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Optimization of Imperfection-Insensitive Continuous Tow
Sheared Rocket Launch Structures

Reece L. Lincoln ∗, Paul M. Weaver †, Alberto Pirrera ‡, and Rainer M.J. Groh §

Bristol Composites Institute, University of Bristol, UK

Geometric imperfection sensitivity is the largest influencing factor that limits the design
of thin-walled monocoque cylinders. Current generation cylindrical architectures, such as
those found in rocket launch vehicles, rely on the use of sandwich or blade-stiffened structures
to reduce the imperfection sensitivity of the cylinder. Whilst much research has focused on
the creation of new knockdown factors that relate to the modern architectures used, this
paper focuses on reducing the imperfection sensitivity of a monocoque cylinder from a design
perspective. Variable-angle composites that steer the fibers in curvilinear paths offer an
opportunity to design structural load paths. By steering the fibers, the effective area over
which geometric imperfections influence the buckling behavior of the cylinder is reduced. This
diminishes the imperfection sensitivity of thin-walled cylinders undergoing axial compression.
Continuous Tow Shearing (CTS) is one such variable-angle manufacturing technique. It
does not cause common in-process manufacturing defects associated with Automated Fiber
Placement, such as fiber wrinkling or fiber buckling. In addition, there is a shearing angle-
thickness coupling that results in local thickness build-ups, which, whilst potentially increasing
the mass of the structure, enable embedded stiffeners to be created by shearing the tows.
Three genetic algorithm (GA) optimizations are carried out to maximize the imperfect mass-
specific buckling load to investigate the efficacy of CTS and tow-steered designs in reducing
imperfection sensitivity. The first optimization considers idealistic manufacturing capabilities
with a random geometric imperfection. The second and third optimizations consider current
manufacturing capabilities and are compared against one another to analyze the use of a
evolutionary hybrid GA and a probabilistic, reliability-based GA. In all three optimizations,
the optimum laminate from the GA demonstrates imperfection insensitivity.

I. Nomenclature

�:; , �:; = Fourier coefficients
� = axial stiffness
:, ; = axial and circumferential wave numbers, respectively
! = length of cylinder
" = mass of cylinder
= = periodicity
=1, =2 = maximum number of axial and circumferential wave numbers, respectively
# = number of layers in laminate
% = buckling load
A = radius of cylinder
C = total laminate thickness
C0 = nominal lamina thickness
C̄ = sheared lamina thickness
)0 = fiber angle at beginning of the period with respect to q
)1 = fiber angle at middle of the period with respect to q
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Z:; = imperfection magnitude Fourier coefficient
\ = total angle sheared
d = density of material
q = angle of fiber path with respect to global G-axis
q:; = phase-shift Fourier coefficient

Subscripts

CTS = Continuous Tow Sheared
ex = experimental
imp = imperfect
:; = axial and circumferential wave numbers, respectively
p = perfect
QI = Quasi-isotropic

Superscripts

a, b, c, d, e, m = imperfection signature a, b, c, d, e, m, respectively
: = layer number
` = mean value
f = standard deviation

Special symbols

∼ = mass-specific property

II. Introduction
Thin-walled composite cylinders are highly efficient load-bearing structures that offer weight and financial savings

when compared to current generation Li-Al fuel tanks [1]. Recent thin-walled shell research has often focused on
blade-stiffened shell architectures or skin-and-core sandwich structures [2, 3]. Unstiffened shells are less frequently used
owing to their sensitivity to imperfections in compression buckling, the prevailing static load case of launch vehicles.
The imperfection sensitivity of thin-walled shells undergoing buckling is well documented. Koiter [4] established
that geometric imperfections are the primary imperfection influencing the knockdown of buckling loads, compared to
loading or boundary condition imperfections.

Knockdown factors (KDFs), a ratio of experimental buckling load to theoretical buckling load, are often used to
describe the imperfection sensitivity of shells quantitatively. Typical results for composite cylinders are exemplified in
Fig. 1. Also plotted on Fig. 1 is the ‘lower-bound’ outlined by the SP-8007 NASA guidelines [6] that was derived from
comparing theoretical predictions of buckling loads against experimental results on isotropic cylinders. The relationship
is defined as

%ex
%cl

= 1 − 0.901
(
1 − 4−Γ

)
for

A

C
< 1500, (1)

where Γ is given by

Γ =
1

16

√
A

C
, (2)

A is the radius of the cylinder, and C is the wall thickness. For composite cylinders, de Vries [7] suggested a modified
formula that used an effective (stiffness-weighted) thickness, Ceff, defined as

Ceff =
4

√
144�11�22
�11�22

, (3)

where �11, �22, �11, �22 are the bending and in-plane stiffness terms for the laminate. Despite modifications to this
guideline, application of legacy KDFs proved too conservative for composite cylinders and lead to over designed
structures and unnecessary cost [8].
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Fig. 1 Composite cylinder data showing the variation in KDF (Vex/Vcl) as a function of r/t. Reproduced
from [5].

To move away from guidelines that have been shown to be too conservative for composite cylinder, new KDFs
have been proposed. These KDFs typically are deterministic or probabilistic. Deterministic KDFs such as those
produced by the Reduced Stiffness Method [9], Localised Reduced Stiffness Method [10], Single Boundary Perturbation
Approach, Single Perturbation Displacement Approach and Single Perturbation Load Approach [11], andWorseMultiple
Perturbation Load Approach [12] have all been developed to account for the differences in theory and experiments.
Probabilistic methods were initially proposed by Bolotin [13] due to the irregular imperfections within manufactured
shells. Monte Carlo simulations [14] are commonly used to create reliability functions of the buckling load with respect
to manufacturing tolerances, material variability and historic imperfections. However, the computational cost of Monte
Carlo simulations have lead many researchers to implement the First-Order Second-Moment (FOSM) method that
uses a first-order Taylor series to approximate the objective function linearized at the mean values of chosen random
variables [15].

