stimulus occurring in a particular location could act as an internal cue, given 

the effects seen on behaviour, and increase the salience of the target itself.  

 

1.3.5 Parkinson’s disease 

If the STN is crucial to this integration of probabilities, then how will the decision process 

be affected if the STN is disrupted in some way? The STN is the main area affected during 

deep brain stimulation (DBS) for Parkinson’s disease patients, where an electrode is surgically 

implanted into the basal ganglia. Generally, it has been found that DBS can cause severe 

behavioural side effects such as impulsivity and difficult decisions being made quickly and 

inaccurately (Frank, Samanta, Moustafa, & Sherman, 2007). If the STN is critical (as in the 

model) for inhibition of neurons for less likely alternatives, then the response times for these 

alternatives may be affected by DBS. We would predict response times for highly likely 

alternatives to be unaffected by stimulation of the STN. This is supported by research 

suggesting that patients with DBS are specifically unable to slow down responses in high 

conflict decisions (Frank et al, 2007). Intuitively this is most likely to be manifested in 

responses to less probable or less rewarding stimuli, for which the response latencies are 

usually longer in the general population. 

 In general, Parkinson’s patients have trouble suppressing automatic prosaccades to 

visual stimuli, and reaction times for antisaccades are significantly longer than age-matched 

controls (Munoz & Everling, 2004). However, in the same study prosaccades in patients were 

actually faster and they made more express saccades than controls (Munoz & Everling, 2004). 

This is thought to be caused by the dysfunction of the basal ganglia in Parkinson’s disease, as 

the basal ganglia functions to select the appropriate response, by exerting and removing tonic 

inhibition (Hikosaka, Takikawa,& Kawagoe, 2000). Additionally, an adaptive mechanism may 

be involved, whereby baseline response inhibition is reduced in an effort to initiate movements 
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more rapidly, to compensate for slow motor movements in Parkinson’s disease (Chan, 

Armstrong, Pari, Riopelle, & Munoz 2005).  

A recent study showed Parkinson’s disease patients (on dopaminergic medication) made 

increased errors and had longer response latencies relative to controls when switching between 

stimulus-saccade associations which were stochastically reinforced (Hodgson, Sumner, 

Molyva, Sheridan, & Kennard, 2013). The task involved a colour cued fixation target, and 

participants had to learn the associations between the colour and the direction of the saccade to 

be made. Positive feedback was given with a 0.8 probability, with 0.2 probability of receiving 

incorrect negative feedback on a correct trial. The result was interpreted as evidence for 

impairment in associative learning processes in PD, and a possible deficiency in processing of 

negative feedbacks dependent on dopaminergic state (Hodgson et al., 2013). The inability of 

Parkinson’s patients on dopaminergic medication to learn from negative feedback has been 

documented before (Frank et al., 2007), and it follows that impulsive and reward-seeking 

behaviour are also seen in this population. 

One of the long term goals of the work of this thesis is to develop an experimental 

paradigm to test both reward and probability in this patient group. 

 

1.4 Plan of the Thesis 

The effect of probability on saccadic and manual responses will be addressed in Chapter 

2 where I report two experiments investigating these response modalities concurrently. 

Throughout all the experimental chapters I use a paradigm where in each trial one of two targets 

is presented either side of a central fixation. In Chapter 2 the prior probability of the 

presentation of these two targets is manipulated. I discuss the robustness of the probability 
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effect across modalities, observing whether there is a correlation between saccadic and manual 

responses. Within this chapter I report the development of a paradigm with which to study 

saccadic and manual responses to the same stimuli.   

Although there have been studies that have investigated the effect of reward and 

probability on different parameters of saccades (e.g. peak velocities), the experiments I report 

in this thesis are focused on saccade latencies. Several studies in non-human primates look at 

peak velocities and amplitude (Kawagoe et al., 1998; Takikawa et al., 2002). However, these 

studies have mainly involved non-human primates and there is little evidence in the existing 

literature on humans to suggest that reward and probability modulate peak velocities or other 

parameters. Furthermore, given the intention to directly compare manual and saccadic 

responses across the experiments in the thesis, the latency of response is the only comparable 

parameter.  

In Chapter 3 the effect of reward on saccadic and manual responses is investigated, and 

I report four studies I have carried out in this area.  These studies address the way in which 

secondary rewards are delivered, and the affects of presenting rewards as probabilities or 

magnitudes. The absolute and relative value of rewards is manipulated in this chapter, in order 

to understand how these affect behaviour independently. 

The experiments reported in Chapters 2 and 3 were carried our concurrently and so there 

is some parallel development of the paradigms across these chapters. However for simplicity 

and clarity they are reported separately.    

The aim of the studies reported in Chapter 4 is to understand how the effects of reward 

and probability might interact. The first experiment addresses this explicitly, to see how reward 

and probability manipulations can affect behaviour concurrently. This involves manipulations 

of the expected value of targets.  In the second experiment, these effects are studied purely in 

manual responses and separated in a matched paradigm to directly compare the two effects. I 
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report a study with healthy older adults in the final experiment of this chapter, with a view to 

begin to understanding how reward and probability effects change over the lifespan. This study 

provides a control experiment for future work investigating these effects in Parkinson’s patients 

with deep brain stimulators. 
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CHAPTER 2  

2.1 Introduction 

In this chapter I report two experiments that investigate the effect of probability on 

saccadic and manual response times.  In designing these experiments concurrently with the 

experiments investigating reward in Chapter 3, I aimed to develop a paradigm to study both 

factors that was as closely matched as possible.  Doing this enabled the studies reported in 

Chapter 4 to be carried out in which the two factors are combined.  Although the probability 

effect is well established in the existing literature, it is often studied within just one response 

modality - primarily saccadic (Basso & Wurtz, 1997; Carpenter & Williams, 1995; Dorris & 

Munoz, 1998; Koval et al., 2004; Liu et al., 2010, 2011; Noorani & Carpenter, 2013). 

Additionally, not all studies of this effect have replicated the result that responses are faster to 

targets appearing with higher spatial probability.  Specifically, these effects appear often to be 

more robust in more complex paradigms involving an element of visual search (Jóhannesson 

et al., 2013). By studying saccadic and manual responses concurrently, the experiments 

reported in this chapter attempt to understand the sensitivity of the probability effect and the 

extent to which they are present across response types.  

As discussed in Chapter 1, the majority of previous human and primate studies on the 

effect of stimuli probability on performance have focused on one type of response: primarily 

either saccadic or manual (button presses) responses. Studies of the neural basis of such 

response generation provide one source of evidence of whether the probability effect is 

governed by a similar process in these two response modalities.  One suggestion is that 
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probability affects arise by changes in baseline firing rate in cells in the SC (Basso & Wurtz 

1997; Dorris & Munoz 1998; Liu et al, 2011). The SC is associated with the generation of 

saccades and does not play a central role in the generation of other types of movement (arm, 

hand etc.).  This suggests that probability effects may differ across response modalities.   

However, as discussed in the Chapter 1, the premotor theory of attention states that 

processes involved in the control of spatial attention, and required for selecting motor 

responses, share a common neural substrate (Eimer et al, 2006; Rizzolatti et al, 1994). The 

theory claims that response-induced attentional shifts are not restricted to the oculomotor 

system, and would be triggered when hand movements are being prepared (Eimer et al., 2006; 

Rizzolatti et al, 1994). Eimer and colleagues (2006) found that ERP (event related potential) 

components sensitive to the direction of a cued response were similar for both saccadic and 

manual tasks, and suggested that both manual and saccade preparation result in spatially 

specific modulations of visual processing. This suggests that there may be a global system 

governing the influence of and probabilistic information on responses, and that we might see 

similar reaction time effects from recording saccadic and manual responses concurrently. 

The experiments reported in this chapter were preceded by a number of pilot studies that 

are not reported here.  These pilot studies established a long-term global mechanism for the 

probability effect on saccades, whereby reaction times were reduced over several testing 

sessions (at least 500 trials in each condition) on probability manipulations from 0.05 to 0.95, 

supporting the research of Druker and Anderson (2010) showing that the probability effect can 

be produced by statistical learning about the probabilities of stimuli in the environment. 

However, manual drift correction was used in this experiment, to ensure the participants 

returned to fixation before the onset of each trial. This produced a highly variable and 

uncontrolled ISI meaning that the results were not reliable. Additionally, the paradigm involved 
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the participants being asked to fixate on a cross in the centre of the screen and then look at one 

of a possible two targets presented on either side. These targets were small round circles and 

no additional task was involved; over long testing sessions, participants would become fatigued 

and their gaze would frequently drift from fixation and the landing point of saccades would not 

be close enough to the targets. In all the studies I report in these three experimental chapters, 

the paradigms involve a simple perceptual task after a saccade is made to a target (and 

sometimes fixation) to ensure that participants stay motivated to complete the task and that 

saccades are directed close enough to the target. This is particularly important given the 

intention to study the effects investigated in the thesis in Parkinson’s patients with deep-brain 

stimulators; these participants specifically would struggle with an experiment where the 

instruction was purely to ‘look’ towards a target from a fixation point. Additionally, the use of 

a perceptual task with a manual response ensures that there are multiple response modalities in 

each paradigm in case one has more feasibility with the patient group than the other. 

2.2 Experiment 1 

2.2.1 Methods 

Participants  

Twelve participants (6 female) were recruited from the student population of the 

University of Bristol (approximate age range 18-25). All the participants had normal or 

corrected-to-normal vision. Participants were reimbursed £7 for their time and the study was 

approved by The Faculty of Science Human Research Ethics Committee at the University of 

Bristol. 



 

49 

 

 Procedure  

 

Figure 2.1; Diagram of the experimental procedure. The figure depicts an example trial, 

initiated by a manual response to the orientation of the letter T in the central fixation square. 

The trial shown is one in which the target appears on the right-hand side. 

The sequence of a single example trial is shown in Figure 2.1. The participants were required 

to make a manual response to a capital letter “T” stimuli inside a square fixation point. The 

task was to indicate the orientation of the letter with a manual button press (one of two buttons). 

A circular target was then presented on the left or the right side of fixation, where the task was 

to make another manual response to the orientation of the letter T. The experiment consisted 

of a practice phase (10 trials) and then 12 blocks (4 blocks each of 3 conditions; 48 trials per 

block). Each block was preceded by a 9 point calibration procedure to allow accurate eye 

tracking.   
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Stimuli  

All the stimuli were white (16.4 cd/m2) and displayed on a grey background (10.4 cd/m2). 

At the start of a trial a fixation square was presented centrally (1o x 1o; 0.18o). Inside the fixation 

square was a letter T or inverted T in the centre. The letter T subtended 0.3o, which is a size 

that Körner and Gilchrist (2007) have shown is small enough not to be recognised reliably 

above chance when fixation was 3o away from the letter. Once a manual response was made to 

the T in fixation (the up arrow for letter T, the down arrow key for the inverted T) a variable 

non-aging foreperiod was initiated of between 400 – 800ms. This accounts for differences in 

expectancy over time by ensuring equal probability of the target onset at any point across the 

foreperiod (Weinbach & Henik, 2012). The fixation square and T remained on the screen for 

the duration of the foreperiod, but were removed from the screen as soon as the target was 

presented. The inclusion of a manual task at fixation ensured that participants had to always 

return to fixating at the centre of the screen prior to each trial.  

The target presented in each trial was circular with a T or inverted T in the centre.  The 

circle had a diameter of 0.9o and a line thickness of 0.18o.  The presence of the T ensured that 

participants had to make an accurate target directed saccadic eye movement towards the target 

to complete the task.  The target was presented at 6o eccentricity from the centre on the left or 

the right-hand side.  

The target was presented for a fixed amount of time (1.5 seconds), regardless of when 

the manual response was made to the orientation of the T in the target. If a manual response 

was made, the target was on screen for a further 300ms. If no manual response was made within 

1.5s, then a message reading ‘Please respond quicker’ was displayed centrally (5o above 

fixation and white) for 900ms.  
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The testing phase consisted of three probability conditions, where participants were 

exposed to each condition for four blocks. In the first condition, the target was equally likely 

to be presented on the left or right side of fixation. In the second condition, the target was 

presented on the left with probability 0.75 and the right with probability 0.25. In the third 

condition these probabilities were reversed. The proportions were fixed within the blocks rather 

than the probabilities, due to short block lengths, such that at the beginning of each block the 

number of targets appearing on a particular side were fixed at 50%, 75% or 25% of the total 

number of trials in the block. The order of trials were randomised for each block, giving a 

random permutation of trials in every block for each participant.  

Apparatus 

The experiment was created using the Psychophysics Toolbox (Brainard, 1997) running 

within Matlab 2013b running on Windows 7. The display was 17” running at 75Hz and with a 

resolution of 1600 x 1200 pixels, and the viewing distance was 57cm.  

Movements of the right eye were recorded at a sampling rate of 1000Hz by the Eyelink 

II (SR Research, Canada) which has a typical operating spatial resolution of 0.5o. A chin and 

forehead rest was used to minimise head movements. A keyboard was used to record manual 

responses, the up arrow and down arrow for judgements on the orientation of the letter T.  

Design 

 Probability condition (50/50, 75/25, 25/75) was the within participant repeated measure 

binary factor. Data combined from the left and right-hand side lead to three conditions: 50% 

probability, 75% probability, 25% probability.  

The order of conditions were counterbalanced using a latin square design. The three 

conditions gave 6 unique orders, which were then repeated for the further 6 participants. The 

dependent measures were the manual response time to the target and saccadic latency.  
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2.2.2 Results 

Manual Responses 

A total of 6912 trials were recorded in the experiment (576 x 12 participants). In the 

manual data 34 of these trials were discarded (0.49% of total) due to response times of 10ms 

or less (including negative values); these were likely due to recording errors or responses that 

were initiated before/during the target onset or after the error message had been displayed.  A 

total of 422 manual errors (6.12% of total trials; incorrect response to letter T in the target) 

were recorded. The distribution of errors across probability conditions is given in Table 2.1. 

This left a total of 6456 correct trials (93.4%) to be analysed. 

 

Table 2.1; Distribution of errors across the three probability conditions. The values give the 

mean percentage of errors across the medians of participants, out of the total number of possible 

trials in each condition. The range across participants is given in brackets. 

  

 Probability 

0.25 0.5 0.75 

Response Error  7.29 (3.13 – 13.4)  5.73 (1.56 – 14.58)  5.96 (1.74 - 12.5) 
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Figure 2.2; Graph of mean manual response times across the medians of 12 participants. The x-

axis denotes the target probability, with the data having been pooled from targets presented in 

the left and right hemispheres. The error bars are calculated within subjects and are the standard 

error of the mean. 

There was a significant effect of probability on the distribution of errors: more errors 

were made when responding to the 0.25 probability target than to the 0.5 or 0.75 probability 

targets (Repeated Measures ANOVA: [F(2,11) = 4.57, p = 0.02]; Effect size (partial ETA 

squared) = 0.29). There was no significant effect of the target probability on the manual 

response times (Figure 2.2), although there is a linear trend for response times to decrease as 

the probability increases.  
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Saccadic Responses 

The initial analysis of the saccadic response data involved examining whether there was 

an offset in initial fixation towards either side. The median amount of drift away from central 

fixation at the starting point of the first saccade after target onset was calculated for each 

participant, in the equal and biased probability conditions. Of the 6912 trials recorded, 6907 

trials were included in this analysis due to five trials having an error in the recording of the first 

saccade (due to a blink during target onset or recording failure). The mean offset across the 

twelve participants was 0.15°towards the high probability target in the 0.75/0.25 probability 

conditions (CI 95%: 0.03 – 0.28). The mean offset in the 0.5/0.5 condition was 0.08 degrees 

towards the right-hand side target (CI 95%: -0.21 – 0.37). The variance and overlap between 

the confidence intervals suggests no reliable effect of target probability on the starting point of 

the first saccade.  

Therefore a general exclusion criteria was applied to the starting point of the first saccade, 

excluding trials where the starting position of the saccades was greater than 3 degrees either 

side of the centre of the fixation. No exclusion criteria was applied to the landing point of the 

first saccades, but if the saccade was generated in the wrong direction they were classed as 

error trials. After the application of these criteria, 190 trials were excluded from further analysis 

(Table 2.2). The remaining trials had a mean first saccade amplitude of 5.78°(range across 

participants: 5.14 – 6.21). This indicates that participants made a large hypo-metric saccade for 

their first saccade after target onset. 
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Of the saccades initiated in the incorrect direction, 96% had a response time of 75ms or 

less and these saccades were assumed to be anticipatory. All saccades initiated in the correct 

direction with response times of 75ms or less were therefore also classed as anticipatory and 

were excluded. Within the analysis of the anticipatory saccades, three of the trials were 

removed because of either a blink or recording error at target onset. After the pre-processing 

of the data, the remaining number of saccades to be analysed was 6298 (91.1%). 

Reason for Exclusion  

 

Number of saccades (trials) 

excluded and percentage of initial 

total 

Total no of saccades 

(Initial 6912) 

Initial fixation greater than 3 

degrees from centre/starting point 

at 0 

195 (2.82%; 0.9 – 5.9%) 

 

6717 (97.18%) 

Saccades in the incorrect direction 

(96.13% anticipatory) 

181 (2.62%; 1.6 – 5.03%) 6536 (94.56%) 

Anticipatory saccades (correct 

direction) 

238 (3.44%; 2.08 – 5.21%) 

 

 6298 (91.12%) 

Table 2.2; Pre-processing of the saccadic data. The data removed at each stage of pre-processing 

is quantified, with the percentage of the initial number of data points given in brackets, followed by 

the range across participants. 
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Figure 2.3; Graph of mean saccadic response times across medians of all 12 participants. The 

points on the x-axis denote the probability associated with the target, with the data pooled from 

responses to both hemispheres. The within-subject error bars are the standard error of the 

mean. 

 

There was a significant effect of target probability on the saccadic response times, 

showing a linear decrease in response time as the probability increased (Figure 2.3) (Repeated 

Measures ANOVA: [F(1,11) = 27.73, p < 0.001]; Effect size (partial ETA) = 0.72). 

Additionally there was a significant effect of target probability on the frequency of correct 

anticipatory saccades, where more anticipatory saccades were made towards the target as the 

110

115

120

125

130

135

140

145

150

0.25 0.5 0.75

S
a
cc

a
d

ic
 r

es
p

o
n

se
 t

im
e 

(m
s)

Target Probability



 

57 

 

target probability increases (Repeated Measures ANOVA: [F(1,11) = 6.85, p = 0.005]; Effect 

size (partial ETA) = 0.38). It follows that the reverse effect was seen in the frequency of 

incorrect anticipatory responses; the frequency of anticipatory saccades to the incorrect target 

increased as the probability of the correct target decreased (Repeated Measures ANOVA: 

[F(1,11) = 20.93, p < 0.001]; Effect size (partial ETA) = 0.66).  

 

2.2.3 Discussion 

There was a significant effect of target probability on saccadic response times, whereas 

there was no effect of probability on the manual response times. More anticipatory saccades 

were made towards higher probability targets, and more errors were made in response to the 

lower probability target compared to the equal and high probability targets. These findings are 

consistent with studies using prosaccade and antisaccade paradigms to show that higher 

probability locations demand more attention and result in an increased level of motor 

preparation (Koval et al., 2004; Liu et al., 2010). 

One possible explanation for the lack of an effect of probability on manual responses 

could be the similarity of the manual response required following fixation between trials and 

of the response required to the actual targets. The same perceptual task (response to orientation 

of a letter T) is required both at fixation and at one of two targets on each trial. Given that the 

response to fixation is required on every trial, this means the probability of having to make this 

response is always higher than the probability of making a response to either of the targets. 

This between-trial response could have dominated and so reduced the potency of the 

probability manipulation for the manual responses. 

Another explanation for the absence of the effect of probability on manual responses is 

that saccadic responses are directly linked to the spatial position of the targets and thus may be 
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more sensitive to the frequency of occurrence of the target at that specific spatial location. This 

could mean that they are more sensitive to the manipulations of probability, compared to the 

manual responses which are related to a binary decision that is identical for both targets 

location. Additionally, although the motivation for the saccadic response is to acquire 

information to make a perceptual response, once the target is fixated there is relatively little 

motivation/time pressure to make a manual response quickly to the target.   

In order to address some of these possible explanations for the differences between the 

effect of probability on saccadic and manual responses I carried out a further study.  In this 

study I focused on increasing the motivation for the participant to generate a fast manual 

response.  To do this I introduced a pre-screening block in which I measured each participants 

manual response times in the experiment and used this to set a personalised time-out time for 

the main experiment.  In this way each participant was under pressure to response quickly but 

this pressure was titrated to their particular speed of responding.  In addition I removed the 

perceptual task at fixation between trials so that manual responses were only made to the 

targets.  

 

2.3 Experiment 2 

2.3.1 Methods 

Participants 

Eighteen participants (8 male) were recruited from the student population of the University 

of Bristol (approximate age range 18-25). All had normal or corrected-to-normal vision. 

