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Flying Qualities Assessment 

Using Nonlinear Frequency Response Analysis 

Duc H. Nguyen1, Mark H. Lowenberg2, Simon A. Neild3, and Thomas S. Richardson4 

Department of Aerospace Engineering, University of Bristol, Bristol, BS8 1TR 

Current methods of assessing flying qualities are based on linear system theory, which 

cannot capture the nonlinear phenomena commonly found at high angles of attack. Although 

bifurcation analysis has been proven to be a powerful tool for numerically analyzing nonlinear 

flight dynamics, in its standard (unforced) form, the method is unsuitable for flying qualities 

assessment as no information on the transient response is provided. To address this 

shortcoming, we propose the use of an extension of bifurcation analysis that treats the aircraft 

as a harmonically forced system. This facilitates the evaluation of the frequency-domain 

dynamics where the response is unsteady by definition. It is shown that the method can 

identify regions with strong nonlinearities that lead to degraded flying qualities. Time 

simulations of the closed-loop step responses in these undesirable regions show that despite 

the predictions of desirable behaviors using linear analysis, the closed-loop aircraft can still 

be attracted to an isola, experience control reversal, or have higher overshoot than anticipated.  

Nomenclature 

𝐴  = forcing amplitude (deg) 

𝑞 = pitch rate (deg/s) 

𝑡 = time (s) 

𝑥 = general state vector 

𝛼  = angle of attack (deg) 

𝜂  = elevator deflection (deg) 

𝜔  = forcing frequency (Hz or rad/s) 

Subscripts 

𝑑  = demanded 

𝑡𝑟𝑖𝑚  = value at trimmed (steady) flight 

 

I. Introduction 

Linear-based controllers remain in widespread use in many nonlinear closed-loop applications including aircraft 

flight control systems. One of the ways in which nonlinearity is accounted for when using linear design methods is 

gain scheduling, in which the gain values are calculated at a number of different operating points and then combined 

into a single controller with the intention of achieving stability and consistent performance across the operating 

envelope. Although this controller can satisfy the performance criteria, the method and the criteria themselves remain 

a locally linear-based solution. It has been shown that in some nonlinear situations, the controller fails to achieve the 

desired response. An example can be found in [1], which uses an aircraft gain-scheduled maneuver-demand controller 

designed to have the same closed-loop pole positions across the entire operating envelope. The local performance is 

satisfactory (near the point on which the controller is designed), suggesting that the controller performs well. However, 

when the aircraft is forced to move across different operating points, there are cases where the controller not only fails 
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to achieve the desired transient response but is also unable to take the aircraft to the commanded position. Another 

example appears in [2], which also shows a few instances of the controller failing to prevent the aircraft from entering 

a spin outside the normal operating envelope. In both cases, the cause can be attributed to the increased aerodynamic 

nonlinearity in the aircraft model (or “plant” using control terminology) as it moves further away from the design 

point of the controller considered. Meanwhile, many aircraft design and handling quality criteria are still linear-based 

[3, 4]. Therefore, they are subject to the limitations of linear system theories. More research needs to be done to 

construct a framework to assess aircraft flying qualities that can capture the nonlinear effects. 

In an effort to bridge the gap between the linear and nonlinear domains, there has been increasing interest in 

utilizing nonlinear analysis on aerospace applications in the past few decades. The use of bifurcation analysis with 

numerical continuation is well established [2, 5, 6] and has proven to be a powerful tool that can capture the nonlinear 

nature of flight dynamics. Bifurcation analysis generates a map of the steady-state solutions as a parameter, such as 

elevator deflection, is varied. Highly nonlinear behaviors like spin and autorotation can be captured and represented 

as stable and unstable steady state solutions. This approach has its limits, most notably the inability to capture the 

transient behavior since only final steady-state solutions are shown. In practical terms, this means the method is very 

useful in identifying regions where the dynamics is unacceptable and should be avoided, and helping to identify 

magnitudes of disturbances for which an attracting solution remains stable, but not in assessing an aircraft performance 

(such as damping ratio variations) when in transient motion between different stable solutions. To capture the time-

dependent effects during transient responses while still doing the analysis on the full nonlinear model, there have been 

some investigations into generating periodic solutions by coupling the aircraft with a harmonic forcing terms [7-9]. 