Whilst the implementation of new KDFs has led to less conservative designs, limited research has been carried out
into removing or minimizing the imperfection sensitivity of axially-compressed monocoque cylinders from a holistic
design perspective. Analytical work by Mang et al. [16] and Schranz et al. [17] has shown that the transition from an
imperfection-sensitive structure to an imperfection-insensitive one is possible through the use of a stiffening spring
attached to the structure. The authors also elucidated that the post-buckling path of such a structure can be influenced by
the “load coefficients associated with the secondary (post-buckling) path” [16].

A class of manufacturing techniques have been shown to offer the opportunity to eliminate the need to rely heavily
on empirical or computational knockdown factor design guidelines by creating a cylinder that is inherently imperfection
insensitive. This manufacturing technique creates composite parts that are known as Variable Angle Tow (VAT)
composites, which steer fiber-reinforced tapes in curvilinear paths rather than straight trajectories. VAT composites
enable tailoring of load paths across a structure which can reduce the likelihood of instabilities initiating. For example,
VAT composites documented to increase the mechanical performance of composite plates without a weight penalty
[18–21]. White and Weaver [22] have shown that variable-stiffness laminates improve the post-buckling stability of
curved shells. Additionally, investigations into the imperfection sensitivity of these shells showed that “perturbing the
un-deformed mesh with a component of the linear buckling mode (using a range of positive and negative scaling factors)
did not result in an unstable equilibrium path” [22].

The most prevalent VAT manufacturing method is currently Automated Fiber Placement (AFP). Wu et al. [23, 24]
have shown that using AFP with large steering radii to create VAT composite cylinders reduces the sensitivity to
geometric imperfections by a large margin—KDFs were on average of 0.99 (comparing linear finite element analysis
and experimental results). However, process-induced defects are commonplace due to the in-plane bending of tows as
the AFP head moves along the curved tow path. The distance of each fiber trajectory from the reference path is different,
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Fig. 2 AFP and CTS tow placement schematic where (a) is AFP and (b) is CTS. Reproduced from Ref. [26].
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Fig. 3 CTS tow being sheared through a shearing angle ) . Reproduced from Ref. [26].

causing fiber buckling on the inside of the tow and fiber straightening on the outside of the tow [25]. Furthermore,
tessellation of laid tows is not possible, leading to either tow gaps or tow overlaps. As a result, the in-plane bending of
tows intrinsically limits the steering radius prior to any process-induced defects occurring. Fiber wrinkling, tow gaps
and discontinuities are common defects that still challenge the use of curvilinear fiber paths created with AFP.

To counter the process-induced defects associated with AFP, Kim et al. [26] developed the Continuous Tow Shearing
(CTS) process. The differences in tow placement strategy between traditional AFP and CTS is shown in Fig. 2. AFP
heads are restricted to remain perpendicular to the designed tow path, keeping the tow width constant but causing
buckling and straightening if the radius of steering curvature is too small.

In contrast, CTS does not constrain the width of the tow and allows the tows to shear in the plane of placement, the
head remaining perpendicular to the initial tow trajectory. This key difference allows perfect tessellation of tows instead
of introducing gaps and overlaps. Gaps and overlaps play a significant part in the failure of AFP components [27]. By
eliminating these common defects, the shearing process offers a considerable advantage over AFP. A by-product of the
shearing action is that there is a thickness build-up perpendicular to the fiber path, as shown in Fig. 3.

The thickness build-up relationship is
C =

C0
cos(\) , (4)

where C is the thickness of the lamina once sheared, C0 is the nominal lamina thickness and \ is the shearing angle. The
practical limit to the shearing angle is set by manufacturing constraints to be 70° [28], but approaching this angle induces
imperfections that could be detrimental to the mechanical performance. The thickness build-up in CTS adds another
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Fig. 4 Single lamina being sheared with the CTS process where the left image is 0〈20|70〉3 and the right image
is 90〈0|30〉2.

dimensionality of the design of cylinders, as it opens up the ability to embed hoops, stringers, orthogrids and isogrids
within the structure during manufacture. This is not possible with AFP as it does not have the thickness-coupling
characteristic of CTS and the steering radius limits the frequency of fiber angle variation.

The present work implements the CTS manufacturing method in three optimizations to maximize specific, imperfect
buckling loads. The optimization routines used are Genetic Algorithms (GAs). Each GA incorporates imperfections
into an FE model to endeavor to converge on an inherently imperfection insensitive CTS cylinder. The optimization of
VAT laminates has shown significant weight-saving capabilities due to the enhanced mechanical properties [29–31], but
the seeding of imperfections into the optimization is rare in the literature. Lindgaard et al. [32] optimized straight-fiber
cylinders with the “worst” imperfection, taken to be a combination of eigenmodes. This approach gives conservative
responses that may not be reflected in the real world; as the authors state “realistic predictions of the collapse load with
this method can only be gained with knowledge about the real typical geometric imperfections” [32]. Metamodels [33]
are often used in the optimization of multi-variable design problems and have been used to optimize variable-stiffness
cylinders [34]. However, the set-up of a metamodel is complex and the issue of imperfection choice still looms. This
work attempts to consider both superimposed eigenmode imperfections and realistic composite cylinder imperfections
from post-manufacturing measurements in multiple GAs.

The remainder paper is structured as follows. Section III covers the theory and nomenclature of CTS and the
parameterization of the three optimizations. The results and discussion of the optimizations are collated in Section IV.
Conclusions are summarized in Section V.

