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Abstract

When deep convolutional neural networks (CNNs) are trained “end-to-end”

on raw data, some of the feature detectors they develop in early layers resemble

the representations found in early visual cortex. This result has been used to

draw parallels between deep learning systems and human visual perception. In

this study, we show that when CNNs are trained end-to-end they learn to classify

images based on whatever feature is predictive of a category within the dataset.

This can lead to bizarre results where CNNs learn idiosyncratic features such as

high-frequency noise-like masks. In the extreme case, our results demonstrate

image categorisation on the basis of a single pixel. Such features are extremely

unlikely to play any role in human object recognition, where experiments have

repeatedly shown a strong preference for shape. Through a series of empirical

studies with standard high-performance CNNs, we show that these networks

do not develop a shape-bias merely through regularisation methods or more

ecologically plausible training regimes. These results raise doubts over the

assumption that simply learning end-to-end in standard CNNs leads to the

emergence of similar representations to the human visual system. In the second

part of the paper, we show that CNNs are less reliant on these idiosyncratic

features when we forgo end-to-end learning and introduce hard-wired Gabor

filters designed to mimic early visual processing in V1.
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1. Introduction1

Image recognition in traditional computer vision models proceeds in two2

stages. In the first stage, images are mapped onto a set of hand-crafted features.3

In the second stage, these features are mapped onto output categories. Con-4

sequently, the success of the image recognition algorithm strongly depends on5

identifying an appropriate set of features. Part of the appeal of deep learning6

models, such as convolutional neural networks (CNNs), has been in removing7

the first stage and letting the algorithm itself discover useful features. In this8

setting, image recognition proceeds “end-to-end”, with raw pixels at one end and9

output categories at the other end. This method has been highly successful and10

indeed outperforms most traditional models of image recognition.11

What is even more interesting from a neuroscience perspective is that when12

one trains these networks on images, the features learnt in the early layers seem13

to resemble features such as Gabor filters (Yosinski et al., 2014) which effectively14

extract edges from objects and are also found in early visual cortex (Petkov15

& Kruizinga, 1997). This gives credence to the belief that deep convolutional16

networks are capturing some fundamental aspects of human visual perception17

(Rajalingham et al., 2018). However, a closer inspection reveals that, in addition18

to features that resemble those found in the visual cortex, early layers also19

contain a number of features unlike those observed in the cortex (see Figure 1).20

In this study, we examined (a) whether standard CNNs indeed perform image21

recognition in a fundamentally similar manner to human visual perception, and22

(b) whether image recognition performed by CNNs can be brought closer to23

humans by replacing end-to-end learning with learning that starts from a feature24

space similar to that found in human visual cortex.25

We investigate these questions by focusing on a fundamental property of26

human image recognition, namely, it is largely a function of analyzing shape (Bie-27

derman, 1987; Hummel, 2013). A wealth of data from psychological experiments28

show that the shape of an object plays a privileged role in object recognition29
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Figure 1: Example of 96 convolutional kernels learnt by the first convolutional layer from

AlexNet, a high-performance convolutional neural network. Each kernel is of size 11× 11× 3.

Learning is performed on images of size 224 × 224 × 3. Note that, in addition to filters

that resemble Gabor filters, a number of other feature detectors also emerge from end-to-end

learning. Figure taken from Krizhevsky et al. (2012).

compared to other diagnostic features such as size, colour, luminance or texture30

(Mapelli & Behrmann, 1997; Biederman & Ju, 1988). Experiments have also re-31

vealed that shape is extracted early (Leek et al., 2016) and automatically (Baker32

& Kellman, 2018) during human visual perception. Furthermore, experiments33

from developmental psychology show that this privileged status of shape starts34

early in life and becomes stronger with age (Landau et al., 1988). Note, these35

studies not only show that the visual system extracts shape during recognition,36

they also show that the human visual system prefers shape over other diagnostic37

features (e.g. color, texture, etc.) while performing recognition. In other words,38

it has a shape-bias.39

What is still unsettled, however, is whether our visual system identifies40

objects on the basis of shape because we learn through experience that shape is41

the most reliable cue to object identification or because there are innate inductive42

biases that make shape a privileged cue from the beginning (for discussion see43

Elman (2008); Xu et al. (2009)).44

Similarly there are two possible reasons why CNNs trained in an end-to-end45

manner may develop an inductive bias to rely on shape. On the one hand, shape46

may be the most diagnostic feature in a trained dataset and this causes the47

CNN to learn to rely on shape to perform categorisation – i.e. CNNs can have a48
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learned shape-bias. On the other hand, a shape-bias might be the product of49

the architecture of the CNN itself. For instance, the multiple layers and pooling50

operations enable a CNN to combine features of the stimuli in a hierarchical51

manner, and this might result in lower layers representing high-frequency features52

and higher layers representing more abstract features, such as shape (Bengio53

et al., 2013). Indeed, if shape emerges due to this hierarchical composition of54

