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ABSTRACT

Background: Transcranial ultrasound stimulation can acutely modulate brain activity, but the lasting
effects on neurons are unknown.
Objective: To assess the excitability profile of neurons in the hours following transient ultrasound
stimulation.
Methods: Primary rat cortical neurons were stimulated with a 40 s, 200 kHz pulsed ultrasound stimu-
lation or sham-stimulation. Intrinsic firing properties were investigated through whole-cell patch-clamp
recording by evoking action potentials in response to somatic current injection. Recordings were taken at
set timepoints following ultrasound stimulation: 0—2 h, 6—8 h, 12—14 h and 24—26 h. Transmission
electron microscopy was used to assess synaptic ultrastructure at the same timepoints.
Results: In the 0—2 h window, neurons stimulated with ultrasound displayed an increase in the mean
frequency of evoked action potentials of 32% above control cell levels (p = 0.023). After 4—6 h this in-
crease was measured as 44% (p = 0.0043). By 12—14 h this effect was eliminated and remained absent 24
—26 h post-stimulation. These changes to action potential firing occurred in conjunction with statistically
significant differences between control and ultrasound-stimulated neurons in action potential half-
width, depolarisation rate, and repolarisation rate, that were similarly eliminated by 24 h following
stimulation. These effects occurred in the absence of alterations to intrinsic membrane properties or
synaptic ultrastructure.
Conclusion: We report that stimulating neurons with 40 s of ultrasound enhances their excitability for up
to 8 h in conjunction with modifications to action potential kinetics. This occurs in the absence of major
ultrastructural change or modification of intrinsic membrane properties. These results can inform the
application of transcranial ultrasound in experimental and therapeutic settings.

© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

invasiveness or lack of spatial precision. An emerging approach in
this regard is transcranial ultrasound stimulation [6]. Here, a

Exogenous stimulation of the brain has been extensively used to
define cognitive processes and map out neural circuitry [1]. Many
tools have been developed for this purpose, including implantable
electrodes [2] and optogenetics [3], as well as transcranial magnetic
stimulation [4] (TMS) and direct current stimulation [5] (tDCS).
However, these approaches are inherently limited either by their
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growing number of studies report non-invasive modulation of
neural activity of various cortical and subcortical brain regions with
millimetre-scale precision [7—10]. This has led to the recent
application of the approach in cognitive mapping [9] and as a
therapeutic intervention in diseases including Alzheimer’s disease,
epilepsy and depression [11].

At the cellular level, ultrasound stimulation can elicit action
potential firing [12,13], modulate voltage-gated ion-channel cur-
rents [13], and stimulate synaptic transmission [12]. Studies have
variously implicated mechanosensitive channels[14], pore-
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Fig. 1. Ultrasound stimulation induces increases in neuronal intrinsic excitability that persists up to 8-h post-stimulation. (A—D) Evoked action potential data at four different time-
points (A) 0—2 h, (B) 6—8 h, (C) 12—14 h, and (D) 24—26 h post-stimulation. In each panel (i) Representative voltage responses to 500 ms current pulses of 200 pA (left) or 400 pA
(right) from sham (blue) and ultrasound (orange) stimulated cells. (ii) Current evoked spike frequency was significantly increased in ultrasound stimulated neurons at 0—2 h (Aii:
effect of ultrasound stimulation: F(1, 28) = 5.77, p = 0.023; effect of current: F(7, 188) = 91.99, p < 0.0001; effect of treatment x current interaction: F(7, 188) = 1.95, p = 0.064), and
6—8 h (Bii: effect of ultrasound stimulation: F(1, 27) = 9.74, p = 0.004; effect of current: F(7, 174) = 187.0, p < 0.0001; effect of treatment x current interaction: F(7, 174) = 9.57,
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formation[15], membrane cavitation[16] and glial cell activation
[17] as key cellular transducers of ultrasound. However, the
downstream consequences for neuronal function remain to be fully
explored. Specifically, the temporal characteristics of the neuro-
modulatory effects of ultrasound, including the extent to which
they are sustained following stimulation, are currently unknown.
To address this, we investigated the excitability profile of neurons
in the hours following transient stimulation. Our findings reveal
ultrasound can induce sustained modulation of intrinsic neuronal
excitability.

