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Abstract
LetM be a complete, non-compact, connected Riemannianmanifoldwith Ricci curva-
ture bounded from below by a negative constant. A sufficient condition is obtained for
open and connected sets D inM for which the corresponding Dirichlet heat semigroup
is intrinsically ultracontractive. That condition is formulated in terms of capacitary
width. It is shown that both the reciprocal of the bottom of the spectrum of the Dirich-
let Laplacian acting in L2(D), and the supremum of the torsion function for D are
comparable with the square of the capacitary width for D if the latter is sufficiently
small. The technical key ingredients are the volume doubling property, the Poincaré
inequality and the Li-YauGaussian estimate for the Dirichlet heat kernel at finite scale.
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1 Main Results

Let M be a complete, non-compact, n-dimensional connected Riemannian manifold,
without boundary, and with Ricci curvature bounded below by a negative constant,
i.e., Ric ≥ −K with non-negative constant K . Throughout the paper, K is reserved
for this constant. In this article, we investigate domains (open, and connected sets) in
M for which the heat semigroup is intrinsically ultracontractive.

For a domain D ⊂ M we denote by pD(t, x, y), t > 0, x, y ∈ D, the Dirichlet
heat kernel for ∂/∂t − � in D, i.e., the fundamental solution to (∂/∂t − �)u = 0
subject to the Dirichlet boundary condition u(t, x) = 0 for x ∈ ∂D and t > 0. Davies
and Simon [12] introduced the notion of intrinsic ultracontractivity. There are several
equivalent definitions for intrinsic ultracontractivity ( [12, p. 345]). The following is
in terms of the heat kernel estimate.

Definition 1.1 Let D ⊂ M . We say that the semigroup associated with pD(t, x, y) is
intrinsically ultracontractive (abbreviated to IU) if the following two conditions are
satisfied:

(i) The Dirichlet Laplacian−� has no essential spectrum and has the first eigenvalue
λD > 0 with corresponding positive eigenfunction ϕD normalized by ‖ϕD‖2 = 1.

(ii) For every t > 0, there exist constants 0 < ct < Ct depending on t such that

ctϕD(x)ϕD(y) ≤ pD(t, x, y) ≤ CtϕD(x)ϕD(y) for all x, y ∈ D. (1.1)

For simplicity, we say that D itself is IU if the semigroup associated with pD(t, x, y)
is IU.

Both the analytic and probabilistic aspects of IU have been investigated in detail.
For example it turns out that IU implies the Cranston-McConnell inequality, while IU
is derived from very weak regularity of the domain. Davis [13] showed that a bounded
Euclidean domain above the graph of an upper semi-continuous function is IU; no reg-
ularity of the boundary function is needed. There are many results on IU for Euclidean
domains. Bañuelos and Davis [5, Thm. 1, Thm. 2] gave conditions characterizing IU
and the Cranston-McConnell inequality when restricting to a certain class of plane
domains, which illustrate subtle differences between IU and the Cranston-McConnell
inequality. Méndez-Hernández [16] gave further extensions. See also [1,4,7,8,13], and
references therein.

There are relatively few results for domains in a Riemannian manifold. Lierl and
Saloff-Coste [15] studied a general framework including Riemannian manifolds. In
that paper, theygave a precise heat kernel estimate for a bounded inner uniformdomain,
which implies IU ([15, Thm. 7.9]). In view of [13], however, the requirement of inner
uniformity for IU to hold can be relaxed. See Sect. 7.

Our main result is a sufficient condition for IU for domains in a manifold, which is
a generalization of the Euclidean case [1]. Our condition is given in terms of capacity.
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Intrinsic Ultracontractivity for Domains. . . 799

It is applicable not only to bounded domains but also to unbounded domains. Let
� ⊂ M be an open set. For E ⊂ � we define relative capacity by

Cap�(E) = inf

{∫
�

|∇ϕ|2dμ : ϕ ≥ 1 on E, ϕ ∈ C∞
0 (�)

}
,

where μ is the Riemannian measure in M and C∞
0 (�) is the space of all smooth

functions compactly supported in �. Let d(x, y) be the distance between x and y in
M . The open geodesic ball with center x and radius r > 0 is denoted by B(x, r) =
{y ∈ M : d(x, y) < r}. The closure of a set E is denoted by E , and so B(x, r) stands
for the closed geodesic ball of center x and radius r .

Definition 1.2 Let 0 < η < 1. For an open set D we define the capacitary width
wη(D) by

wη(D) = inf

{
r > 0 : CapB(x,2r)(B(x, r) \ D)

CapB(x,2r)(B(x, r))
≥ η for all x ∈ D

}
.

The next theorem asserts that the parameter η has no significance.

Theorem 1.3 Let 0 < R0 < ∞. If 0 < η′ < η < 1, then

wη′(D) ≤ wη(D) ≤ Cwη′(D) for all open sets D with wη(D) < R0

with C > 1 depending only on η, η′,
√
K R0 and n.

The first condition for IU has a characterization in terms of capacitary width. This
is straightforward from Persson’s argument [17], and Theorem 1.6 below. Hereafter
we fix o ∈ M .

Theorem 1.4 Let D be a domain in M. Then D has no essential spectrum if and only
if limR→∞ wη(D \ B(o, R)) = 0.

We shall prove the following sufficient condition for IU, which looks the same as in
the Euclidean case [1]. Nevertheless, the proof is significantly different for negatively
curved manifolds. See the remark after Theorem A.

Theorem 1.5 Suppose M has positive injectivity radius. Then a domain D ⊂ M is IU
if the following two conditions are satisfied:

(i) limR→∞ wη(D \ B(o, R)) = 0.
(ii) For some τ > 0

∫ τ

0
wη({x ∈ D : GD(x, o) < t})2 dt

t
< ∞, (1.2)

where GD is the Green function for D.
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800 H. Aikawa et al.

Our results are based on the relationship between the torsion function

vD(x) =
∫
D
GD(x, y)dμ(y)

and the bottom of the spectrum

λmin(D) = inf

{‖∇ f ‖22
‖ f ‖22

: f ∈ C∞
0 (D) with ‖ f ‖2 �= 0

}
. (1.3)

We note that λmin(D) is the first eigenvalue λD if D has no essential spectrum. This
is always the case for a bounded domain D. Theorem 1.4 asserts that the same holds
even for an unbounded domain D whenever limR→∞ wη(D \ B(o, R)) = 0. We also
observe that the torsion function is the solution to the de Saint-Venant problem:

−�vD = 1 in D,

vD = 0 on ∂D,

where the boundary condition is taken in the Sobolev sense. The second named author
[19] proved the following theorem.

Theorem A Let K = 0. If D ⊂ M satisfies λmin(D) > 0, then

λmin(D)−1 ≤ ‖vD‖∞ ≤ Cλmin(D)−1, (1.4)

where C depends only on M.

The second inequality of (1.4) does not necessarily hold for negatively curved
manifolds. Let H

n be the n-dimensional hyperbolic space of constant curvature −1.
It is known that

λmin(H
n) = (n − 1)2

4
,

whereas vHn ≡ ∞ as H
n is stochastically complete. Hence the second inequality of

(1.4) fails to hold if D is the whole space H
n .