features, it is possible that it is preferred to other features (such as colour or55

texture) that do not lend themselves to such a hierarchical composition. On this56

second view, CNNs have an innate shape-bias.57

Some recent studies have suggested that CNNs rely on learning shape in58

order to categorise objects (Kubilius et al., 2016; Jozwik et al., 2017) and that a59

shape-bias is learned as a consequence of training on a particular dataset. For60

example, Ritter et al. (2017) observed that when an Inception model (Szegedy61

et al., 2016) was pre-trained on ImageNet, the representations in hidden layers62

were more similar for two (novel) objects that overlapped in shape than for two63

objects that overlapped in colour. Critically, they attributed this shape-bias to64

the statistical properties of the dataset itself. In another recent study, Feinman &65

Lake (2018) show that standard CNNs can show a shape-bias, just like children66

studied by Landau et al. (1988), when they are trained in an end-to-end manner67

on a controlled dataset, constructed in such a manner that the category name68

correlated with shape more than colour or texture.69

Other studies have argued against a learned shape-bias when networks are70

trained on standard datasets such as ImageNet. For example, Geirhos et al.71

(2018) and Baker et al. (2018) manipulated the texture and shape of images72

independently and showed that standard CNNs trained end-to-end on ImageNet73

are biased towards using local features, such as texture, compared to the object’s74

shape. However, in line with the results of Feinman & Lake (2018), Geirhos75

et al. (2018) also showed that CNNs develop a shape-bias when the training set76

is manipulated to make shape the most diagnostic feature.77

As far as we are aware, however, no one in the machine learning community78

has argued that CNNs have (or should have) an innate shape-bias. That is, a bias79
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(a) Salt-and-pepper noise (b) Additive noise (c) Single diagnostic pixel

Figure 2: Images taken from CIFAR-10 dataset and scaled up to 224x224 pixels. (a) Salt-

and-pepper noise-like mask; (b) Uniform additive noise mask; (c) A single diagnostic pixel is

inserted in the image (a dotted red circle is inserted here to illustrate the location of the pixel).

to identify objects on the basis of their shape when both shape and non-shape80

features are each highly diagnostic of category membership. In order to tease81

apart whether any shape-bias is learned or innate in standard CNNs, we modified82

the standard CIFAR-10 dataset to simultaneously contain shape and non-shape83

features. We tried several types of non-shape features, such as noise-like masks,84

and an extreme version where the non-shape feature consisted of just a single85

pixel with a location correlated to the image category (see Figure 2). We carried86

out a sequence of experiments, where we manipulated the architecture of CNNs87

used, the learning algorithm, regularisation method and the type of learning88

regime used to train the CNNs. Our hypothesis was that, if CNNs have an89

innate shape-bias due to their architectural properties, they would rely more90

on shape compared to non-shape features. Furthermore, in order to determine91

whether we could induce an innate shape-bias we modified the architecture of92

our CNNs to include more constraints from the human visual system.93

To preview our results, we found that standard CNNs trained on this modified94

CIFAR-10 dataset learnt to depend on non-shape features that are diagnostic95

of object categories and often failed to learn (or retain) anything about shape96

under these conditions. These results suggest that ‘vanilla’ CNNs do not have97

an innate shape-bias even though they share some architectural properties of98

biological visual systems and discover some features resembling those found in99
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their early layers. (Note that this does not imply that CNNs do not encode100

shape information under any circumstance, but that shape does not seem to be101

weighted more than other diagnostic features).102

We hypothesised that the lack of innate shape-bias in standard CNNs reflects103

a lack of innate biological constraints in how they model human vision. To test104

this hypothesis, we replaced the first convolutional layer of a standard CNN105

with a bank of unmodifiable Gabor filters designed to mimic simple cells in V1106

cortex. We found that although this change comes at a cost to the network’s107

overall performance, it made the CNN far less reliant on non-shape features,108

such as noise-like masks or single diagnostic pixels. We also found that these109

results were robust across a range of neurophysiologically relevant parameters for110

the Gabor filters, showing that a network using a bank of Gabor filters was, in111

general, less likely to rely upon idiosyncratic features present within the dataset.112

We argue that including Gabor filters as the first convolutional layer of CNNs113

makes them more similar to biological visual systems, becoming less sensitive to114

non-spatial details of images that can be predictive of object category.115

2. Methods116

We modified the CIFAR-10 dataset (which contains 10 classes with 6, 000117

images per class, see https://www.cs.toronto.edu/~kriz/cifar.html) so118

that each image contained not only features that pertain to the shape (e.g.119

object outlines) but also features without any shape information. As independent120

non-shape features, we used three types of noise-like masks that were combined121

with the original image. The salt-and-pepper mask was created by taking the122

transformed greyscale image and setting each pixel to either black or white123

with a probability p. This probability, p, was fixed for each category but varied124

