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Abstract

In explainable artificial intelligence, there is increasing inter-
est in understanding the behaviour of autonomous agents to
build trust and validate performance. Modern agent architec-
tures, such as those trained by deep reinforcement learning,
are currently so lacking in interpretable structure as to effec-
tively be black boxes, but insights may still be gained from
an external, behaviourist perspective. Inspired by conceptual
spaces theory, we suggest that a versatile first step towards
general understanding is to discretise the state space into con-
vex regions, jointly capturing similarities over the agent’s ac-
tion, value function and temporal dynamics within a dataset
of observations. We create such a representation using a novel
variant of the CART decision tree algorithm, and demonstrate
how it facilitates practical understanding of black box agents
through prediction, visualisation and rule-based explanation.

Introduction
This paper explores representational tools for understand-
ing the behaviour of extant autonomous agents while treat-
ing them and their environments as black boxes. In popu-
lar taxonomies of explainable artificial intelligence (XAI),
this is categorised as post hoc, model-agnostic, global ex-
planation (Adadi and Berrada 2018). While black box be-
haviourist analysis is inherently limited (Chomsky 1959),
it can nonetheless serve the practical goals of XAI, which
include building trust among human stakeholders and vali-
dating the performance of safety-critical systems. It is also
viable in contexts where theoretical understanding of the
agent’s internal mechanism is lacking, as with modern deep
learning systems (Samek, Wiegand, and Müller 2017), or
where access to this mechanism is impractical or restricted.

We introduce a new data-driven model of black box
agents, called TRIPLETREE, which builds on the flexible and
interpretable architecture of a binary decision tree. As such,
it provides a powerful tool for answering many meaningful
questions about agent behaviour.

Problem Setup
Suppose that we need to understand the behaviour, perfor-
mance and possible failure modes of an autonomous agent
operating within a dynamic and complex environment. A
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priori, we know nothing of the agent’s provenance – its
governing policy may be a product of reinforcement learn-
ing (RL), optimal control algorithms, evolution, or explicit
manual design – but we assume that it can be analysed us-
ing the theoretical formalism of a Markov decision process
(MDP). We refer readers to (Sutton and Barto 2018) for an
overview of MDPs, and adopt the MDPNv1 notational stan-
dard (Thomas and Okal 2015).

To learn anything about the agent we must gather data,
and in doing so we make the black box assumption (Wachter,
Mittelstadt, and Russell 2017; Guidotti et al. 2019; Coppens
et al. 2019). That is, we take the role of an observer of the
agent-environment complex, with no access to the internal
structure of either system, but the ability to record environ-
ment states s ∈ S, agent actions a ∈ A, and instantaneous
rewards r ∈ R, and their order of occurrence. We thereby
assemble D, an ordered dataset of triplets (St, At, Rt). St,
At andRt are the state, action and reward from one timestep,
uniquely indexed by t. If the MDP is episodic (see (Sutton
and Barto 2018)), we keep a record of which states are the
initial and terminal ones in each episode. Importantly, we
assume that states are represented by vectors of real-valued
features, each with a straightforward semantic interpretation
(such as a physical quantity). In doing so, we bypass a chal-
lenging phase of state representation learning.1

The data in D are generated by the interaction of opaque
and complex mechanisms. How might they get us to a posi-
tion of understanding? Following prior work across the aca-
demic spectrum (Carnap 1967; Rosch et al. 1976; Edelman
1998), we take the view that understanding arises by search-
ing for similarities in observed data. A variant of this idea is
Gärdenfors’ theory of conceptual spaces (Gärdenfors 2004).

Conceptual Spaces and Decision Trees
Gärdenfors views sensory observations as embedded in
high-dimensional mathematical spaces, and proposes that
the building blocks of abstract reasoning are convex regions
of such spaces, within which all contained observations are
similar according to some salient measure. Such regions are
deemed natural properties of the system being observed,
and can be combined to form semantic concepts such as ob-

1 We address the problem of interpretable feature construction
and selection in (Bewley, Lawry, and Richards 2020).
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jects, categories, actions and events. For our purposes, the
observations D do indeed lie within a mathematical space:
the MDP state space S. We consider how these observations
can be grouped into convex regions of S based on context-
specific measures of similarity. Rather than talking about the
system on a state-by-state basis, we may then analyse such
regions as meaningful entities in themselves, within which
the agent behaves in predictable ways, and between which it
moves in predictable patterns. This is a kind of MDP state
abstraction, informed by observations of the agent itself.

A central issue is choosing which attributes to use for
measuring similarity within regions. An obvious criterion is
the agent’s action. If the agent takes the same action through-
out a significant region of S, then it seems that region is wor-
thy of being explicitly represented. Alternatively, we might
be interested in the agent’s performance as measured by the
reward function, and thus measure similarity using the re-
ward elements in D. In practice, it is likely more informa-
tive to invoke the notion of value, which is the expected sum
of reward after the agent visits each state, temporally dis-
counted by γ ∈ [0, 1]. An empirical value estimate can be
computed for each sample t ∈ D using the rewards of suc-
cessive samples: Vt =

∑T
k=0 γ

kRt+k. Here, T is the time
until termination in an episodic MDP, and ∞ otherwise. A
third valid option is to define similarity via the temporal dy-
namics of the MDP itself. These can be neatly captured by
the time derivatives of state features, which in discrete time
systems are equal to the change in state between timesteps.
For each sample t ∈ D, we define this as St+1 − St.

Our key assertion in this paper is that there is no need to
choose between these three sources of similarity, and that
a powerful and versatile model results from identifying re-
gions of S that are similar from all three perspectives. We
complete our model by calculating transition probabilities
between regions – the probability that having being observed
at a state in one region, the agent will move to another region
next. These effectively define a probabilistic finite state ma-
chine (FSM) model of the agent-environment dynamics, and
can be estimated by harnessing the temporal ordering of D.

Figure 1 summarises the proposed model. As we hope to
demonstrate, it enables us to make sense of pertinent ques-
tions about the key invariances and changes points in the
agent’s behaviour, the environmental factors responsible for
this behaviour and perturbations which would alter it, the
regions of S most commonly visited, and the most likely
trajectories between particular states of interest.

