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We prove a number of results on the determinacy of σ-projective sets of reals, i.e., 
those belonging to the smallest pointclass containing the open sets and closed under 
complements, countable unions, and projections. We first prove the equivalence 
between σ-projective determinacy and the determinacy of certain classes of games 
of variable length <ω2 (Theorem 2.4). We then give an elementary proof of the 
determinacy of σ-projective sets from optimal large-cardinal hypotheses (Theorem 
4.4). Finally, we show how to generalize the proof to obtain proofs of the determinacy 
of σ-projective games of a given countable length and of games with payoff in the 
smallest σ-algebra containing the projective sets, from corresponding assumptions 
(Theorems 5.1 and 5.4).

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let ωω denote the space of infinite sequences of natural numbers with the product topology, i.e., the 
topology generated by basic (cl)open sets of the form

O(s) = {x ∈ ωω : x extends s},
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where s ∈ ω<ω. As usual, we will refer to the elements of ωω as reals. Given a subset A of ωω, the payoff 
set, we consider the Gale-Stewart game G of length ω as follows:

I x0 x2 . . .

II x1 x3 . . .
for x0, x1, . . . ∈ ω.

Two players, I and II, alternate turns playing x0, x1, . . . ∈ ω to produce an element x = (x0, x1, . . . ) of 
ωω. Player I wins if and only if x ∈ A; otherwise, Player II wins. One can likewise define longer games by 
considering subsets of ωα, where α is a countable ordinal. If so, we will again regard ωα as a product of 
discrete spaces. A game is determined if one of players I and II has a winning strategy. A set A ⊂ ωω is said 
to be determined if the corresponding game is.

These games have been studied extensively; under suitable set-theoretic assumptions, one can prove 
various classes of them to be determined. One often studies the determinacy of pointclasses given in terms 
of definability (a general reference is Moschovakis [4]). A pointclass central to this article is the following:

Definition 1.1. The pointclass of σ-projective sets is the smallest pointclass closed under complements, 
countable unions,1 and projections.

In this article, we consider the following classes of games, and their interplay:

(1) games of fixed countable length α whose payoff is σ-projective;
(2) games of variable length <α+ω2 whose payoff is a pointclass containing the clopen sets and contained 

in the σ-projective sets;
(3) games of countable length α with payoff in other σ-algebras.

Neeman extensively studied long games and their connection to large cardinals in [10]. These results are 
based on his earlier work in [8] and [9] on games of length ω, where he started connecting moves in long 
games with moves in iteration games. He showed in [10] for example that the determinacy of games with 
fixed countable length and analytic payoff set follows from the existence of Woodin cardinals. Moreover, 
he also analyzed games of continuously coded length (see also [11]) and games of length up to a locally 
uncountable ordinal. In [12] he even showed determinacy for open games of length ω1, indeed for a larger 
class of games of length ω1, from large cardinals. That the determinacy of arbitrary games of length ω1 is 
inconsistent is due to Mycielski and has been known for a long time (see [7]).

As for the converse, the determinacy of infinite games implies the existence of inner models with large 
cardinals (cf. e.g., [2,3,15,16,6] and others).

Summary of results. We begin in Section 2 by introducing a class of games of variable length below ω2. 
We call these games Γ-simple, where Γ is a pointclass. We show that σ-projective determinacy implies the 
determinacy of Γ-simple games of length ω2 where Γ is the pointclass of all σ-projective sets. In Section 3
we introduce a class of games we call decoding games. These are used to show that σ-projective determinacy 
follows from simple clopen determinacy of length ω2. The proof also shows directly that simple σ-projective 
determinacy of length ω2 follows from simple clopen determinacy of length ω2.

In Section 4, we prove simple clopen determinacy of length ω2 (and thus σ-projective determinacy of 
length ω) from optimal large cardinal assumptions. The proof is level-by-level. An alternative, purely inner-
model-theoretic proof of σ-projective determinacy can be found [1]; our proof, however, requires little inner 
model theory beyond the definition of the large-cardinal assumption. Roughly, it consists in repeatedly 
applying a theorem of Neeman [10] to reduce a simple clopen game of length ω2 to an iteration game on 

1 Of course, one only considers unions of sets in the same space, as is usual.
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an extender model with many partial extenders. The difference here are that players are allowed to drop 
gratuitously in the iteration game finitely many times to take advantage of the partial extenders in the 
model.

Finally, in Section 5, we exhibit some additional applications of the proof in Section 4. Specifically we 
prove from (likely optimal) large cardinal assumptions that σ-projective games of length ω ·θ are determined, 
where θ is a countable ordinal. We also prove, from a hypothesis slightly beyond projective determinacy, 
that games in the smallest σ-algebra containing the projective sets are determined.

2. Simple games of length ω2

We begin by noting a result on the determinacy of games of length2 <ω2:

Theorem 2.1 (folklore). The following are equivalent:

(1) All projective games of length ω are determined.
(2) All projective games of length ω · n are determined, for all n < ω.
(3) All clopen3 games of length ω · n are determined, for all n < ω.

Instead of providing a proof of Theorem 2.1, we refer the reader to the proof of Theorem 2.4 below, an 
easy adaptation of which suffices (cf. Remark 2.5).

Our first result is the analog of Theorem 2.1 for σ-projective games. Although the equivalence between 
the first two items remains true if one replaces “projective” with “σ-projective,” the one between the last 
two does not. Instead, one needs to consider a larger class of games that are still decided in less than ω2

rounds, in the sense that for any x ∈ ωω2 there is n ∈ ω such that for all y ∈ ωω2 , if y � ω · n = x � ω · n, 
then

x is a winning run for Player I if and only if y is.

Note that every game of length ω · n can be seen as a game of this form, for any n ∈ ω. For the definition 
below, we adapt the convention that if n ∈ ω, then a subset A of ωω·n can be identified with

{x ∈ ωω2
: x � ω · n ∈ A}.

Definition 2.2. Let Γ be a collection of subsets of ωω2 (each A ∈ Γ identified with a subset of ωω·n for some 
n ∈ ω as above). A game of length ω2 is Γ-simple if it is obtained as follows:

(1) For every n ∈ ω, games that are decided after ω ·n moves such that their payoff restricted to sequences 
of length ω · n is in Γ are Γ-simple.

(2) Let n ∈ ω and for each i ∈ ω let Gi be a Γ-simple game. Then the game G obtained as follows is 
Γ-simple: Players I and II take turns playing natural numbers for ω · n moves, i.e., n rounds in games 
of length ω. Afterwards, Player I plays some i ∈ ω. Players I and II continue playing according to the 
rules of Gi (keeping the first ω · n natural numbers they have already played, but not i).

(3) Let n ∈ ω and for each i ∈ ω let Gi be a Γ-simple game. Then the game G obtained as follows is 
Γ-simple: Players I and II take turns playing natural numbers for ω · n moves, i.e., n rounds in games 
of length ω. Afterwards, Player II plays some i ∈ ω. Players I and II continue playing according to the 
rules of Gi (keeping the first ω · n natural numbers they have already played, but not i).

2 Here and below, we identify the spaces ωω2
, (ωω)ω and ωω×ω , as well as ωω·n and (ωω)n.

3 In the product topology on ωω·n.
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We are mainly interested in games of length ω2 which are simple clopen, i.e., which are Γ-simple for 
Γ = Δ0

1 the collection of clopen sets. Let us start by noting that every simple clopen game has in fact a 
payoff set which is clopen in ωω×ω (this fact will not be needed, but it justifies our terminology).

Lemma 2.3. Let G be a simple clopen game of length ω2 with payoff set B. Then B is clopen in ωω×ω.

Proof. We prove this by induction on the definition of simple clopen games. In the case that G is a clopen 
game of fixed length ω · n it is clear that B is clopen. So suppose that we are given simple clopen games 
Gi, i < ω with payoff sets Bi. Moreover, suppose for notational simplicity that n = 1, i.e., the players 
play one round of length ω before Player I plays i ∈ ω to decide which rules to follow. Inductively, we can 
assume that every Bi is clopen in ωω×ω. Let G be the game obtained by applying (2) in Definition 2.2. For 
x ∈ ωω×ω, write x∗ for

x � ω�x � [ω + 1, ω2).

Then x is a winning run for Player I in G iff

x ∈
⋃

i∈ω

{
y ∈ ωω×ω : y(ω) = i ∧ y∗ ∈ Bi

}
.

Each Bi is open, so the payoff set B of G is open. Additionally, x ∈ B if, and only if,

x ∈
⋂

i∈ω

{
y ∈ ωω×ω : y(ω) �= i ∨ y∗ ∈ Bi

}
.

Each Bi is closed, so B is closed. Therefore, B is clopen.
The argument for applying (3) in Definition 2.2 is analogous. �
The main fact about simple clopen games is that their determinacy is already equivalent to determinacy 

of Γ-simple games where Γ is the pointclass of all σ-projective sets:

Theorem 2.4. The following are equivalent:

(1) All σ-projective games of length ω are determined.
(2) All simple σ-projective games of length ω2 are determined.
(3) All simple clopen games of length ω2 are determined.

The proof of σ-projective determinacy of length ω from simple clopen determinacy, i.e., (3) ⇒ (1), will 
take place in the next section (Proposition 3.1). For now, we content ourselves with showing that σ-projective 
determinacy of length ω implies simple clopen determinacy of length ω2, i.e., (1) ⇒ (3) (see Proposition 2.7), 
although the proof we give easily adapts to show simple σ-projective determinacy of length ω2 from the 
same hypothesis, i.e., (1) ⇒ (2) (see Proposition 3.7). Note that (2) ⇒ (3) is obvious. It will be convenient 
for the future to introduce the definition of the game rank of a simple clopen game.