between categories in the range [0.03, 0.06]. The Additive Uniform noise mask125

was created by taking the transformed greyscale image and each pixel value126

is then independently modified by adding a value sampled from the Uniform127

distribution. The width of this distribution was [µ − w, µ + w] to this image,128
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where µ ∈ [−50, 50] was the mean that depended on the category of the image129

and 2w was the width of the Uniform distribution which was set to 8 for images130

of all categories. The single pixel mask was created by replacing one pixel in131

each 224× 224 image with a new pixel value. The location and colour of this132

pixel was category correlated: the location of the pixel, (x, y), was sampled from133

a 2D Gaussian distribution with a mean that depended on the category and a134

standard deviation that remained constant across categories. Similarly, each135

of the red, green and blue values of the pixel colour, (cr, cg, cb), were drawn136

from a Gaussian distribution with a mean that depended on the category and137

a variance that remained constant across categories. If any value in a sampled138

set of (x, y, cr, cg, cb) values fell out of their respective range, that value was139

re-sampled. Some example images are shown in Figure A.9.140

We used a method similar to Geirhos et al. (2017) to preprocess images from141

the CIFAR-10 dataset where each 32× 32 pixel image was upscaled to 224× 224142

pixels using Lanczos resampling. For the single-pixel mask, we used 3-channel143

RGB images (or greyscale for Gabor-filter model) while for the salt-and-pepper144

and additive noise mask, we transformed images to greyscale. When images145

were transformed to greyscale, their contrast was adjusted to 80% by scaling the146

value of each pixel using the formula: 0.8 × v + 1−0.8
2 × 128, where v was the147

original value of the pixel in the range [0, 255].148

We trained the model on these modified sets of images and tested it under149

three conditions. During the ‘Same’ condition, the test set was modified in150

exactly the same manner as the training images, i.e., masks for each category151

were generated by using the same parameters as those used during training. In152

contrast, during the ‘Diff’ condition, the parameters of the noise masks for each153

category were swapped with another category. The premise here was that if the154

model based it’s decisions on shape-related features, then it would ignore the155

noise mask and the performance during ‘Same’ and ‘Diff’ condition should be156

similar. On the other hand, if the model relied on properties of the (non-shape)157

mask, then it’s performance would be worse in the ‘Diff’ condition compared158

to the ‘Same’ condition. Finally, we used a third, ‘NoPix’ condition, where the159
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mask was entirely absent during testing, to estimate the extent to which the160

network relied on features of the noise mask. In this condition, we presented the161

network with a version of the image without any mask, with the premise that162

the difference between the performance in the ‘Same’ and ‘NoPix’ conditions163

should quantify the relative extent to which the network relied on shape and164

non-shape features.165

Simulations were carried out using either a 16-layer VGG network (Simonyan166

& Zisserman, 2014) or a 101-layer ResNet network provided by the torchvision167

package of PyTorch and Keras with TensorFlow. These networks were either168

trained from scratch on the modified dataset or were first pre-trained on ImageNet169

and then trained on the modified dataset. When the networks were pre-trained,170

we replaced the fully-connected layer(s) of the VGG/Resnet pre-trained model171

such that the last fully-connected layer had 10 output units (corresponding172

to the 10 categories of CIFAR-10). Since the results remain qualitatively the173

same, we report the results for the networks pre-trained on ImageNet. We tried174

a number of different optimization algorithms, including RMSProp, SGD and175

Adam (Kingma & Ba, 2014). Results again remained qualitatively the same. We176

started with a learning rate of 1e−3 when training the network from scratch and177

used a learning rate of 1e− 5 when fine-tuning a pre-trained network (or 1e− 4178

throughout with the Gabor-filter model). In all cases, we used cross-entropy as179

the loss function. The input to both types of networks was a 3-channel RGB180

image. For greyscale images, all three channels were set to the same value.181

3. Results182

3.1. Experiments 1–3183

We conducted three experiments, one for each type of noise mask described184

above. The results are shown in Figure 3. During all three experiments, we185

observed that both networks classify images with a nearly perfect accuracy186

during the ‘Same’ noise condition. When noise masks were swapped (‘Diff’187

condition), this accuracy dropped; when the masks were completely removed188
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Figure 3: Accuracy on test images under the three types of noise-like masks shown in Figure 2.

Training images contain (a) salt-and-pepper noise, or (b) additive uniform noise, or (c) just one

diagnostic pixel. Each experiment shows test performance under three conditions – ‘Same’: the

noise-like mask has the same properties for testing and training images of each category; ‘Diff’:

the properties of the mask during testing are swapped with another category from training;

‘NoPix’: No mask is applied. The dashed (red) line indicates chance performance and error

bars show 95% confidence intervals. Light and dark gray bars show accuracies on VGG-16 and

ResNet-101 respectively.

