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Origami-inspired approaches to deployable or morphing
structures have received significant interest. For such appli-
cations the shape of the origami structure must be actively
controlled. We propose a distributed network of embed-
ded actuators which open/close individual folds, and present
a methodology for selecting the positions of these actua-
tors. The deformed shape of the origami structure is tracked
throughout its actuation using local curvatures derived from
discrete differential geometry. A Genetic Algorithm (GA) is
used to select an actuation configuration, which minimises
the number of actuators or input energy required to achieve a
target shape. The methodology is applied to both a deployed
and twisted Miura-ori sheet. The results show that designing
a rigidly foldable pattern to achieve shape-adaptivity does
not always minimise the number of actuators or input energy
required to reach the target geometry.

1 Introduction
The ability to transform from a flat sheet to a three-
dimensional shape has led to significant interest in the use
of origami-inspired solutions to deployable [1, 2] and mor-
phing [3] engineering problems. Consideration of how such
origami-inspired systems will be actuated to achieve the in-
tended change in configuration must be integral to the design
process.

One common approach in self-folding origami is to use
an environmental stimulus, which affects all folds simultane-
ously, to trigger a predefined motion [4]. Alternatively, each
fold can be actuated independently to achieve complex three-
dimensional shapes; for example, the ‘Stanford bunny’ actu-
ated using shape memory alloy folds [5]. Such patterns have
a large number of degrees of freedom (DOFs); therefore, a
large number of actuators is required to successfully control
them. Alternatively, the inherent kinematics of origami can
be exploited by selecting patterns with a single DOF, such as
the Miura-ori, so that a single actuator can control the shape
of the entire structure. This approach would be ideal for sys-
tems required to follow a single deformation path, such as
deployable structures, minimising the cost and complexity of
the actuation system [6,7,8]. However, this relies on the rigid

Rigid DeploymentNon-Rigid Morphing

Fig. 1: Miura-ori sheets can be deployed (according to its
rigid-origami kinematics) or morphed (requiring facet defor-
mations) using a distributed network of actuators — here rep-
resented by the rotation of highlighted fold lines

origami assumption that the folds are perfect hinges and the
facets — material between the folds — are infinitely stiff. In
physical systems, the folds have a torsional stiffness and the
facets can deform, meaning that a pattern such as the Miura-
ori no longer has a single DOF and the effect of a single
actuator decays instead of propagating uniformly across the
entire structure [9]. This has the implication that the num-
ber and position of actuators influences the response of the
structure, meaning that a distributed network of embedded
actuators is essential.

On the other hand, the increase in DOFs introduced by
facet bending does enable morphing of the origami structure
into shapes not permissible by rigid origami. What is more,
re-configurable origami can be designed to exploit multi-
stabilities to maintain the new shape without additional en-
ergy [3, 10, 11]. By considering both deployment and mor-
phing, we utilise the entire configuration space of actuated
origami, as visualised in Figure 1. This could be extended to
the design of a system where the same distributed network of
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embedded actuators could be used to reconfigure the struc-
ture from one shape to another, similar to the ‘programmable
matter’ proposed by Hawkes et al. [12].

Physical realisation of these actuators in origami struc-
tures could take many forms, from tendons [13] or mag-
nets [14] pulling points together, to smart materials such as
shape memory polymers or alloys providing a moment along
the folds [15, 16]. The focus of this paper is not to faithfully
reproduce any one of these methods, but instead to explore a
methodology by which the optimal positions of these actua-
tors can be selected. Therefore, we idealise an actuation as
a pure rotation which is uniform along the length of a fold.
One potential combination of such actuators, to achieve the
least error in deployment or morphing, is to place an inde-
pendently controlled actuator on every fold. However, each
actuator has an associated mass, cost and power usage —
all of which should be minimised. Therefore, we develop a
methodology to determine the minimum number of actuators
and their optimal locations in an origami-inspired deployable
or morphing structure to achieve the desired target shape. We
focus our investigation on open loop control, i.e. no embed-
ded sensing of the deformed configuration.