The point of this paper is that (1.4) still holds if D is limited to a certain class. We
make use of (1.4) with this limitation to derive Theorems 1.4 and 1.5 . We have the
following theorem, which is a key ingredient in their proofs.

Theorem 1.6 Let K ≥ 0 and let 0 < η < 1. Then there exist R0 > 0 and C > 1
depending only on K , η and n such that if D ⊂ M satisfies wη(D) < R0, then

C−1

wη(D)2
≤ 1

‖vD‖∞
≤ λmin(D) ≤ C

‖vD‖∞
≤ C2

wη(D)2
. (1.5)
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Remark 1.7 We actually find	0 > 0 depending only on K and n such that (1.4) holds
for D with λmin(D) > 	0 (Lemma 3.2 below). This is a generalization of Theorem A
as	0 = 0 for K = 0. In practice, however, the conditionwη(D) < R0 in Theorem 1.6
is more convenient since the capacitary width wη(D) can be more easily estimated
than the bottom of the spectrum λmin(D).

In Sect. 2 we summarize the key technical ingredients of the proofs: the volume
doubling property, the Poincaré inequality and the Li-Yau Gaussian estimate for the
Dirichlet heat kernel at finite scale. Observe that these fundamental tools are available
not only for manifolds with Ricci curvature bounded below by a negative constant
but also for unimodular Lie groups and homogeneous spaces. See [15, Ex. 2.11] and
[18, Sect. 5.6]. This observation suggests that our approach is also extendable to those
spaces.

We use the following notation. By the symbol C we denote an absolute positive
constant whose value is unimportant and may change from one occurrence to the next.
If necessary, we use C0,C1, . . . , to specify them. We say that f and g are comparable
and write f ≈ g if two positive quantities f and g satisfy C−1 ≤ f /g ≤ C with
some constant C ≥ 1. The constant C is referred to as the constant of comparison.

2 Preliminaries

We recall that M is a manifold of dimension n ≥ 2 with Ric ≥ −K with K ≥ 0. Let
us recall the volume doubling property of the Riemannian measure μ, the Poincaré
inequality and the Gaussian estimate for the Dirichlet heat kernel pM (t, x, y) for M .
For B = B(x, r) and τ > 0 we write τ B = B(x, τr).

Theorem 2.1 (Volume doubling at finite scale. [18, Thm. 5.6.4]) Let 0 < R0 < ∞.
Then for all B = B(x, r) with 0 < r < R0

μ(2B) ≤ 2n exp
(√

(n − 1)K R0
)
μ(B).

Theorem 2.2 (Poincaré inequality [18, Thm. 5.6.6]) For each 1 ≤ p < ∞ there exist
positive constants Cn,p and Cn such that

∫
B

| f − fB |pdμ ≤ Cn,pr
p exp(Cn

√
K r)

∫
2B

|∇ f |pdμ

for all B = B(x, r). Here fB stands for the average of f on B.

Corollary 2.3 (Poincaré inequality at finite scale) Let 0 < R0 < ∞. Then for all
B = B(x, r) with 0 < r < R0

∫
B

| f − fB |2dμ ≤ Cn,2r
2 exp(Cn

√
K R0)

∫
2B

|∇ f |2dμ.

Remark 2.4 If the Ricci curvature of M is non-negative, i.e., K = 0, then the estimates
in Theorems 2.1, 2.2 andCorollary 2.3 holdwith constants independent of 0 < r < ∞.
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The Poincaré inequality yields the Sobolev inequality. We see that if B = B(x, r)
with 0 < r < R0, then

(
1

μ(B)

∫
B

| f |2dμ

)1/2

≤ Cn,2r

(
1

μ(B)

∫
B

|∇ f |2dμ

)1/2

for all f ∈ C∞
0 (B)

with differentCn,2. See [18, Thm. 5.3.3] for a more general Sobolev inequality. Hence
the characterization of the bottom of the spectrum in terms of Rayleigh quotients (1.3)
gives the following:

Corollary 2.5 Let 0 < R0 < ∞. Then there exists a constant C > 0 depending only
on

√
K R0 and n such that

λmin(B(x, r)) ≥ Cr−2 for 0 < r < R0.

The celebrated theorem by Grigor’yan and Saloff-Coste gives the relationship
between the Poincaré inequality, the volume doubling property of the Riemannian
measure, the Li-Yau Gaussian estimate for the heat kernel, and the parabolic Harnack
inequality. Let V (x, r) = μ(B(x, r)).

Theorem B ([18, Thm. 5.5.1, Thm. 5.5.3]) Let 0 < R0 ≤ ∞. Consider the following
conditions:

(i) (PI) There exists a constant P0 > 0 such that for all B = B(x, r)with 0 < r < R0
and all f ∈ C∞(B),

∫
B

| f − fB |2dμ ≤ P0r
2
∫
2B

|∇ f |2dμ.

(ii) (VD) There exists a constant D0 > 0 such that for all B = B(x, r) with 0 < r <

R0

μ(2B) ≤ D0μ(B).

(iii) (PHI) There exists a constant A > 0 such that for all B = B(x, r)with 0 < r < R0
and all u > 0 with (∂t − �)u = 0 in (s − r2, s) × B

sup
Q−

u ≤ A inf
Q+

u,

where Q− = (s − 3r2/4, s − r2/2) × B(x, r/2) and Q+ = (s − r2/4, s) ×
B(x, r/2).

(iv) (GE) There exists a finite constant C > 1 such that for 0 < t < R2
0 and x, y ∈ M,

1

CV (x,
√
t)

exp

(
−Cd(x, y)2

t

)
≤ pM (t, x, y) ≤ C

V (x,
√
t)

exp

(
−d(x, y)2

Ct

)
.

(2.1)
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Then

(i) + (i i) ⇐⇒ (i i i) ⇐⇒ (iv).

Theorem 2.1 and Corollary 2.3 assert that (i) and (ii) of Theorem B hold true
for 0 < R0 < ∞ with constants depending only on K , R0 and n. Hence, the Li-
Yau Gaussian estimate of the heat kernel for the whole manifold M and the parabolic
Harnack inequality up to scale R0 are available in our setting. Observe that the volume
doubling inequality μ(B(x, 2r)) ≤ D0μ(B(x, r)) implies

μ(B(x, r)) ≥ C
( r

R

)α

μ(B(x, R)) for 0 < r < R < R0 (2.2)

with α = log D0/ log 2. We also have the following elliptic Harnack inequality since
positive harmonic functions are time-independent positive solutions to the heat equa-
tion.

Corollary 2.6 (Elliptic Harnack inequality) Let 0 < r1 < r2 < R0 < ∞. If h is a
positive harmonic function in B(x, r2), then

C−1 ≤ h(y)

h(x)
≤ C for y ∈ B(x, r1)

where C > 1 depends only on
√
K R0, r1/r2 and n.

3 Torsion Function and the Bottom of Spectrum

In this section we obtain estimates between the bottom of the spectrum and the torsion
function vD . We shall prove the second and the third inequalities of (1.5).

Since the Green function GD(x, y) is the integral of the heat kernel pD(t, x, y)
with respect to t ∈ (0,∞), we have

vD(x) =
∫ ∞

0
PD(t, x)dt,

where

PD(t, x) =
∫
D
pD(t, x, y)dμ(y).

