
                          Feng, S., Vardanega, P. J., James, M., & Ibraim, E. (2021). Studying
hydraulic conductivity of asphalt concrete using a database.
Transportation Engineering, 3, [100040].
https://doi.org/10.1016/j.treng.2020.100040

Publisher's PDF, also known as Version of record
License (if available):
CC BY
Link to published version (if available):
10.1016/j.treng.2020.100040

Link to publication record in Explore Bristol Research
PDF-document

This is the final published version of the article (version of record). It first appeared online via Elsevier at
https://doi.org/10.1016/j.treng.2020.100040. Please refer to any applicable terms of use of the publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the
published version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/

https://doi.org/10.1016/j.treng.2020.100040
https://doi.org/10.1016/j.treng.2020.100040
https://research-information.bris.ac.uk/en/publications/88ebc965-b8ac-4a24-9eaf-db88f0c93a7c
https://research-information.bris.ac.uk/en/publications/88ebc965-b8ac-4a24-9eaf-db88f0c93a7c


Transportation Engineering 3 (2021) 100040 

Contents lists available at ScienceDirect 

Transportation Engineering 

journal homepage: www.elsevier.com/locate/treng 

Studying hydraulic conductivity of asphalt concrete using a database 

Shuyin Feng 

a , 1 , Paul J. Vardanega 

a , 2 , ∗ , Maximilian James b , 3 , Erdin Ibraim 

a , 4 

a Department of Civil Engineering, University of Bristol, Bristol BS8 1TR, UK 
b Formerly Department of Civil Engineering, University of Bristol, Bristol BS8 1TR, UK 

a r t i c l e i n f o 

Keywords: 

Hydraulic conductivity 
Grading entropy 
Effective particle size 
Gradation parameter 
Nominal maximum aggregate size 

a b s t r a c t 

A new database called AC/k-1624 containing over 1600 measurements of saturated hydraulic conductivity of 
asphalt concrete has been assembled and analysed. AC/k-1624 was used to investigate the effect of the grading 
entropy parameters on saturated hydraulic conductivity. A new prediction model comprising both air voids and 
grading entropy is presented. The database analysis using different predictors of asphalt hydraulic conductivity 
reveals that the gradation does affect the hydraulic conductivity, but the air void level is necessary to make rea- 
sonable a-priori assessments of hydraulic conductivity for asphalt concrete. The new empirical model is shown 
to have a good predictive capacity for hydraulic conductivity fitting more securely at higher values with more 
scatter observed at lower values. The effects of test type, gradation classification and Nominal Maximum Aggre- 
gate Size (NMAS) are also studied, revealing in general relatively modest influences on the computed regression 
coefficients. 

1

 

l  

m  

h  

2  

a  

t  

b  

A  

t  

[  

t  

v  

b  

e  

N  

O  

t  

t  

s  

E

t  

t  

t

2

 

w  

c  

m  

t

2

 

m  

p  

n  

i  

b  

t  

[

h
R
2

. Introduction 

Assessing the propensity for asphalt concrete pavement layers to al-
ow the flow of water throughout is important for understanding pave-
ent performance [1] . Hydraulic conductivity ( k ) of asphalt concrete
as been the subject of sustained research efforts in recent decades [e.g.,
–14 ]. This paper reviews the influence of different predictors for k of
sphalt concrete using a database called AC/k-1624. The database con-
ains over 1600 measurements of k on asphalt concrete mixtures and
uilds upon previous database analyses of this important parameter.
n early version of this database was presented in Vardanega and Wa-

ers [15] ( n = 467) and was subsequently expanded in Vardanega et al.
16] ( n = 1318) as well as Feng [17] ( n = 1578). The aim of this paper is
o bring together and revisit the results of the previous studies and de-
elop a novel empirical model for asphalt concrete k that incorporates
oth the percentage air void ( AV% ) level and a grading entropy param-
ter (a similar concept for gravels was recently proposed by O’Kelly and
ogal when discussing Feng et al. [18 , 19] and presented in detail in
’Kelly and Nogal [20] ). In particular, this study aims to: (i) Report

he details of the sources of data used to build AC/k-1624; (ii) Develop
ransformation models [21 , 22] linking measurements of saturated k to
imple asphalt concrete mix parameters and determine the key predic-
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ors of asphalt concrete k ; and (iii) Study the potential effects of test
ype, gradation type and Nominal Maximum Aggregate Size ( NMAS ) on
he k of asphalt concrete. 

. Literature review 

Asphalt concrete k is an important parameter to model the effects of
ater ingress into all parts of the pavement structure. The k of asphalt

oncrete is highly anisotropic [23 , 24] although the degree of anisotropy
ay be reduced at higher AV(%) levels [25] and increasing depth from

he top surface [26] . 

.1. Air Voids 

The need for some measure of porosity (void ratio) is well docu-
ented in studies of flow through porous media in the geotechnical and
avement engineering context [14 , 27–31 ]. Zube [28] emphasised the
eed for the use of AV(%) as a predictor of the k of asphalt concrete. The
mportance of evaluating connected voids has also been demonstrated
y Tarefder and Ahmad [32] and Feng et al. [33] . Detailed studies on
he distribution of air voids and pore structure have also been published
34–36] . 
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Notation: The following notation is used in this paper (units 

given in brackets for those quantities with units) 

A relative base entropy; 
a a coefficient; 
AV% air void percentage; 
B normalised entropy increment; 
b a coefficient; 
C i number of elementary statistical cells in fraction i ; 
D 10 effective particle size, for which 10% of the soil is finer 

(length); 
D 20 effective particle size, for which 20% of the soil is finer 

(length); 
D 25 effective particle size, for which 25% of the soil is finer 

(length); 
D 30 effective particle size, for which 30% of the soil is finer 

(length); 
D 40 effective particle size, for which 40% of the soil is finer 

(length); 
D 50 effective particle size, for which 50% of the soil is finer 

(length); 
D 60 effective particle size, for which 60% of the soil is finer 

(length); 
D 70 effective particle size, for which 70% of the soil is finer 

(length); 
D 75 effective particle size, for which 75% of the soil is finer 

(length); 
D 90 effective particle size, for which 90% of the soil is finer 

(length); 
D x effective particle size; 
H entropy of a set of probabilities; 
k hydraulic conductivity (length. time − 1 ); 
n number of data points; 
N number of fractions; 
NV normalised voids; 
NMAS nominal maximum aggregate size (length); 
p p-value ; 
p i probability of a system being in cell i of its phase space; 
PSD particle size distribution; 
R 

2 coefficient of determination; 
R p representative pore size (length); 
S grading entropy; 
S 0 base entropy; 
SE standard error; 
x i relative frequency of fraction i ; 
ΔS entropy increment. 