2. Results

We first assessed the intrinsic firing properties of cultured
cortical rat neurons through whole-cell patch-clamp recording,
evoking action potentials in response to somatic current injection.
Neurons were first subjected to a 40 s, 200 kHz pulsed ultrasound
stimulation or sham-stimulation (see Methods), then transferred to
a recording chamber for electrophysiological analysis. The first
experimental group consisted of neurons assayed within 2 h of
ultrasound stimulation. Step-wise increments in injected current
induced progressively increased spike frequency in control, sham-
stimulated neurons (Fig. 1Ai, ii; effect of current: F(7, 188) = 91.99,
p < 0.0001). In neurons stimulated with ultrasound, mean spike
frequency was significantly increased by 32% above control cell
levels (Fig. 1Aii; effect of ultrasound stimulation: F(1, 28) = 5.77,
p = 0.023; effect of treatment x current interaction: F(7,
188) = 1.95, p = 0.064), indicating enhanced excitability induced by
ultrasound stimulation.

We next introduced a longer interval, assaying neurons 6—8 h
following stimulation (Fig. 1B). There remained a robust 44% in-
crease in mean spike frequency in ultrasound-stimulated compared
with sham-stimulated neurons (Fig. 1Bii; effect of ultrasound
stimulation: F(1, 27) = 9.74, p = 0.004; effect of current: F(7,
174) = 187.0, p < 0.0001; effect of treatment x current interaction:
F(7,174) = 9.57, p < 0.0001). The significant interaction between
ultrasound stimulation and current likely reflects the fact that spike
frequency begins to plateau at higher current injections in sham-
stimulated neurons, whereas in ultrasound stimulated neurons
spike frequency continues to increase approximately linearly.
When we introduced a further increase in delay to 12—14 h be-
tween stimulation and excitability assay, these effects were elimi-
nated (Fig. 1C; effect of ultrasound stimulation: K1, 23) = 0.10,
p = 0.76; effect of current: F(7, 151) = 41.73, p < 0.0001; effect of
treatment x current interaction: K7, 151) = 0.77, p = 0.61). The
effects remained absent at 24—26 h following stimulation (Fig. 1D;
effect of ultrasound stimulation: F(1, 23) = 0.17, p = 0.69; effect of
current: F(7,149) = 56.24, p < 0.0001; effect of treatment x current
interaction: F(7, 149) = 0.58, p = 0.77). When comparing across the
timecourse, we observed a significant effect of ultrasound stimu-
lation on mean spike frequency (Fig. 1F; effect of ultrasound stim-
ulation: F(1,101) = 7.64, p = 0.007; effect of time: F(3, 101) = 1.49,
p = 0.22; effect of treatment x time interaction: F(3, 101) = 1.21,
p = 0.31). We found no effect of ultrasound on resting membrane
potential coincident with changes to firing frequency (Fig. 1A—D,
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iii), although there was a marginally significant hyperpolarisation
in ultrasound stimulated neurons at 12—14 h (Fig. 1Ciii), and a
significant interaction between treatment condition and time
(Fig. 1G, effect of ultrasound stimulation: F(1,102) = 2.7, p = 0.10;
effect of time: F(3,102) = 0.46, p = 0.71; effect of treatment x time
interaction: F(3, 102) = 3.38, p = 0.021). This suggests that whilst
minor changes to membrane potential may occur due to ultrasound
stimulation, this is unlikely to reflect modulation of activity due to a
generalised neuronal depolarisation. Moreover, there were no
changes to passive membrane properties (Fig. 2) that could other-
wise explain the underlying causes of excitability modification.
Together, these data indicate that a brief ultrasound stimulus in-
duces modification to neuronal excitability that is sustained for up
to 8 h.