We note that PD(t, x) = Px [τD > t], i.e., the survival probability that the Brownian
motion (Bt )t≥0 started at x stays in D up to time t , where τD is the first exit time from
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D. We also observe that PD(t, x) is considered to be the (weak) solution to

(
∂

∂t
− �

)
u(t, x) = 0 in (0,∞) × D,

u(t, x) = 0 on (0,∞) × ∂D,

u(0, x) = 1 on {0} × D.

Let πD(t) = supx∈D PD(t, x). Let us begin with the proof of the second inequality of
(1.5).

Lemma 3.1 If λmin(D) > 0, then λmin(D) ‖vD‖∞ ≥ 1.

Proof We follow [1, Lem. 3.2, Lem. 3.3]. Without loss of generality we may assume
that ‖vD‖∞ < ∞. It suffices to show the following two estimates:

exp(−λmin(D) t) ≤ πD(t) for all t > 0. (3.1)

If C > 1, then πD(t) ≤ C

C − 1
exp

(
− t

C‖vD‖∞

)
for all t > 0. (3.2)

In fact, we obtain from (3.1) and (3.2) that

exp

(
−λmin(D) t + t

C‖vD‖∞

)
≤ C

C − 1
,

which holds for all t > 0 only if

λmin(D) ≥ 1

C‖vD‖∞
.

Since C > 1 is arbitrary, we have λmin(D) ‖vD‖∞ ≥ 1.
Let us prove (3.1). Take α > λmin(D). Then we find ϕ ∈ C∞

0 (D) such that
‖∇ϕ‖22

/‖ϕ‖22 ≤ α. Take a bounded domain � such that suppϕ ⊂ � ⊂ D. Then
� has no essential spectrum. Let λ� and ϕ� be the first eigenvalue and its positive
eigenfunction with ‖ϕ�‖2 = 1 for �, respectively. By definition

λ� = inf

{‖∇ψ‖22
‖ψ‖22

: ψ ∈ C∞
0 (�)

}
≤ ‖∇ϕ‖22

‖ϕ‖22
≤ α.

Since u(t, x) = exp(−λ�t) ϕ�(x) is the solution to the heat equation in (0,∞) × �

such that u(0, x) = ϕ�(x) and u(t, x) = 0 on (0,∞) × ∂�, it follows from the
comparison principle that

exp(−λ�t) ϕ�(x) ≤
∫

�

pD(t, x, y)ϕ�(y)dμ(y) ≤ ‖ϕ�‖∞PD(t, x) ≤ ‖ϕ�‖∞πD(t)
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in (0,∞) × �. Taking the supremum for x ∈ �, and then dividing by 0 < ‖ϕ�‖∞ <

∞, we obtain

exp(−αt) ≤ exp(−λ�t) ≤ πD(t).

Since α > λmin(D) is arbitrary, we have (3.1).
Let us prove (3.2) to complete the proof of the lemma. Let C > 1 and β =

1/(C‖vD‖∞). Put

w(t, x) = e−βt (vD(x) + (C − 1)‖vD‖∞).

Since −�vD = 1 in D, it follows that

(
∂

∂t
− �

)
w = −βe−βt (vD + (C − 1)‖vD‖∞) − e−βt�vD

= e−βt
(

−vD + (C − 1)‖vD‖∞
C‖vD‖∞

+ 1

)

≥ e−βt
(

−‖vD‖∞ + (C − 1)‖vD‖∞
C‖vD‖∞

+ 1

)
= 0.

Hence w is a super solution to the heat equation. By the comparison principle

(C − 1)‖vD‖∞PD(t, x) ≤ w(t, x)

= e−βt (vD(x) + (C − 1)‖vD‖∞) ≤ Ce−βt‖vD‖∞.

Dividing the inequality by 0 < ‖vD‖∞ < ∞, and taking the supremum for x ∈ D,
we obtain (3.2).

Next we prove the third inequality of (1.5) under an additional assumption on
λmin(D).

Lemma 3.2 There exist 	0 > 0 and C0 > 0 depending only on K and n such that if
either λmin(D) > 	0 or ‖vD‖∞ < 1/	0, then

λmin(D) ‖vD‖∞ ≤ C0. (3.3)

Proof In view of Lemma 3.1, we see that ‖vD‖∞ < 1/	0 implies λmin(D) > 	0. So,
it suffices to show (3.3) under the assumption λmin(D) > 	0 with	0 to be determined
later.

For simplicity we write λD for λmin(D), albeit λmin(D) need not be an eigenvalue.
Let 0 < R0 < ∞. By symmetry, the Gaussian estimate (2.1) implies

1

CV (x,
√
t)1/2V (y,

√
t)1/2

exp

(
−Cd(x, y)2

t

)
≤ pM (t, x, y)

≤ C

V (x,
√
t)1/2V (y,

√
t)1/2

exp

(
−d(x, y)2

Ct

) (3.4)
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with the same C ; and conversely, (3.4) implies (2.1) with different C depending only
on

√
K R0 and n by volume doubling. Let 0 < t < R2

0. By [14, Ex. 10.29] we have

pD(t, x, y) ≤ pD(t, x, y)1/2 pM (t, x, y)1/2

≤
(
e−λD

√
pD(t/2, x, x)pD(t/2, y, y)

)1/2
pM (t, x, y)1/2

≤ e−λDt/4 pM (t/2, x, x)1/4 pM (t/2, y, y)1/4 pM (t, x, y)1/2,

so that the upper estimates of (2.1) and (3.4), together with volume doubling, show
that pD(t, x, y) is bounded by

e−λDt/4
{ C

V (x,
√
t/2)

}1/4 ·
{ C

V (y,
√
t/2)

}1/4·
{ C

V (x,
√
t)1/2V (y,

√
t)1/2

exp

(
−d(x, y)2

Ct

)}1/2

≤ e−λDt/4 CC ′

V (x,
√
t)1/2V (y,

√
t)1/2

exp

(
−d(x, y)2

2Ct

)
,

where C ′ takes care of the various volume doubling factors. By the lower estimate of
(3.4) with 2C2t in place of t and volume doubling, we find C1 ≥ 1 depending only
on

√
K R0 and n such that

pD(t, x, y) ≤ C1e
−λDt/4 pM (2C2t, x, y).

Integrating the inequality with respect to y ∈ D, we obtain

PD(t, x) =
∫
D
pD(t, x, y)dμ(y)

≤ C1e
−λDt/4

∫
D
pM (2C2t, x, y)dμ(y) ≤ C1e

−λDt/4.

Taking the supremum over x ∈ D, we obtain

πD(t) ≤ C1 exp

(
−λDt

4

)
for 0 < t < R2

0 . (3.5)

Let T = R2
0/2. We claim that (3.3) holds with C0 = 8 log(2C1), and with 	0 =

4T−1 log(2C1) or

C1 exp

(
−	0T

4

)
= 1

2
. (3.6)

Suppose λD > 	0. Then (3.5) with t = T yields πD(T ) ≤ 1/2. Solving the initial
value problem from time T , we see that

PD(t, x) ≤ πD(T ) · PD(t − T , x) ≤ 1

2
for t ≥ T .
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Take the supremum for x ∈ D. We find

πD(t) ≤ 1

2
for t ≥ T .