.2. Effective particle size 

There have been many studies exploring the effects of mixture gra-
ation on the k of asphalt concrete [2 , 15 , 37–39] . Waters [2 , 40] used the

normalised air voids’ ( NV , which incorporates AV(%) and the D 50 ) as a
redictor for k of asphalt concrete. Following this work, Vardanega and
aters [15] reported a database ( n = 467) and following subsequent

nalysis showed that the ‘representative pore size’ ( R p ) with D 75 as the
ffective particle size was a good predictor of asphalt concrete k giving
he following equation: 

 ( 𝑚𝑚 ∕ 𝑠 ) = 0 . 46 
(
𝑅 𝑝 

)3 . 7 
(1)

here: 

 𝑝 = 2∕3 × ( 𝐴𝑉 %∕100) ×𝐷 𝑥 (2)

n which D x is the effective particle size in mm (taken as D 75 ) in Var-
anega and Waters [15] . Vardanega et al. [16] updated the database of
2 
ardanega and Waters [15] ( n = 1318) and showed that R p remained a
ood predictor of asphalt concrete k . 

.3. Grading entropy 

The ‘grading entropy’ concept, proposed by L ő rincz in 1986 [41] ,
escribes the order (or disorder) in the particle size distribution (PSD)
f the material by applying entropy theory [42] . The grading entropy
ramework has been used to investigate, e.g., soil particle loss [43] , soil
rushing [44 , 45] , soil stability [45 , 46] , soil texture [47] and soil per-
eability k [17 , 18 , 48] . 

The entropy of a set of probabilities p 1 , …, p n can be computed as: 

 = − 

∑
𝑝 𝑖 log 𝑝𝑖 (3)

here: p i is the probability of a system being in cell i of its phase space
42] . 

To compute the statistical entropy of the PSD, a double statistical cell
ystem, with a grid fraction (real cell system) with successively doubled
idth and an elementary statistical cell system (imaginary cell system)
ith a uniform width d 0 , is used [49] . After embedding the PSD infor-
ation in the double statistical cell system, the grading entropy of an

rbitrary soil mixture can be computed using [49] : 

 = − 

𝑁 ∑

𝑖 =1 
𝑥 𝑖 log 2 𝑥 𝑖 + 

𝑁 ∑

𝑖 =1 
𝑥 𝑖 log 2 𝐶 𝑖 (4)

here N is the number of fractions, 𝑥 𝑖 is the relative frequency of fraction
 , and C i is the number of elmentary statistical cells in fraction i . The
rading entropy S can be expressed as a combination of two terms, the
ase entropy, S 0 , ( Eq. 5 ), and the entropy increment, ΔS , ( Eq. 6 ): 

 0 = 

𝑁 ∑

𝑖 =1 
𝑥 𝑖 log 2 𝐶 𝑖 (5) 

nd 

𝑆 = − 

𝑁 ∑

𝑖 =1 
𝑥 𝑖 log 2 𝑥 𝑖 (6)

The base entropy, S 0 , explains the relative spread of the grain sizes,
hile the entropy increment, ΔS, describes the statistical entropy of the
SD in terms of the fractions and also explains the relative distribution
f the size of the particles. 

To make the entropy increment ΔS independent with the number
f fractions N , and constrain the base entropy, S 0 , and to a set inter-
al for a varying number of fractions [41 , 44] , the normalized grading
ntropy coordinates, the relative base entropy, A , and the normalised
ntropy increment, B, were introduced [41] . The relative base entropy,
 , describes the symmetry of the PSD and is given by: 

 = 

∑𝑁 

𝑖 =1 𝑥 𝑖 ( 𝑖 − 1 ) 
𝑁 − 1 

(7)

The normalised entropy increment, B , describes the kurtosis of the
SD, and is given by: 

 = − 

∑𝑁 

𝑖 =1 𝑥 𝑖 log 2 𝑥 𝑖 
log 𝑁 

(8)

Variations in the PSD can be plotted vectorially as a set of points on
he normalized grading entropy diagram rather than a series of full PSD
lots. 

James [50] undertook an early study on the potential use of the grad-
ng entropy co-ordinates as predictors of asphalt concrete k . Feng et al.
18] showed that for a set of constant head permeability tests on road
onstruction granular mixtures ( n = 30) subjected to similar compaction
ffort, the normalised grading entropy co-ordinates were a reasonable
redictor of k (a similar result was reported in Feng et al. [33] for a
atabase ( n = 164) of sand-gravel mixtures). 
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4  
. Database 

A database of asphalt concrete k measurements ( n = 1624) has
een compiled referred to in this paper as AC/k-1624 ( n = 1624). The
atabase is an expanded version of those presented in Vardanega et al.
16] ( n = 1318) and Feng [17] ( n = 1578). Table 1 shows the origins of
he information used to compile the database, relevant ranges of the
ey parameters and details on the asphalt concrete samples and testing
ethods. Anisotropy of k is not studied in this paper as the direction of

he test flow is not specifically stated in most data sources, and usually
he k is measured vertically through the test specimen. Although most
f the k data were assessed from laboratory testing on laboratory fab-
icated samples, the compiled database includes some data from field
ests [51 , 52] as well. However, the field k data will inevitably account
or both the horizontal and vertical k to some extent [53 , 54] . The sat-
ration level of the testing samples is sometimes reported in the data
ources [e.g., 53–56] . However, based on an examination of the test-
ng methods used in the database studied it is assumed that the k was
easured in saturated or near saturated conditions. The flow conditions
uring the k test are reported in some sources (see Table 1 ). Consider-
ng the air void level range present in the database (1.7 to 32.67), it
s accepted that non-laminar flow may have occurred in some of the
ests on samples with higher air voids content. That said, the k -values
eported in the database were almost all certainly calculated making
se of Darcy’s law and the corresponding assumption of laminar flow.
lso, some scatter in the analysis results presented in this paper could
otentially be due to the variation in test methods and possibly testing
emperature, the latter not often reported in the cited publications. 

