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Abstract  1 

Background 2 

Observational studies suggest an association between reduced lung function and risk of 3 

coronary artery disease and ischaemic stroke, independent of shared cardiovascular risk 4 

factors such as cigarette smoking. We use the latest genetic epidemiological methods to 5 

determine if impaired lung function is causally associated with an increased risk of 6 

cardiovascular disease. 7 

Methods and Findings 8 

Mendelian Randomization uses genetic variants as instrumental variables to investigate 9 

causation. Preliminary analysis used two sample Mendelian Randomization with lung 10 

function single nucleotide polymorphisms shown to confer a high risk of COPD. To avoid 11 

collider bias the main analysis used single nucleotide polymorphisms for lung function 12 

identified from UKBiobank in a Multivariable Mendelian Randomization model conditioning 13 

for height, body mass index and smoking.  14 

Multivariable Mendelian Randomization shows strong evidence that reduced FVC causes 15 

increased risk of coronary artery disease, Odds Ratio:1·32 (1·19-1·46) per Standard 16 

Deviation. Reduced FEV1 is unlikely to be cause increased risk of coronary artery disease as 17 

evidence of its effect becomes weak after conditioning for height 1·08 (0·89, 1·30). There is 18 

weak evidence that reduced lung function increases risk of ischaemic stroke. 19 

Conclusion 20 

There is strong evidence that reduced FVC is independently and causally associated with 21 

coronary artery disease. Although the mechanism remains unclear, FVC could be taken into 22 

consideration when assessing cardiovascular risk and considered a potential target for 23 

reducing cardiovascular events. FEV1 and airflow obstruction do not appear to cause 24 

increased cardiovascular events, confounding and collider bias may explain previous findings 25 

of a causal association.  26 

Word Count abstract: 245 27 

  28 
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Introduction  29 

 30 

Multi-morbidity, the co-existence of multiple diseases in an individual, is associated with 31 

poor quality of life, mortality and polypharmacy.[1] Impaired lung function measures such as 32 

Forced Expiratory Volume in one second (FEV1) and Forced Expiratory Volume (FVC) have 33 

been found to be strongly associated with multi-morbidity and are reported as independent 34 

predictors of cardiovascular disease.[2] Although research has often focused on the 35 

contribution of FEV1 and obstructive airways disease to cardiovascular risk, FVC has been 36 

shown to be a stronger predictor of survival, and appears to add value to the Framingham 37 

Risk Score for prediction of mortality.[3, 4] However, it is unclear if there is a causal link 38 

between lung function and multi-morbidity or if the association is due to confounding factors 39 

such as cigarette smoking.  40 

 41 

Observational studies have reported that Chronic Obstructive Pulmonary Disease (COPD), 42 

decreased FEV1, FVC and FEV1/FVC ratio are all associated with an increased the risk of 43 

coronary artery disease.[5, 6] However results are inconsistent, with some studies reporting no 44 

association,[7] or that the association is limited to those with abnormally high blood 45 

pressure.[8] There is also evidence suggesting that COPD and impaired lung function are  46 

associated with an increased risk of stroke.[9]  47 

 48 

Impaired lung function and associated lung diseases could have a direct detrimental effect on 49 

cardiovascular health via a number of biological pathways including systemic inflammation 50 

or oxidative stress.[10, 11] However the mechanisms may vary between different lung 51 

function traits.[12] 52 

 53 
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Mendelian Randomization (MR) is a method which can overcome problems of unmeasured 54 

confounding and reverse causation typical of conventional observational epidemiology.[13] 55 

MR allows causal inference through the use of genetic variants as proxies for modifiable risk 56 

factors or health outcomes.[14] MR uses genetic data, e.g. single nucleotide polymorphisms 57 

(SNPs) that are associated with an exposure (in this case lung function), as instrumental 58 

variables (IV) to assess the causal effect of the exposure on the outcome of interest (in this 59 

case cardiovascular disease ).[15]  60 

 61 

MR has multiple advantages, it uses genetic variants which are randomly allocated at 62 

conception so they can be exploited to simulate randomisation.[15] Genetic variants are not 63 

influenced by behavioural or environmental factors and are far less susceptible to bias from 64 

reverse causation. Additionally, the effects are equivalent to lifetime differences, reducing 65 

issues relating to transient fluctuations in exposures.[16] Multivariable MR (MVMR) has 66 

further advantages, it includes multiple exposures in the model allowing estimation of the 67 

direct causal effect of each exposure on the outcome. Each exposure SNP has its effect on all 68 