Participants were reimbursed £7 for their time and given no other additional reward incentive.  
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The study was approved by The Faculty of Science Human Research Ethics Committee at the 

University of Bristol. 

Procedure 

 

Figure 2.4; Diagram of the experimental procedure in the testing phase. The figure depicts an 

example trial where the target appears on the right-hand side. 

 

The sequence of event in a single example trial are illustrated in Figure 2.4. The task for 

the participants was to respond to the “T” stimuli that appeared to the left or right of a central 

fixation point.  The response required was to indicate the orientation of a letter with a manual 

button press.  If the letter was on the left-hand side of the display the response was made with 
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the left hand and if the letter was on the right-hand side the response was made with the right 

hand.  The experiment consisted of a practice phase (10 trials), a pre-test phase (48 trials), and 

then 6 blocks (48 trials each) of the testing phase. Each block was proceeded by a 9 point 

calibration procedure to allow accurate eye tracking. 

Stimuli 

All stimuli and the fixation square were white (16.4 cd/m2) and displayed on a grey 

background (10.4 cd/m2). A trial commenced with a centrally presented fixation square (1.65o 

x 1.65o; 0.18o thick) which was presented for 1.5s. The fixation square contained a plus sign as 

a fixation point, which was presented in red (15.8 cd/m2; font size 17). 

 This was immediately followed by the circle target with a T or inverted T in the centre.  

The circle had a diameter of 1.85o and a line thickness of 0.18o.  The letter T subtended 0.3o, 

which is a size that Körner and Gilchrist (2007) have shown is small enough not to be 

recognised reliably above chance when fixation was 3o away from the stimuli. This ensured 

that participants had to make an accurate target directed saccadic eye movements towards the 

target to complete the task.  The target was presented on the left or right in a varying number 

of trials across all phases of the experiment at 6o eccentricity.  

The testing phase consisted of three probability blocks. In one block the target was 

equally likely to be on the right or the left-hand side. In the second block, the target was 

presented on one side with probability 0.75 and the other side with probability 0.25. These 

probabilities were then flipped for the final block.  The three probability block types were split 

into two separate consecutive blocks of 48 trials. The probabilities were not exact due to short 

block lengths, such that at the beginning of each block the number of targets appearing on a 

particular side were fixed at 50%, 75% or 25% of the total number of trials in the block. The 
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order of these fixed trials were then randomised for the length of the block, ensuring a random 

permutation of trials in every block across the whole experiment.  

If the participant was too slow, or made an incorrect response, a message appeared in the 

centre of the screen reading ‘Wrong!’ or ‘Too slow! (2.5o above fixation and white). After the 

response to the letter T, the empty target (or error message) stayed on the screen for 1.5 seconds.  

The pre-test block was included in the experiment to set an individual criteria for the 

time-out for the testing phase.  In the practice and pre-test phases the fixation square contained 

an X in red (15.8 cd/m2; font size 17).  After a successful response to the letter T, an X was 

presented in the target in a golden yellow colour (19.8 cd/m2). The distribution of manual 

response times from the pre-test block of the experiment were used to calculate a 70th percentile 

of each participant’s reaction time (ms) distribution. Without informing the participants, their 

individual 70th percentile values were used as the length of time the target and letter T would 

be visible for in testing phase trials after which they would receive the time-out notice. This 

ensured motivation to respond quickly as participants inevitably were too slow on some trials.  

Apparatus 

The experiment was controlled by Psychophysics Toolbox (Brainard, 1997) running 

within Matlab 2013b running on Windows 7.  The display was 17” running at 75Hz and with 

a resolution of 1600 x 1200 pixels, and the viewing distance was 57cm. 

Movements of the right eye were recorded at a sampling rate of 1000Hz by the Eyelink 

II (SR Research, Canada) which has a typical operating spatial resolution of 0.5o. The 

participants were provided with a chin and forehead rest to minimise head movements. Manual 

response were recorded via the keyboard (numeric right-hand section) – key 4 and 1 for the left 

hand and key 6 and 3 for the right hand responses. 
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Design 

There was one within participant repeated measure binary factor: probability block type 

(75/25, 50/50, 25/75). Combining data from the right and left sides lead to three conditions: 

75% probability, 50% probability and 25% probability. 

The order of conditions were counterbalanced using a latin square design. Given the three 

block types, this gave 9 unique orders, which were then repeated for the further 9 participants. 

The dependent measures were the manual response time and saccade latency. 

 

2.3.2 Results 

Manual Responses 

A total of 5184 trials were recorded (288 x 18 participants).  The total number of errors 

in manual responses (time-out/response errors) made was 550, leaving 4634 trials to be 

analysed. The distribution of errors is shown in Table 2.3. The range of the total percentage of 

time-out/response errors of each participant’s responses was 4.17% to 21.9%.  
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Target probability 

0.75 0.5 0.25 

Time-Out Response 

Errors 

Time-Out Response 

Errors 

Time-Out Response 

Errors 

5.52 (2.78-

9.03) 

4.05 (0-9.72) 6.02 (1.04-

14.58) 

4.57 (0-16.67) 8.33 (0-22.92) 5.44 (0-16.67) 

Table 2.3; the mean percentage of errors (of the total number of possible trials in each condition), 

for both types; time-outs and response errors. The range across 18 participants is given in 

brackets. 
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Figure 2.5; Graph of mean manual response times across medians of all 18 participants. The 

three x-axis points denote the different probabilities associated with targets, with the data 

having been pooled from targets presented in the left and right hemispheres. The error bars 

are calculated within subjects and are the standard error of the mean.   

 

A significant effect of target probability on manual response times was seen, with a 14 

ms (95% CI: 6.31 – 21.8ms) increase in response time from 0.5 and 0.25 target probability, and 
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a 21ms (95% CI: 10.9 – 30.5ms) decrease in response times between 0.5 and 0.75 probability 

(Repeated Measures ANOVA: [F(2,17) = 26.65, p < 0.01]; Effect size (partial ETA squared) 

= 0.61). Additionally, there was evidence that this effect had a significantly linear trend, as 

predicted from the literature discussed in Chapter 1 [F(1,17) = 35.76, p < 0.001]. There was a 

significant effect of error type (time-out/response errors) (Repeated Measures ANOVA: 

[F(1,17) =8.2, p = 0.01]; Effect size (partial ETA squared) = 0.33) and target probability the 

distribution of errors across the experiment (Repeated Measures ANOVA: [F(2,17) = 4.55, p 

= 0.02]; Effect size (partial ETA squared) =  0.21). There were slightly more time-out errors 

than response errors recorded, and the frequency of errors increased a small amount as the 

probability decreased (Table 2.3).   

Saccadic Responses 

Initially the saccadic response data was assessed by looking at whether there was a spatial 

offset in initial fixation towards the high probability side. This was done by calculating the 

amount of drift away from the central fixation in the starting point of the first saccade after 

target onset. 5179 trials were included in this calculation, five having been discarded due to an 

error in the recording of the first saccade (due to blinks or otherwise). The mean offset across 

participants was 0.92 degrees towards the higher probability side in the 0.75/0.25 probability 

conditions (CI 95%: 0.56 – 1.3). In the 0.5 condition, the mean offset was 0.21 degrees towards 

the left-hand side of fixation. This suggests that spatial probability modulates the starting point 

of the first saccade, such that the saccades generally start closer to the higher probability target. 

This would not have reduced the latency of the saccades to the higher target in itself:  Kalesnyka 

and Hallett (1994) found that saccade latency was not modulated by target eccentricity apart 

from for very small eccentricities (<1 degree). 
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Given these results a general exclusion criteria was applied to initial fixation starting 

point: excluding trials where the initial fixation was greater than 3 degrees either side of the 

centre of the fixation box. This was a liberal criteria as there was no specific fixation instruction 

to participants in the experiment. An additional criteria was applied so that all saccades initiated 

after the participant’s ‘time-out’ were discarded. Two participants data had over 40% of trials 

excluded at this point, and were therefore removed from the rest of the saccadic analysis. There 

was no spatial exclusion criteria on the landing point of the first saccade, but saccades in the 

wrong direction were discarded as errors. The remaining trials had a mean first saccade 

amplitude of 6.0 degrees (range across participants: 5.5 – 6.4 degrees). This shows that 

generally all participants were making a large hypo-metric orienting saccade for their first 

saccade. 
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 Of the saccades directed to the incorrect side, 91.5 % had a latency of less than 90ms 

and these are assumed to be anticipatory (Table 2.4). In addition to reflect this anticipatory 

criteria all saccades with reaction times less than 90ms in the correct direction were excluded. 

Some saccades within the incorrect saccades and anticipatory saccades categories had negative 

response times, due to the saccade being ongoing during the target onset. These saccades were 

Reason for Exclusion  

 

Number of saccades (trials) 

excluded and percentage of initial 

total 

Total no of saccades 

(Initial 4608) 

(excluding 2 

participants) 

Initial fixation greater than 3 

degrees from centre/initiated after 

‘time-out’ 

983 (21.33%; 3.13 – 36.1%) 

 

3625 (78.7%) 

Saccades in the incorrect direction 

(91.5% anticipatory) 

142 (3.1%; 0 – 7.29%) 3483 (75.6%) 

Anticipatory saccades (correct 

direction) 

223 (4.84%; 0.69 – 12.15%) 

 

3260 (70.75%) 

Table 2.4; Pre-processing of saccadic analysis. Details of the data removed from further analysis, 

and the reasons for removing them. Percentage of initial number of saccades is included in brackets, 

followed by the range across participants. Two participants were discarded completely from 

analysis at the first stage, and are therefore not included in the table. 



 

68 

 

included in the anticipatory analysis as they still reflect an anticipation of the target appearing 

on a particular side. After removing the invalid, anticipatory and error saccades, the total 

number of analysed saccades was 3260 (70.8%). 

 

Figure 2.6; Graph of mean saccadic response times across medians of all 16 participants. The x-

axis shows the target probabilities, which include data pooled from responses to targets in both left 

and right hemispheres. The within-subject error bars are the standard error of the mean.   

 

In the saccadic data there was a significant linear trend between the mean response times 

across the three spatial probabilities (Repeated Measures ANOVA within-subjects contrast: 

[F(1, 15) = 9.84, p = 0.007]; Effect size (Partial ETA squared) = 0.4) (Figure 2.6). A significant 
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difference was found between the percentages of saccades that were anticipatory across the 

spatial probabilities. This was not present in the anticipatory saccades in the incorrect direction, 

but was very clearly present in the correct direction anticipatory saccades, where the percentage 

of anticipatory saccades increased as the probability of the target increased (Repeated Measures 

ANOVA: [F = 20.79, p < 0.001]; Effect size (Partial ETA squared) = 0.58). [Six of the 

anticipatory saccades were removed before analysing the frequencies, due to either errors in 

the eye tracker, or saccades disrupted by blinks.] 

The relationship between the manual and saccadic responses within participants was 

investigated by calculating the size of the probability effect between 0.75 and 0.25 probability 

for each participant. The two participants excluded from the saccadic analysis were excluded 

from these calculations. There was no significant correlation between the two response 

modalities (correlation coefficient = 0.11, N.S. p = 0.65). 

 

2.4 Discussion 

I found a significant effect of probability on the manual response times, and a significant 

linear trend between the three probability levels. In the saccadic data, there was also a 

significant linear trend. There was no correlation between response modalities across the 

participants.  

Our results support the existing literature showing that response times are increased as 

the probability is decreased, and conversely decreased as the probability is increased (Carpenter 

& Williams, 1995). However, in Experiment 1 the probability effect was found in the saccadic 

response but not in the manual responses; in Experiment 2, the probability effect is clearest in 

the manual responses, compared to only a significant linear trend in the saccadic responses. 
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This supports the finding that within the saccadic system this effect is not always present and 

is not robust (Jóhannesson et al., 2013). Some researchers have struggled to replicate the 

probability effect on saccadic responses shown by Carpenter & Williams (1995), as discussed 

in the Introduction, and have found the effect is only present in more complex tasks where 

decisions based on visual search have had to be made (Jóhannesson et al., 2013). Given that 

the results reported here show alternate effects on saccadic and manual responses in two 

different but simple paradigms, there are several factors that could give an explanation for the 

instability of this effect.  

One reason there might be a clearer effect of probability on saccadic responses in 

Experiment 1 than in Experiment 2 is the differences in inter-stimulus interval (ISI; time from 

onset of fixation until onset of the target) across the experiments. In the first experiment the 

ISI was between 400 and 800ms, whereas in Experiment 2 it was substantially longer at a 

constant of 1.5 seconds. If we compare these ISI durations with the existing literature, 

Antonaides and colleagues (2014) replicated Carpenter and Williams’ (1995) probability effect 

in healthy older adults using the same method with an ISI of between 0.5 and 1 second. In 

contrast, in a similar paradigm Jóhannesson and colleagues (2013) as discussed found no effect 

of probability (0.75/0.5/0.25) on saccadic response times: the ISI they used was 0.6 to 1.6 

seconds. It could be hypothesised that manipulations of target probability can only modulate 

saccadic response times when the ISI is short (no longer than 1 second).  It may be that with a 

longer ISI, Inhibition of Return (IOR: e.g. Klein, 2004) begins to affect response generation 

and so the more likely target location becomes inhibited and this effect counteracts the 

facilitation that results from the increased probability. There is research to suggest that IOR 

develops more quickly for saccadic than manual responses and at some range of cue-target 

stimulus onset asynchronies the spatiomotor map coding for eye movements is inhibited but 

the spatiomotor map coding for manual responses is facilitated (Briand, Larrison & Sereno, 
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2000).  This is somewhat supported by the hypothesis discussed in Chapter 1 that saccadic 

responses can take better advantage of fast signals when they are available (Bompas & Sumner, 

2008). The rapid speed at which saccades are initiated, compared to manual responses, could 

be related to the different effect of probability on the modalities. However, as addressed in the 

discussion of Experiment 1 there are other factors that could have affected the absence of a 

manual effect in this study.  

The difference in the effect of probability on manual responses in these two experiments 

is elucidated by the motivation to make the manual response. Contrary to Experiment 1, in 

Experiment 2 the manual response is very specific to the presentation of the target (as opposed 

to the fixation) and the spatial location of the target. This ensured a direct link between the 

probability associated with the target and the manual response required. Additionally, there 

was a clear motivation to respond to the perceptual task at the target quickly and accurately: a 

participant-specific time constraint was applied and negative feedback was given in response 

to an incorrect/slow response. This meant that the manual response was the response on which 

the greatest motivation and importance would have been assigned by the participant. As 

discussed in the previous paragraph, the longer ISI in Experiment 2 could also have contributed 

to the significant effect of probability on manual response times; the longer latencies associated 

with manual compared to saccadic responses could require a longer period in between trials for 

the probability effect to manifest in behaviour. This could explain why there was an observed 

stronger effect of probability on manual reaction times than saccadic reaction times in 

Experiment 2.   

Interestingly, the offset from fixation of the starting point of saccades was modulated by 

probability in Experiment 2 but not in Experiment 1. As discussed, this would not have reduced 

the latency to the higher probability target itself (Kalesnyka & Hallett, 1994). Additionally, 

there was no significant reduction in saccadic latency to the high probability target in 
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Experiment 2. It could be that the longer ISI in this experiment gave rise to the systematic 

offset towards the higher probability side. The small drift movements shown by the eye in 

fixations may reflect intentions to make a saccade (Kowler & Steinman, 1979; Liversedge & 

Findlay, 2000); expectation is likely to increase over longer ISIs as it allows top-down temporal 

preparation to develop consequently manifesting in a drift towards the higher probability target 

(Weinbach & Henik, 2012).  

As these results have shown interesting differences in the effect of probability across 

saccadic and manual responses, in Chapter 3 I will investigate the effect of reward on these 

response modalities. This involves an exploration of the ways in which we can study reward 

associations in a similar way to probability to allow comparison of the two. This exploration 

aims to address the similarities and differences of the effect of probability and reward, and how 

these might interact.  
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CHAPTER 3  

3.1 Introduction 

In Chapter 2, I reported a series of studies investigating the effect of probability on saccadic 

and manual response times.  In the current chapter I report four studies investigating the effect 

of reward on saccadic and manual response times. These experiments into the effects of 

probability and reward were carried out concurrently, such that both Chapter 2 and the current 

chapter culminate in experiments using a similar paradigm that has the potential to reliably 

show both a robust probability and reward effect.  

As in the previous chapter investigating probability, in all of the reported reward 

experiments participants were required to make a manual response to a target which can be in 

one of two locations (left or right of the centre of a computer screen).  I have manipulated the 

spatial distribution of reward in the experiments by setting a differential in the amount of 

reward associated with one side as opposed to the other. There are a number of different ways 

to present reward information experimentally and these experiments are an attempt to look at 

the various methods that have been used in the literature in order to search for a method that 

delivers reliable reward effects in the context of this paradigm. 

Many studies in non-human primates have shown that saccadic responses have shorter 

latencies to targets that are associated with reward than to those that are not (Takikawa et al., 

2002, Kawagoe et al., 1998). Additionally, Milstein and Dorris (2011) have shown that it is the 

relative value of a stimulus that affects choice and saccadic reaction times, rather than the 

global magnitude of reward available in a trial. They also found that the probability of receiving 

a reward after presentation of a target had a weaker effect on choice and reaction times than 

the relative magnitude of reward (Milstein & Dorris, 2011).  
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As discussed in Chapter 1, research investigating the effect of reward on human behaviour 

has generally focussed on how associating reward with targets (Theeuwes & Belopolsky, 

2012), stimulus features (Stankevich & Geng, 2015) or hemifield (Lucas et al., 2013) 

influences salience and thus attentional capture. Some of these paradigms have recorded 

saccadic responses (Theeuwes & Belopolsky, 2012) and others have recorded manual 

responses (Anderson et al., 2011a, 2011b; Stankevich & Geng, 2015), rather than concurrently 

measuring the two. The paradigms in these studies have tended to focus on visual search and 

the affect of distracters associated with reward, rather than direct responses to a rewarded 

stimulus. Anderson and colleagues (2011a, 2011b) found that participants were slower in a 

search task when a distractor associated with high reward was present. Several studies have 

shown that these reward effects persist even after reward is no longer associated with these 

stimuli (Dunne et al., 2015; Stankevich & Geng, 2015; Theeuwes & Belopolsky, 2012).  

Very few studies have investigated in humans how reward associated with a specific 

spatially located target affects reaction times, and these have tended to focus on rewarded 

targets relative to targets associated with no reward (Dunne et al., 2015). Thus although these 

reward associations are spatially specific, it means that only one hemifield is ever rewarded 

and does not tell us anything about whether reward values are processed relative to the other 

rewards in the environment. 

Crucially, the majority of previous human and primate studies on stimuli associated with 

reward and probability have focused on one type of response: primarily either saccadic and 

manual (button presses) responses. In primate studies it has been shown that dopamine neurons 

show activation proceeding visual, auditory and somatosensory stimuli associated with reward 

(Schultz, 2010). Moreover, the activation occurs irrespectively of the response modalities (arm, 

mouth, eye movements) (Schultz, 2010). Reward processes then appear to have an influence 

across response systems.  
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As discussed in Chapter 1, the premotor theory of attention proposes that the processes 

involved in the control of spatial attention, and required for selecting motor responses, share a 

common neural substrate (Eimer et al., 2006; Rizzolatti et al., 1994). The theory claims that 

response-induced attentional shifts are not restricted to the oculomotor system, and would be 

triggered when hand movements are being prepared (Eimer et al., 2006; Rizzolatti et al., 1994).  

This Chapter reports a set of four experiments that investigate the effect of reward on 

behaviour and does this across two response modalities – saccades and manual responses.  One 

of the strengths of these experiments is the concurrent recording of saccade and manual 

responses, as in Chapter 2.  In the paradigm participants are required to make a manual response 

but in order to make that manual judgement have to make a saccadic response to the target.  In 

Experiment 3, I investigate how the relative probability of receiving a reward affects saccadic 

and manual response times. In Experiment 4, I investigate whether the relative magnitude of 

reward affects saccadic and manual response times.  In Experiment 5, I concurrently investigate 

the relative and absolute value of reward. Finally, in Experiment 6 I examine how greater 

magnitudes of reward and increased time pressure affect saccadic and manual responses.  
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3.2 Experiment 3: Probability of Reward 

3.2.1 Methods 

Participants  

Twelve participants (9 female) were recruited from the student population of the 

University of Bristol (approximate age range 18-25). All the participants had normal or 

corrected-to-normal vision. Participants were reimbursed £4 for their time and were told they 

would win up to £6 during the experiment. The study was approved by The Faculty of Science 

Human Research Ethics Committee at the University of Bristol. 

Procedure  

The sequence of a single example trial is shown in Figure 3.1. The participants were 

required to make a manual response to a capital letter “T” stimuli inside a square fixation point. 