(‘NoPix’ condition), the categorisation accuracy was nearly at chance. For189

both the salt-and-pepper and single pixel experiments, performance in the ‘Diff’190

condition was either at or below chance. Recall that the ‘Diff’ condition swaps191

the masks between categories. Therefore, a below chance performance reflects192

that the network is entirely relying on the mask to make category predictions,193

systematically predicting a different category to the original image category in194

CIFAR-10. These results are confirmed by the ‘NoPix’ condition: when the mask195

information is removed, the network struggles to make a prediction based on196

information within an image, with performance dropping to near-chance levels.197

During the single pixel experiment, accuracy in the ‘NoPix’ condition was198

somewhat better for ResNet-101 than VGG-16, indicating that in this case the199

network may be using some other features of the image beside the noise-like200

mask. However, even in this case, there was a significant drop in performance201

compared to the ‘Same’ condition.202

The additive noise experiment showed an intriguing behaviour: when the203

noise-like mask was completely removed (‘NoPix’ condition) the model performed204

worse than when the images contained a mask from a different category (‘Diff’205
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Figure 4: Four images from the CIFAR-10 test-set that have been modified by adding a noise-like

mask. Each image contains a different mask. However, all images in a column contain a

mask with shared statistical properties. For example, all images in the first column contain

salt-and-pepper masks drawn from the same distribution (see Methods) while images in the

second column draw masks from a different distribution. Consequently the network classifies

each image in the first column as an ‘Airplane’, while it classifies each image in the second

column as a ‘Horse’. Similarly, the two columns in the middle contain images with additive

uniform noise masks drawn from two different distributions while the two columns on the right

contain images with a single predictive pixel (nearly invisible to the naked eye).

condition). In other words, removing the mask made the image less informative206

for the model, not only compared to images with the correct category-correlated207

(‘Same’) mask, but also compared to images with the incorrect (‘Diff’) mask –208

the model appears to rely on the presence of the noise-like mask to make an209

inference.210

Furthermore, we obtained the same pattern of results irrespective of the211

type of regularisation used (we tried several well-known regularisation methods212

including Batch Normalization, Weight Decay and Dropout). These results213
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clearly indicate that the model learnt to rely on features of the noise-like mask,214

rather than any shape-related information present in the images. Even in the215

extreme case, where only one pixel amongst 50,176 was diagnostic of the category,216

the model preferred to classify based on this feature over other shape-related217

features present in each image. Figure 4 shows four example images that have218

been modified in the manner described above and are classified differently based219

on the mask superimposed on these images. Note that it is difficult for humans220

to distinguish the various salt-and-pepper and uniform noise masks that the221

CNNs use to make these image classifications.222

The above results were obtained for networks that were pre-trained on223

ImageNet. Since these images are in the format 224× 224 pixels, we upscaled all224

CIFAR-10 images to this size. A very similar pattern of results is obtained if the225

images are left unscaled (though in this case the networks had to be trained from226

scratch on the modified dataset). In fact, the upscaled images constitute a much227

stronger test as the network needs to learn a single predictive pixel amongst228

50,176 pixels (224× 224) instead of amongst 1,024 pixels (32× 32). Results for229

conducting the above experiments on unscaled images of size 32× 32 are shown230

in Appendix Appendix B.231

3.2. Experiments 4 & 5232

One possible reason why humans prefer to rely on shape-related features to233

categorise objects while standard CNNs do not, is that humans are guided by234

past experience when performing new categorisation tasks. So when a human235

sees an object with superimposed noise, they rely on shape-based information,236

paying less attention to non-shape related features such as the masks in the237

above images. We conducted two further experiments to test whether networks238

similarly generalise from concurrent and past experience. Both these experiments239

were conducted on the single pixel mask as this seems to be the most striking240

finding and we get the clearest pattern of results with this case.241

In Experiment 4, we divided the training set into two subsets. The first242

subset (‘with pix’) contained three randomly chosen categories from CIFAR-10243
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and, as described above, contained a category-correlated pixel in all images of244

these categories. The second subset (‘unaltered’) contained the remaining seven245

categories from CIFAR-10 which were left unaltered – i.e. we did not add the246

category-correlated pixel to images of this subset. We trained a VGG-16 network247

on all ten categories concurrently. We were interested in finding out whether the248

network generalised from one subset to another and started using the features249

used to categorise images in the ‘unaltered’ subset to categorise images in the250

‘with pix’ subset. All other details of the experiment remain the same as in251

Experiment 1.252
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Figure 5: Accuracy for (a) two subsets: an ‘unaltered’ subset where no noise-like mask was

inserted in training images and a ‘with pix’ subset where a single diagnostic pixel was inserted,

and (b) for two phases: a ‘before’ phase, where a pre-trained VGG network was trained on

images without any noise masks and tested on the three conditions, and an ‘after’ phase, where

the model from before phase was then trained on images with a single diagnostic pixel.