exposures e.g. lung function (LF) trait and height included in the MR model allowing for 69 

conditioning. MVMR is a robust method when using two exposures that could act as a 70 

confounder, mediator or collider of the exposure-outcome relationship.[17, 18] Our objective 71 

was to determine if impaired lung function causally increases the risk of cardiovascular 72 

disease. 73 

Methods  74 

 75 

Exposures – Shrine et al preliminary analysis [19] 76 

 77 

We used data from the largest currently available lung function GWAS, by Shrine et al to 78 

undertake a preliminary 2 sample Mendelian Randomization analysis. The Shrine et al 79 
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GWAS reported 279 genome wide significant SNPs (p<5×10−9) in European ancestry 80 

population and was adjusted for age, age2, height, smoking status. Full details are provided 81 

elsewhere.[19] 82 

 83 

Given that the Shrine et al GWAS adjusted for covariates of lung function and cardiovascular 84 

disease e.g. height and smoking, this can lead to collider bias as SNPs can be related to both 85 

the covariates e.g. height and to other adverse risk factors.[16]  This can lead to false positive 86 

SNP discoveries and bias (towards null effect) in MR studies.[20]  87 

Exposures – Main analysis MVMR 88 

To avoid the collider bias we used exposure SNPs discovered in GWAS that had not been 89 

adjusted for covariates in an MVMR model. To find suitable exposure SNPs we used the 90 

UKBiobank, of 502,543 individuals aged between 40 and 69 at recruitment across the UK.[21] 91 

Participants completed detailed health questionnaires and blood samples were taken for 92 

genotyping. Of these 353,315 participants have “best measures” of pre-bronchodilator FEV1 93 

and FVC, measured as absolute values in litres. We performed a GWAS on these individuals 94 

(adjusting for sex). We also performed a GWAS based on 55,907 cases of airflow obstruction 95 

(defined as FEV1/FVC <0·70) and 297,408 controls (FEV1/FVC ≥0·70). The SNPs discovered 96 

in this unadjusted GWAS were then used in a two-sample MVMR model conditioning with 97 

SNPs for covariates of exposure and outcome: standing height, body mass index (BMI) and 98 

current smoking. SNPs for these covariates were identified in pre-existing GWAS performed 99 

in the UKBiobank.[22] See online supplement for details. NB. Genetic variants function is 100 

independent of age and adjusting for it in a two sample MR model is not necessary or possible 101 

(as age is not genetically determined). All exposure SNPs were discovered in only European 102 

ancestry populations. 103 
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 104 

Outcomes 105 

We used CARDIOGRAMplusC4D GWAS based on 60,901 cases of coronary artery disease 106 

and 123,504 controls, 77% of whom were of European ancestry.[23] Coronary artery disease 107 

was defined by myocardial infarction, acute coronary syndrome, chronic stable angina or 108 

coronary stenosis of >50%. 109 

For stroke we used MEGASTROKE GWAS based on 34,217 cases of acute ischaemic stroke 110 

and 406,111 controls, all of European ancestry.[24]  There was no overlap between our 111 

exposure and outcome population samples. 112 

Statistical Analysis 113 

 114 

Statistical analysis was done using R Studio version 3.6.1 with MRCIEU/TwoSampleMR and 115 

MRInstruments packages.[17, 25]  116 

F-statistics were calculated to assess exposure instruments strength.[26] Linkage 117 

disequilibrium clumping (LD-clumping) and Steiger filtering were performed.[25] Duplicate 118 

SNPs and palindromic SNPs were removed, and all SNPs were harmonised. Proxies were 119 

identified when CAD was the outcome. See appendix 3 for more details. 120 

 121 

Main Mendelian Randomization Analysis 122 

 123 

Inverse Variance Weighting (IVW) was used for main effect estimate for both MVMR and 124 

2S-MR analyses. This IVW is a weighted regression of SNP-outcome on SNP-exposure 125 

associations combined.  126 

 127 
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Results  128 

Shrine et al preliminary analysis 129 

Due to collider bias, results from this analysis should be interpreted with caution. When 130 

adjusting for a covariate the effect estimate of the SNP with lung function will be biased 131 

by the correlation between the covariate and lung function multiplied by their 132 

association with covariate. For example, if a SNP has a strong positive effect on height it 133 

would reduce the observed effect on lung function. Adjusting for a covariate in a GWAS 134 

could induce an association between SNPs associated with the covariate and the 135 

adjusted trait that is inverse to the true association between each SNP and the 136 