As in Chapter 2, the task was to indicate the orientation of the letter with a manual button press 

(one of two buttons). A circular target was then presented on the left or the right side of fixation, 

where the task was to make another manual response to the orientation of the letter T. The 

experiment consisted of a practice phase (10 trials) and then 12 blocks (4 blocks each of 3 

conditions; 48 trials per block). Each block was preceded by a 9 point calibration procedure to 

allow accurate eye tracking. 
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Figure 3.1; Diagram of the experimental procedure. The figure depicts an example trial, 

initiated by a manual response to the orientation of the letter T in the central fixation square.  

The trial shown is one in which the target appears on the right-hand side, and the presentation 

of the target is accompanied by a reward, indicated to the participant by the sound of a cash 

register.  

 

Stimuli  

All the stimuli were white (16.4 cd/m2) and displayed on a grey background (10.4 cd/m2). 

At the start of a trial a fixation square was presented centrally (1o x 1o; 0.18o). Inside the fixation 

square was a letter T or inverted T in the centre. The letter T subtended 0.3o, which is a size 

that Körner and Gilchrist (2007) have shown is small enough not to be recognised reliably 
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above chance when fixation was 3o away from the letter. Once a manual response was made to 

the T in fixation (the up arrow for letter T, the down arrow key for the inverted T) a variable 

non-aging foreperiod was initiated of between 400 – 800ms. The fixation square and T 

remained on the screen for the duration of the foreperiod, but were removed from the screen as 

soon as the target was presented. The inclusion of a manual task at fixation ensured that 

participants had to always return to fixating at the centre of the screen.  

The target presented in each trial was circular with a T or inverted T in the centre, with a 

diameter of 0.9o and a line thickness of 0.18o. This ensured that participants had to make an 

accurate target directed saccadic eye movement towards the target to complete the task.  The 

target was presented at 6o eccentricity from the centre on the left or the right-hand side.  

The target was presented for a fixed amount of time (1.5 seconds), regardless of when 

the manual response was made to the orientation of the T in the target. If a manual response 

was made, the target was on screen for a further 300ms. If no manual response was made within 

1.5s, then a message reading ‘Please respond quicker’ was displayed centrally (5o above 

fixation and white) for 900ms. If the trial was one in which a reward was received, the sound 

of a cash register was played through headphones to the participant at the same time as the 

target onset. Each time a reward was received, the running total reward in pence for the block 

was updated above the fixation at the start of the next trial. This was presented centrally 0.9o 

above the fixation square followed by ‘p’ with font size 11.   

The testing phase consisted of three probability conditions and the participants were 

exposed to each condition for four blocks. In all three conditions, the left and right targets were 

presented with equal probability (fixed at exactly 50% of trials). In the first condition, the left 

and right targets were equally likely to be accompanied by a reward. A reward was given on 

exactly half of the trials in which the left target was presented, and half of the trials in which 
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the left target was presented. These proportions were fixed due to short block lengths; the order 

of trials were randomised for each block, giving a random permutation of trials in every block 

for each participant. In the second condition, the probability of receiving a reward on left target 

trials was 0.75 and on the right target trials was probability 0.25. In the third condition these 

probabilities were reversed.  

Apparatus  

The experiment was created using the Psychophysics Toolbox (Brainard, 1997) running 

within Matlab 2013b running on Windows 7. The display was 17” running at 75Hz and with a 

resolution of 1600 x 1200 pixels, and the viewing distance was 57cm.  

Movements of the right eye were recorded at a sampling rate of 1000Hz by the Eyelink 

II (SR Research, Canada) which has a typical operating spatial resolution of 0.5o. A chin and 

forehead rest was used to minimise head movements. A keyboard was used to record manual 

responses, the up arrow and down arrow for judgements on the orientation of the letter T.  

 

Design 

 The within participant repeated measure binary factor was the reward probability 

condition (50/50, 75/25, 25/75). Data combined from the left and right-hand side lead to three 

conditions: 50% probability, 75% probability, 25% probability.  

The order of conditions were counterbalanced using a latin square design. The three 

conditions gave 6 unique orders, which were then repeated for the further 6 participants. The 

dependent measures were the manual response time to the target and saccadic latency.  

 

3.2.2 Results 
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Manual Responses 

The total number of trials recorded was 6912 (576 x 12 participants). Manual responses 

were excluded when there was an error in the recording: there were 89 trials excluded (1.43% 

of total), and a further 459 trials (6.64%) were separated from the rest of the analysis as they 

were trials in which the participant made an error (incorrect response to the letter T in the 

target). The distribution of errors across probability conditions is given in Table 3.1. After pre-

processing of the manual data, 6364 (92.1%) trials remained to be analysed. 

Table 3.1; Distribution of manual errors across the three reward probability conditions of the 

experiment. The values are the mean percentage of error trials out of the total possible trials in 

each condition, and the range across participants is given in brackets.  

 Reward probability 

0.25 0.5 0.75 

Response Error  7.34 (1.56 – 14.06) 6.16 (2.08 –12.5)  5.96 (2.6 – 13.54) 
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Figure 3.2; Graph of the mean manual response time across medians of participants, for each 

reward probability condition. The within participant error bars give the standard error of the 

mean. 

There was no significant effect of reward probability on the distribution of manual errors 

and additionally no significant effect of the reward probability on the manual response times 

(Repeated Measures ANOVA: [F(2,11) = 2.3, p = 0.12]; Effect size (partial ETA) = 0.17) 

(Figure 3.2). Despite the presence of an auditory stimulus during the initiation of the response 

to the rewarded trials, there was no significant difference between the response times to the 

rewarded and unrewarded trials.  
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Saccadic Responses 

We analysed the saccadic response data first by examining whether there was an offset 

in initial fixation towards either side. This was done by calculating the median amount of drift 

away from central fixation at the starting point of the first saccade after target onset for each 

participant, in the equal and biased probability conditions. Of the 6912 trials recorded, 6871 

trials were included in this analysis. Forty one trials were excluded either because a blink 

occurred during target onset or there was a recording error around that time. The mean offset 

of the medians of all participants was 0.015 degrees towards the high reward probability target 

in the 0.75/0.25 conditions (CI 95%: -0.15 – 0.18). The mean offset from fixation in the 0.5/0.5 

condition was 0.06 degrees towards the right-hand side target (CI 95%: -0.18 – 0.3). These 

results suggest that there is no effect of target reward probability on the starting point of the 

first saccade.  

Given the outcome of the drift analysis, a general criteria was applied to the starting point 

of the first saccade in each trial: any saccades initiated more than 3 degrees (Euclidean distance) 

either side of fixation were excluded. Trials with a saccadic response time of less than 1000ms 

were also excluded, to ensure the first saccade was a direct response to the target presentation. 

As in the previous experiment, no exclusion criterion was applied to the landing point of the 

first saccades, but saccades generated in the wrong direction were classed as error trials. After 

the application of these criteria, and including the trials excluded from the first stage, 130 trials 

were excluded from further analysis (Table 3.2). The remaining trials had a mean first saccade 

amplitude of 5.81 degrees (range across participants: 5.39 – 6.21), indicative of large hypo-

metric saccades. 
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The majority of trials in which a participant initiated a saccade in the wrong direction 

had a response time of 80ms or less. After examining the distribution of correct and incorrect 

response times, these trials were classed as anticipatory in addition to all correct trials with a 

saccadic response time of 80ms or less.  Three of the anticipatory trials were removed due to 

the first saccade having a recorded response time of 0 (likely because of blinks/recording 

errors). After the pre-processing of the data, the remaining number of saccades to be analysed 

was 6426 (92.97%). 

Table 3.2; Pre-processing of saccadic data. The number of trials excluded/separated at each stage 

and the number of remaining trials is given. The percentage of total trials at each stage is stated in 

brackets, followed by the range across participants. 

Reason for Exclusion  

 

Number of saccades (trials) 

excluded and percentage of initial 

total 

Total no of saccades 

(Initial 6912) 

Initial fixation greater than 3 

degrees from centre/starting point 

at 0 

130 (1.88%; 0.17 – 7.8%) 

 

6782 (98.12%) 

Saccades in the incorrect direction 

(97.6% anticipatory) 

164 (2.37%; 1.22 – 3.47%) 6618 (95.75%) 

Anticipatory saccades (correct 

direction) 

192 (2.78%; 0.87 – 5.73%) 

 

 6426 (92.97%) 
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Figure 3.3; Graph of mean saccadic response times across medians of all 12 participants. The 

points on the x-axis denote the reward probability associated with the target, with the data 

pooled from responses to both hemispheres. The within-subject error bars are the standard 

error of the mean.  

   There was a marginally significant effect of target reward probability on the saccadic 

response times (Repeated Measures ANOVA: [F(2,11) = 4.07, p = 0.03]; Effect size (partial 

ETA) = 0.27) (Figure 3.3). The probability of receiving reward did not have an effect on the 

frequency of correct anticipatory saccades or the incorrect anticipatory saccades. No effect was 

found between the response times for rewarded vs non-rewarded trials.  
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3.2.3 Discussion 

There was no effect of reward across manual responses in the experiment, and a marginal 

effect in saccadic responses but only between the low/equal and high conditions. One 

explanation for the absence/weak effect of reward is that the presence of an auditory stimulus 

coinciding with the visual stimulus to signify a rewarded trial could have had an aversive effect. 

Although if this was the case, we might expect to see a difference between the manual response 

times of the unrewarded and rewarded trials, as the manual response is initiated after the onset 

of the auditory stimulus. This difference is not apparent, which is supported by previous 

findings that visual stimuli dominate auditory stimuli in spatial tasks due to the superior acuity 

of vision (Recanzone, 2003).  

An alternative explanation for the absence of reward effect is that the auditory stimuli 

were not salient enough. The auditory stimuli was not explicitly linked to reward value, and 

the information provided by the total reward above fixation was not explicitly linked to the 

presentation of spatial locations of stimuli either. This could mean that the probability of 

receiving reward does not become associated with a specific target. Additionally, the 

representation of the monetary value may change over time, due to the context of the running 

total reward presented in the centre. It could be that an increment of 2p at current total of 8p 

manifests as more rewarding than at 30p. The reward received on a trial could be perceived as 

a fraction of the total, rather than as a constant value associated with presentation of a target.  

A further explanation for why we do not see a clear reward effect could be related to the 

strength of the reward probability manipulation compared to a manipulation of reward 

magnitude.  As discussed in Chapter 1, Milstein and Dorris (2011) found reward magnitude to 

have a stronger effect on choice and saccadic reaction times in non-human primates than 
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reward probability. This was the motivation for the next experiment I report which focuses on 

reward magnitude rather than probability of reward.  

 

3.3 Experiment 4: Magnitude of Reward 

3.3.1 Methods 

Participants  

Twelve participants (5 female) were recruited from the student population of the 

University of Bristol, and all the participants had normal or corrected-to-normal vision. 

Participants were told they could win up to £12 during the experiment, accumulated in small 

increments. Each participant received £12 (rounded up from £11.52) and the reward was not 

dependent on performance. The study was approved by The Faculty of Science Human 

Research Ethics Committee at the University of Bristol. 

Procedure  

The sequence of a single example trial is shown in Figure 3.4.  As in the previous 

experiments, the participants were required to make a manual response to a capital letter “T” 

stimuli inside a square fixation point; this initiated the start of the trial. The task was to indicate 

the orientation of the letter with a manual button press (one of two buttons). A circular target 

was then presented on the left or the right side of fixation, and the participants were then 

required to make another manual response to the orientation of the letter T. The experiment 

consisted of a practice phase (10 trials) and then 12 blocks (4 blocks each of 3 conditions; 48 

trials per block). Each block was preceded by a 9 point calibration procedure to allow accurate 

eye tracking. 
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Figure 3.4; Diagram of the experimental procedure. The figure depicts an example trial, 

initiated by a manual response to the orientation of the letter T in the central fixation square.  

The trial shown is one in which the target appears on the right-hand side, in the condition 

where the reward magnitude is 3 pence and the left side reward magnitude is 1 pence. 

 

Stimuli  

All the stimuli were white (16.4 cd/m2) and displayed on a grey background (10.4 cd/m2). 

At the start of a trial a fixation square was presented centrally (1o x 1o; 0.18o). Inside the fixation 

square was a letter T or inverted T in the centre. A manual response to the letter T in fixation 

(the up arrow for letter T, the down arrow key for the inverted T) initiated the trial. A variable 

non-aging foreperiod followed for 400 – 800ms. The fixation square and letter T remained on 
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the screen for the duration of the fore-period, but were removed from the screen as soon as the 

target was presented.  

The target presented in each trial was circular with another T or inverted T in the centre. 

The target had diameter of 0.9o and a line thickness of 0.18o.  The target was presented at 6o 

eccentricity from the centre on the left or the right-hand side. The target was presented for a 

fixed amount of time (1.5 seconds), regardless of when the manual response was made to the 

orientation of the T in the target. If a manual response was made, the target was on screen for 

a further 300ms and the reward value was displayed in the centre of the target followed by ‘p’ 

in font size 11. If no manual response was made within 1.5s, then a message reading ‘Please 

respond quicker’ was displayed centrally (5o above fixation and white) for 900ms. The running 

total reward in pence for the block was updated above the fixation at the start of the next trial, 

presented centrally 0.9o above the fixation square followed by ‘p’ in font size 11.  This value 

was reset to 0 at the start of each block.  

There were three reward magnitude conditions in the testing phase and the participants 

were exposed to each condition for four blocks of 48 trials each. In all three conditions, the left 

and right targets were presented with equal probability (fixed at exactly 50% of trials). In the 

first condition, the left and right targets were associated with equal reward (2 pence for each 

trial). In the second condition, the magnitude of reward on left target trials was 3 pence and on 

the right target trials was 1 pence. In the third condition these probabilities were reversed.  

Apparatus 

The experiment was created using the Psychophysics Toolbox (Brainard, 1997) running 

within Matlab 2013b running on Windows 7. The display was 17” running at 75Hz and with a 

resolution of 1600 x 1200 pixels, and the viewing distance was 57cm.  
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Movements of the right eye were recorded at a sampling rate of 1000Hz by the Eyelink 

II (SR Research, Canada) which has a typical operating spatial resolution of 0.5o. A chin and 

forehead rest was used to minimise head movements. A keyboard was used to record manual 

responses, the up arrow and down arrow for judgements on the orientation of the letter T.  

Design 

 The reward magnitude condition was the within participant repeated measure binary 

factor (2p/2p, 3p/1p, 1p/3p). Data pooled from the left and right-hand side lead to three 

conditions: equal reward, high reward, low reward.  

The order of conditions were counterbalanced using a latin square design. The three 

conditions gave 6 permutations, which were then repeated for the further 6 participants. The 

dependent measures in the experiment were the manual response time to the letter T in the 

target and the saccadic latency.  

 

3.3.2 Results 

Manual Responses 

The total number of trials recorded was 6912 (576 x 12 participants). Manual responses 

were excluded for the trials when there was an error in the recording giving a response time of 

1ms or less. There were 22 trials excluded (0.32% of total), and 619 trials (8.96%) were 

separated from the rest of the analysis as they were trials in which the participant made an error 

(incorrect response to the letter T in the target). The distribution of errors across probability 

conditions is given in Table 3.3. After pre-processing of the manual data, 6271 (90.73%) trials 

remained to be analysed. 
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Reward magnitude had no effect on the frequency of manual errors across the twelve 

participants. Additionally, reward magnitude did not have an effect on the correct manual 

response times (Repeated Measures ANOVA: [F(2,11) = 0.2, p = 0.82]; Effect size (partial 

ETA) = 0.02) (Figure 3.5). 

  

 Reward Magnitude 

Low Equal High 

Response Error 9.55 (5.21 – 28.13) 8.55 (3.65 – 19.79 )  8.77 (2.6 – 10.94) 

Table 3.3; Distribution of manual errors across the three reward probability conditions of the 

experiment. The values are the mean percentage of error trials out of the total possible trials in 

each condition, and the range across participants is given in brackets.  
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Figure 3.5; Graph of the mean manual response times across medians of each participant, for 

the three reward magnitude conditions. The within-subject error bars are the standard error 

of the mean. 

 

Saccadic Responses 

For the saccadic response data, I first examined whether there was an offset in initial 

fixation towards either side. This was done by calculating the median amount of drift away 

from central fixation at the starting point of the first saccade after target onset for each 

participant in each of the three conditions. 6912 trials were recorded and of these 53 trials were 
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excluded because there was an error in the recording of the first saccade either because of a 

blink or system error.  

The mean offset of the medians of all participants was 0.04 degrees towards the high 

reward magnitude target in the biased reward conditions (CI 95%: -0.08 – 0.15). The mean 

offset in the equal reward magnitude condition was 0.05 degrees towards the right-hand side 

target (CI 95%: -0.1 – 0.21). These results suggest that there is no effect of target reward 

magnitude on the starting point of the first saccade.  

 

 

Reason for Exclusion  

 

Number of saccades (trials) 

excluded and percentage of initial 

total 

Total no of saccades 

(Initial 6912) 

Initial fixation greater than 3 

degrees from centre/starting point 

at 0 

253 (3.66%; 0.69 – 9.2%) 

  

6659 (96.34%) 

Saccades in the incorrect direction 

(98.1% anticipatory) 

154 (2.23%; 0.34 – 3.82%) 6505 (94.1%) 

Anticipatory saccades (correct 

direction) 

174 (2.52%; 0.35 – 4.34%) 

 

6331 (91.6%) 

Table 3.4; Pre-processing of saccadic data. The number of trials excluded/separated at each stage 

and the number of remaining trials is given. The percentage of total trials at each stage is stated in 

brackets, followed by the range across participants. 
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Given the outcome of the drift analysis, a general criteria was applied to the starting point 

of the first saccade in each trial: any saccades initiated more than 3 degrees (Euclidean distance) 

either side of fixation were excluded. As in previous experiments, no exclusion criterion was 

applied to the landing point of the first saccades, but saccades generated in the wrong direction 

were classed as error trials. After the application of these criteria, a total of 253 trials were 

excluded from further analysis (Table 3.4). The remaining trials had a mean first saccade 

amplitude of 5.87 degrees (range across participants: 5.45 – 6.37), indicative of large hypo-

metric saccades. 

Most of the trials in which a participant initiated a saccade in the incorrect direction had 

a response time of 90ms or less (98.1% of incorrect saccades). The correct response times of 

less than 90ms were therefore classed as anticipatory, along with the incorrect trials within the 

same criteria. Three of the anticipatory trials were removed due to the first saccade having a 

reported response time of 0 (likely because of blinks/recording errors). After the pre-processing 

of the data, the remaining number of saccades to be analysed was 6331 (91.6%). 
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Figure 3.6; Graph of mean saccadic response times across medians of all 12 participants. The 

points on the x-axis denote the reward probability associated with the target, with the data 

pooled from responses to both hemispheres. The within-subject error bars are the standard 

error of the mean.  

  Reward magnitude had no significant effect on the saccadic response times (Repeated 

Measures ANOVA: [F(2,11) = 1.16, p = 0.33]; Effect size (partial ETA) = 0.1) (Figure 3.6). In 

addition, the reward magnitude did not have an effect on the frequency of correct anticipatory 

saccades or the incorrect anticipatory saccades.  
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3.3.3 Discussion 

There was no effect of reward magnitude across the saccadic and manual responses. This 

could be explained by the small value of rewards associated with the targets. Although over 

several trials reward accumulates to a reasonable amount, on a trial-by-trial basis the 

magnitudes are very small and may not be enough to affect the salience of the target and 

decrease response times. This is a tricky issue as large numbers of trials are needed and there 

are ethical and financial implications associated with giving large amounts of money to 

participants per trial. However, it is possible that using larger values (points) that are do not 

directly correspond to the amount of money received would not engage the reward system. As 

discussed in Chapter 1, there is support for the use of hypothetical rewards in delay discounting 

research, where no systematic difference was found in discount rate between real and 

hypothetical monetary rewards (Johnson & Bickel, 2002). Although this might not generalise 

to other paradigms, it could be worth employing a points-based reward system that equates to 

a reasonable amount of reward to enable the use of larger values on a trial-by-trial basis.  

In support of this theory, the relative reward value of the two targets may be 

indistinguishable if the reward magnitudes are very small. Although the relative proportion is 

the same, 1p and 3p could be too similar to produce a difference in activation of the reward 

system.  In comparison, £10 and £30 could engage the reward system enough to produce a 

differentiation between response times. This is supported by research showing the relative 

value of objects affect saccadic response times (Milstein & Dorris, 2007, 2011) and prospect 

theory postulating that the value (utility) of an action is relative to the other available options 

(Kahneman & Tversky, 1979).  
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One possible reason we did not see a reward effect in manual responses in this experiment 

could be because of the absence of spatial mapping between the key press made in response to 

the target on a specific side of the screen. Regardless of whether the target was on the left or 

the right-hand side, the same binary judgement was made in response to the letter T. However, 

given that we do not see an effect of reward on saccadic responses either, this is likely to be 

less of an issue than the problems associated with the reward schedule.  