The results from this experiment are shown in Figure 5a. The model learnt to253

predict the images in the ‘unaltered’ subset with nearly 90% accuracy. However254

the performance on the ‘with pix’ subset still completely depended on the255

location and colour of the added pixel: accuracy was nearly 100% when test256

images contained the pixel in the same location, but dropped below chance257

when this pixel was removed. Thus, the network did not seem to generalise258

the features (concurrently) learnt in the ‘unaltered’ categories to the categories259

containing the diagnostic pixel.260

In Experiment 5 we tested what happens when the network is first trained261
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on images that did not contain such a pixel (a ‘before’ phase) followed by a262

second (‘after’) phase in which such a pixel was inserted in the training set. In263

the first phase, we trained a VGG-16 network on an unaltered CIFAR-10 training264

set. Once the network had learnt this task, we trained it on the modified set of265

images in a second phase, introducing a predictive pixel in each category. So all266

that changes between the ‘before’ and ‘after’ phases is the insertion of a single267

category-correlated pixel into each image.268

We observed that, instead of relying on past experience with these images, the269

model learnt to completely rely on the predictive pixel to perform categorisation270

– accuracy dropped from nearly 90% during the ‘before’ phase to 0% during271

the ‘after’ phase in the ‘Diff’ condition (Figure 5b). Crucially, the model272

completely forgot about how to perform categorisation when the predictive pixel273

was removed – accuracy was close to chance in the ‘NoPix’ condition during274

the ‘after’ phase. Thus learning about the diagnostic feature seemed to be275

accompanied by unlearning previously learnt representations. This ‘catastrophic276

forgetting‘ is a well-known problem in neural networks (McCloskey & Cohen,277

1989) and contrasts with how humans transfer their knowledge from one task to278

another. Some recent solutions to catastrophic learning in neural networks have279

been suggested, such as Elastic Weight Consolidation (Kirkpatrick et al., 2017)280

but it remains to be seen whether this can overcome some of these problems.281

3.3. Experiment 6282

It could be argued that the diagnostic non-shape features that we inserted283

provide a very strong diagnostic signal. For example, in the single-pixel condition,284

each image contains the pixel in roughly the same location. Since it is unclear285

to what extent large datasets such as ImageNet or CIFAR-10 contain such286

idiosyncratic (but reliable) features, we decided to examine how the behaviour of287

the network changes when only a subset of images contain a diagnostic non-shape288

feature. We again restricted this experiment to the case of a single diagnostic289

pixel as this was the most striking finding in the above experiments. We also290

restricted testing to the VGG-16 network, as very similar results were found for291
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VGG-16 and ResNet-101 above. The location and colour of this pixel were fixed292

across all images of a category, but we introduced stochasticity in the presence293

of this pixel within a training image. Figure 6 shows the change in accuracy for294

the ‘NoPix’ condition with a decrease in the probability with which a pixel is295

present in a training image. We specifically focus on the ‘NoPix’ condition as296

the accuracy on this condition is inversely correlated with how much the network297

relies on this pixel to predict the output category.298
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Figure 6: Accuracy of the model on images containing no mask, as a function of the fraction

of training images containing a diagnostic pixel. The solid (blue) and dashed (green) lines plot

this relation for a network trained without and with weight-decay, respectively. The dashed

(red) line at the bottom shows chance performance. The dotted (black) line at the top shows

performance of a network trained on images without any noise mask.

It is clear from this figure that the network continues to rely on this in-299

formative pixel, even when it is not present in all the images. For example,300

the network’s performance drops from around 90% when it is trained on the301

unmodified CIFAR-10 dataset to around 70% when it is trained on a modified302

dataset that contained the pixel in 90% of the images. As we decreased the303

proportion of images containing the pixel, the performance increased, but still304

did not achieve the performance of the unmodified CIFAR-10 when only 70% of305

images contained such a pixel. The increase in performance with decrease in306

the proportion of images containing the diagnostic pixel is consistent with the307

hypothesis that the learning algorithm selects the feature based on the predictive308

power of the feature; as the single pixel becomes less predictive, the network309
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starts relying on other features to choose the output category. Lastly, we also310

observed that L2 regularisation made the performance of the network worse on311

the original images when a diagnostic pixel was inserted on a fraction of the312

images. While L2 regularisation should help the network learn a more general313

solution, in this case it led to the opposite effect.314

4. A biologically plausible feature space315

In this section, we tested the hypothesis that adding a biological constraint316

may make the network less reliant on the noise-like masks that are diagnostic of317

output categories of the stimuli. To do so, we replaced the first convolutional318

layer of VGG-16 with unmodifiable Gabor filters, rather than allow the model to319

form its own feature space end-to-end. Gabor filters have been shown to be a320

good model of the simple cell receptive fields found in the early visual cortex of321

cats (Jones & Palmer, 1987) and primates (Petkov & Kruizinga, 1997) and are322

regarded as the standard model of simple cells amongst neuroscientists.323

There is good reason to believe that filtering an image through a bank324

of Gabor filters will reduce high-frequency noise present within these images.325