covariate.[20] This bias in the SNP-exposure association will feed through to any MR 137 

estimates obtained using it and could lead to bias in the MR estimates obtained, either 138 

towards or away from the null. The implications for MR estimates from covariate 139 

adjusted GWAS are explained in detail elsewhere. [27]. Please see appendix 8 for 140 

directed acyclic graph and further detail. 141 

All analysis showed weak evidence of an effect, variable direction of effect and wide 142 

confidence intervals. These results are reported in further detail in the supplementary 143 

information. We proceeded with MVMR as our main analysis as a more robust method able 144 

to account for collider bias.  145 

MVMR 146 

Using a threshold of p<5×10-8, after quality control and LD-clumping the unadjusted GWAS 147 

of lung function in UKBiobank produced 360 SNPs for FEV1, 464 SNPs for FVC and 154 148 

SNPs for FEV1/FVC <0·70 explaining 3·6%, 4·8% and 0·9% of variance respectively. F-149 

statistic for FEV1 = 38, FVC = 40 and Ratio <0.7 = 36. For covariates, F-statistic for standing 150 

height, BMI and current smoking were 50, 39 and 32 respectively.  151 

 152 
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 153 

MVMR analysis – FEV1 and FVC as exposure, CAD as outcome 154 

Results are presented as per SD decrease in lung function trait. Analysis showed strong 155 

evidence of an increased risk of CAD per SD decrease in FVC (OR:1·32 per SD; 95% CI: 156 

1·19-1·46) as shown in Table 1. This effect did not attenuate after conditioning for BMI 157 

(1.41; 1·25-1·59) or current smoking (1·32; 1·19-1·47) but was weaker after conditioning for 158 

height (OR: 1·22; 1·03-1·44). 159 

 160 

Table 1. Multivariable MR results of FEV1 and FVC on Coronary Artery Disease and 161 

Ischaemic Stroke using UKBiobank lung function GWAS  162 

 163 

Lung 
function 
trait 

Condition  
No. SNPs 

(LF/condition) 

OR (95% CI)* for 
Coronary Artery 

Disease  

No. SNPs 
(LF/condition) 

OR (95% CI)* for 
Ischaemic Stroke 

FEV1 Nil 300/Nil 1·27 (1·12, 1·44) 291/Nil 1·11 (0·97-1·26) 

FEV1 Height 194/744 1·08 (0·89, 1·30) 193/741 1.01 (0·83, 1·22) 

FEV1 BMI 179/645 1·26 (1·08, 1·47) 185/660 1·03 (0·88, 1·20) 

FEV1 Smoking 274/15 1·26 (1·10, 1·44) 273/12 1·11 (0·95, 1·29) 

FVC Nil 391/Nil 1·32 (1·19-1·46) 384/Nil 1·12 (1·01-1·24) 

FVC Height  272/726 1·22 (1·03, 1·44) 273/728 1·04 (0·88, 1·24) 

FVC BMI 227/599 1·41 (1·25, 1·59) 227/607 1·05 (0·93, 1·19) 

FVC Smoking 359/15 1·32 (1·19, 1·47) 368/11 1·11 (1·00, 1·23) 

*per SD decrease in lung function trait 164 

OR – Odds Ratio. 95% CI – 95% Confidence Interval. LF – Lung Function 165 

 166 

There is strongPrior to any conditioning, there was evidence that reduced FEV1 increases risk 167 

of CAD (OR: 1·27 per SD; 95% CI: 1·12-1·44). However, when conditioning for height the 168 

effect size decreases with widening of the confidence interval which cross 1.0 (1·08; 0·89-169 
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1·30) Table 1. This is probably due to the pleiotropy in the MR analysis as the unadjusted 170 

GWAS would have discovered SNPs that affected LF via height. Therefore, there is limited 171 

evidence of a direct effect of FEV1 on cardiovascular risk. Conditioning for BMI (1·26; 1·08-172 

1·47) and current smoking (1·26; 1·10-1·44) made minimal difference to the estimated effect. 173 

 174 

MVMR analysis – FEV1 and FVC as exposure, ischaemic stroke as outcome 175 

There is little evidence to suggest that reduced FEV1 increases the risk of ischaemic stroke 176 

(OR: 1·11 per SD; 95% CI: 0·97-1·26) Table 1. The magnitude decreased further when 177 

conditioning for both height and BMI, although the direction remained consistent. There is 178 

evidence that a decrease in FVC increases risk of ischaemic stroke (1·23; 1·01-1·24) but the 179 

effect size and strength of evidence attenuates after conditioning for height or BMI (1·16; 180 