State space
Similar action 
Similar value
Similar derivatives

Transition

Figure 1: A general model of agent-environment dynamics.

We now turn to the question of practical implementa-
tion. There exists an ideal computational tool for finding
internally-similar convex regions of mathematical spaces:
the humble decision tree. A decision tree is ‘grown’ to pre-
dict an output label by recursive binary partitioning of a
space of input features. Typically, partitions are axis-aligned,
so each resultant region (corresponding to a leaf of the tree)
is a hyperrectangle. Partitions are chosen to greedily min-
imise a measure of impurity in the output labels of train-
ing data at each node, which is tantamount to finding and
preserving similarity as conceived in our conceptual space
model. Trees are popular in XAI, and often hailed as the gold
standard of interpretability (Wan et al. 2020). Their hierar-
chical structure means that global functionality can be anal-
ysed as the concatenation of local effects, without higher-
order interaction. Their alternative representation as rule sets
in disjunctive normal form also enables factual and counter-
factual explanation of their outputs (Guidotti et al. 2019).

The sub-field of agent explainability has seen enthusias-
tic uptake of decision trees (Bastani, Pu, and Solar-Lezama
2018; Coppens et al. 2019; Bewley, Lawry, and Richards
2020). However, these works focus exclusively on predicting
and explaining a black box agent’s single next action in any
given state, effectively approximating its policy function, de-
noted by π. This approach uses only the first two elements
of the triplets (St, At, Rt) in D, and ignores their ordering,
thus foregoes an opportunity for far richer analysis. The all-
important notion of value, as well as the temporal dynamics
of agent-environment interaction, are entirely absent from a
policy-only model, which in isolation is insufficient for an-
swering many reasonable questions about the target agent’s
performance and dynamical properties.

This lack of versatility is a product of how data are stored
in the tree, and of the algorithm used to grow it, rather than
an inherent limitation of the decision tree paradigm. We pro-
pose to extend the standard notion of impurity to capture
multiple facets agent-environment interaction, making full
use of the data in D, and providing a practical implemen-
tation of the conceptual model in figure 1. Concretely, we
grow the tree using a hybrid of three impurity measures
related to the agent’s action, expected value and state fea-
ture time derivatives, hence our new model’s name: TRIPLE-
TREE. By modifying a weight vector θ ∈ R3

+, which sets the
influence of the three measures, we can smoothly trade off
between three types of interpretable model of the system:
• θ = [1, 0, 0]: A conventional policy-only model.
• θ = [0, 1, 0]: A value function.
• θ = [0, 0, 1]: A model of the environment state dynamics.
Any other weighting gives a blended combination of the
three, allowing for multifactorial analysis.

The TRIPLETREE Model
Basic Structure: CART
TRIPLETREE is an extension of the CART algorithm
(Breiman et al. 1984), which we briefly introduce first. We
assume that given a datasetD, CART is being used to predict
the agent’s action given the state; a policy-only model.



Let I = {1, ..., |D|} be the set of timestep indices in D,
used to initialise the tree’s root node before any partitions
are made. Let IN be the subset of I at any given node N .
To split this node in two, thereby growing the tree, CART
searches over binary partitions IN = {I0, I1} such that for
some state feature f and numerical threshold τ ∈ R:

(∀t ∈ I0 S(f)
t < τ) ∧ (∀t′ ∈ I1 S(f)

t′ ≥ τ). (1)

Here, S(f)
t is the f th element of the state vector St. For each

candidate partition, we calculate the population-weighted
reduction in a measure of action label impurity I induced
by dividing the set into these two parts. For a discrete action
space A, the Gini impurity is used:

IN =
1

|IN |2
∑

a∈A
count(IN , a)(1− count(IN , a)), (2)

where count(IN , a) = |{t ∈ IN : At = a}|. For continuous
actions A = R, the impurity measure is the variance:

IN =
1

2|IN |2
∑

t∈IN

∑

t′∈IN
(At −At′)2. (3)

The quality Q of a candidate partition is defined as:

Q(IN , {I0, I1}) = IN −
I0|I0|+ I1|I1|

|IN |
. (4)

CART selects the partition that maximises Q, and the corre-
sponding feature f and threshold τ are recorded in the tree.
I0 and I1 also define the members of two new child nodes
of N . CART proceeds to search for the best binary partition
of each child, and grows the tree depth-first up to a stopping
condition, such as a depth limit.

In any tree, a subset of nodes, called the leaves L, remain
childless. Every sample in D is a member of exactly one
leaf L, whose key attribute is an action prediction ãL ∈ A.
For discrete A, this is typically the modal action among
the leaf’s constituent samples: ãL = argmaxa count(IL, a).
For continuous A, the mean is used: ãL =

∑
t∈IL At/|IL|.

To predict an action for an unseen state vector s, the tree
propagates s down a path from the root by comparing its
features to the thresholds encountered, then returns the pre-
diction of the leaf which is ultimately reached.

Modifications and Extensions
Our fundamental divergence from CART is in the use of
the entire content and strucure of D. TRIPLETREE accepts
ordered triplet samples of the form (St, At, Rt), and prior
to commencing growth evaluates two additional attributes,
namely the value estimate Vt =

∑T
k=0 γ

kRt+k and state
derivative vector Dt = St+1 − St. Rather than using only
the agent’s action as an output label, each leaf L is associ-
ated with three predictions: the action ãL, a value estimate
ṽL (the mean of the leaf’s contituent samples), and a state
derivative estimate d̃L (the elementwise mean).

The TRIPLETREE growth algorithm trades off the abil-
ity to make these three kinds of prediction by encouraging
leaves to have low variability in all three attributes across
their constituent samples. To achieve this, we compute three
measures of the quality of candidate partitions:

• Action quality Q(A): defined exactly as in equation 4.

• Value quality Q(V ): defined equivalently, but using the
variance in value estimates as the impurity measure I(V ).

• Derivative quality Q(D): defined equivalently, but using
an impurity measure I(D) that sums the variance in deriva-
tives across all d of the feature dimensions:

I(D)
N =

1

2|IN |2
d∑

f=1

1

σ(f)

∑

t∈IN

∑

t′∈IN
(D

(f)
t −D(f)

t′ )2. (5)

1/σ(f) is a normalisation factor for each derivative – the
reciprocal of its standard deviation across D – which pre-
vents features with large magnitudes dominating the im-
purity calculation. This sum-of-variances impurity mea-
sure is similar to those used in prior work on multivariate
regression trees (De’Ath 2002; Kim et al. 2015).