To better understand the nature of the sustained effects, we next
examined whether excitability modification occurred alongside
changes to action potential waveform (Fig. 3A—D, i). We found that
the amplitude of the evoked action potentials did not differ be-
tween the conditions across the timecourse (Fig. 3A—D, iv). The
enhanced excitability could be explained by a reduction in the ac-
tion potential voltage threshold in ultrasound-stimulated neurons,
which would lead to a greater propensity for firing. However, we
found no differences in induction threshold between conditions
across the timecourse (Fig. 3A—D, iii). Interestingly, there were
differences between control and ultrasound-stimulated neurons in
half-width, depolarisation rate, and repolarisation rate (Fig. 3A—D,
v-vii). These changes were statistically significant across the time-
course (Fig. 3E—G), and similarly eliminated by 24 h following
stimulation. These results indicate ultrasound affects action po-
tentials kinetics, concomitant with a sustained increase in pro-
pensity for rapid spiking.

The acoustic radiation force of ultrasound displaces cell mem-
branes [18]. Given that perturbations to morphology can pro-
foundly affect neuronal excitability [19], we wondered whether the
effects of ultrasound stimulation that we had observed were
associated with changes to neuronal structure. For instance,
enlargement of synaptic boutons has been observed in response to
high frequency action potential firing [20]. Furthermore, previous
evidence suggests that ultrasound affects synaptic regions [12,17].
We therefore decided to examine possible ultrastructural change at
pre- and post-synaptic boutons. We prepared fixed samples of
control sham- or ultrasound-stimulated neurons and performed
electron microscopy imaging (Fig. 4A—D, i). We found no difference
in pre-synaptic bouton diameter or post-synaptic density (PSD)
thickness across any of the experimental conditions (Fig. 4A—D, iii,
iv; summarised data G and F). We did observe a significant effect on
pre-synaptic bouton area at 6—8 h but at no other time-point
(Fig. 4A-Dii), and this was not accompanied by a significant effect
of ultrasound across the timecourse (Fig. 4E). The absence of any
changes to synaptic ultrastructure at 0—2 h, and only a marginal
effect on bouton area at 6—8 h, suggests that while brief ultrasound
stimulation causes sustained modification to neuronal excitability
this is not associated with major changes to synaptic ultrastructure.