0·98-1·38 and 1·05; 0·93-1·19 respectively). Results for effects of FEV1 and FVC on CAD 181 

and ischaemic stroke after conditioning for all covariates together are in supplementary 182 

information appendix 4. 183 

 184 

MVMR analysis – FEV1/FVC ratio <0.7 as exposure, CAD and ischaemic stroke as outcomes 185 

Steiger filtering removed 87 SNPs for FEV1/FVC ratio <0·7 with CAD as the outcome and 96 186 

SNPs with ischaemic stroke as the outcome. We found very little evidence of an effect of 187 

liability to airflow obstruction on CVD as can be seen in Table 2. These results may be due to 188 

weak instruments, or they could be supporting the evidence that reduced FVC has more of an 189 

effect on CVD than obstructive ratio or low FEV1. 190 

 191 



 

9 

 

Table 2. Multivariable MR results of and FEV1/FVC <0·7 on Coronary Artery Disease and 192 

Ischaemic Stroke using UKBiobank lung function GWAS  193 

*per SD increase in liability to ratio <0·7194 

 195 

 196 

Discussion  197 

 198 

This MVMR study provides evidence that a one standard deviation reduction in FVC causes 199 

approximately a 20% increased risk of CAD. This finding confirms causality of previous 200 

observational associations.[5, 6] These results are unlikely to be affected by reverse causation 201 

or confounding factors due to the use of SNPs as instrumental variables. This effect was not 202 

seen in the preliminary non-MVMR analysis because of collider bias introduced to the model 203 

by covariate adjustment in the Shrine et al discovery GWAS. Our main analysis used MVMR 204 

which is a robust tool when a secondary exposure acts as a confounder, a mediator, a 205 

pleiotropic pathway and a collider.[28]  206 

Although historically, most observational studies of cardiovascular morbidity have focused on 207 

FEV1 and COPD, we found little evidence of a causal association between FEV1 and liability 208 

to obstructive ratio on CVD risk. These results mirror findings that FVC is stronger predictor 209 

of overall survival than FEV1.[3]  Our findings suggests that the observed association between 210 

low FEV1, obstruction and increased risk of CVD is unlikely to be causal. In healthy 211 

individuals, FEV1 and FVC are highly correlated. Therefore, we hypothesise that the 212 

Trait 
Condition 

upon 

No SNPs 

(LF/condition) 

OR (95% CI)* 

for Coronary 

Artery Disease 

No. SNPs 

(LF/condition) 

OR (95% CI)* 

for Ischaemic 

Stroke 

FEV1/FVC 

<0.7 
Nil  50/Nil 

 

1·00  

(0·60, 1·67) 

39/Nil 
0.96  

(0·52, 1·79) 

FEV1/FVC 

<0.7 
Smoking 49/17 

 

1.00  

(0·83, 1.21) 

38/13 
0.98  

(0·82, 1.16) 
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unknown underlying biological mechanism linking lung function and cardiovascular disease 213 

may be specific to FVC reduction.  214 

Finding modifiable risk factors for CAD is important, however the majority of therapies 215 

designed to improve lung function (such as inhaled bronchodilators) have a temporary and 216 

limited impact on FVC and so are unlikely to be sufficient to modify cardiovascular risk. 217 

Available treatments which do target decline in FVC are for specific and rare lung disease 218 

such as pulmonary fibrosis.[29]  219 

There are a number of strengths to our study, first it utilises large numbers of instrumental 220 

variables, far more than were available in previous MR studies.[30] Second we used a huge 221 

exposure sample populations and multiple robust methods and adhered to rigorous proposed 222 

STROBE guidelines for MR papers.[31]. By using MR we accounted for unmeasured 223 

confounding and reverse causation, problems typical of conventional observational 224 

epidemiology and establish causality by the use of randomly assigned genetic instrumental 225 

variables.[13, 32, 33] In addition, our study benefited from using MVMR to condition for 226 

these covariates avoiding collider bias that could have contributed to the weak evidence found 227 

in our preliminary analysis using the Shrine et al GWAS.[19] MVMR estimates the direct, 228 

rather than total effect of an exposure allowing us to show that much of the effect of FEV1 on 229 

CAD risk was due to pleiotropic SNPs affecting FEV1 via height (an established determinant 230 

of cardiovascular risk). Finally, this is the first study to use SNPs for FEV1/FVC <0·7 ratio. 231 