After computing Q(A), Q(V ) and Q(D), we aggregate
them into a hybrid measure of partition quality Q∗. Hav-
ing experimented with alternative methods in various MDP
contexts, we find that a linear combination provides a good
compromise of simplicity, robustness and flexibility:

Q∗ =

[
Q(A)
N

I(A)
root

,
Q(V )
N

I(V )
root

,
Q(D)
N

I(D)
root

]
· θ. (6)

Here we have omitted the arguments of the quality terms for
brevity. θ ∈ R3

+ is a weight vector, which trades off accurate
modelling of the policy, value function and derivatives. Each
quality term is normalised by the respective impurity at the
root node (i.e. before any partitions are made). This brings
the three measures onto equivalent scales.

CART follows a depth-first growth strategy, which is
known to lead to suboptimal allocation of partitions. We de-
part from this by adopting a simple best-first strategy for
selecting which leaf node to partition at each stage of tree
growth. Again taking a hybrid view of impurity, we identify
the best current leaf to partition, Lbest, as follows:

Lbest = argmax
L∈L

|IL|
[

I(A)
L

I(A)
root

,
I(V )
L

I(V )
root

,
I(D)
L

I(D)
root

]
· θ, (7)

where θ is the same as in equation (6). This approach pri-
oritises the partitioning of leaves with high total impurity,
weighted by their sample counts. Our criterion for terminat-
ing tree growth is a limit on the number of leaves, |L|.

The final feature of TRIPLETREE is the calculation of
leaf-to-leaf transition probabilities. Let leaf(t) = L ∈ L :
t ∈ IL be the leaf at which a sample t resides. For terminal
samples in episodic MDPs, we define leaf(t) = ∅. Further-
more, let I∗L = {t ∈ IL : leaf(t − 1) 6= L} be the subset
of IL whose predecessors are not themselves in IL: the first
in each sequence of successive observations that reside at
L. We perform our calculations at the level of sequences,
rather than individual samples, to avoid a double-counting
effect. For each sequence-starting sample t ∈ I∗L, we find
the length of its successor sequence, seqlen(t), and the leaf
containing the sample that breaks it, nextleaf(t):

seqlen(t) = min{k : leaf(t+ k) 6= leaf(t)} ;
nextleaf(t) = leaf(t+ seqlen(t)).

(8)



For a given source leaf L and destination leaf L′, we are
interested in the subset of I∗L whose successor sequences
are followed by a transition to L′:

I∗L→L′ = {t ∈ I∗L : nextleaf(t) = L′}. (9)

Note that in episodic MDPs, I∗L→∅ is well-defined and
meaningful; it contains the members of I∗L for whom the
episode terminates before a transition to another leaf. We
can now compute the empirical probability that any given
sequence in L ends in a transition to L′, and the mean length
of such a sequence:

PL(L
′) =

|I∗L→L′ |
|I∗L|

; TL(L
′) =

∑

t∈I∗
L→L′

seqlen(t)
|I∗L→L′ |

. (10)

Transition probabilities and times are stored at their respec-
tive source leaves (L here) as further attributes alongside the
predictions ãL, ṽL and d̃L.

In summary, the key features of TRIPLETREE are:
• Acceptance of the triplet observations inD, calculation of

value and state derivatives for each sample, and storage of
predicted values of these variables at each leaf.

• A hybrid measure of partition quality Q∗, mediated by a
weight vector θ, which trades off the tree’s abilities to pre-
dict the target agent’s action, value and state derivatives.

• Calculation of PL and TL to encode information about
temporal dynamics in terms of leaf-to-leaf transitions.

• A best-first growth strategy.
A Python implementation of TRIPLETREE is available on

GitHub at https://github.com/tombewley/TripleTree.

Related Work
Before the widespread adoption of deep neural network
function approximators in RL, decision trees were used to
create discretised state abstractions for tabular Q-learning
algorithms (Uther and Veloso 1998). Tree models have also
been used to learn a value function with the aim of creating
an interpretable agent that performs well in the task environ-
ment (Pyeatt 2003; Roth et al. 2019), and also to mimic the
value function of an existing black box policy as a route to
explainability (Liu et al. 2018). This latter model also keeps
track of transition probabilities between tree leaves, simi-
larly to our approach. In (Jiang, Hwang, and Lin 2019), a
decision tree is grown to minimise the impurity of environ-
ment state derivatives as part of a model-based RL frame-
work, and in (Kim et al. 2015) a tree is optimised for se-
quential prediction by jointly minimising loss on consecu-
tive timesteps. Other work has looked at approximating a re-
current neural network policy as a finite state machine for vi-
sualisation and analysis (Koul, Fern, and Greydanus 2018).

We know of one work that considers a hybrid action- and
value-based tree impurity measure (Saghezchi and Asad-
pour 2010), but the idea is tangential to the main topic of
the paper and its implications left unconsidered. We are un-
aware of any prior work that jointly represents the policy,
value function and temporal dynamics in one decision tree,
or considers the benefits of doing so for interpretability.

Rleft Rright

pos

speed

acc

Rspeed

Figure 2: The 2-dimensional road MDP.

Prediction Tradeoff Experiments
We initially validate TRIPLETREE in a simple MDP with 2
state features and 2 discrete actions. This can be interpreted
as a straight road, down which a vehicle agent can drive in
either direction. The state features are position pos ∈ [0, 3]
(increasing left-to-right) and speed speed ∈ [−0.1, 0.1], and
the agent’s action is a small positive or negative acceleration
acc ∈ {−0.001, 0.001}. Walls lie at the left and right ends of
the road; a collision with either yields a reward of Rleft and
Rright respectively and instantly terminates the simulation
episode. The agent also receives reward in each non-terminal
state in proportion to its absolute speed: Rspeed × |speed|.
Figure 2 summarises this information.