p < 0.0001), but not 12—14 h (Cii: effect of ultrasound stimulation: F(1, 23) = 0.10, p = 0.76; effect of current: F(7,151) = 41.73, p < 0.0001; effect of treatment x current interaction:
F(7,151) = 0.77, p = 0.61) or 24—26 h (Dii: effect of ultrasound stimulation: F(1, 23) = 0.17, p = 0.69; effect of current: F(7, 149) = 56.24, p < 0.0001; effect of treatment x current
interaction: F(7, 149) = 0.58, p = 0.77), analysed by mixed-effects model, between-group (i.e., control vs ultrasound), multiple comparisons testing by Holm-Sidak method. (iii)
Resting membrane potential was not significantly different between groups at 0—2 h (Aiii, p = 0.075), 6—8 h (Biii, p = 0.14), or 24—26 h (Diii, p = 0.18). There was a significant
hyperpolarisation of ultrasound stimulated neurons at 12—14 h (Ciii, p = 0.044). (E—F) Timecourse summary data displaying significant effect of ultrasound stimulation on (E) mean
spike frequency calculated as the mean frequency across all current intensities for a given cell (effect of ultrasound stimulation: F(1, 101) = 7.64, p = 0.007; effect of time: F(3,
101) = 1.49, p = 0.22; effect of treatment x time interaction: F(3, 101) = 1.21, p = 0.31), but not (F) resting membrane potential (RMP), (effect of ultrasound stimulation: F(1,
102) = 2.7, p = 0.10; effect of time: F(3,102) = 0.46, p = 0.71; effect of treatment x time interaction: F(3, 102) = 3.38, p = 0.021), analysed by 2-way ANOVA. Data is mean + S.E.M.
*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. N = (0—2hr) 15 vs. 15; (6—8hr) 14 vs.15; (12—14hr) 12 vs. 13; (24—26hr) 13 vs. 12 cells (control vs. ultrasound). (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Effect of ultrasound on intrinsic membrane properties. (A-D) Neuronal membrane properties at four time-points (A) 0—2 h, (B) 6—8 h, (C) 12—14 h, and (D) 24—26 h post-
stimulation. In each panel (i) Example voltage responses to hyperpolarising current pulse (I = —25 pA) from sham (blue) and ultrasound (orange) stimulated cells, from which the
passive membrane properties are derived. (ii) Membrane time-constant () derived from a single exponential fit to the voltage trace following the current step, (Aii, p = 0.34; Bii,
p = 0.094; Cii, p = 0.35; Dii, P = 0.84). (iii) Input resistance (Rinput) defined as the steady-state voltage deflection divided by the current pulse amplitude, (Aiv, p = 0.81; Biv,
p = 0.44; Civ, p = 0.13; Div, p = 0.12). (iv) Membrane capacitance (C) calculated as C = 7/Rinput, (Av, p = 0.28; Bv, p = 0.094; Cv, p = 0.50; Dv, p = 0.62, outlier: ultrasound, 397.2 pF).
Scatter dot plots line is mean, error is S.E.M., analysed by two-tailed unpaired t-test. For (Cii, Ciii, Dii) boxes represent median and inter-quartile range, bars are min and max,
analysed by Mann-Whitney test. (E-G) Timecourse summary data for (E) membrane time-constant, (F) input resistance, or (G) capacitance, data is median + inter-quartile range.
N = (0—2hr) 15 vs. 15; (6—8hr) 12 vs. 15; (12—14hr) 12 vs. 13; (24—26hr) 13 vs. 13 cells (control vs. ultrasound).

220



B. Clennell, T.GJ. Steward, M. Elley et al.

A

Brain Stimulation 14 (2021) 217—225

0 — 2 hours post-stimulation 6 — 8 hours post-stimulation
i o i 25mv - i i
Ctrl P 2 207
—us £ = 000
> ° ’!
£ -30-
: T
L. A I
o ]
£
S 50
Zms cti us
140V 20V, ’gzso v Ezoo—v"*
s ° z e >2001 o > o | s @
Si0{ 8 , £15 é_ ¢ = sdg £ § S120{ % ¢ £20
2 |se>E (e S x 3 8 1004 % 3 & 315
| g = * Fioo|® © 3 y :
EN S & 57w 5| o 5 50 £1007 10
: : CHIR S 2R iRt
80— o057 & ot0—1 & ol —
cl Us ci Us ctl Us ctri Us ctl Us
Cc D
12 — 14 hours post-stimulation 24 — 26 hours post-stimulation
i ji25mv i : G 25my
= S 10411 I — S-1g,
€ £ g E
S 2 .20 S B0 o
£ - s ¢ £ £ * 2
) 8 .30- ) & 30 *
@ £ &{; 8 £
540' ° o gmo- @
£ .50- S -50-
ctl Us cl Us
1301V 3V, sVl “@50-‘"'* 20 Gaso Vi ‘2150-"“
s ) > 200 > 8 s 7 > 200 ° > oo ©
E E £ ° 3 e % £ £ ° oo ® E ° o0
~100 =2 = =100 e —120 e =15 * —100- L
é % g _i' o §150 ::%; 5 *:2: 3 : 0% & c 150 ip? § :i:—.f—
. © o0
570 < 1 "':‘& %100 w0 o g 501 % ¢ imoog.gim & 8 %100 2 o % s0{ § oo
< B €918 . % |ame < |8 ° g % R
40-—— —r— 8§ o0t—0—— ¢& T 80-—— str—7— 8§ o077 ¢& —T
cti Us cti Us cwl Us cti Us el US ct Us ctil Us cti Us
E F G
2.0 % 200 % 120
E E
7 > > 100
Eis E 150 E
§ § 5
= © @©
=10 £ 100 2
I s s
g g
0.5 T T 1 o 50+ T T 1 ﬁ? 20-— T T 1
<2 68 1214  >24 <2 6-8 1214  >24 <2 6-8 1214  >24