MR has assumptions and is vulnerable to certain biases if not used properly. The sensitivity 232 

analysis using plots, MR Egger, weighted median and mode did not indicate any violation of 233 

assumptions. The use of Steiger filtering reduces the risk of reverse causality.  234 

Limitations 235 

Our exposure GWAS and the MEGASTROKE used only those of European heritage. The 236 

CARDIOGRAMplusC4D GWAS was 23% non-European heritage. LF SNPs discovered in 237 
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European ancestral populations in the Shrine GWAS have been shown to have a smaller 238 

effect in non-European populations.[19] As our own UKBiobank GWASs used a high 239 

proportion of the same sample examining similar traits, it is likely that in a non-European 240 

population the effects would be smaller. We did not have access to another sample population 241 

to estimate the effects of SNPs discovered in our GWAS. As our SNPs were discovered and 242 

effects estimated in the same population, the effects could have been over estimated due to 243 

“Winner’s Curse” phenomena.[34] There was a reduction in number of instruments available 244 

for analysis following LD-clumping, removal of duplicates, and extraction from exposure and 245 

outcome GWAS. This reduces the strength of the instruments which may have reduced the 246 

power to show an effect of FEV1 or FEV1/FVC <0.7 ratio. In our MVMR analysis we used 247 

FEV1/FVC <0.7 ratio as an exposure because this is a commonly used, threshold of 248 

obstructive lung function. Using FEV1/FVC ratio as a continuous trait has inherent issues in 249 

MR analysis. High FEV1/FVC ratio is a sign of restriction and low FEV1/FVC ratio defines 250 

airflow obstruction, both of which are pathological states that could affect cardiovascular 251 

disease, making interpretation of the continuous variable challenging. Most MR analysis 252 

assumes a linear effect, which would be violated when using FEV1/FVC as a continuous trait. 253 

Dichotomization of continuous traits in MR studies can make interpretation of the causal 254 

estimate less reliable, but MR can still be a valid test of the causal null hypothesis for a binary 255 

exposure.[35] An assumption of MR is that SNPs only affect the outcome via the exposure. 256 

To ensure that our SNPs were not affecting our outcomes via amount smoked we checked to 257 

see if any of our lung function SNPs are found in the 15q25 locus.[36] In the MVMR analysis 258 

for FEV1 only one SNP (rs72736802) is from the locus, none from the FVC analysis. 259 

Therefore, we do not think this will affect our results. Lung function is a complex trait and 260 

SNPs affect LF via differing pathological processes.[19] The differing processes may vary in 261 

their impact on the risk of co-morbidities, perhaps reflected in the assessments of 262 
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heterogeneity. It is possible our study was limited by the number of ischaemic stroke cases in 263 

the outcome population. If there is a causal effect of lung function on ischaemic stroke, it is 264 

likely to only occur with large changes in lung function as seen with CAD.  265 

Implications 266 

There are several important implications of our findings, first is that it is Forced Vital 267 

Capacity not obstructive lung function that is causally associated with coronary artery disease. 268 

This suggests that we should focus our attention on understanding the mechanisms by which 269 

FVC causes CAD. Second given, there are limited FVC specific therapies, it is most likely 270 

that future interventions to improve CAD outcomes through modifying FVC are most likely 271 

to be achieved through environmental/ behavioural public health interventions designed to 272 

achieve optimal lung development and preventing lung function decline. Third, FVC is a 273 

widely and routinely collected clinical measure (spirometry), this study supports the call for 274 

FVC measurements to be evaluated as part of cardiovascular prognostication / secondary 275 

prevention risk assessments.  276 

It remains uncertain if lung function has a causal effect on the risk of ischaemic stroke. 277 

Although oOur MVMR models show very little weak evidence that reduced lung function 278 

increases the risk of ischaemic stroke, the evidence is weak. Larger outcome sample sizes and 279 

more SNPs may become available as genetic consortia grow which could provide more 280 

conclusive results. Future studies are needed to determine the mechanism by which FVC 281 

causes increased coronary artery disease. 282 

 283 

Conclusions 284 

There is strong evidence that reduced Forced Vital Capacity (FVC) is independently and 285 

causally associated with Coronary Artery Disease. Although the mechanism remains unclear, 286 

FVC may play an important contribution to the assessment of cardiovascular risk. Further 287 
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studies are needed to test whether interventions to improve or maintain FVC may also modify 288 

cardiovascular risk. FEV1 and Obstructive lung function do not appear to cause increased 289 

cardiovascular events, confounding and collider bias may explain previous observational and 290 

MR findings of a causal association.  291 

 292 
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