For a given Rleft, Rright, Rspeed, discount factor γ (we
use γ = 0.99), and suitable discretisation of S (we use a
30 × 30 grid) an optimal policy can be found by dynamic
programming (DP). We use the DP policies for four reward
function variants as the target agents in our experiments. For
each, we create a dataset D with 104 samples, by running
randomly-initialised episodes of 100 timesteps.

Figure 3 shows the result of growing a TRIPLETREE of up
to 200 leaves using these four datasets, with various impurity
weightings θ. The columns show predictive losses for action
(proportion of incorrect predictions), value (RMS error) and
derivatives (dot product of RMS error with normalisation
factors 1/σ) as a function of leaf count. Naturally, different
trees result when different θ vectors are used, and in all cases
the lowest loss of each type is obtained by exclusively using
the corresponding partition quality measure. Crucially, how-
ever, using an equal weighting (θ = [1/3, 1/3, 1/3]; black
curves) offers a strong compromise between the three modes
of prediction. For action and derivatives, equal weighting
converges slower than exclusive weighting, but to virtually
the same asymptotic loss, with the greatest disparity for trees
with around 50-100 leaves. For value the gap is more signifi-
cant. This indicates that in this MDP, there tend to be regions
of S in which value varies significantly but the agent’s action
and state derivatives do not, thereby creating a conflict as to
which leaves are worthy of partitioning. This phenomenon
is most pronounced for the policy on the bottom row. An-
other notable trend is that partitioning on derivatives alone
does very well in terms of action loss. This makes perfect
sense once we realise that the agent’s action (acc) is exactly
the time derivative of one of the state features (speed).

This analysis begs the question: what is the best θ for this
MDP? Ultimately, the answer depends on the intended ap-
plication, but if general versatility is important then we may
wish to minimise the worst of the three loss types. Our anal-
ysis along these lines (see Appendix A) suggests that in this
MDP, a good compromise is attained by placing increased
weight on value impurity: θ = [0.2, 0.6, 0.2].

https://github.com/tombewley/TripleTree
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with Rleft, Rright, Rspeed as stated in the left-hand labels.

Multiattribute Visualisation in State Space
Recall that in a decision tree, each leaf is associated with
a hyperrectangle in the d-dimensional state space S, whose
boundaries correspond to the partitions of its ancestor nodes.
If d ∈ {1, 2}, hyperrectangles reduce to lines or rectangles,
which can be directly shown on axes corresponding to S it-
self (we return to the d > 2 case later in this paper). Each
leaf can be coloured according to some salient attribute in-
cluding, but not limited to, one of its three predictions.

Figure 4 demonstrates the rich information conveyed by
such visualisations in the road MDP. Each row of plots
is generated from a single TRIPLETREE with 200 leaves,
grown using the compromise weighting θ = [0.2, 0.6, 0.2].
In the first column, leaves are coloured by predicted action,
revealing the optimal DP policies. The decision boundaries
have varying complexity; interesting features include the
isolated ‘island’ of positive acceleration in the top policy,
which occurs when a crash with the right wall is unavoid-
able but positive Rspeed can be obtained by accelerating in
the meantime, and the Z-shaped feature in the bottom pol-
icy, which causes the agent to oscillate around the centre
of the road to avoid hitting either wall (reward = −100).
In the second column, colours denote the predicted value,
which intuitively reflects the differing reward components.
In general, low value corresponds to an imminent crash into
a low-reward wall. Value is high when the agent approaches
a high-reward wall and/or has plenty of room to accumu-
late positive Rspeed. For the bottom policy, value is high
within a boundary of stability for the oscillatory motion,
and low elsewhere. The plots of predicted derivatives in the
third column differ from the others. Since this is a vector
quantity, we show it as a quiver plot with an arrow for each
leaf, whose direction and magnitude reflect the mean change
in state between successive timesteps. The system changes
more rapidly at high speeds, hence the longer arrows in these
areas. Quiver plots provide an excellent high-level overview
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Figure 4: Five types of visualisation using TRIPLETREE.

of system dynamics, particularly the locations of directional
changes, cycles and regions of constancy. The fourth column
colours leaves by derivative impurity, showing where in S
we should be most confident in the model’s derivative pre-
dictions. We can also create equivalent plots for action and
value impurity. The final colouring attribute is sample den-
sity, computed by dividing the population of each leaf by its
volume in S: the product of boundary lengths, normalised by
each feature’s range across D. This reveals where the poli-
cies spend the most time: in narrow arcs for the top two, and
a tight central patch for the bottom one.

Rule-based Explanation
A popular interpretability feature of decision trees is the gen-
eration of textual explanations of outputs in terms of the de-
cision rules applied. The simplest type of rule-based expla-
nation is a factual one. For any leaf L ∈ L, simply enumer-
ating the boundaries of the leaf’s hyperrectangle describes
the region of S within which a constant prediction holds.
Figure 5a shows a portion of the action visualisation for one
of the 200-leaf trees from the previous section. The action
for state St can be explained factually as follows:

“Action = 0.001 because pos ∈ [1.1, 1.32] and
speed ∈ [0.021, 0.045].”

It is argued that a more natural (Lipton 1990) and legally
persuasive (Wachter, Mittelstadt, and Russell 2017) form of
explanation is the counterfactual, which provides reasons
why an alternative outcome, known as a foil, does not oc-
cur instead. In our context, the foil is an action other than
the one taken in St. After enumerating all leaves which pre-
dict the foil action, we choose one, then find the change in
state required to move to a location s′ in that leaf. There
is much debate about how to select s′ from many alterna-
tives (Guidotti et al. 2019; Poyiadzi et al. 2020), which of-
ten hinges on the notion of a minimal change in state. In
TRIPLETREE, we use a two-stage process based on the L0

and L2 norms (Appendix B), which gives the following min-
imal counterfactual for the action in figure 5a:

“Action would = −0.001 if speed ≥ 0.045.”



MBB

(a) (b)

Figure 5: Various forms of explanation for action and value.

For the ordered data in D, a third form of explanation is
temporal, which explains changes over time such as the ac-
tion change from St to St+1 in figure 5a. This again takes a
counterfactual perspective, although a subtlety is that using
St+1 directly as a foil does not produce a minimal expla-
nation. Our method for resolving this (also in Appendix B)
finds s′′, the minimal foil from St subject to the constraint
that the minimum bounding box (MBB) of s′′ and St+1 only
intersects leaves with the same action as St+1. This yields:

“Action changed 0.001→ −0.001 because pos ≥ 1.48.”

