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Abstract We present a novel approach for Quality of Transmission estimation using hybrid modelling
and transfer-learning. Our method reduces the training data requirement by 80% while obtaining an
MSE of 0.27dB. The approach facilitates a streamlined ML life-cycle for data collection, training and
deployment.

Introduction

The emerging 5G networks designed to support
high-capacity network applications will bring an
unprecedented amount of dynamic traffic to the
underlying optical network infrastructures[1]. Fu-
ture optical networks will need to be evolved to
be more dynamic, with the ability to establish net-
work connections with reduced margins to im-
prove hardware utilisation[2]. Consequently, pre-
cise information about the quality of transmission
(QoT) of the unestablished light paths as well as
the impact of newly established light paths on the
previous channels is of vital importance to oper-
ating low-margin optical networks efficiently.

With the unparalleled combination of high ac-
curacy and low computational complexity in infer-
ence, Machine Learning (ML) based approaches
have been explored to provide promising so-
lutions in QoT estimation with either synthetic
data[3] or pre-collected network operation data[4].
These solutions, based on artificial neural net-
works (ANN), face big challenges in scalability as
training and inferencing of ML models are car-
ried out on the same network. Recently, trans-
fer learning (TL)[5] has been used to solve the
scalability of the ANN-based QoT prediction[6]–[8]

in optical networks. However, there are still sev-
eral challenges that need to be addressed before
their widespread deployment can become a real-
ity. The large amounts of data that are required
for ML model training are not yet available, partic-
ularly during the early phase of the fibre life-cycle
when network monitoring data is lacking. Addi-
tionally, ML models must be responsive to system
changes caused by component wear and ageing,
and constantly evaluate their own efficacy so as to
prevent inadequate quality of service. A coherent
life-cycle for ML models is required to formalise
the process of designing, testing, and deploying
ML models on optical networks.

In this paper, we propose a streamlined ML
life-cycle for optical networks which utilises TL to
combine synthetic data and practical network ob-
servation data. Synthetic data gathered through
coarse analytical modelling is used to obtain a
QoT-prediction model with acceptable precision in
the absence of practical network data. The QoT
prediction model is then retrained and fine-tuned
to obtain high precision with practical data. The
performance of the TL assisted ANN is evaluated
by comparing it to a baseline ANN trained from
scratch. The TL-assisted ANN achieves an MSE
of 0.267 dB, equal to that of the baseline ANN,
despite being trained on only 20% (200 samples)
of the practical data used to train the baseline
model. The training time is reduced for the TL as-
sisted ANN, taking 6.67s in comparison to 19.47s
for the baseline ANN. Our proposed approach re-
duces the volume of practical data required to
train an ANN for QoT prediction, and facilitates
rapid training and deployment of these predictors
in future commercial optical networks.

ML Life-cycle towards deployment in optical
networks
Our proposed four-phase approach for the ML
life-cycle is outlined in Figure 1. Transfer learn-
ing is used to connect available knowledge and
practical network status. First, a source learner is
trained on synthetic data gathered offline through
available modelling or simulation tools. The de-
sign phase consists of model selection, train-
ing and optimisation. Initial values for hyper-
parameters are set arbitrarily and optimised by
performing a Grid Search across many hyper-
parameter combinations. Then, the parameters
of the trained source learner are transferred to the
target (TL assisted) learner, which is fine-tuned
with practical monitoring data from the optical net-
work. This approach achieves convergence faster
than training from scratch while reducing the re-



Fig. 1: Hybrid model life-cycle management for machine learning algorithms in optical networks

quired amount of training and validation data. The
third phase is model validation, which aims to
evaluate the model’s ability to generalise for new,
unseen network operations data. The results of
this stage determine margins that must be utilised
during deployment to ensure adequate quality of
service. Successful models can be integrated into
the software defined networking (SDN) controller
for autonomous and dynamic light-path allocation.
A remodelling algorithm accounting for all poten-
tial sources of system changes (e.g. component
wear and ageing) can be implemented with prac-
tical network validation. With the proposed ML
model management, network operation scenarios
with complex topology and dynamic channel con-
figurations can be offered ML models for QoT pre-
dictions. In the following section, we demonstrate
the first three phases for ML model provision.