This is a promising approach, but more research is needed due to the complexity involved in studying a nonlinear 

periodically forced system, which is so far only common in weakly nonlinear theoretical systems [10-12]. For detailed 

descriptions of the methods, readers are referred to [13, 14] for basic bifurcation analysis, [15] for bifurcation analysis 

in periodically forced systems, and [16, 17] for typical examples of its flight dynamics applications.  

This paper aims to further exploit the advantages of bifurcation analysis with numerical continuation to assess the 

aircraft flying quality without relying on linear system theory. By generating periodic solutions of the closed-loop 

aircraft in response to a harmonic input, information on the flying characteristics in the frequency domain can be 

obtained (from this point referred to as the nonlinear frequency response). Periodic solutions are non-stationary by 

definition, which provides a new perspective on the aircraft dynamic that might be overlooked using conventional 

unforced bifurcation analysis. In addition, as this nonlinear frequency response is obtained using the full nonlinear 

equations of motion, it can be used to assess the influence of nonlinearities across the aircraft’s wide operating 

envelope, and hence allow the flying qualities at different operating points to be compared. 

 

II. Aircraft model 

The method presented in this paper is demonstrated on the Hypothetical High Angle of Incidence Research Model 

(HHIRM) created for the Defence Research Agency in the UK (now QinetiQ) [18]. The model is made up of six 

aerodynamic force and moment coefficients, which are nonlinear functions of the angle of attack and sideslip angle.  

These are represented by spline functions rather than tabular data in order for the system to be smooth (differentiable), 

making the model highly suitable to be used as a testbed for bifurcation-based methods. The longitudinal 2nd-order 

version, which contains two states 𝛼 (angle of attack in degrees) and 𝑞 (pitch rate in degrees/s) to capture the short-

period mode, is used in this paper. Its dynamics is representative of a typical fighter aircraft. Using the reduced-order 

model restricts the case study to longitudinal dynamics, where only the fast mode is important, and allows for easier 

interpretation of the results. However, the approach developed in this paper is not limited to such low-order systems. 

 The HHIRM behavior is highly nonlinear. Figure 1 shows the open-loop bifurcation diagrams with the elevator 

deflection 𝜂 on the x-axis as the continuation parameter. These diagrams are the equilibria sets for the two states 𝛼 

and 𝑞 as functions of 𝜂. It can be seen that due to the fold bifurcations, there are three solutions in the region -20o ≤ 𝜂 

≤ -10o. From a practical perspective, this means that:  

 - For -20o ≤ 𝜂 ≤ -10o, the aircraft has two equilibrium states: one at a lower and one at a higher (deep stall) angle 

of attack. Whichever solution the aircraft converges to will depend on the initial conditions. 

 - It is not possible to manually trim the aircraft at angles-of-attack between 34o and 46o because the solutions in 

that range are unstable.  

Three different controllers for the 2nd-order HHIRM are proposed in [1, 19], all of which aim to stabilize the aircraft 

and ensure consistent handling qualities across the whole 𝛼 range. The controllers are designed using various linear 

and nonlinear design methods while also accounting for a first-order actuator described by equation (1). 
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Fig 1  Open-loop bifurcation diagram – elevator continuation. 

In the sections to follow, the performances of these three controllers are analyzed using the proposed method.  