Temporal explanation could be extended to a longer se-
quence of samples by identifying all timesteps at which the
action changes, explaining each as above, and combining
them into a behavioural story using the conjunction “then”.

The TRIPLETREE model allows us to similarly explain
value predictions ṽL. Since value is continuous, a counter-
factual could explain why value is less than or greater than a
threshold, rather than defining a precise numerical foil which
will only ever be made by one leaf at most. In figure 5b, we
can see that the foil condition v ≤ 0.3 leads to the following
minimal counterfactual for the value at St:

“Value would ≤ 0.3 if pos ≥ 2.64 and speed ≥ 0.024.”

Trajectory Simulation
For each leaf L, the derivative prediction d̃L and transi-
tion probabilities PL both describe the agent’s movement
through a region of S. These can be combined to construct
behavioural trajectories which may never have occurred in
D, but are nonetheless realistic given the agent’s policy. This
could be useful for answering targeted queries about how it
navigates before, after and between states of interest.

Here we consider the problem of finding such a trajec-
tory between a given start leaf LS and an end leaf LE . We
start by using Dijkstra’s algorithm (Dijkstra 1959) to find a
sequence of leaves LS→E = (LS , L1, L2, ..., LE) that the
agent moves through with nonzero probability. We define
the (inverse) cost of each transition L → L′ according to
the probability PL(L′), and the cost of a full sequence as the
product of its constituent transitions. If valid sequences ex-
ist between LS and LE , Dijkstra’s algorithm is guaranteed
to find the highest-probability one first. If no solutions exist
the algorithm returns a null result, which still gives valuable
information about the non-reachability of states.

To generate a realistic trajectory through LS→E , we solve
a constrained optimisation problem to build a piecewise lin-
ear path whose segments are well aligned with the leaves’
predicted derivative vectors. Concretely, for each leaf Lj ∈
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Figure 6: Simulated trajectories in the road MDP.

LS→E we initialise a path node pj on the hyperrectangle
boundary, then perform gradient descent updates on all node
locations to minimise the squared angular deviation between
the path segments and the derivative vectors. When calcu-
lating angles, we normalise derivatives by the vector of in-
verse standard deviations across D, 1/σ. The unconstrained
update to pj is proportional to the partial derivative of the
squared deviations for the segments before and after:

∂

∂pj

[(
cos−1

xj · dj
||xj ||||dj ||

)2
+
(
cos−1

xj+1 · dj+1

||xj+1||||dj+1||
)2]

,

(11)
where xj = (pj − pj−1) ◦ 1/σ and dj = d̃Lj ◦ 1/σ (◦
denotes the Hadamard product). Rather than applying the
update directly, we constrain the node to remain on its re-
spective boundary, and always ‘visible’ from the previous
node (i.e. it never moves to the far side of the boundary).

Figure 6 contains trajectories generated by this search-
then-align method from the 200-leaf TRIPLETREES. Deriva-
tive arrows from nearby leaves indicate that the trajectories
align well with agents’ true motion in each region of S. The
optimisation converges reliably and generally yields high-
quality trajectories, but is rather expensive and can get stuck
in local minima. We are exploring refinements to our ap-
proach, and how it may be combined with temporal explana-
tion to provide a textual summary of simulated trajectories.

Experiments in a Higher-dimensional MDP
We now deploy TRIPLETREE in a more complex MDP:
LUNARLANDERCONTINUOUS-V2 within OpenAI Gym
(Brockman et al. 2016). Here, the state s is an 8-dimensional
vector [x, y, vx, vy, φ, vφ, cL, cR], which are respectively the
horizontal and vertical position and velocity, orientation, and
angular velocity of a landing craft, and binary flags as to
whether its left and right legs contact the ground. The action
spaceA = [−1, 1]2 is bounded and 2D. The first component
is the throttle for the lander’s vertical engine (−1 is off) and
the second is a left-right side engine (0 is off). The reward
is +100 for a safe landing in a landing zone and −100 for
a crash, and there is additional shaping reward to disincen-
tivise fuel burn. The black box target policy for our model is
a Soft Actor-Critic deep RL agent from Baselines Zoo (Raf-
fin 2018), the highest-performing policy on that repository.

Using a dataset of 105 observations, we grow a TRIPLE-
TREE of up to 1000 leaves with θ = [1, 1, 1] (the multi-
variate action space requires us to slightly modify the action
impurity measure). Figure 7 shows how the three losses vary
during growth on both the training set and a validation set. In
this more complex MDP the prediction problem is harder –
particularly, it seems, for derivatives – and losses do not re-



duce to near zero, but as we shall see, the model still captures
enough of the statistical properties of the system to deliver
significant insight. We use the validation losses to inform
early stopping and select the 450-leaf tree for evaluation.

With an 8D state space, it is nontrivial to create visuali-
sations like those in figure 4. We suggest two ways forward:
projection and slicing, which are detailed in Appendix C. In
the former, we project leaf hyperrectangles onto a plane de-
fined by two feature axes. Where multiple projections over-
lap, we compute a marginal value for the colouring attribute
as a weighted average. This creates a partial dependence
plot (PDP) of the attribute over the two features. Figure 8
contains a diagram of the method, and results from the 450-
leaf tree. The upper five plots are PDPs for the x-y plane
(landing zone shown in red). Notice how the main engine
fires less at high altitudes. Sample density is high in a col-
umn above the landing zone, and on the ground where the
policy makes slow positional corrections. The value and
derivatives plots reveal that despite the MDP being sym-
metric, the agent obtains higher value when landing from
the left, and takes a less curved route when doing so. The
side engine plot has weaker trends, but the dark band around
y = 1 (indicating the engine tends to fire to the left) may
explain the wider landing approaches on the right. PDPs for
the y-vy plane show hard thresholds in main engine activa-
tion at vy = 0 and y ≈ 1, and a U-shaped vertical speed
profile. In the φ-vφ plane, we see that the side engine fires
in an intuitive way to maintain stability, that value is highest
when vφ ≈ 0, and that the lander has pendulum-like dynam-
ics aside from several leaves (purple) where vφ jumps. These
likely reflect rapid changes in side engine activation.