III. Theory

A. Continuous Tow Shearing
The fiber-angle convention used herein is similar to that of Gürdal and Olmedo [18] which was used to describe

curved fiber paths on a flat plate. As CTS cylinders have a coupling between the fiber angle and thickness, thereby
allowing the possibility of embedding stiffeners due to local thickening as the tow is sheared, an additional parameter is
needed to define how many times these embedded stiffeners occur. This parameter is termed periodicity and denoted by
the letter =. The change in fiber angle is linear across the period. The remaining nomenclature is consistent with that in
Ref. [18] so the fiber path is described by

q〈)0 |)1〉=, (5)

where q is the clockwise angle from the x-axis that defines the unsheared direction, )0 is the initial shearing angle
measured from q, and )1 is the shearing angle in the middle of the period. Figure 4 shows the fiber paths that are
associated with different q, )0, )1 and = values for a single lamina.

It is important to note that the shearing of angled composite ()0 ≠ 0) tows within the CTS process is currently
untested. For the sake of illustration, a starting angle of )0 = 30° in a 0〈30|50〉1 ply requires a ‘lead-up’ from 0° and the
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Fig. 5 Differentiation between current and idealisticmanufacturingmethodswhere: (a) is a 90〈0|50〉1 laminate
for both methods, (b) is a 90〈30|50〉1 laminate for the current manufacturing method and (c) is shearing
90〈30|50〉1 for the idealistic manufacturing method. For all lamina sheared, the enclosed area is the final ply
size. Note the ‘preshearing’ necessary in Figure 5b to start at 30° where the grey area would be scrap material.

Table 1 Geometry of cylinders, derivative of an Ariane 6 interstage [37] and material properties of respective
shells. C1 material is T800/MTM49-3, C2 material is IM7/8552. Both cylinders have 8 plies.

r L t �11 �22 a12 �12 �13 �23 d

[mm] [mm] [mm] [MPa] [MPa] [MPa] [MPa] [MPa] [g/mm3]

C1 400 1200 1.040 122000 7320 0.31 4900 4900 3230 1.54×10−3

C2 300 1040 1.048 138171 9722 0.356 4900 4900 4900 1.57×10−3

portion of the lamina before 30° would need to be removed before being placed on a mandrel. As previous research [35]
has investigated the possible benefits of advancing the manufacturing capabilities to include unsheared angle plies, this
is used in optimization 1 of the present work. The shearing of angle plies is herein called the ‘idealistic’ manufacturing
method. The existing manufacturing methodology is herein referred to as the ‘current’ manufacturing method. Figure 5
shows the differences between the manufacturing methods.

The mass, <, of a CTS cylinder with # layers, radius A , length ! and density d with current manufacturing ability is

< = 2cA!d
#∑
:=1

C:

) :
1 − )

:
0

∫ ) :
1

) :
0

sec(D) 3D, (6)

where C: , ) :
0 and ) :

1 , are the nominal thickness, initial shearing angle and final shearing angle (in radians) of the :-th
layer, respectively. Interestingly, the periodicity, =, does not appear in this expression, indicating that < is independent
of =, a direct measurement of the number of embedded stiffeners. This effect is contrary to typical use of stiffening
elements, where more stiffeners leads to an increase in mass.

B. Optimization formulation
The FE solver Abaqus [36] was used to determine the buckling loads of the composite cylinders throughout the

optimizations. The material and geometric properties of the cylinders are listed in Table 1. Reduced integration,
four-noded elements (S4R) with enhanced hourglassing control were used within the Abaqus environment and a mesh
convergence study determined the optimal mesh size [35]. Abaqus *STATIC with NLGEOM=ON was used to calculate
the buckling load of cylinders with seeded imperfections by monitoring the FE solver until the first null eigenvalue. The
minimum step size was kept relatively large (1 × 10−4) to converge quickly and offer conservative estimates of buckling
loads. Python scripting was utilized to pre-process input files, such as defining element-by-element steered fiber angles,
and post-process results, in addition to executing the genetic algorithm.

The three optimizations performed have three distinct aims, and as such, are formulated differently to achieve these
aims. Three optimizations are presented as they represent an increasing level of manufacturability, reliability, and
computational cost. The first optimization utilizes cylinder C1 from Table 1, the second and third optimizations use
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cylinder C2. The change between the two cylinders is related to current manufacturing capabilities. The general layup
of the cylinder is constrained to be a balanced, symmetric laminate described by

[q1 ± 〈)01 |)11〉=1 , q2 ± 〈)02 |)12〉=2 ]s. (7)

For all optimizations the number of elite children was 2, crossover fraction and mutant fraction was 70% and 30% of
the remaining population, respectively. These values are similar to literature [22, 31]. For optimization 1 the population
size and number of generations was 50. For optimization 2 the population size was 50 and the number of generations 25.
For optimization 3 the population size was 30 and the number of generations was 20. The choice of population size and
generation number was to keep the simulation time under 7 days for the Abaqus simulations.

1. Optimization 1
The aim of the first optimization was to investigate the possibility of improving the specific buckling load of an

imperfect cylinder through an imperfection-seeded optimization. Lincoln et al. [35] performed preliminary investigations
into the use of CTS as a mechanism to reduce the imperfection insensitivity of thin-walled, monocoque cylinders
and found that, with random geometric imperfections, CTS cylinders can have a specific, imperfect buckling load
8% higher than a QI cylinder. A QI cylinder was used as the benchmark as it is the optimal straight-fiber cylinder
layup for axial compression buckling [38]. The preliminary search was not exhaustive however, so a GA was chosen
to survey a larger design landscape. Optimizations of fiber angles are known to be non-convex design problems [32]
and can produce different solutions depending on the initial conditions. The use of lamination parameters instead
of fiber angles transforms the landscape to a convex space [39], but requires a second stage to the optimization to
convert the lamination parameters to realistic fiber paths. This two-step process was considered prohibitive at this stage,
particularly considering the conversion from lamination parameters to fiber paths for a variable-angle, variable-stiffness,
variable-thickness cylinder is a computationally complex task. The optimization is formulated as follows:

max
G

%̃imp (G) ·min(1, 3 (G))3

Variables G = [q1, )01 , )11 , =1, q2, )02 , )12 , =2]
s.t. q8 = {0, 90} (8 = 1, 2)