 

III. Nonlinear frequency response analysis 

 All analysis presented in the sections to follow is closed-loop and the reference signal is the demanded angle-of-

attack 𝛼𝑑. To generate a harmonic input signal for nonlinear frequency response analysis, we augment our third-order 

system of three states [𝛼, 𝑞, 𝜂] with two additional states: 

 

2 𝑥̇4 = 𝑥4 + 𝜔𝑥5 − 𝑥4(𝑥4
2 + 𝑥5

2) (2) 
3 𝑥̇5 = 𝑥5 − 𝜔𝑥4 − 𝑥5(𝑥4

2 + 𝑥5
2) (3) 

 

where 𝜔 is the forcing frequency in rad/s. It can be shown that 𝑥4 = sin(𝜔𝑡) and 𝑥5 = cos(𝜔𝑡). The reference signal 

will now take the form:  

 

4 𝛼𝑑 = 𝛼𝑡𝑟𝑖𝑚 + 𝐴 sin(𝜔𝑡) = 𝛼𝑡𝑟𝑖𝑚 + 𝐴𝑥4 (4) 

 

where 𝐴 (deg) is the forcing amplitude. 

 

 

Fig 2  Examples of periodic solutions generated using AUTO. 

 Periodic solutions are generated numerically in the MATLAB environment using the Dynamical Systems Toolbox 

[20], which is a MATLAB implementation of the bifurcation analysis software AUTO [21]. It is known that in a 

highly nonlinear system, these solutions can contain multiple harmonics such as in Figure 2b. In those cases, we define 

the gain and phase relationships between the input and the output as:  

 

5 𝑔𝑎𝑖𝑛 𝑖𝑛 𝑑𝐵 = 20 𝑙𝑜𝑔10 (
𝑌3−𝑌4

𝑌1−𝑌2
) (5) 

6 
7      𝑝ℎ𝑎𝑠𝑒 𝑖𝑛 𝑑𝑒𝑔𝑟𝑒𝑒 = (𝑋1 − 𝑋3) × 360 (7) 

(a) (b) 

(a) (b) 
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where 𝑋𝑖 and 𝑌𝑖 refer to the x and y-coordinates of point 𝑖 in Figure 2. It will be shown later that this way of defining 

the phase is very useful in detecting regions with significant nonlinearities, which often result in responses with 

multiple harmonics such as the case seen in Figure 2b. 

 

IV. Analysis of the feedforward controller 

A. Controller architecture and known issues 

In the first example, we chose a controller in which only proportional gains are used to show how this architecture 

is not sufficient to overcome the influence of a secondary attractor. Figure 3a shows the schematic block diagram of 

the feedforward controller described in [1]. In essence, this is an output feedback controller that incorporates a 

feedforward path to scale the reference signal and create a maneuver demand system. The feedforward signals are 

shown in Figure 3b and were calculated by inverting the open-loop bifurcation diagrams in Figure 1 so that, given the 

demanded angle-of-attack 𝛼𝑑, the elevator deflection and pitch rate at trim 𝜂𝑡𝑟𝑖𝑚 and 𝑞𝑡𝑟𝑖𝑚 are found. The feedback 

gains are scheduled against the pilot’s input 𝛼𝑑 as shown in Figure 3c and were calculated using eigenstructure 

assignment, which places the short-period poles at one fixed location throughout the entire operating envelope (α 

between 0o and 60o). Although it is possible to schedule the gains with the measured 𝛼 rather than 𝛼𝑑, doing so would 

introduce other problems in matching desired responses as it effectively modifies the system Jacobian matrix [22].  

 

 

Fig 3  (a) feedforward controller block diagram, (b) feedforward signals, (c) and scheduled feedback gains.  

It has been shown in [1] that local performances in the form of small-amplitude step responses are desirable and 

similar across the entire operating envelope. However, some large step inputs cause the aircraft to respond in an 

undesirable manner. This can be explained by examining the closed-loop unforced 𝛼 bifurcation diagram (Figure 4). 

The purpose of scaling the input signal is so that there is a 1:1 mapping between the input 𝛼𝑑 and the resulting angle 

of attack 𝛼, which is reflected by the main stable branch Figure 4: a straight line showing a linear dependency of these 

two variables. However, there exist an isola (a second branch that is not connected to the main one) with stable 

solutions near α = 50o. The stable solutions in the isola create the second and undesirable attractor that will influence 

the aircraft dynamics. For instance, a reference signal of 𝛼𝑑 = 50o will converge to one of the two angles of attack: the 

demanded α = 50o or the undesirable α = 32o that originated from the isola. The initial conditions will determine which 

solution the aircraft converges to.  