Slice visualisation involves taking an axis-aligned planar
cross-section of S, and displaying all intersected leaves as
rectangles. This creates an individual conditional expecta-
tion (ICE) plot of the colouring attribute rather than a PDP,
which is useful for illustrating counterfactual explanations
for which the true state and minimal foil differ in ≤ 2 fea-
tures. Examples are shown in figure 9. These plots not only
display the minimal state change required to realise the foil
condition, but reveal some of the surrounding state space,
giving an indication of the counterfactual’s robustness.

We can also simulate trajectories in this MDP and visu-
alise them in 2D. Figure 10 contains some examples. Rather
than showing a single trajectory between two leaves, we dis-
play all possible trajectories between leaves within a start
zone (blue/orange) and end zone (red), demonstrating the
distribution of paths taken by the agent. The first plot clar-
ifies our prior observation that approaches from the right
are wider, and shows that they occasionally miss the land-
ing zone altogether. Thereafter, the lander must ‘shuffle’
along the ground into position; a major source of lost value.
Similarly, the second plot confirms that the lander’s vertical
speed profile is U-shaped, and in fact very close to quadratic.
The final plot is the most interesting. If rotated to the left
(φ < 0.5), the lander’s return to a stable, neutral orienta-
tion is direct and overdamped. From the right, trajectories
back to neutrality tend to overshoot; a classic indicator of a
poorly-tuned controller. This is further evidence that despite
obtaining high reward, the policy is chronically asymmetric.
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Figure 7: Training and validation losses in LUNARLANDER.

Figure 8: PDP projection method and results.
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Figure 9: Displaying visual counterfactuals on ICE plots.
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Figure 10: Simulated trajectories between regions of S . The
opacity of each trajectory is proportional to its probability.

Conclusion
Gärdenfors asserts that the aggregation of high-dimensional
observational data into discrete convex regions, based simi-
larity judgements, is a general route towards human under-
standing of complex systems. We consider TRIPLETREE to
be a practical demonstration of this phenomenon; a versatile
representational tool for delivering practical insight into the
behaviour of black box autonomous agents through multi-
variate prediction, visualisation and rule-based explanation.
In ongoing work, we continue to explore the potential of this
representation, refining and expanding our methods of anal-
ysis and deploying the model in more challenging MDPs.
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Appendix A: Worst-Case Loss Analysis
To more deeply understand the tradeoff between the three
types of loss in the 2D road MDP, we consider 21 equally-
spaced weighting vectors θ. For each, we calculate which
loss is worst as a ratio of the loss from a tree with just
one leaf, which predicts the dataset average. The results are
plotted in barycentric coordinates (simplex plots) in figure
1. The prevalence of red dots throughout the range of tree
sizes shows that value prediction is weakest across most of
the space of weightings. A notable exception is the right-
hand edge of the simplex, where derivative weight is 0 and
that loss is accordingly the worst. The greyscale heatmaps
show the magnitude of the worst loss ratio (interpolated
using Matplotlib’s LinearTriInterpolator), which
as a general rule is lower towards the centre of the sim-
plex, but also towards the right-hand side, where the value
weight is higher. These results point to the conclusion that
in this MDP, value should be up-weighted in the hybrid qual-
ity metric if minimising the worst-case loss ratio is impor-
tant. From looking at the various heatmaps, we suggest that
θ = [0.2, 0.6, 0.2] is close to the best possible compromise.
We use this weighting throughout the rest of the main paper,
aside from for the final section on LUNARLANDER.
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Figure 1: Analysis of worst-case loss across the space of
weight vectors for trees of various sizes. Coloured dots show
the identity of the worst loss (blue: action, red: value, green:
derivatives) at the 21 weightings tested. Heatmaps show the
magnitude of the worst loss as a ratio of the loss from a one-
leaf tree, linearly interpolated between test locations.

Appendix B: Algorithms for Explanation
Finding the Minimal Counterfactual Foil
Let L∗ be the leaf where the observation to be explained,
St, ends up after being propagated through the tree, and
let z̃L∗ generically represent the leaf’s predicted attribute.
In a TRIPLETREE this attribute may be an action, value or
derivative vector. For counterfactual explanation, we specify
a foil condition F , which is used to identify a set of leaves in
which the foil state may reside. If the attribute is a discrete

action, the foil simply specifies another member of the ac-
tion space. For continuous action or value explanation, the
foil is an inequality which is not satisfied by z̃L∗1. In either
case, let L′ = {L ∈ L : F (L) = True} be the subset of
leaves satisfying F .

For each L ∈ L′, let l(f)L and u(f)L be the lower and up-
per boundaries of that leaf’s hyperrectangle along feature f ,
which correspond to partitions made at its ancestor nodes.
One or both of these boundaries will be undefined (effec-
tively infinite) if none of the ancestors partition along f .
In such cases we replace a lower bound with the minimum
value of the feature across all samples inD, denoted by s(f)min,
and replace an upper bound with the maximum value s(f)max.

The location in L which is closest2 to the input state
St, denoted by sL, lies on the boundary. It is defined on a
feature-wise basis as follows:

s
(f)
L =





u
(f)
L if S(f)

t > u
(f)
L ,

l
(f)
L if S(f)

t < l
(f)
L ,

S
(f)
t otherwise.

(1)

Let δL = (sL − St) · α be the vector from St to sL,
normalised by α, which is the vector of the reciprocal min-
max ranges of the state features across the training setD. As
discussed in the main paper, such normalisation is important
to bring the state features onto equivalent scales.