. Analysis 

.1. Statistical methods 

When evaluating the quality of the results of linear regressions, the
oefficient of determination ( R 

2 ) must be supplemented with other sta-
istical measures, especially the number of data points used in the regres-
ion ( n ) and the standard error ( SE ) [80] . Phoon and Kulhawy [21 , 22]
xplained the importance of quoting the standard deviation of a transfor-
ation model (regression) in geotechnical research. For the key correla-

ions presented in this paper, accompanying predicted versus measured
lots are provided with the predicted values on the x-axis and the mea-
ured values on the y-axis following [81] . Considering the unquantified
ariations in sample sources, test methods and temperature, a prediction
and width of 0.2–5 times range was chosen to examine the prediction
ccuracy of the datapoints in AC/k-1624. Stevens [82] emphasized the
mportance of outliers and influential points, as these points may sub-
tantially distort the regression results. Datapoints with standardized
esiduals falling outside the interval ( − 2.5, 2.5) (e.g., see the review of
83] ) and/or with a leverage greater than 3 times of the average (e.g.,
ee the review of [84] ) were classed as outliers or influential points. Ad-
usted correlations were then developed without the identified outliers
nd influential points included in the analysis. For the three key cor-
elations discussed in Sections 4.2 to 4.4 around 5 to 7% of the points
ere classed as outliers or influential points using the aforementioned
ethodology. 

.2. Air voids 

The regression between lnk and lnAV% from AC/k-1624 yielded the
ollowing equation: 

n 
[
𝑘 ( 𝑚𝑚 ∕ 𝑠 ) 

]
= 5 . 37 ln [ 𝐴𝑉 ( % ) ] − 15 . 92 

𝑅 

2 = 0 . 66 , 𝑆𝐸 = 1 . 75 , 𝑛 = 1624 , 𝑝 < 0 . 0001 
]

(9a) 

hich can be rearranged to give: 

 ( 𝑚𝑚 ∕ 𝑠 ) = 1 . 21 × 10 −7 [ 𝐴𝑉 ( % ) ] 5 . 37 (9b)
3 
Based on Eq. 9a , about 5% of the datapoints were identified as out-
iers or influential points. The adjusted correlations with all identified
utliers or influential points removed is ( Fig. 1 ): 

n 
[
𝑘 ( 𝑚𝑚 ∕ 𝑠 ) 

]
= 5 . 54 ln [ 𝐴𝑉 ( % ) ] − 16 . 23 

𝑅 

2 = 0 . 67 , 𝑆𝐸 = 1 . 56 , 𝑛 = 1542 , 𝑝 < 0 . 0001 
]

(10a) 

hich can be rearranged to: 

 ( 𝑚𝑚 ∕ 𝑠 ) = 8 . 94 × 10 −8 [ 𝐴𝑉 ( % ) ] 5 . 54 (10b)

Significant differences between the regression coefficients in Eqs.
9a ) and ( 10a ) was not observed. The k- measured is plotted against k-

redicted using Eq. (10) in Fig. 1 with the k level classified (see the shad-
ng on Figs. 1–3 which indicates the following categories based on [15] :
1 = ‘very low permeability’; A2 = ‘low permeability’; B = ‘moderately
ermeable’; C = ‘permeable’; D = ‘moderately free draining’; E = ‘free
raining’). Fig. 1 plot shows that 71.14% of the data points lies within
he 0.2 to 5 times range and about 50.06% of the datapoint fall below
he line of equality (overpredictions), while 49.94% of the data points
re underpredicted by the correlation. Fig. 1 indicates that AV% is a
trong predictor of k . 

.3. Effective particle size 

The coefficient of determination ( R 

2 ) for various effective particle
izes ( D 10 , D 25 , D 30 , D 40 , D 50 , D 60 , D 70 , D 75 , D 90 ) alone used as predic-
or for k ( ln 𝑘 = 𝑎 ln 𝐷 𝑥 + 𝑏 ) are presented Table 2 . It is observed that D 30 

nd D 40 yields the highest R 

2 , which is close to the results from Waters
85] , where D 25 is chosen as the effective particle size for asphalt con-
rete k predictions. Table 2 also shows the variation in R 

2 when various
ffective particle sizes ( D 10 , D 25 , D 30 , D 40 , D 50 , D 60 , D 70 , D 75 , D 90 ) are
ubstituted as D x in representative pore size ( R p ) (see Eq. (2 )) then used
s predictor. For the studied database (AC/k-1624), D 60 yields the high-
st R 

2 when adopted as D x in R p . Vardanega and Waters [15] showed
hat the coarse fraction was where the D eff was located ( D 50 - D 90 ) and
his is similar to the results shown in Table 2 where R 

2 is highest in the
ange D 50 - D 75 . For the analysis in this paper, D 60 will be used to com-
ute the representative pore size ( R p ). The fitted correlation between
n k and ln R p ( D x = D 60 ) for the entire database yields: 

n 
[
𝑘 ( 𝑚𝑚 ∕ 𝑠 ) 

]
= 3 . 35 ln 

[
𝑅 𝑝 ( 𝑚𝑚 ) 

]
− 0 . 73 

𝑅 

2 = 0 . 69 , 𝑆𝐸 = 1 . 65 , 𝑛 = 1624 , 𝑝 < 0 . 0001 
]

(11a) 

hich can be rearranged to give: 

 ( 𝑚𝑚 ∕ 𝑠 ) = 0 . 48 𝑅 𝑝 ( 𝑚𝑚 ) 3 . 35 (11b)

here 

 𝑝 = 2∕3 ×
(
𝐴𝑉 %∕100) ×𝐷 60 ( 𝑚𝑚 ) 

)
(11c)

Around 6.8% of the datapoints were identified as outliers or influen-
ial points based on Eq. (11a ). The adjusted correlation with these points
emoved is ( Fig. 2 ): 

n 
[
𝑘 ( 𝑚𝑚 ∕ 𝑠 ) 

]
= 3 . 34 ln 

[
𝑅 𝑝 ( 𝑚𝑚 ) 

]
− 0 . 57 

𝑅 

2 = 0 . 70 , 𝑆𝐸 = 1 . 40 , 𝑛 = 1513 , 𝑝 < 0 . 0001 
]

(12a) 

hich can be rearranged to: 

 ( 𝑚𝑚 ∕ 𝑠 ) = 0 . 57 𝑅 𝑝 ( 𝑚𝑚 ) 3 . 34 (12b)

Comparing Eqs. (11a ) and ( 12a ), it can be observed that the influ-
nce from the potential outliers or influential points is marginal. The
- measured versus k- predicted plot using Eq. (12) ( Fig. 2 ) shows that
7.59% of the data points lie within the 0.2 to 5 times prediction range,
3.42% of the data points lie below the line of equality (overprediction),
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Table 1 

Database sources for AC/k-1624. 