Convolving an image with a Gabor kernel filters the image based on the shape326

of the kernel. Thus, much like simple cells, Gabor kernels act like oriented edge327

or bar detectors for particular spatial frequencies, filtering noisy information328

outside their bandwidth.329

4.1. Methods330

The Gabor function is an oriented sinusoidal grating convolved with a Gaus-331

sian envelope:332

gλ,θ,φ,σ,γ(x, y) = exp

(
−x

2
θ + γ2y2θ
2σ2

)
exp

(
i

(
2πxθ
λ

+ φ

))
(1)

with the following definitions:

xθ = x cos θ + y sin θ yθ = −x sin θ + y cos θ (2)
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where x and y specify the position of a light impulse in the visual field (Petkov333

& Kruizinga, 1997).334

Rather than specify the width of the Gaussian component in pixels, it is more335

natural to set the bandwidth, b, which describes the number of cycles of the336

sinusoid within the Gaussian envelope. The standard deviation of the Gaussian337

factor, σ, is therefore set indirectly through b, and λ:338

σ =
λ

π

√
ln 2

2
· 2

b + 1

2b − 1
(3)

Throughout each simulation where Gabor filters were used, the first convolu-339

tional layer of VGG-16 was replaced with a fixed bank of Gabor filters designed to340

model the early primate visual cortex and match the number of output channels341

(64) defined in the original CNN. Each such bank had eight orientations, θ, four342

phases, ψ, and two aspect ratios, γ, (defining the ellipticity of the filter) while the343

wavelength, λ, and bandwidth, b, were systematically varied. The corresponding344

values are given in Table 1. Additionally, the kernels were set to be 31 × 31345

pixels, with an odd number chosen in order to centre the kernels on each image346

pixel. We chose a fairly large size for the Gabor filters (note this is distinct from347

the spatial scale, σ) to allow the Gaussian envelope to decay to near-zero at the348

edges and thus avoid any truncation artefacts when computing the convolutions.349

The filters were plotted to visually confirm that they had largely decayed to zero350

near the borders of the frame, avoiding boundary effects (see Figure C.11).351

Table 1: Parameters used for constructing sets of Gabor filters.

Parameter Symbol Values

Orientation θ {0, π8 ,
π
4 ,

3π
8 ,

π
2 ,

5π
8 ,

3π
4 ,

7π
8 } radians

Phase shift ψ {0, π2 , π,
3π
2 } radians

Aspect ratio γ {0.5, 1}

Wavelength λ varied: 3, 4, 5, 6, 7, 8 pixels/cycle

Spatial bandwidth b varied: 1, 1.4, 1.8 octaves
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As with the previous experiments, CIFAR-10 images were manipulated by352

adding one of the following types of noise: Salt and Pepper, Additive or Single353

pixel but remained in their original size of 32 × 32 pixels. All images were354

converted to greyscale and fed into the modified network under the same training355

and test conditions described previously.356

4.2. Results357

To test the hypothesis that the reliance of the network on the noise masks358

was due to high spatial frequency information contained in these images, we359

systematically varied the two key parameters of the Gabor filters most pertinent360

to this idea: λ and b. The wavelength of the sinusoidal component, λ was varied361

in the range [3..8] pixels/cycle while the bandwidth of the Gaussian component,362

b, was chosen from {1.0, 1.4, 1.8} octaves in accordance with measurements363

from macaque visual cortex (Petkov & Kruizinga, 1997), with σ automatically364

calculated for each combination of parameters according to Equation 3. For365

each experimental condition, five realisations were run with different randomised366

initial conditions.367

An illustrative example of the familiar performance bar chart is shown for368

direct comparison to earlier results in Figure 7 for λ = 5 and b = {1, 1.4, 1.8}.369

The trends in network performance for each test condition are plotted against λ370

in Figure 8. The performance was found to be largely insensitive to variations371

in b for this range but the full trends are included in Figures C.12 and C.13.372

It is evident from the largely flat performance profiles across the test con-373

ditions in Figure 7 that the network is no longer reliant upon the noise-like374

masks for correctly classifying the CIFAR-10 images (albeit with some lingering375

difficulty with additive noise). In all cases, performance on the ‘Diff’ condition376

is greater than zero and performance on the ‘NoPix’ condition is greater than377

chance (10%). This trend can also be seen to hold across a biologically relevant378

range of variation in bandwidth.379

Figure 8 shows that although performance gradually declines with increasing380

λ (as the filters represent decreasing spatial frequency information), the effect of381
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Figure 7: Accuracy on test images under the three types of noise-like masks. The shading of the

bars indicates the three filter bandwidths tested. The dotted (grey) line indicates performance

on the standard CIFAR-10 images, the dashed (red) line indicates chance performance and error

bars show the 95% confidence intervals. In all cases, the wavelength of the sinusoid component

was fixed at λ = 5.