In Section 2 we propose a novel methodology for quan-
tifying the quality-of-fit of the actuated origami compared to
the target surface and show how a Genetic Algorithm (GA)
can be used to design the positions of the actuators. The
Miura-ori pattern is here used as a case study; however, the
methodology is not limited to this pattern and could be ap-
plied to a wide range of origami structures. Next, Sections 3
and 4 show examples of optimising the position and num-
ber of actuators in order to achieve deployment or morphing
in a Miura-ori sheet, using the fewest actuators or the least
amount of energy.

2 Methods
The following section outlines a methodology for modelling
an origami structure and tracking its shape throughout an ac-
tuation. This enables the placement of actuators to achieve
a desired target shape. The number of combinations of actu-
ated folds, even in relatively small Miura-ori sheets, presents
a challenge for searching the design space, and a Genetic Al-
gorithm (GA) is selected to address this.

2.1 Actuator Placement & Modelling
Many rigid origami patterns consist of a network of quadri-
lateral facets connected by folds, resulting in a single degree
of freedom. In physical systems the folds and facets have a
finite stiffness and the deployments do not always follow the
the kinematics predicted by rigid origami. Triangulating the
facets by including pseudo-folds, and assigning a torsional
stiffness to the folds and pseudo-folds, is a first approxima-
tion to model non-rigid foldable motions [17, 18].

The pseudo-folds introduce finite additional degrees of
freedom, nonetheless allowing the state of the complete
origami structure to be defined using a subset of the folds.
One approach is to define the shape of an entire Miura-ori

sheet by the angles of the folds and pseudo-folds on the
boundary [19]. Physical implementation would be challeng-
ing as controlling the angle of the pseudo-folds along the
short diagonals of the facets would require bending the facets
themselves. Alternatively, starting from a selected zig-zag
pattern of folds, the shape of the entire sheet can be algorith-
mically propagated [20]. Neglecting the in-plane facet defor-
mations is a limitation of both methods, as these may cause
unexpected physical responses which drive the final actuated
shape [9].

In order to accurately capture both the in-plane and
out-of-plane facet deformations, the finite element analysis
(FEA) package ABAQUS is used. The facets are modelled
with S4R shell elements (a 10× 10 mesh per facet) and the
folds with CONN3D2 connector elements between coinci-
dent nodes of adjoining facets. This models the origami
structure as a series of shells connected by hinges with a tor-
sional stiffness. The fold angles at these connection points
are defined as the angles between tangents of both facets at
the point they meet. An actuation is produced by enforcing
a rotation in the CONN3D2 elements, where the energy re-
quired is given by the product of the reaction moment and
hinge rotation at the element. Material properties represent
polyethylene terephthalate (PET) film used for prototyping,
with a Young’s modulus, Poisson’s ratio and thickness of 3.2
GPa, 0.43, and 200 µm respectively. The torsional stiffness
for the folds is 0.05 N/rad. The initial configuration of the
Miura-ori is given as a= b= 30mm, α= 60◦ and ψ0 = 120◦,
where a, b, α and ψ are defined in Figure 2. Unless other-
wise stated these properties and geometry are used for all
subsequent models in this paper.

To maintain compatibility between folds at each vertex,
the magnitude of the actuated rotation on each of the folds
is calculated from the rigid origami kinematics of the Miura-
ori. The relationship between the ψ and β folds, as defined

z y

x

α  

a

b

ψ  
β  

Fig. 2: Miura-ori unit cell and its geometric parameters. Fold
angles β and ψ are actuated to achieve deployment or mor-
phing of the unit cell
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Fig. 3: (a) Actuating every fold in a Miura-ori sheet leads
to a perfectly deployed sheet; colours indicate magnitude of
fold rotation. Controlling a subset of folds using identical
actuation inputs does not lead to a uniform deployment due
to facet bending. A symmetric actuation pattern along the
perimeter leads to a saddle shape (b); a slightly asymmet-
ric pattern produces a twisted shape (c); actuated folds are
highlighted

in Figure 2, is provided by Equation 1 [21, 22].
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Figure 3 illustrates the importance of actuator position-
ing on the resulting deployed shape: two different actuator
combinations, both along the boundary of a 5× 5 Miura-
ori sheet, share the same actuated fold rotation as in a rigid
origami deployment. However, facet deformations result in
different final configurations for the different actuator place-
ments. For example, selecting an asymmetric pattern of actu-
ators leads to a twisted sheet; see Figure 3c. This highlights
how, when modelling an actuated origami design it is crucial
to track its shape throughout the deployment to ensure it can
adequately achieve its intended target.