Source No. Reference n AV (%) range AV (%) test method 
stated in publication 

k (mm/s) range k test method D 50 (mm) range NMAS (mm) ∗∗∗ Notes 

S1 Ranieri et al. [57] 12 12.31 to 28.87 - 0.115 to 10.6 UNI- EN 12697/19 

(constant head 

test) 

3.54 to 12 7.1 (1), 10 (6), 15 

(5) 

Data from lab cores 

S2 Takahashi and Partl 

[58] 

8 16.3 to 21.8 - 2.18 to 11.47 Falling head test 7.10 to 7.81 14 (2), 16 (2), 11.2 

(4) 

Data from lab cores 

S3 Zhang et al. [59] 56 17.63 to 31.46 Dimensional method, 

Parafilm method, 

CoreLok vacuum 

sealing method and 

AASHTO T209 

0.38 to 8.30 Constant head 

method VTM-84 

and flexible wall 

falling head 

method OHD L-44 

9.12 to 13.08 19 (26), 25 (30) Data from lab cores 

S4 Jang et al. [60] 10 10.93 to 32.67 - 0.02 to 4.71 - 7.52 12.5 (10) - 

S5 ∗∗ Kanitpong et al. [61] 62 3.2 to 11 Corelok device 7.10 ×10 − 7 to 

1 ×10 − 2 
ASTM D5084 (falling 

head rising-tail 

test) 

1.19 to 2.35 12.5 (36), 19 (26) Data from lab cores 

S6 ∗∗ Gogula et al. [54] 36 6.2 to 11.6 AASSHTO T209, 

AASHTO T166 

1 × 10 − 5 to 0.028 Carol-Warner flexible 

permeameter 

(falling head test) 

1.80 to 6.48 12.5 (18), 19 (18) Data from lab cores. Authors 

state that flow of the 

permeant was assumed to be 

laminar. 

S7 Setyawan [62] 12 23.78 to 27.74 - 0.94 to 1.61 - 6.05 to 7.16 9.5 (2), 11.2 (10) Data from lab cores 

S8 Sprinkel and Apeagyei 

[63] 

42 2.9 to 7.47 ASSHTO T166 1 × 10 − 6 to 

3.58 × 10 − 2 
VTM 120 (falling 

head test) 

2.55 to 3.13 9.5 (42) Data from both lab and field 

cores 

S9 Putman [64] 10 10 to 22.1 ASTM D7063 0.30 to 4.80 Modified ASTM 

PS129 (falling 

head test) 

4.9 to 10.33 9 (1), 9.5 (2), 11.2 

(1), 12.5 (5), 19 

(1) 

Data from lab cores 

S10 Kutay et al. [23] 43 1.7 to 23.1 - 6 × 10 − 4 to 12.67 Bubble tube constant 

head permeameter 

1.48 to 12.5 9.5 (10), 12.5 (17), 

19 (10), 25 (6) 

Data from both lab and field 

cores. 

Authors used a numerical 

model to show that the flow 

of the permeant under 

experimental conditions was 

likely to be laminar. 

S11 ∗∗ Aboufoul and Garcia 

[11] 

38 8.7 to 26 BS EN 12679 1.6 × 10 − 3 to 5.11 Florida falling head 

method 

8.2 to 11.76 14 (3), 16 (32), 

20 (3) 

Data from lab cores. 

Authors present a literature 

review highlighting the 

assumption of laminar flow in 

testing for asphalt concrete k 

S12 Feng [17] 3 9.2 to 9.6 WA732.2-2011, 

WA733.1-2012 

4.76 × 10 − 3 to 

3.60 × 10 − 1 
Ponding method 

(falling head test) 

5.30 to 6.19 10(1), 11.5 (2) Data from lab cores 

S13 ∗∗ Choubane et al. [55 , 65] 151 1.9 to 14.6 FM 1-T 166 and 

FM 1-T 209 

1 × 10 − 4 to 0.10 Florida falling head 

method 

1.85 to 10.42 19 (64), 16 (1), 

12.5 (83), 9.5 (3) 

Data from both lab and field 

cores, 8 zero permeability 

values were removed from the 

original source 

S14 Al-Omari et al. [6] 13 9.03 to 18.04 AASHTO T-166 and 

Corelok device 

0.02 to 3.24 Karol-Warner 

permeameter 

(falling head test) 

4.27 to 6.73 12.5 (8), 19 (2), 25 

(3) 

Data from lab cores, the adopted 

AV% are the averaged values of 

both test methods, 2 zero 

permeability values were 

removed from the original 

source 

S15 Bhattacharjee and 

Mallick [66] 

90 4.58 to 12.4 AASHTO T 209-99, 

AASHTO T 166-88 

(saturated surface 

dry method) and 

Vacuum seal method 

3.7 × 10 − 4 to 0.315 Florida falling head 

method 

2.74 to 7.82 9.5 (27), 12.5 (45), 

19 (18) 

Data from lab cores, the adopted 

AV% are the averaged values of 

both test methods 

( continued on next page ) 
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Table 1 ( continued ) 

Source No. Reference n AV (%) range AV (%) test method 
stated in publication 

k (mm/s) range k test method D 50 (mm) range NMAS (mm) ∗∗∗ Notes 

S16 ∗∗ Brown et al. [67-70] 367 3.85 to 20.47 AASHTO T166 and 

vacuum seal device 

1 × 10 − 4 to 1.28 ASTM PS 129-01 

(falling head test) 

1.33 to 10.72 9.5 (120), 12.5 

(186), 19 (61) 

Data from both lab and field 

cores, 41 zero permeability 

values were removed from the 

original source 

S17 Haddock et al. [71] 5 10.4 to 13.8 AASHTO T166 and 

AASHTO T209 

1.9 × 10 − 3 to 

7.84 × 10 − 2 
Florida falling head 

method 

3.65 9 (5) Data from filed cores, adopted 

PSD is the averaged value of 

EB and WB lanes 

S18 ∗∗ Chen et al. [56] 40 1.80 to 20.22 AASHTO T 269 4.47 × 10 − 5 to 

7.84 × 10 − 2 
Falling head test 5.74 to 13.29 19 (40) Data from lab cores 

S19 ∗∗ Norambuena-Contreras 

et al. [72] 

72 4.26 to 20.51 Geometric 1.9 × 10 − 6 to 3.83 BS 1377-6 (constant 

head test); ASTM 

D5084 method B 

(falling head test) 

4.57 to 7.29 11.2 (18), 16 (54) Data from lab cores, k test 

method reported as ASTM 

D5086 in the original source, 

believed to be a typo here. 