0 ≤ )08 ≤ 90 (8 = 1, 2)
|)18 − )08 | ≤ 70 (8 = 1, 2)
when q8 = 0, =8 = 0, 1, 2, ..., 12 (8 = 1, 2)
when q8 = 90, =8 = 0, 1, 2, ..., 25 (8 = 1, 2)

3 (G) = �̃CTS

0.9 · �̃QI

(8)

where %̃imp is the specific, imperfect buckling load of a cylinder and 3 (G) is an axial stiffness penalty function, reducing
the fitness function value if the axial stiffness of the cylinder is less than 90% of that of a QI cylinder. This removes
cylinders from the gene pool that have low axial stiffness with a high buckling load—i.e. those that effectively act as
axial ‘springs’. The exponent 3 was chosen after a trial-and-error study of different integers. The maximum periodicity
for q = 0 and q = 90 is determined by the minimum shearing radius (taken to be 50 mm [40]) and the length in the
direction of q. For q = 90 the circumferential length is 2513 mm. This caps the maximum number of )0 → )1 → )0
transitions (i.e. periods) to be 25, as the shortest length over which a period can occur is 100 mm. The imperfection
used was a superposition of the first twenty eigenmodes of a QI cylinder, each scaled to 1/20th of a wall thickness.

2. Optimization 2
The aim of optimization 2 was to explore the current manufacturable design landscape and include a computationally

inexpensive imperfection robustness test. The cylinder geometry was modified to accommodate physical manufacturing
constraints (ply table size and autoclave size). In addition, the current manufacturing constraints do not allow off-axis
plies to be sheared, therefore both )08 and )18 (8 = 1, 2) must be less than 70°. The maximum periodicity has decreased
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as the length and circumference of the cylinder have decreased. The optimization is formulated as follows:

max
G

mean
(
%̃imp (G)

)
·min(1, 3 (G))3

Variables G = [q1, )01 , )11 , =1, q2, )02 , )12 , =2]
s.t. q8 = {0, 90} (8 = 1, 2)

0 ≤ )98 ≤ 70 ( 9 = 0, 1, 8 = 1, 2)
when q8 = 0, =8 = 0, 1, 2, ..., 10 (8 = 1, 2)
when q8 = 90, =8 = 0, 1, 2, ..., 18 (8 = 1, 2)

3 (G) = �̃CTS

�̃QI

(9)

where symbols have the same meaning as in Eq. 8. The fitness function evaluation has changed as two imperfections are
used throughout the optimization. The mean value of specific imperfect buckling load across these two imperfections
is used. The penalty function has increased the threshold for a feasible design so that the axial stiffness must equal
that of a QI laminate. The imperfections used were modified to be two different combinations of the first twenty
eigenmodes of a QI cylinder. This meant that each cylinder was run through the FE solver twice. After each generation
the two imperfections were changed to test the robustness of the elite children and crossover children from the previous
generation. The goal of this novel ‘dynamic GA’ was to mimic an evolutionary process whereby species (CTS cylinders)
are continuously being tested by new and changing stressors (imperfections), and the species that survive (remain elite)
for the largest set of stressors, are considered to be the best solution. Due to the change in imperfection from generation
to generation, the optimization problem is not constant and therefore the GA is not expected to converge. In this sense
this exercise is more akin to a guided design landscape exploration.

3. Optimization 3
The aim of the third optimization was to incorporate a well-known probabilistic design tool into the GA to improve

the robustness of the GA-optimum cylinder. This optimization is referred to as a ‘reliability-based GA’ for this reason.
To do this, a forward-difference First-Order Second-Moment (FOSM) analysis was used in combination with the GA to
evaluate the fitness of a given cylinder. For a full description of the FOSM methodology and implementation, the reader
is directed towards References [41–43]. The fundamentals of the approach will be discussed after a description of the
imperfections used. To create a more realistic set of imperfections, a repository of Fourier coefficients that describe the
imperfections of six manufactured composite cylinders was used [41]. The Fourier coefficients, �:; and �:; , are used to
describe a double half wave cosine function

I(G, H) = C
=1∑
:=0

=2∑
;=0

cos
(
:c
G

!

)
·
(
�:; cos

( ;H
A

)
+ �:; sin

( ;H
A

))
, (10)

where I is the imperfect cylinder surface of a cylinder of thickness C, length ! and radius A. The G and H coordinates
are the cylinder length and circumference, respectively. The maximum number of axial, : , and circumferential, ;,
wave numbers are given by =1 and =2, respectively. Kriegesmann et al. [14] suggested using a phase shift approach for
composite cylinders as it is more appropriate for probabilistic analyzes. The new formulation of the half wave cosine
phase shift is

I(G, H) = C
=1∑
:=0

=2∑
;=0

Z:; cos
(
:c
G

!