Time Post-stimulation (hr) Time Post-stimulation (hr) Time Post-stimulation (hr)

Fig. 3. Ultrasound stimulation induces modifications to action potential kinetics that persist up to 14-h post-stimulation. (A—D) Action potential kinetic data at four different time-
points (A) 0—2 h, (B) 6—8 h, (C) 12—14 h, and (D) 24—26 h post-stimulation. Data is derived from the first spike in a train evoked by 200 pA injections for each neuron. In each panel
(i) Representative action potential waveforms from sham (blue) and ultrasound (orange) stimulated cells, aligned to the voltage threshold and amplitude scaled. (ii) Average phase
plots for the first spike evoked by 200 pA injections (data is mean + S.E.M.). (iii-vii) Summary graphs of (iii) Voltage threshold (Aiii, p = 0.70; Biii, p = 0.30; Ciii, p = 0.88; Diii,
p = 0.23), (iv) amplitude (Aiv, p = 0.70; Biv, p = 0.13; Civ, p = 0.14; Div, p = 0.55), (v) half-width (Av, p = 0.013; By, p = 0.002; Cv, p = 0.022; Dv, p = 0.33, outlier: ctrl, 2.6 ms), (vi)
depolarisation rate (Avi, p = 0.034; Bvi, p = 0.033; Cvi, p = 0.054; Dvi, p = 0.26), and (vii) repolarisation rate (Avii, p = 0.010; Bvii, p = 0.018; Cvii, p = 0.034; Dvii, p = 0.92). Scatter
dot plots line is mean, error is S.E.M., analysed by two-tailed unpaired t-test. For (Civ) box represents median and inter-quartile range, bars are min and max, analysed by Mann-
Whitney test. (E—G) Timecourse summary data displaying significant effect of ultrasound stimulation on (E) half-width (effect of ultrasound stimulation: F(1, 101) = 15.03,
p = 0.0002; effect of time: F(3, 101) = 1.597, p = 0.19; effect of treatment x time interaction: F(3, 101) = 3.41, p = 0.02), (F) depolarisation (effect of ultrasound stimulation: F(1,
102) = 14.24, p = 0.0003; effect of time: F(3, 102) = 3.79, p = 0.013; effect of treatment x time interaction: F(3, 102) = 0.31, p = 0.82), and (G) repolarisation (effect of ultrasound
stimulation: F(1, 102) = 12.55, p = 0.0006; effect of time: F(3, 102) = 0.295, p = 0.83; effect of treatment x time interaction: F(3, 102) = 1.61, p = 0.19), data is mean + S.E.M,,
analysed by 2-way ANOVA. *p < 0.05, **p < 0.01. N = (0—2hr) 15 vs. 15; (6—8hr) 14 vs. 15; (12—14hr) 12 vs. 13; (24—26hr) 13 vs. 13 cells (control vs. ultrasound). (For interpretation
of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 4. Effect of ultrasound stimulation on synaptic ultrastructure. (A—D) Electron microscopy (EM) analysis of synaptic architecture at four time-points (A) 0—2 h, (B) 68 h, (C)
12—14 h, and (D) 24—26 h post-stimulation. In each panel (i) Representative electron micrographs depicting single synapses from sham (blue) and ultrasound (orange) stimulated
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p = 0.87, outlier: ctrl 1.1pm2), (iii) PSB width (Aiii, p = 0.75, outlier: ctrl, 1618 nm; Biii, p = 0.071; Ciii, p = 0.82; Diii, p = 0.73), (iv) post-synaptic density (PSD) thickness (Aiv,
p = 0.65, outlier: ctrl, 67 nm; Biv, p = 0.41; Civ, p = 0.86; Div, p = 0.27), Data is mean + S.E.M., analysed by two-tailed unpaired t-test. (E—G) Timecourse summary data displaying for
(E) PSB area (effect of ultrasound: F(1, 146) = 1.697, p = 0.19; effect of time: F(3, 146) = 7.37, p = 0.0001; effect of treatment x time interaction: F(3, 146) = 2.922, p = 0.036), (F) PSB
width (effect of ultrasound stimulation: F(1, 148) = 1.82, p = 0.18; effect of time: F(3, 148) = 4.02, p = 0.009; effect of treatment x time interaction: F(3, 148) = 0.582, p = 0.63), and
(G) PSD thickness (effect of ultrasound stimulation: F(1, 160) = 1.489, p = 0.22; effect of time: F(3, 160) = 0.967, p = 0.41; effect of treatment x time interaction: F(3, 160) = 0.123,