To each simple clopen game G of length ω2 we associate a countable ordinal gr(G), the game rank of G, 
by induction on the definition of simple clopen games. If G is a game of fixed length ω · n, then gr(G) = n. 
If G is obtained from games G0, G1, . . ., and from an ordinal ω · n as in Definition 2.2, we let

gr(G) = sup{gr(Gi) + ω : i ∈ ω} + n.

Remark 2.5. The proof of Theorem 2.4 is local. We leave the computation of the precise complexity bounds 
to the curious reader, but we mention that e.g., the proof shows the equivalence among
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(1) the determinacy of games of length ω which are Π1
n for some n ∈ ω;

(2) the determinacy of simple clopen games of length ω2 of rank <ω

(3) the determinacy of simple games of rank <ω which are Π1
n for some n ∈ ω.

Thus, Theorem 2.4 generalizes Theorem 2.1.

The reason why we have chosen to define the game rank this way is that it will make some arguments 
by induction easier later on. Let us consider some examples: if gr(G) = ω, then G is essentially a game in 
which an infinite collection of games, each of bounded length, are given, and one of the players begins by 
deciding which one of them they will play. If gr(G) = ω+1, then the game is similar, except that the player 
does not decide which game they will play until the first ω moves have been played. More generally, a game 
has limit rank if and only if it begins with one player choosing one among a countably infinite collection of 
games that can be played.

Remark 2.6. Let G be a simple clopen game of rank α and p be a partial play of G. Denote by Gp the game 
that results from G after p has been played. Then Gp is a simple clopen game of rank ≤ α.

Clearly, every simple clopen game has a countable rank. Now we turn to the proof of (1) ⇒ (3) in 
Theorem 2.4.

Proposition 2.7. Suppose that all σ-projective games of length ω are determined. Then all simple clopen 
games of length ω2 are determined.

Proof. Let us say that two games G and H are equivalent if the following hold:

(1) Player I has a winning strategy in G if and only if she has one in H; and
(2) Player II has a winning strategy in G if and only if she has one in H.

We prove the proposition by induction on the game rank of a simple clopen game G. In the case that the 
game rank is a successor ordinal, we additionally show that the game is equivalent to a σ-projective game 
of length ω (this is clear in the limit case). Suppose that α is a limit ordinal and this has been shown for 
games of rank <α. Let α + n be the rank of G, where n ∈ ω. If n = 0, then the result follows easily: by 
the definition of game rank, the rules of G dictate that one player must begin by choosing one amongst an 
infinite sequence of games Gi. If that player has a winning strategy in any one of them, then choosing that 
game will guarantee a win in G; otherwise, the induction hypothesis yields a winning strategy for the other 
player in each game Gi and thus in G.

If 0 < n, say, n = k + 1, then one argues as follows. Given a partial play p of G, we denote by Gp the 
game G after p has been played. Consider the following game, H:

(1) Players I and II alternate ω many turns to produce a real number x.
(2) Afterwards, the game ends. Player I wins if and only if

∃x1 ∈ ωω ∀y1 ∈ ωω ∃x2 ∈ ωω . . . ∀yk ∈ ωω Player I has a winning strategy in Gp,

where p = 〈x, x1 ∗ y1, . . . , xk ∗ yk〉.4

Claim 1. H is equivalent to G.

4 Here, x ∗ y denotes the result of facing off the strategies coded by the reals x and y.
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Granted the claim, it is easy to prove the proposition, for, letting p be as above, the rules of Gp dictate 
that one of the players must choose one amongst an infinite sequence of games Gi. Assume without loss of 
generality that this is Player I. By induction hypothesis, the set of p such that there exists i so that Player I 
has a winning strategy in Gi is σ-projective. Hence, the payoff set of H is σ-projective, as was to be shown.

It remains to prove the claim. Thus, let 0 ≤ m ≤ k and consider the following game Hm:

(1) Players I and II alternate ω · (m + 1) many turns to produce real numbers z0, . . . , zm.
(2) Afterwards, the game ends. Player I wins if and only if

∃xm+1 ∀ym+1 ∃xm+2 . . . ∀yk Player I has a winning strategy in the game Gp,

where p = 〈z0, . . . , zm, xm+1 ∗ ym+1, . . . , xk ∗ yk〉.

Thus, H = H0. By induction on q = k − m (i.e., by downward induction on m), we show that Hm is 
equivalent to G. A simple modification of the argument shows that (Hm)p is equivalent to Gp, for each 
p ∈ (ωω)l and each l ≤ m + 1; this is possible because Gp is a simple clopen game of rank ≤ α+ n. We will 
use the equivalence between (Hm)p and Gp as part of the induction hypothesis.

We have shown (by the induction hypothesis for the proposition) that G is equivalent to Hk. The same 
argument applied to Gp shows that Gp is equivalent to (Hk)p for every p ∈ (ωω)k+1 and thus that Gp is 
determined. Moreover, Player I wins a run p ∈ (ωω)m+1 of Hm if and only if she has a winning strategy 
in (Hm+1)p and Player II wins a run p ∈ (ωω)m+1 of Hm if and only if Player I does not have a winning 
strategy in (Hm+1)p; however, (Hm+1)p is determined for every p ∈ (ωω)m+1, as it is a σ-projective game of 
length ω (this follows from an argument as right after the statement of Claim 1). Moreover, the induction 
hypothesis (for the claim) shows that a player has a winning strategy in (Hm+1)p if and only if she has one 
in Gp. This shows that a player has a winning strategy in Hm if and only if she has one in G, as was to be 
shown. �
3. Decoding games

Our first goal in this section is to prove the following proposition, i.e., (3) ⇒ (1) in Theorem 2.4.

Proposition 3.1. Suppose simple clopen games of length ω2 are determined. Then σ-projective games of 
length ω are determined.

In order to prove Proposition 3.1, we introduce a representation of σ-projective sets.

Definition 3.2. Fix an enumeration

{An+1 : n ∈ ω}

of all basic open and basic closed sets in each (ωω)k, for 1 ≤ k < ω. Suppose A ⊂ (ωω)k is σ-projective. 
A σ-projective code [A] of A is defined inductively as follows:

(1) If A is basic open, then [A] = 〈n〉, where A = An.
(2) If A is basic closed, then [A] = 〈n〉, where A = An.
(3) If A =

⋃
i Ai, then [A] = 〈[A0], [A1], . . .〉.

(4) If A =
⋂

i Ai, then [A] = 〈0, [A0], [A1], . . .〉.
(5) If A = (ωω)k \B for some k ∈ ω, then [A] = 〈1, [B]〉.
(6) If A = p[B], then [A] = 〈2, [B]〉.
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(7) If A = u[B], then [A] = 〈3, [B]〉.

Here, u[B] denotes the dual of the projection,

u[B] = {x ∈ ωω : ∀y (x, y) ∈ B}.

A σ-projective code of a given set is not unique. In fact,

Lemma 3.3. Let A be σ-projective.

(1) A has a σ-projective code in which no complements and no basic open sets appear.
(2) A has a σ-projective code in which no complements and no basic closed sets appear.

Proof. Given a σ-projective code for A, one obtains, by a simple application of de Morgan’s laws, a σ-
projective code in which complements are only applied to basic open sets or to basic closed sets. Since every 
basic open set is clopen, basic open sets can be replaced by a countable intersection of basic closed sets in 
the projective code; similarly, basic closed sets can be replaced by a countable union of basic open sets. �
Definition 3.4. Suppose A ⊂ (ωω)n for some 1 ≤ n < ω is σ-projective and fix a code [A] for A. The decoding 
game for A (with respect to [A]) is a game of length ω2 according to the following rules: In the first n rounds, 
which we will call the preparation, Players I and II start by alternating turns playing ω · n natural numbers 
to obtain reals x1, x2, . . . , xn ∈ ωω. Afterwards, they proceed according to the σ-projective code [A] of A
via the following recursive definition:

(1) If A is basic open, say A = Ak, then the game is over, i.e., further moves are not relevant. Player I wins 
if and only if (x1, x2, . . . , xn) ∈ Ak.

(2) If A is basic closed, say A = Ak, then the game is over, i.e., further moves are not relevant. Player I 
wins if and only if (x1, x2, . . . , xn) ∈ Ak.

(3) If A =
⋃

i Ai, so that [A] = 〈[A0], [A1], . . .〉, then Player I plays some k ∈ ω. The game continues from 
the current play (without the last move, k) with the rules of the decoding game with respect to [Ak].

(4) If A =
⋂

i Ai, so that [A] = 〈0, [A0], [A1], . . .〉, then Player II plays some k ∈ ω. The game continues 
from the current play (without the last move, k) with the rules of the decoding game with respect to 
[Ak].

(5) If A = (ωω)k \B for some k ∈ ω, so that [A] = 〈1, [B]〉, then the game continues from the current play 
with the rules of the decoding game with respect to [B], except that the roles of Players I and II are 
reversed.

(6) If A = p[B], so that [A] = 〈2, [B]〉, then Player I plays some y ∈ ωω in ω moves of the game, where the 
moves of Player II are not relevant. The game continues from the current play, together with y, using 
the rules of the decoding game with respect to [B].

(7) If A = u[B], so that [A] = 〈3, [B]〉, then Player II plays some y ∈ ωω in ω moves if the game, where the 
moves of Player I are not relevant. The game continues from the current play, together with y, using 
the rules of the decoding game with respect to [B].

Clause (5) of the preceding definition will not be used below, but we have defined it in the natural way 
nonetheless.