)
· cos

( ;H
A
− q:;

)
, (11)

where Z:; and q:; are described by the relationships

Z:; =

√
�2
:;
+ �2

:;
, (12)

q:; = arctan

(
�:;

�:;

)
for �:; > 0, (13)
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q:; = arctan

(
�:;

�:;

)
− c for �:; < 0, (14)

q:; = sgn
(
�:;

)
· c

2
for �:; = 0. (15)

For the data set considered, =1 and =2 are 10 and 20, respectively. This represents # = (10 + 1) · (20 + 1) · 2 = 462
different variables to describe the imperfections of a cylinder. These 462 coefficients are the random variables - that
are used within the FOSM approach. The buckling load predicted by the FOSM method, %̃FOSM

imp , which will be the
value within the fitness function, is given by

%̃FOSM
imp = %̃

`

imp − 1 · %̃
f
imp, (16)

where %̃`

imp is the buckling load of the mean imperfection signature, 1 is a factor that defines the chosen reliability limit
and assumptions of distribution, and %̃f

imp is the buckling load of imperfection signature representative of a standard
deviation of the imperfection data set. It is assumed the distribution of buckling loads is normal. The calculation of
%̃f
imp is with

%̃f
imp =

√
var(%̃imp (X)), (17)

where the var is the variance of specific, imperfect buckling loads as a function of the random variables, X. The variance
is calculated by

var(%̃imp (X)) ≈
#∑
8=1

#∑
9=1

m%̃imp

m-8

m%̃imp

m- 9

Cov(-8 , - 9 ), (18)

where the numerical derivatives m%
m-8

and m%
m- 9

and the covariance matrix Cov(-8 , - 9 ) are to be calculated. Clearly, with
# = 462 this is computationally expensive. To circumvent this issue the Mahalanobis transformation is used [42] to
transform a vector of random variables X to a vector of uncorrelated variables z with var of 1 and mean value 0. The
transformation is given by

X = Cov
1
2 (z + -) and z = Cov−

1
2 (X − -), (19)

where - is the mean vector of random variables, X, calculated by

- =
1
<

#∑
:=1

G:8 , (20)

where < is the number of cylinders in the data set with a unique vector X. In this example, Cov is rank-deficient as the
number of observed cylinders (6) is smaller than the number of random variables (462). Thus, a spectral decomposition
is necessary to calculate the root of Cov described as

Cov
1
2 = B = QD

1
2 , (21)

where Q is the eigenvector matrix of Cov and D is the diagonal matrix containing eigenvalues of Cov. Eq. 19 is
rewritten to

X = B(z + -) and z = B(X − -). (22)

This reduces the 462 variables needed to describe the distribution of imperfections across six cylinders are reduced
to five variables. The variance equation in Eq. 18 can be rewritten to be in terms of the reduced vector X as

var(%̃imp (X)) ≈
5∑
8=1

(
m%̃imp

m-8

)2

var(-8). (23)

As the Mahalanobis transformation assumes the distribution of variables has a variance of 1, var(-8) is equal to 1.
The numerical derivatives are calculated with a forward difference method, which in the general formulation is

m%̃imp

m-8
=
%̃imp (-8 + ΔI8) − %̃imp (-8)

ΔI8
, (24)
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Table 2 Reliability % and 1 factors for a normal distribution.

Reliability % 50 90 99 99.9 99.99 99.999

b 0 1.2815 2.3263 3.0902 3.719 4.2648

where %̃imp (-8 + ΔI8) is the specific, imperfect buckling load evaluated with the 8-th reduced imperfection signature and
%̃imp (-8) is the specific, imperfect buckling load evaluated at the mean imperfection signature. The elements of vector z,
ΔI, are taken to be approximately 1.5, as var and standard deviation of the post-Mahalanobis transformation variables is
1. The five imperfections signatures are herein noted by superscript 0, 1, 2, 3 and 4 and the mean imperfection signature
is denoted by the superscript <. Therefore, the specific, imperfect buckling load with an imperfection signature of a
standard deviation of the data set (%̃f

imp) can be rewritten as

%̃f
imp =

(( %̃0
imp − %̃

<
imp

1.5

)2
+

( %̃1
imp − %̃

<
imp

1.5

)2
+

( %̃2
imp − %̃

<
imp

1.5

)2
+

( %̃3
imp − %̃

<
imp

1.5

)2
+

( %̃4
imp − %̃

<
imp

1.5

)2
) 1

2

. (25)

The imperfection signatures that are used to evaluate %̃0,1,2,3,4

imp are generated with the double wave wave cosine
phase shift function with appropriate Fourier coefficients

I(G, H)0 = C
=1∑
:=0

=2∑
;=0

Z0:; cos
(
:c
G

!

)
· cos

( ;H
A
− q0:;

)
, (26)

where Z0
:;
and q0

:;
are the Fourier coefficients after the Mahalanobis transformation in Eq. 22.

The total number of evaluations per CTS laminate is six (one mean, five derivatives). The optimization is formulated
as follows:

max
G

%̃FOSM
imp (G) ·min(1, 3 (G))3

Variables G = [q1, )01 , )11 , =1, q2, )02 , )12 , =2]
s.t. q8 = {0, 90} (8 = 1, 2)

0 ≤ )98 ≤ 70 ( 9 = 0, 1, 8 = 1, 2)
when q8 = 0, =8 = 0, 1, 2, ..., 10 (8 = 1, 2)
when q8 = 90, =8 = 0, 1, 2, ..., 18 (8 = 1, 2)

3 (G) = �̃CTS

�̃QI

(27)

where symbols have their previous meaning. The specific, imperfect buckling load of the FOSM methodology, %̃FOSM
imp ,

calculated from Eq. 16 assumes a normal distribution and the reliability factor, 1, is set to consider 99.9% of cases. The
relationship from reliability % to 1 factor is shown in Table 2.

IV. Results

The results and discussion of all three optimizations are collated in this section. As each optimization had a
specific aim, the post-processing and investigations around the optimum results vary. However, the trends towards
imperfection insensitivity by using the CTS manufacturing technique through an optimization with geometrically
imperfect thin-walled cylinders shows novel and promising results. These optimizations of thin-walled cylinders with
deformations seeded into the geometry are referred to as ‘imperfect-geometry’ optimizations herein. As the QI cylinder
is the optimal composite laminate for thin-walled cylinder buckling, it is used in the present work as the benchmark for
the optimizations. The perfect eigenvalue analysis for C1 and C2 cylinder geometries and material systems are collected
in Table 3. The key values are the specific, perfect buckling loads, %̃p. If an imperfect CTS cylinder can approach
the perfect behavior of a QI cylinder across a range of imperfections on a mass-specific basis then the uncertainty of
designing thin-walled shells decreases, leading to mass and financial savings.
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Table 3 Perfect eigenvalue analysis for C1 andC2 geometries andmaterial systemswith aQI layup [±45, 0, 90]s.