Repeating the same argument, we obtain

πD(t) ≤ 1

2k
for kT ≤ t < (k + 1)T with k = 0, 1, 2, . . . .

Hence

vD(x) =
∫ ∞

0
PD(t, x)dt =

∞∑
k=0

∫ (k+1)T

kT
PD(t, x)dt

≤
∞∑
k=0

∫ (k+1)T

kT
πD(t)dt ≤ T

∞∑
k=0

1

2k
= 2T ≤ 2	0T

λD
= 8 log(2C1)

λD

by (3.6). Taking the supremum for x ∈ D, we obtain λD‖vD‖∞ ≤ 8 log(2C1), as
required.

Remark 3.3 If the Gaussian estimate (2.1) holds uniformly for all 0 < t < ∞, then
there exists C > 0 such that λmin(D) ‖vD‖∞ ≤ C for all D ⊂ M . This is the case
when K = 0. See [19].

4 CapacitaryWidth and Harmonic Measure

Byωx (E, D)we denote the harmonic measure of E in D evaluated at x . In this section
we give an estimate for harmonic measure in terms of capacitary width. This will be
crucial for the proof of Theorem 1.3.

Theorem 4.1 (cf. [1, Thm. 12.7]) Let 0 < R0 < ∞. Let D ⊂ M be an open set with
wη(D) < R0. If x ∈ D and R > 0, then

ωx (D ∩ ∂B(x, R), D ∩ B(x, R)) ≤ exp

(
2C2 − C2R

wη(D)

)
,

where C2 depends only on
√
K R0, η and n.

Let us begin by estimating the torsion function of a ball.

Lemma 4.2 Let 0 < R0 < ∞. Then there exists a constant C > 1 depending only on√
K R0 and n such that

C−1r2 ≤ ‖vB(x,r)‖∞ ≤ Cr2 for 0 < r < R0.
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Proof Let 0 < r < R0. Write B = B(x, r) for simplicity. We have λmin(B) ≥ Cr−2

by Corollary 2.5. Since B is bounded, the bottom of the spectrum is an eigenvalue.
So let us write λB for λmin(B). Let z ∈ B. In view of [14, Ex. 10.29], the Gaussian
estimate (2.1) and the volume doubling property, we have

vB(z) =
∫
B
GB(z, y)dμ(y) =

∫ ∞

0
dt

∫
B
pB(t, z, y)dμ(y)

=
∫ r2

0
dt

∫
B
pB(t, z, y)dμ(y) +

∫ ∞

r2
dt

∫
B
pB(t, z, y)dμ(y)

≤ r2 +
∫ ∞

r2
e−λB (t−r2)dt

∫
B

√
pB(r2, z, z)pB(r2, y, y) dμ(y)

≤ r2 + 1

λB

∫
B

Cdμ(y)√
V (z, r)V (y, r)

≤ r2 + Cr2,

where C depends only on
√
K R0 and n. Hence ‖vB‖∞ ≤ Cr2.

The opposite inequality is an immediate consequence of the combination of Corol-
lary 2.5 and Lemma 3.1. But for later purpose we give a direct proof based on a lower
estimate of the Dirichlet heat kernel of a ball: if x ∈ M , then

pB(t, y, z) ≥ C

V (x,
√
t)

for y, z ∈ εB and 0 < t < εr2

valid for some 0 < ε < 1 and C > 0. In fact, this lower estimate is equivalent to the
Gaussian estimate (2.1). See e.g. [6, (1.5)]. If y ∈ εB, then

vB(y) =
∫
B
GB(y, z)dμ(z) ≥

∫ εr2

0
dt

∫
εB

pB(t, y, z)dμ(z) ≥ εr2Cμ(εB)

V (x,
√

εr)
≥ Cr2

by volume doubling. Thus ‖vB‖∞ ≥ Cr2.

For later use we record the above estimate: if 0 < r < R0, then

vB(x,r) ≥ C3r
2 on B(x, εr), (4.1)

where ε and C3 depends only on
√
K R0 and n.

Remark 4.3 In case K > 0, the inequality (4.1) does not necessarily hold for all 0 <

r < ∞ uniformly. LetHn be the n-dimensional hyperbolic space of constant curvature
−1. Then the torsion function for B(a, r) is a radial function f (ρ) of ρ = d(x, a)

satisfying

−1 = � f (ρ) = 1

(sinh ρ)n−1

d

dρ

{
(sinh ρ)n−1 d f

dρ

}
for 0 < ρ < r ,
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f (r) = 0, f ′(0) = 0 and f (0) = ‖vB(a,r)‖∞. See [11, pp. 176-177] or [14, (3.85)].
Hence

‖vB(a,r)‖∞ =
∫ r

0

∫ ρ

0

(
sinh t

sinh ρ

)n−1

dtdρ.

Since the integrand is less than 1,we have ‖vB(a,r)‖∞ ≤ 1
2r

2 for all r > 0.Observe that
t ≤ sinh t for t > 0 and sinh ρ ≤ ρ cosh R0 for 0 < ρ < R0. Hence, if 0 < r < R0,
then

‖vB(a,r)‖∞ ≥
∫ r

0

∫ ρ

0

(
t

ρ cosh R0

)n−1

dtdρ = r2

2n(cosh R0)n−1 ,

so that ‖vB(a,r)‖∞ ≈ r2. This gives the estimate in Lemma 4.2 with explicit bounds.
On the other hand, if r > 1, then sinh ρ ≥ 1

2 (1 − e−2)eρ for 1 < ρ < r , so that

‖vB(a,r)‖∞ ≤
∫ 1

0

∫ ρ

0
dtdρ +

∫ r

1

∫ ρ

0

(
sinh t

sinh ρ

)n−1

dtdρ

≤ 1

2
+

∫ r

1

∫ ρ

0

(
et

(1 − e−2)eρ

)n−1

dtdρ

= 1

2
+ 1

n − 1

∫ r

1

e(n−1)ρ − 1

((1 − e−2)eρ)n−1 dρ ≤ 1

2
+ r − 1

(n − 1)(1 − e−2)n−1 .

Thus ‖vB(a,r)‖∞ = O(r) as r → ∞, so (4.1) fails to hold uniformly for 0 < r < ∞.
This example illustrates that the assumption 0 < r < R0 cannot be dropped in
Lemma 4.2.

Next we compare capacity and volume. Observe that CapD(E) coincides with the
Green capacity of E with respect to D, i.e.,

CapD(E) = sup
{
‖ν‖ : supp ν ⊂ E and

∫
D
GD(x, y)dν(y) ≤ 1 on D

}
, (4.2)

where ‖ν‖ stands for the total mass of the measure ν.