N = (0—2hr) 20 vs. 19; (6—8hr) 23 vs. 19; (12—14hr) 21 vs. 21; (24—26hr) 25 vs. 20 synapses (control vs. ultrasound). (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)

patterned neuronal stimulation can rapidly modify intrinsic excit-
ability [21]. These effects share parallels with synaptic plasticity,
the widely-studied set of cellular mechanisms responsible for
activity-dependent modification of synaptic strength. Indeed,
activity-dependent modification of synaptic and excitability prop-
erties likely co-occur [22]. The timecourse of the excitability effects

3. Discussion

Our observation of a sustained — but not indefinite - change in
neuronal excitability in response to ultrasound stimulation is sug-
gestive of a plastic-like modification to the firing properties of
stimulated cells. Previous evidence suggests that transient,
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we observed — peaking at 6—8 h and returning to control levels by
12 h — is also consistent with a transient, short-term plasticity of
excitability [23]. Interestingly, we do not find major changes to
synaptic ultrastructure coincident with enhanced neuronal excit-
ability in response to ultrasound stimulation. The size of the pre-
synaptic active zone has been demonstrated to be positively
correlated with neurotransmitter release probability [24]. Our
observation of a reduction in pre-synaptic bouton area at the single
6—8 h timepoint may therefore be associated with decreased
release probability at this timepoint, though further investigation
will be necessary to fully characterise this.

Whilst our experiments have employed juvenile neurons,
similar observations have been reported in adult brains [7,8].
Indeed, in our study, we have used a 200 kHz ultrasound wave,
delivered in 100 ms pulses at 100 ms intervals, for 40 s, equating to
a pulsing frequency of 5 Hz. These parameters are similar to those
of recent in vivo studies in adult macaques reporting target specific,
bidirectional changes to functional connectivity that persist up to
2 h following stimulation [7,8], thus the findings here may reflect
some of the underlying changes to neuronal physiology under-
pinning the in vivo observations.

Importantly, these studies did not collect data beyond 2 h
following stimulation so the longer-term consequences of US in
these reports are unknown. Conversely, ultrasound-mediated
suppression of somatosensory evoked potentials peaked 5 min
post-stimulation and returned to baseline within 20 min [25].
Similarly, ultrasound-mediated modulation of oculomotor behav-
iour was reversed within 18—31 min of stimulation [26]. These
differences in temporal characteristics may be due to differences in
stimulation parameters or brain regions targeted, and the fact that
in vivo target regions are stimulated in a focally restricted manner,
whereas our entire culture is stimulated simultaneously. Further-
more, Legon and colleagues report a 3.7—4.1 fold decrease in focal
point intensity at 500 kHz when transmitting through the skull
compared to transmission in free space [10]. Additionally, the glass
coverslip we use acts as an acoustically hard reflector and hence
changes the local intensity in the vicinity of the cells relative to
in vivo. In the in vivo case the radiation force arises mainly from
absorption, whereas in vitro (on the coverslip) there is an additional
gradient forcing effect. At present the relative importance of these
contributions is not known.