The authors state the laminar 

flow assumption 

S20 ∗∗ Pease et al. [73] 6 4 to 6.8 - 3.63 × 10 − 5 to 

9.45 × 10 − 4 
ASTM D5084 method 

C (falling head 

rising-tail test) 

2.17 to 2.22 11.2 (2), 12.5 (4) Data from field cores 

S21 ∗∗ Yan et al. [74] 51 4.3 to 11.9 - 1 × 10 − 5 to 2.45 Florida falling head 

method (FM 

5-565) 

1.11 to 2.32 9.5 (12), 12.5 (6), 

19 (14), 25 (6), 

37.5 (13) 

Data from lab cores. 

The author state that k was 

calculated using the laminar 

flow assumption. 

S22 ∗ Schmitt et al. [52] 19 3.4 to 4.1 - 1 × 10 − 5 to 

3.9 ×10 − 4 
NCAT device 1.37 to 3.53 9 (2), 10 (1), 11.2 

(10), 12.5 (6) 

Data from filed core, 1 zero 

permeability values were 

removed from the original 

source 

S23 Hewitt [75] 27 5.22 to 16.42 - 2 × 10 − 4 to 0.49 Ponding method 

(falling head test) 

3.91 to 5.46 9 (9), 9.5 (9), 11.2 

(9) 

Data from lab cores 

S24 Maupin [76 , 77] 218 4.8 to 16.98 ASTM D3203 2.69 × 10 − 4 to 0.64 Falling head 

permeability test 

2.72 to 5.32 9.5 (68), 12.5 (150) Data from both lab and field 

cores 

S25 ∗ Cooley et al. [51] 131 2.38 to 13.61 - 1.45 × 10 − 4 to 0.61 Field permeameter 3.44 to 12.2 9.5 (29), 12.5 (47), 

19 (20), 25 (35) 

Data from field cores 

S26 ∗∗ Mallick et al. [53] 49 2.2 to 12.3 - 6.35 × 10 − 5 to 1.23 Florida falling head 

method 

(FM 5-565) 

2.16 to 6.23 9.5 (20), 12.5 (10), 

19 (9), 25 (10) 

Data from field cores, the 

adopted permeability value is 

the lab permeability, 6 zero 

permeability values were 

removed from the original 

source 

S27 Vardanega et al. [78] 53 4.8 to 10 - 3.00 × 10 − 3 to 0.26 Main Roads Material 

Test Method 

Q304-2002 (falling 

head test) 

3.5 to 6.35 14 (53) Data from lab cores. Mix A not 

included see [15] and 2 Mix B 

centreline (CL) points with 

near zero outlier k values not 

included in the database 

Summary 

Maximum value 32.67 12.67 13.29 37.5 

Minimum value 1.7 7.10 ×10 − 7 1.19 7.1 

Mean value 9.49 0.30 5.08 14.17 

Standard deviation 4.85 1.06 2.59 4.68 

Coefficient of Variation 0.51 3.56 0.51 0.33 

Sources with explicitly stated saturation level. 
Notes: Data sources S23-S27 and part of the data in S5 (also in [79] ) were used in Vardanega and Waters [15] ; S13-S22 in Vardanega et al [16] and S4-S12 in Feng [17] and Feng et al. [33] . 

∗ Field permeability test data. 
∗∗ Sources with saturation level clearly stated. 
∗∗∗ Number in brackets is the n value for the NMAS value stated. 
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Fig. 1. k- measured versus k -predicted using Eq. (10b ) (statistical measures relate to Eq. (10a) i.e. linear form with logarithmic transforms) (Shading indicates 
the following categories: A1 = ‘very low permeability’; A2 = ‘low permeability’; B = ‘moderately permeable’; C = ‘permeable’; D = ‘moderately free draining’; E = ‘free 
draining’ - categorisation based on Vardanega and Waters [15] ). 

Fig. 2. k- measured versus k -predicted using Eq. (12b ) (statistical measures relate to Eq. (12a) i.e. linear form with logarithmic transforms) ( R p is expressed in mm) 
(Shading indicates the following categories: A1 = ‘very low permeability’; A2 = ‘low permeability’; B = ‘moderately permeable’; C = ‘permeable’; D = ‘moderately free 
draining’; E = ‘free draining’ - categorisation based on Vardanega and Waters [15] ). 

6 
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Fig. 3. k- measured versus k -predicted using Eq. (14b ) (statistical measures relate to Eq. (14a) i.e. linear form with logarithmic transforms) (Shading indicates 
the following categories: A1 = ‘very low permeability’; A2 = ‘low permeability’; B = ‘moderately permeable’; C = ‘permeable’; D = ‘moderately free draining’; E = ‘free 
draining’ - categorisation based on Vardanega and Waters [15] ). 

Table 2 

R 2 for various effective particle size Dx based on the entire database ( k expressed in mm/s). 

R 2 

D x (mm) 10 20 25 30 40 50 60 70 75 90 

lnk = a lnD x + b 0.20 0.32 0.33 0.35 0.35 0.34 0.31 0.27 0.25 0.17 

lnk = a lnR p + b 0.42 0.56 0.59 0.63 0.67 0.69 0.69 0.69 0.69 0.65 
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hile the remainder (56.58%) of the data points lie above the line of
quality (underprediction). Fig. 2 shows that the inclusion of gradation
arameter ( D x ) does slightly enhance the accuracy of prediction in terms
f R 

2 and percentage within prediction range when compared with data
sing AV% alone (especially for the permeable and free draining cate-
ories), though not as marked as presented in the earlier study [15] . 