Lemma 4.4 Let 0 < R0 < ∞. There exists a constant C4 > 0 depending only on√
K R0 and n such that if 0 < r < R0, then

μ(E)

μ(B(x, r))
≤ C4

CapB(x,2r)(E)

CapB(x,2r)(B(x, r))

for every Borel set E ⊂ B(x, r).
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Proof Let 0 < r < R0. Lemma 4.2 yields

∫
E
GB(x,2r)(y, z)dμ(z) ≤

∫
B(x,2r)

GB(x,2r)(y, z)dμ(z) ≤ ‖vB(x,2r)‖∞

≤ Cr2 for all y ∈ M,

where C depends only on
√
K R0 and n. Hence the characterization (4.2) of capacity

gives

CapB(x,2r)(E) ≥ μ(E)

Cr2
. (4.3)

Let ϕ(y) = min{2 − d(y, x)/r , 1}. Observe that ϕ ∈ W 1
0 (B(x, 2r)), |∇ϕ| ≤ 1/r and

ϕ = 1 on B(x, r). The definition of capacity and the volume doubling property yield

CapB(x,2r)(B(x, r)) ≤
∫
B(x,2r)

|∇ϕ|2dμ ≤ μ(B(x, 2r))

r2
≤ Cμ(B(x, r))

r2
.

This, together with (4.3) for E = B(x, r), shows that CapB(x,2r)(B(x, r)) ≈
r−2μ(B(x, r)) with the constant of comparison depending only on

√
K R0 and n.

Dividing (4.3) by CapB(x,2r)(B(x, r)), we obtain the lemma.

Let us introduce regularized reduced functions, which are closely related to capacity
and harmonic measure. See [3, Sect. 5.3-7] for the Euclidean case. Let D be an open
set. For E ⊂ D and a non-negative function u in E , we define the reduced function
DRE

u by

DRE
u (x) = inf{v(x) : v ≥ 0 is superharmonic in D and v ≥ u on E} for x ∈ D.

The lower semicontinuous regularization of DRE
u is called the regularized reduced

function or balayage and is denoted by DR̂E
u . It is known that

DR̂E
u is a non-negative

superharmonic function, DR̂E
u ≤ DRE

u in D with equality outside a polar set. If u is
a non-negative superharmonic function in D, then DR̂E

u ≤ u in D. By the maximum
principle DR̂E

u is non-decreasing with respect to D and E . If u is the constant function
1, then DR̂E

1 (x) is the probability of Brownian motion hitting E before leaving D
when it starts at x . In an almost verbatim way we can extend [1, Lem. F] to the present
setting. But, for completeness, we shall provide a proof.

Lemma 4.5 Let 0 < r < R < R0 < ∞.

(i) inf
B(x,r)

B(x,R)R̂E
1 ≤ CapB(x,R)(E)

CapB(x,R)(B(x, r))
for E ⊂ B(x, R).

(ii)
CapB(x,R)(E)

CapB(x,R)(B(x, r))
≤ C inf

B(x,r)

B(x,R)R̂E
1 for E ⊂ B(x, r) with C > 1 depend-

ing only on
√
K R0, r/R and n.
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Proof Let νE and νB be the capacitary measures of E and B(x, r), respectively. Then
νE is supported on E , GB(x,R)νE = B(x,R)R̂E

1 and ‖νE‖ = CapB(x,R)(E); νB is

supported on B(x, r), GB(x,R)νB = B(x,R)R̂B(x,r)
1 and ‖νB‖ = CapB(x,R)(B(x, r)).

In particular, GB(x,R)νB ≤ 1 in B(x, R) and hence

CapB(x,R)(E) ≥
∫

GB(x,R)νBdνE =
∫

GB(x,R)νEdνB

=
∫

B(x,R)R̂E
1 dνB ≥

∫ (
inf

B(x,r)

B(x,R)R̂E
1

)
dνB

=
(

inf
B(x,r)

B(x,R)R̂E
1

)
CapB(x,R)(B(x, r)).

Thus (i) follows.
Let ρ = (r + R)/2. The elliptic Harnack inequality (Corollary 2.6) implies

GB(x,R)(z, y) ≈ GB(x,R)(z, x) for z ∈ ∂B(x, ρ) and y ∈ B(x, r),

B(x,R)R̂B(x,r)
1 ≈ 1 on ∂B(x, ρ),

where, and hereafter, the constants of comparison depend only on
√
K R0, r/R and

n. Let E ⊂ B(x, r). Since supp νE ⊂ B(x, r), we have for z ∈ ∂B(x, ρ),

B(x,R)R̂E
1 (z) =

∫
GB(x,R)(z, y)dνE (y) ≈ GB(x,R)(z, x)CapB(x,R)(E),

B(x,R)R̂B(x,r)
1 (z) =

∫
GB(x,R)(z, y)dνB(y) ≈ GB(x,R)(z, x)CapB(x,R)(B(x, r)),

so that

CapB(x,R)(E)

CapB(x,R)(B(x, r))
≈ B(x,R)R̂E

1 (z).

Since z ∈ ∂B(x, ρ) is arbitrary, the superharmonicity of B(x,R)R̂E
1 and the maximum

principle yield (ii).

We restate the above lemma in terms of harmonic measure. We recall ωx (E, D)

stands for the harmonicmeasure of E in D evaluated at x .We see that if E is a compact
subset of B(x, R), then

ω(∂B(x, R), B(x, R) \ E) = 1 − B(x,R)R̂E
1 on B(x, R). (4.4)

Strictly speaking, the harmonicmeasure is extended by the right-hand side. Lemma 4.5
reads as follows.

Lemma 4.6 Let 0 < r < R < R0 < ∞.
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(i) 1 − CapB(x,R)(E)

CapB(x,R)(B(x, r))
≤ sup

B(x,r)

ω(∂B(x, R), B(x, R) \ E) for E ⊂ B(x, R).

(ii) sup
B(x,r)

ω(∂B(x, R), B(x, R)\E) ≤ 1−C−1 CapB(x,R)(E)

CapB(x,R)(B(x, r))
for E ⊂ B(x, r)

with C > 1 depending only on
√
K R0, r/R and n. In particular, if 0 < r < R0/2,

then

sup
B(x,r)

ω(∂B(x, 2r), B(x, 2r) \ E) ≤ 1 − C−1
5

CapB(x,2r)(E)

CapB(x,2r)(B(x, r))
,

where C5 > 1 depends only on
√
K R0 and n.

Applying Lemma 4.6 repeatedly, we obtain the following estimate of harmonic
measure, which is a preliminary version of Theorem 4.1.

Lemma 4.7 Let 0 < R0 < ∞. Let D ⊂ M be an open set with wη(D) < R0. Suppose
x ∈ D and R > 0. If k is a non-negative integer such that R − 2kwη(D) > 0, then

sup
D∩B(x,R−2kwη(D))

ω(D ∩ ∂B(x, R), D ∩ B(x, R)) ≤ (1 − C−1
5 η)k .

Proof For simplicity let ω0 = ω(D ∩ ∂B(x, R), D ∩ B(x, R)). By definition we find
r > wη(D) arbitrarily close to wη(D) such that

CapB(y,2r)(B(y, r) \ D)

CapB(y,2r)(B(y, r))
≥ η for all y ∈ D.