(a) 

(b) (c) 
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Fig 4  Bifurcation diagrams of 𝜶𝒅 against 𝜶 and 𝒒. 

The influence of the isola can be studied by examining the three step responses in Figure 5a along with their phase 

plots in Figure 5b. The first case (30o to 34o) is desirable. In the second case (𝛼𝑑 steps from 30o to 50o), the trajectory 

lands on the isola at α = 32o instead of the commanded position. The final case (30o to 54o) reaches the commanded 

position, but the response is erratic and does not resemble the usual short period mode. Examining the phase plot 

shows that in the third case, the trajectory is attracted to the stable isola before carrying on to its final destination at 

54 deg, indicating that the isola is having a deleterious effect on the transient dynamics. Although demanding a step 

response of this magnitude is unrealistic for most aircraft, the effect of the isola on the aircraft’s trajectory is still 

noticeable even when a smoother input is used. In this case, the step input was chosen to present the worst-case 

scenario, as often done in control studies. The principal purpose of this example is to exemplify the problem and the 

proposed analysis approach.  

 

 

Fig 5  (a) step responses and (b) phase plots. 

 

We have seen that the presence of the isola can influence the aircraft response if its trajectory approaches the 

affected region. The next section will show how nonlinear frequency response analysis can be used to quantify this 

influence on the aircraft flying qualities and help to detect regions of highly nonlinear behavior caused by the existence 

of the isola.  

B. Flying qualities assessment 

We will now examine the trimmed aircraft at αtrim = 30o. Firstly, the nonlinear closed-loop frequency responses 

with three forcing amplitudes 𝐴 are considered: 1o, 4o and 24o, corresponding to 𝛼𝑑 sweeps between [29o, 31o], [26o, 

34o] and [6o, 54o] (as a reminder, 𝛼𝑑 = 𝛼𝑡𝑟𝑖𝑚 + 𝐴 sin(𝜔𝑡) for the forced response). The first two cases were chosen 

(a) (b) 
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as examples of the aircraft undergoing maneuvers fairly local to its equilibrium condition, and the third case 

corresponds to type of challenging large-amplitude input that will be influenced by the isola as discussed above.  

 

 

Fig 6  Nonlinear 𝜶𝒅-to-𝒒 frequency responses for (a) A = 1o, (b) A = 4o, and (c) A = 24o. 

 

Fig 7  Simulated forced response at A = 24o with a chirp signal. 

The nonlinear 𝑞-to-𝛼𝑑 frequency responses are shown in Figure 6. For 𝐴 = 1o, the frequency response resembles 

that of a linear transfer function, suggesting that the aircraft behaves like a linear system in this region. In the second 

case with 𝐴 = 4o, a phase jump is seen at 0.06 Hz. Increasing 𝐴 to 24o will lead to a more abrupt phase jump at a higher 

frequency of 0.66 Hz in addition to causing a distortion in the gain response, which can be seen more clearly in the 

absolute gain diagram (instead of the dB gain diagram). To verify the phase jump in the third case, the aircraft is 

simulated with a chirp signal so that the forcing frequency 𝜔 increases linearly while the forcing amplitude 𝐴 is kept 

constant at 24o. Figure 7 shows that the pitch rate response is highly nonlinear and has two separate peaks in each 

cycle. To explain the shape of the pitch rate response observed, it is useful to refer back to the second panel of Figure 

3b, which shows the equilibrium relationship between 𝛼𝑑 and 𝑞𝑡𝑟𝑖𝑚. If the forcing frequency is low enough such as 

in the case of Figure 7, the aircraft’s states will trace along their equilibria. It can be seen in Figure 3b that beyond 𝛼𝑑 

= 36o, increasing 𝛼𝑑 will lead to a reduction in 𝑞, and this is reflected in the time history of Figure 7 when 𝛼𝑑 exceeds 

36o, leading to the formation of the first peak. Similarly, the second peak is formed when 𝛼𝑑 changes direction and 

drops below 36o again. The asymmetry of the pitch rate response leads to its distorted shape in the gain diagram. The 

phase jump seen in Figure 6c is therefore caused by our current definition for phase, which is the normalized time 

between the forcing peak and the highest response peak (equation 7). We can see from Figure 7 that as the forcing 

frequency increases, the highest pitch rate peak switches from the left one to the right one, which is captured as a 

phase jump on the frequency response. In practical terms, this method of generating the nonlinear frequency response 

can provide an indication as to when the aircraft operates in a nonlinear region, which in this case is caused by the 

nonlinear relationship between 𝛼𝑑 and 𝑞. 