Lemma 3.5. Let A ⊂ (ωω)n for some 1 ≤ n < ω be σ-projective and fix a code [A] for A. A player has 
a winning strategy in the game with payoff set A if and only if the player has a winning strategy in the 
decoding game for A with respect to [A].
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Proof. Assume first that Player I has a winning strategy σ in the game GA with winning set A. Then 
the following describes a winning strategy for Player I in the decoding game for A with respect to [A]. In 
the first n rounds of the game, Player I follows the strategy σ. Since σ is a winning strategy in GA, the 
players produce a sequence of reals (x1, . . . , xn) ∈ A. In the following rounds, Player I follows the rules of 
the decoding game according to [A], playing witnesses to the fact that (x1, . . . , xn) ∈ A. This means that, 
e.g., if [A] = 〈[A0], [A1], . . .〉, i.e., A =

⋃
i Ai, then Player I plays k ∈ ω such that (x1, . . . , xn) ∈ Ak. The 

strategy for the other cases is defined similarly. This yields a winning strategy for Player I in the decoding 
game for A with respect to [A].

Now assume that Player I has a payoff strategy σ in the decoding game for A with respect to [A]. Then 
the restriction of σ to the first n rounds of the game is a winning strategy for Player I in the game GA. 
Similarly for Player II. �
Lemma 3.6. Let A ⊂ (ωω)k be σ-projective, for some 1 ≤ k < ω. Then, for every σ-projective code [A] for 
A in which no complements appear, the decoding game given by [A] is simple clopen.

Proof. Choose a code [A] for A in which no complements appear. We will show by induction on the definition 
of simple clopen games, that the game obtained as in (6) or (7) in Definition 3.4 is simple clopen again. 
This will finish the proof as games obtained by clauses (1)-(4) in Definition 3.4 are clearly simple clopen, 
by the definition of simple clopen games.

Let us introduce some notation for this proof. If x ∈ ωω, we write xI for the sequence of digits of x in 
even positions, and xII for the sequence of digits of x in odd positions. Thus, if x results from a run of a 
Gale-Stewart game, then xI is the sequence of moves of Player I and xII that of Player II.

So let G be a simple clopen game with payoff set B ⊆ (ωω)ω and consider the game GP,k which is 
defined as follows. Players I and II start by alternating turns playing ω · k natural numbers to define 
reals x1, . . . , xk ∈ ωω. Then players I and II alternate moves to play some real xk+1. Finally, Players I 
and II alternate again to produce reals z1, z2, . . . so that (x1, . . . , xk, xI

k+1, z1, z2, . . . ) ∈ (ωω)ω and we say 
that (x1, . . . , xk, xk+1, z1, z2, . . . ) is a winning run for Player I in GP,k iff (x1, . . . , xk, xI

k+1, z1, z2, . . . ) ∈
B. That means if B∗ denotes the payoff set of GP,k, we have (x1, . . . , xk, xk+1, z1, z2, . . . ) ∈ B∗ iff 
(x1, . . . , xk, xI

k+1, z1, z2, . . . ) ∈ B. We aim to show that GP,k is simple clopen again.
Suppose first that G is a clopen game of some fixed length ω ·n, i.e., we consider G as a game of length ω2

but only the first ω ·n moves are relevant for the payoff set. Fix some k ∈ ω. In particular, B is a clopen set 
in ωω×ω. We can naturally write B = B0 ×B1 ×B2 for clopen sets B0 ⊆ (ωω)k, B1 ⊆ ωω and B2 ⊆ (ωω)ω. 
By definition, the payoff set for the game GP,k is B0 × (B1)I ×B2, where

(B1)I = {x ∈ ωω : xI ∈ B1},

which is clopen. Moreover, in GP,k again only the first ω ·n moves are relevant, so GP,k is a clopen game of 
fixed length ω · n and in particular simple clopen.

Now suppose that G is a simple clopen game obtained by condition (2) in Definition 2.2, i.e., we are 
given simple clopen games Gi, i < ω, and after Player I and II take turns producing x1, . . . , xk, xk+1, Player 
I plays some natural number i and the players continue according to the rules of Gi (keeping the moves 
which produced x1, . . . , xk, xk+1). That means for every i < ω, some sequence (x1, . . . , xk, xk+1, i, z1, z2, . . . )
is a winning run for Player I in G iff (x1, . . . , xk, xk+1, z1, z2, . . . ) is a winning run for Player I in Gi. We 
can assume inductively that the games GP,k

i for i < ω (obtained as above) are simple clopen and we aim 
to show that GP,k

i is simple clopen. Consider the simple clopen game G∗ which is obtained by applying 
(2) in Definition 2.2 to the games GP,k

i and the natural number k + 1. Suppose Players I and II produce 
(x1, . . . , xk, xk+1, i, z1, z2, . . . ) in a run of G∗. Then

(x1, . . . , xk,xk+1, i, z1, z2, . . . ) is a winning run for Player I in G∗
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iff (x1, . . . , xk,xk+1, z1, z2, . . . ) is a winning run for Player I in GP,k
i

iff (x1, . . . , xk,x
I
k+1, z1, z2, . . . ) is a winning run for Player I in Gi

iff (x1, . . . , xk,x
I
k+1, i, z1, z2, . . . ) is a winning run for Player I in G

iff (x1, . . . , xk,xk+1, i, z1, z2, . . . ) is a winning run for Player I in GP,k,

where the first equivalence holds by definition of G∗, the second equivalence holds by inductive hypothesis, 
the third equivalence by choice of G, and the fourth equivalence by definition of GP,k. Hence GP,k and G∗

are equal and GP,k is a simple clopen game, as desired.
The argument for simple clopen games obtained by condition (3) in Definition 2.2 is analogous. �
With Lemmata 3.5 and 3.6, Proposition 3.1 is proved. To finish the proof of Theorem 2.4 one needs to 

show the following proposition. This is (3) ⇒ (2) and (1) ⇒ (2) in Theorem 2.4.

Proposition 3.7. Suppose either that simple clopen games of length ω2 are determined or that σ-projective 
games of length ω are determined. Then simple σ-projective games of length ω2 are determined.

Proposition 3.7 can be proved directly either by the method of the proof of Proposition 3.1, or by that of 
Proposition 2.7. In the second case, one need only carry out a straightforward adaptation. In the first case, 
a simple σ-projective game G is reduced to the simple clopen game in which two players play the game G, 
producing a sequence x ∈ (ωω)n for some n ∈ ω such that there is a σ-projective set A ⊂ (ωω)n with the 
property that Player I wins G iff x ∈ A, no matter how the players continue playing the rest of G. After 
this, the players play the decoding game for A to determine who the winner is in a clopen way.

We close this section with a useful characterization of the σ-projective sets, although it will not be used.

Proposition 3.8 (Folklore). A set A ⊂ R is σ-projective if and only if it belongs to Lω1(R).

Proof. Clearly, Lω1(R) is closed under countable sequences and P(R) ∩Lω1(R) is closed under projections.
Conversely, by induction on α < ω1, one sees that Lα(R) and the satisfaction relation for Lα(R) are 

coded by σ-projective sets of reals:

(1) L0(R) = R = Vω+1 is coded by itself. The satisfaction relation S0 for Vω+1 is given by

S0(φ,�a) ↔ Vω+1 |= φ(�a),

for φ a formula in the language of set theory and �a a finite sequence of reals. Since every formula in 
the language of set theory is in the class Σn for some n, S0 belongs to the pointclass 

⋃
n<ω Σ1

n (i.e., the 
pointclass of countable unions of projective sets) and is thus σ-projective.

(2) Suppose that a σ-projective code Cα for Lα(R) has been defined and that a σ-projective satisfaction 
predicate Sα for Lα(R) relative to Cα has been defined. Suppose that �a ∈ (Cα)n and

φ = ∃y1 ∀y2, . . . Qym φ0(x1, . . . , xn, y1, . . . , ym)

(where Q is a quantifier and φ0 is Δ0) is a Σm-formula with n free variables. Then, letting

Cφ,�a
α =

{
x ∈ R : ∃y1 ∈ Cα ∀y2 ∈ Cα . . . Qym ∈ Cα Sα(φ0,�a, y1, . . . , ym)

}
,

a σ-projective code Cα+1 for Lα+1(R) can be defined by the disjointed union

Cα+1 = Cα ∪̇ {Ĉφ,�a
α : φ is a formula and �a ∈ (Cα)n},
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where Ĉφ,�a
α is a real number coding5 the set Cφ,�a

α . A satisfaction relation Sα+1 can be defined from this: 
for atomic formulae, we set

Sα+1(· ∈ ·, x, y) ↔
(
x, y ∈ Cα ∧ Sα(· ∈ ·, x, y)

)
∨

(
x ∈ Cα ∧ ∃φ ∃�a ⊂ (Cα)lth(a) y = Ĉφ,�a

α ∧ Sα(φ,�a, x)
)
.

For other formulae, this is done as above, so the satisfaction relation Sα+1 is seen to belong to the 
pointclass 

⋃
n<ω Σ1

n(Cα+1, Sα) and is thus by using the inductive hypothesis σ-projective.
(3) Suppose that a σ-projective code Cα for Lα(R) has been defined and that a σ-projective satisfaction 

predicate Sα for Lα(R) has been defined for every α < λ, where λ is a countable limit ordinal. Then 
Cλ can be defined as the disjoint (countable) union of Cα+1 \ Cα, for α < λ. Thus Cλ is σ-projective. 
The satisfaction relation Sλ can be defined as above.

This completes the proof. �
4. Determinacy from large cardinals

In this section, we prove level-by-level that the existence of certain iterable inner models with Woodin 
cardinals implies simple clopen determinacy of length ω2, which in turn implies σ-projective determinacy 
of length ω. A different proof of this latter result can be found in [1], but the proof we give here has the 
advantage that it requires almost no inner-model-theoretic background. Another advantage is that it easily 
generalizes to yield further results (cf. the next section).