The task of finding a minimal foil consists in selecting
one element of the set {sL : L ∈ L′} by consideration
of the corresponding δ vectors. Since this set is non-convex
in general, there is not one choice which is unambiguously
closest to St; this depends on which norm we apply to the
δs. Different norms have different advantages. The 2-norm
is the most common and intuitive distance metric in vector
spaces, especially those with a physical interpretation, but
does not incentivise sparsity, which would allow us to give
a more compact explanation (fewer feature changes means
fewer clauses in the textual summary). Conversely, the 0-
norm only measures sparsity, and cannot differentiate be-
tween multiple options with the same number of nonzero
elements. The 1-norm offers a popular compromise, but we
do not use this in TRIPLETREE. Instead, we filter first by
0-norm

S = {sL : ||δL||0 = inf{||δL′ ||0 : L′ ∈ L′}}, (2)

then by 2-norm to find the minimal foil

s′ = sL ∈ S : ||δL||2 = inf{||δL′ ||2 : δL′ ∈ L′}. (3)

This two-stage approach enforces a strict priority of the 0-
norm over the 2-norm; a foil state is only considered if its δ
vector is at least as sparse as any of the others. We suggest
that this is desirable behaviour, because it puts the strongest
possible emphasis on compact explanations, while still pun-
ishing δ vectors with very large (Euclidean) magnitudes. It

1For counterfactual explanation of derivative vectors we would
need to specify an inequality for one or more features individually.
We do not consider this case here.

2Because hyperrectangles are convex, sL is unambiguously the
closest point to St as measured by any p-norm.



Figure 2: To find the minimal counterfactual for St, we first
identify the set of leaves satisfying the foil condition L′ =
{L1, ..., L5}, then find the closest point St on the boundary
of each. We first filter by the 0-norm of the corresponding δ
vectors; this removes sL1

and sL5
from contention. We then

filter by 2-norm, which identifies sL4
as the minimal foil.

Assume that in this diagram, the two feature axes f1 and f2
have been scaled according to the normalisation vector α.

also makes it simple, if required, to specify a hard threshold
on sparsity, allowing us to answer questions of the form “can
the foil condition be realised by changing ≤ n features?”.
The method is summarised diagrammatically in figure 2, for
which the generic textual explanation is

“F would be satisfied if f2 ≤ s(f2)L4
.”

Adaptation for Temporal Explanation
In a temporal explanation scenario we are given two con-
secutive observations St and St+1 which fall into different
leaves, so that St+1 satisfies some foil condition F (e.g. dif-
ferent discrete action, inequality of value) with respect to St.
Simply using St+1 itself as the foil is uninformative and tau-
tological, and we should again consider the notion of a min-
imal foil. However, merely following the method described
above does not solve the problem, as illustrated in figure 3.

Here L′ = {L1, ..., L6}, but every one of sL1
, ..., sL6

is
a suboptimal foil. In regular counterfactual explanation, sL1

would be minimal, but it implies moving in the opposite di-
rection from St+1 so does not lie on any plausible path be-
tween the two observations. sL2

and sL3
are at least closer

to St+1 than St is, but in both cases there is not an unbro-
ken path of foil leaves connecting them to St+1, so they do
not represent sufficient conditions for the change in attribute.
More subtly, the same is true for sL4 ; the orange shading
highlights a region of S below and to the right of sL4

, but
which is not part of any L ∈ L′. The existence of this region
means that a counterfactual of the form

“F became satisfied because f1 ≥ s(f1)L4
and f2 ≤ s(f2)L4

.”

would be misleading, since it is possible to satisfy the stated
conditions in a state between St and St+1 while not satis-
fying F . In contrast, both are sL5 and sL6 are acceptable
according to this unbroken path criterion, and since the for-
mer is closer to St according to the 2-norm, it may initially
appear that this is the best possible foil.

However, we can do better than this. We propose that the
best foil to use for temporal explanation, s′′, is the location

Figure 3: For temporal explanation, the vanilla counterfac-
tual method is insufficient. All of sL1 , ..., sL6 yield either
irrelevant, misleading or non-minimal explanations of a pre-
diction change between St and St+1.

MBB

Figure 4: s′′ is the minimal foil state from St, subject to the
MBB constraint from St+1. We claim this this is the optimal
foil to use for temporal explanation.

inside one of the foil leaves which is minimal from St, sub-
ject to the constraint that the minimum axis-aligned bound-
ing box (MBB) of s′′ and St+1 only intersects leaves in L′.
This constraint ensures that the generated counterfactual ex-
planation is never misleading in the sense outlined above.
Figure 4 demonstrates the best foil state in our example, for
which the textual explanation is
“F became satisfied because f1 ≥ s′′(f1) and f2 ≤ s′′(f2).”

Finding s′′ in practice is not trivial, and we have currently
only implemented a method for 2D state spaces, outlined in
algorithm 1. This algorithm returns R, a set of rectangles
tiling the region of S between St and St+1 which satisfies
the MBB constraint. We then apply the equations of the pre-
ceding section3 toR instead of the underlying foil leaves L′,
thereby obtaining the desired foil state. In the simple exam-
ple in figure 4, R has just a single element – the rectangle
shown in blue – but in general the region satisfying the MBB
constraint may be rather more complex.

Appendix C: Visualisation for
High-dimensional MDPs

Projection
In the projection visualisation method, we choose two fea-
ture axes and project leaf hyperrectangles onto the plane de-

3The placeholder function “rectangle” in algorithm 1 cre-
ates a representation of each rectangle which can be fed into these
equations in the same way as the leaves themselves.
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Figure 5: Steps of the hyperrectangle projection process, with d = 3 features for ease of presentation. Colours represent the
leaf-level attribute to be visualised, such as predicted action or value. z is a generic placeholder to the attribute to be visualised.

fined by these axes. By taking a population-weighted aver-
age of the attributes from overlapping leaf projections, we
effectively create a partial dependence plot (PDP).

Let B(f) denote the complete sequence of hyperrectangle
boundaries in the tree along feature f , sorted by value:

B(f) =
(
bi ∈

⋃

L∈L
{l(f)L , u

(f)
L }

)
,

subject to ∀i ∈ {2..|B(f)|} B(f)i > B(f)i−1. (4)

where l(f)L and u(f)L are defined as above, with any undefined
boundaries again replaced by s(f)min or s(f)max.

Assume without loss of generality that the two features
onto which we are projecting are f1 and f2. The planar re-
gion s(f1)min ≤ s(f1) ≤ s

(f1)
max, s(f2)min ≤ s(f2) ≤ s

(f2)
max can be

tiled by a (|B(f1)| − 1) × (|B(f2)| − 1) grid of rectangles,
each of which is constructed from two pairs of consecutive
boundaries from B(f1) and B(f2). Steps 1 and 2 in figure 5
illustrate this reasoning.