%p �QI m %̃p �̃QI

[kN] [GPa] [kg] [kN / kg] [GPa / kg]

C1 172.0 47.25 4.830 35.61 9.78
C2 198.6 53.26 3.225 61.57 16.51

Table 4 Results from optimization 1 from two runs of the optimization for cylinder C1.

Layup m %̃imp �̃CTS

[kg] [kN / kg] [GPa / kg]

GA1.1 [90 ± 〈50|109〉22, 90 ± 〈10|41〉10]s 5.523 30.00 9.64
GA1.2 [0 ± 〈32| − 12〉12, 0 ± 〈53|94〉11]s 5.347 29.57 9.96

A. Optimization 1
The aim of optimization 1 was to trial the possibility of using an optimization with a built-in imperfection to

increase the specific, imperfect buckling and test the robustness of the optimum results. The imperfection used was a
superposition of the first 20 eigenmodes of a QI cylinder, all scaled to 1/20th of a nominal wall thickness. Cylinders
with this imperfections are referred to as ‘imperfectQI’. The optimization was conducted on cylinder C1. The results
from two runs of optimization 1 are collected in Table 4.

The results show that on average, the imperfectQI CTS cylinders have 84% of the buckling load of a perfect (C1) QI
cylinder for the same stiffness. To investigate the robustness of the GA-optimum laminates, a comparison of the perfect
buckling load, a pseudo-random imperfection signature (referred to as an imperfectRand cylinder) and the previously
used imperfection field (imperfectQI) was carried out. Figure 6 plots the end-shortening against the force applied for
these three cases.

Interestingly, the imperfectQI cylinder has a higher buckling load than the perfect cylinder. Thus, the use of a single
imperfection throughout the optimization resulted in a laminate that has a higher buckling load with an imperfection
than without. To investigate this phenomenon further, a brief study into the pre-buckling strain field of the two
imperfect cylinders is conducted. The pre-buckling strain field has been shown to have a first-order correlation with the
imperfection sensitivity of CTS cylinders [35].

Figure 7 presents the results of this study. Each point on the graph represents an analysis of GA1.1 with the
respective imperfection field applied, scaled to the value of imperfection magnitude (x-axis). The buckling load (Fig. 7a)
was calculated as described in Section III. The maximum strain difference (Fig. 7b) was calculated by performing a
nonlinear step on the imperfect structure up to 0.9 mm (considerably lower than the buckling displacement) and then
recording the strain values. This allowed a direct comparison between the pre-buckling strain values of GA1 with
QI-derived imperfections and random imperfections.

The buckling load of the imperfectQI GA1.1 does not change as the imperfection magnitude increases to twice the
wall thickness. This is a novel result: the GA with a seeded imperfection converges on a laminate that is not influenced
by the presence of a large imperfection. The implications of this result is that the random nature of imperfections
throughout the manufacturing process could be designed against. It could be possible to include common manufacturing
defects in an imperfect-geometry optimization, then the GA can locate a laminate that is inherently insensitive to that
imperfection signature. This does not create a generally imperfection-insensitive cylinder (a cylinder that is insensitive
to many types of imperfections), but the effective removal of imperfection sensitivity for a given imperfection field
through a GA is promising. Another approach to removing imperfection sensitivity could be to embed a dominant
imperfection during the manufacturing process that is actively designed against. The inclusion of an imperfection to
increase the load carrying capacity of a structure is comparable to modal nudging [44], whereby a small geometric
change in the stress-free geometry of a structure improves the mechanical performance of the structure. Cox et al. [44]
embedded stable, post-buckled deformation modes into the geometry to improve the load carrying capacity of frame
structures.

The relationship between buckling load and pre-buckling strain field is found by comparing Fig. 7a and Fig. 7b.
As the imperfection magnitude increases for imperfectQI GA1.1 (solid line) the maximum difference between strain
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Fig. 7 Relationships between (a) normalized buckling load and imperfection magnitude and (b) normalized
maximum strain difference imperfectionmagnitude for two imperfection signatures, imperfectQI (solid line) and
imperfectRand (dashed line) in the layup GA1.1.

values slowly increases to be 5% larger than the perfect cylinder. This suggests the shearing process has created a
non-uniform pre-buckling stiffness field that dominates the pre-buckling response when the QI-derived imperfection
field is present. Comparing this trend with the random imperfection signature, the maximum difference between strain
values monotonically increases up to 19% more than the perfect cylinder as the imperfection magnitude increases.
This reinforces a previous hypothesis that the pre-buckling strain field can be used as an indication of imperfection
sensitivity: the more sensitive the pre-buckling strain field is to imperfections, the more sensitive the buckling load is
to imperfections [35]. This opens up the possibility of using the pre-buckling strain as a variable to optimize against.
The benefit of this approach would be a reduction in computational cost as a small, nonlinear step (e.g. to 0.5 mm
displacement) is less than a full nonlinear analysis to the bifurcation point.

B. Optimization 2
The aim of optimization 2, based on the results of optimization 1, was to use a dynamic GA that changed the

imperfection in each generation with the purpose of finding a cylinder that had a high specific, imperfect buckling load
across a range of imperfections. The optimization included the current manufacturing capabilities, a smaller geometry
and different material system to enable a manufacturable design. As the imperfection used was variable, the elite
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Table 5 CTS cylinders from optimization 2 that had the highest fitness in some generations for cylinder C2.