the noise-like masks has been eliminated by 4 or 5 pixels/cycle (demonstrated382

by the convergence of performance curves in Figures 8a and 8c) and is robust383

throughout a wide range of the parameter space. The additive noise condition384

still affects the network performance but to a lesser extent than the CNNs that385

were trained end-to-end, with performance well above chance throughout the386

parameter range under all conditions.387

5. Discussion & Conclusions388

In a series of simulations we found that standard CNNs do not show a shape-389

bias when trained on images that include both shape and non-shape features390

diagnostic of object category. That is, standard CNNs do not have an innate391

shape-bias. Instead, the models learnt to categorise objects on the basis of392

non-shape features that were strongly correlated with the output class, even393

when the features were as small as a single pixel.394

Of course, we engineered our dataset to contain diagnostic non-shape features,395

but it is well-known that popular datasets contain various biases due to the396

different conditions and motivations for their construction (Torralba & Efros,397

2011). As such, biases like the ones we engineered may well be present in these398
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Figure 8: Accuracy on test images under the three types of noise-like masks plotted against

varying wavelength, λ. In addition to the standard noise conditions, ‘None’ indicates the

original images (no noise mask) were used for training and testing to provide a performance

baseline. The shaded bands around each line represent the 95% confidence intervals, the

horizontal (red) dashed line represents chance performance and the vertical (yellow) dotted

line represents the point in parameter space corresponding to Figure 7. In all cases, the

median bandwidth was used, b = 1.4 octaves, with very similar trends exhibited at the other

bandwidths tested (see Figure C.12).

datasets, which standard networks may be picking up on. This hypothesis is in399

line with a recent study conducted by Jo & Bengio (2017) who observed that400

standard CNNs have a tendency to learn the surface statistical properties of401

images as opposed to high-level abstractions. Indeed, this adds to a body of402

evidence showing that standard CNNs trained on ImageNet categorize images403

on the basis of texture rather than shape (Geirhos et al., 2018).404

This tendency for learning surface statistical properties may help explain the405

vulnerability of CNNs to adversarial attacks. It is well known that CNNs show406

several idiosyncratic behaviours such as being confounded by fooling images407

(Nguyen et al., 2015) or being overly sensitive to colour (Hosseini et al., 2017),408

noise (Geirhos et al., 2017) or even single pixels in images (Su et al., 2017).409

Ilyas et al. (2019) have recently argued that many adversarial attacks can be410

attributed to learning “non-robust features” present within datasets – that is,411

features that are predictive of an image category in a dataset but highly sensitive412

to small perturbations of the image and hence incomprehensible to human beings.413

In contrast, a high-level feature, such as shape, is robust to small deformations414
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and the human preference for relying on shape makes them less vulnerable to415

small, high-frequency changes within images.416

To be clear, our results do not show that CNNs cannot rely on shape if it is417

the only or primary diagnostic feature. Indeed, if the most diagnostic feature418

in our dataset was shape (rather than the noise-like masks), then we expect419

CNNs would learn to rely on shape, consistent with the work by Feinman &420

Lake (2018). However the hypothesis we set out to test is not whether networks421

can learn to identify objects on the basis of shape, but rather, whether CNNs422

have an innate shape-bias – that is, whether or not CNNs prefer to rely on shape423

in the presence of other diagnostic features. Our results show that this is not424

the case.425

We also found that pre-processing images through a bank of Gabor filters426

and mapping them to a more biologically plausible feature space can make427

CNNs less sensitive to some types of non-shape diagnostic signals. Of course, we428

do not want to suggest that preprocessing images in this manner ensures that429

CNNs rely on shape to perform classification, or start exhibiting a shape-bias.430

Clearly, if one designed a predictive feature with a spatial extent that can pass431

through the bank of Gabor filters, the network would end up using it to perform432

categorisation, instead of relying on the object’s shape. What we show here is433

that if one replaces end-to-end learning with learning that takes as its input a434

biologically plausible feature space, namely a bank of Gabor filters, it makes435

the network more robust to a range of idiosyncratic non-shape features. We436

chose the parameters of these Gabor filters based on neurophysiological data437

and found that these results hold, not just for particular values of parameters438

but for an entire range of parameters. So the crucial element does not seem to439

be learning the correct values of these parameters but having the correct form440

of filters.441

As noted, this robustness to perturbations across the three test manipulations442

comes at the cost of a decrease in overall performance, e.g. dropping from the443

standard result of around 95% accuracy (with the unmodified CIFAR-10 dataset)444

to around 70% when Gabor filters are included in VGG16 (see ‘None’ for λ ≥ 4445
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in Figure 8). This decrease in performance may be partly due to discarded446

colour information and the restriction to individual wavelengths and bandwidths447

(rather than a full range) for the sake of systematic evaluation. However, the448

Gabor kernels themselves filter out an additional source of information, namely449

unstructured, spatially high-frequency features, further lowering performance.450