Given the results of this study, in the next reported experiment I address the issues 

discussed by employing a points-based rewards distribution, mapping motor responses for the 

left/right targets to the left/right hands, and manipulating the absolute and relative value of 

rewards.  

 

3.4 Experiment 5: Points based reward 

3.4.1 Methods 

Participants  

Twenty four participants (16 female) were recruited from the student population of the 

University of Bristol with corrected-to-normal vision. Participants were told they could win £6 

on average during the experiment, which was accumulated in small increments of one, ten and 

one hundred points. Each participant received £6 (8712 points) on completion of the task 

regardless of their performance during the experiment. The study was approved by The Faculty 

of Science Human Research Ethics Committee at the University of Bristol. 
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Procedure  

 

Figure 3.7; Diagram of the experimental procedure. The figure depicts an example trial, where 

the reward magnitude is low and the high reward side for the participant is the right-hand side.  

The trial shown is one in which the target appears on the right-hand side, so is associated with 

high reward (10 points). The total reward available (1 point left, 10 point right) was presented 

in the fixation square. 

 

The sequence of a single example trial is shown in Figure 3.7.  The participants were 

instructed to fixate on the square in the centre of the screen, but there was no manual task 

accompanying this. Information about the reward magnitude of the task was presented in the 

centre of the fixation square, as trials of different reward magnitude were interleaved within 

blocks. The total reward available (11 or 110) was presented in the fixation square so that it 



 

98 

 

was clear whether the trial was a high reward magnitude or low reward magnitude trial. 

Although it was not possible to receive 110 (100 vs 10) or 11 (10 vs 1) this method was 

employed to signal the type of trial and total reward available, and to distinguish the value from 

either value presented in the targets. A circular target was then presented on the left or the right 

side of fixation, and the participants were then required to make a manual response to the 

orientation of a letter T. The participants used the keyboard to make the response, and were 

asked to press one of four buttons which were spatially mapped to the side that the target was 

presented on. The experiment consisted of a practice phase (10 trials) and then 6 blocks (48 

trials per block). Each block was preceded by a 9 point calibration procedure to allow accurate 

eye tracking. 

Stimuli  

All the stimuli (apart from reward values) were white (16.4 cd/m2) and displayed on a 

grey background (10.4 cd/m2). At the start of a trial a fixation square was presented centrally 

(1.1o x 1.1o; 0.18o). Inside the fixation square was the number of points available in the trial 

(right target reward + left target reward), presented in red (15.8 cd/m2). This was ‘110’ for the 

high reward magnitude trials and ‘11’ for the low reward magnitude trials.  The trial started 

after an ISI of 2 seconds; this was of substantial length and kept constant to ensure processing 

of the reward magnitude of the current trial. The fixation square remained on the screen for the 

duration of the foreperiod until the target was presented.  

The target presented in each trial was circular with another T or inverted T in the centre. 

The target had diameter of 1.25o and a line thickness of 0.18o and was presented at 6o 

eccentricity from the centre on the left or the right-hand side. The target was presented for 1.5 

seconds, regardless of when the manual response was made to the orientation of the T in the 

target. If a manual response was made, the target stayed on screen for 500ms and the reward 
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value of the trial in points was displayed in the centre of the target. The number of points were 

presented in a golden yellow colour (19.8 cd/m2). If no manual response was made within 1.5s, 

then a message reading ‘Please respond quicker’ was displayed centrally (5o above fixation and 

white) for 600ms.  

There were two reward magnitude conditions (high and low) in the testing phase and 

trials of each magnitude condition were interleaved such that there was an equal number of 

each within blocks. In each block, the left and right targets were presented with equal 

probability (fixed at exactly 50% of trials). Half of the twenty four participants were assigned 

the right target as the high reward side, and for the other half the left target was associated with 

high reward. The high and low reward targets in the high reward magnitude condition were 

associated with 100 and 10 points respectively. In the low reward magnitude condition, the 

high and low reward targets were associated with 10 and 1 points.  

Apparatus 

The experiment was created using the Psychophysics Toolbox (Brainard, 1997) running 

within Matlab 2013b running on Windows 7. The display was 17” running at 75Hz and with a 

resolution of 1600 x 1200 pixels, and the viewing distance was 57cm.  

Movements of the right eye were recorded at a sampling rate of 1000Hz by the Eyelink 

II (SR Research, Canada) which has a typical operating spatial resolution of 0.5o. A chin and 

forehead rest were used to minimise head movements. A keyboard was used to record manual 

responses, in the numerical section on the right-hand side. For the left-hand side target, the 

number ‘4’ key was pressed for a normal letter T orientation and the number ‘1’ key for an 

inverted T. The number ‘6’ key was required for the normal orientation in the right-hand side 

target, and the number ‘3’ key for the inverted T. These keys were chosen as their proximal 

position was spatially mapped to the targets on the screen.  
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Design 

 There were two within participant repeated measures binary factors: reward magnitude 

and reward target side. These factors gave four conditions: high reward magnitude and high 

reward target side (100 points), high magnitude and low target (10 points), low magnitude and 

high target (10 points), low magnitude and low target (1 point). Half of the participants had 

high reward side fixed as left, and the other half as right. The dependent measures in the 

experiment were the manual response time to the letter T in the target and the saccadic latency.  

 

3.4.2 Results 

Manual Responses 

The total number of trials recorded was 6912 (288 x 24 participants). Five trials were 

excluded from the analysis of manual responses, due to large negative response times likely 

caused by an error in the recording. There were 287 trials (4.2%) where participants made 

errors in their manual response (wrong key – side or letter orientation) and these were separated 

from the rest of the analysis. The distribution of errors across probability conditions is given in 

Table 3.5. After pre-processing of the manual data, 6620 (95.8%) trials remained to be 

analysed. 
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 Reward Magnitude 

Low High 

Low Reward Target 3.2 (0 – 15.3) 4.2 (0 – 16.7) 

High Reward Target 4.1(0 – 19.4) 5.1(0 – 29.2) 

Table 3.5; Distribution of manual errors across the four conditions of the experiment. The values 

are the mean percentage of error trials out of the total possible trials in each condition, and the 

range across participants is given in brackets.  
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Figure 3.8; Graph of the mean manual response times across medians of each participant, for 

the three reward magnitude conditions. The within-subject error bars are the standard error 

of the mean. 

The majority of errors (all but five) were errors in response to the orientation of the letter 

T, rather than a response to the incorrect target side. There was a marginally significant higher 

percentage of errors in the high magnitude condition than the low magnitude condition 

(Repeated Measures ANOVA: [F(1,23) = 4.55, p = 0.04]; Effect size (partial ETA) = 0.17). 

However, there was no effect of reward side on the distribution of errors. As is evident from 

Figure 3.8, there was no effect of reward magnitude or reward target side on the manual 

response times (Reward Magnitude: Repeated Measures ANOVA: [F(1,23) = 1.44, p = 0.24]; 
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Effect size (partial ETA) = 0.06) (Reward Side: (Repeated Measures ANOVA: [F(1,23) = 0.1, 

p = 0.75]; Effect size (partial ETA) < 0.01). 

Saccadic Responses 

6912 trials were recorded and of these three trials were excluded from the first stage of 

saccadic analysis because there was an error in the recording of the first saccade. The median 

amount of drift away from central fixation at the starting point of the first saccade after target 

onset was calculated for each participant, separated in to participants with high reward right 

and high reward left. This was to investigate whether there was an offset in initial fixation 

towards either target side.  

The mean offset of the medians across participants in the high magnitude trials was -

0.001 degrees (towards low reward side) (CI 95%: -0.19 – 0.17) and in the low magnitude trials 

was -0.01 (towards low reward side) (CI 95%: -0.17 – 0.17). This indicates that there was no 

effect of reward magnitude condition on the starting point of the first saccade.  
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A general criteria was applied to the starting point of the first saccade in each trial after 

the analysis of starting point position, whereby saccades initiated more than 3 degrees 

(Euclidean distance) either side of fixation were excluded. No exclusion criteria were applied 

to the landing point of the first saccades. Saccades in the wrong direction were classed as error 

trials. A total of 153 trials were excluded from further analysis (Table 3.6), including the three 

trials excluded before the analysis of the offset at fixation. The remaining trials had a mean 

first saccade amplitude of 5.7 degrees (range across participants: 5 – 6.38 degrees) indicative 

of large hypo-metric saccades. 

Reason for Exclusion  

 

Number of saccades (trials) 

excluded and percentage of initial 

total 

Total no of saccades 

(Initial 6912) 

Initial fixation greater than 3 

degrees from centre/starting point 

at 0 

153 (2.21%; 0 – 5.9%) 

  

6759 (97.79%) 

Saccades in the incorrect direction 

(94.6% anticipatory) 

242 (3.5%; 0 – 8.33%) 6517 (94.29%) 

Anticipatory saccades (correct 

direction) 

310 (4.48%; 0 – 10.76%) 6207 (89.8%) 

Table 3.6; Pre-processing of saccadic data. The number of trials excluded/separated at each stage 

and the number of remaining trials is given. The percentage of total trials at each stage is stated in 

brackets, followed by the range across participants. 
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Most of the trials in which a participant initiated a saccade towards the incorrect target 

had a response time of 90ms or less. The correct response times of less than 90ms were 

additionally classed as anticipatory, along with the incorrect trials within the same criteria. Four 

anticipatory trials were removed due to a failure to record the first saccade mainly due to blinks. 

The remaining number of saccades to be analysed was 6207 (89.8%). 

 

Figure 3.9; Graph of mean saccadic response times across medians of all 24 participants. The 

points on the x-axis denote the reward associated with the target. The within-subject error bars 

are the standard error of the mean.  

 

110

115

120

125

130

135

140

145

150

Low Reward High Reward

S
a
cc

d
ic

 r
es

p
o
n

se
 t

im
e 

(m
s)

Target Reward

High Reward
Magnitude

Low Reward
Magnitude



 

106 

 

Reward magnitude condition and reward target side had no significant effect on the 

saccadic response times (Figure 3.9) (Reward Magnitude: Repeated Measures ANOVA: 

[F(1,23) = 0.21, p = 0.65]; Effect size (partial ETA) = 0.01) (Reward Side: (Repeated Measures 

ANOVA: [F(1,23) = 0.02, p = 0.89]; Effect size (partial ETA) < 0.01). There was no effect of 

reward magnitude condition or reward side on the frequency of correct anticipatory saccades 

or the incorrect anticipatory saccades.  

 

3.4.3 Discussion 

There was no effect of reward across the saccadic and manual responses, aside from a 

marginal effect of reward on the frequency of errors in judgement of the orientation of the letter 

T. There are several factors that the absence of a reward effect could be attributed to. Although 

the existing literature suggests that rewards are processed relative to the other available rewards 

in the environment (Milstein & Dorris, 2007, 2011), the rapid change in reward magnitude 

from trial to trial could confound any possible effects of absolute reward value on behaviour. 

This theory is supported by previously discussed research into the persistence of an observed 

reward effect, showing that exogenous capture of the eyes is increased and saccadic responses 

are faster to targets previously associated with reward (Dunne et al., 2015; Theeuwes & 

Belopolsky, 2012). Even though relative reward association does not change - the more highly 

rewarded side is consistent across our experiment – the absolute values change between trials. 

These changes will frequently adjust the expected value of each target, not allowing sufficient 

time to cause a consistent adjustment in dopamine activity and thus a modulation in behaviour, 

particularly given the long-term time course of the previously established reward effect (Dunne 

et al., 2015; Theeuwes & Belopolsky, 2012). 



 

107 

 

The points-based reward schedule in this experiment might not have been salient enough 

to engage the reward system in the brain; it could be that the values were not explicitly linked 

enough to the monetary value. However, given that we have not seen a reward effect across the 

two previous studies, this is unlikely to be the only contributing factor. The accumulation of 

rewards having no link to the performance of participants may have contributed to the absence 

of reward effect across Experiments 3 to 5. This was initially decided to ensure that the 

paradigms investigating reward and probability were as similar as possible, to allow for close 

comparison of the processes. However, the nature of rewards in our environment is that they 

are often inextricably linked to performance; in many scenarios, if we respond correctly or do 

a good job in a task, we seek to be rewarded. This could be a key difference between primary 

and secondary rewards in these kinds of tasks. As discussed in the Introduction (Chapter 1), 

secondary rewards (in delay discounting) are more susceptible to contextual framing than 

primary rewards (McClure et al., 2007; cited in Lamy, 2007). Rewarding a nonhuman primate 

for completing a saccade by giving them an immediate juice reward is sufficient to engage the 

reward system, but rewarding human participants with an abstract value that is not immediate 

and not explicitly linked to how quickly or accurately they performed the task is unlikely to be 

sufficient. Additionally, when the paradigm of these experiments involves aspects that are 

similar to how a computer game might be played (responding to events on a screen), many 

participants may be used to receiving immediate reward or positive/negative feedback for 

successfully completing each step of the task. This issue also relates to the absence of time 

pressure in Experiments 3 to 5; reward-based games are often directly related to the speed-

accuracy trade-off of responses, and this is relied on to increase the motivation to respond to 

keep the participant engaged.  

Another aspect of the reward schedule that could have prevented a reward effect is the 

presentation of the total reward available in the fixation square. As this represented the total 
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reward available on each trial, rather than the expected value, it was always the largest value 

presented relative to the values associated with the targets. This value could have become 

associated with the fixation square, therefore making the fixation square more salient than the 

targets themselves. This is supported by the research previously discussed in this chapter and  

in Chapter 1, demonstrating that saccade preparation is spatially allocated based on the relative 

value of potential targets, and neurological studies suggesting that rewards are processed 

relative to other rewards available (Elliott et al., 2008; Milstein & Dorris, 2007, 2011). This 

confound would interfere with any possible reward effect on responses to the targets.  

In the next reported experiment we addressed these in a paradigm where the motivation 

to respond quickly and accurately was increased by a fixed time window and partly 

performance-related rewards. We employed a random lottery incentive reward system in 

Experiment 6, which means that one trial is selected at random from the whole experiment and 

the participant receives the reward from that trial (Cubitt, Starmer & Sugden, 1998). The 

validity of this system in economic experiments has been tested and shown to have no 

significant difference on behaviour in comparison to a design where participants are rewarded 

on every trial (Cubitt et al., 1998). This addresses the problem of the salience of rewards, as 

large monetary reward values can be used without having to rely on a points-based rewards 

system that may not provide enough of an explicit link to monetary rewards. 
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3.5 Experiment 6: Lottery controlled reward 

3.5.1 Methods 

Participants 

Eighteen participants (5 male) were recruited from the student population of the University 

of Bristol (approximate age range 18-25). All had normal or corrected-to-normal vision. 

Participants were reimbursed £7 for their time and received a variable performance related 

reward (£0, £0.1, £1 or £10) as outlined below.  The study was approved by The Faculty of 

Science Human Research Ethics Committee at the University of Bristol. 

Procedure 

The sequence of event in a single example trial are illustrated in Figure 3.10. The task for 

the participants was to respond to the “T” stimuli that appeared to the left or right of a central 

fixation point.  The response required was to indicate the orientation of a letter with a manual 

button press.  If the letter was on the left-hand side of the display the response was made with 

the left hand and if the letter was on the right-hand side the response was made with the right 

hand.  The experiment consisted of a practice phase (10 trials), a pre-test phase (48 trials), and 

then 4 blocks (72 trials each) of the testing phase. Each block was preceded by a 9 point 

calibration procedure to allow accurate eye tracking. 
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Figure 3.10; Diagram of the experimental procedure in the testing phase. The figure depicts 

an example trial from a high magnitude block with a target appearing on the right-hand side, 

where the high reward side for the participant is the left. 

 

In the testing phase correct responses in each trial were associated with a reward.  The 

reward value was displayed on each trial at the location of the target after the response was 

given. Participants were informed that a trial from the testing phase would be selected at 

random at the end of the experiment and that they would receive that reward. If the manual 

response was too slow or incorrect then a message was displayed after the trial. Participants 

were informed at the outset of the experiment that they were receive no reward if one of these 

error trials was selected at the end of the experiment. All participants were explicitly told the 
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reward values associated with the block they were about to perform and also the reward values 

associated with each side of the display. 

Stimuli 

All stimuli and the fixation point were white (16.4 cd/m2) and displayed on a grey 

background (10.4 cd/m2). A trial commenced with a centrally presented fixation square (1.65o 

x 1.65o; 0.18o thick) which was presented for 1.5s.  This was immediately followed by the circle 

target with a T or inverted T in the centre.  The circle had a diameter of 1.85o and a line 

thickness of 0.18o.  The letter T subtended 0.3o, which is a size that Körner and Gilchrist (2007) 

have shown is small enough not to be recognised reliably above chance when fixation was 3o 

away from the stimuli. This ensured that participants had to make an accurate target directed 

saccadic eye movements towards the target to complete the task.  The target was presented on 

the left or right in an equal number of trials across all phases of the experiment at 6o 

eccentricity.  

In the testing phase there were two block types – low reward blocks and high reward 

blocks. The fixation square contained a single pound sign (£) in the low reward magnitude 

blocks and three pound signs (£££) in the high magnitude blocks.  All pound signs were 

presented in red (15.8 cd/m2). 

Across the testing phase one side of the display (left or right hand targets) was also 

consistently associated with a higher reward than the other. In the high reward blocks, the 

reward associated with the high rewarded side was £10, and the lower reward side was £1. In 

the low reward blocks, the value for the highly rewarded side was £1, and the lower target side 

was £0.10. These reward values (including the pound sign) were presented inside the 

corresponding target after a successful manual response to the target in each trial. The rewards 

were presented in a golden yellow colour (19.8 cd/m2). If the participant was too slow, or made 
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an incorrect response, no reward value was shown and a message appeared in the centre of the 

screen reading ‘Wrong! No reward’ or ‘Too slow! No reward’ (2.5o above fixation and white). 

The reward value (or error message) stayed on the screen for 1.5 seconds.  

The pre-test block was included in the experiment to set an individual criteria for the 

time-out for the testing phase.  In the practice and pre-test phases the fixation square contained 

an X rather than a £ sign as no rewards were given on these trials.  The distribution of manual 

response times from the pre-test block of the experiment were used to calculate a 70th percentile 

of each participant’s reaction time (ms) distribution. Without informing the participants, their 

individual 70th percentile values were used as the length of time the target and letter T would 

be visible for in the testing phase trials after which they would receive the time-out notice and 

forfeit the chance of gaining the reward on that trial. This ensured motivation to respond 

quickly as participants inevitably were too slow on some trials.  

Apparatus 

The experiment was controlled by Psychophysics Toolbox (Brainard, 1997) running 

within Matlab 2013b running on Windows 7  The display was 17” running at 75Hz and with a 

resolution of 1600 x 1200 pixels, and the viewing distance was 57cm. 

Movements of the right eye were recorded at a sampling rate of 1000Hz by the Eyelink 

II (SR Research, Canada) which has a typical operating spatial resolution of 0.5o. The 

participants were provided with a chin and forehead rest to minimise head movements. Manual 

response were recorded via the keyboard (numeric right-hand section) – key 4 and 1 for the left 

hand and key 6 and 3 for the right hand responses. 
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Design 

There were two within participant repeated measure binary factors: block (high or low reward) 

and side (high or low reward) leading to four conditions: high block, high side (£10 reward); 

high block, low side (£1); low block, high side (£1); low block, low side (£0.1).   

The order of the blocks and the side with the high reward were counterbalanced across 

participants.  The dependent measures were the manual response time and saccade latency. 

  

3.5.2 Results 

Manual Responses 

A total of 5184 trials were recorded (288 x 18 participants).  One participant was removed 

before further analysis because over 50% of their responses saccadic responses did not meet 

the fixation criteria applied. Given the magnitude of this percentage (68.4%), I decided to 

remove this participant from the manual analysis as well.  I analysed the remaining manual 

reaction times excluding 839 time-out or response errors, leaving a total of 4131 data points. 