If each rectangular area were to be simultaneously ex-
truded along each of the d − 2 orthogonal feature axes,
the volume swept (which we call a core) would itself
be a d-dimensional hyperrectangle which intersects with
at least one of the leaf hyperrectangles. For each i ∈
{2..|B(f1)|}, j ∈ {2..|B(f2)|}, the set of intersected hyper-
rectangles can be identified as

Li,j =
{
L ∈ L :

(l
(f1)
L ≤ B(f1)i−1 ) ∧ (u

(f1)
L ≥ B(f1)i ) ∧

(l
(f2)
L ≤ B(f2)j−1) ∧ (u

(f2)
L ≥ B(f2)j )

}
. (5)

Steps 3 and 4 in figure 5 show the process of extruding a
rectangle from the f1-f2 plane and identifying intersections.
In this case the core intersects the three leaves labelled A, B
and C.

Precisely how we proceed from this point depends which
attribute we wish to visualise. For the sake of brevity, we
assume we are visualising predicted actions ã and that the
action space is continuous4. For each rectangle in the f1-f2
plane, identified by boundary indices i and j as above, we

4The process is identical for visualising value predictions and
impurities, and for derivative predictions we perform the aver-

effectively marginalise out the d− 2 orthogonal dimensions
by taking a weighted mean of the predicted actions from the
intersected leaves Li,j . The weight for each leaf L ∈ Li,j ,
is jointly determined by its population |IL| and the degree
to which its hyperrectangle overlaps with the core. We can
therefore define the projected action prediction for rectangle
i, j as

ãi,j =

∑
L∈Li,j

w
(i,j)
L ãL

∑
L∈Li,j

w
(i,j)
L

(6)

where

w
(i,j)
L = |IL|

[
B(f1)i − B(f1)i−1

u
(f1)
L − l(f1)L

][
B(f2)j − Bf2)j−1

u
(f1)
L − l(f1)L

]
. (7)

Due to the way in which the underlying tiling of the f1-f2
plane is defined, the core must contain exactly zero bound-
aries along either f1 or f2, so both fractions in the formula
for w(i,j)

L are always ≤ 1. This part of the process is illus-
trated by steps 5 and 6 of figure 5, and step 7 shows the
result of repeating for all remaining rectangles on the plane,
thereby creating the 2D visualisation.

The key assumption behind this core-and-average ap-
proach to projection is that samples are close to uniformly
distributed within leaf hyperrectangles, so that each w(i,j)

L
is an unbiased estimate of the number of samples from L
within the core, and each ãL is an unbiased estimate of the
mean action for those samples.

Slicing
In the slicing visualisation method we again choose two fea-
tures to visualise over, f1 and f2. For each remaining feature
fi (where i ∈ {3..d}), we specify a single threshold between
s
(fi)
min and s(fi)max, denoted by s(fi)slice . The set of thresholds de-

fines an axis-aligned planar cross-section through S, which

aging on an elementwise basis. For discrete actions, we cannot
take a weighted mean so instead add up the per-action counts
count(IL, a) for overlapping leaves, weighted by their overlap pro-
portions, then visualise the modal action for each rectangle. For
density, we replace the population factor |IL| in equation 7 with
the leaf’s feature-scaled volume in S, as defined in the main pa-
per. We also find that it is best to use a logarithmic colour map
for density plots, since this attribute can vary over many orders of
magnitude between leaves.



intersects a subset of the leaves. Here we do not have to han-
dle overlaps, and can display the rectangular cross-sections
of the intersected leaves directly. This creates an individual
conditional expectation (ICE) plot.

The slicing process is straightforward. Given the thresh-
olds µ(f3), ..., µ(fd), we simply need to identify the subset of
intersected leaves:

Lslice =
d⋂

i=3

{
L ∈ L : (l

(fi)
L ≤ s(fi)slice ∧ (u

(f1)
L ≥ s(fi)slice

}
.

(8)
We then visualise each L ∈ Lslice as a rectangle with bound-
aries at l(f1)L , u(f1)L , l(f2)L and u(f2)L , and coloured according
to its attribute.

A Note on Unifying Projection and Slicing
In the preceding discussion, we have presented projection
and slicing as two distinct visualisation methods, but in
reality it is possible to smoothly transition between the
two. Starting from the projection method as described, we
achieve this by permitting the core extrusion along feature
fi to be limited between two thresholds s(fi)low ≥ s

(fi)
min and

s
(fi)
high ≤ s

(fi)
max. This allows use to visualise projections from

only those leaves within a hyperrectangular subset of S
rather than the entire space. From this point, it is easy to
see that slicing results from the limiting case where

s
(fi)
low = s

(fi)
high = s

(fi)
slice ∀i ∈ {3..d}. (9)

Algorithm 1: Finding the region of S satisfying the
MBB constraint (for d = 2 only)

Input: Observations St and St+1; the sets of all
leaves L and foil leaves L′.

Result: A set of rectanglesR.

Initialise s1 ← St+1,R ← {}
while True do

s2 ← s1
// Expand rectangle along both

feature axes.

s
(1)
2 ← extend(1, 2, s1, s2)

s
(2)
2 ← extend(2, 1, s1, s2)
// Break if no expansion.

if s(2)1 = s
(2)
2 break

// Store rectangle and move s1 along
axis 2 to reset

R ← R∪ {rectangle(s1, s2)}
s
(2)
1 ← s

(2)
2

end
returnR

Function extend(a, b, s1, s2):
/* Given a rectangle with opposite

corners at (s1, s2), move s2 along
axis a until the rectangle either
intersects a non-foil leaf ∈ Lnf

or extends beyond S
(a)
t . */

l, u← inf{s(b)1 , s
(b)
2 }, sup{s

(b)
1 , s

(b)
2 }

Lnf ← {L ∈ L \ L′ : l(b)L ≤ u ∧ u
(b)
L ≥ l}

if S(a)
t > S

(a)
t+1 then

// Extend in the positive
direction.

return
inf{l(a)L : L ∈ Lnf ∧ l(a)L ≥ s(a)1 } ∪ {S

(a)
t }

else
// Extend in the negative

direction.
return
sup{u(a)L : L ∈ Lnf ∧u(a)L ≤ s(a)1 }∪{S

(a)
t }

end
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