Hence it suffices to show that ω0 ≤ (1−C−1
5 η)k in D ∩ B(x, R − 2kr). Let us prove

this inequality by induction on k. The case k = 0 holds trivially. Let k ≥ 1 and suppose
ω0 ≤ (1 − C−1

5 η)k−1 in D ∩ B(x, R − 2(k − 1)r). Take y ∈ D ∩ ∂B(x, R − 2kr)
and let E = B(y, r) \ D. Since D ∩ B(y, 2r) ⊂ D ∩ B(x, R − 2(k − 1)r), we have

ω0 ≤ (1 − C−1
5 η)k−1ω(D ∩ ∂B(y, 2r), D ∩ B(y, 2r))

≤ (1 − C−1
5 η)k−1ω(∂B(y, 2r), D \ E) ≤ (1 − C−1

5 η)k

in D∩B(y, 2r). Since y ∈ D∩∂B(x, R−2kr) is arbitrary, we haveω0 ≤ (1−C−1
5 η)k

on D ∩ ∂B(x, R − 2kr), and hence in D ∩ B(x, R − 2kr) by the maximum principle,
as required.

This lemma and the definition of capacitary width yield
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Proof of Theorem 4.1 Let k be the integer such that 2kwη(D) < R ≤ 2(k + 1)wη(D).

Lemma 4.7 gives

ωx (D ∩ ∂B(x, R), D ∩ B(x, R)) ≤ (1 − C−1
5 η)k = exp

(
−k log

1

1 − C−1
5 η

)

≤ exp

(
−

(
R

2wη(D)
− 1

)
log

1

1 − C−1
5 η

)
,

which implies the required inequality with

C2 = 1

2
log

1

1 − C−1
5 η

.

5 Proofs of Theorems 1.3 and 1.6

In this section we prove Theorem 1.3 and complete the proof of Theorem 1.6 by
showing

Theorem 5.1 Let 0 < R0 < ∞. If wη(D) < R0, then

C−1wη(D)2 ≤ ‖vD‖∞ ≤ Cwη(D)2 (5.1)

where C depends only on
√
K R0, η and n.

This theorem, together with (3.2) in Lemma 3.1, immediately yields the follow-
ing estimate of the survival probability, which plays a crucial role in the proof of
Theorem 1.5.

Theorem 5.2 Let 0 < R0 < ∞. There exist positive constants C6 and C7 depending
only on

√
K R0, η and n such that

PD(t, x) ≤ C6 exp

(
− C7t

wη(D)2

)
for all t > 0 and x ∈ D, (5.2)

whenever wη(D) < R0.

Let us begin with a uniform estimate of the capacity of balls.

Lemma 5.3 Let 0 < R0 < ∞. For 0 < t ≤ 1, define

κ(t) = inf

{
CapB(x,2R)(B(x, t R))

CapB(x,2R)(B(x, R))
: x ∈ M, 0 < R < R0

}
.

Then limt→1 κ(t) = 1.
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Proof Without loss of generality we may assume that 1/2 < t ≤ 1. Let � =
B(x, 2R) \ B(x, t R) and let Et = ∂B(x, t R). We find a > 0 such that for each
y ∈ Et and 0 < r < 1

4 R there exists a ball of radius ar lying in B(y, r) \ �. This
means that

μ(B(y, r) \ �)

μ(B(y, r))
≥ ε

with some ε > 0 depending only on a and the doubling constant. By Lemmas 4.4 and
4.6 we have

sup
B(y,r)

ω(∂B(y, 2r), B(y, 2r) ∩ �) ≤ 1 − ε′ (5.3)

with ε′ > 0 independent of x, R, t, y and r .
The technique in the proof of [2, Thm. 1] yields a positive superharmonic function

s in � such that
s ≈ dist(·, Et )

α, (5.4)

where α > 0 and the constants of comparison are independent of x, R and t . In fact,
let rk = 4k , k ∈ Z. For each k ∈ Z choose a locally finite covering of Et by open balls
B(xk j , rk/4), j ∈ Jk ; let Bkj = B(xk j , rk). By (5.3) we find a positive continuous
function ukj in�∩Bkj , superharmonic in�∩Bkj , such that ε′′ ≤ ukj ≤ 2 in�∩Bkj ,
ukj ≥ 1 in � ∩ ∂Bkj , ukj ≤ 1− ε′′ in � ∩ 1

2 Bkj , where ε′′ is a small positive constant
depending only on ε′. Let A = 1 − ε′′/2 and extend ukj on � \ Bkj by ukj = ∞.
Then

s(x) = inf{A−kuk j (x) : k ∈ Z, j ∈ Jk}, x ∈ �

is a superharmonic function in � satisfying (5.4) with α = | log A|/ log 4. Actually,
we can make s a strong barrier. In the present context, however, superharmonicity is
enough.

From (5.4), we find a positive constant C independent of x, R and t such that

s

CRα
≥ 1 on ∂B(x, 3R/2).

Let u be the capacitary potential for B(x, t R) in B(x, 2R), i.e.,

�u = 0 in B(x, 2R) \ B(x, t R),

u = 1 on B(x, t R),

u = 0 on ∂B(x, 2R),

CapB(x,2R)(B(x, t R)) =
∫
B(x,2R)

|∇u|2dμ.
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Since 1 − u ≤ s/(CRα) on ∂B(x, 3R/2), it follows from the maximum principle

1 − u ≤ s

CRα
≈ dist(·, Et )

α

Rα
in B(x, 3R/2) \ B(x, t R).

Hence

u ≥ 1 − C
((1 − t)R)α

Rα
= 1 − C(1 − t)α in B(x, R) \ B(x, t R)

with another positive constant C . If 1 − C(1 − t)α > 0, then by definition,

CapB(x,2R)(B(x, R)) ≤ 1

(1 − C(1 − t)α)2

∫
B(x,2R)

|∇u|2dμ

= CapB(x,2R)(B(x, t R))

(1 − C(1 − t)α)2
.

Hence

CapB(x,2R)(B(x, t R))

CapB(x,2R)(B(x, R))
≥ (1 − C(1 − t)α)2,

so that the lemma follows as limt→1(1 − C(1 − t)α)2 = 1.

Proof of Theorem 1.3 By definition the first inequality holds for arbitrary open sets D.
Let us prove the second inequality. In view of Lemma 5.3, we find an integer N ≥ 2
depending only on

√
K R0 and n such that

CapB(x,2R)(B(x, (1 − N−1)R))

CapB(x,2R)(B(x, R))
≥ √

η (5.5)

uniformly for x ∈ M and 0 < R < R0. Let C5 be as in Lemma 4.6 and take an integer
k > 2 so large that (1 − C−1

5 η′)k ≤ 1 − √
η.

Let wη(D) < R0. We prove the theorem by showing

wη(D) ≤ 2Nkwη′(D). (5.6)

Ifwη′(D) ≥ R0/(2Nk), thenwη(D) < R0 ≤ 2Nkwη′(D), so (5.6) follows. Suppose

wη′(D) <
R0

2Nk
.

For simplicity we write ρ = wη′(D). Apply Lemma 4.7, with η′ in place of η, to
x ∈ D and R = 2Nkρ. We obtain

sup
D∩B(x,R−2kρ)

ω(D ∩ ∂B(x, R), D ∩ B(x, R)) ≤ (1 − C−1
5 η′)k ≤ 1 − √

η.
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Let E = B(x, R) \ D. Then the maximum principle yields

ω(∂B(x, 2R), B(x, 2R) \ E) ≤ ω(D ∩ ∂B(x, R), D ∩ B(x, R)) in D ∩ B(x, R),

so that

ω(∂B(x, 2R), B(x, 2R) \ E) ≤ 1 − √
η in B(x, R − 2kρ),

where we use the convention ω(∂B(x, 2R), B(x, 2R) \ E) = 0 in E . Hence,
Lemma 4.6 (i) with R − 2kρ and 2R in place of r and R gives

1 − CapB(x,2R)(E)

CapB(x,2R)(B(x, R − 2kρ))
≤ 1 − √

η,

so that

CapB(x,2R)(E)

CapB(x,2R)(B(x, R − 2kρ))
≥ √

η.