The mechanisms by which neurons are sensitive to this high-
frequency ultrasound stimulation are still to be determined,
though there are an array of potential candidates [6]. Voltage-gated
ion channels are the principal components of action potential
generation and therefore excitability. Indeed, altered neuronal
excitability is directly linked with the modulation of voltage-gated
ion channels [21,27]. Voltage-gated Na® channels (Nay) and K*
channels (Ky) play key roles in action potential generation. Impor-
tantly, changes in the function or expression of Na, and K, impact
neuronal excitability [21]. Here we find changes to the waveform of
action potentials in ultrasound-stimulated neurons (Fig. 3), spe-
cifically the depolarisation and repolarisation rates, which are
largely governed by Na, and K, channels. Interestingly, previous
studies have shown that ultrasound modulates K, [13] and Nay, [14]
channel kinetics. What remains to be understood, however, is how
the brief ultrasound stimulation results in apparent sustained
change in the function of Nay and K channels. Various kinases have
been demonstrated to regulate Na, and K, channel function leading
to excitability modifications [28,29]. One possibility, therefore, is
that ultrasound induces cellular Ca** flux [12], initiating Ca®*-
sensitive signalling and kinase activation to modulate channel
function. Understanding the intracellular signalling cascades
regulated by ultrasound, therefore, will be an important next step
in characterising its mode of action.
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4. Conclusion

Ultrasound offers significant advantages over other non-
invasive neuromodulatory tools, principal of which is its spatio-
temporal precision. Our findings suggest that beyond stimulating
specific neuronal nuclei to induce immediate responses, ultrasound
can additionally, and perhaps most beneficially, be used as a con-
ditioning tool. In this regard, it could be used in circumstances
where a general sustained enhancement (or inhibition) of activity
is desirable. Beyond experimental applications, such approaches
could be greatly beneficial in disease therapy, where enhancing
activity (such as dopaminergic cell stimulation in Parkinson’s dis-
ease), or reducing activity (such as in epilepsy), could have signif-
icant therapeutic impact.

5. Methods

Primary rat cortical neuronal cultures. Cortical neurons were
cultured from post-natal day 0 male Wistar rats, in accordance with
established methodology [30]. Briefly, following Schedule 1 killing
of the animal, the brain is removed and transferred to HABG media
(HibernateA, B-27 Supplement and Glutamax) before dissection.
Cortical tissue is then pulled apart into approximately 2 mm? sec-
tions, then digested with Trypsin-EDTA. Neurons are isolated using
a Density Gradient Medium (OptiPrep), and finally plated onto
15 mm diameter glass poly-p-lysine-coated coverslips at a density
of 3 x 10* per cm? in NeurobasalA media (NeurobasalA, B-27
Supplement, Glutamax and Gentamicin). Cultured cells were
incubator-stored at 20% O, 5% CO,, 37 °C.

Electrophysiology. Conventional whole-cell patch clamp
recording was used in accordance with our established protocols
[31]. Briefly, recordings were made from primary rat cortical
cultured neurons at DIV 21-30. Coverslips with plated neurons
were placed in a recording chamber submerged in HEPES-buffered
saline (HBS) containing: 119 mM NaCl, 5 mM KCI, 25 mM HEPES,
33 mM glucose, 2 mM CaCly, 2 mM MgCl,, 1 uM glycine, 100 uM
picrotoxin, pH 7.4 adjusted with NaOH, flowing at 2 ml/min. Glass
microelectrodes were pulled by a micropipette puller P1000 (Sutter
Instrument, Novato, California, USA) with resistances ranging from
4 to 8 MQ after filling with internal solution containing: 135 mM K-
gluconate, 10 mM HEPES, 0.5 mM EGTA, 2 mM Mg-ATP, 0.3 mM Na-
GTP, 8 mM NaCl, pH 7.2 adjusted with KOH, osmolarity 285 mOsm.
Recordings were made using an Axon Axopatch 200 B Microelec-
trode Amplifier (Axon Instruments, Molecular Devices, California,
USA). Evoked action potentials were recorded in response to
sequential stepwise current injections ranging from -50 pA
to +400 pA. Passive membrane properties were derived from
recorded voltage responses to —25pA current injections. Ampli-
tude, frequency and kinetics of events, in addition to passive
membrane properties, series resistance and input resistance were
monitored online and reanalysed offline, using the WinLTP [32] and
Clampfit (Molecular Devices, USA) software.