Transfer Learning Based QoT Estimator

We utilise TL to reduce the required training data
and increase speed of convergence for our ANN
model. A source domain, DS , and source task,
TS are defined. DS is comprised of the feature
space XS and a marginal probability distribution
PS(x). TS is comprised of the target space, YS
and the predictive function f(·). Similarly, a target
domain, DT , and target task, TT are also defined.
For our purposes, DS is the synthetic data set and
DT is the practical network data. TL aims to im-
prove the learning of the target predictive func-
tion f(·) in DT using the knowledge in DS and
TS , where DS 6= DT but TS = TT (both tasks are
OSNR estimation). We utilise parameter trans-
fer[7], and transfer a certain amount of parameters
(weights, biases etc.) from the source learner to
the target learner. This can be explained mathe-
matically by:

wS = w0 + vS and wT = w0 + vT (1)

where wS and wT are parameters of the ANNs
used for the source task and the target task re-
spectively. w0 is the set of parameters shared be-
tween both tasks, while vS and vT are task spe-
cific parameters. The cost function for the target
model can then be written:

MSE =
1

n

n∑
i=1

(yi − f(xi;w0, vT ))
2 (2)

Where yi is the actual output for the ith data point
and f(xi) is the output predicted by the target
learner. Hence parameter transfer induces faster
training of the target model by making w0 known.
The two step process therefore is comprised of
the initial training of the source learner ANN on
synthetic data, followed by the transferring of pa-
rameter knowledge to the target learner which is
fine-tuned to practical network data.

We built on our previous work in[4] and used
the ANN architecture as a starting point for the
source learner. Synthetic data was gathered on a
simulated version of the national dark fibre facil-
ity (NDFF) network using route planning software
and the Gaussian noise (GN) analytical model[9].
The network topology can be seen in Figure 2a.
The training and test data-sets consisted of 9000
and 1000 data points respectively. The feature
space was comprised of launch power, EDFA in-
put/ output power pairs for every node, and the
channel coding vector resulting in a 43 dimen-
sional feature space. There are 8 outputs corre-
sponding to the total OSNR for each of the chan-
nels at the end of the link. Channel coding is
achieved through hot coding, where a vector of
[1 1 0 0 1 0 0 0] represents channel 1,2 and 5
being switched on. The ANN can thus infer the
significance of a 0 in the channel vector, and pre-
dict a 0 for the OSNR of that channel. Similarly,
the EDFA input/ output powers behave as a hot



Fig. 2: Experimental setup and results

coded route vector by the inclusion of 0 values for
all EDFAs that were not crossed on a given path,
allowing the ANN to make inferences based on
the route taken. We used a rectified linear unit
(ReLU) function f(x) = max(0, x) as the ac-
tivation for all neurons except those in the out-
put layer, where the sigmoid function was used.
An Adaptive Moment Estimation (Adam) was cho-
sen as a stochastic gradient descent algorithm.
The architecture of the ANN with two hidden lay-
ers was [43,40,20,8]. Batch size and number
of epochs were 16 and 150 respectively. The
hyper-parameters and architecture of the source
learner are transferred to the target learner, which
is re-trained on 200 random samples of practi-
cal data. After testing multiple parameter trans-
fer schemes, fine-tuning (all parameters trans-
ferred) was chosen as the best approach, indicat-
ing heavy correlation between TS and TT .
Results and Discussion
The performance of the target learner was eval-
uated against a baseline model trained from
scratch with 500% more practical data (1000
samples). The training curves for the target
learner and baseline model can be seen in Fig-
ure 2b. The target learner obtained convergence
quicker than the baseline model, requiring only
2 epochs as opposed to 24. Training time was
also reduced from 19.47s for the baseline model
to 6.67s for the target learner. Both models
achieved an MSE of 0.27dB across 100 test data
points and a 90th percentile accuracy of 0.704dB.
The performance of the target learner for 3 test
cases is shown in Figure 2c, and a plot of the cu-
mulative distributive function (CDF) can be seen
in Figure 2d. Our results indicate that robust QoT

predictors can be trained with far less practical
data than previously thought necessary. The pro-
posed ML life-cycle facilitates the rapid training
and deployment of ML based QoT predictors in
dynamic optical networks.
Conclusion
In this paper, a streamlined ML life-cycle is pre-
sented for future deployment in commercial op-
tical networks. Based on the life-cycle, a TL-
based QoT estimation is implemented with re-
duced training data requirements and faster train-
ing times. Our approach paves the way for
large-scale, rapid deployment of QoT predictors
with complex network operation scenarios, to fully
support dynamic optical networks during the 5G
era.
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