From a machine learning perspective the reduction in accuracy is a problem.451

However, from a psychological perspective the resultant flat performance profile452

gained by these convolutional constraints suggests that the excellent performance453

of existing CNNs relies on extracting such high-frequency features that humans454

ignore (or are insensitive to). Accordingly, we argue that this accuracy drop455

demonstrates the fragility and biological implausibility of solutions found by456

end-to-end trained models, rather than an inadequacy of adding the Gabor filters457

as a front-end to CNNs.458

In this study, we imposed a biological constraint by replacing end-to-end459

learning with a biologically motivated feature space. Another possible approach460

is to preserve end-to-end learning while changing the architecture of the CNN461

in such a way that a similar feature space of Gabor filters is learned. Recently,462

Lindsey et al. (2019) have shown that imposing such architectural constraints,463

such as a retinal “bottleneck”, can lead to the emergence of antagonistic centre-464

surround fields found in retinal ganglion cells, followed by Gabor-like receptive465

fields. It remains to be seen whether such a constraint could be used to overcome466

vulnerabilities of standard CNNs to non-shape features present within datasets.467

However, even if this approach proves to be successful, it is important to note468

that neurophysiological research shows that oriented receptive fields in V1 are469

innate rather than learnt through experience (Chapman & Stryker, 1993; Wiesel470

& Hubel, 1974).471

Rather than learning Gabor filters end-to-end in response to image datasets,472

from a biological perspective, the more appropriate question might be to explain473

how these filters develop in response to evolutionary pressures. From an engi-474

neering perspective the challenge now is to advance this new direction, closing475

the performance gap while retaining the robustness.476
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Appendix A. Example Images583

Aeroplane

Training Testing

Same Diff NoPix

Deer

Training Testing

Same Diff NoPix

Figure A.9: Examples of images used for training and testing. The columns show the condition

under which the image was used and the rows show the type of noise-like mask applied. These

masks are, respectively, (row 1) salt-and-pepper noise with a fixed mask, (row 2) salt-and-

pepper noise with a variable mask, (row 3) additive uniform noise with a fixed mask, (row 4)

additive uniform noise with a variable mask, (row 5) single diagnostic pixel, with fixed location

and colour and (row 6) single diagnostic pixel with variable location and colour.
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Appendix B. Results for 32 × 32 images584
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Figure B.10: Accuracy of VGG-16 convolutional neural network on test images of size 32× 32

under (a) salt-and-pepper, (b) additive uniform, and (c) single pixel noise-like masks. The

‘Same’, ‘Diff’ and ‘NoPix’ conditions are the same as in Figure 3. we modified the VGG-16

network from the original (Simonyan & Zisserman, 2014) network so that the first layer consists

of three channels each of size 32 × 32. Instead of using a network that is pre-trained on

ImageNet (which contains images in the 224 × 224 format), we trained the network from

scratch on the modified datasets containing 32 × 32 images. Light gray bars in (a) show

noise-like masks generated in the same manner as for the 224 × 224 images above. Since

different categories differ in the rate of the salt-and-pepper noise (see Methods above), this

method of generating noise leads to a much weaker diagnostic signal for 32× 32 pixel images.

When the strength of this diagnostic signal is increased, the same pattern of results reappears

(dark gray bars). For (b) & (c) the amount and type of noise remains as used for the 224× 224

pixels images and described in the Methods section above.
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Appendix C. Gabor filters585
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Figure C.11: Illustrative set of Gabor filters used in the first convolutional layer of the network

with λ = 5 and b = 1.4. Orientation varies from 0 to 7
8
π across each row, while down each

column psi varies from 0 to 3
4
π and γ varies from 1 to 0.5. The Gabor kernels are displayed

on odd rows while the results of their convolution with an example image from the training set

(Figure 2) are shown on even rows.
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Figure C.12: Accuracy on test images under the three types of noise-like masks plotted against

varying wavelength λ for each noise mask (columns) and three bandwidths, b (rows). In

addition to the standard noise conditions, ‘None’ indicates the original images (no noise mask)

were used for training and testing to provide a performance baseline. The shaded bands around

each line represent the 95% confidence intervals, the horizontal (red) dashed line represents

chance performance and the vertical (yellow) dotted line represents the point in parameter

space corresponding to Figure 7. The middle row (b = 1.4) corresponds exactly to Figure 8

but is reproduced here for direct comparison to the performance curves obtained at other

bandwidths.
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Figure C.13: Accuracy on test images under the three types of noise-like masks plotted against

varying bandwidth, b for each mask (columns) and six wavelengths, λ (rows). In addition to the

standard noise conditions, ‘None’ indicates the original images (no mask) were used for training

and testing to provide a performance baseline. The shaded bands around each line represent

the 95% confidence intervals, the horizontal (red) dashed line represents chance performance

and the vertical (yellow) dotted line represents the point in parameter space corresponding to

Figure 8 (b = 1.4). These are the same data used in Figure C.12 but transposed in order to

explicitly see the performance trends with varying bandwidth.
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