The distribution of errors is shown in Table 3.7. The range of the total percentage of time-

out/response errors of each participant’s responses was 3.1% - 36.1%. 
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Table 3.7; The mean percentage of errors (of the total number of possible trials in each condition), 

for both types; time-outs and response errors. The range across 17 participants is given in 

brackets 

 

 

Side 

Block Type 

High Block Low Block 

Time-Out Response Errors Time-Out Response Errors 

High Reward 6.62 (0-13.9) 7.19 (0-20.8) 7.92 (1.40-19.4) 6.78 (0-20.8) 

Low Reward 9.89 (1.39-34.7) 8.25 (1.39-19.4) 9.72 (2.77-25.0) 6.54 (0-19.4) 
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Figure 3.11; Graph of mean manual response times across medians of all 17 participants. The 

two lines show the two different conditions (high reward magnitude and low reward 

magnitude) and the two x-axis points denote the reward associated with the targets (high and 

low reward). The high and low reward sides include responses to targets in both hemispheres, 

as these were balanced across participants. The within-subject error bars are the standard 

error of the mean. 
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Reward associated with the target side had a significant effect on manual reaction times 

leading to a 19.1ms (95% CI: 6.44 – 31.73) decrease (high condition) and 6.2ms (95% CI: -2.5 

– 14.9) decrease (low condition) in response times for the high reward side (Repeated Measures 

ANOVA: [F(1,16) = 8.49, p = 0.01]; Effect size (partial ETA squared = 0.33).  The effect of 

block was not significant, but the interaction between the block and target side was significant 

[F(1,16) = 7.87, p = 0.01; Effect size (partial ETA squared = 0.32)]. There was no significant 

effect of target side/reward condition on the frequency of errors, or between the different types 

of errors (Table 3.7). 

It was observed that reaction times to the £1 target in the high reward condition (low 

side) are on average slower by 9.47ms (95% CI: -2.27 – 21.22ms) than to the target associated 

with the same reward in the low reward condition (high side) (Figure 3.11), however this 

difference was not significant. This trend suggests that the effect of the reward values on 

reaction times may dependent on the context within which they are presented.  

Saccadic Responses  

As a first step in analysing the saccadic response data, we looked for evidence for a 

systematic offset in initial fixation towards the high reward side by analysing the amount of 

drift away from the central fixation in the starting point of the first saccade after target onset.  

The mean offset across participants was 0.062 degrees away from the more highly rewarded 

side (CI 95%: -0.290 – 0.165 degrees).  There was no evidence of a modulation of this effect 

by block type (-0.058 vs -0.067; F<1).  

Following this analysis we applied a general exclusion criteria to initial fixation starting 

point.  As there were no explicit fixation instructions in the task we applied a liberal criteria 

and excluded trial where the initial fixation was great than 3 degrees either side of the fixation 

box. There was no spatial exclusion criteria on the landing point of the first saccade, but 
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saccades in the wrong direction were discarded as errors. The remaining trials had a mean first 

saccade amplitude of 6.19 degree (range across participants 5.43 – 6.74).  Showing that all 

participants were, in general, making a large hypo-metric orienting saccade for their first 

saccade. 

 

 

 

 

Reason for Exclusion  

 

Number of saccades (trials) 

excluded and percentage of initial 

total 

Total no of saccades 

(Initial 4896) 

Initial fixation greater than 3 

degrees from centre 

584 (11.9%; 0 – 33%) 

 

4312 (88.1%) 

Saccades in the incorrect direction 

(95% anticipatory) 

118 (2.41%; 0 – 7.29%) 4194 (85.7%) 

Anticipatory saccades (correct 

direction) 

276 (5.64%; 0 – 22.9%) 

 

3918 (80.0%) 

Table 3.8; Pre-processing of saccadic analysis. Details of the data removed from further analysis, 

and the reasons for removing them. Percentage of initial number of saccades is included in brackets, 

followed by the range across participants. One participant was discarded completely from analysis, 

and is not included in this pre-processing. 
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95% of the saccades directed in the wrong direction had a latency of less than 90ms and 

we assume that these are anticipatory and were excluded from further analysis (Table 3.8). In 

addition to reflect this anticipatory criteria we exclude all saccades with reaction times less 

than 90ms in the correct direction.  

After removing the invalid, anticipatory and error saccades, the total number of analysed 

saccades was 3918 (80.0%). 

There was no significant effect of reward condition (block) or reward side but there was 

a significant interaction (Repeated Measures ANOVA: [F(1, 16) = 13.45, p = 0.002]; Effect 

size (Partial ETA) = 0.46). Post-hoc testing on the high reward block in isolation shows a 

significant effect of reward side (Mean 125ms vs 132ms, Paired Samples t-test: [t(16) = -2.769, 

p = 0.014]). This could indicate that although reward affects saccadic reaction times relatively 

(high vs low within a block), the overall saliency of a highly rewarded condition has some 

influence. Further analysis showed no effect of reward condition or reward side on the 

frequency of anticipatory saccades.  

In order to investigate if there was a relationship between individual performances across 

the two response modalities (saccadic and manual) we calculated the size of the reward effect 

for each of the 17 participants in the high and the low reward blocks separately. There was no 

strong correlation between the two response modalities: the Pearson’s correlation r was 0.457 

(p = 0.065) and 0.365 (p = 0.149) for the high and low reward conditions respectively.  
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Figure 3.12; Graph of mean saccadic response times across medians of all 17 participants. As 

in Figure 2 the lines show the two different conditions (high reward magnitude and low reward 

magnitude) and the two x-axis points denote the reward associated with the targets. The within-

subject error bars are the standard error of the mean.  
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3.6 Discussion 

There is evidence that both saccadic and manual responses were faster to visual targets 

that were associated with higher rewards when compared to targets associated with lower 

rewards.  Overall these effects were larger for the manual responses than for the saccadic 

responses.  However, given the absence of any effect in Experiments 3 to 5 (besides a marginal 

affect on saccadic response in Experiment 3), the effect found is clearly relatively specific to 

the reward schedule and paradigm. Both types of response were modulated by the overall 

reward level in the block.  For low as compared to high reward block, there was a reduction in 

the difference between high and low reward targets for manual responses and the absence of 

any evidence of an effect of reward for saccadic responses in the low reward blocks.    

The higher reward targets in the low reward block carried the same level of monetary 

reward as the lower rewarded target in the high reward block (£1 in both cases).  These 

conditions allowed an investigation to see if the reward effects were associated with the 

absolute value of the reward or the relative value of the reward in that context. There was a 

strong, but non-significant, trend for the context to have an effect on manual reaction times 

which resulted in faster responses when the reward was the higher rather than the lower of the 

two reward values.  

This effect of reward on both the manual and saccadic component of the response is 

consistent with idea that reward processes mediated by dopamine neurons affect all response 

systems irrespective of response modality (Schultz, 2010). However the clearest test of this 

association would be a strong correlation between the size of the reward effects across 

modalities.  In the current experiment I found no such strong correlations.  In other words, 

participants who showed a particularly strong reward effect in their saccadic responses were 
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not necessarily the ones who showed a strong reward effect in their manual responses, or vice 

versa.      

As discussed in the introduction, there is evidence to suggest a common system for reward 

processing that affects all motor systems to optimise the chance of getting the reward. Reward-

related activity in the dopamine system initiates a series of events—one stage of which involves 

the anterior cingulate that eventually leads to changes in sensory representation (Hickey, 

Chelazzi, & Theeuwes, 2010a). Anterior cingulate and surrounding cortex is also known to be 

fundamentally involved in the control of attention and processing of attended stimuli (Hickey 

et al., 2010a; Mesulam, 1999; Hopfinger, Buonocore & Mangun, 2000) A study using TMS 

(transcranial magnetic stimulation) found that the ACC (anterior cingulate cortex) facilitates 

implementation of a selected action, and is activated across three different output modalities 

(verbal, manual, oculomotor) (Paus, 2001). However, the difference in the results reported here 

between the effect of reward on response times in manual and saccadic modalities might 

suggest otherwise. These differences could be explained by the effect that reward has on motor 

systems over time, if dopaminergic activation drives the reaction time effect. The dopamine 

reward signal is rapid and differs from the slower dopamine responses that have been 

associated with uncertainty, punishment and movement (Schultz, 2007). Activations in 

dopamine neurons to primary rewards, novel stimuli and reward-predicting stimuli have 

latencies of 60-100ms and endure for less than 200ms (Schultz, 2007). Given our results show 

very fast saccadic reaction times, it could be that the saccadic response is initiated too early to 

be strongly affected by the dopaminergic activation. This could be plausible if we assume that 

the dopamine activation occurs after the onset of the target given that the reward values are 

known. The manual responses however are much slower, and therefore could be affected more 

by the dopamine surge.   
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A number of studies have identified individual differences in sensitivity to reward.  For 

example, Hickey, Chelazzi and Theeuwes (2010b) measured trait reward-seeking using a 

personality index, and found this correlated with the magnitude of reward priming in a visual 

search task. The term ‘reward priming’ was used to describe the bias towards selection of 

objects previously characterised as rewarding (Hickey et al., 2010b). They also found in a 

similar study that the ERP component known to be a sufficient index for reward processing in 

the anterior cingulate cortex is elicited during reward feedback processing, and that the 

magnitude of this predicts the effect of reward on each participant’s behaviour during visual 

search (Hickey et al., 2010a). Linking reward to a personality trait and linking it to a single 

neural system would suggest that the magnitude of the reward effects across response types 

should be correlated across participants.  If a participant is particularly reward sensitive this 

sensitivity should be expressed both in their saccadic and their manual responses.  In the current 

study there is no evidence in favour of such a correlation, despite having quite large variability 

in reward sensitivity across participants and finding reliable reward effects overall in both 

response types. The absence of correlation could be due to the general absence of correlation 

between the two response modalities. However, given the results of Experiments 3 to 5, large 

variability in the reward effect is also likely to be attributable to the instability of the effect in 

general and it’s sensitivity to the exact specifications of the paradigm.   

The effect of a perceptual task at the saccadic target could explain why there was no 

correlation between response modalities. The inclusion of a perceptual task at the landing point 

of the saccade clearly constitutes a form of information worth gathering as a correct response 

leads to receiving reward. Supporting this Montagnini and Chelazzi (2005) found that a 

perceptual task at a saccadic target reduces reaction times by more than 15%, and Bray and 

Carpenter (2015) showed that saccades to locations expected to provide information about a 

subsequent target are faster. The saccade serves to gather information at the current target, and 
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the effect of reward may be to allocate more attentional resources to the highly rewarded target 

(Hickey et al., 2010a).  Conversely, the manual response is more explicitly goal-oriented and 

directly linked to the correct/incorrect response and thus retrieval of the varying reward value. 

There is a clear difference between these two tasks which supports the more reliable reaction 

time modulation in manual compared to saccadic responses. 

In Experiment 6 there was a reduction in the difference between high and low reward 

targets for manual responses and no evidence of an effect of reward for saccadic responses in 

the low reward blocks. The modulation in reaction times between high and low reward targets 

could be explained by the effect of reward on the salience of stimuli. The general salience of 

stimuli has a similar effect to reward value on attentional processes. Many dopamine neurons 

are activated by intense and physically salient stimuli, especially when these stimuli are novel 

(Schultz, 2010). In their study of reward modulation reducing spatial neglect, Malhotra, Soto, 

Li and Russell (2012) suggested that the relative salience of targets may be changed following 

varying incentive gain and performance feedback. Hickey, Chelazzi, and Theeuwes (2014) 

have supported this theory by showing that when targets have been previously associated with 

reward, participants are primed to return to the target location and biased away from a salient 

distractor location. Furthermore, Failing and Theeuwes (2014) showed that non-rewarding 

salient cues and rewarding non-salient cues similarly capture attention, indicated by a decrease 

in reaction times when the cues validly indicate target location. Given this evidence, in 

Experiment 6 the reward associated with the targets in the low reward condition may not 

increase salience sufficiently to bias attention towards the higher target. This is supported by 

the absence of reward effect in Experiments 3 and 4 where low reward values are deployed.  

It is interesting to examine the similarities between the results of this chapter and Chapter 

2 where we investigated manipulations of probability. The modulation of reaction times in 

response to varying reward values associated with target locations is similar to the effect of 
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varying prior probability of the target locations. Additionally, in a similar paradigm of the last 

experiment of Chapter 2 and Experiment 6 of this chapter, we saw a more significant effect of 

both manipulations on manual responses compared to saccadic responses. Probability is often 

discussed in the literature as a form of prior information; if we categorise reward in the same 

way, this could explain why similar effects from reward values assigned to targets on reaction 

times are found. However, it could be argued that as the purpose of saccades is to acquire 

information about the environment, a monetary reward value assigned to a target should not 

have a similar effect to modulating probabilities (Bray & Carpenter, 2015). This is particularly 

true given that the participants are explicitly informed of the reward schedule in our 

experiment. Moreover, the similarities between the effect of reward value and prior probability 

on saccadic responses could suggest a closer relationship; it has been suggested that a more 

appropriate way to describe them would be ‘bias’ rather than ‘information’ (Bray & Carpenter, 

2015; Lauwereyns, 2010). This supports the adaptive argument for biasing attention to 

rewarding locations that are otherwise uninformative: environmental stimuli that have provided 

rewards (such as food) in the past are worth paying attention to in the future (Hickey et al., 

2010a).  

In order to understand the similarities between the effect of reward and probability on 

saccadic and manual responses, the next step is to combine these two forms of ‘bias’ within on 

paradigm to see if they interact in a simple manner. Studying this across two response 

modalities again will additionally help to corroborate and further understand the differences 

between these processes.  
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CHAPTER 4  

4.1 Introduction 

In Chapter 2 and 3, I reported a series of studies investigating the effect of reward and 

probability on saccadic and manual response times. In the final studies of those chapters I 

established a paradigm that has the potential to reliably show both a robust probability and 

reward effect. In the current chapter I report a systematic investigation of both of these effects 

(and how these effects change with age) and importantly investigate for the first time the 

interaction between these two determinants of performance. 

To reiterate, in these experiments participants are required to make a manual response to 

a target which can be in one of two locations (left or right of the centre of a computer screen) 

The first manipulation changed the likelihood of a target occurring on the left or the right-hand 

side of the display – I have called this the probability manipulation.  In the experiments reported 

in Chapter 2 this manipulation lead to faster manual responses to targets that were placed on 

the more frequently occurring side and a reduction in the latency of the initial saccade to the 

target. Again the experiments in Chapter 2 suggest that this effect is relatively sensitive to the 

exact experimental conditions.  This is perhaps surprising given that for saccadic response that 

this is a well-established effect (Basso & Wurtz, 1997; Carpenter & Williams, 1995; Dorris & 

Munoz, 1998; Jóhannesson et al, 2013; Koval et al, 2004; Liu et al, 2010, 2011; Noorani & 

Carpenter, 2013). 

The second manipulation is to set a differential in the amount of reward associated with 

correct responses on one side as opposed to the other.  In the experiments in Chapter 3 I found 

that this differential reward lead to faster manual responses to targets on the more highly 

rewarded side and that the initial saccade to the target was also faster to that side. However this 
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effect appeared to be sensitive to the type of reward schedule as well as other specific features 

of the design. Having found a paradigm on which both effects appear to be present I can now 

study them concurrently and investigate how they interact. 

As discussed in Chapter 1, one popular framework for modelling changes in response 

times are accumulator models (Brown & Heathcote., 2008; Carpenter & Williams, 1995; 

Ratcliff, 1978). Within such models a motor response results from activity in a decision unit 

rising over time towards a threshold. When activity reaches that threshold then the motor 

response is initiated.  Two factors determine how quickly a response is made – the rate of rise 

of activity in the unit and the setting of the threshold.  In these models the threshold level and 

the initial activity level are indistinguishable. Marshall et al. (2012) have argued from a 

computational perspective that this change is best implemented in a change in the baseline 

rather than the threshold; this suggestion is supported by neurophysiological evidence 

(Forstmann et al., 2008). One open question within this modelling framework is how different 

factors that affect latency are combined. As discussed in Chapter 1, the effects of reward and 

probability have been postulated in saccadic responses to affect the baseline of the accumulator 

rather than the rate of rise (Carpenter & Williams, 1995; Dunne et al., 2015). This is supported 

by the finding in Chapters 2 and 3 that manipulating reward and probability has a similar effect 

on responses, and both have a stronger effect on manual responses than saccadic in a similar 

paradigm. As discussed in the Discussion of Chapter 3, given these similarities reward and 

probability could be described collectively as ‘bias’ rather than prior ‘information’ (Bray & 

Carpenter, 2015; Lauwereyns, 2010); in the current series of experiments one suggestion would 

be that both reward and probability both act on a single accumulator to shape the resultant 

latency distribution. In Experiment 7 in this chapter, I test this theory explicitly by combining 

modulations of probability and reward. If increasing reward value and probability associated 

with a target has an additive effect on the latencies, this would suggest both factors affecting a 
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single accumulator framework. Additionally, it would follow that decreasing one factor while 

increasing the other factor (matching reward rates across two targets) would effectively cancel 

out the effects of probability/reward bias.  

As mentioned, a stronger effect of reward and probability was observed on manual 

responses in comparison to saccadic in a similar paradigm (Experiment 2 and Experiment 6). 

In the reward manipulation this was postulated to be due to several factors: dopaminergic 

activation possibly being too slow to affect rapid saccadic responses, and the clear motivation 

on the goal-orientated manual response to the perceptual task in the paradigm used. In the 

probability manipulation, this finding was also linked to the time course of the two response 

modalities: longer ISIs were associated with a stronger manual response. Again the clear 

motivation of the goal-orientated manual response was likely to be a strong factor. Given this, 

in Experiment 8 and 9 in this chapter, only manual responses were recorded when investigating 

reward and probability effects in isolation in a matched paradigm.  Additionally, in the final 

experiment of Chapter 3 it was found that very small reward values (such as £0.10) were 

unlikely to affect the saliency of the target enough to produce an effect relative to the other 

larger reward values (such as £1): therefore, in all experiments reported in this Chapter, the 

lowest reward value used was £2.  

One of the aims of the research reported in this thesis is to establish a paradigm that can 

be used to study the cognitive side effects of deep-brain stimulation (DBS) in Parkinson’s 

patients. Given that this disease is associated with patients who are typically older than the 

student participant group in the studies carried out so far, it is important to address the changes 

that occur in these effects over the lifetime and in particular the effects studied here. In an 

experiment using a four-alternative choice-reaction task, event-related potentials (ERPs) were 

recorded to analyse at what stage of processing (stimulus processing, response selection, and 

motor-response generation) age-related (average 58 years) response slowing occurred, 
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compared to younger controls (average 22 years) (Falkenstein, Yordanova & Kolev, 2006). 

They found that age-related delay occurred during the central stage of response generation, and 

the timing of stimulus processing and response selection mechanisms were virtually 

unaffected; this was found in both visual and auditory stimulus, suggesting a modality-

independent deficit produces delayed responses in older adults (Falkenstein et al., 2006). Given 

the general response slowing in this population, it is important to have a control experiment for 

research with Parkinson’s patients. Specifically, this research suggests that there would not be 

an issue with utilising the same paradigm for older adults, rather that there would need to be 

more allowance for the time frame that they were able to respond in.  

This chapter reports a set of three experiments that investigate the interactions between the 

reward and probability effect. In Experiment 7, this is carried out across two response 

modalities, saccades and manual responses. Despite the lack of correlation in the results of the 

experiments in Chapters 2 & 3, I decided to continue to test both responses concurrently as 

some degree of effect was seen in both and could  still be influenced by the interaction of 

reward and probability. In Experiment 8 and 9 only manual responses are recorded. In 

Experiment 7, I combine manipulations of reward and probability to see how the effects 

explored in Chapter 2 and 3 interact. This takes the form of a pair of experiments (1a and 1b) 

which combine both effects and investigate their interactions.  In the first of these experiments 

(1a) I manipulate probability while keeping reward fixed and in the second (1b) I manipulate 

reward while keeping probability fixed.  In both experiments this allows me to have conditions 

where the reward rate is constant across the two possible target sides, this is achieved by having 

one side with a high reward but a low probability matched with the other side which would 

have a low reward but high probability of occurring.  In this way it was possible to set up the 

displays so that over a block of trials both sides would deliver the same average chance of 

reward. In Experiment 8, I investigate the effects of reward and probability separately in a 
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matched paradigm in the manual responses of participant’s dominant hand. In Experiment 9, I 

compare the effects of reward and probability in the healthy older adult population. 

4.2 Experiment 7: Combined reward and probability  

4.2.1 Methods 

Participants 

Thirty six participants (9 male) were recruited from the student population of the 

University of Bristol (approximate age range 18-25). All had normal or corrected-to-normal 

vision. Participants were reimbursed £7 for their time and, if the manual response on that trial 

was correct and completed before the time-out, also won the reward value from a randomly 

chosen trial (£2, £6, or £10). The study was approved by The Faculty of Science Human 

Research Ethics Committee at the University of Bristol. 

Procedure 

The sequence of event in a single example trial are illustrated in Figure 4.1. The task for 

the participants was to respond to the “T” stimuli that appeared to the left or right of a central 

fixation point.  The response required was to indicate the orientation of a letter with a manual 

button press.  If the letter was on the left-hand side of the display the response was made with 

the left hand and if the letter was on the right-hand side the response was made with the right 

hand.  The experiment consisted of a practice phase (10 trials), a pre-test phase (48 trials), and 

then 9 blocks (48 trials each) of the testing phase. Each block was proceeded by a 9 point 

calibration procedure to allow accurate eye tracking. 
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Figure 4.1; Diagram of the experimental procedure in the testing phase. The figure depicts an 

example trial where the target appears on the right-hand side and the high reward side for the 

participant is the left. 