The idea of this proof is to enhance a simple clopen game of length ω2 by presenting each player with a 
fine-structural model that can be manipulated to obtain information about the game. This method of proof 
is due to Neeman [10]; the difference in our context is that the models considered will contain many partial 
measures and, in addition to taking iterated ultrapowers, we will allow the players to remove end-segments 
of their models during the game so as to make the measures total and obtain new information. Although 
this determinacy proof could have been framed directly in terms of (the decoding game for) σ-projective 
sets, it seems somewhat more natural to consider simple clopen games of length ω2 instead and proceed by 
induction on the game rank.

Before we start with the proof, let us recall the relevant inner model theoretic notions we will need. In what 
follows, we will work with premice and formulae in the language of relativized premice Lpm = {∈̇, Ė, Ḟ , ẋ}, 
where Ė is a predicate for a sequence of extenders, Ḟ is a predicate for an extender, and ẋ is a predicate 
for a real number over which we construct the premouse.

For some real x, a potential x-premouse is a model M = (J �E
η , ∈, �E � η, Eη, x), where �E is a fine extender 

sequence6 and η an ordinal or η = Ord (see Section 2 in [14] for details). We say that such a potential 
x-premouse M is active iff Eη �= ∅. If ν ≤ η, we write M |ν = (J �E

ν , ∈, �E � ν, Eν , x) for the corresponding 
initial segment of M . A potential x-premouse M is called an x-premouse if every proper initial segment of 
M is ω-sound. If it does not lead to confusion, we will sometimes drop the x and just call M a premouse. 
Informally, an x-mouse is an iterable x-premouse. We will avoid this term as the notion of iterability is 
ambiguous, but ω1-iterability suffices for all our arguments.7 Here we say that an x-premouse M is ω1-
iterable if it is iterable for countable stacks of normal trees of length < ω1 (see Section 4.1 of [14] for a 
formal definition).

We consider premice belonging to various smallness classes:

5 E.g., it could be the tuple (φ, �a, α).
6 See Definition 2.4 in [14], which goes back to Section 1 in [5] and [13].
7 We will only need weak iterability, in the sense of [10].
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Definition 4.1. Let M be an ω1-iterable premouse and δ ∈ M ∩ Ord.

(1) We say M is of class S0 above δ if M is a proper class or active.
(2) We say M is of class Sα+1 above δ if there is some ordinal δ0 > δ and some N � M with δ0 < N ∩Ord

such that N is of class Sα above δ0 and δ0 is Woodin in N .
(3) Let λ be a countable limit ordinal. We say M is of class Sλ above δ if λ < ωM

1 and M is of class Sα

above δ for all α < λ.

Moreover, we say M is of class Sα if it is of class Sα above 0.

Example 4.2. Let n ≥ 1 and recall that a premouse M is called n-small if for every κ which is a critical 
point of an extender on the sequence of extenders of M , M |κ � “there are n Woodin cardinals”. Moreover, 
we say M is 0-small if M is an initial segment of L. Let M 


n denote the unique countable, sound, ω1-iterable 
premouse which is not n-small, but all of whose proper initial segments are n-small, if it exists and is unique. 
If M 


n exists and is unique for all n ∈ ω, then – in particular – every x ∈ ωω has a sharp. Let N 

ω denote 

the smallest active premouse extending

⋃

n∈ω

M 

n.

Then N 

ω is of class Sω. If there is a premouse of class Sω+1, then it contains N 


ω and in fact N 

ω is countable 

in it.

Note that if M is a premouse of class Sα, then M is aware of this, since α is countable in M . If M is of 
class Sα and not a proper class, then M is active and we can obtain a proper class model by iterating the 
active extender of M and its images out of the universe. By convention, we shall say that this proper class 
model is also of class Sα.

We recall the definition of the game rank of a simple clopen game. If G is a game of fixed length ω · n, 
then gr(G) = n. If G is obtained from games G0, G1, . . ., and from an ordinal ω · n as in Definition 2.2, we 
let

gr(G) = sup{gr(Gi) + ω : i ∈ ω} + n.

Remark 4.3. For every simple game G and initial play p of G, let Gp denote the rest of the game G after p
has been played. Let p0, p1, . . . be a sequence of initial plays of G starting with the empty sequence p0 = ∅
such that pi+1 end-extends pi, and either gr(Gpi

) is a successor ordinal with gr(Gpi
) = gr(Gpi+1) + 1 or 

gr(Gpi
) is a limit ordinal. Then this sequence has to be of finite length k + 1 and we can choose k large 

enough such that gr(Gpk
) = 1.

Theorem 4.4. Suppose that γ < ω1 and for every y ∈ ωω there is an x ≥T y such that there is a proper class 
x-premouse of class Sγ which is a model of ZFC. Then every simple clopen game G such that gr(G) ≤ γ is 
determined.

In the proof, we are going to use premice of class Sγ to apply the following theorem of Neeman multiple 
times.



12 J.P. Aguilera et al. / Annals of Pure and Applied Logic 172 (2021) 102939
Theorem 4.5 (Neeman, Theorem 2A.2 in [10]). There are binary formulae φI and φII in the language of 
set theory such that the following hold for any transitive, weakly iterable8 premouse M which is a model of 
ZFC:

Let δ < ω1 be a Woodin cardinal in M and let Ȧ ∈ M and Ḃ ∈ M be Col(ω, δ)-names for a subset of ωω. 
Then,

(1) If M |= φI[δ, Ȧ], there is a strategy σ for Player I in a game of length ω such that whenever x is a play 
by σ, there is a non-dropping iterate N of M with embedding j and an N -generic g ⊂ Col(ω, j(δ)) such 
that x ∈ N [g] and x ∈ j(Ȧ)[g].

(2) If M |= φII[δ, Ḃ], there is a strategy τ for Player II in a game of length ω such that whenever x is a 
play by τ , there is a non-dropping iterate N of M with embedding j and an N -generic g ⊂ Col(ω, j(δ))
such that x ∈ N [g] and x ∈ j(Ḃ)[g].

(3) Otherwise, there is an M -generic g ⊂ Col(ω, δ) and an x ∈ M [g] such that x /∈ Ȧ[g] and x /∈ Ḃ[g].

We now proceed to:

Proof of Theorem 4.4. We may as well assume that γ is infinite, since otherwise G has fixed length <ω2, 
so it is determined by the results of [8] and [9] (see also the introduction of [10]).

Let G be a simple clopen game with gr(G) ≤ γ, say gr(G) = α. We assume that α is a successor ordinal, 
since the limit case is similar. Let r ∈ ωω code all parameters used in the definition of G. We may as well 
assume that r belongs to the Turing cone given by the hypothesis of the theorem.

To each non-terminal play p of G corresponds a game

Gp := the game G after p has been played.

Clearly, Gp is a simple game and gr(Gp) ≤ α. Given y ≥T r, a y-premouse M , we select δ ∈ OrdM and 
define formulae φp

I and φp
II, and two sets Ẇ p

I and Ẇ p
II, each of which is either a Col(ω, δ)-name for a set of 

real numbers or a set of natural numbers. The definition is by induction on gr(Gp) (not on p!). Formally, 
these names and sets of course depend on the model M in which they are defined, so we sometimes write 
Ẇ p

I (M) and Ẇ p
II(M) to make this explicit. But for simplicity and readability we will omit this whenever it 

does not lead to confusion.
At the same time, we show that there are names, names for names, etc., for these sets such that their 

interpretation with respect to generics g0, . . . , gn for some n ∈ ω for collapsing Woodin cardinals of M is a 
set of the same form with respect to the model M [g0] . . . [gn] instead of M . More precisely, if M is a model 
as above and M has (at least) n + 1 Woodin cardinals, then let Pn = P (δ0, . . . , δn) be the forcing iteration 
of length n + 1 collapsing the ordinals δ0, δ1, . . . , δn to ω one after the other, where δ0 is the least Woodin 
cardinal in M and δi+1 is the least Woodin cardinal in M above δi for all 0 ≤ i < n, i.e., P0 = Col(ω, δ0)
and for all 0 ≤ i < n,

Pi+1 = Pi ∗ Col(ω, δi+1)̌,

where Col(ω, δi+1)̌ ∈ M is the canonical Pi-name for Col(ω, δi+1). This is of course equivalent to the product 
and to the Col(ω, δn), but we are interested in the step-by-step collapse.

We consider nice Pn-names ṗ for finite sequences of reals with the property that the game rank of Gṗ

is decided by the empty condition.9 By induction on the game rank of Gṗ, we will specify for every n < ω

8 As defined in Appendix A, Iterability in [10]. Note that ω1-iterability implies weak iterability.
9 Note that the game rank of Gp depends only on G and finitely many digits of p.
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such that M has at least n + 1 Woodin cardinals and every such Pn-name ṗ, a Pn-name Ḃṗ,I
n in M such 

that whenever G is Pn-generic over M ,

Ḃṗ,I
n [G] = Ẇ p

I (M [G]),

where p = ṗ[G]. We will call this name Ḃṗ,I
n the good Pn-name for Ẇ p

I . We will also define analogous names 
Ḃṗ,II for Ẇ p

II. We now proceed to the recursive definition of φp
I , φ

p
II, Ẇ

p
I , ẆP

II , Ḃp,I
n , and Ḃp,II

n .10

Case 1. gr(Gp) = 2 (this is the base case).