(a) (b) (c) 
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The 𝛼𝑑-to-𝛼 frequency responses are shown in Figure 8 for three different values of 𝐴. All three instances look 

very similar and show 0 dB gain and 0o phase at low frequencies, suggesting the controller achieves the tracking task 

as long as 𝜔 is not too high. Their time histories under a 0.1 Hz forcing frequency are shown in Figure 9. Although 

the 𝛼 tracking is acceptable in the first two cases, the third case shows an unusual shape that resembles the step input 

in Figure 5a (panel 3). Moreover, its pitch rate response is very complicated and clearly shows that the aircraft’s 

trajectory is being affected by the isola that lies along the αdemand travelling range. The influence of the isola is also 

reflected in the magnified view of the gain diagram in the 𝛼𝑑-to-𝛼 frequency response – shown as an inset in Figure 

8. Here, the frequency response at 𝐴 = 24o has a reduced bandwidth (defined as the frequency at which the gain drops 

below −3 dB) comparing to the other two cases, which are less affected by isola as seen from their time histories. 

 

 

Fig 8  α-to-αdemand frequency responses.  

 

 

Fig 9  Simulated response to a 0.1 Hz harmonic input with amplitudes (a) 1o, (b) 4o, (c) 24o. 

It has been established that the step response from 30o to 54o is heavily affected by the isola and this may also be 

the cause for the reduced bandwidth in its corresponding frequency response at 𝐴 = 24o. To verify this, we compare 

the bandwidth of the closed-loop frequency responses for a range of 𝐴 and 𝛼𝑡𝑟𝑖𝑚. The result is shown in Figure 10a, 

which has a triangular shape due to the constraint 0o ≤ 𝛼𝑑𝑒𝑚𝑎𝑛𝑑  ≤ 60o (the controller has not been designed to operate 

in the negative 𝛼𝑑𝑒𝑚𝑎𝑛𝑑 region, which limits the area of the envelope in Figure 10a). The colors represent the 

(a) (b) (c) 
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bandwidth of the closed-loop frequency response. There is a noticeable bandwidth reduction in the region 30o ≤ 𝛼𝑡𝑟𝑖𝑚 

≤ 50o due to the presence of the isola, which is shown as a red area in Figure 10a. Although the unforced bifurcation 

diagram in Figure 4 indicates that the isola only exists over a small region of 49.7 o ≤ 𝛼𝑑 ≤ 51.2o, the triangular 

envelope in Figure 10a suggests that the isola affects the aircraft’s response over a much larger area.  

 

 

Fig 10  Feed forward controller: (a) closed-loop bandwidth variation and (b) step responses.  

Although the diagram Figure 10a was generated using the harmonic input, it can be used to determine if the time-

domain behavior is desirable. Specifically, we can predict whether different step responses from 𝛼𝑡𝑟𝑖𝑚 to (𝛼𝑡𝑟𝑖𝑚 + 𝐴) 

are similar based on their corresponding colors in the triangular envelope. For example, it can be inferred that the step 

responses at the points A, B, and C resemble each other because they have similar bandwidths. Figure 10b confirms 

this observation, despite the facts that the points are very far apart on the envelope and that point B is a very demanding 

input.  

Apart from the red and brown regions, the envelope in Figure 10a also shows an additional yellow area that 

suggests a different dynamics comparing to those found in the other two regions. The step respond at point D is shown 

as the dotted line in Figure 10b, which has noticeably higher overshoot and does not resemble the other three cases.  