In the testing phase correct responses in each trial were associated with a reward.  The 

reward value was displayed on each trial at the location of the target after the response was 

given. Participants were informed that a trial from the testing phase would be selected at 

random at the end of the experiment and that they would receive that reward. If the manual 

response was too slow or incorrect then a message was displayed after the trial. Participants 

were informed at the outset of the experiment that they were receive no reward if one of these 

error trials was selected at the end of the experiment. All participants were explicitly told the 
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reward values associated with the block they were about to perform and also the reward values 

associated with each side of the display. 

Stimuli 

All stimuli and the fixation square were white (16.4 cd/m2) and displayed on a grey 

background (10.4 cd/m2). A trial commenced with a centrally presented fixation square (1.65o 

x 1.65o; 0.18o thick) which was presented for 1.5s. The fixation square in the testing phase 

contained three pound signs (£££) presented in red (15.8 cd/m2). This was intended to increase 

salience and motivation across the rewarded phase of the experiment.  

 This was immediately followed by the circle target with a T or inverted T in the centre.  

The circle had a diameter of 1.85o and a line thickness of 0.18o.  The letter T subtended 0.3o, 

which is a size that Körner and Gilchrist (2007) have shown is small enough not to be 

recognised reliably above chance when fixation was 3o away from the stimuli. This ensured 

that participants had to make an accurate target directed saccadic eye movements towards the 

target to complete the task.  The target was presented on the left or right in a varying number 

of trials across all phases of the experiment at 6o eccentricity.  

Experiment 7a.  Probability Manipulation 

The testing phase consisted of nine probability blocks. Half of the participants were 

exposed to constant reward values in the testing phase, while the probability of targets being 

presented on either side was manipulated. Of these eighteen participants, half were shown 

higher reward (£10) on the right and low reward on the left (£2) and the other half were shown 

the opposite. There were three experimental conditions, each consisting of three consecutive 

blocks. In one condition, the target was equally likely to be on the right or the left-hand side. 

In the second condition, the target was presented on one side with probability 0.83 and the 

other side with probability 0.17. These probabilities were chosen as they are the closest match 
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to £10/£2 reward proportions. These probabilities were then flipped for the final condition. The 

probabilities were not exact due to short block lengths, such that at the beginning of each block 

the number of targets appearing on a particular side were fixed at 50%, 83% or 17% of the total 

number of trials in the block (to the nearest integer). The order of these fixed trials were then 

randomised for the length of the block, ensuring a random permutation of trials in every block 

across the whole experiment.  

Experiment 7b. Reward Manipulation 

The other eighteen participants were exposed to constant probabilities of the presentation 

of targets across the experiment, while the reward values associated with targets was 

manipulated. Nine participants were presented with targets appearing on the right-hand side 

with probability 0.83 and the left-hand side with probability 0.17, and the other nine were 

shown the opposite. Again there were three experimental conditions, each consisting of three 

consecutive blocks. In one condition, the target was associated with equal reward (£6) on the 

right and the left-hand side. In the second condition, the target presented on one side was 

associated with £10 reward and other side with £2. The reward values were then flipped for the 

final condition. As in the probability manipulation, the order of the fixed trials were randomised 

for each block, ensuring a random permutation of trials.  

The reward values (including the pound sign) were presented inside the corresponding 

target after a successful manual response to the target in each trial. The rewards were a golden 

yellow colour (19.8 cd/m2) to increase the saliency. If the participant was too slow, or made an 

incorrect response, a message appeared in the centre of the screen reading ‘Wrong! No reward’ 

or ‘Too slow! No reward’ (2.5o above fixation and white). After the response to the letter T, 

the reward value (or error message) stayed on the screen for 1.5 seconds. 
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For both Experiment 7a and 7b, a pre-test block was included to set an individual criteria 

for the time-out for the testing phase.  In the practice and pre-test phases the fixation square 

contained an X (red; 15.8 cd/m2; font size 17) rather than a £ sign as no rewards were given on 

these trials.  The distribution of manual response times from the pre-test block of the 

experiment were used to calculate a 70th percentile of each participant’s reaction time (ms) 

distribution. Without informing the participants, their individual 70th percentile values were 

used as the length of time the target and letter T would be visible for in testing phase trials, 

after which they would receive the time-out notice and forfeit the chance of gaining the reward 

on that trial. This ensured motivation to respond quickly as participants inevitably were too 

slow on some trials; these time-out errors were often less than 30%, as participants responded 

faster in reaction to the time constraint.  

Apparatus 

The experiment was controlled by Psychophysics Toolbox (Brainard, 1997) running 

within Matlab 2013a running on Windows 7.  The display was 17”running at 75Hz and with a 

resolution of 1600 x 1200 pixels, and the viewing distance was 57cm. 

Movements of the right eye were recorded at a sampling rate of 1000Hz by the Eyelink 

II (SR Research, Canada) which has a typical operating spatial resolution of 0.5o. The 

participants were provided with a chin and forehead rest to minimise head movements. Manual 

response were recorded via the keyboard (numeric right-hand section) – key 4 and 1 for the left 

hand and key 6 and 3 for the right hand responses. 

Design 

There were two within-participant repeated-measure binary factors in both forms of the 

experiment: In the reward manipulation, one was block (£2/£10, £10/£2, £6/£6) and the other 

was side (0.83% probability and 0.17% probability). This led to 6 conditions: low probability, 
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low reward; low probability, high reward; high probability, high reward; high probability, low 

reward; high probability, equal reward; low probability, equal reward. In the probability 

manipulation, one factor was block (83%/17%, 17%/83%, 50%/50%) and the other was side 

(£2 and £10). This led to 6 conditions: high reward, high probability; high reward, low 

probability; low reward, high probability; low reward, low probability; high reward, equal 

probability; low reward, equal probability. Therefore there were only 2 conditions in each form 

of the experiment that differed from the other: each was an isolated manipulation of reward or 

probability.   

The order of conditions were counterbalanced using a latin square design. Given the three 

block types in the probability and reward manipulations, this gave 9 unique orders, which were 

then repeated for the further 9 participants. The dependent measures were the manual response 

time and saccade latency. 

 

4.2.2 Results 

Experiment 7a: Probability manipulation  

Manual Responses 

There were a total of 7776 trials recorded in the probability manipulation experiment 

(432 x 18 participants) and of these 6872 manual responses were correct/before the time-out. 

The distribution of the remaining 904 time-out/response errors is shown in the table below. 

The range of the total percentage of time-out/response errors across all participants was 3.7% 

to 18.52%. 
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There was a marginally significant effect of error type, with generally more time-out errors 

than response errors being present across participants (Repeated Measures ANOVA: [F(1, 17) 

= 4.28, p = 0.05]; Effect size (partial ETA) = 0.2).  

 

 

Side 

Block Type 

Equal Probability Probability same 

direction as reward 

Probability opposite 

direction to reward 

Time-Out Response 

Errors 

Time-Out Response 

Errors 

Time-Out Response 

Errors 

High 

Reward 

7.1 (2.78 - 

23.6) 

5.25 (0 - 

9.7) 

4.81 (0.83 -

13.3) 

4.58 (0.83 - 

7.5) 

6.94 (0 -

29.17) 

6.94 (0 -

16.67) 

Low 

Reward 

8.1 (0 -

20.83) 

4.5 (0 -

22.2) 

10.42 (0 - 

25) 

5.79 (0 -

16.67) 

5.93 (0 -

14.17 

3.98 (0 -

9.17) 

Table 4.1: Mean percentage of errors (of the number of trials in each condition) across the 

three probability conditions and two reward sides. Errors are split into time-out errors, where 

participants did not make the manual response within the allocated time, and response errors 

where they made an incorrect button press. The range of error percentages across participants 

in each condition are given in brackets. 
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Figure 4.2: Graph of the mean of median manual reaction times across participants. Each line 

represents a different probability, with the data split within blocks according to the probability 

associated with a particular target. The two x-axis points show the reward associated with the 

target. The within-subject error bars are the standard error of the mean.  

A significant effect of target probability was seen on the manual response times 

(Repeated measures ANOVA: [F(2,17) = 26.6, p < 0.001]; Effect size (partial ETA) = 0.61). 

This significant effect is not present between the equal and high probabilities, as shown by the 

large and overlapping confidence intervals (CI 95%: High = 443.6 – 488.5; Equal = 462.3 – 

499.6), compared to a clear difference between these probabilities and the low probability (CI 

95%: 484.3 – 527.8).  
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Although not significant, the data suggests a small effect of reward when the probability 

is equal across targets; this is clearly extinguished once the probabilities are unequal (Figure 

4.2).  

 Saccadic Responses 

Initially I assessed the saccadic response data by looking at whether there was an offset 

in initial fixation towards the high probability side. This was done by calculating the amount 

of drift away from the central fixation in the starting point of the first saccade after target onset. 

7747 trials were included in this calculation, 29 having been discarded due to blinks or other 

failures to record eye position at the start of the trial.  

The saccadic starting point data were binned into seven bins of 2 degrees; the central bin 

around fixation had a midpoint of the exact position of the fixation cross. The percentage of 

each participants’ starting points in each bin was calculated, separated according to probability 

condition. The data was then collated across the 3 bins on either side of the fixation, giving a 

percentage of starting points towards the high reward side and likewise to the low reward side. 

There was a significant effect of probability condition on the proportional difference between 

percentages of starting points towards the low and high reward side (Repeated Measures 

Anova: [F(2, 17) = 47.19, p < 0.001]; Effect size (partial ETA squared) = 0.74). This supports 

our significant finding in the earlier probability experiment, as the data suggests a bias towards 

the higher probability side. Interestingly, when the probability was equal the mean percentage 

of saccades that were initiated nearer the high reward side was 24% (CI 95%: 11.45 – 36.77) 

compared to 9% (CI 95%: 3.89 – 13.78) on the low reward side, suggesting a small effect of 

reward on starting point bias when presented without a probability modulation. However, high 

levels of variance given by the confidence intervals suggests weak evidence for this finding.       
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Given these results the same general exclusion criteria as the previous experiments was 

applied to initial fixation starting point: excluding trials where the initial fixation was greater 

than 3 degrees either side of the centre of the fixation box. This was a liberal criteria as there 

was no specific fixation instruction to participants in the experiment, and to account for the fact 

that there was a spatial bias in the starting points of saccades. An additional criteria was applied 

so that all trials where the first saccade was initiated after the participant’s ‘time-out’ were 

discarded. Two participants had over 40% of trials excluded when these criteria were applied, 

so they were removed from the rest of the saccadic analysis. There was no spatial exclusion 

criteria on the landing point of the first saccade, but saccades in the wrong direction were 

discarded as errors. The remaining trials had a mean first saccade amplitude of 5.6 degrees 

(range across participants: 5.0 – 6.3 degrees).  

Of the saccades directed to the incorrect side, 93.4 % had a latency of 80ms or less and 

these are assumed to be anticipatory (Table 4.2). In addition to reflect this anticipatory criteria 

all saccades with reaction times 80ms or less in the correct direction were excluded. Some 

saccades within the incorrect saccades and anticipatory saccades categories had negative 

response times, due to the saccade being ongoing during the target onset. These saccades were 

included in the anticipatory analysis as they still reflect an anticipation of the target appearing 

on a particular side. After removing the invalid, anticipatory and error saccades, the total 

number of analysed saccades was 5379 (77.82%). 
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Reason for Exclusion  

 

Number of saccades (trials) 

excluded and percentage of initial 

total 

Total no of saccades 

(Initial 6912) 

(2 Participants 

excluded)  

Initial fixation greater than 3 

degrees from centre/initiated after 

‘time-out’ 

 1127 (16.3%; 1.39 - 39.1%) 

 

5785 (83.7%) 

Saccades in the incorrect direction 

(92.7% anticipatory) 

 136 (1.97%; 0.46 - 3.94%)  5649 (81.73%) 

Anticipatory saccades (correct 

direction) 

 270 (3.91%; 0.23 - 10.42%) 

 

 5379 (77.82%) 

Table 4.2; Pre-processing of saccadic analysis. Details of the data removed from further analysis, 

and the reasons for removing them. Percentage of initial number of saccades is included in brackets, 

followed by the range across participants. Two participants were excluded from analysis so are not 

included in this table.  
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Figure 4.3: Graph of mean across participants’ median saccadic reaction times, where the x-

axis denotes the relative reward associated with the target. The three lines on the graph join 

the two data points associated with each probability condition, as shown in the figure legend. 

Conditions have been grouped as the target probabilities presented, rather than in the 

conditions within which they were recorded in the task. The within participant error bars show 

the standard error of the mean.  

The target probability had a significant effect on saccadic response times (Repeated 

Measures ANOVA: [F(2,15) = 25.39, p < 0.001]; Effect size (partial ETA) = 0.63). Although 

the data shows a trend towards participants making faster saccades when the target is associated 

with high reward relative to low reward (Figure 4.3), this effect is not significant. The effect of 
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probability is only present between the low probability condition (CI 95%: 138 – 162.5) and 

the high/equal probability condition (CI 95%: High = 126.9 – 143.3; Equal = 127.8 – 143.6), 

as can be clearly seen in the graph (Figure 4.3). When the reward rates were matched across 

the two targets, (the ‘high reward, low probability’ and the ‘low reward, high probability’ 

points in Figure 4.3) there was a 9.63ms (CI 95%: -1.48 – 20.73) increase in response time 

between the high probability side and the low probability side. This result suggests that the 

processes underlying the reward and probability effect are not governed by reward rate (or 

expected value). If that had been the case, it would have been expected that there would be no 

effect across matched reward rates. However, it could be argued that the probability 

manipulation might dominate the responses rather than reward, as expected value is constant 

across the two targets.  

The correct anticipatory saccade trials were analysed by frequency within probability 

condition and reward sides, and the percentages of the total possible trials were calculated for 

each participant, to account for higher numbers of trials in high probability conditions. 

Seventeen trials were removed from the anticipatory analysis, due to either blinks or by errors 

in the eye tracker recording. There was a significant interaction between the percentages of 

correct anticipatory saccades with reward side and probability condition across participants 

(Repeated measures ANOVA: [F(2, 15) = 8.69, p = 0.001]; Effect size (Partial ETA) = 0.37). 

There was no significant effect of reward side or probability condition on the percentage of 

correct anticipatory saccades. Additionally, there was no effect of either reward or probability 

on the percentage of anticipatory saccades in the incorrect direction.   
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Experiment 7b: Reward manipulation  

Manual Responses 

As in experiment 7a, the total number of trials recorded was 7776. Of these trials 719 

manual responses were discarded due to an incorrect response or to the participant not 

responding in time. This left a total of 7057 trials in the manual data. The distribution of errors 

across conditions is given in the table below. The range across participants of the total 

percentage of response/time-out errors was 2.5% to 16.7%. 

 

 

Table 4.3: Mean percentage of errors across the three reward conditions and high and low 

probability sides. Errors are split into time-out errors, where participants did not make the 

manual response within the allocated time, and response errors. The range across participants 

is given in brackets.  

 

 

Side 

Block Type 

Equal Reward Reward same direction 

as probability 

Reward opposite 

direction to probability 

Time-Out Response 

Errors 

Time-Out Response 

Errors 

Time-Out Response 

Errors 

High 

Probability 

3.7 (0 – 8.3) 4.07 (0.83 - 

10) 

3.66 (0 – 

9.17) 

3.8 (0 - 10) 3.98 (0 – 

9.17) 

 4.07 (0 – 

12.5) 

Low 

Probability 

 9.95 (0 – 

16.7) 

6.25 (0 - 

25) 

 10.42 (0 – 

29.17) 

 7.41 (0 – 

20.83) 

 8.33 (0 – 

20.83) 

 7.64 (0 – 

29.17) 
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There was a significant effect of probability on both the frequency of time-out and 

response errors made, where more errors were made overall in the low probability direction 

(Time-out errors: Repeated measures ANOVA: [F(1, 17) = 36.16, p < 0.001]; Effect size 

(Partial ETA) = 0.68; Response errors: Repeated measures ANOVA: [F(1, 17) = 7.8, p = 

0.012]; Effect size (Partial ETA) = 0.32).  

 

Figure 4.4: Graph of the mean manual response time across the medians of all participants. 

The three lines show the different reward conditions, which are grouped into low/high/equal 

reward rather than the conditions within the experiment. The x-axis gives the target 

probability. The within-subject error bars are the standard error of the mean. 
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Target probability had a significant effect on manual responses, as response times were 

shorter for the higher probability side (Repeated Measures ANOVA: [F = 39, p <0.001]; Effect 

size (partial ETA) = 0.7). The reward manipulation had no significant effect on the manual 

responses across participants.  

Saccadic responses 

As in experiment 7a, I looked at whether there was an offset in initial fixation towards 

the high probability side in the saccadic response data. I calculated the amount of drift away 

from the central fixation in the starting point of the first saccade after target onset. 7737 trials 

were included in this calculation as 39 were discarded due an error in recording the first saccade 

(due to blinks or otherwise).  

The saccadic starting point data were binned into seven bins of 2 degrees; the central bin 

around fixation had a midpoint of the exact position of the fixation cross. The data was 

separated according to reward condition and the percentage of each participants’ starting points 

in each bin was calculated. The data was then collated across the 3 bins on either side of the 

fixation, giving a percentage of starting points towards the high probability side and likewise 

to the low probability side. There was no effect of reward condition on the proportional 

difference between percentages of starting points towards the low and high reward side. 

However, there were a significantly higher percentage of saccades initiated on the high 

probability target side of fixation compared to the low probability target side, across all three 

conditions (Repeated Measures ANOVA: [F(1, 17) = 17.45, p = 0.001]; Effect size (partial 

ETA) = 0.51). Given these results the same general exclusion criteria as the previous 

experiments was applied to initial fixation starting point: excluding trials where the initial 

fixation was greater than 3 degrees either side of the centre of the fixation box. As in experiment 

7a, this liberal criteria reflected the lack of specific fixation instruction to participants in the 
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experiment, and to account for the fact that there was a spatial bias in the starting points of 

saccades. All trials where the first saccade was initiated after the participant’s ‘time-out’ were 

also excluded. Five participants had over 40% of trials excluded when these criteria was 

applied, so they were removed from the rest of the saccadic analysis. There was no spatial 

exclusion criteria on the landing point of the first saccade, but saccades in the wrong direction 

were discarded as errors. The remaining trials had a mean first saccade amplitude of 5.29 

degrees (range across participants: 4.37 – 5.79 degrees).  

Reason for Exclusion  

 

Number of saccades (trials) 

excluded and percentage of initial 

total 

Total no of saccades 

(Initial 5616) 

(5 Participants 

excluded)  

Initial fixation greater than 3 

degrees from centre/initiated after 

‘time-out’ 

 818 (14.57%; 1.85 – 40.97%) 

 

4798 (85.43%) 

Saccades in the incorrect direction 

(83.1% anticipatory) 

195 (3.47%; 0.23 – 9.95%)  4603 (81.96%) 

Anticipatory saccades (correct 

direction) 

 357 (6.36%; 1.16 - 10.88%) 

 

 4246 (75.61%) 

Table 4.4; Pre-processing of saccadic analysis. Details of the data removed from further analysis, 

and the reasons for removing them. Percentage of initial number of saccades is included in 

brackets, followed by the range across participants. The five participants that were excluded from 

analysis are not included in this table. 
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Of the saccades directed to the incorrect side, 83.1% had a latency of 85ms or less and 

these were assumed to be anticipatory (Table 4.4). In addition to reflect this anticipatory criteria 

all saccades with reaction times 85ms or less in the correct direction were excluded. Saccades 

with negative response times (due to the saccade being ongoing during the target onset) were 

present in the anticipatory/incorrect data. These saccades were included in the anticipatory 

analysis as they still reflect an anticipation of the target appearing on a particular side. After 

removing the invalid, anticipatory and error saccades, the total number of analysed saccades 

was 4246 (75.61%). 

There was no significant effect of target probability or reward on saccadic response times. 

The data showed a trend towards an effect of probability in the high and equal probability 

conditions, although this was not evident in the low reward condition (Figure 4.5).  

The correct anticipatory saccade trials were analysed by frequency within reward 

condition and probability sides, and the percentages of the total possible trials were calculated 

for each participant. There was a significant effect of probability on the percentage of correct 

anticipatory saccades, whereby more anticipatory saccades were made towards the higher 

probability target (Repeated Measures ANOVA: [F(1, 12) = 14.33, p = 0.003]; Effect size 

(partial ETA) = 0.54). There was no effect of reward on the percentage of correct anticipatory 

saccades, nor an effect of either reward or probability on the percentage of anticipatory 

saccades in the incorrect direction.   
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Figure 4.5; Graph of the mean saccadic response time across the medians of 13 participants. 

The x-axis gives the probability associated with the target, and the three lines denote the three 

reward conditions. The within subject error bars are the standard error of the mean.  