2.2 Quantifying Quality of Fit
An intuitive method of quantifying the quality of fit is to
compare geometric parameters defining the origami in the
actuated sheet to those in the target configuration, such as
fold angle [24] or nodal positions [25]. Alternatively, when
designing for a specific application, a functional parameter
could be used to define the quality of fit; for example, the ex-
posed area of photo-voltaic cells in a solar array [26] or the
thermal performance of a radiator [27].

One commonly used method for comparing deformed
and target shapes is the Hausdorff distance [3,28,29,11]. Let
both the target surface, A, and the actuated surface, B, be dis-
cretised into a set of points. The distance from all points in
A to their nearest point on B can be found; likewise, the dis-
tance from all the points in B to their closest point on A can
be determined. The Hausdorff distance is the maximum from
either of these two sets of distances. However, this approach
is sensitive to a single poorly fitting point describing the qual-
ity of fit of the entire structure. Using the root mean square
error (RMSE) of the Euclidian normal distance to the target
surface [30] could reduce the sensitivity to outliers, but this
comes at the cost of additional computational effort. Curva-
ture has been used previously in the generation of fold pat-
terns designed to fit to a target surface by homogenising the
Miura-ori tessellation into a smooth surface [20, 31]. How-
ever, to calculate the curvature two assumptions are needed:
first, the region over which the curvature is calculated must
be sufficiently larger than the size of a single unit cell; and
second, the radius of curvature must be sufficiently larger
than the region over which the curvature is calculated. Es-
sentially, this technique is limited to large tessellations with
small curvatures, relative to their size, and so could not be
applied to the examples shown in Figure 1.

We propose using an alternative method of defining the
curvature across an origami structure using principles from
discrete differential geometry [23]. First, the vertices on
the top or bottom of the Miura-ori sheet, shown for the top
only in Figure 4, are triangulated to form a discrete surface.
Next, the curvatures at the vertices which are completely sur-
rounded by triangles are calculated, starting with the Gaus-
sian curvature:

κG(xi) =
2π−∑

Nv
j=1 θi

Av
(2)

where Nv is the number of vertices surrounding the vertex
at coordinate xi (i.e. six for the Miura-ori), and the Voronoi
area, Av is defined as

Av =
1
8

Nv

∑
j=1

(cot(γi j)+ cot(φi j))‖xi−xj‖2 (3)

where angles θi, γi j and φi j are defined in Figure 5. Note, this
formulation is only valid where these angles are acute; how-
ever, this is sufficient for the geometries and deformations
analysed in this paper. Further details are found in Meyer et
al. [23].
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Fig. 4: Calculation of curvatures across a deformed Miura-ori sheet: the vertices on the upper surface form a triangulated
surface; the mean and Gaussian curvatures are calculated using discrete differential geometry [23]. Finding the curvature of
the lower surface follows the same process with the corresponding vertices

θi 

φij 

γij 
xi xj 

Fig. 5: Definition of geometric terms used in the calculation
of the curvature at point i on a triangulated surface

The Gaussian curvature does not provide a complete pic-
ture of the overall shape, as a flat sheet and singly curved
configuration will give the same result. The mean curvature,
κH is given as:

κH =
1

4Av

∥∥∥∥∥ Nv

∑
j=1

(cot(γi j)+ cot(φi j))(xi−xj)

∥∥∥∥∥ . (4)

Combining these two curvatures allows for a unique descrip-
tion of the shape of any surface representing the upper or
lower vertices. Equation 5 is used to obtain the principal cur-
vatures, κ1 and κ2.

κ1,κ2 = κH ±
√

κ2
H −κG (5)

Utilising the principal curvatures as metric also removes
the need to account for rigid body rotations between the ac-
tuated model compared to the target shape. Furthermore, the
metric allows for a good fit between actuated and target ge-
ometry, even if the fold angles do not match; this is useful for
morphing structures where the fold stiffness is comparatively
high compared to the facet stiffness.

However, in the case of a Miura-ori sheet deploying
from a partly folded state to a flattened configuration, where
the initial surface curvatures are the same as the targets, an
additional parameter is required to define the error. The
RMSE of all the fold angles in the sheet is used for this,
as fold rotation is an ABAQUS\Standard output and so min-
imises computational cost compared to computing other an-
gles or the distance between the planes representing the up-
per and lower vertices.