ID Layup m %̃imp �̃CTS

[kg] [kN / kg] [GPa / kg]

1 [0 ± 〈20|25〉2, 90 ± 〈35|25〉9]s 3.613 53.22 14.10
2 [90 ± 〈0|70〉16, 0 ± 〈15|0〉3]s 3.922 50.13 18.82
3 [90 ± 〈70|55〉13, 0 ± 〈10|15〉5]s 5.233 62.22 16.69
4 [0 ± 〈10|15〉8, 90 ± 〈55|45〉13]s 4.174 52.55 16.65
5 [0 ± 〈5|25〉2, 90 ± 〈65|60〉9]s 5.181 59.16 15.56
6 [0 ± 〈15|0〉1, 0 ± 〈45|65〉4]s 4.519 50.24 15.14
7 [90 ± 〈70|25〉13, 0 ± 〈0|0〉5]s 4.250 52.04 19.53
8 [0 ± 〈0|5〉10, 0 ± 〈60|70〉9]s 5.481 53.58 13.09
9 [90 ± 〈60|35〉12, 0 ± 〈0|20〉4]s 4.101 49.39 16.90

children (i.e. the laminates with the highest fitness) changed each generation. In addition to changing the imperfection
in each generation, two different imperfection signatures were used. The fitness value was evaluated as a mean of the
two imperfections. The laminates with high fitness values are shown in Table 5.

General trends from the optimization show that embedded orthogrid structures (CTS laminates that have both q = 0
and q = 90) appear to be favorable for imperfection sensitivity. This trend is in line with common industry practice
to have hoops and stringers in many thin-walled cylindrical designs. All cylinders listed in Table 5 have 80% of the
buckling load of a perfect QI cylinder on a mass-specific basis. One cylinder, Laminate 3, has a higher specific buckling
load than a perfect QI cylinder. The optimization results also indicate that when q = 90, the solver favors higher levels
of shearing, resulting in high specific imperfect buckling loads. This is likely due to the embedded stiffeners created in
the shearing process when q = 90. There does not appear to be a trend for placing the embedded stringers/rings on the
outside or inside of the laminate. Layers with q = 0 typically have a lower periodicity (fewer rings) and q = 90 layers
have a higher periodicity (more stiffeners).

There is a general trend to have a highly sheared ()0 and/or )1 > 50) set of plies within the laminate. This
trend alludes to a key trade-off in optimizing for a generally imperfection insensitive cylinder with a high specific
imperfect buckling load. As the the specific buckling load is proportional to thickness (%/< ∝ C2/C ∝ C), increasing
the thickness of the cylinder will typically increase the specific buckling load. However, a ‘fully sheared’ laminate—
)0 9

= )1 9
= 70 ( 9 = 1, 2)—with a mass of 9.43 kg requires an imperfect buckling load of 725 kN to have a specific,

imperfect buckling load that is 80% of the perfect C2 QI cylinder. This laminate architecture would also have no
embedded stiffeners, reducing the symmetry-breaking effect of shearing and thereby increasing the imperfection
sensitivity.

Laminate 1 was taken forward for a general robustness study and compared against a QI cylinder. Laminate 1 has
lower shearing angles when compared to other high fitness designs, but the low shearing angle reduces the likelihood
of imperfections during the manufacturing process. As the manufacturing of a CTS cylinder is a novel undertaking,
reducing the likelihood of imperfections was considered a priority in selecting a laminate. Laminate 1 from Table 5 is
herein referred to as GA2.1.

To test the reliability of the laminate GA2.1 and give an indication to the robustness of the dynamic GA, the buckling
load of 1000 geometrically imperfect GA2.1 cylinders was determined. A QI cylinder is also analyzed in the same way
for comparison. The geometric imperfections used are pseudo-random imperfections with maximum magnitude of one
wall-thickness. Using random geometric imperfections allows for direct comparison between GA2.1 and a QI cylinder
as an imperfection signature derived from QI eigenmodes would bias results against the QI cylinder. The same set of
1000 random imperfections are used for GA2.1 and the QI laminate. Figure 8 shows the histogram and overlaid normal
probability distributions for GA2.1 and QI cylinders.

Table 6 shows that in all key metrics GA2.1 outperforms the QI cylinder. %̃`

imp for GA2.1 is 1.1% higher than a QI
cylinder. GA2.1 demonstrates good reliability characteristics across a range of imperfections, exemplified by the 43%
decrease and 81% decrease in standard deviation and variance, respectively.

Comparing the results of this reliability analysis against the dynamic GA, %̃`

imp (from the reliability analysis) is
0.5% higher than %̃imp (from the dynamic GA), indicating that the dynamic GA trends towards generally imperfection
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(a) (b)

Fig. 8 Histogram and normal probability distribution functions for preliminary reliability test of (a) GA2.1
and (b) QI.

Table 6 Mean, standard deviation and variance of imperfect buckling load, %imp, and specific imperfect
buckling load, %̃imp. Δ% are percentage differences.

%
`

imp %f
imp var(%imp) %̃

`

imp %̃f
imp var(%̃imp)

[kN] [kN] [kN / kg] [kN / kg]

GA2.1 193.4 4.16 84.7 53.5 1.15 0.0234
QI 170.6 5.72 178 52.9 1.78 0.0552
Δ% +13% -32% -71% +1.1% -43% -81%

insensitive cylinders. The Fourier coefficients from a representative pseudo-random imperfection field and randomly
selected superimposed QI eigenmodes are presented in Figure 9.

It is clear that the imperfections used have different dominant modes. For the pseudo-random imperfections,
Z0,2= (= = 1, 2, 3, ..., 10) modes are stronger than most other modes. However, the overall trend shows that many
Fourier coefficients have equal weighting. The Fourier coefficients for the first twenty eigenmodes of a QI cylinder
are dominated by higher order axial waves. Fourier modes that have Z values of less than a magnitude 0.005 have
been removed from the graph. The Fourier modes shown in Fig. 9 are varied and indicate that GA2.1 is insensitive for
different imperfections. However, the Fourier modes exemplified in Fig. 9 are not wholly representative of imperfections
seen in the manufacturing of composite cylinders. A more representative set of Fourier coefficients is plotted in Fig. 10.