.4. Grading entropy 

The grading entropy S explains the disorder of the PSDs [44 , 45 , 49] .
ased on its intrinsic features, it is reasonable to infer that the grading
ntropy ( S ) could assist with characterization of the fluid path within
sphalt concrete mixtures. The target PSD and AV% of asphalt concrete
ixtures are usually specified in the field so these parameters were con-

idered good candidates to predict k . The multiple linear regression of
 with both AV% and S yields: 

n 
[
𝑘 ( 𝑚𝑚 ∕ 𝑠 ) 

]
= 4 . 70 ln [ 𝐴𝑉 ( % ) ] + 10 . 52 ln 𝑆 − 36 . 69 

𝑅 

2 = 0 . 72 , 𝑆𝐸 = 1 . 56 , 𝑛 = 1624 , 𝑝 < 0 . 0001 
]

(13a) 

hich can be rearranged to give: 

 ( 𝑚𝑚 ∕ 𝑠 ) = 1 . 16 × 10 −16 [ 𝐴𝑉 ( % ) ] 4 . 70 𝑆 

10 . 52 (13b)

Based on Eq. 13a , 6.4% of the points in the studied database can be
dentified as outliers or influential points. The adjusted regression with
7 
hese points removed is ( Fig. 3 ): 

n 
[
𝑘 ( 𝑚𝑚 ∕ 𝑠 ) 

]
= 4 . 67 ln [ 𝐴𝑉 ( % ) ] + 12 . 84 ln 𝑆 − 41 . 49 

𝑅 

2 = 0 . 76 , 𝑆𝐸 = 1 . 33 , 𝑛 = 1520 , 𝑝 < 0 . 0001 
]

(14a) 

hich can be rearranged to: 

 ( 𝑚𝑚 ∕ 𝑠 ) = 9 . 57 × 10 −19 [ 𝐴𝑉 ( % ) ] 4 . 67 𝑆 

12 . 84 (14b)

Some variations on the regression coefficients can be observed es-
ecially on S . The k -measured versus k -predicted (Eq. (14)) plot is pre-
ented in Fig. 3 , where 79.34% of the data points lie within the 0.2 to
 times prediction range and 50.13% of the points fall below the line
f equality (overpredictions), and 49.87% of the data points lie above
underpredictions). Fig. 3 shows that Eq. (14) gives a better prediction
f k compared to Eq. (12) and Eq. (10). 

. Analysis of data subsets 

In the following analysis, the entire database AC/k-1624 is used to
tudy whether the test method, gradation classification and NMAS sig-
ificantly impact the regression results presented in Section 4 . The out-
iers identified in Section 4 are not removed in the analysis that fol-
ows, as the outliers and influential points will be slightly different for
ach data subset. Therefore, the regression results from the sub dataset
nalysis should be compared with the fitted results based on the entire
atabase ( Eqs. (9b ), ( 11b ), ( 13b )). 
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Table 3 

Analysis result of data subsets classified by test type (all results p < 0.0001) (SE values correspond to the ln-ln form of the regression). 

Test method Calibrated equation ( k expressed 
in mm/s and R p in mm) 

n R 2 SE % within 0.2x to 5x region % Overpredicted % Underpredicted 

constant head test 𝑘 = 2 . 29 × 10 −8 𝐴𝑉 (%) 6 . 16 117 0.80 2.08 73.50% 53.85% 46.15% 

𝑘 = 0 . 50 𝑅 𝑝 4 . 18 ( D x = D 60 ) 117 0.76 2.30 64.96% 48.72% 51.28% 

𝑘 = 9 . 51 𝑅 𝑝 2 . 56 ( D x = D 20 ) 117 0.80 2.07 64.10% 55.56% 44.44% 

𝑘 = 1 . 68 × 10 −7 𝐴𝑉 (%) 6 . 19 𝑆 −0 . 96 117 0.80 2.09 74.36% 53.85% 46.15% 

falling head test 𝑘 = 1 . 90 × 10 −7 𝐴𝑉 (%) 5 . 17 1267 0.63 1.59 74.11% 46.72% 53.28% 

𝑘 = 0 . 42 𝑅 𝑝 3 . 23 ( D x = D 60 ) 1267 0.62 1.60 74.98% 41.28% 58.72% 

𝑘 = 0 . 25 𝑅 𝑝 3 . 48 ( D x = D 70 ) 1267 0.62 1.59 74.90% 40.49% 59.51% 

𝑘 = 9 . 00 × 10 −15 𝐴𝑉 (%) 4 . 59 𝑆 8 . 58 1267 0.67 1.49 77.27% 44.91% 55.09% 

falling head rising tail test 𝑘 = 5 . 12 × 10 −10 𝐴𝑉 (%) 7 . 07 68 0.71 1.15 83.82% 51.47% 48.53% 

𝑘 = 1 . 03 𝑅 𝑝 3 . 57 ( D x = D 60 ) 68 0.45 1.58 67.75% 44.12% 55.88% 

𝑘 = 7 . 41 𝑅 𝑝 3 . 97 ( D x = D 50 ) 68 0.48 1.54 73.53% 44.12% 55.88% 

𝑘 = 1 . 12 × 10 −11 𝐴𝑉 (%) 7 . 02 𝑆 2 . 03 68 0.71 1.15 83.82% 48.53% 51.47% 

field permeability test 𝑘 = 7 . 46 × 10 −7 𝐴𝑉 (%) 5 . 02 150 0.57 1.74 60.67% 50.67% 49.33% 

𝑘 = 1 . 56 𝑅 𝑝 3 . 94 ( D x = D 60 ) 150 0.81 1.17 84.67% 46.00% 54.00% 

𝑘 = 2 . 83 𝑅 𝑝 3 . 57 ( D x = D 50 ) 150 0.84 1.07 89.33% 43.33% 56.67% 

𝑘 = 2 . 40 × 10 −30 𝐴𝑉 (%) 4 . 36 𝑆 25 . 90 150 0.84 1.07 87.33% 48.00% 52.00% 

Table 4 

Analysis result of data subsets classified by gradation type (two categories) (all results p < 0.0001) (SE values correspond to the ln-ln form of the regression). 