 

4.2.3 Discussion 

Across experiments 7a and 7b there was a generally reliable effect of target probability 

on manual and saccadic responses: participants’ response times were faster to targets associated 
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with higher probability.  However, there was no significant effect of probability on the saccadic 

responses in experiment 7b. There was a trend for faster responses to higher probability and 

slower responses to lower probability in the high and equal reward conditions, but this effect 

was completely extinguished in the low reward condition. In experiment 7a, the probability 

effect was only present between the high/equal and the low probability conditions.  

There was no significant effect of reward in either experiment 7a or 7b, and no evidence 

to suggest that reward rate has any effect on saccadic or manual responses. In the manual results 

of experiment 7a, some evidence was found to suggest that a small reward effect was present 

only when probability was equal across targets.  

Although there was an effect of reward in a similar paradigm in Chapter 3, these results 

suggest that this effect is completely extinguished when there are unequal probabilities of the 

targets that rewards are associated with. It could be that the strength of the probability effect 

completely dominates the modulation in behaviour and thus these processes do not combine in 

a simple manner. Our results suggest that there are differences between the two processes 

governing reward and probability effects despite the similarities they have on behaviour in 

isolation.  

I now report an experiment investigating the effects of reward and probability in 

isolation, using the same paradigm for both effects and a within-subjects design. This was to 

allow for a direct comparison of the reward and probability effect without combining them 

together, and examine whether the two effects are correlated. Given the smaller and less reliable 

effect of probability (and reward in Chapter 3) on saccadic responses in comparison to manual 

responses in Experiment 7, only manual responses have been recorded in Experiment 8.  This 

decision is also supported by the results of the final experiments of Chapter 2 and Chapter 3, 

where there was no correlation between the saccadic and manual responses for the reward and 
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probability effect. Additionally, the same two keys were used to respond to targets on the left 

and right-hand side of the screen so that participants only used one hand to respond. Both these 

adjustments are advantageous for future experiments with Parkinson’s patients: eye tracking is 

more complex and restrictive for these patients partly due to increased head movements and 

often their Parkinsonism affects one side of their body more severely than the other (Djaldetti, 

Ziv & Melamed, 2006).  

In addition it is not clear at what stage in processing the manual response advantages 

reported previously occur.  In the previous experiments one side of the display was associated 

with either a higher reward or an increased probability and this led, under some circumstances, 

to a reduction in manual reaction time.  As each side was unequally associated with a particular 

hand it is entirely possible that the speeding up was a result of some low level motor readiness 

associated with one hand rather than the other. By having both responses (left or right) being 

made by the same hand this allows a test of whether these effects are more central than this 

explanation suggests.    

 

4.3 Experiment 8: Isolated reward and probability  

4.3.1 Methods 

Participants 

Eighteen participants (eleven female) were recruited from the student population of the 

University of Bristol (mean: 22.8, range: 18 - 40). All had normal or corrected-to-normal 

vision. Participants were reimbursed £6 for their time and received a variable performance 

related reward (£0, £2, £6 or £10) as outlined below. They were asked to use their self-reported 
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dominant hand to do the experiment (14 right-handed). The study was approved by The Faculty 

of Science Human Research Ethics Committee at the University of Bristol. 

Procedure 

The sequence of events in a single example trial is illustrated in Figure 4.6. The task as in 

previous experiments was to respond to the “T” stimuli that appeared to the left or right of a 

central fixation point.  The response required was to indicate the orientation of a letter with a 

manual button press.  Regardless of which hemifield the target was presented in, the same two 

buttons on the keyboard were used to indicate the orientation of the letter T. The experiment 

consisted of a practice phase (10 trials), a pre-test phase (36 trials), and then 12 blocks (36 trials 

each) of the testing phase.  

In the testing phase correct responses in each trial were associated with a reward.  The 

reward value was displayed on each trial at the location of the target after the response was 

given. A trial from the testing phase was selected at random at the end of the experiment and 

the participant received that reward. If the manual response was too slow or incorrect then a 

message was displayed after the trial. Participants were informed at the outset of the experiment 

that they would receive no reward if one of these error trials was selected at the end of the 

experiment. The participants were explicitly told the reward distribution at the start of each 

block. 
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Figure 4.6; Diagram of the experimental procedure in the testing phase. The figure depicts an 

example trial from a ‘reward’ block in the ‘high reward right’ condition with a target 

appearing on the right-hand side. 

 

Stimuli 

All stimuli and the fixation point were white (16.4 cd/m2) and displayed on a grey 

background (10.4 cd/m2). A trial commenced with a centrally presented fixation square (1.65o 

x 1.65o; 0.18o thick) which was presented for 1.5s. The fixation square contained a single cross 

in the presented in red (15.8 cd/m2) and in font size 17. This was immediately followed by the 
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circle target with a T or inverted T in the centre.  The target had a diameter of 1.85o and a line 

thickness of 0.18o.  The letter T subtended 0.3o as in all previous experiments. This ensured 

that participants had to make an accurate target directed saccadic eye movements towards the 

target to complete the task.  The target was presented on the left or right of fixation at 6o 

eccentricity: in the reward manipulation the target was presented on either side in an equal 

number of trials across all conditions, whereas the frequency changed in different conditions 

of the probability manipulation. 

The testing phase was split into two sections – the reward manipulation and the 

probability manipulation. Half the participants were exposed to the reward conditions first, and 

half to the probability. In the reward manipulation, there were three conditions: high reward 

right (£2/£10), high reward left (£10/£2), and equal reward (£6/£6). In the probability 

manipulation, there were again three conditions: high probability right (0.17/0.83), high 

probability left (0.83/0.17) and equal probability (0.5/0.5). Each condition consisted of two 

consecutive blocks of 36 trials. These probabilities were chosen as they are the closest match 

to £10/£2 reward proportions. To ensure motivation within the probability conditions was not 

decreased compared to the reward conditions, rewards were fixed at £6 across the whole 

section. This meant that the equal reward and equal probability conditions were exactly the 

same. The reward values (including the pound sign) were presented inside the corresponding 

target after a successful manual response to the target in each trial. The rewards were presented 

in a golden yellow colour (19.8 cd/m2). If the participant was too slow, or made an incorrect 

response, no reward value was shown and a message appeared in the centre of the screen 

reading ‘Wrong! No reward’ or ‘Too slow! No reward’ (2.5o above fixation and white). The 

reward value (or error message) stayed on the screen for 1.5 seconds.  

A pre-test block was included in the experiment to set an individual criterion for each 

participant for the time-out for the testing phase.  In the practice and pre-test phases the fixation 
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square contained an X which was also presented in the targets after response to the letter T, as 

no rewards were given on these trials.  The distribution of manual response times from the pre-

test block of the experiment were used to calculate a 70th percentile of each participant’s 

reaction time (ms) distribution. Unknown to the participants, their individual 70th percentile 

values were used as the length of time the target and letter T would be visible for in the testing 

phase trials after which they would receive the time-out notice and forfeit the chance of gaining 

the reward on that trial. This ensured motivation to respond quickly.  

Apparatus 

The experiment was controlled by Psychophysics Toolbox (Brainard, 1997) running 

within Matlab 2014b running on Windows 7  The display was 17” running at 75Hz and with a 

resolution of 1600 x 1200 pixels, and the viewing distance was 57cm. The participants were 

provided with a chin rest to keep the viewing distance constant. Manual responses were 

recorded via the keyboard – the up arrow for correct orientation of the letter T, the down arrow 

for an inverted letter T. 

Design 

There were two within participant repeated measure binary factors: probability (high, 

low or equal) and reward (high, low or equal) leading to six conditions: High probability, low 

probability, equal probability; High reward, low reward, equal reward. The order of the blocks 

were counterbalanced across participants.  The dependent measure was the manual response 

time.  
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4.3.2 Results 

Manual Responses 

A total of 7776 trials were recorded (432 x 18 participants).  I analysed the remaining 

manual reaction times excluding 588 time-out and 470 response errors, leaving a total of 6718 

data points. The distribution of errors is shown in Table 4.5. The range of the total percentage 

of time-out/response errors of each participant’s responses was 0.9% - 27.78%. 

 

  

 

 

Side 

Condition 

Probability Reward 

Time-Out Response Errors Time-Out Response Errors 

High  5.05 (0-9.17) 4.86 (0.83-19.17) 6.67 (1.39-16.67) 6.85 (0-15.28) 

Low  18.87 (0-33.3) 9.23 (0-25) 10.34 (1.39-23.6) 8.91 (0-27.78) 

Equal  8.3 (1.39-20.83) 7.84 (0-18.06) 7.68 (0-18.06) 7.64 (0-16.67) 

Table 4.5; The mean percentage of errors (of the total number of possible trials in each condition), 

for both types; time-outs and response errors. The range across 18 participants is given in 

brackets. 
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Figure 4.7; Graph of mean manual response times across medians of all 18 participants. The 

two lines show the two different conditions (reward and probability) and the three x-axis points 

denote the level of reward or probability associated with the target. The within-subject error 

bars are the standard error of the mean.  
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Figure 4.8; Scatter plot of the slope of the probability effect against the slope of the reward 

effect in manual responses across all participants. 

 

I found that reward value had a significant effect on manual reaction times, and exhibited 

a linear relationship across the three conditions (Figure 4.7) (Repeated Measures ANOVA: 

[F(2,17) = 7.55, p = 0.002]; Effect size (partial ETA squared) = 0.31). Probability also had a 

significant effect on manual reaction times, and a linear relationship can also be seen in Figure 

4.7 (Repeated Measures ANOVA: [F(2,17) = 28.03, p < 0.001]; Effect size (partial ETA 

squared) = 0.62). As expected, there was no difference between reward and probability in the 
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equal condition; these were identical besides from the participants experiencing them within 

the reward or probability manipulation of the experiment.   

There were significantly more time-out errors made the lower the probability or reward 

value was across the experiment (Probability: Repeated Measures ANOVA: [F(2,17) = 27.03, 

p < 0.001]; Effect size (partial ETA squared) = 0.61; Reward: Repeated Measures ANOVA: 

[F(2,17) = 6.13, p = 0.005]; Effect size (partial ETA squared) = 0.27). However, there was no 

effect of reward or probability on the frequency of response errors.  

There was only a weak non-significant positive correlation between the effect of reward 

and probability across all participants (Figure 4.8; correlation coefficient = 0.24, N.S. 

[p=0.34]). Analysing the data together from both manipulations, overall there was no 

significant difference between the reward and probability conditions across the three levels 

(Repeated Measures ANOVA: [F(1,17) = 2.7, p = 0.12]; Effect size (partial ETA squared) = 

0.14), suggesting a similar effect on responses. There was a significant effect of level of 

probability/reward (Repeated Measures ANOVA: [F(2,17) = 31.45, p < 0.005]; Effect size 

(partial ETA squared) = 0.65), and a significant interaction between level and manipulation 

(reward/probability) (Repeated Measures ANOVA: [F(1,17) = 5.43, p = 0.01]; Effect size 

(partial ETA squared) = 0.24), reflecting a larger effect of level on probability than reward. 

Additionally, the data was split for the 14 right-handed participants into manual 

responses made to the left or the right-hand target. This was in order to ascertain if there was 

any effect of using the same button presses for responses to both hemifields. I ran two repeated 

measures ANOVAs (three by two) for both reward and probability conditions, and found that 

there was no significant difference between manual responses made to the left or right targets.  

 

 



 

158 

 

4.3.3 Discussion 

Reward and probability had a significant linear effect on the manual reaction times, 

whereby responses were faster to targets associated with higher reward and probability. This 

modulation in responses was larger in the probability manipulation. It was found that the lower 

the reward or probability, the greater the frequency of time-out errors; this suggests, as some 

studies discussed in Chapter 1 have suggested, that both high reward and probability could lead 

to increased motor preparation (Basso & Wurtz, 1997; Dorris & Munoz, 1998; Koval et al., 

2004). Additionally, it was found that there was no difference between responses made to 

targets on the right or the left-hand side of the screen. It could be concluded from this that 

spatial mapping of visual stimuli to manual responses is not an important aspect of the effect 

of reward and probability on reaction times.   

There was no correlation between reward and probability in our data, suggesting different 

processes governing these effects. This also supports the results of Experiment 7 where we did 

not see these processes combining in a simple manner. This could be partly due to the 

differences in the nature of reward and probability; the probability of events or objects 

appearance in our environment is inherent and continues to exist (albeit fluctuating) even if not 

observed. The reward value attributed to an event or object relies on the way in which we 

perceive it, and is thus dependent on many other factors that can differ between individuals 

(utility, internal state etc).  

The next experiment I report is an investigation into the effect of reward and probability 

on the manual responses of healthy older adults. The purpose of this experiment was to 

understand how these effects change with age, and to provide a control study for further 

research with Parkinson’s patients who have deep brain stimulators (DBS). As we observed 
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both the reward and probability effects in isolation in Experiment 8, I have used the same 

paradigm in Experiment 9 with some small adjustments. 

 

4.4 Experiment 9: Reward and probability with healthy older adults 

4.4.1 Methods 

Participants 

Six participants (four female) were recruited from the BRACE charity (supporting 

dementia research) volunteer network in Bristol. The average age of participants was 74.3 and 

the range was 62 – 90. All had normal or corrected-to-normal vision. Participants were 

reimbursed £6 for their time/expenses/travel and received a variable performance related 

reward (£0, £2, £6 or £10) as outlined below. They were asked to use their self-reported 

dominant hand to do the experiment (all participants right-handed). The study was approved 

by The Faculty of Science Human Research Ethics Committee at the University of Bristol. 

Procedure 

The sequence of events in a single example trial is illustrated in Figure 4.9, and was exactly 

the same as in the Experiment 8. The task as in previous experiments was to respond to the “T” 

stimuli that appeared to the left or right of a central fixation point.  The response required was 

to indicate the orientation of a letter with a manual button press.  The two lower buttons on a 

Cedrus response pad (RB-830) turned sideways were used to indicate the orientation of the 

letter T, regardless of which hemifield the target was presented in. The experiment consisted 

of an initial practice phase (10 trials), a pre-test phase (36 trials), and then 12 blocks (36 trials 
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each) of the testing phase.

 

 

Figure 4.9; Diagram of the experimental procedure in the testing phase. The figure depicts an 

example trial from a ‘reward’ block in the ‘high reward right’ condition with a target 

appearing on the right-hand side. 

In the testing phase correct responses in each trial were associated with a reward.  The 

reward value was displayed on each trial at the location of the target after the response was 

given. If the manual response was too slow or incorrect then a message was displayed after the 

trial. Participants were informed at the outset of the experiment that they would receive no 

reward if one of these error trials was selected at the end of the experiment. However, due to 

ensuring that these participants had their travel and expenses covered, a £10 reward was 
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consistently given to participants. The participants were explicitly told the reward distribution 

at the start of each block. 

Stimuli 

All stimuli and the fixation point were white (16.4 cd/m2) and displayed on a grey 

background (10.4 cd/m2). A trial commenced with a centrally presented fixation square (1.65o 

x 1.65o; 0.18o thick) which was presented for 1.5s. The fixation square contained a single cross 

presented in red (15.8 cd/m2) and in font size 17. This was immediately followed by the circle 

target with a T or inverted T in the centre.  The target had a diameter of 1.85o and a line 

thickness of 0.18o.  The letter T subtended 0.3o as in all previous experiments. This ensured 

that participants had to make an accurate target directed saccadic eye movements towards the 

target to complete the task.  The target was presented on the left or right of fixation at 6o 

eccentricity: in the reward manipulation the target was presented on either side in an equal 

number of trials across all conditions, whereas the frequency changed in different conditions 

of the probability manipulation. 

As in the previous experiment, the testing phase was split into two sections – the reward 

manipulation and the probability manipulation. Half the participants were exposed to the 

reward conditions first, and half to the probability. In the reward manipulation, there were three 

conditions: high reward right (£2/£10), high reward left (£10/£2), and equal reward (£6/£6). In 

the probability manipulation, there were again three conditions: high probability right 

(0.17/0.83), high probability left (0.83/0.17) and equal probability (0.5/0.5). Each condition 

consisted of two consecutive blocks of 36 trials. To ensure motivation within the probability 

conditions was not decreased compared to the reward conditions, rewards were fixed at £6 

across the whole section. This meant that the equal reward and equal probability conditions 

were exactly the same. The reward values were presented inside the corresponding target after 
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a successful manual response to the target in each trial. The rewards were presented in a golden 

yellow colour (19.8 cd/m2). If the participant was too slow, or made an incorrect response, no 

reward value was shown and a message appeared in the centre of the screen reading ‘Wrong! 

No reward’ or ‘Too slow! No reward’ (2.5o above fixation and white). The reward value (or 

error message) stayed on the screen for 1.5 seconds.  

Unlike in the previous experiment, responses from the pre-test phase were not used to 

calculate a time-out criterion for each participant.  This is primarily because this experiment 

was a control for an experiment with Parkinson’s patients; I have been advised by clinicians 

that the time-out aspect would be too stressful for the participants. Additionally, the healthy 

older adults and patients are likely to be much more variable in their responses than in previous 

experiments with young students. This variability would make setting the time-out criterion at 

the 70th percentile of the participants’ responses less effective.  In the practice and pre-test 

phases the fixation square contained an X which was also presented in the targets after response 

to the letter T, as no rewards were given on these trials.   

 

Apparatus 

The experiment was controlled by Psychophysics Toolbox (Brainard, 1997) running 

within Matlab 2014b running on Windows 7  The display was 17” running at 75Hz and with a 

resolution of 1600 x 1200 pixels, and the viewing distance was 57cm. The participants were 

not required to use a chin rest as I decided this would be too uncomfortable for them. Manual 

responses were recorded via using a button box – one button for correct orientation of the letter 

T, and a button below the first button for an inverted letter T. 
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Design 

There were two within participant repeated measure binary factors: probability (high, 

low or equal) and reward (high, low or equal) leading to six conditions: High probability, low 

probability, equal probability; High reward, low reward, equal reward. The order of the blocks 

were counterbalanced across participants.  The dependent measure was the manual response 

time.  

 

4.4.2 Results 

Manual Responses 

A total of 2592 trials were recorded (432 x 6 participants).  During the testing session for 

one participant, the response box stopped working so the experiment was carried out using the 

keyboard as in experiment 8. This meant that the participant did in fact have a calculated ‘time-

out’ criterion. However, given only 39 time-out errors were made, I included this participant 

in the analysis. The manual reaction times were analysed excluding the 39 time-out errors and 

22 response errors; 16 trials that had reaction times of greater than 2 seconds were also 

excluded. This left a total of 2515 data points. As there were so few errors, I did not analyse 

the frequencies across the conditions.  
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Figure 4.10; Graph of mean manual response times across medians of all 6 participants. The 

two lines show the two different conditions (reward and probability) and the three x-axis points 

denote the level of reward or probability associated with the target. The within-subject error 

bars are the standard error of the mean. 

 

There was a significant effect of probability on the manual reaction times across the six 

participants (Repeated measures ANOVA: [F(2, 5) = 15.96, p = 0.001]; Effect size (partial 

ETA squared) = 0.76). Reward value did not have a significant effect on manual reaction times; 

the difference between the low and equal conditions however was very similar to the difference 

between those conditions in the reward manipulation. Crucially, although the average 

difference between the low and equal conditions was 11.4 ms in the reward manipulation and 

8.93ms in the probability manipulation, the 95% confidence intervals for the differences were 
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-21.31 to 44.11 and -62.96 to 80.83 respectively. The only reliable effect within the conditions 

was found to be between the equal (and thus low) probability condition and the high probability 

condition. Although there was high variability in these data (mean = 127.02, CI 95%: 55.94 – 

198.09), five out of six participants showed a clear decrease in manual reaction times as the 

probability increased.  

 

4.5 Discussion 

There was an effect of probability overall on the manual response times in older adults, 

but this effect was only reliable between the low/equal and the high probability condition. 

Given the variability of responses across the experiment, this could indicate an effect of 

practice; the number of responses in the 0.5/0.5 condition may not have been sufficient to cause 

a decrease in response times. However, the huge variability in responses means that some 

participants did show an effect between low and equal probability conditions; thus with results 

from only six participants a reliable conclusion cannot be drawn from this.  