Let y ≥T r and let M be any y-premouse which is a model of ZFC and of class S1. Assume without loss 
of generality that M is minimal, in the sense that no proper initial segment of M is a model of ZFC of class 
S1. Let δ be the least Woodin cardinal in M , so that M is of class S0 above δ, and let p ∈ M . We define 
the Col(ω, δ)-names for sets of reals Ẇ p

I and Ẇ p
II by11

Ẇ p
I = Ẇ p

I (M) = {(ẏ, q) | q �M
Col(ω,δ) Player I has a winning strategy in Gp̌�ẏ}

and

Ẇ p
II = Ẇ p

II(M) = {(ẏ, q) | q �M
Col(ω,δ) Player II has a winning strategy in Gp̌�ẏ}.

Let φp
I and φp

II be the formulae given by Neeman’s theorem (Theorem 4.5) such that the following hold:

(1) If M |= φp
I [Ẇ

p
I ], there is a strategy σ for Player I in a game of length ω such that whenever x is a play by 

σ, there is an iterate N of M , an elementary embedding j : M → N and an N -generic h ⊂ Col(ω, j(δ))
such that x ∈ N [h] and x ∈ j(Ẇ p

I )[h].
(2) If M |= φp

II[Ẇ
p
II], there is a strategy τ for Player II in a game of length ω such that whenever x is a play by 

τ , there is an iterate N of M , an elementary embedding j : M → N and an N -generic h ⊂ Col(ω, j(δ))
such that x ∈ N [h] and x ∈ j(Ẇ p

II)[h].
(3) Otherwise, there is an M -generic g ⊂ Col(ω, δ) and an x ∈ M [g] such that x /∈ Ẇ p

I [g] and x /∈ Ẇ p
II[g].

Now, we specify the good Pn-names Ḃṗ,I
n as claimed above, for models with enough Woodin cardinals 

below δ so that Pn is defined. For n = 0, suppose that M is a premouse with Woodin cardinals δ0 < δ and 
is of class S0 above δ and minimal above δ.12 Let ṗ be a nice Col(ω, δ0)-name for a finite sequence of reals 
and set

Ḃṗ,I
0 = {(( ˙̇y, q̇), q0) | q0 �Col(ω,δ0) q̇ �Col(ω,δ)̌ Player I has a winning strategy in G ˇ̇p� ˙̇y}.

The good Pn-names Ḃṗ,I
n for n > 0 and similar names Ḃṗ,II

n for Ẇ p
II are defined analogously.

Case 2. gr(Gp) = γ + 1 for some γ ≥ 2.

Let y ≥T r and let M be any y-premouse which is a model of ZFC of class Sγ+1. Assume without loss of 
generality that M is minimal, in the sense that no proper initial segment of M is a model of ZFC of class 
Sγ+1. Let δ be the least Woodin cardinal in M , so that M is of class Sγ above δ, and let p ∈ M . Then let

10 For every p, φp
I will be one of three formulae (there is one possibility for the successor case and two for the limit case). We will 

however use the notation φp
I to make the presentation uniform. Similarly for φp

II.
11 Here and below, all names for real are assumed to be nice.
12 A case of interest will be that of such M which are initial segments of a model N of some class Sβ which is minimal above δ0. 
In such an N , δ need not be a cardinal.
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Ẇ p
I = Ẇ p

I (M) = {(ẏ, q) | q �M
Col(ω) φ

p̌�ẏ
I [Ḃ]},

where Ḃ ∈ M is the good Col(ω, δ)-name with respect to p̌�ẏ, so that whenever G is Col(ω, δ)-generic over 
M , Ḃ[G] = Ẇ p�y

I (M [G]), where p�y = (p̌�ẏ)[G]. We also let

Ẇ p
II = Ẇ p

II(M) = {(ẏ, q) | q �M
Col(ω,δ) φ

p̌�ẏ
II [Ḃ]},

for Ḃ analogous as above. Note that Ḃ is a good name for Ẇ p�y
I or Ẇ p�y

II respectively and hence already 
defined since for every real y, gr(Gp�y) = γ. Let φp

I and φp
II be the formulae given by Neeman’s theorem 

(Theorem 4.5) such that the following hold:

(1) If M |= φp
I [Ẇ

p
I ], there is a strategy σ for Player I in a game of length ω such that whenever x is a play by 

σ, there is an iterate N of M , an elementary embedding j : M → N and an N -generic h ⊂ Col(ω, j(δ))
such that x ∈ N [h] and x ∈ j(Ẇ p

I )[h].
(2) If M |= φp

II[Ẇ
p
II], there is a strategy τ for Player II in a game of length ω such that whenever x is a play by 

τ , there is an iterate N of M , an elementary embedding j : M → N and an N -generic h ⊂ Col(ω, j(δ))
such that x ∈ N [h] and x ∈ j(Ẇ p

II)[h].
(3) Otherwise, there is an M -generic g ⊂ Col(ω, δ) and an x ∈ M [g] such that x /∈ Ẇ p

I [g] and x /∈ Ẇ p
II[g].

Now, we specify the good Pn-names Ḃṗ,I
n . For n = 0, suppose M is a premouse with Woodin cardinals 

δ0 < δ and that M is of class Sγ above δ and minimal above δ. Let ṗ ∈ M be a nice Col(ω, δ0)-name for a 
finite sequence of reals. Set

Ḃṗ,I
0 = {(( ˙̇y, q̇), q0) | q0 �Col(ω,δ0) q̇ �Col(ω,δ)̌ φ

ˇ̇p� ˙̇y
I [Ḃ]},

where Ḃ is a good P (δ0, δ)-name for Ẇ p
I . That means Ḃ is such that whenever G is P (δ0, δ)-generic over 

M , Ḃ[G] = Ẇ p�y
I (M [G]), where p�y = (ˇ̇p� ˙̇y)[G]. The Pn-names Ḃṗ,I

n for n > 0 and similar names Ḃṗ,II
n

for Ẇ p
II are defined analogously.

Case 3. gr(Gp) = λ is a limit ordinal and the rules of G dictate that, after p, it is Player I’s turn.

Let y ≥T r and let M be any y-premouse which is a model of ZFC and of class Sλ. Let p ∈ M . Then 
let Ẇ p

I = Ẇ p
I (M) be the set of all k ∈ ω such that there is an η < M ∩ Ord such that M |η is an active 

y-premouse of class Sgr(Gp�k) which is minimal, in the sense that no proper initial segment thereof is of 
class Sgr(Gp�k), and, if we let M∗ be the result of iterating the active extender of M |η out of the universe, 
then

M∗ |= φp�k
I [δ∗, Ẇ p�k

I (M∗)].

This makes sense because for all k ∈ ω, gr(Gp�k) < gr(Gp), so the set Ẇ p�k
I (M∗) has been defined for 

all M∗ as above. Moreover, Ẇ p
I belongs to M , since the formulae φp�k

I (Ẇ p�k
I [M∗]), together with their 

parameters Ẇ p�k
I (M∗), are definable13 uniformly in p, gr(Gp), and η, as can be shown inductively by 

following this construction and the proof of Theorem 4.5 (cf. the proof of [10, Theorem 1E.1]).
We let φp

I [Ẇ
p
I (M)] be the formula asserting that Ẇ p

I is non-empty. Similarly, let Ẇ p
II = Ẇ p

II(M) be the 
set of all k ∈ ω such that whenever η < M ∩Ord is such that M |η is an active y-premouse of class Sgr(Gp�k)
which is minimal, then

13 Recall that the structure M includes a predicate for its extender sequence.
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M∗ |= φp�k
II [Ẇ p�k

II (M∗)],

for M∗ defined as above. We let φp
II[Ẇ

p
II(M)] be the formula asserting that Ẇ p

II is equal to ω. As before, the 
set Ẇ p

II belongs to M .
The good Pn-names Ḃṗ,I

n and Ḃṗ,II
n are defined as before, for premice M which are of class Sλ above 

finitely many Woodin cardinals.

Case 4. gr(Gp) = λ is a limit ordinal and the rules of G dictate that, after p, it is Player II’s turn.

Let y ≥T r and let M be any y-premouse which is a model of ZFC and of class Sλ. Let p ∈ M . Then let 
Ẇ p

I (M) be the set of all k ∈ ω such that there is an η < M ∩Ord such that M |η is an active y-premouse of 
class Sgr(Gp�k) which is minimal, in the sense that no proper initial segment of M |η is of class Sgr(Gp�k), 
and, if we again let M∗ be the result of iterating the active extender of M |η out of the universe, then

M∗ |= φp�k
I [Ẇ p�k

I (M∗)].

Again, Ẇ p
I is in M . We let φp

I [Ẇ
p
I (M)] be the formula asserting that Ẇ p

I is equal to ω. Similarly, let 
Ẇ p

II = Ẇ p
II(M) be the set of all k ∈ ω such that whenever η < M ∩ Ord is such that M |η is an active 

y-premouse of class Sgr(Gp�k) which is minimal, then

M∗ |= φp�k
II [Ẇ p�k

II (M∗)],

for M∗ defined as above. We let φp
II[Ẇ

p
II(M)] be the formula asserting that Ẇ p

II is non-empty.
The good Pn-names Ḃṗ,I

n and Ḃṗ,II
n are defined as before, for premice M which are of class Sλ above 

finitely many Woodin cardinals.
This completes the definition of the names Ẇ p

I , Ẇ p
II, Ḃṗ,I

n , Ḃṗ,II
n , and the formulae φp

I and φp
II. Continuing 

with the proof of Theorem 4.4, we prove a technical claim which shows that these names behave well under 
elementary embeddings.

Claim 1. Suppose gr(G) is a successor ordinal, let M be a proper class premouse which is a model of ZFC
of class Sgr(G) and minimal, in the sense that no proper initial segment of M is a model of ZFC of class 
Sgr(G).14 Let j : M → N be an elementary embedding. Let p ∈ M be a finite sequence of reals in M . Then

j(Ẇ p
I (M)) = Ẇ p

I (N)

and, analogously,

j(Ẇ p
II(M)) = Ẇ p

II(N).