Gradation type Calibrated equation ( k expressed 
in mm/s and R p in mm) 

n R 2 SE % within 0.2x to 5x region % Overpredicted % Underpredicted 

Well 

graded 

𝑘 = 2 . 93 × 10 −7 𝐴𝑉 (%) 5 . 02 891 0.55 1.62 71.27% 50.84% 49.16% 

𝑘 = 0 . 94 𝑅 𝑝 3 . 84 ( D x = D 60 ) 891 0.58 1.57 75.76% 39.96% 60.04% 

𝑘 = 8 . 48 × 10 −19 𝐴𝑉 (%) 4 . 97 𝑆 12 . 56 891 0.60 1.52 75.53% 46.35% 53.65% 

Poorly 

graded 

𝑘 = 5 . 83 × 10 −8 𝐴𝑉 (%) 5 . 62 733 0.72 1.87 67.39% 46.25% 53.75% 

𝑘 = 0 . 38 𝑅 𝑝 3 . 22 ( D x = D 60 ) 733 0.77 1.71 72.17% 41.06% 58.94% 

𝑘 = 1 . 67 × 10 −16 𝐴𝑉 (%) 4 . 55 𝑆 10 . 52 733 0.80 1.60 73.81% 44.61% 55.39% 

Table 5 

Analysis result of data subsets classified by gradation type (four categories) (all results p < 0.0001) (SE values correspond to the ln-ln form of the regression). 

Gradation type Calibrated equation ( k expressed 
in mm/s and R p in mm) 

n R 2 SE % within 0.2x to 5x region % Overpredicted % Underpredicted 

Well graded gravel 𝑘 = 4 . 41 × 10 −6 𝐴𝑉 (%) 4 . 19 322 0.50 1.64 72.67% 44.41% 55.59% 

𝑘 = 0 . 71 𝑅 𝑝 3 . 76 ( D x = D 60 ) 322 0.53 1.60 75.47% 42.55% 57.45% 

𝑘 = 1 . 55 𝑅 𝑝 3 . 60 ( D x = D 50 ) 322 0.54 1.58 75.16% 41.93% 58.07% 

𝑘 = 2 . 33 × 10 −13 𝐴𝑉 (%) 4 . 12 𝑆 7 . 81 322 0.52 1.62 74.53% 44.10% 55.90% 

Poorly graded gravel 𝑘 = 4 . 91 × 10 −6 𝐴𝑉 (%) 4 . 08 364 0.73 1.35 82.14% 45.60% 54.40% 

𝑘 = 0 . 33 𝑅 𝑝 3 . 18 ( D x = D 60 ) 364 0.71 1.38 81.04% 42.03% 57.97% 

𝑘 = 0 . 22 𝑅 𝑝 3 . 27 ( D x = D 70 ) 364 0.72 1.36 81.32% 40.93% 59.07% 

𝑘 = 7 . 86 × 10 −14 𝐴𝑉 (%) 3 . 85 𝑆 8 . 56 364 0.76 1.28 83.79% 46.15% 53.85% 

Well graded sand 𝑘 = 8 . 33 × 10 −8 𝐴𝑉 (%) 5 . 38 569 0.64 1.32 80.84% 43.94% 56.06% 

𝑘 = 2 . 39 𝑅 𝑝 4 . 44 ( D x = D 60 ) 569 0.52 1.52 77.50% 41.48% 58.52% 

𝑘 = 3 . 33 × 10 −7 𝐴𝑉 (%) 5 . 37 𝑆 −0 . 65 569 0.64 1.33 81.20% 44.29% 55.71% 

Poorly graded sand 𝑘 = 7 . 15 × 10 −9 𝐴𝑉 (%) 6 . 40 369 0.60 1.91 65.85% 44.99% 55.01% 

𝑘 = 0 . 83 𝑅 𝑝 3 . 63 ( D x = D 60 ) 369 0.58 1.96 65.04% 39.84% 60.16% 

𝑘 = 2 . 45 𝑅 𝑝 3 . 61 ( D x = D 50 ) 369 0.60 1.91 67.48% 38.75% 61.25% 

𝑘 = 5 . 63 × 10 −15 𝐴𝑉 (%) 5 . 61 𝑆 7 . 68 369 0.66 1.77 70.46% 46.88% 53.12% 
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.1. Test method 

The database AC/k-1624 includes k data measured by various test
ethods. In order to investigate the effect of the test method, the
atabase is further divided into ‘constant head’, ‘falling head’, ‘falling
ead rising-tail’, ‘field test’ subsets. For the ‘constant head test’ subset,
 20 gives the highest R 

2 , while for the other subsets, the peaks are be-
ween D 50 and D 70 . The analysis results using Eqs. (9b ), (11b ), (13b )
nd modified Eq. (11b ) with the favoured D x for each data subsets are
ummarized in Table 3 . The examined models ( Eqs. (9b ), ( 11b ) and
 13b )) still provide statistically strong predictions mostly between 0.2
o 5 times range, though some degree of variation appears in the coef-
cient and the exponent of the regressed Eqs. among different subsets.
ost of the data is from falling-head tests ( n = 1267) and it is therefore

ot surprising that the regression coefficients are similar to those shown
n Eqs. (9b ), (11b ) and (13b ). 
8 
.2. Gradation parameter 

O’Kelly and Nogal [20] processed data from 47 permeability mea-
urements on granular soil and concluded that for the hydraulic con-
uctivity assessment of coarse-grained soils separate analysis should be
onducted based on the gradation type. The asphalt concrete mixture
s largely comprised of coarse-grained soil, it is thus worth examining
he potential influence brought by the gradation types for the asphalt
oncrete database in this study. As per the Unified Soil Classification
ystem [88] , the database AC/k-1624 was initially divided into well-
raded soil and poorly-graded soil based on the gradation type ( Table
 ), and then further subdivided into well-graded gravel, poorly-graded
ravel, well-graded sand and poorly-graded sand data subsets based on
he fraction size ( Table 5 ). The most favoured D x always falls within
 50 to D 70 range for all subsets. The analysis results calibrated based
n Eqs. (9b ), (11b ), (13b ) and modified Eq. (11b ) with the favoured
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Table 6 

Analysis result of data subsets classified by NMAS (all results p < 0.0001) (SE values correspond to the ln-ln form of the regression). 