2.3 Optimisation
Assuming the magnitude of actuation required for deploy-
ment is known, the most robust method of finding the optimal
place of actuators would be to test every possible combina-
tion. However, even for relatively small origami structures,
the number of possible combinations of folds which could be
actuated becomes impractically large. For a Miura-ori sheet
with n and m cells in the x and y directions, defined in Fig-
ure 2, the total number of folds F is given by

F = 4mn+2m(n−1)+2n(m−1) . (6)

If any of these folds can either be actuated or not, the total
number of combinations of actuators Ca is given by

Ca = 2F −1 (7)

where the case of actuating no folds is excluded. This expo-
nential rise of actuators has severe implications. Even for a
small Miura-ori sheet with n=m= 3, this results in O

(
1018

)
possible actuator combinations! Clearly, for any practically
usable system an optimisation algorithm is essential to selec-
tively probe this design space and select a high-performing
actuator combination.

Ideally, any optimisation algorithm and constraints we
choose should be verified against an exhaustive search of a
similar domain; therefore, we aim to reduce this design space
to a practical size. First, we pair the actuation of ψ-folds
— forming chevrons pointing in the positive y-direction —
and β-folds — forming chevrons pointing in the positive z-
direction — and actuate both or neither; this halves the order
of magnitude for Ca. Next, the design space is further re-
duced by only actuating either ψ or β-folds. For the 3× 3
Miura-ori, this leaves a more achievable 32,767 combina-
tions.

Previous explorations of the structural optimisation of
origami focus on tuning the fold stiffness across the struc-
ture to minimise the force required at a given node to pro-
duce a defined displacement [32]. This formulation results
in a binary pattern of high and low values representing fold
and facet bending stiffness. This non-convex problem re-
quired a global optimisation algorithm to regularly produce
an optimal solution [33]. Similarly, we employ a Genetic Al-
gorithm (GA) (as implemented in the MATLAB ‘Global Op-
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timization Toolbox’ [34]) to find the optimal actuator combi-
nations, as it handles the discrete nature of the actuator place-
ment to achieve deployment.

A constraint is applied to the GA, penalising solutions
failing to satisfy a specified tolerance of the quality of fit

f =
1

Nc

((
κ1,RMSE

κ1,tol

)p

+

(
κ2,RMSE

κ2,tol

)p

+

(
θRMSE

θtol

)p)
+1

(8)
which has a value of f ≈ 1 for outputs within the tolerance
and exponentially increases outside the defined tolerance,
controlled by exponent p. Parameters κ1,RMSE, κ2,RMSE, and
θRMSE represent the RMSE in the principal curvatures and
the fold angles respectively; κ1,tol , κ2,tol , and θtol are the cor-
responding tolerances. The total number of constraints Nc,
three in this case, can be varied depending on which terms
are important for a given application. It is the product of f
and the parameter to be minimised, either input energy or
number of actuators, which forms the objective function in
the GA.

The selection of the specific parameter to be minimised
depends on the intended application. If the system is energy
limited then minimising the required actuation energy would
be prudent; likewise for mass limited systems minimising
the number of actuators is sensible. For a real engineering
application a weighted combination of both of these factors
is most likely to drive the design. However, the objective of
our optimisation is to minimise either the input energy or the
total number of actuators required to achieve the desired de-
ployment or morphing within the target geometric tolerance,
in order to gain insight into the difference between these ob-
jectives.

This could take one of two forms: first, selecting which
folds should be actuated, where the size of the actuation at
each fold is predetermined; or second, selecting how much a
predetermined set of actuators should be actuated. The for-
mer is applied to patterns which could follow a rigid origami
path from their initial to final states; for instance, the deploy-
ment of a Miura-ori sheet, where the desired direction and
magnitude of fold rotations are known. The latter is use-
ful for non-rigid deformations, for example a twisting of a
Miura-ori sheet, where the direction and magnitude of the
actuation are unknown.