Proof. Let δ denote the least Woodin cardinal of M . We will in fact show that whenever ṗ ∈ M is a Pn-name 
for a finite sequence of reals such that gr(Gṗ) is decided by the empty condition, we have

j(Ḃṗ,I
n ) = (Ḃj(ṗ),I

n )N ,

and

j(Ḃṗ,II
n ) = (Ḃj(ṗ),II

n )N ,

14 Since gr(G) is a successor ordinal and M is minimal, M has a Woodin cardinal.
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i.e., if Ḃ ∈ M is a good Pn-name such that whenever G is Pn-generic over M ,

Ḃ[G] = Ẇ
ṗ[G]
I (M [G]),

then j(Ḃ) ∈ N is a good j(Pn)-name such that whenever H is j(Pn)-generic over N ,

j(Ḃ)[H] = Ẇ
j(ṗ)[H]
I (N [H])

and similarly for Ḃṗ,II
n .

This will yield the claim if applied to n = 0, as, by definition,

Ẇ p
I (M) = {(ẏ, q) : q �M

Col(ω,δ) φ
p̌�ẏ
I [Ḃp̌�ẏ,I

0 ]}.

Hence,

j(Ẇ p
I (M)) = {(ẏ, q) : q �N

Col(ω,j(δ)) φ
p̌�ẏ
I [j(Ḃp̌�ẏ,I

0 )]}

= {(ẏ, q) : q �N
Col(ω,j(δ)) φ

p̌�ẏ
I [(Ḃj(p̌�ẏ),I

0 )N ]}
= Ẇ p

I (N),

and similarly for Ḃṗ,II
n .

By the definition of simple games, gr(Gp) depends only on G, the length of p, and finitely many values 
of p (those in which the players determine the subgames played). Thus, if ṗ is a Pn-name in M for a finite 
sequence of reals such that �M

Pn
gr(Gṗ) = γ+1 for some countable ordinal γ and if ẏ is a P (δ0, . . . , δn, δ)-name 

for a real, then

�M
P(δ0,...,δn,δ) gr(G ˇ̇p�ẏ) = γ.

The claim is proved simultaneously for all premice M and all ṗ ∈ M , by induction on the game rank of 
gr(Gp). We prove it for the names Ḃṗ,I

n for Player I; the other part is similar. We proceed by cases:
First suppose that γ = 2 and let n < ω and ṗ ∈ M be a Pn-name for a finite sequence of reals such that 

�M
Pn

gr(Gṗ) = 2. Let Ḃ = Ḃṗ,I
n ∈ M , so that whenever G is Pn-generic over M ,

Ḃ[G] = Ẇ
ṗ[G]
I (M [G]).

By definition,

�M . . . � Ḃ = {(ẏ, q) | q �Col(ω,δ) Player I has a winning strategy in G ˇ̇p�ẏ}.

By elementarity,

�N . . . � j(Ḃ) = {(ẏ, q) | q �Col(ω,j(δ)) Player I has a winning strategy in Gj(ˇ̇p)�ẏ}.

But this implies that j(Ḃ) is a good j(Pn)-name such that whenever H is j(Pn)-generic over N ,

j(Ḃ)[H] = Ẇ
j(ṗ)[H]
I (N [H]).

This finishes the case γ = 2.
If γ = β + 1, where β > 1, let again n < ω, ṗ ∈ M be a Pn-name for a finite sequence of reals such that 

�M gr(Gṗ) = β + 1 and let Ḃ = Ḃṗ,I
n ∈ M , so that whenever G is Pn-generic over M ,
Pn
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Ḃ[G] = Ẇ
ṗ[G]
I (M [G]).

This means that

�M . . . � Ḃ = {(ẏ, q) | q �Col(ω,δ) φ
ˇ̇p�ẏ
I [Ċ]},

where Ċ ∈ M is a good P (δ0, . . . , δn, δ)-name such that whenever g is P (δ0, . . . , δn, δ)-generic over M ,

Ċ[g] = Ẇ
(ˇ̇p�ẏ)[g]
I (M [g]).

By inductive hypothesis, and using that �M
P(δ0,...,δn,δ) gr(G ˇ̇p�ẏ) = β < gr(G ˇ̇p), we have that j(Ċ) ∈ N is a 

good P (j(δ0), . . . , j(δn), j(δ))-name such that whenever h is P (j(δ0), . . . , j(δn), j(δ))-generic over N ,

j(Ċ)[h] = Ẇ
j(ˇ̇p�ẏ)[h]
I (N [h]).

Since, by elementarity,

�N . . . � j(Ḃ) = {(ẏ, q) | q �Col(ω,j(δ)) φ
j(ˇ̇p�ẏ)
I [j(Ċ)]},

it follows that j(Ḃ) is a good j(Pn)-name such that for every j(Pn)-generic H over N ,

j(Ḃ)[H] = Ẇ
j(ṗ)[H]
I (N [H]),

as desired.
If γ is a limit ordinal, let again n < ω, ṗ ∈ M be a Pn-name for a finite sequence of reals such that 

�M
Pn

gr(Gṗ) = γ. Let Ḃ = Ḃṗ,I
n ∈ M , so that whenever G is Pn-generic over M ,

Ḃ[G] = Ẇ
ṗ[G]
I (M [G]).

This means that

�M . . . � Ḃ = {k ∈ ω | there is an initial segment M∗ minimal of class

Sgr(Gṗ�k) which satisfies φṗ�k
I [Ċ]},

where Ċ ∈ M∗ is a good Pn-name such that whenever g is Pn-generic over M∗,

Ċ[g] = Ẇ
(ṗ�k)[g]
I (M∗[g]).

By inductive hypothesis, j(Ċ) ∈ N |(j(M∗) ∩ Ord) is a good j(Pn)-name such that whenever h is j(Pn)-
generic over N |(j(M∗) ∩ Ord),

j(Ċ)[h] = Ẇ
j(ṗ�k)[h]
I (N |(j(M∗) ∩ Ord)[h]).

Since, by elementarity,

�N . . . � j(Ḃ) = {k ∈ ω | there is an initial segment N∗ minimal of class

Sgr(Gṗ�k) which satisfies φ
j(ṗ�k)
I [j(Ċ)]},

it follows that j(Ḃ) is a good j(Pn)-name such that for every j(Pn)-generic H over N ,
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j(Ḃ)[H] = Ẇ
j(ṗ)[H]
I (N [H]),

as desired.
The argument for Ẇ p

II(M) is analogous. This completes the proof of the claim. �
Now we turn to the proof of the following claim, from which the theorem follows. Recall that α = gr(G).

Claim 2. Let M be an r-premouse which of ZFC of class Sα but has no proper initial segment of class Sα. 
Let δ denote the least Woodin cardinal in M . Then

(1) If M |= φ∅
I [Ẇ ∅

I ], then Player I has a winning strategy in G.
(2) If M |= φ∅

II[Ẇ ∅
II], then Player II has a winning strategy in G.

(3) M |= φ∅
I [Ẇ ∅

I ] ∨ φ∅
II[Ẇ ∅

II].

Proof. If M is active, then we may identify it with the proper class sized iterated ultrapower by its top 
extender and its images, so we may assume that M is a model of ZFC. Note that M always has a Woodin 
cardinal, as α is a successor ordinal. We first prove (3). Suppose that M �|= φ∅

I [Ẇ ∅
I ] and M �|= φ∅

II[Ẇ ∅
II]. We 

inductively construct a run of the game G by its initial segments pm together with reals ym, ym-premice 
Mpm which are proper class models of ZFC and ordinals δpm

. Let p0 be the empty play, y0 = r, and M0 = M . 
Inductively, suppose that pm, ym, and Mpm have been defined and that

Mpm �|= φpm

I [Ẇ pm

I ] and Mpm �|= φpm

II [Ẇ pm

II ],

and let δpm
be the least Woodin cardinal of Mpm , if it exists.

If gr(Gpm
) = γ + 1 is a successor ordinal for some γ ≥ 2, then, by Neeman’s theorem (Theorem 4.5), 

there is an Mpm-generic gm ⊂ Col(ω, δpm
) and a y ∈ Mpm [gm] such that y /∈ Ẇ pm

I [gm] and y /∈ Ẇ pm

II [gm]. 
This means that

Mpm [gm] �|= φ
p�
my

I [Ẇ p�
my

I ] and Mpm [gm] �|= φ
p�
my

II [Ẇ p�
my

II ].

Let pm+1 = p�my, Mpm+1 = Mpm [gm]. Here Mpm [gm] can be rearranged as a ym+1-premouse for some 
real ym+1 coding ym and gm as gm collapses a cutpoint of the ym-premouse Mpm . We will always consider 
Mpm+1 as such a ym+1-premouse.

Suppose that gr(Gpm
) is a limit ordinal and the rules of G dictate that after pm, it is Player I’s turn. 

By inductive hypothesis we have Mpm �|= φpm

I [Ẇ pm

I ], so there is no active initial segment Mpm |ν, ν ∈ Ord, 
of Mpm of class Sgr(Gp�mk) which is minimal and satisfies φp�

mk
I [Ẇ p�

mk
I ], for any k ∈ ω. Moreover, Mpm �|=

φpm

II [Ẇ pm

II ]. Hence, there is some k ∈ ω and an active initial segment of Mpm of class Sgr(Gp�mk) which is 
minimal and does not satisfy φp�

mk
II [Ẇ p�

mk
II ], where δ∗ is defined analogous as above. Fix such a k and such 

an active initial segment Mpm |η of Mpm and let Mpm+1 be the proper class model resulting from iterating 
the active extender of Mpm |η out of the universe. Set pm+1 = p�mk and ym+1 = ym. Then,

Mpm+1 �|= φ
pm+1
I [Ẇ pm+1

I ] and Mpm+1 �|= φ
pm+1
II [Ẇ pm+1

II ].