Multiplying the inequality and (5.5), we obtain

CapB(x,2R)(E)

CapB(x,2R)(B(x, R))
≥ η,

as R−2kρ = (1−N−1)R. Since x ∈ D is arbitrary, we havewη(D) < R = 2Nkρ =
2Nkwη′(D). Thus we have (5.6).

Proof of Theorem 5.1 First, let us prove the second inequality of (5.1), i.e., ‖vD‖∞ ≤
Cwη(D)2. In view of the monotonicity of the torsion function, we may assume that D
is bounded and hence ‖vD‖∞ < ∞. By definitionwe find r ,wη(D) ≤ r < 2wη(D) <

2R0, such that

CapB(x,2r)(B(x, r) \ D)

CapB(x,2r)(B(x, r))
≥ η for every x ∈ D.

For a moment we fix x ∈ D and let B = B(x, r), B∗ = B(x, 2r), and E = B \ D for
simplicity. Then CapB∗(E)/CapB∗(B) ≥ η. We compare vD with

vB∗ =
∫
B∗

GB∗(·, y)dμ(y).

It is easy to see that vD − vB∗ is harmonic in D ∩ B∗ and vD = 0 on ∂D outside a
polar set. Hence the maximum principle yields

vD − vB∗ ≤ ‖vD‖∞ω(D ∩ ∂B∗, D ∩ B∗) in D ∩ B∗.
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Since Lemma 4.6 implies that

ωx (D ∩ ∂B∗, D ∩ B∗) ≤ ωx (∂B∗, B∗ \ E) ≤ 1 − C−1
5 η,

it follows from Lemma 4.2 that

vD(x) ≤ vB∗(x) + ‖vD‖∞ωx (D ∩ ∂B∗, D ∩ B∗) ≤ Cr2 + ‖vD‖∞(1 − C−1
5 η).

Taking the supremum with respect to x ∈ D, we obtain

‖vD‖∞ ≤ CC5η
−1r2 ≤ 4CC5η

−1wη(D)2.

Second, let us prove the first inequality of (5.1), i.e. wη(D)2 ≤ C‖vD‖∞. We
distinguish two cases. Suppose first ‖vD‖∞ ≥ C3R2

0/2 with C3 as in (4.1). Then

‖vD‖∞ ≥ 1

2
C3R

2
0 >

1

2
C3wη(D)2,

as required. Suppose next ‖vD‖∞ < C3R2
0/2. Take R such that

‖vD‖∞ = C3R2

2
. (5.7)

Then 0 < R < R0. Let x ∈ D. This time, we let B = B(x, R), B∗ = B(x, 2R) and
E = B \ D with R as in (5.7). We shall compare vD with the torsion function

vB =
∫
B
GB(·, y)dμ(y).

Observe that vB−vD is harmonic in D∩B. By themaximumprinciple and Lemma 4.2

vB − vD ≤ sup
E

vB · ω(∂E, B \ E) = sup
E

vB · (1 − ω(D ∩ ∂B, B \ E))

≤ CR2(1 − ω(∂B∗, B∗ \ E)) in D ∩ B,

since ∂(D ∩ B) ⊂ (B ∩ ∂D) ∪ (D ∩ ∂B) ⊂ E ∪ ∂B, and since vB = 0 on ∂B.
Let 0 < ε < 1 be as in (4.1). Taking the infimum over B(x, εR), we obtain from
Lemma 4.6 that

inf
B(x,εR)

vB − ‖vD‖∞ ≤ CR2

(
1 − sup

B(x,εR)

ω(∂B∗, B∗ \ E)

)

≤ CR2 CapB∗(E)

CapB∗(B(x, εR))
.
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Hence, (4.1) and (5.7) yield

C3R
2 − C3R2

2
≤ CR2 CapB∗(E)

CapB∗(B(x, εR))
.

Dividing by CR2, we obtain

CapB∗(E)

CapB∗(B(x, εR))
≥ C3

2C
,

so that, by Lemma 4.4 and volume doubling

CapB∗(E)

CapB∗(B(x, R))
= CapB∗(E)

CapB∗(B(x, εR))
· CapB∗(B(x, εR))

CapB∗(B(x, R))

≥ C3

2C
· Cμ(B(x, εR))

μ(B(x, R))
≥ η′

with 0 < η′ < 1 depending only on
√
K R0 and n. Thus

CapB∗(B(x, R) \ D)

CapB∗(B(x, R))
≥ η′.

Since x ∈ D is arbitrary, we have wη′(D) < R and so wη(D) ≤ CR by Theorem 1.3.
Hence wη(D)2 ≤ C‖vD‖∞ by (5.7). The proof is complete.

6 Proof of Theorem 1.5

The crucial step of the proof of Theorem 1.5 is the following parabolic box argument
(cf. [1, Lem. 4.1]),

Lemma 6.1 Suppose (1.2) holds. If t > 0, then

PD(t, x) ≤ CtGD(x, o) for x ∈ D (6.1)

with Ct depending on t.

Proof Without loss of generality we may assume that τ = 1 in (1.2). For notational
conveniencewe shall prove (6.1)withT in place of t . For simplicitywewritewη(Go

D <

s) = wη({x ∈ D : GD(x, o) < s}. Let α j = exp(−2 j ). Since

∫ α j−1

α j

wη(G
o
D < s)2

ds

s
≥ wη(G

o
D < α j )

2
∫ α j−1

α j

ds

s

= wη(G
o
D < α j )

2(2 j − 2 j−1) = 2 j−1wη(G
o
D < α j )

2,
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Fig. 1 Parabolic box argument

it follows from (1.2) that
∑∞

j=0 2
jwη(Go

D < α j )
2 < ∞.

Let wη(Go
D < 1) < R0 < ∞ and choose C6 and C7 as in Theorem 5.2. We find

j0 ≥ 0 such that
3

C7

∞∑
j= j0+1

2 jwη(G
o
D < α j )

2 < T . (6.2)

Define

tk = 3

C7

k∑
j= j0+1

2 jwη(G
o
D < α j )

2 for k ≥ j0 + 1,

and t j0 = 0. Then tk increases and limk→∞ tk < T by (6.2). Observe that

1

αk+1
exp

(
− C7(tk − tk−1)

wη(Go
D < αk)2

)
= exp(2k+1 − 3 · 2k) = exp(−2k) (6.3)

for k ≥ j0 + 1.
Let Dk = {x ∈ D : GD(x, o) < αk}, Ek = {x ∈ D : αk+1 ≤ GD(x, o) < αk},

D̃k = (tk−1,∞) × Dk and Ẽk = (tk,∞) × Ek . Put

qk = sup
(t,x)∈Ẽk

PD(t, x)

GD(x, o)
.