3 Planar Deployment
Using this methodology we explore how the positioning of
rotational actuators in a 3× 3 Miura-ori sheet affects its de-
ployment to a state where the ψ-folds are 90% of the way
from the initial state to a fully flat configuration, with the ob-
jective of minimising either the input energy or the number
of actuators required. Avoiding the fully flattened state limits
the possibility of pop-through defects [10] occurring; any ac-
tuator combinations which did elicit this response are left out
of the database. Building an exhaustive database of all com-
binations of actuated pairs of ψ-folds and β-folds and their
performance enables both the verification of the GA and pro-

vides insight into the effect of actuating these two different
types of folds.

Consider first the minimisation of the number of actua-
tors, as shown in Figure 6a. It is immediately clear that actu-
ating a combination of ψ-folds is more effective than β-folds
to achieve deployment. Using the GA to probe the smallest
number of actuators required to achieve the same target toler-
ances in a 5×5 Miura-ori sheet, where now any combination
of ψ-fold and β-fold pairs can be selected, also returns a set
containing only pairs of ψ-folds; see Figure 7. This result
could be due to the kinematics of the Miura-ori: first, the β-
folds are all parallel, and so they rely on the vertex kinemat-
ics to propagate their actuation in both x- and y-directions;
second, the ψ-folds have to open further to reach a flattened
state, thereby imparting more energy for a given number of
actuators. This is reflected if we instead consider the actuator
configuration with minimum energy requirement, see Fig-
ure 6b, which shows it is now the pairs of β-folds which yield
a more effective combination. A realistic scenario could be a
trade-off between these two cases; there would be constraints
on the energy available and each actuator installed would in-
troduce additional cost and mass.

In order to populate the reference database and perform
the actuator placement optimisation, the sheet target geome-
try, the expected geometric tolerances and optimisation con-
straint parameters must be defined.

For the planar deployment of a Miura-ori sheet consid-
ered here, defining the target geometry is straightforward:
both principal curvatures are equal to zero at every point,
and all fold angles β and ψ across the sheet are defined by
the unit cell kinematics. However, defining the tolerances
of these parameters is dependent on the specific application
for which the system is designed. In this work a tolerance
of κtol = 5 mm−1 for each of the principal curvatures and
θtol = 0.5 radians for the fold angles is used. For the selected
PET material properties, these settings give a good range of
combinations providing shapes both within and outside of
the tolerance. This allows us to both demonstrate the effi-
cacy of our process to characterise the shape of the origami
throughout the folding process, and to investigate the advan-
tages and disadvantages of different sets of actuators.

Selection of the parameter p, which controls the expo-
nential increase of the penalty function in Equation 8, also
affects the optimal solutions. Larger values of p apply a
greater penalty to combinations of actuators resulting in cur-
vatures or fold angles outside the tolerances. However, an
excessively large value for p can cause a GA to become less
reliable at tending towards the optimal combination. There-
fore, a sensitivity analysis is used to select a value for p.
For the minimisation of actuator number and actuation en-
ergy, 100 GA optimisations were run to find the optimal so-
lutions for either ψ- or β-fold pairs. These were compared
with the known optimal combinations from the databases to
quantify the accuracy of the GAs. Table 1 shows the number
of times the GA resulted in the optimal combination and the
maximum error between the GA result and the known opti-
mum, which leads to three conclusions. First, this sensitivity
analysis verifies the use of a GA to find a high-performing
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Fig. 6: An exhaustive search of all possible combinations of ψ (blue) and β (red) fold pair actuators targeting the deployment
of a 3× 3 Miura-ori sheet. A penalty function, defined in Equation 8, using curvature tolerances of 5 mm−1, a fold angle
tolerance of 0.5 rad, and an exponential factor p = 10, is applied to the results and used to (a) minimise the total number of
actuators and (b) minimise the actuation energy. Inset are the optimal actuation configurations for both sets of actuation

combination of actuators; for p = 10 and p = 25 the optimal
combination is the most common result and the maximum er-
ror is not more than a few percent. Second, the final column
in Table 1 highlights how, despite not always being the best
solution, selecting a combination of actuators which is sym-
metric in the plane of symmetry of the Miura-ori sheet still
reliably results in a high quality configuration. Limiting the
design space to symmetrically-placed pairs of actuated folds
would reduce it by an order of magnitude for a 3×3 Miura-
ori sheet, and 12 orders of magnitude for a 5× 5 Miura-ori
sheet. Finally, a value of p = 10 provides a minimum error
when aggregated across all four scenarios, therefore we use
this to generate the results in Figures 6 and 7; however, the
results do not change significantly for either p = 5 or p = 25.