There was no effect of reward on the manual response times of older adults. This could 

reflect the instability of the reward effect, which in Experiment 7 of this chapter is clear: not 

all participants show the effect even when it is present, and any effects are extinguished by 

manipulations of probability. As there are only six older adult participants in this experiment, 

it is not that surprising that no reward effect is seen. Additionally, it could be the difference 

between the inherent qualities of reward and probability that lead to the absence of the reward 

effect. Specifically, as discussed in the introduction, the reward value of events or objects in 

the environment can be defined by their relative value to an individual and thus depend on the 

utility and internal state of the individual. In comparison, the probabilities of events occurring 
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in the environment are not dependent on the observer.  Given this, it is not surprising that the 

reward effect is weaker than the probability effect, is extinguished by concurrent manipulations 

of probability and is not seen in the data of every participant (as in Experiment 7 and 8). In the 

older adults experiment, half of the participants did not want to keep the £20 they received for 

participating, and donated it to the BRACE charity. This was made clear by the participants 

from the outset of their testing session. Firstly, this could have meant that they were not 

motivated to respond quickly/accurately as their reward system was not engaged. Additionally, 

the magnitude difference in the reward values may have had no effect on their reward 

processing, to ensure they were more likely to gain a higher reward value. The differences in 

sensitivity to reward is supported by studies discussed in the discussion of the Chapter 3, where 

Hickey and colleagues (2010b) measured trait reward-seeking using a personality index, and 

found a correlation with the magnitude of reward priming in a visual search task. Even the 

participants who did accept the payment for the experiment may have a different utility, 

economic background or may be less motivated by reward at that stage of their life in 

comparison to the student population.  As they were recruited from a volunteer database of a 

charity supporting dementia research, the older adult participants were likely to have different 

motivations to take part in the experiment than the participants in the previous experiments. 

The theory around differences in reward sensitivity also supports the findings in 

Experiment 8, where there was no correlation in manual responses between the slope of the 

reward and probability effect. The difference between the nature of reward and probabilities in 

the environment could mean that it is unlikely that those participants that show particular 

sensitivity to the reward manipulation show a similar magnitude of sensitivity to the probability 

distributions of the environment.  Additionally, in Experiment 7 it was found that the effects 

of reward and probability do not combine in a simple manner, and that the reward effect is 

extinguished by modulations in probability. These results could suggest that in an accumulator 
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model framework, reward and probability may act separately on different accumulators to 

produce an effect on responses.  

An alternative theory for the absence of the reward effect in older adult participants could 

be related to the effect of reward on motor systems over time, if the reaction time effect is 

driven by dopamine activation. As discussed in Chapter 3, the dopamine reward signal is rapid 

and activations in dopamine neurons have latencies of 60-100ms and endure for less than 

200ms (Schultz, 2007). This could explain the weak effect of reward on saccadic compared to 

manual responses seen in Chapter 3, as the saccadic response is initiated too early to be affected 

by the activation. Additionally, the manual responses in the older adults study are substantially 

slower than the manual responses in the previous experiments in the student population; it 

could be postulated that these responses are too slow for the endurance of the dopamine 

activation to affect response times. However, given the evidence to support the response 

slowing in aging being manifested in the motor-response generation phase of processing, it is 

relatively unlikely that this theory could hold true. It is more probable that the reward-related 

activity in the dopamine system affects the earlier stages of processing, such as activation in 

the anterior cingulate eventually leading to changes in sensory representation (Hickey et al., 

2010a). This would suggest that the reward system, if activated, should still cause modulations 

in the manual reaction times of older adults. 

Together the three experiments in this chapter suggest that although reward and 

probability modulate response times in apparently similar ways, they do not combine in a 

simple manner. This was shown directly in Experiment 7. The results of Experiment 8 also 

show that the effect of probability and reward are also not correlated across participants. In 

conjunction with the finding in Experiment 7, that the reward effect is less reliable than the 

probability effect, and extinguished by unequal probability distributions across targets.  The 

results of this chapter together suggest that different neural and functional processes support 
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these two factors. As discussed, intuitively this may be explained by the inherent differences 

of how reward and probability are perceived in the environment. Additionally, the absence of 

reward effect in healthy older adults in Experiment 9 supports the reliance of the reward effect 

on properties of the individual: the way in which reward is processed depends on 

the individual and so depends on personal factors such as utility, age, internal state and 

economic background. This is very different to the probabilistic distributions in the 

environment, which are not dependent on individual interpretation but is instead 

a physical property of the environment. 
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CHAPTER 5  

5.1 General Discussion 

In the previous three chapters I have reported experiments that investigate how 

manipulations of probability and reward affect different response modalities and how these 

effects interact. Generally I have employed a similar paradigm across all experiments: 

participants are required to saccade to and respond manually to a simple perceptual task at a 

target to the left or right of a central fixation. The probability and reward value of the two 

targets have been manipulated singularly or concurrently in the experiments. 

 Although a probability effect was established in Chapter 2 in both saccadic and manual 

responses, this effect was not correlated and was sensitive to the exact structure of the 

paradigm. Manipulating probability modulated saccadic response times when the inter-

stimulus interval (ISI) was short (less than 1 second) which was consistent with the existing 

literature (Antonaides et al., 2014; Carpenter & Williams, 1995). Conversely, an effect of 

probability was found on manual responses when the ISI was longer and there was clear 

motivation to respond quickly and accurately. The results of the experiments on reward 

manipulations in Chapter 3 showed a stronger effect of reward on manual than saccadic 

responses. Again, this was linked to a clear motivation on manual responses to respond quickly 

and accurately to the targets, and a long ISI. However, the reward effect was also sensitive to 

the reward structure in the paradigm; it was apparent that small increments of reward values 

are not salient enough to modulate response times. This was corroborated within the paradigm 

where a reward effect was seen, as response times were affected by the global magnitude of 

reward as well as the relative magnitude of reward associated with a particular stimulus in 

comparison to the other. As in the experiments investigating probability in Chapter 2, no 

correlation was found between the two response modalities. In Chapter 4 I investigated the 
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interaction between the reward and probability effect and found that the reward effect was 

extinguished as soon as there was an unequal probability manipulation across the two targets.  

This suggests that there are different processes governing the effect of reward and probability 

on response times, and that the probability effect is more dominant. It was also found that 

mapping the manual responses to spatial position of the targets was not a determining factor in 

the manifestation of the reward effect on manual responses. This suggests that the manual effect 

is not produced by increased low-level motor preparation to one side of the body. Additionally, 

the results of the final experiment in Chapter 4 show that in older adults the reward effect in 

manual responses is not present, highlighting the inherent differences between the features of 

information about reward value and probability in the environment.   

Both the effects of reward and of probability on different response modalities seem to be 

sensitive to the time course of the stimulus presentation. Generally, stronger probability effects 

are seen on saccadic responses when the ISI is shorter; as discussed in Chapter 2, this could 

reflect an effect of IOR on inhibiting response generation to more likely targets over longer 

inter-stimulus intervals. This hypothesis does not hold for manipulations of reward, as no effect 

in either modality is seen in the experiments where the ISI is shorter; this is likely due to the 

reward schedule of those three experiments rather than any other aspect. In the final experiment 

of Chapter 3 where a reward effect was found in both saccadic and manual responses, I have 

suggested that the stronger effect on manual responses could be linked to the time course of 

dopamine activation (Schultz, 2007). Activations in dopamine neurons to reward-predicting 

stimuli are very fast and have latencies of 60-100ms and endure for less than 200ms (Schultz, 

2007). Fast saccadic responses may be initiated too early to be affected as strongly by the 

dopaminergic activation, in comparison to manual responses.   

Perhaps more pertinent to the differences across response modalities is the effect of 

negative feedback on manual response speed and accuracy. Across all experiments in Chapters 
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2 to 4 where a fixed time window specific to each participant was deployed for manual 

responses, a stronger effect of probability/reward was seen on manual responses than saccadic. 

The motivation to respond is more clearly focussed on the manual response to the target, which 

is explicitly goal-oriented and directly linked to the speed and accuracy of the response and 

thus the feedback received on each trial. This could explain why we see a stronger effect of 

reward and probability on manual responses compared to saccadic: the purpose of the saccade 

is primarily to gather information (Hickey et al., 2010a). With regards to this point, and the 

absence of correlation between saccadic and manual responses across all experiments, it is 

unlikely that both response modalities could be explained by a decision-making model where 

all signals across pathways are brought together with different decision thresholds for different 

responses (Bompas & Sumner, 2008). However, it is important to note that the difference in 

the purpose and execution of the saccadic and manual response in these experiments could be 

the significant factor that sets the two response modalities apart and leads to no correlation. As 

discussed in Chapter 1, the pre-motor theory of attention suggests a common source of 

information is used for all types of motor responses and that the same decision threshold would 

apply to all responses (Bompas & Sumner, 2008). The decision threshold for the saccadic 

latency in the experiments reported here relates to the side on which the target has appeared. 

Conversely, the decision threshold for the manual response additionally encapsulates the time 

taken to reach a binary perceptual decision at the location of the target; this is unrelated to the 

spatial position of the target. Thus it follows that these two responses may be too different to 

be able to combine as a common source of information. Research suggests a common target 

detection stage for both response modalities; this might not be reflected in the reported 

experiments due to all the other factors intrinsically linked to the differences in the nature of 

the saccadic and manual responses required (Taylor et al., 2006). It is possible that further work 

investigating both response modalities in a paradigm where the perceptual task requires a 
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similar goal-oriented fast and accurate saccadic and concurrent manual response (e.g. a saccade 

up or down to indicate the orientation of a letter T) could clarify this issue.  

The short saccadic latencies recorded could provide an alternative explanation as to why 

the effect of probability and reward is weaker in the saccadic system. It has been discussed in 

the existing literature whether there are a separate distribution of saccades that are very fast 

and termed ‘express saccades’; these fast saccades do not consistently form a different 

distribution (Wenban-Smith & Findlay, 1991). Although the mean latencies seen are still above 

the general distribution for express saccades (a mean of between 70-100ms), in some 

experiments across the thesis they are towards the lower end of the latency distribution of the 

‘fast regular’ saccades (Wenban-Smith & Findlay, 1991). The fast latencies observed could 

suggest a ‘floor effect’ whereby the probability/reward manipulation cannot decrease the 

latencies beyond a certain point as they are already very fast (Wenban-Smith & Findlay, 1991). 

This is specifically supported by the absence of an effect between the high and equal probability 

conditions in Experiment 2 and Experiment 7a. Slowing down to less likely targets is apparent, 

but the speeding up of saccadic responses to more likely targets may be inhibited by a floor 

effect. This effect is not systematic across the experiments presented, nevertheless it is possible 

that the ‘floor effect’ could be a factor in the weak saccadic effect in general compared to the 

manual effect of reward and probability modulations. One way in which our experiment could 

be adapted to see if slowing down saccadic latencies increased the influence of probability or 

reward would be to change the nature of the targets. For example, the contrast of the targets 

could be modulated so that the process of detecting the location of the target before making a 

saccade takes longer. This would slow down the decision process and overall increase saccadic 

latencies, such that ‘floor effects’ should not influence the results.  
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Although an effect of reward has been established on both manual and saccadic 

responses, this has generally been a weaker and more unstable effect than probability has on 

these response modalities. I have hypothesised that this difference could lie in the properties of 

reward value and inherent probabilities in the environment. Reward value (specifically 

secondary rewards) depends on features of the individual (internal state, utility, economic 

background), whereas the probability that an event will occur in the environment is not 

dependent on the observer. This theory supports the absence of a reward effect in healthy older 

adults (Chapter 4), given that most of the participants were not motivated by reward to take 

part and some donated the money received in the experiment to charity.  

The influence of probability and reward also differ across the experiments in the way that 

they affect the ocular drift/offset at fixation. As discussed in Chapter 2, a systematic offset at 

fixation towards the higher probability target was only present when the ISI was longer and 

constant, suggesting top-down temporal preparation developing over time (Weinbach & Henik, 

2012).  There was no reliable effect of reward on the offset at fixation in any of the experiments 

presented where reward value was manipulated. However, the probability manipulation 

consistently had an effect on the offset, with the exception of Experiment 1 where ISI was 

shorter. This suggests differences between the ways that these two factors affect the saccadic 

system. It could be that due to the nature of the probability manipulation requiring more 

saccades to the higher side, the effect of practice increases motor preparation/saccadic 

readiness to that side. A drift at fixation has been suggested to reflect intentions to make an eye 

movement (Kowler & Steinman, 1979), and the intention to make an eye movement to either 

hemifield is naturally going to be more affected by a probability bias (repeated saccades to one 

side) than a reward bias. This offset would not affect the latency to the target (Kalesnyka & 

Hallett, 1994), but highlights another way in which processing of reward and probability differ.  
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The inability for reward and probability to combine in a simple manner could suggest a 

common accumulator for these factors to act on. In the experiment where reward and 

probability were studied concurrently (Chapter 4), the reward effect was extinguished; if 

reward and probability cannot modulate the starting point at the same time, this could suggest 

that they are both acting on the same accumulator. This is supported by the neurological 

research, suggesting that bias in the excitability of SC neurons is increased both by prior 

knowledge of reward and probability and is likely to be reflected in an elevated starting point 

of an accumulator model such as LATER (Basso & Wurtz, 1997; Dorris & Munoz, 1998; Liu 

et al., 2011; Nakahara et al., 2006). However, it is also possible that there are separate 

accumulators for these processes, which could be more likely given the strong connection 

reward processing has with dopaminergic activation (Schultz, 2007). This is supported by the 

result in Chapter 4 where reward and probability were manipulated in the same paradigm; when 

high probability and high reward were associated with the same target, there was no additive 

effect of reward and probability and the responses were no different from the manipulation 

where expected values were matched across the targets. If reward and probability bias acted on 

a common accumulator we would expect to see an additive (or at least sub-additive) effect of 

combining the two. Reward has been directly linked within the literature to increasing the 

salience of stimuli; there is less support for the effect of probability on target salience (Fecteau 

& Munoz, 2006). It could be suggested that the effect of reward on salience is only manifested 

in response times if the probabilities are equal across the stimuli. Introducing a probability bias 

could override the effect of salience, and could suggest that reward and probability processes 

act on separate accumulators; this is supported by the finding in Chapter 4 that the effect of 

reward and probability are not correlated. Furthermore, the dominance of the probability bias 

over reward in the combined study could reflect participants’ sensitivity to risk. Combining a 

high probability target with reward naturally increases the probability of receiving a reward; 
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given that the probability manipulation dominates the effect on behaviour, this could suggest 

that participants are more risk averse as they are valuing higher probabilities of reward 

regardless of the reward magnitudes  (Moustafa, Cohen, Sherman & Frank, 2008). This is 

consistent with the non-linear utility function in behavioural economics, where higher 

magnitude gains are preferred to lower gains at a declining rate (Kahneman & Tversky, 1979; 

cited in Moustafa et al., 2008). The theory is supported by a model of reward processing in the 

basal ganglia, where the contrast between reinforcement probabilities is enhanced by 

subtracting ‘Go’ learning (speeding up responses for higher probabilities) and ‘NoGo’ learning 

(slowing down responses to lower probabilities) associations but large reward magnitudes are 

underweighted (Frank, 2005; Frank & Claus, 2006; cited in Moustafa et al., 2008). 

 

In modelling the effect of reward and probability on response times using accumulator 

models, we would typically assume manipulations of probability affect the starting point of the 

accumulator model.  One important question then is if this is modulated on a trial-by-trial basis 

or is it a global affect set across blocks of trials? As addressed Chapter 1, some research has 

suggested that successive target location repetitions (‘repetition priming’) produce search 

benefits for more probable locations (Walthew & Gilchrist, 2006). However, other studies have 

shown that both repetition priming and learning of a spatial probability distribution can produce 

the probability effect independently (Druker & Anderson, 2010). Preliminary research to this 

thesis, as mentioned in the Introduction of Chapter 2, showed some evidence of response times 

decreasing over several days suggesting a global process governing the probability effect. 

However, investigating how response times change from trial-to-trial proves to be an issue in 

the paradigms used across the experimental chapters. If there are relatively frequent errors 

made in the experiments by participants, this reduces the number of pairs of trials in which to 

examine the effect of the location of the previous trial on response time for the current trial. 
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This is especially true for saccadic data, where there is likely to be some number of trials 

discarded due to insufficient fixation and anticipatory saccades. In paradigms with 

manipulations of probability there are smaller numbers of trials for lower probability targets, 

which further reduces the number of pairs of subsequent trials to analyse. Moreover, response 

times on consecutive trials could be affected by the spatial location of the target rather than the 

associated probability. For example, if the target appeared on the right-hand side on two 

consecutive trials, IOR (inhibition of return) may slow the response time (saccadic or manual) 

on the second trial regardless of the spatial probability. As discussed in Chapter 2, this could 

even be hypothesised to be an explanation for the instability of the probability effect, on 

saccadic responses particularly: the more likely target location could become inhibited on 

consecutive trials and counteract the facilitation that results from the increased probability. 

Additionally, if the target appears in the second trial on the opposite side to the first trial, the 

saccade required is in the same direction and of the same amplitude as the saccade previously 

made to return to fixation (see Carpenter (2001) for a similar explanation for the occurrence of 

Express Saccades). This could facilitate the response to the second trial, again perhaps 

regardless of the spatial probability. This means on a trial-to-trial basis there could be additional 

factors affecting response times, such that analysing consecutive trials together would be 

influenced by these confounds. Furthermore, the additional factors affecting responses on a 

local level could support the research suggesting that modulations of probability (and perhaps 

reward) affect the starting point within accumulator models of response times via a global, 

long-term process (Druker & Anderson, 2010; Dunne et al., 2015). In order to understand if 

there are sequential effects that interact with reward and probability manipulations it could be 

more illuminating to use a paradigm in which areas/hemifields are associated with higher 

probability/reward and the exact location of targets is changed.  
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The final experiment of Chapter 4 addressed how the effect of reward and probability on 

manual responses changes in healthy older adults, and provides a simple and feasible paradigm 

to investigate how deep brain stimulation of the STN (subthalamic nucleus) in Parkinson’s 

patients affects processing of these factors. It would be interesting to see if a reward effect was 

found in this population, as the results from older adults showed no effect of reward on manual 

responses. There have been instances of Parkinson’s patients developing clinical criteria for 

pathological gambling addiction from increased dopamine replacement therapy (Bandini, 

Primavera, Pizzorno & Cocito, 2006). In some cases these pathologies have been dramatically 

improved by deep brain stimulation of the STN and postoperative withdrawal of dopaminergic 

therapy (Bandini et al., 2006; Witjas et al., 2005). More generally however, impulsivity has 

been associated with both dopaminergic replacement therapy (e.g. levadopa) and deep brain 

stimulation (Bódi et al., 2009; Frank et al., 2007; Ondo & Lai, 2008). With regards to the 

absence of reward effect in older adult participants in Chapter 4, patients on DBS additionally 

take dopaminergic medication, albeit in lower doses than those without DBS (Frank et al., 

2007). Thus a comparison between patients with DBS turned off and the older adult controls 

could provide an interesting insight into the reward processing in these two populations. The 

Parkinson’s patients might show a reward effect that is more comparable to the results with 

younger adult participants. It is hypothesised that the STN is not required to value magnitudes 

of rewards per se, but that it slows down decisions under conflict; in effect this can be seen as 

‘buying time’ to arrive at the correct decision (Frank et al., 2007). It is likely that deep brain 

stimulation of the STN disrupts this process, as discussed in Chapter 1, which is supported by 

the trait of impulsivity across this patient group (Frank et al., 2007). It is unclear whether DBS 

acts like a lesion on the STN as a ‘depolarisation block’ or whether it induces high frequency 

firing patterns; it has been posited that both of these mechanisms would prevent the STN from 

naturally responding to its cortical inputs and would still disrupt conflict induced slowing. This 
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research suggests that DBS could have a similar effect on both the reward and the probability 

effect, if we assume that unequal reward schedules or probability distributions both could be 

categorised as high-conflict decisions. Specifically, it could be hypothesised that as slowing of 

responses is seen generally to low probability or low reward valued targets, this is the aspect 

that would be affected by the DBS. This result has been found in Parkinson’s patients with 

DBS for saccadic responses, and given the differences found between manual and saccadic 

responses in this thesis it would be very interesting to investigate whether the same result is 

found in manual responses for this patient group (Antoniades et al., 2014). Understanding the 

cognitive side effects produced by deep brain stimulation is crucial, as increased impulsivity 

could greatly impact on a patient’s quality of life even without the involvement of a 

pathological addiction. Highlighting this point, one DBS patient in Frank and colleagues (2007) 

study when asked if he would like to sit on a more comfortable chair across the other side of 

the room, immediately moved towards the chair unaided despite not being able to walk 

properly. They suggest that the rewarding prospect of the comfortable chair was not offset by 

the activation of a functional STN, which would have slowed his responses in this high conflict 

decision (Frank et al., 2007). This shows that the impulsivity seen in this patient group could 

be detrimental to their overall quality of life despite alleviating the symptoms of Parkinson’s 

disease.  

This thesis provides new insights into how both reward and probability act and interact 

to shape behaviour.  Both factors only affect behaviour under certain conditions and the 

relationship between these two factors proved to be both complex and revealing.  Further work 

will be required to fully understand both factors, however the work provides an important 

starting point in trying to understand how the myriad of factors that shape our behaviour 

combine to produce the optimal behaviour in a given circumstance.  What this study makes 

clear is that the interactions between these factors will be far from simple and will benefit from 
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an understanding of how these factors are coded in the brain as well as exactly what they signal 

about the status of the environment. 
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