We claim that supk≥ j0+1 qk ≤ C , which implies (6.1) with T in place of t , and
CT = max{C, 1/α j0+1} since (T ,∞) × {x ∈ D : GD(x, o) < α j0+1} ⊂ ⋃

k≥ j0+1 Ẽk

by (6.2). See Fig. 1.
By the parabolic comparison principle over D̃ j0+1 we have

PD(t, x) ≤ GD(x, o)

α j0+1
+ PDj0+1(t, x) for (t, x) ∈ D̃ j0+1 = (0,∞) × Dj0+1.
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Divide both sides by GD(x, o) and take the supremum over Ẽ j0+1. Then (5.2) and
(6.3) yield

q j0+1 ≤ 1

α j0+1
+ sup

(t,x)∈Ẽ j0+1

PDj0+1(t, x)

GD(x, o)

≤ 1

α j0+1
+ C6

α j0+2
sup

t≥t j0+1

exp

(
− C7t

wη(Dj0+1)2

)

≤ 1

α j0+1
+ C6

α j0+2
exp

(
−C7(t j0+1 − t j0+1)

wη(Dj0+1)2

)
= exp(2 j0+1) + C6 exp(−2 j0+1).

Let k ≥ j0 + 2. By the parabolic comparison principle over D̃k we have

PD(t, x) ≤ qk−1GD(x, o) + PDk (t − tk−1, x) for (t, x) ∈ D̃k = (tk−1,∞) × Dk .

Divide both sides by GD(x, o) and take the supremum over Ẽk . In the same way as
above, we obtain from (5.2) and (6.3) that

qk ≤ qk−1 + C6

αk+1
exp

(
−C7(tk − tk−1)

wη(Dk)2

)
≤ qk−1 + C6 exp(−2k).

Hence we have the claim as

sup
k≥ j0+1

qk ≤ exp(2 j0+1) + C6

∞∑
k= j0+1

exp(−2k) < ∞.

The lemma is proved.

Proof of Theorem 1.5 By Theorem 1.4 we have the first condition for IU. Let us show
(1.1) for every t > 0. It is known that the lower estimate of (1.1) follows from the
upper estimate. Moreover, if pD(t0, x, y) ≤ Ct0ϕD(x)ϕD(y) for all x, y ∈ D with
some t0 > 0, then pD(t, x, y) ≤ CtϕD(x)ϕD(y) holds with Ct ≤ Ct0e

−λD(t−t0) for
t ≥ t0 (See e.g. [1, Prop. 2.1]). Hence, it suffices to show the upper estimate of (1.1)
for small t > 0.

Since ϕD is superharmonic, and since GD(·, o) is harmonic outside {o}, we have
GD(·, o) ≤ CϕD apart from a neighborhood of o. So, it is sufficient to show that if
t > 0 small, then there exists Ct > 0 such that

pD(t, x, y) ≤ CtGD(x, o)GD(y, o) for x, y ∈ D. (6.4)

Let i0 be the injectivity radius of M . It is known that

μ(B(x, r)) ≥ Crn for 0 < r < i0/2 and x ∈ M .
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where C > 0 depends only on M (Croke [9, Prop. 14]). Hence, the Gaussian estimate
(2.1) yields

pM (t, x, y) ≤ C

V (x,
√
t)

≤ Ct−n/2 (6.5)

for 0 < t < min{R2
0, (i0/2)

2} and x, y ∈ M . Let 0 < t < min{R2
0, (i0/2)

2} and
x, y, z ∈ D. By (6.5) we have

pD(2t, z, y) =
∫
D
pD(t, z, w)pD(t, w, y)dμ(w)

≤
∫
D
pM (t, z, w)pD(t, w, y)dμ(w)

≤ Ct−n/2
∫
D
pD(t, w, y)dμ(w) = Ct−n/2PD(t, y),

since the heat kernel is symmetric. Moreover,

pD(3t, x, y) ≤
∫
D
pD(t, x, z)pD(2t, z, y)dμ(z)

≤
∫
D
pD(t, x, z)Ct−n/2PD(t, y)dμ(z)

= Ct−n/2PD(t, x)PD(t, y).

Hence Lemma 6.1 yields

pD(3t, x, y) ≤ Ct−n/2PD(t, x)PD(t, y) ≤ CtGD(x, o)GD(y, o).

Replacing 3t by t , we obtain (6.4) for small t > 0. Thus the theorem is proved.

Remark 6.2 The assumption on the injectivity radius can be replaced by

inf
x∈M μ(B(x, R0)) > 0. (6.6)

In fact, (2.2) yields

μ(B(x, r)) ≥ C

(
r

R0

)α

inf
x∈M μ(B(x, R0)) for all x ∈ M and 0 < r < R0,

and hence for small t > 0,

pM (t, x, y) ≤ C

V (x,
√
t)

≤ Ct−α/2.

Replacing (6.5) by this inequality, we obtain

pD(3t, x, y) ≤ Ct−α/2PD(t, x)PD(t, y) ≤ CtGD(x, o)GD(y, o),
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which proves Theorem 1.5. See [10] for further discussion on (6.6).

7 Remarks

Once we obtain the theorems in Sect. 1, we can extend many Euclidean results to the
setting of manifolds. Proofs are almost the same as in the Euclidean case. For instance,
we relax the requirement of inner uniformity for IU assumed in [15, Thm. 7.9]. For a
curve γ in M we denote the length of γ and the subarc of γ between x and y by �(γ )

and γ (x, y), respectively. For a domain D in M we define the inner metric in D as

dD(x, y) = inf{�(γ ) : γ is a curve connecting x and y in D}.

Definition 7.1 Let D be a domain in M and let δD(x) = dist(x, M \ D).
(i) We say that D is a John domain if there exist o ∈ D and C ≥ 1 such that every

x ∈ D is connected to o by a rectifiable curve γ ⊂ D with the property

�(γ (x, z)) ≤ CδD(z) for all z ∈ γ.

(ii) We say that D is an inner uniform domain if there exists C ≥ 1 such that every
pair of points x, y ∈ D can be connected by a rectifiable curve γ ⊂ D with the
properties �(γ ) ≤ CdD(x, y) and

min{�(γ (x, z), �(γ (z, y)} ≤ CδD(z) for all z ∈ γ.

If we replace dD(x, y) by the ordinary metric d(x, y) in (ii), then we obtain a
uniform domain. By definition a John domain is necessarily bounded. We have the
following inclusions for these classes of bounded domains:

uniform � inner uniform � John.

Figure 2 depicts a John domain that is not inner uniform.We find a curve connecting
x and o with the property of Definition 7.1 (i); yet there is no curve connecting x and

Fig. 2 A John domain that is not
inner uniform
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y with the properties of Definition 7.1 (ii) if the gaps on the vertical segment shrink
sufficiently fast.

Theorem 7.2 A John domain is IU.

Proof Let D be a John domain. Observe that wη({x ∈ D : δD(x) < r}) ≤ Cr for
small r > 0 by definition and GD(x, o) ≥ CδD(x)α with some α > 0 by the Harnack
inequality. Hence

wη({x ∈ D : GD(x, o) < t}) ≤ wη({x ∈ D : δD(x) < (t/C)1/α}) ≤ Ct1/α,

so that (1.2) holds. Therefore Theorem 1.5 asserts that D is IU.
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