4 Non-Planar Morphing and Deployment
In exploring the transformation of origami structures, we
now shift our focus from deploying a rigid-foldable Miura-
ori sheet, to morphing from a partly-deployed state to an-
other three-dimensional shape. Specifically, we investigate
the twisting of a 5× 5 Miura-ori sheet as a simple but rep-
resentative morphed configuration. The target twisted shape
is defined by displacing the central vertices of the bottom-
left and top-right unit cells by +2.5H and the central ver-
tices of the bottom-right and top-left unit cells by −2.5H
in the z-direction; see Figure 8a. After simulating the de-
formed shape using FEA, the fold rotations are extracted and
the principal curvatures at the vertices on the lower surface
are calculated.

For the planar deployment in Section 3, the required ac-
tuation magnitudes are known from the unit cell kinemat-
ics. For morphing, the measured fold rotations, shown in
Figure 8a, are used as a starting point for determining the
required actuation magnitude to achieve the target twisted
shape. Examination of the fold rotations reveals that it is no
longer possible to pair folds at each vertex or consider only
symmetric actuator placements to reduce the design space.
This, combined with the unknown actuation magnitudes to
achieve the twisted shape, means it is not possible to exhaus-
tively search the design space or even use the GA to obtain
an optimal actuation configuration. Instead, we select actu-
ated folds by the magnitude of rotation they require, starting
with the most rotated fold followed by the second most and
so on. For example, if we wish to actuate 20% of the 60 folds
in a 5×5 Miura-ori sheet then the 12 folds with the highest
required rotation will be actuated.

The first question to consider is that if every fold is ac-
tuated by its rotation in the twisted sheet in Figure 8a, will
it deform to the same shape? For a rigid-foldable deploy-
ment it is implicit that this is true; however, for the twisted
sheet the facet deformations are a crucial component of the
deformed shape, and these will depend on the input actu-
ation. Results show that the folds must be actuated over
50% further to reach a minimum error in the principal cur-
vatures in the target shape; see Figure 9. Further inspection
of Figure 8a shows that significant rotation is limited to a
relatively small number of folds, with the rest having a com-
paratively negligible magnitude. This leads to the second
question: what if only a subset of most-rotated folds are ac-
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Table 1: Sensitivity analysis of constraint parameter p and how that changes the accuracy of a GA repeated 100 times.
The number of times the GA returns the known optimal result and the maximum error in the result of any GA result are
considered for all actuator combinations as well as only symmetric combinations

All Combinations Symmetric Combinations

Minimisation Target p % Optimal Max. % error % Optimal Max. % error Symmetric % Penalty

5 74 6.7 89 6.7 0

No. of Actuators (ψ) 10 100 0 100 0 0

25 98 9.8 100 0 0

5 94 0.81 100 0 0.21

Actuation Energy (ψ) 10 92 0.66 95 0.12 0.49

25 85 2.1 63 0.65 0.21

5 27 71 81 68 0

No. of Actuators (β) 10 77 0.42 96 0.11 0.29

25 62 0.98 76 2.3 0

5 2 27 25 21 5.14

Actuation Energy (β) 10 98 0.37 97 0.35 0.063

25 87 0.54 94 0.54 0

tuated? Sorting the folds by their magnitude of rotation and
actuating the top 40%, leaving the remainder free to act as
torsional springs, still shows a response which is similar to
simply actuating all of the folds; even actuating only 20%
results in a shape approximating the target. These are shown
by the grey lines in Figure 9. An explanation lies in the ob-
servation that many of the folds do not need to rotate far to
reach the desired shape; therefore, as the actuation applied to
one of the more highly rotated folds decays [9] before reach-
ing these less rotated folds, much of the desired rotation is
already achieved. Lastly, we note that all combinations of
actuators in the 5× 5 morphing Miura-ori sheet result in a
non-zero minimum error due to facet deformations differing
between the twisted target sheet and the one actuated by fold
rotations. This suggests that, despite clearly approaching an
approximation of the target shape, a more refined approach
that considers the optimisation of sequencing and individual
magnitudes of fold rotations would be necessary to perfectly
replicate it.