The case that gr(Gpm
) is a limit ordinal and the rules of G dictate that it is Player II’s turn after pm is 

similar.
Finally, suppose that gr(Gpm

) = 2. By Neeman’s theorem (Theorem 4.5), there is some Mpm-generic 
gm ⊂ Col(ω, δpm

) and some y ∈ Mm[gm] such that y /∈ Ẇ pm

I [gm] and y /∈ Ẇ pm

II [gm]. This means that

(1) Mpm [gm] |= “Player I does not have a winning strategy in Gp�y”, and

m
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(2) Mpm [gm] |= “Player II does not have a winning strategy in Gp�
my”.

However, gr(Gp�
my) = 1, so Gp�

my is a clopen game of length ω. This is a contradiction, as Mpm [gm] is a 
model of ZFC, so it certainly satisfies clopen determinacy. This proves (3).

We now prove (1); the proof of (2) is similar.
Let M be as in the statement of the claim and suppose M |= φ∅

I [Ẇ ∅
I ]. We will describe a winning strategy 

σ for Player I in G (in V ) as a concatenation of strategies σm for different rounds of G. Playing against 
arbitrary moves of Player II, we will for m ≥ 1 inductively construct plays pm for initial segments of G
according to σ together with

• reals ym such that ym+1 ≥T ym and y0 = r,
• ym-premice Mpm which are proper class models of ZFC of class Sgr(Gpm ), none of whose initial segments 

are of class Sgr(Gpm ), and such that pm ∈ Mpm ,
• premice Npm together with iteration embeddings jm : Mpm → Npm ,
• if Mpm has a Woodin cardinal and δpm

is the least Woodin cardinal in Mpm , Col(ω, j(δpm
))-generics 

gpm
over Npm .

In case Mpm does not have a Woodin cardinal, we will let gpm
be undefined and let Mpm+1 = Npm . In the 

other case, we let Mpm+1 = Npm [gpm
]. Finally, we will stop the construction after finitely many steps when 

gr(Gpm
) = 1.

Let p0 be the empty play and Mp0 = M . We will inductively argue that

Mpm |= φpm

I [Ẇ pm

I (Mpm)],

where Ẇ pm

I (Mpm) is the Col(ω, δpm
)-name or set of natural numbers in Mpm defined above.

Assume inductively that pn and Mpn with Mpn |= φpn

I [Ẇ pn

I (Mpn)] are already constructed for all n ≤ m

and that gr(Gpm
) ≥ 2. To construct pm+1 and Mpm+1 we distinguish the following cases.

Assume first that gr(Gpm
) = γ + 1 for some γ ≥ 2. Since

Mpm |= φpm

I [Ẇ pm

I (Mpm)],

it follows from Neeman’s theorem (Theorem 4.5) that there is a strategy σm for Player I in a game of 
length ω such that whenever x is a play by σm, there is an iterate Npm of Mpm , an elementary embedding 
j : Mpm → Npm and an Npm-generic h ⊂ Col(ω, j(δpm

)) such that x ∈ Npm [h] and x ∈ j(Ẇ pm

I (Mpm)[h]. 
Hence, by Claim 1, x ∈ Ẇ pm

I (Npm)[h]. By definition,

Npm [h] |= φ
p�
mx

I [Ẇ p�
mx

I (Npm [h])].

Let pm+1 = p�mx, Mpm+1 = Npm [h], and gpm
= h. Note that pm+1 ∈ Mpm+1 and as before Npm [h] can be 

rearranged as a ym+1-premouse for some real ym+1 coding ym and h. Again, we will always consider Mpm+1

as such a ym+1-premouse.
Now suppose that gr(Gpm

) = λ is a limit ordinal and the rules of G dictate that, after pm, it is Player 
I’s turn. By assumption, Mpm |= φpm

I [Ẇ pm

I (Mpm)]. So

Mpm |= Ẇ pm

I (Mpm) �= ∅.

Hence, there is a natural number k and an ordinal η such that Mpm |η is an active initial segment of Mpm

of class Sgr(Gp�k) and is minimal, and, if we let Npm be the result of iterating the active extender of Mpm |η

m
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out of the universe, then Npm |= φ
p�
mk

I [Ẇ p�
mk

I (Npm)]. Let pm+1 = p�mk, ym+1 = ym, and Mpm+1 = Npm . 
Moreover, let σm be the strategy which tells Player I to play k.

For the other limit case suppose that gr(Gpm
) = λ is a limit ordinal and the rules of G dictate that, after 

pm, it is Player II’s turn. In this case we can let σm = ∅ as Player I is not playing, i.e., we only have to 
react to what Player II is playing in the next round. Suppose that Player II plays some natural number k
and let pm+1 = p�mk. Since Mpm |= φpm

I [Ẇ pm

I (Mpm)], we have

Mpm |= Ẇ pm

I (Mpm) = ω.

In particular, k ∈ Ẇ pm

I (Mpm). Thus there is an ordinal η such that Mpm |η is an active initial segment of 
Mpm , minimal of class Sgr(Gp�mk), and if we let Npm denote the result of iterating the active extender of 
Mpm |η out of the universe, then Npm |= φ

p�
mk

I [Ẇ p�
mk

I (Npm)]. Let Mpm+1 = Npm , and ym+1 = ym.
Finally, assume that gr(Gpm

) = 2. Since Mpm |= φpm

I [Ẇ pm

I (Mpm)], by Neeman’s theorem (Theorem 4.5), 
there is a strategy σm for Player I in a game of length ω such that whenever x is a play by σm, there is an 
iterate Npm of Mpm , an elementary embedding j : Mpm → Npm and an Npm-generic h ⊂ Col(ω, j(δpm

))
such that x ∈ N [h] and x ∈ j(Ẇ pm

I (Mpm))[h]. Then, by Claim 1, x ∈ Ẇ pm

I (Npm))[h]. Therefore,

Npm [h] |= Player I has a winning strategy in Gp�
mx.

We let pm+1 = p�mx and stop the construction. Since gr(Gp�
mx) = 1, Gp�

mx is a clopen game of length ω. As 
Npm [h] is a proper class model of ZFC, we can use absoluteness of winning strategies for clopen games of 
length ω to obtain that Player I has a winning strategy in Gp�

mx in V . Let σm+1 be a strategy for Player I 
witnessing this.

This process describes a winning strategy σ for Player I in G by concatenating the strategies σi for 
1 ≤ i ≤ m + 1, as desired. �

This finishes the proof of Theorem 4.4. �
5. Further applications

In this section, we present some additional applications of the proof of Theorem 4.4. Since the proofs are 
similar, we simply sketch the differences.

5.1. Longer games

We begin by noting that the results presented so far generalize to longer games. In particular:

Theorem 5.1. Let θ be a countable ordinal. Suppose that for each α < ω1 and each y ∈ R there is some 
x ≥T y and an x-premouse M of class Sα above some λ below which there are θ Woodin cardinals in M . 
Then σ-projective games of length ω · θ are determined.

The theorem is a consequence of a more general result akin to Theorem 4.4, namely, the determinacy of 
simple σ-projective games of length ω · (θ + ω), in the following sense:

Definition 5.2. Let Γ be a collection of subsets of ωω·θ+ω2 (with each A ∈ Γ identified with a subset of 
ωω·θ+ω·n for some n ∈ ω as in Definition 2.2). A game of length ω · θ + ω2 is Γ-simple if it is obtained as 
follows:

(1) For every n ∈ ω, games in Γ of fixed length ω · θ + ω · n are Γ-simple.
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(2) Let n ∈ ω and for each i ∈ ω let Gi be a Γ-simple game. Then the game G obtained as follows is 
Γ-simple: Players I and II take turns playing natural numbers for ω ·θ+ω ·n moves, i.e., θ+n rounds in 
games of length ω. Afterwards, Player I plays some i ∈ ω. Players I and II continue playing according 
to the rules of Gi (keeping the first ω · θ + ω · n natural numbers they have already played).

(3) Let n ∈ ω and for each i ∈ ω let Gi be a Γ-simple game. Then the game G obtained as follows is 
Γ-simple: Players I and II take turns playing natural numbers for ω ·θ+ω ·n moves, i.e., θ+n rounds in 
games of length ω. Afterwards, Player II plays some i ∈ ω. Players I and II continue playing according 
to the rules of Gi (keeping the first ω · θ + ω · n natural numbers they have already played).

The notion of game rank in this context is defined as before: if G is a game of fixed length ω · θ + ω · n, 
then gr(G) = n. If G is obtained from games G0, G1, . . ., and from an ordinal ω ·θ+ω ·n as in Definition 5.2, 
we let

gr(G) = sup{gr(Gi) + ω : i ∈ ω} + n.

Theorem 5.3. Let θ be a countable ordinal. Suppose that for each α < ω1 and each y ∈ R there is some 
x ≥T y and an x-premouse M of class Sα above some λ below which there are θ Woodin cardinals in M . 
Then, simple σ-projective games of length ω · (θ + ω) are determined.