 We have seen that aerodynamic nonlinearities can have significant effects on the aircraft responses in both the 

time and the frequency domains. Using nonlinear frequency response analysis, we have presented a method to quantify 

these effects. The information gained from the triangular envelope can be used to verify whether consistence handling 

qualities are achieved across different operating regions. It is important to point out that the purpose of the triangular 

envelope is not to compare the closed-loop bandwidth but to indicate that bandwidth might be used as a metric to 

quantify the differences in the frequency response at different operating points. For a more complex system with 

multiple peaks, the engineer can come up with a different metric, such as resonance peak or estimated damping of 

each mode, depending on the application considered.  

 

V. Analysis of the controller with an integral path 

A. Controller architecture and known issues 

Instead of using pre-calculated feedforward data to drive the error signal to zero, the second controller in [1] 

utilizes an integrator in the forward path, which adds the benefit of guaranteeing the uniqueness of the solution and 

therefore remove the isola. We present the analysis in this section to show that even though the isola no longer exist 

due to the integral action, the underlying nonlinearities can still affect the aircraft dynamics in a way that linear-based 

design fails to recognize. The block diagram and gain scheduling data are shown in Figure 11. Like the first controller, 

the gains are still scheduled against the pilot’s input 𝛼𝑑 and the design objective is still placing the short-period poles 

at the same location across the operating envelope.  

It has been reported in [1] that the isola mentioned in the previous section ceases to exists using the current 

controller. Two step responses that can be considered close to ideal are shown as the solid lines in Figures 12a and 

12b. However, the first author of [1] also encountered a few instances of undesirable behavior in which the elevator 

moves in the opposite direction at the beginning [23]. Two such examples are shown as the dotted lines in Figures 12a 

and 12b. The case presented in Figure 12b with extremely small step amplitude is chosen to emphasize the fact that 

the problem is still encountered even when the aircraft operates very locally. This undesirable control reversal 

behaviors occur near 𝛼𝑡𝑟𝑖𝑚 = 30o – the same region that had been heavily affected by the isola in the previous example 

– but only when the step input is sufficiently small. Larger step inputs near 𝛼𝑡𝑟𝑖𝑚 = 30o that previously landed on the 

isola or showed an erratic behavior now resemble the ideal response. 

(a) (b) 
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Fig 11  Block diagram (a) and gain scheduling (b) – Output feedback controller with integral action. 

 

 

Fig 12  Step responses of the second controller. 

B. Flying quality assessment 

The closed-loop frequency response at 𝛼𝑡𝑟𝑖𝑚 = 30o and 𝐴 = 0.01o is now examined in Figure 13. As mentioned, 

the small forcing amplitude is chosen to ensure the nonlinear response is local and comparable to the linearized results. 

However, Figure 13 shows that there is a noticeable discrepancy between them. In particular, as the forcing frequency 

increases, the nonlinear response has higher gain but lower phase than its linearized counterpart – a highly nonlinear 

phenomenon that resembles neither an additional pole nor a zero in the transfer function. Based on its unusual 

frequency response, it can be said that the behavior in this region cannot be captured by a linear transfer function, 

which can be linked back to the control reversal in the time-domain response seen in Figures 12b. 

 

 

Fig 13  Closed-loop frequency response at 𝜶𝒕𝒓𝒊𝒎 = 30o and 𝑨 = 0.01o. 

(a) (b) 

(a) (b) 
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The triangular envelope is now generated, once again using bandwidth as the metric, to determine the region in 

which inputs result in nonlinear responses. Figure 14 suggests that control reversal of varying degree may be 

encountered within the area labelled A. In addition, there is an apparent second nonlinear region labelled B that is 

separate from A. We investigate this by generating the frequency and step responses from 48o to 48.01o (Figure 15), 

which is the most affected operating point within B. In the frequency response, the nonlinear analysis has a notably 

higher resonance that the linear prediction, suggesting that the nonlinear step response will have a much higher 

overshoot, a fact that is confirmed in Figures 15b. The higher resonance leads to an increase in bandwidth, which is 

reflected by the area B in Figure 14. Based on the shape of the nonlinear frequency response, it is inferred that the 

linearized response needs an additional zero in its transfer function in order to capture the dynamics adequately. 