An alternative approach is to design a rigid-foldable
pattern which deploys from a flat sheet to the target three-
dimensional twisted shape, such that the facets no longer
need to deform to achieve the target shape. First, a smooth
version of the target surface, a second order polynomial sur-
face fitted to the lower vertices of the target sheet, is defined.
Next, using this fitted surface as the target and the planar
5× 5 Miura-ori pattern in Figure 8a as a starting configura-
tion, a rigid-foldable pattern is calculated using the method-
ology outlined by Hu et al. [35]. Lastly, the kinematics of
the new rigid-foldable twisting pattern is calculated using the

method by Lang & Howell [36]. This helps to define the
starting condition prior to actuation and the rotation required
on each fold to reach the target shape. This starting condi-
tion is defined as kinematically 5% of the way from a flat
sheet to the target twisted configuration at the dark blue fold
in the bottom left of Figure 8b, therefore avoiding potential
bifurcations around the unfolded state. The rigid-foldable
twisting pattern, and the magnitude of rotations on the folds
required to get from the initial condition to the target shape,
is shown in Figure 8b.

As the pattern is rigid-foldable, actuating all folds re-
sults in zero error with respect to the target surface at the
expected fold rotation; see the darkest blue line in Figure 9.
However, if only a subset of folds with largest rotations are
actuated in the rigid-foldable twisting pattern, the minimum
error increases rapidly compared to the morphing Miura-ori
pattern. Contrasting Figures 8a and 8b reveals the cause of
this sensitivity to the number of actuators: all of the folds re-
quire a significant rotation to transition from flat to the three-
dimensional twisted shape. This means that any decay of the
input of an actuator has a more significant impact on the final
shape achieved in the rigid-foldable twisting pattern.

Extracting the elastic strain energy from the FE models
shows that the rigid-foldable twisting pattern requires signifi-
cantly more energy to reach its target shape; see Table 2. This
is the result of the larger fold rotations compared to the mor-
phing Miura-ori pattern. As both patterns originate from dif-
ferent initial states, the magnitudes of energy should not be
compared directly; nonetheless, insight can be gained from
the effect of additional actuators on the folding energy in the
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Fig. 7: Every design considered by the GA when minimising
the number of actuators required to deploy a 5× 5 Miura-
ori sheet. A GA is required here as the potential actuation
combinations of a 5× 5 Miura-ori sheet is nine orders of
magnitude higher than that of a 3× 3 Miura-ori sheet, and
the FEA model has almost twice as many elements, which
significantly increases the computational cost. Inset is the
resulting optimal combination of actuators

two patterns. For the morphing Miura-ori pattern the energy
requirement does not vary considerably with the number of
actuators, provided that more than 20% of the folds are actu-
ated, which correlates well with the relatively small changes
in error in Figure 9. Again, this is because almost all fold
rotation is limited to a small subset of folds, and actuating
the other folds, with only a small amount of rotation, there-
fore does not require much additional energy. Furthermore,
the amount of strain energy in the folds and facets is of simi-
lar magnitude, which reflects the non-rigid-foldable nature of
the deformation. In contrast, the actuation of additional folds
in the rigid-foldable twisting pattern requires additional en-
ergy, because every fold must undergo significant rotation to
reach the target.

Perhaps surprisingly, a rigid-foldable pattern is not nec-
essarily the best approach to transform an origami structure
between two configurations. The single-DOF deformation
path minimises facet bending, but the larger fold rotations
might demand a larger number of actuators as well as greater
input energy compared to a morphing pattern. Furthermore,
the rigid-foldable pattern is only optimised for a single shape
change compared to the flexibility offered by a morphing
origami sheet which could follow a non-rigid folding path to
a wide variety of potential shapes. The ability to morph from
a range of partly-deployed states also provides additional op-
portunity to reduce the number of actuators or energy re-
quired to deform to the desired target shape. We recognise

Table 2: Strain energy at the minimum error configurations
in Figure 9, separated into fold and facet components

Morphing Miura-ori pattern

No. Folds
Actuated [%]

Fold Strain
Energy [mJ]

Facet Strain
Energy [mJ]

20 2.14 2.96

40 1.82 2.55

60 1.66 2.42

80 1.59 2.43

100 1.51 2.40

Rigid-Foldable Twisting Pattern

20 86.7 24.9

40 113 20.5

60 140 12.8

80 183 8.92

100 189 0.00

that some conclusions are specific to the chosen material sys-
tem, as higher facet bending and lower fold stiffness would
tend to favour a rigid-foldable solution as facet strain energy
becomes more dominant in the morphing Miura-ori pattern.
Therefore, both the structural design and the actuation design
methodology presented in this paper must be used together
to effectively design a high performing origami-inspired de-
ployable or morphing system.