Figure 10 shows that lower-order Fourier modes are the dominant modes in composite manufacturing. An
imperfect-geometry optimization that considers lower-order Fourier modes could lead to a cylinder than is insensitive to
these common manufacturing defects.

C. Optimization 3
The purpose of optimization 3 was to incorporate real manufacturing data into a reliability-based GA. Similar to

optimization 2, each laminate generated by the GA was evaluated multiple times. As explained in Section III.B.3, there
were 6 imperfection signatures (1 mean, 5 derivatives) for each laminate. The target maximum imperfect buckling load,
%̃FOSM
imp , was calculated by Eq. 16. Table 7 presents the results of the optimization against a nominal QI cylinder under

the same common manufacturing low-order Fourier modes.
The converged value of the GA has significantly higher %̃FOSM

imp values than the QI baseline. Whilst the QI cylinder is
not an optimized laminate for the imperfection signature used, it represents a laminate architecture that is commonly
used in the design of thin-walled composite cylinders [37]. The significantly higher %̃FOSM

imp can be attributed to high
mean buckling load and the low standard deviation and variance associated with GA3.1. An imperfection insensitive
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Fig. 9 Fourier modes for (a) pseudo-random imperfection field and (b) random magnitudes of the first twenty
eigenmodes of a QI cylinder. All magnitudes of imperfection were scaled up to one wall thickness.
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Fig. 10 Example Fourier coefficients for a manufactured composite cylinder, reproduced from [41].

cylinder has been determined through a reliability-based GA optimization. The insensitivity results from the low
variance and high reliability load. The KDF, (%̃FOSM

imp /%̃p) of GA3.1 is also higher than the QI baseline, indicating
imperfection insensitivity.

GA3.1 has similar characteristics to previous designs in optimization 2: high shearing in q = 90 plies and a mixture
of q = 0 and q = 90 plies. The q = 0 layer has higher periodicity found in optimization 2, possibly due to the GA solver
favoring the circumferential stiffening of embedded rings. As the imperfection field is dominated by low-order Fourier
modes with ; = 0, 1, ..., 5 and : = 0, 1, the high frequency of rings may act against both the bulging and ovalization
modes.

V. Conclusion

In view of the imperfection sensitivity of thin-walled composite cylinders, the CTS manufacturing technique has
been employed to reduce said sensitivity through three imperfect-geometry optimizations. The first optimization used a
superimposed eigenmode imperfection signature in a GA framework. The results show that the GA-optimum (laminate
GA1.1) has a buckling load of 84% of a perfect QI cylinder, the optimal straight-fiber laminate for a cylinder in axial
compression buckling [38]. Interestingly, the imperfectQI GA1.1 (cylinder C1 with [90 ± 〈50|109〉22, 90 ± 〈10|41〉10]s
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Table 7 Optimization 3 results for GA optimum and QI cylinder for a set of common manufacturing imperfec-
tion signatures. Δ% are percentage differences.

Layup %̃FOSM
imp %̃

`

imp %̃f
imp var(%̃imp) KDF

[kN / kg] [kN / kg] [kN / kg]

GA3.1 [90 ± 〈65|60〉6, 0 ± 〈0|20〉9]s 36.9 55.1 5.88 34.6 0.574
QI [±45, 0, 90]s 9.22 49.7 13.1 171 0.152
Δ% +120 +10.3 -76.1 -133 +116

layup seeded with QI eigenmode imperfections) has a higher buckling load when compared to the perfect GA1.1. This
holds true for a range of imperfection magnitudes of up to twice the wall thickness of the laminate, showing that the
GA solver has converged on a truly imperfection insensitive cylinder (for this specific imperfection) using the CTS
manufacturing technique. However, the imperfection insensitivity is specific to the imperfection seeded, as shown in
Fig. 6. The results indicate that specific imperfections can be designed against, opening up the possibility of including
common manufacturing defects into an imperfect-geometry optimization to produce an imperfection insensitive cylinder.

The second optimization aimed to converge on, through a dynamic GA, a cylinder architecture that was generally
imperfection insensitive by combining random magnitudes of superimposed eigenmodes. An optimal cylinder from
this optimization had a greater specific, imperfect buckling load than the perfect buckling load of a QI cylinder.
A manufacturable design from the dynamic GA was studied with 1000 random geometric imperfections and had
a 1.1% higher mean specific, imperfect buckling load and 43% and 81% lower standard deviation and variance,
respectively. To further test imperfect-geometry optimizations, a realistic set of manufacturing defects were used in
a reliability-based framework in the final optimization. Fourier coefficients were used to describe the imperfection
data set and a Mahalanobis transformation was necessary to reduce the number of variables from 462 to 5. The
optimization implemented a forward-difference FOSM reliability analysis within the GA to maximize the specific,
imperfect buckling load with a reliability threshold of 99.9% assuming a normal distribution. The GA-optimum result
shows large improvements over a nominal QI cylinder, increasing the mean specific, imperfect buckling load and
reducing the standard deviation and variance.

The variety of imperfections used in the three optimizations show that the CTS manufacturing technique can reduce
the imperfection sensitivity of the thin-walled cylinders and GAs are an option for approaching this design problem.
However, the choice of imperfection is still key in attempting to reduce imperfection sensitivity. The computational
cost of an imperfect-geometry optimization that attempts to include some generality into the solver is an obstacle in
finding a generally imperfection insensitive cylinder. Further work to be carried out include a mass-constant buckling
optimization of CTS cylinders, both from a perfect geometry and imperfect geometry perspective. Preliminary results in
this paper indicate that the CTS manufacturing method holds promise for diminishing the catastrophic influence of
imperfections on thin-walled monocoque cylinders.
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