 

 

Fig 14  Closed-loop bandwidth variation – feedback with integral action controller. 

  

Fig 15  (a) frequency response at 𝜶𝒕𝒓𝒊𝒎 = 48o and 𝑨 = 0.01o and (b) step response from 48o to 48.01o.  

 

VI. Analysis of the dynamic gain scheduled controller 

For the final study, the performance of the dynamic gain scheduled controller in [19] is examined. This controller 

has superior performance comparing to the previous two cases and is presented in this section to ensure that the 

proposed method does not give false-positive results (i.e. predicting a problem when there is none). The controller has 

the same architecture as the output feedback controller with integral action presented above (Figure 11) but the 

feedback gains are scheduled against the outputs themselves (i.e. 𝐾𝛼(𝛼) and 𝐾𝑞(𝑞)). It has been shown in [19] that 

dynamic gain scheduling gives improved transient performance and can address the problems encountered in static 

gain scheduling with fast-varying state variables, especially when the aircraft maneuvers rapidly across different 

operating points.  

In this example, 𝐾𝛼(𝛼) has been calculated for the whole operating envelope from 0o to 60o whereas 𝐾𝑞(𝑞) is only 

calculated up to 𝛼 = 36o. Despite this limitation, we generated the triangular envelope for 0o ≤ 𝛼𝑑 ≤ 60o in Figure 16a. 

A boundary is defined for the region in which dynamic gain scheduling is available for both 𝐾𝛼  and 𝐾𝑞 . Outside this 

boundary, only 𝐾𝛼  is dynamically scheduled while 𝐾𝑞  is fixed at its maximum value calculated from the dynamic 

(a) (b) 
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scheduling. It is clear that the performance is superior comparing to static gain scheduling as no undesirable regions 

is found inside the fully-scheduled boundary. Additionally, the reduced performance outside this boundary is not as 

severe as in the cases of static gain scheduling presented above. There are still a number of cases at very high angles-

of-attack that the continuation algorithm failed solve, potentially because higher 𝐾𝑞  is required. 

 

 

Fig 16 Dynamic gain scheduled controller: (a) closed-loop bandwidth variation and (b) step responses. 

The step responses corresponding to points A, B, and C are shown in Figure 16b. Both points A and B lie inside the 

boundary in which full dynamic gain scheduling is available, with point A highlighting the fact that the control reversal 

issue previously encountered in Figure 12a has been resolved. In addition, the response in point B – a much more 

demanding input – is almost identical to what is seen in point A, which shows the advantages of dynamic gain 

scheduling. The step response at point C, which lies outside the full scheduling region, is also presented. Although the 

reduction in performance is expected due to the fixed pitch rate feedback gain 𝐾𝑞 , the effect is minimal.  

 

VII. Conclusion 

This paper highlights the need to develop a nonlinear and closed-loop-based framework for handling qualities 

assessment. In the first two examples of linearly-designed controllers for a highly nonlinear fighter aircraft model, we 

have shown that the existence of aerodynamic nonlinearities alone can lead to undesirable responses that cannot be 

predicted using linear analysis. However, by using nonlinear frequency response analysis to construct the triangular 

envelope, it is possible to identify regions in which nonlinear behaviors are expected. In particular, the method 

presented is able to detect the responses that are attracted to a stable isola or can lead to control reversal and high 

overshoot, none of which is predicted by linear-based analysis. In fact, some of the responses are so nonlinear that it 

is not possible to represent their dynamics with any linear transfer function, as shown by the closed-loop frequency 

response in the control-reversal region of the integral controller. Finally, the analysis of dynamic gain scheduling 

controller ensures that no false-positive results is obtained as well as highlighting the superior performance of the 

method, which exemplifies a controller designed using nonlinear techniques. The nonlinear frequency response 

analysis method therefore provides a means of gaining insight into potential degradations in performance and handling 

qualities when a controller designed using linear techniques is applied to a highly nonlinear system. 
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