Ultrasound stimulation. Neurons were transferred to a cham-
ber and submerged in HBS. A 200 kHz ultrasound transducer
(MCUSD19A200B11RS, Farnell, UK) powered by a signal generator
(AFG3022B, Tektronix, USA) amplified by a radio frequency
amplifier (25A250, Amplifier Research, USA), was used to generate
the ultrasound pulse. The transducer was excited with a 200 kHz
sinusoidal wave of amplitude 50 V peak-to-peak, delivered in
100 ms pulses at 100 ms intervals, for 40 s, equating to a modula-
tion frequency of 5 Hz. Control, sham-stimulation involved the
same procedure of cells being placed in the stimulation chamber
for equal time, with all equipment powered on, but no excitation
signal being generated. Following stimulation, cells were trans-
ferred to a recording chamber for electrophysiological analysis.
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Electron Microscopy. Following stimulation coverslips were
fixed at the relevant timepoint with 2.5% glutaraldehyde in 0.1 M
sodium cacodylate buffer. Samples were postfixed with 1% osmium
tetroxide, washed, and then stained en bloc in 3% aqueous uranyl
acetate. Coverslips were dehydrated using an ethanol series and
embedded in EPON812 resin. The resulting blocks were sectioned
with a Leica EM UC7 ultramicrotome (Leica Microsystems GmbH,
Wetzlar, Germany) at 70 nm. Sections were poststained with 3%
aqueous uranyl acetate and lead citrate. Imaging was carried out
with a FEI Tecnai 12 120 kV BioTwin Spirit TEM with tungsten
filament and Ceta 4 k x 4 k CCD camera (Thermo Fisher Scientific,
Waltham, USA). Images were captured at a magnification of
23000x.

Image Analysis. TEM images were analysed using FIJI/Image]
[33,34]. Bouton area was calculated using the polygon tool to trace
around the presynaptic region. Bouton width was determined by
measuring a line parallel with the electron dense PSD at the widest
point of the polygon mentioned above. PSD thickness was calcu-
lated by dividing the area of the PSD including the electron dense
scaffold by the length of the postsynaptic membrane as previously
described [35].

Data analysis and statistics. After initial analyses in respective
software (Clampfit/FIJI), resulting data was transported into
GraphPad Prism (macOS v8.4.3, GraphPad Software, San Diego,
California, USA), for statistical analysis and graphical representa-
tion. Data was tested for normality by D’Agostino and Pearson K2
test (p < 0.01). In some instances, normality was restored by
removal of a single highly significant outlier (ROUT test,
FDR < 0.1%). These instances have been reported in the relevant
figure legends, along with the value of the outlier. Where data was
normally distributed, it has been presented as mean + S.E.M. (i.e.,
scatter dot plots), where it was not, data has been presented as
median with inter-quartile range (i.e., box-and-whisker plots).
Non-normal data was analysed by Mann-Whitney U test. Normally
distributed data was analysed by either two tailed unpaired t-test,
2-way analysis of variance (ANOVA), or mixed-effects model as
indicated in the figure legends. Holm-Sidak method was used for
between group (i.e., control vs ultrasound) multiple comparisons
testing. The data reported in this study are available from the cor-
responding author upon reasonable request.
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