NMAS Calibrated equation ( k expressed 
in mm/s and R p in mm) 

n R 2 SE % within 0.2x to 5x region % Overpredicted % Underpredicted 

NMAS ≤ 9.5mm 𝑘 = 7 . 82 × 10 −9 𝐴𝑉 (%) 6 . 46 362 0.75 1.41 78.73% 45.03% 54.97% 

𝑘 = 3 . 43 𝑅 𝑝 4 . 42 (D x = D 60 ) 362 0.71 1.52 79.28% 43.65% 56.35% 

𝑘 = 0 . 56 𝑅 𝑝 5 . 94 (D x = D 90 ) 362 0.77 1.36 82.60% 46.69% 53.31% 

𝑘 = 3 . 07 × 10 −13 𝐴𝑉 (%) 5 . 76 𝑆 5 . 69 362 0.77 1.36 80.66% 48.07% 51.93% 

9.5mm < NMAS ≤ 12.5mm 𝑘 = 1 . 15 × 10 −7 𝐴𝑉 (%) 5 . 35 695 0.67 1.52 75.40% 47.05% 52.95% 

𝑘 = 0 . 70 𝑅 𝑝 3 . 51 (D x = D 60 ) 695 0.72 1.39 79.14% 43.02% 56.98% 

𝑘 = 1 . 52 × 10 −20 𝐴𝑉 (%) 4 . 80 𝑆 14 . 64 695 0.74 1.33 79.86% 47.05% 52.95% 

NMAS > 12.5m 𝑘 = 4 . 52 × 10 −7 𝐴𝑉 (%) 4 . 96 567 0.63 2.05 56.97% 46.03% 53.97% 

𝑘 = 0 . 29 𝑅 𝑝 3 . 38 (D x = D 60 ) 567 0.71 1.81 67.20% 44.62% 55.38% 

𝑘 = 0 . 54 𝑅 𝑝 3 . 15 (D x = D 50 ) 567 0.72 1.79 67.02% 45.33% 54.67% 

𝑘 = 5 . 03 × 10 −20 𝐴𝑉 (%) 4 . 19 𝑆 14 . 57 567 0.70 1.84 67.02% 46.74% 53.26% 
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 x for each data subsets are summarized in Tables 4 and 5 . Relatively
inor variations can be observed on the exponents and coefficients for

he calibrated models (with the exception of ‘well-graded sand’). The
ransformation model calibrated using Eq. (13b) yields either the high-
st R 

2 and/or the largest percentage of the prediction within 0.2 to 5
imes range for most subsets. The calibrated Eqs. (9b ), ( 11b ) and (13b )
ll provide statistically strong predictions of k generally within 0.2 to
 times the prediction ranges for the sub-datasets presented in Tables
 and 5 . 

.3. Nominal maximum aggregate size (NMAS) 

The effect of nominal maximum aggregate size ( NMAS ) on the k
f asphalt concrete has been discussed in Hainin et al. [5] and Yan
t al. [74] . AC/k-1624 was subdivided into three data subsets based
n the NMAS and its potential effect on the prediction of k is further
nvestigated. Table 6 shows that for data subsets with coarser NMAS

 9 .5mm < NMAS ≤ 12.5mm and NMAS > 12.5mm) the most favoured D x 

till falls within D 50 to D 70 range, while for data subset with NMAS ≤

.5mm, D 90 gives the peak value in R 

2 . The analysis results calibrated
ased on Eqs. (9b ), (11b ), (13b ) and modified Eq. (11b ) with the
avoured D x for each data subset are summarized in Tables 6. Some
egree of variation in the regression coefficients does exist among dif-
erent data subsets but not as marked as for test type ( Table 3 ). 

. Summary and conclusions 

A large database ( n = 1624) of k measurements on asphalt concrete
alled AC/k-1624 has been presented in this paper. Potential predictors
or k of asphalt concrete include AV% , effective particle size D x , repre-
entative pore size R p , grading entropy parameter ( S ), gradation parame-
ers and NMAS were investigated using AC/k-1624. AV% is a significant
redictor of asphalt concrete permeability explaining around 67% of the
ariation ( R 

2 = 0.67, Eq. (10)). An effective particle size is often used to
ncorporate gradation into empirical models for asphalt concrete per-
eability e.g. the representative pore size [15] or normalised air voids

oncepts [2] . Such methods are limited by the need to statistically deter-
ine the best D eff which may change as the database expands ( D 75 was

hosen in [15] with further research in this paper showing D 60 may be
 better candidate). The grading entropy framework in the form of the
 parameter offers for a large database n > 1500 (with outliers removed)
 method to incorporate gradation without having to statistically de-
ermine the effective particle size. Inclusion of S explains a further 9
ercent variation in k ( R 

2 = 0.76, Eq. (14)) as opposed to only 3 percent
or R p ( R 

2 = 0.70, Eq. (12)). 
Eq. (14) is a novel empirical equation which systematically captures

he grading and porosity information of asphalt concrete mixtures, cal-
brated with a large database AC/k-1624 (see also Ching et al. [86] for
ecent developments in international efforts to develop geodatabases for
ey geotechnical parameters or regions). The present authors suggest
9 
hat a similar approach can be used for pavement engineering proper-
ies either at international or regional scale. Eq. (14) shows that from
oth statistically and practically perspectives S is a superior way of ac-
ounting for gradation changes than the R p concept for asphalt concrete
based on the analysis of a large database AC/k-1624). Subdivision of
he database by test type, grading classification and NMAS shows that no
ignificant increases in R 

2 can be found from Eq. (14) with the exception
f constant head and field tests ( Table 3 ), although it is noted that the
egression equations are affected to some degree by these subdivisions.

While the statistical trends shown in this paper are significant ( p is
ften < 0.001) and the database is relatively large ( n > 1600) much of
he scatter is probably due to the fact that different test methods for
 and AV(%) determination were used in the studies included in the
atabase. While it would be preferable to have a database with limited
ariation of conditions, such dataset is not available at present. Despite
his limitation, the trends shown give useful approximations for k that
an be used by pavement engineers to assess the propensity for differ-
nt mix design to transmit water. Future uses of large databases such
s AC/k-1624 may include Artificial Neural Network (ANN) modelling
pproaches as reported in [38 , 87] . 
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