Proof Sketch. The theorem is proved like Theorem 4.4: first, by arguing as in Proposition 3.7, one sees that 
suffices to prove determinacy for simple clopen games of length ω · (θ + ω). Let G be a game of successor 
rank α definable from a parameter x. Given y ≥T x and an active y-premouse M of class Sα, one defines 
sets Ẇ p

I (M) and Ẇ p
II(M) and formulae φp

I and φp
II by induction on gr(Gp) as in the proof of Theorem 4.4, 

provided gr(Gp) < gr(G).
The difference is as follows: in the proof of Theorem 4.4, gr(G) = gr(Gp) occurs when p = ∅; here, it 

happens when p is a θ-sequence of reals. Instead of defining Ẇ p
I in this case, we define only Ẇ ∅

I and Ẇ ∅
II. 

These are names for sets of θ+1-sequences of reals and are defined as in Case 2 in the proof of Theorem 4.4; 
namely,

Ẇ ∅
I =

{
(ṗ, q)|q �M

Col(ω,δ) φ
ṗ
I [Ẇ

ṗ
I ]
}
,

where ṗ is a name for a θ + 1-sequence of reals, δ is the least Woodin cardinal of M above λ, and δ∗

is the second Woodin cardinal of M above λ, if it exists, and ω, otherwise. (Note that δ exists since, by 
assumption, α is a successor ordinal). Ẇ ∅

II is defined similarly. Once these names have been defined, one 
applies Theorem 2A.2 of [10] (the general version of Theorem 4.5) so that (using the fact that M has θ
Woodin cardinals below λ) one obtains formulae φI and φII with parameters Ẇ ∅

I and Ẇ ∅
II, such that one of 

the following holds:

(1) If M |= φI[Ẇ ∅
I ], there is a strategy σ for Player I in a game of length ω · θ + ω such that whenever 

�x is a play by σ, there is a non-dropping iterate N of M with an embedding j and an N -generic 
g ⊂ Col(ω, j(δ)) such that �x ∈ N [g] and �x ∈ j(Ẇ ∅

I )[g].
(2) If M |= φII[Ẇ ∅

II], there is a strategy τ for Player II in a game of length θ · ω + ω such that whenever 
�x is a play by τ , there is a non-dropping iterate N of M with an embedding j and an N -generic 
g ⊂ Col(ω, j(δ)) such that �x ∈ N [g] and �x ∈ j(Ẇ ∅

II)[g].
(3) Otherwise, there is an M -generic g ⊂ Col(ω, δ) and an �x ∈ M [g] such that �x /∈ Ẇ ∅

I [g] and �x /∈ Ẇ ∅
II[g].

An argument as in the proof of Theorem 4.4 yields the following claim:
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Claim 1. Let M be an x-premouse and λ ∈ M be an ordinal such that M has θ Woodin cardinals below λ. 
Suppose that M is of class Sα above λ and no proper initial segment of M is of class Sα above λ, where α
is a successor ordinal. Let δ denote the least Woodin cardinal of M above λ. Then

(1) If M |= φ∅
I [Ẇ ∅

I ], then Player I has a winning strategy in G.
(2) If M |= φ∅

II[Ẇ ∅
II], then Player II has a winning strategy in G.

(3) M |= φ∅
I [Ẇ ∅

I ] ∨ φ∅
II[Ẇ ∅

II].

The theorem is now immediate from the claim. �
It seems very likely that the hypotheses of Theorem 5.1 are optimal. However, the proof in [1] does not 

seem to adapt easily to show this.

5.2. σ-algebras

The proof of Theorem 4.4 adapts to prove the determinacy of various σ-algebras. As an example, we 
consider the smallest σ-algebra containing all projective sets. We show that a sufficient condition for its 
determinacy is the existence of x-premice of class Sω+1 for every x ∈ R.

Theorem 5.4. Suppose that for each x ∈ ωω there is an x-premouse of class Sω+1. Then, every set in the 
smallest σ-algebra on ωω containing the projective sets is determined.

Proof Sketch. Let A belong to the σ-algebra in the statement. Let

{Σ0
α(Π1

ω) : α < ω1}

denote the Borel hierarchy built starting from sets which are countable intersections of projective sets, i.e., 
Σ0

0(Π1
ω) = Π1

ω consists of all countable intersections of projective sets and Σ0
α(Π1

ω) consists of all countable 
unions of sets each of which is the complement of a set in Σ0

β(Π1
ω) for some β < α. Standard arguments 

show that these pointclasses constitute a hierarchy of sets in the smallest σ-algebra containing the projective 
sets. It follows that there is α < ω1 and x ∈ ωω such that A ∈ Σ0

α(Π1
ω)(x), i.e., such that A belongs to 

Σ0
α(Π1

ω) and that A has a σ-projective code (in the sense of Section 3) which is recursive in x.
Let [A] be a σ-projective code for A which is recursive in x and in which no complements appear. To 

show that A is determined, it suffices to show that the decoding game for [A] is determined. Let us denote 
this game by G. It is a simple clopen game; it is not quite of rank ω + 1, so determinacy does not follow 
immediately from Theorem 4.4, but it follows from the proof:

Given a partial play p of the game and a model N , we define sets Ẇ p
I (N) and Ẇ p

II(N), formulae φI[Ẇ p
I (N)]

and φII[Ẇ p
II(N)], and names Ḃṗ,I

n and Ḃṗ,II
n as in the proof of Theorem 4.4. The cases where gr(Gp) ≤ ω

are exactly as in the proof of Theorem 4.4. The remaining cases are very slightly different—for this, let us 
define the notion of subrank. Recall that G has the following rules:

(1) Players I and II begin by alternating ω many rounds to play a real number y ∈ ωω.
(2) Afterwards, they alternate a finite amount of turns as follows: letting [A0] = [A] and supposing [An]

has been defined, [An] is a σ-projective code for a union or an intersection of sets, say {Bi : i ∈ ω}, with 
each Bi of smaller (Borel) rank. By the rules of the decoding game, one of the players needs to play a 
natural number i, thus selecting a σ-projective code [Bi] for Bi; we let [An+1] = [Bi].

(3) Eventually, a stage n∗ is reached in which [An∗ ] is a code for a projective set; at this point the players 
continue with the rules of the decoding game for [An∗ ].
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Given a play p of G in which a player needs to play a natural number i and [An] has been defined as above, 
we say that the game subrank of Gp is the least γ such that An ∈ Σ0

γ(Π1
ω)(x) or An ∈ Π0

γ(Σ1
ω)(x).

We now continue the definition of the sets Ẇ p
I (N) and Ẇ p

II(N), formulae φI[Ẇ p
I (N)] and φII[Ẇ p

II(N)], 
and names Ḃṗ,I

n and Ḃṗ,II
n . Assume p is such that ω < gr(Gp), so that the sets have not been defined 

already; we proceed by induction on the subrank of Gp:

Case 5. The subrank of Gp is defined and nonzero and the rules of G dictate that, after p, it is Player I’s 
turn.

Let y ≥T x and let M be any y-premouse which is a model of ZFC and of class Sω. Let p ∈ M . Then let 
Ẇ p

I = Ẇ p
I (M) be the set of all k ∈ ω such that

M |= φp�k
I [Ẇ p�k

I (M)].

This makes sense because for all k ∈ ω, the subrank of Gp�k is smaller than the subrank of Gp, so the 
set Ẇ p�k

I (M) has been defined. Moreover, Ẇ p
I belongs to M , since [A] is recursive in x and the formulae 

φp�k
I (Ẇ p�k

I [M ]), as well as the sets Ẇ p�k
I (M), are definable uniformly in p, as can be shown inductively 

by following this construction and the proof of Theorem 4.5 (cf. the proof of [10, Theorem 1E.1]).
We let φp

I [Ẇ
p
I (M)] be the formula asserting that Ẇ p

I is non-empty. Similarly, let Ẇ p
II = Ẇ p

II(M) be the 
set of all k ∈ ω such that

M |= φp�k
II [Ẇ p�k

II (M)].

We let φp
II[Ẇ

p
II(M)] be the formula asserting that Ẇ p

II is equal to ω. As before, the set Ẇ p
II belongs to M .

The good Pn-names Ḃṗ,I
n and Ḃṗ,II

n are defined as in the other cases.

Case 6. The subrank of Gp is defined and nonzero and the rules of G dictate that, after p, it is Player II’s 
turn.

This case is similar to the preceding one.

Case 7. p is the empty play.

Let M be any x-premouse which is a model of ZFC and of class Sω+1 and let δ be the smallest Woodin 
cardinal of M . In this case, Ẇ ∅

I is the canonical Col(ω, δ)-name for all reals p such that φp
I(Ẇ

p
I [Ḃ]) holds, 

where Ḃ ∈ M is a good Col(ω, δ)-name with respect to ṗ, so that whenever G is Col(ω, δ)-generic over M , 
Ḃ[G] = Ẇ p

I (M [G]), where p = ṗ[G].
The name Ẇ ∅

II is defined analogously. The formulae φ∅
I (Ẇ ∅

I ) and φ∅
II(Ẇ ∅

II) are obtained by applying 
Neeman’s theorem to Ẇ ∅

I and Ẇ ∅
II.

This completes the definition of the names and formulae. After this, an argument as in the proof of 
Theorem 4.4 yields the following claim:

Claim 1. Let M be an x-premouse which is of class Sω+1 but has no proper initial segment of class Sω+1. 
Let δ denote the least Woodin cardinal in M . Then

(1) If M |= φ∅
I [Ẇ ∅

I ], then Player I has a winning strategy in G.
(2) If M |= φ∅

II[Ẇ ∅
II], then Player II has a winning strategy in G.

(3) M |= φ∅[Ẇ ∅] ∨ φ∅ [Ẇ ∅ ].
I I II II
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The theorem is now immediate from the claim. �
The following remains an interesting open problem:

Question 5.5. What is the consistency strength of determinacy for sets in the smallest σ-algebra containing 
the projective sets?
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