5 Conclusions
In order to exploit the potential of origami structures to
transform between different shapes, a distributed network
of embedded actuators is proposed. Such embedded actua-
tion would enable both deployment (following rigid-origami
kinematics) and morphing (also involving facet deforma-
tions) of an origami structure. The objective is to minimise
the number of actuators and/or their energy requirements for
the desired change in geometry.

To assess the performance of the shape transformation, a
method for tracking the deformed shape of an origami struc-
ture throughout its motion is required. A triangulated surface
is defined using the top or bottom vertices of the origami pat-
tern. At the vertices where the triangles meet, the principal
curvatures are determined using discrete differential geome-
try and are compared to a target surface. This method, which
is agnostic to rigid body motions, is robust in tracking the de-
formed shape of both deploying and morphing origami struc-
tures.

First, the deployment of a Miura-ori sheet was inves-
tigated. The total number of possible combinations of ac-
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Fig. 8: The change in fold angle when twisting (a) a partially-folded planar Miura-ori sheet and (b) a pattern designed to
rigidly fold from flat to the twisted shape. Images from the beginning, middle, and end of the deformation are labelled 1, 2,
and 3 respectively
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Fig. 9: The error in the first principal curvature when actu-
ating increasing numbers of folds, starting with the folds re-
quiring most rotation. The starting error in the morphing and
the rigid-foldable patterns differ because they have different
initial states; the morphing Miura-ori pattern is in a partially
folded and untwisted state, whereas the rigid-foldable pattern
starts from a nominally flat sheet

tuated folds in even relatively small systems rapidly makes
an exhaustive search for the optimal actuator combination
prohibitively computationally expensive. A 3× 3 Miura-ori
sheet where actuated folds are paired up at each vertex is
used as a suitably reduced design space for this exhaustive

search. This is used to verify the use of a Genetic Algorithm
(GA) which allows for the investigation of larger sheets, up
to five unit cells in either direction.

Second, the non-rigid foldable twisting of a Miura-ori
sheet was investigated. As each fold in the twisted sheet
is no longer simply a binary ‘to actuate or not to actuate’
decision, but now could take any range of magnitude of ro-
tation, the potential design space of actuation is increased
yet further. Therefore, an alternative method of selecting the
actuated folds is used. The magnitude of fold rotations in
the twisted shape is recorded, and their relative magnitude
guides the selection of actuated folds: the folds requiring
most rotation are actuated first. This less computationally
intensive approach gives a good approximation of the target
shape with only approximately 40% of the folds actuated.

A common school of thought is that the best origami
pattern to achieve a certain target shape is one that is rigid
foldable, thereby minimising the facet deformations required
[3,29,35]. By comparing the actuation of a morphing Miura-
ori sheet targeting a twisted shape to one designed to be
rigidly foldable from flat to the same twisted shape, we show
this does not minimise either the quantity of actuators or the
actuation energy required. However, selecting different ma-
terial for the origami structure could lead to different conclu-
sions on the efficiency of actuating rigid-foldable patterns,
as higher facet bending and lower fold stiffness could result
in rigid-foldable patterns to be better performing. This rein-
forces the principle that the design of the pattern, materials,
and actuation system cannot be decoupled when designing
active origami systems.

Future work on the actuation of origami should address
some of the remaining challenges, including the sequenc-
ing of actuation and adequately exploring the exponentially
increasing design space of larger structures. Furthermore,
physical implementation of embedded actuation should be
improved before such designs can be used in engineering
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systems. Nonetheless, the presented methodology for se-
lecting candidate actuation configurations and assessing their
performance compared to a target geometry provides a start-
ing point for the design of truly reconfigurable origami struc-
tures.
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